
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

Function-specific schemes for
verifiable computation

https://hdl.handle.net/2144/19746
Boston University

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

FUNCTION-SPECIFIC SCHEMES

FOR VERIFIABLE COMPUTATION

by

DIMITRIOS PAPADOPOULOS

Diploma, National Technical University of Athens, 2010

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

c© 2016 by
DIMITRIOS PAPADOPOULOS
All rights reserved

Approved by

First Reader

Sharon Goldberg, PhD
Associate Professor of Computer Science

Second Reader

Nikos Triandopoulos, PhD
Adjunct Assistant Professor of Computer Science

Third Reader

Charalampos Papamanthou, PhD
Assistant Professor of Electrical and Computer Engineering
University of Maryland

The gap between theory and practice in theory
is not as large as the gap between theory and practice in practice.

-anonymous

iv

Acknowledgments

These past five years have been a beautiful educational journey and numerous indi-

viduals have helped me navigate my way through it.

First and foremost, I am grateful to my advisor, Nikos Triandopoulos, without

the guidance of whom I could not have faced the numerous challenges of graduate

school. From day one, Nikos strove to teach me how to conduct quality research,

in an honest self-critical way, and with attention to detail. He always managed to

reach out to me, with a combination of firm guidance, mentoring, positive attitude,

and the inherent kindness of his character. Under his dual role as a faculty member

at Boston University and as a scientist conducting corporate research, he was in a

unique position to help me achieve a spherical understanding of our role as researchers

and the implications of our work, as well as show me a multitude of possible paths

for my personal advancement in either of the two worlds. I will always be grateful

for the opportunity he gave me to work with him and the valuable lessons he taught

me but, most importantly, for having the honor of calling him a friend.

Secondly, I want to thank Sharon Goldberg for her invaluable assistance through-

out this journey. I am grateful for the opportunity she gave me to assist her in

teaching courses at Boston University, an opportunity that later evolved into a close

personal collaboration. I will forever remember the long hours she put into help-

ing me improve my work and presentation skills, and our long technical discussions.

With her diverse research interests she opened up new paths for me and helped me

bridge the gap between theoretical research and real-world problems.

Special thanks to Charalampos Papamanthou and Stavros Papadopoulos who

have been my collaborators and coauthors in multiple works throughout these years.

Charalampos has always provided constructive guidance and his counseling has not

only helped me improve my research but also to better understand relations between

v

topics that seemed disjoint to me. My close collaboration with Stavros has proven

to be a valuable lesson in academic research, in more than one occasions. His strict

work ethics and his hands-on approach to research will always be a bright example.

I also feel the deep need to thank Ran Canetti and Leonid Reyzin. I consider

myself truly blessed to have been given the chance to discuss research topics and

coauthor papers with both of them. Ran’s classes at Boston University were my

gateway to cryptographic research; his formal treatment of the topic and his academic

rigorousness have served as a golden standard for me ever since. Throughout my years

at graduate school, Leo’s deep knowledge in a vast array of topics never ceased to

amaze me. His feedback has been invaluable on multiple occasions. At this point, I

want to stress what an amazing academic environment the BU Security group has

been for me. The number of interesting ideas that bounce around its corridors on

a daily basis is fascinating, but what is truly unbelievable is the extent to which

everyone makes themselves available to others, in order to provide feedback, discuss

ideas, or offer support. Many places can claim to have an open-door policy, but I can

safely say that, at BUSec, office doors may easily be replaced with bead curtains.

I am grateful to all my other coauthors during my years as a graduate student,

namely, Foteini Baldimitsi, Esha Ghosh, Ahmed Kosba, Moni Naor, Olga Ohri-

menko, Omer Paneth, Mahmoud Sayed, Alessandra Scafuro, Elaine Shi, Roberto

Tamassia, Sachin Vasant, and Asaf Ziv. My collaboration with each of them has

greatly benefited me and helped shape my perspective on research. I also want to

thank Christian Cachin and Duane Wessels for being my research mentors during my

internships at IBM Research and Verisign Labs, respectively. Finally, I have to ex-

press my gratitude towards my undergraduate mentor at NTUA, Antonis Symvonis,

for preparing me for this educational adventure.

The BU CS department has been an ideal academic environment for me and all

vi

faculty members are extraordinary. I am particularly thankful to Azer Bestavros,

John Byers, Steve Homer, Assaf Kfoury, George Kollios, Abraham Matta, and Evi-

maria Terzi for their very well-taught courses and their guidance. Life as a graduate

student at BU would have been much harder without the assistance of the admin-

istrative and technical staff of the department. Many thanks to Chris, Jennifer,

Theresa, Ellen, Nora, Faith, Paul, and Bob, for making our lives easier.

This experience would not have been so enjoyable without a number of people

that I shared it with. I want to thank Davide, Natali, Jeff, Foteini, Sokratis, Stavros,

Amina, Jimmy, Amy, George, Ben, Alessandra, Sofia, Ioannis, Kostas, Anastasia,

Thodoris, Nina, and Xianrui for being such great friends and for always being there,

through each hardship and every celebration. A happy life begins with a happy

home and, for this, I will always be grateful to Harry Mavroforakis for being the best

roommate anyone could have and a true friend.

Back in Greece, my relatives and childhood friends played a huge role in support-

ing me and galvanizing my determination during this task. I want to thank all my

buddies and family friends for their love. Special thanks to Zoi Zaharopoulou and

Anastasia Patrikiou for playing a tremendous role in my upbringing, each in her own

important way. Finally, I want to thank my aunt Lena, uncle Yiannis, and cousin

Iria for being there for me and making each trip home a happy one.

Last but not least, none of this would have been even remotely possible without

the support of my family. I will always be grateful to my mother Theopoula for her

love and the unconditional sacrifices she made for my upbringing. Her ability to make

every disappointment diminish while magnifying every success has been my solace

throughout these years. Finally, my wife Eirini has offered her love and support and

has patiently suffered with me on a daily basis; a great part of this degree belongs

to her.

vii

FUNCTION-SPECIFIC SCHEMES

FOR VERIFIABLE COMPUTATION

DIMITRIOS PAPADOPOULOS

Boston University, Graduate School of Arts and Sciences, 2016

Major Professors: Sharon Goldberg, PhD
Associate Professor of Computer Science

Nikos Triandopoulos, PhD
Adjunct Assistant Professor of Computer Science

ABSTRACT

An integral component of modern computing is the ability to outsource data and

computation to powerful remote servers, for instance, in the context of cloud com-

puting or remote file storage. While participants can benefit from this interaction, a

fundamental security issue that arises is that of integrity of computation: How can

the end-user be certain that the result of a computation over the outsourced data

has not been tampered with (not even by a compromised or adversarial server)?

Cryptographic schemes for verifiable computation address this problem by ac-

companying each result with a proof that can be used to check the correctness of

the performed computation. Recent advances in the field have led to the first imple-

mentations of schemes that can verify arbitrary computations. However, in practice

the overhead of these general-purpose constructions remains prohibitive for most ap-

plications, with proof computation times (at the server) in the order of minutes or

even hours for real-world problem instances. A different approach for designing such

schemes targets specific types of computation and builds custom-made protocols, sac-

viii

rificing generality for efficiency. An important representative of this function-specific

approach is an authenticated data structure (ADS), where a specialized protocol is

designed that supports query types associated with a particular outsourced dataset.

This thesis presents three novel ADS constructions for the important query types

of set operations, multi-dimensional range search, and pattern matching, and proves

their security under cryptographic assumptions over bilinear groups. The scheme

for set operations can support nested queries (e.g., two unions followed by an in-

tersection of the results), extending previous works that only accommodate a single

operation. The range search ADS provides an exponential (in the number of at-

tributes in the dataset) asymptotic improvement from previous schemes for storage

and computation costs. Finally, the pattern matching ADS supports text pattern

and XML path queries with minimal cost, e.g., the overhead at the server is less

than 4% compared to simply computing the result, for all our tested settings. The

experimental evaluation of all three constructions shows significant improvements in

proof-computation time over general-purpose schemes.

ix

Contents

1 Introduction 1

1.1 General-purpose verifiable computation 4

1.2 Function-specific schemes for verifiable computation 6

1.2.1 Authenticated data structures 7

1.3 Three novel ADS constructions . 9

1.3.1 Nested set operations . 9

1.3.2 Multi-dimensional range queries 11

1.3.3 Pattern matching . 12

1.4 Thesis outline . 13

2 Cryptographic Preliminaries 14

2.1 Authenticated data structures . 15

2.2 Bilinear groups . 18

2.3 Bilinear accumulator . 19

3 Verifiable Set Operations 21

3.1 Introduction . 21

3.1.1 Overview of result . 21

3.1.2 Overview of techniques . 23

3.1.3 Prior work . 25

3.2 Extractable collision-resistant hash functions 26

3.3 Set representation with polynomials 29

3.4 An ADS for hierarchical set operations 31

x

3.4.1 Setup and updates . 32

3.4.2 Query responding and verification 35

3.4.3 Main result . 45

3.4.4 Complexity analysis for the algorithms of the scheme 57

3.5 Server-assisted updates . 62

3.6 Extensions and implementation decisions 68

3.7 Experimental evaluation . 70

4 Verifiable Multi-dimensional Range Queries 76

4.1 Introduction . 76

4.1.1 Prior work . 77

4.1.2 Overview of result . 78

4.1.3 Overview of techniques . 78

4.2 Set membership and set operations authentication 81

4.3 Problem formulation . 84

4.4 Basic scheme . 87

4.4.1 A general framework . 87

4.4.2 Construction . 91

4.5 Update-efficient scheme . 103

4.5.1 Construction . 103

4.6 Performance evaluation . 108

5 Verifiable Pattern Matching Queries 115

5.1 Introduction . 115

5.1.1 Prior work . 115

5.1.2 Overview of result . 116

5.1.3 Overview of techniques . 120

5.2 Pattern matching queries . 121

xi

5.3 Main construction . 126

5.4 Applications . 136

5.4.1 Search on collection of text documents 136

5.4.2 Search on XML documents . 138

5.4.3 Dynamic datasets . 143

5.5 Parallel algorithms . 145

5.6 Performance evaluation . 146

6 Conclusion 155

6.1 Combining function-specific with general-purpose verifiable computation156

6.2 Other open problems . 159

References 160

Curriculum Vitae 172

xii

List of Tables

4.1 Costs of primitive operations . 109

4.2 Proof size in KB (n = 106,m = 64) 111

5.1 XML documents used for experiments and setup time. 147

5.2 Setup cost for text documents and size of proofs. 148

xiii

List of Figures

1·1 The interaction model of authenticated data structures. Initially, the

data owner computes a digest d of his dataset D which he publishes.

Subsequently he outsources D to a server who is responsible for han-

dling queries q issued by multiple clients. The server is considered

untrusted and is required to respond to q with the answer α together

with a proof Π which is used by the clients alongside d to verify the

integrity of α. 8

3·1 Algorithms for proving and verifying a single intersection 38

3·2 Algorithms for proving and verifying a single union 40

3·3 Algorithms for proving and verifying a single set difference 41

3·4 Algorithm for proving general set operations 43

3·5 Algorithm for verifying general set operations 44

3·6 Overhead for verification at the client (left) and proof computation at

the server (right) versus the cardinality of each input set for two types

of queries. 72

4·1 m: # attributes, n: # tuples, |T |(= mn): database size, d: # dimen-

sions, Ri: partial result at dimension ai, R: query result, N : maximum

domain size, ε ∈ (0, 1] . 79

4·2 Illustrating the different tuple orders per attribute 88

4·3 Set representation of Ri using two different techniques. 92

4·4 The authentication structure of our basic scheme 95

xiv

4·5 Authentication flow . 96

4·6 The authentication structure for our dynamic scheme 104

4·7 Representation of Ri through sets . 106

4·8 Verification overhead at client . 110

4·9 Setup (left) and update (right) overhead at owner. 112

4·10 Proof construction cost at server . 113

5·1 Asymptotic complexities of our scheme for text pattern matching and

XML exact path queries: n is the size of the document, m the pattern

length, κ the number of occurrences, Σ the alphabet size, s the answer

size, and d the number of valid paths. 117

5·2 Suffix tree for minimize storing suffixes minimize, inimize, nimize, imize,

mize, ize, ze, e as eight overlapping paths. 123

5·3 (Left) Pattern matching in our scheme for pattern p (|p| = m), using

suffixes S[i] and S[j], where S[i] = pS[j]. (Right) Pattern mismatch

in our scheme, using suffixes S[i] and S[j], where S[i] = p1p2 . . . ptS[j]

and t < m. 124

5·4 (Left) Tree XT containing all the elements of XML document X. El-

ement attributes can be included as a different type of node, directly

below the corresponding element. (Right) Trie XL containing all the

distinct label paths that appear at X. Observe how each node has

pointers to all the corresponding element nodes in XT 139

5·5 Computation time for query evaluation and proof construction at the

server, for text pattern matching. 149

5·6 Overall computation time for positive (left) and negative (right) re-

sponses at the server, for XML pattern matching. 149

xv

5·7 Computation time for verification of the three different cases at the

client, for text pattern matching. 152

5·8 Computation time for verification of positive (left) and negative (right)

responses at the client, for XML pattern matching. 152

xvi

List of Abbreviations

ADS Authenticated data structure
CRH Collision-resistant hash function
DTD Document type definition
ECRH Extractable collision-resistant hash function
EREW Exclusive-read exclusive-write model
FFT Fast Fourier transform
NP Non-deterministic polynomial time
PCP Probabilistically checkable proof
PRF Pseudorandom function
q-PKE q-Power knowledge of exponent assumption
q-SBDH q-Strong bilinear Diffie-Hellman assumption
SMA Set membership authentication protocol
SNARK Succinct non-interactive argument of knowledge
SOA Set operation authentication protocol
VC Verifiable computation

xvii

Chapter 1

Introduction

An integral component of modern computing is the ability to outsource data and

computation to powerful remote servers. Individuals frequently outsource their data

to hosting services such as Dropbox and Google Drive, or have their e-mails stored

remotely at Gmail servers, in order to be able to access them from everywhere.

Following the Database-as-a-Service paradigm, enterprises can utilize cloud services

like Amazon EC2 and S3, in order to benefit in terms of storage, computation, and

elasticity of resources.

On one hand, all participants stand to gain from this model of interaction. Data

owners avoid the need for building a sophisticated and potentially costly infrastruc-

ture since storage and computationally intensive tasks are offloaded to a cloud server.

Moreover, the server can benefit financially from accommodating a large number of

datasets from different parties. On the other hand, new security issues arise in this

setting where one’s data no longer resides within their “zone-of-trust”. One par-

ticular such issue is that of integrity of computation, i.e, how can an end-user be

certain that the result of a query, executed at the remote server, has not been tam-

pered with—even if the server itself is compromised or behaves adversarially (e.g.,

to bias the competition among rival serviced companies). Ensuring that information

remains intact in the lifetime of an outsourced dataset and that query processing is

handled correctly, producing correct and up-to-date answers, lies at the foundation

of secure cloud services.

1

2

In this thesis, we consider a data owner that outsources a dataset D to a server.

The latter is then responsible for responding to informational queries issued by mul-

tiple clients, answered according to D. This model captures a variety of real-world

applications such as outsourced SQL queries, streaming datasets, and outsourced

file systems. Furthermore, the owner may choose to modify D, e.g., by inserting or

deleting elements, and the server is notified for such changes. In practice, the clients

may be collaborators or customers of the data owner, or even the owner himself ac-

cessing D from a different device via the server. In this setting clients may want to

verify the integrity of the server’s answers to protect themselves against servers that

behave maliciously, are compromised by an external attacker, or simply provide false

data due to bugs. Informally, the clients should, somehow, get a guarantee that the

computation is as good as if it was performed by the trusted owner himself. Here,

we present cryptographic solutions that provide such a guarantee for three types of

computations over outsourced databases. In particular, we construct solutions that

allow the clients to check the correctness of remotely executed: (i) nested set opera-

tions, (ii) multi-dimensional range queries, and (iii) text and XML pattern matching

queries. These three types of computation capture numerous applications in prac-

tice. We elaborate more on this in Section 1.3. However, before we can proceed with

this, we first need to discuss what are the existing solutions for this problem in the

literature, in order to better present our contributions and how our constructions are

related to prior works.

In the security literature, researchers have studied three (loosely defined) alter-

native approaches for achieving such an integrity property. One approach relies on

trusted hardware, (e.g., [SZJvD04, PMP11, SLS+05, SSW10]), which requires that

the owner can install a secure module at the infrastructure of the server. Another

line of works relies on replication (e.g., [CS06, CL02b, CRR13]) and assumes mul-

3

tiple servers, which makes detection of adversarial behavior possible in a straight

forward manner (as long as the compromised servers do not collaborate). However,

both of the above approaches require modifications in the setting and the mode of

interaction among the parties; while they are applicable to many cases, a solution

that remains faithful to the model would be more attractive in general.

A cryptographic solution to the problem requires that when answering a client

query, the server also computes a proof of integrity for the data used to compute

the answer as well as the integrity of the computation itself. This solution is purely

software-based and prohibits adversarial behavior in a very strong sense: Convincing

a client of a false result becomes as hard as breaking a cryptographic assumption.

For this purpose, we allow the owner to perform some preprocessing on D before

outsourcing it to the server, and to compute and publish a small verification state,

hereafter referred to as digest, that is used by clients to verify the server’s responses.

When issuing an update query, the owner needs to also update the digest. If the

digest can be made public we say that the server’s proofs are publicly verifiable, (i.e.,

any party can issue queries and check the integrity of the result).

In this setting, it is important to minimize the performance overhead, that comes

from deploying a cryptographic solution, (e.g., in terms of computation time, com-

munication bandwidth, storage, etc.) in order to avoid negating the aimed benefit

from outsourcing in the first place. Several different measures of efficiency need to

be considered. First, we would like that the time it takes for the client to verify a

proof is short, ideally, some fixed polynomial in the security parameter that is inde-

pendent of the size of server’s computation cost and the size of D. Second, we would

like the server’s computational overhead for computing proofs to be minimal. Addi-

tional efficiency considerations include the proof size and the efficiency of updates.

The number of communication rounds should also be minimized. In this thesis, we

4

concentrate on non-interactive solutions where the client sends a query and receives

back an answer and a proof in one round of interaction (i.e., remaining faithful to

the existing mode of interaction).

1.1 General-purpose verifiable computation

In the cryptographic literature, the problem of provably checking the integrity of

arbitrary delegated computations has been formalized under the notion of verifiable

computation (VC). The starting point in the area has been the concept of non-

interactive arguments (computationally sound proofs) [Mic00] that builds upon the

earlier literature on interactive proofs [GMR89] and interactive arguments [BCC88,

Kil92], and provides a solution in the random oracle model [BR93]. Since then, a

series of works in the cryptographic literature (e.g., [GGP10, BCCT12, CKLR11,

GGPR13, PST13]) have revisited the problem with various definitional extensions

and improved constructions.1

In the setting of verifiable computation, a computationally weak client holds

input x and wishes to compute the output of function f on it, by outsourcing the

computation to a server. A VC scheme requires that the server accompanies each

query result y with a cryptographic proof-of-correctness, that can be efficiently (i.e.,

much faster than computing f(x)) verified by the client. Notice that the above

formulation only targets delegation of computation and not of data. The client is

assumed to hold the input dataset and simply wishes to avoid the (possibly large)

computation cost. However, this is not a limiting factor when it comes to delegations

of storage. A folklore result from the literature shows that the client can outsource his

input x ahead of time, and maintain only a succinct collision-resistant representation

c, e.g., the hash h(x) under a collision-resistant hash function h. If the function that

1We refer interested readers to [WB15] for an introduction to the concept and for an extensive
overview of the existing techniques and literature.

5

the client wishes to have computed by the server over his input x is f , then let f ′

be defined as the function that upon input values x, c outputs f(x) only if c = h(x).

Then the client can keep locally c = h(x) as his digest and deploy a VC scheme for

the function f ′ instead of f . Indeed, existing works further explore this technique

(e.g., [CKLR11, WSR+15, sBFR15]) to outsource data.

This approach requires a VC scheme that can accommodate the class of NP

(since, computing f ′(x) without access to x—as is the case for the client—belongs

to this class). The first such scheme was [Mic00] which utilized probabilisti-

cally checkable proofs, a fact that would significantly impact its performance in

practice. One approach for designing a more efficient protocol is based on re-

placing computationally sound proofs with succinct non-interactive arguments of

knowledge (SNARK). Good candidates for such a SNARK include the works

of [BCCT12, PHGR13, BCG+13, Gro16] that provide constructions with very small

asymptotic overhead.2

Although the problem was originally studied from a theoretical perspective,

the first VC implementations for arbitrary computations, were presented re-

cently [WSR+15, VSBW13, PHGR13, BFR+13b, BCG+13, BCG+14, BCG+14,

BCTV14, CFH+15]. However, the concrete overhead of the above implementations,

when applied for outsourcing of datasets, remains well beyond the realm of real-

ity, with proof computation times (at the cloud server) in the order of minutes or

even hours for real-world problem instances (particularly as the size of the dataset

grows). This overhead comes largely from the generality of existing schemes. In

order to be able to accommodate large classes of functions (e.g., every function in

P), a generic function representation is necessary. Existing implementations, have

to rely on (Boolean or arithmetic) circuit representation, or probabilistically check-

2We do not make the distinction between a SNARK with or without a long pre-processing
phase since, in our setting, the owner anyhow performs a preprocessing over the entire dataset
before outsourcing it.

6

able proofs, and both approaches may come with significant costs, heavily depending

on the particular type of computation that is outsourced. For example, [PHGR13]

shows that for computing a matrix by vector multiplication the proof computation

for 1000 dimensions is close to 0.9ms, which is definitely not prohibitive. This type

of computation, however, has a naturally “good” arithmetic circuit representation.

For other computations, this cost scales much worse, e.g., [ZPK14] reports a cost off

approximately 19,000 hours for performing a BFS traversal over a graph with 9,000

edges using the same system, and approximately 52 hours using the optimized VC

scheme of [BCG+13]. This costs stems, to a large extent, from the fact that this

type of computation does not have a nice arithmetic circuit representation. In the

context of set operations (a problem we address in Chapter 3), the transformation

from formulas of set operations to circuits can be extremely wasteful as the number

of sets participating in every query and the set sizes (including the size of the answer)

may vary dramatically between queries.

1.2 Function-specific schemes for verifiable computation

There is a large number of works in the literature that take a function-specific ap-

proach for verifiable computation, i.e., they target specific types of computation

and try to build more efficient schemes tailored for the problem at hand. This

line of literature has evolved largely independently of the general-purpose schemes,

motivated by particular real-world problems and proposing solutions with great po-

tential for deployment in practice. As an example, some of the earliest works in

the area (e.g., [NN00]) solved the problem of authenticated certificate management

and revocation. Other interesting examples from the literature include solutions

for matrix multiplication [FG12], polynomial arithmetic [BGV11, BFR13a], set op-

erations [PTT11], relational database queries [YPPK09a, ZKP15], pattern match-

7

ing [MND+04], polynomial differentiation [PST13], and many more.

1.2.1 Authenticated data structures

One particular line of work that follows this approach is authenticated data structures

(ADS) [Tam03], where a specific type of data structure is targeted and a customized

protocol is built, that supports all query types associated with this data structure

(e.g., lookups and insertions for the case of hash tables). ADS schemes can be seen as

an alternative to general-purpose VC that sacrifices generality for efficiency, but they

also impose additional realistic requirements such as, support for efficient updates in

the dataset, and public verifiability (i.e., once the data has been outsourced, anyone

can verify the integrity of an operation). The challenge then lies in identifying

classes of databases and query types that are relevant in practice, and developing

cryptographic protocols specifically for them, that are much faster than general-

purpose VC.

Slightly more formally, an authenticated data structure (ADS) is a protocol for

secure data outsourcing involving the owner of a dataset (also referred to as the

source), an untrusted server and multiple clients that issue queries over the dataset.

The interaction model is depicted in Figure 1·1. The protocol consists of a pre-

processing phase where the source uses a secret key to compute some authentication

information over the dataset D, outsources D along with this information to the

server and publishes some public digest d related to the current state of D. Subse-

quently, the source can issue update queries for D (which depend on the data type of

D), in which case the source updates the digest and both the source and the server

update the authentication information to correspond consistently with the updated

dataset state. Moreover, multiple clients (including the source itself), issue queries

q addressed to the server, which responds with appropriate answer α and proof of

correctness Π. Responses can be verified both for integrity of computation of q and

8

digest'd'

Data$owner$
Clients

Server$

dataset'D

query'q'

answer'α +'proof'Π

Figure 1·1: The interaction model of authenticated data structures.
Initially, the data owner computes a digest d of his dataset D which
he publishes. Subsequently he outsources D to a server who is respon-
sible for handling queries q issued by multiple clients. The server is
considered untrusted and is required to respond to q with the answer
α together with a proof Π which is used by the clients alongside d to
verify the integrity of α.

integrity of data used (i.e., that the correct query was run on the correct dataset

D) with access only to public key information and digest d. From a security per-

spective, the service offered to clients is that the received answers are “as-good-as”

being directly computed by the trusted source. A restricted version of this setting is

a two-party model where the owner of D outsources it to a server and issues updates

and queries, benefiting in both storage and computation cost.

ADS constructions exist for many popular data structure types, such as,

lists [NN00], trees [MND+04, NN00, PP15], hash tables [PTT15], skip lists [GTS01],

inverted index data structures [PTT11], and graph databases [ZPK14]. The earlier

of these constructions roughly follow the general blueprint of [MND+04] that applies

for data structures, where the query evaluation can be modeled as a search process

among predefined elements (e.g., a tree traversal from its root). For each step of

the search, an atomic proof must be produced by the server that validates that the

correct choice at that step was made. Security in this setting is achieved by employ-

ing a cryptographic hash function to encode each link in the data structure (e.g., a

9

parent-child node relation). This concept has been revisited recently in [MHKS14]

that provides an automated compiler that can take any such data structure and pro-

vide its authenticated version. However, this approach comes with some downsides,

namely that the verification cost at the client is as high as the proof construction

cost at the server, and the type of computations that can be supported are limited to

whatever can be expressed a search process. A different approach for building ADS

schemes was proposed in [TT10], where the authentication of general query results

is reduced to the certification of set membership relations among predefined (and

constructed in a way related to specific problem) sets, which —through careful use

of cryptographic primitives such as accumulators [BdM93, CL02a, Ngu05]— allows

for faster verification and supports more general query types.

1.3 Three novel ADS constructions

In this dissertation, we present three novel ADS constructions for the cases of set

operations, multi-dimensional range search, and pattern matching. The main mo-

tivation for these types of computation comes from the numerous applications they

find in real-life, ranging from filtered keyword search (in the case of set operations),

to SQL queries (a fundamental type of which is a range query) and problems as-

sociated with computational biology and intrusion detection (in the case of pattern

matching).

Our constructions extend the known literature of function-specific VC schemes

both in terms of expressiveness (for set operations) and efficiency (for range queries

and pattern matching). Next, we present a brief overview of the three constructions.

1.3.1 Nested set operations

The focus of the first part of the dissertation is the problem of verifiable nested

set operations in an outsourced setting. The results discussed were originally pre-

10

sented in [CPPT14]. The motivation for set operations comes naturally due to the

numerous computations that can be mapped by them, such as a wide class of SQL

database queries, authenticated keyword search with elaborate queries, access control

management, and similarity measurement.

We consider a dataset that consists of multiple sets, where the clients’ queries

are arbitrary set operations among them, represented as formulas of nested unions,

intersections, and set difference. The verification cost is asymptotically optimal,

i.e., the same as simply parsing the query and the answer, whereas the server only

suffers a poly-logarithmic overhead. The scheme also supports two types of efficient

updates: source updates and server-assisted updates. The former assumes that the

owner stores the dataset locally (i.e., only benefits from delegating handling the

query load to the server). This greatly simplifies the update process, as the owner

can simply compute the new digest himself and publish it for everyone to access, as

well as notify the server for any modifications. The latter assume that the owner

does not store the dataset locally; the only copy of the data resides at the server.

Therefore the update process is a little more involved. First, the owner (and only

him) requests an update from the server. Then, the latter performs the update and

responds with a “candidate” new digest that he computed using only public key

information. Subsequently, the owner runs a verification process on the new digest

and either accepts it (in which case he signs and publishes it) or rejects it (in which

case he suspects that the server tried to cheat).

The construction extends that of [PTT11] which can only support a single op-

eration at a time. A trivial way to accommodate a nested query (e.g., two unions

followed by an intersection) with [PTT11] would be to separately verify each inter-

mediate result; however, this would require that all these results (the unions in the

above example) are sent to the client, which increases verification cost and com-

11

munication accordingly. Our result achieves verification of the validity of the final

result in a way that is entirely independent of the sizes of intermediate sets. The

security of our construction relies on a modified version of the extractable collision-

resistant hash function (ECRH) construction, introduced in [BCCT12], that can be

used to succinctly hash univariate polynomials. Finally, our experimental evaluation

demonstrates the low verification cost of our scheme (less than 1 second for sets of a

few thousand elements), as well as an up to three orders of magnitude improvement

for the server’s overhead, compared to the only other alternative approach that can

accommodate this class of computation (i.e., general purpose VC).

1.3.2 Multi-dimensional range queries

The second part of the dissertation focuses on the verification of multidimensional

range queries and contains results originally presented in [PPT14]. Here, the out-

sourced database is a table that contains tuples with multiple attribute values. A

range query is defined over a choice of these attributes (referred to as query dimen-

sions) and it is expressed as a series of pairs of minimum and maximum values,

each along a certain dimension. Its result includes all the tuples whose value on

all of these dimensions is within the range specified by the query. This query ex-

ists in most predominant database architectures; in relational databases this is a

SELECT...FROM...WHERE query, whereas in scientific databases, such as SciDB, it is

a part of the core SUBARRAY query.

Our constructions are the first where all costs (i.e., setup, storage, update, proof

construction, verification, and proof size) grow only linearly with the number of

dimensions. For comparison, in all existing works with provable non-trivial bounds,

all these costs scaled exponentially with the number of dimensions. Our core idea

is the reduction of a multidimensional range query to multiple 1-dimensional ones,

in a way that allows the final result to be expressed as a combination of each of the

12

simpler range queries. This is achieved via a fusion of existing and novel proof tools,

based on bilinear accumulators. Moreover, we show how our construction can be

modified to achieve faster updates (from linear in the size of the database to order

of square root of the size of the database, in the worst case). Our experimental

evaluation demonstrates the very low verification cost (less than 3 seconds for all

our tested settings) and the corresponding proof construction cost at the server

that is considerable but not prohibitive (ranging from order of milliseconds to a few

minutes), even for arguably “large” queries.

1.3.3 Pattern matching

The third part of this dissertation focuses on verifiable pattern matching queries,

a problem with potential applications in a wide range of topics including intrusion

detection, spam filtering, web search engines, molecular biology, and natural language

processing. The presented results originally appeared in [PPTT15]. The problem

setting involves an outsourced textual database, a query containing a text pattern,

and an answer regarding the presence or absence of the pattern in the database. In its

simplest form, the database consists of a single text from an alphabet where a query

for a specific pattern results in answer “match at position i”, or “mismatch”. More

elaborate models involve queries expressed as regular expressions, and databases

allowing search over (semi-)structured data (e.g., XML data).

Our ADS construction is based on an authenticated version of the suffix tree

data structure and it provides precomputed (thus, fast to retrieve), constant-size

proofs for any basic form of pattern matching query, at no asymptotic increase of

storage. Moreover, the proof size is optimal (i.e., the total communication cost is

asymptotically the same as simply transmitting the answer) and entirely independent

of the size of the text, the queried pattern, or the underlying alphabet, and the

verification cost is very small, and it scales quasi-linearly with the query size. Finally,

13

the proof construction time is asymptotically the same as the time it takes to compute

the result, i.e., there is no asymptotic overhead. On top of that, our experimental

evaluation demonstrates that the concrete cost for poof construction is very small in

practice, for all our tested problem instances. For example, it takes less than 90µs

to respond to a query of size 100 characters: 80µs to simply find the (mis)match and

less than 10µs to assemble the proof. As additional contribution, we show how our

scheme can be modified to accommodate queries over collections of text documents,

and exact path queries over XML documents, with similar efficiency properties.

1.4 Thesis outline

Chapter 2 provides some cryptographic preliminaries and establishes notation that

will be used in the rest of the dissertation. Chapters 3 - 5 contain our three ADS

constructions for the cases of set operations, range queries, and pattern matching

respectively. Each chapter begins with an overview of the problem formulation,

the main result and techniques used, and a comparison with previous works that

address the problem. We then provide the main results with proofs of security

and experimental evaluation. Finally, Chapter 6 reviews the main results of this

thesis and discusses interesting open problems, such as the selective combination of

function-specific and general-purpose VC schemes.

Chapter 2

Cryptographic Preliminaries

In this section, we present notation and cryptographic background that will be used

in all of the following chapters. Additional definitions that are only used in the

context of a particular scheme only, are included in the corresponding chapter.

We denote with λ the security parameter and with ν(λ) a negligible function.

A function f(λ) is negligible if for each polynomial function poly(λ) and all large

enough values of λ, f(λ) < 1/(poly(λ). We say that an event can occur with neg-

ligible probability if its probability of occurrence is upper bound by a negligible

function. Respectively, an event takes place with overwhelming probability if its

complement takes place with negligible probability. In our technical exposition, we

adopt the access complexity model: Used mainly in the memory checking litera-

ture [BEG+94, DNRV09], this model allows us to measure complexity expressed in

the number of primitive cryptographic operations made by an algorithm without

considering the related security parameter. For example, an algorithm making k

modular multiplications over a group of size O(n) where n is O(exp(λ)) for a secu-

rity parameter λ, runs in time O(k log n). In the access complexity model, this is

O(k) ignoring the “representation” cost for each group element

Collision-resistant hash functions. A collision-resistant hash function h is a

function randomly sampled from a function ensemble, such that no poly-size algo-

rithm can output x, x′, such that h(x) = h(x′) and x 6= x′, except with probability

ν(λ). More formally:

14

15

Definition 1 (Collision-resistant hash function ensemble (CRH)). Let d(λ), t(λ) be

polynomial functions of λ. A function ensemble H = {Hλ}λ∈N from {0, 1}d(λ) to

{0, 1}t(λ) is a CRH if:

Collision-resistance For any poly-size adversary A:

Pr
h←Hλ

[
x, x′ ← A(1λ, h) s.t. h(x) = h(x′) ∧ x 6= x′

]
≤ ν(λ) .

2.1 Authenticated data structures

An authenticated data structure (ADS) is a cryptographic primitive for proving the

correctness of the result of a query on a remote dataset. The interaction model

assumes three types of parties: an owner holding a data structure D who wishes

to outsource it to a server who is, in turn, responsible for answering queries issued

by multiple clients. The owner runs a pre-processing step over D, producing some

cryptographic authentication information auth(D) and a succinct digest d of D, and

signs d. The server is untrusted, i.e., it may modify the returned answer, hence it is

required to provide a proof of the answer, generated using auth(D), and the signed

digest d. A client with access to the public key of the owner can subsequently check

the proof and verify the integrity of the answer. More formally, an authenticated

data structure scheme is a collection of the following six polynomial-time algorithms:

1. {sk, pk} ← genkey(1λ). Outputs secret and public keys sk and pk, given the

security parameter l.

2. {auth(D0), d0} ← setup(D0, sk, pk): Computes the authenticated data struc-

ture auth(D0) and its respective digest, d0, given data structure D0, the secret

key sk and the public key pk.

3. {Dh+1, auth(Dh+1), dh+1, upd} ← update(u,Dh, auth(Dh), dh, sk, pk): On in-

put update u on data structure Dh, the authenticated data structure auth(Dh)

16

and the digest dh, it outputs the updated data structure Dh+1 along with

auth(Dh+1), the updated digest dh+1 and some relative information upd. It

requires the secret key for execution.

4. {Dh+1, auth(Dh+1)dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk): On input

update u on data structure Dh, the authenticated data structure auth(Dh),

the digest dh and relative information upd output by update, it outputs the

updated data structure Dh+1 along with auth(Dh+1) and the updated digest

dh+1, without access to the secret key.

5. {a(q),Π(q)} ← query(q,Dh, auth(Dh), pk): On input query q on data struc-

ture Dh and auth(Dh) it returns the answer to the query a(q), along with a

proof Π(q).

6. {accept/reject} ← verify(q, a(q),Π(q), dh, pk): On input query q, an answer

a(q), a proof Π(q), a digest dh and pk, it outputs either “accept” or “reject”.

The notation a(q),Π(q) symbolizes that the answer and proof are a function of

the particular query q. When it is clear from the context, we will drop this notation

and refer simply to a,Π. Let {accept, reject} = check(q, a(q), Dh) be a method

that decides whether a(q) is a correct answer for query q on data structure Dh (this

method is not part of the scheme but only introduced for ease of notation.) Then

an authenticated data structure scheme ADS should satisfy the following:

Correctness. We say that an ADS is correct if, for all λ ∈ N, for all (sk, pk)

output by algorithm genkey, for all (Dh, auth(Dh), dh) output by one invocation

of setup followed by polynomially-many invocations of refresh, where h ≥ 0,

for all queries q and for all a(q),Π(q) output by query(q,Dh, auth(Dh), pk), with

all but negligible probability, whenever check(q, a(q), Dh) accepts, so does ver-

ify(q, a(q),Π(q), dh, pk).

17

Security. Let λ ∈ N be a security parameter and (sk, pk) ← genkey(1λ) and A be

a poly-size adversary that is only given pk and has access to the algorithms of the

ADS via an oracle Oλ,ADS that accepts queries in the following model: The adversary

picks an initial state of the data structure D0 and computes D0, auth(D0), d0 through

an oracle call to algorithm setup. Then, for i = 0, ..., h = poly(λ), A issues an

update ui for the data structure Di and outputs Di+1, auth(Di+1) and di+1 through

an oracle call to algorithm update. At any point during these update queries, he

can make polynomially many oracle calls to algorithms query and verify. Finally,

the adversary picks an index 0 ≤ t ≤ h + 1, a query q, an answer a(q) and a proof

Π(q). We say that an ADS is secure if for all large enough λ ∈ N, for all poly-size

adversaries A it holds that:

Pr

 (q, a(q),Π(q), t)← AOλ,ADS(1λ, pk) s.t.

accept ← verify(q, a(q),Π(q), dt, pk) ∧ reject ← check(q, a(q), Dt)]

 ≤ ν(λ),

where the probability is taken over the randomness of genkey and the coins of A.

The above security game captures the fact that an adversary (playing the role of

a corrupted server) that interacts with the trusted owner and is given oracle access

to all the algorithms of the scheme, cannot come up with a fake result even if he is

allowed to chose the contents of the database and the type of query himself. Observe

that the only limitation of the adversary is that the digest that will be used for the

verification of his final challenge, and the corresponding state of the dataset and

authentication information is honestly computed, which maps the way the trusted

owner would compute them in the real world.

An ADS is static if there is no efficient way to handle updates, i.e., the best way to

accommodate such changes is to re-execute setup from scratch. A static ADS consists

of only four algorithms {genkey,setup,query,verify}. In the security game above

the calls to update are replaced by calls to setup.

18

2.2 Bilinear groups

Let G be a cyclic multiplicative group of prime order p, generated by g. Let also GT

be a cyclic multiplicative group with the same order p and e : G × G → GT be a

bilinear pairing with the following properties: (1) Bilinearity: e(P a, Qb) = e(P,Q)ab

for all P,Q ∈ G and a, b ∈ Zp; (2) Non-degeneracy: e(g, g) 6= 1; (3) Computability:

There is an efficient algorithm to compute e(P,Q) for all P,Q ∈ G. We denote

with pub := (p,G,GT , e, g) the bilinear pairings parameters, output by a randomized

polynomial-time algorithm GenBilinear on input 1λ.

For cleaner presentation, in what follows we generally assume a symmetric (Type

1) pairing e. All of our constructions can be shown secure in the more efficient

asymmetric group case (without a group homomorphism), with small modifications.

For example, in Section 3.6 we discuss the modifications needed to implement our

construction from Chapter 3, in the asymmetric pairing case (see [CM11] for a general

discussion of the importance of difference types of pairings).

Our security analysis makes use of the following two assumptions over groups

with bilinear pairings:

Assumption 1 (q-Strong Bilinear Diffie-Hellman [BB08]). For any poly-size adver-

sary A, for q being a parameter of size poly(λ), and for all large enough λ, the

following holds:

Pr

[
pub← GenBilinear(1λ); s←R Z∗p;

(z, γ) ∈ Z∗p ×GT ← A(pub, (g, gs, ..., gs
q
)) s.t. γ = e(g, g)1/(z+s))

]
≤ ν(λ)] .

Assumption 2 (q-Power Knowledge of Exponent [Gro10]). For any poly-size ad-

versary A, and for all large enough λ, there exists a poly-size extractor E such that:

Pr


pub← GenBilinear(1λ); a, s←R Z∗p;σ = (g, gs, ..., gs

q

, ga, gas, ..., gas
q

)

(c, c̃)← A(pub, σ); (a0, ..., an)← E(pub, σ)

s.t. e(c̃, g) = e(c, ga) ∧ c 6=
n∏
i=0

gais
i

for n ≤ q

 ≤ ν(λ) .

19

In the following, we will refer to these two assumptions as q-SBDH and q-PKE,

respectively. It should be pointed out that q-PKE (originally introduced by Groth

in [Gro10]) is a non-standard assumption, extending the knowledge-of-exponent as-

sumption of [Dam91]. It falls within the classification of non-falsifiable assump-

tions [Nao03], which has been shown to be necessary in order to construct succinct

non-interactive argument systems that are secure in the standard model in [GW11],

or equivalently (as shown in [BCCT12]) extractable collision-resistant hash functions

such our construction from Section 3.2. In practice, this means that an assumption

of this type is necessary for our construction of Section 3.2. More recently, there

have appeared impossibility results for knowledge assumptions with arbitrary aux-

iliary inputs [BCPR14, BP04]. The above formulation of q-PKE is not disallowed

by these results, as stated (i.e., versus uniform poly-size adversaries) which means

that our construction from Section 3 does not suffer from the above impossibility

results. Alternatively, we could have defined it with separate auxiliary inputs for

the adversary and the extractor, of bounded sizes and coming from specific benign

distributions. However, in the context of proving the security of our construction

from Chapter 3, we do not need auxiliary input for extraction, therefore we chose

this version.

2.3 Bilinear accumulator

A bilinear accumulator [Ngu05] succinctly and securely represents a set of elements

from Zp, operating in the setting of bilinear groups. It represents any set A of n

elements from Zp by its accumulation value, namely

acc(A) = g
∏
a∈A(s+a) ∈ G ,

20

i.e., a single element in G, where s ∈ Zp is trapdoor information that is kept secret.

Note that, given values g, gs, . . . , gs
n

(and without revealing the trapdoor s), acc(A)

can be computed in time O(n log n) with polynomial interpolation.

Under the q-SBDH assumption, the bilinear accumulator provides two security

properties: (1) The accumulation function acc(·) is collision resistant [Ngu05] (i.e.,

it is computationally hard to find different sets with equal accumulation values);

and (2) it allows for reliable verification of subset containment [PTT11] using short

computational proofs; namely, subject to acc(A), the proof for relation B ⊆ A is

defined as the subset witness WB,A = g
∏
a∈A\B(s+a). That is, the relation B ⊆ A can

be efficiently validated via checking the equality e(WB,A, g
∏
b∈B(s+b))

?
= e(acc(A), g)

given accumulation value acc(A), set B and public values g, gs, . . . , gs
`
, where q is

an upper bound on A’s size n. However, it is hard to produce a fake subset witness

that is verifiable when B ⊆ A is false.

The following lemma formally captures the security property of the bilinear ac-

cumulator that will be crucial for the security of our schemes.

Lemma 1 (Security of bilinear accumulator [Ngu05, PTT11]). Let pub ←
GenBilinear(1λ) be a tuple of bilinear pairing parameters and s ∈ Z∗p chosen uniformly

at random. Under the q-SBDH assumption, no poly-size adversary can, upon input

(pub, g, gs, . . . , gs
q
) output sets A,B with elements in Zp and W ∈ G, such that: (i)

B * A, and (ii) e(W, acc(B)) = e(acc(A), g), except with negligible probability.

Chapter 3

Verifiable Set Operations

3.1 Introduction

This chapter focuses on the problem of general set operations in the outsourced

setting. We consider a dataset D that consists of m sets S1, ..., Sm, where the

clients’ queries are arbitrary set operations over D represented as formulas of union,

intersection, and set difference gates over some selection of the sets S1, ..., Sm.

The motivation for set operations comes from their great expressiveness and the

range of computations that can be mapped by them. Real-world applications of

general set operations include a wide class of SQL database queries, authenticated

keyword search with elaborate queries, access control management, and similarity

measurement, hence an efficient protocol would be of great importance.

3.1.1 Overview of result

We construct a scheme for publicly verifiable secure delegation of set operations. The

main advantage of our scheme over general-purpose VC is that it does not involve

translating the problem to an arithmetic or boolean circuit, which greatly limits all

overheads. This especially important for set operations as a circuit that computes

such an operation (e.g., a union of two sets) must either perform a quadratic in the

input size number of equality tests, or incorporate a sorting network that first sorts

the input sets and then compares the element. The latter approach entails a large

21

22

concrete cost as such a sorting network requires many gates for its implementation.

On the other hand, during roof construction in our scheme the server will need

to perform only 4N exponentiations in a group with a symmetric bilinear pairing,

where N is the sum of the sizes of all the intermediate sets in the evaluation of the

set formula. Keep in mind that the cost to simply compute the result is O(N), which

highlights that our scheme not only introduces a very small asymptotic overhead,

but the hidden constants are particularly small. Moreover, the verification state

is of constant size, and the proof verification time is O(δ + t) where t is the size

of the query formula and δ is the answer set size. The dependence on the answer

size is inherent since the client must receive the answer set from the server, i.e., the

achieved overheads is, in a sense, optimal. We stress that the verification time (and

proof length) do not grow with the sizes of all other sets involved in the computation.

Our scheme also supports two types of updates: source updates and server-

assisted updates. In a source update, the data owner maintains an an additional

update state of length O(m) (m is the number of sets in the dataset) and it can add

or remove a single element to a set in constant time. He then updates the server and

all other clients with a new verification state. A source update does not require any

party to compute any proofs. Server-assisted updates are used to perform updates

that change a large number of elements in the dataset and are discussed in more

detail in Section 3.5. The basic idea is for the owner to delegate the update to the

server (as in [CKLR11]). The owner can set the value of every set by applying a

set operation formula to the current state of the dataset. The answer to a server-

assisted update query includes a new verification state and a proof that the update

was performed correctly. Verifying this proof with the old verification state requires

the same time as verifying informational queries and the owner does not need to

store any update state (indeed, the owner does not even need to store the dataset).

23

While this is a more involved process compared to source updates, it has the big

benefit of allowing the owner to delegate the storage of the dataset entirely to the

server, i.e., he does not need to maintain a local copy anymore.

3.1.2 Overview of techniques

The starting point for the construction is the scheme of Papamanthou, Tamassia

and Triandopoulos [PTT11] that supports a single set operation (one union or one

intersection). For a query consisting of a single union or intersection over t sets, where

the answer set is of size δ, the proof verification time in the scheme of [PTT11] is

O(t + δ). The “naive” way to extend the scheme of [PTT11] to support general set

operation formulas is to have the server provide a separate proof for each intermediate

set produced in the evaluation of the formula. However, proving the security of this

construction is problematic. The problem is that in the scheme of [PTT11] the

proofs do not necessarily compose. In particular, it might be easy for a malicious

server to come up with a false proof corresponding to an incorrect answer set without

“knowing” what this incorrect answer is (if the malicious server would be able to also

find the answer set, the scheme of [PTT11] would not have been secure). Therefore,

to make the security proof of the naive scheme go through, the server would also

have to prove to the client that he “knows” all the intermediate sets produced in the

evaluation of the query formula. One way for the server to prove knowledge of these

sets is to send them to the client, however, this will result in a proof that is as long

as the entire server computation.

Knowledge accumulators. To solve this problem we need to further understand

the structure of the proofs in [PTT11]. The construction of [PTT11] is based on the

notion of a bilinear accumulator [Ngu05]. We can think of a bilinear accumulator

as a succinct hash of a large set that makes use of a representation of a set by its

24

characteristic polynomial (i.e., a polynomial that has as roots the set elements). Ac-

cumulators have homomorphic properties that allow verifying relations between sets

via checking arithmetic relations between their accumulators. The main idea in this

work is to use a different type of accumulator that has “knowledge” properties. That

is, the only way for an algorithm to produce a valid accumulation value is to “know”

the set that corresponds to that value. The knowledge property of our accumula-

tor together with the soundness of the proof for every single operation (one union,

intersection, or set difference) allows us to prove the soundness of the composed

scheme. Our construction of knowledge accumulators is very similar to previous

constructions of knowledge commitments in [BCCT12, Gro10]. The construction is

based on the q-PKE assumption which is a variant of knowledge-of-exponent as-

sumption [Dam91]. We capture the knowledge properties of our accumulator by

using the notion of an extractable collision-resistant hash function (ECRH), origi-

nally introduced in [BCCT12].3

We also need to modify the way a single set operation is proven. For example,

in [PTT11], a proof for a single union of sets requires one accumulation value for

every element in the union. This will again result in a proof that is as long as the

entire server computation. Instead, we change the proof for union so it only involves

a constant number of accumulation values.

The verification state and accumulation trees. In order to verify a proof in

our scheme, a client only needs to know the accumulation values for the sets that

participate in the computation. Instead of containing the accumulation values of all

sets in the dataset, the digest contains a single special hash of these accumulation

values, making it of constant size. To produce this digest, we hash the accumulation

3We follow the weaker definition of ECRH with respect to auxiliary input, for which the recent
negative evidence presented in [BCPR14] does not apply and the distributions we consider here are
not captured by the negative result of [BP15] either.

25

values of the sets in the dataset using an accumulation tree, introduced in [PTT08].

This primitive can be thought of as a special “tree hash” that makes use of the

algebraic structure of the accumulators to gain in efficiency(authentication paths are

of constant length).

3.1.3 Prior work

The work of [BFR13a] also considers a practical secure database delegation scheme

supporting a restricted class of queries. They consider functions expressed by arith-

metic circuits of degree up to 2. Their construction is based on homomorphic MAC’s

and their protocol has reasonable performance (e.g., if the computation is described

as an arithmetic circuit, the proof computation is less that 3 ms per gate), how-

ever their solution is only privately verifiable and it does not support deletions from

the dataset. Additionally, we note that the security proof in [BFR13a] is not based

on non-falsifiable assumptions. In a sense, that work is complementary to ours, as

arithmetic and set operations are two desirable classes of computations for a database

outsourcing scheme.

With respect to set operations, previous works focused mostly on the aspect of

privacy and less on the aspect of integrity [FNP04, ACT11, KS05, BW07]. There

exists a number of works from the database community that address this problem

[MND+04, YPPK09a], but to the best of our knowledge, this is the first work that

directly addresses the case of nested operations.

Characteristic polynomials for set representation have been used before in the

cryptography literature (see for example [PTT11, Ngu05]) and this directly relates

this work with a line of publications coming from the cryptographic accumulators

literature [CL02a, Ngu05]. Indeed our ECRH construction, viewed as a mathematical

object, is identical to a pair of bilinear accumulators (introduced in [Ngu05]) with

related secret key values. Our ECRH can be viewed as an extractable extension to

26

the bilinear accumulator that allows an adversarial party to prove knowledge of a

subset to an accumulated set (without explicitly providing said subset). Indeed, this

idea is central to all of our proofs for validity of set operation computations. It also

allows us to use the notion of accumulation trees which was originally defined for

bilinear accumulators.

Our work also highlights the relation between bilinear accumulators and com-

mitment schemes originally captured in [KZG10]. In that work, commitments for

polynomials over Zp[x] are constructed, by essentially the same mathematical op-

eration used to compute accumulation values. Moreover, in [Gro10] a commitment

scheme for polynomially many values is presented, again using essentially the same

mathematical operation (with an additional blinding factor). An inherent distinc-

tion between the two primitives comes from the different frameworks. In the case

of polynomial commitment schemes, a committer wishes to produce a commitment

which he will later open to a receiver, whereas accumulation values operate as “con-

tinuous” commitments to a particular set, for which a prover wishes to prove subset

and set membership relations. In particular, there is no explicit hiding property re-

quired by an accumulator. However, there is an interesting duality between the two

primitives at a mathematical construction level, which we believe can be exploited

further. In a sense, polynomial commitments are commitments to the coefficients of

a polynomial, whereas accumulation values operate as commitments to the roots of

the characteristic polynomial of a set.

3.2 Extractable collision-resistant hash functions

These functions (or ECRH for short) were introduced in [BCCT12] as a strengthening

of the notion of collision-resistant hash functions. The key property implied by an

ECRH, on top of collision-resistance, is the hardness of oblivious sampling from the

27

image space. Informally, for a function h, sampled from an ECRH function ensemble,

any adversary producing a hash value η must have knowledge of a value x ∈ Dom(h)

s.t. h(x) = η. Formally, an ECRH function is defined as follows:

Definition 2 (Extractable collision-resistant hash function ensemble

(ECRH) [BCCT12]). Let d(λ), t(λ) be polynomial functions of λ. A function

ensemble H = {Hλ}λ∈N from {0, 1}d(λ) to {0, 1}t(λ) is an ECRH if:

Collision-resistance For any poly-size adversary A:

Pr
h←Hλ

[
x, x′ ← A(1λ, h) s.t. h(x) = h(x′) ∧ x 6= x′

]
≤ ν(λ) .

Extractability For any poly-size adversary A, there exists poly-size extractor E
such that:

Pr
h←Hλ

[
y ← A(1λ, h);x′ ← E(1λ, h)

s.t. ∃x : h(x) = y ∧ h(x′) 6= y

]
≤ ν(λ) .

An ECRH construction from q-PKE. We next provide an ECRH construction

from the q-PKE assumption defined above. In [BCCT12] the authors provide an

ECRH construction from an assumption that is conceptually similar and can be

viewed as a simplified version of q-PKE and acknowledge that an ECRH can be

constructed directly from q-PKE (without explicitly providing the construction).

Here we present the detailed construction and a proof of the required properties

with respect to q-PKE for extractability and q-SBDH for collision-resistance.4

• To sample from Hl, choose q ∈ O(poly(λ)), run algorithm GenBilinear(1λ) to

generate bilinear pairing parameters pub = (p,G,GT , e, g) and sample a, s←R

Z∗p × Z∗p s.t. a 6= s. Output public key pk = (pub, gs, ..., gs
q
, ga, gas, ..., gas

q
)

and trapdoor information sk = (s, a). It should be noted that the pk fully

describes the chosen function h. Trapdoor sk can be used for a more efficient

computation of hash values, by the party initializing the ECRH .

4It should be noted that while the construction from [BCCT12] is conceptually similar, its
collision resistance cannot be proven by a reduction to q-SBDH; it is instead provable with a
direct reduction to the computation of discrete logarithms in G.

28

• To compute a hash value on x = (x1, ..., xq), output h(x) =(∏
i∈[q] g

xis
i
,
∏

i∈[q] g
axis

i
)

.

Lemma 2. If the q-SBDH and q-PKE assumptions hold, the above is a (2(q+ 1) ·
λ, 4λ+ 2)-compressing ECRH.

Proof: Extractability follows directly from the q-PKE assumption. To argue about

collision-resistance, assume there exists adversary A outputting with probability ε,

(x,y) such that there exists i ∈ [q] with xi 6= yi and h(x) = h(y). We denote

with P (r) the q-degree polynomial from Zp[r],
∑

i∈[q](xi − yi)ri. From the above, it

follows that
∑

i∈[q] xis
i =

∑
i∈[q] yis

i. Hence, while P (r) is not the 0-polynomial, the

evaluation of P (r) at point s is P (s) = 0 and s is a root of P (r). By applying a

randomized polynomial factorization algorithm as in [Ber71], one can extract the (up

to q) roots of P (r) with overwhelming probability, thus computing s. By randomly

selecting c ∈ Z∗p and computing β = g1/(c+s) one can output (c, e(g, β)), breaking the

q-SBDH with probability ε(1 − ε′) where ε′ is the negligible probability of error in

the polynomial factoring algorithm. Therefore any poly-size A can find a collision

only with negligible probability. For a security parameter λ, the input length is q+1

elements from Z∗p, each of which can be written with 2λ bits, whereas the output

is two elements in G, each of which can be represented in a compressed format by

its abscissa plus one bit to indicate the sign of the root of its ordinate, for a total of

4λ+ 2 bits. 2

One natural application for the above ECRH construction would be the compact

computational representation of polynomials from Zp[r] of degree ≤ q. A polyno-

mial P (r) with coefficients p0, ..., pq can be succinctly represented by the hash value

h(P) = (f, f ′) =
(∏

i∈[q] g
pis

i
,
∏

i∈[q] g
apis

i
)

.

29

3.3 Set representation with polynomials

Sets can be represented with polynomials, using the notion of characteristic polyno-

mial, e.g., as introduced in [FNP04, Ngu05, PTT11]. Given a setX = {x1, .., xm}, the

polynomial CX(r) =
∏m

i=1(xi+r) from Zp[r], where r is a formal variable, is called the

characteristic polynomial of X (when possible we will denote this polynomial simply

by CX). Characteristic polynomials constitute representations of sets by polynomials

that have the additive inverses of their set elements as roots. What is of particular

importance to us is that characteristic polynomials enjoy a number of homomorphic

properties w.r.t. set operations. For example, given sets A,B with A ⊆ B, it must

hold that CB|CA and given sets X, Y with I = X ∩ Y , CI = gcd(CX , CY).

The following lemma characterizes the efficiency of computing the characteristic

polynomial of a set.

Lemma 3 ([PSaUCCSL76]). Given set X = x1, ..., xn with elements from Zp, char-

acteristic polynomial CX(r) :=
∑n

i=0 cir
i ∈ Zp[r] can be computed with O(n log n)

operations with FFT interpolation.

Note that, while the notion of a unique characteristic polynomial for a given set

is well-defined, from elementary algebra it is known that there exist many distinct

polynomials having as roots the additive inverses of the elements in this set. In

particular, recall that multiplication of a polynomial in Zp[r] with an invertible unit

in Z∗p (a scalar) leaves the roots of the resulting polynomial unaltered. We define the

following:

Definition 3. Given polynomials P (r), Q(r) ∈ Zp[r] with degree n, we say that they

are associates (denoted as P (r) ≈a Q(r)) iff P (r)|Q(r) and Q(r)|P (r).

Thus, associativity can be equivalently expressed by requesting that P (r) =

βQ(r) for some β ∈ Z∗p.

30

Note that although polynomial-based set representation provides a way to verify

the correctness of set operations by employing corresponding properties of the char-

acteristic polynomials, it does not provide any computational speedup for this veri-

fication process. Intuitively, verifying operations over sets of cardinality n, involves

dealing with polynomials of degree n with associated cost that is proportional to

performing operations directly over the sets themselves. We overcome this obstacle,

by applying our ECRH construction (which can be naturally defined over univariate

polynomials with coefficients in Zp, as already discussed) to the characteristic polyno-

mial CX : Set X will be succinctly represented by hash value h(CX) =
(
gCX(s), gaCX(s)

)
(parameter q is an upper bound on the cardinality of sets that can be hashed), and

an operation of sets X and Y will be optimally verified by computing only on hash

values h(CX) and h(CY).

A note on extractability. In the above, we are essentially using a pre-processing

step representing sets as polynomials, before applying the extractable hash function

on the polynomial representations. We cannot define the ECRH directly for sets

since, while every set has a uniquely defined characteristic polynomial, not every

polynomial is a characteristic polynomial of some set. Hence extractability of sets

(using only public key information) is not guaranteed. For example, an adversary

can compute an irreducible polynomial Y ∈ Zp[r], of degree > 1, and output h(Y).

Since Y has no roots, no extractor (without access to the secret key) can output a

set for which Y is the characteristic polynomial (it can, however, extract polynomial

Y with overwhelming probability). In fact, defined directly over sets with elements

from Zp, the function ensemble {Hl}l with an internal computation of the char-

acteristic polynomial, can be shown to be extractable collision-resistant under the

ECRH2 definition recently introduced in [DFH12]. In the context of a cryptographic

protocol for sets, additional mechanisms need to be deployed in order to guarantee

31

that a given hash value corresponds to the characteristic polynomial of some set. For

our ADS construction, we will combine the use of the ECRH construction for sets,

with an authentication mechanism deployed by the source in a pre-processing phase.

This will allow any client to verify the authenticity and freshness of the hash values

corresponding to sets that are input to its query.

3.4 An ADS for hierarchical set operations

Here we present an ADS supporting hierarchical set operations. We assume a data

structure D consisting of m sorted sets S1, ..., Sm, consisting of elements from Zp,5

where sets can change under element insertions and deletions; here, p is a λ-bit

prime number and λ is a security parameter. If M =
∑m

i=1 |Si|, then the total space

complexity needed to store D is O(m+M). The supported class of queries is any set

operation formula over a subset of the sets Si, consisting of unions and intersections.

The basic idea is to use the ECRH construction from Section 3.2 to represent

sets Si by the hash values h(CSi) of their characteristic polynomials. For the rest

of the paper, we will refer to value h(CSi) as hi, implying the hash value of the

characteristic polynomial of the i-th set of D or the i-th set involved in a query,

when it is obvious in the context. Recall that a hash value h consists of two group

elements, h = (f, f ′). We will refer to the first element of hi as fi, i.e., for a set

Si = (x1, ..., xn), fi = g
∏n
j=1(xj+s) and likewise for f ′i . For the authenticity of these

values, an authentication mechanism similar to Merkle trees (but allowing more

efficient updates) will be deployed by the source.

Each answer provided by the server is accompanied by a proof that includes a

number of hash values for all sets computed during answer computation, the exact

structure of which depends on the type of operations. The verification process is

5Actually elements must come from Z\{s, 1, ...,m}, because s is the secret key in our construc-
tion and the m smallest integers modulo p will be used for numbering the sets.

32

essentially split into two parts. First, the client verifies the validity of the hash

values of the sets used as input by the answer computation process (i.e., the validity

of sets specified in q) and subsequently that the hash values included in the proof

respect the relations corresponding to the operations in q, all the way from the input

hash values to the hash value of the returned answer α. The key technique is that by

using our ECRH construction we can map relations between input and output sets in

a set operation, to similar relations in their hash values. This allows the verification

process to run in time independent of the cardinality of involved sets and only linear

to the length of q and α making it asymptotically as fast as simply reading the input

and output. In the following sections, we present the algorithms of our construction.

3.4.1 Setup and updates

During the setup phase, the source computes the m hash values h(CSi) of sets Si

and then deploys an authentication mechanism over them, that will provide proofs

of integrity for these values under some public digest that corresponds to the current

state of D. This mechanism should be able to provide proofs for statements of the

form “hi is hash of the i-th set of the current version of D.”

There is a wide variety of such mechanisms that can be deployed by the owner

of D and the choice must be made with optimization of a number of parameters in

mind, including digest size, proof size and verification time, setup and update cost

and storage size. For example, using a standard collision resistant hash function, the

owner can compute the hash of the string h1||...||hm as a single hash value. However,

a single update in D will require O(m) work in order to compute the updated digest

from scratch. On the other hand, the owner can use a digital signature scheme to

sign a hash representation of each set. This yields an update cost of O(1) (a single

signature computation) but the digest consists of m signatures.

Another popular authentication mechanism for proofs of membership are Merkle

33

hash trees [Mer89] that provide logarithmic size proofs, constant time updates, and

a single value digest. Such a mechanism, allows the server to provide proofs that

a value hi belongs in the set of hash values of the sets in D. An alternative to

Merkle trees, introduced in [PTT08] (and specifically in the bilinear group setting

in [PTT11]) are accumulation trees. The difference between them is that their secu-

rity is based on different cryptographic assumptions (secure hashing versus bilinear

group assumptions) and, arguably more importantly, accumulation trees yield con-

stant size proofs (independently of the number of elements in the tree) and constant

time updates. Another useful property of the accumulation tree is that it can be

computed using the same ECRH construction we will be using for the rest of the

algorithms of our scheme. Thus, we can avoid the cost of additional public/secret

key generation and maintenance. In our construction, we use the accumulation tree

to verify the correctness of hash values for the sets involved in a particular query.

On a high level, the public tree digest guarantees the integrity of the hash values

and in turn the hash values validate the elements of the sets.

An accumulation tree AT is a tree with d1/εe levels, where 0 < ε < 1 is a

parameter chosen upon setup, and m leaves. Each internal node of T has degree

O(mε) and T has constant height for a fixed ε. Intuitively, it can be seen as a “flat”

version of Merkle trees. Each leaf node contains the (first half of the) hash value of a

set Si and each internal node contains the (first half of the) hash of the values of its

children. Since, under our ECRH construction, hash values are elements in G we will

need to map these bilinear group elements to values in Z∗p at each level of the tree

before they can be used as inputs for the computation of hash values of higher level

nodes. This can be achieved by a function φ that outputs a bit level description of

hash values under some canonical representation of G (see below). The accumulation

tree primitive we are using here has been used in [PTT08, PTT11, PTT15] where

34

the corresponding “hashing” function used was the bilinear accumulator construction

from [Ngu05]. We are implicitly making use of the fact that the outputs of our ECRH

construction can be interpreted as pairs of accumulation values of sets.

Now we present the setup and update algorithms or our ADS construction:

Algorithm {sk, pk} ←genkey(1l). The owner of D runs the sampling algorithm

for our ECRH construction, chooses an injective6 function φ : G \ {1G} → Z∗p, and

outputs {φ, pk, sk}.

Algorithm {auth(D0), d0} ← setup(D0, sk, pk). The owner of D computes values

fi = g
∏
x∈Si

(xi+s) for sets Si. Following that, he constructs an accumulation tree AT

over values fi. A parameter 0 < ε < 1 is chosen. For each node v of the tree, its

value d(v) is computed as follows. If v is a leaf corresponding to fi then d(v) = f
(i+s)
i

where the number i is used to denote that this is the i-th set in D (recall that,

by definition, sets Si contain elements in [m + 1, ..., p − 1]). Otherwise, if N(v) is

the set of children of v, then d(v) = g
∏
u∈N(v)(φ(d(u)+s) (note that the exponent is the

characteristic polynomial of the set containing the elements φ(d(u)) for all u ∈ N(v)).

Finally, the owner outputs {auth(D0) = f1, ..., ft, d(v) ∀v ∈ AT , d0 = d(r)} where r

is the root of AT .

Algorithm{auth(Dh+1), dh+1, upd} ← update(u, auth(Dh), dh, sk, pk). For the

case of insertion of element x in the i-th set, the owner computes x + s and

η = fx+si . For deletion of element x from Si, the owner computes (x + s)−1 and

η = f
(x+s)−1

i . Let v0 be the leaf of AT that corresponds to the i -th set and

v1, ..., vd1/εe the node path from v0 to r. Then, the owner sets d′(v0) = η and for

j = 1, ..., d1/εe he sets d′(vj) = d(vj)
(φ(d′(vj−1))+s)(φ(d(vj−1))+s)

−1
. He replaces node val-

ues in auth(Dh) with the corresponding computed ones to produce auth(Dh+1). He

6The restriction that φ is injective is in fact too strong. In practice, it suffices that it is collision-
resistant. A good candidate for φ is a function that uses a CRHF to hash the bit-level description
of an element of G to Z∗p.

35

then sets upd = d(v0), ..., d(r), x, i, b where b is a bit denoting the type of operation

and sends upd to server. Finally, he publishes updated digest dh+1 = d′(r).

Algorithm {Dh+1, auth(Dh+1), dh+1} ← refresh(u,Dh, auth(Dh), dh, upd, pk). The

server replaces values in auth(Dh) with the corresponding ones in upd, dh with dh+1

and updates set Si accordingly.

The runtime of setup is O(m + M) as computation of the hash values using

the secret key takes O(M) and the tree construction has access complexity O(m)

for post-order traversal of the tree as it has constant height and it has m leaves.

Similarly, update and refresh have access complexity of O(1).

Remark 1. Observe that the only algorithms that make use of the trapdoor s are

update and setup when computing hash values. Note though, that both algorithms

can be efficiently executed without s (given only the public key).

3.4.2 Query responding and verification

As mentioned before, we wish to achieve two verification properties: integrity-of-

data and integrity-of-computation. We begin with our algorithms for achieving the

first property, and then present two protocols for achieving the second one, i.e., for

validating the correctness of a single set operation (union or intersection). These

algorithms will be used as subroutines by our final query responding and verification

processes.

Authenticity of hash values

We present two algorithms that make use of the accumulation tree deployed over the

hash values of Si in order to prove and verify that the sets used for answering are

the ones specified by the query description.

Algorithm π ← QueryTree(pk, d, i, auth(D)) The algorithm computes proof of

membership for value xi validating that it is the i-th leaf of the accumulation tree.

36

Let v0 be the i-th node of the tree an v1, ..., vd1/εe be the node path from v0 to the root

r. For j = 1, ..., d1/εe let γj = g
∏
u∈N(vj)\{vj−1}

(φ(d(u))+s)
(note that the exponent is the

characteristic polynomial of the set containing the elements φ(d(u)) for all u ∈ N(v)

except for node vj−1). The algorithm outputs π := (d(v0), γ1), ..., (d(vd1/εe−1), γd1/εe).

Algorithm {0, 1} ← VerifyTree(pk, d, i, x, π). The algorithm verifies member-

ship of x as the i-th leaf of the tree by checking the equalities: (i) e(d(v1), g) =

e(x, gigs); (ii) for j = 1, ..., d1/εe − 1, e(d(vj), g) = e(γj, g
φ(d(vj−1))gs); (iii) e(d, g) =

e(γd1/εe, g
φ(d(vd1/εe−1))gs). If none of them fails, it output accept.

The above algorithms make use of the property that for any two polynomials

A(r), B(r) with C(r) := A(r) · B(r), for our ECRH construction it must be that

e(f(C), g) = e(f(A), f(B)). In particular for sets, this allows the construction of a

single-element proof for set membership (or subset more generally). For example,

for element x1 ∈ X = {x1, ..., xn) this witness is the value g
∏n
i=2(xi+s). Intuitively,

for the integrity of a hash value, the proof consists of such set membership proofs

starting from the desired hash value all the way to the root of the tree, using the

sets of children of each node. The following lemma (from [PTT11]; slightly informal

here) states the security of an accumulation tree:

Lemma 4 ([PTT11]). Under the q-SBDH assumption, for any adversarially chosen

proof π s.t. {j, x∗, π) s.t. VerifyTree(pk, d, j, x∗, π)→ 1, it must be that x∗ is the j-th

element of the tree except for negligible probability. Algorithm QueryTree has access

complexity O(mε logm) and outputs a proof of O(1) group elements and algorithm

VerifyTree has access complexity O(1).

Algorithms for the single operation case

The algorithms presented here are used to verify that a set operation was performed

correctly, by checking a number of relations between the hash values of the input and

output hash values, that are related to the type of set operation. The authenticity

of these hash values is not necessarily established. Since these algorithms will be

37

called as sub-routines by the general proof construction and verification algorithms,

this property should be handled at that level.

Intersection. Let I = S1∩ ...∩St be the wanted operation. Set I is uniquely identi-

fied by the following two properties: (Subset) I ⊆ Si for all Si and (Complement

Disjointness) ∩ti=1(Si \ I) = ∅. The first captures that all elements of I appear in

all of Si and the second that no elements are left out.

Regarding the subset property, we argue as follows. Let X,S be sets s.t. S ⊆ X

and |X| = n. Observe that CS|CX , i.e. CX can be written as CX = CS(r)Q(r) where

Q(r) ∈ Zp[r] is CX\S. The above can be verified by checking the equality:

e(fS,W) = e(fX , g) ,

where W = gQ(s). If we denote with Wi the values gCSi\I(s), the subset property can

be verified by checking the above relation for I w.r.t each of Si.

For the second property, we make use of the property that CSi\I(r) are disjoint

for i = 1, ..., t if and only if there exist polynomials qi(r) s.t.
∑t

i=1 CSi\I(r)qi(r) = 1,

i.e. the gcd of the characteristic polynomials of the the complements of I w.r.t Si

should be 1. Based on the above, we propose the algorithms in Figure 3·1 for the

case of a single intersection.

Union. Now we want to provide a similar method for proving the validity of a

union operation of some sets. Again we denote set U = S1 ∪ ... ∪ St and let hi be

the corresponding hash values as above. The union set U is uniquely characterized

by the following two properties: (Superset) Si ⊆ U for all Si and (Membership)

For each element xi ∈ U , ∃j ∈ [t] s.t. xi ∈ Sj. These properties can be verified, with

values Wi, wj for i = 1, ...t and j = 1, ..., |U | defined as above checking the following

38

Algorithm{Π, fI} ← proveIntersection(S1, ..., St, I, h1, ..., ht, hI , pk).

1. Compute values Wi = gCSi\I(s).

2. Compute polynomials qi(r) s.t.
∑t
i=1 CSi\I(r)qi(r) = 1 and values Fi = gqi(s).

3. Let Π = {(W1, F1), ..., (Wt, Ft)} and output {Π, fI}.

Algorithm{accept,reject} ← verifyIntersection(f1, ..., ft,Π, fI , pk).

1. Check the following equalities. If any of them fails output reject, otherwise accept:

• e(fI ,Wi) = e(fi, g) ∀i = 1, ..., t

• ∏t
i=1 e(Wi, Fi) = e(g, g)

Figure 3·1: Algorithms for proving and verifying a single intersection

equalities (assuming hU is the hash value of U):

e(fi,Wi) = e(fU , g) ∀i = 1, ..., t

e(gxjgs, wj) = e(fU , g) ∀j = 1, ..., |U | .

The problem with this approach is that the number of equalities to be checked for

the union case is linear to the number of elements in the output set. Such an ap-

proach would lead to an inefficient scheme for general operations (each intermediate

union operation the verification procedure would be at least as costly as computing

that intermediate result). Therefore, we are interested in restricting the number of

necessary checks. In the following we provide a union argument that achieves this.

Our approach stems from the fundamental inclusion-exclusion principle of set

theory. Namely for set U = A ∪ B it holds that U = (A + B) \ (A ∩ B) where

A+B is a simple concatenation of elements from sets A,B (allowing for multisets),

or equivalently, A + B = U ∪ (A ∩ B). Given the hash values hA, hB the above can

be checked by the bilinear equality e(fA, fB) = e(fU , fA∩B). Thus one can verify the

correctness of hU by checking a number of equalities independent of the size of U by

checking that the above equality holds. In practice, our protocol for the union of two

39

sets consists of a proof for their intersection, followed by a check for this relation.

Due to the extractability property of our ECRH, the fact that hI is included in the

proof acts as a proof-of-knowledge by the prover for the set I, hence we can remove

the necessity to explicitly include I in the answer.

There is another issue to be dealt with. namely that this approach does not scale

well with the number of input sets for the union operation. To this end, we will

recursively apply our construction for two sets in pairs of sets until finally we have a

single union output. Let us describe the semantics of a set union operation over t sets.

For the rest of the section, without loss of generality, we assume ∃k ∈ N s.t. 2k = t,

i.e., t is a power of 2. Let us define as U
(1)
1 , ..., U

(1)
t/2 the sets (S1 ∪ S2), ..., (St−1 ∪ St).

For set U is holds that U = U1 ∪ ... ∪ Ut/2 due to the commutativity of the union

operation.

All intermediate results U
(j)
i will be represented by their hash values h

U
(j)
i

yield-

ing a proof that is of size independent of their cardinality. One can use the intuition

explained above, based on the inclusion-exclusion principle, in order to prove the

correctness of (candidate) hash values h
U

(1)
i

corresponding to sets Ui and, following

that, apply repeatedly pairwise union operations and provide corresponding argu-

ments, until set U is reached. Semantically this corresponds to a binary tree T of

height k with the original sets Si at the t leafs (level 0), sets U
(1)
i as defined above

at level 1, and so on, with set U at the root at level k. Each internal node of the

tree corresponds to a set resulting from the union operation over the sets of its two

children nodes. In general we denote by U
(j)
1 , ..., U

(j)

t/2j
the sets appearing at level j.

We propose the algorithms in Figure 3·2 for proof construction and verification

for a single union.

Set difference. Finally, we present a protocol for the set difference operation. We

denote set X = S1 \ S2 and let h1, h2, hX be the corresponding hash values. For

40

For ease of notation we denote by A,B the two sets corresponding to the children nodes of each
non-leaf node of T , by U, I their union and intersection respectively and by F the final union
output.
Algorithm{Π, fF } ←proveUnion(S1, ..., St, U, h1, ..., ht, hU , pk).

1. Initialize Π = ∅.
2. For each U

(j)
i of level j = 1, ..., k, corresponding to sets U, I as defined above, compute

U, I and values hU , hI . Append values hU , hI to Π.

3. For each U
(j)
i of level j = 1, ..., k, run algorithm proveIntersection(A,B, hA, hB , pk) to

receive (ΠI , fI) and append ΠI to Π. Observe that sets A,B and their hash values have
been computed in the previous step.

4. Output {Π, fF }. (hF has already been computed at step (2) but is provided explicitly
for ease of notation).

Algorithm{accept,reject} ← verifyUnion(f1, ..., ft,Π, fF , pk).

1. For each intersection argument {ΠI , fI} ∈ Π run verifyIntersection(fA, fB ,ΠI , fI , pk).
If for any them it outputs reject, output reject.

2. For each node of T check the equality e(fA, fB) = e(fU , fI). If any check fails, output
reject.

3. For each hash value hU ∈ Π check e(fU , g
a) = e(f ′U , g) and likewise for values hI . If any

check fails output reject, otherwise accept.

Figure 3·2: Algorithms for proving and verifying a single union

characterizing the set difference X we use the following two properties: X ⊆ S1 and

X + (S1 ∩ S2) = S1. The former states that X is a subset of S1 whereas the latter

states that the X is the complement of the intersection of the two sets, with respect

to S1.

To prove these properties we take a similar approach as for the case of set union

above. Namely, we first provide a proof for the hash value hI of the intersection I of

the two sets. Given hI , the authenticated h1 and the claimed set difference hX , the

client can verify the correctness of the result by a checking a single pairing equation,

in a very similar manner as for the case of a union of two sets, discussed above. We

propose the algorithms in Figure 3·3 for proving and verifying a single set difference.

Complexity analysis of the algorithms. Let N =
∑t

i=1 |Si| and δ = |I| or |F |

41

Algorithm{Π, fD} ← proveDifference(S1, S2, D, h1, h2, hD, pk).

1. Run algorithm proveDifference(S1, S2, h1, h2, pk) to receive (ΠI , fI). Append ΠI to Π.

2. Compute hI and append it to Π.

3. Output (Π, fD).

Algorithm{accept,reject} ← verifyDifference(f1, f2,Π, fD, pk).

1. Parse Π = ΠI , hI .

2. Run algorithm verifyIntersection(f1, f2,ΠI , fI , pk). If it outputs reject, output reject.

3. Check the following equalities. If any of them fails output reject, otherwise accept:

• e(fI , g
α) = e(f ′I , g)

• e(fD, fI) = e(f1, g)

Figure 3·3: Algorithms for proving and verifying a single set differ-
ence

respectively, depending on the type of operations. For both cases, the runtimes of

the algorithms are O(N log2N log logN log t) for proof construction and O(t + δ)

for verification and the proofs contain O(t) bilinear group elements. A proof of the

complexity analysis for these algorithms can be found in Section 3.4.4.

It can be shown that these algorithms, along with appropriately selected proofs-

of-validity for their input hash values can be used to form a complete ADS scheme

for the case of a single set operation. Here however, these algorithms will be executed

as subroutines of the general proof construction and verification process for our ADS

construction for more general queries, presented in the next section.

Hierarchical sets operation queries

We now use the algorithms we presented in the previous subsection to define appro-

priate algorithms query, verify for our ADS scheme. A hierarchical set operations

computation can be abstracted as a tree, the nodes of which contain sets of elements.

For a query q over t sets S1, ..., St, corresponding to such a computation, each leaf

42

of the tree T contains an input set for q and each internal node is related to a set

operation (union or intersection) and contains the set that results to applying this

set operation on its children nodes. Finally, the root of the tree contains the output

set of q. In order to maintain the semantics of a tree, we assume that each input

is treated as a distinct set, i.e., t is not the number of different sets that appear

in q, but the total number of involved sets counting multiples. An alternative way

to visualize this would be to interpret t as the length of the set operations formula

corresponding to q.7

Without loss of generality, assume q is defined over the t first sets of D. For

reasons of simplicity we describe the mode of operation of our algorithms for the

case where all sets Si are at the same level of the computation, i.e., all leafs of T
are at the same level. The necessary modifications in order to explicitly cover the

case where original sets occur higher in T , are implied in a straight forward manner

from the following analysis, since any set Si encountered at an advanced stage of

the process can be treated in the exact same manner as the sets residing at the tree

leafs. The algorithms for query processing and verification of our ADS scheme are

described in Figures 3·4 and 3·5.

Intuitively, with the algorithms from the previous section a verifier can, by check-

ing a small number of bilinear equations, gain trust on the hash value of a set com-

puted by a single set operation. Observe that, each prover’s algorithm “binds” some

bilinear group elements (the first parts of the input hash values) to a single bilinear

group element (the first part of the hash value of the output set). We made explicit

use of that, in order to create a proof of union for more than two sets in the previous

7More generally q can be seen as a DAG. Here, for simplicity of presentation we assume that
all sets Si participate only once in q hence it corresponds to a tree. This is not a limitation of our
model but to simplify the execution of the algorithms, every set encountered is treated uniquely.
This can incur a redundant overhead in the analysis, that is avoidable in practice (e.g., by not
including duplicate values in proofs).

43

D is the most recent version of the data structure and auth(D), d be the corresponding au-
thenticated values and public digest. Let q be a set operation formula with nested unions,
intersections, and differences and T be the corresponding semantics tree. For each internal
node v ∈ T let R1, ..., Rtv denote the sets corresponding to its children nodes (tv = 2 for the
set difference case)and O be the set that is produced by executing the operation in v (union,
intersection, or difference) over Ri. Finally, denote by α = x1, ..., xδ the output set of the root
of T .

Algorithm {α,Π} ← query(q,D, auth(D), pk).

1. Initialize Π = ∅.
2. Compute proof-of-membership πi for value fi by running QueryTree(pk, d, i, auth(D))

for i ∈ [t] and append πi, fi to Π.

3. For each internal node v ∈ T (as parsed with a DFS traversal):

• Compute set O and its hash value hO = h(CO).

• If v corresponds to a set intersection, obtain Πv by running proveIntersec-
tion(R1, ..., Rt, h1, ..., ht, O, hO, pk). For each subset witness Wi ∈ Π corresponding
to polynomial CRi\O, compute values W̃i = gaCRi\O(s). Let Wv = {W1, ...,Wtv}.
Append Πv,Wv, hO to Π.

• If v corresponds to a set union, obtain Πv by running proveU-
nion(R1, ..., Rt, h1, ..., ht, O, hO, pk). Append Πv, hO to Π.

• If v corresponds to a set difference, obtain Πv by running proveDiffer-
ence(R1, R2, h1, h2, O, hO, pk). Append Πv, hO to Π.

4. Append to Π the coefficients (c0, ..., cδ) of the polynomial Cα (already computed at step
3 and output {α,Π)}.

Figure 3·4: Algorithm for proving general set operations

section. Here we generalize it, to be able to obtain similar proofs for hierarchical

queries containing intersections and unions. The proof for q is constructed by putting

together smaller proofs for all the internal nodes in T . Let Π be a concatenation of

single union and single intersection proofs that respect q, i.e., each node in T corre-

sponds to an appropriate type of proof in Π. The hash value of each intermediate

result will also be included in the proof and these values at level i will serve as inputs

for the verification process at level i+ 1. The reason the above strategy will yield a

secure scheme is that the presence of the hash values serves as a proof by a cheating

adversary that he has “knowledge” of the sets corresponding to these partial results.

44

Let d be the latest public digest. Let q be a set operation formula with nested unions, intersec-
tions, and differences and T be the corresponding semantics tree. For each internal node v ∈ T
let R1, ..., Rtv denote the sets corresponding to its children nodes (tv = 2 for the set difference
case), and let α = x1, ..., xδ denote the claimed answer set for q. Finally, for internal node
v ∈ T , let η1, ..., ηtv denote the hash values of its children node sets (η1, η2 for the set difference
case) ∈ Π (for internal nodes at level 1, the values ηi are the values fi).

Algorithm {accept,reject} ← verify(q, α,Π, d, pk).

1. Verify the validity of values fi. For each value fi ∈ Π run VerifyTree(pk, d, i, fi, πi). If
it outputs reject for any of them, output reject and halt.

2. For each internal node v ∈ T (as parsed with a DFS traversal):

• Check the equality e(fO, g
a) = e(g, f ′O). If it does not hold, reject and halt.

• If v corresponds to a set intersection:

(a) Run verifyIntersection(η1, ..., ηtv ,Πv, fO, pk), If it outputs reject, output re-
ject and halt.

(b) For each pair Wi, W̃i ∈ Πv, check the equality e(Wi, g
a) = e(W̃i, g). If any of

the checks fails, output reject and halt.

• If v corresponds to a set union, run verifyUnion(η1, ..., ηtv ,Πv, fO, pk). If it outputs
reject, output reject and halt.

• If v corresponds to a set difference, run verifyDifference(η1, η2,Πv, fO, pk). If it
outputs reject, output reject and halt.

3. Validate the correctness of coefficients c. Choose z ←R Z∗p and compare the values
δ∑
i=0

ciz
i and

δ∏
i=1

(xi + z). If they are not equivalent, output reject and halt.

4. Check the equality e(

δ∏
i=0

gcis
i

, g) = e(fα, g). If it holds output accept, otherwise reject.

Figure 3·5: Algorithm for verifying general set operations

If one of these sets is not honestly computed, the extractability property allows an

adversary to either attack the collision-resistance of the ECRH or break the q-SBDH

assumption directly, depending on the format of the polynomial used to cheat.

Observe that the size of the proof Π is O(t+ δ). This follows from the fact that

the t proofs πi consist of a constant number of group elements and Π is of size O(t)

since each of the O(|T |) = O(t) nodes participates in a single operation. Also, there

are δ coefficients bi therefore the total size of Π is O(t + δ). The runtime of the

45

verification algorithm is O(t + δ) as steps 2,3 takes O(t) operations and steps 4,5

take O(δ). A detailed proof of the complexity analysis for these algorithms can be

found in Section 3.4.4.

3.4.3 Main result

We can now state the following theorem that is our main result.

Theorem 1. The scheme AHSO = {genkey, setup, query, verify, update, re-

fresh} is an ADS for queries q from the class of hierarchical set operations formulas

involving unions, intersections and set differences, of length polynomial in λ. It is

correct and secure under the q-SBDH and the q-PKE assumptions.

Proof: Correctness follows by close inspection of the algorithms above. We proceed

to prove the security of our scheme via a series of intermediate results. Let AADS
be an adversary for the AHSO scheme. Recall the AADS is given a public key

generated by genkey containing a description of an ECRH h. AADS then calls

setup with the parameter D0 and subsequently makes additional oracle calls to

the algorithms update, refresh, verify, proof, of AHSO. Finally, AADS outputs

{α,Π, q,Dk, auth(Dk), dk} where Π is a proof that contains images of the hash h.

We show that there exists an extractor E that except with negligible probability over

the choice of h, when E is given h, outputs a pre-image for every valid image of h in

Π. We cannot directly use the extraction property of the ECRH since the adversary

AADS is getting access to oracles for the algorithms of AHSO and we do not have

access to the code of these oracles. The idea of this proof is to use the fact that all the

algorithms of AHSO (except genkey) can be executed over the initial database D0

in polynomial time given only the public key h (see Remark 1), and therefore there

exists an adversary A′ADS that internally emulates A′ADS together with its oracles

and outputs the same as AADS. Let A′i be the adversary that emulates A′ADS and

outputs the i’th hash value hi in proof Π contained in the output of A′ADS. It follows

46

from the properties of the ECRH that there exists an extractor Ei for A′i that outputs

a pre-image of hi whenever hi is indeed in the image of h. Therefore there exists a

single extractor E that outputs the pre-images for all valid hi’s with overwhelming

probability. Finally, observe that hash values hi are efficiently recognizable as pairs

of elements of G, and can be efficiently checked for validity by checking the equation

in GT , e(f, gα) = e(f ′, g).

As a building block for our proof, we prove the following lemma:

Lemma 5. If the q-SBDH assumption holds, then for any poly-size

adversary A that upon input pk outputs (S1, ..., St, O,Π, fO) s.t. (i)

verifyIntersection(f(CS1), ..., f(CSt),Π, fI , pk) (resp. verifyUnion,VerifyDifference)

accepts and (ii) f(CO) = fO, O = ∩ti=1Si (resp. O = ∪ti=1Si, it must be that

O = S1 \ S2) with all but negligible probability.

Proof: We examine the three cases separately.

Intersection. Let us assume that there exists A that outputs S1, ..., St, O,Π, fO s.t.

verifyIntersection accepts and O 6= I := ∩ti=1Si, with non-negligible probability. We

will construct an adversary A′ that breaks the q-SBDH assumption. For ease of

notation we denote CSi = Qi(r) and CO = P (r).

Since O 6= I, either it contains an element x s.t. x 6∈ I, or there exists element

x ∈ I s.t. x 6∈ O (or both happen at the same time). Let us deal with the first

case. Since x ∈ O ∧ x 6∈ I, there must exist set Sj s.t. x 6∈ Sj. Therefore for the

term (x + r) it is true that (x + r) 6 |Qj(r) and (x + r)|P (r). It follows that there

exist efficiently computable F (r), κ s.t. Qj(r) = (x + r)F (r) + κ. Also let H(r) be

47

polynomial s.t. (x+ r)H(r) = P (r). The following equalities must hold:

e(fO,Wj) = e(fj, g)

e(g,Wj)
P (s) = e(g, g)Qj(s)

e(g,Wj)
(x+s)H(s) = e(g, g)(x+s)Qj(s)+κ(

e(g,W)H(s)e(g, g)−Qj(s)
)κ−1

= e(g, g)
1
x+s .

It follows that A′ can, by outputting the above value break the q-SBDH for point

x. Hence, this case can happen only with negligible probability.

It remains to deal with the second case, conditioned on the first not happening.

Namely, there exists x ∈ I that is omitted by answer O, i.e. O is a common subset

of Si but not the maximal one. There must exist x ∈ I s.t. x /∈ O therefore it must

be that x ∈ (Si \O) for all i = 1, ..., t. Let polynomials Ri(r) = CSi\O. Observe that

because the verifier accepts, it must be that e(g,Wi) = e(g, g)Qi(s), hence Wi = gRi(s).

From the above it must hold that Ri(r) = (x + r)R′i(r) for some R′i(r) ∈ Z[r]. The

following must be true:

t∏
i=1

e(Wi, Fi) = e(g, g)(
t∏
i=1

e(gR
′
i(s), Fi)

)x+s

= e(g, g)

t∏
i=1

e(gR
′
i(s), Fi) = e(g, g)

1
x+s .

From the above, A′ can break the q-SBDH assumption for point x. It follows that

O is the maximal common subset of Si’s with all but negligible probability.

If we denote the two cases as E1, E2, we showed that Pr[E1],Pr[E2|Ec
1] are negli-

gible probabilities. Since E1, E2 cover all possible cheating adversary strategies, the

claim follows by a simple union bound.

48

Union. Let us assume that there exists A that outputs S1, ..., St, O,Π, fO s.t. ver-

ifyUnion accepts and O 6= U := ∩ti=1Si, with non-negligible probability. We will

construct an adversary A′ that either finds a collision in h, or breaks the q-SBDH

assumption. For ease of notation we denote CSi = Qi(r) and CO = P (r). We begin

by providing a proof for t = 2, i.e., a union of two sets A ∪B.

Upon receiving the output from A, adversary A′ runs the extractor EA (the

existence of which is guaranteed by our analysis in the start of the proof of Theorem 1)

for value hI∗ ∈ Π to receive polynomial R(r) s.t. gR(s) = hI∗ with overwhelming

probability.

Claim 1. R(r) ≈a CI where I = A ∩B, with all but negligible probability.

Proof of Claim. The following two relations must hold:

e(g,WA)R(s) = e(g, g)QA(s)

e(g, g)QA(s)·QB(s) = e(g, g)R(s)·P (s).

First we will prove that R(r) can be written as a product of degree 1 polynomials.

Assume there exists irreducible polynomial R′(r) of degree> 1 and polynomial J(r)

s.t. R(r) = R′(r)J(r). It follows that R(r)P (r) 6= QA(r)QB(r) (since only one of

them has irreducible terms of degree greater than 1), however from the above equality

h(R(r)P (r)) = h(QA(r)QB(r)) therefore by outputting R(r) ·P (r), QA(r) ·QB(r) (in

coefficient form), A′ finds a collision in the ECRH. This can happen with negligible

probability hence R(r) can be written as a product of degree 1 polynomials with all

but negligible probability.

From this it follows that A′ can, by running a probabilistic polynomial factoriza-

tion algorithm, find roots xi s.t. R(r) = β
∏

i∈[deg(R)](xi + r). Note that upon input

polynomial R(r), value β can be efficiently computed correctly by a polynomial fac-

torization algorithm, with all but negligible probability, and the value β−1 is also

49

computable efficiently since p is a prime.

Let X be the set containing the additive inverses of the roots xi
8 and ob-

serve that CX = β
∏

i∈[deg(R)](xi + r). If X 6= I, A′ can output {A,B,X, P i∗ =

(hβ
−1

X ,W β
A,W

β
B, F

β−1

A , F β−1

B)}. It is easy to verify that the above is satisfying proof

for the claim that X = A ∩ B (i.e., verifyIntersection accepts), while X 6= I. By

our previous analysis for the intersection case, this can only happen with negligible

probability. This concludes the proof of the claim. �

Consequently, the following must be true:

e(g, g)QA(s)QB(s) = e(g, g)R(s)P (s)

e(g, g)
∏
x∈A(x+s)

∏
x∈B(x+s) = e(g, g)P (s)β

∏
x∈A∩B(x+s)

e(g, g)
∏
x∈A∪B(x+s) = e(g, g)βP (s).

In case polynomials CA∪B and βP (r) are not equivalent, due to the above equality A
can by outputting them find a collision in the ECRH. Therefore it must be that with

overwhelming probability βP (r) = CU . Again, if β 6= 1 then the two polynomials

form a collision for the ECRH, therefore with all but negligible probability, O = U .

Let us now turn our attention to the case of a generalized union over k sets

(assume wlog that k is a power of 2). Consider the binary tree T that captures this

union operation as described in Section 3.4.2. Observe that this tree consists only

of O(poly(λ)) nodes (2t − 1 in practice) hence A′ can efficiently run an extractor

for all intermediate hash values corresponding to internal nodes of T (as per our

former analysis) to compute the related polynomials correctly, with overwhelming

probability.

8The case where X has a root that is also a root of I but with cardinality > 1 can easily be
dealt with as follows. Since the term (x+ s) appears in the exponent in both sides of the bilinear
relation, A′ can remove it from both hands, until at the end it remains only in one of them. After
that happens, the consequent analysis holds. Similar argument can be made for the union case thus
in the following we skip this part of the analysis.

50

We will prove that the polynomial CO(r), corresponding to hO, is an associate

of CU by showing that this is true for all intermediate polynomials and their corre-

sponding sets. We will do this by an induction on the levels of T .

level-1 Let P
(1)
i (r) be the extracted polynomials for all first level nodes. Let us

assume that there exists node v in the first level such that P (r) := P
(1)
v (r) 6≈a

C
U

(1)
i

where U
(1)
i is the corresponding correct union of its two children nodes.

With a similar argument as above, P (r) can be written as a product of de-

gree 1 polynomials with all but negligible probability (otherwise a collision

in the ECRH can be found). Let X be the set containing the additive in-

verses of the roots xi of P (r). It follows that P (r) = βCX for some effi-

ciently computable β ∈ Z∗p. Similar as above, if X 6= U
(1)
i , A′ can output

{A,B,X,Π∗ = (hβ
−1

X , hβI ,W
β−1

A ,W β−1

B , F β
A, F

β
B)}. It is easy to verify that this

consists a satisfying proof for the claim A ∪ B = X, which by our previous

analysis can happen with negligible probability and the claim follows.

level-j Assuming that this holds for the polynomials on level j we will show that

it also holds for level j + 1. Let us assume that this not the case. It follows

that there must exist node v of the tree on level j + 1 the children of which

have extracted polynomials QA(r), QB(r), the corresponding extracted output

polynomial is P (r) and the corresponding extracted polynomial for the inter-

section be H(r). Assuming P (r) is not an associate of CU we will construct an

adversary that finds a collision in the ECRH similar to above.

By assumption, QA(r) = βA
∏

i∈[|A|](xi + r) and likely for QB(r) (recall that

these are associate polynomials of the correctly computed corresponding set at

level j) for sets A,B. If P (r) contains an irreducible factor of degree > 1, our

previous analysis shows that a collision for the ECRH is found.

51

Therefore P (r) can be written as a product of degree 1 polynomials and

a scalar and there exist an efficiently computable set X and β ∈ Z∗p s.t.

P (r) = βCX . Similar as above, if X 6= A ∪ B, A′ can output {A,B,X,Π∗ =

(hβ
−1

X , h
β/βA·βB
I ,W βB

A ,W βA
B , F

β−1
B

A , F
β−1
A

B)}. It is easy to verify that this consists

a satisfying proof for the claim A∪B = X, which by our previous analysis can

happen with negligible probability and the claim follows.

Since this holds for every node of level j+1, this concludes our induction proof.

Hence with all but negligible probability, the claim holds for the value hO. As per

the intersection case, it must be that with all but negligible probability O = U .

Set Difference. The argumentation for this case follows in a relatively straight

forward manner from our treatment for the union case. Let us assume that there

exists A that outputs S1, S2, O,Π, fO s.t. verifyDifference accepts and O 6= X :=

S1\S2, with non-negligible probability. We will construct an adversary A′ that either

finds a collision in h, or breaks the q-SBDH assumption. For ease of notation we

denote CSi = Qi(r) for i = 1, 2 and CO = P (r).

Upon receiving the output from A, adversary A′ runs the extractor EA for value

hI∗ ∈ Π to receive polynomial R(r) s.t. gR(s) = hI∗ with overwhelming probability.

From Claim 1 above, it follows that, with all but negligible probability, R(r) ≈a CI
where I = S1 ∩ S2.

Since verifyDifference accepts, the following must hold:

e(g, g)P (s)R(s) = e(g, g)Q1(s)

e(g, g)βP (s)
∏
x∈S1∩S2

(x+s) = e(g, g)
∏
x∈S1

(x+s)

e(g, g)βP (s) = e(g, g)
∏
x∈S1\S2

(x+s).

In case polynomials CS1\S2 and βP (r) are not equivalent, due to the above equality A
can by outputting them find a collision in the ECRH. Therefore it must be that with

52

overwhelming probability βP (r) = CX . Again, if β 6= 1 then the two polynomials

form a collision for the ECRH, therefore with all but negligible probability, O = X. 2

For the proof of our main result we make use of Lemmas 5 and 4. Let AADS be a

poly-size adversary that upon input the public key pk of our ECRH construction, is

given oracle access to all algorithms of AHSO. AADS picks initial state D0 for the

data structure and computes auth(D0), d0 through oracle access to setup. Conse-

quently he chooses a polynomial number of updates and with oracle access to update

computes Di+1, auth(D0), di+1 for i = 0, ..., h. Also, he receives oracle access to al-

gorithms query,verify,refresh. Finally, AADS outputs {α′,Π, q,Dk, auth(Dk), dk}
where k is between 0 and h + 1 and denotes the snapshot of the data structure

to which the query q is to be applied. We want to measure the probability that

verify(α′,Π, q, pk, dk) outputs accept and algorithm check(Dk, q, α
′) outputs reject

(i.e., α′ is not equal to the set produced by applying operations in q on dataset Dk).

Assuming AADS can succeed in the above game with non-negligible probability

ε, we will use him to construct A′ that finds a collision in the ECRH with non-

negligible probability. A′ works as follows. Upon input pk of ECRH, he sends

it to AADS. Following that, he provides oracle interface to A. Finally, he receives

{α′,Π, q,Dk, auth(Dk), dk} fromA and runs corresponding extractor EAADS to receive

hash pre-images for all hash vales in Π.

Let S1, ..., St be the sets in Dk over which q is defined (t = 2 for the case of set

difference). First A′ computes honestly q over Si, and receives the correct output α

and all intermediate sets. Then he runs verify on the received tuple and checks if

α 6= α. If verification fails or α = α′ he aborts (i.e. he only proceeds if AADS wins

the ADS game). Following that, A′ checks if f(CSi) = fi for i = 1, ..., t. If any of the

checks fails, he aborts. Then A′ compares the correctly computed set for each node

53

v ∈ T and the corresponding extracted polynomial which we denote by Pv(r). Given

polynomial Pv(r) for each node, A′ checks if it is an associate polynomial of the

characteristic polynomial of the corresponding honestly computed set. If this does

not hold for some node v, he aborts. Finally, he outputs the pair of polynomials

Proot(r), Cα′ .
First, note that A′ runs in time polynomial in the security parameter, since

both AADS and EAADS run in polynomial time, the set computations can be done in

polynomial time and polynomial associativity is also decidable in polynomial time

by long division. Regarding, his success probability in finding a collision we argue

as follows.

Let E ′ be the event that A′ succeeds in finding a collision and B the event that

AADS wins the ADS game. By assumption Pr[B] > ε for non-negligible ε, a function

of λ. Observe that, conditioned on not aborting, the probability of A′ to find a

collision is at least (1 − ν∗(λ)) where ν∗(λ) is the sum of the negligible errors in

the output of the extractor and the randomized factorization algorithm, which by a

union bound is an upper bound for the total error probability. This holds because,

since A′ did not abort, the verification succeeded and AADS provided a false answer

which implies that the polynomials output are not equivalent yet they have the same

hash values. Overall Pr[E ′] = Pr[E ′|¬abort] Pr[¬abort] ≥ (1− ν∗(λ)) Pr[¬abort].

Let EV be the event that verify accepts during the first step of A′ and α 6= α′.

Also, let E1 be the event that all f(CSi) = fi for i = 1, ..., t given that verify accepts

and E2 be the event that all extracted polynomials are of the form Pv(r) ≈a CO also

given that verify accepts. Also, let E3 be the event that the polynomials Cα∗(r) and∑δ−1
i=0 cir

i are equivalent given that verify accepts. By Lemma 4, Pr[E1] > 1− ν1(λ)

and Pr[E3] > 1− ν3(λ) since, by the Schwartz-Zippel lemma [Sch80], the probability

that two non-equivalent polynomials of degree δ agree on a point chosen uniformly

54

at random is ≤ d/2l in this case, which is negligible in λ. Also, by assumption

Pr[EV] ≥ ε.

We argue about Pr[E2] as follows:

Claim 2. Pr[E2] > 1− ν2(λ) .

Proof of Claim. Equivalently, we will prove that for all internal nodes v ∈ T , with

corresponding extracted polynomial Pv(r), it must be that Pv(r) ≈a CO where O is

the correctly computed set corresponding to v when computing q over Si, with all

but negligible probability.

As in the proof of Lemma 5, we will prove this by an induction on the levels of

T (in fact, since T is not a balanced tree, the induction is over the nodes themselves

in the order they are accessed by a DFS traversal).

level-1 If the operation for v is an intersection, then if Pv(r) has a factor that is an

irreducible polynomial of degree > 1, then let Ri(r), R̃i(r) be the corresponding

extracted polynomials for the pair of values Wi, W̃i in the proof. Since the

verification process succeeds, it follows that e(fO,Wi) = e(fi, g). Since by

assumption, f(CRi) = fi, (slightly abusing the notation, we assume that Si =

Ri) it follows that the polynomials CRi(r), Pv(r) · R(r) form a collision for the

ECRH for some index i. On the other hand, if Pv(R) can be written as a

product of degree 1 polynomials, it follows that it can be written as βCX for

some set X and A′ could output appropriate proof for the claim ∩tvi=1Ri = X,

in the exact same manner as we demonstrated in proof of Lemma 5, which can

only happen with negligible probability and this concludes the base case of the

induction.

If the operation for v is a union, the claim immediately holds from our treatment

for the union case above, for the tree Tv corresponding to the union operations

defined in v over its children.

55

Likewise, if v is a set difference immediately holds from our treatment for the

set difference case above.

general step Let us assume that the statement holds for all the children of node v,

we show it also holds for v. Assuming there exists such node v, we can separate

into two cases.

If the operation at v is an intersection, then letQ1(r), ..., Qtv(r) be the extracted

polynomials corresponding to its children nodes. By assumption Qi(r) = βiCOi
where Oi are the correctly computed sets up to that point according to q.

Similar as for the case for level-1, if Pv(r) contains a factor that is an irreducible

polynomial of degree > 1, A′ can find a collision in the ECRH. Therefore, with

all but negligible probability, Pv(r) can be written as βCX for some efficiently

computable set X = {x1, ..., x|X|)}. Hence A′ can output {O1, ..., Otv , X,Π
∗ =

(hβ
−1

X ,W
β/βi
i , F

βi/β
i ; i = 1, ..., tv)}. It is easy to verify that the above is a

satisfying proof for the claim X = ∩tvi=1Oi which by Lemma 5 can happen with

negligible probability.

If the operation at v is a union, then we argue as follows. Let Tv be the tree

corresponding to the union operations defined in v over its children. Observe

that the only difference between this case and the case analyzed previously

in the proof of Lemma 5 is that the polynomials at the leafs of tree Tv are

not characteristic polynomials necessarily. However, by assumption, they are

polynomials of the form βiCOi where Oi are the correctly computed sets up to

that point according to q. A′ can produce a satisfying proof for an incorrect

set, in the exact same manner as described in the general step of our induction

proof for Claim 1 above. Hence, with all but negligible probability, Pv(r) ≈a CO,

which concludes our induction proof.

A similar treatment can be used if v is a set difference. Again, the extracted

56

polynomials Q1(r), Q2(r) are, by the inductive assumption, of the form βiCOi
where Oi are the correctly computed sets up to that point according to q.

Similar to our treatment for the intersection case, if Pv(r) contains a factor

that is an irreducible polynomial of degree > 1, A′ can find a collision in the

ECRH. Therefore, with all but negligible probability, Pv(r) can be written as

βC ′X for some efficiently computable set X ′ = {x1, ..., x|X′|)}. Hence A′ can

output {O1, O2, X
′,Π∗ = (h′β

−1

X ,W
β/βi
1 , F

βi/β
1 ; i = 1, 2}. which is a satisfying

proof for the claim X ′ = S1 \S2 which by Lemma 5 can happen with negligible

probability.

Therefore, the claim follows. �

It follows by the way we defined these events that the overall abort probability

of A′ is (using a union bound) Pr[abort] ≤ Pr[Ec
V] + Pr[Ec

1] + Pr[Ec
2] + Pr[Ec

3] =

1 − ε + ν ′(λ) where ν(λ)′ is the sum of the three negligible probabilities. Hence

Pr[¬abort] ≥ 1 − 1 − ε + ν ′(λ) = ε − ν ′(λ). We showed above that Pr[E ′] ≥
(1−ν∗(λ)) Pr[¬abort] ≥ ε(1−ν(λ)) (for an appropriately defined negligible function

ν(λ)) which is non-negligible. This contradicts the collision resistance of the ECRH

h and the security of AHSO follows. 2

Corollary 1. If the server maintains a list of m fresh proofs π1, ..., πm for the validity

of values fi, refresh has complexity O(m2ε logm), in order to update the mε proofs

πi affected by an update, and query has complexity O(N log2N log logN log t+ t).

Corollary 2. In a two-party setting, where only the source issues queries, proofs

consist of O(t) elements.

For Corollary 1 the following modifications are made to the scheme:

• The server upon receiving D, authD, d, pk computes and stores m proofs

π1, .., πm by running the algorithm VerifyTree for each value fi correspond-

ing to Si. These values are computed in time m1+ε logm.

57

• Upon receiving a query request, the server performs t lookups to find the

corresponding proofs πi (instead of computing them on-the-fly) and includes

them in the proof.

• Upon receiving an update, modifying fi → f ∗i , let π1, ..., πmε) be the proofs

that corresponds to the value fi and its mε − 1 siblings in the accumulation

tree. The server computes updated proofs π∗1, ..., π
∗
mε by running QueryTree

mε, hence this takes overall time m2ε logm.

Likewise for Corollary 2:

• Upon receiving query q, the server runs query skipping step (4).

• Upon receiving α,Π, the source computes
∏δ

i=1(xi + s) in time O(δ) using the

secret key s. He then runs verify replacing steps (3),(4) with a single check of

the equality e(g
∏δ
i=1(xi+s), g) = e(fa, g).

3.4.4 Complexity analysis for the algorithms of the scheme

Recall that we are using the access complexity model and we are measuring primitive

operations in Z∗p ignoring a poly-logarithmic in λ cost for element representation and

group operations.

Intersection

This is the most complicated argument in terms of asymptotic analysis and it will

be useful for the consecutive ones, therefore we will provide an elaborate analysis.

The algorithm proveIntersection consists of the following steps:

1. Compute values Wi for i = 1, ..., t.

2. Compute polynomials qi(r).

58

3. Compute values Fi.

For simplicity of presentation, we will assume without loss of generality that all t

sets have cardinality n and we denote N = tn. From Lemma 3 step (1) can be done

with
∑

i∈[t] n log n operations which can be bound by O(N logN).9

For the greatest common divisor computation, we will be making use of the

extended Euclidean algorithm presented in [vzGG03] which, for two polynomials

a(r), b(r) of degree n runs in time O(n log2 n log log n). The algorithms outputs

three polynomials u(r), v(r), g(r) s.t. u(r)a(r) + v(r)b(r) = g(r) and g(r) is the

gcd(a(r), b(r)) and u, v are known as Bézout coefficients of a, b. Observe that g(r) can

be at most of degree n and by the analysis of the algorithm, deg(u) < deg(b)−deg(g)

and deg(v) < deg(a) − deg(g). In our case, it is thus true that the degrees of poly-

nomials u, v, g are all upper bounded by n.

The gcd(P1, ..., Pt) can be recursively computed as

gcd(gcd(P1, ..., Pt/2), gcd(Pt/2+1, ..., P (t)) and this can be applied repeatedly all

the way to first computing the pairwise gcd of all consecutive pairs of polynomials

and following that the gcd of each pair of gcd′s all the way to the top. In order to

better analyze the complexity of step (2), let us introduce the following conceptual

construction that captures exactly this recursive approach. Let T be a binary tree

with polynomials CSi\I at the t leafs. Each internal node is associated with one

major polynomial which is the gcd of the major polynomials of its two children

nodes, and two minor polynomials, which are the corresponding Bézout coefficients.

The tree must be populated (all polynomials of internal nodes computed) as follows.

For the nodes that are parents of leafs, compute the gcd of their children nodes

and the corresponding Bézout coefficients. Following that, for each level of the tree

9A tighter bound would be O(N log n). However we do not wish to capitalize on the fact that
we assumed all sets are of the same size, since this is an assumption for ease of notation. Hence we
provide this more general bound.

59

all the way up to the root, the nodes are populated by computing the gcd of the

gcd’s stored in their two children nodes. It follows that the root of T stores the

gcd(CS1\I , ..., CSt\I).
Let us now analyze how long it takes to populate the nodes of T . By the analysis

of the extended Euclidean algorithm, it follows that each of the nodes that are

parents of leafs can be populated in time O(n log2 n log log n). Since the degrees

of the gcd polynomials higher in T can only be lower, it follows that the same

bound holds for all nodes. Since there exist O(t) nodes, T can be populated in time

O(N log2N log logN).

Following that, we need to compute polynomials qi(r). Observe that each such

polynomial can be computed after populating T as the product of exactly O(log t)

polynomials each of which can be at most of degree n. We start by proving the

following.

Claim 3. Having populated T , all the polynomials qi(t) for i = 1, ..., t can be com-

puted by 2t− 2 polynomial multiplications.

Proof of Claim. We will prove the above by induction on the number of sets t.

For t = 2, having populated the tree, polynomials q1(r), q2(r) are already stored at

the root. Hence we need 2 · t− 2 = 0 multiplications. If this is true for t = j we will

show it is true for 2j. Observe that for two sibling sets, the polynomials qi(r), qi+1(r)

can be written as qi = h(r)u(r) an qi+1 = h(r)v(r) where u, v are the corresponding

Bézout coefficients stored in their parent. The polynomials hk(r) for k = 1, ..., j (each

associated with one grand-parent node of the leafs in T) can be computed with 2j−2

multiplications by the assumption. Hence each polynomial qi(r) can be computed

with one additional multiplication for a total of 2j additional multiplications. Thus

the overall number of multiplications to compute q1(r), ..., q2j(r) is 4j − 2 = 2t− 2,

which concludes our proof of the claim. �

60

Since each of qi(r) can be at most of degree O(n log t), an upper bound on the

complexity of each of these multiplications is O((n log t) log(n log t)), by using fast

multiplication with FFT interpolation. By the above claim, there are O(t) such mul-

tiplications, therefore, the overall complexity for the computation of the polynomials

qi(r) is O(N logN log t log log t). Finally, the output of this procedure is the polyno-

mial coefficients of the qi’s hence the values Fi can be computed in time O(N log t)

since each qi has degree at most n log t. Since t ≤ N , from the above analysis the

overall complexity of proveIntersection is O(N log2N log logN).

Algorithm verifyIntersection consists of O(t) bilinear pairings. Finally, the size

of the proof Π is O(t) group elements (in practice 2t elements).

Union

We begin with the proof Π for a union of two sets A,B with cardinalities nA, nB

(denote N = nA+nB). The intersection argument for I = A∩B can be computed in

time O(N log2N log logN) from the above analysis. The value hU can be computed

in time O(N logN) from Lemma 3, hence the algorithm proveUnion for two sets

runs is time O(N log2N log logN).

For the general case, let us denote with ni the cardinality of each set Si and let

N =
∑

i∈[t] ni. Finally, we denote with Nv the sum of the cardinalities of the sets of

the children nodes of each node v ∈ T . Each of the first level nodes is related to value

Ni for i = 1, ..., t/2 s.t.
∑t/2

i=1Ni ≤ N). Hence computing the proofs for all first level

nodes of T can be done in time
∑t/2

i=1Ni log2Ni log logNi which can be upper bound

by O(N log2N log logN). Moreover, this bound is true for all levels of T since due to

the commutativity of the union operation, no elements will be left out (in the worst

case the sets are disjoint, hence |U | = N) and since we have exactly log t levels in the

tree, the algorithm proveUnion in general runs in time O(N log2N log logN log t).

Each proof for a pair of sets can be verified by checking O(1) bilinear equalities

61

and since there are exactly t−1 such arguments, the runtime of verifyUnion is O(t).

The proof for each node v consists of 8 group elements and there are t − 1 such

arguments, hence the size of the argument is O(t) (in practice, 8(t− 1) elements).

Set difference

Let Π be the proof for the set difference S1 \ S2 with cardinalities n1, n2 (denote

N = n1 + n2). The intersection argument for I = S1 ∩ S2 can be computed in time

O(N log2N log logN) from the previous analysis. The value hD can be computed in

time O(N logN) from Lemma 3, hence the algorithm proveDifference runs is time

O(N log2N log logN).

The overall runtime of verifyDifference is O(1) as it consists of checking 4 bilinear

equations. Likewise, the proof size is O(1) and it consists of 6 group elements.

Hierarchical set operations

Observe that (similar to the generalized union case) the proof construction and ver-

ification consists of constructing (and verifying) a series of proofs as dictated by the

structure of T . Hence the complexity of the algorithms will be characterized by the

complexity of the algorithms for the single operation case. As before we denote Nv

for each node v ∈ T as the sum of the cardinalities of the sets of its children nodes

and tv as the number of its children nodes. Also let N =
∑

v∈T NV . The construction

of the argument for each node can be made in time O(Nv log2Nv log logNv log tv). If

t is the length of the set operation formula corresponding to q, it follows that tv ≤ t

hence the above can be also bound as O(Nv log2Nv log logNv log t). Finally, the cost

to compute Π is equal to the sum of computing all of the respective proofs, which

can be written as O(N log2N log logN log t). Also, each of the proofs πi is computed

in time O(mε logm) and since there are t of them, the overall complexity for query

is O(N log2N log logN log t+ tmε logm).

62

Each proof can be verified by checking O(tv) bilinear equalities. Since each node

has a single parent it follows that the runtime of verify is O(|T |). However, |T | ≤ 2t

since all operations are defined over at least two sets, hence verify consists of O(t)

operations. Each atomic proof in Π consists of O(tv) group elements and therefore

the total size of Π is O(t+ δ).

3.5 Server-assisted updates

The standard ADS model presented in Chapter 2 requires that the data owner main-

tains a copy of D and auth(D) in order to be able to perform updates. One extension

to this is a scenario where not even the owner needs to store the data: All updates

can be performed by the server (upon request by the owner) who sends to the owner

a new digest d′ and a proof that the update was executed honestly. Observe that

this can always happen naively, if the owner downloads all of D and performs the

update locally. However, we are interested in more efficient solutions. This closely

resembles the two-party ADS model introduced in [Pap11], where a property is iden-

tified that is sufficient to turn a standard ADS into a two-party one (i.e., one that

supports server-assisted updates). In practice, this model introduces two new algo-

rithms serverUpdate and verifyUpdate, that replace the previous update and

refresh process associated with an update. In this section, we provide appropriate

correctness and security definitions for an ADS that supports server-assisted updates

and show how our construction can be accordingly modified.

First, we define the two new algorithms that are necessary and replace update

and refresh from the ADS definition. The other four algorithms of the scheme

remain the same, as presented in Chapter 2.

1. {Dh+1, auth(Dh+1), dh+1,Π(u), upd} ← serverUpdate(u, auth(Dh), dh, pk):

On input update u on data structure Dh, the authenticated data structure

63

auth(Dh) and the digest dh, it outputs the updated data structure Dh+1 along

with auth(Dh+1), and the new digest dh+1 with (possibly) some update-relevant

information upd, and a proof Π(u) that the update was executed correctly. This

is executed by the server upon a request by the owner.

2. {accept/reject} ← verifyUpdate(u,Π(u), dh+1, upd, dh, sk, pk): On input up-

date u, a proof Π(u), claimed new digest dh+1 with (possibly) some update-

relevant information upd, and the existing digest dh it outputs either “accept”

or “reject”. If the answer is “accept”, then is sets dh+1 as the new digest.

Let {Dh+1} = applyUpdate(u,Dh) be a method for applying an update u at data

structure Dh (this method is not part of the scheme but only introduced for ease

of notation), and check a method for checking the validity of an answer, as defined

in 2. By applyUpdate((u1, . . . , ut, Dh), we denote the data structure Dh+t that results

from sequentially applying updates ui for 1, . . . , t to Dh.

Then an authenticated data structure scheme with server-assisted updates, should

satisfy the following:

Correctness. We say that an ADS with server-aided updates is correct if, for

all λ ∈ N, for all (sk, pk) output by algorithm genkey, for all (Dh, auth(Dh), dh)

output by one invocation of setup followed by polynomially-many invocations

of serverUpdate where h ≥ 0, for all queries q and for all a(q),Π(q) out-

put by query(q,Dh, auth(Dh), pk), with all but negligible probability, when-

ever check(q, a(q), Dh) accepts, so does verify(q, a(q),Π(q), dh, pk) and verifyUp-

date(ui,Π(ui), dh+i, updi, dhi , sk, pk) outputs “accept” for i = 1, . . . , h.

Security. Let λ ∈ N be a security parameter and (sk, pk) ← genkey(1λ) and A be

a poly-size adversary that is only given pk and has access to the algorithms of the

ADS via an oracle Oλ,ADS that accepts queries in the following model: The adversary

64

picks an initial state of the data structure D0 and computes D0, auth(D0), d0 through

an oracle call to algorithm setup. Following this, he is given free oracle access to

all algorithms of the ADS. We say that an ADS with server-aided is secure if for all

large enough λ ∈ N, for all poly-size adversaries A it holds that:

Pr



(q, a(q),Π(q), (ui, updi,Π(ui), di)
t
i=1)← AOλ,ADS(1λ, pk) s.t.

accept ← verify(q, a(q),Π(q), dt, pk) ∧

reject ← check(q, a(q), applyUpdate(u1, . . . , ut, D0)) ∧

accept ← verifyUpdate(ui,Π(ui), di+1, updi, di, sk, pk)

for i = 0, . . . , t− 1


≤ ν(λ),

where the probability is taken over the randomness of genkey and the coins of A.

Next. we propose an ADS for nested set operations, with support for server-

assisted updates. This construction builds upon our previous scheme. We model

updates u as a set operation that needs to be evaluated over some of the existing

sets. That is, an update is a combination of query q, as defined above, with an index

j, that can be described as “perform query q and set Sj = α”, whereα is the output

set of q.

The setup, query, and verify algorithms remain exactly the same. Moreover,

we introduce the following two algorithms:

Algorithm{Dh+1, auth(Dh+1), dh+1,Π(u), upd} ← serverUpdate (u,Dhauth(Dh),

dh, pk): Parse u as q, j and run query(q,Dh, auth(Dh), pk) to receive α,Π. Run

QueryTree(pk, dh, j, auth(Dj)) to get proof of membership πj for current value fj.

Set upd = {h(α), fj, πj}. Update Dh to Dh+1 by setting Sj = α and fj = g
∏
x∈α(x+s).

Then update the AT as follows. Let v0 be the corresponding node for the j-the

set in AT , with value d(v0). Set d(v0) = f j+sj . Let v1, ..., vd1/εe the node path

from v0 to root r For k = 1, ..., d1/εe let Nvk be the set of children of vk, and

65

set d(vk) = g
∏
u∈N(vk)

(φ(d(u)+s), i.e., after updating the value d(vk−1), recompute the

accumulation value and the corresponding value at the next level. Set auth(Dh+1)

to the updated version of AT , and dh+1 = d(r) where r is the new computed root.

Send {Dh+1, auth(Dh+1), dh+1,Π(u), upd} to the owner.

Algorithm {accept/reject} ← verifyUpdate(uΠ(u), dh+1, upd, dh, sk, pk): Parse u

as q, j and run verify(q, ∅,Π, dh, pk), omitting steps 3 and 4. If the output of verify

is reject, output reject and halt. Check that for the values fα, f̃α contained in upd,

it holds that e(fα, g
α) = e(f̃α, g) and if the check fails, output reject and halt. Run

V erifyTree(pk, dh, j, fj, πj) and, if it outputs reject, output reject and halt. Finally,

let d1, . . . , dd1/εe−1 be the corresponding node values from proof πj and dd1/εe = dh.

Set d′0 = fα and d0 = fj. Then for k = 1, ..., d1/εe, set d′k = d
(φ(d′k−1)+s)(φ(dk−1))+s)

−1

k .

If d′k 6= dh+1 output reject and halt, otherwise output reject and halt.

The algorithm executed at the server essentially consists of three steps. First,

the server evaluates the query q but instead of returning the result α, he computes

its hash value hα. Then he computes an accumulation tree proof for the old accumu-

lation value of the previous set Sj and then replaces Sj with α and its accumulation

value fj with the accumulation value of α. Finally, he performs the necessary mod-

ifications to the accumulation tree AT , by updating all the nodes in the path from

the j-th leaf to the root, a process that results in computing the new root dh+1. The

only difference of this last step, compared with the update algorithm of our previous

construction, is that, without access to sk, the server needs to re-compute all these

node values from scratch.

The update verification process at the owner similarly consists of three steps.

First, the owner checks that the returned hash value is truly the hash value of the

honestly computed result for q. This consists of the same process as the one for

verify, omitting the last two steps that validate that pre-image correctness of the

66

hash value. Then, he checks the validity of the previous hash j-th accumulation

value with respect to the old digest dh. Finally, using the node values of the previous

version of AT contained in πj, he recomputes himself the values of all nodes from

the j-th leaf upwards, using as a starting point the verified accumulation value for

the new result. At each level k, using sk he efficiently removes the old value of the

previous level dk−1, and inserts the new value d′k−1. At the end of this process, he

checks that the value he computed for level d1/εe. is equivalent to the claimed new

digest dh+1 received by the server.

Now we can state and prove the following result.

Theorem 2. The scheme {genkey, setup, query, verify, serverUpdate, veri-

fyUpdate} is an ADS with support for server-assisted updates, for queries q from

the class of hierarchical set operations formulas involving unions, intersections and

set differences, of length polynomial in λ. It is correct and secure under the q-SBDH

and the q-PKE assumptions.

Proof: Correctness follows by close inspection of the algorithms above. We will prove

security by reducing to the security of AHSO, i.e., we will show how a successful

adversary for this scheme can be used to break the security of our previous one. We

begin with the key observation that all algorithms of our scheme can be efficiently

executed with access to pk alone and, with the exception of genkey, they are all

fully deterministic. In particular, for a given pk,D, there exists a single pair of

authentication information and digest values auth(D), d.

Let now (q, a(q),Π(q), (ui, updi,Π(ui), d
∗
i)i=1,...,t) be the tuple output by the ad-

versary, and let Di be the result of running applyUpdate(ui, Di−1) starting from D0,

and let di be the digest received by running setup on input Di. Let us distinguish

between two cases. Either there exists index i ∈ [t] such that it holds that d∗i 6= di, or

not. In the latter case, all updates have been performed honestly, therefore it is easy

to see that the tuple (q, a(q),Π(q), t) can be used to break the security of AHSO.

67

In the former case, let i′ be the smallest such index. Then it must be that the

result value f ∗αi′ ∈ Π(ui′) is different than fαi′ where αi′ is the honestly computed

accumulation value corresponding to ui executed on Di′−1. This holds because, the

digest is computed in deterministic way from the set accumulation values and all

values except for the one modified by the i′-th query are correctly computed at this

point. Since the proof Pi(ui′) contains the pair of values f ∗αi′ , f̃
∗
αi′

, from the properties

of the ECRH there exists an extractor E that outputs a corresponding pre-image with

overwhelming probability. By the analysis used in the proof of Theorem 1, with all

but negligible probability, this pre-image is the characteristic polynomial of a set α∗.

Since verifyUpdate accepts, it follows that the tuple (q′, α∗,Π(ui′), i
′), where q′ is

the query involved in ui′ , can again be used to break the security of AHSO. 2

Complexity analysis of the algorithms. Updates at the server consist of

running query which, as discussed previously, takes O(N log2N log logN log t +

tmε logm). Subsequently, the hash value of the result is computed, the complex-

ity of which is subsumed by the above term. Then QueryTree takes O(mε logm)

from Lemma 4, whereas computing each d(vk) value with the public key takes

O(εmε logm), as it requires hashing a set of εm values. Finally 1/ε such values

are computed, therefore the overall time for serverUpdate is the same as query,

i.e., O(N log2N log logN log t+ tmε logm). For verifyUpdate, we argue as follows.

Running verify, omitting steps 3,4, takes O(t) where t is the number of operations

in u. Checking the validity of the final hash value and running VerifyTree takes O(1)

as they both involve a constant number of operations. Finally, computing the new

root takes 1/ε operations (the owner has sk and does not recompute the values from

scratch), hence the total cost is O(t).

Expressiveness of server-assisted updates. The way we described server-

assisted updates above, each u is expressed as an arbitrary combination of set op-

68

erations among existing sets. While this is a large class of operations, it does not

cover all possible updates and, in particular, it does not cover the simple case of

element insertion-to/deletion-from an existing set, i.e., the updates supported by

AHSO. However, this is not a real limitation of our construction; we simply chose

this style of presentation for u to facilitate notation. In fact, with very small modi-

fications, our construction can support server-assisted updates where u is expressed

as q, j, R1, . . . , Rt where q is a query and j is an index, same as before. Moreover

R1, . . . , Rt are (external) sets of elements that will be used (possibly in conjunction

with some of the set Si in D, as specified by q) that will participate in the evaluation

of the query. Note that, this already includes element insertion/deletion as a special

case. The only significant change in the construction is that for the hash values h(Ri)

there is no need to provide or verify accumulation tree proofs; instead, the owner

computes these values himself, making verification much simpler.

3.6 Extensions and implementation decisions

Reducing the proof size. The size of proof Π can be reduced to being independent

of the size of the final answer α. Observe that what makes the proof be of size O(t+δ)

is the presence of coefficients c. However, given α itself, coefficients c = (c0, ..., cδ−1)

can be computed using an FFT algorithm in time O(δ log δ). An alternative to the

above scheme would be to omit c from the proof and let the verifier upon input α

compute the coefficients by himself to run the last step of verify. That would give

a proof size of O(t) and verification time of O(t + δ log δ). Since in most real world

applications δ � t, a proof that has size independent of δ is useful, especially if one

considers that the additional overhead for verification is logarithmic only. Of course

the communication bandwidth is still O(t+δ) because of the answer size, but it does

not extend to the proof size.

69

A note on the public key size. A downside of our construction -and all other

constructions that are provably secure under a q-type assumption- is the large public

key size. More specifically, the public key pk is of size linear to the parameter q where

q is an upper bound on the size of the sets that can be hashed. This holds not only

for the original sets S1, ..., Sm but for any set that can result from hierarchical set

operations among them thus a natural practical bound for q is |D|. While computing

this public key cannot be avoided and it is necessary for proof computation at the

server, a client that needs to verify the correctness of query q with corresponding

answer α of size δ, only needs the first max{t, δ} elements of the public key. By

deploying an appropriate authentication mechanism (digital signatures, Merkle trees,

accumulation trees etc.) to validate the elements of pk, a scheme that relieves clients

from the necessity to store a long public key can be constructed. Ideally the necessary

public key elements should be transmitted alongside proof Π and cached or discarded

at the behest of the client.

Symmetric vs. asymmetric pairings. Throughout the presentation of our

scheme, we assumed implicitly that the pairing e(·, ·) is symmetric (i.e., Type-1

pairing). For example for the construction of the union argument for the operation

A ∪ B, the value fB appears both in term e(fA, fB and term e(fB, g) and we as-

sumed that in both cases the same value is used as input for the pairing, as is the

case if e is symmetric. However, many times asymmetric pairings are preferable for

implementation purposes since they are much faster than asymmetric ones in terms

of computation. This is not a serious problem for our scheme as there is an easy way

to circumvent it.

A pairing e : G1×G2 → GT is asymmetric if G1 6= G2 but both are of prime order

p and let g1, g2 be respective generators. Observe that e(g
P (s)
1 , g2) = e(g2, g

P (s)
2) is

an efficiently checkable equality that verifies that two hash values (their first parts)

70

f 1 = g
P (s)
1 , f 2 = g

P (s)
2 have the same pre-image but are computed in G1 and G2

respectively. Therefore, by including both values f 1
A, f

2
A in the proof, the case of an

asymmetric pairing can be accommodated. By verifying the above equality a prover

can be sure that both values refer to the same characteristic polynomial and use either

one of them selectively, as dictated by the argument verification algorithm. By using

the naive approach of including the “dual” hash value of each element in the proof,

we see that the proof size can at most double but maintains the same asymptotic

behaviour, i.e., proofs have size O(t + δ) and the same holds for the runtime of the

verification algorithm. In practice, a smarter approach can be taken where only

necessary elements are added (the ones that participate in union arguments and, of

these, half can be “routed” through G1 and the other half through G2). Another

by-product of using an asymmetric pairing it that the public key size is doubled

(g1, ..., g
sq

1 , ..., g2, ..., g
sq

2) and likewise for the setup phase cost for the source. Note

that no isomorphism between G2 and G1 is explicitly used in the above process,

hence our construction can work both with Type-2 and Type-3 pairings.

3.7 Experimental evaluation

In this section we present an experimental evaluation of our construction. The

scheme was written in C++, by building upon the bilinear accumulator implementa-

tion of [Tre13] and the DCLXVI [DCL16] library for bilinear pairings over a 256-bit

curve with an asymmetric pairing, in order to implement our ECRH. For modular

arithmetic we used the FLINT library [Fli16]. All experiments were run on a 64-bit

machine with Intel Core i5 CPU 2.5GHz, running Linux. The code was compiled

using g++ version 4.7.3 in C++11 mode. Our goal was to measure important quan-

tities related to the execution of our scheme, with a focus on the verification time

for the clients and the proof generation time for the server.

71

Experimental setup. We used a synthetic dataset consisting of 100 sets. Each

set had 10,000 elements and each element was a 256-bit value. During the setup

phase, the owner deployed a 1-level accumulation tree (using our established notation,

ε = 1). We tested two distinct types of queries, a single union over two sets, i.e.,

X ∪ Y , and a more elaborate operation over four sets expressed as the formula

(X ∪ Y) ∩ (W \ Z), i.e., a union and a set difference followed by an intersection

over their results. For our tests, we engineered the synthetic input sets so that they

overlapped approximately on half of their elements, i.e., for the union case the final

result was of size approximately 3n/2 assuming that |X| = |Y | = n. Likewise, for

the more elaborate operation the final result was of size approximately n/4. To

measure the verification and proof construction overhead, we varied the input set

size n between 27 and 210.

Verification time. In Figure 3·6 (left) we demonstrate the verification cost at

the client for the two query types versus the size of the input sets. Observe that,

in both cases, the verification overhead grows with the size of the sets. However,

despite the fact that a single union is a conceptually simpler operation, its verification

cost is considerably larger. This is due to the fact that the verification cost is

strongly dominated by the computation of the hash value of the result (step 3 in

the verification process). As explained above, the result size for the complex query

is much smaller than that of the union. Most importantly, the overall verification

cost is below 1.2 seconds for the union and 240 milliseconds for the complex query

for inputs of size 1024 elements each. As a final comment, we stress that in our

implementation we used the technique described in Section 3.6 to reduce the proof

size. That is, the server did not send the coefficients of the characteristic polynomial

of the result; instead the client computed the characteristic polynomial himself, using

an FFT interpolation.

72

0

1

2

3

4

5

6

7

128 256 512 1024

tim
e	

(s
ec
)

cardinality	
 of	
 each	
 input	
 set

Union: X∪Y
Complex: (X∪Y)⋂(W\Z)

0

1

2

3

4

5

6

7

128 256 512 1024

tim
e	

(s
ec
)

cardinality	
 of	
 each	
 input	
 set

Union: X∪Y
Complex: (X∪Y)⋂(W\Z)

Figure 3·6: Overhead for verification at the client (left) and proof
computation at the server (right) versus the cardinality of each input
set for two types of queries.

Query time. Figure 3·6 (right) shows the server’s overhead for proof generation for

our two tested queries. The overall overhead again increases with the size of the input

sets but, contrary to the verification case, proof generation takes much longer for the

complex query than for the single union. This comes as no surprise since, according

our analysis, this cost depends strongly on the sizes of the input and intermediate

sets (unlike the verification overhead that only depends on the result size and the

number of operations). For the union case, the proof construction took a little above

1 second for sets of 1024 elements each, whereas for the complex query the overhead

was approximately 7 seconds for the same input sizes This cost is dominated by the

proof construction for each atomic operation and a very small percentage (3-9%)

comes from computing the accumulation tree proof. Finally, note the exponential

growth along the x-axis; the proof generation overhead only increases quasi-linearly

with the input sizes, as predicted from our asymptotic analysis.

Other quantities. While our main goal was to measure the verification and proof

construction overheads, we discuss here some other measurements beginning with

the setup time at owner. While this is a one-time cost it is still important to keep it

73

reasonable. For our tested setting (with 100 sets of 10,000 elements each) setup took

approximately 9.5 seconds. The reason this is so small is that the owner has access

to the secret key, therefore each hash value component is computed with n = 10, 000

modular multiplications and only a single exponentiation. Regarding the update

cost, we only tested source updates, namely, insertions and deletions on a single set.

For a batch update involving 100 operations (element insertions or deletions) the

cost at the owner is barely above 10 milliseconds, once again capitulating on the fact

that he has access to the secret key. Finally, regarding the proof size, in both cases it

is only dependent on the number of operations (see also our comment above for the

used techniques for proof size reduction). In particular, for the single union case the

proof consists of 7 bilinear group elements, whereas for the complex query it consists

of 21 such elements.

Discussion and comparison with alternative schemes. The above experiments

demonstrate that our scheme can be run in practice and, in some cases, the involved

overheads are far from prohibitive, particularly for verification at the client. On the

other hand, if one tries to compare this cost with the time it takes to perform the

computation itself if one downloads the original sets from the server (which is in the

order of microseconds for the given set sizes), it is clear that there is long way to

go in terms of making our schemes truly practical. Yet, our construction has the

benefit of not having to process the sets locally at the client, therefore, for the case

of very large input sets with a small final result the client can still benefit from our

approach

In order to better quantify the performance overhead of our scheme, we compared

it with a state of the art general-purpose VC scheme applied for the case of a single

union over two sets, using the libsnark library [lib16], To implement this, we created

an arithmetic circuit that upon input two sets and their (candidate) hash values

74

(using a standard cryptographic hash function), it proceeds in two steps: First, it

checks that the two sets are correct pre-images for the given hash values (by re-

computing these hashes and checking that they are the same as the ones provided)

and then returns the union of the two sets.10 For the union computation we chose

the naive “compare-all-pairs” approach. We stress that for the given input sizes

(between 27 and 210 elements for each set) this approach yields the smallest circuit

in terms of number of gates.

Regarding verification time, this general-purpose scheme behaves very similarly

to our solution. In particular, it outperforms our construction by less than 5%

for all tested input sizes. However, the big difference in performance occurs at

the proof computation overhead. There, our scheme is anywhere between 2 and 3

orders of magnitude faster than the general-purpose approach. Specifically for sets

of cardinality 1024, the circuit-based VC took approximately 17 minutes whereas our

construction took a little more than 1 second. We need to stress that more than 85%

of this overhead originates from computing the hashes of the input sets and testing

them against the provided hash values. In our implementation, we used SHA-256

which is part of the libsnark library. However, by replacing it with a more “circuit-

friendly” hash function (i.e., a function that can be represented as a circuit with

fewer arithmetic gates), such as [Ajt96] we believe that this cost can be drastically

reduced. Finally, these times were achieved using a pre-processing SNARK which

means that for each input size we had to construct (and cryptographically pre-

process) a different arithmetic circuit. On the other hand, our scheme has a single

pre-processing phase after which any possible set operation for any input cardinality

can be accommodated. Alternatively we could have used a SNARK without pre-

processing (e.g., the construction of [BCTV14]), which, however, would impose an

10More formally, the circuit takes the two sets, the two (candidate) hash values and a (candidate)
union and it checks whether the sets hash to the given values and whether their union is the same
as the one provided, outputting 1 if that is the case and 0 otherwise.

75

even larger proof generation overhead.

Chapter 4

Verifiable Multi-dimensional Range

Queries

4.1 Introduction

In this chapter, we target the case where the client issues a multi-dimensional range

query. We model the owner’s database as a table T that contains n tuples with m

attribute values. A range query is defined over d out of the m attributes, which we

refer to as dimensions. It is expressed as d pairs of values li, ui, each along a certain

dimension ai. Its result includes all the tuples whose value on ai is in range [li, ui]

for all dimensions ai specified in the query.

This query is fundamental in a vast variety of applications. For instance, it is

a typical SELECT...WHERE query in conventional relational databases. Moreover, it is

a frequent query in the emerging scientific databases (e.g., it is called subarray in

SciDB [Bro10]). Relational and scientific database systems manage numerous types

of data, such as corporate, stock, astronomical, medical, etc. With the advent of

“big data”, such systems are commonly deployed by third party servers in massively

distributed architectures, in order to address the issue of scalability. Integrity as-

surance is a desirable property that serves both as a guarantee against a possibly

malicious server, but also as a tool for error detection.

76

77

4.1.1 Prior work

The most basic authentication problem is set membership, i.e., whether an element

belongs in a data collection. Well-known example schemes include Merkle trees

[Mer89] and accumulation trees [PTT08]. At the opposite extreme, general-purpose

VC can be used to verify any possible query on outsourced data, as discussed in

Chapter 1. Although such protocols can address our problem, they incur an excessive

proof cost overhead at the server, due to their generality. Therefore, there is a large

variety of specialized constructions that have been proposed in the literature for the

problem of authenticated multi-dimensional range queries.

Martel et al. [MND+04] provide a generalization of Merkle trees, which captures

the case of multi-dimensional range queries. Chen et al. [CMH+08] proposes a so-

lution that is similar to [MND+04], based on attribute domain partition and access

control. For the restricted case of 1-dimensional queries, Li et al. [LHKR06] pro-

pose a variant of the B+-tree that incorporates hash values similarly to the Merkle

tree, for processing queries in external storage. Yang et al. [YPPK09b] extend this

idea to multiple dimensions, by transforming the R∗-tree [BKSS90] into a Merkle

R∗-tree. There are also other cryptographically augmented data structures (e.g.,

[MNT06, CT09] based on signatures instead of hashes).

The existing literature suffers from the following critical problems. On the one

hand, the schemes of [MND+04, CMH+08] that provide guaranteed (non-trivial)

complexity bounds, scale exponentially with the number of dimensions d. On the

other hand, the rest of the approaches rely on the heuristic R∗-tree and fail to ac-

commodate more than a limit of dimensions in practice (e.g., more than 8), as the

performance and effectiveness of the index deteriorate with dimensionality. Most im-

portantly, all methods require an exponential in m number of structures to support

queries on every possible combination of dimensions in the database. This is be-

78

cause each structure is built on a specific set of dimensions, and different sets require

separate structures.

Finally, there is a work by Xu [Xu10] that, contrary to [MND+04, CMH+08],

scales quadratically with d. However, this scheme falls within a different model, as

it necessitates multi-round interaction between server and client (as opposed to our

non-interactive setting). Its security is based on non-falsifiable “knowledge-type”

assumptions. Moreover, this scheme makes use of functional encryption [BSW11],

considerably reducing its potential for implementation.

4.1.2 Overview of result

We introduce a new ADS for multi-dimensional range query processing. Our con-

struction offers two novel powerful properties: (i) it is the first scheme where all

costs (i.e., setup, storage, update, proof construction, verification, and proof size)

grow only linearly with the number of dimensions, a huge improvement over the cur-

rent literature, and (ii) it is the first to support an exponential in m number of range

queries with linear in m setup cost and storage. One downside of our construction

is that update cost also grows linearly (in the worst case) with the database size.

To remedy this, we also present an update-efficient version of our construction, that

significantly reduces this cost as can be seen in Figure 4·1.

In that sense, the main result of our construction is that it takes authenticated

range query processing to arbitrary dimensions, both in terms of number and choice.

Table 4·1 provides a comparison of the asymptotic complexities of both versions of

our scheme against previous works (with non-trivial bounds).

4.1.3 Overview of techniques

The central idea of our solutions is the reduction of the multi-dimensional range

query to set operations over appropriately defined sets in the database. In particu-

79

S
ch

e
m

e
S
e
tu

p
P

ro
o
f

si
ze

P
ro

o
f

co
n
st

ru
ct

io
n

V
e
ri

fi
ca

ti
o
n

U
p

d
a
te

M
ar

te
l

et
al

.
[M

N
D

+
04

]
O

(|T
|lo

g
m
−
1
|T
|)

O
(l

og
d
−
1
|T
|)

O
(l

og
d
−
1
|T
|)

O
(l

og
d
−
1
|T
|)

O
(l

og
m
−
1
|T
|)

C
h
en

et
al

.
[C

M
H

+
08

]
O

(|T
|lo

g
m
N

)
O

(l
og

d
N

)
O

(l
og

d
N

)
O

(l
og

d
N

)
O

(l
og

m
N

)
S
ec

ti
on

4.
4.

2
w

it
h

[M
er

89
]

O
(|T
|lo

g
n

)
O

(d
lo

g
n

)
Õ

(∑ d i=
1
|R

i|)
+
O

(d
lo

g
n

)
Õ

(|R
|)

+
O

(d
lo

g
n

)
O

(|T
|)

S
ec

ti
on

4.
4.

2
w

it
h

[P
T

T
08

]
O

(|T
|lo

g
n

)
O

(d
)

Õ
(∑ d i=

1
|R

i|)
+
O

(d
n
ε
lo

g
n

)
Õ

(|R
|)

+
O

(d
)

O
(|T
|)

S
ec

ti
on

4.
5.

1
w

it
h

[M
er

89
]

O
(|T
|lo

g
n

)
O

(d
lo

g
n

)
Õ

(∑ d i=
1
|R

i|)
+
O

(d
lo

g
n

)
Õ

(|R
|)

+
O

(d
lo

g
n

)
O

(m
√
n

)

S
ec

ti
on

4.
5.

1
w

it
h

[P
T

T
08

]
O

(|T
|lo

g
n

)
O

(d
)

Õ
(∑ d i=

1
|R

i|)
+
O

(d
n
ε
lo

g
n

)
Õ

(|R
|)

+
O

(d
)

O
(m
√
n

)

F
ig

u
re

4
·1

:
m

:
#

at
tr

ib
u
te

s,
n

:
#

tu
p
le

s,
|T
|(=

m
n

):
d
at

ab
as

e
si

ze
,
d
:

#
d
im

en
si

on
s,
R
i:

p
ar

ti
al

re
su

lt
at

d
im

en
si

on
a
i,
R

:
q
u
er

y
re

su
lt

,
N

:
m

ax
im

u
m

d
om

ai
n

si
ze

,
ε
∈

(0
,1

]

80

lar, in a one-time setup stage, the owner builds a novel authenticated structure over

every database attribute separately, and then binds all structures using an existing

membership structure (e.g., [Mer89, PTT08]). Given a query involving any set of

dimensions, the server decomposes it into its d 1-dimensional ranges, and processes

them individually on the structure of each dimension, producing d proofs for the par-

tial results R1, . . . , Rd. The main challenge is for these d proofs to (i) be combinable

such that they verify the intersection of Ri, which is the final result R, and (ii) be

verifiable without the partial results, so that the total proof size and verification cost

are independent of their (potentially large) sizes. We address this challenge through

an elaborate fusion of existing and novel intersection, union, and set difference pro-

tocols, based on bilinear accumulators.

This particular treatment of the problem, i.e., the authentication of an arbi-

trary d-dimensional range query via the combination of d separate 1-dimensional

proofs, would not be feasible without the recent advances in set operation authen-

tication (e.g., [PTT11, CPPT14]). We anticipate that future research will substan-

tially improve the efficiency of the set operation sub-protocols. Motivated by this,

as an additional important contribution, we identify and abstract the set operation

sub-protocols needed as building blocks in our schemes, and formulate a general

framework that can integrate any future improved machinery for set operation au-

thentication.

We formally prove our construction secure under the q-Strong Bilinear Diffie-

Hellman [BB08] assumption and the security of the underlying set membership

schemes. We also provide an experimental evaluation, demonstrating the feasibil-

ity of our schemes.

81

4.2 Set membership and set operations authentication

Consider that a data owner outsources a set X to an untrusted third-party server.

Clients issue queries about a single element x ∈ X. A set membership authentication

protocol (SMA) allows the server to prove to a client that x is indeed a member of

X. An SMA is a collection of algorithms KeyGen, Setup, Prove, Verify and Update.

The owner executes Keygen and Setup prior to outsourcing X. The former generates

a secret and public key pair sk, pk, whereas the latter produces a digest δ that is a

succinct cryptographic representation of X. The owner keeps sk and publishes pk

and δ. Given a client query about x ∈ X, the server runs Prove to produce a proof of

membership π. Given pk, δ, π and x, the client runs Verify to check the membership

of x in X. An SMA is secure, if the probability that (accept← Verify ∧ x /∈ X) is

negligible. In case the owner modifies X by inserting/deleting element, it executes

Update to produce a new digest δ about the updates X, and notifies the server about

the changes.

The most well-known SMA is the Merkle tree [Mer89], which is a binary tree

where (i) each leaf node contains an element x ∈ X, and (ii) each non-leaf node

stores the hash of the values of its children, using a CRHF H. During Setup, the

owner builds a Merkle tree on X, signs the hash value in the root, publishes it as the

digest δ, and sends the tree to the server. During Prove, the server accesses the tree

to find x, and includes in proof π all sibling hash values along the path from the root

to the leaf storing x. In Verify, the client recursively performs the hash operations

to reconstruct the root hash value, and checks it against δ. For n elements, the

proof construction and size, verification, and update time are all O(log n), whereas

the setup is O(n). An alternative SMA is the accumulation tree [PTT08, PTT11],

which we discussed in detail in Section 3.4.1. The accumulation tree features two

main differences to the Merkle tree: (i) the fanout of each non-leaf node is n1/ε,

82

where ε ∈ (0, 1] is a user-defined parameter, and (ii) each non-leaf node stores an

accumulation value (discussed below) produced over the values of its children. This

SMA offers O(1) proof size, verification, and update time, and O(n) setup cost.

The downside is the proof construction overhead, which is now O(nε log n), and the

costly operations as opposed to the Merkle tree (exponentiations vs. hashes).

Going beyond set membership, we now discuss the case of authenticating set

operations. Consider an owner of a collection of sets X = {X1, . . . , Xm}, who out-

sources them to an untrusted server. Clients issue queries describing set operations

over X , consisting of unions, intersections, and set differences. Example queries in-

clude X1∩X5, (X2∪X3)∩X1, and X1 \X2. A set operation authentication protocol

(SOA) enables the server to prove the integrity of the result. Similarly to SMA,

it is comprised of algorithms KeyGen, Setup, Prove, Verify Update, and its security

is defined as the inability of the server to present a false answer with an accepting

proof.

In the previous chapter we presented a SOA scheme that can support any com-

bination of polynomially many hierarchical set operations. For the constructions of

this chapter we will rely on the conceptually simpler scheme of [PTT11] that can

support queries expressed as a single set operation (for instance Xi∩. . .∩Xj, i.e., one

intersection over an arbitrary number of sets), at the same asymptotic complexities.

Specifically, for a query on collection XQ ⊆ X of d sets with result R, the proof has

size O(d), and is generated in time Õ(
∑

X∈XQ |X|). Note that the proof construction

incurs only a poly-logarithmic overhead compared to the result computation time,

which is Ω(
∑

X∈XQ |X|). The verification overhead is Õ(|R|) + O(d), whereas the

setup cost is O(
∑

X∈X |X|). Although our construction from Chapter 3 subsumes

[PTT11] in terms of functionality, its security relies on non-standard “knowledge-

type” assumptions.

83

We next describe the intersection scheme of [PTT11], as we utilize it in our

constructions. This scheme employs the bilinear accumulator primitive [Ngu05],

which can be seen as a simpler variant of our ECRH construction (without the

extractability property). Let X be a set with elements from Zp, and s←R Z∗p a secret.

Recall that the accumulation value of X is defined as: acc(X) = g
∏
x∈X(x+s). As

discussed in 2, this value is a succinct, collision-resistant cryptographic representation

of X under q-SBDH. It is also computable (from scratch) even without s, by having

access to the public pairing parameters pub, as well as a public key (gs, ..., gs
q
), where

q is a user-defined parameter that is an upper of bound on the cardinality of X. In

particular, we can write
∏

x∈X(x+S) = PX(S) =
∑|X|

i=0 ciS
i, where S is an undefined

variable. The coefficients c0, ..., c|X| can be computed in time O(|X| log |X|) using

FFT interpolation. One can compute acc(X) = gPX(s) =
∏|X|

i=0(g
si)ci using only

the public information. Note that, with access to s, the bilinear accumulator can

accommodate an insertion/deletion in X with O(1) operations [Ngu05]. However,

without s, the updated accumulation value must be computed from scratch.

In order to prove to a client with access to acc(X1), acc(X2) that a set I is the

intersection X1 ∩ X2, it suffices to prove that (i) I ⊆ X1 and I ⊆ X2, and (ii)

(X1 \ I)∩ (X2 \ I) = ∅. Towards (i), the server must send subset witnesses W1,W2 to

the client, where Wi = acc(Xi \ I) for i = 1, 2. To verify (i), the client first computes

acc(I), and checks the following for i = 1, 2:

e(acc(I),Wi)
?
= e(acc(Xi), g) .

For (ii), the server computes two disjointness witnesses F1, F2 as follows. Since

(X1\I)∩(X2\I) = ∅, PX1\I(S) =
∏

x∈X1\I(x+S) and PX2\I(S) =
∏

x∈X2\I(x+S) have

greatest common divisor of degree zero. Hence, there exist polynomials Q1(S), Q2(S)

such that Q1(S) ·PX1\I(S)+Q2(S) ·PX2\I(S) = 1. These polynomials (also known as

84

Bézout coefficients) are efficiently computable by the Extended Euclidean algorithm.

The server calculates the disjointness witnesses as F1 = gQ1(s), F2 = gQ2(s). To verify

(ii), the client simply checks

e(W1, F1) · e(W2, F2)
?
= e(g, g)

This approach naturally generalizes for d > 2 sets Xi, with corresponding inter-

section proof π∩ = {Wi, Fi}di=1. In our security proofs, we use the following lemma

from [PTT11]:

Lemma 6 ([PTT11]). Let λ be a security parameter, and pub← GenBilinear(1λ). Un-

der the q-SBDH assumption, no poly-size adversary can, on input pub and elements

(g, gs, ..., gs
q
) ∈ G for some s chosen at random from Z∗p, output sets X1, . . . , Xd, I

with elements in Zp, where d = poly(λ), and proof π∩ = {Wi, Fi}di=1, such that

e(acc(I),Wi) = e(acc(Xi), g),
∏

i e(Wi, Fi) = e(g, g), and I 6= ⋂iXi, for i = 1, . . . , d,

except with probability ν(λ).

4.3 Problem formulation

In this section we describe our targeted setting, formulate our authentication proto-

col, and model its security.

Setting and query. Our setting involves three types of parties; an owner, a server,

and a number of clients. The owner outsources to the server a dataset T that consists

of n tuples, each having a set A = {a1, . . . , am} of attributes. This dataset can either

be perceived as a table in traditional relational databases. It could also be a multi-

dimensional array in scientific databases (e.g., SciDB [Bro10]), where a subset of

the attributes are the array dimensions (i.e., the array indices), and the rest are the

array attributes (i.e., the array cell values). In addition, the server is responsible for

maintaining the dataset, upon receiving tuple updates (modeled as insertion/deletion

requests) from the owner.

85

Clients issue multi-dimensional range queries on T to the server, which return

the tuples from T that satisfy certain range conditions over a set of attributes. More

formally, a query Q is specified over any subset of d attributes AQ ⊆ A, where

|AQ| = d ≤ m, and encoded by the set of triplets {(i, li, ui)}ai∈AQ . The result of Q

is a set R ⊆ T , denoted as R(Q, T), that contains exactly those tuples t ∈ T that

satisfy li ≤ t.ai ≤ ui for all ai ∈ AQ. This query corresponds to a select. . .where

query in relational databases, and a subarray query in scientific databases. In our

terminology, each ai ∈ AQ represents a dimension in the multi-dimensional range

query.

In our setting, we consider that the server is untrusted, and may present to

the client a tampered result. Our goal is to construct a protocol for authenticated

multi-dimensional range queries, which allows the client to verify the integrity of the

received result.

Range-query authentication protocol. Let Tj denote the version of dataset T

after j rounds of updates. An authenticated multi-dimensional range query protocol

(AMR) consists of the following algorithms:

1. KeyGen(1λ): It outputs secret and public keys sk, pk.

2. Setup(T0, sk, pk): It computes some authentication information auth(T0) and

digest δ0, given dataset T0, sk and pk.

3. Update(upd, auth(Tj), δj, sk, pk): On input update information upd on Tj,

auth(Tj), δj and sk, it outputs an updated dataset Tj+1, along with new

auth(Tj+1), and δj+1.

4. Prove(Q,R, Tj, auth(Tj), pk): On input query Q on Tj with result R, and

auth(Tj), it returns R and proof π.

86

5. Verify(Q,R, π, δj, pk): On input query Q, result R, proof π, digest δj and pk,

it outputs either accept or reject.

In a pre-processing stage, the owner runs KeyGen and Setup. It publishes pub-

lic key pk and digest δ0, which is a succinct cryptographic representation of ini-

tial dataset T0. Moreover, it sends T0, auth(T0) to the server, where auth(T0) is

some authentication information on T0 that will be used by the server to construct

proofs. The owner maintains its dataset by issuing Update when changes occur at

the dataset. Specifically, an update is a tuple insertion or deletion, encoded by

upd. An update on Tj produces a new version Tj+1, as well as new digest δj+1 and

auth(Tj+1). The owner sends to the server only the modified parts necessary for com-

puting Tj+1, auth(Tj+1), δj+1. The server responds to a query Q from the client by

first computing the result R, and executes Prove that constructs the corresponding

proof π. Finally, the client validates the integrity and freshness of R as an answer

to Q on current Tj, by running Verify.

An AMR must satisfy the following two properties:

Correctness. A AMR is correct if, for all λ ∈ N, (sk, pk) ← KeyGen(1λ), all

(T0, auth(T0), δ0) output by one invocation of Setup followed by j′ calls to Update

on updates upd, where j′ is poly(λ), for any Q, and π output by Prove(Q, Tj,

auth(Tj), pk), Verify(Q,R(Q, Tj), π, δj, pk) returns accept with probability 1, for all

j ≤ j′.

Security. Let λ ∈ N be a security parameter, key pair (sk, pk)← KeyGen(1λ), and

A be a poly-size adversary that is only given pk and has access to the algorithms of

the AMR via an oracle Oλ,AMR that accepts queries in the following model: The

adversary picks an initial state of the dataset T0 and receives T0, auth(T0), δ0 through

oracle access to Setup. Then, for i = 0, ..., j′ − 1 = poly(λ), A issues an update updi

for Ti and receives Ti+1, auth(Ti+1) and δi+1 through oracle access to Update. At any

87

point during these update queries, A can make polynomially many oracle calls to

algorithm Prove. Finally, A picks an index 0 ≤ j ≤ j′, a query Q, a result R∗ and

a proof π∗. We say that a AMR is secure if for all large enough λ ∈ N and all

poly-size adversaries A, it holds that:

Pr


(Q,R∗, π∗, j)← AOλ,AMR(1λ, pk) s.t

accept← Verify(Q,R∗, π∗, δj, pk)

∧R∗ 6= R(Q, Tj)

 ≤ ν(λ),

where the probability is taken over the randomness of the algorithms and the coins

of A.

As an additional remark, note that the above protocol falls within the framework

of authenticated data structures, as presented in Chapter 2, rephrased for the specific

problem of range queries. We dropped the refresh algorithm as, in our construction,

its mode of operation is rather trivial, i.e., it simply consists of replacing values,

without any computational component.

4.4 Basic scheme

4.4.1 A general framework

We present our proposed framework, outline its benefits, and highlight the challenges

behind a secure and efficient instantiation.

Framework. Recall that the query result is a set of tuples, each consisting of m

attribute values, and satisfying certain range conditions. For the sake of simplicity,

we henceforth define result R of query Q on dataset T as a set containing exactly the

hash value hi = H(ti) of the binary representation of each tuple ti ∈ T that satisfies

the query conditions, under a CRHF H : {0, 1}∗ → Zp. OurAMR constructions will

focus on proving that R is the correct set of hash values corresponding to the tuples

88

h1

h3

h4

h7

...

...

...

...

...

...

...

h1

h7

h4

h3

h1

h7

h4

h3

...

...

...

...

.

...

...

...

...

h7

h3

h1

h4

Ri

Rj

a1 amai aj

Figure 4·2: Illustrating the different tuple orders per attribute

satisfying the query. Then, given these hash values along with the full result tuples,

the client can validate the integrity of each result tuple ti by testing H(ti)
?
= hi.

Due to collision-resistance of H, the server cannot return a falsified t∗i such that

H(t∗i) = hi, instead of the correct pre-image ti of hi. In the following, when clear

from the context, we use term “tuple” for a table tuple ti ∈ T and its hash value

hi = H(ti) interchangeably.

We illustrate the main idea of our framework using Figure 4·2. Let h1, . . . , hn

correspond to the hash values of the tuples t1, . . . , tn of T , respectively. We maintain

a copy of these values for every attribute ai, and sort the copy of ai according to the

values of the tuples on ai. For instance, in Figure 4·2, h3 = H(t3) appears first in

the ordering of a1 because t3 has the smallest value on attribute a1 among the tuples

in T .

A multi-dimensional range query Q is defined over an arbitrary set of dimensions

(where, recall, each dimension is an attribute). Our framework “decomposes” a d-

89

dimensional range query into d separate 1-dimensional queries. More specifically, our

framework boils down to two steps:

• Step 1: (1-D proofs) For each dimension ai involved in Q, compute the set

Ri of all hash values of tuples that satisfy the condition on ai. Formally,

Ri = {hj = H(tj) | li ≤ tj.ai ≤ ui}. Also compute proof πRi for the integrity

of Ri.

• Step 2: (Combination) Compute the result R
def
=
⋂
iRi and proof π for its

integrity, given pairs (Ri, πRi) for every ai involved in Q.

For example, suppose in Figure 4·2 that a 2-dimensional query Q is defined over

ai and aj. Our two-step framework first dictates the computation of Ri = {h1, h3, h7}
that corresponds to the 1-dimensional result along dimension ai, and Rj = {h1, h7}
along dimension aj, as well as proofs πRi , πRj . It next requires the computation of

result R = {h1, h7} and a proof π.

Benefits. Our view of multi-dimensional range queries as a collection of 1-

dimensional range queries offers multiple advantages over existing approaches: (i)

We aim to support range queries over any combination of attributes. Thus, there

are O(2m) possible different attribute combinations that can be involved in a query,

where m is the total number of attributes in T . In order to support all of them,

existing solutions must build O(2m) separate authenticated structures. On the con-

trary, our framework requires m such structures (one per attribute) constructed once,

which suffice to capture all O(2m) possible subsets of attributes. (ii) As discussed

in Section 5.1, the performance of all existing constructions deteriorates drastically

with d. In contrast, the separate handling of each dimension allows our framework to

scale with d gracefully. (iii) To address scalability issues that arise from the advent of

“big data”, data management systems typically employ multi-core CPU hardware,

90

as well as cloud infrastructures involving multiple nodes. In our framework, the

1-dimensional sub-queries can be distributed across multiple cores/nodes, and run

in parallel. The combination step can then take place using well-known in-network

aggregation techniques (e.g., in a MapReduce fashion [DG08]).

The challenge. There are several efficient solutions for the problem of 1-dimensional

range queries (e.g., [MND+04, LHKR06]), each of which can be used to instantiate

Step 1 in our framework. The problem lies in Step 2, i.e., how to efficiently combine

the separate proofs. In particular, for all known 1-dimensional solutions, Step 2 en-

tails creating the proof π as the concatenation of all proofs πRi and the partial results

Ri. This makes the proof size as large as the sum of the partial result cardinalities,

which can be substantially larger than the final result R. In turn, this may lead to

a prohibitive communication and verification cost for the client.

A fundamental requirement of our framework is the partial proofs πRi produced

in Step 1 to be efficiently combinable to a short proof π in Step 2, whose size is

independent of
∑

i |Ri|. More formally:

Efficiency 1. A AMR following our framework is efficient, if it outputs proofs π

of size o(
∑

i |Ri|).

Based on our observation above, any existing 1-dimensional solution trivially

conforms to our framework. However, no such solution satisfies the efficiency re-

quirement. Essentially, the efficiency requirement motivates the design of AMR’s

with non-trivial proof combination techniques. What has prevented the research

community from devising such AMR’s is the combination of the lack of appropriate

cryptographic tools, and the reduced need for range queries over arbitrarily many

dimensions, and large quantities of data. However, the emergence of big data prac-

tices renders the problem timely and important, whereas the recent introduction of

SOA techniques opens new directions towards efficient solutions.

91

4.4.2 Construction

We first outline the main idea of our scheme and elaborate on some important imple-

mentation decisions. Subsequently, we present the instantiation of our algorithms.

Main idea. Recall that Step 2 of our framework dictates that the result R is

expressed as the intersection of sets Ri. We stress that SOA techniques appear

to solve our targeted problem trivially as follows: The owner pre-computes a proof

component πRi = acc(Ri) for each Ri, where acc(Ri) is the accumulation value of set

Ri, and signs each πRi . According to our discussion in Section 4.2, given all Ri, πRi ,

the server computes and sends to the client a combined intersection proof π∩ for

the integrity of R, along with all πRi and their corresponding signatures. Observe

that this approach satisfies our efficiency requirement. However, there exist O(n2)

possible Ri sets per dimension that can be involved in a query, which makes the

pre-processing cost for the owner and the storage overhead for the server prohibitive.

The main idea behind our scheme is to express any possible Ri as the result of an

operation over a fixed number of “primitive sets”, given the constraint that there are

O(n) such “primitive sets”.

One possible way to derive Ri from “primitive sets” is illustrated in Figure

4·3 (top). Let us focus on ai and the ordering of the hash values hj (of tuples

tj) according to the tj.ai values. We define the prefix set Pi,j to consist of all hash

values appearing in positions 1, . . . , j in the ordering. In the figure, Pi,1 = {h3}
and Pi,2 = {h3, h1}. Similarly, we define suffix set Si,j to consist of all hash values

appearing in positions n− j + 1, . . . , n in the ordering. In our example, Si,1 = {h6}
and Si,2 = {h5, h6}. Now assume that k′i + 1, ki are the two positions in this ordering

corresponding to the first and last tuple satisfying the query on ai. Observe that, in

this case, Ri = Pi,ki∩Si,k′i+1, and, thus, there exist 2n “primitive sets” per dimension,

i.e., all prefix and suffix sets. Let πPi,ki = acc(Pi,ki) and πSi,k′
i
+1

= acc(Si,k′i+1). Then,

92

h1h3 h7 h2 h5 h6

Pi,1

Pi,2

Pi,ki

Si,n

Si,k�
i+1

Si,n−1

. . .

Ri

. . . ∩

Pi,ki Si,k�
i+1

.

R
k�

i + 1 ki

. . .

Pi,k�
i

Pi,ki Ri

Pi,k�
i

Pi,ki

.

R

∩

\h1h3 h7 h2 h5 h6

Pi,1

Pi,2

.

k�
i + 1 ki

. . .

Figure 4·3: Set representation of Ri using two different techniques.

since R =
⋂
iRi =

⋂
i(Pi,ki ∩ Si,k′i+1) can be computed with a single set intersection,

we can utilize the SOA of [PTT11] to create a proof π (consisting of π∩ and signa-

tures on every πPi,ki , πSi,k′i+1
) for the integrity of R, while satisfying both efficiency

and O(n) pre-processing/storage.

Unfortunately, from the complexity analysis of [PTT11] in Section 4.2, it follows

that π∩ requires Õ(d·n) time for each query at the server, which makes this approach

impractical. The reason is that the π∩ construction overhead is dictated by the

cardinality of the input sets, which is |Pi,ki|+ |Si,k′i+1| ∈ Ω(n), along each attribute.

Motivated by the above, we propose an alternative solution, which we demon-

strate using Figure 4·3 (bottom). We define sets Ri through set difference. In par-

93

ticular, using the notation of the previous paragraph, it holds that Ri = Pi,ki \ Pi,k′i .
Consequently, in this case the “primitive sets” are only the n prefix sets. Now

R =
⋂
iRi =

⋂
i(Pi,ki \ Pi,k′i) is no longer expressed as a single set operation. The

only known SOA that can accommodate a circuit of set operations is [CPPT14].

Briefly stated, [CPPT14] allows the construction of πRi with O(|Ri|), and π∩ with

O(
∑

i |Ri|), exponentiations. The downside is that its security relies on non-standard

cryptographic assumptions. To circumvent this, we construct our own sub-protocol

for producing combinable proofs of set difference, customized for the special case

where the first participating set is a strict superset of the second. This particular

constraint enables our sub-protocol to prove the validity of Ri = Pi,ki \ Pi,k′i with

O(|Ri|) exponentiations, while being secure under a standard cryptographic assump-

tion.

Our algorithms are comprised of a collection of set operation sub-protocols, bun-

dled with a set membership scheme. For clarity of presentation, we will abstract the

internal mechanics of these sub-protocols, and instead use the following conventions:

• By SMA we refer to either a Merkle tree [Mer89] or an accumulation tree

[PTT08], along with all its algorithms.

• By ProveIntersection, VerifyIntersection, we refer to the corresponding algo-

rithms of the SOA of [PTT11]. The former computes an intersection proof

on its input sets, and the latter verifies this operation.

• By ProveSetDiff, VerifySetDiff, we refer to the corresponding algorithms of our

set difference construction. The former generates a set difference proof, and

the latter verifies this operation.

This presentation choice also highlights that our algorithms use elementary cryp-

tographic tools as building blocks. Therefore, the overall performance of our scheme

94

Algorithm Setup(T, pk, sk)

1. For j = 1, ..., n, compute hj = H(tj)
2. For i = 1, ...,m
3. Sort hj in ascending order along tj .ai
4. For j = 1, ..., n
5. Compute πPi,j = acc(Pi,j)
6. Let vi,j be the jth largest value on attribute ai in T
7. Construct triplet τPi,j = (vi,j , vi,j+1, πPi,j)
8. Build SMAi with digest δi over τPi,1 , ..., τPi,n
9. Build SMA with digest δ over (1, δ1), ..., (m, δm)
10. Send T, auth(T) = (SMA,SMA1, ...,SMAm) to the server
11. Publish pk, δ

is highly dependent on that of the underlying tools, leaving potential for great im-

provement as novel tool instantiations are introduced in the literature.

Key generation. It outputs key pair pk, sk, which are simply the public and secret

keys of the underlying SMA and SOA schemes, generated by their corresponding

key generation routines.

Setup. Figure 4·4 visualizes the detailed authentication structure produced by the

setup algorithm, whose pseudo code is shown above. The owner computes the hash

value h = H(t) for every t ∈ T (Line 1). It then produces the sorted orderings of

the hash values along every attribute (Lines 2-3), and computes the prefix sets Pi,j

as explained in Figure 4·3. Next, it calculates prefix proof πPi,j for each Pi,j (Lines

4-5). For each Pi,j, it computes a triplet τPi,j = (vi,j, vv,j+1, πPi,j) in Lines 6-7. Values

vi,j, vi,j+1 indicate the jth and (j+ 1)th largest values on attribute ai appearing in T .

These values are necessary for guaranteeing the completeness of the result, and their

purpose will become clear soon. Subsequently, it computes an SMAi over the triples

τPi,j of every attribute ai, producing digests δ1, . . . , δm (Line 8). It then constructs

a SMA over the (i, δi) pairs, and generates digest δ (Line 9). Finally, it sends the

m + 1 SMA structures to the server along with T (Line 10), and publishes pk, δ

95

t1 T... tn

h1 h1a1 am

Prefix

h1 = H(t1)

P1,1 P1,n Pm,nPm,1... ...

τP1,1
τP1,n

τPm,n
τPm,1

... ...

...

τPm,1
= (vm,1, vm,2, πPm,1

)

πPm,1
= acc(Pm,1)

SMA1 SMAm

proofs

(1, δ1) (m, δm)

SMA

δ

Digests

Published
digest

...

Figure 4·4: The authentication structure of our basic scheme

(Line 11).

Proof construction. For ease of presentation and without loss of generality, we

assume that the requested query is upon the d first attributes of T and, hence, encode

it as Q = {i, li, ui) for i = 1, ..., d. We provide the pseudo code of this algorithm

below.

Given R, the server first computes πR (Line 1), and calculates set Ri for each

attribute ai. It identifies prefixes Pi,ki , Pi,k′i such that Ri = Pi,ki \ Pi,k′i (as in Figure

4·3), and locates the corresponding triplets τPi,ki , τPi,k′i
(Lines 4-5). Subsequently, it

constructs the SMAi proofs for τPi,ki , τPi,k′i
(Line 6) and SMA proofs for (i, δi), for

i = 1, . . . , d (Line 7). It then invokes subroutines ProveSetDiff and ProveIntersection

as defined in our main idea paragraph, and produces proofs πR1 , . . . , πRd and π∩

96

(τP1,k1
, τP1,k�

1
)

(1, δ1) (d, δd)

δ

SMAd proof

...
SMA1 proof

(τPd,kd
, τPd,k�

d

)

(1, l1, u1) (d, ld, ud)

πR1
πRd

π∩

R

πR

...

...

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

SMA proof 1

π∩

SMA proof d

Figure 4·5: Authentication flow

(Lines 8-9), respectively. Finally, it puts together all proof components into a single

proof π (Line 10), and sends it to the client along with result R (Line 11). We

thoroughly describe the functionality of every proof component in π in the next

paragraph.

Verification. We visualize the intuition in Figure 4·5, which depicts the authen-

tication flow among the various proof components of the final proof π sent to the

client. Specifically, if a component authenticates another, we draw an arrow from

the former to the latter. Arrow labels represent information serving as “glue” be-

tween the components. The goal is to verify result R (top of the figure), but the

only trusted information (in addition to pk) is δ (bottom of the figure). Verification

proceeds bottom-up from level 0 to 5, maintaining the invariant that, at level `, the

server must have computed the components therein truthfully with respect to T and

Q.

97

At level 0, δ is signed/published by the owner and, thus, it is trusted. At level 1,

given the d SMA proofs and δ, we verify the integrity of components (i, δi). Likewise,

at level 2, given the 2d SMAi proofs along with (i, δ), we verify the integrity of

2d triplets (τPi,ki , τPi,k′i
). Here, we reach a critical point in the verification process.

We must prove that these particular (τPi,ki , τPi,k′i
) correspond to the triplets for sets

Pi,ki , Pi,k′i , such that Pi,ki\Pi,k′i = Ri, where Ri is the truthful result of Q on dimension

ai. To do this, we parse Q as (i, li, ui)
d
i=1 and check vi,k′i < li ≤ vi,k′i+1 and vi,ki ≤

ui < vi,ki+1, where vi,ki , vi,ki+1, vi,k′i , vi,k′i+1 are included in τPi,ki , τPi,k′i
. This guarantees

that Pi,ki is the smallest prefix set that contains the entire Ri, and Pi,k′i is the largest

prefix set that does not intersect Ri. Therefore, we verify that (τPi,ki , τPi,k′i
) indeed

correspond to the correct Pi,ki , Pi,k′i . Next, we retrieve πPi,ki , πPi,k′i
from (τPi,ki , τPi,k′i

),

respectively, and run routine VerifySetDiff to validate the truthfulness of πRi as the

accumulation value of set Ri at level 3. Next, at level 4 we verify that πR is the

accumulation value of
⋂
iRi with VerifyIntersection, using πR, all πRi , and π∩. Observe

that, at this point we know that πR corresponds to the accumulation of the correct

result of Q on T . At the last level 5, we verify that R is indeed this correct result by

checking if acc(R) = πR. We summarize this verification process in the pseudocode

below.

Updates. We focus on an insertion of a single tuple t (the case of deletions is

similar). The process is easier to follow by revisiting Figure 4·4. The owner first

computes h = H(t). It then inserts h in the appropriate position in the ordering of

each attribute ai, and properly updates all the prefix sets it affects. Note that, if h

is placed in position j for attribute ai, the owner must change sets Pi,j′ for all j′ ≥ j,

and modify their corresponding proofs πPi,j′ in τPi,j′ . Furthermore, it must create a

new τPi,j , and alter vi,j in τPi,j−1
(where it appears as the second element). Finally,

it must propagate the changes of all τ triplets in all SMAi and SMA. Admittedly,

98

Algorithm Prove(Q,R, pk, auth(T))

1. Compute πR = acc(R)
2. For i = 1, ..., d
3. Compute Ri
4. Identify Pi,k and locate τPi,k = (vi,ki , vi,ki+1, πPi,ki)

5. Identify Pi,k′ and locate τPi,k′ = (vi,k′i , vi,k′i+1, πPi,k′
i
)

6. Compute SMAi proofs for τPi,k , τPi,k′
7. Compute SMA proof for (i, δi)
8. πRi = ProveSetDiff(Ri, pk)
9. π∩ = ProveIntersection(R,R1, ..., Rd, πR, πR1 , ..., πRd , pk)
10. Set π = (πR, π∩, (πRi , τPi,k , τPi,k′ , δi)

d
i=1, all SMA proofs)

11. Send π,R to the client

Algorithm Verify(Q,R, π, pk, δ)

1. Parse Q as (i, li, ui)
d
i=1

2. For i = 1, ..., d
3. Verify δi with respect to δ with SMA proof
4. Verify τPi,k , τPi,k′ with respect to δi with SMAi proofs

5. Verify vi,k′i < li ≤ vi,k′i+1 and vi,ki ≤ ui < vi,ki+1

6. Run VerifySetDiff(πPi,k , πPi,k′ , πRi , pk)

7. Run VerifyIntersection(πR, πR1 , ..., πRd , π∩, pk)
8. Compute acc(R) and verify acc(R) = πR
9. If verification in Lines 3-8 fails, return reject, else return accept

the update process in this basic scheme can be quite expensive; in fact, it can be as

costly as re-running the setup stage. Due to this, we define algorithm Update for this

construction, as a simple call to Setup. In Section 4.5, we introduce a solution that

supports efficient updates, while maintaining all other asymptotic costs.

A set difference sub-protocol. Before we state our main result regarding our basic

scheme, we present a sub-protocol for proving the correctness of a set difference

operation between two sets X1, X2, under the constraint that the first is a proper

superset of the second. This constraint renders our sub-protocol conceptually simple

and very efficient. It consists of two routines ProveSetDiff and VerifySetDiff. The

99

former takes as input set X1 \ X2 and outputs a proof for its validity as the set

difference of X1, X2. The latter receives succinct representations πX1 , πX2 , πX1\X2 of

X1, X2, X1 \X2, respectively, and returns accept if X1 \X2 is the set difference of

X1, X2, and reject otherwise. Below is the pseudo codes of the two routines.

Note that these routines are meaningful only as part of a more elaborate SOA
scheme (e.g., [PTT11, CPPT14]), which utilizes bilinear accumulators as well, and

relies on the same public key pk. More specifically, the caller SOA is enforced with

the computation of input X1 \ X2 to ProveSetDiff. Therefore, this routine simply

returns π\ as the accumulation value of X1 \X2 in time Õ(|X1 \X2|). In addition,

the SOA must first check that inputs πX1 , πX2 of VerifySetDiff are the accumulation

values of X1, X2, such that X1 is a proper superset of X2, prior to calling the routine.

In this case, the cost of VerifySetDiff is O(1) pairings.

For example, in our scheme in Section 4.4.2, ProveSetDiff is called in algorithm

Prove for each set Ri, after Ri has been computed. Moreover, VerifySetDiff is in-

voked in Verify using as inputs the already verified accumulation values of prefix sets

Pi,ki , Pi,k′i that, by definition, satisfy the constraint Pi,ki ⊃ Pi,k′i . The following lemma

is useful in our proofs.

Lemma 7. Let λ be a security parameter, pub ← GenBilinear(1λ), and elements

(g, gs, ..., gs
q
) ∈ G, computed for some s chosen at random from Z∗p. Let X1, X2 be

sets with elements in Zp, such that X1 ⊃ X2. For an element y ∈ G, it holds that

y = acc(X1 \X2), iff e(acc(X2), y) = e(acc(X1), g).

Proof: (⇐) Let X1 = {x1, ..., xl′} and X2 = {x1, ..., xl} for l, l′ ∈ N with l < l′.

If e(acc(X2), y) = e(acc(X1), g), then we have e(g
∏l
i=1(xi+s), y) = e(g

∏l′
i=1(xi+s), g).

Hence, it holds e(y, g) = e(g
∏l′
i=l+1(xi+s), g)

def
= e(acc(X1 \ X2), g) which implies that

y = acc(X1 \X2), since e(g, g) is a generator of GT .

(⇒) If y = acc(X1 \ X2) = g
∏l′
i=l+1(xi+s), then it holds that e(g

∏l
i=1(xi+s), y) =

e(g
∏l
i=1(xi+s), g

∏l′
i=l+1(xi+s)) = e(g

∏l′
i=1(xi+s), g) = e(acc(X1), g). 2

100

Algorithm ProveSetDiff(X1 \X2, pk)
1. Return π\ = acc(X1 \X2)

Algorithm VerifySetDiff(πX1 , πX2 , π\, pk)

1. If e(πX2 , π\) = e(πX1 , g), return accept, else return reject

We can now state the following result.

Theorem 3. The scheme {KeyGen, Setup,Update,Prove,Verify} is a correct, effi-

cient, and secure AMR under the q-SBDH assumption.

Proof: The correctness of our scheme results from the semantics of the proof gen-

eration and verification and by close inspection of the algorithms. Moreover, since

the proof size is either O(d) or O(d log n), our construction satisfies the efficiency

requirement.

Let us assume there exists poly-size adversary A that wins the AMR security

game with non-negligible probability. Also, let Q,R∗, π∗, j be the cheating tuple

output byA and let T denote the data structure’s state at index j, and auth(T), δ the

corresponding authentication information and digest . In the following, we annotate

by ∗ any element of π∗. Moreover, if an event is denoted by E , then its complement

is denoted by E ′. Consider the following events:

E1: A wins the AMR game.

E2: π∗ contains a tuple τ ∗ or (i, δi)
∗ /∈ auth(T).

Recall that auth(T) consists of m + 1 SMA structures; each of the m first is built

over n tuples τ containing sequential values and prefix accumulations for attribute

ai, and the last is built over m pairs of the form (i, δi), i.e., containing the attribute

index and corresponding digest. Note that, in the AMR game the values auth(T), d

are computed correctly by the challenger for T .

101

By the law of total probability, we have:

Pr[E1] = Pr[E2] Pr[E1|E2] + Pr[E ′2] Pr[E1|E ′2]

≤ Pr[E1|E2]] + Pr[E1|E ′2] .

Intuitively, the first term in the right hand of the above relation corresponds to an

adversary that wins by breaking the security of the underlying SMA and the second

term with breaking the q-SBDH.

Claim 4. Pr[E1|E2] is negligible in λ.

Proof: Let us assume it is non-negligible in λ. Without loss of generality, we will

assume that the non-existing tuple is of the form τ ∗, i.e., it should fall under some of

the first m SMA structures, e.g., SMAi. Since A wins, it follows that the AMR
verification succeeds however τ ∗ 6∈ SMAi. We now distinguish between the chosen

SMA instantiation:

• Merkle tree. We will construct adversary A′ that finds a collision in the

CRHF H used to implement the Merkle tree as follows. A′ runs BilGen(1λ)

to compute bilinear parameters pub, chooses s ←R Z∗p and q ∈ poly(λ) and

computes values gs, . . . , gs
q
. Finally, he runs A on input (pub, gs, . . . , gs

q
). He

then proceeds to provide oracle access for all the AMR algorithms. After the

setup and each update call from A, database Tη for η = 0, . . . , j is produced and

A′ stores all triplets (Tη, auth(Tη), δη). When A outputs his challenge tuple for

index j, A′ parses π∗, checking for each tuple whether it appears in auth(Tj).

If any of them does not appear in auth(Tj), there must exist triplet τ in the

corresponding SMA ∈ auth(Tj) such that τ 6= τ ∗ and H(τ) = H(τ ∗) (for

the challenge sample key of H). This holds since the verification process for

τ ∗ under a Merkle tree in auth(Tj) succeeds, yet τ ∗ is not in the tree. By

102

assumption this will happen with non-negligible probability, hence A′ breaks

the collision resistance of H, and the claim follows.

• Accumulation tree. The reduction proceeds in the same manner as in the

previous case. The difference is that A′ is now playing against an accumulation

tree challenger, he receives as input a public key that coincides perfectly with

the AMR game and he does not need to issue any queries to his challenger

before he sees the challenge tuple by A, since everything can be computed

with access to the public key only (this follows from the properties of the

bilinear accumulator used to build the tree). After A issues his challenge,

A′ constructs the tree SMAi by issuing consecutive update queries to his

challenger. Finally, he outputs τ ∗ and the part of π∗ that corresponds to

proving (the false statement) that τ ∗ ∈ SMAi. By Lemma 4 this can only

happen with negligible probability, which contradicts our original assumption,

and the claim follows.

2

Now we prove that the second term of the inequality, namely Pr[E1|E ′2], is negli-

gible, by contradiction. Assume that Pr[E1|E ′2] is non-negligible. Since E2 does not

happen, all triplets τ ∗ and pairs (1, δ1), . . . , (m, δm) in π∗ appear in auth(T).

This immediately implies that the two values v∗i,l, v
∗
i,l+1 in each triplet are consecu-

tive along their dimension and each digest matches its corresponding dimension. By

construction, along each dimension there exist exactly two distinct τ ∗, τ ′∗ for which

verification of Q succeeds; one corresponds to the lower bound of the 1-dimensional

range of the query (li) and one for the upper (ui). Furthermore, if a triplet correctly

formed for SMA∗i of attribute ai, is used as part of the proof of an SMA∗j corre-

sponding to aj 6= ai, then it can be used to break the SMA security as shown in the

proof of Claim 4, which can only happen with negligible probability.

103

From the above, it follows that, for all i, i′, the triplet τ ∗i,i′ ∈ π∗ in dimension ai

contains the accumulation value of the correctly computed prefix set Pi,i′ with all

but negligible probability. Assuming this holds, by Lemma 7 and because verification

succeeds, it follows that π∗Ri ∈ π∗ is the accumulation value of the correctly computed

set Ri for query Q on T . Therefore, the values W ∗
i , F

∗
i ∈ π∗∩, along with sets Ri and

cheating answer R∗ 6= R(Q, T) as output by A, contradict Lemma 6, breaking the

q-SBDH assumption. Therefore, the probability Pr[E1|E ′2] must be negligible.

Since Pr[E1|E2] + Pr[E1|E ′2] is negligible, Pr[E1] must be negligible as well, contra-

dicting our original assumption that there exists poly-size adversary A that breaks

our scheme with non-negligible probability. 2

4.5 Update-efficient scheme

Here we present the necessary modifications to make our scheme handle updates in an

efficient way. As a building block for this, we also include a set union authentication

sub-protocol, for the case of union of disjoint sets.

4.5.1 Construction

Similar to our solution above, the update-efficient scheme views the query result as

a combination of “primitive set” operations. It then allows the server to compute a

small set of proof elements, which can be aggregated by the client in a bottom-up

fashion (similar to Figure 4·5). It adopts the same idea of computing proofs for

the partial Ri results along each dimension ai, and then combining them through

a set intersection protocol into a single proof that verifies the final result R. It

also adopts the idea of performing set difference operations over prefix sets. The

primary difference with the basic scheme is that we now organize the hash values

in the ordering of each dimension into buckets, and compute prefix sets over both

the buckets, as well as the hashes in each bucket. As we shall see, this twist isolates

104

the effect of an update, thus, reducing the update cost complexity. It also mandates

small modifications of the overall authentication structure, proof generation, and

verification processes, and creates the need for a new set union sub-protocol. In the

following, we describe the main ideas behind the construction.

Figure 4·6 depicts the authentication structure created by the owner during the

setup stage, focusing on attribute ai. As before, the owner sorts the hash values

of the n tuples of T in ascending order of the ai values of the tuples. It then

creates b buckets, enumerated as Bi,1, . . . , Bi,b (bottom left in the figure). For clarity

of presentation, we assume that the partitioning of hashes into buckets is publicly

known (e.g., each bucket may correspond to a specific range of the domain of ai),

and that each bucket has n/b hashes.

h1

h1

Bi,1

Pi,1,1 Pi,1,n/b...

h2

SMA�
i

δ�i

SMA

δ

...
Bi,b

Pi,1 Pi,b

(i, 1, πPi,1
) (i, b, πPi,b

)

...Pi,b,1 Pi,b,n/b

h2

τPi,1,1 τPi,1,n/b τPi,b,n/b
τPi,b,1

SMAi,1 SMAi,b

δi,1 δi,b

SMAi

δi
... ...

...

...

...

ai

...

Bucket Bi,1 Bucket Bi,b

Figure 4·6: The authentication structure for our dynamic scheme

105

We define as Pi,j the prefix set over buckets Bi,1, . . . , Bi,j, i.e., the set of hashes

included in Bi,1, . . . , Bi,j (we use calligraphic P for bucket prefixes to distinguish them

from hash prefixes denoted by P). The owner computes a proof πPi,j = acc(Pi,j) for

every Pi,j. In addition, for every bucket Bi,j, it computes prefixes Pi,j,l for the

hashes therein (bottom right in the figure), as well as proofs πPi,j,l = acc(Pi,j,l).

Subsequently, the owner creates a triplet (i, j, πPi,j) for every Pi,j, as well as tuple

τPi,j,l for every Pi,j,l. Note that τPi,j,l is similar to the case of the basic scheme (i.e., it

encompasses πPi,j,l along with two ai values), but now also incorporates the index j

of the bucket. The owner feeds (i, j, πPi,j) to the leaf level of SMA′i with digest δ′i.

It also feeds τPi,j,l to SMAi,j with digest δi,j. It then superimposes another SMAi
over digests δi,j which has digest δi. Finally, it builds SMA over all δ′i, δi with final

digest δ that is published. The various SMA’s will later allow the server to construct

proofs validating that πPi,j , πPi,j,l were indeed computed by the owner specifically for

bucket Bi,j; this is conceptually similar to their usage in the basic scheme.

We explain the proof construction and verification process using Figure 4·7, fo-

cusing on Ri. In our example, Ri fully covers buckets Bi,κ′+1, . . . , Bi,κ, and par-

tially covers buckets Bi,κ′ and Bi,k+1. Observe that we can decompose Ri into

three sets, let 1©, 2©, 3© (so that we alleviate our notation and allow an easy

reference to the figure), such that Ri = 1© ∪ 2© ∪ 3© and 1©, 2©, 3© are pair-

wise disjoint. Observe also that 1© = Pi,κ′,k \ Pi,κ′,k′ , 2© = Pi,κ \ Pi,κ′ , and

3© = Pi,κ′+1,k. Therefore, the server builds the proof π by including proof com-

ponents πPi,κ′,k , πPi,κ′,k′ , πPi,κ , πPi,κ′ , πPi,κ′+1,k
. Moreover, it adds (i, j, πPi,j), τPi,j,l ,

their proper proofs from SMA′i,SMAi,j,SMAi,SMA, as well as π 1© = acc(1©),

π 2© = acc(2©), π 3© = acc(3©). With all the above, the client can verify that π 1©, π 2©,

π 3© are the truthful proofs for sets 1©, 2©, 3©.

The client next needs to combine π 1©, π 2©, π 3© in order to verify that proof

106

h3

Bi,κ� Bi,κ+1

...
Bi,κ�+1

Pi,κ�

Pi,κ

... ...h4h5 h6... ...
Bi,κ

Pi,κ�,k�

Pi,κ�,k

Pi,κ�+1,k

Ri

1� 2� 3�

Figure 4·7: Representation of Ri through sets

πRi = acc(Ri), also included in the final π by the server, indeed corresponds to

the Ri that is the union of 1©, 2©, 3©. After that point, the client can proceed to

prove the final result R in an identical way to the basic scheme. For this partic-

ular task, we utilize our own customized set union sub-protocol, presented below.

This sub-protocol is motivated by similar reasons that motivated our set difference

sub-protocol previously; we need it to be executed in time Õ(|Ri|), and be secure

under standard cryptographic assumptions. What enables us to do this is the extra

constraint that the participant sets must be a priori proven pairwise disjoint. At a

high level, its ProveUnion routine outputs a proof π∪ on input sets 1©, 2©, 3©, which

later facilitates the VerifyUnion routine invoked on π 1©, π 2©, π 3©, πRi .

Consider that tuple t is inserted in bucket Bi,j (deletions are handled similarly).

This insertion affects all b bucket prefixes in the worst case, and all n/b hash prefixes

in Bi,j. It is important to observe that t does not affect any hash prefix of any

other bucket; in that sense, the buckets isolate the effect of the update within their

boundaries. Setting b =
√
n, the owner must update O(

√
n ·m) prefixes in overall,

each with a single exponentiation. Moreover, it should propagate the changes of

the corresponding proofs inside the SMA structures, whose cost is asymptotically

the same as in the case of the basic scheme. Therefore, the total update time in

107

Algorithm ProveUnion(X1, X2, X3, pk)
1. Output π∪ = acc(X1 ∪X2)

Algorithm VerifyUnion(πX1 , πX2 , πX3 , πX , π∪, pk)
1. Verify e(πX1 , πX2) = e(π∪, g)
2. Verify e(π∪, πX3) = e(πX , g)
3. If verification in Lines 1-2 fails, return reject, else return accept

this construction reduces from O(n ·m) to O(
√
n ·m). Interestingly, the asymptotic

complexities of all other algorithms and the proof size remain unaffected. However,

the absolute costs slightly increase due to the extra bucket prefixes, as confirmed by

our experiments in Section 4.6. The proof of security for this construction follows

the exact same process as that of Theorem 3. The only difference is that instead of

set difference along each dimension, the operation performed is a union of disjoint

sets, therefore the security of the construction needs to be reduced on breaking the

soundness for such an operations. Next, we present the necessary sub-protocol for

this and prove its security.

A union sub-protocol. We present a sub-protocol for proving the correctness of

a union operation among a number of sets Xi under the constraint that they are

pairwise disjoint. We focus on the case of three input sets, as this is the way it is

utilized in Section 4.5. The sub-protocol consists of two routines, ProveUnion and

VerifyUnion. The former receives sets X1, X2, X3, and outputs a proof π∪ for the

integrity of the union operation X = X1 ∪ X2 ∪ X3. The latter receives succinct

descriptions πX1 , πX2 , πX3 , πX of X1, X2, X3, X, respectively, as well as a proof π∪,

and returns accept if X is the union of the three sets, and reject otherwise. We

provide the pseudo codes of the two routines below.

Similar to the set difference sub-protocol, these routines are meaningful only as

part of a SOA scheme based on bilinear accumulators. ProveUnion runs in time

Õ(|X1| + |X2| + |X3|). For VerifyUnion, it is the responsibility of the caller to check

108

that πX1 , πX2 , πX3 are the accumulation values of pairwise disjoint X1, X2, and X3,

prior to calling the routine. Its cost is O(1) pairings. The following lemma is useful

in our proofs. It states the claim for the union of two disjoint sets but, it can trivially

be generalized for sets Xi for i ∈ [k], as long as Xi ∩Xj = ∅ for i, j ∈ [k] and i 6= j.

Lemma 8. Let λ be a security parameter, pub ← GenBilinear(1λ), and elements

(g, gs, ..., gs
q
) ∈ G, computed for some s chosen at random from Z∗p. Let X1, X2 be

sets with elements in Zp, such that X1∩X2 = ∅. For an element y ∈ G, it holds that

y = acc(X1 ∪X2), iff e(y, g) = e(acc(X1), acc(X2)).

Proof: (⇐) Let X1 = {x1, ..., xl′} and X2 = {x1, ..., xl} for l, l′ ∈ N with X1∩X2 = ∅.
If e(y, g) = e(acc(X1), acc(X2)), then we have e(y, g) = e(g

∏l′
i=1(xi+s), g

∏l
i=1(xi+s)).

Hence, it holds e(y, g) = e(g
∏l′
i=l+1(xi+s)·

∏l
i=1(xi+s), g)

def
= e(acc(X1 ∪ X2), g) which

implies that y = acc(X1 ∪X2), since e(g, g) is a generator of GT .

(⇒) If y = acc(X1 ∪ X2) = g
∏l′
i=1(xi+s)·

∏l
i=1(xi+s), then it holds that e(y, g) =

e(g
∏l
i=1(xi+s)·

∏l′
i=1(xi+s), g) = e(g

∏l
i=1(xi+s), g

∏l′
i=1(xi+s)) = e(acc(X1), acc(X2)). 2

4.6 Performance evaluation

We performed our experiments on a 64-bit machine with Intel Core i5 CPU 2.5GHz,

running Linux. We implemented both versions of our scheme in C++, using

the following libraries: DCLXVI [DCL16] for fast bilinear pairing computations,

Flint [Fli16] for modular arithmetic, and Crypto++ [Cry16] for SHA-256 hash op-

erations. DCLXVI employs a 256-bit BN elliptic curve and an asymmetric optimal

ate pairing, offering bit-level security of 128 bits. We represent elements of G1 with

768 bits using Jacobi coefficients, which yield faster operations. Elements in G2

are roughly twice as large as those of G1. We chose an asymmetric pairing for effi-

ciency reasons, but we note that this choice does not introduce any redundancy to

our schemes as presented with symmetric pairings. We instantiate all SMA’s with

109

Operation Cost
Exp. in G1 / G2 0.55 / 0.94 ms
Mult. in Zp / GT 7 µs / 0.09 ms
SHA-256 / Bilinear pairing 5 µs / 1.41 ms
Quicksort in Zp (100/1000/10000 elems.) 0.1 / 0.9 / 4.6 ms
Acc. in G1 || 25.3 / 236 / 2, 628 ms
Acc. in G2 || 32.6 / 338 / 3, 471 ms
Polynom. Mult in Zp[r] (100/1000/10000 coeffs.) 0.4 / 7.3 / 92.9 ms
XGCD in Zp[r] || 8.4 / 599 / 108, 093 ms

Table 4.1: Costs of primitive operations

Merkle trees [Mer89] and bilinear accumulator trees [PTT08]. Table 4.1 summarizes

all primitive costs involved in our schemes.

We test four possible configurations: (i) our scheme with Merkle trees (Basic-Mer),

(ii) our basic scheme with accumulator trees (Basic-Acc), (iii) our update-efficient

scheme with Merkle trees (UpdEff-Mer), and (iv) our update-efficient scheme with

accumulator trees (UpdEff-Acc). For each configuration, we assess the performance

at the client, owner and server, varying several parameters. We run each experiment

10 times and report the average costs. Note that the performance of all schemes

does not depend on the data distribution, but rather on the table schema and result

selectivities. As such, we used synthetic datasets in our evaluation.

Client. Figure 4·8 depicts the verification cost at the client. This overhead is

mainly affected by the result size |R| and the number of query dimensions d. Figure

4·8 (left) shows the CPU time (in ms) as a function of |R|, fixing d = 32, n = 106

and m = 64. The verification cost increases with |R| in all schemes. Basic-Mer is the

fastest for |R| ≤ 1, 000. This is because the Merkle-based schemes are faster than

the accumulator-based ones, as they entail hash operations for the SMA proofs,

which are much cheaper than the pairings needed in accumulation trees. Moreover,

the overhead in the update-efficient schemes is slightly larger than that in their basic

counterparts, due to the extra proof verifications of the bucket prefixes and the taller

110

10
2

10
3

10
4

10
1

10
2

10
3

10
4

T
im

e
 (

m
s)

|R|

Basic-Mer
Basic-Acc
UpdEff-Mer
UpdEff-Acc

10
2

10
3

2 4 8 16 32

T
im

e
 (

m
s)

d

Basic-Mer
Basic-Acc
UpdEff-Mer
UpdEff-Acc

Figure 4·8: Verification overhead at client

SMA hierarchy. Nevertheless, observe that, for |R| = 10, 000 the performance of

all schemes converges. The reason is that the computation of πR = acc(R) that is

common to all techniques becomes the dominant factor, which effectively hides the

costs of the SMA proofs and all set operation verifications.

Figure 4·8 (right) illustrates the CPU time versus d, when |R| = 1, 000, n = 106

and m = 64. The performance of the schemes is qualitatively similar to Figure

4·8 (left) for the same reasons. Once again, all costs increase linearly with d because

the verification overhead of the set differences and intersections is also linear in

d. However, the effect of d on the total CPU time is not as significant as that of

|R|, since the common accumulation cost for R emerges as the dominant cost when

|R| = 1, 000. In both figures, the verification time for all constructions is between 20

ms and 3.36 seconds.

Table 4.2 includes the proof sizes for the four schemes when varying d. We

make three observations. First, all sizes increase with d, since the proof includes

components for every dimension. Second, the basic schemes have smaller proofs

than their counterparts, again because of the extra bucket prefix proofs and taller

SMA hierarchy. Third, although Basic-Acc outperforms Basic-Mer , this is not true

111

d 2 4 8 16 32
Basic-Mer 4.5 9.1 18.1 36.3 72.5
Basic-Acc 3.6 7.2 14.3 28.8 57.5

UpdEff-Mer 9.2 18.4 36.9 73.8 147.5
UpdEff-Acc 9.6 19.2 38.4 76.8 153.5

Table 4.2: Proof size in KB (n = 106,m = 64)

for UpdEff-Acc and UpdEff-Mer. This is because, although accumulators provide

asymptotically smaller proofs than Merkle trees, this does not hold in practice for

the database sizes we tested. In overall, the proofs for all schemes are quite succinct,

ranging from 4.5 to 153.5 KBs, which are independent of the result size that could

easily be in the order of MBs.

Owner. Figure 4·9 assesses the performance of the owner for the setup stage (which

includes the key generation), and updates. In this set of experiments, we focus

only on the Merkle-based schemes that have a clear performance advantage over the

accumulator-based, as evident also from our evaluation for the client above. Figure

4·9 (left) plots the pre-processing cost when varying n and fixing m = 64. Naturally,

the overhead increases linearly with n in both schemes. This overhead is dominated

by the computation of πPi,j for all i, j, which completely hides the sorting and hashing

costs (see also Table 4.1). As expected, UpdEff-Mer is more than twice as slow as

Basic-Mer. Although the pre-processing time can reach up to three hours for n = 106,

recall that this is a one-time cost for the owner.

Figure 4·9 (right) evaluates the update time as a function of the number of up-

dates performed in a single batch operation, where n = 105 and m = 64. Note that

we report the respective worst case in both schemes. For Basic-Mer, the CPU time is

practically unaltered and, in fact, is as bad as the setup overhead. On the contrary,

UpdEff-Mer is greatly benefited by the bucket isolation and becomes up to more than

two orders of magnitude more efficient than Basic-Mer. As the number of updates in

the batch increase, the performance gap between the two schemes closes, since the

112

10
0

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

se
c
)

n

Basic-Mer
UpdEff-Mer

10
1

10
2

10
3

10
4

1 25 50 75 100

T
im

e
 (

se
c
)

updates

Basic-Mer
UpdEff-Mer

Figure 4·9: Setup (left) and update (right) overhead at owner.

updates in the batch are likely to affect more buckets. For the tested settings, the

update time ranges between 30 seconds and one hour.

Server. Figure 4·10 reports the proof generation time at the server. As explained

in our complexity analysis, the dominant factor here is
∑d

i=1 |Ri|. Therefore, due to

the lack of real-world data and query workloads, it suffices to vary |Ri| and fix it

across all dimensions, rather than varying d and setting an arbitrary partial result

size per dimension. Figure 4·10 depicts the CPU time at the server, when varying

|Ri| and setting n = 105, m = 64, d = 32 and |R| = 0.1 · |Ri| (i.e., 10% of a 1-

dimensional result). At every point of the curve, we also provide the percentages

of the three dominant computational costs, namely the construction of Wi, Fi (for

the intersection proof) and πRi . The performances of two schemes differ marginally.

This is because the generation of the extra set union proof of UpdEff-Mer incurs

negligible cost compared to the large burden of computing the three types of elements

mentioned above. The most interesting observation is that, for |Ri| = 10, the cost

for Wi is 51% and for Fi is 15%, whereas for |Ri| = 10, 000, the two costs become 7%

and 87%, respectively. This is because computing Fi requires running the Extended

113

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

T
im

e
 (

se
c
)

|Ri|

Wi = 51%
Fi = 15%
πRi

 = 34%

Wi = 34%

Fi = 40%

πRi
 = 26%

Wi = 31%
Fi = 44%
πRi

 = 25%

Wi = 7%
Fi = 87%
πRi

 = 6%

Basic-Mer
UpdEff-Mer

Figure 4·10: Proof construction cost at server

Euclidean (XGCD) algorithm, whose time increases drastically with the degree of the

polynomials (as shown in Table 4.1), dictated by |Ri|. The server’s total overhead

ranges between 650 ms and 25 minutes.

Comparison with general-purpose VC. Regarding support of range queries with

general-purpose VC schemes, [ZKP15] measures the costs for evaluating and provid-

ing a proof for a 10-dimensional query over a table with 10 attributes and just 1000

tuples, using the library of [BCTV14]. Even for this tiny dataset (much smaller

than the ones used in our previous experiments), the server needs ≈ 329 seconds, for

computing a single proof. It should be noted that this cost is fixed, i.e., independent

of the size of partial or final result. For comparison, for the same query, our scheme

takes anywhere from some milliseconds to a few seconds (depending, as discussed

above, on |Ri|). For example, for Ri set to 100, the time for proof construction is

approximately 1.1 second, i.e., more than 300x smaller. On the other hand, the proof

size produced with the library of [BCTV14] is fixed to 288 bytes which is smaller than

114

what is achieved with our approach. However, we believe that an increase of proof

size to a few KB is justified (and a few KB is certainly not a prohibitive quantity)

given the significant computational gain at the server.

Summary and future improvements. Our experimental evaluation confirms the

feasibility of our schemes. Specifically, it demonstrates that the verification cost at

the client in all schemes is in the order of a few seconds in the worst case, even for

moderate result sizes, whereas the proof size is up to a few hundred of KBs. At the

owner, we illustrated the benefits of our update-efficient scheme over the basic one

in terms of updates, which come at the cost of a more expensive setup and client

verification. Finally, the server is the most impacted party in our constructions.

The proof generation cost takes from several ms to several minutes, for small and

moderate partial result sizes and dimensionality.

Nevertheless, it is important to stress that the defining costs at the server account

for exponentiations and modular polynomial arithmetic. These operations are at the

core of numerous applications and, thus, there is huge potential for improvement in

the near future. In addition, there are works (e.g., [Eme11]) that have substantially

boosted such operations with modern hardware, which we did not possess in our

experimentation. Being instantiations of a general framework, our schemes feature

the attractive property that they are easily upgradeable with future advances in such

cryptographic tools.

Chapter 5

Verifiable Pattern Matching Queries

5.1 Introduction

In this chapter we design protocols for verifiable processing of pattern matching

queries. The problem setting involves an outsourced textual database, a query con-

taining a text pattern, and an answer regarding the presence or absence of the pattern

in the database. In its most basic form, the database consists of a single text T from

an alphabet Σ, where a query for pattern p, expressed as a string of characters, results

in answer “match at i”, if p occurs in T at position i, or in “mismatch” otherwise.

More elaborate models for pattern matching involve queries expressed as regular

expressions over Σ or returning multiple occurrences of p, and databases allowing

search over multiple texts or other (semi-)structured data (e.g., XML data). This

core data-processing problem has numerous applications in a wide range of topics in-

cluding intrusion detection [KS94], spam filtering [CB06], web search engines [RH02],

computational biology [AQD+02] and natural language processing [FAA+94].

5.1.1 Prior work

Previous works on authenticated pattern matching include the schemes by Martel

et al. [MND+04] for text pattern matching, and by Devanbu et al. [DGK+04] and

Bertino et al. [BCF+04] for XML search. In essence, these works adopt the same

general framework: First, by hierarchically applying a cryptographic hash function

(e.g., SHA-2) over the underlying database, a short secure description or digest of

115

116

the data is computed. Then, the answer to a query is related to this digest via a

proof that provides step-by-step reconstruction and verification of the entire answer

computation. This approach typically leads to large proofs and, in turn, high verifi-

cation costs, proportional to the number of computational steps used to produce the

answer. In fact, for XML search, this approach offers no guarantees for the worst-case

cost of verification, since certain problem instances require that the proof includes

almost the entire XML document, or a very large part of it, in order to ensure that

no portions of the true (honest) answer were omitted from the returned (possibly

adversely altered) answer.

On the other hand, recent work on built systems for general-purpose VC (e.g.,

[PHGR13, BFR+13b, BCG+13]) allows verification of general classes of computation.

Here also, verification is based on cryptographic step-by-step processing of the entire

computation, expressed by circuits or RAM-based representations. Although special

encoding techniques allow for constant-size proofs and low verification costs, this

approach cannot yet provide practical solutions for pattern matching, as circuit-based

schemes inherently require complex encodings of all database searches, and RAM-

based schemes result in very high proof generation costs, that can range in the order

of hours for even medium database sizes (for example, see [ZPK14]). Indeed, costly

proof generation comprises the main bottleneck in all existing such implementations.

5.1.2 Overview of result

We wish to design schemes for authenticated pattern matching that have the follow-

ing two properties: (i) the validation of the correctness of the answer is based on a

proof that is succinct, having size independent of the database size and the query

description, and (ii) this proof can be quickly generated and verified. We emphasize

that our requirement to support pattern matching verification with easy-to-compute

constant-size proofs is in practice a highly desired property. First, it contributes

117

sp
a
ce

se
tu

p
p
ro

o
f

si
ze

q
u
e
ry

ti
m

e
v
e
ri

fi
ca

ti
o
n

ti
m

e
[M

N
D

+
04

]
n

n
m

lo
g

Σ
m

lo
g

Σ
+
κ

m
lo

g
Σ

+
κ

O
u
r

co
n
st

ru
ct

io
n

n
n

1
m

+
κ

m
lo

g
m

+
κ

[B
C

F
+

04
,

D
G

K
+

04
]

(a
n
y

p
at

h
)

n
n

n
,d

n
,d

n
,d

O
u
r

co
n
st

ru
ct

io
n

(e
x
ac

t
p
at

h
)

n
n

1
m

m
lo

g
m

+
s

F
ig

u
re

5
·1

:
A

sy
m

p
to

ti
c

co
m

p
le

x
it

ie
s

of
ou

r
sc

h
em

e
fo

r
te

x
t

p
at

te
rn

m
at

ch
in

g
an

d
X

M
L

ex
ac

t
p
at

h
q
u
er

ie
s:
n

is
th

e
si

ze
of

th
e

d
o
cu

m
en

t,
m

th
e

p
at

te
rn

le
n
gt

h
,
κ

th
e

n
u
m

b
er

of
o
cc

u
rr

en
ce

s,
Σ

th
e

al
p
h
ab

et
si

ze
,
s

th
e

an
sw

er
si

ze
,

an
d
d

th
e

n
u
m

b
er

of
va

li
d

p
at

h
s.

118

to high scalability in query-intensive applications in settings where the server that

provides querying service for outsourced databases receives incoming requests by sev-

eral clients at high rates; then obviously, faster proof generation and transmission of

constant-size proofs result in faster response times and higher throughputs. But it

also promotes storage efficiency in data-intensive applications in settings where the

proof for a (mis)match of any pattern query over a database must be persistently

retained in storage for a long or even unlimited time duration; then, minimal-size

proofs result in the minimum possible storage requirements, a very useful feature in

big-data environments.

An example of a data-intensive application where pattern matching proofs might

be permanently stored, is the problem of securing the chain of custody in forensic

and intrusion detection systems used by enterprises today. Such systems often apply

big-data security analytics (e.g., [YOO+13]) over terabytes of log or network-traffic

data (collected from host machines, firewalls, proxy servers, etc.) for analysis and

detection of impending attacks. Since any data-analytics tool is only as useful as

the quality (and integrity) of its data, recent works (e.g., [YNR12, BHJT14]) focus

on the integrity of the data consumed by such tools, so that any produced security

alert carries a cryptographic proof of correctness. To support a verifiable chain

of custody,11 these proofs must be retained for long periods of time. As big-data

security analytics grow in sophistication, authenticated pattern matching queries

will be crucial for effective analytics (e.g., to match collected log data against known

high-risk signatures of attacks), hence storing only constant-size associated proofs

will be important in the fast-moving area of information-based security.

We present the first authentication schemes for pattern matching over textual

11Informally, any security alert—carrying important forensic value—can be publicly and
with non-repudiation verified—thus, carrying also legal value when brought as evidence to
court months, or even years, after the fact.

119

databases that achieve the desired properties explained above. Our schemes employ

a novel authenticated version of the suffix tree data structure [GT02] that can provide

precomputed (thus, fast to retrieve), constant-size proofs for any basic-form pattern

matching query, at no asymptotic increase of storage.

Our pattern matching scheme has the following attractive properties:

• The size of the proof is O(1); specifically, it always contains at most 10 bilinear

group elements.

• The time to generate the proof that a query pattern of size m is found in κ

occurrences is O(m + κ), and very short in practice, as it involves no cryp-

tographic operations but only assembling of precomputed parts—e.g., it takes

less than 90µs to respond to a query of size 100 characters: 80µs to simply find

the (mis)match and less than 10µs to assemble the proof.

We extend our scheme to also support regular expressions with a constant number of

wildcards. Moreover, we apply our scheme for the authentication of pattern matching

queries over collections of text documents (returning the indices of documents with

positive occurrences), and exact path queries over XML documents. By design, these

schemes also achieve an asymptotically optimal communication overhead (that is, the

asymptotic communication cost is the same as simply transmitting the answer itself):

On top of the requested answer, the server provides only a constant number of bits

(modulo the security parameter)—e.g., for XML search and 128-bit security level,

proofs can be made as small as∼178 bytes. Unlike existing hash-based authentication

schemes [BCF+04, DGK+04, MND+04], our authentication schemes support fully

parallelizable setup: They can be constructed in O(log n) parallel time on O(n/ log n)

processors in the EREW model, thus maintaining the benefits of known parallel

algorithms for (non-authenticated) suffix trees [JáJ92, MASK11]. While the use of

120

precomputed proofs best matches static text databases, we also present efficient fully

or semi-dynamic extensions of our schemes.

5.1.3 Overview of techniques

Our construction is again an ADS and we follow the framework of [TT10]: Our

scheme first defines and encodes answer-specific relations that are sufficient for cer-

tifying (unconditionally) that an answer is correct and, then, cryptographically au-

thenticates these relations using optimal-size proofs. We achieve this by employing

in a novel way the bilinear accumulator over a special encoding of the database with

respect to a suffix tree, used to find the pattern (mis)match. The encoding effectively

takes advantage of the suffix tree where patterns in the database share common pre-

fixes, which in turn can be succinctly represented by an accumulator. For the XML

query application, we use the same approach, this time over a trie defined over all

possible paths in the document, and we link each path with the respective XML

query answer (i.e., all reachable XML elements).

Comparison with related works. Table 5·1 summarizes our work as compared

to [BCF+04, DGK+04, MND+04].12 In [MND+04] a general technique is applied to

the suffix tree, that authenticates every step of the search algorithm, thus obtaining

proof size proportional to the length of the pattern, which is not optimal. Moreover,

due to the use of sequential hashing, this solution is inherently not parallelizable. The

authors of [DGK+04] authenticate XPath queries over a simplified version of XML

documents by relying on the existence of a document type definition (DTD) and

applying cryptographic hashing over a trie of all possible semantically distinct path

queries in the XML document. An alternative approach is taken in [BCF+04], where

12We note that our ADS schemes operate with any accumulator, not just the accu-
mulator. In fact, using the RSA accumulator [CL02a] reduces verification cost to O(m).
However, a recent experimental comparison demonstrates that the bilinear accumulator is
more efficient in practice [Tre13].

121

similar XML queries are authenticated by applying cryptographic hashing over the

XML tree structure. As discussed above, both these approaches suffer from very bad

worst-case performance, e.g., yielding verification proofs/costs that are proportional

to the size of the XML tree. However, these works are designed to support general

path queries, not only exact, as our work does. Recently, the authors of [FHV13]

presented a protocol for verifiable pattern matching that achieves security and secrecy

in a very strong model, hiding the text even from the responding server. While that

work offers security in a much more general model than ours, it has the downside

that the owner that outsourced the text is actively involved in query responding

and that it makes use of heavy cryptographic primitives, the practicality of which

remains to be determined. There is a large number of ADS schemes in the database

and cryptography literature for various classes of queries (e.g., [Mer89, CPPT14,

LHKR10]). Also related to our problem is keyword search authentication, which has

been achieved efficiently, e.g., in [PM08, YPPK09a, PTT11]. As previously discussed,

verifiable computation systems such as [PHGR13, BFR+13b] can be used for the

verification of pattern matching; although optimized to provide constant-size proofs

these constructions remain far from practical. Finally, parallel algorithms in the

context of verifiable computation have only recently been considered. In [TRMP12,

SBV+13] parallel algorithms are devised for constructing a proof for arithmetic-

circuit computations.

5.2 Pattern matching queries

The problem of pattern matching involves determining whether a pattern appears

within a given text. In its basic form, assuming an alphabet Σ of size |Σ| = σ, a

n-character text T ∈ Σn and a pattern p ∈ Σm of length m, the problem is expressed

as “is there position 1 < i ≤ n−m+1 such that T [i+j] = p[j] for j = 0, . . .m−1?”,

122

where T [i] is the character at the i-th position in the text, and likewise for pattern

p. If there exists such i, the answer is “match at i”, otherwise “mismatch”.

Answering pattern matching queries is an arduous task, if done naively. For

instance, to check the occurrence of p in T , one could sequentially test if p occurs at

any position i (i.e., if it is a prefix of some suffix of T), for all positions in T . Such

a successful test would imply a match but would require O(n) work. However, with

some preprocessing of O(n) work, one can organize patterns in a suffix tree [Wei73],

reducing the complexity of pattern matching query from O(n) to O(m). A suffix

tree is a data structure storing all the suffixes of T in a way such that any repeating

patterns (common prefixes) of these suffixes are stored once and in a hierarchical way,

so that every leaf of the suffix tree corresponds to a suffix of the text T . This allows

for (reduced) O(m) search time while maintaining (linear) O(n) space usage.13We

provide next a more detailed description of the suffix tree data structure, represented

as a directed tree G = (V,E, T ,Σ). We refer to the example of Figure 5·2 depicting

the suffix tree for the word minimize.

Each leaf of G corresponds to a distinct suffix of T , thus G has exactly n leaves.

We denote with S[i] the i-th suffix of T , that is, S[i] = T [i] . . . T [n], for i = 1, . . . , n.

Internal tree nodes store common prefixes of these n suffixes S[1], S[2], . . . , S[n],

where the leaves themselves store any “remainder” non-overlapping prefixes of T ’s

suffixes. If leaf vi corresponds to suffix S[i], then S[i] is formed by the concatenation

of the contents of all nodes in the root-to-leaf path defined by vi, where the root

conventionally stores the empty string. For instance, in Figure 5·2, S[4] = imize and

S[6] = ize, respectively associated with the paths defined by the second and fourth

most left leaves, labelled by mize and ze (having as common parent the node labelled

by i).

13This can be easily achieved by storing pointers to the text at the nodes, instead of
entire prefixes.

123

Figure 5·2: Suffix tree for minimize storing suffixes minimize, inimize,
nimize, imize, mize, ize, ze, e as eight overlapping paths.

Additionally, every node v ∈ V stores the following information that will be useful

in the case of the mismatch: (a) the range rv = (sv, ev) of v, which corresponds to

the start (sv) and end (ev) position of the string stored in v in the text (we pick

an arbitrary range if v is associated with multiple ranges); (b) the depth dv of v,

which corresponds to the number of characters from the root to v, i.e., the number

of characters that are contained in the path in G that consists of the ancestors of

v; (c) the sequel Cv of v, which corresponds to the set of initial characters of the

children of v. For example in Figure 5·2, for the node v labelled mi, it is sv = 1 and

ev = 2 (or sv = 5 and ev = 6), dv = 0, Cv = {n, z}.

Traversing a suffix tree. This data structure allows for efficient searches of

any given pattern p. Since all matching patterns must be a prefix of some suffix,

the search algorithm beings from the root and traverses down the tree incrementally

matching pattern p with the node labels, until it reaches some node v where either

a mismatch or a complete match is found. We model this search on suffix tree G =

(V,E, T ,Σ) by algorithm (v, k, t) ← suffixQuery(p,G), returning: (1) the matching

node v, i.e., the node of G at which the algorithm stopped with a match or mismatch,

(2) the matching index k, sv ≤ k ≤ ev, i.e., the index (with reference to the specific

range (sv, ev)) where the last matching character occurs (for successful matching

124

Figure 5·3: (Left) Pattern matching in our scheme for pattern p
(|p| = m), using suffixes S[i] and S[j], where S[i] = pS[j]. (Right)
Pattern mismatch in our scheme, using suffixes S[i] and S[j], where
S[i] = p1p2 . . . ptS[j] and t < m.

searches, k coincides with the index of the last character of p within v), and (3) the

prefix size t ≤ m, i.e., the length of maximum matching prefix of p (m in case of a

match). Figure 5·3 shows the relation of variables k and t for both cases.

Characterization of pattern matching queries. We provide here two important

lemmas that characterize the correct execution of algorithm suffixQuery, by provid-

ing necessary and sufficient conditions for checking the consistency of a match or

mismatch of p in T with the output (v, k, t) produced by suffixQuery. In the next

section, we will base the security of our construction on proving, in a cryptographic

manner, that these conditions hold for a given query-answer pair. Namely, the struc-

ture of these relations allows us to generate succinct and efficiently verifiable proofs.

In the following we denote with xy the concatenation of two strings x, y (order is

important).

Lemma 9 (Pattern match). There is a match of p in T if and only if there exist

two suffixes of T , S[i] and S[j], with i ≤ j, such that S[i] = pS[j].

Proof: (⇒) Suppose there is a match of p it T . Let i be the index where the match

starts and j be the index where the match ends. Then for the suffixes S[i] and S[j]

it holds S[i] = pS[j]. (⇐) Suppose there exist two suffixes S[i] and S[j] of a text T
for which it holds S[i] = pS[j]. Then p has to be part of the text T and therefore

125

there is match of p in T . 2 2

Lemma 10 (Pattern mismatch). There is a mismatch of p in T if and only if

there exist a node v ∈ G, an integer k ∈ [sv, ev] and an integer t < m such that

S[sv − dv] = p1p2 . . . ptS[k+ 1] and pt+1 6= T [k+ 1], if k < ev, or pt+1 /∈ cv if k = ev.

Proof: (⇒) Suppose there is a mismatch of p in T . The desired triplet (v, k, t) is the

one output by the algorithm (v, k, t)← suffixQuery(p,G), where v ∈ G is the node of

the suffix tree where the mismatch is returned, k ∈ [sv, ev] is the matching index and

t < m is the prefix size. Since t is the prefix size there is a match of p1p2 . . . pt in T .

Therefore, by Lemma 9 there exist i and j with i ≤ j such that S[i] = p1p2 . . . ptS[j].

By the properties of the suffix tree, it is i = sv − dv and j = k + 1 (note that since

t = dv + k − sv + 1 ≥ 0 it is always i ≤ j, as required by Lemma 9). We distinguish

the following cases:

• k < ev. The mismatch is happening within the node v. All patterns in T
starting with p1p2 . . . pt traverse that node up to index k < ev. Therefore it has

to be pt+1 6= T [k + 1];

• k = ev. The last matching character is the last character of node v. All patterns

in T starting with p1p2 . . . pt traverse the whole node (i.e., up to index k = ev)

and continue with any of its children. Since there is a mismatch after that, it is

the case that pt+1 should not belong to the sequel of v, which implies pt+1 /∈ cv.

(⇐) By contradiction. Suppose there exist a node v ∈ G, an integer k ∈ [sv, ev) and

an integer t < m such that S[sv − dv] = p1p2 . . . ptS[k + 1] and pt+1 6= T [k + 1] and

however, there is a match of p in T . Since S[sv−dv] = p1p2 . . . ptS[k+1], all patterns

in T starting with p1p2 . . . pt traverse that node v to index k < ev. Therefore, for a

match to exist, it must be pt+1 = T [k + 1]. This is contradiction. For the second

case, the same argument holds. The contradiction is reached by deriving the false

argument pt+1 ∈ cv. This completes the proof. 2 2

126

With reference to Figure 5·2, the match of the pattern p = inim, can be shown by

employing the suffixes S[2] = inimize and S[6] = ize. Note that indeed S[2] = pS[6].

This is a match (as in Lemma 9). More interestingly, observe the case of mismatch for

the string p = minia. For this input, algorithm suffixQuery returns the node v labelled

by nimize where the mismatch happens, matching index k = 4 and prefix size t = 4.

For node v, we have sv = 3 and ev = 8 and also dv = 2. To demonstrate the mismatch,

it suffices to employ suffixes S[sv− dv] = S[1] = minimize and S[k+ 1] = S[5] = mize

as well as symbols pt+1 and T [k + 1]. The concatenation of the prefix mini of p (of

size t = 4) with the suffix S[5] is S[1], and also pt+1 = a 6= T [k + 1] = m. This

is a mismatch (as the first case considered in Lemma 10, since k < ev). Finally, to

demonstrate the mismatch of the string p = mia we proceed as follows. Algorithm

suffixQuery returns the node v labelled by mi where the mismatch happens, matching

index k = 6 and prefix size t = 2. For node v, we have sv = 5 and ev = 6 (alternatively

we can also have sv = 1 and ev = 2) and also dv = 0. It suffices to employ suffixes

S[sv − dv] = S[5] = mize and S[k + 1] = S[7] = ze as well as symbol pt+1 and sequel

(set) cv. Note that indeed the concatenation of the prefix mi of p (of size t = 2) with

the suffix S[7] is S[5], and that also pt+1 = a /∈ cv = {n, z}. This is a mismatch (as

in Lemma 10, since k = ev).

5.3 Main construction

We now present our main ADS scheme for verifying answers to pattern matching

queries. Our construction is based on building a suffix tree over the outsourced text

and proving in a secure way the conditions specified in Lemmas 9 and 10 for the

cases of match and mismatch respectively. The main cryptogaphic tool employed is

the bilinear accumulator, which will be used to authenticate the contents of a suffix

tree in a structured way, allowing the server to prove the existence of appropriate

127

suffixes in the text and values in the tree that satisfy the conditions in the two

lemmas. Moreover, due to the properties of the bilinear accumulator, the produced

proofs will be independent of the size of the text and the pattern, consisting only of

a constant number of bilinear group elements.

Key generation. The algorithm genkey proceeds as follows. The text owner

first runs GenBilinear(1λ) to compute bilinear parameters pub = (p,G,GT , e, g). He

then picks a random s ∈ Zp and computes g = [g, gs, . . . , gs
`
]. Finally, the key pair

is defined as sk = s, pk = (pub,g).

Setup. The setup process is described in pseudo-code in Algorithm 1 and we provide

a detailed explanation of each step here. The owner first computes a suffix accumu-

lation for each suffix in the text with a linear pass. This value encodes information

about the text contents of the suffix, its starting position and its leading character. In

particular, acc(S[i]) is denoted as acci := acc(Xi1∪Xi2∪Xi3), where (a) Xi1 is the set

of position-character pairs in suffix S[i], i.e., Xi1 = {(pos, i, T [i]), . . . , (pos, n, T [n])} ;

(b) Xi2 is the first character of S[i], i.e., Xi2 = {(first, T [i])}; and (c) Xi3 is the index

of S[i], i.e., Xi3 = {(index, i)}. Also, for each suffix S[i] he computes a suffix structure

accumulation ti = acc(Xi1), i.e. it contains only the position-character pairs in the

suffix and its use will be discussed when we explain the verification process of our

scheme. Structure accumulations are a very important part for the security of our

construction. Observe that the suffix structure accumulation ti encompasses only a

subset of the information encompassed in acci. The security of the bilinear accumu-

lator makes proving a false subset relation impossible, hence no efficient adversary

can link ti with accj for j 6= i.

Following this, the owner builds a suffix tree G = (V,E, T ,Σ) over the text and

computes a node accumulation for each v ∈ G. This value encodes all the information

regarding this node in G, i.e., the range of T it encompasses, its depth in the tree

128

and the leading characters of all its children nodes (taken in consecutive pairs). More

formally, for a node v with values (sv, ev), dv, cv, its accumulation is defined as accv :=

acc(Yv1 ∪ Yv2 ∪ Yv3), where: (a) Yv1 is the range of v , i.e., Yv1 = {(range, sv, ev)};
(b) Yv2 is the depth of v, i.e., Yv2 = {(depth, dv)}; and (c) Yv3 is the sequel of v

defined as the set of consecutive pairs Yv3 = {(sequel, ci, ci+1)|i = 1, . . . , `− 1} where

Cv) = {c1, c2, . . . , c`} is the alphabetic ordering of the first characters of v’s children.

He also computes a node structure accumulator tv = acc(Yv3) (similar to what we

explained for suffixes). Finally, for each sequel ci, ci+1, compute a subset witness

WP,Y (as defined in Section 2) where P = {(sequel, cj, cj+1)} and Y = Yv1∪Yv2∪Yv3.
This will serve to prove that the given sequel of characters are leading characters of

consecutive children of v.

Note that, the keywords pos, first, index, range, depth and sequel are used as

descriptors of the value that is accumulated. Without loss of generality one can view

the elements of sets Xij, Yij, j ∈ {1, 2, 3} as distinct λ-bit strings (each less than

the group’s prime order p ∈ O(2λ)), simply by applying an appropriate deterministic

encoding scheme r(·). Therefore, when we accumulate the elements of these sets,

we are in fact accumulating their numerical representation under encoding r. This

allows us to represent all accumulated values as distinct elements of Zp, achieving

the necessary domain homogeneity required by the bilinear accumulator.

At the end of this procedure, each suffix S[i] has its suffix accumulation acci and

its suffix structure accumulation ti. Also, each node v ∈ G is associated with its

node accumulation accv, its node structure accumulation tv and one subset witness

WP,C for each consecutive pair of its children. We denote with V ,S the sets of node

and suffix accumulations accv and acci, respectively. As a final step, the owner builds

two accumulation trees AT V ,AT S , using the bilinear accumulator described by the

key pair. Let dV , dS be their respective digests. He sends to the server the text

129

Algorithm 1: setup(T , pk, sk)

1. For suffix i = 1, . . . , n
2. Compute suffix structure accumulation ti
3. Compute suffix accumulation acci
4. Build suffix tree G = (V,E, T ,Σ)
5. For each node v ∈ G
6. Compute node structure accumulation tv
7. Compute node accumulation accv
8. For each consecutive pair of children of v
9. Compute subset witness WP,C
10. Build accumulation trees AT V ,AT S
11. Send T , auth(T) to the server and publish pk, dV , dS

T , as well as authentication information auth(T) consisting of the suffix tree G, the

two accumulation trees AT V ,AT S and all values acci, accv, ti, tv,WP,C, and publishes

pk, dV , dS .

Proof generation. We next describe proof generation for pattern matching queries,

i.e., matches and mismatches. The process varies greatly for the two cases as can be

seen in Algorithm 2 below. The role of each proof component will become evident

when we discuss the verification process in the next paragraph. In both cases, let

(v, k, t) be the matching node inG, the matching index and the prefix size returned by

algorithm (v, k, t)← suffixQuery(p,G) (as described in Section 5.2 and Figure 5·3).

Proving a match. In this case the answer is α(q) = “match at i”. Let p = p1p2 . . . pm

be the queried pattern. The server computes i = sv−dv and j = i+m. By Lemma 9,

suffixes S[i] and S[j] are such that S[i] = pS[j] and i ≤ j. The corresponding indexes

are easily computable by traversing the suffix tree for p. The server returns i, j

along with characters T [i], T [j] as well as suffix structure and suffix accumulations

acci, accj, ti, tj. Finally, using accumulation tree AT S , he computes proofs πi, πj for

validating that acci, accj ∈ S.

Proving a mismatch. In this case the answer to the query q is α(q) = “mismatch”.

130

Algorithm 2: query(q, T , auth(T), pk)

1. Call suffixQuery(p,G) to receive (v, k, t)
2. Set i = sv − dv
3. If t = m Then
4. Set a(q) = “match at i” and j = i+m
5. Lookup acci, accj, ti, tj in auth(T)
6. Compute AT S proofs πi, πj for acci, accj
7. Set Π(q) = (j, T [i], T [j], acci, accj, ti, tj, πi, πj)
8. Else
9. Set a(q) = “mismatch” and j = i+ k + 1
10. Lookup accv, acci, accj, tv, ti, tj in auth(T)
11. Compute AT S proofs πi, πj for acci, accj
12. Compute AT V proof πv for accv
13. Set aux = (sv, ev, dv, i, j, k, t)
14. Set Π(q) = (aux, T [i], T [j], accv, acci, accj, tv, ti, tj, πv, πi, πj)
15. If k = ev Then
16. Traverse the sequels of v to find pair c, c′ s.t. c < pt+1 < c′

17. Let P = {(sequel, c, c′)}
18. Lookup subset witness WP,C
19. Set Π(q) ∪ {P ,WP,C}
20. Output a(q),Π(q)

Let (sv, ev), dv and cv be the range, depth and sequel of v. The server computes

i = sv − dv and j = i + k + 1 and returns sv, ev, dv, k, t, i, j, T [i], T [j] along with

accumulations accv, acci, accj with proofs πv, πi, πj and structure accumulation values

tv, ti, tj. Finally, if k = ev he also returns WP,C where P contains sequel c, c′ such

that c < pt+1 < c′.

Verification. Here we describe the verification algorithm of our scheme. Below we

provide the pseudo-code in Algorithm 3 and an intuitive explanation for the role

of each component of the proof. In both cases, the verification serves to check the

conditions stated in Lemmas 9, 10, which suffices to validate that the answer is

correct.

Verifying a match. Recall that, by Lemma 9, it suffices to validate that there exist

131

suffixes S[i], S[j] in the text, such that S[j] = pS[i]. First the client verifies that

acci, accj ∈ Π(q) are indeed the suffix accumulations of two suffixes of T using proofs

πi, πj (Line 1). Then, it checks that the corresponding structure accumulations are

indeed ti, tj (Lines 2-4). It remains to check that the “difference” between them is p

(Lines 6-7), by first computing the pattern accumulation value gp) for p =
∏m

l=1(s+

r(pos, i + l − 1, pl)). A careful observation shows that this is indeed the “missing”

value between the honestly computed structure accumulations ti, tj. This can be

cryptographically checked by a single bilinear equality testing e(ti, g) = e(tj, g
p).

This last step can be viewed as an accumulator-based alternative to chain-hashing

using a collision-resistant hash function. It follows from the above that, if all these

checks succeed, the conditions of Lemma 9 are met.

Verifying a mismatch. The case of a mismatch is initially similar to that of a match,

however, it eventually gets more complicated. The client begins by verifying the

same relations as for the case of a match for two indices i, j (Lines 1-4). In this case,

these positions correspond to two suffixes S[i], S[j] such that S[j] = p′S[i], where

p′ is a prefix of p, i.e., their difference is a beginning part of the pattern (Lines 9-

10). Unfortunately, this is not enough to validate the integrity of the answer. For

example, a cheating adversary can locate the occurrence of such a prefix of p in the

text, and falsely report its position, ignoring that the entire p appears in T as well.

We, therefore, need to prove that p′ is the maximal prefix of p appearing in the text

and here is where the properties of the suffix tree become useful. In particular, if two

characters appear consecutively within the same node of G, it must be that every

occurrence of the first one in T is followed by the second one. Hence, if the server

can prove that the part of T corresponding to the final part of p′ as well as the

consequent character, both fall within the same node and said consequent character

is not the one dictated by p, it must be that p′ truly is the maximal prefix of p ∈ T .

132

Algorithm 3: verify(q, α(q),Π(q), d, pk)

1. Verify acci, accv with respect to dS , with πi, πj
2. Compute gx for x = (s+ r(first, T [i]))(s+ r(index, i))
3. Compute gy for y = (s+ r(first, T [j]))(s+ r(index, j))
4. Verify that e(ti, g

x) = e(acci, g) and e(tj, g
y) = e(accj, g)

5. If α(q) = “match at i” Then
6. Compute gp for p =

∏m
l=1(s+ r(pos, i+ l − 1, pl))

7. Verify that e(ti, g) = e(tj, g
p)

8. Else

9. Compute gp for p =
∏t

l=1(s+ r(pos, i+ l − 1, pl))
10. Verify that e(ti, g

p) = e(tj, g)
11. Verify that i = sv − dv and sv ≤ k ≤ ev and j = i+ k + 1
12. Verify accv, with respect to dV , with πv
13. Compute gz for z = (s+ r(range, sv, ev))(s+ r(depth, dv))
14. Verify that e(tv, g

z) = e(accv, g)
15. If k < ev Then verify that pt+1 6= T [j]
16. Else
17. Verify that c < pt+1 < c′ (alphabetically)
18. Compute gw for w = s+ r(sequel, c, c′)
19. Verify that e(WP,C, gw) = e(accv, g)
20. If any check fails Then output reject, Else accept

This is done by checking the relation between the node accumulation and the node

structure accumulation of the returned node v (Lines 11-15).

This however does not cover the case where the consequent character, after p′,

falls within a child node of v (i.e., the part of T corresponding to p′, ends at the end of

the range of v). To accommodate for this case, the server needs to prove that the next

character in p, does not appear as the leading character of any of v’s children. Since

all these characters have been alphabetically ordered and accumulated in consecutive

pairs, it suffices to return the corresponding pair P that “covers” this consequent

character. The validity of this pair is guaranteed by providing the related pre-

computed witness, the relation of which to node v is tested by checking a bilinear

equality (Lines 17-19).

We can now state and prove our main result.

133

Theorem 4. The scheme {genkey,setup,query,verify} is a static ADS for the

class of pattern matching queries q over a text T of size polynomial in λ. It is correct

and secure under the q-SBDH assumption.

Proof: The correctness of our scheme follows from close inspection of the algorithms.

Assume now that there exists a poly-size adversary A that outputs a winning tuple

for the ADS game. We will show that under the q-SBDH assumption this can only

happen with negligible probability.

Let T , auth(T), dV , dS , q, α
∗(q),Π(q) be the tuple output by A at the end of the

ADS game. We argue separately for the match and mismatch case specified by α∗(q):

Match In this case, A falsely claims that pattern p, specified by query appears in

T at position i. In reality however, p does not appear in T at that position.

Note that this covers both the case where p does not appear in T at all,

and the case where it appears at i′ 6= i. By Lemma 4, the values acci, accj

included in Π(q) are actual accumulation values for the suffixes at positions

i, j in T , with all but negligible probability. Assume that the value T ∗ [i]

in Π(q) is different than the character T [i] from the actual text. Let Si =

Xi1 ∪ Xi2 ∪ Xi3 be the accumulated set for acci, efficiently computable from

T . Then for the set R = {r(first, T ∗[i]), r(index, i)} it is true that R 6⊆ Si,

yet e(ti, g
(s+r(first,T ∗[i]))(s+r(index,i))) = e(ti, g

R(s)) = e(acci, g). However, from

Lemma 1, this can only happen with negligible probability, therefore it must

be that T ∗[i] = T [i], and similarly for T ∗[j] = T [j]. Likewise, from the

fact that the above equation holds, as verification succeeds, it follows that

indeed the term ti from Π(q) can be written as ti = acc(Xi1), where Xi1 =

{(pos, i, T [i]), . . . , (pos, n, T [n])} is the correct set for the i-the suffix in T , and

likewise, tj = acc(Xj1).

Observe that, by construction Xi1 ⊂ Xj1. Therefore, by Lemma 7, it must

134

be that the term gp is the accumulation of their set difference. Equivalently,

S[i] = pS[j], which from Lemma 9 means that p appears in T at i, which

contradicts our original assumption. From the above analysis, under the q-

SBDH, this case can occur only with negligible probability.

Mismatch In this case, A falsely claims that pattern p, specified by query q, does

not appear in T . By Lemma 4, the values accv, acci, accj included in Π(q) are

actual accumulation values for node v and for the suffixes at positions i, j in T ,

with all but negligible probability. Using the same analysis as for the match

case above, it follows that T ∗[i] = T [i] and likewise for T ∗[j], with all but

negligible probability.

Now, we need to separately inspect two sub-cases, namely whether the mis-

match occurred at the end of a node or not. For the former case, using the

same analysis as for the match case above, it follows that sv, ev, dv are the

correct values for node v with all but negligible probability. Moreover, it must

also be that S[i] = p′S[j] where p′ is the length t prefix of the queried pattern

p, i.e., p′ appears in T at position i. Since sv ≤ k ≤ ev, it follows that all

occurrences of p′ are followed by T ∗[j]. Finally, since verification succeeds,

pt+1 6= T ∗[j] = T [j]. From Lemma 10, this means that p does not appear in

T , contradicting our original assumption. From the above analysis, under the

q-SBDH, this case can occur only with negligible probability.

For the latter case, from Lemma 1 the sequel c, c′ ∈ Π(q) is a valid sequel of first

characters of children of v (i.e., r(sequel, c, c′) ∈ Yv3), with all but negligible

probability. Therefore, p′ is never followed by pt+1 in T , and from Lemma 10,

this means that p does not appear in T , contradicting our original assumption.

From our analysis, under the q-SBDH, this case can occur only with negligible

probability.

135

2

Complexity analysis. The running time of algorithm setup is O(n). This fol-

lows immediately from the following: (i) the construction of G takes O(n) and the

produced tree contains O(n) nodes, (ii) all suffix and suffix structure accumulations

can be computed with a single pass over T , (iii) node and node structure accumu-

lation values can be computed in time linear to the number of the node’s children

(using sk); since each node has a unique parent node, all node accumulations are

also computable in time O(n), and (iv) an accumulation tree over n elements can

be constructed in time O(n). The running time of algorithm query is O(m), be-

cause all proof components in Π(q) are pre-computed (including AT proofs if the

accumulation trees are of height 1), hence the only costly component is the suffix

tree traversal which takes O(m). For algorithm verify the runtime is O(m logm).

This holds because verification of AT proofs can be done with O(1) operations, ac-

cumulating a set of m elements, with pk alone, takes O(m logm) operations and only

a constant number of checks is made. The proof consists of a constant number of

bilinear group elements (at most ten, corresponding to the case of a mismatch at the

end of a node). Finally the overall storage space for auth(T) is O(n).

Handling wildcards. Our construction can be easily extended to support pattern

matching queries expressed as limited regular expressions. In particular, it can ac-

commodate queries with patterns containing a constant number of “wildcards” (e.g.,

∗ or ?). To achieve this we proceed as follows. Partition p into segments associated

with simple patterns, with the wildcards falling between them. Proceed to run proof

generation and verification for each segment individually. For the mismatch case, it

suffices for the server to demonstrate that just one of these segments does not ap-

pear in T . For the match case, the server proves existence for all segments and the

clients verifies each one separately. He then checks that the positions of occurrence

136

(expressed as the i, j indices of each segment) are “consistent”, i.e., they fall in the

correct order within the text (or they have the specified distance in case there is a

corresponding restriction in the query specification).

5.4 Applications

In this section we discuss two practical applications of our construction. We first

show how our scheme can be used to accommodate pattern matching queries over

a collection of documents and then explain how our bilinear accumulator authenti-

cation technique can be modified to support a class of queries over semi-structured

data, namely XML documents. Finally, we discuss how our construction can be

extended to efficiently handle modifications in the dataset.

5.4.1 Search on collection of text documents

We generalize our main construction to handle queries over multiple documents. By

adding some modifications in the suffix tree authentication mechanism, we build a

scheme that supports queries of the form “return all documents that contain pattern

p”. This enhancement yields a construction that is closer to real-world applications

involving querying a corpus of textual documents.

Let T1, . . . , Tτ be a collection of τ documents, with content from the same alphabet

Σ. Without loss of generality, assume each of them has length n, and let N be the

sum of the lengths of all Ti, i.e., N = τn. We assume a data structure that upon

input a query q, expressed as string pattern p from Σ, returns the index set I := {i|p
appears in Ti}, i.e., the indices of all documents that contain the pattern. Using

our construction as a starting point, one straight forward solution for authenticating

this data structure is to handle each Ti separately, building and authenticating a

corresponding suffix tree. Consequently, in order to prove the integrity of his answer,

the server replies with τ separate proofs of our main construction (one for each

137

document) which are separately verified by the client. This approach is clearly not

efficient since τ can be very large in practice; shorter proofs are not possible, since a

server can cheat simply by omitting the answer for some documents and the client

has no way to capture this unless he receives a proof for all of them.

Main idea. We handle all documents as a single document T = T1 ∗ T2 ∗ . . . ∗ Tτ
expressed as their concatenation, where ∗ is a special character 6∈ Σ marking the

end of a document. We define extended alphabet Σ∗ = Σ ∪ {∗} and build a single

authenticated suffix tree G = (V,E, T ,Σ∗) as in our main construction. Observe

now that the query can be reduced to answering a single pattern matching query

for p in T , asking for all its occurrences (as opposed to our main scheme where

we were interested with a single occurrence). This can be easily achieved with the

following observation about suffix trees: for a pattern p for which suffixTree outputs

node v ∈ G, the number of occurrences of p ∈ T , is the number of children of G.

For example, in Figure 5·2, the pattern i appears three times in the text, and the

pattern mi appears twice.

Construction overview. The above relation can be incorporated in our main

construction, by encoding in each node v not a single range (sv, ev) but the indices

of all these ranges (svu, e
v
u), one for each child node u of v. In fact, the information

will consist of triples (i, svu, e
v
u) where i is the index of the document Ti within which

sv falls. This can performed in time O(n) in three steps. Initially, the owner sets

up an efficient dictionary structure with key-value pairs formed by document indices

and corresponding starting positions. Then he sets up a suffix tree G for T and

with a post-order traversal computes all ranges for each node (with lookups to the

dictionary). He finally runs the setup for our main construction with the modified

node information explained above.

Regarding proof generation and verification, we distinguish between the two cases.

138

If p does not appear in T , then the proof is same as in our basic scheme and the

same holds for verification14. For the case of positive response, the server must

return a proof that consists of three parts: (i) a match proof exactly as in our

main construction, with boundaries i, j; (ii) a node accumulation accv (with its

accumulation tree proof and structure accumulation) for the node v corresponding

to p and all its ranges; (iii) the indices of all documents where p appears. With access

to all this information, the client verifies that p indeed appears in T , it corresponds

to v (because there must exist one range of v that covers position j) and that the

returned indices correspond exactly to all documents containing p. Observe that

the special character ∗ makes it impossible for an adversary to cheat by finding two

consecutive documents, the first of which ends with a prefix of p and the second of

which begins with the corresponding suffix (as long as {∗} 6∈ p).

5.4.2 Search on XML documents

We now turn our attention to queries over XML documents. We consider the stan-

dard tree-based representation of XML data: An XML document X consists of n

elements e1, . . . , en organized in a hierarchical structure, via sub-element relations,

which, in turn, imposes a well-defined representation of X as a tree XT having ele-

ments as nodes and sub-element relations expressed by edges. Each element has a

label that distinguishes its data type, attributes and corresponding attribute values

and actual textual content (which can be viewed as an additional attribute).15 We

also assume that each element of XT is associated with a unique numerical identifier

stored as an element attribute. Figure 5·4 provides one such simplified tree-based

representation.

14The node accumulations must include separately a single range for v (randomly chosen
in the case of multiple occurrences) and the collection of all ranges described above.

15We do not consider reference attributes relating elements to arbitrary nodes in XT) or
processing instructions.

139

bookstore	

name	

name	
 name	

name	

department	
 employee	
 employee	

salary	
 salary	

book	
 book	

0tle	
 author	
 YoP	

XT bookstore	

department	
 name	
 employee	

name	
 salary	
 name	

book	

0tle	
 YoP	
 author	

XL

name	

book	

…

… …

department	

0tle	
 author	
 YoP	

book	

Figure 5·4: (Left) Tree XT containing all the elements of XML
document X. Element attributes can be included as a different type
of node, directly below the corresponding element. (Right) Trie XL
containing all the distinct label paths that appear at X. Observe how
each node has pointers to all the corresponding element nodes in XT .

Each node e in XT is defined (or reachable) by a single label path that is the

concatenation of the labels of e’s ancestor nodes in the order that they must be tra-

versed starting from the root of XT in order to reach e. In general, many elements

may share the same label path. We abstract away the details of the (often elab-

orate) querying process of an XML document by considering generic path queries

that return a subset of the elements of XT (in fact, a forest of subtrees in XT).

A path query is generally a regular expression over the alphabet L of valid labels

returning all nodes reachable by those label paths conforming to the query, along

with the subtrees in XT rooted at these nodes. An exact path query is related to

a label path L of length m, i.e., L ∈ Lm, returning the subtrees reachable in XT
by L. This abstraction fully captures the basic notion of path query as identified

in various XML query languages, e.g., XPath, XML-QL. As an example a query of

the form \bookstore\department\book will return all the books that appear in XT as

shown in Figure 5·4 with the corresponding subtree of each book element (i.e., nodes

title, author,YoP).

Main idea. Similar to the case of text pattern matching, our goal is to identify

the relations among the elements of XML document that are sufficient to succinctly

140

certify the correctness of exact-path XML queries. Our main approach is to decouple

locating the queried elements from validating their contents. We achieve this through

a direct reduction to our (authenticated) suffix tree construction from the previous

section: Given an XML document X in its tree-like representation XT , we construct

a trie XL that stores all the distinct label paths that appear in XT . Compared to

our main scheme, XL can be viewed as an uncompressed suffix tree (trie) with the

alphabet being the element label space L associated with X and the “text” over

which it is defined being all label paths in XT . Each node in XL is associated with

a valid label path according to XT and also with the set of elements in XT that

are reachable by this label path, through back pointers. For example, the query

\bookstore\department\book in Figure 5·4 will reach one node in XL which points

back to the elements reachable by the queried path. We define, encode and authen-

ticate three types of certification relations (corresponding to edges in Figure 5·4):

1. Subtree contents: This relation maps nodes in XT with the elements (and their

attributes) in XT that belong in the subtrees in XT defined by these nodes.

2. Label paths: This relation maps nodes in XL with their corresponding label

paths. Here, we make direct use of our results from Section 5.3; however,

since we no longer have a tree defined over all possible suffixes of a text, suffix

accumulations are no longer relevant (instead, we use node accumulations).

3. Element mappings: This relation maps nodes in XL with the corresponding

elements in XT that are reachable by the same label path (associated with

these nodes).

We next describe how to cryptographically encode the above relations by carefully

computing accumulations or hash values over sets of data objects related to the nodes

in XL and XT .

141

Notation. We denote by eid the identifier, by Ae = {(ai, βi)|i = 1, . . . , |Ae|} the

attribute values, by lb(e) the label, and by Ce = {ci|i = 1, . . . , |Ce|} the children

of element e in XT . Also, for node v ∈ XL, we denote by Lv, lb(v), Cv, and Ev its

label path, label, children set, and respectively the set of elements ei in XT that are

reachable by Lv. Finally, let d be the height of XT .

Subtree labels. Subtree contents in XT are encoded using a special type of node-

specific values. If h is a cryptographic collision-resistant hash function, then for any

e ∈ XT we let he denote the hash content of e he = h(eid‖(a1, β1)‖ . . . ‖(a|Ae|, β|Ae|)).
Then, for e ∈ XT we define two different ways for recursively computing node-

specific subtree labels sl(e) that aggregate the hash labels of all the descendant nodes

of e in XT :

1) Hash based: If e is leaf in XT then sl1(e) = he, otherwise sl1(e) =

h(he‖sl1(c1) . . . ‖sl1(c|Ce|));

2) Accumulation based: sl2 = acc(Ze) where if e is leaf then Ze = he, other-

wise Ze = {he,Zc1 , . . . ,Zc|Ce|};

Node accumulations. Label paths and element mappings in XL are encoded using

node accumulations. We associate with v ∈ XL three sets of data objects: (a) The

label path Lv of v; let Yv1 = {(label, i, li) : i = 1, . . . , |Lv|}; (b) The label sequels

of v is lb(c1), . . . , lb(c|Cv |), the sequence of the alphabetically ordered labels of v’s

children; let Yv2 = {(sequel, lb(ci), lb(ci+1)) : i = 1, . . . , |Cv| − 1}; and (c) The XML

elements hash is the hash value of the set Ev of elements of XT that correspond to

Lv; let Yv3 = {(hash, h(sl(e1), . . . , sl(e|Ev |)} (alternatively, this hash can be computed

as the accumulation of values sl(ei) using a bilinear accumulator). Then the node

accumulation for node v ∈ XL is defined as acc(Yv1 ∪ Yv2 ∪ Yv3).

Construction overview. Here we discuss the operation of the algorithms of our

142

scheme. The genkey algorithm is exactly the same as the one for our main construc-

tion (plus generating a collision resistant hash function if sl1 is chosen for subtree

labels). For setup, the owner first builds XL, the trie containing all distinct paths

appearing in the XT . He then computes subtree labels sl(e) for each element e ∈ XT
in a bottom up way starting from the leaves and node accumulations accv for each

node v ∈ XL. He also computes for v, two structure accumulations tv, sv, the first

of which contains only information regarding the labels of its children nodes and the

second contains all the node information except for the label path Lv. Moreover,

he computes a subset witness for each consecutive pair of children of v (ordered al-

phabetically based on their label), exactly as in the main scheme. He finally builds

a single accumulation tree over the set V of node accumulations accv and sends all

components to the server.

With respect to query we again distinguish the two cases. If the queried path

L does not appear in XT , proof generation is identical to the mismatch case of our

main construction. The server simply needs to prove the existence of a prefix of

L, and that none of the children of the node v in XL corresponding to this prefix

has the necessary next label. This is achieved by providing the length of the prefix,

the corresponding accv (with its accumulation proof), the structure accumulation

sv, and the corresponding pair of children labels with its subset witness. The client,

first checks the validity of accv, then verifies it corresponds to the given prefix of L

using the structure accumulation and, finally checks whether the next label in L is

covered by the given label pair, as well as the fact that it is a well-formed pair using

the given witness. Observe that, in contrast to our main construction, since XL is

uncompressed, the mismatch will always happen “at the end” of a node.

If L appears in XT , the answer consists of all elements ei in the document that

have label paths corresponding to L as well as the subtrees of XT that have ei as

143

roots. Note that, since the result consists of a forest of subtrees, their structure (i.e.,

the parent-children relations of elements) is also explicitly part of the answer. Proof

generation proceeds as follows. If v is the node in XL that corresponds to L, the

server only needs to provide accv (with its accumulation proof) and the structure

accumulation tv. The client first validates that accv is a correct node accumulation

and then checks that it corresponds to L and all provided elements ei using the

structure accumulation tv. To achieve the latter, he first computes subset label sl(ei)

for each element in the answer Ev and their hash value η = h(sl(e1), . . . , sl(e|Ev |)). He

then computes gx for x = (s + r(hash, η))
∏|Lv |

i=1 (s + r(label, i, li)) and finally checks

whether e(gx, tv) = e(accv, g). This simultaneously validates that v corresponds to L

and that all elements of XT (including subtrees) have been returned. For the latter,

observe that sl is a secure cryptographic representation, hence no elements may be

omitted.

5.4.3 Dynamic datasets

So far we have only dealt with the case of static datasets, where the data owner

outsources the data once, with no further changes. However, in many cases the

owner may wish to update the dataset by inserting or removing data. When this

occurs, the owner can of course run the entire setup process again, but here we

investigate more efficient updates for the two applications presented above.

Collection of text documents. For our scheme we build a single suffix tree on the

collection, hence our update efficiency will crucially depend on this data structure’s

behavior. In practice, a single modification in any of the documents may change

the suffix tree entirely and the best we can do for updates is to re-run setup, in

time O(nτ). One way to accommodate updates more efficiently is the following. We

first split the documents in
√
τ groups, each with

√
τ documents, and then run our

scheme separately for each group. A given query now decomposes into a separate

144

query for each group. In this setting, an update –in the form of a document insertion

or removal– will only cause the re-computation of one of the suffix trees (and the

corresponding ADS) in time O(n
√
τ) instead of O(nτ). On the other hand, this

increases the cost for proof generation/verification and size by a multiplicative
√
τ

factor, but in settings with frequent updates, this trade-off may be favorable.

XML documents. In this setting, we discuss updates in the form of element

insertion or removal from the document, that do not change the structure of the label

trie XL (i.e. they do not introduce a new label path in the document). Otherwise,

we face the same difficulties as in the previous application. We focus on leaf element

insertions; in order to insert more than one element (building a new subtree in XT)

the process is repeated accordingly. Updates of this form can be efficiently handled

as follows: First, the new element’s subtree label is computed and the subtree labels

of all its ancestors in XT are re-computed. Second, the node accumulation value

of the corresponding node v ∈ XL is updated by inserting the subtree label of the

new element in the XML elements hash. Then, the second structure accumulation

and children witnesses for v are updated, and the accumulation tree is updated

accordingly.

Let us now calculate the efficiency of the above process. Computing the subtree

labels takes O(d) operations and recomputing the node and structure accumulations

and children witnesses requires O(|Cv|) exponentiations (assuming the XML elements

hash is computed with a bilinear accumulator). We stress that |Cv| is the number of

distinct labels the siblings of the inserted element have, and not the number of its

XML element siblings; for all practical purposes |Cv| can be viewed as a constant.

Finally, by the properties of the accumulation tree, the last step can be run in time

O(|XL|ε), where ε ∈ (0, 1] is a chosen parameter. The same holds for the case of

element removal. Hence the overall update cost is O(d+ |Cv|+ |XL|ε), which is much

145

less than the setup cost.

5.5 Parallel algorithms

In this section we show how to derive parallel implementations for the setup algo-

rithms of our schemes. We consider parallelism in the exclusive-read-exclusive-write

(EREW) model [JáJ92].

Parallel bilinear accumulator setup. Given the trapdoor information s, the

accumulation acc(X) of a set X can be computed in O(log n) parallel time using

O(n/ log n) processors in the EREW. This can be achieved using an algorithm for

summing n terms in parallel (where sum is replaced with multiplication) [JáJ92] .

Parallel suffix products. It is easy to see that suffix accumulations can be

computed with the parallel prefix sums algorithm in O(log n) parallel time using

O(n/ log n) processors.

Parallel path prefixes. We now show how to compute prefix accumulations on the

paths of a tree. For a node v of a rooted tree T of size n, let xv denote the element

stored at v and path(v) denote the path of T between v and and the root, including

the root and v. Let prefix accumulations of tree T , be computed as accPv(T) =

g
∏
u∈path(v) (s+xu), for v ∈ T . These prefix accumulations can be computed in O(log n)

parallel time, using O(n/ log n) processors in the EREW model by computing a

suffix accumulation over the Euler tour of T (using the previous approach), that is

appropriately refined to accumulate (s+xv) modulo p in the exponent when the tour

encounters the left side of v and (s + xv)
−1 modulo p when the tour encounters the

right side of v.

Parallel subtree products. Our authenticated XML tree in Section 5.4 also uses

subtree labels on a tree T of size n, storing element xv at node v. If these labels

are accumulation based, they can be modeled as accSv(T) = g
∏
w∈subtree(v)(s+xw) for

146

v ∈ T , where subtree(v) is the set of nodes contained in the subtree rooted on node

v (including v). Note that in order to compute accSv(T) for all v ∈ T , it suffices

to compute the products
∏

w∈subtree(v)(s + xw) for all v ∈ T . Such a parallel algo-

rithm running in O(log n) parallel time using O(n/ log n) processors was originally

presented as an application of a method named tree contraction [MR91].

Parallel accumulation trees. Accumulation trees on a set of n elements, origi-

nally presented in [PTT15], can also be constructed in parallel. First, partition the

elements of the set in O(n/ log n) buckets of size O(log n) and then compute the

accumulations of the buckets with O(n/ log n) processors in O(log n) parallel time.

Next, for a fixed ε, build the accumulation tree on top of the B = n/ log n buckets.

Specifically, the accumulations (O(B1−ε) in total) of all internal nodes (of degree

O(Bε)) at a specific level can be computed independently from one another. There-

fore, by the parallel accumulation setup algorithm (presented in the beginning of this

section), the accumulation tree can be computed in O(logBε) = O(log n) parallel

time using O(B1−εBε/ logB) = O(n/ log n) processors, similarly with a Merkle tree.

We conclude that the setup algorithm of our scheme for authenticated pattern

matching can be run in O(log n) parallel time using O(n/ log n) processors, for both

presented applications.

5.6 Performance evaluation

In this section, we present an experimental evaluation of our two authenticated pat-

tern matching applications from Section 5.4. All scheme components were written in

C++, by building on a core bilinear accumulator implementation [Tre13] developed

by Edward Tremel, as well as using library DCLXVI [DCL16] for bilinear pairings,

library FLINT [Fli16] for modular arithmetic, Crypto++ [Cry16] for implementing

SHA-2, and the pugiXML [Pug16] XML parser. The code was compiled using g++

147

XML document size (MB) # of elements # of paths setup (sec)
SIGMOD 0.5 11,526 11 0.4
Mondial 1 22,423 33 0.7
NASA 23 476,646 95 8.9
XMark 100 2,840,047 514 35.2
DBLP 127 3,332,130 125 68.9
Protein sequence 683 21,305,818 85 381.5

Table 5.1: XML documents used for experiments and setup time.

version 4.7.3 in C++11 mode. Our goal is to measure important quantities related to

the execution of our scheme: verification time for the clients, proof generation time

for the server, setup time for the data owner, and the size of the produced proof.

Experimental setup. For our collection of documents application, we used the

Enron e-mail dataset [KY04] to build collections of e-mail documents (including

headers) with total size varying between 10,000 and 1,000,000 characters. We set

the public key size to be equal to 10% of the text size at all times (this can be seen

as an upper bound on the size of patterns that can be verified). For the exact path

XML application, we experimented with five XML documents of various sizes from

the University of Washington XML repository [Uow16], as well as a large synthetic

XML document generated using the XMark benchmark tool [Sch16]. A list of the

documents and their sizes can be found in Table 5.1. Special characters were es-

caped both in the e-mail documents and the text content within XML elements. For

computing subset labels and XML elements hashes within trie nodes, we used the

hash-based approach with SHA-2. In both cases, we constructed accumulation trees

of height 1 for the authentication of suffix and node accumulations. All quantities

were measured ten times and the average is reported.

Working with pairings over elliptic curves. As discussed in Section 2 the bilin-

ear accumulator employs a pairing e defined over two bilinear groups. For simplicity

of presentation, we previously defined e : G × G → GT , i.e., both its inputs come

from the same group (known in the literature as an symmetric pairing). In practice

148

text size setup (sec)
100 1.4
1,000 10.7
10,000 99.6
100,000 976.5
1,000,000 10,455

(a) setup time

proof type proof (KB) optimal (B)
positive 3.4 435
negative 3.4 435
neg. end node 4 500
xml positive 1.2 178
xml negative 1.7 243

(b) proof size

Table 5.2: Setup cost for text documents and size of proofs.

however, asymmetric pairings of the form e : G1 × G2 → GT , where G1,G2 are

groups of the same prime order but G1 6= G2, are significantly faster. The DCLXVI

library we use here makes use of such a pairing over an elliptic curve of 256 bits, and

offering bit-level security of 128 bits (corresponding to the strong level of 3072-bit

RSA signatures according to NIST [BBB+12]). Elements of G2 (corresponding to

witnesses in our scheme) are defined over an extension of the field corresponding to

elements of G1(resp. accumulations). The former are twice as large as the latter and

arithmetic operations in G2 are roughly 2-3 times slower.

Setup cost. Table 5.2(a) shows the setup time versus the total length of the docu-

ments and depicts a strong linear relation between them. This is expected because

of the suffix accumulation computations and the fact that the suffix tree has linearly

many nodes. The practical cost is quite large (e.g., roughly 3 hours for a text of

1,000,000 characters). However, this operation only occurs once when the outsourc-

ing takes place. For the XML case, Table 5.1 contains the necessary setup time for

the documents we tested. The time grows with the size of the document but is quite

small in practice, even for very large documents (e.g., a little above 6 minutes for a

document of size 683MB). This happens because the crucial quantity is the number

of distinct paths in the document (that will form the nodes of XL), and not the

number of elements in the document itself.

Query time. Figures 4·8(a), (b) and (c) show the server’s overhead for answer

149

Figure 5·5: Computation time for query evaluation and proof con-
struction at the server, for text pattern matching.

Figure 5·6: Overall computation time for positive (left) and negative
(right) responses at the server, for XML pattern matching.

computation and proof generation, for text and XML pattern matching. For text

pattern matching we experimented with pattern lengths of 10 to 1,000 characters

at a text of 1,000,000 characters. To test the query time at the server, we focused

on queries with negative answers and prefix matches finishing at the end of a node,

which is the most demanding scenario (e.g., a pattern that starts with a letter that

does not even appear in the text is answered by simply looking at the children of the

root node of the suffix tree). To produce such queries, we identified matches at ends

of various nodes, and “built” progressively larger patterns that ended with them.

150

We plot the overall time for query evaluation and proof generation versus the size of

the found prefix. As can be seen, the cost is in the order of a few microseconds (µs)

at all times. In the case of XML queries, we present findings both for the positive

and negative case in Figures 4·8(b) and (c) respectively, for the NASA, XMark and

DBLP datasets (note the different y-axis scales). For queries with positive answers,

we tested on all existing label paths, whereas for negative ones we inserted a “junk”

label at a random point along a valid path. In the first case the plot is versus the

size of the answer; for the second case where the answer size is zero, we plotted the

times across the x-axis by simply assigning an arbitrary id (1-742) to each query.

The overhead is again very low, less than 1 millisecond for most instances in the

positive case and less than 20µs in the negative. This discrepancy occurs because

the server must compile the answer subtrees into a new pugiXML document (that will

be sent to the client) for a positive answer –which does not entail any cryptographic

operations. Finally, in both applications the plots are quite noisy. This follows

because the answer computation time varies greatly with the topology of the trees

(in both cases) and the size of node contents (for the XML case).

Comparison with query-evaluation time. In both cases, the server’s overhead for proof

generation is very low in our scheme since, once the answer is computed, he simply

performs a constant number of lookups in his local database to find the corresponding

accumulations and witnesses. This is highlighted in Figure 4·8(a) where the lower

data series corresponds to the time it takes to simply evaluate the query (without

any proof of integrity). As can be inferred, the pure cost for proof generation is less

than 10µs at all times. This is also true for the XML case, but due to the different

plot type, it was not easy to depict in a figure. In essence, in our scheme the server

only performs exactly the same operations as if there was no authentication plus a

constant number of memory look-ups, for both applications which makes it ideal for

151

scenarios where a dedicated server needs to handle great workload at line-speed.

Verification time. In Figures 4·8(d),(e) and (f) we demonstrate the verification

cost for clients for the text and XML pattern matching applications. In the first

case, the time is measured as a function of the queried pattern length (or matching

prefix in the case of a negative answer) and in the second as a function of the answer

size (as before, for negative responses we plot versus an arbitrary id).

To test the verification time for our text application, we report findings for all

three possible cases (match, mismatch and mismatch at end of node). We observe a

strong linear correlation between the verification time and the length of the matched

pattern. This follows because the main component of the verification algorithm is

computing the term gz. Observe that verification for the positive case of a match

is slightly faster, which corresponds to our protocol description. In that case, the

client needs to perform operations over accumulations and witnesses related only to

suffixes, without getting involved with suffix tree nodes. On the other hand, the case

where a mismatch occurs at the end of a suffix tree node is slightly more costly than

that of a simple mismatch since the client needs to also verify a received sequel with

a corresponding witness. The verification overhead remains below 300ms even for

arguably large pattern sizes consisting of up to 1,000 characters.

For XML path matching, we report findings for answer sizes of up to 50,000 ele-

ments. Observe again the strong linear correlation between the answer size and the

verification time, for positive answers. This follows from the fact that the client per-

forms one hash operation per element in the answer, followed by a constant number

of bilinear pairings. The total overhead is very small, less than half a second even for

large answer sizes. If the answer is negative (again, note the different y-axis scale)

the overhead comes mostly from the fixed number of pairings and is much smaller.

Proof size and optimizations. With the DCLXVI library, bilinear group elements

152

Figure 5·7: Computation time for verification of the three different
cases at the client, for text pattern matching.

Figure 5·8: Computation time for verification of positive (left) and
negative (right) responses at the client, for XML pattern matching.

are represented by their Jacobian coordinates, i.e., three values per element. As

described in [NNS10], each coordinate of an element in G1 is represented by a number

of double-precision floating-point variables. The total representation size is 2304 bits

for elements of G1 and 4608 bits for elements of G2. In our scheme, proofs also

contain additional structural information (e.g., position of match/mismatch in text,

depth of edge, etc.) which was less than 50 bytes for all tested configurations.

Table 5.2(b) contains the proof sizes produced by our scheme for both applica-

tions. Recall that these numbers are independent of dataset, pattern, or answer size.

153

At all times the proof size is below 4Kb and as low as 1.2Kb for positive XML proofs.

While these sizes are very attractive for most applications, further improvements (not

implemented here) are possible. Elements can be instead represented by their two

affine coordinates (x, y). Moreover, there is no need to transmit y-coordinates as

all elements lie on the curve with equation y2 = x3 + 3, which is part of the public

parameters of the scheme. Given x, the y-coordinate can be inferred by a single

bit indicating which square root of x3 + 3 it corresponds to. The result of these

optimizations can be seen at the third column of the table. The proof size is as

low as 435 bytes for text pattern matching and 178 bytes for XML path search. On

the other hand, these techniques introduce a small additional overhead at the client

(for computing y and transforming to Jacobian coordinates again). When reduced

communication bandwidth is essential or proof caching occurs, this extra cost may

be acceptable.

Discussion and comparison with alternative schemes. The above results

highlight the practicality of our constructions. In particular for the server, who

would have to handle the largest workload, the fact that all proof components are

pre-computed implies only a small fixed overhead between simply evaluating a query

and authenticating the answer with a proof on top of that. Verification time is

also appealing for most real-world scenarios making our scheme ideal for settings

with “thin” clients or even mobile devices. One component of our scheme that

can be improved significantly is the one-time setup operation; pre-computing all

proof components takes its toll, especially for the text pattern matching application.

Finally, while proofs are arguably very short, they can be further compressed by the

optimization discussed above.

To the best of our knowledge, the only other known constructions to achieve

constant-size proofs rely on general verifiable computation schemes. As discussed

154

previously, state-of-the-art implementations fall under two categories: circuit or

RAM-based. For the former, (e.g., [PHGR13]) the proof generation cost is always

at least as large as parsing a circuit that has the entire document as input. The

latter are asymptotically better than the former, but still incur prohibitive costs for

the server. In particular, as shown in [ZPK14], performing a BFS over a graph of

roughly 9,000 edges takes 270 hours with [BFR+13b] and 50 hours with [BCG+13]

for proof generation. For comparison, in our text pattern matching experiment, we

tested patterns of up to 1,000 elements and an alphabet of 256 characters. Assuming

a binary search tree at each node for finding children nodes matching the pattern,

this corresponds to 8,000 memory reads in the worst case, and proof generation took

less than 10µs. A different line of work for authenticated pattern matching is based

entirely on cryptographic hashes (e.g, [DGK+04, MND+04, BCF+04]). There is no

existing built system for concrete comparison but, due to the different nature of

operations, we expect these schemes to have faster setup and slightly better verifica-

tion time than ours. However, the proofs grow with the pattern size for text pattern

matching, and with the size of the entire document (in the worst case) for XML

queries.

Chapter 6

Conclusion

This thesis studied the problem of verifying computations performed over remotely

stored data, a research direction that has received increased attention recently, espe-

cially in relation with cloud computing and remote file hosting. We presented three

novel authenticated data structures for the specific problems of verifying nested set

operations, multi-dimensional range queries, and pattern matching queries. Our con-

structions aim for efficiency while sacrificing expressiveness (each one only works for

a specific type of queries). The experimental evaluations indeed validate this claim,

demonstrating the small overhead of our constructions, especially in comparison with

existing general-purpose solutions.

For the problem of verifiable set operations, we presented the first function-

specific construction that can handle nested operations while achieving proof size

and verification cost that are entirely independent of the sizes of intermediate sets.

Our core contribution is the development of novel composable “atomic” protocols

for the cases of set intersection, union, and difference. Our experimental evaluation

highlights the low cost for verification of complex operations, while at the same time

keeping the server’s cost for proof construction low.

For the problem of multi-dimensional range queries over outsourced databases,

and contrary to existing literature, our solution can support queries on any set of

attributes with setup cost, proof construction and verification time that are each

only linear in the number of database attributes.

155

156

The central idea of our methods is the reduction of a multi-dimensional range

query to set operations over appropriately pre-defined sets in the database. We

provided a detailed asymptotic and empirical performance evaluation, which confirms

the feasibility of our scheme.

For the problem of pattern matching queries, we presented a construction that

can accommodate queries over text and XML documents with constant-size proofs,

using careful encoding of answer-specific certification relations with cryptographic

accumulators. We demonstrated the practicality of our schemes by experimenting

on real datasets.

While introducing new more efficient constructions for the same types of prob-

lems is certainly a challenging research direction, it seems that a more interesting

problem has to do with increasing the expressiveness of supported query types. For

example, for the first two constructions one natural expansion would be to support

aggregation functions on the computed results, e.g., to return only the average of

value of a set instead of the entire set. For the pattern matching case, it is of great

interest to design a scheme that supports more general query types, such as search for

regular expressions on texts and general XPath queries for XML. These expansions

may require significant modifications to our constructions, or even development of

altogether new schemes.

6.1 Combining function-specific with general-purpose veri-

fiable computation

As discussed previously, a common theme in our solutions is the sacrifice of expres-

siveness in favor of efficiency. However, the problem with function-specific construc-

tions is that they come with no guarantee of composability. Simply put, given a

scheme for a function f1 and a scheme for a function f2 there is no known “black-

157

box” way to construct a scheme for function g := f1 ◦ f2, in a way that preserves

the efficiency of the underlying schemes. To highlight the importance of such a

mechanism, imagine a nested SQL query consisting of a JOIN query over two tables,

followed by a SELECT ... WHERE query on the join result. Assuming the existing

of two schemes for the two basic query types (e.g., [YPPK09a] and our construc-

tion from Chapter 4, respectively), can we build an efficient construction for their

composition? Unfortunately, non-composability is almost inherent in this setting, as

function-specific VC schemes may utilize entirely different types of data encodings

and cryptographic tools. Therefore, it is not trivial to translate the output of one to

appropriately encoded input for another.

One way to answer this is to compose our function-specific schemes with general-

purpose schemes based on SNARKs (e.g., [PHGR13, BCG+13]). That is, we can

consider a hybrid scheme where the server proves using a SNARK that it knows

a proof for a function-specific scheme, for the validity of its answer. The security

of the hybrid scheme can be shown by a reduction to the security of our scheme

based on the knowledge property of the SNARK (via a standard composition argu-

ment [BCCT13]). The advantages of using such a hybrid scheme may be multiple.

For example, the proof size is constant and independent of the size of the query (this

follows from the succinctness of the SNARK), which is not always guaranteed with

an ADS (see, for example, our construction from Chapter 3). Moreover, the hybrid

scheme might be much more efficient than simply using a generic solution in terms of

server computation. This saving is due to the server using the SNARK only to certify

a small computation (involving only the small verification circuit of the ADS scheme).

Moreover, most of the server’s work, when answering the query, is certified using the

efficient function-specific scheme that is tailored to the particular problem at hand,

resulting in less overhead for the server compared to the generic solution alone. This

158

approach has already been explored in existing works, e.g., in [ZPK14] the authors

combine a custom-made ADS for path queries in graphs, with a SNARK prover to

increase the class of supported computations. This proof “bootstrapping” process

can be seen as a special case of the composition technique of [Val08, BCCT13], which

has since been implemented for SNARK composition in [BCTV14, CFH+15].

Another way to achieve a “best-of-both-worlds-result”, that balances generality

and efficiency, is via the design of composable ADS constructions. At first thought,

this seems counter-intuitive, as the goal of an ADS scheme is to target a specific

problem and build an optimized solution. On the other hand, a composition approach

essentially mandates that the proven statement from one part of the computation can

be used as the input for proving the next part. However, this goal is not unachievable;

indeed, our constructions from Chapters 3 and 4 are of this flavor. The former reduces

the problem of proving complex set operations to that of proving a series of simpler

ones, while the latter decomposes a multi-dimensional range query to multiple 1–

dimensional ones. More recently, this technique has also been applied in the context

of more general SQL queries in [ZKP15].

A final direction in this area, that has been explored to a smaller extent, is that

of customized fusions of function-specific and general purpose schemes. For example,

one way to do this is to integrate a particular ADS with a SNARK system, resulting in

a construction that is general-purpose but, more importantly, it is much more efficient

than other general-purpose schemes for the particular type of computation associated

with the underlying ADS. This approach has been explored in [KPP+14] that utilizes

our set encoding technique from Chapter 3 with the SNARK of [GGPR13, PHGR13]

to build a SNARK that is based on set circuits, a natural generalization of arithmetic

circuits. The result is a general-purpose VC scheme that is significantly more efficient

than the implementation of [PHGR13] for computations that involve set operations.

159

6.2 Other open problems

One important advantage of SNARK-based VC schemes is that they can be easily

modified to ensure that the proof reveals nothing about the dataset beyond what is

directly inferable from the result itself. This property is known to as zero-knowledge

and it is particularly useful in cases where the server contributes to the computa-

tion with a (possibly sensitive) dataset of his own. With all existing SNARK-based

schemes, this property can be achieved almost for free with a simple proof randomiza-

tion technique. On the other hand, existing function-specific schemes do not have this

property and there is no similar straight forward way to modify them. One notable

exception to this is a recent line of works [GOT15, GOP+15, GGOT15, GNP+15],

that propose the notion of zero-knowledge ADS schemes that achieve the same level

of privacy as SNARK-based solutions. In particular, [GOP+15] extends our construc-

tion from Chapter 3 in a privacy-preserving manner, albeit for a single operation.

Devising new private function-specific VC schemes is an open and challenging prob-

lem that may require the development of novel cryptographic tools.

Another interesting problem has to do with the type of assumptions upon which

the security of VC schemes is based. All SNARK-based schemes need to rely on

non-falsifiable assumptions for security, as proven in [GW11], which is not neces-

sarily true for ADS schemes. However utilizing such assumptions can yield more

efficient solutions (see, for example, out construction from Chapter 3 and [ZKP15]).

It is worth exploring alternatives techniques and possibly relaxing the security or in-

teraction requirements of the model, in order to develop new constructions for both

types of schemes. Two possible relaxations, that may yield better solutions, focus

on proving security in the random oracle model or devising interactive protocols,

i.e., constructions where client and server participate in a multi-round interaction to

validate the integrity of the result.

References

Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters:
Size-hiding private set intersection. In Public Key Cryptography - PKC 2011 -
14th International Conference on Practice and Theory in Public Key Cryptography,
Taormina, Italy, March 6-9, 2011. Proceedings, pages 156–173, 2011.

Miklós Ajtai. Generating hard instances of lattice problems (extended abstract).
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, 1996.

Bao-Ling Adam, Yinsheng Qu, John W Davis, Michael D Ward, Mary Ann Clements,
Lisa H Cazares, O John Semmes, Paul F Schellhammer, Yutaka Yasui, Ziding Feng,
et al. Serum protein fingerprinting coupled with a pattern-matching algorithm
distinguishes prostate cancer from benign prostate hyperplasia and healthy men.
Cancer research, 62(13):3609–3614, 2002.

Dan Boneh and Xavier Boyen. Short signatures without random oracles and the
SDH assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, 2008.

Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. NIST
recommendation for key management Part 1: General (revision 3), July 2012.

Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Innovations in Theoretical Computer Science 2012, Cambridge, MA,
USA, January 8-10, 2012, pages 326–349, 2012.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for snarks and proof-carrying data. In Proceedings of the
Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages
111–120, New York, NY, USA, 2013. ACM.

Elisa Bertino, Barbara Carminati, Elena Ferrari, Bhavani M. Thuraisingham, and
Amar Gupta. Selective and authentic third-party distribution of XML documents.
IEEE Transactions on Knowledge and Data Engineering, 16(10):1263–1278, 2004.

160

161

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
Snarks for C: verifying program executions succinctly and in zero knowledge. In
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II, pages 90–108,
2013.

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE Symposium on Security and Privacy, SP 2014, Berke-
ley, CA, USA, May 18-21, 2014, pages 459–474, 2014.

Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of
extractable one-way functions. In Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 2014, pages 505–514, 2014.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In Advances in Cryptology - CRYPTO
2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2014, Proceedings, Part II, pages 276–294, 2014.

Josh Cohen Benaloh and Michael de Mare. One-way accumulators: A decentralized
alternative to digital sinatures (extended abstract). In Advances in Cryptology -
EUROCRYPT ’93, Workshop on the Theory and Application of of Cryptographic
Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, pages 274–285, 1993.

Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. Algorithmica, 12(2/3):225–244, 1994.

E. R. Berlekamp. Factoring polynomials over large finite fields*. In Proceedings of
the second ACM symposium on Symbolic and algebraic manipulation, SYMSAC
’71, pages 223–, New York, NY, USA, 1971. ACM.

Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of
computation on outsourced data. In 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
pages 863–874, 2013.

Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J.
Blumberg, and Michael Walfish. Verifying computations with state. In ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farming-
ton, PA, USA, November 3-6, 2013, pages 341–357, 2013.

Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of
computation over large datasets. In Advances in Cryptology - CRYPTO 2011
- 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2011. Proceedings, pages 111–131, 2011.

162

Kevin D. Bowers, Catherine Hart, Ari Juels, and Nikos Triandopoulos. Pillarbox:
Combating next-generation malware with fast forward-secure logging. In Research
in Attacks, Intrusions and Defenses - 17th International Symposium, RAID 2014,
Gothenburg, Sweden, September 17-19, 2014. Proceedings, pages 46–67, 2014.

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The
r*-tree: An efficient and robust access method for points and rectangles. In
Proceedings of the 1990 ACM SIGMOD International Conference on Management
of Data, Atlantic City, NJ, May 23-25, 1990., pages 322–331, 1990.

Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-
round zero-knowledge protocols. In Advances in Cryptology - CRYPTO 2004, 24th
Annual International CryptologyConference, Santa Barbara, California, USA, Au-
gust 15-19, 2004, Proceedings, pages 273–289, 2004.

Elette Boyle and Rafael Pass. Limits of extractability assumptions with distribu-
tional auxiliary input. In Advances in Cryptology - ASIACRYPT 2015 - 21st
International Conference on the Theory and Application of Cryptology and In-
formation Security, Auckland, New Zealand, November 29 - December 3, 2015,
Proceedings, Part II, pages 236–261, 2015.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS ’93, Proceedings of the 1st ACM Conference
on Computer and Communications Security, Fairfax, Virginia, USA, November
3-5, 1993., pages 62–73, 1993.

Paul G. Brown. Overview of scidb: large scale array storage, processing and analysis.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 963–
968, 2010.

Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography - 8th Theory of Cryptography Conference,
TCC 2011, Providence, RI, USA, March 28-30, 2011. Proceedings, pages 253–273,
2011.

Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography, 4th Theory of Cryptography Conference, TCC
2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings, pages
535–554, 2007.

Gordon V. Cormack and Andrej Bratko. Batch and online spam filter comparison.
In CEAS 2006 - The Third Conference on Email and Anti-Spam, July 27-28, 2006,
Mountain View, California, USA, 2006.

163

Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. Geppetto: Versatile verifiable
computation. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015, pages 253–270, 2015.

Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory del-
egation. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages
151–168, 2011.

Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application
to efficient revocation of anonymous credentials. In Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 18-22, 2002, Proceedings, pages 61–76, 2002.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems, 20(4):398–461, 2002.

Sanjit Chatterjee and Alfred Menezes. On cryptographic protocols employing
asymmetric pairings - the role of Ψ revisited. Discrete Applied Mathematics,
159(13):1311–1322, 2011.

Hong Chen, Xiaonan Ma, Windsor W. Hsu, Ninghui Li, and Qihua Wang. Access
control friendly query verification for outsourced data publishing. In Computer
Security - ESORICS 2008, 13th European Symposium on Research in Computer
Security, Málaga, Spain, October 6-8, 2008. Proceedings, pages 177–191, 2008.

Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos. Ver-
ifiable set operations over outsourced databases. In Public-Key Cryptography -
PKC 2014 - 17th International Conference on Practice and Theory in Public-Key
Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Proceedings, pages
113–130, 2014.

Ran Canetti, Ben Riva, and Guy N. Rothblum. Refereed delegation of computation.
Information and Computation, 226:16–36, 2013.

Crypto++ Library, 2016. http://www.cryptopp.com/.

Bogdan Carbunar and Radu Sion. Uncheatable reputation for distributed compu-
tation markets. In Financial Cryptography and Data Security, 10th International
Conference, FC 2006, Anguilla, British West Indies, February 27-March 2, 2006,
Revised Selected Papers, pages 96–110, 2006.

Weiwei Cheng and Kian-Lee Tan. Query assurance verification for outsourced multi-
dimensional databases. Journal of Computer Security, 17(1):101–126, 2009.

http://www.cryptopp.com/

164

Ivan Damg̊ard. Towards practical public key systems secure against chosen cipher-
text attacks. In Advances in Cryptology - CRYPTO ’91, 11th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 11-15,
1991, Proceedings, pages 445–456, 1991.

DCLXVI Library, 2016. http://cryptojedi.org/.

Ivan Damg̊ard, Sebastian Faust, and Carmit Hazay. Secure two-party computation
with low communication. In Theory of Cryptography - 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings,
pages 54–74, 2012.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, January 2008.

Premkumar Devanbu, Michael Gertz, April Kwong, Chip Martel, Glen Nuckolls,
and Stuart Stubblebine. Flexible authentication of XML documents. Journal of
Computer Security, 6:841–864, 2004.

Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikuntanathan. How
efficient can memory checking be? In Theory of Cryptography, 6th Theory of
Cryptography Conference, TCC 2009, San Francisco, CA, USA, March 15-17,
2009. Proceedings, pages 503–520, 2009.

Pavel Emeliyanenko. High-performance polynomial GCD computations on graphics
processors. In 2011 International Conference on High Performance Computing
& Simulation, HPCS 2012, Istanbul, Turkey, July 4-8, 2011, pages 215–224,
2011.

Carol Friedman, Philip O Alderson, John HM Austin, James J Cimino, and
Stephen B Johnson. A general natural-language text processor for clinical ra-
diology. Journal of the American Medical Informatics Association, 1(2):161–174,
1994.

Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials
and matrix computations, with applications. In the ACM Conference on Com-
puter and Communications Security, CCS’12, Raleigh, NC, USA, October 16-18,
2012, pages 501–512, 2012.

Sebastian Faust, Carmit Hazay, and Daniele Venturi. Outsourced pattern match-
ing. In Automata, Languages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, pages 545–556,
2013.

FLINT Library, 2016. http://www.flintlib.org/.

http://cryptojedi.org/
http://www.flintlib.org/

165

Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching
and set intersection. In Advances in Cryptology - EUROCRYPT 2004, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 1–19, 2004.

Esha Ghosh, Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia. Fully-
dynamic verifiable zero-knowledge order queries for network data. IACR Cryptol-
ogy ePrint Archive, 2015:283, 2015.

Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Advances in Cryptol-
ogy - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 15-19, 2010. Proceedings, pages 465–482, 2010.

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Advances in Cryptology
- EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings, pages 626–645, 2013.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin Vas-
ant, and Asaf Ziv. NSEC5: provably preventing DNSSEC zone enumeration. In
22nd Annual Network and Distributed System Security Symposium, NDSS 2015,
San Diego, California, USA, February 8-11, 2014, 2015.

Esha Ghosh, Olga Ohrimenko, Dimitrios Papadopoulos, Roberto Tamassia, and
Nikos Triandopoulos. Zero-knowledge accumulators and set algebra. IACR Cryp-
tology ePrint Archive, 2015:404, 2015.

Esha Ghosh, Olga Ohrimenko, and Roberto Tamassia. Zero-knowledge authenti-
cated order queries and order statistics on a list. In Applied Cryptography and
Network Security - 13th International Conference, ACNS 2015, New York, NY,
USA, June 2-5, 2015, Revised Selected Papers, pages 149–171, 2015.

Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In
Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, pages 321–340, 2010.

Jens Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II, pages 305–326, 2016.

166

Michael T. Goodrich and Roberto Tamassia. Algorithm design - foundations, anal-
ysis and internet examples. Wiley, 2002.

M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated
dictionary with skip lists and commutative hashing. In DARPA Information
Survivability Conference amp; Exposition II, 2001. DISCEX ’01. Proceedings,
volume 2, pages 68–82 vol.2, 2001.

Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages
99–108, 2011.

Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 723–732,
1992.

Ahmed E. Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mah-
moud F. Sayed, Elaine Shi, and Nikos Triandopoulos. TRUESET: faster verifiable
set computations. In Proceedings of the 23rd USENIX Security Symposium, San
Diego, CA, USA, August 20-22, 2014., pages 765–780, 2014.

Sandeep Kumar and Eugene H. Spafford. A pattern matching model for misuse
intrusion detection. In In Proceedings of the 17th National Computer Security
Conference, 1994.

Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In
Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
pages 241–257, 2005.

Bryan Klimt and Yiming Yang. The enron corpus: A new dataset for email classi-
fication research. In Machine Learning: ECML 2004, 15th European Conference
on Machine Learning, Pisa, Italy, September 20-24, 2004, Proceedings, pages 217–
226, 2004.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commitments
to polynomials and their applications. In Advances in Cryptology - ASIACRYPT
2010 - 16th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 5-9, 2010. Proceedings, pages 177–
194, 2010.

167

Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Dynamic au-
thenticated index structures for outsourced databases. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Chicago, Illinois,
USA, June 27-29, 2006, pages 121–132, 2006.

Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Authenticated
index structures for aggregation queries. ACM Transactions on Information and
System Security, 13(4):32, 2010.

Libsnark Library, 2016. https://github.com/scipr-lab/libsnark.

Essam Mansour, Amin Allam, Spiros Skiadopoulos, and Panos Kalnis. ERA: Effi-
cient serial and parallel suffix tree construction for very long strings. Proceedings
of the VLDB Endowment, 5(1):49–60, 2011.

Ralph C. Merkle. A certified digital signature. In Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 20-24, 1989, Proceedings, pages 218–238, 1989.

Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data
structures, generically. In The 41st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, pages 411–424, 2014.

Silvio Micali. Computationally sound proofs. SIAM Journal on Computing,
30(4):1253–1298, 2000.

Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April Kwong,
and Stuart G. Stubblebine. A general model for authenticated data structures.
Algorithmica, 39(1):21–41, January 2004.

Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and in-
tegrity in outsourced databases. ACM Transactions on Storage, 2(2):107–138,
2006.

Gary L. Miller and John H. Reif. Parallel tree contraction, part 2: Further applica-
tions. SIAM Journal on Computing, 20(6):1128–1147, 1991.

Moni Naor. On cryptographic assumptions and challenges. In Advances in Cryp-
tology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings, pages 96–109, 2003.

Lan Nguyen. Accumulators from bilinear pairings and applications. In Topics in
Cryptology - CT-RSA 2005, The Cryptographers’ Track at the RSA Conference
2005, San Francisco, CA, USA, February 14-18, 2005, Proceedings, pages 275–
292, 2005.

https://github.com/scipr-lab/libsnark

168

Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. IEEE
Journal on Selected Areas in Communications, 18(4):561–570, 2000.

Michael Naehrig, Ruben Niederhagen, and Peter Schwabe. New software speed
records for cryptographic pairings. In Progress in Cryptology - LATINCRYPT
2010, First International Conference on Cryptology and Information Security in
Latin America, Puebla, Mexico, August 8-11, 2010, Proceedings, pages 109–123,
2010.

Charalampos Papamanthou. Cryptography for efficiency: Authenticated data struc-
tures based on lattices and parallel online memory checking. IACR Cryptology
ePrint Archive, 2011:102, 2011.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In 2013 IEEE Symposium on Security and Pri-
vacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 238–252, 2013.

HweeHwa Pang and Kyriakos Mouratidis. Authenticating the query results of text
search engines. Proceedings of the VLDB Endowment, 1:126–137, 2008.

Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping Trust in
Modern Computers, volume 10 of Springer Briefs in Computer Science. Springer,
2011.

Tobias Pulls and Roel Peeters. Balloon: A forward-secure append-only persistent
authenticated data structure. In Computer Security - ESORICS 2015 - 20th Eu-
ropean Symposium on Research in Computer Security, Vienna, Austria, September
21-25, 2015, Proceedings, Part II, pages 622–641, 2015.

Dimitrios Papadopoulos, Stavros Papadopoulos, and Nikos Triandopoulos. Taking
authenticated range queries to arbitrary dimensions. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 819–830, 2014.

Dimitrios Papadopoulos, Charalampos Papamanthou, Roberto Tamassia, and Nikos
Triandopoulos. Practical authenticated pattern matching with optimal proof size.
Proceedings of the VLDB Endowment, 8(7):750–761, 2015.

F.P. Preparata, D.V. Sarwate, and Illinois University at Urbana-Champaign Coordi-
nated Science Lab. Computational Complexity of Fourier Transforms Over Finite
Fields. Defense Technical Information Center, 1976.

Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of cor-
rect computation. In Theory of Cryptography: 10th Theory of Cryptography Con-
ference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, pages 222–242,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

169

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Authen-
ticated hash tables. In Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31,
2008, pages 437–448, 2008.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal
verification of operations on dynamic sets. In Advances in Cryptology - CRYPTO
2011 - 31st Annual Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2011. Proceedings, pages 91–110, 2011.

Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Authen-
ticated hash tables based on cryptographic accumulators. Algorithmica, pages
1–49, 2015.

PugiXML XML parser, 2016. http://pugixml.org/.

Deepak Ravichandran and Eduard H. Hovy. Learning surface text patterns for a
question answering system. In Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA.,
pages 41–47, 2002.

Michael s, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. ADSNARK:
nearly practical and privacy-preserving proofs on authenticated data. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pages 271–286, 2015.

Srinath T. V. Setty, Benjamin Braun, Victor Vu, Andrew J. Blumberg, Bryan Parno,
and Michael Walfish. Resolving the conflict between generality and plausibility in
verified computation. In Eighth Eurosys Conference 2013, EuroSys ’13, Prague,
Czech Republic, April 14-17, 2013, pages 71–84, 2013.

Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. Journal of the ACM, 27(4):701–717, 1980.

Albrecht Schmidt. XMark XML benchmark, 2016. http://www.xml-benchmark.

org/.

Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and
Pradeep K. Khosla. Pioneer: verifying code integrity and enforcing untampered
code execution on legacy systems. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles 2005, SOSP 2005, Brighton, UK, October 23-26,
2005, pages 1–16, 2005.

Ahmad-Reza Sadeghi, Thomas Schneider, and Marcel Winandy. Token-based cloud
computing. In Trust and Trustworthy Computing, Third International Confer-
ence, TRUST 2010, Berlin, Germany, June 21-23, 2010. Proceedings, pages 417–
429, 2010.

http://pugixml.org/
http://www.xml-benchmark.org/
http://www.xml-benchmark.org/

170

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and
implementation of a TCG-based integrity measurement architecture. In Proceed-
ings of the 13th USENIX Security Symposium, August 9-13, 2004, San Diego, CA,
USA, pages 223–238, 2004.

Roberto Tamassia. Authenticated data structures. In Algorithms - ESA 2003,
11th Annual European Symposium, Budapest, Hungary, September 16-19, 2003,
Proceedings, pages 2–5, 2003.

Edward Tremel. Real-world performance of cryptographic accumulators. Under-
graduate Honors Thesis, Brown University, 2013.

Justin Thaler, Mike Roberts, Michael Mitzenmacher, and Hanspeter Pfister. Ver-
ifiable computation with massively parallel interactive proofs. In 4th USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’12, Boston, MA, USA,
June 12-13, 2012, 2012.

Roberto Tamassia and Nikos Triandopoulos. Certification and authentication of data
structures. In Proceedings of the 4th Alberto Mendelzon International Workshop
on Foundations of Data Management, Buenos Aires, Argentina, May 17-20, 2010,
2010.

University of Washington XML data repository, 2016. http://www.cs.

washington.edu/research/xmldatasets/.

Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Proceedings of the 5th Conference on Theory of Cryptog-
raphy, TCC’08, pages 1–18, Berlin, Heidelberg, 2008. Springer-Verlag.

Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–
237, 2013.

Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra (2. ed.).
Cambridge University Press, 2003.

Michael Walfish and Andrew J. Blumberg. Verifying computations without reexe-
cuting them. Communications of the ACM, 58(2):74–84, 2015.

Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium
on Switching and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973,
pages 1–11, 1973.

http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/

171

Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and
Michael Walfish. Efficient RAM and control flow in verifiable outsourced com-
putation. In 22nd Annual Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11, 2014, 2015.

Jia Xu. Authenticating aggregate range queries over dynamic multidimensional
dataset. IACR Cryptology ePrint Archive, 2010:244, 2010.

Attila Altay Yavuz, Peng Ning, and Michael K. Reiter. Efficient, compromise re-
silient and append-only cryptographic schemes for secure audit logging. In Finan-
cial Cryptography and Data Security - 16th International Conference, FC 2012,
Kralendijk, Bonaire, Februray 27-March 2, 2012, Revised Selected Papers, pages
148–163, 2012.

Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William K. Robert-
son, Ari Juels, and Engin Kirda. Beehive: large-scale log analysis for detecting
suspicious activity in enterprise networks. In Annual Computer Security Appli-
cations Conference, ACSAC ’13, New Orleans, LA, USA, December 9-13, 2013,
pages 199–208, 2013.

Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. Authenti-
cated join processing in outsourced databases. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2009, Provi-
dence, Rhode Island, USA, June 29 - July 2, 2009, pages 5–18, 2009.

Yin Yang, Stavros Papadopoulos, Dimitris Papadias, and George Kollios. Authenti-
cated indexing for outsourced spatial databases. Very Large Data Bases Journal,
18(3):631–648, 2009.

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. IntegriDB: Veri-
fiable SQL for outsourced databases. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, pages 1480–
1491, New York, NY, USA, 2015. ACM.

Yupeng Zhang, Charalampos Papamanthou, and Jonathan Katz. ALITHEIA: To-
wards practical verifiable graph processing. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, Scottsdale,
(CCS), AZ, USA, November 3-7, 2014, pages 856–867, 2014.

Dimitrios (Dimitris) Papadopoulos
Boston University dipapado@bu.edu
Computer Science Department http://cs-people.bu.edu/dipapado
111 Cummington Mall MCS 138
Boston, MA 02215

Education Boston University
Ph.D., Computer Science, 2016
Fields: Applied Cryptography, Secure Cloud Computing
Thesis: Function-specific schemes for verifiable computation

National Technical University of Athens
Diploma, Applied Mathematics, 2010
Thesis: Design and development of application
for the implementation of mixed map labeling algorithms

Research IBM Research, Zurich
Research Intern (Summer 2014)
Project: Multi-Owner Authenticated Data Structures
Mentor: Christian Cachin

Verisign Labs
Research Intern (Summer 2015)
Project: Implementation of a NSEC5-ready nameserver
Mentor: Duane Wessels

Teaching Boston University
Teaching Fellow, CS558 Network Security (Spring 2014)
Teaching Fellow, CS237 Probability in Computing (Fall 2012)

Awards BU Computer Science Research Excellence Award (2015)

& Fellowships BU Computer Science Teaching Fellow Award (2013)
Gatzoyiannis Scholarship (2012-15)
Gerondelis Fellowship for Academic Performance (2012)

Publications

• S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv. NSEC5:
provably preventing DNSSEC zone enumeration. In 22nd Annual Network and Dis-

172

tributed System Security Symposium, NDSS 2015, San Diego, California, USA, Febru-
ary 8-11, 2014, 2015.

• D. Papadopoulos, C. Papamanthou, R. Tamassia, and N. Triandopoulos. Practical
authenticated pattern matching with optimal proof size. Proceedings of the VLDB
Endowment, 8(7):750–761, 2015.

• D. Papadopoulos, S. Papadopoulos, and N. Triandopoulos. Taking authenticated
range queries to arbitrary dimensions. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, pages 819–830, 2014.

• A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Trian-
dopoulos. TRUESET: faster verifiable set computations. In Proceedings of the 23rd
USENIX Security Symposium, San Diego, CA, USA, August 20-22, 2014., pages 765–
780, 2014.

• R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos. Verifiable set op-
erations over outsourced databases. In Public-Key Cryptography - PKC 2014 - 17th
International Conference on Practice and Theory in Public-Key Cryptography, Buenos
Aires, Argentina, March 26-28, 2014. Proceedings, pages 113–130, 2014 .

• M. A. Bekos, M. Kaufmann, D. Papadopoulos, and A. Symvonis. Combining tradi-
tional map labeling with boundary labeling. In SOFSEM 2011: Theory and Practice
of Computer Science - 37th Conference on Current Trends in Theory and Practice
of Computer Science, Nový Smokovec, Slovakia, January 22-28, 2011. Proceedings,
pages 111–122, 2011.

173

	Introduction
	General-purpose verifiable computation
	Function-specific schemes for verifiable computation
	Authenticated data structures

	Three novel ADS constructions
	Nested set operations
	Multi-dimensional range queries
	Pattern matching

	Thesis outline

	Cryptographic Preliminaries
	Authenticated data structures
	Bilinear groups
	Bilinear accumulator

	Verifiable Set Operations
	Introduction
	Overview of result
	Overview of techniques
	Prior work

	Extractable collision-resistant hash functions
	Set representation with polynomials
	An ADS for hierarchical set operations
	Setup and updates
	Query responding and verification
	Main result
	Complexity analysis for the algorithms of the scheme

	Server-assisted updates
	Extensions and implementation decisions
	Experimental evaluation

	Verifiable Multi-dimensional Range Queries
	Introduction
	Prior work
	Overview of result
	Overview of techniques

	Set membership and set operations authentication
	Problem formulation
	Basic scheme
	A general framework
	Construction

	Update-efficient scheme
	Construction

	Performance evaluation

	Verifiable Pattern Matching Queries
	Introduction
	Prior work
	Overview of result
	Overview of techniques

	Pattern matching queries
	Main construction
	Applications
	Search on collection of text documents
	Search on XML documents
	Dynamic datasets

	Parallel algorithms
	Performance evaluation

	Conclusion
	Combining function-specific with general-purpose verifiable computation
	Other open problems

	References
	Curriculum Vitae

