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ABSTRACT

Often, data organized in matrix form contains missing entries. Further, such data has

been observed to exhibit effective low-rank, and has led to interest in the particular

problem of low-rank matrix-completion: Given a partially-observed matrix, estimate

the missing entries such that the output completion is low-rank. The goal of this

thesis is to improve matrix-completion algorithms by explicitly analyzing two sources

of information in the observed entries: their locations and their values.

First, we provide a categorization of a new approach to matrix-completion, which

we call structural. Structural methods quantify the possibility of completion using

tests applied only to the locations of known entries. By framing each test as the

class of partially-observed matrices that pass the test, we provide the first organizing

framework for analyzing the relationship among structural completion methods.

Building on the structural approach, we then develop a new algorithm for active

matrix-completion that is combinatorial in nature. The algorithm uses just the

locations of known entries to suggest a small number of queries to be made on the

missing entries that allow it to produce a full and accurate completion. If a budget

is placed on the number of queries, the algorithm outputs a partial completion,
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indicating which entries it can and cannot accurately estimate given the observations

at hand.

Finally, we propose a local approach to matrix-completion that analyzes the

values of the observed entries to discover a structure that is more fine-grained than the

traditional low-rank assumption. Motivated by the Singular Value Decomposition,

we develop an algorithm that finds low-rank submatrices using only the first few

singular vectors of a matrix. By completing low-rank submatrices separately from the

rest of the matrix, the local approach to matrix-completion produces more accurate

reconstructions than traditional algorithms.
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1

Chapter 1

Introduction to matrix-completion

1.1 The history of matrix-completion

Much of the data we encounter nowadays is obtained by measurement: from rec-

ommender systems collecting user-preference data, to scientists measuring levels of

protein interaction, to monitors measuring road or Internet traffic. A common way

to represent data is using a matrix. For example, city traffic measurements can be

organized into a matrix where rows are sources, columns are destinations, and each

entry holds the volume of traffic that passed from a particular source to a particular

destination. As another example, rows and columns can represent users and movies,

and each entry can carry the rating that a particular user gave to a movie. There

are a variety of reasons why a city may collect traffic volume data, for example, to

identify areas where congestion commonly occurs or to estimate the C02 emission

through the city. At the same time, a city most likely does not have the resources to

measure the traffic between all possible pairs of destinations. This limitation means

that the volumes on some source-destination pairs are not known, leading to a ma-

trix representation with unknown values in some entries. To assess the congestion or

pollution throughout, the city must be able to estimate these unknown values. This

task of estimating missing values in data arises in a vast array of applications, and

can be formalized as the problem of matrix completion: given a partially-observed

matrix, estimate the missing entries.

The problem of matrix completion traces it roots to the 1980’s. At that time
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mathematicians and engineers were especially interested in the following problem:

given a matrix capturing partial Euclidean distance or geometry information, can it

be completed in a way that preserves the Euclidean property. As Johnson (1990)

and Lee and Seol (2001) explain, this led to the study of finding a matrix consistent

with the observed entries so that it has a particular property, with the most studied

being positive-definiteness.

More recently, there have been significant new algorithmic advances for the prob-

lem of low-rank matrix completion. In this version of the problem, the key assumption

made about the matrix is that it is either exactly or approximately low-rank. The

rank of a matrix is the number of independent rows or columns it contains. When

the matrix is composed of measurement data, the underlying fully-known matrix is

typically of full rank due to noise or error; however, it has been empirically observed

that the effective rank is low. Intuitively this means that while all rows and columns

of the matrix are independent, only a few rows and columns are needed to find a

good approximation of the matrix. For example, the data used in the Netflix Prize

competition is a matrix of ratings from 480K users over 18K movies, and the esti-

mated rank of the matrix is only about 20-40. The rank can be interpreted as the

fact that there are about 20-40 features of movies that can predict a user’s movie

preference, for example, genre, or language, or year. Since only 1% of the entries are

observed, estimating the unknown user-movie ratings can be framed as an instance

of low-rank matrix completion.

Around 2007, there was a surge in progress on low-rank matrix-completion,

brought on by connections between low-rank matrix-completion and compressive

sensing in the statistical signal processing community. Analytic insights built on

this connection yielded algorithms capable of solving low-rank matrix completion

even when the vast majority of elements are missing – carrying significant practical
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impact. These algorithms typically address a problem where the goal is to minimize

the rank of the estimate while keeping the observed entries intact. While this precise

formulation is NP-hard, it was recognized by Candès and Tao (2010) to be solvable

approximately via convex relaxation under certain fairly general conditions. Follow-

ing this initial result, a flurry of new algorithms for low-rank matrix-completion have

emerged, which we refer to as statistical, including those developed by Candès and

Recht (2012), Chen et al. (2014), Jain et al. (2013), Keshavan et al. (2010a,b), Wen

et al. (2012).

Statistical matrix-completion algorithms have three main characteristics. First,

statistical approaches assume that the locations of known entries follow a random

model; that is, the known observations are fairly evenly dispersed throughout the

matrix without any particular pattern. Second, there is the additional assumption

that there are enough known entries with respect to the size and rank of the matrix.

Third, the problem is posed as an optimization where the objective is to minimize

the rank of the estimate while remaining close to the initially observed entries. A

key property of statistical methods is that they output a completion of the partially

observed matrix without an analysis of whether the information contained in the

visible entries satisfies the two main assumptions. Since the error is evaluated over

only the observed entries, it is often not representative of the error in the estimate

of the unobserved entries.

Recently a new class of structural matrix-completion, introduced by Király et al.

(2013), Király and Tomioka (2012b), Meka et al. (2009), Singer and Cucuringu

(2010), has started to address the limitations of statistical methods. Structural

methods combine tools from areas such as graph theory and algebraic geometry, to

characterize the possibility of producing an accurate completion; specifically, these

methods identify whether the number of completions of a partially observed matrix
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is infinite, finite, one, or none. A key observation shared by all structural approaches

is that this number does not depend on the values of the observed entries, but rather

only on their positions. That is, whereas statistical methods seek to show that par-

ticular sampling of the observed entries is sufficient for reconstruction with high

probability, structural methods explicitly analyze the information content of the vis-

ible entries, and are capable of stating definitively that there is sufficient information

for reconstruction. Not only that but unlike the statistical methods that give some

estimate for any (even the smallest) set of observations, structural methods specify

precisely which elements can and cannot be recovered.

To date, no method exists that allows one to unambiguously state whether a set

of observed entries is sufficient for reconstruction. Rather, what are known are three

methods that are partially effective for making this identification.That is, there are

three algorithms proposed in the literature so far that have the property that if they

return “yes,” it is possible to complete the input partially observed matrix – but if

they return “no,” no conclusion can be drawn. Further, there has been no study on

the relationship between these three methods, nor on the relationship between the

partially observed matrices for which each returns “yes”.

1.2 Contributions of this thesis

In this thesis, we start by providing the first common framework for analyzing the

structural matrix completion methods. For each method we define the associated

class of matrices as those for which the method answers ‘yes’. Specifically we define:

the SC class for matrices that pass the tests described in Singer and Cucuringu

(2010), the CC class for the test in Király et al. (2013), and the ICMC class for

the test implied by Meka et al. (2009). Through the framework, we provide new

results on the relationship between the different classes, and new insights regarding
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their sizes and organization. We establish some basic proven relationships between

the classes, and then investigate the remainder through MCMC-style experiments on

random partially observed matrices. This understanding is valuable as an organizing

guide to the state of the art in structural matrix-completion, and hence comprises

the first contribution of this thesis.

Through a theoretical and empirical exploration of the framework, we make the

interesting observation that despite being the hardest class to fall into randomly,

the ICMC class is the easiest to move into. In other words, a random partially-

observed matrix is not likely to satisfy the ICMC condition, yet we find that there

is a natural way to bring the matrix into the class with the addition of a few entries.

From an applications standpoint, adding new entries to a matrix by querying is very

natural, for example, Netflix can simply send out a user-preference survey. Based

on this observation we develop a combinatorial algorithm for the problem of active

matrix-completion. Given a partially observed matrix that cannot be completed, the

proposed algorithm analyzes the locations of observed entries to pinpoint portions of

the data the can be completed accurately. By modeling the problem as an epidemic

propagation on a graph, the algorithm then identifies a small number of additional

entries that need to be added so that the matrix is a member of ICMC and there is

enough information for full recovery. Finally, the algorithm tackles numerical error

and noise to achieve an almost perfect completion of the missing entries. We also

discuss a natural extension to active tensor-completion.

Both statistical and structural matrix-completion algorithms rely on the assump-

tion that the whole matrix is of a given rank r; in fact, the incoherence and genericity

assumptions made in much of the work imply that submatrices are also approximately

rank r. However, in working with active matrix-completion on matrices correspond-

ing to real data an interesting property was observed that countered traditional
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assumptions and was occasionally a source of error: the presence of lower-rank sub-

matrices. In fact, in the design of many algorithms for analyzing and utilizing this

data, there is the underlying assumption of the existence of such lower-rank subma-

trices. For example, in user-preference data, there are expected to be subsets of users

that behave similarly on subsets of products. Such similarity is utilized in standard

collaborative filtering where recommendations are made to a user based on the pref-

erences of other similar users Aggarwal (2016), Herlocker et al. (2004), Sarwar et al.

(2001), as well as in the analysis of traffic networks, user-preferences, and datasets

in the natural sciences (e.g., gene expression data).

After demonstrating that traditional matrix-completion algorithms do not accu-

rately estimate partially observed matrices that contain low-rank submatrices, we

propose a Localized approach. The key is to isolate the low-rank submatrices and

complete them separately from the rest of the data. To do this, we first study the

problem of finding a low-rank submatrix which is an interesting problem even when

the matrix is fully known. We develop an algorithm based on the Singular Value

Decomposition that uses the first singular vectors of the matrix to find the low-rank

submatrix. A central contribution is an analysis of when this algorithm is expected

to succeed. With an extension to partially observed matrices, we apply to algorithm

towards matrix completion and demonstrate that the Localized approach finds a

more accurate completion than the traditional Global one.



Chapter 2

Related work

In this chapter, we give an overview of the work related to this thesis. We start

with a distinction between two types of approaches to matrix completion which

we call statistical and structural, and discuss the work related to each. Next, we

examine two variants of the problem: active and localized matrix completion. Active

matrix completion allows for a small number of additional entries to be revealed, and

localized completion targets local structure in matrices.

2.1 Statistical matrix completion

Historically, the first methods for low-rank matrix completion to be developed were

statistical in nature, for example: Bhojanapalli and Jain (2014), Candès and Recht

(2012), Candès and Tao (2010), Chen et al. (2014), Jain et al. (2013), Keshavan et al.

(2010a,b), Negahban and Wainwright (2012), Wen et al. (2012). Statistical matrix-

completion algorithms have three key features. First, they assume that the locations

of known entries follow a random model; that is, the known observations are fairly

evenly dispersed throughout the matrix without any particular pattern. Second,

there is the additional assumption that there are enough known entries with respect

to the size and rank of the matrix. Third, the problem is posed as an optimization

where the objective is to minimize the rank of the estimate while remaining close to

the initially observed entries.

Consider an n×m true matrix M of rank r with entries as real numbers, and its

7
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partially observed version MΩ with Ω ⊆ {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m} denoting the

set of known entries. The standard optimization formulation is:

min rank(M̂) subject to M̂(i, j) = M(i, j) ∀(i, j) ∈ Ω

That is, minimize the rank of the estimate while keeping the observed values as

accurate as possible. Since minimizing the rank of a matrix is NP-hard, a variety

of different formulations have been proposed that are often targeted towards specific

additional assumptions. In a seminal work, Candès and Tao (2010) showed that the

problem can be optimized efficiently when the rank is replaced with the nuclear norm

‖M̂‖∗ =
∑

i σi where σi is the i-th largest singular value of M̂. In other words, the

NP-hard formulation is replaced with the convex relaxation:

min ‖M̂‖∗ subject to M̂(i, j) = M(i, j) ∀(i, j) ∈ Ω

The above can be solved efficiently to produce an accurate estimate if certain condi-

tions hold and the number of observed entries is above a certain threshold.

Under the assumption of randomly sampled locations of known entries, Candès

and Recht (2012) prove that an n ×m matrix of rank r should have at least |Ω| >

Cn
6
5 r log(n) for their algorithm to succeed with high probability, where n is the

largest of m and n without loss of generality. The high-level idea comes from the

insight that even a rank-1 matrix cannot be completed unless every row and column

have at least one known entry. Assuming samples are taken uniformly at random, the

Coupon Collector problem tells us that given n items, n log(n) samples are needed to

cover each item. Hence, if we want at least one observation in each row and column

of an n × n matrix, an order of n log(n) random samples are needed. For arbitrary

rank r this translates to an nr log(n) lower bound for accurate completion.

We highlight that in practice, this bound often corresponds to a significantly large
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number of samples. For example, adopting the rank r ≈ 40 of top solutions to the

Netflix Challenge, the number of known ratings is over 151 million entries below the

threshold.

Following this result numerous other approaches have been proposed, each with

a threshold that differs slightly but is essentially O(nr log(n)). We highlight two

algorithms in particular for their efficiency, generality, and ability to estimate the

rank of a matrix: LMaFit and OptSpace.

LMaFit was proposed by proposed by Wen et al. (2012). The starting observation

is that the matrix M can be written as the product of two factors M = XY where

X is size n× r and Y is size r ×m. The problem is then formalized as:

minimize
M,X,Y

1

2
‖M̂−XY‖2

f

subject to M̂(i, j) = MΩ(i, j) ∀(i, j) ∈ Ω

The algorithm is then based on an alternating least-squares method where two of M̂,

X, and Y are fixed and the third is solved for. The approach is shown to converge

under mild assumptions.

OptSpace was proposed by Keshavan et al. (2010a), and solves a slightly different

optimization problem formulated as:

minimize
1

2
‖M̂Ω −MΩ‖f

subject to rank(M̂) < r

A major distinction in this version of the problem is that the objective is to minimize

the error over (only) the observed entries while keeping the rank small. The algorithm

combines spectral methods with a convex-optimization step that aims to minimize

the disagreement in the observed entries. First the algorithm estimates the rank of

the matrix using an important trimming step of removing overrepresented rows and



10

100 200 300 400 500 600

100

200

300

400

500

600

700

(a) Partially observed.
100 200 300 400 500 600

100

200

300

400

500

600

700

(b) Consistent estimate.
100 200 300 400 500 600

100

200

300

400

500

600

700

(c) True underlying object

Figure 2·1: Example of the possible error in completion.

columns. After this is done, the objective is minimized using gradient descent.

Limitations: A key property of statistical methods is that they output a comple-

tion of the partially observed matrix on any input, whether or not the information

contained in the visible entries satisfies the two main assumptions. Since the error is

evaluated over only the observed entries, it is often not representative of the error in

the estimate of the unobserved entries. For example, consider the partially observed

matrix in Figure 2·1a where the missing entries are white. Despite the fact that the

matrix is 80% zeros, the human eye can still recognize this as a famous photo of Ein-

stein. Now consider an application of a matrix completion algorithm that produces

a full estimate completion depicted in Figure 2·1b. Since the matrix in Figure 2·1b

is approximately rank-1 and the initially observed entries are identical to 2·1a, it is

deemed an accurate completion despite the fact that it is visibly very far from the

true completion depicted in Figure 2·1c.

In the absence of noise, this type of error occurs when the rank and the set of

observed entries are not constraining enough, allowing multiple possible completions.

In other words, there are many ways to fill in the zeros in Figure 2·1a such that

the completion has rank-1. To better understand this idea of multiple consistent

completions, consider the rank-1 matrix in Figure 2·2a and suppose that it is only

partially observed as in Figure2·2b. On input MΩ, statistical matrix completion

algorithms try to find a rank-1 matrix with a small error on the two observed entries.
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Given this approach, the estimate in Figure 2·2c is a highly accurate estimate because

the matrix is rank-1 and has zero error on the observed entries; however, it is clearly

very different from the ground truth. In fact, if the second row in the estimate is

any multiple of the first row it will match both the observed entries and the rank.

In other words, there are infinitely many consistent completions that have zero error

in the statistical sense but are not the true M.

M =
[

1 2
3 6

]
(a) Ground truth

MΩ =
[

1 2
? ?

]
(b) Many solutions

M̂ =
[

1 2
500 1000

]
(c) Possible estimate

MΩ =
[

1 2
3 ?

]
(d) Single solution

Figure 2·2: A ground truth matrix and two different partially observed
matrices.

Alternatively, consider the partially observed matrix in Figure 2·2d. With just

the single additional entry fixed, there is now only a single completion that has rank-

1 and zero error on the observed entries. That is, since MΩ(2, 1) = 3 is fixed, the

only consistent rank-1 matrix is the one in Figure 2·2a.

This example shows that the statistical notion of error is not always representative

of the quality of the completion (with respect to the ground truth). For the partially

observed matrix in Figure 2·2d, an error of zero over the observed entries is indicative

of having produced a good estimate, but in Figure 2·2b it is not. At the same time

both match the observed entries perfectly.

2.2 Structural matrix completion

While statistical approaches to matrix completion often provide good results, there

are cases where they fail without explanation or indication. Recently, a new approach

has been proposed which we call structural and which was catalyzed by a connec-

tion between matrix completion and graph rigidity. (An overview of the connection
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is given in Appendix A.1.) Structural methods analyze the information contained

in the visible entries to determine whether an accurate reconstruction is possible.

This notion of possibility is quantified by the number of consistent completions of a

partially observed matrix: infinite, finite, one, or none.

A critical observation shared by all structural approaches is that the number of

possible completions does not depend on the values of the observed entries, but rather

only on their positions. This statement proved by Király et al. (2013), Singer and

Cucuringu (2010), was used to develop conditions under which a partially observed

matrix has a certain number of completions. In fact, Singer and Cucuringu (2010)

showed that there is a necessary and sufficient condition that can be used to test if a

partially observed matrix has a finite number of completion. No such condition has

been developed for the stronger case of a unique completion. However, there do exist

three conditions that are sufficient, meaning if a partially observed matrix satisfies a

particular condition then it has a single unique completion, but if it does not meet

the condition, then no conclusion can be drawn.

The conditions for finite and unique completion are the focus of Chapter 3 of this

thesis where we present new insights regarding each algorithm and the relationships

between them.

2.3 Active matrix completion

Structural and statistical matrix completion are two branches of matrix completion

algorithms. While fundamentally different in their approach, both requries a certain

number of known entries to work well; unfortunately real world data often has far

fewer observations than the methods require. This brings about the active version

of matrix completion that asks for the most accurate completion given an allowance

of queries to unknown entries.
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Although active learning has been studied for some time, work in the active matrix

completion area has only appeared recently in Chakraborty et al. (2013), Sutherland

et al. (2013). In both these works, the authors are interested in determining which

entries need to be revealed in order to reduce error in matrix reconstruction. Their

methods choose to reveal entries with the largest predicted uncertainty based on var-

ious measures. A characteristic of these approaches is that they construct a querying

strategy independently of the completion algorithm, and then use off-the-shelf ma-

trix completion algorithms for the reconstruction phase. The fact that queries are

not chosen in consideration with consideration of the completion approach limits the

success of the algorithms. These methods appear to have other drawbacks. In the

experiments, Chakraborty et al. (2013) start with partial matrices where 50-60% of

entries are already known – far greater many statistical and structural thresholds.

Further, their proposed query strategy does not lead to a significant improvement

over pure random querying. While Sutherland et al. (2013) report low reconstruction

error, the main experiments are run over 10 × 10 matrices, providing no evidence

that the methods scale.

2.4 Localized matrix completion

The traditional approaches to matrix completion, both statistical and structural,

make assumptions on the matrix as a whole. However, in many real-world settings,

there is often the implicit assumption that the data contains substructure that does

not adhere to the global model.

The benefit of capturing substructure in the data has been observed in the context

of several other problems, such as image colorization by Kwok (2015) and matrix

factorization by Lee et al. (2013); the common theme is a shift from a single global

model to a combination of smaller models built from subparts of the data that are
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specified as input. The problem of local matrix factorization studied by Lee et al.

(2013) is the most related to our work on active completion, but differs mainly in

two ways. First, the specific location of substructure in the matrix is assumed to be

an input to the problem. The algorithm receives the pairwise distances between rows

and columns and uses a kernel function to specify a neighborhood of close points for

each row-column pair, in other words, to specify a neighborhood submatrix for each

entry.

The goal is to find the factorization of each neighborhood submatrix, and then

incorporate this local factorization into the global model. Since this approach is

expensive, the authors propose to sample q anchor points, find factorizations of

each of the q neighborhoods, and then model each entry in the matrix as a linear

combination of these q factorizations. Hence the second difference is modeling the

data as a linear combination of small factorization, whereas we argue that the parts

of the data should be modeled with their own factorizations.

2.5 Low-rank submatrix discovery

In the previous section, we described a new localized approach to matrix completion.

An essential tool in any localized approach is the ability to find low-rank submatrices

in a matrix (that is unless the locations are assumed to come as input). Although

there is work on discovering interesting local structures in the data, there is little work

on the particular problem of discovering low-rank submatrices embedded in larger

matrices. Below we review two main lines of research that are the most related to

the problem of finding a low-rank submatrix which we call LRDiscovery.

To the best of our knowledge, Rangan (2012) was the first to explicitly ask the

question of finding a low-rank submatrix from a larger matrix. His work focuses

on a particular instance where the entries of M and the entries in the submatrix
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S adhere to a standard Gaussian distribution with mean zero and variance one.

Assuming such structure, Rangan poses the problem of finding the largest submatrix

with rank less than five. The proposed algorithm searches for a low-rank submatrix

by comparing the ±-sign patterns of the values in rows and columns. Due to the

underlying assumptions, Rangan’s algorithm is restricted to succeed in cases where

the rank of the submatrix is less than five and its size is greater than
√
n, where n is

the size of the whole dataset. In contrast, our analysis does not make the assumptions

required by Rangan and instead of using the signs of the data it uses the data

values themselves. As a result, the algorithm propose in Chapter 5.3 (called SVP)

succeeds on a larger range of submatrix sizes and ranks. Furthermore, the output of

Rangan’s algorithm is nested collections of rows and columns, and it is not clear how

to decide which collection corresponds to the desired solution. In contrast, we propose

algorithm directly outputs a subset of rows and columns indexing the discovered

submatrix. Finally, Rangan’s algorithm requires setting tuning a parameter while

SVP is free of such parameters and thus easier to use in practice.

The second line of work that is related to LRDiscovery, though it does not

address the same problem, is subspace clustering (SbC), as studied in Elhamifar and

Vidal (2009), Vidal and Favaro (2014). SbC assumes that the rows of M are drawn

from a union of independent subspaces, and the problem is to find a clustering of the

rows into separate subspaces. SbC is related to LRDiscovery in the special case

where the submatrix S is a subset only of rows and spans all columns, and where S is

also an independent subspace. Assuming independence of subspaces, the algorithms

for SbC can accurately cluster the rows of M based on the representation of each

row in terms of the others. In our experiments, we observe that these algorithms

– appropriately modified for our problem cannot accurately separate S when the

values in S are not significantly larger than the rest. We also observe that they
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are sensitive to the presence of large values elsewhere in the data. In contrast, our

analysis does not assume that S is an independent subspace and our algorithm –

inspired by this analysis – proves to be much more resilient than the corresponding

algorithms for SbC. Regarding running time, SVP is significantly more efficient than

the SbC algorithms; after all the former only requires computing the first singular

vector of M while the latter rely on the computation of the full SVD of the input

matrix.

Our experimental evaluation with data generated using different models demon-

strates that SVP can succeed in the identification of S even when S has relatively

large rank, or when there are multiple low-rank submatrices planted in M. None

of the other methods available for the same problem today can exhibit the same

level of success in such a wide range of inputs. Further, we demonstrate that unlike

BinaryLoops and LRSbC, SVP extends naturally to matrices with missing entries, a

property which is crucial for the application of matrix-completion



Chapter 3

Landscape of completability

In this chapter, we introduce a novel framework organizing the existing techniques of

structural matrix completion which has not been done to date. Structural algorithms

quantify the number of possible completions of a partially observed matrix (a finite,

an infinite, one, or none) by checking if the matrix satisfies a particular condition. A

key insight is that the number of completions depends only on the locations of known

entries of a partially observed matrix, i.e. the mask. Hence, using only the locations

of known entries we study the relationships between the conditions that exist so far,

and between the matrices that satisfy them. For the duration of this chapter we use

the mask, mask graph, and partially observed matrix interchangeably as one implies

the other.

3.1 Notation and assumptions

Throughout this chapter we use M to refer to an n×m fully-known matrix M ∈ Rn×m

of rank r, and M(i, j) to the entry in the ith row and jth column. The number of

degrees of freedom in the matrix is called θ = r(n+m− r). If M is not completely

known we use Ω ⊆ {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m} to denote the subset of entries

that are observed; we call this set of known entries the mask of M. When a matrix

completion algorithm is applied to the partially observed MΩ, we use M̂ to denote

the output estimate.

Each mask is also associate with a bipartite mask graph GΩ = (V1, V2, E). Every

17
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Figure 3·1: The mask graph GΩ of mask Ω = {(1, 1), (1, 2), (1, 3),
(2, 2), (3, 1)}.

node i ∈ V1 represents a row of M and every j ∈ V2 represents a column. An edges

(i, j) ∈ E exist in GΩ if and only if (i, j) ∈ Ω, i.e., the entry M(i, j) is known. For

example, if M is a 3×3 matrix and mask Ω = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 1)}, then

the mask graph that corresponds to Ω is shown in Figure 4·1. We will use the mask

and its corresponding mask graph interchangeably since one specifies the other.

Genericity assumption: Any argument for matrix completion needs to make an

assumption about how the underlying matrix M has been generated. There are

several assumptions common in the literature, e.g., incoherence made by Candès

and Recht (2012), non-spikyness in Negahban and Wainwright (2012), and genericity

in Király et al. (2013), Király and Tomioka (2012b). Genericity is the most broad

sampling assumption; it is based on algebraic concepts and a formal definition can

be found in Király et al. (2013), Király and Tomioka (2012b). We note here that

this assumption has important implications: for example, a generic matrix of rank r

has no vanishing (r × r) minor, meaning any (r × r) submatrix of M has rank r.

3.2 Classes of completability

Posing the problem of matrix completion in terms of graph rigidity (reviewed in

Appendix A.1) catalyzed structural matrix-completion which brought the ability

to study the possible number of completions of a matrix. In practice, the cases of

interested are those of a single completion or a finite number of completions. Seeking

to evaluate the completability of a partially observed matrix, Singer and Cucuringu
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(2010) and Király et al. (2013) introduced a necessary and sufficient condition for

having a finite number of completions, called being locally completable. The set of

masks that satisfy this condition can be thought of as the class of locally completable

matrices, which we call L. Similarly, the set of masks with only a single completion

can be thought of as the class of uniquely (globally) completable matrices, which we

call U.

Unfortunately, to date there does not exist a condition that is both necessary and

sufficient for checking membership in U. Lack of such condition also means that there

is no algorithm that takes as input a mask and returns “yes” if and only if the mask

is completable. However, the literature by Király et al. (2013), Meka et al. (2009)

and Singer and Cucuringu (2010) has presented three conditions that are sufficient

for membership in U, with which we define three subclasses: SC, CC, and ICMC.

Each class can be associated with a check routine that takes as input a mask

and checks the existing conditions to determine membership among the classes. In

particular, the existence of a necessary and sufficient condition for local completion

leads to a polynomial algorithm for determining whether or not a matrix is in L. For

U and the three subclasses, when a check routine outputs “yes,” the input mask is

in U – but if the check routine outputs “no,” then no conclusion can be drawn.

In the rest of the chapter, we provide the first framework for studying the re-

lationship between the classes of completability. We start by discussing the locally

completable class L and the specific conditions associated with, and then do the same

for U along with each of the three subclasses. Next, we theoretically and empirically

study the relationship between the classes and their relative sizes. Together, these

aspects make up the first study of the landscape of structural matrix-completion.
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3.3 Locally completable masks

Recall that locally completable masks correspond to partially observed matrices with

multiple possible completions, a finite number of them. In other words, there are a

finite number of matrices that have the same observed values as MΩ, but different

values elsewhere.

Definition 1 (Locally-Completable Masks L). Given a mask Ω, we say that Ω is

locally completable, or belongs to class L, if for any generic and partially-observed

matrix MΩ there is a finite set of matrices M such that for each M̂ ∈ M it holds

that M̂(Ω) = M(Ω).

Interestingly,both Király et al. (2013) and Singer and Cucuringu (2010) showed

that checking if a mask is in L can be done in polynomial time via checking the rank

of a special matrix called the completion matrix CΩ.

The completion matrix : For a mask graph GΩ with nv = n + m nodes and ne

edges, the completion matrix CΩ is an ne × r(n + m) matrix where r corresponds

to the rank of the matrix M. To construct the completion matrix, first assign to

each node i an r-dimensional random vector, and call this pi. (We note that the

set of these r-dimensional vectors {pi|i ∈ V } represents a random initialization of

a configuration discussed in Appendix A.1.) Every node i in GΩ is also associated

with r columns in CΩ. Each row of CΩ encodes an edge (i, j) in GΩ and has only 2r

nonzero entries: pi in the r columns corresponding to node j and pj in the r columns

corresponding to node i. This is also visually illustrated in Figure 3·2. The left-hand

side shows the construction, and the right-hand side shows a full example with white

representing zero.
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i j

(i,j) pj pi

(a) Completion matrix

i j

(i,j) pi pj

(b) Example for r = 3

Figure 3·2: The structure of the completion matrix.

The vectors pi corresponding to rows can be aggregated into an n×r matrix, and

the same can be done with the columns to form an m× r matrix; these two matrices

X and Y can be viewed as the factors of M. Király et al. (2013) demonstrate that at

a high level, the completion matrix can be thought of as the Jacobian showing how

the ne visible entries of MΩ vary with respect to M’s two factors. Note that there

is a similarity between the completion matrix of a mask and the rigidity matrix for

a graph as described by Roth (1981) and in Appendix A.1.

To see the high-level relationship between the completion matrix and the num-

ber of completions, consider a system of three equations in three variables. If the

equations are independent, then the system is linearly independent, and there is a

unique solution for the value of each variable. Alternatively, if there is dependency

among the equations, then there is at least one variable that is unconstrained and

can take infinitely many values, i.e. a free variable. Király et al. (2013) showed

that the completion matrix encodes precisely this kind of relationship between the

vectors (between the nodes). Intuitively, if there is not enough independence in the

completion matrix CΩ, then there are not enough constraints on the

Proposition 1 (Király et al. (2013), Singer and Cucuringu (2010)). A mask Ω is

locally completable if and only if the corresponding completion matrix CΩ has rank

φ = r(n+m)− r2.
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We refer to φ as the critical rank. Proposition 1 implies that checking whether a

mask and the corresponding partially observed matrix MΩ are locally completable

can be done simply by constructing and computing the rank of the completion matrix.

Observe that if CΩ has rank φ it must also have φ independent rows; since each row

corresponds to an edge, MΩ must have at least φ known entries. Hence having at

least φ known entries is a necessary condition for L and not coincidentally, an n×m

matrix of rank r has exactly φ degrees of freedom.

Using the condition in Proposition 1, we develop an check routine called check-LC

that takes as input a mask and determines if the mask belongs to L.

Algorithm 1 The check-LC algorithm.

Input Ω, rank r
1: Construct the completion matrix CΩ

2: if rank(CΩ)=r(n+m− r) then output ‘yes’
3: else output ‘no’
4: end if

Because Proposition 1 gives a condition that is both necessary and sufficient, we

can say that if Algorithm 1 outputs ‘yes’ then Ω ∈ L, and if it outputs ‘no’ then

Ω /∈ L. The latter implies that the mask does not have a finite number of completions

but rather an infinite number or none.

3.4 Uniquely completable masks

Although there is a necessary and sufficient condition that can be used to check if a

mask is locally completable, in practice, a unique completion is more desirable than

a finite number of completions. While a finite number of completions can still result

in a great deal of error which will lead to inaccuracies in the data analysis, a unique

completion guarantees accuracy.
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Definition 2 (Uniquely Completable Masks (U)). Given a mask Ω, we say that Ω

is uniquely completable, or belongs to class U, if for any generic partially-observed

matrix MΩ, there is a unique matrix M̂ such that M̂(Ω) = M(Ω).

As we have already mentioned, there is no algorithm that takes as input a mask

and returns “yes” if and only if the mask is uniquely completable. The following

condition, among others, is shown to be necessary by Király et al. (2013).

Proposition 2. To be uniquely completable, it must be that |Ω| ≥ φ = r(n+m)−r2.

In addition, a number of sufficient conditions for a mask to be in U have been

recently introduced by Király et al. (2013), Meka et al. (2009) and Singer and Cu-

curingu (2010). In these cases when the check routine outputs “yes,” the input mask

is in U, but if the check routine outputs “no” then no conclusion can be drawn. We

now discuss in detail each subclass of U and the corresponding check routines.

3.4.1 Closure (CC):

The CC class is defined by all the masks that are “accepted” by a check routine

described by Király et al. (2013).

Under the rank and genericity assumptions, every r× r minor in a rank r matrix

M will be non-vanishing, i.e. the minor will have a nonzero determinant. In contrast,

every minor of size (r + i)× (r + i) for i > 0 will vanish. Now consider the partially

observed MΩ and an (r + 1) × (r + 1) minor with only one entry missing. The key

observation is that since this minor is vanishing, its determinantal equation is equal

to zero and has only one variable, the missing entry; hence, the missing entry can

be recovered by solving the equation. Another way to view this is that the minor

represents an (r + 1)× (r + 1) submatrix of rank-r. Hence, the row with the single

missing entry can be written as a linear combination of the other r rows, and the

missing entry can be recovered.
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In the bipartite mask graph GΩ, these vanishing minors with one entry missing

take the form of (r+ 1)× (r+ 1)-cliques that are missing one edge, which we denote

with K−r+1,r+1. The proposed routine finds these almost-cliques K−r+1,r+1 in the graph,

and adds the missing edge to each one at a time; representing the fact that the missing

entry can be recovered. If in the end, all missing edges have been added (all entries

have been recovered), then MΩ is uniquely completable at rank r. The details of the

associated check routine are shown in Algorithm 2.

Algorithm 2 The check-CC algorithm.

Input Ω, rank r
1: Construct the mask graph GΩ = (V1, V2, E)
2: while there is at least one K−r+1,r+1 do
3: Find all K−r+1,r+1 in GΩ and add each missing edge to Ω
4: end while
5: if GΩ is the complete graph then output ‘yes’
6: else output ‘no’
7: end if

Recall that since CC presents a condition which is merely sufficient, a ‘no’ answer

implies that no conclusion can be drawn regarding membership in CC. In cases

when the output of check-CC is ‘no’, Király et al. (2013) describe extensions beyond

K−r+1,r+1, for example, by finding two cliques K−2
r+1,r+1 that overlap on the two missing

entries. However, the approach becomes more complex and is outside the scope of

this thesis.

Note that the running time of check-CC is exponential and is thus impractical

for large datasets. Király et al. (2013) proposed a probabilistic version of the routine

as a speed-up, but from our experiments, neither this improvement nor the one from

our heuristics was worth the loss in accuracy.
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3.4.2 Stress (SC):

The SC class is defined by all the masks that are “accepted” by the check-SC routine

first proposed by Singer and Cucuringu (2010) and later by Király et al. (2013)

The intuition behind this routine is that as a measure of how a structure (such

as a bridge or building) reacts when a stress force is applied to it; does the structure

stay rigid? Or does it move? In graph rigidity, this is measured using a stress vector

~ρ that lives in the left null space of the completion matrix CΩ, i.e. each product

of the ~ρ with a row of CΩ is zero. The vector ~ρ can be transformed into an n ×m

stress matrix Sρ in a way such that the product of Sρ with each factor X,Y is

zero (recall that X and Y are the collections of r-dimensional points as discussed in

Section 3.3). The transformation is as follows: for row z of CΩ that corresponds to

edge (i, j) ∈ GΩ, set Sρ(i, j) = ρ(z). The procedure is described in the Stressify

routine in Algorithm 4. Singer and Cucuringu (2010) and Király et al. (2013) show

that the result of applying a stress on GΩ can be captured with the rank of the stress

matrix Sρ. If rank(Sρ) = min (n,m) − r then the stress is said to be resolved and

the mask Ω is uniquely completable.

Algorithm 3 The check-SC algorithm.

Input Ω, rank r
1: Construct CΩ

2: Compute a random vector ~ρ in the left nullspace of CΩ

3: Sρ = Stressify(CΩ, ~ρ)
4: if rank(Sρ) = min (n,m)− r then output ‘yes’
5: else output ‘no’
6: end if

Observe that the check-SC algorithm runs in polynomial time, as it only needs

to compute the left nullspace of CΩ and the rank of the stress matrix Sρ. Therefore,

checking whether a mask is in SC is polynomial (albeit computationally demanding).
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Algorithm 4 The Stressify algorithm.

Input CΩ, ~ρ
1: for row z in CΩ do
2: Find the edge (i, j) that row z corresponds to
3: Sρ(i, j) = ~ρ(z)
4: end for
5: Output Sρ

Proposition 3. For a mask Ω to be in SC, the corresponding mask matrix

GΩ(V1, V2, E) must have at least r(|V1|+ |V2|)− r2 + 1 edges.

Proof. The proof of the proposition relies on the fact that the stress matrix Sρ cannot

be constructed unless the completion matrix CΩ has a left nullspace. Since any mask

in SC must have r(|V1|+ |V2|)− r2 independent rows (because of its containment in

L), the corresponding mask graph must have at least r(|V1| + |V2|) − r2 + 1 edges.

This can be confirmed by referencing the relationship between the row space, null

space, and rank of a matrix.

Király et al. have conjectured the following: “. . . it seems that masks not in

SC are rare among the uniquely completable masks and correspond to pathological

cases”. However, we will show in Section 3.5 that our experiments indicate that this

is not the case.

3.4.3 Information cascade (ICMC):

Unlike the classes CC and SC which are specified as a condition and suggest an algo-

rithm, the class discussed here is specified as an algorithm and suggests a condition.

The ICMC class and the corresponding check-ICMC routine are based on the

connection to information propagation introduce by Meka et al. (2009). Similar to

the check-CC routine, the underlying idea is that the presence of independence can

be tied to the completability. However, instead of searching for minors, check-ICMC

utilizes the factors, X and Y, of M. Intuitively Meka et al. (2009) show that each

row of the factors can be written as the solution x of an r × r linear system of
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equations Ax = b where b is composed of the entries of MΩ. If the mask is such

that for each row of the factors there exists a b composed solely of known entries

and no unknowns, then each factor can be uniquely recovered; hence the mask is

in U. Meka et al. (2009) provide a more intuitive interpretation of this condition

through the lens of an epidemic propagation on the bipartite mask graph GΩ which

we discuss below.

The algorithm starts by considering all possible subsets L0 of r initial nodes

(which, without loss of generality, are subsets of V1). For any initial subset, the

r nodes are labeled as infected. Infection subsequently propagates in the iterative

fashion from one side of the mask graph to the other. A node becomes infected after

at least r of its neighbors are infected. If there exists an L0 such that all nodes can

be eventually infected, then check-ICMC returns “yes”, and the input mask Ω is in

ICMC and U.

Since check-ICMC checks all subsets of V1 of size r, it has exponential running

time. A more efficient variant of check-ICMC, only checks a single L0 composed

of the r highest-degree nodes in GΩ. Meka et al. have shown if the mask-graph

follows a power-law distribution, then with high probability this variant returns ‘yes’

whenever the exhaustive one does. The running time of this variation is linear to

the cardinality of the mask Ω and thus much more practical. Details are shown in

Algorithm 5.

The infection-propagation view of check-ICMC can also be adopted for check-CC.

This view reveals a high-level similarity between the two algorithms: In check-ICMC

a node gets infected if it is connected to at least r other infected nodes, while in

check-CC a node gets infected if it is part of a K−r+1,r+1 subgraph.
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Algorithm 5 The check-ICMC algorithm

Input Ω, rank r
1: Construct the mask graph GΩ = (V1, V2, E)
2: Set L0 to the r nodes in V1 with highest degree
3: Mark all nodes in L1 = L0 as infected and set L2 = ∅
4: while L1 6= V1 and L2 6= V2 do
5: Find nodes `2 ⊆ {V2 \ L2} that are connected to ≥ r infected nodes in V1.
6: Mark nodes in `2 as infected and add to L2 = L2 ∪ `2

7: Find nodes `1 ⊆ {V1 \ L1} that are connected to ≥ r infected nodes in V2.
8: Mark nodes in L1 as infected and add to L1 = L1 ∪ `1

9: if `1 and `2 are empty then return ‘no’
10: end if
11: end while
12: Return ‘yes’

3.5 Categorization

We started by defining L as the class of matrices with a finite number of completions.

While necessary and sufficient condition exists for checking membership in L, the

most compelling case in practice is unique completion since it results in zero error

in theory. This case is represented by the U class. Although there do not exist

strong conditions like for L, we have demonstrated the three sufficient conditions

introduced to date: SC, CC, and ICMC, each of which defines a subclass of U.

Given the importance of U, a natural question to ask is whether there is a single

subclass that can act as a good proxy for U. In other words is there a condition that

is satisfied by almost all masks in U? On the same note, we can wonder about the

relationship between the subclasses. Are they distinct? Perhaps they all specify the

same set of matrices?

To date, there has been no investigation into these relationships. We start by

providing some basic proven relationships between the classes. Then we investigate

the remainder through MCMC-style experiments on random masks.
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3.5.1 Theoretical exploration

First, we note that by definition and using results from Király et al. (2013), we have

the following:

Proposition 4 (Király et al. (2013)). For r > 1, the class U is a strict subset of the

class L. That is, U ⊂ L.

The above means that any mask that is uniquely completable is also locally com-

pletable. In fact, for the special case where the rank of M is r = 1, the following can

be shown (Proposition 2.15 in Király and Tomioka (2012a)):

Corollary 5. For masks of matrices of rank r = 1 we have that L = U.

An immediate corollary of Proposition 4 is the the containment of the subclasses.

Corollary 6. ICMC ⊆ L, CC ⊆ L and SC ⊆ L.

For the class CC, we can prove something more strict: CC is a strict subset of U.

Proposition 7. The following relationship holds: CC⊂U.

Proof of Proposition 7. The proof is constructed by providing an example of a mask

that is in U but not in CC, as in Király et al. (2013). Consider Figure 3·3 provided

by Király et al. (2013). The first thing we observed is that with r = 3 this mask does

not belong to CC because there is not a single K−4,4, i.e. there is not 4× 4 submatrix

with only one missing entry. 
1 1 1 1 1 0 0
1 1 1 1 1 0 0
1 1 1 0 1 1 1
1 1 1 0 1 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1


Figure 3·3: An example of a mask that is uniquely completable at
r = 3 but does not satisfy the check-CC condition (for Lemma 7).

On the other hand, the mask is uniquely completable! To see this, consider the

two 4 × 4 submatrices that overlap on the two zeros in the middle; namely the
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submatrix S1 formed by rows 1-4 and columns 1-4, and the submatrix S2 formed by

rows three to six and columns three to six. First show that the middle two zeros can

be recovered uniquely. Recall that the CC technique to recover entries uniquely is

writing the equation of the determinant with the single variable being the missing

entry; however, writing the determinant for each of S1 gives an equation in two

variables. Nevertheless, since the missing entries are in the same column, the two

variables will have a linear relationship in the determinantal equation. Since the

same applies for S2, we obtain two equations that are linear in two variables; hence

the variables have a unique solution.

Once these two zeros are flipped to ones, it is easy to find a sequence of K−4,4 for

each remaining zero. In the end, since all entries have been recovered uniquely, the

mask is in U.

A similar result can be shown regarding CC and ICMC.

Proposition 8. The following relationship holds: ICMC ⊂ CC.

To prove this lemma we first show that an mask in ICMC is also in CC and

then give an example of a mask that is in CC but not in ICMC. First we fix some

terminology. We say that an element (i, j) of Ω is ICMC-recovered if and only if

nodes vi and vj in GΩ, corresponding respectively to row i and column j of MΩ, have

been infected by the check-ICMC routine. Similarly, an element (i, j) is CC-recovered

if it is part of a K−r+1,r+1-clique in MΩ.

Lemma 9. Given an ICMC completable mask Ω, any ICMC-recovered entry is also

a CC-recovered entry.

Proof of Lemma 9. Base Step: Since Ω is ICMC-completable, MΩ must contain an

r − clique (in order to spread the infection GΩ must contain r nodes that are each

connected to all r nodes in L0). Now we re-order the rows and columns of MΩ so

that this r-clique is in the top-left of MΩ (i.e. the infected rows and columns appear

first), and call them R0 and C0. This is illustrated in Figure 3.5.1 for r = 3 – note

that MΩ(R0, C0) = 1.
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jFigure 3·4: Example of re-ordering of rows and columns.

This re-ordering is maintained at every step of the proof, so that the infected rows

and columns appear first.

Inductive Step: In each step i, check-ICMC will infect either a set of columns

or rows. Consider the current state where Ri rows and Ci−1 columns are infected. By

the assumption that check-ICMC returns ”yes”, there must be at least one column

to infect, call it j, which means this column must have at least r ones in MΩ(Ri, j).

We establish two facts about every remaining zero (z, w) in MΩ(Ri, j). First,

there are at least r ones in MΩ(z, Ci−1) and second, there are at least r ones in

MΩ(Ri, w). Further, the base step ensured that MΩ(Ri, Ci−1) is a block of ones at

least size r × r. This is depicted in 3·5a.

Hence, we can claim that every 0 in column j is part of a K−r+1,r+1-clique which

means that every 0 is CC-recovered; shown in Figure 3·5b for the zero at (2, j). Since

the column j becomes infected all 0 are flipped to 1s and are ICMC-recovered. The

logic above is symmetric for an infected row.
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(a) New column j

1 11

1 11

1 11 1 1 1
1 1 1
1 1 1

R0

C0

1 1 1
1 1 1
1 1 1Ri

Ci-1

1 1 1
1 1 1

1
1
1
1
1

1
1
1
1
1

1
0
1
0
1

j
1 1 1
1 1 1
1 1 1Ri

Ci-1

1 1 1
1 1 1

1
1
1
1
1

1
1
1
1
1

1
0
1
0
1

j
1 1 1
1 1 1
1 1 1Ri

Ci-1

1 1 1
1 1 1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

j

(b) K−r+1,r+1 for 0 at (2, j)
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(c) All entries recovered

Figure 3·5: Every entry that is ICMC-recovered is also CC-recovered.

Given the starting assumption that Ω passes the check-ICMC, all the rows and

columns of MΩ are eventually infected as shown in Figure 3·5c. Since we know that

any zero of a newly infected row or column is CC-recovered, we know that any entry
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that is ICMC-recovered is also CC-recovered. In other words any mask Ω that passes

check-ICMC, also passes check-CC

We proceed to prove the strict containment ICMC ⊂ CC by providing an example

of a matrix in CC but not in ICMC.

Proof of Proposition 8. By Lemma 9 we have that ICMC ⊆ CC.

We describe a generative process to construct a mask which will belong to CC but

not ICMC. Any MΩ that exhibits the following properties will pass the check-CC

but not check-ICMC.

1. MΩ is of size (r + 3)× (r + 3)

2. There are two (r+ 1)-cliques (blocks of ones) with an overlap of size (r− 1)×
(r − 1)

3. One entry in the overlap is 0

4. An additional 0 is in one of the cliques but outside of the overlap

5. A single 1 outside of both cliques in the same row or column as the 0 from (4)

For intuition consider the example in Figure 3·6 with r = 3. The blue and yellow

4× 4 blocks of 1s (cliques) and there is a single 0 in the green overlap. There is an

additional 0 in position (5, 3) outside the overlap but in the yellow clique. Finally,

outside of both the blue and the yellow cliques there is a single 1 in the same row as

the latter 0, i.e. in position (5, 2).

We claim that there is a sequence of K−4,4-cliques such that all the 0s switch to

1s, starting from the zero entry in the green overlap in position (4, 4), followed by

the zero in postion (5, 2), and so on. The 1 from property (5) is important for the

check-CC to continue past the first two 0s. Hence, the mask passes the check-CC.

However, regardless of the starting point check-ICMC does not ouput ‘yes’. There

are three possible starting points: one 3× 3 blocks of 1s in the blue clique, and two

in the yellow. The blue clique will infect the rows and columns of the green 0,

but nothing past that. Both yellow clique will not manage to infect even a single

additional row or columns.
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1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 1 1

1 1 1 0 1 1

0 1 0 1 1 1

0 0 1 1 1 1

Figure 3·6: Example of a mask in CC but not in ICMC for r = 3.

Any mask with the structure described above will be in CC but not in ICMC, hence

we ICMC is a strict subset of CC.

Though we have established a containment relationship between L, CC, and ICMC,

but the relationship with the SC class is not so clear.

Proposition 10. The following relationship holds CC 6⊂SC.

Proof of Proposition 10. Consider the mask below at rank r = 1.( 1 1 1
1 0 0
1 0 0

)

While the mask is in CC, it can be shown that the rank of the stress matrix is

1 6= min (m,n)− r = 2, hence the mask is not in SC.

The remaining relationships are unclear, for example, it may be that SC⊂CC or that

there is no containment relationship between the two. A visual of our results and

stipulates is shown in Figure 3·7.
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ICMC
CC
SC

L
U

Figure 3·7: Containment of completability classes.

3.5.2 Empirical exploration

The existing literature allowed us to pose several lemmas regarding the relationship

between matrix-completion classes. To get an idea of the remaining relationships

that we cannot reason about with theory, we conduct an empirical exploration. Our

goal is to gain intuition about the likelihood of random masks to be members of one

or more of the subclasses. Through this, we get a sense of the relative sizes and

relationships between the classes.

We study two important types of masks: Random masks, in which visible en-

tries occur uniformly at random with some given density; and PowerLaw masks, in

which the distribution of visible entries is not uniform, but rather follows a power-law

distribution with respect to the number of visible entries in each row and column.

Random masks have been commonly studied, especially in the signal processing lit-

erature. PowerLaw masks have been argued to more accurately model the sampling

patterns seen in real data, for example, by Meka et al. (2009). For each type of

graph, we study a range of densities of observed values.

Specifically, 350 masks of each type were generated at each density. For a given

density (i.e., number of visible entries), positions of visible entries were chosen uni-

formly at random in the Random case, or using Guillaume and Latapy (2006) in the

PowerLaw case (power-law exponent of 2.5;). All masks were of size 200 × 300. For
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Figure 3·8: Random masks with density = 0.08, 0.10, 0.12, 0.14.
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Figure 3·9: PowerLaw masks with density = 0.035, 0.040, 0.045, 0.050.

both mask types, densities were varied over the critical range where membership in

the subclasses changed most significantly.

The results are shown in figures 3·8 and 3·9. Each class is shown as an ellipse:

CC is yellow; SC is blue; and ICMC is red. The figures have been drawn so that the

areas of the ellipses and their intersections are proportional to the number of masks

that fall into each. Thus one can judge how often a mask falls into each subclass

from the areas shown in the figure.

The figures reveal a number of interesting features. First, observed that as we

conjectured with Figures 3·7, there are masks that belong to SC and not CC, meaning

there is no containment relationship between the two. The most significant and

consistent effect concerns the relative sizes of the classes as the density of visible

entries varies. Specifically, at low densities, many masks fall into SC, and very few

fall into ICMC; the latter shows that empirically speaking, ICMC is the ‘hardest’
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subclass to fall into randomly.

Apart from the difficulty of falling into ICMC, a number of other properties are

visible. First, the properties of CC vary with the graph type: for Random masks

at low density, CC is relatively difficult to fall into, while for PowerLaw masks, CC

is the easiest class to fall into. Another property concerns the relationship between

SC and CC: For PowerLaw masks, CC is generally larger than SC, while this never

true for random masks. This suggests that neither SC nor CC can be close in size to

U in general. In other words, none of the three subclasses can be consistently good

approximations to U. This is unfortunate, because as has been discussed, U is the

class of fundamental interest for unique matrix-completion.



Chapter 4

Active structural-completion

In the previous chapters, we have discussed the problem of matrix completion and

setup a distinction between structural and statistical methods. While statistical

methods optimize for the best-fit solution assuming certain conditions hold, struc-

tural methods analyze the information content to quantify the possibility of comple-

tion. Both approaches rely on a having at least a certain number of observations.

In practice, datasets do not have enough known entries to meet the lower bound

prescribed by statistical methods, which limits the possibility of completion and

translates to estimates that may differ significantly from the true matrix. For ex-

ample, adopting the rank r ≈ 40 of the top solutions to the Netflix Challenge, the

Netflix data is 151 million entries below the lower bound.

In many cases, it is possible to address the insufficiency of MΩ by actively ob-

taining additional observations. For example, in recommender systems, users may

be asked to rate several items; in traffic analysis, new monitoring points may be

installed. These additional observations can lead to an augmented Ω′ such that MΩ′

carries more information about M and may result in more accurate estimates M̂.

In this active setting, the data analyst can become an active participant in data

collection by posing queries to M. Of course, such active involvement will only be

acceptable if the number of queries is small.

In this chapter, we present a method for generating a small number of queries so

as to ensure that the combination of observed and queried values provides sufficient

37
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information for an accurate completion; i.e., the M̂ estimated using the entries MΩ′

is significantly better than the one estimated using MΩ. We call the problem of

generating a small number of queries that guarantee small reconstruction error the

ActiveCompletion problem.

The difference between the classical matrix-completion problem and our problem

is that in the former, the set of observed entries is fixed and the algorithm needs to

find the best completion given these entries. In ActiveCompletion, we are asked

to design both a completion and a querying strategy in order to minimize the recon-

struction error. On the one hand, this task is more complex than standard matrix

completion – since we have the additional job of designing a good querying strategy.

On the other hand, having the flexibility to ask some additional entries of M to be re-

vealed should yield lower reconstruction error. At a high level, ActiveCompletion

is related to other recently proposed methods for active matrix completion discussed

in Section 2. However, existing approaches identify entries to be queried indepen-

dently of the method of completion. In contrast, a strength of our algorithm is that

it addresses completion and querying in an integrated fashion.

The main contribution of this chapter is Order&Extend, an algorithm that simul-

taneously minimizes the number of queries to ask and produces an estimate matrix

M̂ that is very close to the true matrix M. We build upon the methods of structural

matrix-completion to analyze the amount of information in the observed entries, and

then guide the selection of queries.

The design of Order&Extend is inspired by the view of structural matrix-

completion as a linear system of equations. Based on this, we ask which queries

need to be added so that the partially observed matrix admits a unique completion.

We go one step further and observe that there is a relationship between the ordering

in which systems are solved, and the number of additional queries that need to be
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posed. Therefore, the first step of Order&Extend focuses on finding a good ordering

of the set of linear systems, relying only on the combinatorial properties of the mask

graph. Since there is no necessary and sufficient condition for membership in U; we

target the ICMC subclass but discuss techniques for entering other subclasses.

In the second step, Order&Extend considers the linear systems in the chosen order,

and asks queries every time it encounters a problematic linear system Ax = b. A

linear system can problematic in two ways: (a) when there are not enough equations

for the number of unknowns, so that the system does not have a unique solution; (b)

when solving the system Ax = b is numerically unstable given the specific b involved.

Note that, as we explain in the paper, this is not the same as simply saying that A

is ill-conditioned; part of our contribution is the design of fast methods for detecting

and ameliorating such systems.

Our experimental analysis with datasets from a variety of application domains

(presented in Ruchansky et al. (2015)) demonstrates that Order&Extend requires

significantly fewer queries than any other baseline querying strategy, and compares

very favorably to approaches based on well-known matrix completion algorithms. In

fact, our experiments indicate that Order&Extend is “almost optimal” as it gives

solutions where the number of entries it queries is very close to the information-

theoretic lower bound for completion.

4.1 Notation and assumptions

Throughout this chapter we use M to refer to an n×m fully-known matrix M ∈ Rn×m

of rank r, and we use to denote the i-th row or column as M(i, :) and M(:, i) or Mi

when it is clear from the context. We use Mij the entry (i, j). Any rank-r matrix

can be written as the product of two factors which we refer to as M = XY where

X is n× r and Y is r×m. A row of X is denoted Xi and a column of Y as Yi and
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Figure 4·1: The mask graph GΩ of mask Ω = {(1, 1), (1, 2), (1, 3),
(2, 2), (3, 1)}.

an entry (i, j) as xi,j.

The number of degrees of freedom in the matrix is called θ = r(n + m − r). If

M is not completely known we use Ω ⊆ {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m} to denote the

subset of entries that are observed; we call this set of known entries the mask of M.

When a matrix completion algorithm is applied to the partially observed MΩ, we

use M̂ to denote the output estimate.

Each mask is also associate with a bipartite mask graph GΩ = (V1, V2, E). Every

node i ∈ V1 represents a row of M and every j ∈ V2 represents a column. An edges

(i, j) ∈ E exist in GΩ if and only if (i, j) ∈ Ω, i.e., the entry M(i, j) is known. For

example, if M is a 3×3 matrix and mask Ω = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 1)}, then

the mask graph that corresponds to Ω is shown in Figure 4·1.

To measure the error of a completion we use the relative Frobenius error:

RelErr(M̂) =
‖M− M̂‖2

f

‖M‖2
f

(4.1)

Rank assumption: The assumption that the true rank of a matrix is known is

fundamental in obtaining many of the theoretical results in this work – as well as

most papers in the matrix-completion literature Candès and Recht (2012), Király

and Tomioka (2012b), Király et al. (2013), Negahban and Wainwright (2012).

A standard assumption is that the matrix M has low effective rank r (�

min(n,m)). Were M exactly rank r, it would have r non-zero singular values; when

M is effectively rank r, it has full rank but its top r singular values are significantly
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larger in magnitude than the rest. In practice, many matrices obtained through

empirical measurements are found to have low effective rank.

In practice, most matrices obtained through empirical measurements (even those

that are fully observed) are full rank, because of the presence of noise, measurement

error, and minor confounding factors. However it is often the case that real datasets

have small low effective rank r (� min(n,m)). Were M exactly rank r, it would

have r non-zero singular values; when M is effectively rank r, it has full rank but its

top r singular values are significantly larger in magnitude than the rest.

The assumption of effective low-rank is used in obtaining many theoretical results

in the matrix-completion literature Candès and Recht (2012), Király et al. (2013),

Király and Tomioka (2012b), Negahban and Wainwright (2012). Yet in practice,

the important assumption is that of low effective rank. Even if r is unknown but

required as input to an algorithm, one could try several values of r and choose the

best performing one. For the rest of the thesis, we consider r to be known and omit

reference to it when it is understood from context.

Degeneracy assumption: A version of the genericity assumption (see Section 3.1)

that was specified by Meka et al. (2009) is called degeneracy. An n × m rank r

matrix M is non-degenerate if there exist two matrices X∈ Rn×r and Y∈ Rk×m with

M = XY such that any r rows of X are linearly independent. and any r columns of

Y are linearly independent.

4.2 The problem of active completion

For simplicity, we discuss our problem and algorithms in the context of unlimited

access to all unobserved entries of M. However, our results still apply, and our

algorithm can still work in the presence of constraints on which entries of M may be

queried. We define our problem as follows:
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Problem 1 (ActiveCompletion). Given an integer r > 0 that corresponds to

the effective rank of M and the values of M in certain positions Ω, find a set of

additional entries Q to query from M such that for Ω′ = Ω ∪ Q, RelError(M̂Ω′)

as well as |Q| are minimized.

Note that the above problem definition has two minimization objectives: (1)

the number of queried entries and (2) the reconstruction error. In practice, we

can only solve for one and impose a constraint on the other. For example, we can

impose a query budget b on the number of queries to ask and optimize for the error.

Alternatively, one can use error budget ε to control the error of the output, and then

minimize the number of queries to ask. In principle, our algorithm can be adjusted

to solve any of the two cases. However, since setting a desired b is more intuitive

for our active setting, in our experiments we do this and optimize for the error. We

will focus on this version of the problem (with the budget on the queries) for the

majority of the discussion.

The exact case: A special case of ActiveCompletion is when M is exactly rank

r, and the maximum allowed error ε is zero. In this case, the problem asks for the

minimum number of queries required to reconstruct M̂ that is exactly equal to the

true matrix M. This problem is an instance of checking whether the mask of MΩ is

uniquely completable, which we have established to rely only on Ω and not on the

actual values MΩ. In this special case, the goal of Order&Extend is to entries to

bring the mask into U by entering the subclass ICMC.

Critical mask size: The number of degrees of freedom of an n×m matrix of rank

exactly r is r(n+m− r), which we denote φ. Hence, regardless of the nature of Ω,

any solution with ε = 0 must have |Ω′| ≥ φ. Therefore we call φ the critical mask

size as it can be considered as a (rather strict) lower bound on the number of entries

that need to be in Ω′ to achieve small reconstruction error.

Empty masks: For the special case of exact rank and ε = 0, if the input mask Ω
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is empty, i.e., Ω = ∅, then ActiveCompletion can be solved optimally as follows:

simply query the entries of r rows and r columns of M. This optimal solution will

require φ queries, which will construct a mask Ω′ that determines a unique recon-

struction of M. Therefore, when the initial mask Ω = ∅, the ActiveCompletion

problem can be solved in polynomial time.

Non-empty masks: In practice, the input mask Ω is not empty. In fact according

to Proposition 2 in the previous chapter, there may be cases where the input mask

Ω contains φ entries, yet Ω is not uniquely completable. As an example, consider

the following partially-observed rank-2 matrix:

MΩ =


8 4 7

21 7 11
29 20 15
42 28 14

 .
In this case the mask Ω has exactly φ = r(n+m−r) = 12 observed entries, yet in fact

there are (exactly) two possible reconstructions of this matrix at rank 2. Both recon-

structions agree on the off-diagonal elements while having different values in their

diagonal elements. The two possible settings for diagonal elements that yield rank-2

versions of M are diag(M) = (13, 14, 10, 22) and diag(M) = (12, 1410
23
, 92

3
, 241

2
). This

example shows that not only the number but also the position of the visible entries

is important in determining unique completion.

4.3 The Order&Extend algorithm

In this section, we present our algorithm, Order&Extend, for addressing the

ActiveCompletion problem.

The starting point for the design of Order&Extend is the low (effective) rank

assumption of M and the approach of structural matrix-completion. As it will be-

come clear, this means that the unobserved entries are related to the observed entries
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through a set of linear systems. Thus one approach to matrix completion is to solve

a sequence of linear systems. Each system in this sequence uses observed entries in

M or entries of M reconstructed by previously solved linear systems to infer more

missing entries.

The reconstruction error of such an algorithm depends on the quality of the

solutions to these linear systems. As we will show below, each query of M can yield

a new equation that can be added to a linear system. Hence, if a linear system has

fewer equations than unknowns, a query must be made to add a new equation to the

system. Likewise, if solving a system is numerically unstable, then a query must be

made to add an equation that will stabilize it. Crucially, the need for such queries

depends on the nature of the solutions obtained to linear systems earlier in the order.

Thus the order in which systems are solved, and the nature of these systems are

inter-related. A good ordering will minimize the number of “problematic” systems

encountered. However, problematic systems can appear even in the best possible

order, meaning that good ordering alone is insufficient for accurate reconstruction.

At a high level, Order&Extend operates as follows: first, it finds a promising

ordering of the linear systems. Then, it proceeds by solving the linear systems in

this order. If a linear system that requires additional information is encountered,

the algorithm either strategically queries M or moves the system to the end of the

ordering. When all systems have been solved, M̂ is computed and returned. The

next subsections describe these steps in detail.

4.3.1 Completion as a sequence of linear systems

In this section, we explain the particular linear systems that the completion algorithm

solves, the sequence in which it solves them, and how the ordering in which systems

are solved affects the quality of the completion. For the purposes of this discussion,

we assume that M is of rank exactly r. In this case M can be expressed as the product
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Figure 4·2: An intermediate step of Sequential algorithm.

of two matrices X and Y of sizes n×r and r×m; that is, M = XY. Furthermore, we

assume that M is nondegenerate, meaning any subset of r rows of X, or r columns of

Y, is linearly independent. (Later we will describe how Order&Extend addresses the

case when these assumptions do not hold – i.e., when M is only effectively rank-r,

or when an r-subset is linearly dependent). To complete M, it suffices to find such

factors X and Y.1.

The Sequential completion algorithm: We start by describing an algorithm we

call Sequential, which estimates the rows of X and columns of Y. Sequential

takes two inputs: (1) an ordering π over the set of all rows of X and columns of Y,

which we call the reconstruction order, and (2) the partially observed matrix MΩ.

To explain how Sequential works, consider the example in Figure 4·2, where

r = 2, M is on the left and GΩ is on the right. The factors X and Y are shown on

the side of and above M to convey how their product results in M. The nodes V1 of

GΩ correspond to the rows of X, and nodes V2 to the columns of Y. In this figure,

we illustrate an intermediate step of Sequential, in which the values of the i-th and

i′-th rows of X have already been computed. Each entry of M is the inner product

of a row of X and a column of Y.

1Note that X and Y are not uniquely determined; any invertible r × r matrix W yields new
factors XW−1 and WY which also multiply to yield M
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Hence we can represent the depicted entries in M by the following linear system:

Mij = xi1y1j + xi2y2j (4.2)

Mi′j = xi′1y1j + xi′2y2j (4.3)

Observe that xi and xi′ are known, and that the edges (xi, yj) and (xi′ , yj) corre-

sponding to Mij and Mi′j exist in GΩ. The only unknowns in (4.2) and (4.3) are y1j

and y2j, which leaves us with two equations in two unknowns. As stated above and

by assumption, any r-subset of X or Y is linearly independent; hence one can solve

uniquely for y1j and y2j and fill in column j of Y.

To generalize the example above, the steps of Sequential can be partitioned in

x- and y-steps; at every y-step the algorithm solves a system of the form

Axy = t. (4.4)

In this system, y is a vector of r unknowns corresponding to the values of the column

of Y we are going to compute; Ax is an r× r fully-known submatrix of X and t is a

vector of r known entries of M which are located on the same column as the column

index of y. If Ax and t are known, and Ax is full rank, then y can be computed

exactly and the algorithm can proceed to the next step.

In the x-steps Sequential evaluates a row of X using an r× r already-computed

subset of columns of Y, and a set of r entries of M from the row of M corresponding

to the current row of X being solved for. Following the same notational conventions

as above, the corresponding system becomes Ayx = t′. For simplicity we will focus

our discussion on y-steps; the discussion on x-steps is symmetric.

The completion on the mask graph: The execution of Sequential is also cap-

tured in the mask graph shown in the right part of Figure 4·2. In the beginning, no

rows or columns have been recovered, and all nodes of GΩ are white (unknown). As
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the algorithm proceeds they become black (known), and this transformation occurs

in the order suggested by the input reconstruction order π. Thus a black node de-

notes a row of X or column of Y that has been computed. In our example, the fact

that we can solve for the j-th column of Y (using Equations (4.2) and (4.3)) is cap-

tured by yj’s two connections to black/known nodes (recall r = 2). For general rank

r, the j-th column of Y can be estimated by a linear system if in the mask graph,

yj is connected to at least r already computed (black) nodes. This is symmetric for

the i-th row of X and node xi. Intuitively, this transformation of nodes from black

to white is reminiscent of an information propagation process. This procedure is

inspired by the check-ICMC algorithm and the connections first drawn by Meka et

al. Meka et al. (2009).

Incomplete and unstable linear systems: As it has already been discussed in the

literature by Meka et al. (2009), the performance of an algorithm like Sequential

is heavily dependent on the input reconstruction order. Meka et al. (2009) have

discussed methods for finding a good reconstruction order in the special case where

the mask graph has a power-law degree distribution. However, even with the best

possible reconstruction order Sequential may still encounter linear systems which

are either incomplete or unstable. Incomplete linear systems are those for which the

vector t has some missing values and therefore the system Axy = t cannot be solved.

Unstable linear systems are those in which all the entries in t are known, but the

resulting expression A−1
x t may be very sensitive to small changes in t. These systems

raise numerous problems in the case where the input M is a noisy version of a rank

r matrix, i.e., it is a matrix of effective rank r.

In the next two sections we describe how Order&Extend deals with such systems.
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Figure 4·3: The direction on the edges imposed by the ordering of
nodes shown in Figure 4·2.

4.3.2 Ordering and fixing incomplete systems

First, Order&Extend devises an order that minimizes the number of incomplete sys-

tems encountered in the completion process.

Let us consider again the execution of Sequential on the mask graph, and the

sequential transformation of the nodes in GΩ = (V1, V2, E) from white to black.

Recall that in this setting, an incomplete system occurs when the node in GΩ that

corresponds to y is connected to less than r black nodes.

Consider an order π of the nodes V1 ∪ V2. This order conceptually imposes a

direction on the edges of E; if x is before y in that order, then π(x) < π(y), and edge

(x, y) becomes directed edge (x → y). Figure 4·3 shows this transformation for the

mask graph in Figure 4·2 and the order implied there. For fixed π, a node becomes

black if it has at least r incoming edges, i.e., indegree at least r. In this view, an

incomplete system manifests itself by the existence of a node that has indegree less

than r. Clearly, if an order π guarantees that all nodes have r incoming edges, then

there are no incomplete systems, and π is a perfect reconstruction order.

In practice such perfect orders are very hard to find; in most of the cases, they

do not exist. The goal of the first step of Order&Extend is to find an order π that is

as close as possible to a perfect reconstruction order. It does so by constructing an

order that minimizes the number of edges that need to be added so that the indegree

of any node is r.

To achieve this, the algorithm starts by choosing the node u from GΩ = (V1, V2, E)
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with the lowest degree. This node is placed last in π (meaning π(u) is large), and

removed from GΩ = (V1, V2, E) along with its incident edges. Of the remaining

nodes, the one with the minimum degree is placed in the next-to-last position in π

and again removed from GΩ = (V1, V2, E). This process repeats until all nodes have

been assigned a position in π.

Next, the algorithm makes an important set of adjustments to π by examining

each node u in the order it occurs in π. For a particular u the adjustments can take

two forms:

1. if u has degree ≤ r: it is repositioned to appear immediately after the neighbor

v with the largest π(v).

2. if u has degree > r: it is repositioned to appear immediately after the neighbor

its neighbor v with the the r-th smallest π(v).

These adjustments aim to construct a π such that when the implied directionality

is added to edges, each node has indegree as close to r as possible. While it is possible

to iterate this adjustment process to further improve the ordering, in our experiments,

this showed little benefit.

Once the order π is formed as described above, then the incomplete systems

can be quickly identified: as Order&Extend traverses the nodes of GΩ in the order

implied by π, every time it encounters a node u with in-degree less than r, it adds

edges so that u’s indegree becomes r; by definition, the addition of a new edge (x, u)

corresponds to querying a missing entry Mxu of M.

4.3.3 Finding and alleviating unstable systems

Incomplete systems are easy to identify – they correspond to nodes in GΩ with degree

less than r. However, there are other “problematic” systems which do not appear

to be incomplete, yet they are unstable. Such systems arise due to noise in the data
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matrix or to an accumulation of error that happens through the sequential system-

solving process. These systems are harder to detect and alleviate. We discuss our

methodology for this below.

Understanding unstable linear systems: Recall that a system Axy = t is unsta-

ble if its solution is very sensitive to the noise in t. To be more specific, consider the

system Axy = t, where Ax has full rank and t is fully known. Recall that the solution

of this system, y = A−1
x t, will be used as part of a subsequent system: Ayx = t′,

where y will become a row of matrix Ay. Let Ax = UΣV T be the singular value de-

composition of Ax with singular values σ1 ≥ . . . ≥ σr. Now if there is a σj such that

σj is very small, then the solution to the linear system will be very unstable when

the singular vector vj corresponding to σj has a large projection on t. This is because

in A−1
x , the small σj will be inverted to a very large 1/σj. Thus the inverse operation

will cause any component of t that is in the direction of vj to be disproportionally-

strongly expressed, and any small amount of noise in t to be amplified in y. Thus,

unstable systems may be catastrophic for the reconstruction error of Sequential as

a single such system may initiate a sequence of unstable systems, which can amplify

the overall error.

Unstable vs ill-conditioned systems: It is important to contrast the notion of an

unstable system with that of an ill-conditioned system, which is widely used in the

literature. Recall, that system Axy = t is ill-conditioned if there exists a vector s and

a small perturbation s′ of s, such that the results of systems Axy = s and Axy
′ = s′

are significantly different. Thus, whether or not a system is ill-conditioned depends

only on Ax, and not on its relationship with any target vector t in particular. An

ill-conditioned system is also characterized by a large condition number κ(Ax) = σ1

σn
.

This way of stating ill-conditioning emphasizes that κ(Ax) measures a property of Ax

and does not depend on t. Consequently (as we will document in Section 4.4.2) the
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condition number κ(Ax) generates too many false positives to be used for identifying

unstable systems.

Identifying unstable systems: To provide a more precise measure of whether a

system Axy = t is unstable, we compute the following quantity:

`(Ax, t) = ‖A−1
x ‖
‖t‖
‖y‖

. (4.5)

We call this quantity the local condition number, which was also discussed by Tre-

fethen and Bau Trefethen and Bau III (1997). The local condition number is more

tailored to our goal as we want to quantify the proneness of a system to error with

respect to a particular target vector t. In our experiments, we characterize a system

Axy = t as unstable if `(Ax, t) ≥ θ. We call the threshold θ the stability threshold

and in our experiments we use θ = 1. Loosely, one can think of this threshold as a

way to control for the error allowed in the entries of reconstructed matrix. Although

it is related, the value of this parameter does not directly translate into a bound on

the RelError of the overall reconstruction.

Selecting queries to alleviate unstable systems: One could think of dealing

with an unstable system via regularization, such as ridge regression (Tikhonov Reg-

ularization) which was also suggested by Meka et al. (2009). However, for systems

Axy = t, such regularization techniques aim to dampen the contribution of the sin-

gular vector that corresponds to the smallest singular value, as opposed to boosting

the contribution of the singular vectors that are in the direction of t. Further, the

procedure can be expressed in terms of only Ax without taking t into account; as we

have discussed this is not a good measure for our approach.

The advantage of our setting is that we can actively query entries from M. There-

fore, our way of dealing with this problem is by adding a direction to Ax (or as many

as are needed until there are r strong ones). We do that by extending our system



52

from Axy = t to

[
Ax
α

]
ỹ =

[
t
τ

]
. Of course, in doing so we implicitly shift from

looking for an exact solution to the system, to looking for a least-squares solution.

Clearly α cannot be an arbitrary vector. It must be an already computed row

of X, it should be independent of Ax, and it must boost a direction in Ax which is

poorly expressed and also in the direction of t. Given the intuition we developed

above, we iterate over all previously computed rows of X that are not in Ax, and

set each row as a candidate α. Among all such α’s we pick α∗ as the one with the

smallest `(Ax, t), and use it to extend Ax to

[
Ax
α∗

]
.

Algorithm 6 The local condition routine

Input: C,Ax, α, t
1: D = C − CαTαC

1+αCαT

2: Ãx =
[
Ax
α

]
3: τ = Random (M(i, :),M(:, j))

4: t̃ =
[
t
τ

]
5: ỹ = DÃxt̃

6: return ‖DÃx‖ ‖t̃‖‖ỹ‖

Algorithm 7 The Stabilize routine

Input: Ax, t, θ
1: j : the column of Y being computed
2: C = (ATxAx)

−1

3: for i ∈ {Computed rows of X} do
4: αi = Xi

5: if Xi not in Ax then
6: c(i) = local condition(C,Ax, αi, t, τ)
7: end if
8: end for
9: i∗ = arg mini c(i), α

∗ = Xi∗

10: if c(i∗) < θ then
11: return (i∗, j), α∗

12: end if
13: return null
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Querying M judiciously: Although the above procedure is conceptually clear, it

raises a number of practical issues. If the system Axy = t solves for the j-th column

of matrix Y, then every time we try a different α, which suppose is the already

computed Xi, then the corresponding τ must be the entry Mij. Since Mij is not

necessarily an observed entry, this would require a query even for rows α 6= α∗,

which is clearly a waste of queries since we will only pick one α∗. Therefore, instead

of querying the unobserved values of τ , Order&Extend simply uses random values

following the distribution of the values observed in the i-th row and j-th column of

M. Once α∗ is identified, we only query the value of τ corresponding to row α∗ and

column j.

If there is no α∗ that leads to a system with local condition number below our

threshold, we postpone solving this system by moving the corresponding node of the

mask graph to the end of the order π.

Computational speedups: From the computational point of view, the above ap-

proach requires computing a matrix inversion per α. With a cubic algorithm for

matrix inversion, this could induce significant computational cost. However, we ob-

serve that this can be done efficiently as all the matrix inversions we need to perform

are for matrices that differ only in their last row – the one occupied by α.

Recall that the least-squares solution of the system Axy = t is y = (ATxAx)
−1ATx t.

Now in the extended system

[
Ax
α

]
ỹ =

[
t
τ

]
or Ãxỹ = t̃, the corresponding solution is

ỹ = (Ãx
T
Ãx)

−1Ãx
T
t̃. Observe that we can write:

Ãx
T
Ãx =

[
ATx α

T
] [A
α

]
= ATxAx + αTα.

Thus, Ãx
T
Ãx can be seen as a rank-one update to ATxAx. In such a setting the

Sherman-Morrison Formula Golub and Loan (2012) provides a way to efficiently cal-

culate D = (Ãx
T
Ãx)

−1 given C = (ATxAx)
−1. The details are shown in Algorithm 6.
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Using the Sherman-Morrison Formula we can find ỹ via matrix multiplication, which

requires O(r2) for at most n = max{n,m} candidate queries. Since the values of r

we encounter in real datasets are small constants (in the range of 5-40), this running

time is small.

The pseudocode of this process is shown in Algorithm 7. The process of selecting

the right entry to query is summarized in the Stabilize routine. Observe that

Stabilize either returns the entry to be queried, or if there is no entry that can

lead to a stable systems it returns null. In the latter case the system is moved to the

end of the order.

4.3.4 Putting everything together

Given all the steps we described above we are now ready to summarize Order&Extend

in Algorithm 8.

Order&Extend constructs the rows of X and columns of Y in the order prescribed

by π – the pseudocode shows the construction of columns of Y, but it is symmetric

for the rows of X. For every linear system the algorithm encounters, it completes

the system if it is incomplete and tries to make it stable if it is unstable. When a

complete and stable version of the system is found, the system is solved using least

squares. Otherwise, it is moved to the end of π.

Initialization: The algorithm starts with empty factors X and Y and no infected

nodes. To begin the infection, the algorithm must start from an initial set of r nodes

and call them infected; the initial set is chosen as the first r nodes in π from a single

side of the bipartite graph. This initial set corresponds to r rows of X (or columns of

Y) whose values are set and who will be used as Ax in the first system. The values

in these first r rows are arbitrary as long as they form r independent rows. This

is because, as noted in footnote-1, the factors are not unique, hence any invertible

W can account for the scaling and rotation M = XY = (X′W−1)(WY′). In our
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Algorithm 8 The Order&Extend algorithm

Input: MΩ, r, θ
1: Compute GΩ

2: Find ordering π (as per Section 4.3.2)
3: Select the first r nodes in π as the initial set L0

4: Set rows L0 of X to Ir the r × r identity
5: for Axy = t (corresponding to the j-th column of Y) encountered in π do
6: solve system = true
7: if Axy = t is incomplete then
8: Query M and complete Axy = t
9: end if

10: while local condition(Ax, t) > θ do
11: if {(i∗, j), α∗} = Stabilize(Ax, t, θ) 6= null then

12: Ax =
[
Ax
α∗
]

13: t =
[

t
Mi∗j

]
14: else
15: move Axy = t to the end of π
16: solve system = false
17: break
18: end if
19: end while
20: if solve system then
21: Yj = y = A†xt (using least squares)
22: end if
23: end for
24: return M̂ = XY
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experiments we set the initial r rows of X (according to π) to the r × r identity

matrix.

Running time: The running time of Order&Extend consists of the time to obtain

the initial ordering, which using the algorithm of Matula and Beck Matula and Beck

(1983) is O (n+m), plus the time to detect and alleviate incomplete and unstable

systems. Recall that for each unstable system we compute an inverse O (r3) and

check n candidates O (r3 + r2n). Thus the overall running time of our algorithm

is O ((n+m) +N × (r3 + r2n)), where N is the number of unstable system the

algorithm encounters. In practice, the closer a matrix is to being of rank exactly r,

the smaller the number of error-prone systems it encounters and therefore the faster

its execution time.2

Partial completions: If the budget b of allowed queries is not adequate to resolve

the incomplete or the unstable systems, then Order&Extend will output M̂ with only

a portion of the entries completed. The entries that remain unrecovered are those for

which the algorithm claims inability to produce a good estimate. From the practical

viewpoint, this is extremely useful information as the algorithm is able to inform the

data analyst which entries it was not able to reconstruct from the observations in

MΩ. It also means the algorithm can adapt to privacy constraints or restrictions on

which missing entries can be queried.

Dynamic Setting: The infection propagation view of matrix completion enables

Order&Extend to extend naturally to dynamic settings where the data is received

as a stream. Once a completion has been calculated using Order&Extend on a par-

tially observed matrix, it does not need to be update because of the completability

guarantee When a new row or column arrives, a new node is added to the graph, the

infectability is evaluated, and edges added if required.

2Code and information are available at http://cs-people.bu.edu/natalir/matrixComp

http://cs-people.bu.edu/natalir/matrixComp
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(a) Traffic1 (b) Traffic2 (c) Boat

(d) Latency1 (e) Latency2 (f) Jester

Figure 4·4: RelError of completion achieved by Order&Extend,
LMaFit and OptSpace on datasets with approximate rank; x-axis:
query budget b; y-axis: RelError of the completion.

4.4 Experimental results

In this section, we experimentally evaluate the performance of Order&Extend both

in terms of the reconstruction error as well as the number of queries it makes. Our

experiments show that across all datasets Order&Extend requires very few queries

to achieve a very low reconstruction error. All other baselines we compare against

require many more queries for the same level of error, or can ever achieve the same

level of reconstruction error.

Datasets: We experiment on the following nine real-world datasets, taken from a

variety of applications.

MovieLens: This dataset contains ratings of users for movies from the MovieLens

website.3 The original dataset has size 6 040 × 3 952 and only 5% of its entries are

observed. For our experiments we obtain a denser matrix of size 4 832× 3 162.

3Source http://www.grouplens.org/node/73.

http://www.grouplens.org/node/73
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Netflix: This dataset also contains user movie-ratings, but from the Netflix web-

site. The original size is 480 189×17 770 with 1% of observed entries. Again we focus

on a submatrix with higher percentage of observe entries and size 48 019× 8 885.

Jester: This dataset corresponds to a collection of user joke ratings obtained for

joke recommendation on the Jester website.4 For our experiments we use the whole

dataset with size 23 500× 100 with 72% of its entries being observed.

Boat: This dataset is a fully-observed black and white image of size 512× 512.

Traffic: This is a set of four datasets; each is part of a traffic matrix from a large

Internet Service Provider where rows and the columns are source and destination

prefixes (i.e., groups of IP addresses), and each entry is the volume of traffic between

the corresponding source-destination pair. The largest dataset size 7 371× 7 430 and

0.1% of its entries are observed; we call this TrafficSparse. The other two are fully-

observed of sizes 2 016× 107, and 2 016× 121; we call these Traffic1 and Traffic2.5

Latency: Here we use two datasets consisting of Internet network delay measure-

ments. Rows and columns are hosts, and each entry indicates the minimum ping

delay among a particular time window. The datasets are fully-observed and of sizes

116× 116, and 869× 19; we call these Latency1 and Latency2.5

Baseline algorithms: We compare the performance of our algorithm to two state-

of-the-art matrix-completion algorithms, OptSpace and LMaFit .

As neither OptSpace nor LMaFit are algorithms for active completion, we set

up our experiment as follows: first, we run Order&Extend on MΩ0 , which asks a

budget of b queries. Before feeding MΩ0 to LMaFit and OptSpace we extend it with

b randomly chosen queries. In this way, both algorithms query the same number

of additional entries. A random distribution of observed entries has been proved

to be (asymptotically) optimal for statistical methods like OptSpace and LMaFit

4Source http://goldberg.berkeley.edu/jester-data/
5Source https://www.cs.bu.edu/~crovella/links.html

http://goldberg.berkeley.edu/jester-data/
https://www.cs.bu.edu/~crovella/links.html
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by Candès and Recht (2012), Keshavan et al. (2010a), Wen et al. (2012). Therefore,

picking randomly distributed b additional entries is the best querying strategy for

these algorithms, and we have also verified that experimentally.

4.4.1 Methodology

For all our experiments, the ground-truth matrix M is known but not fully revealed

to the algorithms. The input to the algorithms consists of an initial mask Ω0, the

observed matrix MΩ0 , and a budget b on the number of queries they can ask. Each

algorithm A outputs an estimate M̂A,Ω0 of M.

Selecting the input mask Ω0: The initial mask Ω0, with cardinality m0, is selected

by picking m0 entries uniformly at random from the ground-truth matrix M.6. The

cardinality m0 is selected so that m0 > 0 and m0 < φ(M, r); usually we chose m0 to

be ≈ 30 − 50% of φ(M, r). The former constraint guarantees that the input is not

trivial while the latter guarantees that additional queries are needed.

Range for the query budget b: We vary the number of queries, b, that an

algorithm can issue among a wide range of values. Starting with b < φ(M, r)−m0,

we gradually increase it until we see that the performance of our algorithms stabilizes

(i.e., further queries do not decrease the reconstruction error). Clearly, the smaller

the value of b the larger the reconstruction error of the algorithms.

Reconstruction error: Given a ground-truth matrix M and input MΩ0 , we eval-

uate the performance of a reconstruction algorithm A, by computing the relative

error of M̂A,Ω0 with respect to M, using the RelError function defined in Equa-

tion (5.1). This measure takes into consideration all entries of M, both the ob-

served and the unobserved. The closer M̂A,Ω is to M the smaller the value of

RelError(M̂A,Ω). In general, RelError(M̂A,Ω) ∈ [0,∞) and at perfect recon-

6We also test other sampling distributions, but the results are the same as the ones we report
here and thus omitted



60

(a) MovieLens (b) Netflix (c) TrafficSparse

Figure 4·5: RelError of completion achieved by Order&Extend,
LMaFit and OptSpace on datasets with exact rank; x-axis: query bud-
get b; y-axis: RelError of the completion.

struction RelError(M̂A,Ω) = 0.

Although our baseline algorithms always produce a full estimate (i.e., they esti-

mate all missing entries), Order&Extend may produce only partial completions (see

Section 4.3.4 for a discussion in this). In these cases, we assign value 0 to the entries

it does not estimate.

4.4.2 Evaluating Order&Extend

Experiments with real noisy data: For our first experiment, we use datasets

for which we know all off the entries. This is true for six out of our nine datasets:

Traffic1 ,Traffic2, Latency1, Latency2, Jester, Boat. Note that Jester is missing 30%

of the entries, but we treat them as true zero-values ratings; the remaining datasets

are fully known and able to be queried as needed. As these are real datasets they are

not exactly low rank, but plotting their singular values reveals that they have low

effective rank. By inspecting their singular values, we chose: r = 7 for the Traffic

and Latency datasets, r = 10 for Jester and r = 40 for Boat.

Figure 4·4 shows the results for each dataset. The x-axis is the query budget b;

note that while LMaFit and OptSpace always exhaust this budget, for Order&Extend

it is only an upper bound on the number of queries made. The y-axis is the
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RelError(T, M̂A,Ω). The vertical black line marks the number of queries needed

to reach the critical mask size; i.e., it corresponds to a budget of (φ(M, r) − m0).

One should interpret this line as a very conservative lower bound on the number of

queries that an optimal algorithm would need to achieve error-less reconstruction in

the absence of noise.

From the figure, we observe that Order&Extend exhibits the lowest reconstruc-

tion error across all datasets. Moreover, it does so with a very small number of

queries, compared to LMaFit and OptSpace; the latter algorithms achieve errors of

approximately the same magnitude in all datasets. On some datasets LMaFit and

OptSpace come close to the relative error of Order&Extend though with significantly

more queries. For example for the Latency1 dataset, Order&Extend achieves error

of 0.24 with b = 2K queries; LMaFit needs b = 4K to exhibit an error of 0.33,

which is still more than that of Order&Extend. In most datasets, the differences are

even more pronounced; e.g., for Traffic2, Order&Extend achieves a relative error of

0.50 with about b = 13K queries; OptSpace and LMaFit achieve error of more than

0.8 even after b = 26K queries. Such large differences between Order&Extend and

the baselines appear in all datasets, but Boat. For that dataset, Order&Extend is

still better, but not as significantly as in other cases – likely an indication that the

dataset is noisier. We also point out that the value of b for which the relative error

of Order&Extend exhibits a significant drop is much closer to the indicated lower

bound by the vertical black line. Again this phenomenon is not so evident for Boat

probably because this dataset is further away from being low rank.

Extremely sparse real-world data: For the purpose of experimentation our algo-

rithm needs to have access to all the entries of the ground truth matrix M – in order

to be able to reveal the values of the queried entries. Unfortunately, the Movielens,

Netflix, and TrafficSparse datasets consist mostly of missing entries, therefore we
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cannot query the majority of them. To be able to experiment with these datasets,

we overcome this issue by approximating each dataset with its closest rank r matrix

Tr. The approximation is obtained by first assigning 0 to all missing entries of the

observed M, and then taking the singular value decomposition and setting all but

the largest r singular values to zero. This trick grants us the ability to study the

special case discussed in Section 4.2 where the matrix is of exact rank r.

Using r = 40, the results for these datasets are depicted in Figure 4·5 with the

same axes and vertical line as in Figure 4·4. Again, we observe a clear dominance

of Order&Extend. In this case, the differences in the relative error it achieves are

much more striking. Moreover,Order&Extend achieves almost 0 relative error for an

extremely small number of queries b; in fact, the error of Order&Extend consistently

drops to an extremely small value for b very close to the lower bound of the optimal

algorithm (as marked by the black vertical line shown in the plot). On the other

hand LMaFit and OptSpace are far from exhibiting such behavior. This signals that

Order&Extend devises a querying strategy that is almost optimal. Interestingly the

performance of OptSpace changes dramatically in these cases as compared to the

approximate rank datasets. In fact on TrafficSparse and Netflix the error is so high

it does not appear on the plot.

Note that the striking superiority of Order&Extend in the case of exact-rank is

consistent across all datasets we considered, including others not shown here.
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Figure 4·6: Recovery process using LMaFit, and Order&Extend. Each
column is a particular b, increasing from left to right.

Running times: Though the algorithmic composition is quite different, we give

some indicative running times for our algorithm as well as LMaFit and OptSpace. For

example, in the Netflix dataset the running times were in the order of 11 000 seconds

for LMaFit, 80 000 seconds for Order&Extend, and 200 000 seconds for OptSpace.

These numbers indicate that Order&Extend is efficient despite the fact that in ad-

dition to matrix completion it also identifies the right queries; the running times of

LMaFit and OptSpace simply correspond to running a single completion on the ex-

tended mask that is randomly formed. Note that these running times are computed

using an unoptimized and serial implementation of our algorithm; improvements can

be achieved easily e.g., by parallelizing the local condition number computations.

Partial completion of Order&Extend: As a final experiment, we provide anecdotal

evidence that demonstrates the difference in the philosophy behind Order&Extend

and other completion algorithms. Figure 4·6 provides a visual comparison of the

recovery process of Order&Extend and LMaFit for different values of query budget b.

For small values of b, Order&Extend does not have the sufficient information to re-

solve all incomplete and unstable systems. Therefore the algorithm does not estimate

the entries of M corresponding to these systems, which renders the white areas in the
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two left-most images of Order&Extend . In contrast LMaFit outputs full estimates,

though with significant error which can be seen by the incremental sharpening of the

image, compared to the piece-by-piece reconstruction of Order&Extend.

Discussion Here we discuss some alternatives we have experimented with but omit-

ted due to significantly poorer performance.

Alternative querying strategies: Order&Extend uses a rather intricate strategy

for choosing its queries to M. A natural question is whether a simpler strategy

would be sufficient. To address this, we experimented with versions of Sequential

that considered the same order as Order&Extend but when stuck with a problematic

system they queried either randomly, or with probability proportional (or inversely

proportional) to the number of observed entries in a cell’s row or column. All these

variants were significantly and consistently worse than the results we reported above.

Condition number: Instead of detecting unstable systems using the local condi-

tion number we also experimented with a modified version of Order&Extend, which

characterized a system Axy = t as unstable if its condition number κ(Ax) was above

a threshold. For values of the threshold between 5 and 100 the results were consis-

tently and significantly worse than the results of Order&Extend that we report here,

both in terms of queries and in terms of error. Further, there was no threshold of the

condition number that would perform comparably to Order&Extend for any dataset.

4.5 Extension to tensors

More and more, tensors are attracting attention as a way to model real world data.

While the algebraic properties of tensors and the algorithms design for them are more

complex than those for matrices, the state-of-the-art in tensor methods is rapidly

improving. In this section, we give an overview of the extension of Order&Extend to

tensor-completion. The main tools of Order&Extend can be summarized as:
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1. Systems of equations: Expressing the matrix as a product of two factors X

and Y allows the entries to be expressed in terms of linear systems.

2. Nonsingular systems: Ensuring that the linear systems are nonsingular en-

sures that there is a single solution, and the recovery is accurate.

3. Graph propagation: Modeling the completion with a bipartite graph infec-

tion propagation enables the ordering to complete as many missing entries as

possible and to determine a small number of queries needed for full completion.

To the best of our knowledge there is not an extension of completion via graph

rigidity to tensors that would mirror structural matrix-completion, although Kahle

et al. (2016) has begun to address the topic. Since our approach is based on solving

iteratively solving nonsingular systems of equations, the tensor completion we obtain

is unique in that sense similar to ICMC. However, we do not have extensions of the

other completability classes.

4.5.1 Completion as a linear system of equations

The rank of an n×m matrix can be represented as the smallest integer r such that

M can be written as a M = XY where X is n× r and Y is r×m; the factorization

can also be viewed as a summation of r rank-one matrices. Work on tensors has

brought about a number of decompositions, as for matrices, but also a number of

definitions of rank (we refer the reader to a summary written by Kolda and Bader

(2009)). However, the CP-decomposition provides an exact analog of the matrix

decomposition and rank we use in this work.

The CP decomposition expresses a tensor T as the sum of rank-one tensors, where

an N -way tensor is rank-one if it can be written as the outer product of N vectors.

The tensor rank is exactly the minimum number rank-one tensors whose sum is T.

Consider a 3-way tensor T, the CP-decomposition is written as:
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T =
r∑

a=1

Xa ⊗Ya ⊗ Za

With this notation an entry of T can be expressed as:

ti,j,k =
r∑

a=1

xi,ayj,azk,a

hence we can write the analogue of Equations 4.2 and 4.3:

tijk =
r∑

a=1

xi,ayj,azk,a (4.6)

ti′jk =
r∑

a=1

xi′,ayj,azk,a (4.7)

If the entries tijk and ti′jk are known in the partially observed tensor and the x’s

and z’s have been previously solved for, then the y’s are the only unknowns. Further

since the number of unknowns (y’s) is equal to the number of equations, the system

can be solved for a unique solution of the y’s. To be precise, what we recover is a

an r-dimensional vector where each entry is the jth coordination of Ya for a = 1 to

r; this is represented with the vertical stripe in Y in Figure 4·7. What follows is a

parallel of the iterative solving of systems of equations performed with matrices.

= =

X1

+…+
X

Y

Z

Y1

Z1

Xr

Yr

Zr

T

Figure 4·7: Visual of tensor CP-decompositon.

With matrices, we had the notion of the degrees of freedom θ = r(n + m − r).
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Figure 4·8: Hypergraph for tensor completion

We conjecture that under certain assumptions mimicking the genericity assumption,

a similar notion can be defined for tensors. As a proxy we use θT = r(
∑
ni) − rN

where ni is the ith dimension.

4.5.2 Hypergraph propogation

Once we’ve established that we can construct systems of equations just as in the

matrix case, then next step is to setup an iterative solving of these systems so that

the factors X, Y, and Z can be recovered. Recall that in the matrix formulation we

posed the iterative solving as an infection propagation on a bipartite graph, where

each node (row in a factor) can be infected (recovered) if it has at least r infected

neighbors (known entries in M).

In the case a tensor, instead of two factors (X and Y) and a bipartite graph,

we have N -factors and an N -partite graph which for our purposes is a hypergraph.

The infection is setup to begin from an r-dimensional hyperclique and propagate to

susceptible nodes. Instead of evaluating whether a node has r infected neighbors, we

need to check if it has r infected incident edges where a hyperedge is infected if n−1

of the nodes participating in the edge have been infected. For example, in Figure 4·8,

the filled nodes are infected and the empty are not. Hence, the solid orange edge is

labeled infected while the dashed black edge is not. If a node has r incident infected

hyperedges (orange edges) then it can be infected, and the corresponding part of the

factor can be recovered. If all nodes are infected, all factors can be recovered, and a

full estimate of T can be computed.
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Ordering and solving systems In principle, both the initial minimum degree or-

dering and adjustments that follow can be extended to hypergraphs. Define the

hyperdegree of a node as the number of incident hyperedges, and infected hyperde-

gree as the number of incident hyperedges that are infected. Note this differs from

matrices where the infected degree is the number of infected neighbors. The ordering

and adjustments, as described in Section 4.3.2, can be modified for hyperdegree and

applied to the hypergraph.

The linear systems are then solved according the the specified ordering. When

an incomplete or unstable system is encountered, it is alleviated in the same way as

in Section 4.3.4.

Initialization: One complication that arises is the question of initialization. With

matrices, the decomposition M = XY of a rank r matrix is not unique since it can

be re-written as (XW)(W−1Y) for any invertible r × r matrix W. This allows for

a simple initialization of the very first system Ax to an arbitrary set of r linearly

independent rows or columns. Unfortunately, the CP decomposition is unique more

often than not, hence setting the first system to arbitrary values could result in a

highly inaccurate recovery.

However, having the ability to make queries to missing entries allows us to cir-

cumvent this complication. Recall that in the matrix case, the algorithm needs an

r × r submatrix of known entries (an r-clique) to start the iterative solving. Sim-

ilarly, in the tensor case we require an r-dimensional order-N subtensor of known

entries to being the iterative solving procedure. Instead of initializing with a random

nonsingular set of vectors, we initialize with the CP-decomposition of the subtensor.

This initialization fixes the factors to the correct ones since the remainder will be

recovered based on this starting point.
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4.5.3 The Order&ExtendTensor algorithm

We now give the pseudocode for the extension of Order&Extend to tensors. The

algorithm mimics Order&Extend, is capable of producing partial completions, and

applies naturally to dynamic data.

Algorithm 9 The Order&ExtendTensor routine

Input: TΩ,r,θ
1: Compute HΩ

2: Find ordering π
3: For the starting r-hyperclique, query any missing entries in the subtensor
4: Initialize the factors of T with the CP-decomposition of the substensor
5: for each system encountered do
6: Solve and query as in Order&Extend

7: end for
8: return T̂ as the CP-product of the estimated factors

The first step is the construct the hypergraph HΩ. Once an ordering π is found,

the first r nodes from each part of the N -partite graph are selected as the indices

of the initial subtensor. The missing entries of the subtensor are queried, and the

CP-decomposition of the subtensor is computed. The components in the factors of

T corresponding the initial infected nodes are initialized with the CP-decomposition

Each r× r factor of the decomposed subtensor corresponds to a subset of a factor of

T (indicated by the infected nodes in each part of HΩ) and is used to initialize the

algorithm.

4.5.4 Experiments

In this section, we mirror the experiments in Section 4.4.2 where we evaluate both

the accuracy and the number of queries that need to be made using synthetic data.

We generate a 100 × 250 × 300 random Gaussian tensor with tensor-rank= 4. The

density of the input mask is chosen in the same way as in 4.4.2, and we measure

the error as we vary the query budget b. To both generate tensors and apply the
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CP-decomposition we use the code provide by the TensorLab Toolbox7.

We compare to three tensor-completion methods. The first algorithm was pre-

sented by Signoretto et al. (2014) and is based on a convex formulation that general-

izes the nuclear norm. Second, we compare to an alternative minimization approach

proposed by Jain and Oh (2014). Finally, we include a heuristic of finding the CP-

decomposition of the partially observed tensor and constructing the estimate from

the factors – a proxy for the best rank-r approximation. In line with the matrix ex-

periments, since these methods are not ‘active’, we adapt them a querying strategy

that adds b entries in randomly chosen locations.

Figure 4·9a shows the RelError of Order&ExtendTensor, CP, TenALS, and

HardCompletion as a function of the query budget. We observe that, as with matri-

ces, our algorithm finds an accurate completion with fewer number of queries than

the comparison algorithms.
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Figure 4·9: RelError of completion achieved by
Order&ExtendTensor, HardCompletion and CP on datasets with
exact rank; x-axis: query budget b; y-axis: RelError of the
completion.

In Figure 4·9b and Figure 4·9c we show a close-ups of Figure 4·9a. The

vertical line in Figure 4·9c represents our conjectured θT and we observe that

Order&ExtendTensor asks almost only θT queries. The most competitive algorithm

7http://www.tensorlab.net/
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is TenALS; however, while our approach requires approximately 3000 queries to attain

almost perfect completion, TenAls has relative error on the order of thousands and

requires around 400, 000 queries to reach an accurate completion.

4.6 Active completability for other classes

We have described an algorithm for matrix completion that is based on a routine

to bring a mask into ICMC. More precisely, for a partially observed dataset, the

algorithm Order&Extend adds entries to ensure an accurate completion in a way

that is based on check-ICMC (we refer the reader to Chapter 3 for the definition

appropriate notations, and overview of the classes). In the special case of exact

rank, Order&Extend can be viewed as adding entries so that the mask belongs to the

ICMC class.

A similar idea can be considered with respect to the other classes, namely: for a

mask that is not a member of a given class, which 0s should be flipped to 1s so that

the mask becomes a member of the class?

4.6.1 Bringing a mask into L

Recall that the condition for determining whether a mask is a member of L relates

to the rank of the completion matrix. If the rank of CΩ is φ = r(n+m− r) the mask

is in L and otherwise it is not in L. Since an n × m matrix of rank r has exactly

φ degrees of freedom the maximum rank of C is φ. Together, this means that if a

mask is not in L it is because the rank of the completion matrix is less than φ; hence

to bring a mask into L we simply need to increase the rank of its corresponding

completion matrix.

A strategy for increasing the rank of a matrix we need to add independent rows.

Since each row of the completion matrix corresponds to an edge, by increasing the

rank we are adding edges to the mask. The special structure of the completion matrix
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simplifies the identification of which rows (edges) need to be added; the fact that the

columns are broken up into non-overlapping groups of r allows us to identify which

group of r (which node) is missing one of its r pivots. The procedure is shown in

Algorithm 10.

Algorithm 10 L-addition
Input CΩ,Ω

1: Find the row-echelon form of CΩ

2: while the rank of CΩ < φ do
3: Find the first column i without a pivot, starting from the left
4: Find node u corresponding to i, and a random node v not adjacent to u
5: Add an edge (u, v) to Ω and the proper row to CΩ

6: Recompute the row-echelon form of CΩ

7: end while
8: Output Ω, CΩ

The algorithm finds the row-echelon form of the completion matrix, the pivots of

which reveal which rows and columns are linearly independent. The pivots are then

used to identify which rows (edges) need to be added to create a pivot and increase

the rank. In step 4, the addition of a new row will not necessarily increase the rank

of CΩ. When this is the case, and the rank is unchanged, the algorithm tries adding

and edge (u, v′) to another non-adjacent node v′. When the rank of CΩ reaches φ,

the algorithm is terminated, and the resulting mask belongs in L.

Note that in (6) we often do not need to recompute the full row-echelon form.

Because of the special structure of CΩ each new row can only affect the r columns

corresponding to u and v (because all other entries are zero). Hence, we only need

to update and perform mini Gaussian eliminations on the r × r submatrix of rows

which corresponds to incident edges of u.
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4.6.2 Bringing a mask into SC

The SC condition is similar to the L condition in that it also relies on reaching a

certain matrix rank. In this case, to bring a mask in SC, we need to increase the rank

of the stress-matrix Sρ. This increase can be done in a way similar the Algorithm 10,

by finding columns without pivots in the row-echelon form of Sρ. However, here

things become a bit more complicated.

For example, consider that a pivot is missing from column j and we decide to add

the entry (i, j) to increase the rank of Sρ. (Recall that in Sρ an entry corresponds

directly to an edge and a row of CΩ). While placing a random value in Sρ(i, j) is

likely to increase the rank, it must also be true that the corresponding vector ρ

remains in the null space of CΩ. This may not hold once we have added Sρ(i, j) and

the corresponding new row in CΩ. Hence, once a row is added to CΩ the ρ must be

recomputed, and the new Sρ will not necessarily have the same rank as it did before

(i, j).

In practice we observed that although not every addition resulted in a rank in-

crease, adding in the greedy manner described above worked well. The approach is

described in Algorithm 11.

Algorithm 11 SC-addition

Input CΩ,Ω
1: Ω′, C ′Ω=L-addition(Ω, CΩ)
2: Find the stress matrix Sρ of C ′Ω
3: while the rank of Sρ < min(n,m)− r do
4: Bring Sρ to row-echelon form
5: Find the first column u without a pivot, starting from the left
6: Add a row to CΩ for a new edges (u, v)
7: Recompute Sρ
8: end while
9: Output Ω, CΩ

The first step of Algorithm 11 brings the mask into L. This step is not strictly
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necessary as in principle we could add edges to bring the mask directly into SC;

however, bringing the mask into L before bringing it into SC was observed to require

fewer edges. After that, the algorithm proceeds by adding entries to Sρ until the

rank reaches the required value.

4.6.3 Bringing a mask into CC

Unlike the previous two conditions, CC is characterized by almost-cliques. The

procedure iteratively identifies a K−r+1,r+1 ((r + 1) × (r + 1) submatrices with only

one missing entries), and flips the 0 to a 1 in the mask. When a mask is not in CC, it

is because at some point in the iteration no K−r+1,r+1 can be formed yet there remain

missing entries. Hence, an approach to bringing a mask into CC is adding entries to

form a sequence of K−r+1,r+1 for the remaining entries.

Choosing an efficient strategy for adding entries is not straightforward. One

approach is to iterate through missing entries (i, j) (through 0s), find a (r+1)×(r+1)

submatrix for each, and add missing entries in the submatrix aside from (i, j) –

forming a K−r+1,r+1. Clearly, this may require many more additional entries than

necessary. In an attempt to minimize the number of edges added we take a greedy

approach and add entries to the densest submatrices first.

Algorithm 12 CC-addition

Input Ω
1: Run Ω′ =check-CC(Ω, r)
2: while Ω′ does not contain all entries do
3: Find the missing entry (i, j) with the densest (r + 1)× (r + 1) submatrix S
4: Add all missing entries in S aside from (i, j) to Ω and Ω′

5: Add (i, j) to Ω′

6: Run Ω′ =check-CC(Ω′, r)
7: end while
8: Output Ω

Algorithm 12 shows a heuristic procedure for bringing a mask into CC. The set
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Ω maintains the mask and the entries that have been added, while Ω′ keeps track

of which entries have been recovered in the procedure. Experiments showed that

the greedy heuristic described required less additional entries than others, such as

randomly added entries or ordering by row and column density.



Chapter 5

Localized matrix-completion

So far we have placed emphasis on the commonality and practicality of the low-rank

assumption in matrix completion. This global low-rank assumption is at the center of

traditional matrix-completion algorithms that optimize over the whole matrix and try

to fit a single model to the whole data. However, in the design of many algorithms for

analyzing and utilizing this data, there is the further assumption of the existence of

even lower-rank submatrices. For example, in user-preference data, there is expected

to be subsets of users that behave similarly on subsets of products. This is the

underlying assumption made by Aggarwal (2016), Herlocker et al. (2004), Sarwar

et al. (2001), and others in standard collaborative filtering, where recommendations

are made to a user based on the preferences of other similar users. This is also a

common assumption for analysis of traffic networks, user-preferences, and datasets

in the natural sciences (e.g., gene expression data).

Despite the fact that the assumption of low-rank submatrices is prevalent to many

data-analysis settings, there is very little work in the matrix-completion literature

that captures such structure. We argue that matrices that contain low-rank sub-

matrices are not accurately estimated by traditional, Global, approaches to matrix-

completion that make a global assumption on the rank, such as the ones described

in the previous chapters. Given that in many applications low-rank submatrices cor-

respond to particularly interesting parts of the data, it is important to find a good

completion of the entries that are missing in the submatrices.

76
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In this chapter we explore the benefit of capturing substructure in the context

of matrix completion, and ask: Can the knowledge of the existence of a low-rank

submatrix improve the accuracy of completion?

5.1 Notation and assumptions

Throughout we use M to refer to an n ×m fully-known matrix M ∈ Rn×m of rank

r, and we use Mi to denote the i-th row of M and Mij the entry (i, j). If M is not

completely known we use Ω ⊆ {(i, j)|1 ≤ i ≤ n, 1 ≤ j ≤ m} to denote the subset of

entries that are observed, and when a matrix completion algorithm is applied to the

partially observed MΩ, we use M̂ to denote the output estimate.

For a submatrix S of M, we use Rs ⊆ {1, . . . , n} and Cs ⊆ {1, . . . ,m} to denote

the rows and columns of the original matrix that fully define S. That is, S =

M(Rs, Cs). Also, for a set of rows Rs we use the term complement to refer to the set

of rowsRs = {{1, . . . , n}\Rs}. The notation v1 is reserved for the first singular vector

of M, and for any other matrix S we use si to denote the i-th right singular vector

of S. We also use Y to denote the complement of S, that is if Rs = {1, . . . , n} \ Rs

and Cs = {1, . . . ,m} \ Cs, then T = M(Rs, Cs).

To measure the error of a completion we use the relative Frobenius error:

RelErr(M̂) =
‖M− M̂‖2

f

‖M‖2
f

(5.1)

Finally, we use the following conventions: ‖ ·‖ as shorthand for the L2 norm ‖ ·‖2

of a vector or matrix. Recall, that the L2 norm of a matrix is the value of its first

singular value. For vectors x and y, we also use 〈x,y〉 to denote the inner product

of vectors x and y, and x⊗ y to denote their outer product..

The assumptions made in this chapter are the same as the previous chapter which

are described in Section 4.1.
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5.2 Localized matrix-completion

Traditional approaches to matrix completion, which we call Global, typically assume

that the whole matrix is of a particular rank r. Together with assumptions such as

incoherence or genericity, the problems is framed as the task of finding a single model

that estimates the whole matrix. When, as it has been observed across various appli-

cations, a matrix contains low-rank submatrices, a single model does not accurately

estimate both the submatrices and the rest of the data at once. Intuitively, this

comes from the fact that the submatrix and its complement are deemed two sepa-

rate matrices by the traditional notion of a matrix in the completion literature. In

an extreme view, applying Global to such a matrix with a low-rank submatrix is

akin to fitting one model to the concatenation of two separate datasets.

To address this limitation of the Global approach, we propose a Localized

strategy that separates low-rank submatrices and completes them separately from

the rest of the matrix.

On input MΩ, the Localized algorithm:

1. Finds the locations of low-rank submatrices S= {(Rs, Cs)}

2. Separates the entries of the low-rank submatrices from the rest Ω′ = Ω \ S

3. Completes the submatrices S separately from the rest of the matrix T

4. Combines the estimates back into a matrix M̂ as the output completion

Since in practice the locations of low-rank submatrices within a partially-observed

matrix are not known to analysts or data-owners, the first step of the algorithm

searches for evidence of low-rank submatrices in the matrix. Next, the low-rank

submatrices are separated from the complement and in step 3, a completion algorithm

is applied to each component separately. Finally, step 4 merges the estimates back
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into a full completion (this is done to evaluate the error and is not strictly necessary).

Note that if no submatrices are found in step 1, the algorithm simply reverts to

Global.

To the best of our knowledge, step 1 has not been fully addressed in the literature

to date. In fact, the problem of finding a low-rank submatrix in a fully known, let

alone partially-known, matrix is an open and interesting problem. Hence before

investigating the benefit of a localized approach to matrix completion, we first

study step 1, which we call the LRDiscovery.

5.3 Low-rank submatrix discovery

In this section, we study the first step of Localized: the problem of finding a low-

rank submatrix which we call LRDiscovery. We first focus on the setting where

the matrix is fully-known since the problem is interesting in itself and has received

little attention. After developing an algorithm and providing an analysis of when it

is likely to succeed, we develop a natural extension to partially observed matrices.

Our approach to LRDiscovery is inspired by the Singular Value Decomposition

(SVD) of a matrix, which has proven particularly useful in extracting structure from

a matrix. We consider a data matrix M whose rows and columns are separated

into sets that define S (the low-rank submatrix) and T (the matrix defined by the

remaining rows and columns). Our main contribution is the characterization of when

the singular vectors of M can be used to identify the rows and the columns that form

S. Intuitively we isolate two factors that are important for this task: the magnitude

of the largest singular value of S and the singular vectors of S and T. At a high

level, our analysis reveals that when the magnitude of the first singular value of S is

large and the singular vectors of S are sufficiently different from the singular vectors

of T, then the first singular vector v1 of M will orient towards the span of S and
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thus help identify S when the data is projected on v1. To the best of our knowledge,

we are the first to provide such an analysis and characterization.

Our algorithm, which we call SVP, is inspired by the above analysis and it has two

simple steps: first, it finds a projection of the rows (and columns) of M on the first

left (resp. right) singular vector of M. Then, it projects the rows (resp. columns) of

M on the appropriate singular vector and clusters the 1-dimensional points into 2

clusters. The cluster of rows (resp. columns) with the largest mean is an estimate of

the rows (resp. columns) of S.

The key advantages of SVP is its simplicity and efficiency – it only requires the

computation of the first left and right singular vectors of M. Our experimental

evaluation with data generated using different models demonstrates that SVP is able

to succeed in the identification of S even when S has relatively large rank, when

there is missing data in M, or even when there are multiple low-rank submatrices

planted in M. None of the other methods available for the same problem today can

exhibit the same level of success in such a wide range of inputs.

5.3.1 Exposing low-rank submatrices

First, we lay out our main analytical contribution in which we characterize when the

singular vectors of M can be used to expose evidence that there exists a low-rank

submatrix S in M. We focus the discussion on finding the rows of this submatrix

(i.e., we fix Cs = {1 . . .m}), but the analysis is symmetric for the columns. The

following two parameters are key to our characterization:

π(S,T) =
‖S‖2

‖T‖2
and γ(S,T) = max

j
〈s1, tj〉

The first parameter measures the magnitude of the L2-norm of S with respect to

T; whenever S and T are clear from the context we use π to denote π(S,T). The
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second parameter, γ(S,T), measures the geometric orientation of S with respect to

T. Intuitively, when γ is small, S and T are well-separated. Again when S and T

are clear from the context we use γ to denote γ(S,T) .

These two parameters allow us to characterize the behavior of v1 with respect to

the magnitude and geometry of S in M. In particular, we show that when π is large

and γ is adequately small with respect to π, the normalized projections of Si on v1

will be larger than the normalized projections of Ti on v1. The gap between the

projections suggests an approach to LRDiscovery that uses v1 to expose evidence

of S.

To simplify the discussion and capture the intuition above we define ∆S,T =

1
|Rs|‖Ω(S)v1‖1− 1

|Rt|‖Ω(T)v1‖1, where Ω(X) is an operator that normalizes each row

of matrix X. The crux of our analysis lies in the following proposition:

Proposition 11. If π > 1 and γ < ε(π− 1), then ∆S,T > (1− γ)(1− ε) and we say

∆S,T is ε-close to (1− γ).

To prove Proposition 11, we first consider a special case that simplifies the setting.

A series of propositions and lemmas are required before reaching the final result,

afterwhich we address the more general case.

Special case of rank-1:

Consider the case in which M consists of two rank-one submatrices: S = M (Rs, :)

and its complement T = S
(
Rs, :

)
, both of which span all the columns. The first

singular vector and value of S are s1 and σ1, and the first singular vector and value

of T are t1 and τ1. We start by describing the quadratic form of M in terms of S

and T.

Lemma 12. The first singular vector v1 of M is equal to the first eigen vector of

Q = σ2
1s1s1

T + τ 2
1 t1t1

T , i.e. v1 = maxz,‖z‖2=1 zTQz .

Proof of Lemma 12. Recall that the first right singular vector v1 of M is the one that
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maximizes ‖Mv1‖2 over all unit vectors. We now consider this expression ‖Mv1‖2

and write it as a quadratic form in terms of S and T.

‖Mv1‖2 =
∑
M

〈Mi,v1〉2

=
∑
S

〈Si,v1〉2 +
∑
T

〈Ti,v1〉2

= ‖Sv1‖2 + ‖Tv1‖2

= v1
T (STS)v1 + v1

T (TTT)v1

= v1
T (σ2s1 ⊗ s1

T )v1 + v1
T (τ 2t1 ⊗ t1

T )v1

= v1
T (σ2s1 ⊗ s1

T + τ 2t1 ⊗ t1
T )v1 = v1

T (MTM)v1 (5.2)

The unit vector v1 that maximizes ‖Mv1‖2 will also maximize each intermediate

expression. Hence, finding the eigenvector corresponding to the largest eigenvalue of

σ2s1 ⊗ s1
T + τ 2t1 ⊗ t1

T corresponds to finding the first singular vector of M. From

here on we used Q to refer to Q = MTM = σ2s1 ⊗ s1
T + τ 2t1 ⊗ t1

T .

Next we derive an expression for λ, the first eigenvalue of Q in terms of σ and τ .

Proposition 13. Using λi to denote the i-th largest eigenvalue of Q

λ1, λ2 =
τ 2

2

[
π + 1±

√
((1− π)2 + 4πγ2

]

Proof of Proposition 13. Consider the trace of the matrix Q = MTM

Tr(Q) =
∑
i

λi and Tr(Q2) =
∑
i

λ2
i

Since the rank(M) ≤ 2, we can consider only the largest two eigenvalues and expand

the expressions for the trace to:

Tr(Q) = λ1 + λ2 (5.3)

Tr(Q2) = λ1
2 + λ2

2 (5.4)
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At the same time we can compute the trace explicitly in terms of σ and τ :

Tr(Q) = τ 2 + σ2

Tr(Q2) = Tr(τ 2t1 ⊗ t1
T τ 2t1 ⊗ t1

T + 2τ 2t1 ⊗ t1
Tσ2s1 ⊗ s1

T + σ2s1 ⊗ s1
Tσ2s1 ⊗ s1

T )

= τ 4 + σ4 + 2σ2τ 2γ2

Hence (λ1 + λ2) = (τ 2 + σ2) and (λ1
2 + λ2

2) = (τ 4 + σ4 + 2τ 2σ2γ2) . By doing a bit

of manipulation we can also recover the valuation of λ1λ2:

(λ1 + λ2)2 = λ1
2 + 2λ1λ2 + λ2

2

= (τ 2 + σ2)2 = σ4 + 2τ 2σ2 + τ 4

(λ1 + λ2)2 − (λ2
1 + λ2

2) = (τ 4 + 2τ 2σ2 + τ 4)− (τ 4 + 2σ2τ 2γ2 + σ4)

= λ1λ2 = τ 2σ2− σ2τ 2γ2

Now that we have λ1λ2 and (λ2 +λ2), combine these with the characteristic equation

for which λ1 and λ2 are roots.

C2 − C(λ1 + λ2) + λ1λ2 = C2 − C(τ 2 + σ2) + τ 2σ2 − σ2τ 2γ2

The discriminant of this equation is

(τ 2 + σ2)2 − 4(τ 2σ2 − σ2τ 2γ2) = (σ2 − τ 2)2 + 4σ2τ 2γ2

Since the discriminant if postive, > 0, there are two real roots.

λ1 and λ2 =
(τ 2 + σ2)±

√
(τ 2 − σ2)2 + 4σ2τ 2γ2

2

Observe that in the special case where s1 and t1 are orthogonal. In this case γ2 = 0

and if σ > τ then λ1 = σ2 and λ2 = τ 2.

Recall that π = σ2

τ2 and substitute σ2 with πτ 2.

λ1, λ2 =
1

2

[
(τ 2 + σ2)±

√
(τ 2 − σ2)2 + 4σ2τ 2γ2

]
=

1

2

[
(π + 1)τ 2 ±

√
((1− π)2τ 4 + 4πτ 4γ2

]
=
τ 2

2

[
π + 1±

√
((1− π)2 + 4πγ2

]
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Using Proposition 13 we can obtain a bound on its magnitude. Suppose π = 1. Then

λ1, λ2 = τ 2(1 ± γ). If γ = 0 then s1 and t1 are orthogonal and the two eigenvalues

will equal. If s1 and t1 are parallel, then there will be one eigenvalue which be equal

to the sum of their magnitudes. Now suppose π > 1. In this case we can write

λ = λ1 = τ2

2

[
π + 1 +

√
((π − 1)2 + 4πγ2

]
. Since we know that 0 < γ < 1 we can

also obtain a bound on λ, namely πτ 2 < λ < (π + 1)τ 2.

Next we show that v1 can always be expressed as a linear combination of just s1

and t1, i.e. v1 = αs1 + βt1.

Proposition 14. The first right singular vector v1 of M can be written as v1 =

αs1 + βt1 for

α =
σ

c

[
s1(n)(λ− σ2) + t1(n)στγ

]
and β =

τ

c

[
t1(n)(λ− τ 2) + s1(n)στγ

]

Fact 1. For any matrix M, its first right singular vector v1, the largest eigenvalue

λ of Q = MTM, and I as the identity matrix, the following holds: (Q− Iλ)v1 = 0.

We prove Proposition 14 by showing that Fact 1 holds for the proposed α and β, i.e.

(Q− Iλ)(αs1 + βt1) = 0.
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Proof of Proposition 14.

(Q− Iλ)v1 = (σ2s1 ⊗ s1
T + τ 2t1 ⊗ t1

T − Iλ)v1

=
1

c
(σ2s1 ⊗ s1

T + τ 2t1 ⊗ t1
T − Iλ)(s1α + t1β)

Substituting α and β, multiplying out the terms and grouping them by s1 and t1,

some terms cancel and we get:

= s1
σ

c

[
s1(n)(σ2λ− σ2τ 2 − λ2 + λτ 2 + (στγ)2)

]
+

t1
τ

c

[
t1(n)(τ 2λ− σ2τ 2 − λ2 + λσ2 + (στγ)2)

]
= s1

σ

c

[
s1(n)(−(λ− σ2)(λ− τ 2) + (στγ)2)

]
+

t1
τ

c

[
t1(n)(−(λ− σ2)(λ− τ 2) + (στγ)2)

]
= ψ

1

c

[
σs1(n)s1 + τt1(n)t1

]
Using the expression for λ we show that ψ = −(λ− σ2)(λ− τ 2) + (στγ)2 is equal to

zero.

ψ = −(λ− σ2)(λ− τ2) + (στγ)2

4ψ = −(2λ− 2σ2)(2λ− 2τ2) + 4(στγ)2

= −(τ2 − σ2 +
√

(σ2 − τ2)2 + 4(στγ)2)(σ2 − τ2 +
√

(σ2 − τ2)2 + 4(στγ)2) + 4(στγ)2

= −2σ2τ2 + σ4 + τ2 − (σ2 − τ2)2 − 4(στγ)2 + 4(στγ)2

= 0

Thus v1= αs1 +βt1 is in the null space of (Q− Iλ) and v1 is the first right singular

vector of M.

As a consequence we have the following:

Corollary 15. For σ and τ as the first singular values of rank-one components S

and T and γ as the angle between them, (λ− σ2)(λ− τ 2) = (στγ)2

Observe that the factors α and β contain the terms s1(n) and t1(n) respectively,

which are elements of s1 and t1. We claim that the index of these elements is arbi-

trary, and can be replaced with s1(i) and t1(i) upon proper scaling. The expression
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of v1 can be transformed to be in terms of s1(i) and t1(i) instead of s1(n) and t1(n),

by multiplying by a factor z. Denote by αi = σ
c

[
s1(i)(λ − τ 2) + t1(i)(στγ)

]
and

similarly for βi, then in Proposition 14 we have shown that v1 = αns1 + βnt1.

Lemma 16. For any i ≤ n we can write v1 = αns1 + βnt1 = z
[
αis1 + βit1

]
where

z =
αn
αi

=
s1(n)(λ− τ 2) + t1(n)(στγ)

s1(i)(λ− τ 2) + t1(i)(στγ)

Lemma 17. αi

αj
= βi

βj
for αi and βi as defined above and αi, αj, βi, βj are all nonzero.

Proof of Lemma 17. We proceed by showing αiβj = αjβi using Corollary 15. Set

Γ = στγ for the sake of clarity and assume all α’s and β’s are nonzero.

αiβj =
στ

c2
(s1(i)(λ− τ 2) + t1(i)(στγ))(t1(j)(λ− σ2) + s1(j)(στγ))

=
στ

c2

[
s1(i)t1(j)(λ− τ 2)(λ− σ2) + s1(i)s1(j)Γ(λ− τ 2)

+ t1(i)t1(j)Γ(λ− σ2) + s1(j)t1(i)Γ2
]

=
στ

c2

[
(s1(i)t1(j) + s1(i)t1(j))Γ2 + s1(i)s1(j)(λ− τ 2) + t1(i)t1(j)α(λ− σ2)

]
(5.5)

Using this we can show that

αjβi =
στ

c2

[
(s1(j)t1(i) + s1(j)t1(i))Γ2 + s1(j)s1(i)(λ− τ 2) + t1(j)t1(i)α(λ− σ2)

]
which is equivalent to αiβj up to a factor of (s1(j)t1(i)− s1(i)t1(j))O(γ2).

Since αiβj = αjβi and all are nonzero αi

αj
= βi

βj
.

Proof of Lemma 16.

v1 = z
[
αis1 + βit1

]
= zαis1 + zβit1

=
αn
αi
αis1 +

αn
αi
βit1

= αns1 +
βn
βi
βit1 = αns1 + βnt1
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Thus the coordinate n in s1(n) is arbitrary and will come into play only later.

We now combine the previous derivations to obtain an expressions for the inner

products of s1 and t1 with v1 in terms of π and γ.

〈v1, s1〉 = 〈αs1 + βt1, s1〉 = α〈s1, s1〉+ β〈t1, s1〉 = α + γβ

=
σ

c

[
s1(n)(λ− τ 2) + t1(n)στγ

]
+ γ

τ

c

[
t1(n)(λ− σ2) + s1(n)στγ

]
=

1

c

[√
πτ
[
s1(n)(λ− τ 2) + t1(n)

√
πτ 2γ

]
+ τγ

[
t1(n)(λ− πτ 2) + s1(n)

√
πτ 2γ

]]
=
τ

c

[
λ(
√
πs1(n) + γt1(n)) + s1(n)τ 2

√
π(γ2 − 1)

]
(5.6)

Similarly for t1 we write the inner product, group terms, and simplify the expression.

〈v1, t1〉 = γα + β

=
1

c

[
σγ
[
s1(n)(λ− τ 2) + t1(n)στγ

]
+ τ
[
t1(n)(λ− σ2) + s1(n)στγ

]]
=

1

c

[√
πτγ

[
s1(n)(λ− τ 2) + t1(n)τ

√
πγ
]

+ τ
[
t1(n)(λ− πτ 2) + s1(n)

√
πτ 2γ

]]
=
τ

c

[
λ(
√
πs1(n)γ + t1(n)) + t1(n)τ 2π(γ2 − 1)

]
(5.7)

Finally, combining the expressions of the inner products, we compute ∆S,T as their

differences and then simplify the expression to arrive at Proposition 11.

∆S,T =
τ

c

[
λ(
√
πs1(n) + γt1(n)) + s1(n)τ 2

√
π(γ2 − 1)

]
−τ
c

[
λ(
√
πs1(n)γ + t1(n)) + t1(n)τ 2π(γ2 − 1)

]
By rearranging terms:

∆ =
τ

c
(1− γ)

[√
πs1(n)(λ− τ 2(γ + 1))− t1(n)(λ− πτ 2(γ + 1))

]
Here we introduce the following assumptions: (1) π > 1, (2) γ < ε(π − 1), and (3)

the index n is such that t1(n)
√
π ≤ s1(n).
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Lemma 18. If π > 1, γ < ε(π−1), n is such that t1(n)
√
π < s1(n) then the constant

c = τ(λ− τ 2)s1(n)
√
π.

Proof of Lemma 18. The constant c comes from the fact that our derivation of the

first singular vector as v1=αs1 + βt1 without the 1
c

factor is not unit norm, that is

v = α′s1 + β′t1 =
[
s1(n)(λ− σ2) + t1(n)στγ

]
s1 +

[
t1(n)(λ− τ 2) + s1(n)στγ

]
t1

is parallel to v1 but not unit norm. Since c is the normalization factor we can write

‖v‖2 = σ2α′2 + τ 2β′2 + 2α′β′γ

This simplifies to:

‖v‖2 =
[
2s1(n)t1(n)

]
γ3

+
[
2λ(s1(n)2 + t1(n)2)− τ 2(πt1(n)2 + s1(n)2)

]
γ2

+
[
2s1(n)t1(n)(λ2 − πτ 4)

]
γ

+
[
(τλ− πτ 3)2t1

2 + (τλ− τ 3)2s1(n)2π
]

(5.8)

Recall our assumptions that π > 1 and γ < ε(π − 1). As γ shrinks and π grows

larger than 1, the term that is constant with respect to γ dominates the expression.

Further the right hand side of the constant term is always larger, and its growth is

quadratic to π while the left hand side shrinks. Hence, we approximate c2 by the

dominating term in c2 = (τλ− πτ 3)2s1(n)2π and c = τ(λ− πτ 2)s1(n)
√
π

Proposition 19. If π > 1, γ < ε(π − 1), n is such that t1(n)
√
π < s1(n) then

∆ ∈ [(1− γ)(1− γ
π
), (1− γ)(1− γ

π−1
)]

Proof of Proposition 19.

∆ =
τ

c
(1− γ)

[√
πs1(i)(λ− τ 2(γ + 1))

]
= τ(1− γ)

√
πs1(i)(λ− τ 2(γ + 1))

τ(λ− πτ 2)s1(i)
√
π

= (1− γ)
(λ− τ 2(γ + 1))

(λ− πτ 2)

Using the bounds on λ we obtain ∆ ∈ [(1− γ)(1− γ
π
), (1− γ)(1− γ

π−1
)]
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Proposition 11 indicates that intuitively if S has large L2-norm and is geomet-

rically well-separated from T, then the normalized projection of Mi on v1 will be

larger for i ∈ Rs than for i /∈ Rs – larger by approximately (1− γ).

To explore the implications of Proposition 11, we continue to examine the case

in which M consists of two rank-one submatrices. In this case, S = M (Rs, :) has

rank one, and its complement T = M
(
Rs, :

)
also has rank equal to one. In this case,

γ = γ(S,T) = |〈s1, t1〉|.

We now claim that |〈v1,
Mi

‖Mi‖〉| are either identical for all Mi, or take one of two

values:

|〈v1,
Mi

‖Mi‖
〉| =


|〈v1, s1〉|, if i ∈ Rs

|〈v1, t1〉|, otherwise

(5.9)

Since S and T are rank one, Mi

‖Mi‖ = s1 ∀i ∈ Rs and Mi

‖Mi‖ = t1 ∀ ∈ Rs. Thus, the gap

between the projections of S and the projections of T is ∆S,T = |〈v1, s1〉|−|〈v1, t1〉|.

Using Proposition 11, we can say that if the specified conditions on π and γ hold,

then ∆S,T is ε-close to (1− γ). Hence, as long as s1 and t1 are not parallel, the gap

∆S,T between S and T with respect to v1 is nonzero.

General case with larger ranks: We extend our notation to deal with several

singular vectors. In particular we denote by σi and τi the i-th singular values of S and

T. In addition we expand γ and π from the rank-one case to: γi,j = 〈si, tj〉,πi,j =
σ2
i

τ2
j
.

Along the same lines, the assumptions laid out in the rank-one case are extended to

hold for each pair (s1, tj), namely ∀tj: π1,j > 1, γ1,j < ε(π1,j − 1), and the index n is

such that tj(n)
√
π1,j ≤ s1(n) and have the same sign.

As in the special case we start with λ. For larger ranks, espressing λ1 in terms

of σ1 and τ1 becomes more complex. One way to obtain an expression for λ1 is by

using the Cayley-Hamilton formula for the adjugate.
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Recall that when S and T were rank-1, i.e. M was rank-2, we had:

Tr(Q) = λ1 + λ2 (5.10)

Tr(Q2) = λ1
2 + λ2

2 (5.11)

We then wrote the characteristic equation as:

C2 − C(λ1 + λ2) + λ1λ2 = C2 − C(τ 2 + σ2) + τ 2σ2 − σ2τ 2γ2

Which in more general terms is :

C2 − C(Tr(Q)) +
1

2
(Tr(Q2)− Tr(Q)2)

The above is in the form of the Cayley-Hamilton formula for the adjugate of a 3× 3

matrix. Following this we can express the characteristic equation for λ of a rank-

(k + r) matrix M using the adjugate formula for a (k + r + 1)× (k + r + 1) matrix.

For example, if T in M has rank-2 and S has rank-1, the λ will be a root of :

−C3 +Tr(Q)C2− 1

2
(Tr(Q2)−Tr(Q)2)C +

1

6
(Tr(Q)3− 3Tr(Q)Tr(Q2) + 2Tr(Q3))

Although this is promising, generalizing the equation and its roots for larger ranks is

complex. We leave it as an interesting connection and we do not dig into this further

in this document.

In this section we derive an expression for v1, in terms of si’s and tj’s.

Proposition 20. The first right singular vector of M can be written as

v1(i) =
1

c
CA
n,i

for a constant c, and CA
n,i as the determinant of A = Q − Iλ without the n-th row

and i-th column, i.e. the cofactor Cij = (−1)i+jdet(Aij).
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Lemma 21. Given an n× n matrix A, for i 6= k and j 6= k

Ai1C
A
k1 + Ai2C

A
k2 + ...+ AinC

A
kn = 0

A1jC
A
1k + A2jC

A
2k + ...+ AnjC

A
nk = 0

Proof of Lemma 21. Construct the matrix B which is the same as A except with

row k replaced with row i. Using the cofactor expansion of determinants we can say

det(B) = Bk1C
B
k1 + Bk2C

Bk2 + ...+ BknC
B
kn = 0

The above is equal to zero because by replacing row k with row i we created two

identical rows in B making it singular. Further, since the kth row was the only one

changed, CB
k` = CA

k`∀`, in addition Bk1 = Ai1 so

Bk1C
B
k1 + Bk2C

B
k2 + ...+ BknC

B
kn = Ai1C

A
k1 + Ai2C

A
k2 + ...+ AinC

A
kn = 0

as desired.

Proof of Proposition 20. The first singular vector v1 of M will be in the null space

of A, i.e. Av1 = 0. We show that the inner product of each row Ai of A with

v1 is zero when the latter has the cofactor form specified in Proposition 20. For

i ∈ [1, n−1], Aiv1 = 0 is true because of Lemma 21. For i = n, Aiv1 is the expression

for the determinant of A, whole is zero by the assumption that A has a nullspace.

We conjecture that deeper analysis of the cofactors of M in terms of si’s and

tj’s can reveal a general expression for v1. However, we take a different approach

by approximating v1 by a vector v̂1 which is a linear combination of si’s and tj’s.

We show that v̂1 is nearly parallel to v1 by showing that it is in the approximate

null space of Q.
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Proposition 22. If π1,1 > 1, γij < ε(πij − 1), the index n is such that tj(n)
√
π1j <

s1(n) for each tj, and S is nondegenerate, then the first right singular vector of A

can be approximated by

v̂1 =
1

c

[∑
si

α(i)si +
∑
tj

β(j)tj
]

For αi = σi
[
si(n)(λ−

∑
sj 6=si

σ2
j −

∑
tj
τ 2
j ) +

∑
tj

tj(n)σiτjγij
]

and βj = τj
[
tj(n)(λ−∑

tk 6=tj
τ 2
k −

∑
si
σ2
i ) +

∑
si

si(n)σiτjγij
]
.

Lemma 23. If π1,1 > 1, γij < ε(πij − 1), n is such that tj(n)
√
π1j < s1(n) for each

tj the normalization factor c > |
∑

si
αi +

∑
tj
βj|

Proof of Lemma 23. For v̂ = cv̂1 =
[∑

si
α(i)si +

∑
tj
β(j)tj

]
, we compute ‖v̂‖2 =

c2.

‖v̂‖2 = c2 =
[∑

si

αisi +
∑
tj

βjtj
]2

(5.12)

>
∑
s1

α2
i +

∑
tj

β2
j (5.13)

c >

√∑
si

α2
i +

∑
tj

β2
j (5.14)

>
1√
k + r

(
∑
si

αi +
∑
tj

βj) (5.15)

The introduction of the inequality from (5.12) to (5.13) is due to the fact that we

consider γij to be positive. The step from (5.14) to (5.15) uses the CauchySchwarz

inequality. Unlike in the rank-one case we do not prove that v1 is exactly in the null

space of Q. Instead, we show that v̂1 is nearly parallel to the true v1 by showing

that v̂1 is in the approximate null space of Q, i.e. ‖Qv̂1‖ < ε. We do this by showing

that the coefficient in Qv̂1 for each vector in {s1 . . . sk, t1 . . . tr} is small.
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Lemma 24. Given Q = MTM with eigenvalues Λ = λ1 > · · · > λ(k+r), the eigen-

values of (Q − Ip) are {|λi − p|}. Hence the smallest eigenvalue of (Q − Ip) is

mini (p, |λi − p|).

Thus, to show that v̂1 is in the approximate null space we need to show that

‖M v̂1‖ is less than the smallest eigenvalue of Q, i.e. ‖M v̂1‖ ≤ min (|λi − λ|) =

λ − λ2. Without loss of generality we consider αi’s and βj’s to have the same sign

by assuming the particular entries si(n) and tj(n) have the same sign.

Proof of Proposition 22.

Qv1 = (
∑
si

σ2
i si ⊗ si

T +
∑
si

τ 2
j tj ⊗ tj

T − Iλ)
1

c

[∑
si

α(i)si +
∑
tj

β(j)tj
]

=
1

c

∑
si

si(αi(σ
2
i − λ) +

∑
tj

γijσ
2
i βj) +

1

c

∑
tj

tj(βj(τ
2
j − λ) +

∑
si

γijτ
2
j αi)

=
∑
si

siξsi +
∑
tj

tjξtj

Take ν = λ1 − λ2.

ξsi < |
αi(σ

2
i − λ) +

∑
tj
γijσ

2
i βj

1√
k+r

(
∑

si
αi +

∑
tj
βj)
| =

αi(λ− σ2
i ) +

∑
tj
γijσ

2
i βj

1√
k+r

(
∑

si
αi +

∑
tj
βj)

We show that each of the coefficients ξ is small for each si and tj:

ξsi <
αi(λ− σ2

i ) +
∑

tj
γijσ

2
i βj

1√
k+r

(
∑

si
αi +

∑
tj
βj)

<
2αi(λ− σ2

i )
1√
k+r

(
∑

si
αi +

∑
tj
βj)

< 2(λ− σ2
i ) <

2(λ− ν2)

2π1,1

=
(λ− ν2)

π1,1

Each of the inequalities is strict and so we arrive at ξsi � (λ − ν2) Similarly for

each βj. By showing each coefficient is small we can bound ‖M v̂1‖ � λmin(Q− Iλ1)

meaning that v̂1 is in the approximate null space of M.
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Given the expression for v̂1, we study the resulting inner products with si’s and tj’s.

Recall that the inner product in the rank-1 case had the form:

〈v1, s1〉 =
τ

c

[
λ(
√
πs1(n) + γt1(n)) + s1(n)τ 2

√
π(γ2 − 1)

]
Proposition 25. If π1,1 > 1, γij < ε(πij−1), n is such that tj(n)

√
π1j < s1(n), then

for a vector xi ∈ X = {s1 . . . sk, t1 . . . tr} and νi as the associated singular value, we

can approximate 〈v̂1,xi〉 by

[νi
c

xi(n)(λ−
∑
xj 6=xi

ν2
j (γ2

xi,xj
− 1)) +

1

c

∑
xj 6=xi

νjxj(n)γxi,xj
(λ−

∑
xj 6=xi,xj

ν2
j )
]

Following the rank-one case we make smilar statements about c as the normalization

factor for the singular vector. This factor c will be useful in the coming steps where

we consider the inner products and ∆.

Lemma 26. If π1,1 > 1, γij < ε(πij − 1), n is such that tj(n)
√
π1j < s1(n), then

c = s1(n)σ2
1(λ−

∑
tj
τ 2
j −

∑
si 6=s1

σ2
i ).

Proof of Lemma 26.

|v̂1‖2 =
∑
si

α2
i +

∑
tj

β2
j + 2

∑
(i,j)

(αi + βj)γij

As in the rank-one case, as γij shrinks and πij grows, the terms that are constant

with respect to γij’s and polynomial in πij’s will dominate. Hence the dominant term

in v̂1 is s1(n)2σ2
1(λ−

∑
tj
τ 2
j −
∑

si 6=s1
σ2
i

2
) and c = s1(n)σ1(λ−

∑
tj
τ 2
j −
∑

si 6=s1
σ2
i ).
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Proof.

〈v̂1, s1〉 =
1

c
α1 +

1

c

∑
tj

γijβj

=
1

c
s1(n)σ1(λ−

∑
si 6=s1

σ2
i +

∑
tj

τ2
j (γ2

1j − 1))

+
1

c

∑
tj

tj(n)γ1jτj(λ−
∑
si 6=s1

σ2
i −

∑
tq 6=tj

τ2
q ) +O(γ2)

>
τ

c

[
s1(n)

√
π1,1(λ−

∑
si 6=s1

σ2
i +

∑
tj

τ2
j (γ2

1j − 1))

+
1

c

∑
tj

tj(n)γ1j
π1,1

π1,j
(λ−

∑
si 6=s1

(σ2
i −

∑
tq 6=tj

τ2
q ))
]

The above is only in terms of s1, but it generalizes directly to any other si or tj

because of the the symmetric nature of αi’s and βj’s.

In this section we show the final step in which we simplify an expression for ∆.

We start by considering ∆s1,tj – the gap between the singular vectors on S and T

with respect to v1. As in the rank-1 case, we show that ∆s1,tj is tied to a factor of

1−γ. However, unlike in the rank-one case, the expression for ∆s1,tj is not equivalent

to that of ∆S,T, which is the on in Proposition 11. The reason is that it is no longer

true that 〈v1,
§i
‖Si‖〉 = 〈v1, s1〉. Hence after ∆s1,tj we also consider the expression for

∆S,T, and show that the gap in the data ∆S,T will also contain a factor of (1− γ).

Spectral gap: First we show that ∆si,tj > (1 − γij)(1 − ε). The idea mirrors that

of the rank-one case, where we consider the difference in inner products with v1 and

show that we obtain a factor of (1− γij).

Proposition 27. If π1,1 > 1, γij < ε(πij−1), n is such that tj(n)
√
π1j < s1(n), then

for each tj Proposition 11 applies, i.e. ∆s1,tj > (1− γ1,j)(1− ε).

This can be shown by following the same rearrangements and manipulation as in the

rank-1 section.
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Proof.

∆si,tj = |〈v1, s1〉| − |〈v1, tj〉| = |〈v̂1, s1〉| − |〈v̂1, tj〉|

=
1

c

[
s1(n)σ1(λ−

∑
si 6=s1

σ2
i +

∑
tj

τ2
j (γ2

1j − 1)) +
∑
tj

tj(n)γ1jτj(λ−
∑
si 6=s1

σ2
i −

∑
tq 6=tj

τ2
q )

− tj(n)τj(λ−
∑
tq 6=tj

τ2
q +

∑
si

σ2
i (γ

2
ij − 1)) +

∑
si

si(n)γijσj(λ−
∑
si 6=s1

σ2
i −

∑
tq 6=tj

τ2
q )
]

>

τ(1− γ1j)
[
s1(n)

√
π1,j(λ−

∑
si 6=s1

σ2
i −

∑
tq 6=tj

τ2
q − τ2

j (γ1j + 1))
]

s1(n)σ1(λ−
∑
tj

τ2
j −

∑
si 6=s1

σ2
i )

+

τ(1− γ1j)
[
tj(n)(λ−

∑
si 6=s1

σ2
i −

∑
tq 6=tj

τ2
q − τ2

j π1j(γ1j + 1))
]

s1(n)σ1(λ−
∑
tj

τ2
j −

∑
si 6=s1

σ2
i )

>
τ(1− γ1j)

[
s1(n)

√
π1,j(λ−

∑
si 6=s1

σ2
i −

∑
tq 6=tj

τ2
q − τ2

j (γ1j + 1))
]

s1(n)σ1(λ−
∑

tj
τ2
j −

∑
si 6=s1

σ2
i )

= (1− γ1j)(1−
τ2
j γ1j

λ− τ2
j

) > (1− γ1j)(1−
γ1j

π1j − 1
) (5.16)

The majority of steps are results of simplification, and the final inequality in

(5.16) appears since π > 1 implies that λ > πτ 2. We now have that if γij is small

and πij is large, then ∆s1,tj is large.

Data gap: Now we have show the gap ∆ with respect to si and tj; however,

unlike the rank-one case this is not equivalent to ∆S,T. In particular, recall that

the definition of ∆S,T includes inner products with the rows of A, which are

not necessarily parallel to the singular vectors as in the rank-one case. Hence,

∆S,T = 1
|Rs|
∑

i∈Rs
〈v1,

Ai

‖Ai‖〉 −
1
|Rt|
∑

i∈Rt
〈v1,

Ai

‖Ai‖〉 is no longer as directly expressed

in terms of ∆s1,tj .

Conjecture 28. If S is nondegenerate, then there exists a subset of rows S’ of S

whose average inner product with v̂1 is at least 1− e for small e
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The definition of nondegeneracy implies that each subset of≤ k rows (or columns)

is independent. In particular this means that each subset of ≥ k rows (or columns)

spans all k singular vectors si. In addition since s1 is the first singular vector, it is

the most strongly expressed direction in S. Putting all this together we claim that

there is a subset of rows S’ of S that strongly express s1 (i.e. have high inner product

with s1) and |S′| ≥ k.

Proposition 29. If the rank-` submatrix S is nondegenerate, π > 1, and γ =

ε(1 − π), then ∃Rs′ ⊂ Rs with |Rs′ | ≥ ` such that ∆S′,T is ε-close to 1 − γ. Note

that we say that an n ×m rank r matrix is nondegenerate if there is no dependent

subset of rows or columns of size less than (r + 1).

Proof of Proposition 29. Assume 1
|Rt|
∑

i

∑
j 〈tj,

Ti

‖Ti‖〉 ≤ 1 and denote by t∗=

arg maxtj
〈v1, tj〉. Further recall that ∆si,tj > (1 − γij)(1 − ε) and so 〈v̂1, tj〉 <

〈v̂1, si〉 − (1− γij)(1− ε).

∆S′,T =
1

|Rs′|
∑
i∈Rs′

〈v1,
Ai

‖Ai‖
〉 − 1

|Rt|
∑
i∈Rt

〈v1,
Ai

‖Ai‖
〉 (5.17)

= (1− e)〈v1, s1〉 −
1

|Rt|
∑
i∈Rt

〈v1,
Ai

‖Ai‖
〉 (5.18)

= (1− e)〈v1, s1〉 −
1

|Rt|
∑
i∈Rt

〈v1,
∑
j

tj〈tj,
Ai

‖Ai‖
〉〉 (5.19)

= (1− e)〈v1, s1〉 −
1

|Rt|
∑
i∈Rt

∑
tj

〈v1, tj〉〈tj,
Ai

‖Ai‖
〉 (5.20)

= (1− e)〈v1, s1〉 −
1

|Rt|
∑
tj

〈v1, tj〉
∑
i∈Rt

〈tj,
Ai

‖Ai‖
〉 (5.21)

> (1− e)〈v1, s1〉 −
1

|Rt|
〈v1, t∗〉

∑
tj

∑
i∈Rt

〈tj,
Ai

‖Ai‖
〉 (5.22)

> (1− e)〈v̂1, s1〉 − 〈v̂1, t∗〉 (5.23)

> (1− e)〈v̂1, s1〉 − 〈v̂1, s1〉+ (1− γ1,∗)(1− ε) > (1− γ1,∗)(1− ε) (5.24)
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Discussion: Recall that in the above discussion we focused on the case where S =

M(Rs, :). The results generalize to the case where S = M(Rs, Cs), for a subset of the

columns Cs, by applying the above analysis recursively on M(Rs, :) and M(:, Cs).

Hence, we have expressed conditions on a low-rank submatrix to be discoverable by

the first singular vectors of a matrix. In real data, low-rank submatrices correspond

to subsets of the data which have a particularly dependent relationship only within

the subset; thus, a low-rank submatrix is likely to be well-separated from the rest

of the data. Further, in the common case where a dataset meets the traditional

incoherence assumptions on the distribution of the values, a low-rank submatrix is

also very likely to be separated in norm and discoverable by SVP. We also conjecture

that a more general and symmetric analysis can be carried out for when π � 1.

5.3.2 An algorithm for extracting low-rank submatrices

In this section, we provide a simple and effective algorithm for finding a low-rank

submatrix S, that is planted in a larger-rank matrix M. Our algorithm builds upon

the results of the previous section, which imply the following: the projections of Mi

on v1 for i ∈ Rs will have larger values than the corresponding projections of Mi

for i /∈ Rs. Hence, a straightforward way to find S is to project M onto v1 and

partition the projections into high and low values. This is exactly the idea behind

our algorithm for finding S. The pseudocode of this algorithm, which we call SVP

standing for Singular Vector Projection, is given below:

1. p =Project(M,v1).

In this step, the algorithm computes vector p = {p1, . . . , pn}, where pi =

〈v1,
Mi

‖Mi‖〉.

2. {Rs, Rs} = Partition(p)

Partition the rows of M into two groups based on the corresponding values in
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p. Identify the set of rows Rs to be the group that has the largest average of

the corresponding pi values.

3. Repeat steps (1) and (2) on MT to find Cs.

The SVP algorithm consists of two main steps (applied independently to the rows and

the columns of M). In the first step, the rows (resp. columns) of M are (normalized

and) projected on v1. Then, these 1-dimensional points that correspond to the

projections are clustered into two clusters – in our implementation we use k-means

to obtain this clustering. The cluster of rows (resp. columns) with the largest mean

are the ones assigned to S.

A reasonable extension is to create a multi-dimensional pi’s by projecting into

more than one of the singular vectors of M. Our experiments indicated that on

average using three singular vectors improved the accuracy of our results and had a

minor affect the efficiency of our method; using more than three singular vectors did

give any significant improvement.

To find multiple low-rank submatrices, SVP can be run on the matrix formed by

removing the rows and columns of S, i.e. M(Rt, Ct). If the number of low-rank

submatrices in M is known apriori, SVP can be repeated exactly this many times.

Otherwise, the difference in the average projection between the output partitions,

∆Ŝ,T̂, can be used as a stopping criterion where Ŝ is the output of SVP. For example,

allow the algorithm to keep iterating while ∆Ŝ,T̂ is greater than a threshold, and

stop when it falls below; in our experiments, we found 0.2 to work well. Another

possibility is to replace the submatrix with random noise that is small relative to the

values in the rest of the data and rerun on the modified matrix; such an approach

would allow for the discovery of submatrices that overlap in rows or columns.

Interestingly, the SVP algorithm bears resemblances to the algorithm for the

Planted Clique problem presented by Alon et al. (1998); both use some of the singular
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vectors of a matrix to discover a submatrix with a particular property. Although a

perfect clique is a rank-one submatrix of the adjacency matrix, a low-rank submatrix

is not necessarily a clique. Further, the algorithm developed by Alon et al. (1998)

relies on assumptions on the node degrees that allows bounds on the gap between

the second and third eigenvalues. Not only is it unclear that such assumptions hold

in our settings, but it is also not clear whether they apply to general low-rank sub-

matrices. Without our analysis, there is not apparent that the singular vectors can

be used to address LRDiscovery.

5.3.3 Improvements for matrices with missing entries

Up to now, we have presented an algorithm called SVP for finding low-rank submatri-

ces in a fully-known matrix and analyzed the conditions under which it is expected to

succeed. With our end-goal of matrix-completion in mind, we now improve the per-

formance of SVP on incomplete data and demonstrate that the high level of accuracy

is retained.

The main tool that SVP relies on is finding the first singular vectors of a matrix.

Since the Singular Value Decomposition of an incomplete matrix is not defined,

extending SVP to handle incomplete data translates to developing an approach to

estimating the singular vectors of a matrix with missing entries. The majority of

the related literature examines finding the full Singular Value Decomposition of a

partially observed matrix in the context of producing an accurate factorization of

the data. Typically the accuracy is related to the error in the entries of the estimate

matrix produced by the factorization. As an aside, since SVP needs only the first

singular vectors and uses them for inner products, our objective is to accurately

estimate the direction of the singular vectors as opposed to the values of the matrix

per-se; unfortunately, we are not aware of any algorithms tailored towards our needs.

The algorithms that do exist can be broadly categorized into (1) those that treat the
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missing entries as knowns, and (2) those that try to ignore the missing values. We

highlight three approaches in particular:

Simple: The simplest approach falls into the first category and consists of

treating the missing entries as zeros and applying the same SVD-algorithm as

one would on a fully-observed matrix.

However, treating the missing entries as knowns runs the danger of over-fitting these

entries and producing singular vectors whose direction differs greatly from that of

the singular vectors of the fully-known matrix. To avoid over-fitting, we implement a

heuristic built around a QR-based Power Method for computing the singular vectors

as in Bentbib and Kanber (2015) (the power method starts from an estimate singular

vector and improves the estimate until convergence.)

EarlyStop: The main idea of EarlyStop is, as the name suggests, to stop

the power method before it converges and over-fits the missing entries. To

decide the stopping point we calculate the projections p at each intermediate

iteration, partition them as in SVP, and measure the difference in average value

between the two partitions (∆S,T). The power method is stopped when the

∆S,T does not change for five consecutive iterations.

Alternatively the missing values can be ignored altogether. While various methods

have been proposed in the literature, we focus on one that was used by Simon Funk

(Brandyn Webb) in the Netflix Prize Challenge detailed in Funk (2006).

Incremental: This line of work features algorithms designed for matrices in

online settings that allow for the SVD to be developed using only parts of the

data. We use an implementation based Sequential Karhunen-Loeve provided

in Baker (2012).
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We observe that all three methods described above are equally efficient. With a

slight trade off of efficiency for robustness we choose to combine all three.

Consensus: For each of Simple, EarlyStop, and Incremental, produce a

partitioning p, and then aggregate the three partitionings into a single one by

using clustering aggregation as in Iam-on and Garrett (2010).

In our experiments we observed the performance of the algorithms was generally

similar but not one was consistently accurate. For the sake of robustness we adapt

SVP to use Consensus when the input data is incomplete. We provide a comparison

analysis in the next section, and add a side that note that if efficiency is a strong

concern we recommend simply using EarlyStop or Incremental. The overall routine

becomes:

1. v1=Consensus(MΩ)

2. p =Project(MΩ,v1).

Compute vector p = {p1, . . . , pn}, where pi = 〈v1,
MΩi

‖MΩi‖
〉.

3. {Rs, Rs} = Partition(p)

Partition the rows of MΩ into two groups based on the corresponding values

in p. Identify the set of rows Rs to be the group that has the largest average

of the corresponding pi values.

4. Repeat steps (1) and (2) on MT
Ω to find Cs.

The extension to finding multiple submatrices follows exactly the technique for fully-

known matrices: after the first submatrix is found, it is removed, and the algorithm

continues on the remaining data. For a refresher we point the reader to Section 4.3.4.
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5.4 Experiments

In this section we answer the question posed in Section 5, namely: Can the knowledge

of the existence of a low-rank submatrix improve the accuracy of completion? We do

this by evaluating the performance of the proposed Localized approach to matrix

completion on datasets with missing entries, and demonstrate the large improvement

in accuracy over the Global approach in both the low-rank submatrix and its com-

plement. After this main set of experiments, we study the behavior of SVP (step 1 in

the Localized approach) over a wide range of matrix instances, and show that SVP

succeeds in more cases than the comparison algorithms.

Setup: Throughout the experiments we generate a 1000 × 1000 random matrix

M of rank r with entries following a standard gaussian distribution (mean zero

and variance one), we call this the background matrix. We then plant a 100 × 100

submatrix S of rank ` with entries adhering to a centered Gaussian distribution.

We maintain π constant at π = 1.2; as this value is only slightly larger than 1, the

instances we generate are hard for SVP.

5.4.1 Evaluation of localized matrix-completion

To quantify the improvement in matrix completion when using a Localized versus

a Global approach, we compare the accuracy of the completions produced by each.

We setup the experiments as described above and set the rank of the matrix M to

low-rank r = 30 and the rank of the submatrix S to a lower rank ` = 2. To form

the partially observed MΩ we vary the percentage of observed entries from 0% to

100% , and measure the relative error (RelError) of each completion according to

Equation 5.1 in Section 5.1.
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We compare two approaches for completing each partially observed MΩ:

Global:

1. Run LMaFit on MΩ.

Localized:

1. Run SVP on MΩ to find S.

2. Separate the entries of the low-rank submatrices from the rest Ω′ = Ω \ S

3. Run LMaFit on MS and separately on MΩ′

4. Combine the estimates back into a matrix M̂ as the completion

For the actual completion we focus on one state-of-art global matrix-completion al-

gorithm called LMaFit for its accuracy, efficiency, and ability to estimate the rank.

Step 2 and 3 is implemented by running the completion algorithm on each subma-

trix MΩ(Rs, Cs) and then on MΩ with the entries in S set to zero. For the latter

(the completion of the complement) we experimented with other approaches such as

replacing the entries in S with the computed Ŝ or alternatively small random values,

but replacing with zeros worked best. This makes sense since the idea is to run

completion on separate components so that the algorithm does not try to fit both.

Figure 5·1 shows the relative error over Ŝ (left) and over M̂ (right). Immediately we

observe the large increase in accuracy when using the Localized as opposed to the

Global approach. Whereas Global completion requires approximately 60% of the

entries to be known to achieve a relative error lower than 0.2, Localized completion

only needs about 20% of the entries for the same accuracy.
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Figure 5·1: Relative error in completion on the synthetic data.

In Figure 5·2 we see the results of the same experiment except when M contains

multiple low-rank submatrices, each of the same size and rank. The results are

consistent for each submatrix; we observe that for each submatrix the Localized

approach achieves a more accurate completion than Global, and the same is true for

the whole matrix.

One way to explain this result is that the low-rank submatrix and its complement

are deemed different datasets by the standard notion of a matrix in the completion

literature. In the extreme, applying Global to the whole matrix is akin to fitting

one model to the concatenation of two different datasets – since this requires two

models, it results in error.

An observation we made in practice was that the success of the localized approach

was partly due to the reliance of matrix completion on accurate rank-estimation.

Techniques for estimating the rank of a partially-observed matrix, such as the ones in

LMaFit and OptSpace, do not produce an accurate estimate when the matrix contains

a low-rank submatrix; however, they do perform well when applied separately to each

component (submatrix and the complement). In turn, this allows the algorithms to

give a more accurate completion.

Running time evaluation: Despite the large increase in performance, one concern

regarding the Localized approach maybe be running time, since the completion is
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(c) Error over third S
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(d) Error over the whole matrix.

Figure 5·2: Relative error in completion on a matrix with multiple
low-rank submatrices.
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run multiple times as opposed to once. However, Localized matrix completion turns

out to be more efficient. The reason for this is that the completion is run on smaller

matrices, but also because the rank estimation procedures execute faster. In fact,

we observe the speedup with Localized ranges from 2X to 15X faster than Global

depending on the percentage of known entries, with a speedup of approximately 6X

at 0.2 the density at which Localized achieves an accurate completion.

Case study with traffic data: The dataset we use is a 3000 × 3000 partially

observed Internet traffic matrix. Each row corresponds to a source AS, each column

corresponds to a destination prefix, and each entry holds the volume of traffic that

flowed from an AS to a prefix. The dataset is only partially observed with 70% of

the entries missing. Hence, we repeat the synthetic experiments by hiding a portion

of the 30% known entries and evaluating the error at each step.

In Figure 5·3 we see the same behavior as on synthetic data. The Localized

approach achieves higher accuracy on the low-rank submatrix. The effect is less pro-

nounced on the whole matrix M. We observed that this was because the complement

T of the submatrices was high rank, and LMaFit had lower accuracy on matrices with

very high rank.
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Figure 5·3: Relative error in completion for the Traffic dataset.
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5.4.2 Evaluation of SVP

In the experiments above we have demonstrated the improvement in a Localized

approach to matrix completion. We now isolate and analyze the algorithmic approach

to step 1 – the task of finding a low-rank submatrix. Our results demonstrate that

SVP is effective, efficient, and outperforms other heuristics for the same problem for

a large variety of instances.

For experiments we set to rank of the matrix M to r = 1000 and the rank of

the planted submatrix S to ` = 5. Since the objective of our problem is to find the

indices Rs and Cs, we evaluate the accuracy of our method using the combination of

precision and recall to the standard F-Score= 2Pr×Rcl
Pr+Rcl

. F-score takes values in [0, 1]

and the higher its value the better.

We compare SVP against the algorithm in Rangan (2012) (which we call

BinaryLoops) and algorithms for Subspace Clustering; the approaches are discussed

in detail in Chapter 2. For Subspace Clustering we show results for LRSC by Vidal

and Favaro (2014) since it offers the best balance of accuracy and efficiency; for LRSC

we used the authors’ original implementations. The baseline algorithms required

minor modifications since none of them explicitly output the indices of a submatrix.

For BinaryLoops we set γrow = γcol = 0.75, according to the author’s recommenda-

tion. For LRSC we set k = 2 when clustering and select the output {Rs, Cs} with the

highest accuracy (though a user could pick the one with lowest empirical rank).

Varying size and rank: In the main set of experiments we examine a variety of

problem instances by varying (a) the rank ` of S (b) the size of S (c) the rank r

of the background matrix and (d) π. Figures 5·4a, 5·4b, 5·4c and 5·4d display the

F-scores of the different algorithms in each case.

The results indicate that SVP accurately locates the low-rank submatrix S for the

majority of instances, whether S is large or small. In line with our analysis, we see
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Figure 5·4: F-Score achieved by the SVP, BinaryLoops, and LRSC al-
gorithms as: the rank ` of S, the size of S, the background rank r, or
π vary.
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in Figure 5·4d that SVP succeeds precisely as π grows larger than one.

In contrast to the resilience observed in the performance of SVP, LRSC and

BinaryLoops are more sensitive to changes in the problem instance. LRSC performs

best when the rank and size of S are large, and the background rank is small. On

the other hand, BinaryLoops performs best on instances where the rank of S is less

than five, and the background rank is large. These behaviors are in agreement with

the analysis and the design of these algorithms in the original papers where they

were introduced. An interesting observation form Figures 5·4a and 5·4c is that LRSC

and BinaryLoops are opposite in their behavior; each succeeds in complementary

instances while SVP performs consistently well in all instances.

Different distributions: In this experiment, the goal is to test the resilience of the

different algorithms for matrices generated from different distributions. We generate

a matrix M with a planted low-rank submatrix S we describe in the setup at the

beginning of Section 5.4. With the entries in S drawn from a Gaussian distribution,

we vary the center of the distribution µ in [0, 4] and the standard deviation σ in

[0.001, 5].

The results are shown in Figures 5·5a and 5·5b. Looking at Figures 5·5a we see

the F-Score of each algorithm as a function σ as it varies from 0.001 to 5. Observe

that SVP consistently achieves an F-Score close to 1 while BinaryLoops decreases

as σ grows and LRSC increases as σ grows. The resilience of SVP to changes in σ

can be attribute to the fact that π > 1 in each of these instances, and this is the

region in which SVP succeeds according to our analysis. For small σ BinaryLoops

achieves a high F-Score, but the perfromance degrades as σ grows because the ±-sign

pattern becomes more varied and BinaryLoops cannot distinguish between S and T.

In contrast, LRSC has exactly the opposite behavior; the F-Score starts out low and

increases with σ. We attribute this to the experimental observation that LRSC is very
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dependent on δ = mean(|S|) − mean(|T|) (the difference in the average magnitude

of values between S and T).

Figure 5·5b shows the F-Score of each algorithm as a function of µ as it ranges

from µ = 0 (a centered distribution) to µ = 4. For all algorithms we observe an

increased accuracy as µ grows, though at different rates. As µ varies there is a point

at which SVP increases from 0.28 to 0.98, this happens exactly for the combination

of µ and σ for which π > 1. The explanation of BinaryLoops and LRSC is similar

to that of Figure 5·5a. As µ increases BinaryLoops achieve higher F-Score because

there is less variation in ±-pattern of entires in S which it exploits. As with σ, the

value of δ grows with µ, making it easier it identify S; for example, µ = 1, the value

of π = 1.6 and δ = 0.4, while at µ = 4 we have δ = 3.2.
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Figure 5·5: F-Scores of SVP, BinaryLoops, and LRSC in robustness
studies.In (a) µ = 1 and σ varies and in (b) σ = 1 and µ varies.

Data with missing entries: To evaluate the methods we compare the F-Score

achieved by SVP and it uses a given methods to find the first singular vectors. Fig-

ure 5·6 shows the results over four matrix instances that are representative of our

experimental evaluation. What we observe is that not one of Simple, EarlyStop,

or Incremental performs best over all instances. For this reason, we propose to use

Concensus, which provides a common ground among the approaches for a small price



112

in efficiency. Nevertheless, the performance of both EarlyStop andIncremental was

observed to be high most of the time, and we recommend these if efficiency is a strong

concern.
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Figure 5·6: Comparison of algorithms for finding the singular vectors
of an incomplete matrix in terms of the F-Score of SVP as a function
of the percentage of known entries in the data.

Multiple submatrices: In this experiment our goal is to test whether the different

algorithms are affected by the presence of multiple low-rank submatrices and are

able to identify multiple low-rank submatrices. For this we generate M and S as

described in the beginning of Section 5.4. In addition we plant a second submatrix

S′ of the same size and rank as S with π = 1.2 for each.
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n 100 400 800 1000 2000 4000 6000

SVP 0.080 0.122 0.182 0.226 0.745 2.665 11.168
BinaryLoops 0.004 0.024 0.111 0.201 1.357 8.680 30.694

LRSC 0.092 0.441 1.483 2.191 9.561 83.587 310.8707

Table 5.1: The running time of SVP, BinaryLoops, and LRSC in seconds
for an n× n input matrix M.
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Figure 5·7: Left: F-Score of SVP, BinaryLoops, and LRSC on data
with multiple low-rank submatrices as a function of the rank of the
submatrices.

Figure 5·7a shows the F-Score of each algorithm for the task of finding one hidden

submatrix (either S or S′) as a function of the ranks of the submatrices. We observe

that SVP significantly outperforms LRSC and BinaryLoops in finding a low-rank sub-

matrix, and is unaffected by the presence of the second submatrix. In fact, when

asked to report two submatrices, SVP can detect both S and S′ with high accuracy.

The F-Scores of this more complex task are shown in Figure 5·7b as a function ranks.

We note that when an algorithm reports subsets of rows and columns, we do not

know whether this corresponds to S or S′, hence we take the F-Score for whichever

submatrix has larger intersection with the output indices.

Running time: We also compare the running times of SVP, BinaryLoops and LRSC

as the size of the input matrix M increases. The running times of the different

algorithms in seconds are shown in Table 5.1. From the table, we observe that the
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difference in the running times is mostly pronounced for large matrices. For those

matrices SVP is the most efficient one followed by BinaryLoops. On the other hand,

LRSC’s running time is 10 times larger than the running time of BinaryLoops and

30 times larger than the running time of SVP. Note that the running time of SVP

is dominated by computing the first singular vectors of M and our implementation

of SVP uses the off-the-shelf SVD decomposition of MatLab. In principle, we could

improve this running time by using other SVD speedups and approximations, as

in Drineas et al. (2006) for example.

Case study with gene-expression data: To further validate the usefulness of our

approach we use a real-world yeast dataset described in Pavlidis and Grundy (2000),

of size 2417× 89 yeast dataset formed by micro-array expression data 8. Each row i

in the data represents a gene and each column j is an experiment; thus, entry (i, j)

is the expression level of gene i in experiment j. For each gene, the dataset also

provides a phylogenetic profile over 14 groups in the form of a binary vector for each

gene.

We run SVP on the dataset and discover a 527 × 34 submatrix S with π = 1.2.

By comparing the phylogenetic profiles (binary vectors), we found that the genes in

S are similar. More specifically, when we compared the profiles of the genes in S

with the genes not in the rows of S, we found that the average Hamming distance

between the profiles of S was 0.17 with a median of 0.2 and a standard deviation of

0.1, while the average Hamming distance among the rest of the genes was 0.35 and

a median of 0.2 and a standard deviation of 0.2. Thus we conclude that the SVP

helped isolate a subset of genes with similar profile patterns, and in the description

of the dataset. According to Pavlidis and Grundy (2000), genes with similar profile

patterns have similar behavior in biology.

8The data can be downloaded at http://mulan.sourceforge.net/datasets-mlc.html
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Chapter 6

Conclusions

In this thesis, we addressed the limitations of traditional matrix completion in the

initial assumptions on the problem instance and on the modeling of the ground truth

matrix. In doing so, we made use of two sources of information in a partially observed

matrix: the locations and the values of the observed entries.

To start, we drew a distinction between the traditional statistical matrix com-

pletion approaches and a new line of structural approaches. Using just the locations

of known entries, structural matrix completion approaches explicitly analyze the in-

formation in the partially observed matrix to quantify the possibility of completion:

whether the number of completions is infinite, finite, one, or none. In our first con-

tribution, we constructed the first organizing framework of structural completion.

Using this framework we give insight into the relationships between the different

structural approaches and when they can be expected to succeed in practice.

In the case that structural approaches cannot succeed, our second contribution

introduced the active matrix completion problem: which small number of unknown

entries can be uncovered so that accurate matrix completion is possible? We de-

veloped active approaches for each structural matrix completion algorithm laid out

in our framework. In particular, we expand one active approach into an active-

completion algorithm, Order&Extend, which minimizes the number of additional

queries and the error in the completion.

Finally, motivated by observations in real data we challenged the traditional
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global low-rank assumption. We demonstrated that traditional matrix completion

algorithms cannot accurately estimate both low-rank submatrices and the rest of

the data at once, and developed an algorithm targeted these components separately.

In doing so, our first contribution was an algorithm that uses the first singular

vectors to find low-rank submatrices in fully- and partially-known matrices. Next, we

proposed a localized to matrix completion that first discovers low-rank submatrices,

then completes them separately, attaining a more accurate completion.

There are two open directions which we feel are most interesting and valuable.

First, is the study of finite completability. Although guaranteeing that a partially

observed matrix has a unique completion gives high confidence in the accuracy, per-

haps it is too strict. In practice, achieving a finite number of completions may be

enough as long as this finite number is small. Hence, an open direction is the study

of the finiteness of completion, and how entries can be added to guarantee a small

number of possible completions.

The second direction is regarding rank estimation. To the best of our knowledge,

there is no single approach that is known to in general give an accurate estimate of

the rank of matrix based on its partially-observed instance. Hence, the establishment

of such an algorithm together with an analysis of when it can be used reliably is a

valuable direction. Further, based on such an analysis, the active version of the

problem would be of high interest: which queries should be made on a partially

observed matrix to accurately estimate the rank of the true underlying matrix?

Overall, while the problem of matrix completion draws a low of attention, there

remains a gap between literature and practice. In general, there is either a lack of

analysis on when the algorithms can be used, or real data is too sparse and structured

for the algorithms to be applicable. The algorithms proposed in this thesis make the

first steps at bridging this gap, but there remains work to be done.
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Appendix A

A.1 Background on graph rigidity

The theory of graph rigidity revolves around analyzing the amount of movement

possible in a particular graph. Suppose we are given n points in a k-dimensional

space and the distance between some pairs of points. Considering each dimension

as a coordinate in space, a central question in graph rigidity is: are the coordinates

of the points uniquely determined according to the known distance? In other words,

is it possible to assign different coordinates to some points and still maintain the

specified distances?

This problem is easily posed in terms of an undirected graph of nodes and edges

G = (V,E) , and a configuration which is a mapping of the nodes to k-dimensional

points (p : V → Rk). Together, a graph and configuration make up a framework

(G, p) where edges capture the subset of specified distances dij. Graph rigidity studies

whether it is possible to move nodes in the graph while preserving the edge lengths, or

even while preserving the distances between all nodes implied by the configuration.

Let us now provide several examples to illustrate these ideas. First, consider a

triangle as in Figure A·1 in 2D spaces, i.e. a Cartesian planeb. There are three

nodes V = {1, 2, 3}, and three edges E = {(1, 2), (2, 3), (3, 1)} that specify and fix

the distances d12, d23, d31. Considering Figure A·1 we ask: can any single node be

moved in a non-trivial way without moving the other two and without violating

the distance constraints? The answer is no. Aside from rotation and translation

which are trivial motions, any movement will alter the distances specified by the
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edges. Since no movement is possible, we say that the triangle structure is rigid in

2-dimensional space.

1

2

3

Figure A·1: A rigid structure.

On the other hand consider a square as in Figure A·2a. Imagine pulling node-2

to the right; such a movement will transform the square into the parallelogram in

Figure A·2b and change the coordinates of the nodes without changing any of the

edge-lengths. In particular this motion, called an infinitesimal motion, maintains the

distances on the edges but changes the distance between nodes 3 and 4; when this

type of continuous motion is possible the structure is labeled as flexible.

Consider adding a single edge between nodes 1 and 2 as in Figure A·2c. On

one hand, there is no continuous movement along the x or y axis that will maintain

the distances along the edges. On the other hand, imagine the shape formed by

folding Figure A·2c along the hinge-edge between nodes 1 and 2; this shape has the

same distances between adjacent nodes but a different distance between nodes 3 and

4. When no motion is possible, but there are multiple shapes consistent with the

specified distances, the structure is called locally rigid.

Now suppose we were to add two diagonal edges to the square as in Figure A·2e.
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With these edges there is no possible movement that maintains the distances, and any

shape with the same distances between adjacent nodes will have the same distance

between all nodes. This structure, along with the triangle in Figure A·1, is caller

globally rigid.

Characterizing the rigidity of a structure requires analyzing whether a continuous

motion is possible to transform one framework (G, p) to another framework (G, q),

or in terms of our example from one shape to another. It can be show that any

such motion over time t that preserves the distances must satisfy d
dt
‖pi − pj‖2 = 0

for all edges (i, j) ∈ E. Differentiating, this translates to an equation of the form

(pi − pj)(p̌i − p̌j) = 0 for each edge, where p̌i is the instantaneous velocity of point

pi and is unknown. Over nv points and ne edges, the equations can be represented

with an ne × knv matrix called the rigidity matrix. To evaluate the rigidity of a

framework it suffices to study the rank and null space of this rigidity matrix, which

can be constructed using random realizations of the points pi (the proof and reasoning

are beyond the scope of this article). While various conditions exist for determining

flexibility or local rigidity, characterizing global rigidity for k > 2 is unsolved. We

refer the curious reader to Jackson (2007), Singer and Cucuringu (2010), Jackson

(2007) for a more thorough explanation.

We refer the reader to Appendix A for an a high level overview of graph rigidity.

Singer and Cucuringu (2010) were the first to draw the connection between graph

rigidity and matrix completion. Recall that matrix completion takes as input a

partially observed n×m matrix MΩ with known entries in only a subset of locations

specified by the mask Ω. The partially observed matrix can be represented as a mask

graph GΩ = (E, V ) where each row and column corresponds to a node, and each

known entry (i, j) ∈ Ω corresponds to an edge between node i and node J . Note

that nv = |V | = n + m and ne = |E| = |Ω| Singer and Cucuringu (2010) showed
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that a characterization of the rigidity of GΩ is indicative of the number of possible

completions of a partially observed matrix MΩ. In fact, the analysis is with regards

to the completability of a mask as opposed to a partially observed matrix, but as we

have shown, the two imply each other and we use them interchangeably.

We carry the thread of the visual examples. Consider the red square as a mask

graph GΩ1 in Figure A·2c and its folded version GΩ2 in Figure A·2d to be graphs

representing a partially observed matrices MΩ. Recall that each edge (i, j) corre-

sponds to a value M(i, j). Since the two graphs have exactly the same set of specified

distances (any edge that is in GΩ1 is also in GΩ2 with the same distance and vice

versa), the two graphs encode the same partially-observe matrix. The missing entries

in MΩ correspond to pairs of nodes whose distances are not specified, in our example

since the edge (3, 4) is not in the graph, M(3, 4) is not known in MΩ. Notice that

Figure A·2c and Figure A·2d disagree on the distance between nodes 3 and 4. This

implies that for the same set of observed entries, there are (at least) two possible val-

ues for the missing entries, resulting in multiple possible completions on MΩ. Local

rigidity of a mask implies that its corresponding matrix is locally completable and

has a finite number of completions. On the other hand, for a partially observed M

whose corresponding graph is globally rigid there is only a single possible comple-

tion, and the matrix is said to be uniquely completable; As you may have guessed,

a flexible framework corresponds to an infinite number of completion. We highlight

that the classification of the number of possible completions of a partially observed

matrix uses only the locations of known entries and not their values; in other words

the shape in Figure A·2c is locally rigid not matter the distances on the edges, and

its corresponding MΩ is locally completable regardless of the specific values in the

observed entries.
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