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Major Professor: Bruce T. Anderson, Professor of Earth & Environment

ABSTRACT

Our ability to predict precipitation on climate time-scales (months–decades) is limited by

our ability to separate signals in the climate system (cyclical and secular) from noise —

that is, variability due to processes that are inherently unpredictable on climate time-scales.

This dissertation describes methods for characterizing “weather” noise — variability that

arises from daily-scale processes — as well as the potential predictability of precipitation

on climate time-scales. In each method, we make use of a climate-stationary null model for

precipitation and determine which characteristics of the true, non-stationary system cannot

be captured by a stationary assumption. This un-captured climate variability is potentially

predictable, meaning that it is due to climate time-scale processes, although those processes

themselves may not be entirely predictable, either practically or theoretically.

The three primary methods proposed in this dissertation are

1. A stochastic framework for modeling precipitation occurrence with proper daily-scale

memory representation, using variable order Markov chains and information criteria

for order selection.

2. A corresponding method for representing precipitation intensity, allowing for memory

in intensity processes.

3. A semi-parametric stochastic framework for precipitation which represents intensity

and occurrence without separating the processes, designed to handle the issues that

arise from estimating likelihoods for zero-inflated processes.
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Using each of these methods, potential predictability is determined across the contigu-

ous 48 United States. Additionally, the methods of Chapter 4 are used to determine the

magnitude of weather and climate variability for the “historical runs” of five global climate

models for comparison against observational data.

It is found that while some areas of the contiguous 48 United States are potentially

very predictable (up to ∼ 70% of interannual variability), many regions are so dominated

by weather noise that climate signals are effectively masked. Broadly, perhaps 20–30% of

interannual variability may be potentially predictable, but this ranges considerably with

geography and the annual seasonal cycle, yielding “hot spots” and “cold spots” of po-

tential predictability. The analyzed global climate models demonstrate a fairly robust

representation of weather-scale processes, and properly represent the ratio of weather-to-

climate induced variability, despite some regional errors in mean precipitation totals and

corresponding variability.
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Chapter 1

Introduction

Our species runs on rain. Water feeds our agriculture and energy systems, our industrial

and domestic processes, our ecosystems and transportation networks. Water establishes

our climate and the locations of our towns and cities. Our access to water determines our

resilience to disease, famine, drought, floods, and conflict; our location on a very unevenly-

distributed map of precipitation determines our available freshwater resources. Some 4,000

cubic kilometers of water are extracted from lakes, streams, and aquifers each year for

human use (Black and King, 2009), making water management one of humanity’s largest

infrastructure systems.

Our natural resources are similarly driven by rain. Beyond precipitation’s role in the

formation of valleys, glaciers, soils, forests, and deserts, roughly 85% of all species and an

even larger fraction of the Earth’s biomass live in terrestrial or freshwater systems (Costello

et al., 2012; Groombridge and Jenkins, 2002; Kallmeyer et al., 2012), meaning that the

biosphere is primarily rain-fed. The distribution of species — from fish to flowers —

depends on persistent hydroclimatic conditions, and our understanding of ecosystem health

hinges on our understanding of precipitation patterns.

By this point in the twenty-first century, we have come to understand much about

precipitation and its patterns, mechanisms, and impacts. We broadly know where rain

comes from, how much it rains in any location, how much variability there is from day-to-

day and year-to-year, and how likely it is to rain today, tomorrow, or next week. The work

in this dissertation delves deeper into precipitation to answer questions about prediction

and the limits that may constrain our ability to make forecasts about the future.
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1.1 Historical background

Phenomenological records of precipitation and its presumed causes can be found in the early

archives of most societies [for example, 6th century India (Mihira and Panditbhushan,

1946), 1st century China (Needham, 1986), and 4th century B.C.E. Greece (Wills and

Wills, 2003; Aristotle and Webster, 2006)]. Discussion of measurement systems and early

rain gauges suggest the existence of quantitative records from the fourth century B.C.E.

in India, allegedly for the sake of a water-resource-based taxation system (Biswas, 1967).

Near-contiguous records of precipitation have been kept in Korea since the invention of a

standardized rain-gauge in 1441 and a first national network in 1442 (Cho et al., 2015),

and dedicated long-term meteorological observatories have been in place since at least the

late eighteenth century (1874 in Calcutta: Baird, 1879, pg 130). Additional rain gauges

developed in Italy in the 1630s and England in the 1660s (the first “tipping-bucket” rain

gauge) and their derivatives were exported widely across Europe and the European colonies,

leading to much of the early modern academic literature on meteorology (Biswas, 1967).

From these collections of observations, a field of study was born. Discussion of trends

and variability in precipitation from standardized observation networks were already dis-

cussed in the 1870s1 (Baird, 1879). Today, a multitude of meteorological station networks

exist globally, involving some tens of thousands of weather stations, ranging from auto-

mated amateur backyard devices to large-scale observatories with full-time staff meteorol-

ogists. In the United States this includes roughly 1,600 stations used for local long-term

1From Baird (1879), pg 122:

The report of the New York Meteorological Observatory in Central Park, for the past year,
by Daniel Draper, contains the usual tables from the self-recording instruments, and also a
discussion on the two following questions:

1st. “Has there been in late years a change in the rainfall of New York City or its vicinity,
affecting seriously its water supply?” It was found by the observations used that there had
been an increase of rain until 1869, and after that year a steady decrease.

2d. “Does the rainfall of New York still diminish, will it continue to do so, and does this
variation occur in the early or latter portion of the year?” By the observations used it
appears that the rainfall of the city will most probably continue to decrease by fluctuations
for several years to come, and that the variations are nearly the same in the two portions of
the year.
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climatological purposes, 10,000 stations used for short term weather forecasting, 1,000 used

for local aviation conditions, 100 used as a high-caliber calibration reference, and 1,500 used

for global-scale intercomparison (National Oceanic and Atmospheric Administration, a).

These networks have provided us with spatio-temporal views of the distribution of

precipitation, as well as a means to establish the likelihood and magnitudes of extreme

events (Easterling et al., 2000; Kunkel et al., 2003), ties between precipitation and global

circulation metrics (Ropelewski and Halpert, 1986; McCabe and Dettinger, 1999; Barlow

et al., 2001; Solomon et al., 2011; Becker et al., 2011), and changes in precipitation amounts

and patterns on decadal and longer time-scales (Groisman and Easterling, 1994; Karl et al.,

1995; Karl and Knight, 1998; Kunkel et al., 1999; Frich et al., 2002; Kunkel et al., 2003;

Groisman and Knight, 2004).

Modern probabilistic estimation of future precipitation has been attempted since at

least the 1870s in the US (Greely, 1891; Gore and Thomson, 1909; Ward, 1919; National

Weather Service), following the centralization of reported weather conditions to the Smith-

sonian Institute by telegraph in 1849 and the founding of the US Weather Bureau in

1870 (National Weather Service), following the lead of colonial-era Britain (Bloxam, 1875;

Raulin, 1875; Strachan, 1875; Trachan, 1877; Cox, 1878). Modern short-term forecasts

use physical models of the atmosphere as well as statistical models (Glahn, 1982), and

have steadily improved over time with innovation in scientific understanding, modeling

capability, and computational resources (see Figure 1.1). Similarly, based on our under-

standing of how atmospheric circulation drives water vapor transport coupled with an

understanding of how slowly-varying Earth system processes like sea surface temperatures

can drive atmospheric circulation, we now use both physical and statistical models to es-

timate future precipitation regimes far beyond the range of daily-scale numerical weather

prediction (Kirtman et al., 2013).
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Figure 1.1: The equal threat skill — a metric of forecast quality — of the occurrence
of one inch of precipitation or more over the United States from 1961–2015, as forecast
by the National Oceanic and Atmospheric Administration’s (NOAA) Weather Prediction
Center (WPC; formerly the Hydrometeorological Prediction Center). Higher skill scores
correspond to more accurate forecasts, and it is apparent that the WPC’s forecast success
has been consistently improving over time, to the point that present-day forecasts with
three-day lead time are more accurate than forecasts with a single-day lead time in the
1960s–1980s. Reproduced from National Oceanic and Atmospheric Administration (b).

1.1.1 Modern lens and motivation

A large body of research has suggested broad changes in precipitation regimes in the future,

due to geological and physical processes [volcanism (Ciais et al., 2013), ocean mixing (Aoki

et al., 2013), weathering (Ciais et al., 2013), etc.], hydrological feedbacks from the ter-

restrial surface (Hartmann et al., 2013), and biological drivers of these hydrogeochemical

systems (Ciais et al., 2013), all of which display variability across a very broad range of

time-scales. As humans have large impacts on nearly all of these systems (Waters et al.,

2016), there are additionally a multitude of anthropogenic drivers of changes in the hydro-

logic system (Myhre et al., 2013). These potential changes are significant in that water

resource reliability has a direct impact on human livelihoods through social, health, and

economic means (National Climate Assessment and Development Advisory Committee,

2013). Additionally, our ability to predict hydrologic changes drives our ability to mitigate

or adapt to them on the time-scale of civil and political infrastructure development.
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Figure 1.2: Heidke skill scores over time for seasonal precipitation with a 0.5 month lead
from the NOAA NCEP Climate Prediction Center from 1995–2014. Reproduced from
National Oceanic and Atmospheric Administration (c). Note the low skill (a skill of 0
corresponds to the skill of a random forecast) and lack of improvement over time as opposed
to Figure 1.1.

Figure 1.2 shows the Heidke skill scores for seasonal precipitation forecasts (aver-

age/above-average/below-average) over the United States with a half-month lead time

from 1995–2014 (National Oceanic and Atmospheric Administration, c). The skill scores

are on average slightly positive, but nearly as often negative (100 corresponds to a perfect

forecast, −50 corresponds to a perfectly incorrect forecast, and 0 corresponds to a ran-

dom forecast), suggesting very little skill. Additionally, there seems to be no significant

improvement in forecast skill over the last two decades, in contrast to the positive trends

in Figure 1.1. This suggests a question for climate researchers:

• How predictable is precipitation on climate time-scales?

1.1.2 Potential predictability

While the state of the atmosphere is a great predictor for precipitation for the next hours-

to-weeks, beyond that time-scale it is inherently internally unpredictable, and thus may

as well be stochastic from a prediction perspective (Lorenz, 1973). However, there is still
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some clear correlation between precipitation and the state of the broader Earth system at

these time scales through slowly-varying climate modes, oscillations, and secular trends,

which serve as boundary conditions on the atmosphere.

Our ability to predict those boundary conditions determines our ability to predict

characteristics of precipitation at longer “climate-scale” lead-times2. Depending on how

far in the future we are trying to predict, we may think of those as more or less deterministic

versus stochastic.

Broadening our view a bit, we might ask how noisy precipitation is on time-scales

beyond the “weather scale” of meteorological forecasts. Since the atmosphere is internally

stochastic at climate-scale lead times, we can think of long-term prediction in a signal/

noise context. To re-state this idea, if we treated all slowly-varying sources of climate

variability as deterministic and predictable, our predictions would still be constrained by

the variability that comes from basic atmospheric dynamics and processes that lead to

variability at shorter time scales. We will at times in this dissertation refer to this high-

frequency (sub-seasonal) variability as “weather noise.” The following chapters attempt to

characterize this weather noise and quantify its magnitude relative to the total variability

in precipitation at climate time scales. In each case, a weather model is constructed and

fit to observational data, using the inherently flawed assumption that the background

climate state is stationary. This flawed assumption allows us to estimate upper bounds on

the amount of climate-scale variability that we would expect to see in precipitation data

given a stationary climate. The degree to which our weather models fail to fully capture

climate-scale variability will determine the potential predictability (PP) of the observed

precipitation, the limit on our ability to predict future precipitation. These limits have not

been fully quantified previously (DelSole and Tippett, 2007) and have even been proposed

by some to be indeterminable (National Research Council, 2010).

2In some senses, the secular trend in energy stored in the atmosphere, land, and ocean due to GHG
accumulation may end up being the most predictable of these drivers of variability (at least on the annual-
to-decadal scale, and perhaps longer as well), and so much of the research effort into estimating changes
in precipitation on those time scales has been focused on climate change studies (Allen and Ingram, 2002;
Trenberth, 2011).
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To determine the potential predictability, we will need to appropriately model our

observed data using a weather model framework. This leads us to ask:

• What is the magnitude of weather-scale variability in precipitation data?

• How can we best model daily precipitation in a stationary weather-scale

context as a null model for climate variability?

1.1.3 Weather generator models

Weather generator models are commonly used in the earth and environmental sciences as

stochastic representations of meteorological variables of interest. The “classic” weather

generator is the Richardson-type stochastic weather generator (Richardson, 1981), which

models precipitation occurrence as a Markov-chain (most simply as a first-order Markov

chain with constant transition probabilities throughout the year), intensity as indepen-

dent draws from a positive-valued probability distribution (classically exponential, but

often gamma), and further meteorological variables as conditioned on precipitation. The

Markov representation of precipitation occurrence is significantly older than Richardson,

though (Buishand, 1978; Lowry and Guthrie, 1968; Gabriel and Neumann, 1962), and the

notion of stochastic precipitation models dates back at least to Quetelet3 (Quetelet, 1852).

Markov chain models are common in precipitation studies due to their ability to repre-

sent the persistence (or auto-correlation, or “memory”) in a series of observations, which

was found to be necessary by at least the early 20th century (Gold, 1929; Cochran, 1938;

Blumenstock, 1942). There has been a great deal of work further developing Markov

chain-based representations of precipitation, significantly by Richard Katz (with numerous

co-authors) from the 1970s–1990s (Katz, 1977, 1985; Katz and Parlange, 1998), including

work developing the notion that simple stationary stochastic models of daily precipitation

can properly represent interannual variability, but seemingly only at daily accumulation

3Quetelet could even be given credit for determining first-order Markov transition probabilities for daily
precipitation occurrence, although he pre-dated Markov’s work (Markov, 1906) by more than 50 years, so
his probabilities are expressed in the language of geometric series (Quetelet, 1852).
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scales. The “overdispersion” of observed precipitation at longer time-scales relative to

these models suggested that the daily-scale models were not fully capturing all of the

variability-generating processes, and that some additional lower-frequency processes were

necessary for proper stochastic representation of precipitation on seasonal or longer time-

scales (Katz and Parlange, 1993). This in turn lead to the notion of segregating high-fre-

quency “weather-scale” processes (those which can be well-represented by simple stationary

weather generator models) from low-frequency “climate-scale” processes (those which can-

not), and determining the potential predictability of precipitation using these models (Katz

and Parlange, 1998; Madden et al., 1999).

This overdispersion phenomenon hearkens back to numerous earlier empirical studies

of hydrological phenomena with persistence on multiple time-scales, for example that of

Hurst (1951) and Mandelbrot and Wallis (1968), both of which led to the development

of the theoretically rich research areas of fractional Brownian motion (Mandelbrot, 1971;

Koutsoyiannis, 2002), self-similarity theory (Lovejoy and Mandelbrot, 1985; Tyralis and

Koutsoyiannis, 2011), and Lévy processes (Menabde and Sivapalan, 2000). Today, these

ideas are commonly expressed in multiple methodological frameworks, particularly time-

series analysis (Box-Jenkins and extensions), spectral theory (Molini et al., 2010), Bayesian

hierarchical models (Cooley et al., 2007), and numerous machine learning paradigms (Hall

et al., 1999; Kleiber et al., 2012), all of which are mainstays of the field of stochastic

hydrology.

In 1999, Madden et al. used a daily one-lagged model for precipitation occurrence

and an AR(1) model for precipitation intensity to determine potential predictability for a

precipitation time series. In this work, simulations using the model in a weather-generator-

type setting represented the variability that could be generated by high-frequency weather

variations — unpredictable on climate time-scales, and thereby the “noise” component of

a signal-to-noise ratio. The potential predictability was then determined as the fraction of

variability which was not due to these weather variations. The work in this dissertation

follows this path, but with methodological improvements to the representation of weather-
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scale noise.

1.2 Outline of dissertation

The intent of this dissertation is to answer the following research questions:

• How can we best model daily precipitation as a null model for climate

variability studies?

• Can we quantify the magnitude of the stochastic component of precipita-

tion on climate time-scales?

• How predictable is precipitation beyond the window of atmospherically-

driven numerical weather predication?

These questions will be answered through the methods and results of four linked studies:

Chapter 2 builds upon the methods of Madden et al. (1999) to select optimal stochas-

tic representations of precipitation occurrence processes. These representations are

then used to determine the magnitude of the stochastic component of precipitation

occurrence across the contiguous 48 United States.

Chapter 3 uses the occurrence framework of Chapter 2 and proposes a complementary

stochastic framework for precipitation intensity to represent the weather-scale vari-

ability of precipitation across the contiguous 48 United States. The potential pre-

dictability of precipitation determined from this method is then decomposed into

predictability due to occurrence and intensity processes, demonstrating both con-

structive and destructive interference in predictability signals in precipitation totals.

Chapter 4 proposes a new methodological framework for representing persistence in pre-

cipitation time series to improve upon the separated occurrence /intensity paradigm

of weather generator models using kernel density methods. This method is particu-

larly desirable in its applicability to both station-based data (which is significantly
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zero-inflated), and more coarse gridded or remotely-sensed data products (which tend

to show little or no memory in occurrence processes).

Chapter 5 applies the methods of Chapter 4 to observational data as well as the out-

put from corresponding historical runs from five Global Climate Models (GCMs).

Weather-scale variability, climate-scale variability, and potential predictability are

then compared between the data sets to determine whether GCMs accurately appor-

tion variability between high-frequency and low-frequency processes.

Chapter 6 summarizes the findings of Chapters 2–5, and proposes future directions of

research building upon these results.



Chapter 2

Modeling Precipitation Occurrence∗

2.1 Abstract

We present a generalizable method for establishing the potential predictability for seasonal

precipitation occurrence using rain gauge data. Using this method, we are able to provide

an observationally-based upper limit for potential predictability for 774 weather stations

in the contiguous 48 United States. We find that the potentially-predictable fraction varies

seasonally and spatially, and that on average 30% of year-to-year seasonal variability is

potentially explained by predictable climate processes. Potential predictability is generally

highest in winter, appears to be enhanced by orography and land-surface coupling, and

is lowest (stochastic variance is highest) along the Pacific coast. These results depict

“hot” spots of climate variability, for use in guiding regional climate forecasting and in

uncovering processes driving climate. Identified “cold” spots are equally useful in guiding

future studies as predictable climate signals in these areas will likely be undetectable.

2.2 Introduction

It has long been known that the Earth’s atmosphere is not entirely predictable in practical

or theoretical terms (Lorenz, 1973; Leith, 1978), but many climate processes do display a

predictability that we can exploit in creating forecasts, discovering trends, and uncovering

mechanisms of climate variability (Lorenz, 1973; Leith, 1978; Kirtman and Schopf, 1998).

∗This chapter is previously published as:
Daniel J. Gianotti, Bruce T. Anderson, and Guido D. Salvucci. What Do Rain Gauges Tell Us about the
Limits of Precipitation Predictability? Journal of Climate, 26(15):5682–5688, aug 2013.
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These forecasts of climate hinge on determining future probability distributions conditioned

on the present and past (Palmer, 2006; National Research Council, 2010; DelSole and Tip-

pett, 2007) and are based on uncovering variability due to low-frequency processes that

have persistence beyond the chaotic time-scale of weather (Leith, 1978; Palmer, 2006; Na-

tional Research Council, 2010). Many of these low-frequency processes (El Niño/Southern

Oscillation, Madden-Julian Oscillation, long-term trends) are regularly used in forecast-

ing climate variables on seasonal to decadal time scales (Palmer, 2006; National Research

Council, 2010), while other potential predictors may remain undiscovered and unutilized.

The chaotic nature of atmospheric dynamics limits the predictability of climate vari-

ables, although the limits have not been quantified (DelSole and Tippett, 2007) and have

even been proposed to be indeterminable (National Research Council, 2010). In this pa-

per we estimate these limits — termed the potential predictability (PP) — for a single

climate variable, seasonal precipitation occurrence, with the method generalizable to other

variables.

Precipitation occurrence is of interest for a number of reasons, in particular (a) vari-

ability in the number of rain events is a driver of extreme hydrological events (droughts

and flooding) (Sun et al., 2006), (b) the major climate trends in US precipitation have

been shown to be due to an increase (or decrease) in the number of rain events as much

as by major changes in precipitation intensity (Karl and Knight, 1998), and (c) our tools

for decadal and century-scale forecasting (coupled global climate models) have had diffi-

culty representing the actual variability of precipitation occurrence (the “constant drizzle”

problem (Sun et al., 2006; Dai, 2006)).

Ferguson et al. (2011) have shown that — at least for general circulation model ensem-

ble data — the slowly-varying, boundary-induced precipitation signal is generally non-sta-

tionary over the 20th century, while the stochastic component of precipitation variability

is stationary. This suggests the idea of separating variance due to short-memory (high-

frequency) processes and longer (low-frequency) oscillations associated with potentially

predictable processes. Because of this, if we model precipitation as an inter-annually-sta-
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tionary process, we would expect to represent the high-frequency (“stochastic”) variability

well, but not represent any of the low-frequency (potentially predictable) variability; dif-

ferences between the (modeled) stochastic variability and the (observed) total variability

should give an estimate of the potentially predictable variability (Katz and Parlange, 1998;

Madden and Shea, 1978; Wang et al., 2006).

2.3 Methods

One means of determining an upper bound for the predictability of a particular variable

is to establish what fraction of the variability is due to long-term versus short-term pro-

cesses (Katz and Parlange, 1998). Here we establish this fraction using variable-complexity

stochastic models trained on the historic record to simulate precipitation occurrence (Katz,

1977). Although not all low-frequency variability in the historic record is predictable, we

can estimate what portion of the signal is attributable to (non-predictable) short-term dy-

namics through comparison with an entirely high-frequency data generating process. Our

models only incorporate short memory information (and match the observed short time-

scale statistics identically), so that no low-frequency (climate) variability is introduced. To

determine the appropriate complexity of the models, we use the corrected Akaike Infor-

mation Criterion (AICc) to optimize the trade-off between goodness-of-fit and parsimony/

complexity (Hurvich and Tsai, 1989). We then use the models to simulate 1,000 realiza-

tions of each station’s roughly 100-year historic record, which form a distribution of purely

stochastic simulated precipitation records for a given station.

To compare the observed record with the simulated records, we use the number of days

of precipitation within a centered seasonal (89-day) window. Although any window could

be selected, the seasonal window establishes a predictability metric of appropriate scale

for use in assessing local droughts (Ferguson et al., 2011), agricultural growing periods

(D’Odorico and Ridolfi, 2000), or winter snowpack (Bohr and Aguado, 2001) and still

allows us some insight into the seasonal cycle of PP throughout the year.
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Potential predictability of observed precipitation frequency at a given station is defined

as the portion of variability that cannot be explained by the stochastic evolution of daily

precipitation events — an unexplained variance — usually as a normalized ratio. Although

sometimes expressed as a signal-to-noise ratio (Ferguson et al., 2011; Leith, 1978) or a

signal-to-forecast-error ratio (Somerville, 1987), we use the unexplained variance fraction

definition (Boer, 2004; Rowell, 1998):

PP89 =
σ2

89,obs −
〈
σ2

89,sim

〉
σ2

89,obs

(2.1)

where PP89 is the potential predictability for a seasonal 89-day window centered on calendar

day t, σ2
89,obs is the variance (between years) in the number of rainy days within an 89-day

window of t (±44) in the observed record, and
〈
σ2

89,sim

〉
is the mean variance (between

years) in the number of rainy days within an 89-day window of t in the 1,000 simulated

records. The numerator represents the variance not explained by the stationary, stochastic

model and is expressed as a fraction of the total (observed) variance from the historical

record. Positive values of PP89 correspond to values of σ2
89,obs in the positive tail of the

σ2
89,sim distribution; the higher the value of PP89, the less likely it is that the observed

variance is due the integration of random short-memory processes (i.e. is due to chance).

Our models and analysis are based on the United States Historical Climatology Net-

work (USHCN) data set (Williams et al., 2006) using daily precipitation values through

December 31, 2009. Of the 1,218 available weather stations in the USHCN, a subgroup

of 774 stations is selected to meet longevity and completeness criteria (see Supplementary

Materials). All stations are required to have at least 80 years of continuous data (Jan 1,

1930–Dec 31, 2009) and cannot have more than 5% of daily values missing. The longest

period ending on Dec 31, 2009 with at least 95% complete data is selected. The threshold

for precipitation occurrence is 0.254 mm (0.01 in); climatology of precipitation occurrence

from these data is shown in Figure 2.1a–d.

Markov chain models are well-suited for stochastic precipitation occurrence modeling
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Figure 2.1: Climatology and potential predictability (PP) of precipitation occurrence. (a)–
(d) show the mean number of days with precipitation (> 0.254 mm or 0.01 in) for 89-day
seasonal windows centered on Jan 15, Apr 15, Jul 15, and Oct 15, respectively. Circles show
the location of the 774 weather stations used in the study. (e)–(h) show PP as calculated
by (σ2

89,obs − 〈σ2
89,sim〉)/σ2

89,obs. The Appalachians, southern Rockies, and Great Lakes
regions show the highest PP, while high wintertime stochastic variability in the Northwest
and Pacific coast lead to lower-than-national-average PP. See Figure A.4 for timings of
minimum and maximum PP and Figure A.6 for spatial significance.
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(Katz, 1977), and model complexity can be selected by allowing for a variable chain order,

m. Each state of the Markov chain is represented by the day of the year and occurrence

pattern over the previous m days (Wilks and Wilby, 1999). The transition probabilities

— the probabilities of precipitation on a certain day given the last m days’ history — are

found empirically from the historic record for each possible occurrence pattern on each day

of the year.

Our method for determining seasonal PP values is shown schematically in Figure A.1.

Models are created to match the empirical historic record for each of 774 selected weather

stations across the US; for each station, the order m is established by using the AICc

(see Supplementary Materials) and is allowed to vary from day-to-day (Hurvich and Tsai,

1989; Katz and Parlange, 1993). The AICc is used because it allows for an un-biased

optimization of the trade-off between model complexity/parsimony (using a higher order in

determining the transition probabilities is more complex and introduces more variability)

and model likelihood (higher order models increase likelihood-based fit). We also allow

pooling of our data set (using multiple neighboring days’ observations for fitting model

transition probabilities — see Supplementary Materials), again using the AICc to determine

appropriate pooling windows. While daily chain orders are selected and used for model

fitting and simulation, the mean chain order of each station for each season is shown in

Supplementary Figure A.2.

Once the pooling size, daily chain orders, and transition probabilities are determined,

the stochastic model for that station is complete, and simulations can be created where each

day’s occurrence is determined probabilistically based on the previous m days’ occurrence

history. We simulate 1,000 realizations of each station’s roughly 100-year historic record (∼

3×1010 individual days of precipitation occurrence in total) which then form a distribution

of purely stochastic simulated precipitation records for a given station.

To analyze the spatial patterns of predictability, we grid the PP89(t) vector (t ∈

{1, 2, . . . , 365}) at 0.0775◦ resolution using natural neighbor interpolation (Sibson, 1981).

To create clusters we use the k-means algorithm (MacQueen, 1967) with an L2 norm
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(squared Euclidean distance) to group the clusters so that moving any one grid point to

another cluster increases the mean intra-cluster distance.

2.4 Results

The maps shown in Figure 2.11e–h indicate areas of high and low PP by season, with con-

siderable variability observed in both magnitude and spatial pattern throughout the year.

This figure is intended to serve as a “road map” for areas with high and low likelihoods

for success in interannual-to-multidecadal-scale modeling of precipitation occurrence, cor-

responding to high and low PP values, respectively.

In all of the Figure 2.1e–h maps there are clear correlations between high PP and oro-

graphic features, most notably in the southern Rockies and Appalachians. This suggests

that orography may play a role in amplifying not just spatial but temporal precipitation

variability (and thereby PP), presumably by amplifying temporal variations in local water

vapor convergence (storm tracks and convection). The Pacific coast is noteworthy in its

relatively low PP, due primarily to very low observed variability in the summer and fall

(Figure 2.1g–h) and relatively high stochastic variability in the fall through spring (Fig-

ure 2.1e,g–h, Figure A.3). The mean PP value across all stations and days of the year is

0.3 (30% of year-to-year seasonal variability is potentially explained by predictable climate

processes), although at some stations the seasonal mean PP exceeds 0.7. All PP values

above 0.24 are significant at the 0.05 confidence level; those below 0.24 are either significant

(but low) or indistinguishable from zero (see Supplementary Materials).

It is important to note that low PP does not necessarily mean that predictable processes

have little influence in a region. Rather, it suggests that the predictable portion of the

interannual variance in number of rainy days in a season is small relative to the high-

frequency-driven stochastic variability that the area experiences.

To be able to attribute climate processes to their effects on specific climate variables,

we hope to find common regional, seasonal behavior patterns. To this end, we performed
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a k-means cluster analysis based on an evenly-gridded set of PP values and plotted the

resulting regional patterns (Figure 2.2). Although implicitly dependent on spatial patterns

to some degree through the gridding process, the clustering is otherwise independent of

location and based only on similarities in the seasonal pattern of PP. The overall 774

station mean pattern shows higher predictability in the late fall and winter, and lower

predictability in the summer and early fall, confirming an earlier result by Rowell (1998).

Cluster 1 has higher than spatial-mean predictability in summer, lower in fall and

winter, which can also be thought of as a “flattening” of the seasonal predictability cycle.

This group of stations has the highest relative summer PP, which agrees well with previous

studies on the strong JJA soil-moisture convective precipitation feedbacks in the western

Great Plains and Ozarks/Gulf Coast (Koster et al., 2003), driven, at least in part, by

sea surface temperature (SST) variability and atmospheric water vapor transport from

the Gulf of Mexico (Wang et al., 2010). In addition, Koster et al. (2004) suggest that

this feedback — in which local soil moisture enhances local evaporation and precipitation

— should happen in transition areas from wet-to-dry climates, further supporting a soil

moisture explanation for enhanced summertime predictability in the western portion of

Cluster 1.

Cluster 2 displays an amplification of the spatial average predictability cycle, with high

late-fall and winter PP. The generally high PP in the Great Lakes and Finger Lakes re-

gions suggests a PP amplification during the lake-effect snow period from October through

mid-March (Niziol et al., 1995), with the available water supply likely amplifying the pre-

dictability of temporal patterns in atmospheric water vapor. Although the mechanisms are

likely different, Texas and Florida have similar seasonal patterns to the Great Lakes region

due to their strong correlation with tropical Pacific SSTs from December through March

(Boer, 2004; Ropelewski and Halpert, 1986).

Cluster 3 — located mostly in the Southwest — has a seasonal predictability cycle that

generally follows the spatial average with the exception of late winter, when predictability

is significantly higher. Although coastal southern California has, on average throughout
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Figure 2.2: Cluster analysis based on potential predictability seasonal time series. Regions
determined by an interpolated L2-norm clustering algorithm performed on the seasonal
predictability curves. Subplots show the mean seasonal anomaly curve ±1.96 SE over all
774 stations (black) and the mean anomaly curve ±1.96 SE for the cluster (color). Clusters
were determined using k-means on a gridded PP field, and cluster curves are the mean of
the station values in that region (rather than the mean of the gridded values).
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the year, a much lower predictability than the Colorado Plateau to the East (Figure 2.2),

the region as a whole lies along the ENSO precipitation anomaly track (Cayan et al., 1999),

and as such the predictability peaks for stations in this region are representative of the

typical late-winter ENSO precipitation timings (McCabe and Dettinger, 1999).

Cluster 4 is best-described as a flattening of the mean PP cycle from January through

June with a PP increase in October and November. Although wintertime precipitation

in the Pacific Northwest has been shown to be strongly affected by ENSO variability, we

find that the predictable variability in precipitation occurrence is minimal compared to

winter in the Southwest, in agreement with previous results (Feldl and Roe, 2011). As

previously mentioned, this does not mean that ENSO does not affect Northwest precipi-

tation occurrence, but that the predictable fraction of the variance is small relative to the

stochastic component (which is in fact higher in the Northwest than any other region —

see Figure A.3).

2.5 Summary

All PP is due to the variability of processes leading to precipitation, and the timing/

magnitude of the PP response is a function of interactions between PP drivers (SSTs

(Cayan et al., 1998), anthropogenic forcing (Zhang et al., 2007)), feedbacks (soil-moisture

(Koster et al., 2003, 2004); orography), and unpredictable dynamics. Rigorous attribution

of PP-related precipitation processes to oscillations, trends, and feedbacks is likely best

targeted towards areas of high PP — the Appalachians, Rockies, and Great Lakes, for

instance — using Figure 2.1 as a guide for region selection and Figure 2.2 as a guide

for timings and likely processes. Further, the method for determining PP discussed here

is algorithmic and generalizable to climate variables other than precipitation occurrence,

which suggests a high-level approach to climate forecasting: (a) establish the magnitudes

of predictable and stochastic variances to determine PP, (b) look for processes that drive

variability in high PP regions to close the gap between current model skill and PP limits,
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(c) use the findings from regional process modeling to update global models and forecasts,

and (d) monitor areas for changes in PP over time that might signify changes in predictable

climate processes.



Chapter 3

The potential predictability of precipitation

occurrence, intensity, and seasonal totals over the

continental United States∗

3.1 Introduction

Precipitation data is very noisy due to many non-linear processes and thresholds in both

the physics of precipitation and our ability to measure it (Mandelbrot and Wallis, 1968;

Pruppacher and Klett, 1997). At our common measurement time-scales (e.g., daily), spa-

tially-based, physical process models dominate our precipitation forecasting methodologies

(Lynch, 2008), whereas the chaotic behavior of the atmosphere beyond a few weeks ren-

ders these methods nearly useless for forecasts at seasonal scales or longer (Lorenz, 1965).

In time-series analyses of precipitation point-data, the perceived deterministic time-scale

switches; there is significant persistence in aggregated seasonal and annual totals (partic-

ularly when tied to slowly changing atmospheric indices, Katz and Parlange, 1998), but

daily data are generally considered random variables due to low daily persistence (Katz

and Parlange, 1998) as well as the complex spatial behavior of precipitation (Olsson and

Niemczynowicz, 1996; Gong et al., 2003).

As we move from daily data to longer aggregated time-scales, we see that precipitation

data becomes less chaotic and less stationary (Mandelbrot and Wallis, 1968) — that is,

∗This chapter is previously published as:
Daniel J. Short Gianotti, Bruce T. Anderson, and Guido D. Salvucci. The Potential Predictability of
Precipitation Occurrence, Intensity, and Seasonal Totals over the Continental United States. Journal of
Climate, 27(18):6904–6918, 2014.
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the probability distributions for precipitation random variables are not the same from one

month, season, or year to the next. This is perhaps most easily envisioned as the su-

perposition of multiple precipitation patterns at multiple time-scales: diurnal evaporation

and moisture convergence (Meisner and Arkin, 1987), the annual cycle (Meisner and Arkin,

1987), correlations with intra-seasonal to multi-annual climate oscillations [e.g. Madden-Ju-

lian Oscillation (Becker et al., 2011), El Niño/Southern Oscillation (ENSO, Ropelewski and

Halpert, 1986), Arctic Oscillation/North Atlantic Oscillation (AO/NAO, Hurrell, 1995),

and Pacific Decadal Oscillation (PDO, Mantua and Hare, 2002)], and empirical trends

over the course of our data record (Karl and Knight, 1998). This non-stationarity is what

fundamentally allows us to make successful predictions of precipitation despite the chaotic

regime of atmospheric dynamics, as evidenced by the typically positive forecast skill scores

on seasonal time-scales (National Oceanic and Atmospheric Administration Climate Pre-

diction Center, 2013).

We are interested in establishing the degree to which precipitation is potentially pre-

dictable at these climatic time-scales [i.e. longer than the chaotic noise time-scale on the

order of days to weeks (Lorenz, 1965; Leith, 1978)]. Throughout this paper, we will use the

terms “high-frequency” and “weather noise” to refer to processes with a time-scale on the

order of days, and “low-frequency” and “climate signal” to refer to processes — other than

the annual cycle — with time-scales longer than the weather noise. The characterization

of high-frequency processes as noise rather than signal is simply due to this study’s focus

on climate-scale processes.

Potential predictability (PP) can be thought of as an upper-bound on forecast skill or

a partitioning of a time-series into signal and noise. In the case of this study, the noise

is due to short-persistence (on the order of days) processes in the Earth system, and the

signal is due to a number of forcings, feedbacks, and slowly-changing boundary conditions

that lead to persistence beyond our noise time-scale. This upper-bound can provide us

with useful information, including 1) the broad limits of our ability to confidently forecast

longer-term climate behaviors, 2) where and when our present forecasts are limited by an
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understanding of the system versus an absence of useful climate signals, and 3) a metric

to test whether or not our current forecast models display signals and noise in the same

manner as the real climate system.

The first point is particularly critical as unexpected droughts and floods damage infras-

tructure in US towns, cities, and farmlands; and water resource reliability impacts human

livelihoods through social, health, and economic means (National Climate Assessment and

Development Advisory Committee, 2013). It is important to note that these impacts are

as much an issue of the predictability of precipitation as its magnitude. For example, the

ability of modern human infrastructure to provide for quite similar lives in the deserts of

Arizona and the rain-forests of Washington relies on a proper use of climatological data to

predict future conditions. This prediction is obviously less effective if stationarity is im-

properly assumed, or if the data used to make predictions is insufficient for the time-scale

of infrastructure planning (Milly et al., 2008). Beyond the direct human impacts, increased

precipitation variability has been found to affect ecosystem services — for example through

changes in plant community composition and ecosystem carbon cycling processes (Knapp

et al., 2002) — and our ability to mitigate or adapt to these impacts are limited by our

ability to predict them.

Since day-to-day precipitation is unpredictable on climatic time-scales (i.e, beyond the

weather noise time-scale of days to weeks), we will think of it as a stochastic process with

some amount of intrinsic variability. From the forecasting perspective, we might equate

precipitation variability with uncertainty and think that large variances must be related to

low predictability. While it is certainly true that stochastic weather variability increases

uncertainty, any climate signal — which we can think of as the variability of the weather

noise distribution through time (e.g., Mandelbrot and Wallis, 1968) — also increases pre-

cipitation variability. From a climate perspective, precipitation variance is a combination of

(stochastic) weather noise and (potentially predictable) climate signal. If we think of sepa-

rating our precipitation variance into a weather component and a climate component, the

latter forms the basis for our climatic potential predictability, and large values of climate
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variability relative to weather variability suggest high PP. As an example, if the statistics

of precipitation were stationary from year to year, there could be interannual variability

due to weather; however, there would be no climate-driven variability and thus no oppor-

tunity for prediction based on climate indicators (sea surface temperatures, atmospheric

modes, land-atmosphere coupling). The degree of non-stationarity in the statistics of pre-

cipitation is thus one measure of potential predictability. In this paper, we will specifically

assess how well (or poorly) stationary statistics can describe the interannual variability of

precipitation.

Potentially predictable climate signals can manifest as deviations from stationary pre-

cipitation characteristics spanning years to centuries. There has been considerable previous

investigation into precipitation variability on these time-scales, much of which focuses on

partitioning natural variability and trend components. For instance, mean daily precipita-

tion increased over the contiguous U.S. by roughly 10% over the twentieth century (Karl

and Knight, 1998). Precipitation occurrence in the contiguous U.S. has generally increased

over the last century as well (Karl and Knight, 1998; Groisman et al., 1999; Higgins and

Kousky, 2013; Pal et al., 2013), with some locations showing an additional 15 days per year

of precipitation over the last half of the twentieth century (Higgins et al., 2007). At the

same time, dry spell lengths have also increased, leading to more wet days in wet periods

and longer droughts in dry periods (Groisman and Knight, 2008; Pal et al., 2013), as well as

possible shifts in the timing of the seasonal precipitation cycle (Pryor and Schoof, 2008; Pal

et al., 2013). Roughly half of the increase in the number of wet days has been attributed

to the PDO and AO (Higgins et al., 2007); and modeling studies have linked up to 40% of

the variability in annual precipitation in the U.S. Southeast, Southwest, and Mid-Atlantic

regions to sea-surface temperatures (SSTs), and found significant amplifications of variance

in the Central Plains due to land-atmosphere feedbacks (Koster et al., 2000).

Much of the increase in twentieth century precipitation is due to increases at the ex-

treme high end of the distribution (Karl and Knight, 1998). Models suggest that heavy

precipitation should increase with trends in increased atmospheric temperatures, perhaps
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with an increase in dry days as well (Groisman and Knight, 2005; Trenberth et al., 2003),

and that Probable Maximum Precipitation should increase following the Clausius-Clapey-

ron relation (Kunkel et al., 2013; Sun et al., 2007). Using maximum daily precipitation,

this increase in heavy precipitation has been found to hold globally, but U.S. precipitation

has shown a less coherent relationship (Westra et al., 2013). Changes in heavy precipitation

have been tied to increased convective thunderstorm activity (except in the Great Lakes

and Mid-Atlantic — Changnon, 2001), extratropical cyclones (Great Lakes and Northeast

— Kunkel et al., 2012), frontal systems (Central Plains — Kunkel et al., 2012), and the

influence of tropical cyclones (Southeast and Cornbelt — Knight and Davis, 2009; Kunkel

et al., 2012). Much of the increase in heavy precipitation in the U.S. appears to have oc-

curred after 1970 (Groisman and Knight, 2005), although intensities of similar magnitudes

were observed at the same frequency around the turn of the twentieth century, suggesting

a background of significant natural climate variability (Kunkel et al., 2003). As part of our

analysis in this paper, we will assess the degree to which these observed changes in both

intensity and occurrence processes can be said to contribute to precipitation’s variability

and potential predictability.

Given its importance, significant research has addressed the issue of isolating predictable

characteristics of climate-scale precipitation variance, using both process models (Koster

et al., 2004; Moron et al., 2006; Jia and DelSole, 2011) and observational approaches (Mad-

den et al., 1999; Anderson et al., 2009; Robertson et al., 2009; Gianotti et al., 2013). PP

is generally established from signal-to-noise ratios (Ferguson et al., 2011), variance parti-

tioning (Koster et al., 2004; Jia and DelSole, 2011; Boer, 2009), or through the divergence

of states from initial model conditions (Collins, 2002). Precipitation is found to have lower

typical PP than air temperatures (Collins, 2002; Boer, 2009; Feng et al., 2011) — often less

than 30% of the total variance is deemed potentially predictable (Koster et al., 2000; Boer,

2009; Westra and Sharma, 2010; Feng et al., 2011) — and the processes driving PP in a

certain location tend to be dominated by either ocean processes or land-feedbacks (Koster

et al., 2000). Prior work has separated the role of precipitation occurrence and intensity,



27

and occurrence has been found to demonstrate more potential predictability than intensity

in the tropics (Moron et al., 2007; Robertson et al., 2009) and Chile (Verbist et al., 2010),

perhaps due to the stronger spatial coherence of occurrence processes (Moron et al., 2006).

In this study, we assess PP for U.S. seasonal precipitation totals using purely obser-

vation-based data as opposed to modeling studies which may have artifacts due to model

specification. Studies of the U.S. have found higher PP in the West (Yilmaz and DelSole,

2010; Feng et al., 2011), with possible feedbacks in the Central Plains (Koster et al., 2004)

using gridded precipitation data. Using station data, Gianotti et al. (2013) found the sea-

sonal PP for rain gauge precipitation occurrence to be somewhat higher than other studies

found for total precipitation, 30% on average across the U.S., with some locations higher

than 70% in certain seasons.

The primary components of this study and this paper are 1) a strategy for creating

“Stationary Stochastic Weather Models” to model precipitation under the assumption of

stationary weather statistics (no climate variability), 2) the decomposition of precipitation

variability into intensity and occurrence components, 3) simulation of precipitation data

using the SSWMs as a null hypothesis of no potentially predictable climate signal against

which to compare the observed precipitation data, 4) calculation of potential predictability

from the observed data, and 5) discussion of spatial features of the calculated potential

predictability values. Section 2 presents an overview of the data and statistical methods

employed to quantify the potential predictability of climate-induced variations in seasonal-

mean precipitation amounts, occurrences, and intensities across the U.S. The temporal

and spatial characteristics of potentially predictable signals are then presented in Sections

3 and 4. Discussion of the results and implications for understanding the role climatic

factors versus short-persistence processes play in generating these events follow in Section

5.
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3.2 Methods

3.2.1 Stochastic Modeling

To establish potential predictability, we compare the interannual variability of observed

data with the variability of annually-stationary models designed to represent the observed

data as well as possible within a stationary framework. We will refer to these models as

“Stationary Stochastic Weather Models” (SSWMs) to emphasize their use in simulating

artificial weather data with no interannual variability aside from that created by “weather”

processes with persistence on the order of days.

Daily precipitation has been modeled in the past, often as a chain-based process with

some assumed parametric or non-parametric intensity distribution (Stern and Coe, 1984;

Katz, 1977; Wilks, 1999; Wang et al., 2006; Robertson et al., 2006; Schoof and Pryor, 2008;

Hanson and Vogel, 2008). Although generally fit to observational data, the simplest models

are prone to under-representation of observed interannual variability (Gregory et al., 1993;

Katz and Parlange, 1998). To the degree that this is due to misrepresentation of high-

frequency variance, it can be corrected by using higher chain-order models and/or more

complex intensity distributions.

When considering occurrence, we can envision a single probability distribution for in-

tensity with a large density at zero to account for dry days (Salvucci and Song, 2000;

Robertson et al., 2009), or we can think of it as two processes: an occurrence process and

an intensity process, which will not necessarily be statistically independent. This separa-

tion is potentially useful in cases where some physical processes may be tied more directly

to either occurrence or intensity — for example if soil moisture is connected to occur-

rence through convective triggering or SSTs are connected to intensity through synoptic

convergence.

To construct our SSWMs, we use seasonally-varying variable-order Markov chains to

model daily precipitation occurrence and continuous parametric density functions (con-

ditioned on the chain of occurrence patterns) to model intensity. To properly represent
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the high-frequency variability, we allow the occurrence models to vary their complexity

via their chain-order and use the corrected Akaike Information Criterion (AICc; Hurvich

and Tsai, 1989) to select the appropriate order to optimize the goodness-of-fit/parsimony

trade-off.

Our observational precipitation data is drawn from the U.S. Historical Climate Net-

work (USHCN) dataset beginning on January 1, 1900 and ending on December 31, 2009

(Williams et al., 2006). We focus on station-based data in order to ensure that results

are not biased by interpolation algorithms, scale selection, changes in station locations, or

coverage gaps as they may be with gridded data (Hamlet and Lettenmaier, 2005). From

the 1218 available weather USHCN stations, 774 are selected that have at least 80 years of

data with less than 5% of precipitation values missing — the longest period meeting these

criteria is used.

Our occurrence models are variable-order Markov chains with daily-varying transition

probabilities and chain orders (see Gianotti et al., 2013). At each station, a data-pooling

window is selected using the AICc to improve transition probability estimates. Pooling

sizes for occurrence are typically between 15 and 35 days, and all days within that window

(across all years) are used in estimating the transition probabilities for the central day’s

occurrence model. For each day of the year, parameters are fit to the empirical data for

chain orders from zero to five days, and the appropriate model for each day is selected,

again using the AICc. Pooling sizes are fixed for a given station, while chain orders can

vary from day to day. All combinations of pooling sizes from 1 to 91 days are tested using

all chain orders from 0 to 5 days for each day of the year. The AICc is used over the similar

Bayesian Information Criterion (Schwarz, 1978) because the AICc has a weaker penalty

for overfitting, potentially allowing more variability in the models, which leads to more

conservative confidence intervals and PP estimates.

As an example, in Ajo, AZ (pooling size 17 days) on June 18, the optimal chain order

is zero. This means that the modeled probability of precipitation for June 18 is just the

climatological frequency of occurrence in the pooling window (June 10 – June 26) around
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June 18. In contrast, in Selma, AL (pooling size 23 days) on June 18, the selected chain

order is two, meaning that there are four different modeled probabilities of precipitation

occurrence depending on whether it rained on both the 16th and 17th, neither the 16th nor

17th, on just the 16th, or on just the 17th. Each of those four probabilities is determined

from the climatological frequency of occurrence following the matching two-day history for

all days in the observed record within the pooling window of June 7 – June 29.

Our modeled intensities are drawn from parameterized probability distributions fit to

the first two moments of the observed data. To allow for bi-modal precipitation distribu-

tions with always-finite variances, the intensity models take the form of a five-parameter

gamma-gamma probability distribution mixture model:

f(x) = λ
βα1

1 xα1−1e−α1β1

Γ(α1)
+ (1− λ)

βα2
2 xα2−1e−α2β2

Γ(α2)
, (3.1)

where 0 ≤ λ ≤ 1, α1 and α2 are shape parameters, β1 and β2 are rate parameters, and

Γ(·) is the gamma function. The gamma-gamma distribution was selected from among

a number of 1–5 parameter models (exponential, gamma, Dagum, Weibull, kappa, log-

normal, and mixtures of each) by the AICc as the best trade-off between parsimony and

goodness of fit. As with the occurrence process, a model is constructed for each combination

of station, day of year, pooling size, and chain order (conditioning on the previous m days’

occurrence, rather than intensity), the data pooling size is selected using AICc, and then

the chain order is selected also using AICc. This process is fairly computationally intensive,

requiring over 100 million non-linear five-dimensional constrained optimization solutions,

and yields an intensity model for each day of the year at each station. The 365 daily models

for occurrence and intensity, each of which is interannually stationary, combine to make our

SSWM for a given location. Selected chain orders for occurrence are generally zero to three

days, while they are almost exclusively zero (no memory) for intensity. This suggests that,

given 100 years of observational data — even allowing data pooling (effectively increasing

observations by an order of magnitude) for more robust parameterization — intensity
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estimates are not substantially improved by conditioning on the past few days’ occurrence

patterns.

We then create stochastically-generated Monte Carlo “weather-only” simulations of the

historical record using the SSWMs for each location. Simulations are run a single day at

a time to make use of the short-term memory of the chain models — for each day, the

probability of occurrence and the probability distribution for intensity are determined by

the current model state, a function of day of year and the last 0–5 days of simulated

data. For each station, 1000 simulations of the 80–110 year record are produced. These

simulations then form a distribution of precipitation records which match the observed

record in length, and — for each day of the year — match the probability of precipita-

tion occurrence, the likelihood of precipitation given the past few days of occurrence, and

the intensity distribution. The important way in which they do not match the observed

record is that — despite being stochastically-generated and therefore displaying interan-

nual variability — the SSWM data-generating mechanism is stationary from year-to-year,

and therefore fails to incorporate low-frequency processes that might affect the occurrence/

intensity distributions like those driven by SSTs, atmospheric modes, trends in greenhouse

gas concentrations, and land-cover changes. Any long-term aggregation of the SSWM sim-

ulations, then, should generally display lower variability than the observed records upon

which they are based.

More importantly for our purposes, variability in the observed record that extends be-

yond the window of likely variabilities in the SSWM simulations suggests the existence of

low-frequency (climate) variability. While not all low-frequency variability is determinis-

tically predictable, this difference between the variability of the observed record and the

variability of the distribution of simulated SSWM records is the basis of our estimate for

potential predictability. For example, if in a given location the interannual variance of the

observed autumn precipitation was equal to the interannual variance of autumn precipita-

tion in the SSWM, then the observed variance can be explained entirely by a high-frequency

noise process (our SSWM), and there is no separable low-frequency signal, hence no PP.
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To account for missing data, we simulate missing days using the SSWM for that location.

This is more conservative than either imputing missing values with re-sampled observa-

tions or omitting the data entirely (the SSWMs have no persistence beyond five days, and

thus any precipitation sequences [longer than five days] that incorporate SSWM data are

under-dispersed relative to the actual conditions, and will therefore tend to moderately

underestimate the PP signal).

Since the observations and simulations are at daily resolution and we recreate the

seasonal cycle by using 365 occurrence/intensity models to comprise the SSWM for each

station, we can look at interannual variability for any period greater than or equal to a

single day. For this analysis, however, we will focus on the variance and PP of seasonal

precipitation totals in an 89-day window, as well as the portion of that variance due to

occurrence versus intensity. The variance in total seasonal precipitation in the observed

station data (σ2
obs,tot) is shown for 89-day windows centered on January 15th, April 15th,

July 15th, and October 15th in Figure 3.1a–d, respectively. Variability is generally highest

in winter on the leeward sides of the Southern Appalachians and the Pacific Coastal Ranges;

in spring along the Gulf Coast and reaching into the Ozarks; in summer in the Central

Plains, Gulf Coast, and the Atlantic Plains; and in fall the broader Southeast and Pacific

Northwest Coast.

3.2.2 Variance Decomposition: Occurrence and Intensity

Previous research in the tropics has suggested that precipitation occurrence may be more

predictable than intensity (Moron et al., 2006; Robertson et al., 2009). To separate the

portion of the total variance that is due to occurrence versus intensity, we can use the law

of conditional variance:

Var[S89] = EN [Var [S89|N89]] + VarN [E [S89|N89]] , (3.2)
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Figure 3.1: The variance of seasonal precipitation totals in the U.S. from at least 1930–2009
(when available, data goes back as far as 1900) for a) December–February, b) March–May,
c) June–August, and d) September–November. Daily data taken from 774 United States
Historical Climate Network stations.

where S89 is the total precipitation at a given location in an 89-day window and N89 is the

number of days with measured precipitation (≥ 0.254 mm) in that window. The first term

on the right-hand-side is referred to as the “expectation of conditional variances,” and the

second as the “variance of conditional means;” for simplicity’s sake we will denote them as

σ2
obs,int and σ2

obs,occ, respectively so that Equation 3.2 can be re-written as

σ2
obs,tot = σ2

obs,int + σ2
obs,occ (3.3)

It is important to note that unless occurrence and intensity are independent, then σ2
obs,occ

is different (by more than just a linear scaling factor) from the variance in the number of

wet days (Var[N89], as used in Gianotti et al. (2013)), and σ2
obs,int is not the same as the

variance of the intensity on wet days. They are the portions of total precipitation due to

occurrence or intensity, rather than the variances of occurrence or intensity. For further

information on the partitioning of occurrence and intensity see Appendix B.
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Figure 3.2: The fraction of variance in the observed seasonal total precipitation record
attributable to occurrence, σ2

obs,occ/σ
2
obs,tot for a) December–February, b) March–May, c)

June–August, and d) September–November. Subtract plotted values from one to obtain
the fraction of variance attributable to intensity.

Figure 3.2, the fraction of the total variability that can be attributed to occurrence

(σ2
obs,occ/σ

2
obs,tot), shows that occurrence contributes substantially to the total observed

interannual variance — 56% when averaged across all stations and seasons. The portion of

variance due to occurrence is generally higher in the West than the East and is generally

highest in the fall.

3.3 Simulation Results

The mean variance (mean of all 1000 simulations) in total precipitation from the SSWM

simulations, σ2
sim,tot, is shown in Figure 3.3, broken down again by 89-day season. This is

the simulated analogue of σ2
obs,tot, shown in Figure 3.1, but represents only the amount of

variability that can be well-modeled by stationary processes. Unsurprisingly, the spatial

patterns are similar, with the major difference being that the simulated (i.e., due to high-

frequency processes) variance of aggregated totals is lower in magnitude than the observed
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Figure 3.3: The variance of seasonal precipitation totals in the U.S., as simulated by
interannually-stationary models fit to the historical record for a) December–February, b)
March–May, c) June–August, and d) September–November. This variance serves as a
best estimate for the degree of “weather noise,” i.e. variance due to only short-memory
processes with time-scales on the order of days. While the models used to generate the
simulated data are designed to recreate the observed day-to-day variance exactly, they lack
low-frequency, annually-varying climate signals found in the observed system, and hence
have lower overall variance for seasonal and longer accumulations (cf. Fig. 3.1).

(high and low-frequency) variance upon which it is based. To determine the contributions

to σ2
sim,tot variability from intensity (σ2

sim,int) and occurrence (σ2
sim,occ), we decompose the

variability of each simulated data set in the same manner as for the observational data

using Equation 3.2. The fraction of the mean total simulated variability due to occurrence,

σ2
sim,occ/σ2

sim,tot, is shown in Figure 3.4 as an analogue to Figure 3.2 (with over-bars used

to represent the mean of the distribution of simulations).

Focusing first on winter (DJF), we notice a difference between the fraction of total

variance due to occurrence in the observations (Fig. 3.2a) and simulations (Fig. 3.4a),

specifically that the simulated data has a less pronounced West/East split in the fraction

of variance due to occurrence (or intensity), as well as a smaller range than the observed

data. This suggests that much of the low-frequency variability in the observations (absent
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Figure 3.4: The fraction of variance in the simulated seasonal total precipitation records
attributable to occurrence, σ2

sim,occ/σ2
sim,tot, serving as an estimate of the fraction of

high-frequency “weather noise” caused by occurrence. Subtract plotted values from one
to obtain the fraction of variance attributable to intensity. a) December–February, b)
March–May, c) June–August, and d) September–November.
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in the simulations) is due to processes that effect occurrence or intensity preferentially,

with low-frequency occurrence patterns predominant in the Western U.S. (and along the

southern ENSO track), and low-frequency intensity variability stronger in the Eastern

U.S. For the other seasons, the same pattern of stronger observed occurrence/intensity

separation holds, although the spatial patterns change (particularly in the Northwest in

the summer and fall, the Mississippi/Ohio/Tennessee River Valleys in the summer and fall,

the Central Great Plains in the spring through fall, and Northern Appalachia in the winter

through summer).

3.4 Results of Potential Predictability Analysis

Using this variability data, we can now determine the seasonal potential predictability

qualitatively suggested by the variance maps in the previous sections. The potential pre-

dictability is defined as the fraction of the observed variance that can be ascribed to climatic

(low-frequency) variability:

PP89,tot =
σ2
obs,tot − σ2

sim,tot

σ2
obs,tot

(3.4)

The subscript 89 in PP89,tot is a reminder that this is the potential predictability of 89-

day seasonal precipitation, and the subscript “tot” is to clarify that this is defined for the

variability of the total accumulated precipitation, rather than the portions of variability

due to occurrence or intensity. The values of PP89,tot fall in the range from zero to one,

although in some cases when there is little non-stationary signal and σ2
obs,tot lies in the

middle of the σ2
sim,tot distribution, σ2

sim,tot may exceed σ2
obs,tot, leading to negative PP89,tot

values, which imply no ability to extract low-frequency variability from the envelop of high-

frequency noise (and hence no PP). As a reminder, if this same analysis was performed

using two-day rather than 89-day accumulations (for a location with a chain order of, say,

two or three days), the model’s variance would exactly match the observed variance, the

average of the simulated variances across all 1000 simulations would asymptotically equal
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the observed variance, and the potential predictability would be zero. It is only when

accumulating beyond the chain order that the persistence of climatic boundary conditions

(not represented by our models) can lead to precipitation totals that are unusual when

compared to the stationary assumptions of an SSWM.

Using the decomposed simulated and observed variances, we can also establish the

potential predictability of climate variability as driven by occurrence and intensity. PP89,int

is the potential predictability of total 89-day precipitation due to intensity, defined as

PP89,int = (σ2
obs,int − σ2

sim,int)/σ
2
obs,int. Similarly, PP89,occ = (σ2

obs,occ − σ2
sim,occ)/σ

2
obs,occ

is the potential predictability of 89-day precipitation totals due to occurrence.

To determine whether a PP value is statistically significantly different from zero or

indistinguishable from zero, we calculate PP89,tot, PP89,int, and PP89,occ values using each

of the simulations in place of the observed record. If the PP value (using the observed

record) exceeds 1− α of the simulated values, then we can reject the null hypothesis that

our SSWM adequately reproduces the variability of the observed record (and therefore we

can confidently say that PP > 0). If the PP value does not exceed 1− α of the simulated

values, then we can not reject the null hypothesis (equivalently our SSWM statistically

reproduces the full variability of the observed record).

Seasonal maps of PP89,tot, PP89,int, and PP89,occ are shown in Figures 3.5–3.8 (a–c,

respectively). Markers show station locations, colored by their PP values. Stations shown

as circles are significantly different from PP = 0 at the α = 0.1 level, and stations shown

as triangles are not significantly different from PP = 0 at the α = 0.1 level. Higher PP

values are (perhaps not surprisingly) more likely to be statistically significantly different

from zero, and thus represent conditions that cannot be represented by SSWMs with 0–5

days of memory. Lower PP values are typically not significantly different from zero, and

thus the observed precipitation statistics at these locations can easily be recreated by our

weather models.

Gridded values shown in the background of Figures 3.5–3.8 are determined using a

spatial analysis of the station-based PP values. As is evident in both the station val-
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Figure 3.5: Potential Predictability of precipitation for a seasonal (89-day) window centered
on January 15, shown as the fraction of seasonal precipitation variance attributable to low-
frequency (climate) processes. a) Potential Predictability of total precipitation (PP89,tot,
unitless). b) Potential Predictability of intensity processes (PP89,int, unitless). c) Potential
Predictability of occurrence processes (PP89,occ, unitless). Circles denote locations with PP
significantly different from 0, and triangles denote locations where PP is not significantly
different from 0 (α = 0.1). Gridded underlying values are modeled based on spatial coher-
ence. DJF displays the highest PP89,tot, PP89,int, and PP89,int values of all seasons when
averaged across stations. The DJF station-averaged PP values for all three metrics are
nearly equal at roughly 0.3. PP89,tot and PP89,occ have a very similar spatial pattern, with
large potential climate signals along the West Coast, Rockies, Southwest, Florida, and the
Michigan/Ohio River Valley area. Intensity signals are notably lower in the Southwest and
are slightly higher along the Piedmont/Atlantic Plains.
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Figure 3.6: Same as Fig. 3.5, but for a seasonal (89-day) window centered on April 15. All
of the PP metrics are generally lower in MAM than in DJF throughout the contiguous 48
states, with PP89,int particularly low and incoherent (station-based average of roughly 0.2).
Springtime occurrence processes show higher Potential Predictability in the Central Great
Plains and New England as compared to winter, but lower in the Northwest and Great
Lakes regions. PP89,tot and PP89,occ have a similar pattern, although on average PP89,occ

exceeds PP89,tot by 25%.
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Figure 3.7: Same as Fig. 3.5, but for a seasonal (89-day) window centered on July 15.
Summer is the Potential Predictability minimum for each of PP89,tot, PP89,int, and PP89,int,
with station-averaged total and occurrence values in a similar range of roughly 0.15 and
intensity PP at half that. The most predictable areas are the Rockies and Central Great
Plains for total precipitation and occurrence, and the North American Monsoon region of
Arizona/New Mexico for intensity.
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Figure 3.8: Same as Fig. 3.5, but for a seasonal (89-day) window centered on October
15. Autumn PP is highest in the Northwest and the “Cornbelt” region, although inten-
sity processes do not seem to demonstrate much coherent potential predictability. The
Cornbelt area demonstrates the “destructive interference” of convolving intensity and oc-
currence signals — PP89,tot is lower than PP89,occ because high-frequency noise in the
intensity processes mask climate signals in the occurrence processes when combined as
total precipitation.
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ues (symbols) and the interpolated background, there is a large degree of geographical

coherence in the estimated PP values. This coherence is not a simple result of overall

precipitation climatology (Pearson correlation between all 365 × 774 PP89,tot values and

daily mean precipitation is −0.03), and so any spatial coherence that emerges from the

analysis lends further confidence to our estimates. Gridded estimates are determined using

a generalized cross validation (GCV) scheme for fitting thin plate splines (ANUSPLIN –

Wahba, 1979; Hutchinson, 1998). 90% confidence intervals from the GCV analysis around

the gridded values are fairly spatially homogeneous, suggesting a spatial uncertainty in

our PP estimates of roughly ±0.05 (maps of 90% confidence intervals are shown in the

Supplementary Materials).

Looking at PP89,tot (Figs. 3.5a–3.8a), winter displays the most potential predictability,

including broadly across the West, West Texas, Florida, and in the Western Appalachian/

Great Lakes regions. The West and Florida are strongly associated with ENSO precipi-

tation (Ropelewski and Halpert, 1986), and the area south of the Great Lakes may have

connections to variability in lake effect snow, as driven by variability in winter storm tracks

(Niziol et al., 1995). The Pacific Northwest shows high PP89,tot in the fall, also likely con-

nected to ENSO patterns (Ropelewski and Halpert, 1986). Also significantly, the Gulf

and southern Atlantic Coast, which displayed some of the highest observed precipitation

variability during the JJA/SON Atlantic hurricane season, shows little PP89,tot at these

times, suggesting that the low-frequency total precipitation signal in this area is small

compared with the weather noise, a discouraging sign for seasonal forecasting of tropical

storm-induced precipitation locally.

PP89,int is shown in Figures 3.5b–3.8b. Like PP89,tot, PP89,int has a station-averaged

maximum in the winter, with a similar PP “hot spot” in the Western Appalachia/Great

Lakes region and high values throughout much of the broader West, but without the low

values across the Southwest. PP due to intensity is low and spotty in the summer and fall

(with the highest summertime values in the Southwest monsoon region), and is much more

spatially correlated with the intensity climate signal (σ2
obs,int- σ

2
sim,int, Pearson correlation
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r = 0.573) than it is anti-correlated with the weather noise (σ2
sim,int, r = −0.064). The

relatively low values of PP89,int (DJF: 0.257, MAM: 0.181, JJA: 0.123, SON: 0.156, when

averaged across all stations) indicate that our SSWMs capture intensity variability well,

suggesting that the low-frequency processes that drive the intensity of precipitation variance

on seasonal scales are typically small relative to the high-frequency noise.

PP89,occ is shown in Figures 3.5c–3.8c. PP89,occ values (DJF: 0.237, MAM: 0.243, JJA:

0.203, SON: 0.237) are generally higher than PP89,tot values; and, like PP89,int, PP89,occ

is much more highly correlated to its climate signal (σ2
obs,occ- σ

2
sim,occ, r = 0.551) than

anti-correlated with its weather noise (σ2
sim,occ, r = 0.023). PP89,occ is also much more

spatially correlated with PP89,tot than is PP89,int (PP89,occ ∝ PP89,tot, r = 0.821; PP89,int ∝

PP89,tot, r = 0.448). The highest values of PP89,occ (greater than 0.7) occur in the West,

through Texas, and in the Ohio River Valley region in winter (Fig. 3.5c) ; in California,

the Southwest, and the Cornbelt in the spring (Fig. 3.6c); in the Rockies and Cornbelt in

summer (Fig. 3.7c); and in the Pacific Northwest and along a swath between Milwaukee

and Kansas City in the fall (Fig. 3.8c). From September through May (Figs. 3.5, 3.6, 3.8),

the patterns are similar to slight amplifications of the total PP, but the summer shows

PP89,occ hot spots in the Central Plains and the Rockies that are much higher than in the

PP89,tot map (Fig. 3.7a,c).

This highlights an important point, namely that PP89,tot 6= PP89,occ + PP89,int, and in

fact the separated occurrence and intensity PP values are often higher than the total PP

signal. We can think of this as a destructive interference of sorts, where the weather noise

in the intensity process masks an otherwise persistent occurrence signal (or vice versa)

when the two are examined together as PP89,tot. The summer Central Plains PP89,occ hot

spot is a good example of this; most of the variability in the region is tied to occurrence

processes (Figure 3.2c), but roughly half of the weather noise is due to intensity processes

(Figure 3.4c), and so the climate signal stands out against the weather noise for occurrence

(high values in Figure 3.7c) much more so than for intensity (low values in Figure 3.7b).

When combined, however, the low signal-to-noise ratio from intensity weakens the overall
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signal-to-noise ratio for total precipitation, and so PP89,tot (Figure 3.7a) is lower than

PP89,occ. This area is also noteworthy as the site of high modeled potential predictability

due to land-atmosphere coupling (Koster et al., 2004). We might imagine, then, that

this strong signal from occurrence is due to a precipitation recycling amplification in the

number of rainy days in years with sufficient moisture in the area (as has been previously

found by Findell et al., 2011). The difference between years in which sufficient moisture

is present to trigger recycling (and thereby extra rainy days) and those with insufficient

moisture for this feedback leads to interannual variability not present in our annually-

stationary models, yielding potential predictability (i.e., σ2
obs,occ > σ2

sim,occ, meaning that

PP89,occ > 0). In general, processes driving PP in these “hot spot” areas will need a more

thorough investigation to establish regional modes of predictability.

3.5 Summary and Discussion

We have used observational data directly to obtain estimates of both the “weather noise”

and non-stationary climate signal contributions to precipitation variability, and have ad-

ditionally decomposed these signals into contributions from occurrence and intensity pro-

cesses. This is significant in that precipitation occurrence displays more potential pre-

dictability than intensity, suggesting that those processes responsible for triggering oc-

currence may be particularly important when attributing variability. This finding is in

agreement with previous work in the tropics and Southern Hemisphere (Moron et al.,

2007; Robertson et al., 2009; Verbist et al., 2010), suggesting that precipitation occurrence

may generally be a more fruitful avenue for improving seasonal forecasts than intensity-

related processes. We find that occurrence also displays higher PP in most cases than

total precipitation, suggesting that modeling and forecasting efforts might be well-served

by focusing on occurrence first, rather than seasonal totals. Intensity is also occasionally

more potentially predictable than total precipitation, and the two components should be

investigated separately to avoid the loss of information that comes with convolving the two
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signals. Some care will be necessary in approaching occurrence using either global climate

models (GCMs) or gridded datasets, as the spatially-amalgamated discrete data will al-

most definitely yield different results at finite spatial scales rather than point-measurements

(Hughes et al., 1999).

Generally, the potential predictability results shown in Figures 3.5–3.8 should help

guide those attempting to attribute precipitation variability to processes. PP “hot spot”

regions with high potential climate signals should guide researchers to both investigate

processes and to work towards improved local forecasts if possible. Equally importantly,

PP “cold spots” highlight regions in which climate signals may be difficult to disentangle

from chaotic, high-frequency weather noise. Where PP values are low — and particularly

where PP is not significantly different from zero — our SSWMs represent the interannual

variability of 89-day precipitation totals well, despite having only at most five days of

persistence and no representation of interannual processes. In some cases, the relative role

of weather noise may not matter so much as the absolute magnitude of the potential climate

signal, σ2
obs − σ2

sim. Maps of this absolute potential signal strength for total precipitation,

occurrence, and intensity are available as Figures C.2–C.5.

In the introduction, we suggested applying PP to 1) estimate the limits of our ability to

confidently forecast longer-term climate behaviors in analyses of precipitation time series,

2) determine where and when our present forecasts are limited by an understanding of the

system versus an absence of useful climate signals, and 3) test whether or not our current

forecast models display signals and noise in the same manner as the real climate system.

This study provides information on the first of these applications. Precipitation variability

at locations with low PP is difficult to distinguish from the noise of a simple stationary

weather model with only a few days of persistence, and so climate signals in those regions

cannot be distinguished from what we think of as weather noise. Locations with higher PP

values show significant divergences from stationary processes, and so may be predictable;

but the ability to predict precipitation from climate indices in these locations is limited

both by our knowledge of the proper climate indices, and the coherence of their relationship
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with precipitation. Determining the degree to which each of these limits our ability to

make optimal forecasts of precipitation (i.e., the second proposed application for PP) is a

substantial area of research, one which weather and climate forecast centers address each

day. The third suggested application of PP information is to see whether global climate

models follow patterns of potential predictability similar to the observational data upon

which they are based (see previous work by Moron et al., 2006). These latter applications

are important areas of future research.

Additional open questions remain regarding the drivers of potential predictability,

specifically, how much of PP is attributable to climate oscillations versus trends in the

historic precipitation record? Also, the prediction of extremes is important both for plan-

ning and because increases in extreme precipitation events are one of the most consistent

findings from past decades. Assessment of PP values for extreme events can be performed

using our dataset and methods, but will require different metrics than those applied in this

study.



Chapter 4

A kernel-auto-regressive weather generator for

improved subseasonal-to-seasonal precipitation

statistics

4.1 Abstract

The kernel auto-regressive (KA) method can be used to represent the daily to multi-day

auto-correlation structure of daily precipitation time series, using information both in the

occurrence and intensity of measured rainfall events. The method is able to capture a

larger fraction of the memory in multiple time series than commonly-used occurrence-based

Markov chain models, even when the intensity distribution is allowed to be conditioned on

the Markov state. The kernel auto-regressive method is less sensitive to the spatial scale

at which the data is reported, as it is not strictly reliant on patterns of wet and dry days

for providing correlation. Output from the KA model can be used as weather generator

model simulations, as empirical representations of process structure, or as climatological

null models against which observations can be compared for statistical significance. The

KA method demonstrates improvements in each of these over occurrence Markov chain

models and daily independent climatology.

4.2 Introduction

There is no shortage of existing weather generator models (WGs), for any number of

weather variables, and for any number of specialty purposes (Wilks and Wilby, 1999;
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Ailliot et al., 2015). Weather generators are used by researchers, practitioners, businesses,

and agencies for purposes ranging from estimating natural resource availability, forecasting

hazard risk, understanding fundamental meteorologic processes, and driving other complex

natural systems models. The basic motivations that these models share in common is

the desire to represent some probabilistic structure of weather variables and a need for

simulations of weather that meet some basic statistical criteria.

Among the classes of WGs are those that represent single versus multiple variables

(e.g., precipitation, temperature, radiation, etc.), those that represent some level of phys-

ical process detail versus purely statistical methods, and those that assume some level

of climate process stationarity versus those that represent process variability at climate

time-scales. The difference in model form is dependent on the use the WG will play:

the classic “Richardson-type” WG for precipitation represents daily rainfall, typically fit

as twelve distinct parameterizations to represent the seasonal cycle, with a single-lagged

Markov-chain representation of occurrence and a parameterized univariate distribution for

intensity (classically exponential, but more typically gamma) (Richardson, 1981; Wilks

and Wilby, 1999). This is useful for representing the scale of seasonal variability and for

driving other physical models that may not require any sort of long-term change analysis.

A model focused on sub-seasonal-scale extreme events will likely carefully fit more complex

distributions to the tails of the distribution and require attention to daily-to-monthly-scale

auto-correlation of these extremes (Koutsoyiannis, 2004; Min et al., 2011), while a WG

used in downscaling output from a global climate model (GCM) may focus mainly on a

spatial covariance structure, conditioned on the state of multiple climate indices or a given

mean value (Wood et al., 2004).

In this study, we propose a method for the stochastic simulation of precipitation to fit

a specific set of criteria. First, we are interested in a WG for use as a climatological null

model — that is, an entirely probabilistic data model that represents processes on weather

time-scales as well as possible, using only lagged local precipitation as a predictor, while

explicitly not representing variability due to processes on climate time-scales.
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Following on the work in Gianotti et al. (2013) and Short Gianotti et al. (2014), this

method will provide a means of investigating potential predictability (PP), but allowing for

a stronger representation of the interdependence of occurrence and intensity processes in

precipitation. Secondly, we are interested in a model that can explicitly be used at multiple

spatial scales. Due to the dependence of occurrence probability on the spatial scale of ob-

servations, the methods used in Gianotti et al. (2013) and Short Gianotti et al. (2014) are

best suited for scales at which occurrence probability is far from either zero or unity and are

not applicable for inter-comparison between different spatial scales. The method proposed

in this chapter will provide the foundation through which climate and weather variabil-

ity can be compared among global climate models and gridded observational datasets in

Chapter 5.

4.2.1 Climatological null models

Forecast skill is often measured relative to climatology (e.g., Heidke and Brier Skill Scores),

and that climatology is typically enumerated as the probability distribution of a single vari-

able for a given time period, marginalized over all states of the Earth system (including

climate states, atmospheric states, secular trends, representations of spatial teleconnec-

tions, land surface conditions, etc.). For this model, we wish to explicitly acknowledge

the daily-scale temporal correlation structure inherent in precipitation data by modeling

it rather than marginalizing over it. This representation of a climatology with serial cor-

relation serves two major purposes.

First, by representing precipitation as a data generating process which can include

auto-correlation we create a more stringent baseline for quantifying weather forecast skills

than daily-independent climatologies. When we test to see if a variable serves as a skillful

predictor for precipitation, we compare the forecasts to climatology because we want to

determine if that variable contains any useful information not already hidden in the precip-

itation data itself. If lagged precipitation values are more skillful than another predictor,

those lagged precipitation values should be used in place of (or in conjunction with) that
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predictor. Thus, our weather generator model is a stronger reference climatology (null

model) for skill score calculations and assessment of predictor utility.

Second, by representing the auto-correlation of daily-scale precipitation, we explicitly

start separating stochasticity from processes on weather time-scales and climate time-

scales. Climate and weather are often difficult to extricate from one another, partially

due to conflicting definitions. Climate is sometimes defined as “average,” “expected,” or

“marginal” weather; sometimes as boundary conditions acting upon the atmosphere; and

sometimes as low-frequency processes (as compared to high-frequency weather). Weather,

similarly, can refer to the atmospheric state, that atmospheric state with some low-fre-

quency climate signal removed (i.e., as anomalies from a slowly varying climate signal), or

broadly anything with persistence shorter than the atmosphere’s chaotic time-scale on the

order of weeks. By explicitly representing auto-correlation in precipitation data, we charac-

terize atmospheric persistence as partially deterministic, in the same sense that modelers

represent the climate state as partially deterministic by calculating the annual seasonal

cycle explicitly in weather generator models. Thus, our model is not only a more strict

climatology for weather forecasts, but also a null model for climate variability in that it

represents some climate-scale variability via weather time-scale processes.

4.3 Methods

4.3.1 Overview and Data

To capture the correlation structure of daily precipitation without decoupling occurrence

and intensity processes, we combine an inverse-CDF transformation of each day’s data

with a generalized non-parametric auto-correlation model using Gaussian kernels. The

transformation is known as a “rank-based inverse normal” transformation (Akritas, 1990;

Cai et al., 2016), and it serves to allow us to work in an unbounded domain, reducing some

of the common complications inherent in both bounded and zero-inflated data. It also

allows us to provide correlation structure between wet and dry days in the same manner
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that we represent the correlation structure between serial wet days. The kernel model

is used to represent the joint probability density of m-day series of precipitation values

without relying on the assumption that the covariance structure is multivariate normal

(as in the typical AR time-series paradigm), or even that it follows any specific family of

parametric distributions. By using Gaussian kernels, the kernel model is a specific instance

of the broad class of Gaussian process models, common in machine learning applications due

to their flexibility and somewhat analytically tractable nature (Rasmussen and Williams,

2004).

We use precipitation data from three sources: station data from the Global Historical

Climatology Network (Menne et al., 2012), 1/4 degree gridded data from the Climate

Prediction Center’s (CPC) Unified Gauge-based Analysis of Daily Precipitation over the

Continental United States (Chen and Xie, 2008), and a 1 degree gridding of the same

CPC data (U.S. Climate Prediction Center, 2015). In each case the data is from the years

1948–2004, inclusive.

4.3.2 Fitting

The model fitting procedure is shown in Figure 4.1. To preserve the seasonal patterns

of precipitation occurrence, intensity, interannual variability, and short-term correlation

structure, we fit a model to each day of the year for a given location. For any given day’s

model, we use data drawn from a width-p window around that day (the “pooling window”

— p = 31 days in the subsequent analysis) to improve our estimates of the serial correla-

tion (see Figure 4.1a). For each of the days in the pooling window, using all N years of

observations, we use that day’s observation and the m − 1 previous observations to form

a length m vector of serial precipitation. Each of these vectors represents a single point in

an m-dimensional space, to which we will fit a joint probability density function (PDF).

The marginal distributions are simply empirical histograms of daily observed precipitation,

and the conditional distribution of the mth dimension given the other m − 1 is the prob-

ability density for a single day given that you have just observed a specific m− 1 days of
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Figure 4.1: A schematic showing the steps for fitting the kernel-auto-regressive weather
generator and simulating precipitation data. a) N years of daily data form the basis for
365 daily models. For each day (e.g, the column in red), a pooling window is used to
optimize covariance estimation. b) All m-day serial vectors of observed precipitation from
the pooling window are used to form an m-dimensional (2D shown) empirical distribution of
precipitation. (c) Each column (day) is rank-transformed so that all marginal distributions
of the joint distribution (d) are exactly Gaussian. (e) A bandwidth, h, is selected using
cross-validation to create a kernel density (f) from the observations. (g) Selecting models
with zero lags (1D) to five lags (6D) using cross-validation for each day yields 365 selected
model dimensions and 365 optimal bandwidths (h), which together comprise the model for
the location. (i) Simulating one day at a time using the corresponding kernel model and
conditioning on the previous m− 1 days produces ensembles (j) of stochastic precipitation
data in the CDF-transformed domain, which are then back-transformed (k) for analysis.
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precipitation.

The most common means of quantifying the correlation structure of serial data is the

auto-regressive (AR) model, the simplest member of the ARCH/ARFIMA/ARMAX fam-

ilies. The AR(1) model fits a bivariate normal distribution to 2-dimensional vectors of

observations, usually either maximizing the likelihood of the joint distribution or the like-

lihood of the conditional distribution. Since daily precipitation clearly does not fit the

assumptions of normality, a typical AR-type model is inappropriate. The multivariate

normal (MVN) distribution of the typical AR model can of course be replaced with other

multivariate parametric models, or can be represented more empirically using a multivariate

binned histogram (or probability mass function) to capture exotic distributions (examples

given in Wilks and Wilby, 1999). However, for zero-inflated data (such as precipitation

from weather stations), the size of the bin has a strong impact on the correlation structure

of the model. Smaller bins will assign more likelihood weight to occurrence processes, and

larger bins will assign relatively larger weight to intensity, and any finite bin width is effec-

tively an arbitrary trade-off in the role of occurrence in the model. Even more problematic

than selecting a bin size, is that for any bin size the climatological occurrence frequency

has a very large impact on the joint distribution (and thus model parameter likelihoods),

making comparisons of parameters or simulations between different locations or the same

location at different spatial scales (any gridded scale or point measurements) impossible.

The same issue arises for other parametric distributions (such as a multivariate gamma):

datasets with more dry days will lead to huge inflation of likelihood weight towards those

identically-valued dry days, essentially forcing a continuous model to emulate a Bernoulli

model as best as possible to maximize the zero-inflated likelihood.

To circumvent this inherent dependency of the simplest probability models on occur-

rence frequency, we transform our data into an unbounded domain and “un-inflate” our

zero-inflated data. For our (N · p) by m matrix of observations for a given day (see

Figure 4.1a–b, in which m = 2, or a 1-lag model), we transform each of the m columns

through a rank-based univariate inverse normal CDF, assigning the smallest observed value
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Φ−1(1/(Np+ 1)) and the largest observed value Φ−1(1− 1/(Np+ 1)) so that each column

of the transformed matrix is exactly normally-distributed (Figure 4.1c). Duplicate values

(notably zeros) are assigned random relative ranks (and so are asymptotically uncorrelated

with each other), and are handled as special cases when calculating likelihoods.

In the CDF-transformed domain (Figure 4.1d), each dimension of the data is marginally

normal, but the joint distribution is not necessarily MVN. To allow for as flexible a repre-

sentation of the covariance structure as possible, we represent the joint distribution between

the m days of serial observations using a kernel density. Since all dimensions of our data

are scaled identically, we use a simple spherical Gaussian kernel, which has one scalar

parameter — the bandwidth, h. We select the optimal kernel bandwidth for that day of

year and for each number of lags (1 ≤ m ≤ 6 in this analysis) using cross-validation (Fig-

ure 4.1e). We perform a nested grid search of possible bandwidths and use a leave-out 20%

repeated-random-subsampling cross-validation scheme. The likelihood to be optimized is

that of the validation data using the full joint PDF of the training data kernel model. By

selecting a bandwidth, we have selected a probability model for our data (Figure 4.1f).

Once we select an optimal bandwidth for each potential number of lags, we then pick the

optimal number of lags using a second cross-validation step (Figure 4.1g). The entropy of

the joint distribution scales with the dimension m, and so the comparison between models

of differing dimension is scaled by the dimension of the model. Alternatively, one could

compare the univariate conditional likelihood of the last day’s precipitation given m − 1

previous days for a more prediction-focused approach to model selection. The model with

the highest mean likelihood across all repeated subsampling cross-validations is selected,

and the dimension of that model becomes the dimensionality of the kernel model for that

day of year. The dimension and bandwidth are the two critical parameters for each daily

model, and the full model for a dataset at any location is specified by 365 dimension values

and 365 corresponding bandwidth values (Figure 4.1h).

When determining bandwidth, likelihoods are calculated as typical for a Gaussian kernel

model. Given N d-dimensional kernel means in the N × d matrix T, a bandwidth h, and
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a d-dimensional vector x at which to calculate the density or likelihood,

f(x) =
1

N

N∑
i=1

1√
h(2π)d

exp

[
− 1

2h
(Ti − x)(Ti − x)′

]
(4.1)

where the summation is over all N kernel means, or equivalently all N rows of T. The

log-likelihood for a set of M observations is then

LL =
M∑
i=1

ln f(xi) (4.2)

In contrast, when calculating likelihoods used to determine the appropriate number of

lags, since all dry day zero-values are equivalent, we force the distance Ti − x) to be zero

in any dimension where both Ti and x correspond to dry days.

Figure 4.2 shows the 1-lag (2-dimensional) joint distribution for precipitation at Fairhope,

AL at three different spatial scales for day of year 180 (June 29). In Figure 4.2a (station

data), the majority of observations are dry days (left and/or below the threshold lines),

which are uncorrelated with each other, but still provide the appropriate covariance between

occurrence processes and intensity processes. At the 1/4◦-scale (Figure 4.2b), occurrence

frequency is higher than 50%, and the positive correlation structure of wet-day/wet-day

pairs is more evident. Additionally, since vertical cross-sections give the conditional distri-

bution of pt given pt−1, we can see that the heaviest wet events (the upper-most points in

Figure 4.2b) tend to occur after other heavy wet days. At the 1◦-scale (Figure 4.2c), dry

days are rare and two day dry spells are non-existent in the observational data (and highly

unlikely in the kernel model, though not impossible). The relatively symmetric PDF shows

that the light-then-heavy pattern is essentially as probable as the heavy-then-light pattern,

and that dry days are likely to be followed by light precipitation days.



57

-2 0 2

p t

-2

0

2

(a)

pt!1

-2 0 2

-2

0

2

(b)

-2 0 2

-2

0

2

(c)

Figure 4.2: Joint probability densities for daily precipitation, pt, and the previous day’s
precipitation, pt−1, for day of year 180 (June 29) at Fairhope, AL using a 31-day pooling
window. The spatial scale of the data increases from left to right: (a) shows the joint density
for a single GHCN station, (b) for the co-located CPC Unified 1/4◦ gridded data, and (c)
for the 1◦ CPC Unified data. Individual two-day observations are represented as “x-es”
in Gaussian z-score units, contours show equal density levels, and vertical/horizontal lines
show the cut-off threshold for precipitation occurrence: points above and right of the lines
are wet days, below and left are dry days, and the dry-dry two-day pairs have no covariance
structure. The marginal distributions are, by design, identically N (µ = 0, σ = 1). As
the occurrence probability increases (from left-to-right), the “wet quadrant” covariance
structure becomes the more dominant feature of the joint density as a whole.

4.3.3 Simulation

Simulation of precipitation is performed in the CDF-transformed domain, where the cor-

relation structure is more simply represented, then transformed back through an inverse

CDF transformation to the domain of the actual observations. The key step in the sim-

ulation process is conditioning the model for the given day of the year on the simulated

values for the previous m− 1 days so that the daily correlation structure is maintained.

The dimensionality of the model changes from day to day, but the maximum number

of days used in conditioning is one less than the maximum dimensionality of the model

over all days of the year. To keep track of this, a vector of length max(m)− 1 is used as a

buffer to store the relevant conditioning data. Since we initially have no data to condition

with, the buffer is set to a random draw of climatological values for the appropriate days

of the year, and then a one-year burn-in period is used (and later discarded) to represent

proper correlation statistics.
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For each day of the year, the marginal probability of producing the m− 1 values in the

buffer (marginalizing over the single dimension representing precipitation on the current

day) is determined for all of the data-point/kernels in in the joint PDF. If the model

is one-dimensional for that day (no lags/memory), the marginal probability is uniformly

1/N, where N is the number of data points/kernels. A single data point/kernel is selected

based on the marginal probabilities, and the conditional probability is determined for the

previous m− 1 days’ rain. Since the kernels are Gaussian and spherically symmetric, the

conditional PDF is a univariate normal distribution, the conditional mean is simply the mth

(last/current) value of the data point used as the multivariate mean, xij , and the (scalar)

conditional variance is just the bandwidth, hi, squared. Thus, the simulated precipitation

(in the CDF-transformed domain) is just a random draw from N (µ = xij , σ
2 = h2), where i

corresponds to day of the year, and j corresponds to the jth (last) entry in anm-dimensional

vector, x, representing the selected observed m-day precipitation data point/kernel.

Following simulation, the data are transformed back to the observational domain by

interpolation using the original data and its CDF-transformed values. Before transforma-

tion, the simulated data are re-standardized to ensure proper variance representation (see

Appendix D for further details). Any values below the no-rain cut-off in the original data

are converted to zeros, and any values larger than the largest value in the observational

data set need to be extrapolated. We use the tail of a gamma distribution to fit the ex-

trapolated values. The gamma distribution is fit to the wet days for that day of year, we

align the z-score of the largest observed value in the CDF-transformed observational data

with the corresponding quantile of the gamma distribution; the extrapolated values are

mapped to the appropriate part of the upper tail by normal-to-gamma quantile matching.

Simulations can be run for as many years as necessary to calculate asymptotic statistics,

or can be run in independent ensemble modes (likely in multiples of the observational record

length) for statistical assessment of climatological phenomena.
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4.4 Results

The kernel-auto-regressive model (KA) was fit to data at three locations: Fairhope, Al-

abama; Blue Hill Massachusetts; and Forks, Washington. In each location, separate annual

models (each comprised of 365 daily models) were fit for each of the three data sources

(GHCN, CPC-1/4◦, and CPC-1◦). In addition, a chain-based model — referred to as the

“Occurrence Markov Chain” or OMC model (Short Gianotti, 2016), also comprised of 365

daily submodels — and a no-memory, “zero-lag” (ZL) occurrence/intensity model were

fit to the same datasets for model comparison. The OMC model uses a variable order

Markov chain to represent the auto-correlation in the occurrence process and a flexible

five-parameter gamma-gamma mixture model to represent intensity, also with a 31-day

pooling window for parameter estimation. The chain order (number of lags) is determined

for each day of the year using the corrected Akaike Information Criterion (Hurvich and

Tsai, 1989), and the parameters for the intensity model are selected for each day of the year

by maximum likelihood estimation (see Short Gianotti et al., 2014, for further details).

The zero-lag model uses the same distribution family for intensity as the OMC model, but

daily occurrence does not depend on the previous days’ precipitation and simply follows

the climatological probability of occurrence for that day of year (within the 31-day pooling

window).

Each of the three models was used to simulate 1000 57-year ensembles of stochastic

precipitation at each of the three spatial scales at each location. By design, all of the mod-

els asymptotically reproduce the probability of occurrence, mean intensity, and variance

of intensity for every day of the year. Each of the models create interannual variabil-

ity stochastically, but none of them represent climate variability processes, and thus are

likely to be “under-dispersed” in their representation of accumulated totals relative to the

observations (Katz and Parlange, 1998). Additionally, the kernel-auto-regressive model

and the OMC model each represent serial correlation (although the OMC only represents

correlation in occurrence), and so precipitation totals accumulated over multi-day-to-multi-
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year periods will likely be more under-dispersed for the zero-lag model than for the KA

or OMC models. The mean accumulated totals match the observations asymptotically for

each model. The KA model is able to represent any processes captured in the OMC model,

but with more flexibility, and the ZL model is explicitly a restricted version of the OMC

model with no memory, so we would expect the KA model to be most able to represent

complex variability structure, followed by the OMC model, and then the ZL model.

Figure 4.3 shows empirical distributions of December–February seasonal precipitation

for the observed data and simulations from the three models for each of the nine datasets

(three locations times three spatial scales). At the station level (top row), all models sim-

ilarly miss some of characteristics of the observations, presumably because none of them

represent interannual variability other than through zero-to-six day correlation structure.

Any variability caused by slower processes (such as climate modes) will not be well rep-

resented. Notably, for Forks, WA (the wettest location), the OMC model outperforms

the zero-lag model, and the kernel-auto-regression model outperforms both of the simpler

models. At the 1/4-degree scale (CPC-1/4◦, second row), the same pattern holds, but

with more notable performance improvements for the kernel-auto-regressive model. This

is not surprising, as the increased frequency of occurrence makes the proper modeling of

the intensity auto-correlation more important for characterizing the patterns of synoptic

scale precipitation events. At the largest spatial scale (CPC-1◦, third row), the KA model’s

performance is enhanced further, while the OMC model is effectively no better than the

zero-lag model.

To investigate the role of the temporal accumulation scale as well as the spatial scale, we

can compare the interannual variance of accumulated totals over a range of accumulation

period lengths (effectively comparing the variance of the PDFs in Figure 4.3 for different

sub-seasonal to annual windows). Figure 4.4 shows the interannual variance for each model/

location/spatial-scale as a function of accumulation period, scaled by the period length,

and averaged over the annual cycle. In each of the nine plots, the zero-lag model (a basic

climatological null) shows essentially no response to accumulation period; this is because
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Figure 4.3: Probability density functions (PDFs) of December–February precipitation to-
tals at Farihope, Alabama; Blue Hill, Massachusetts; and Forks, Washington: observations
and three models: a zero-lag model with no daily-scale correlation byond climatology (ZL),
a Markov chain based model which represents memory in occurrence processes (OMC),
and the kernel auto-regressive model which represents memory in occurrence and inten-
sity (KA). Blue lines correspond to observations (OBS) from each of the three data sets
(GHCN, CPC gridded at 1/4◦, and CPC gridded at 1◦). All three models underestimate
the variability of accumulated precipitation although they each are fit to optimally repre-
sent precipitation at the daily scale. At the wettest location (Forks, WA) and at larger
spatial scales (lower two rows) the KA model’s ability to represent the serial correlation in
both intensity and occurrence enhances its ability to represent the 57-year distribution of
winter precipitation totals.
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with no serial correlation, the observations are independent, and so the variance of the

sum of the precipitation is equal to the sum of the (averaged) daily variances, which

is constant. These lines lie at the same value as the annual average of the 365 daily

variances from the observations. In the upper two rows (GHCN and CPC-1/4◦), the OMC

model represents more interannual variability than the ZL model for periods longer than

a single day, but at the 1◦-scale (third row), the daily occurrence probability is effectively

1, and so there is no useful memory structure in occurrence for improving the multi-day

variability representation. The KA model consistently outperforms the OMC and ZL

models, but seems to asymptote around 30 days, while the observational data continues

to increase in variability. This is not surprising, as the KA model does not represent any

explicit drivers of variability at those time scales, and we know that there are earth system

processes that would lead to variability at those scales (ranging in time scale from the

Madden Julian Oscillation to the El Nino Southern Oscillation, multidecadal oscillations,

and secular trends).

Comparing different rows, we see that there is less variability in the observations at

larger spatial accumulation scales (roughly a factor of two difference in Var(OBS) between

GHCN and CPC-1◦ at all three locations), and that the KA model represents more of the

observed variability at larger spatial scales than at smaller spatial scales (by comparing

the distance between the KA and OBS lines relative to the ZL null).

4.4.1 Potential Predictability

Weather generator models have previously been used as climatological nulls to estimate

bounds on predictability or precipitation (the OMC model specifically, see Short Gianotti

et al., 2014; Anderson et al., 2015a,b, etc.), with the potential predictability scaling with

the magnitude of the interannual variability in the model:

PP2w+1(τ) = 1−
E{Var{Στ+w

i=τ−wxi,sim}}
Var{Στ+w

i=τ−wxi,obs}
(4.3)
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Figure 4.4: Comparison of different models’ abilities to represent the variability of pre-
cipitation as a function of both spatial scale and temporal scale. As in Figure 4.3, ZL
is a zero-lag model with no daily-scale correlation byond climatology, OMC is a Markov
chain based model which represents memory in occurrence processes, and KA is the kernel
auto-regressive model which represents memory in occurrence and intensity. Blue lines
correspond to observations (OBS) from each of the three data sets (GHCN, CPC gridded
at 1/4◦, and CPC gridded at 1◦). At larger spatial scales, the OMC model’s occurrence-
based memory structure is no better than the climatological null (ZL model). The KA
model, alternatively, seems to represent more of the observed varaibility at larger spatial
scales, suggesting that either short-term “weather-scale” variability is more dominant at
larger spatial scales relative to longer-term “climate-scale” variability, or that the model
fit is more effective at larger spatial scales for a fixed-length data record. Variance values
are scaled by the accumulation period, and averaged across the annual cycle.
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where Var{·} is the interannual variance (i.e., across years of observations or simulations),

E{·} is the expectation across an ensemble of simulations, τ is the day of year, xi are

individual days of observed or simulated precipitation, and the number of sequential xi

days — 2w + 1 — to be accumulated depends on the precipitation metric under study

(typically seasonal or annual precipitation totals). Since the magnitude of the interannual

variability in both the observations and the model output changes with the spatial scale

at which precipitation is represented, the scale of the data will likely impact predictability

estimates. Specifically, judging from Figure 4.4, both the numerator and denominator

decrease at larger spatial scales, but with the denominator decreasing more rapidly, leading

to smaller PP values.

More explicitly, for each day of the year we define a seasonal potential predictability

index, PP91:

PP91(τ) = 1−
E{Var{Στ+45

i=τ−45xi,sim}}
Var{Στ+45

i=τ−45xi,obs}
(4.4)

where the 91-day precipitation totals are centered on day of year τ . This can be thought

of as the fraction of the interannual variance of 91-day precipitation which is not explained

by knowledge of the preceding few days’ rainfall and the mean daily climatology. The

periodic cycle of PP91 over the year are shown in Figure 4.5. The values for the OMC

model using the GHCN data are effectively identical to the values shown for the same

locations in Chapter 3, aside from a slightly different length of data record. The specific

seasonal patterns of PP91 are relevant to those who are attempting to estimate seasonal

precipitation (for example, the low PP in the drier summer months in Forks, WA could

create high uncertainty for forecasts of seasonal rainfall which drives forest growth rates, of

interest to the timber industry and the ecological modeling community), and these patterns

are explored in depth for the contiguous 48 United States in Chapter 3. For the sake of

this study, the most noteworthy points are 1) that PP91 values are similar but consistently

lower using the KA method than using the OMC or ZL methods at the point scale (top row

of Figure 4.5), meaning that the KA method is able to capture as much or more memory in
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short-term precipitation; 2) the seasonal patterns are similar in shape (but not magnitude)

across spatial scales (columns in Figure 4.5); and 3) the KA method is far more consistent in

magnitude across spatial scales than the OMC or ZL methods. Importantly, as the spatial

scale increases (and the frequency of precipitation occurrence increases), the OMC method

becomes identical with the memoryless ZL method, meaning that it fails to represent any

memory processes beyond daily climatological occurrence, rendering it effectively useless

for PP studies. The KA method, on the other hand, continues to represent PP at roughly

the same magnitude at all spatial scales, suggesting that it is a more appropriate technique

for PP studies at spatial scales with high probability of occurrence. The seasonal pattern

is fairly similar for Fairhope, AL and Blue Hill, MA for all spatial scales, suggesting some

degree of spatial homogeneity at the 1◦ scale. The same is not true for Forks, WA, which is

on the Olympic Peninsula, at low elevation on the windward side of the Olympic Mountains,

and likely has a very different precipitation regime than other locations in the same 1◦ CPC

grid box.

While seasonal accumulations are a common long-lead forecast target, the signal to noise

ratio of different climate processes may peak at different accumulation time scales (Ander-

son et al., 2016a), and potential predictability indices can be selected to match. At annual

time scales, we define the potential predictability as

PP365(τ) = 1−
E{Var{Στ+182

i=τ−182xi,sim}}
Var{Στ+182

i=τ−182xi,obs}
(4.5)

The PP365 for each τ is shown in Figure 4.6, where selection of τ (the central day of

the 365-day window) allows for different definitions of the “water year.” Appropriate

water year selection is particularly relevant for locations with strongly seasonal climatology,

where starting an accumulation period in the middle of the wet season could easily inflate

interannual variability (for example, if a storm comes slightly “early” or “late” in Forks,

WA using a τ = 183 Julian calendar-based year); in these climates, centering the water

year around the wet season is advised, both to reduce weather-based noise and to more
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Figure 4.5: The potential predictability (PP) of 91-day precipitation totals, as defined
as in Equation 4.4 at Fairhope, Alabama; Blue Hill, Massachusetts; and Forks, Washing-
ton. Lower PP values suggest a larger fraction of the interannual variability in 91-day
(seasonal) precipitation totals is due to short-term (“weather time-scale”) process; higher
PP values suggest more variabilty due to slower variability-generating processes and hence
more potential for prediction on climate time-scales. Red lines show PP over the course of
the annual cycle using the kernel auto-regressive (KA) model as the no-climate-variability
null, and are consistantly lower than when using the occurrence Markov chain (OMC —
green) or zero-lag (ZL — purple) models at all spatial scales.
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Figure 4.6: The potential predictability (PP) of 365-day precipitation totals, as defined in
4.5 at Fairhope, Alabama; Blue Hill, Massachusetts; and Forks, Washington. Similarly to
Figure 4.5, the kernel auto-regressive model shows lower PP at all spatial scales than the
occurrence Markov chain and zero-lag models.

accurately detect long-term changes in seasonality (e.g., Pal et al., 2013).

As in Figure 4.5, Figure 4.6 shows 1) a generally higher PP for Forks, WA than for Blue

Hill, MA or Fairhope, AL; 2) a tendency for the ZL and OMC models to converge to higher

PP at large spatial scales (demonstrating their inability to represent daily occurrence-

based memory processes when the occurrence probability approaches 1; 3) lower PP for

the KA model, suggesting better representation of memory using combined occurrence and

intensity; and 4) a fairly consistent PP magnitude and seasonal pattern at all spatial scales

using the KA method.



68

4.5 Discussion

The kernel-auto-regressive model is better able to capture the variability of accumulated

precipitation than an advanced occurrence-chain-based model (OMC). Even when the

OMC model was able to condition intensity on previous occurrence patterns to provide

additional memory structure, the added benefits were almost never justifiable from an

information criterion perspective for any day at hundreds of U.S. locations (see Short Gi-

anotti et al., 2014). And while most of the memory in station data is in the occurrence

signal (Short Gianotti et al., 2014), once we look at larger scales local occurrence infor-

mation is lost, variability is reduced, and methods that represent occurrence and intensity

separately will under-represent the daily correlation structure of precipitation.

The KA model’s improved ability to represent daily scale process memory — particu-

larly when the probability of precipitation is near unity — demonstrates that it can provide

better estimates of potential predictability when using spatially-aggregated precipitation

datasets, or when looking at regions with very high probability of daily precipitation (e.g.,

the tropics). This can prove useful for looking at potential predictability or the relative

magnitudes of weather-scale and climate-scale processes from remotely-sensed precipitation

products or the output of global climate models.

Although this research does not provide an exhaustive analysis of the relationship be-

tween potentially predictable precipitation and spatial scale, there are reasons to believe

that such a relationship might exist. Climate-scale processes can act in a manner that

might be predictable at one spatial scale, but not another. If, for example, heavy rainfall

was tied to a decadal-scale process, but the precise location of that heavy rainfall varied

from year-to-year, the process might be potentially predictable at coarse spatial scale, but

not at the scale of a single weather station, increasing potential predictability with scale.

Alternatively, depending on the spatial correlation scale of unpredictable atmospheric pro-

cesses, integrating precipitation over large spatial extents could serve to either increase or

decrease high-frequency variability, leading to lower or higher potential predictability with
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increasing spatial scale.

To fully investigate these scaling relationships, the KA model could be applied to

datasets at a wide range of spatial scales. There are presumably spatial scales at which

interannual variability of accumulated seasonal total precipitation from the KA model

reaches a maximum, at which the optimal number of lagged days changes, and at which

the potential predictability peaks. The correlation structure between lagged days of pre-

cipitation is seen to change with scale in Figure 4.2, with a stronger positive correlation

between adjoining days’ precipitation at coarser spatial scale. It remains to be seen if this

relationship is more broadly true, and what determines the exact relationship between cor-

relations structure and spatial extent across a wide range of scales. If such a relationship

could be quantified, the KA model could prove to be a useful tool for down-scaling or

up-scaling of earth-system data.

Beyond its uses in establishing variances and potential predictability estimates for pre-

cipitation at varying scales, or as a stochastic weather generator model, the kernel auto-re-

gressive model can be used to represent conditional probabilities and empirical probability

distributions for any regularly-sampled variable — particularly those with some degree

of auto-correlation or non-stationarity that may be poorly represented by a multivari-

ate Gaussian correlation structure. Examples include weather generators for meteorologic

variables (temperature, wind speed, pressure levels, etc.); conditional distributions of one

earth system variable on another and/or their lags (evaporation given wind speed, con-

vective available potential energy given net surface radiation, etc.); and representations of

auto-correlation in non-linear biological and ecological processes (vegetation transpiration

rates, population dynamics, cellular metabolic processes, etc.). The kernel auto-regres-

sive method also provides a means of representing complex auto-correlation in advanced

modeling situations, e.g., empirical distributions for use in mixed process/data models in

machine learning (the KA method with Gaussian kernels is a class of Gaussian Process

Models); as a means of assessing the degree of (non-)stationarity in time series analysis;

and as a means of reducing assumptions inherent in common auto-regressive models (for
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example, providing a means of properly dealing with all members of “Anscombe’s Quartet”

and similarly devious statistical relationships).



Chapter 5

Weather noise correctly dominates climate signals

in global climate model precipitation

5.1 Abstract

In the physical climate system, interannual variability in local precipitation is driven by

transient atmospheric processes with meteorologic time-scales on the order of days to weeks

as well as more slowly-changing boundary conditions on time-scales typically considered

climatic rather than meteorologic (annual, decadal, etc.). The magnitude of interannual

variability driven by daily-to-weekly scale processes is found to dominate that from lower-

frequency processes in precipitation data over the contiguous 48 states from 1948–2004 in

both observational data and the output from five global climate models (GCMs) in histori-

cal runs over the same period. The GCMs appropriately represent the general magnitudes

of the two components over the region, and accurately represent the spatial patterns of the

meteorologic-scale variability.

5.2 Introduction

Among the Frequently Asked Questions in the most recent IPCC report is, “If you cannot

predict the weather next month, how can you predict climate for the coming decade?” (Kirt-

man et al., 2013). While the response properly highlights the difference between climate

state and atmospheric state, boundary condition and butterfly effect, a reasonable follow-

up question might be, “Can you predict the weather well enough to be confident in your
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climate predictions?”

As part of the Coupled Model Intercomparison Project (most recently phase 5 —

CMIP5), modeling teams ran a global climate model (GCM) experiment over the his-

torical period from 1850–2005, tracking the observed atmospheric composition and land-

cover changes for the purpose of intercomparison and validation with observational data

sets (Taylor et al., 2012). The models were broadly found to represent the proper spatial

patterns of mean temperature and precipitation (Sheffield et al., 2013a), with more mixed

results for drivers of interannual, decadal, and secular variability (Sheffield et al., 2013b).

Previous studies have established the relative magnitudes of variability in precipitation due

to secular changes versus internal variability (Hawkins and Sutton, 2011), as well as the

variability driven by individual annual-to-multidecadal processes (Sheffield et al., 2013b),

but there has been less investigation into separating variability into what we might term

“weather” scale versus “climate” scale processes.

Additionally, despite frequent success in representing climatological process, precipita-

tion typically has lower forecast/hindcast skill than surface temperature. This has been

attributed to precipitation’s low signal-to-noise ratio, often taken as given due to our diffi-

culty in modeling (although signal to noise ratios have been established for anthropogenic

signals versus all internal variability (Hawkins and Sutton, 2011)). This suggests that ei-

ther precipitation is inherently difficult to predict on climate time scales, or that GCMs

may be recreating climatology correctly, but perhaps for the wrong reasons. To probe

this question, this study asks whether the interannual variability in GCM precipitation is

driven by an appropriate mix of weather-scale versus climate-scale processes, and on the

path to this answer determines what this “appropriate” mix is from observational data.

In particular, for the sake of predictions and forecasts, we would like to know that

GCMs are representing low-frequency “climate-scale” variability (here defined as annual

and longer) properly. It is well-known that some of this variability is effectively stochas-

tic — that is driven by high-frequency “weather-scale” processes (transient atmospheric

conditions) — and that some is driven by more persistent low-frequency boundary condi-
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tions such as sea-surface temperatures, greenhouse gas concentrations, and decadal-scale

climate modes (Mann and Lees, 1996; Feldstein, 2000; Short Gianotti et al., 2014). This is

important for GCM forecast use, as improper calibration of weather and climate in climate

models can lead to false attribution of extreme events (Bellprat and Doblas-Reyes, 2016),

and extremes are the primary drivers of global changes in precipitation (Trenberth, 2011).

Using a method developed for estimating the stochastic component of coarse-scaled

precipitation data, the interannual variability of accumulated precipitation totals (over

seasons or years) can be separated into a stochastic weather-scale component and a cli-

mate-scale component that can not be explained by daily- or seasonal-scale processes (see

Chapter 4). This allows us determine the interannual variability of precipitation in GCM-

modeled datasets due to climate-scale processes and that due to weather-scale processes.

These climate signal and noise components are then compared to observational data for

validation.

5.3 Data

Our goals in this study are 1) to determine the degree to which interannual precipitation

variability is driven by weather-scale versus climate-scale processes, and 2) to determine

whether GCMs display the same balance between these time scales as observational data.

Our observational dataset is the NOAA Climate Prediction Center’s Unified Daily Pre-

cipitation data (Chen and Xie, 2008), and our GCM data sets are the CMIP5 baseline

historical runs. The Climate Prediction Center’s (CPC) Unified Precipitation dataset pro-

vides a gridded precipitation product using roughly 8,000 weather stations daily for the

period 1948–1992 and roughly 13,000 weather stations daily after 1992 (Xie, 2010). Station

data is quality controlled for duplicates and overlapping stations, and stations are checked

for anomalous standard deviations and compared against nearby “buddy stations” prior

to gridding. Station data is gridded to a 1◦ × 1◦ from 140◦W–60◦W, 10◦N–60◦N using a

modified Cressman scheme.
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Model
Abbreviation
in Paper

Modeling Center/Group Institute
ID

Model
Name

CCSM National Center for Atmospheric
Research

NCAR CCSM4

CSIR Commonwealth Scientific and In-
dustrial Research Organization in
collaboration with Queensland Cli-
mate Change Centre of Excellence

CSIRO-
QCCCE

CSIRO-
Mk3-6-0

GE2R NASA Goddard Institute for Space
Studies

NASA-
GISS

GISS-E2-R

GFDL NOAA Geophysical Fluid Dynamics
Laboratory

NOAA
GFDL

GFDL-
CM3

MIR5 Atmosphere and Ocean Research In-
stitute (The University of Tokyo),
National Institute for Environmen-
tal Studies, and Japan Agency for
Marine-Earth Science and Technol-
ogy

MIROC MIROC5

Table 5.1: Global Climate Models used in this study. Data from each model is from the
CMIP5 baseline historical run from 1948–2004.

GCM data comes from the baseline historical runs of five models from the CMIP5

archive as shown in Table 5.3 (Taylor et al., 2012). Simulations are performed in each

model’s native resolution, as are accumulated total and interannual variability calculations.

Comparisons between individual models and the CPC dataset are performed in the GCM’s

native resolution by calculating all quantities in the native resolution of the parent dataset,

then regridding the quantity from the CPC dataset to the GCM grid using two-dimensional

linear interpolation. Comparisons of errors (differences between GCM and CPC data)

between GCMs are performed on the CPC grid by performing all possible calculations

in the native resolution, then regridding each GCM quantity to the CPC resolution to

calculate differences (again using two-dimensional linear interpolation).
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5.4 Methods

Previous studies have shown that there is substantial memory in daily-scale precipitation

at spatial scales ranging from weather stations to coarsely-gridded products (Mandelbrot

and Wallis, 1968; Gianotti et al., 2013; Short Gianotti et al., 2014; Anderson et al., 2015a,

and Chapter 4 of this document). While the memory structure can be highly non-lin-

ear (particularly at small scale or in dry regions), sufficiently flexible (empirical) models

of auto-correlation processes can represent this memory in both intensity and occurrence

across spatial scales (see Chapter 4). We apply the method of Gianotti et al. (Chap-

ter 4) to estimate the stochastic component of interannual variability from accumulated

precipitation totals in a null-climate probability framework.

By fitting empirical probability models for each day of the year and marginalizing over

years to effectively ignore any interannual drivers of climate variability, we can create a

stochastic model of daily-scale precipitation that exactly matches the daily probability

density (PDF) of precipitation for every day of the year, and thereby empirically matches

the daily mean, variance, and further moments. By further representing precipitation as

an n-dimensional probabilistic process, using n− 1 days of lagged values, we can represent

the empirical PDFs of memory, including the probability of precipitation on a given day

conditioned on n − 1 days of previously-observed precipitation. We fit these empirical

probability models for each location in a dataset, selecting the appropriate number of lags

and a kernel bandwidth for each day using cross-validation, and then use the model as a

weather-generator to simulate 1,000 representations of the historical precipitation record.

As in Gianotti et al. (Chapter 4), the lag and bandwidth selection occurs in a rank-based

inverse normal transformed space (Akritas, 1990; Cai et al., 2016) determined separately

for each day of the year, using all of the observed values within a 25-day pooling window for

determining correlation structure. The probability model is represented in the transformed

space as a Gaussian process using symmetric Gaussian kernels (Rasmussen and Williams,

2004). Simulations are back-transformed through the reverse CDF transformation. Indi-
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vidual simulations within the 1,000-member ensemble may vary slightly from the historical

mean (and further moments) at the daily, seasonal, and annual scales due to sampling

variability.

Each ensemble member at each location has some degree of interannual variability due

entirely to stochastic processes with 0–10 days of memory. The simulations as an ensemble

match the historical mean precipitation at daily and longer time-scales, and the inter-

annual variability matches the observed interannual variability at daily time-scales. The

interannual variability for longer (e.g., seasonal or annual) accumulation periods, how-

ever, is generally smaller (under-dispersed) in the simulations relative to the observed data

because the simulations have no drivers of interannual variability other than 0–10 day auto-

correlation processes. The “historical” data (both based on actual observations and based

on the GCM runs directly), in contrast, has both a stochastic high-frequency component

due to processes at weather time-scales and low-frequency variability due to changes in the

atmospheric boundary conditions.

For each of our six historical datasets (one observation-based: CPC; and five GCM-

based: CCSM, CSIR, GE2R, GFDL, MIR5), we simulate 1,000 high-frequency-only recre-

ations of the historical data and calculate summary statistics (seasonal mean precipitation,

interannual variability of seasonal totals) using 91-day accumulation periods centered on

January 15 (DJF), April 15 (MAM), July 15 (JJA), and October 15 (SON). This yields a

single set of summary statistics for each location and season of the historical datasets, and

a distribution of 1,000 summary statistics for each location and season of the simulated

datasets. By subtracting the simulated seasonal interannual variances from the historical

interannual variance, we can calculate a residual variance that is not well-explained by our

high-frequency-only simulations:

σ2
residual = σ2

historical − σ2
simulated (5.1)
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Figure 5.1: Interannual variance of 91-day (seasonal) accumulated precipitation from one
observational dataset and historical runs from five GCMs from 1948–2004 [mm2]. GCM
variances (lower color bar) are shown as log-scale anomalies from the CPC seasonal values
(values greater than 1 imply more interannual variability in the historical GCM dataset
than the historical CPC dataset).

or, equivalently,

σ2
low
frequency

= σ2
historical − σ2

high
frequency

(5.2)

which provides our means for separating climate-scale variability from weather-scale vari-

ability. The “historical” variance, the distribution of “simulated” (high-frequency, weather-

scale) variances, and the distribution of “residual” (low-frequency, climate-scale) variances

are the primary analysis variables of this study.

5.5 Results

The mean seasonal precipitation values for each data set are shown in Supplementary

Figures E.1 and E.2, with the broad spatial patterns well represented by the GCMs (mean

across all GCMs and seasons of correlations between GCM and CPC: r = 0.786, see
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Supplementary Table E.1), albeit with consistent over-estimates of precipitation in the arid

West and fairly consistent under-estimates in the Southeast relative to the CPC dataset.

The interannual variability of the seasonal precipitation totals for each historical dataset is

shown in Figure 5.1, with the GCM data shown as anomalies relative to the CPC dataset.

The spatial patterns of interannual variability in the historical GCM data show most of

the same coarse structure as the observational CPC data (see Supplementary Figure E.3),

but with inflated levels of variability in the West clearly dominating the error anomaly

structure for most models in most seasons. Despite the clear biases regionally, the spatial

patterns remain well-correlated with the CPC data (mean Pearson correlation coefficient of

r = 0.651 across all seasons, all GCMs), but less so than the mean correlation, suggesting

a tendency towards climatology in the GCMs.

Figure 5.2 shows the median interannual variability from 1,000 stochastic simulations

of precipitation in which all variability comes from processes with memory on time-scales

of days, which we refer to as “weather-scale.” The daily memory structure in the weather-

scale simulations follows the empirical conditional distribution of precipitation for each

day in each location, but has no other interannual variance generation mechanism (no

“climate-scale” processes). As in Figure 5.1, the weather-scale variability for the GCM

datasets is shown as anomalies from the CPC data (see Supplementary Figure E.4 for non-

anomaly data), and black dots represent locations in which the 1,000-member distribution

of weather-scale variances from the CPC simulations is statistically indistinguishable from

the distribution of weather-scale variances from the GCM simulations using the Wilcoxson

rank-sum test (α = 0.05). Statistical indistinguishability is rare for most models in all sea-

sons due to anomalies of the same order as in Figure 5.1. The spatial patterns of both the

CPC weather-scale variability and the GCM anomalies are also very similar to the variabil-

ity in the historical data (Fig. 5.1), demonstrating that weather-scale processes contribute

a substantial fraction of the historical variability. The spatial correlations between GCM

and CPC weather-scale variability are higher for every model in every season than the

for the historical variability (with a mean over all models and all seasons of r = 0.731,
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Figure 5.2: Interannual 91-day (seasonal) precipitation variance attributable to weather-
scale phenomena (1948–2004) [mm2]. Variances shown for the CPC dataset are the median
values of 1,000 stochastic weather-generator type datasets as fit to the historical data. In-
terannual variability is generated only by stochastic processes with memory on the order
of days. Values shown for the five GCM datasets (lower color bar) make use of vari-
ances generated in the same manner for each weather-scale-only GCM dataset as for the
weather-scale-only CPC dataset, but are shown as log-scale anomalies from the median
CPC variance (values greater than 1 imply more interannual variability due to weather-
scale processes in the GCM dataset than the CPC dataset). Black dots show grid cells in
which the distribution of 1,000 variances from the GCM dataset is statistically indistin-
guishable from the distribution of variances from the CPC dataset (Wilcoxson rank-sum
test, α = 0.05).
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Figure 5.3: Interannual 91-day (seasonal) precipitation variance attributable to climate-
scale phenomena (1948–2004) [mm2]. Variances shown for the CPC dataset are the median
values of 1,000 residual variance terms (Median

{
σ2

historical − σ2
simulated

}
), and represent vari-

ability that cannot be captured by a stochastic model with memory on the order of days.
Values shown for the five GCM datasets use the corresponding median residual variances
for each GCM dataset, but are shown as log-scale anomalies from the median CPC climate-
scale variance (values greater than 1 imply more interannual variability due to climate-scale
processes in the GCM dataset than the CPC dataset). Black dots show grid cells in which
the distribution of variances from the GCM dataset is statistically indistinguishable from
the distribution of variances from the CPC dataset (Wilcoxson rank-sum test, α = 0.05).

see Supplementary Table E.1), implying that weather-scale processes may in fact be more

accurately represented in the GCM runs than lower-frequency climate-scale processes.

This is demonstrated in Figure 5.3, which shows the climate-scale variability, deter-

mined as residuals from the historical and weather-scale variability. The magnitude of

climate variability is substantially lower than that of weather variability, both in the ob-

servational CPC data set and the GCM datasets (note the difference in colorbar scale

between Figs. 5.2 and 5.3), and less correlated to mean climatological precipitation as

well (mean across-dataset, across-season spatial Pearson correlation between mean pre-

cipitation and historical variability: 0.740; between mean precipitation and weather-scale
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variability: 0.819; between mean precipitation and climate-scale variability: 0.295), as

would be expected in an environment dominated by weather-scale processes. Beyond this,

the magnitudes of anomalies between the GCM and CPC datasets are more pronounced for

climate-scale variability than for either weather-scale or historical variability, and across-

model, across-season averaged spatial correlation is accordingly lower (r = 0.564). The

lower correlation between climate-scale GCM/observational variability than weather-scale

GCM/observational variability is not of specific concern with regard to GCM fidelity, as

the climate-scale processes are not prescribed in the historical runs (e.g., a GCM may have

a different number of ENSO events than observations).

Together these results point to a precipitation regime in the contiguous U.S. that is

dominated by weather-scale processes; interannual variability attributable to weather-scale

processes is more correlated to mean precipitation than total interannual variability in the

historical datasets for both the observational data and global climate models. The median

portion of interannual variability explained by weather-scale processes across the region is

between 72% (winter) and 84% (summer) in the observational CPC data (with a range from

62%–95% for all seasons and models in the GCM datasets, see Supplementary Figure E.8 for

maps of climate-scale variance fractions). Figure 5.4 shows three Taylor diagrams for GCM

performance relative to the CPC (reference) dataset. Across all seasons, the GCM weather-

scale variability (Figure 5.4b) more closely matches the observations than does either the

climate-scale variability (Figure 5.4c) or the total historical variability (Figure 5.4a), in

terms of spatial patterns (correlations) and magnitude (RMSE).

5.6 Discussion

The historical runs from global climate models are imperfect in their representations of

both mean precipitation and interannual variability (particularly in the arid West), but

broadly capture the spatial patterns of both. We would expect spatial patterns of bias in

interannual variability to be similar to those in mean precipitation due to the relationships
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Figure 5.4: Taylor Diagram of grid-cell-wise a) historical, b) weather-scale, and c) climate-
scale variability for each season, using CPC data as reference. GCM standard deviations are
normalized to the grid-cell-wise standard deviation (of interannual variances) of the CPC
dataset, and are shown as radial coordinates. Correlation coe�cients (angle coordinate) are
determined grid-cell-wise between the GCM dataset and the CPC dataset, as are RMSE
values (green dashed circles). Points closer to the CPC reference (red triangle) are closer
to matching the reference data. Notably, the GCMs demonstrate higher correlations and
lower RMSE for the weather-scale variability than for either climate-scale variability or the
total historical variability, suggesting that the spatial climatology of hydro-meteorological
processes may be better represented than the spatial climatology of hydro-climatogical
variability in the GCMs. Beyond that, the spatial patterns in weather-scale variability
are somewhat under-dispersed (more standard deviations values below 1) — perhaps not
surprising given the inflated variability (and mean precipitation) in the arid West in GCMs
— and the spatial patterns in climate-scale variability are somewhat over-dispersed (more
standard deviations values above 1).
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between means and variances in typical distributions used for probabilistic representations

of precipitation, which is the case for variability attributable to weather-scale processes,

and — to lesser degrees — total historical variability and climate-scale variability.

Stochastic weather-scale variability is found to be the major component of interannual

variability in the contiguous U.S., accounting for roughly 80% of the total interannual

variability, which means that on annual and longer time-scales the noise dominates. The

magnitude of weather-scale variability was generally larger than that of climate-scale vari-

ability by a factor of 4:1 (inverse of the climate signal-to-noise ratio). This corresponds

to potential predictability values of 20% for both the observational data and the GCMs

(Supplementary Figure E.8). It is worth noting that this is true for a period in which statis-

tically significant (increasing) precipitation trends have been reported (Karl and Knight,

1998) and in which precipitation intensity has been found to be shifting towards heavy

events (Karl et al., 1995). This highlights the importance of sufficiently long data records

for detection and attribution studies as well as providing a reminder of the importance of

accounting for high-frequency stochastic drivers of low-frequency fluctuations and trends

(e.g., Hamed and Rao, 1998), particularly in scenario evaluations and projections on inter-

annual-to-decadal horizons.

We find that GCMs are reasonably well-correlated with observations in their repre-

sentations of interannual variability, but are better-correlated in their representations of

interannual variability driven by purely weather-scale processes. Despite this, there are

relatively few locations in which the weather variability is a statistically ideal match with

the observational data, primarily occurring in regions of mid-level variability, demonstrat-

ing a tendency for GCMs to under-represent the spatial variability of temporal-variability

generating processes. This may be either a driver of or a symptom of the biases in mean

precipitation (towards too much precipitation in arid regions and too little in wet regions).

We also find that global climate models’ representation of weather-scale variability is

more closely correlated with that of the observational data than is climate-scale variability.

To some degree, this can be explained by sampling variability in quasi-periodic climate
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fluctuations (e.g., ENSO) in the GCM datasets, but it may also lead to areas in which

improvements can be made in GCM hydroclimate fidelity.
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Chapter 6

Conclusions and future directions

This dissertation provides methods to characterize variability in precipitation data on

weather time-scales, and applies these methods to determine signal and noise characteristics

of precipitation on climate time-scales.

Chapter 2 expanded the Markov chain model for precipitation occurrence to provide

a method by which to represent short-term memory processes in precipitation occurrence

data. The results of this chapter determined the spatial and seasonal patterns of potential

predictability in precipitation occurrence, with notably higher PP in the winter months,

and low PP in the western U.S. in the summer months.

Chapter 3 combined the method in Chapter 2 with a precipitation intensity model for

a more complete occurrence/intensity stochastic representation of precipitation and then

further decomposed the potential predictability of precipitation into a total value, and a

contribution from occurrence and from intensity.

Chapter 4 developed a new method for a stochastic representation of auto-correlated

precipitation using a conditional kernel density method. This provides a means to treat

precipitation occurrence and intensity as a single process, which is necessary for inter-

comparison of weather-scale and climate-scale variability on multiple spatial scales. The

method shows substantial improvement over earlier methods in ability to capture variability

from high-frequency (weather-scale) processes when using gridded precipitation products.

This is particularly necessary when analyzing coarse-scale data, such as the output from

global climate models (GCMs).

Chapter 5 applies the method of Chapter 4 to an observational data set as well as
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the historical runs from five GCMs. The weather-scale variability is found to be the

source of roughly 80% of the total interannual variability in precipitation data, both in the

observational data and the GCM data. Broadly, the GCMs represent the weather-scale

variability well, including spatial patterns, although there is some definite bias towards

mean values of precipitation.

The introduction of this dissertation proposed three research questions:

1. How can we best model daily precipitation as a null model for climate

variability studies?

2. Can we quantify the magnitude of the stochastic component of precipi-

tation on climate time-scales?

3. How predictable is precipitation beyond the window of atmospherically-

driven numerical weather predication?

Chapters 2–4 propose methods to answer the first question, for station based precipita-

tion occurrence, station based total precipitation intensity, and coarse-scaled precipitation

from multiple data sources.

Chapters 2–4 also serve to answer the second question, by using the null models as a

representation of the weather-scale component of interannual variability. This variability

is effectively stochastic at climate time-scales, and represents an envelop of noise which

partially masks climate-signal detection.

Finally, each of the chapters answer the third question by providing estimates of the

potential predictability of precipitation on annual and longer time-scales. As a rough

summary, perhaps a quarter of the interannual variability in precipitation can be potentially

tied to climate-scale processes over the last 60–120 years in the contiguous 48 United States,

but this value has a quite large range with season and location, from essentially 0 to 70%.

The methods used in this paper have also been used beyond the estimation of the

potential predictability of seasonal precipitation totals. Pal et al. (2013) uses a weather-

scale null model to establish significance of changes in phase and seasonality of the annual
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precipitation occurrence cycle. Anderson et al. (2015a) uses the simulations from Chapter 3

to establish the potential predictability of heavy precipitation and dry spells, as does

Anderson et al. (2015b) to establish a null model for trend detection. Anderson et al.

(2016b) follows on these to calculate the spectral signature of potential predictability, and

Anderson et al. (2016a) uses weather noise simulations to establish the significance of a

new decadal pattern of atmospheric pressure.

Since the modeling frameworks used in each chapter are inherently probabilistic, they

can be used either as weather simulators (as in Chapters 2–5), or as likelihood models for

establishing anomalous events. As an example, the recent drought in California was by

many metrics record breaking (Salvucci et al., 2014), but to answer whether or not it was

statistically unlikely, one could determine its likelihood from the weather-generator frame-

works of Chapters 2–4 and compare that likelihood against the distribution of observed

likelihoods (or entropy). A particularly unlikely event might be considered anomalous from

within a climate-stationary modeling perspective, suggesting that it was likely driven by

climate-scale processes, which could be determined through physical or statistical attribu-

tion analysis.

The method of Chapter 4 can be extended to include predictors of precipitation beyond

lagged precipitation itself. One future application is to use this method, but with climate

indices as possible predictors to attribute specific short- or long-term precipitation patterns

to certain states of the climate system. Beyond climate indices, local system states such

as soil moisture (for land-atmosphere feedbacks), meteorology (e.g., pressure, temperature,

convective available potential energy), or land surface cover could serve as predictors which

would allow researchers to determine distributions of likely precipitation conditioned on

current conditions, both for forecast uncertainty and for determining drivers of variability

in precipitation processes.

The kernel auto-regressive method is also not explicitly tied to precipitation data. It

can be used generally as a machine learning technique, but is particularly well-suited for

representation of bounded and/or inflated variables. Work in progress suggests that the
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method can be used for estimating land surface fluxes (specifically evapotranspiration) from

surface and atmospheric conditions; and with sufficient data, the cross-validation method

of dimension selection can be used for variable selection (in the same manner as likelihood

tests, information criteria, and stepwise regression methods). Although the work in this

dissertation has focused on variances under null assumptions of climate stationarity, the

method is more likely to see use in a hidden variable estimation setting, or as an update

step in a data assimilation or Bayesian forecast system, since observed predictors yield

conditional distributions of the forecast variables.

As well as time-series analysis, the kernel auto-regressive framework can be used broadly

as a non-linear empirical description of probabilistic relationships between related covari-

ates. As an example, co-measured values from a multi-spectral imager could be used as

predictors of a vegetation index (based on some training data), and the model could be used

for spatial/temporal extrapolation; or the same lagged indices along with ground-based

nutrient measurements could be used as predictors to determine the effects of nutrient

“innovations” in a Granger Causality sense.

For hydroclimate in particular, potential predictability could be expanded to include

spatial representations of processes, which may suggest avenues of prediction. The results

of Chapter 5 should be expanded to global scale, with temperature as well as precipitation

(perhaps with direct representation of their covariance using the kernel auto-regressive

model as well). And, finally, by making use of water and energy conservation, multiple

variables may be able to be more tightly constrained in surface process modeling.



Appendix A

Supplementary material for JCLI1

A.1 Chain Orders

The order, m, of the models is the number of days of precipitation data used in determining

the probability of rain on a given calendar day. A first order model has two states for each

day of the year; one state in which it rained on the previous day, and one in which it did

not, each with a different associated probability of rain for the present day. Let X(t, d)

denote a discrete daily time series of precipitation occurrence, where t is the day of the

series and d ∈ {1, . . . , 365} is the calendar day (X(t, d) = 1 represents a rainfall event and

X(t, d) = 0 represents no rain); and let x1, x2, x3, . . . represent the events of days t − 1,

t− 2, and t− 3 respectively. If we allow our models statistical behavior to depend only on

the day of year d and the events of the previous m days, then we can express the probability

of rain on any given day as

Pr {X(t, d) = 1} = Pr {X(t, d) = 1|x1, . . . , xm} , (A.1)

known as the Markov property. For each day of the year, d, the probability of rain can

be written in shorthand, then, as pxm...x1(d), so that p11(5) is the probability of rain on

Jan 5 given that it rained on both of the previous days. This second order model has four

states for each day of the year, corresponding to the four possible two-day histories, and

four independent transition probabilities {p00, p01, p10, p11} to be calculated (probabilities

of dry days can be calculated from the probabilities of wet days). An mth-order model has,
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Figure A.1: The method for determining a daily time-series of potential predictability
(PP) for an example station (Tuscon, AZ). Precipitation data from each of 774 weather
stations (a) are used to create annual time series of precipitation occurrence (b). The
Akaike Information Criterion (AIC) is used to select the model pooling size and daily
chain orders that optimize the likelihood/parsimony trade-off (c). Transition probabilities
(d) are established using results from c and are used to create a stationary chain model with
no low-frequency drivers of variability. This model is in turn used to create 1,000 stochastic
simulations of ∼ 100 years of precipitation data (e). The simulated data typically has lower
interannual variability than the observed data due to the models ignorance of all longer-

than-weekly scale processes (f). The difference, σ2
89,obs(t) −

〈
σ2

89,sim(t)
〉

, as a fraction

of σ2
89,obs(t) is the potential predictability (g) — the variance unexplained by stochastic

processes alone (shown on maps in h).
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Figure A.2: Mean chain orders for each station for December–February, March–May, June–
August, and September–November. Values shown are the mean of the roughly 90-daily
values in each season. All model fitting and simulation uses the daily values explicitly. The
highest mean values are found in the mountainous West, particularly in the winter, and
just south of the Great Lakes.

similarly, 2m states and independent transition probabilities for each day of the year.

A.2 Data Pooling

To determine the transition probabilities to be used in our chain models (Katz, 1977;

Wilks and Wilby, 1999), we allow pooling of our training data to improve the estimation

of extreme (rare) events, again using the AIC for parameter selection. A pooling size of

1 day is equivalent to using the historic data with no alteration, while a pooling size of 5

days uses all observations within a 5-day window (the central day ±2 days on either side)

as historical instances of the central day when looking for precipitation patterns. If the

historical record spans T years and the pooling size is b days, then the effective pooled
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record spans bT years, more appropriately representing the frequency of rare events in

the training data. We again use the AIC to optimize the trade-off between complexity (a

pooling size of 365 days removes all seasonality) and goodness-of-fit (larger pooling sizes

increase our confidence in parameter estimation).

A.3 Akaike Information Criterion (AIC)

To select the appropriate model for each day of the year, models are ranked using the

corrected Akaike Information Criterion (AICc) for each day (Hurvich and Tsai, 1989):

AICc =
2kN

N − k − 1
− 2 ln l (A.2)

where k is the number of parameters (2m), N is the number of (pooled) observations for that

day (bT if no missing data), and l is the likelihood of witnessing the observed distribution of

occurrences given each of their m-day histories (the product of N corresponding transition

probabilities). By selecting the chain order (using 0 ≤ m ≤ 5) with the minimum AIC

value (Fig. A.5a), we create a variable order chain model for the year for a given pooling

size (Katz and Parlange, 1993). Letting the pooling size b be an odd integer 1 ≤ b ≤ 119,

we create 60 models with different pooling sizes each with different progressions of chain

orders throughout the year, and different corresponding transition probabilities for each

day (Fig. A.5b). To compare between the pooling sizes, we again use the AIC, in a slightly

rewritten form to account for the comparison in sample size (Fig. A.5c–e):

AIC∗ =
2

b
[K∗b − L∗b ] (A.3)

where

K∗b =

365∑
i=1

2mi,b (A.4)
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is the sum of the number of parameters (independent transition probabilities) necessary

for the annual variable-order model with pooling size b, and

L∗b =
365∑
i=1

ln li,b (A.5)

is the sum of the log-likelihoods associated with observing the (pooled) historical data

for each day based on the appropriate transition probabilities. The pooling size with the

minimum AIC∗ value is selected (Fig. A.5e), and the associated variable-order chain model

is used as the basis of our simulation (Fig. A.5f).

Since the first and last years of the observed data are needed for edge effects with the

pooling and m-day histories, they are discarded from the analysis and simulation. 1,000

stochastic precipitation occurrence simulations, each of length T − 2 years, are created

one day at a time using the daily transition probabilities and the previous m days of

simulated data for each of the 774 stations. To allow a more direct comparison between

the simulated and observed data, any missing values in the observed datasets are imputed

using the simulation models.

For each of the simulated and observed time series, the number of rainy days within a

seasonal 89-day window (±44 days) is computed for each day. These seasonal occurrence

counts form a new 365(T − 2) day time series, and interannual variability of these counts

is calculated for each day of the year for each time series. The interannual variance of the

observed time series,

σ2
89,obs(t) = Var

[
44∑

i=−44

Xobs(t+ i)

]
, (A.6)

is compared with the mean of the interannual variances of the simulated time series

(Fig. A.1f), 〈
σ2

89,sim(t)
〉

=

〈
Var

[
44∑

i=−44

Xsim(t+ i)

]〉
, (A.7)
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and the potential predictability (Fig. A.1g) is calculated as

PP89(t) =
σ2

89,obs(t)−
〈
σ2

89,sim(t)
〉

σ2
89,obs(t)

(A.8)

Individual components of potential predictability are shown in Figure A.3, and the timings

of maximum and minimum potential predictability are shown in Figure A.4.

A.4 Statistical significance

To assess the statistical significance of the PP89 signal as shown in Figure 2.1 (Chapter 2),

we created distributions of PP89 values using the individual simulations in place of the

observed time series. A single PPsim,i value was determined as

PPsim,i =
σ2
sim,i −

〈
σ2
sim

〉
σ2
sim,i

, (A.9)

where
〈
σ2
sim

〉
is the ensemble mean of the 1000 simulations for a given station. Using

all 1000 values for i, we create a distribution of simulated PP values from which we can

calculate the statistical significance of our observationally-based PP.

Our null assumption is that the observed variability is stationary and not significantly

different from the distribution of simulated variabilities, i.e. that PP = 0. This means that

areas with low p-values (statistically different from the null) have potential predictability.

Those areas with high p-values (not statistically significant) are not statistically different

from the null, and thus we can not reject the hypothesis that PP = 0.

PP and its statistical significance are strongly correlated however — for those values

where σ2
obs lies in the top half of the σ2

sim distribution, the correlation between PP and the

(standard, normal) inverse CDF of the confidence level is r = 0.90. This means that for

significant (high PP) results, we most often conclude that there is potential predictability

(as estimated), and for non-significant results (low PP) we are typically unable to assume

that there is predictability. It follows then, that our most justifiable PP estimate for areas
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with near-zero PP and high p-values is, in fact, zero.

PP is shown station-by-station in Figure A.6, with values significant at the p = 0.05

level shown as filled circles and non-significant values shown as X’s. The percentages of

stations with PP values significantly different from zero by season are: DJF — 89%, MAM

— 86%, JJA — 76%, SON — 81%. There are additionally a number of stations with

seasonal σ2
obs values greater than any value in the σ2

sim distribution, and the corresponding

PP values would thus be significant at any confidence interval. By season the fraction of

stations for which this is the case is: DJF — 58%, MAM — 46%, JJA — 34%, SON —

39%.

A.5 PP-metrics other than seasonal

Although this paper focuses on PP89, windows other than an 89-day seasonal window

can be used to evaluate time periods of interest. Agricultural growing seasons, snow-pack

periods, dry seasons, and monsoons might all be of interest in a particular region, and the

analysis window can be selected to fit the objective.

Equation A.8 can be rewritten for any window, τ , as

PPτ (t) =
σ2
τ,obs(t)−

〈
σ2
τ,sim(t)

〉
σ2
τ,obs(t)

, (A.10)

where σ2
τ is the variance (between years) in the total number of occurrence events in a

window τ for either the observed or simulated data series.

As an example, Figure A.7 shows PP365 — the potential predictability of the number of

occurrence events annually. As compared to the seasonal PP89 maps (Chapter 2 Fig. 2.1e–

h) or even their mean (Fig. A.3 bottom-right), PP365 is generally higher, suggesting that

some years may have precipitation occurrence correlations between seasons (as we might

expect, say, from ENSO) which are not well-represented by stochastic processes with only

a few days’ memory.
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Figure A.3: Seasonal values of the components of potential predictability. Rows 1–4 show
values for 89-day windows centered on Jan 15, Apr 15, Jul 15, and Oct 15; row 5 shows the
mean of 365 89-day windows, centered on each day of the year. The first column shows the
interannual variance in number of wet days in an 89-day for each season from the historical
data. The second column shows the mean value of the interannual variance for 1,000
simulated time series with only short-memory process knowledge. The third column is the
difference between the first two columns (the numerator in the potential predictability).
The last column is the potential predictability (as shown in Fig. 2.1 and Fig. A.1).
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a Day of minimum predictabil ity

b Day of maximum predictabil ity

Figure A.4: Timings of (a) minimum and (b) maximum potential predictability.
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Figure A.5: Chain-order and pooling-size determination process using the Akaike Informa-
tion Criterion (AIC) for Tuscon, AZ. For each day of the year and possible pooling size,
the AIC is calculated for chain orders 0–5 (a). The order which gives the lowest AIC value
is selected as optimal. For November 6th (day 310) in Tuscon, using a pooling size of 95
days, the 3rd-order model has the lowest AIC (a) and is selected as optimal (shown as the
selected chain-order in b). This is performed for every day and possible pooling size (b).
To select the optimal pooling size for the station, K∗ and L∗ are calculated from Equa-
tions A.4 and A.5 (c and d, respectively), and are combined to give the AIC∗ (e, Eqn. A.3).
For Tuscon, the selected pooling size is 13 days. The model transition probabilities are
determined from the 13-day pooled data, and the chain orders corresponding to 13-day
pooling (as determined in b, shown in f) are used in our stochastic simulations.
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Figure A.6: PP and corresponding statistical significance station-by-station. Colors denote
the PP value. PP values which are significantly different from zero at the 0.05 level are
shown as filled circles, while those not significantly different from 0 are shown as X’s. Data
in this figure match identically with those in Figure 2.1 (Chapter 2).
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Figure A.7: PP365: annual-scale potential predictability. An annual window is used to cal-
culate the total number of occurrence events, and variances of these annual totals (observed
and simulated) are used to calculate PP365. Values are generally higher (note the difference
in scale) than for any of the seasonal PP89 maps (Fig. 2.1) or the mean of seasonal PP89

(Fig. A.3, bottom-right).



Appendix B

Variance Decomposition into Occurrence and

Intensity

The law of conditional variance states,

Var[Π] = EΘ [Var [Π|Θ]] + VarΘ [E [Π|Θ]] , (B.1)

We will use this to decompose total precipitation in a seasonal window into components

due to the number of days of precipitation occurrence in that window, and the intensity on

those days. Let π be the total precipitation observed in an 89-day window with θ days of

precipitation occurrence in those 89 days. Π is a vector [π1, π2, . . . , πm] and Θ is similarly

[θ1, θ2, . . . , θm], where each element of the vectors is the seasonal observation for one year

(i.e. in the first year there were θ1 rainy days which sum to a total of π1 mm of rain.

The green diamonds in Figure B.1a each represent a single winter’s (θi, πi) pair for a

rain gauge at McConnelsville Lock, Ohio, and Figure B.1b is a histogram of the number

of precipitation events over all observed years. The second term in the right-hand side of

Equation B.1, VarΘ [E [Π|Θ]], is referred to as the variance of conditional means and is

displayed visually in Figure B.1c. The blue circles in Figure B.1a are the mean seasonal

precipitation conditioned on the number of wet days, as are the green lines in Figure B.1c.

The red dot in Figure B.1c is the mean of the conditional means, and the error bars show

one standard deviation — the square root of σ2
occ, as shown in Figure B.1e.

The first term on the right-hand side of Equation B.1 is referred to as the expectation
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a)

b)

c)

d) e)

Figure B.1: An example of the decomposition of total precipitation into occurrence and in-
tensity contributions following the law of conditional variance for USHCN weather station
335041 in McConnelsville, OH. a) Observed 89-day precipitation vs. number of precipi-
tation events. b) Histogram of seasons with a given number of precipitation events. c)
Mean precipitation values conditioned on number of events (green lines) and the standard
deviation of the conditional means (red bar), the square root of the variance of conditional
means, σ2

occ. d) Variance of precipitation conditioned on number of events (blue bars) and
the mean of conditional variances, σ2

int (dashed line). e) Partitioning of variance, as from
c) and d), as per the law of conditional variance.
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of conditional variances and is calculated by first taking the variances of the seasonal total

precipitation as conditioned on the number of wet days (blue error bars in Figure B.1a

show one standard deviation, blue bars below in Figure B.1d show the variance). The

mean across all observed θ values is shown with the dashed blue bare in Figure B.1d and

as the blue region in Figure B.1e, also called σ2
int.

In this example, σ2
occ is greater than σ2

int due to the comparatively large spread between

the blue dots in Figure B.1a as compared to the within-θ deviations around those means.

This partitioning is equivalent to the notion of “variance explained” by a model (in this

case the model is the mean precipitation per event dashed line in Figure B.1a) in a typical

regression setting. If it always rained precisely the same amount on each wet day, our

occurrence-based model would fit the data perfectly (no residual sum of squares), all of

the blue dots would fall on the dashed red line in Figure B.1a, and there would be no σ2
int.

Similarly, if it always rained the same amount in each season no matter how many wet

days that season had, occurrence would explain none of the variance in the data, there

would be no dispersion about the mean in Figure B.1c, and hence no σ2
occ.

The decomposition could potentially show less stability for seasons with very few events,

as the estimated precipitation per event would be calculated using fewer observed data

points (see Supplementary Materials for discussion). In this analysis, this potential source

of uncertainty is negligible for two reasons: 1) the coefficients of variation for the σ2
occ/σ

2
tot

ratio are generally low and not a function of the number of wet days except for in one

autumn and nine summertime locations (see Supplementary Figure C.11), and 2) those

locations with higher coefficients of variation (> 0.25) are in the driest regions which

display consistently low (and not significantly different from zero) PP values for all of

PP89,tot, PP89,int, and PP89,occ.



Appendix C

Supplementary Material for Chapter 3

C.1 Methods schematic and overview

To further clarify the methods used in this study, Figure C.1 shows a schematic repre-

sentation of the methods used to calculate the potential predictability (PP), with data

shown taken from the station in Tuscon, AZ. Daily precipitation data is taken from the

774 stations in the United States Historical Climate Network (USHCN) (Williams et al.,

2006) which have 80–110 years of data ending in 2009 and less than 5% missing — this

data forms our observational (“obs”) record. Each day of the year is represented by its own

model, with data from all observed years used to determine parameters for each model.

The models for precipitation occurrence on each day are variable-order Markov chains

conditioned on the last m days of occurrence data, where 0 ≤ m ≤ 5. Probabilities of

occurrence given an m-day history are determined from the 80–110 years of observed data

for each day, and data pooling (using data from neighboring days) is allowed to improve

parameter estimation. The width of the pooling window, W , and the chain order, m,

are determined by comparing models using all combinations of W and m, and selecting

the parsimony/goodness-of-fit trade-off using the Corrected Akaike Information Criterion

(Hurvich and Tsai, 1989). Transition probabilities for the selected 365 Markov models are

stored for each station.

The precipitation intensities for each day are modeled as parameterized probability



105

Figure C.1: Schematic representation of the methods used to calculate potential pre-
dictability. Data shown in two central plots (Variance of 89-day precipitation and Potential
Predictability) are from station in Tuscon, AZ. Potential predictabiliy maps shown are for
PP89,tot (same as Figures 3.5–3.8a).
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distributions which take the following form:

f(x) = λ
βα1

1 xα1−1e−α1β1

Γ(α1)
+ (1− λ)

βα2
2 xα2−1e−α2β2

Γ(α2)
, (C.1)

where 0 ≤ λ ≤ 1, α1 and α2 are shape parameters, β1 and β2 are rate parameters, and

Γ(·) is the gamma function. As with the occurrence process, a model is constructed for

each combination of station, day of year, pooling size, and chain order (conditioning on

the previous m days’ occurrence, rather than intensity), the data pooling size is selected

using AICc, and then the chain order is selected also using AICc.

Using the combined occurrence and intensity models, simulations of daily precipitation

are created which match the observed record in terms of day-of-year mean precipitation

as well as day-of-year interannual variance due to short-memory (m-day) processes. 1000

simulations, each the length of the “obs” record, are created for each station, which form

a (“sim”) distribution of “weather noise” against which to compare the “obs” record.

The metric for comparison in this analysis is 89-day (seasonal) precipitation totals. In

Figure C.1, the variance of the seasonal total precipitation in the observed record (σ2
obs,tot,

shown in red) is much higher than the mean variance of the seasonal total precipitaion from

the simulations (σ2
sim,tot, shown in blue) in the winter, and so the corresponding potential

predictabilty,

PP89,tot =
σ2
obs,tot − σ2

sim,tot

σ2
obs,tot

(C.2)

is high in the winter for Tuscon, AZ. The light blue shading in the variance plot is a 95%

confidence interval from the simulations.

After calculating the potential predictability for each day of the year at each station,

maps of the seasonal potential predictability can be created using the PP89,tot values for

January 15, April 15, July 15, and October 15.
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C.2 “Climate signal” estimates

Some readers may be interested in the direct estimate of the variance due to potentially

predictable processes, rather than the fraction of total variance that the these processes

represent. The variance due to potentially predictable processes (or potential “climate

signals”) is simply the numerator of the potential predictability as defined in Equation

C.2, σ2
obs,tot − σ2

sim,tot. The values of the numerators corresponding to the potential pre-

dictability shown in the main manuscript (Figures 3.5–3.8) are shown in Figures C.2–C.5,

respectively.

In each figure, part a) shows the numerator of PP89,tot, b) shows the numerator of

PP89,int, and c) shows the numerator of PP89,occ for an 89-day window centered on January

15 (Figure C.2), April 15 (Figure C.3), July 15 (Figure C.4), or October 15 (Figure C.5).

σ2
obs is the variance of the total precipitation in the historical record for each station.

This is designated as total (tot) when taken as a simple variance, occurrence (occ) when

depicting the portion of tot explained by conditioning on the number of days with non-zero

precipitation, and intensity (int) when depicting the portion not explained by conditioning

on occurrence. Similarly, σ2
sim is the mean variance of total precipitation from each of

1000 simulations of the historical record representing only interannually-stationary, short-

memory (“weather noise”) processes.

It is important to note that while the PP values shown in Figures 3.5–3.8 are normalized

by the observed variance, the un-normalized numerators have units of precipitation variance

(mm2), and thus are likely to be higher in areas with more precipitation.

C.3 Stability of variance decomposition

The variance decomposition (Appendix A) is determined using the law of conditional vari-

ance, which is exact in that the left-hand side of Equation A1 is exactly equal to the

right-hand side, but is also an estimate of the “true” variance decomposition using the

data as a sample. As the number of wet days increases, that estimate is determined using
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Figure C.2: The numerators of the a) PP89,tot, b) PP89,int, and c) PP89,occ fractions (re-
spective PP values shown in the Figure 3.5) for an 89-day window centered on January
15. σ2

obs is the variance of the total precipitation in the historical record for each station.
This is designated as total (tot) when taken as a simple variance, occurrence (occ) when
depicting the portion of tot explained by conditioning on the number of days with non-zero
precipitation, and intensity (int) when depicting the portion not explained by conditioning
on occurrence. Similarly, σ2

sim is the mean variance of total precipitation from each of
1000 simulations of the historical record representing only interannually-stationary, short-
memory (“weather noise”) processes.
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Figure C.3: Same as Figure C.2, but for an 89-day window centered on April 15.
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Figure C.4: Same as Figure C.2, but for an 89-day window centered on July 15.
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Figure C.5: Same as Figure C.2, but for an 89-day window centered on October 15.
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more data points, and so the estimate is likely more robust for seasons with more wet days.

To determine if the estimates of the variance decomposition (as seen in Figures 3.2 and 3.4)

are robust for seasons with small numbers of wet days, Figure C.11 shows seasonal plots

of the coefficient of variation (CV) of the σ2
occ/σ

2
tot ratio versus the number of wet days in

the simulations. Each y-coordinate of a point in the plots is the standard deviation of the

σ2
occ/σ

2
tot ratio across all 1000 simulations for a given station in a given season divided by

the mean σ2
occ/σ

2
tot ratio across all 1000 simulations for that station and season. The x-co-

ordinate is the mean number of wet days in that 89-day season across all 1000 simulations.

As seen in Figure C.11, the CV is not clearly a function of the number of wet days; however,

for very dry seasons (with 5 wet days or fewer, see JJA plot) many CV values are notably

higher than for those seasons with more than 5 wet days. This suggests less confidence

in the decomposition into σ2
occ and σ2

int. However, for these stations in the Southwest (9

locations in JJA, and one in SON with CV > 0.25), the potentially predictable variance

components are low to begin with, and so all three of PP89,tot, PP89,occ, and PP89,int are

very small.
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a) PPtot

b) PPint

c) PPocc
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Figure C.6: 90% confidence interval range for spatial model of December–February po-
tential predictability using generalized cross validation fitting of thin plate splines for a)
PPtot, b) PPint, and c) PPocc. 0.5 times the values from this figure added to the gridded
(background) values in Figure 3.5 give the 95% confidence bound, and 0.5 times the values
from this figure subtracted from the gridded values in Figure 3.5 give the 5% confidence
bound for PP.
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a) PPtot
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Figure C.7: 90% confidence interval range for spatial model of March–May potential pre-
dictability using generalized cross validation fitting of thin plate splines for a) PPtot, b)
PPint, and c) PPocc. 0.5 times the values from this figure added to the gridded (back-
ground) values in Figure 3.6 of the main text give the 95% confidence bound, and 0.5
times the values from this figure subtracted from the gridded values in Figure 3.6 give the
5% confidence bound for PP.
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a) PPtot
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Figure C.8: 90% confidence interval range for spatial model of June–August potential pre-
dictability using generalized cross validation fitting of thin plate splines for a) PPtot, b)
PPint, and c) PPocc. 0.5 times the values from this figure added to the gridded (back-
ground) values in Figure 3.7 of the main text give the 95% confidence bound, and 0.5
times the values from this figure subtracted from the gridded values in Figure 3.7 give the
5% confidence bound for PP.
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a) PPtot
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Figure C.9: 90% confidence interval range for spatial model of September–November po-
tential predictability using generalized cross validation fitting of thin plate splines for a)
PPtot, b) PPint, and c) PPocc. 0.5 times the values from this figure added to the gridded
(background) values in Figure 3.8 of the main text give the 95% confidence bound, and 0.5
times the values from this figure subtracted from the gridded values in Figure 3.8 give the
5% confidence bound for PP.
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Figure C.10: Potential predictability station by station for each day of the year. a) PP89,occ

versus PP89,tot, b) PP89,int versus PP89,tot, and c) PP89,occ versus PP89,int. Colors corre-
spond to the day of the year (January 1 = 1, December 31 = 365).
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Figure C.11: Coefficent of variation (CV) versus the mean number of wet days in the
simulations by season.



Appendix D

Variance of a kernel density estimate

Although using kernel density methods to estimate empirical probability densities is fairly

common practice, there are important caveats for their use, specifically regarding variance

in this context. Kernel-based probability density functions are essentially mixture model

distributions, using one mixture for each observed data point, and are not appropriate for

either maximum-likelihood or method-of-moments fitting techniques (both of which will

be optimized with a bandwidth of zero, equivalent to bootstrapping). Because of this,

cross-validation (or some approximation thereof) is typically employed, but this does not

preserve the variance of the sample to which the kernel density was fit, nor is it tied to

asymptotic estimators for the variance of the population from which the data sample was

drawn. While the bias in the variance is typically small, when variance is a key feature of

your model, this needs to be addressed (and is the reason why simulated samples in this

paper are re-standardized prior to transformation back to the data domain). It is worth

noting that when using an axially-symmetric kernel (as is typical), the sample mean is

always preserved.

D.0.1 Kernel density

For a set of N observed points, {yi}, the univariate probability density using Gaussian

kernels with bandwidth (standard deviation in this case), h, is

fK(x; {yi}, h) =
1

N

N∑
i=1

φ(x; yi, h), (D.1)
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where φ(x; yi, h) is the normal density function with mean yi and standard deviation h.

D.0.2 Mean of kernel density

Using E{·} to denote expectation and N to denote the normal (Gaussian) distribution,

the mean of the Gaussian kernel density is

E{x} =

∫
xfK(x) dx (D.2)

=

∫
x

N

N∑
i=1

φ(x; yi, h) dx (D.3)

=
1

N

N∑
i=1

∫
xφ(x; yi, h) dx (D.4)

=
1

N

N∑
i=1

E{N (yi, h)} (D.5)

=
1

N

N∑
i=1

yi (D.6)

= yi, (D.7)

which is just the sample mean of the points {yi} used to define the kernel densities.

D.0.3 Variance of kernel density

The variance of the kernel density function is

Var{x} = E{x2} − (E{x})2 (D.8)

=

∫
x2fK(x) dx− (yi)

2 (D.9)

=

∫
x2

N

N∑
i=1

φ(x; yi, h) dx− (yi)
2 (D.10)

=
1

N

N∑
i=1

∫
x2φ(x; yi, h) dx− (yi)

2 (D.11)
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But for any individual normal distribution with mean yi and standard deviation h,

E{(x− yi)2} = E{x2} − (E{x})2 (D.12)

Rearranging gives

E{x2} = E{(x− yi)2}+ (E{x})2 (D.13)∫
x2φ(x; yi, h) dx = E{(x− yi)2}+ (E{x})2 (D.14)

= h2 + y2
i , (D.15)

since for kernel density centered at yi the variance is just h2 and the mean is yi. Substituting

back into D.11,

Var{x} =
1

N

N∑
i=1

(
h2 + y2

i

)
− (yi)

2 (D.16)

=
[
y2
i − (yi)

2
]

+ h2 (D.17)

The term on the left in D.17 is just the sample variance, and so the variance of the kernel

density is effectively additively inflated by the squared bandwidth, h2. In this paper, where

N for any given daily model is on the order of (31 days) · (57 years) = 1767 data points,

and h2 is on the order of 0.1 (in squared z-score units), the bandwidth variance inflation is

larger than the effect of the typical multiplicative “Bessel correction” (i.e., n/(n− 1)) used

for unbiased population variance estimates. If our data did not go through an explicitly

relative rank-driven CDF transformation (but rather some absolute mapping from the

data domain to the Gaussian CDF-transformed domain and back), very large bandwidth

values could lead to biases in the correlation structure of the simulated data. The rank-

based transformation, however, eliminates this potential problem, but requires that any

simulated data be re-standardized before back-transformation to explicitly preserve the

proper variance.
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This re-standardization can lead to statistical problems of its own if an insufficient

number of simulated data points are used. To prevent the daily simulated variances from

matching the observed sample variance exactly, a large number of simulations can be

performed, re-standardized, and back-transformed. Then a subsample of the simulated

data can be used for analysis. As an example, in this research, 1000 stochastic recreations

of the historic record were simulated, and for each day of the year the 57,000 simulated

daily values match the observed mean and sample variance, but the means and variances

of each individual 57-year simulation can vary stochastically.



Appendix E

Global Climate Model Supplementary Material
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Figure E.1: Mean 91-day (seasonal) accumulated precipitation from one observational
dataset and historical runs from five GCMs from 1948–2004 [mm].

Figure E.2: Mean 91-day (seasonal) accumulated precipitation from one observational
dataset and historical runs from five GCMs from 1948–2004 [mm]. GCM totals (lower
color bar) are shown as anomalies from the CPC seasonal values [in mm] (values greater
than 0 imply more average precipitation in the historical GCM dataset than the historical
CPC dataset).
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Model DJF MAM JJA SON

M
ea

n

CCSM 0.800 0.816 0.826 0.762
CSIR 0.847 0.584 0.793 0.763

GE2R 0.829 0.859 0.697 0.755
GFDL 0.816 0.772 0.742 0.718
MIR5 0.908 0.847 0.724 0.860

σ
2 h
is

to
ri

ca
l

CCSM 0.830 0.625 0.545 0.726
CSIR 0.729 0.661 0.506 0.588

GE2R 0.731 0.714 0.609 0.639
GFDL 0.694 0.677 0.141 0.590
MIR5 0.815 0.721 0.713 0.763

σ
2 si

m
u

la
te

d

CCSM 0.823 0.688 0.704 0.747
CSIR 0.787 0.720 0.581 0.626

GE2R 0.778 0.858 0.733 0.695
GFDL 0.775 0.755 0.389 0.628
MIR5 0.878 0.857 0.777 0.828

σ
2 re

si
d

u
a
l

CCSM 0.827 0.555 0.391 0.686
CSIR 0.696 0.580 0.405 0.532

GE2R 0.667 0.502 0.500 0.579
GFDL 0.647 0.548 0.021 0.539
MIR5 0.771 0.576 0.645 0.623

Table E.1: Grid-cell-wise Pearson correlation coefficients (unweighted) between GCM and
CPC datasets. All correlation values are determined after regridding the summary statistics
from the CPC dataset to the native grid of the GCM.
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Model DJF MAM JJA SON

σ
2 h
is

to
ri

ca
l

CCSM 2532 -293 -498 -757
CSIR 547 487 -8 -707

GE2R 388 1398 5002∗ 913
GFDL 2684 415 -643 8
MIR5 1601 637 2297 -104

σ
2 si

m
u

la
te

d

CCSM 773 -311 -372 -723
CSIR 469 270 210 -502

GE2R 704 2002 3797∗ 747
GFDL 1171 247 -854 -93
MIR5 267 265 1382 109

σ
2 re

si
d

u
a
l

CCSM 1759 19 -124 -34
CSIR 78 217 -219 -205

GE2R 316 -604 1201 166
GFDL 1514 167 218 101
MIR5 1333 372 916 -213

Table E.2: Spatial mean of the absolute errors of the interannual variability for each
model by season in (mm/day)2. Positive (negative) values denote over-estimation (under-
estimation) of interannual variability by the GCM, using the CPC interannual variability
as reference. These values correspond to the mean values of the PDFs in the first row
of Figure E.6. The only statistically significant difference (two-tailed, α = 0.05, denoted
by a superscript ∗) from the observed CPC variability is the GE2R model in the summer
(JJA) months — the model consistently over -estimates the interannual variability across
the contiguous 48 United States. Other models/seasons display over-dispersion or under-
dispersion, but are not consistently over- or under-dispersed when considering all locations
as a single data set.
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Figure E.3: Interannual variance of 91-day (seasonal) accumulated precipitation from one
observational dataset and historical runs from five GCMs from 1948–2004 [mm2].

Model DJF MAM JJA SON

σ
2 h
is

to
ri

ca
l

CCSM 1.66 0.7 0.39 0.32
CSIR 0.97 0.81 0.17 0.09

GE2R 0.74 1.11 5.85∗ 1.07
GFDL 2.19 1.03 1.06 0.94
MIR5 1.23 0.75 1.44 0.54

σ
2 si

m
u

la
te

d

CCSM 1.52 0.77 0.24 0.31
CSIR 1.25 0.89 0.20 0.10

GE2R 1.16 1.38 3.71∗ 1.01
GFDL 2.02 0.94 0.55 0.88
MIR5 1.09 0.60 1.02 0.57

σ
2 re

si
d

u
a
l

CCSM 2.26 0.53 -1.16 0.98
CSIR 1.08 1.55 -1.17 0.83

GE2R -0.03 -1.77 -0.83 0.34
GFDL 3.50 2.32 0.18 0.33
MIR5 1.91 1.19 -2.00 0.10

Table E.3: Same, but relative errors
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Figure E.4: Interannual 91-day (seasonal) precipitation variance attributable to weather-
scale phenomena (1948–2004) [mm2]. Variances shown are the median values of 1,000
stochastic weather-generator type datasets as fit to the historical data. Interannual vari-
ability is generated only by stochastic processes with memory on the order of days. Black
dots show grid cells in which the distribution of variances from the GCM dataset is statisti-
cally indistinguishable from the distribution of variances from the CPC dataset (Wilcoxson
rank-sum test, α = 0.05).
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Figure E.5: Interannual 91-day (seasonal) precipitation variance attributable to climate-
scale phenomena (1948–2004) [mm2]. Variances shown are the median values of 1,000 resid-
ual variance terms (subtracting the weather-scale variance from the historical variance),
and represent variability that cannot be captured by a stochastic model with memory on
the order of days. Black dots show grid cells in which the distribution of variances from
the GCM dataset is statistically indistinguishable from the distribution of variances from
the CPC dataset (Wilcoxson rank-sum test, α = 0.05).

Figure E.6:
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Figure E.7:

Figure E.8: The fraction of historical interannual variability attributable to climate-scale
processes (commonly refered to as Potential Predictability.
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