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ABSTRACT

Interference is considered to be a major obstacle to wireless communication. Pop-

ular approaches, such as the zero-forcing receiver in MIMO (multiple-input and

multiple-output) multiple-access channel (MAC) and zero-forcing (ZF) beamforming

in MIMO broadcast channel (BC), eliminate the interference first and decode each

codeword separately using a conventional single-user decoder. Recently, a transceiver

architecture called integer-forcing (IF) has been proposed in the context of the MIMO

Gaussian multiple-access channel to exploit integer-linear combinations of the code-

words. Instead of treating other codewords as interference, the integer-forcing ap-

proach decodes linear combinations of the codewords from different users and solves

for desired codewords. Integer-forcing can closely approach the performance of the

optimal joint maximum likelihood decoder. An advanced version called successive

integer-forcing can achieve the sum capacity of the MIMO MAC channel. Several ex-

tensions of integer-forcing have been developed in various scenarios, such as integer-
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forcing for the Gaussian MIMO broadcast channel, integer-forcing for Gaussian dis-

tributed source coding and integer-forcing interference alignment for the Gaussian

interference channel.

This dissertation demonstrates duality relationships for integer-forcing among

three different channel models. We explore in detail two distinct duality types in

this thesis: uplink-downlink duality and source-channel duality. Uplink-downlink du-

ality is established for integer-forcing between the Gaussian MIMO multiple-access

channel and its dual Gaussian MIMO broadcast channel. We show that under a

total power constraint, integer-forcing can achieve the same sum rate in both cases.

We further develop a dirty-paper integer-forcing scheme for the Gaussian MIMO BC

and show an uplink-downlink duality with successive integer-forcing for the Gaussian

MIMO MAC. The source-channel duality is established for integer-forcing between

the Gaussian MIMO multiple-access channel and its dual Gaussian distributed source

coding problem. We extend previous results for integer-forcing source coding to al-

low for successive cancellation. For integer-forcing without successive cancellation

in both channel coding and source coding, we show the rates in two scenarios lie

within a constant gap of one another. We further show that there exists a successive

cancellation scheme such that both integer-forcing channel coding and integer-forcing

source coding achieve the same rate tuple.
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1

Chapter 1

Introduction

1.1 Motivation

Interference is one of the major issues in wireless networks when multiple commu-

nications are conducted over a common medium. Methods to manage interference

have been proposed for various models, such as the multiple-access channel (MAC),

broadcast channel (BC), relay networks, interference channel and cellular networks.

In cellular networks, base stations separate desired messages from interference by

performing transmissions on different frequency bands. In satellite systems, signals

are divided into different time slots in order to avoid interference from each other. In

traditional designs for multiterminal systems, interference is eliminated by treating

interference as noise, e.g., linear equalization is used in the MAC to maximize the

SINR (signal-to-interference-plus-noise ratio) and linear beamforming is applied in

the BC to align interference for the same purpose.

The complexity of the transmitter/receiver is another issue in wireless communi-

cation design. Many capacity-approaching schemes, such as i.i.d. random coding and

joint typicality decoding, require an exhaustive search through the codebook, mean-

ing that the complexity increases exponentially with the codeword’s blocklength. It is

of considerable interest to find low complexity schemes that operate at or near capac-

ity. To eliminate interference with low computational complexity, zero-forcing (ZF) is

used as a MIMO MAC equalization strategy and MIMO BC beamforming strategy.

By inverting the channel matrix at the receiver side for MAC or pre-inverting the
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channel at the transmitter side for BC, ZF can create a point-to-point interference-

free channel for each data stream. As a result, each data stream can be encoded

and decoded using a single-input single-output (SISO) algorithm. Although chan-

nel inversion can completely eliminate interference, it often does so at the cost of

significantly reducing the SNR for the desired codeword.

Rather than eliminating interference before decoding, an alternative approach is

to decode linear combinations of interfering codewords. The recent development of

compute-and-forward [Nazer and Gastpar, 2011] and integer-forcing (IF) [Zhan et al.,

2014] provide a path for this option. Consider a MIMO MAC where all data streams

are generated using the same structured codebook, such as a lattice codebook. Note

that, for a lattice codebook, an integer linear combination of codewords is still a

valid codeword. The receiver observes the interfering data streams and attempts to

decode the integer-linear combination that most closely approximates the real linear

combination taken by the channel. With a sufficient number of linearly independent

combinations decoded, the receiver can solve for each message. The effective noise is

determined by how well the integer matrix approximates the channel matrix.

Conventional approaches, like ZF, eliminate interference by creating an effective

identity channel matrix through equalization and beamforming. On the other hand,

IF only requires transforming the channel into any full rank integer matrix A such

that messages can be recovered from the combinations. By choosing the integer

matrix A properly, IF can increase the SINR at the receiver side in both MAC

and BC. With lower effective noise, IF outperforms ZF. Since for structured coding a

combination of codewords is still a valid codeword, the decoding/encoding complexity

for IF is equivalent to the decoding/encoding complexity for a SISO channel, i.e., the

complexity of IF is close to that of ZF.

IF can be applied in multiple channel models and coding schemes. Specifically, IF
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coding schemes have been developed for the Gaussian MIMO MAC [Zhan et al., 2014,

Ordentlich et al., 2013,Ordentlich et al., 2012,Ntranos et al., 2013a], Gaussian MIMO

BC [Hong and Caire, 2012] and distributed source coding problem [Ordentlich and

Erez, 2013]. These coding schemes, although designed for different models, show some

similarities in channel equalization, beamforming and lattice code design. Among

these models, a problem might be well explored in one of the models but remain

unsolved for the rest. For example, the equalization problem for IF has a closed form

optimal solution in the MAC but remains as a non-convex optimization problem in

the BC, and the IF beamforming problem is solved in closed form in the BC but

remains non-convex in the MAC. If connections can be established among different

IF models, the existing results in one model can be delivered to another model as

solutions for unsolved problems or as inspirations for coding scheme design. Such a

connection between different coding schemes and system models is called duality.

1.2 State of the art

1.2.1 Integer-forcing (IF) in multiterminal coding problems

The family line of integer-forcing can be traced back to lattice codes and their applica-

tions in communications. For many additive white Gaussian noise (AWGN) channels,

nested lattice codes can approach the performance of standard random coding strate-

gies. For instance, nested lattice codes achieve the capacity of the AWGN point-to-

point channel [Erez and Zamir, 2004] and can achieve the diversity-multiplexing trade-

off of MIMO channels [Gamal et al., 2004]. One advantage of a lattice code is that its

algebraic structure ensures that an integer combination of lattice codewords is itself

a valid lattice codeword. Based on lattice coding, compute-and-forward was intro-

duced in [Nazer and Gastpar, 2011] as a relaying strategy for distributed MIMO relay

networks. In compute-and-forward, all messages are encoded using the same lattice
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codebook and each relay decodes a linear combination of interfering messages. Relays

then forward combinations to a central base station where the combinations are solved

as linear equations for the desired messages. Compared to classical relaying strategies

like decode-and-forward [Cover and Gamal, 1979,Laneman et al., 2004,Kramer et al.,

2005, Gamal et al., 2007], compress-and-forward [Cover and Gamal, 1979, Kramer

et al., 2005,Kim, 2008,Aleksic et al., 2009,Sanderovich et al., 2009,Lim et al., 2011]

and amplify-and-forward [Laneman et al., 2004,Gamal et al., 2007,Gastpar and Vet-

terli, 2005,Borade et al., 2007], compute-and-forward shows advantages in moderate

signal-to-noise ratio (SNR) regimes. The performance of compute-and-forward in-

creases when the channel matrix is close to an integer matrix. To create an integer

channel matrix, integer-forcing [Zhan et al., 2014] was introduced. By allowing the

receiver to equalize the channel to any full-rank integer matrix instead of the identity

matrix, integer-forcing linear receiver outperforms traditional linear receivers like the

minimum mean square error (MMSE) receiver and ZF linear receiver.

Following [Zhan et al., 2014], several extensions of integer-forcing have been de-

veloped. For the K-user Gaussian MIMO MAC, integer-forcing can approach the

sum capacity to within a constant gap of K
2 logK [Ordentlich et al., 2012]. The

results can be generalized for unequal (or asymmetric) power allocation across trans-

mitters [Ntranos et al., 2013a]. An advanced technique named successive integer-

forcing [Ordentlich et al., 2013] was proposed to achieve the sum capacity of the

Gaussian MIMO MAC. Integer-forcing coupled with space-time codes was proposed

in [Ordentlich and Erez, 2015a], which universally approaches the capacity of any

Gaussian MIMO channel up to a constant gap that depends only on the number of

transmit antennas. The above achievability and optimality results are unified and

generalized in [Nazer et al., 2016] and we point interested readers to that paper for

more details.
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Extending integer-forcing into other communication models emerges as an interest-

ing direction. Three models recently attract particular attention: the Gaussian MIMO

BC (or downlink channel), the Gaussian distributed source coding problem and the

Gaussian interference channel. For the downlink MIMO BC channel, [Hong and Caire,

2012] showed that integer-forcing can be employed as a beamforming strategy. For

the Gaussian distributed source coding problem, [Ordentlich and Erez, 2013] demon-

strated how integer-forcing can be used as a lattice-based distributed equalization

scheme. Integer-forcing can also be used as an interference alignment technique [Ntra-

nos et al., 2013b] for the Gaussian MIMO interference channel. Specifically, integer-

forcing interference alignment (IFIA) can exploit both signal-space alignment and

signal-scale alignment while conventional alignment schemes only exploit either one

or the other. In this dissertation, we propose a class of iterative optimization algo-

rithms for IFIA and show that IFIA outperforms existing algorithm like Max-SINR

algorithm [Gomadam et al., 2011] when linear strategies are not feasible in a degrees-

of-freedom sense [Yetis et al., 2010].

1.2.2 Duality in multiterminal coding problems

The history of duality in information theory dates back to Shannon’s landmark pa-

per on rate-distortion theory [Shannon, 1959]. Shannon pointed out the similarity

between the data compression problem and data transmission problem which can be

studied as information-theoretic duals between source coding and channel coding.

Cover and Thomas formulated the source-channel duality in [Cover and Thomas,

2006, Page. 324-325] using an interpretation of packing versus covering. Later, source-

channel duality was extended to multiterminal channels [Pradhan et al., 2002, Yu,

1998] and source coding with side information [Pradhan et al., 2003, Barron et al.,

2003,Cover and Chiang, 2002].

For multiterminal channels, there is another form of duality between the BC
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and the MAC known as uplink-downlink duality. (Uplink corresponds to the MAC

and downlink corresponds to the BC.) Uplink-downlink duality was introduced in

[Jindal et al., 2003] and has been used to characterized the sum capacity of the vector

Gaussian broadcast channel [Viswanath and Tse, 2003, Vishwanath et al., 2003, Yu

and Cioffi, 2004]. It can be shown that the capacity of the Gaussian BC can be

expressed by the capacity region of a reciprocal Gaussian MAC with only a total power

constraint. Similar results are established for the deterministic BC and deterministic

MAC in [Jindal et al., 2004]. A re-interpretation of uplink-downlink duality is given

in [Yu, 2006] using Lagrangian duality in a minimax optimization approach.

Combining uplink-downlink duality and source-channel duality, a “duality loop”

can be created for four multiterminal coding problems: broadcast channel coding,

multiple-access channel coding, multiterminal source coding [Berger, 1977] and mul-

tiple description (MD) coding [Gamal and Cover, 1982]. We point interested read-

ers to [Stanković et al., 2006] for more details. Duality builds connections between

different problems. In many scenarios, duality can map algorithms, schemes or sim-

ply intuitions from one problem to another. When there are well-developed results

in one model, duality can be used to either develop or inspire new solutions to

the dual problem. Many motivations and inspirations in channel and source cod-

ing come from duality. To list but a few, the sum capacity of the vector Gaussian

broadcast channel [Viswanath and Tse, 2003,Vishwanath et al., 2003,Yu and Cioffi,

2004] was characterized from the MAC sum capacity using uplink-downlink dual-

ity, trellis-coded quantization [Marcellin et al., 1990] was inspired from trellis-coded

modulation [Ungerboeck, 1982] using source-channel duality and the Max-SINR algo-

rithm [Gomadam et al., 2011] for Gaussian interference channel is based on the idea

of duality in channel reciprocity.

There are three main types of dualities in multiterminal channels: formula dual-
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ity, functional duality and operational duality. A good summary of these dualities is

given in [Stanković et al., 2006]. Formula duality is established upon the expressions

for achievable rates in two dual coding problems. It is also referred as random cod-

ing level duality in [Wang and Viswanath, 2003]. Source-channel duality in [Cover

and Chiang, 2002, Yu, 1998] and uplink-downlink duality in [Viswanath and Tse,

2003,Vishwanath et al., 2003,Jindal et al., 2004] all fall into the category of formula

duality. Functional duality, compare to formula duality, is a stronger connection

which provides insights about the encoders and decoders. For functional duality, the

optimal encoder/decoder in one problem can be identically mapped from the optimal

decoder/encoder of another. Examples of functional duality are given in [Pradhan

et al., 2003,Pradhan et al., 2002] between channel and source coding. Operational du-

ality is a special duality developed for deterministic binning schemes. It is established

between source and channel coding where one uses the same maximal codebook by

reversing the operation of encoding and decoding from another [Wang and Viswanath,

2003].

This dissertation develops two dualities for integer-forcing: one source-channel du-

ality and one uplink-downlink duality. Both dualities in this dissertation are formula

duality since they are established according to the rate expressions of IF. However,

both dualities also provide insight between different coding schemes in different com-

munication models such as channel equalization, beamforming, integer combination

selections and successive cancellation strategies, which lead to a stronger connection

in both cases. Further development of functional duality for IF can be considered as

an interesting direction for future works.
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1.3 Contributions

The main contributions of this dissertation focus on three integer-forcing problems.

Two of them are directly related to duality establishment: uplink-downlink duality for

integer-forcing and source-channel duality for integer-forcing. Both dualities are de-

veloped as formula duality along with additional insights into connections of encoding

scheme design and decoding scheme design. Fig. 1·1 shows the relationships among

the two dualities as well as the channel models they are connected with. Fig. 1·1 also

shows a potential “duality ring” establishment in future work.

Multiple-Access Broadcast

Channel

Source

IF-MAC

IF-Distributed Lossy

IF-BC

Uplink-Downlink
Duality

Channel-Source
Duality

Future work

Figure 1·1: Overview of duality relationships for integer-forcing (IF)

Before the establishment of dualities, modifications and extensions for existing

coding schemes are needed in both IF BC channel coding and IF source coding.

Table 1.1 list the modifications and extensions proposed in this dissertation as well

as corresponding results from previous works.

This dissertation also proposes a class of iterative optimization algorithms for

integer-forcing interference alignment (IFIA) inspired by the idea of duality. We

provide details about our contributions in the rest of this section and summarize

them for each problem separately.
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IF-MAC IF-BC IF Source Coding
Symmetric rates,
equal powers

[Nazer and Gast-
par, 2011, Zhan
et al., 2014]

[Hong and Caire,
2012]

[Ordentlich and
Erez, 2013]

Asymmetric rates,
equal powers

[Ordentlich et al.,
2014]

This
dissertation

This
dissertation

Asymmetric rates,
equal powers,
successive cancel-
lation

[Ordentlich et al.,
2013]

This
dissertation

This
dissertation

Asymmetric rates,
unequal powers,
successive cancel-
lation

[Nazer et al., 2016]
This
dissertation

This
dissertation

Table 1.1: Modifications and extensions for IF coding schemes

1.3.1 Uplink-downlink duality for IF

IF in MAC is well studied in [Zhan et al., 2014, Ordentlich et al., 2012, Ordentlich

et al., 2013,Nazer et al., 2016]. Specifically, successive integer-forcing (SIC-IF) [Or-

dentlich et al., 2013] can achieve the sum capacity of Gaussian MIMO MAC. On

the other hand, only limited work has been done for IF in BC [Hong and Caire,

2012]. The establishment of IF uplink-downlink duality is performed in a two-stage

development: the modification of reverse compute-and-forward in [Hong and Caire,

2012] and uplink-downlink duality establishment. Finally, several by-products are

generated from the duality results.

• Modification of reverse compute-and-forward:

– We expand works in [Hong and Caire, 2012] to unequal powers.

– We expand works in [Hong and Caire, 2012] to asymmetric rates for mul-

tiple linear combinations.

– We provide an interpretation in terms of signal levels for IF in BC.
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– We develop an advanced coding scheme called dirty-paper integer-forcing

(DPC-IF).

• Uplink-downlink duality establishment:

– We establish a sum-rate uplink-downlink duality for IF (without SIC-IF

and DPC-IF) under a total power constraint where the same sum rate can

be achieved by reversing the roles of transmitters and receivers between

MAC and BC.

– We further establish an advanced sum-rate uplink-downlink duality be-

tween SIC-IF and DPC-IF.

• By-products:

– We propose an iterative optimization algorithm for beamforming and equal-

ization in both the uplink and downlink channel.

– We show IF (without DPC-IF) can approach the sum capacity of the K-

user Gaussian MIMO BC up to a constant gap of K
2 logK.

– We show DPC-IF can achieve the sum capacity of the Gaussian MIMO

BC.

1.3.2 Source-channel duality for IF

Similar to the uplink-downlink duality establishment, the source-channel duality es-

tablishment for IF is a two-stage process. Modifications will first be performed for

integer-forcing source coding in [Ordentlich and Erez, 2013], then we build the duality

connection.

• Modification of integer-forcing source coding:

– We expand [Ordentlich and Erez, 2013] to allow for unequal distortions.
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– We generalize [Ordentlich and Erez, 2013] to allow for asymmetric rates

across users.

– We develop an advanced technique called successive integer-forcing source

coding (SIC-IFSC).

• Source-channel duality establishment:

– We establish a source-channel duality between SIC-IFSC and SIC-IF where

the same rate tuple can be achieved between an IF channel coding problem

and its dual distributed source coding problem.

– We show that even without SIC in both cases, the rates of IF source coding

and channel coding lie within a constant gap of one another.

1.3.3 IFIA: Iterative optimization via aligned lattice reduction

For IFIA, this dissertation proposes a class of iterative optimization algorithms. The

IF duality results are not directly applied in the algorithms. Instead, the idea of

duality inspires and motivates the development of the algorithms for IFIA in this

dissertation.

There are two main components: an aligned lattice reduction algorithm and an

equalization/beamforming optimization algorithm that utilizes either uplink-downlink

duality or convexity. Here we list our contributions as well as comparisons with ex-

isting works.

• We consider static channel realizations and the low/moderate SNR regime,

whereas [Cadambe and Jafar, 2008, Jafar, 2011] consider the high SNR regime

and a large number of channel realizations.

• Prior work [Ntranos et al., 2013b] only considered IFIA for scenarios where the

beamforming vectors can be obtained directly from the framework of [Cadambe
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and Jafar, 2008]. We propose aligned lattice reduction algorithms to find better

beamforming vectors.

• Both [Gomadam et al., 2011] and our work consider limited channel realizations

and the low/moderate SNR regime. However, [Gomadam et al., 2011] did not

allow for signal scale alignment. The performance of Max-SINR algorithm in

[Gomadam et al., 2011] degrades for an infeasible scenario in [Yetis et al., 2010].

We explore both feasible and infeasible scenarios in [Yetis et al., 2010] and show

rate gains in both cases.

1.4 Scopes

This dissertation considers constant (block-fading) channels rather than time-varying

channels. We will assume all channel matrices are real-valued. Since a complex

channel matrix can be transformed to a real-valued channel matrix via its real-valued

decomposition, the results in this dissertation can also be applied to complex-valued

channel models. We will assume that channel state information (CSI) is available

both at the transmitter (CSIT) and receiver (CSIR).

We will make use of the following notation. Column vectors will be denoted by

boldface, lowercase font (e.g., a ∈ ZL) and matrices with boldface, uppercase font

(e.g., A ∈ ZL×L). Let a[i] denote the ith coordinate of the vector a. We will use ‖a‖ to

represent `2-norm of a and Tr(A) to represent the trace of A. We will also use diag(a)

to denote the diagonal matrix formed by using the placing the elements of a along the

diagonal. All logarithms are taken to base 2 and we define log+(x) , max(0, log x).

We denote the identity matrix by I, the all-ones column vector of length k by 1k and

the all-zeros column vector of length k by 0k. Let Pπ denote the permutation matrix

corresponding to permutation π.

We will work with both the real field R and prime-sized finite fields
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Zp = {0, 1, . . . , p − 1} where p is prime. We will denote addition and summa-

tion over the reals by + and ∑, respectively. For a prime-sized finite field, we will

use ⊕ and ⊕ to denote addition and summation, respectively. Define [a] mod p to

be the modulo-p reduction of a. For vectors and matrices , the modulo-p operation

is taken elementwise and denoted by [a] mod p and [A] mod p, respectively. Taking

a linear combination over a prime-sized finite field can be linked to taking a linear

combination over the reals as follows,

q1w1 ⊕ q2w2 = [q1w1 + q2w2] mod p . (1.1)

Note that, on the left-hand side, q1, q2, w1, w2 are elements of the finite field whereas,

on the right-hand side, they are elements of the integers under the natural mapping.

Finally, subscripts “u” and “d” will be used to denote variables associated with the

uplink and downlink, respectively.

The remainder of this dissertation is organized as follows. We first review some

basic lattice definitions in Chapter 2. In Chapter 3 we include the problem statement,

proposed coding scheme and achievable rates for IF for the MIMO MAC. We do the

same for IF broadcast channel coding in Chapter 4 and IF source coding in Chapter 5.

In Chapter 6, we establish both uplink-downlink duality and channel-source duality

for IF. We also include by-products for IF uplink-downlink duality and a constant

gap result for IF channel-source duality. We switch to the IFIA problem in Chapter 7

including a problem statement, algorithms and simulations. Finally, we state our

conclusions and summarize continuing works in Chapter 8.
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Chapter 2

Lattice Preliminaries

2.1 Lattice Definitions

Below, we review some basic lattice definitions as well as nested lattice code construc-

tions that we will need for our achievability results. See [Zamir, 2014] for a thorough

introduction to lattice codes.

A lattice Λ is a discrete additive subgroup of Rn such that, if λ1,λ2 ∈ Λ, then

λ1 + λ2 ∈ Λ and −λ1,−λ2 ∈ Λ. The nearest neighbor quantizer associated to Λ is

defined as

QΛ(x) , arg min
λ∈Λ

‖x− λ‖ (2.1)

(with ties broken in a systematic fashion). The fundamental Voronoi region V of Λ

is the set of all points in Rn that quantize to 0. We define the second moment Λ as

σ2(Λ) , 1
n

∫
V

‖x‖2 1
Vol(V)dx (2.2)

where Vol(V) denotes the volume of V .

We also define the modulo operation with respect to Λ as

[x] mod Λ , x−QΛ(x) (2.3)

and note that it satisfies a distributive law, [a[x] mod Λ+by] mod Λ = [ax+by] mod Λ

for all a, b ∈ Z and x,y ∈ Rn.
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Lemma 1 (Crypto Lemma). Let x be a random vector over Rn and d be an inde-
pendent random vector drawn uniformly over the Voronoi region V of the lattice Λ.
The modulo sum [x + d] mod Λ is independent of x and uniform over V.

See [Zamir, 2014, Ch 4.1] for a full proof.

The lattice ΛC is said to be nested in the lattice ΛF if ΛC ⊂ ΛF. In this case, ΛC is

called the coarse lattice and ΛF the fine lattice. A nested lattice codebook L = ΛF∩VC

consists of all fine lattice points that fall in the fundamental Voronoi region VC of the

coarse lattice. Note that nested lattices satisfy the following quantization property:

[
QΛF(x)

]
mod ΛC =

[
QΛF([x] mod ΛC)

]
mod ΛC . (2.4)

2.2 Nested Lattice Codes and Properties

Our encoding strategies rely on the existence of good nested lattice codebooks. Below,

we describe the nested lattice ensemble as well as properties that are central to our

achievability proofs. Our notation closely follows that from [Nazer et al., 2016, §IV],

which contains a more detailed exposition.

Recall that n denotes the blocklength of our coding scheme. Let p represent a

prime number and Zp the finite field of size p. We will also need integer-valued

parameters 0 ≤ kC,` ≤ kF,`, ` = 1, . . . , L. Define kC , min` kC,`, kF , max` kF,`, and

k , kF − kC.

The construction begins with the generator matrix of a linear code G ∈ ZkF×n
p .

For ` = 1, . . . , L, define GC,` and GF,` to be the submatrices consisting of the first

kC,` and kF,` rows of G, respectively. Let

CC,` =
{
GT

C,`w : w ∈ ZkC,`
p

}
(2.5)

CF,` =
{
GT

F,`w : w ∈ ZkF,`
p

}
(2.6)
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denote the resulting linear codebooks. For γ > 0 to be specified later, define the

mapping φ(w) , γp−1w from Zp to R. We also define the inverse mapping φ̄(κ) ,

[γ−1pκ] mod p, which is only defined on the domain γp−1Z. Both of these mappings

are taken elementwise when applied to vectors and will be used to go back and forth

between linear codebooks and lattices.

We now generate L coarse lattices and L fine lattices as follows:

ΛC,` =
{

λ ∈ γp−1Zn : φ̄(λ) ∈ CC,`
}

(2.7)

ΛF,` =
{

λ ∈ γp−1Zn : φ̄(λ) ∈ CF,`
}
. (2.8)

By construction, these lattices are nested according to the order for which the pa-

rameters kC,` and kF,` are increasing. Define ΛC and ΛF to be the coarsest and finest

lattices in the ensemble, respectively. Let VC,` and VF,` denote the Voronoi regions of

ΛC,` and ΛF,`, respectively. Finally, we take the elements of the fine lattice ΛF,` that

fall in the Voronoi region of the coarse lattice ΛC,` to be the nested lattice codebook

L` , ΛF,` ∩ VC,` (2.9)

for the `th user.

The theorem below summarizes results from [Ordentlich and Erez, 2015b] that

demonstrate that this nested lattice construction exhibits good shaping and noise

tolerance properties.

Theorem 1 ( [Ordentlich and Erez, 2015b, Theorem 2]). For ` = 1, . . . , L, select
parameters P` > 0 and 0 < σ2

eff,` < P`. Then, for any ε > 0 and n and p large enough,
there are parameters γ, kC,`, and kF,` and a generator matrix G ∈ ZkF×n

p such that,
for ` = 1, . . . , L

(a) the submatrices GC,` and GF,` are full rank.
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(b) the coarse lattices ΛC,` have second moments close to their power constraints

P` − ε < σ2(ΛC,`) < P` .

(c) the lattices can tolerate the desired level of effective noise. Let z0, z1, . . . , zL be
independent noise vectors where z0 ∼ N (0, I) and z` ∼ Unif(VC,`). For any
β0, β1, . . . , βL ∈ R, let zeff = ∑L

`=0 z`. If β2
0 +∑L

`=1 β
2
`P` ≤ σ2

eff,m, any fine lattice
point λ ∈ ΛF,m can recover from zeff with high probability,

P
(
QΛF,m

(λ + zeff) 6= λ
)
< ε .

Similarly, if β2
0 +∑L

`=1 β
2
`P` ≤ Pm, any coarse lattice point λ ∈ ΛC,m can recover

from zeff with high probability,

P
(
QΛC,m

(λ + zeff) 6= λ
)
< ε .

(d) the rates of the nested lattice codes satisfy

1
n

log |L`| =
kF,` − kC,`

n
log2 p >

1
2 log

(
P`
σ2
eff,`

)
− ε .

Finally, it can be argued that we can label lattice codewords so that integer-linear

combinations of codewords correspond to linear combinations of the messages over

Zp. We recall the definition of a linear labeling from [Feng et al., 2013].

Definition 1. We say that a mapping ϕ : ΛF → Zkp is a linear labeling if

(a) λ ∈ ΛF,` if and only if the last kF − kF,` components of its label ϕ(λ) are zero.
Similarly, λ ∈ ΛC,` if and only if the last kF− kC,` components of its label ϕ(λ)
are zero.

(b) For all a` ∈ Z and λ` ∈ ΛF, we have that

ϕ

(
L∑
`=1

a`λ`

)
=

L⊕
`=1

q`ϕ(λ`)

where q` = [a`] mod p.
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Consider the mapping that sets ϕ(λ) to be the last k components of the unique

vector v ∈ ZkF
p satisfying φ̄(λ) = GTv. From [Nazer et al., 2016, Theorem 10], ϕ is

a linear labeling. We also define the inverse map

ϕ̄ , φ

(
GT

[
0kC

w

])
,

which satisfies ϕ
(
ϕ̄(w)

)
= w.

2.3 Nested Lattices to Signal Levels

For a given message wu,` ∈ ZkF,`−kC,`
p where kF,` and kC,` are integers representing

signal levels, we select a shaping lattice ΛC,` related to the power constraint and a

coding lattice ΛF,` related to the noise tolerance. All lattice codebooks are subsets of

L , ΛF,max∩VC,min where ΛF,max is the finest coding lattice and ΛC,min is the coarsest

shaping lattice such that ΛC,min ⊂ ΛC,` ⊂ ΛF,` ⊂ ΛF,max for all `. The higher coding

power we have, the smaller kC,` will be and the coarser the ΛC,` we will choose. The

smaller noise tolerance is, the smaller kF,` will be and the finer coding lattice ΛF,` we

will select. The message wu,` will be encoded using codebook ΛF,` ∩ VC,` . Fig 2·1

shows the relationship between signal levels and the nested lattice code. Message

wu,` lies below the power levels related to the shaping lattice ΛC,` and above noise

tolerance level related to the coding lattice ΛF,`. For details about the signal level

representation of nested lattice codes, we refer readers to [Nazer et al., 2016].
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≈ σ(ΛF,`)

≈ σ(ΛC,`)

(a)

Noise
Tolerance

Level
Power

ΛC,min

e

0

ΛC,`

ΛF,max

ΛF,`

wu,`

(b)

Figure 2·1: (a) Nested lattices used to encode wu,`; and (b) Signal
levels correspond to nested lattice. Here kF,` − kC,` = 4 is the number
of signal levels allocated to message wu,`. Signal levels below noise
tolerance will be assigned to 0. Signal levels above power level are
“don’t care” entries e that can take any value. For unequal power
and asymmetric rate, different messages will have different power levels
and noise tolerances, thus lead to different shaping lattices ΛC,` and
coding lattices ΛF,`. All shaping lattices and coding lattices are nested
in a certain order and can be constructed using the codebook L ,
ΛF,max ∩ VC,min.
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Chapter 3

IF in MIMO Multiple-access Channel
Coding (Uplink)

3.1 Uplink Architecture

3.1.1 Problem Statement

The uplink channel (i.e., MIMO MAC) consists of L transmitters and a single N -

antenna receiver. The `th transmitter is equipped with M` transmit antennas. It has

a message wu,` that is drawn independently and uniformly from {1, 2, . . . , 2nRu,`}1 and

an encoder Eu,` : {1, 2, . . . , 2nRu,`} → RM`×n that maps this message into a channel

input Xu,` = Eu,`(wu,`) of blocklength n. It will often be convenient to work with the

concatenation of the channel inputs

Xu ,


Xu,1
...

Xu,L

 (3.1)

which is of dimension M × n where M = ∑
`M` denotes the total number of trans-

mit antennas. Conventional MAC models impose a power constraint on each user

individually. However, it is well-known that uplink-downlink duality can be estab-

lished only if we are free to reallocate the power across transmitters [Vishwanath

et al., 2003,Viswanath and Tse, 2003,Yu and Cioffi, 2004]. In this dissertation, the

transmitters must satisfy a total power constraint E
[

Tr(XuXT
u )
]
≤ nPtotal.

1Ru,` is the coding rate for the `th transmitter.
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The receiver observes a noisy linear combination of the emitted signals,

Yu =
L∑
`=1

Hu,`Xu,` + Zu (3.2)

where Hu,` ∈ RN×M` is the channel matrix from the `th transmitter to the receiver

and the additive noise Zu ∈ RN×n is elementwise i.i.d. Gaussian with mean zero and

variance one. We denote the concatenated channel matrices by

Hu ,
[
Hu,1 · · · Hu,L

]
, (3.3)

which lets us concisely write the channel output as

Yu = HuXu + Zu . (3.4)

This channel output is sent through a decoder Du : RN×n → {1, 2, . . . , 2nR1} × · · · ×

{1, 2, . . . , 2nRL} that produces estimates of the messages, (ŵu,1, . . . , ŵu,L) = Du(Yu).

Overall, we say that the uplink rates Ru,1, . . . , Ru,L are achievable if, for any

ε > 0 and n large enough, there exist encoders and decoder such that P
(⋃L

`=1{ŵu,` 6=

wu,`}
)
< ε. The uplink capacity region is the closure of the set of all achievable rates.

Tx 1

Tx 2

Tx L

...

Xu,1

Xu,2

Xu,L

Hu,1

Hu,2

Hu,L

Zu

Yu Rx

Figure 3·1: Block diagram of the uplink channel models.
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3.1.2 Conventional Approach: ZF Linear Receiver

The `th transmitter has a codeword su,` ∈ Rn with expected power 1
n
E‖su,`‖2 = Pu,`.

It uses a beamforming vector c` ∈ RM` to generate its channel input

Xu,` = cu,`sT
u,` . (3.5)

Collecting the beamforming vectors into the matrix

Cu ,


cu,1 0M1 . . . 0M1

0M2 cu,2 . . . 0M2
... ... . . . ...

0ML
0ML

. . . cu,L

 (3.6)

and the codewords into the matrix

Su ,


sT
u,1
...

sT
u,L

 (3.7)

we can write the beamforming operation as

Xu = CuSu . (3.8)

To recover the mth codeword, the receiver uses an equalization vector bu,m ∈ RN

to obtain the effective channel output

ỹT
u,m = bT

u,mYu (3.9)

= bT
u,mHu,mcu,msT

u,m︸ ︷︷ ︸
signal

+
∑
`6=m

bT
u,mHu,`cu,`sT

u,`︸ ︷︷ ︸
interference

+ bT
u,mZu︸ ︷︷ ︸
noise

, (3.10)

which is fed into a single-user decoder. By employing i.i.d. Gaussian codewords, the
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transmitters can achieve the following rates

Ru,m = 1
2 log

1 +
Pu,m

∣∣∣bT
u,mHu,mcu,m

∣∣∣2∑
` 6=m Pu,`

∣∣∣bT
u,mHu,`cu,`

∣∣∣2
 m = 1, . . . , L . (3.11)

3.1.3 Capacity Region for Uplink MIMO MAC

The uplink (i.e., MIMO MAC) capacity region Cu is the set of rate tuples

(Ru,1, . . . , Ru,L) satisfying

∑
`∈S

R` ≤
1
2 log det

(
I +

∑
`∈S

Hu,`K`HT
u,`

)
∀S ⊆ {1, 2, . . . , L} (3.12)

for some positive semi-definite matrices K1, . . . ,KL satisfying the sum power con-

straint ∑L
`=1 Tr(K`) ≤ Ptotal. It can be attained with i.i.d. Gaussian encoding and

simultaneous joint typicality decoding. See [El Gamal and Kim, 2011, section 9.2.1]

for more details.

3.2 Uplink Integer-Forcing Architecture

Our uplink coding scheme is taken from [Nazer et al., 2016, Section VI]. Below,

we summarize the encoding and decoding operations for successive integer-forcing in

order to highlight the similarities between the uplink and downlink integer-forcing

schemes.

We begin by selecting a power allocation Pu = diag(Pu,1, . . . , Pu,L) for the code-

words and a beamforming matrix Cu satisfying (3.6). Note that, in order to meet

the total power constraint with equality, we require that Tr(CT
uCuPu) = Ptotal.

We also select a full-rank integer matrix Au ∈ ZL×L, an equalization matrix

Bu = [bu,1 · · · bu,L]T ∈ RL×N , and an L× L lower unitriangular2 successive cancel-

lation matrix Ru. These choices specify the effective noise variances σ2
u,SIC,m which

2A unitriangular matrix is a triangular matrix with unit entries along its diagonal.
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will be introduced later.

wu,1

wu,2

wu,L

...

E

E

E

Transmitter (User) Receiver (Base Station)

Qu = [Au] mod p

su,1

su,2

su,L

cu,1

cu,2

cu,L

Xu,1

Xu,2

Xu,L

Hu,1

Hu,2

Hu,L

Zu

Yu
Bu

ỹ1

ỹ2

ỹL

D

D

D

...

ûu,1

ûu,2

ûu,L

Q−1
u

ŵu,1

ŵu,2

ŵu,,L

...

Figure 3·2: Block diagram of the integer-forcing uplink architecture.
Here E and D represent SISO encoder and decoder, respectively. Each
message vector wu,` is encoded into a dithered lattice codeword su,`
and mapped to a channel input Xu,` = cu,`sT

u,`. For m = 1, . . . , L,
the receiver uses an equalized channel output ỹu,m = bT

u,mYu to make
an estimate ûu,m of the linear combination uu,m. The SISO decoders
are potentially enhanced by successive cancellation (illustrated with
green arrows). Finally, the linear combinations are inverted to recover
estimates ŵu,` of the message vectors.

3.2.1 Overview of Uplink IF without SIC

The operations at the transmitters are the same as ZF, except that we use a nested

lattice codebook to ensure that integer-linear combinations of codewords are them-

selves codewords. The goal is to recover L integer-linear combinations of the form

aT
u,1Su, . . . , aT

u,LSu where the aT
u,m are the rows of a full-rank integer matrix Au ∈ ZL×L,

i.e.,

Au =


aT
u,1
...

aT
u,L

 . (3.13)
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wu,1

wu,2

wu,L

...

E

E

E

su,1

su,2

su,L

Au

zu,eff,2

zu,eff,1

zu,eff,L

ỹ1

ỹ2

ỹL

D

D

D

...

ûu,1

ûu,2

ûu,L

Q−1
u

ŵu,1

ŵu,2

ŵu,,L

...

Figure 3·3: Block diagram of the effective channel induced by
the integer-forcing uplink architecture. The mth decoder observes
an integer-linear combination of the codewords plus effective noise,∑
` au,m,`su,` + zu,eff,m from which it makes an estimate of the linear

combination uu,` with coefficients qu,m,` = [au,m,`] mod p. (If the de-
coders use successive interference cancellation, then zu,eff,m is replaced
with zu,SIC,m.) Finally, it applies the inverse of the matrix Qu = {qu,m,`}
over Zp to estimate the message.

To recover the mth linear combination aT
u,mSu, the receiver applies an equalization

vector bu,m ∈ RMm to form the effective channel output

ỹT
u,m = bT

u,mYu (3.14)

= aT
u,mSu + zT

u,eff,m (3.15)

zT
u,eff,m , bT

u,mZu +
(
bT
u,mHuCu − aT

u,m

)
Su . (3.16)

We define the effective noise variance as

σ2
u,eff,m ,

1
n
E‖zu,eff,m‖2 (3.17)

= ‖bu,m‖2 +
∥∥∥∥(bT

u,mHuCu − aT
u,m

)
P1/2

u

∥∥∥∥2
. (3.18)

The structure of the integer matrix Au determines which codewords can be can-

celed out in each decoding step. In order to keep our notation manageable, we assume

that Au is selected so that the mth user can be associated with the mth effective noise

variance. The following definition describes when this is possible.
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Definition 2. We say that the identity permutation is admissible for a full-rank
integer matrix Au if

(a) the effective noise variances are in increasing order, σ2
u,eff,1 ≤ · · · ≤ σ2

u,eff,,L and

(b) there exists a lower unitriangular matrix L ∈ RL×L such that LAu is upper
triangular.

The first condition can always be met by reordering the rows of Au. The second

condition always holds up to a column permutation on Au.

Using the algebraic successive cancellation technique introduced by Ordentlich et

al. in [Ordentlich et al., 2014], we can assign each effective noise variance to a single

transmitter.3 Interested readers can find details in [Ordentlich et al., 2014, Nazer

et al., 2016]. We will include detailed discussion of algebraic successive cancellation

in Section 3.2.3. Here, we will assume that the transmitters have been reindexed so

that the identity permutation is admissible according to Definition 2.

It follows from [Nazer et al., 2016, Lemma 10] that the following rates (without

SIC, which is a special case for the SIC scheme in Section 3.2.3) are achievable:

Ru,m = 1
2 log+

(
Pu,m

σ2
u,eff,m

)
m = 1, . . . , L . (3.19)

To recover the codewords, the receiver now just applies the inverse of the integer

matrix. As argued in [Zhan et al., 2014], this inverse can be performed over the finite

field from which the messages and nested lattice codes are drawn.

Even without SIC, IF shows its advantage to ZF in both transmission rate and

robustness to imperfect channel state information. Figure 3·4 and Figure 3·5 show the

advantages with comparisons to ZF and channel capacity. In Figure 3·4, we assume

symmetric coding powers and asymmetric rates. We compare the performance of

IF, ZF and joint ML decoder by averaging the asymmetric rates among 4 users. In
3Without algebraic successive cancellation, all transmitters will be constrained by the worst

effective noise variance, which will prevent us from establishing uplink-downlink duality.
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Figure 3·4: Comparison of average rate between IF, ZF and Capacity.
Here we compare the average rate (bits per transmission) for 4 users in
the uplink.

Figure 3·5, we assume the receiver observes a noisy channel matrix Hu + Zc,u where

Hu is the channel matrix and Zc,u is i.i.d. Gaussian noise matrix with zero means.

We increase the noise variance of Zc,u and compare the performance of IF and ZF by

averaging the 1% outage rate across 4 users.

3.2.2 Overview of Uplink IF with SIC

The performance of uplink integer-forcing architecture can also be improved by the

SIC technique. For the uplink, each decoder can use recovered integer-linear combi-

nations as side information to improve its effective channel [Ordentlich et al., 2013].

Let Ru be a lower, unitriangular matrix. At the mth decoder, we assume that

aT
u,1Su, . . . , aT

u,m−1Su have been recovered correctly and form the following effective
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Figure 3·5: Robustness of IF to imperfect channel state information.
Here we increase the noise for CSI estimation. The SNR is fixed for
20dB. We evalutate the performance using 1% outage rate and choose
the average across 4 users.

channel

ỹT
u,m = bT

u,mYu −
m−1∑
`=1

ru,m,` aT
u,`Su (3.20)

= aT
u,mSu + zT

u,SIC,m (3.21)

zT
u,SIC,m ,

(
bT
u,mHuCu − rT

u,mAu
)
Su + bT

u,mZu . (3.22)

where rT
u,m is the mth row of Ru and ru,m,` is the (m, `)th entry. The effective noise

variance is defined to be

σ2
u,SIC,m ,

1
n
E‖zu,SIC,m‖2 (3.23)

= ‖bu,m‖2 +
∥∥∥∥(bT

u,mHuCu − rT
u,mAu

)
P1/2

u

∥∥∥∥2
(3.24)
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From [Nazer et al., 2016, Theorem 5], the following rates are achievable:

RSIC
u,m = 1

2 log+
(

Pu,m

σ2
u,SIC,m

)
m = 1, . . . , L . (3.25)

Here we rewrite Definition 2 for IF with SIC.

Definition 3. We say that the identity permutation is admissible for a full-rank
integer matrix Au if

(a) the effective noise variances are in increasing order, σ2
u,SIC,1 ≤ · · · ≤ σ2

u,SIC,L

and

(b) there exists a lower unitriangular matrix L ∈ RL×L such that LAu is upper
triangular.

Note that Ru will also need to be modified, since it will not remain upper unitri-

angular under row permutation. Again, for the remainder of the paper, we assume

that the rows and columns of Au have been reindexed so that these two conditions

are satisfied.

Furthermore, for our decoding procedure, we will need to triangularize Au over

Zp in the following sense. We need a lower unit-triangular matrix L̄ ∈ ZL×Lp such

that Ā = [L̄Au] mod p is upper triangular. By [Ordentlich et al., 2014, Appendix A],

such a matrix always exists if Definition 3 is satisfied. It also follows that L̄ has a

lower unit-triangular inverse L̄(inv) over Zp.

Remark 1. The uplink integer-forcing strategy without SIC is equivalent to setting
Ru = I. We omit a full description of this special case for the sake of brevity and
state the achievable rates .

Remark 2. Although it is not immediately obvious, any rate tuple that is achievable
via a conventional linear architecture is also achievable via an integer-forcing linear
architecture by using the same beamforming matrix, setting the integer matrix to be
the identity matrix, and scaling the equalization vectors by the appropriate MMSE
coefficient [Zhan et al., 2014, Lemma 3]. While [Zhan et al., 2014] only establishes
this for the uplink without SIC, this can be directly generalized to the SIC case as well
as the downlink with or without DPC.
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3.2.3 Uplink Integer-Forcing Architecture with SIC

Recall from Chapter 2 that using the linear labeling ϕ, we can show that each nested

lattice codebook L` is isomorphic to the vector space ZkF,`−kC,`
p . Each user will take the

p-ary expansion of its message index wu,` to obtain a message vector wu,` ∈ ZkF,`−kC,`
p .

The intermediate goal of the receiver is to recover L linear combinations of the form

uu,m =
L⊕
`=1

qu,m,`w̃u,` (3.26)

where qu,m,` = [au,m,`] mod p, au,m,` is the (m, `)th entry of Au, and w̃u,` ∈ Jwu,`K with

Jwu,`K ,

w ∈ Zkp : w =

 e
wu,`

0kF−kF,`

 for some e ∈ ZkC,`−kC
p

 . (3.27)

That is, the receiver attempts to recover L linear combinations of cosets of the mes-

sages. As discussed in [Nazer et al., 2016], the flexibility to choose e above seems to

be necessary in order to permit unequal power allocation across the users via nested

lattice codes.

We now state the encoding and decoding steps used in the successive integer-

forcing architecture. We select an ensemble of good nested lattices

ΛC,1, . . . ,ΛC,L,ΛF,1, . . . ,ΛF,L

with parameters Pu,1, . . . , Pu,L and σ2
SIC,1, . . . , σ

2
SIC,L using Theorem 1.

Encoding: The `th transmitter starts by taking the p-ary expansion of its message

index wu,` to obtain the message vector wu,` ∈ ZkF,`−kC,`
p . It then uses the inverse

linear labeling to map this to a lattice point

λu,` =

ϕ̄

0kC,`−kC

wu,`
0kF−kF,`



 mod ΛC,` (3.28)
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and dithers it to produce the codeword

su,` = [λu,` + du,`] mod ΛC,` (3.29)

where the dither vector du,` is drawn independently and uniformly over VC,`. Thus,

by the Crypto Lemma and Theorem 1(b), su,` is independent of λu,` and has power

close to Pu,`. Finally, the transmitter uses its beamforming vector cu,` to produce its

channel input

Xu,` = cT
u,`su,` . (3.30)

Decoding: The receiver attempts to recover linear combinations of the form (3.26)

one-by-one via successive cancellation and then solve them to obtain estimates of the

message vectors. As an intermediate step, the receiver will attempt to decode certain

integer-linear combinations of the lattice codewords, i.e.,

µu,m =
[

L∑
`=1

au,m,` λ̃u,`

]
mod ΛC (3.31)

where λ̃u,` , λu,` − QΛC,`
(λu,` + du,`). The linear labels of these integer-linear com-

binations correspond to the desired linear combinations, ϕ(µu,m) = uu,m. It will also

attempt to recover integer-linear combinations of the dithered codewords, i.e.,

tu,m = aT
u,mSu . (3.32)

The main obstacle is that, in order to decode the mth integer-linear combination,

the receiver must first cancel out the first m−1 codewords using the priorm−1 linear

combinations. This is accomplished via the algebraic SIC technique from [Ordentlich
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et al., 2014]. Define

νu,m =
[
µu,m +

m−1∑
i=1

l̄m,iµu,i

]
mod ΛC (3.33)

=
[

L∑
`=1

ām,` λ̃u,`

]
mod ΛC (3.34)

where l̄m,i is the (m, i)th entry of L̄ and ām,` is the (m, `)th entry of Ā defined above.

Note that νu,m ∈ ΛF,m and, given ν1, . . . ,νm, we can recover µu,m:

µu,m =
[

m∑
i=1

l̄
(inv)
m,i νi

]
mod ΛC (3.35)

where l̄(inv)
m,i is the (m, i)th entry of L̄(inv).

We now proceed by induction. For the mth decoding step, we assume that the

receiver has already successfully recovered the previous m−1 integer-linear combina-

tions, i.e., µ̂u,1 = µu,1, . . . , µ̂u,m−1 = µu,m−1 and t̂u,1 = tu,1, . . . , t̂u,m−1 = tu,m−1. The

receiver uses this side information to form the effective channel output

ỹT
u,m = bT

u,mYu −
m−1∑
`=1

ru,m,` t̂u,` . (3.36)

The receiver then removes the dithers4, nulls out the lattice codewords corresponding

to the first m− 1 users, and quantizes onto the mth fine lattice,

νu,m =
[
QΛF,m

(
ỹu,m +

m−1∑
i=1

l̄m,iµ̂m,i −
L∑
`=1

au,m,` du,`

)]
mod ΛC (3.37)

=
[
QΛF,m

(νu,m + zu,SIC,m)
]

mod ΛC (3.38)

where the second step follows from [Nazer et al., 2016, §VI]. It then forms an estimate
4See [Nazer et al., 2016, Appendix H] for a proof that it suffices to use fixed dithers.
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of its desired linear combination

µ̂u,m =
[

m∑
i=1

l̄
(inv)
m,i ν̂i

]
mod ΛC (3.39)

ûu,m = ϕ(µ̂m) . (3.40)

Finally, it attempts to recover the integer combination of the dithered codewords and

proceed to the next round of induction,

χ̂m =
[
µ̂m +

L∑
`=1

au,m,` du,`

]
mod ΛC (3.41)

t̂m = QΛC(ỹm − χ̂m) + χ̂m . (3.42)

After decoding all {ûu,m : m = 1, · · · , L}, since Au is full rank, we can invert

linear combinations 
ŵu,1
...

ŵu,L

 = Q−1
u


ûu,1
...

ûu,L

 . (3.43)

and solve for {ŵu,` : ` = 1, · · · , L}. If for any ε > 0 and n large enough, there exist

encoders and decoder such that P
(⋃L

m=1{ûu,m 6= uu,m}
)
< ε, then P

(⋃L
m=1{ŵu,m 6=

wu,m}
)
< ε.

Theorem 2 ( [Nazer et al., 2016, Lemma 13]). For the successive integer-forcing
architecture described above, the following rates are achievable

RSIC
u,m = 1

2 log+
(

Pu,m

σ2
u,SIC,m

)
m = 1, . . . , L . (3.44)

For a full proof, see [Nazer et al., 2016, §VI].

Corollary 3. For Ru = I, the rates in (3.19) (corresponding to integer-forcing with-
out SIC) are achievable.
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Chapter 4

IF in MIMO Broadcast Channel Coding
(Downlink)

4.1 Downlink Architecture

4.1.1 Problem Statement

The downlink channel model mirrors the uplink channel model. There is a single N -

antenna transmitter and L receivers. LetM` represent the number of antennas at the

`th receiver and let M = ∑
`M` be the total number of receive antennas. The trans-

mitter has L messages: the `th message wd,` is drawn independently and uniformly

from {1, 2, . . . , 2nRd,`} and is intended for the `th receiver. The transmitter uses an

encoder Ed : {1, 2, . . . , 2nRd,1}×{1, 2, . . . , 2nRd,L} → RN×n to map these messages into

a channel input Xd = Ed(wd,1, . . . , wd,L) where n represents the blocklength. This

channel input must satisfy a total power constraint E
[

Tr(XdXT
d )
]
≤ nPtotal.

For m = 1, . . . , L, the channel output observed by the mth receiver is

Yd,m = Hd,mXd + Zd,m (4.1)

where Hd,m ∈ RMm×N is the channel matrix from the transmitter to the mth

receiver and the noise Zd,m ∈ RMm×n is elementwise i.i.d. Gaussian with mean

zero and variance one. The receiver passes its channel output through a decoder

Dd,m : RMm×n → {1, 2, . . . , 2nRd,m} in order to get an estimate ŵd,m = Dd,m(Yd,m) of

its desired message.
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Overall, we say that the downlink rates Rd,1, . . . , Rd,L are achievable if, for any ε >

0 and n large enough, there exist an encoder and decoders such that P
(⋃L

`=1{ŵd,` 6=

wd,`}
)
< ε. The downlink capacity region is the closure of the set of all achievable

rates.

Finally, it will often be useful to work with the following concatenated matrices,

Yd ,


Yd,1
...

Yd,L

 Hd ,


Hd,1
...

Hd,L

 Zd ,


Zd,1
...

Zd,L

 , (4.2)

which enable us to compactly write the downlink channel output as

Yd = HdXd + Zd . (4.3)

Rx 1

Rx 2

Rx L

...

Zd,2

Zd,1

Zd,L

Yd,1

Yd,2

Yd,L

Hd,1

Hd,2

Hd,L

Xd
Tx

Figure 4·1: Block diagram of the downlink channel models.

4.1.2 Conventional Approach: ZF Linear Beamforming

The transmitter has a codeword sd,` ∈ Rn intended for the `th receiver with expected

power 1
n
E‖sd,`‖2 = Pd,`. It collects these codewords into a matrix

Sd ,


sT
d,1
...

sT
d,L

 (4.4)
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and applies a beamforming matrix Bd ∈ RN×L to create its channel input

Xd = BdSd . (4.5)

The mth receiver uses an equalization vector cd,m ∈ RMm to form an effective

channel output w

yT
d,m = cT

d,mYd (4.6)

= cT
d,mHd,mbd,msT

d,m︸ ︷︷ ︸
signal

+
∑
`6=m

cT
d,mHd,`bd,`sT

d,`︸ ︷︷ ︸
interference

+ cT
d,mZd,m︸ ︷︷ ︸
noise

. (4.7)

Using i.i.d. Gaussian codewords, we can achieve the following rates:

Rd,m = 1
2 log

1 +
Pd,m

∣∣∣cT
d,mHd,mbd,m

∣∣∣2∑
`6=m Pd,`

∣∣∣cT
d,mHd,`bd,`

∣∣∣2
 m = 1, . . . , L . (4.8)

4.1.3 Capacity Region for Downlink MIMO BC

As shown by [Weingarten et al., 2006], the downlink (i.e., MIMO BC) capacity region

Cd is the convex hull of the set of rate tuples (Rd,1, . . . , Rd,L) satisfying

Rθ(`) ≤
1
2 log

det
(
I +∑

m≥` Hd,mKmHT
d,m

)
det

(
I +∑

m>` Hd,mKmHT
d,m

)
, ` = 1, . . . , L . (4.9)

for some permutation θ of {1, 2, . . . , K} and positive semi-definite matrices

K1, . . . ,KL satisfying the sum power constraint ∑L
`=1 Tr(K`) ≤ Ptotal. It can be

attained using dirty-paper coding at the transmitter and joint typicality decoding at

the receivers. See [Weingarten et al., 2006] or [El Gamal and Kim, 2011, §9.6.4] for

more details.

Uplink-Downlink Duality. It can be argued that the uplink and downlink capacity

regions described above are equal to one another, Cu = Cd. This was first shown for

the sum-capacity [Vishwanath et al., 2003,Viswanath and Tse, 2003,Yu and Cioffi,
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2004] and then for the full capacity region [Weingarten et al., 2006].

4.2 Downlink Integer-Forcing Architecture

The key idea underlying downlink integer-forcing is the fact that the transmitter

can pre-invert the linear combinations prior to encoding. This technique, which was

first proposed by Hong and Caire [Hong and Caire, 2012, Hong and Caire, 2013],

allows each receiver to decode any integer-linear combination of the codewords in

order to reduce the effective noise but still recover its desired message. These papers

focused on the important special case where all users employ the same fine and coarse

lattices, and thus have equal powers and must tolerate the worst effective noise across

receivers. Below, we generalize their strategy to allow for unequal powers and a unique

effective noise variance associated to each receiver. If the transmit antennas operate

at different power levels, it is not possible to simply invert the linear combinations

at the transmitter. Instead, for each symbol, we will need to apply the inverse of

a submatrix that only includes the participating transmitters. Afterwards, we will

introduce a dirty-paper integer-forcing scheme, building on the lattice-based dirty-

paper strategy from [Zamir et al., 2002,Erez et al., 2005].

4.2.1 Downlink IF Architecture without DPC

We use the same encoding operations at the transmitter as in a conventional linear

architecture. As in the uplink, we employ a nested lattice codebook to ensure that the

codebook is closed under integer-linear combinations. As first proposed by Hong and

Caire [Hong and Caire, 2012,Hong and Caire, 2013], we can also apply a precoding

step over the finite field in order to “pre-invert” the linear combinations before map-

ping the messages to codewords. This step ensures that each receiver, upon recovering

its integer-linear combination of codewords, can also obtain its desired message.
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ỹd,1
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ud,1

ud,2

ud,L

Q−1
d

wd,1
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Figure 4·2: Block diagram of the integer-forcing downlink architec-
ture. The encoder applies the inverse of Qd = [Ad] mod p over Zp to the
message vectors wd,1, . . . ,wd,L and then maps the results to dithered
lattice codewords sd,1, . . . , sd,L. The SISO encoders are possibly en-
hanced with dirty-paper coding (illustrated by green arrows). The
channel input is formed by beamforming these codewords, Xd = BdSd.
The mth decoder uses an equalized channel output ỹd,m = cT

d,mYd,m to
make an estimate of an integer-linear combination of the lattice code-
words, which, due to the inverse operation corresponds to an estimate
of its desired message.

The mth receiver attempts to recover the linear combination aT
d,mSd where aT

d,m is

the mth row of the full-rank, integer matrix Ad ∈ ZL×L, i.e.,

Ad =


aT
d,1
...

aT
d,L

 . (4.10)

To do so, it uses an equalization vector cd,m ∈ RMm to form the effective channel

output

ỹT
d,m = cT

d,mYd,m (4.11)

= aT
d,mSd + zT

d,eff,m (4.12)

zT
d,eff,m ,

(
cT
d,mHd,mBd − aT

d,m

)
Sd + cT

d,mZd,m . (4.13)
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Figure 4·3: Block diagram of the effective channel induced by
the integer-forcing downlink architecture. The mth decoder observes
an integer-linear combination of the codewords plus effective noise,∑
` ad,m,`sd,` + zd,eff,m. (If the encoders use dirty-paper coding, then

zd,eff,m is replaced with zu,DPC,m.) Since the encoder applied the inverse
of Qd = [Ad] mod p over Zp to the message vectors prior to mapping
them to lattice codewords, then the mth integer-linear combination cor-
responds to the mth message.

We define the effective noise variance as

σ2
d,eff,m ,

1
n
E‖zd,eff,m‖2 (4.14)

= ‖cd,m‖2 +
∥∥∥∥(cT

d,mHd,mBd − aT
d,m

)
P1/2

d

∥∥∥∥2
. (4.15)

As we will show in Theorem 4, the following rates are achievable

Rd,m = 1
2 log+

(
Pd,m

σ2
d,eff,m

)
m = 1, . . . , L . (4.16)

We begin by choosing a power allocation Pd = diag(Pd,1, . . . , Pd,L) for the code-

words and a full-rank integer matrix Ad ∈ ZL×L. We also select a beamforming

matrix Bd ∈ RN×L and equalization vectors cd,m ∈ RMm , m = 1, . . . , L. To meet

the total power constraint with equality, we need that Tr(BT
dBdPd) ≤ Ptotal. Taken

together, these choices specify the effective noise variances σ2
d,eff,m from (4.14).

As in the uplink case, the structure of the integer matrix Ad will determine the

order in which interference cancellation is possible via dirty-paper precoding. To

simplify our notation, we will assume that Ad is selected so that the mth user can be
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associated with the mth power Pd,m. We specify when this is possible below.

Definition 4. We say that the identity permutation is admissible for the downlink if

(a) the powers are in decreasing order, Pd,1 ≥ · · · ≥ Pd,L and

(b) the leading principal submatrices of Ad are full rank, rank(A[1:m]
d ) = m for

m = 1, . . . , L.

The first condition can be satisfied by reindexing the transmit antennas, which

corresponds to reordering the powers, and permuting the columns of Ad and Bd.

The second condition can always be satisfied by reindexing the receivers, which cor-

responds to reordering the equalization vectors and permuting the rows of Ad. To

keep our notation manageable, we assume below that the rows and columns of Ad

have been permuted so that Definition 4 holds.

We now describe the encoding and decoding steps used in the integer-forcing beam-

forming architecture. Using the parameters Pd,1, . . . , Pd,L and σ2
d,eff,1, . . . , σ

2
d,eff,L, we

pick a good ensemble of nested lattices ΛC,1, . . . ,ΛC,L,ΛF,1, . . . ,ΛF,L via Theorem 1.

We will assume that the prime p used in the lattice construction is large enough so

that Q[1:m]
d = [A[1:m]

d ] mod p is full rank over Zp for m = 1, . . . , L. It is always possible

to choose such a prime, as argued in [Nazer et al., 2016, Lemmas 3, 4].

Encoding: Take the p-ary expansion of each message wd,` to obtain the message

vector w` ∈ ZkF,`−kC,`
p for ` = 1, . . . , L. These vectors are then zero-padded to obtain

w̄d,` =

0kC,`−kC

wd,`
0kF−kF,`

 . (4.17)

We now proceed to pre-invert the linear combinations symbol-by-symbol. Recall that

the notation w[i] refers to the ith entry of the vector w.

Initialization Step, kC,L − kC + 1 ≤ i ≤ k: In this regime, all codewords have sufficient
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power to participate, meaning that we can simply apply the inverse,
vd,1[i]

...
vd,L[i]

 = Q−1
d


w̄d,1[i]

...
w̄d,L[i]

 . (4.18)

Note that the Lth codeword does not have sufficient power to control any other entries.

Therefore, we set

vd,L[1], . . . ,vd,L[kC,L−kC] = 0, apply the inverse linear labeling to obtain a fine lattice

point

λd,L = ϕ̄(vd,L) , (4.19)

and then generate our dithered codeword

sd,L = [λd,L + dd,L] mod ΛC,L (4.20)

where the dither vector dd,L is drawn independently and uniformly over VC,L. This

codeword will contribute interference of the form

ed,L = ϕ
(
QΛC,L

(λd,L + dd,L)
)

(4.21)

to the remaining signal levels.

For the rest of the signal levels, we proceed by induction for m = 1, . . . , L − 1,

assuming that vd,`,λd,`, sd,`, ed,` have been set for ` = m+ 1, . . . , L.

Induction Step, kC,m − kC + 1 ≤ i ≤ kC,m+1: In this regime, only the first m code-

words have sufficient power to participate. Thus, we cancel out the interference

caused by codewords m+ 1, . . . , L and apply the inverse of the mth leading principal
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submatrix, 
vd,1[i]

...
vd,m[i]

 =
(
Q[1:m]

d

)−1


w̄d,1[i]⊕⊕L

`=m+1 qd,1,` ed,`[i]
...

w̄d,m[i]⊕⊕L
`=m+1 qd,m,` ed,`[i]

 . (4.22)

Note that the mth codeword does not have sufficient power to control any other

entries. Therefore, we set

vd,m[1], . . . ,vd,m[kC,m − kC] = 0, apply the inverse linear labeling to obtain a fine

lattice point

λd,m = ϕ̄(vd,m) , (4.23)

and then generate our dithered codeword

sd,m = [λd,m + dd,m] mod ΛC,m . (4.24)

where the dither vector dd,m
1 is drawn independently and uniformly over VC,m. This

codeword will contribute digital interference of the form

ed,m = ϕ
(
QΛC,m

(λd,m + dd,m)
)

(4.25)

to the remaining signal levels.

After all signal levels have been set, we stack the dithered codewords

Sd =


sT
d,1
...

sT
d,L

 (4.26)

and apply the beamforming matrix to create the channel input

Xd = BdSd . (4.27)

1See [Nazer et al., 2016, Appendix H] for a proof that it suffices to use fixed dithers.
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Decoding: The goal of each receiver is to decode its message vector wd,`. As a first

step, it will make an estimate of the following integer-linear combination of the lattice

codewords,

µd,m =
[

L∑
`=1

ad,m,` λ̃d,`

]
mod ΛC (4.28)

where ad,m,` is the (m, `)th entry of Ad and λ̃d,` = λ` − QΛC,`
(λd,` + dd,`). It forms

its estimate by equalizing its observation

ỹT
d,m = cT

d,mYd,m , (4.29)

removing the dither vectors, quantizing onto the mth fine lattice, and taking the

modulus with respect to the coarsest lattice,

µ̂d,m =
[
QΛF,m

(
ỹd,m −

L∑
`=1

ad,m,` dd,`

)]
mod ΛC . (4.30)

The linear label of this estimate can be viewed as an estimate of the desired message

along with zero-padding,

ϕ(µ̂d,m) =

 ẽd,m
ŵd,m

0kF−kF,m

 . (4.31)

for some ẽd,m ∈ ZkC,m−kC
p . As we will argue below, if µ̂d,m = µd,m, then ŵd,m = wd,m.

Theorem 4. Choose a power allocation Pd = diag(Pd,1, . . . , Pd,L) and full-rank inte-
ger matrix Ad ∈ ZL×L. Assume, without loss of generality, that Pd,1 ≥ · · · ≥ Pd,L, and
that rank(A[1:m]) = m for m = 1, . . . , L. For a given beamforming matrix Bd ∈ RN×L,
channel matrices Hd,m ∈ RMm×N , and equalization vectors cd,m ∈ RMm, the following
rates are achievable

Rd,m = 1
2 log+

(
Pd,m

σ2
d,eff,m

)
(4.32)

σ2
d,eff,m = ‖cd,m‖2 +

∥∥∥∥(cT
d,mHd,mBd − aT

d,m

)
P1/2

d

∥∥∥∥2
(4.33)
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for m = 1, . . . , L.

Proof. By the Crypto Lemma, each dithered codeword sd,` is uniformly distributed
over VC,` and independent of the other dithered codewords. Thus, by Theorem 1(b),
we have that 1

n
E‖sd,`‖2 ≤ Pd,`, which guarantees that the power constraint is met

1
n
E
[

Tr(XT
dXd)

]
= 1
n
E
[

Tr(ST
dBT

dBdSd)
]

(4.34)

= 1
n
E
[

Tr(BT
dBdST

dSd)
]

(4.35)

= 1
n

Tr
(
BT

dBdE[ST
dSd]

)
(4.36)

≤ 1
n

Tr
(
BT

dBdPd
)

= Ptotal . (4.37)

At the receiver side, we need to argue that µ̂d,m = µd,m with high probability
and, if so, ŵd,m = wd,m. We begin by examining the linear labeling of µd,m,

ud,m = ϕ(µd,m) (4.38)

=
L⊕
`=1

qd,m,`

(
ϕ(λd,`)	 ϕ

(
QΛC,`

(λd,` + dd,`)
))

(4.39)

=
L⊕
`=1

qd,m,`

(
ϕ(λd,`)	 ed,`

)
. (4.40)

Now, we examine the ith symbol of this linear label for kC,m − kC + 1 ≤ i ≤ k,

ud,m[i] =
L⊕
`=1

qd,m,` (vd,`[i]	 ed,`[i]) (4.41)

(a)=
m⊕
`=1

qd,m,` vd,`[i]	
L⊕

`=m+1
qd,m,` ed,`[i] (4.42)

(b)= w̄d,m[i]⊕
m⊕
`=1

qd,m,` ed,`[i]	
L⊕

`=m+1
qd,m,` ed,`[i] (4.43)

= w̄d,m[i] (4.44)

where (a) uses the fact that vd,`[i] = 0 for ` = m + 1, . . . , L by construction and
ed,`[i] = 0 for ` = 1, . . . ,m via Definition 1(a) since ed,` is the linear label of a lattice
point from ΛC,` and (b) follows from plugging in (4.22). From (4.17) it follows that,
if µ̂d,m = µd,m, then ŵd,m = wd,m. Note that, since the last kF− kF,m entries of w̄d,m



45

are zero, we know from Definition 1(a) that µd,m ∈ ΛF,m.
We need to argue that µ̂d,m = µd,m with probability at least 1 − ε. Recall

from (4.12) and (4.13) that ỹT
d,m = aT

d,mSd + zT
d,eff,m. Thus,

ỹd,m =
L∑
`=1

ad,m,`
(
λd + dd,m −QΛC,`

(λd,` + dd,`)
)

+ zd,eff,m (4.45)

=
L∑
`=1

ad,m,`(λ̃d,` + dd,`) + zd,eff,m , (4.46)

and, using (2.4),

µ̂d,m =
[
QΛF,m

(µd,m + zd,eff,m)
]

mod ΛC . (4.47)

From Theorem 1(c), we know that, since µd,m ∈ ΛF,m, the quantization step can toler-
ate noise with effective variance σ2

d,eff,m, which implies that P(µ̂m 6= µm) < ε. Finally,
from Theorem 1(d), we know that the rate satisfies Rd,m > 1

2 log+(Pd,m/σ
2
d,eff,m) −

ε.

Remark 3. If we do not wish to index the transmit antennas or receivers, the achiev-
able rates can be expressed as follows. Let θ be a permutation that places the codeword
powers in decreasing order. Also, let π be a permutation such that the leading principal
submatrices of ΘπAdΘθ are full rank where Θπ and Θθ are the permutation matrices
corresponding to π and θ, respectively. For a given beamforming matrix Bd ∈ RN×L,
channel matrices Hd,m ∈ RMm×N , and equalization vectors cd,m ∈ RMm, the rates
Rd,π(m) = 1

2 log+
(
Pd,θ(m)/σ

2
d,eff,π(m)

)
, m = 1, . . . , L are achievable.

4.2.2 Overview of Downlink Dirty-Paper Integer-Forcing

The integer-forcing transmitter described above carefully cancels out interference be-

tween receivers in the digital domain. Here, we argue that the performance can be

further enhanced via dirty-paper coding in the analog domain. Prior work demon-

strated that nested lattice codes are an ideal building block for dirty-paper strate-

gies [Zamir et al., 2002,Erez et al., 2005], and serves as an inspiration for the scheme

proposed below.

The encoding scheme is based on the nested lattice DPC technique from [Zamir



46

et al., 2002, Erez et al., 2005], and will be discussed in detail in Section 4.2.3. Let

Rd be an upper unitriangular matrix. At a high level, the nested lattice codewords

sd,1, . . . , sd,L are mapped into dirty-paper codewords sDPC,1, . . . , sDPC,L with the prop-

erty that the mth message can be recovered from aT
d,mRdSDPC where

SDPC ,


sT
DPC,1
...

sT
DPC,L

 . (4.48)

The dirty-paper codewords have the same expected power as the nested lattice code-

words, and the encoder generates its channel input by applying the beamforming

matrix to the dirty-paper codewords,

Xd = BdSDPC . (4.49)

The mth decoder uses its equalization vector to generate an effective channel output

ỹd,m = cT
d,mYd,m (4.50)

= aT
d,mRdSDPC + zT

d,DPC,m (4.51)

where

zT
d,DPC,m ,

(
cT
d,mHd,mBd − aT

d,mRd
)
SDPC . (4.52)

The effective noise variance is defined to be

σ2
d,DPC,m ,

1
n
E‖zd,DPC,m‖2 (4.53)

= ‖cd,m‖2 +
∥∥∥∥(cT

d,mHd,mBd − aT
d,mRd

)
P1/2

d

∥∥∥∥2
. (4.54)
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Overall, we will show in Theorem 5 that the following rates are achievable

RDPC
d,m = 1

2 log+
(

Pd,m

σ2
d,DPC,m

)
m = 1, . . . , L . (4.55)

4.2.3 Dirty-Paper Integer-Forcing Architecture

As before, we assume that the powers are in decreasing order and the leading principal

submatrices of Ad are full rank. We select a beamforming matrix Bd ∈ RN×L that

meets the power constraint, Tr(BT
dBdPd) ≤ Ptotal, as well as equalization vectors

cd,m ∈ RMm , m = 1, . . . , L. Finally, we choose a unitriangular matrix Rd that

specifies the coefficients used in the dirty-paper cancellation process. These choices

determine the effective noise variances σ2
d,DPC,m from (4.52). Using the parameters

Pd,1, . . . , Pd,L and σ2
d,DPC,1, . . . , σ

2
d,DPC,L, we pick a good ensemble of nested lattices

ΛC,1, . . . ,ΛC,L,ΛF,1, . . . ,ΛF,L via Theorem 1. As before, we assume that the prime p

is large enough so that Q[1:m]
d = [A[1:m]

d ] mod p is full rank over Zp for m = 1, . . . , L.

Encoding:

The encoding steps are identical from (4.17) to (4.21) for the initialization step.

We also define the Lth dirty-paper codeword as

sDPC,L = sd,L . (4.56)

For the rest of the signal levels, we proceed by induction for m = 1, . . . , L − 1,

assuming that vd,`,λd,`, sd,`, sDPC,`, ed,` have been set for ` = m+ 1, . . . , L.

Induction Step, kC,m − kC + 1 ≤ i ≤ kC,m+1: The induction steps are the same as be-

fore from (4.22) to (4.24). We then map the dithered codeword to a dirty-paper

codeword,

sDPC,` =
[
sd,m −

L∑
`=m+1

rd,m,` sDPC,`

]
mod ΛC,m . (4.57)
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This dirty-paper codeword will contribute digital interference of the form

ed,m = ϕ

(
QΛC,m

(
λd,m + dd,m +

L∑
`=m+1

rd,m,` sDPC,`

))
(4.58)

to the remaining signal levels.

After all signal levels have been set, we stack the dirty-paper codewords

SDPC =


sT
DPC,1
...

sT
DPC,L

 (4.59)

and apply the beamforming matrix to create the channel input

Xd = BdSDPC . (4.60)

Decoding: The decoding steps at each receiver are identical to those in (4.28)

to (4.31) except that we define the lattice points in the integer-linear combina-

tion (4.28) by

λ̃d,` = λ` −QΛC,`

(
λd,` + dd,` −

L∑
`=m+1

rd,m,` sT
DPC,`

)
. (4.61)

We now establish the achievable rates for dirty-paper integer-forcing.

Theorem 5. Choose a power allocation Pd = diag(Pd,1, . . . , Pd,L) and full-rank in-
teger matrix Ad ∈ ZL×L. Assume, without loss of generality, that Pd,1 ≥ · · · ≥ Pd,L,
and that rank(A[1:m]) = m for m = 1, . . . , L. For a given upper unitriangular
dirty-paper matrix Rd ∈ RL×L, beamforming matrix Bd ∈ RN×L, channel matri-
ces Hd,m ∈ RMm×N , and equalization vectors cd,m ∈ RMm, the following rates are
achievable

RDPC
d,m = 1

2 log+
(

Pd,m

σ2
d,DPC,m

)
(4.62)

σ2
d,DPC,m = ‖cd,m‖2 +

∥∥∥∥(cT
d,mHd,mBd − aT

d,mRd
)
P1/2

d

∥∥∥∥2
. (4.63)

for m = 1, . . . , L.
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As part of the proof, we will need the following lemma.

Lemma 2. Let rT
d,m be the mth row of the upper unitriangular matrix Rd used in the

dirty-paper encoding process. We have that

rT
d,mSDPC = λ̃T

d,m + dT
d,m . (4.64)

Proof.

rT
d,mSDPC

(a)=sT
DPC,m +

L∑
`=m+1

rd,m,` sT
DPC,`

=
[
sT
d,m −

L∑
`=m+1

rd,m,` sT
DPC,`

]
mod ΛC,m +

L∑
`=m+1

rd,m,` sT
DPC,`

=λT
d,m + dT

d,m −
L∑

`=m+1
rd,m,` sT

DPC,`

−QΛC,m

(
λT
d,m + dT

d,m −
L∑

`=m+1
rd,m,` sT

DPC,`

)
+

L∑
`=m+1

rd,m,` sT
DPC,`

(b)=λ̃T
d,m + dT

d,m

where step (a) uses the fact that Rd is upper unitriangular and step (b) uses (4.61).

Proof of Theorem 5: We can show that the expected power constraints using the

argument from the beginning of the proof of Theorem 4. We can also follow the steps

in the proof of Theorem 4 to establish that ud,m[i] = w̄d,m[i] for kC,m−kC +1 ≤ i ≤ k

and that µm ∈ ΛF,m. It remains to show that µ̂d,m = µd,m with probability at least

1− ε.

First, we can rewrite the mth effective channel output as

ỹT
d,m = aT

d,mRdSDPC + zT
d,DPC,m (4.65)

=
L∑
`=1

ad,m,`
(
λ̃T
d,m + dT

d,m

)
+ zT

d,DPC,m (4.66)

where zd,DPC,m is defined in (4.52) and the last step uses Lemma 2 on each row of
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RdSDPC. From (2.4), we have that

µ̂d,m =
[
QΛF,m

(µd,m + zd,DPC,m)
]

mod ΛC . (4.67)

From Theorem 1(c), we know that, since µd,m ∈ ΛF,m, the quantization step

can tolerate noise with effective variance σ2
d,DPC,m, which implies that P(µ̂m 6=

µm) < ε. Finally, from Theorem 1(d), we know that the rate satisfies Rd,m >

1
2 log+(Pd,m/σ

2
d,DPC,m)− ε. �
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Chapter 5

Integer-forcing Source Coding

5.1 Problem Statement

Consider a K-user distributed Gaussian source coding problem. For k = 1, . . . , K,

the kth user observes a length-n source xk = [xk[1] · · · xk[n]]T. The K sources

(x1[i], . . . , xK [i]) are generated i.i.d. for each i = 1, . . . , n according to a joint Gaussian

distribution with mean vector 0 and covariance matrix Kxx. Let X , [x1 · · · xK ]T

denote the matrix of source vectors.

The kth user has an encoder Ek : Rn → {1, . . . , 2nRs
k} that maps its source into

a message wk = Ek(xk) of rate Rs
k. These messages are sent across bit pipes to

the decoder, which then applies its decoding function D : {1, . . . , 2nRs
1} × · · · ×

{1, . . . , 2nRs
K} → Rn× · · · ×Rn to generate estimates

(
x̂1, . . . , x̂K

)
= D(w1, . . . , wK).

A rate-distortion tuple (Rs
1, . . . , R

s
K , D1, . . . , DK) is said to be achievable if there

exists a sequence of encoders and decoders satisfying

lim sup
n→∞

1
n
E‖xk − x̂k‖2 ≤ Dk, k = 1, . . . , K . (5.1)

Following [Ordentlich and Erez, 2013], we impose the additional requirement that

the sources estimates are conditionally unbiased,

E
[
xk − x̂k

∣∣∣X] = 0, k = 1, . . . , K . (5.2)

As argued in [Ordentlich and Erez, 2013], although this is an unconventional require-
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ment, it may emerge in certain scenarios, e.g., multiple relays that compress their

observations for a central processor that wishes to treat the quantization noises as

additive. Our future work will focus on establishing source-channel duality results for

integer-forcing for the standard scenario where this requirement is not imposed.

x1

x2

xK

E1

E2

EK

...

Rs
1

Rs
2

Rs
K

D

(x̂1, D1)

(x̂2, D2)

...

(x̂K , DK)

Figure 5·1: K-user distributed Gaussian source coding problem

5.2 Conventional Approach: Symmetric Rates and Distori-
tions

We now summarize some of the nested lattice existence results from [Ordentlich and

Erez, 2015b] which will be used in our coding scheme for IF source coding.

Lemma 3 ( [Ordentlich et al., 2014, Lemma 3]). Let λ1, . . . ,λK be elements of
the nested lattice chain from Theorem 1 and let v1 = [∑k akλk] mod Λm and v2 =
[∑k bkλk] mod Λm for ak, bk ∈ Z. Then,

[v1 + v2] mod Λm =
[∑

k

([ak + bk] mod p)λk

]
mod Λm .

The basic integer-forcing source coding scheme with symmetric rate Rs
1 = . . . =

Rs
K = Rs

sym and distortion D1 = . . . = DK = Dsym consists of the following steps.

Code Construction: For some choice of ε > 0 and n large enough, select, using

Theorem 1, a fine lattice ΛF with parameter Dsym and a coarse lattice ΛC with pa-
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rameter θC to be specified later1. Generate K independent dither vectors u1, . . . ,uK

according to a uniform distribution over VF.

Encoding: The kth encoder dithers and quantizes its source onto ΛF and then applies

the modulo operation with respect to ΛC,

λk =
[
QΛF(xk + uk)

]
mod ΛC . (5.3)

Decoding: Upon receiving the lattice codewords, the decoder removes the dithers

to obtain

x̃k = [λk − uk] mod ΛC (5.4)

=
[
xk +QΛF(xk + uk)− (xk + uk)

]
mod ΛC (5.5)

=
[
xk + zeff,k

]
mod ΛC (5.6)

where zeff,k , −[xk + uk] mod ΛF. Note that, by the Crypto Lemma, zeff,k is uniform

over VF and independent of xk. Define X̃ = [x̃1 · · · x̃K ]T and Zeff = [zeff,1 · · · zeff,K ]T.

For some choice of full-rank integer matrix A ∈ ZK×K with rows aT
1 , . . . , aT

K , the

decoder forms K linear combinations

vm = [aT
mX̃] mod ΛC m = 1, . . . , K (5.7)

= [aT
m[X + Zeff ] mod ΛC] mod ΛC (5.8)

= [aT
m(X + Zeff)] mod ΛC (5.9)

where the last step uses the distributive law. By Theorem 1(b), if aT
m(Kxx +

DsymI)am < θC, then vm = aT
m(X + Zeff) with probability at least 1 − ε. Thus,

we set θC = maxm aT
m(Kxx + DsymI)am + ε. Finally, the decoder inverts these linear

combinations to obtain estimates of the form x̂k = xk + zeff , each with distortion
1 Here a distortion power D` can be considered as an effective noise power σ2

eff,` in Theorem 1
and θC can be considered as a symmetric coding power P1 = · · · = PL = P in Theorem 1.
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at most Dsym. With probability at most Kε, the squared norm of some vm exceeds

θC . The distortion in this case is still bounded and its contribution to the expected

distortion vanishes as ε is driven to zero. Overall, the achievable rates are given by

the following theorem.

Theorem 6 ( [Ordentlich and Erez, 2013, Theorem 1]). For a given full-rank integer
matrix A ∈ ZK×K, the integer-forcing source coding strategy can achieve symmetric
distortion Dsym with symmetric rate

Rsym = max
m=1,...,K

1
2 log

(
aT
m(I +D−1

symKxx)am
)
.

5.3 Coding Scheme for IF Source Coding

We now introduce successive integer-forcing. Our successive cancellation strategy

relies on partially recovering m of the estimates after the mth decoding step. Let

A[`:k] denote the submatrix of the matrix A consisting of only columns and rows

numbered ` through k.

We begin by selecting a full-rank integer matrix A ∈ ZK×K whose submatrices

A[K:K],A[K−1:K], . . . ,A[2:K] are also full rank. We can also state achievable rates for

any full-rank integer matrix, if we introduce a permutation between the users and

the coarse lattice parameters in (5.11). Throughout this chapter, we have strived to

maintain the identity permutation for the sake of readability. We also select a unit,

upper-triangular matrix R and write its mth row as rT
m and its (m, k)th entry as rm,k.

Let D = diag(D1, . . . , DK) be the diagonal matrix of distortions.

Code Construction: For some choice of ε > 0 and n large enough, select, using The-

orem 1, an ensemble of fine lattices ΛF,1, . . . ,ΛF,K and coarse lattices ΛC,1, . . . ,ΛC,K
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according to parameters

θF,m = Dm (5.10)

θC,m = rT
mA(Kxx + D)ATrm + ε (5.11)

for m = 1, . . . , K. We assume that R and A are chosen such that

θC,1 ≥ · · · ≥ θC,K , (5.12)

which in turn ensures that ΛC,1 ⊆ · · · ⊆ ΛC,K . For k = 1, . . . , K, generate an

independent dither vector uk according to a uniform distribution over VF,k.

Encoding: As before, the kth encoder dithers and quantizes its source onto ΛF,k and

then applies the modulo operation with respect to ΛC,k,

λk =
[
QΛF,k

(xk + uk)
]

mod ΛC,k .

Decoding: As in the symmetric case, the decoder begins by removing the dithers

from its received lattice points,

x̃k = [λk − uk] mod ΛC,k (5.13)

=
[
xk + zeff,k

]
mod ΛC, k (5.14)

where zeff,k , −[xk + uk] mod ΛF,k and, by the Crypto Lemma, zeff,k is uniform

over VF,k and independent of xk. As before, define X̃ = [x̃1 · · · x̃K ]T and Zeff =

[zeff,1 · · · zeff,K ]T.

We first recover the Kth linear combination,

vK =
[∑

k

aK,kx̃k
]

mod ΛC,K (5.15)

=
[∑

k

aK,k(xk + zeff,k)
]

mod ΛC,K (5.16)
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where the last step uses the distributive law. Using Theorem 1(b) and the fact that

θC,K > rT
KA(Kxx + D)ATrK (5.17)

= aT
K(Kxx + D)aK (5.18)

we have that vK = aT
K(X + Zeff) with probability at least 1− ε.

We proceed by induction. Assume that v` = aT
` (X + Zeff) has been successfully

recovered for ` = m+1, . . . , K. We now try to recover themth such linear combination.

First, we need the following lemma.

Lemma 4. Given v` = aT
` (X + Zeff) for ` = m+ 1, . . . , K and x̃k for k = 1, . . . , K,

we can recover

tm,k , [xk + zeff,k] mod ΛC,m k = 1, . . . , K .

Proof of lemma 4. For k = 1, . . . ,m, since ΛC,k ⊆ ΛC,m, we can directly calculate
[x̃k] mod ΛC,m = [xk+zeff,k] mod ΛC,m. For k = m+1, . . . , K, we haveK−mmodulo-
lattice equations in K variables, m of which are known from above. Therefore, we
can calculate

wk =
[
vk −

m∑
`=1

ak,`tm,`
]

mod ΛC,m (5.19)

=
[

K∑
`=m+1

ak,`(x` + zeff,`)
]

mod ΛC,m . (5.20)

for k = m + 1, . . . , K. By assumption, the submatrix A[m:K] is full rank. From [Or-
dentlich et al., 2014, Appendix A], it can be shown that for prime p large enough,
[A[m:K]] mod p is full rank over Z/pZ as well. Thus, using Lemma 3, we can solve
for the remaining terms by applying the inverse of [A[m:K]] mod p over Z/pZ to
[wm+1 · · ·wK ]T.
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Combining the tm,k from Lemma 4 with vm+1, . . . ,vK , we obtain

sm =
[

K∑
k=1

am,ktm,k +
K∑

k=m+1
rm,kvk

]
mod ΛC,m (5.21)

=
[

K∑
k=1

am,k(xk + zeff,k) +
∑
k<m

rm,kvk
]

mod ΛC,m

= [rT
mA(X + Zeff)] mod ΛC,m . (5.22)

Combining Theorem 1 with the fact that

θC,m > rT
mA(Kxx + D)ATrm , (5.23)

we find that, with probability at least 1− ε,

sm = rT
mA(X + Zeff) . (5.24)

Now, we remove the successive cancellation terms to recover

vm = sm −
K∑

k=m+1
rm,kvk = aT

m(X + Zeff) (5.25)

with probability of error at most ε, which completes the induction step.

Finally, we have obtained A(X + Zeff) with probability of error at most Kε.

Inverting A, we obtain our estimates x̂k = xk + zeff,k, each with distortion Dk. In the

event of a decoding failure, the distortion remains bounded and thus has a vanishing

effect on the overall expected distortion as ε is taken to zero.

Theorem 7. For any full-rank integer matrix A ∈ ZK×K with full-rank submatrices
A[K:K], . . . ,A[2:K] and unit upper-triangular matrix R satisfying (5.12), the following
rates are achievable via successive integer-forcing source coding

Rs
k = 1

2 log
(

rT
kA(Kxx + D)ATrk

Dk

)
k = 1, . . . , K. (5.26)
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Chapter 6

Duality

6.1 Uplink-Downlink Duality for IF

6.1.1 Uplink-Downlink Duality

In previous sections, we show the achievable computation rate tuple in the uplink

and downlink channel. We show successive integer-forcing technique improves the

performance of integer-forcing in the uplink. We also show dirty-paper coding for

compute-and-forward improves the performance of integer-forcing in the downlink

channel. In this section, we demonstrate a duality connection between integer-forcing

for the MIMO MAC and the MIMO BC. The duality connection allows us to establish

an equality for the sum rate between the uplink and downlink channel with the same

total power usage. We also generalize this result to include successive integer-forcing

and dirty-paper integer-forcing.

For simplicity, we re-index rows of integer matrices Au and Ad (re-index users)

in the uplink and downlink channel such that the valid permutation orders from

Definition 2 and Remark 3 are identity matrices. For the case without re-indexing,

the proof of duality is similar, see [He et al., 2014] for details.

Recall that

Cu ,


cu,1 0M1 . . . 0M1

0M2 cu,2 . . . 0M2
... ... . . . ...

0ML
0ML

. . . cu,L

 (6.1)
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is the beamforming matrix in the uplink MAC and

Cd ,


cT
d,1 0T

M1 . . . 0T
M1

0T
M2 cT

d,2 . . . 0T
M2... ... . . . ...

0T
ML

0T
ML

. . . cT
d,L

 (6.2)

is the equalization(projection) matrix in the downlink BC, Bu is the uplink equal-

ization matrix and Bd is the downlink beamforming matrix. Here Pu and Pd are

diagonal coding power matrices for the uplink and downlink, respectively. We will

define ρc,u = [Pu,1, · · · , Pu,L]T and ρc,d = [Pd,1, · · · , Pd,L]T be the coding power

vectors for the uplink and downlink. Here Ru and Rd are both unit triangular matrix

which will only be used when we apply SIC in the uplink (if not, Ru = I) and DPC

in the downlink (if not, Rd = I).

Theorem 8. For a given uplink channel matrix Hu, integer matrix Au, and (diago-
nal) power matrix Pu that meets the total power constraint Tr(CT

uCuPu) = Ptotal, let
Ru,1, . . . , Ru,L be a computation rate tuple that is achievable with projection matrix Bu

and precoding matrix Cu. Then, for the downlink channel matrix Hd = HT
u , integer

matrix Ad = AT
u , there exists a unique (diagonal) power matrix Pd with total power

usage Tr(BT
dBdPd) = Ptotal, such that the sum computation rate ∑iRd,i = ∑

iRu,i

is achievable using (diagonal) projection matrix Cd = CT
u and precoding matrix

Bd = BT
u . The same relationship can be established starting from an achievable

rate tuple for the downlink and going to the uplink.

Theorem 9. The duality result in Theorem 8 still holds for the uplink channel with
successive integer-forcing and the downlink channel with DPC for integer-forcing, as
long as the coefficients matrices for SIC and DPC satisfy Rd = RT

u .

Remark 4. We simplify our proof by assuming identity is a valid permutation order
in both the uplink IF and downlink IF. We can make this assumption true by re-
indexing users and rows of integer matrices (Au and Ad). However, we can not
maintain this assumption for both the uplink IF and downlink IF simultaneously if
Au = AT

d . The re-index process in the uplink and downlink might conflict with each
other. For the following proof, we will first make a virtual assumption such that when
Au = AT

d there is a way to do re-indexing such that identity is a valid permutation in
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both uplink channel and downlink channel. This assumption will allow us to establish
a duality that both the uplink IF and downlink IF can achieve the same rate tuple. We
then back off and removing the virtual assumption. After removing the assumption,
the same rate tuple result no longer holds, but we can still achieve the same sum
computation rate, thus we have the results in Theorem 8 and Theorem 9.

For the rest of this section, we will prove Theorem 9 only since Theorem 8 is a

special case in Theorem 9 by setting Rd and Ru to be identity. Our proof is inspired

by the approach of [Viswanath and Tse, 2003]. Before we start the proof, we need

some basic results for non-negative matrices:

1. A vector or a matrix is non-negative (i.e., F ≥ 0) if all its entries are non-

negative.

2. A vector or a matrix is positive (i.e., F > 0) if all its entries are positive.

3. A square matrix F is a Z-matrix if all its off-diagonal elements are non-positive.

4. An M-matrix is a Z-matrix with eigenvalues whose real parts are positive.

Lemma 5. Let F be a square Z-matrix. The following statements are equivalent:

• i) F is a non-singular M-matrix with a non-negative inverse (F−1 exists and
F−1 ≥ 0).

• ii) There exists x ≥ 0 satisfying Fx > 0.

• iii) Every real eigenvalue of F is positive.

See [Plemmons, 1977] for a proof.

Proof of Theorem 9. Let γ` , Pu,`/σ
2
u,SIC,` denote the SINR for the `th uplink user

in (3.44) and β` , Pd,`/σ
2
d,DPC,` denote the SINR for the `th downlink user in (4.62).

Define γ , [γ1 · · · γL]T and β , [β1 · · · βL]T. Recall that ρc,u = [Pu,1, · · · , Pu,L]T

and ρc,d = [Pd,1, · · · , Pd,L]T are the coding power vectors for the uplink and downlink,
respectively.
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Define Ju , diag
([
‖bT

u,1‖2 · · · ‖bT
u,L‖2

])
, and Mu ∈ RL×L where [Mu]ij =

(bT
u,iHucu,j − rT

u,iâu,j)2. Here cu,j is the jth column of Cu, rT
u,i is the ith row of Ru and

âu,j is the jth column of Au . The uplink SINR conditions can be expressed as
(
I− diag(γ)Mu

)
ρc,u = Juγ . (6.3)

Similarly, let Gd , diag([‖cd,1‖2 · · · ‖cd,L‖2]) and Md ∈ RL×L, where [Md]ij =
(cT

d,iHdbd,j−aT
d,ird,j)2. Here aT

d,i is the ith row of Ad, bd,j is the jth column of Bd and
rd,j is the jth column of Rd. The downlink SINR conditions can be expressed as

(
I− diag(β)Md

)
ρc,d = Gdβ . (6.4)

Consider the transpose condition for all channel settings, such that Bu = BT
d ,

Au = AT
d , Hu = HT

d and Cu = CT
d . If we set Rd = RT

u , then Md = MT
u . We

now turn to show that there exists a positive power vector ρc,d that achieves the
desired downlink computation rates. By definition, Mu is a non-negative matrix,
thus,

(
I − diag(γ)Mu

)
is a square Z-matrix. By assumption, the vector Juρc,u is

positive, which means that the uplink coding power vector ρc,u satisfies condition ii)
of Lemma 5. Therefore,

(
I − diag(γ)Mu

)
is a non-singular M-matrix and all of its

real eigenvalues are positive. Setting γ = β, we have

eig(diag(γ)Mu) = eig(diag(γ)MT
d )

= eig(Md diag(γ))
= eig(Md diag(β))
= eig(diag(β)Md)

This implies that every real eigenvalue of
(
I− diag(β)Md

)
is also positive, which

satisfies condition iii) of Lemma 5, and implies that
(
I − diag(β)Md

)−1
exists and

is non-negative. Since, by definition, Gdβ is positive, we have that ρc,d =
(
I −

diag(β)Md
)−1

Gdβ is non-negative. In summary, when γ = β, a valid power vector
ρc,d exists that satisfies (6.4). Now, we are ready to prove that the total uplink and
downlink powers are equal when γ = β.

Define Gu , diag([‖cu,1‖2 · · · ‖cu,L‖2]) and Jd to be the L×Lmatrix with (m, `)th

entry b2
d,m,` where bd,m,` is the (m, `)th of Bd. Let ρt,u ,

[
E‖xu,1‖2 · · ·E‖xu,L‖2

]T
=

Guρc,u and ρt,d ,
[
E‖xd,1‖2 · · ·E‖xd,L‖2

]T
= Jdρc,d denote the uplink and downlink



62

transmit power vectors, respectively. Since
(
I − diag(β)Md

)
and

(
I − diag(γ)Mu

)
are both invertible, from (6.3) and (6.4) we have that

ρt,u = Gu
(
IK − diag(γ)Mu

)−1
Juγ (6.5)

ρt,d = Jd
(
IK − diag(β)Md

)−1
Gdβ . (6.6)

Finally, it can be shown that the total power in the downlink equals that in the
uplink,

Ptotal =1TJd
(
IL − diag(β)Md

)−1
Gdβ

=1TJd
(
G−1

d diag(β)−1 −G−1
d Md

)−1
1

=1T
(

diag(β)−1G−1
d −MT

dG−T
d

)−1
JT
d1

=1T
(

diag(β)−1G−1
d −MT

dG−T
d

)−1
Ju1

=1T
(
J−1
u diag(γ)−1G−1

d − J−1
u MuG−T

d

)−1
1

=1T
(
J−1
u diag(γ)−1G−1

u − J−1
u MuG−1

u

)−1
1

=1TGu
(
IL − diag(γ)Mu

)−1
Juγ = Ptotal .

So far we assume γ` , Pu,`/σ
2
u,SIC,` denote the SINR for the `th uplink user in

(3.44), β` , Pd,`/σ
2
d,DPC,` denote the SINR for the `th downlink user in (4.62) and

γ` = β`,∀`. However, there is no guarantee that σ2
u,SIC,1 ≤ · · · ≤ σ2

u,SIC,L in Definition 3
and Pd,1 ≥ · · · ≥ Pd,L in Theorem 4 can be satisfied simultaneously. Thus, we
need to re-assign the coding power to effective noise where the actual achievable
computational rates are given by

RSIC
u,m = 1

2 log+
(

Pu,m

σ2
u,SIC,π(m)

)
. (6.7)

and

RDPC
d,m = 1

2 log+
(
Pd,θ(m)

σ2
d,DPC,m

)
(6.8)

where π and θ are some valid permutation orders such that σ2
SIC,π(1) ≤ · · · ≤ σ2

SIC,π(L)

and Pd,θ(1) ≥ · · · ≥ Pd,θ(L). If π and θ are identity permutations (which is not true in
general), we have RSIC

u,m = RDPC
d,m , ∀m. If π and θ are not identity, we still achieve the
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same sum rate for both cases,

∑
m

RSIC
u,m = 1

2 log
( ∏

m Pu,m∏
m σ

2
u,SIC,π(m)

)
(6.9)

= 1
2 log

( ∏
m Pu,m∏

m σ
2
u,SIC,m

)
(6.10)

= 1
2 log

( ∏
m Pd,m∏
m σ

2
d,eff,m

)
(6.11)

= 1
2 log

(∏
m Pd,θ(m)∏
m σ

2
d,eff,m

)
(6.12)

=
∑
m

RDPC
d,m (6.13)

6.1.2 By-product #1: Iterative Optimization via Duality

Consider the following optimization problem where we focus on the sum-rate opti-

mality.

Uplink: arg max lim
Au,Cu,Bu,Ru,ρc,u

L∑
`=1

1
2 log+(γ`)

s.t. Tr(CT
uCuPu) ≤ Ptotal (6.14)

Downlink: arg max lim
Ad,Cd,Bd,Rdρc,d

L∑
`=1

1
2 log+(β`)

s.t. Tr(BT
dBdPd) ≤ Ptotal (6.15)

Recall that γ` and β` represent the `th effective SINR for the uplink and the downlink

channel, γ and β represent the corresponding effective SINR vector, respectively. For

the optimization problem in (6.14) and (6.15), even for a fixed integer matrix Au and

Ad, optimizing the remaining parameters jointly is in general a non-convex problem.

Below, we will take an iterative approach that converges to a local optimum. To this
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end, we first show how to find the optimal solution for each matrix in closed form,

assuming that the remaining matrices are fixed.

In [Ordentlich et al., 2013], it was shown that it is optimal to set Ru to

Ru,opt = diag(f11, · · · , fLL)F−1 (6.16)

where FFT = Au(P−1
u + HT

uCT
uCuHu)AT

u is the Cholesky factorization and f`` is the

`th diagonal entry of F.

Before we pass these choices to the dual downlink problem, we need to ensure that

the effective SINRs correspond to an achievable sum rate. This will occur if and only

if the effective noises are non-decreasing, σ2
u,SIC,1 ≤ · · · ≤ σ2

u,SIC,L. Assume that the

mth effective noise variance is the first to violate this condition, σ2
u,SIC,m < σ2

u,SIC,m−1.

By replacing the successive cancellation vector rT
u,m = [ru,m,1 · · · ru,m−1 1 0 · · · 0]

with the vector

r̃T
u,m = [αmru,m,1 · · · αmru,m−1 1 0 · · · 0] (6.17)

αm =
−tT

mfm +
√

(tT
mfm)2 − ‖tm‖2

(
‖fm‖2 − σ2

u,SIC,m−1

)
‖tm‖2 (6.18)

tm =
m−1∑
`=1

ru,m,`fT
` (6.19)

where fT
` denotes the `th row of F, the mth effective noise variance will increase to

σ2
u,SIC,m = σ2

u,SIC,m−1. Repeating this procedure in ascending order for all indices

m = 1, . . . , L, we will obtain a new choice of successive cancellation matrix R̃u that

guarantees σ2
u,SIC,1 ≤ · · · ≤ σ2

u,SIC,L, and that the sum rate ∑`
1
2 log+

(
Pu,`/σ

2
u,SIC,`

)
is

achievable.

The optimal equalization matrix Bu is a quadratic problem with a closed-form
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Uplink Downlink

Optimize Bu Optimize Cd

Figure 6·1: High-level overview of the iterative optimization algorithm
for IF.

solution

Bu,opt = RuAuPuCT
uHT

u (I + HuCuPuCT
uHT

u )−1. (6.20)

One efficient way to choose Au is given in [Zhan et al., 2014] by applying the

LLL algorithm [Lenstra et al., 1982] to the matrix VD 1
2 , where UΣVT is the singular

value decomposition of HuCu, and we define D = I−ΣT(P−1
u + ΣΣT)−1Σ.

For problem (6.15) in the downlink channel, if fixed Ad, Rd, Bd, Hd and ρc,d,

optimal cd,m is in a closed-form solution as:

cT
d,m = aT

d,mRdPdBT
dHT

d,m(I + HT
d,mBdPdBT

dHT
d,m)−1 . (6.21)

We introduce two iterative algorithms that include the SIC and DPC techniques

for IF to improve the transmission rates in the uplink and the downlink channel,

respectively. Both algorithms run in polynomial-time.

The duality relationship developed in this work suggests a simple iterative algo-

rithm for optimizing the uplink sum rate. For instance, in the uplink, we can first

solve for B(1)
u,opt in closed form for c(1)

u,` = 1M`
for all `. Then, we create a virtual

downlink channel, solve for C(1)
d,opt and bring it back to the uplink channel via the

duality relationship for the next iteration CT
u

(2) = C(1)
d,opt.

Here, we set Ru to be identity at the beginning and double check it after the



66

iteration complete to guarantee σ2
u,SIC,1 ≤ σ2

u,SIC,2 ≤ · · · ≤ σ2
u,SIC,L is satisfied.

Algorithm 1 Iterative Uplink Optimization via Duality
Given Hu and Ptotal
Initialization Step:
Set initial parameters Au, Ru, Bu, ρc,u and Cu.
Calculate γ.
while γ not converged do
Create virtual dual downlink channel with Ad = AT

u , Bd = BT
u , Cd = CT

u ,
Rd = RT

u and β` = γ`.
Calculate ρc,d using (6.4).
Optimize Cd using (6.21).
Update β.
Update Cu = CT

d and β` = γ`.
Calculate ρc,u using (6.3).
Update Ru using (6.16)
for m = 2 to L do
if σ2

u,SIC,m < σ2
u,SIC,m−1 then

Set ru,m = r̃u,m using (6.17).
end if

end for
Optimize Bu using (6.20).
Update γ.

end while
Output Au, Bu, Cu, Ru, ρc,u, and γ.

The iterative algorithm for optimizing the downlink sum rate is a slight variation

of Algorithm 1. The process is summarized in Algorithm 2. It is quite similar to that

for the uplink, so we omit a detailed description due to space constraints.
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Algorithm 2 Iterative Downlink Optimization via Duality
Given Hd and Ptotal
Initialization Step:
Set initial parameters Ad, Rd, Bd, ρc,d and Cd.
Calculate β.
while β not converged do
Create virtual dual uplink channel with Au = AT

d , Bu = BT
d , Cu = CT

d , Ru = RT
d

and β` = γ`.
Calculate ρc,u using (6.3).
Update Ru using (6.16).
for m = 2 to L do
if σ2

u,SIC,m < σ2
u,SIC,m−1 then

Set ru,m = r̃u,m using (6.17).
end if

end for
Optimize Bu using (6.20).
Update γ.
Update Bd = BT

u , Rd = RT
u and β` = γ`.

Calculate ρc,d using (6.4).
Optimize Cd using (6.21).
Update β.

end while
Output Ad, Bd, Cd, Rd, ρc,d, and β.

We now briefly investigate the performance of our iterative algorithm for the

uplink setting. To generate the plot, we have set L = 5, and drawn a sample channel

matrix Hu elementwise i.i.d. N (0, 1). For simplicity, we assume single-antenna user

case. The integer matrix Au is initially chosen using the LLL algorithm and then

remains fixed. In Figure 6·2, we have plotted the effective SINRs obtained after a

given number of iterations by Algorithm 1. Here we set Ru and Rd to be identities.

Figure 6·2 shows all SINRs increase monotonically after each iteration.
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Figure 6·2: Achievable SINRs for 5-user uplink channel after a given
number of iterations using Algorithm 1 with fixed total power Ptotal =
20dB.

In Figure 6·3, we plot the symmetric rate (the minimum rate across all users)

achieved by Algorithm 1 and compare it with three other schemes. In Figure 6·3, ZF

means we set Au and Ad to be identity matrices and “no SIC” means we fix Ru and

Rd to be identity matrices.
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Figure 6·3: Performance of iterative optimization algorithm for IF
using uplink-downlink duality. Here we comparison the symmetric rates
for 5 users in the uplink MIMO MAC.

6.1.3 By-product #2: Peak-to-average Power Ratio for Downlink IF

In [Nazer and Gastpar, 2011] and [Zhan et al., 2014], integer-forcing shows its advan-

tage in the sense of uplink computation rates, which can be extended into the dual

downlink channel using the uplink-downlink duality relationship. The base station

in the downlink channel has multiple antennas and the transmission is under a total

power constraint. The power can be highly unbalanced across base station anten-

nas, which in turn leads to large peak single antenna power and results in a high

implementation cost for the power amplifier.

In Figure 6·4, we have plotted the peak-to-average power ratio (PAPR) for all of

the strategies described above in the context of the downlink. Specifically, we plot

the highest power across the transmit antennas divided by the average power. For

ZF, we fix Ad to be identity. For no DPC case, we fix Rd to be identity. We consider



70

a downlink channel with N = 4 basestation antennas and L = 4 single-antenna

users. Each channel matrix Hd is drawn elementwise i.i.d. N (0, 1) and our result

is averaged over 2000 independent channel realizations. Note that integer-forcing

performs similarly to zero-forcing with DPC and that integer-forcing with DPC has

a lower PAPR than zero-forcing with DPC.
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Figure 6·4: Peak-to-average power ratio for integer-forcing and zero-
forcing architectures for a downlink channel with N = 4 basestation
antennas and L = 4 single-antenna users.

6.1.4 By-product #3: Broadcast Sum Capacity to within a Constant Gap
for IF without DPC

By using the integer-forcing uplink-downlink duality and existing result from [Or-

dentlich et al., 2012], we show that IF (without DPC) can achieve rate tuples within
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a constant gap of the sum capacity in the downlink Gaussian BC channel.

Previous works in [Ordentlich et al., 2012] show that IF can can approach the

sum capacity of the L-user multiple-access channel within a constant gap of L
2 log2 L

bits. In [Ordentlich et al., 2012], the coding powers are assumed to be symmetric, and

transmitters are assumed to be single-antenna without beamforming (Cu is identity).

We will first review the results in [Nazer et al., 2016] which generalize [Ordentlich

et al., 2012][Theorem 3] to asymmetric power case. For simplicity, we will assume

single-antenna user case where multi-antenna user case can be transfered into a single-

antenna case using unitary beamforming vectors in the uplink and unitary projection

vectors in the downlink.

Lemma 6 ( [Nazer et al., 2016]). For a given uplink channel matrix Hu ∈ RN×L

and coding power matrix Pu , if Cu and Ru are set to be identity (no beamforming
and no SIC), the optimal sum computation rate (optimized over Au and Bu) is lower
bounded by

L∑
`=1

Ru,` ≥
1
2 log2 det

(
I + PuHT

uHu

)
− L

2 log2 L (6.22)

where the form of computation rate Ru,` is given in (3.19).

The proof of Lemma 6 is given in [Nazer et al., 2016] which is also shown in

Appendix B.

Theorem 10. For a given downlink channel matrix Hd ∈ RL×N and (diagonal) equal-
ization matrix Cd = I, there exists a set of integer matrix Ad ∈ ZL×L, beamforming
matrix Bd ∈ RN×L and (diagonal) power matrix Pd such that the sum computation
rate ∑L

`=1Rd,` approaches the sum capacity up to a constant gap of no more than
L
2 log2 L. Here Rd,` is given in Theorem 4 (no DPC).

Proof of Theorem 10: Based on [Vishwanath et al., 2003], [Viswanath and Tse, 2003]
and [Yu and Cioffi, 2004], the sum capacity of a Gaussian BC channel and its dual
Gaussian MAC channel are the same. For a given dual Gaussian MAC channel
Hu = HT

d , there exists a power matrix P∗u that achieves the sum capacity (total
power constraint).
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P∗u = arg max
P∗

u

1
2 log2 det

(
I + P∗uHT

uHu

)
s.t. Tr(P∗u) ≤ Ptotal (6.23)

For that specific P∗u, Lemma 6 shows that up to a constant gap of no more than
L
2 log2 L can be approached to the sum capacity by fixing Cu, Ru to be identity (no
beamforming and SIC) and select Au, Bu optimally . Using the uplink-downlink
duality result from Theorem 8, there exist a power matrix P∗d such that same sum
rate can also be achieved by setting Cd, Rd to be identity (no projection and DPC)
and Ad = AT

u , Bd = BT
u . According to the uplink-downlink duality results, P∗d will

not violate the total power constraint.

6.2 Source-Channel Duality for IF

In this section we will establish the source-channel duality for IF. Some notations will

be changed from previous sections due to new variables and definitions. Specifically

in this section, subscripts(or superscripts) “c” and “s” will be used to denote variables

associated with the channel coding and source coding, respectively.

6.2.1 Review of Achievable Rate Expressions

We first briefly review achievable rates expressions for both IF channel coding and

IF source coding in Chapter 3 and Chapter 5. For IF MAC channel coding, we

set Cu = I representing identity beamforming. Without successive cancellation, the

integer-forcing channel coding scheme consists of three steps: the receiver applies

an equalization matrix, decodes integer-linear combinations of the transmitted lat-

tice codewords, and then solves these linear combinations for the desired codewords.

Select a full-rank integer matrix Ac ∈ ZK×K for which there exists a unit lower trian-

gular matrix L such that LAc is upper triangular.1 Let P , diag(P1, . . . , PK) be the
1We can always find such an L for a full rank Ac so long as we are permitted a column permutation

on Ac, which is equivalent to reindexing the users.
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diagonal matrix of power constraints as in Chapter 3 and let aT
c,k be the kth row of

Ac. We set equalization matrix Bu = AcPTHT(I + HPHT)−1 as in Chapter 3 where

H is the uplink channel matrix. The following rates are achievable

Rc
k = 1

2 log
(

Pk

aT
c,k

(
HTH + P−1

)−1
ac,k

)
(6.24)

for k = 1, . . . , K as shown in [Ordentlich et al., 2013,Nazer et al., 2016] and Chapter 3.

For successive cancellation, we also select a unit, lower-triangular matrix Rc

whose kth row we denote by rT
c,k. This matrix must place the effective noises terms

σ2
eff,k = rT

c,kAc
(
HTH+P−1

)−1
AT

c rc,k in increasing order, i.e., σ2
eff,1 ≤ · · · ≤ σ2

eff,K . The

successive integer-forcing strategy uses previously recovered linear combinations to re-

duce the effective noise variance encountered for decoding subsequent ones, according

to the coefficients from Rc. Overall, as argued in [Ordentlich et al., 2013,Nazer et al.,

2016] and Chapter 3, the following rates are achievable,

Rc
k = 1

2 log
(

Pk

rT
c,kAc

(
HTH + P−1

)−1
AT

c rc,k

)
(6.25)

for k = 1, . . . , K.

For source coding rate expression we use the formula given by Theorem 7 in

Chapter 5.

6.2.2 Constant Gap Results without Successive Cancellation

We begin by considering integer-forcing without successive cancellation. For channel

coding, the rates are given by (6.24) or, equivalently, by

Rc
k = 1

2 log(Pk)−
1
2 log(‖Gac,k‖2) (6.26)

where G = (HTH + P−1)− 1
2 .

For source coding, the rates are given by Theorem 7 with R = I. Let As be the



74

integer matrix in IF source coding and let aT
s,k be the kth row of As, we have the rate

expression

Rs
k = 1

2 log
(

aT
s,k(Kxx + D)as,k

Dk

)
. (6.27)

Setting Kxx = HTH and Pk = D−1
k , we get that

Rs
k = 1

2 log
(
||G−Tas,k||2

)
+ 1

2 log(Pk) (6.28)

We now review some useful definitions and properties of successive minima and dual

lattices.

Definition 5 (Successive Minima). Let Λ(G) = GZK be a K-dimensional lattice
generated by G ∈ RK×K. For k = 1, . . . , K, we define the kth successive minima as

λk , inf
{
r : dim

(
span

(
Λ(G) ∩ B(0, r)

))
≥ k

}

where B(0, r) is a closed ball with radius r centered at 0.

Definition 6 (Dual Lattice). The dual lattice of Λ(G) is given by Λ(G−T). We refer
to the kth successive minima of Λ(G−T) as the kth dual successive minima of Λ(G),
denoted as λ∗k for k = 1, . . . , K.

The following result of Banaszczyk [Banaszczyk, 1993] connects the successive

minima with their duals,

1 ≤ λkλ
∗
K−k+1 ≤ K, k = 1, . . . , K . (6.29)

For the choice G = (HTH + P−1)− 1
2 , the successive minima correspond to the

optimal choices of integer vectors, leading to integer-forcing channel coding rates

(6.24)

Rc
k = 1

2 log
(

1
λ2
k

)
+ 1

2 log(Pk) . (6.30)
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For integer-forcing source coding, we use the successive minima in reverse order in

order to satisfy (5.12), leading to achievable rates

Rs
k = 1

2 log((λ∗K−k+1)2) + 1
2 log(Pk) (6.31)

Combining (6.29) with (6.31) and (6.30), we obtain the following bound

Theorem 11. The optimal integer-forcing source coding and channel coding rates
(without successive cancellation) lie within a constant gap of one another:

Rc
k ≤ Rs

k ≤ Rc
k + logK k = 1, . . . , K. (6.32)

6.2.3 Successive IF Source-Channel Duality

Consider a successive integer-forcing channel coding scheme with integer matrix Ac

and lower triangular successive cancellation matrix Rc satisfying the constraints from

Chapter 3. Let FcFT
c be the Cholesky decomposition of Ac(HTH + P−1)−1AT

c and

fc,k,k be the kth diagonal component of Fc. Setting Rc = diag(fc,1,1, . . . , fc,K,K)F−1
c ,

we can rewrite (6.25) as

Rc
k = 1

2 log(Pk)−
1
2 log(f 2

c,k,k) k = 1, . . . , K. (6.33)

We have that f 2
c,1,1 ≤ · · · ≤ f 2

c,K,K (since the effective noises are assumed to be

increasing).

Consider a successive integer-forcing source coding scheme with integer matrix

As = A−T
c , upper triangular successive cancellation matrix

Rs = R−T
c = diag(f−1

c,1,1, . . . , f
−1
c,K,K)FT

c (6.34)
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, covariance matrix Kxx = HTH, and distortions Dk = P−1
k . It follows that

F−T
c F−1

c =
(
Ac
(
HTH + P−1

)−1
AT

c

)−1
(6.35)

= A−T
c (HTH + P−1)A−1

c (6.36)

= As(Kxx + D)AT
s . (6.37)

Therefore, rT
s,mAs(Kxx + D)AT

s rs,m = f−2
c,m,m. Since f−2

c,1,1 ≥ · · · ≥ f−2
c,K,K , we have

satisfied (5.12). It can also be shown that the desired submatrices are full rank.

Overall, the achievable rate from Theorem 7 is

Rs
k = 1

2 log(Pk)−
1
2 log(f 2

c,k,k) k = 1, . . . , K. (6.38)

Combining (6.33) and (6.38), we have source-channel duality for IF established.

Theorem 12. For the choices of integer and successive cancellation matrices above,
successive integer-forcing source coding (5.26) and successive integer-forcing channel
coding (6.25) achieve the same rates,

Rs
k = Rc

k (6.39)

for k = 1, . . . , K.

Furthermore, it has been shown [Ordentlich et al., 2013] that succes-

sive integer-forcing achieves the multiple-access sum capacity when Rc =

diag(fc,1,1, . . . , fc,K,K)F−1
c ,

K∑
k=1

Rc
k = 1

2 log det(I + PHTH). (6.40)

We can also conclude that the sum rate for IF channel coding and source coding

both approach to the multiple-access channel coding sum capacity when the duality

is established.
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Figure 6·5: (a) Constant Gap without SIC; and (b) Source-Channel
Duality with SIC.
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Chapter 7

Integer-Forcing Interference Alignment
(IFIA)

7.1 Overview

We first provide a high-level overview for integer-forcing interference alignment

(IFIA). Consider a Gaussian MIMO interference channel with K transmitter-receiver

pairs. Each pair will communicate using the same bandwidth and experience inter-

ference from other pairs. Let x1, x2, . . . , xK denote the transmitted signals. We can

align the signals such that at receiver k, the x1, . . . , xk−1, xk+1, . . . , xK occupy only

half the signaling dimensions. We can then project onto the null space of the interfer-

ing signals which is the original interference alignment scheme in [Cadambe and Jafar,

2008,Jafar, 2011]. This resembles, at a high level, the zero-forcing approach for decod-

ing multiple data streams over a point-to-point MIMO channel. For integer-forcing

interference alignment, we choose to align signals in two (or multiple) signal-space di-

rections. For example, on one direction we decode xk+f(x1, . . . , xk−1, xk+1, . . . , xK)

and on the other direction we decode xk − f(x1, . . . , xk−1, xk+1, . . . , xK). Here

f(x1, . . . , xk−1, xk+1, . . . , xK) is a linear function of {x1, . . . , xk−1, xk+1, . . . , xK}

with integer coefficients. In this case, interference is decoded as an aligned function

instead of being nulled out. We can solve these two functions for xk and repeat this

process for the rest of the receivers and their desired signals. We can also choose to

align interference in multiple directions and decode more than two combinations.
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Figure 7·1: IFIA for the 3-user symmetric interference channel.

The scheme of integer-forcing interference alignment involves designing beam-

forming matrices and equalization matrices, as well as choosing the proper decod-

ing combinations. In this chapter, we would like to answer the following questions:

which combinations should we choose, how should we design beamfoming matrices

and equalization matrices, and what is the performance of integer-forcing interference

alignment at low/moderate SNR.

7.2 Problem Statement

We will focus on the K-user, real-valued Gaussian interference channel where each

transmitter has a single data stream. Our framework can be naturally generalized to

include multiple data streams per transmitters as well as any complex-valued channel

by using its real-valued decomposition. Superscripts will refer to transmitter and

receiver indices.

Transmitters: There are K transmitters (indexed by `). The `th transmitter is
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equipped with N [`]
Tx antennas and produces a channel input X[`] ∈ RN

[`]
Tx×n satisfying

an expected power constraint E
[
Tr
(
X[`]X[`]T

)]
≤ nρ where n is the blocklength.

For IFIA in this dissertation, we will focus on linear encoding strategies: each

transmitter has a single codeword s[`] ∈ Rn drawn from a codebook of rate R[`]

that it maps onto its transmit antennas using a beamforming vector v[`] ∈ RN
[`]
Tx ,

X[`] = v[`]s[`]T .

Receivers: There are K receivers (indexed by k). The kth receiver is equipped with

N
[k]
Rx antennas and observes

Y[k] =
K∑
`=1

H[k,`]X[`] + Z[k] (7.1)

where H[k,`] ∈ RN
[k]
Rx×N

[`]
Tx is the channel matrix from the `th transmitter and Z[k]

is elementwise i.i.d. N (0, 1). The receiver applies an equalization matrix U[k] ∈

RN
[k]
Rx×M

[k] (where M [k] will be specified later) to obtain an effective channel output

Ỹ[k] = U[k]TY[k] , (7.2)

which is then used to obtain an estimate ŝ[k] of the transmitted codeword s[k]. If the

probability of error vanishes with the blocklength, the rates R[1], . . . , R[K] are said to

be achievable.

We will denote matrices by boldface uppercase symbols (e.g., H) and column

vectors by boldface lowercase symbols (e.g., v). We use T to denote the tanspose and

Tr(X) to represent the trace of a matrix X. Let A∼k be the matrix resulting from

dropping the kth column of matrix A and a∼k be the vector resulting from dropping

the kth entry of vector a. Also, we will use ‖a‖ to represent `2-norm of vector a and

log+(x) , max(0, log(x)).

Some notation is redefined in this chapter, and should not be confused with no-

tational conventions from earlier.
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7.3 Conventional Approach: MaxSINR Algorithm for Zero-
Forcing Interference Alignment

We now briefly summarize the key steps of the Max-SINR algorithm [Gomadam et al.,

2011], which will act as an inspiration for our IFIA iterative optimization algorithms.

Since each transmitter only emits a single data stream, each receiver only needs one

equalization vector, M [k] = 1. We can express the effective channel output (7.2) as

Ỹ[k] = u[k]†H[k,k]v[k]s[k]†︸ ︷︷ ︸
desired signal

+
∑
`6=k

u[k]†H[k,`]v[`]s[`]†︸ ︷︷ ︸
interference

+u[k]†Z[k]

where u[k] ∈ RN
[k]
Rx is the equalization vector. We assume that each data stream s[`]

is drawn from an i.i.d. Gaussian codebook of power ρ and thus each beamforming

vector must satisfy ‖v[`]‖2 ≤ 1. The resulting SINR at receiver k is

SINRk = ρ
u[k]†H[k,k]v[k]v[k]†H[k,k]†u[k]

u[k]†
( ∑
`6=k

H[k,`]v[`]v[`]†H[k,`]† + I
)
u[k]

, (7.3)

which leads to achievable rates R[k] = 1
2 log(1+SINRk) since the receiver simply treats

the remaining interference as noise.

It can be shown that simultaneously choosing the u[k] and v[`] to maximize SINRk

for all k is a non-convex optimization problem. However, for a fixed choice of the

beamforming vectors v[`], the optimal unit-norm1 equalization vectors can be ex-

pressed in closed form:

u[k] =

( ∑
` 6=k

H[k,`]v[`]v[`]†H[k,`]†
)−1

H[k,k]v[k]

∥∥∥( ∑
l 6=k

H[k,`]v[`]v[`]†H[k,`]†
)−1

H[k,k]v[k]
∥∥∥2 . (7.4)

Now consider a hypothetical dual channel where the roles of the transmitters
1We employ unit-norm equalization and beamforming vectors to make it easier to switch the roles

of transmitters and receivers in the dual channel.
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and receivers are reversed. Specifically, let ←−H [k,`] = H[`,k]T denote the dual channel

matrix from the `th transmitter to the kth receiver and let u[`] and v[k] play the role

of beamforming and equalization vectors, respectively. It follows that for a fixed

choice of the u[`], the optimal v[k] can be expressed in closed form. Using this fact,

it immediately follows that in the original channel, for fixed equalization vectors u[k],

the optimal unit-norm beamforming vectors are

v[k] =

( ∑
` 6=k

←−H [k,`]u[`]u[`]†←−H [k,`]†
)−1←−H [k,k]u[k]

∥∥∥( ∑
` 6=k

←−H [k,`]u[`]u[`]†←−H [k,`]†
)−1←−H [k,k]u[k]

∥∥∥2 . (7.5)

Overall, the Max-SINR algorithm uses (7.4) and (7.5) to iteratively optimize the

beamforming and equalization vectors. For more details, we refer readers to [Go-

madam et al., 2011].

7.4 Integer-Forcing Interference Alignment

In this section, we give a high-level overview of the IFIA strategy, which builds on

previous results for compute-and-forward and integer-forcing from [Nazer and Gast-

par, 2011,Zhan et al., 2014,Ordentlich et al., 2014,Ntranos et al., 2013b,Nazer et al.,

2016]. Our framework inherits the alignment idea from [Ntranos et al., 2013b] as

well as the asymmetric compute-and-forward technique from [Nazer et al., 2016]. For

details about asymmetric compute-and-forward as well as the complete version for

expanded compute-and-forward, we refer readers to [Nazer et al., 2016].

7.4.1 Achievable Rates

Let us assume that the `th transmitter selects a (dithered) lattice codeword s` ∈ Rn

with power ρ` = 1
n
E‖s[`]‖2 and a beamforming vector v[`] that meets the overall

power constraint ρ`‖v[`]‖2 = ρ. Let P = diag(ρ1, . . . , ρK) be the diagonal matrix of
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coding powers and S , [s[1] · · · s[K]]T denote the matrix of codewords. We define the

beamforming matrix V as

V ,


v[1] · · · 0

N
[1]
Tx... . . . ...

0
N

[K]
Tx
· · · v[K]

 (7.6)

where 0N refers to the zero column vector of length N . Recall that H[k,`] is the

channel matrix from the `th transmitter to the kth receiver. By defining

H[k] , [H[k,1] · · · H[k,K]] , (7.7)

we can compactly write the kth receiver’s observation as

Y[k] = H[k]VS + Z[k] . (7.8)

The kth receiver’s goal is to recover M [k] integer-linear combinations of codewords

which can be solved later for the desired codeword s[k]. The ith combination is given

by

r[k]T
m = a[k]T

m S, i = 1, . . . ,M [k] (7.9)

where a[k]
m ∈ ZK is the integer vector containing the integer coefficients of the ith

linear combination.

To recover the integer combination for a given a[k]
m , the kth receiver applies the

equalization vector u[k]
m and obtains effective channel output

ỹ[k]T
m = u[k]T

m Y[k] (7.10)

= r[k]T
m︸︷︷︸

Desired combination

+ z[k]T
eff,m︸ ︷︷ ︸

Effective noise

(7.11)

where z[k]T
eff,m = (u[k]T

m H[k]V−a[k]T
m )S+u[k]T

m Z[k] is the effective noise due to the mismatch
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between the actual effective channel u[k]T
m H[k]V and the desired integer vector a[k]T

m

plus the amplified channel noise. The power of the effective noise z[k]
eff,m is given by

(
σ

[k]
eff,m

)2
= 1
n
E
[
‖z[k]

eff,m‖2
]

= ‖(u[k]T
m H[k]V− a[k]T

m )P 1
2‖2 + ‖u[k]

m ‖2. (7.12)

It has been shown in [Nazer et al., 2016] that for a given equivalent channel H[k]V

and integer matrix a[k]
m , the optimal equalization vector u[k]

opt,m is given by the MMSE

equalizer

u[k]T
opt,m = a[k]T

m PTVTH[k]T(I + H[k]VPVTH[k]T)−1. (7.13)

Substituting with (7.13) and using Woodbury’s matrix identity, we can rewrite (7.12)

as

(
σ

[k]
eff,m

)2
,
∥∥∥F[k]a[k]

m

∥∥∥2
(7.14)

where F[k] =
(
P−1 + VTH[k]TH[k]V

)− 1
2 . We will let A[k] , [a[k]

1 · · · a[k]
M [k] ]

T and

U[k]T , [u[k]
1 · · · u[k]

M [k] ]
T be the matrix representations for the integer coefficients and

equalization.

In order to decode the mth integer-combination at the the kth receiver, all par-

ticipating users with non-zero coefficient in a[k]T
m should design their codebook to

tolerant noise power
(
σ

[k]
eff,m

)2
given in (7.12). Successfully decoding the mth integer-

combination at the the kth receiver results in a certain constraint called the compu-

tation rate for each participating users, given as

R
[k]
comp,m,` = 1

2 log+

 ρ`(
σ

[k]
eff,m

)2

 for a
[k]T
m,` 6= 0 (7.15)

where a[k]T
m,` is the `th entry of a[k]T

m . Here R[k]
comp,m,` is a rate constraint to user ` only

if this user participates in the mth integer-combination at the the kth receiver. The



85

message from the `th transmitter (user) might participate in multiple combinations

at multiple receivers. Thus the achievable rate for the `th transmitter is mapped from

one of the computation rates given as

R[`] = min
k=1,...,K

min
m:a[k]T

m,`
6=0
R

[k]
comp,m,` (7.16)

For asymmetric compute-and-forward, the achievable rate for the `th user depends

on a valid pairing relationship (k,m, `) between its coding power ρ` and one of the

effective noise power
(
σ

[k]
eff,m

)2
. The rate expression in (7.16) can be further improved

by implementing algebraic successive cancellation introduced in [Ordentlich et al.,

2014] which relaxes the pairing constraints. We will first review the basic idea of

algebraic successive cancellation and then show the improved achievable rates region.

Algebraic successive cancellation can be achieved by using previously decoded

integer-combinations to eliminate some of the users codewords contributing in the

subsequent integer-combinations which relaxes the computation rate constraints on

these users. In order to capture the order in which the codewords can be eliminated

from the integer-combinations, we define a mapping I [k] as a set of pair of the form

(m, `), where ` ∈ {1, . . . , K} denotes the user index, m ∈ {1, . . . ,M [k]} denotes

the integer-combination index and (m, `) ∈ I [k] means that the `th user can not be

canceled out while decoding the mth integer-combination. Only some mappings are

admissible (depending on the integer matrix A[k]). A mapping I [k] is said to be

admissible if there exists a lower unitriangular2 matrix L[k] ∈ RM [k]×M [k] such that

the (m, `)th entry of L[k]A[k] is equal to zero for all (m, `) /∈ I [k]. The admissible

mapping I [k] captures the possible assignments of the computation rates to the users.

For any choice of integer matrices A[k], beamforming matrix V, equalization ma-
2lower triangular matrix whose diagonal elements are equal to 1
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trices U[k], and admissible mappings I [k], the following rates are achievable

R[`] = min
k=1,...,K

min
m:(m,`)∈I[k]

R
[k]
comp,m,` (7.17)

For an in-depth discussion of the achievability proof, we refer interested readers to [Or-

dentlich et al., 2014,Ntranos et al., 2013b] and [Nazer et al., 2016].

7.4.2 Integer matrix A[k] structure

In the simple case where the kth receiver wants to decode all of the codewords (K

codewords), we need K independent integer-combinations such that

rank
(
A[k]

)
= K. (7.18)

Decoding all the codewords is essential in the multiple-access channels, where the

receiver is interested in all the transmitted codewords. In the interference channel,

this overconstrains the user rates as we will have K computation rate constraints

while the receiver only desires one message.

The receiver can choose to decode less number of integer-combinations (i.e., M [k]

instead of K), then solve for the desired codewords. In order to solve for the desired

codewords, the following conditions are needed:

rank
(
A[k]

)
= M [k], (7.19)

rank
(
A[k]
∼k

)
= M [k] − 1. (7.20)

In other words, theM [k] integer-combinations should be linearly independent and the

coefficients of the interference codewords in the M [k] integer-combinations should be

aligned in no more than M [k] − 1 dimensional space.

Example 1. Consider the case when K = 3 and M [1] = 2. An example of the
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integer-combinations that could be decoded at receiver 1 are

r[1]
1 = s[1] + s[2] + 2s[3] (7.21)

r[1]
1 = −s[1] + 2(s[2] + 2s[3]). (7.22)

It can be shown that s[1] = 2r[1]
1 −r[1]

2
3 . The integer matrices A[1] and A[1]

∼1 are

A[1] =
[ 1 1 2
−1 2 4

]
(7.23)

A[1]
∼1 =

[1 2
2 4

]
(7.24)

which satisfy the conditions in (7.19) and (7.20).

7.4.3 Optimization Issues

The natural objective of IFIA is to choose the beamforming matrix V, equalization

matrices U[k] and integer matrices A[k] jointly to maximize the sum of the achievable

rates (user rates). Unfortunately, this is a non-convex problem. Instead of solving the

original problem, in Section 7.6 we will propose two suboptimal algorithms to perform

IFIA using iterative optimization techniques. In the iterative algorithms, we will split

the part of choosing integer matrix A[k] from the part of the selecting beamforming

matrix V and the equalization matrix U[k]. As a first step, we will discuss how to

choose the integer matrix A[k] in Section 7.5. We then talk about how to choose V

and U[k] for a fixed integer matrix A[k] in Section 7.6.

Even for a fixed A[k], optimizing U[k] and V jointly for the sum rate or the

symmetric rate is still a non-convex optimization problem. We tackle this problem

by further relaxing the optimization problem into an alternative optimization problem

for V and U[k].

The achievable rates in (7.17) also depend on the set of admissible mappings I [k].

These mappings are determined by the structure of A[k] and their patterns make the

optimization even more complicated. While optimizing A[k], U[k] and V, we will not
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take the admissible mapping issue into our consideration. We will exhaustively search

among all admissible mapping at the very end once A[k], U[k] and V are fixed.

For optimization, we will consider the problem of maximizing the sum of com-

putation rates at the kth receiver. According to (A.1), maximizing the sum of com-

putation rates equals to minimizing the multiplication of the effective noise powers
M [k]∏
i=1
‖F[k]a[k]

m ‖2. Combining the conditions of combinations mentioned before, this

problem is equivalent to find the shortest M [k] vectors in the lattice spanned by F[k]

satisfying (7.19) and (7.20).

Finding the shortest and independent M [k] vectors in a lattice spanned by F[k] is,

in general, a hard problem. Some polynomial time algorithms (e.g., LLL algorithm

[Lenstra et al., 1982]) can provide a good approximation, but there is no guarantee for

satisfying the conditions in (7.19) and (7.20). In the next section, we propose a new,

yet suboptimal, algorithm which holds the conditions we need while approximating

to the shortest vectors.

7.5 Aligned Lattice Reduction Algorithms

In this section, we will discuss how to choose the integer-combinations coefficients A[k]

to minimize the noise powers. For simplicity, we will propose an algorithm to optimize

the integer matrix A[k] for a fixed M [k] = 2 (decode two integer-combinations) and

given matrices V and U[k]. We name this algorithm Aligned LLL Method-I. Recall

that decoding a number of integer combinationsM [k] less than the number of unknown

codewords K requires the integer matrix A[k] to have a special structure as mentioned

earlier. We will introduce a lattice reduction method called aligned LLL algorithm

to obtain the desired A[k]. For the general case (M [k] ≥ 2), a generalization of our

aligned LLL algorithm is given in the Appendix A as well as simulation results.

For M [k] = 2 (i.e., A[k] ∈ Z2×K), we need to align K − 1 interfering codewords
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into a single combination. Recall that a[k]T
m is the mth row of A[k] for m = 1, 2 and

a[k]T
m∼k is the vector resulting from dropping the kth entry of vector a[k]T

m . At the kth

receiver, the constraints in (7.19) and (7.20) can be rewritten as constraints for a[k]T
1

and a[k]T
2 such that

a[k]
1∼k = b

[k]
1,2a

[k]
int, a[k]

2∼k = b
[k]
2,2a

[k]
int (7.25)

a
[k]
1,k = b

[k]
1,1, a

[k]
2,k = b

[k]
2,1 (7.26)

rank
([

b
[k]
1,1 b

[k]
1,2

b
[k]
2,1 b

[k]
2,2

])
= 2 (7.27)

where a[k]
int ∈ ZK−1 and b[k]

m,i ∈ Z,∀i,m = 1, 2.

Here the vector a[k]
int represents the coefficients of an aligned function. Recall that

S , [s[1] · · · s[K]]T denote the matrix of codewords and let (ST)∼k be the matrix

resulting from dropping the kth column of ST . Another way to view this, is to define

an aligned function of interfering codewords as

g[k] = (ST)∼ka[k]
int. (7.28)

Now, we decode two independent integer-combinations r[k]
1 and r[k]

2 given by

r[k]
1 = b

[k]
1,1s[k] + b

[k]
1,2g[k] (7.29)

, r[k]
2 = b

[k]
2,1s[k] + b

[k]
2,2g[k]. (7.30)

If r[k]
1 and r[k]

2 are decoded successfully, we can solve for s[k] (and g[k]). Our goal is

to find the optimal (or a good approximation) a[k]T
1 and a[k]T

2 given by the structure

in (7.25)-(7.27) to minimize the product of effective noise powers ∏
m=1,2

‖F[k]a[k]
m ‖2.

We will propose a method based on Minkowski’s Second Theorem [Cassels, 1957].

The method allows us to get a theoretical lower bound on the computation sum rate.

For any chosen interference function g[k] in (7.28), we choose two independent integer
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vectors b[k]
1 = [b[k]

1,1 b
[k]
1,2]T and b[k]

2 = [b[k]
2,1 b

[k]
2,2]T to minimize

2∏
m=1

(σ[k]
eff,m)2 which can be

written as

2∏
m=1

(σ[k]
eff,m)2 =

2∏
m=1
‖F[k]a[k]

m ‖2 (7.31)

=
2∏

m=1
‖b[k]
m,1f

[k]
k + b

[k]
m,2F

[k]
∼ka

[k]
int‖2 (7.32)

=
2∏

m=1
‖F[k]

redb[k]
m ‖2 (7.33)

where F[k]
red =

[
f [k]
k F[k]

∼ka
[k]
int

]
represents the basis of a new reduced lattice. The first

column of this basis corresponds to the desired signal s[k], while the second column

corresponds to the interference function g[k].

We can choose b[k]
1 and b[k]

2 by finding the two shortest non-zero vectors in this

new reduced lattice with basis given by F[k]
red. From (7.33), the optimal b[k]

1 and b[k]
2

are given as a function of a[k]
int by

b[k]
1 = arg min

b
‖F[k]

redb‖2 (7.34)

b[k]
2 = arg min

b:rank([b[k]
1 b])=2

‖F[k]
redb‖2. (7.35)

Lattice reduction algorithms (e.g., the LLL algorithm) can be used to give ap-

proximate solutions. To apply Minkowski’s Second Theorem, recall the definition of

successive minimum in Chapter 6 Definition 5. From [Feng et al., 2013] and (7.33),

the powers of the effective noise in both integer-combinations are given by the first

and second successive minima of the reduced lattice F[k]
red such that (σ[k]

eff,1)2 = λ2
1(F[k]

red)

and (σ[k]
eff,2)2 = λ2

2(F[k]
red). We can write the sum of the computation rates as
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2∑
m=1

Rcomp,m = 1
2

2∑
m=1

log
 ρ

(σ[k]
eff,m)2

 (7.36)

= 1
2 log

 ρ2

2∏
m=1

λ2
m(F[k]

red)

 (7.37)

a
≥ 1

2 log
 ρ2

4| det(F[k]T
red F[k]

red)|

 (7.38)

where a is due to Minkowski’s Second Theorem [Cassels, 1957]. Furthermore, we can

write det(F[k]T
red F[k]

red) as

det(F[k]T
red F[k]

red) = ‖f [k]
k ‖2‖F[k]

∼ka
[k]
int‖2 − (f [k]T

k F[k]
∼ka

[k]
int)2 (7.39)

= a[k]T
int F[k]T

∼k ‖f
[k]
k ‖

I− f [k]
k f [k]T

k

‖f [k]
k ‖2

 ‖f [k]
k ‖F

[k]
∼ka

[k]
int (7.40)

= ‖G[k]a[k]
int‖2 (7.41)

where G[k] can be obtained by Cholesky factorization such that

G[k]G[k]T = (F[k]T
∼k ‖f

[k]
k ‖

I− f [k]
k f [k]T

k

‖f [k]
k ‖2

 ‖f [k]
k ‖F

[k]
∼k) (7.42)

. Finally, the interference function g[k] (i.e., a[k]
int) can be obtained by lattice reduction

on G[k]:

a[k]
int = arg min

a∈ZK−1
‖G[k]a‖2 . (7.43)

Choosing a[k]
int as in (7.43) guarantees that ‖G[k]a[k]

int‖2 will be the shortest vector

in a lattice with basis G[k] (i.e., λ2
1(G[k])) and as a result we can bound the sum of

the computation rates as
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2∑
m=1

Rcomp,m ≥
1
2 log

(
SNR2

4λ2
1(G[k])

)
(7.44)

a
≥ 1

2 log
 SNR2

4(K − 1) det(G[k])
2

K−1

 (7.45)

where a is due to Minkowski’s first theorem. Algorithm 3 shows the details of Method-

I.

Algorithm 3 Aligned LLL algorithm for decoding 2 integer-combinations (Method-I)

1. Step1: Using the LLL algorithm, find the shortest vector in the lattice F[k]

a[k]
int = arg min

a∈ZK−1
‖G[k]a‖2

where G[k] can be obtained by factoring G[k]TG[k] =

F[k]T
∼k ‖f

[k]
k ‖

(
I− f [k]

k
f [k]T
k

‖f [k]
k
‖2

)
‖f [k]
k ‖F

[k]
∼k using Cholesky decomposition.

2. Step2: Using the LLL algorithm, find the shortest two vectors in the lattice
Fred

[k] =
[
f [k]
k F[k]

∼ka
[k]
int

]

b[k]
i = arg min

b∈Z2:rank([b[k]
1 ,...,b[k]

i−1,b])=i
‖Fred

[k]b‖2, i = 1, 2

3. Step3: Calculate the integer matrix A[k] using

Ã[k] =
[
b

[k]
1,1 b

[k]
1,2a

[k]
int

b
[k]
2,1 b

[k]
2,2a

[k]
int

]
A[k] = L[k](Ã[k])

where L[k] is a permutation matrix which put column 1 in between columns k
and k + 1 of Ã[k].
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7.6 IFIA through CVX and Duality

In this section, we propose two methods to optimize beamforming matrix V and

equalization matrix U[k]. We assume the integer combination coefficients (A[k]) is

fixed while optimizing V and U[k]. As mentioned before, jointly optimizing V and

U[k] is not a convex problem, and we will relax the joint optimization problem into

two separate optimization problems.

For any given beamforming matrix, V, the optimal equalization matrix U[k] is

always in the form of MMSE equalizer as in (7.13). For a given equalization ma-

trix U[k], we develop two algorithms to update the beamforming matrix V. The

first algorithm relaxes the problem of choosing V, given A[k] and U[k], to a convex

optimization problem. We can use convex optimization toolbox, like the CVX pack-

age [Grant et al., 2008], to solve the relaxed convex problem. The second algorithm

iteratively optimizes V and U[k] using the idea of channel reciprocity and uplink-

downlink duality for integer-forcing [He et al., 2014]. Both algorithms are iterative

optimization algorithms. For each iteration, the integer matrix A[k] can be updated

using the aligned LLL algorithm in Section 7.5 for fixed beamforming matrix V and

equalization matrix U[k].

We will use the CVX package to solve the convex optimization problem for our first

algorithm, thus, we name the first algorithm CVX-IFIA. The second algorithm will

be called Dual-IFIA since it borrows the idea of duality for integer-forcing from [He

et al., 2014].

7.6.1 CVX-IFIA

The achievable rates of the IFIA are bounded by the computation rates. Instead

of optimizing the sum of the achievable rates, we will relax the original problem to
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optimize the worst computation rate3 (i.e., largest effective noise power) across all

the receivers. The relaxed problem can be written as

P1 : min
V,U[k]

(
max
i,k

(
σ

[k]
eff,i

)2
)

s.t ‖v[`]‖2 ≤ 1, ∀`.
(7.46)

Here, P1 is still a non-convex optimization problem. However, for a fixed U[k], P1

can be rewritten as

P2 : min
V

(
max
i,k

(
σ

[k]
eff,i

)2
)

s.t ‖v[`]‖2 ≤ 1, ∀`.
(7.47)

which is a convex optimization problem. Since for any fixed beamforming matrix V,

(7.13) gives the optimal U[k], one can iteratively optimize U[k] and V using (7.13)

and the solution of (7.47). The details of the algorithm is presented in Algorithm

2. To guarantee better performance, the CVX-IFIA algorithm is initialized by the

beamforming vectors given by the Max-SINR algorithm described in Section 7.3.

7.6.2 Dual-IFIA

Before giving the details of the algorithm, we introduce the dual channel and dual

network for the IFIA. In the primal network, each receiver k wants to decode M [k]

combinations and solve for the desired single codeword s[k] sent by the kth transmitter.

Overall, we have M = ∑
kM

[k] combinations decoded at all the receivers.

In the dual network, the receivers and transmitters roles are reversed. The `th

primal receiver becomes the `th dual transmitter and the kth primal transmitter be-

comes the kth dual receiver (i.e., the dual channel matrix←−H [k,`] = H[`,k]T). In addition,

the beamforming (equalization) vectors of the primal network become the equaliza-

tion (beamforming) vectors of the dual network. As a result, in the dual network,
3The intuition here was to maximize the symmetric rate.
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each dual transmitter ` wants to send M [`] messages, while each dual receiver k

wants to decode only one combination of these messages. We have dual beamform-

ing matrices ←−V [`] ∈ RN
[`]
Rx×M

[`] and the dual equalization vectors ←−u [k] ∈ RN
[k]
Tx . Let

A = [A[1]T · · · A[K]T ]T ∈ ZM×K be the integer matrix of the primal channel, the dual

integer matrix can be represented as

←−A = AT ∈ ZK×M (7.48)

where K here represents the total number of combinations andM represents the total

number of the transmitted messages. Define the channel to the kth dual receiver as

←−H [k] =
[←−H [k,1] · · · ←−H [k,K]

]
. (7.49)

Following the same steps as in the primal IFIA, the kth dual receiver decodes a single

combination and we can write the power of the effective noise as

(←−σ [k]
eff

)2
, ‖←−u [k]T‖2 +

(←−u [k]T←−H [k]←−V −←−a [k]T
)←−P(←−u [k]T←−H [k]←−V −←−a [k]T

)T

where←−V is the block diagonal matrix of [←−V [1] · · · ←−V [K]] and←−P is the diagonal coding

power matrix with diagonal elements

←−
P i,i = ρ

‖←−vi‖2 (7.50)

The optimal equalization vector ←−u [k]T which minimizes the effective noise power
←−σ [k]

eff at the kth dual receiver is

←−u [k]T
opt =←−A [k]←−P T←−VT←−H [k]T(I +←−H [k]←−V←−P←−VT←−H [k]T)−1. (7.51)

We can use the equalization vectors ←−u [k] at the kth dual receiver (after normaliz-

ing) and then map it to the beamforming vectors v[k] for the kth primal transmitter.



96

We can iteratively use the closed form expressions in (7.13) and (7.51) to optimize

the beamforming and equalization vectors. The details of the the proposed algorithm

is given in Algorithm. 4.

7.7 Numerical Results

We now briefly investigate the performance of our iterative algorithms. In our sim-

ulations, we consider the case of 500 channel realizations. Recall that for symmetric

systems, there is a feasibility condition for the existence of a linear strategy for in-

terference alignment in a DoF sense [Yetis et al., 2010]. The condition is given by

NTx +NRx− (K+ 1)d ≥ 0 where NTx is the number of antennas for each transmitter,

NRx is the number of antennas for each receiver, K is the number of users and d is

the DoF demanded by each user. In this dissertation, the DoF demanded by each

user is 1.

Figure 7·2 shows the sum rate of three users obtained after 20 iterations. To

generate the plot, we have setK = 3, each transmitter and receiver have two antennas

and M [k] = 2, ∀k. Notice that this system setting satisfies the feasible scenario in

[Yetis et al., 2010]. The elements of the channel matrices H[k,`] are drawn i.i.d.N (0, 1).

Notice that the Max-SINR algorithm is a special case of IFIA by setting integer

matrix A to be identity. Thus, we can use Max-SINR algorithm without changing

our decoding framework. In Figure 7·2, “max all” represents the maximum rate

achieved among IFIA(Duality), IFIA(CVX) and Max-SINR algorithm. “Decode All”

is the scenario where M [k] = 3 and there is no interference alignment. For clarity,

we have omitted the plot of max(Max-SINR, Dual-IFIA) as well as max(Max-SINR,

CVX-IFIA) since they are very close to “max all”. From Figure 7·2, it can be observed

that IFIA(both Dual and CVX variations) can achieve the same degrees-of-freedom as

the Max-SINR algorithm. The performance can be ordered from the highest sum rate
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Algorithm 4 Dual/CVX-IFIA Iterative Optimization
Given Iteration Number, power constraint ρ and H[k,`],∀k, `.

1. Initialization: counter=0, v[k], U[k], ρk = ρ, ∀k .

2. Run Max SINR algorithm and update v[k] and U[k], ∀k .

3. Choose A using Algorithm 1.

4. Optimize U[k] using (7.13), ∀k.

5. while counter < Iteration Number do
(a) if Dual-IFIA

i. Set ←−A = AT , ←−H [k,`] = H[`,k]T and ←−V [k] = U[k].

ii. Optimize ←−u [k]T using (7.51), ∀k.

iii. if ||←−u [k]||2 > 1 then
Normalize ←−u [k].

iv. end if

v. Set v[k] =←−u [k] , ∀k.

else if CVX-IFIA

i. Using CVX package, solve P1

ii. Optimize U[k] using (7.13), ∀k.

end if

(b) Update ρk = ρ/||v[k]||2 , ∀k.

(c) Update A using Algorithm 1.

(d) counter=counter+1.

6. end while

7. Optimize U[k] using (7.13), ∀k.

8. Output ρk, A[k], v[k] and U[k], ∀k.
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Figure 7·2: Performance of iterative algorithms for IFIA in feasible
scenario: K = 3, N [k]

Tx = N
[k]
Rx = 2, M [k] = 2,∀k.

to the lowest in the following order: “max all”, Dual-IFIA, Max-SINR, CVX-IFIA,

“Time Sharing” and “Decode-All”

Figure 7·3 shows the sum rates for 4 users (K = 4), each transmitter and receiver

has two antennas and M [k] = 2,∀k. This system setting does not satisfy the feasible

scenario in [Yetis et al., 2010]. For clarity we ignore the plot of max(Max-SINR,

CVX-IFIA) and max(Max-SINR, Dual-IFIA), they are only a little bit higher than

Dual-IFIA. It can be seen that Max-SINR algorithm degrades significantly and IFIA

outperforms Max-SINR, especially when SNR is high.
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Chapter 8

Conclusions

8.1 Summary of the thesis

In this thesis, we established an uplink-downlink duality and a source-channel duality

under the framework of IF. For uplink-downlink duality, we showed IF can achieve

the same sum rate in Gaussian MIMO MAC and its dual Gaussian MIMO BC. For

source-channel duality, we showed IF can achieve the same rate tuples in Gaussian

MIMO MAC and its dual Gaussian distributed source coding problem. Both du-

ality relationships allow us to better understand the roles of IF architecture in the

downlink channel coding problem and distributed Gaussian source coding problem.

In the downlink channel, we extended the existing IF beamforming results to allow

asymmetric power and asymmetric rates. We designed a DPC technique for IF in

the downlink channel based on a known SIC technique from the uplink channel. We

showed a constant gap result for the IF downlink computation sum rate and proposed

an iterative optimization algorithm based on the uplink-downlink duality result. Our

simulation results showed that IF in the downlink channel not only provides an advan-

tage in transmission rate but also has an advantage in lowering the maximum power

across antennas. For IF source-channel duality, we extended the existing IF source

coding results to allow asymmetric distortions, asymmetric rates, and successive can-

cellation. We proposed a source-channel duality relationship between successive IF

for distributed Gaussian source coding and successive IF for the Gaussian MIMO

MAC. We also showed that, even without successive cancellation, the rates of IF
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source coding and IF channel still lie within a constant gap of one another.

Using the dualities as connections, we can generalize existing results from a well-

understood model, e.g. IF in MIMO MAC, to help us better understand and design

IF in other models. We can use the basic IF models studied in this thesis, like the

IF MAC and IF BC, as building block to further develop IF for more complicated

networks.

For IFIA in Gaussian interference channel, we developed linear alignment strate-

gies using a recently developed analytical approach for integer-forcing interference

alignment. We explored both signal space alignment and signal scale alignment.

Numerical results demonstrate the advantages for integer-forcing interference align-

ment in both feasible scenario and infeasible scenario compare to existing signal space

alignment algorithms such as Max-SINR algorithm. The algorithms further provide

insight of interference alignment with static channel realization and low/moderate

SNR regime.

8.2 Future Directions

For IF dualities established in this thesis, both uplink-downlink duality and a source-

channel duality are formula duality. The connections are built upon the rate ex-

pressions only. One interesting direction is to further establish a stronger functional

duality where the duality connections are established on the codebook. Another in-

teresting direction is to establish a duality loop by filling the missing bottom left

corner in Figure 1·1. However, the broadcast source coding problem for IF is not well

defined yet. Potential future works can involve finding the correct system model and

developing duality connection for IF in the BC source coding problem.

For IFIA, there are many interesting open problems. First, theoretical analysis

for the performance of IFIA remains to be explored. The extension of IFIA among



102

multiple channel realizations is also missing. It is also an interesting problem to

explore the performance of IFIA in large interference networks.
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Appendix A

Aligned LLL lattice reduction algorithms
for general M [k]

This part we will introduce two additional aligned LLL lattice reduction algorithms

for general case where M [k] ≥ 2 (recall M [k] is the number of combinations decoded

at each receiver). In Section 7.5, we introduced Aligned LLL Method-I which works

only for M [k] = 2. Here, we will introduce Aligned LLL Method-II and Method-III

which work for M [k] ≥ 2. We then compare their performance in terms of sum rate

for M [k] = 2.

Recall that the effective noise power is given by (7.12) as

(
σ

[k]
eff,i

)2
,
∥∥∥F[k]a[k]

i

∥∥∥2
(A.1)

where F[k] =
(
P−1 + VTH[k]TH[k]V

)− 1
2 . We can expand (A.1) as

(
σ

[k]
eff,i

)2
=
∥∥∥a[k]

i,kf
[k]
k + F[k]

∼ka
[k]
i,∼k

∥∥∥2
(A.2)

where a[k]
i,∼k is a subvector of a[k]

i without the kth element, f [k]
k is the kth column of

F[k], and F[k]
∼k is a submatrix of F[k] with the kth column removed. The algorithm for

the general case is summarized in Algorithm 5. To develop intuition, we now describe

our algorithm for the special case of M [k] = 2 and focus on operations at the first

receiver (i.e., decoding x[1]). This is equivalent to imposing the following structure
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on matrix A[1]

A[1] =
a[1]

1,1 c1 a[1]†
1,∼1

a
[1]
2,1 c2 a[1]†

1,∼1

⇔ A[1]
∼1 =

c1 a[1]†
1,∼1

c2 a[1]†
1,∼1

 (A.3)

where c1, c2 ∈ Z, c2a
[1]
1,1 6= c1a

[1]
2,1 and a[1]

1,∼1 =
[
a

[1]
1,2 · · · a

[1]
1,K

]
contains the integer

coefficients of the interfering codewords corresponding to columns f [1]
2 , . . . , f [1]

K . We

now present two lattice reduction methods.

Aligned LLL Method-II

In this method, the receiver finds a near-optimal integer vector a[1]
1 by attempting to

minimize
(
σ

[1]
eff,1

)2
using the LLL algorithm [Lenstra et al., 1982]. It then extracts the

integer coefficients a[1]
1,∼1 for the interfering codewords from a[1]

1 and uses these to find

a[1]
2 by minimizing

(
σ

[1]
eff,2

)2
using the LLL algorithm while satisfying the decodability

constraint in (A.3).

In other words, the receiver first finds a[1]∗
1,∼1 using

a[1]∗
1 = arg min

a[1]
1 ∈ZK

∥∥∥F[1]a[1]
1

∥∥∥2
(A.4)

Finally, the receiver finds the best two independent integer-linear combinations of

vectors f [1]
1 and F[1]

∼1 using

b∗1 = arg min
b∈Z2

∥∥∥F̃[1]b
∥∥∥2
,

b∗2 = arg min
b∈Z2

rank[b∗
1 b]=2

∥∥∥F̃[1]b
∥∥∥2 (A.5)

where F̃[1] = [f [1]
1 F[1]

∼1a
[1]∗
1,∼1] where a[1]∗

1,∼1 is the subvector of a[1]∗
1 with the first element

removed. Finally, the integer matrix A[1]
1 is given by

A[1]
1 =

b∗1,1 b∗1,2a
[1]∗
1,∼1

b∗2,1 b∗2,2a
[1]∗
1,∼1

 (A.6)
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Aligned LLL Method-III

The only difference with Method-II is that, instead of finding the best integer vector

a[1]∗
1 that minimizes

(
σ

[1]
eff,i

)2
then extracting the coefficients of interference codewords

(i.e. a[1]∗
1,∼1), the receiver first aligns the interference codewords to minimize σ[1]2

eff,i by

choosing

a[1]∗
1,∼1 = arg min

a[1]
1,∼1

‖F[1]
∼1a

[1]
1,∼1‖2 (A.7)

then computes b∗1,b∗2 and A[1]
1 from (A.5) and (A.6), respectively. It is worth noting

that both methods run in polynomial time as they only utilize two calls of the LLL

algorithm.

Comparison between different aligned LLL methods

A comparison between the performance of three methods are shown in Table A.1 for

SNR = 25 dB and M [k] = 2. From Table A.1, none of the methods are consistently

better (as the maximum is strictly higher than any one of them).

Method-I Method-II Method-III Best
3 users 9.8316 9.757 (-0.758%) 9.6541(-1.805%) 10.0808(+2.53%)
4 users 8.9254 8.5276(-4.45%) 8.1259(-8.95%) 9.3343(+4.58%)

Table A.1: The sum rate (in bits/Sec/Hz) for different aligned LLL
lattice reduction methods at 25 dB for IFIA
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Algorithm 5 Generalized Aligned LLL for M [k] integer-combinations (Method-
II&III)

1. Step1: Using the LLL algorithm, find the shortestM [k]−1 vectors in the lattice
F[k]

Method-II:

i) a[k]∗
i = arg min

a[k]
i

‖F[k]a[k]
i ‖2, i = 1, . . . ,M [k] − 1

ii) a[k]∗
i,∼k = [a[k]∗

i,∼k, . . . , a
[k]∗
i,K ], i = 1, . . . ,M [k] − 1

Method-III: a[1]∗
1 = arg mina[k]

i,∼k

‖F[k]
∼ka

[k]
i,∼k‖2

2. Step2: Using the LLL algorithm, find the M [k] shortest vectors in the lattice
F̃[k] = [f [k]

k F[k]
∼kĀ[k]]

b∗i = arg min
bi:rank[b∗

1,...,b
∗
i−1]=i

‖F̃[k]bi‖2, i = 1, . . . ,M [k]

where Ā[k] = [a[k]∗
1,∼k, . . . , a

[k]∗
M [k]−1,∼k]

3. Step3: Calculate the integer matrix A[k] using

Ã[k] =
[

1 0†
M [k]−1

0K−1 Ā[k]
∼k

]
[b∗1 , . . . , b∗

M [k] ]

A[k] = π`,k(Ã[k])

where π`,k(Ã[k])= exchanges columns ` and k of Ã[k]



Appendix B

Proof of Lemma 6

Assuming Hu, Au and Pu are given in the uplink channel, the optimal equalization

matrix Bu is a quadratic problem with a closed-form solution

Bu,opt = AuPT
uHT

u (I + HuPuHT
u )−1. (B.1)

Recall that the effective noise power is given as:

σ2
u,eff,j , ‖bT

u,j‖2 +
(
bT
u,jHu − aT

u,j

)
Pu
(
bT
u,jHu − aT

u,j

)T
(B.2)

where bu,j and au,j are the jth row vector of Bu and Au, separately. Put (B.1) into

(B.2), we can rewrite (B.2) as

σ2
u,eff,j , aT

u,j

(
Pu −PuHT

u (I + HuPuHT
u )−1HuPu

)
au,j (B.3)

Let K = (Pu−PuHT
u (I+HuPuHT

u )−1HuPu) 1
2 . Let λ`(K) represents the `th successive

minimum of K. From [Ordentlich et al., 2012][Theorem 4], it is known that

L∏
`=1

λ`(K)2 ≤ LL‖ det(K)‖2 (B.4)

By choosing au,1, · · · , au,L optimally, we have ‖Kau,`‖ = λ`(K).

107
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L∑
`=1

Ru,` = 1
2 log2(det(Pu))−

L∑
`=1

1
2 log2(σ2

u,eff,j) (B.5)

= 1
2 log2(det(Pu))− 1

2 log2(
L∏
`=1

σ2
u,eff,`) (B.6)

= 1
2 log2(det(Pu))− 1

2 log2(
L∏
`=1
‖Kau,`‖2) (B.7)

= 1
2 log2(det(Pu))− 1

2 log2(
L∏
`=1

λ`(K)2) (B.8)

≥ 1
2 log2(det(Pu))− 1

2 log2(LL‖ det(K)‖2) (B.9)

= 1
2 log2(det(Pu))− 1

2 log2(‖ det(K)‖2)− L

2 log2(L) (B.10)

= 1
2 log2

(
det

(
Pu(Pu −PuHT

u (I + HuPuHT
u )−1HuPu)−1

))
− L

2 log2(L)

(B.11)

= 1
2 log2

(
det

(
I−PuHT

u (I + HuPuHT
u )−1Hu

)−1
)
− L

2 log2(L) (B.12)

= 1
2 log2 det

(
I + PuHT

uHu

)
− L

2 log2(L) (B.13)

where the last step proof uses the Woodbury matrix identity.
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