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ABSTRACT

Observing biophysical phenomena at the nanometer scale with both high spatial

and temporal resolution is a challenging feat. Although many techniques, includ-

ing atomic force microscopy and scanning electron microscopy, have demonstrated

subnanometer spatial resolution, most exhibit drawbacks which limit their temporal

resolution. On the other hand, light microscopy exhibits poor spatial resolution (typ-

ically greater than 100 nm) due to diffraction. The desire to image features below the

resolution of light has spawned the term super-resolution microscopy to which many

powerful, albeit complicated, techniques may be associated; such techniques include

Stimulated Emission-Depletion Microscopy (STED) and Stochastic Optical Recon-

struction Microscopy (STORM). Within the field of super-resolution there exists a

subset of methods which involve tagging features of interest (e.g., a virus or motor

protein) with small, fluorescent molecules and measuring their emitted fluorescence

over time. Although the emitted light is diffraction-limited, the precision of localizing

the position of the molecule is proportional to the number of photons acquired. Thus,

fluorescent particle tracking is a method which augments traditional light microscopy
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so that features may be localized to spatial resolutions below the diffraction limit

while still maintaining useful temporal resolutions.

One common approach for tracking fluorescent particles involves passively ob-

serving the particle with a stationary detector; this approach, however, is limited

by its inability to observe particles in three dimensions over a large field of view.

Consequently, specialized techniques have been developed that actively track the

particle, but the majority of these methods, unfortunately, utilize non-standard op-

tical paths which complicate their use. Moreover, analysis methods pertaining to

both paradigms, which infer both position locations and model-based parameter esti-

mates, are often subjective or employ simplified and potentially inaccurate models. In

widefield microscopy, for example, the common approach involves first localizing the

particle within each image via a heuristic method, such as calculating the centroid,

and then inferring diffusion coefficients by regressing to the mean squared displace-

ment. This approach to localization disregards information involving the optical setup

(e.g., the point spread function, aberrations, and noise) as well as information regard-

ing the particle’s motion. Although methods exist for optimally calculating diffusion

coefficients, they are limited to the case of unconfined diffusion with measurements

corrupted by additive, white noise.

The work in this thesis provides two specific contributions. The first presents

an active approach to tracking a single fluorescent particle in three dimensions that

requires no specialized hardware aside from a standard confocal microscope. Inspired

by works involving the autonomous exploration of unknown potential fields, the al-

gorithm operates by moving the microscope’s focal volume toward the maximum of

the field of light emitted by the particle. For a stationary particle and a radial field,

an equilibrium trajectory is derived and its local stability is proven. In addition, the

algorithm’s ability to track both stationary and diffusive particles is numerically char-
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acterized. The second contribution presents the application of a numerical, iterative

algorithm to the problem of simultaneously inferring both location and model param-

eters from particle tracking data of potentially nonlinear and non-Gaussian imaging

modalities. The method, which is leveraged from the field of system identification,

employs Sequential Monte Carlo methods in conjunction with the Expectation Max-

imization algorithm to provide approximate maximum likelihood estimates of model

parameters (e.g., diffusion coefficients) as well as approximate posterior probabil-

ity densities of the particle’s location over time. The effectiveness of the method

is demonstrated through numerical simulations of two- and three-dimensional mo-

tion (including free, confined, and tethered diffusion) imaged in a widefield context.

Lastly, the effectiveness of both methods is demonstrated by tracking a quantum dot

in a hydrogel with the proposed tracking method and by analyzing the resulting data

using the aforementioned inference method.

viii



Contents

1 Introduction 1

1.1 Biological Imaging at the Nanometer Scale . . . . . . . . . . . . . . . 1

1.2 Tracking Fluorescent Particles . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Passive Tracking Methods . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Active Tracking Methods . . . . . . . . . . . . . . . . . . . . . 11

1.3 Inference from Particle Tracking Experiments . . . . . . . . . . . . . 13

1.4 Contributions and Organization of Thesis . . . . . . . . . . . . . . . . 16

2 Tracking a Fluorescent Source via Extremum Seeking 19

2.1 Overview of Confocal Microscopy . . . . . . . . . . . . . . . . . . . . 20

2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 A Stationary Particle with Unbounded Support of PSF . . . . . . . . 25

2.3.1 Existence of Equilibrium Trajectory . . . . . . . . . . . . . . . 26

2.3.2 Stability of Equilibrium Trajectory . . . . . . . . . . . . . . . 28

2.3.3 Numerical Characterization of Equilibrium Trajectory . . . . . 31

2.4 A Diffusing Particle with Bounded Support of PSF . . . . . . . . . . 35

2.4.1 Approximate Formula for First Passage Time . . . . . . . . . 37

2.4.2 Numerical Characterization of First Passage Time . . . . . . . 42

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Inference for Particle Tracking Experiments 49

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The Expectation Maximization Algorithm . . . . . . . . . . . . . . . 52

ix



3.2.1 Sequential Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Relevant Models in Fluorescence Microscopy . . . . . . . . . . . . . . 56

3.3.1 Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Diffusive Directed Motion . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Confined Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.4 Elastic Tethering . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.5 Normally Distributed Initial Condition . . . . . . . . . . . . . 63

3.3.6 Poissonian Shot Noise . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Demonstration: Widefield Fluorescence . . . . . . . . . . . . . . . . . 65

3.4.1 Generation of Ground-Truth Data . . . . . . . . . . . . . . . 66

3.4.2 Algorithm Implementation . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Metrics for Algorithm Performance . . . . . . . . . . . . . . . 71

3.4.4 Demonstration No. 1: Two-Dimensional Diffusion . . . . . . 74

3.4.5 Demonstration No. 2: Axially-Confined Diffusion . . . . . . . 78

3.4.6 Demonstration No. 3: Three-Dimensional Elastic Tethering . 81

3.4.7 Demonstration No. 4: Elastic Tethering with Unknown PSF . 84

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Tracking a Quantum Dot within a Hydrogel 89

4.1 Confocal Microscope Setup . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Characterization of Confocal PSF . . . . . . . . . . . . . . . . . . . 90

4.3 Experiment Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Summary and Future Directions 101

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

x



5.2.1 Discrete-Time Analysis of Stability . . . . . . . . . . . . . . . 103

5.2.2 Accounting for Motion Blur . . . . . . . . . . . . . . . . . . . 103

5.2.3 Non-Markovian Dynamics . . . . . . . . . . . . . . . . . . . . 104

A Summary of Sequential Monte Carlo Methods 105

A.1 Sampling Importance Resampling Algorithm . . . . . . . . . . . . . . 105

A.2 Forward-Filtering Backward-Smoothing Algorithm . . . . . . . . . . . 107

References 108

Curriculum Vitae 117

xi



List of Tables

3.1 Parameter values used in the generation of ground-truth data and for

each of the four widefield imaging demonstrations. . . . . . . . . . . . 67

xii



List of Figures

1·1 A common setup for tracking fluorescent particles in a passive widefield

setting. Here, a white excitation source is filtered to a specific band-

width of wavelengths (shown in blue). The filtered excitation light is

reflected by a dichroic mirror and focused by the objective onto the

sample. The fluorescent particles (shown as red dots within the sam-

ple) react to the excitation light and emit a different color light (shown

in red). The emitted light passes through the dichroic and through an-

other filter. It is then focused onto a detector, such as a camera. . . 8

2·1 A ray diagram of a confocal microscope. Here, an excitation source

(shown in blue) is passed through a pinhole and reflected to the ob-

jective lens by a dichroic. The objective lens focuses the excitation

light onto the focal plane of the sample (shown as a black line con-

tained within a gray rectangle). The light emitted by the fluorophore

(shown in red) is collected by the objective lens and passed through

the dichroic. The emitted light is then passed through another pinhole

which is confocal to the excitation pinhole. The intensity of the light is

then measured by an avalanche photodiode. Note that the out of focus

light (shown by the dashed magenta and orange rays) are not confocal

with either pinhole and are subsequently blocked. . . . . . . . . . . . 21

xiii



2·2 A theoretical model of the confocal point spread function (PSF) shown

in two different planes. The picture on the left shows a cross-section of

the PSF within the focal plane, and the picture on the right shows a

cross-section along the axial plane. Note the differences in axis lengths.

Image reproduced from (Andersson, 2011). . . . . . . . . . . . . . . 22

2·3 A typical trajectory for the proposed tracking controller. In the figures

shown in the top row, the deviation (x̃, ỹ, z̃) of the focal volume from
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4·1 In image of the confocal microscope used for the experiment described

in this work. The device is based upon a Zeiss Axiovert 200 inverted

microscope which can operate in both widefield and confocal modes.

The devices contains an internal dichroic (not shown) which reflects

the excitation source (shown in red) to a 3D piezoelectric nanostage

(shown in dashed orange). The nanostage holds the specimen and

can displace it in three dimensions. The fluorescence generated by the

specimen is passed through the dichroic and is reflected to both the

pinhole (shown in green) and the CCD camera (shown in purple) by a

beam splitter. In confocal operation the avalanche photodiode (shown

in yellow) measures the emitted light, whereas in widefield operation

the CCD camera measures it. . . . . . . . . . . . . . . . . . . . . . . 91

4·2 A block diagram of the optical path for the microscope described in this

work. The excitation light (shown in blue) is generated by a laser diode.

The light is then reflected off a dichroic, passed through the objective

lens, and focused onto the sample. The sample is held by a piezoelec-

tric nanostage. The emitted fluorescence generated by the sample is

collected by the objective and passed through the dichroic where it is

focused onto a pinhole which is confocal with the laser excitation. The

intensity of the emitted light is then measured by the avalanche photo-

diode. A real-time controller (here, an NI cRIO) observes the APD’s

intensity measurement and, during tracking, generates real-time posi-

tion commands to the piezostages. Note that although a beam-splitter

reflects some of the emitted light onto a CCD camera, the image is

recorded by a host computer and is not used during tracking. . . . . . 92
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4·3 Three-dimensional point spread function (PSF) measurements (left)

and the corresponding Gaussian model (right) which was calculated

by a nonlinear least-squares fit. Three planes are shown in magenta,

orange, and green which enable the depiction of the cross sections

shown in Fig. 4·4. These planes were determined by calculating the

planes through the estimated particle center, given by the least-squares

fit, and normal vectors specified by the three standard Cartesian unit

vectors transformed via (4.2) and the three rotations (ψ̂x, ψ̂y, ψ̂z), also

given by the least-squares fit. The intensity values in the measured

PSF (left) are normalized by the maximum measured intensity value,

and the intensity values in the model PSF (right) are normalized by

the peak intensity value calculated by least-squares fit. . . . . . . . . 94

4·4 Two-dimensional point spread function measurements (top row) and

their corresponding Gaussian models (bottom row) through the three

planes depicted in Fig. 4·3. . . . . . . . . . . . . . . . . . . . . . . . . 95

4·5 The inferred three-dimensional position of a quantum dot, in blue,

diffusing in a hydrogel relative to the position of the focal volume, in

black, which followed the particle in real-time using the extremum seek-

ing method described in this work. The particle position was inferred

by employing the SMC-EM algorithm described in Chapter 3. In the

bottom graph, the measured intensity, in black, is shown in relation to

the theoretical intensity, in blue, which was calculated by evaluating

a Gaussian model of the point spread function (PSF) as a function of

the inferred particle position and the measured focal volume position. 99
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4·6 The inferred three-dimensional trajectory of a quantum dot diffusing

in a hydrogel as parametrized by time. The quantum dot was tracked

in a confocal microscope using the method presented in this work; the

resulting particle position was inferred using the SMC-EM algorithm

described in Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
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Chapter 1

Introduction

1.1 Biological Imaging at the Nanometer Scale

The understanding of biological phenomena has significantly improved over the re-

cent century due to the development of tools which enable the observation of micro

and nanoscale objects. Important examples of these tools, all of which were awarded

a Nobel Prize, include the sub-diffraction light microscope by Zsigmondy in 1925,

the phase contrast microscope by Zernike in 1953, the electron microscope by Ruska

in 1986, and the scanning tunneling microscope by Binnig and Rohrer also in 1986.

These inventions, among many others, have been applied to a multitude of applica-

tions, including those involving the structure of deoxyribonucleic acid (Driscoll et al.,

1990), the human immunodeficiency virus (Fuller et al., 1997), and fibrillar actin

(Masai et al., 1991). Although these inventions are particularly momentous, each of

them is not without its own set of performance limitations.

Within the field of biological microscopy, one may adjudicate the performance of

a microscope by four important criteria. These include (1) its ability to image living

(in vitro or in vivo) systems without extraneous and uncontrollable interference, (2)

its spatial resolution, which is preferably small enough to adequately characterize the

size and length of the features of interest, (3) its temporal resolution, which should

be small enough such that the dynamic behaviors of the organisms are sufficiently

captured, and (4) its cost, ease of use, and maintainability. As one may expect, these

criteria are codependent and every microscope offers various trade-offs.
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A particularly important and commonly used tool in biology is the scanning elec-

tron microscope (SEM). The SEM operates by directing a tightly-focused beam of

electrons onto the specimen. The energy exchange between the beam and the spec-

imen results in the deflection of electrons that are detected during the imaging pro-

cess. Perhaps the most substantial benefit of the SEM is its superior spatial resolution

which is typically on the order of 10 nanometers for mid-line conventional instruments;

the device achieves this, however, by sacrificing its performance among the other three

aforementioned criteria. Regarding its ability of imaging living specimens, SEM of-

ten requires that the specimen’s surface be electrically conductive which is usually

achieved by coating the surface with a metal such as gold or by impregnating the

material with osmium. Moreover, the specimen chamber must be at a relatively high

vacuum for operation. Consequently, the applicability to imaging living specimens

within a realistic environment is limited. Although certain techniques exist which

may preserve the structure of the specimen prior to coating, this tends to complicate

the use of the device. A relatively new mode of operation, Environmental SEM, aims

to lift these limitations, but there is currently no commercial device available and it

has yet to reach widespread use.

Another important tool used in biology is the atomic force microscope (AFM).

The AFM operates by scanning a small, nanometer-scale tip across the specimen

surface. As the tip nears the surface, various atomic interactions create attractive

and repulsive forces depending on their relative distance. During the imaging process,

the tip, which resides at the end of a flexible cantilever, is scanned in a planar raster

pattern via an actuator capable of nanometer precision (e.g., a piezoactuator). As

the tip interacts with the surface during the imaging process, the axial position of

the tip (perpendicular to the specimen plane) is regulated by a feedback loop. Thus,

the topography of the specimen may be inferred by observing the axial distance
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fluctuations during the scanning process. Much like the SEM, the primary benefit of

the AFM is that it is capable of subnanometer spatial resolution; in fact, the primary

limiting factor contributing to its spatial resolution is the size of the tip. Unlike the

SEM, however, the AFM may be more readily applied to living biological systems since

it does not necessarily require operation in a vacuum nor does it require the specimen

be conductive. Additionally, with the invention of intermittent-contact (i.e., tapping-

mode) AFM, imaging is a relatively non-invasive process. It is to be noted, however,

that the AFM can only provide information regarding the structure’s surface. Perhaps

the biggest limitation of the AFM, unfortunately, is its poor temporal resolution which

is due to the raster scanning process. Even though a significant amount of research

has been done to improve the imaging process, resulting in both algorithmic and

hardware innovations (Leang et al., 2009; Butterworth et al., 2010; Yong et al., 2012;

Ando, 2012), commercial AFMs are still limited by their inability to acquire large

images of living systems at a reasonably fast rate.

Despite the aforementioned advantages of SEM and AFM, light microscopy re-

mains a very popular method for imaging biological specimens for several reasons.

In particular, it can operate in a large variety of media, and, when operated in a

widefield manner, can acquire large images at relatively fast frame rates due to the

parallel-nature of photon acquisition. Even transparent samples may be imaged with

the addition of phase contrast and differential interference optics. Additionally, the

imaging process is mostly passive as photons do not significantly influence the spec-

imen, although heating may occur with large intensities. Given these benefits, light

microscopy may appear to be an optimal solution to imaging biological specimens.

Unfortunately, light microscopy is limited by its poor spatial resolution which is fun-

damentally limited by diffraction.

An analytical formula for the resolution of a widefield light microscope was dis-



4

covered by Abbe to be

RWF =
λ

2NA
, (1.1)

where λ is the wavelength of the emitted light and NA is the numerical aperture

of the objective lens (Abbe, 1873). Here, RWF denotes the radius of the Airy disk

within the image plane. The numerical aperture is directly proportional to the index

of refraction of the imaging medium (with common values 1.33, 1.47, and 1.51 for

water, glycerol, and oil, respectively) and the sine of the semi-angle of light entering

the objective. Since the sine of this semi-angle is bounded by unity, the limiting

factor for the numerical aperture (and therefore the resolution of light) is the index

of refraction - a value which is governed by the immersion medium. As water is often

the preferred medium for biological samples, the NA of objective lenses rarely exceeds

1.3. Thus, a reasonable lower bound on the resolution of light for the visible spectrum

is approximately 100 nm.

Unfortunately, this lower bound severely limits the applicability of light microscopy

within the field of biology as there are many structures at or below its resolution. For

example, several viruses, such as measles, hepatitis, influenza, and the human immun-

odeficiency virus are all approximately 100 nm in size. Additionally, many critically

important biomolecules, including hemoglobin, myoglobin, tRNA, lysozymes, motor

proteins, phospholipids, and antibodies, are all approximately 10 nm or smaller in

size. Consequently, conventional light microscopy cannot elucidate many biological

phenomena that may occur within the cell or its environment.

Given the existence of a multitude of biological structures with features smaller

than the diffraction limit of light, much effort has been devoted to inventing devices

and algorithms which can transcend this barrier. Over the past few decades, a new

category of super-resolution techniques has been established; some popular techniques
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include Structured Illumination Microscopy (Gustafsson, 2000), Near-field Scanning

Optical Microscopy (Betzig and Chichester, 1993), Stimulated Emission-Depletion

Microscopy (Hell and Wichmann, 1994), Photoactivated Localization Microscopy

(Hess et al., 2006), and Stochastic Optical Reconstruction Microscopy (Rust et al.,

2006). Although all of the aforementioned methods have proven successful at imaging

living specimens with resolutions far below that of conventional light microscopy, all

of them provide varying degrees of performance in terms of their temporal resolu-

tion and their ease of use. Details regarding these specific methods are beyond the

scope of this work; instead, however, we turn our attention to a class of light-based

super-resolution methods which involve tracking fluorescent particles.

1.2 Tracking Fluorescent Particles

One approach to inferring the dynamical characteristics of a biomolecule is by attach-

ing a small fluorescent molecule to it and by measuring the position of the fluorescent

molecule over time. These fluorescent molecules, also known as fluorophores, are

typically much smaller than the resolution of a light-based microscope, and common

choices include proteins, such as green fluorescent protein, dyes, such as rhodamine,

or crystals, such as quantum dots. Although the light emitted by the fluorophore is

still diffraction-limited, the resulting spatial pattern is predictable and is dependent

on the microscope’s optical configuration as well as the three-dimensional position

of the fluorophore. This pattern is known as the Point Spread Function (PSF) and

is reminiscent of the impulse response of linear, time-invariant differential equations.

Since the PSF may be mathematically characterized using the theory of optics (Born

and Wolf, 1999), the position of the particle may therefore be estimated by some infer-

ence procedure, such as a nonlinear regression which minimizes the error between the

measured intensity pattern and the predicted intensity pattern given the PSF model
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and the position of the particle. Perhaps the most profound utility of this method

is governed by the relationship between the localization precision and the number of

photons acquired per measurement. In fact, it was shown in (Thompson et al., 2002)

that these two quantities are inversely proportional and that the localization preci-

sion will asymptotically approach zero given a sufficiently large number of collected

photons. Thus, even though the spatial pattern of light is diffraction-limited, the

position of the fluorophore can be estimated to within arbitrary precision.

The utility of tracking fluorophores has been demonstrated in several scenarios.

For example, single phospholipids were tracked as they diffused on a membrane, and

the resulting images allowed the experimenters to localize the particle to within a

reported precision of 30 nm (Schmidt et al., 1996). In addition, the motor protein

myosin was tagged with a fluorescent molecule and imaged at 30 Hz as it traversed an

actin filament (Funatsu et al., 1995); as detector and fluorophore efficiency improved

over time it was determined, again via fluorescent particle tracking, that myosin

V walked in a hand-over-hand manner (Yildiz et al., 2003). A year later, kinesin

was determined to walk in a similar fashion (Yildiz et al., 2004). Furthermore, the

mechanisms behind the viral trafficking of influenza were deduced from single particle

tracking experiments (Lakadamyali et al., 2004). More recent developments involve

the cellular uptake of (HIV1-Tat)-modified nanoparticles (Welsher and Yang, 2014),

the structure of intestinal mucous (Macierzanka et al., 2014), and synaptic membrane

compartments (Biermann et al., 2014). In fact, super-resolution techniques have

become so influential that the 2014 Nobel Prize in chemistry was awarded to Hell,

the inventor of STED, as well as Betzig and Moerner, two of the original pioneers of

single-molecule microscopy.

Within this thesis, we distinguish between two different categories of tracking

methods: active methods which localize, seek, or track the particle in real-time, as
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well as passive methods which do not. To clarify, it is assumed that the categories

discussed in the following sections do not influence the particle in any fashion, such as

by applying a force to the particle either mechanically or electromagnetically (e.g., via

an optical trap). We note, however, that the field of trapping particles is vast and has

proven to be very useful to biologists; see, for example, the well-known anti-Brownian

electrophoretic trap (Cohen and Moerner, 2005).

1.2.1 Passive Tracking Methods

Perhaps the most common device used for passively tracking fluorescent particles is

the widefield epifluorescence microscope. This device, illustrated in Fig. 1·1, con-

sists of two optical paths: an excitation path and an emission path. The excitation

path often consists of a white excitation source which is filtered to a bandwidth of

wavelengths specific to the fluorophore. The filtered excitation is then reflected off

a dichroic mirror and passed through the microscope’s objective lens which focuses

it onto the sample. When the excitation light interacts with the fluorophore a dif-

ferent color of light is emitted. The emitted light is then collected by the objective

and passed through the dichroic and subsequently filtered to remove any extraneous

background light. The emitted light is then collected onto an imaging device, such

as a Charge-Coupled Device (CCD) camera.

Within the passive paradigm, inferring the particle’s location as a function of time

occurs after the experiment is complete, and the entire experimental process usually

consists of simply taking videos of the fluorophores. After the images have been

acquired, the position of each individual particle may be localized and a time-series

of its trajectory may be inferred. Clearly, the greatest benefit of this paradigm is the

fact that the experimental process is relatively simple to implement since no real-time

actuation or online estimation is performed. Additionally, the passive paradigm offers

a significant degree of modularity since the method for inference is mostly decoupled
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Figure 1·1: A common setup for tracking fluorescent particles in a
passive widefield setting. Here, a white excitation source is filtered
to a specific bandwidth of wavelengths (shown in blue). The filtered
excitation light is reflected by a dichroic mirror and focused by the
objective onto the sample. The fluorescent particles (shown as red dots
within the sample) react to the excitation light and emit a different color
light (shown in red). The emitted light passes through the dichroic and
through another filter. It is then focused onto a detector, such as a
camera.

from the measurement acquisition process. For example, different cameras, lenses,

or dichroics could be interchanged without greatly affecting the inference process.

Moreover, since no real-time constraints are imposed during the experiment itself, a

large variety of computationally complex algorithms may be used to infer the position

of the particle after the experiment is complete.

Although simplicity and modularity are both key benefits of the passive paradigm,

it is not without its limitations. Perhaps the most severe limitation of the passive
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paradigm is due to the microscope’s limited depth of field (DOF). The DOF deter-

mines how well the device is able to resolve a particle when it is axially displaced from

the plane of focus; the DOF is determined by several factors which include the optical

properties of the objective lens and immersion medium, the sensitivity of the optical

detector, and the brightness of the fluorophore relative to background noise. For per-

spective, most widefield fluorescence microscopes rarely exhibit a DOF that exceeds

1 µm. Considering that biological dynamics are inherently three dimensional, it is

probable that one or more particles may move axially outside the DOF during the ex-

periment, and, consequently, would be impossible to localize. Thus, the fact that the

passive paradigm does not actively keep particles within the DOF may significantly

limit the information acquired during the experiment.

Another significant limitation of the passive paradigm is its inability to produce

images which allow for accurate three-dimensional localization. In a standard wide-

field fluorescence microscope, the PSF exhibits spatial symmetry about the plane

of focus; thus, if one particle is above the focal plane and another is below by an

equidistant amount, then the resulting images recorded by the camera for both par-

ticles would be identical. Once again, given a scenario where axial motion of the

particle is significant, this problem could limit the information acquired during the

experiment.

Unlike the depth of field problem which is inherent to the passive paradigm itself,

the problem of axial symmetry can actually be resolved and a significant amount of

research has been devoted to doing so. One of the earliest attempts, first described in

(Kao and Verkman, 1994), used a cylindrical lens within the emission path to induce

an asymmetric astigmatic aberration into the PSF. This approach was successfully

applied in the context of imaging clathrin-coated pits in BS-C-1 cells where the ex-

perimenters achieved a 50-60 nm axial resolution using a technique known as STORM
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(Huang et al., 2008). A different technique, first proposed in (Prabhat et al., 2004),

required a beamsplitter to split the emitted light onto two distinct detectors which

are positioned at different optical distances relative to one another. Since two opti-

cal “sections” are acquired simultaneously, the axial position of the fluorophore can

therefore be inferred. A minor extension to this method which only required a single

detector was presented in (Toprak et al., 2007); the method was applied in the context

of imaging large (4 µm) beads in (Juette et al., 2008) where they achieved an axial

resolution of 75 nm when imaged in conjunction with a technique known as PALM.

Another distinct approach placed a tilted mirror behind the sample which reflected

emitted light back through the objective and thus created a virtual image which could

be detected and decoded (Tang et al., 2010). Another approach used single-photon

interferometry to provide axial information (Shtengel et al., 2009). A recent devel-

opment introduced specifically engineered phase masks that distorted the PSF in a

user-specified manner. One example of this was the “double-helix” PSF which re-

sulted in a spatial pattern consisting of two distinct lobes that rotated about a fixed

axis as the particle moved axially (Pavani et al., 2009). Very recent improvements

in the field of PSF engineering have produced PSFs with resulting DOFs of nearly

20 µm with the introduction of the “tetrapod” pattern (Shechtman et al., 2015); it

is to be noted, however, that PSFs offering large DOFs often result in relatively poor

localization precision.

In light of the advantages offered by the passive tracking paradigm, which include

its ease of use, its modularity, and, with the addition of specialized optics, its ability

to produce images which allow for three-dimensional localization, the paradigm is

ultimately best-suited for the scenario where several particles are to be imaged over

a small axial range of motion and all of which move with timescales longer than

100 ms. The reason for this timescale limitation is mostly due to the limited frame
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rates available from common, commercially available cameras. In the case where a

particle is moving with a timescale much faster than that of the acquisition period of

the camera, a phenomenon known as motion blur occurs which is an additional noise

source that reduces the precision of localization. Thus, there is a need for optical

devices that are capable of tracking particles over a large range of motion and that

can acquire measurements with periods much faster than 100 ms. In this regime,

active tracking methods offer much value.

1.2.2 Active Tracking Methods

The problems encountered by the aforementioned passive tracking methods may be

circumvented by employing one of several techniques which actively follow the particle

of interest as it moves throughout its environment. To accomplish this, a large number

of methods localize the particle in real-time and use the resulting estimated position

in a feedback algorithm that reduces the tracking error. In the context of two-photon

imaging, one such method localized the particle by scanning a laser beam in a circular

fashion centered about the estimated particle center; axial information was provided

by scanning circles in two separate axial planes (Levi et al., 2003; Ragan et al., 2006).

In contrast, a different method localized the particle by measuring the intensity at a

finite set of points around the particle; this constellation of points were optimal in

the sense that they provided a minimum variance unbiased estimate of the particle

location when localized with the fluoroBancroft algorithm (Andersson, 2008; Shen

and Andersson, 2011; Shen and Andersson, 2012).

Both of the aforementioned methods are limited in their ability to track quickly

moving particles due to the time required in obtaining intensity measurements that

allowed for the particle to be localized in real-time. While the former method was

limited by the maximum angular speed of the circle and the time to switch between

axial planes, the latter was limited by the time it took to travel to each constellation
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point. Clearly, if more focal volumes were added so that more measurements could be

performed in parallel, then the quality of tracking could be improved. Consequently,

a high-speed dual-beam instrument was built which demonstrated the effectiveness of

the active paradigm by tracking particles with diffusion coefficients up to 20 µm2/s

(McHale et al., 2007); it is to be noted, however, that despite being able to track

quickly diffusing particles, this particular device resulted in a relatively poor localiza-

tion precision (352 nm lateral and 272 nm axial). To avoid scanning multiple beams,

different approaches were developed which instead localized the particle using mul-

tiple independent avalanche photodiodes (Cang et al., 2007; Han et al., 2012). We

note that even though the latter two instruments are quite promising in their abil-

ity to track quickly moving particles, they are significantly more complicated than

standard, off-the-shelf instruments. A more optically straightforward approach has

been developed that uses multi focal-plane imaging in a wide-field setting combined

with active laser positioning for tracking of a single particle (Juette and Bewersdorf,

2010). Since it is based on a widefield modality, however, it still requires online posi-

tion estimation and is subject to issues of motion blur and similar challenges common

to this setup.

The aforementioned active tracking methods all offer various degrees of temporal

performance that outperform that allowed by the passive tracking paradigm. How-

ever, most of the techniques require specialized and potentially expensive hardware

and tend to be overly complicated to implement. Consequently, these methods have

yet to reach widespread use despite how informative they may be.

With these two distinctions, namely the difference between passive and active

tracking, we now turn our attention to how information is extracted from the data

collected from particle tracking experiments.
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1.3 Inference from Particle Tracking Experiments

After acquiring data from a particle tracking experiment, the analyst often seeks

answers to two questions: (1) Where was the particle during the experiment? and (2)

How did the particle behave according to some model? The common paradigm for

answering these two questions is inherently serial in nature. In fact, most researchers

first localize the position of the particle at each time-instant using a localization

algorithm (which answers the first question) and then subsequently apply regression

analysis to the localized positions to extract model parameters (which answers the

second question).

Regarding the first question, in the context of widefield microscopy there are

many methods that provide estimates of the particle particle position for each frame.

One such method approximates the center of the particle by calculating the cen-

troid of the particle’s image, and another method uses a nonlinear fit to a Gaussian

model. A quantitative comparison of these two methods, among others, is given in

(Cheezum et al., 2001). A more recent method, which is capable of localizing the

particle in three dimensions, is the radial symmetry center method (Parthasarathy,

2012); here, the center of the particle is determined by a numerical calculation of

the gradient. Although the aforementioned methods are relatively simple, provide

straightforward implementations, and yield intuitive estimates, more accurate and

computationally expensive methods have been developed. Fourteen of these methods

were demonstrated in a recent competition involving the tracking of particles in four

biologically-inspired scenarios and the results are given in (Chenouard et al., 2014).

Every method tested had clear advantages and disadvantages; as such, there was no

clear winner.

Regarding the second question, when an estimate of the particle’s position is

known, various methods from statistics may be used to estimate model-based param-
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eters that describe the motion behavior. The most commonly used method involves

calculating the mean squared displacement (MSD) from the position estimates and

then regressing to a known function. The MSD, which measures the correlation be-

tween points in time separated by time τ , is defined as

MSD(τ) = 〈x(t+ τ)− x(t)〉2 + 〈y(t+ τ)− y(t)〉2 + 〈z(t+ τ)− z(t)〉2 , (1.2)

where 〈·〉 denotes a time average. For some physical processes relevant to biology, the

MSD may be analytically representable; for example, the MSD for an n-dimensional

isotropic diffusion with coefficient D is

MSD(τ) = 2nDτ. (1.3)

Thus, to estimate the diffusion coefficient, one need only fit a line to the estimated

MSD and estimate the slope. Several other models relevant to biology have analytical

MSDs; a review of these is given in (Saxton and Jacobson, 1997).

Despite its popularity, it has been shown that naively fitting a curve to the MSD

may lead to erroneous estimates. For example, it is rarely the case that the position

of the particle is perfectly known without error; in fact, the noise in the position

estimate has been shown in (Martin et al., 2002) to create a constant bias in the MSD

dependent on the variance of the error in estimation. This bias, however, is never

known in practice and must be used as a fit parameter which consequently reduces

the localization precision. Additionally, the optimal number of data points to be

used in the regression must be determined. In (Saxton, 1997), the effect of temporal

correlation was described and how it creates discrepancies from the expected MSD;

their recommendation is that the analyst limit the regression to the first one-quarter

of points of the MSD. This recommendation, however, has no analytical justification

and is merely rule-of-thumb.
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Recognizing these problems, Michalet first attempted to determine the optimal

number of points with which to fit the MSD. In (Michalet, 2010), he provides a

method, the Optimal Least Squares Fit (OLSF), for numerically determining the

number of points to fit the MSD for a simple diffusion model with unknown localiza-

tion error. The method, albeit effective, is based on heuristics and is limited to the

case of diffusive motion. Moreover, the method assumes that the localization error is

additive, white Gaussian noise - an assumption that has not been justified.

At the same time as Michalet, Berglund developed a computationally efficient ap-

proach to estimating diffusion coefficients using a maximum likelihood (ML) estimator

(Berglund, 2010); the two later reconciled their methods in (Michalet and Berglund,

2012). In particular, Berglund recognized that a diffusion with intraframe blur and

additive white noise had a pair-wise correlated displacement process, and, with this,

he developed a Whittle-type estimator which could be computationally realized with

the Fast Fourier Transform. Moreover, he was able to provide analytical formulae for

the Cramér-Rao bounds associated with the diffusion coefficient and measurement

noise variance. The approach was later extended in (Shuang et al., 2012) to the case

where the fluorescent particle “turned off” during the measurement period. Much

like Michalet’s algorithm, Berglund’s algorithm was only applicable to the case of

diffusive motion and with normally distributed localization error.

Despite the work that has been done in this area, the two aforementioned ques-

tions have not been sufficiently answered. One potential problem with the common

paradigm is due to the fact that the particle is localized without regard to the entire

data set; intuitively, it seems that taking all the measurements into account would pro-

duce a better estimate of position, especially in light of a given motion or observation

model. In addition, the act of localizing the particle only produces a point estimate of

the location at a given time. Instead, more information could be inferred if an entire
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probability density function of the particle’s location were available for each time-

instant. Parameter estimation via regression to the MSD, despite being applicable

to many types of particle motion, is still limited to normally distributed localization

uncertainty which is an assumption that has not been justified. Berglund’s approach,

via maximum likelihood estimation, appears promising, but it is only limited to dif-

fusive motion with normally distributed localization error. Thus, there exists a need

for a method that can produce probability densities of the particle’s location given

all the raw measurements in addition to providing estimates of the parameters that

describe the particle’s motion for any motion or observation model.

1.4 Contributions and Organization of Thesis

We present two main contributions within this thesis. The first contribution pertains

to the issue of actively tracking a fluorescent particle in three dimensions, and the

second contribution pertains to the issue of inferring localization information and

parameter estimates from particle tracking data.

The tracking method proposed in this thesis improves upon previously developed

methods for several reasons. In particular, the method is unique in the fact that,

despite belonging to the class of active tracking methods, it requires no online lo-

calization and can therefore be implemented at high update rates. Moreover, the

generated trajectories are smooth and do not require discontinuous jumps to various

points in space. In addition, the method operates without any knowledge of the par-

ticle’s motion and does not require knowledge of the microscope’s PSF apart from the

existence of an isolated maximum which is coincident with the location of the parti-

cle. Furthermore, it requires no specialized hardware and can be implemented, with

varying degrees of performance, on a variety of confocal microscopes. Perhaps most

importantly, the method allows for substantial theoretical analysis regarding its abil-
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ity to track fluorescent particles. In this thesis, we mathematically describe several

important properties and characteristics of the method which include the existence of

an equilibrium trajectory, the stability of the equilibrium trajectory, a performance

metric that describes its ability to track a diffusing particle, and guidelines for pa-

rameter selection.

Secondly, we present a numerical method, based on prior techniques developed in

the field nonlinear system identification, which is capable of simultaneous localization

and parameter estimation from particle tracking data. The method produces two

results: (1) a probability density function of the particle’s location as a function of

time and given the measurements, and (2) maximum likelihood estimates of the model

parameters. In addition, the method allows for nonlinear motion and observation

models and only requires that the motion be Markovian and that measurements at a

given time only depend on the particle’s location at that particular time-instant. This

thesis applies the method to several simulated scenarios in a widefield imaging context.

In particular, we consider several different modes of motion, including free, confined,

and tethered diffusions, and use the proposed inference method to simultaneously

localize the particle and estimate model parameters. We show that the method

reliably estimates the model parameters and that it is capable of super-resolution

position localization.

This thesis is organized in the following manner. In Chapter 2, a brief overview

of confocal microscopy is given, and, following this, the tracking algorithm is pre-

sented and is analyzed in two separate scenarios. In particular, we first consider the

case where the particle is immobile and the PSF is radial and of unbounded sup-

port. For this scenario, we prove the existence of a sinusoidal equilibrium trajectory

centered about the extremum, we prove its stability using averaging theory, and we

numerically characterize its stability using Floquet theory. We then consider a second
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scenario which assumes the particle is moving according to a Brownian motion and

that the PSF exhibits bounded support. In this case, we derive a metric for tracking

performance which is based on an approximation of the expected first passage time.

This approximation is then numerically characterized and used to provide information

regarding optimal parameter selection.

Chapter 3 describes the inference algorithm in the context of tracking fluorescent

particles. The algorithm is then demonstrated through its application to several

different simulated scenarios within a widefield fluorescence microscope, including a

particle undergoing free, confined, and tethered diffusions.

Lastly, Chapter 4 demonstrates an experimental application of both the methods

presented in Chapters 2 and 3. Specifically, we implement the real-time tracking

algorithm in a confocal microscope and use it to track a quantum dot in a hydrogel.

We then use the presented inference method to both localize the particle and estimate

its diffusion coefficient and speed.
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Chapter 2

Tracking a Fluorescent Source via

Extremum Seeking

In this chapter, a feedback algorithm is described which is capable of tracking a fluo-

rescent particle in a confocal microscope. We begin by briefly introducing the function

of a confocal microscope and how it uses point-measurements of intensity to form a

three-dimensional image; a full treatment of confocal microscopy is, however, beyond

the scope of this work and the reader is referred to (Pawley, 2006) for further informa-

tion. Next, the feedback algorithm is presented and then characterized. In particular,

two different scenarios are considered. The first scenario considers the case of a sta-

tionary particle with a point spread function exhibiting unbounded support. Here, we

prove the existence of an equilibrium trajectory, prove its stability, and numerically

characterize its stability using Floquet theory. The second scenario considers the case

of a diffusing particle with a point spread function exhibiting bounded support. In

this case, we establish a performance metric based off an approximation to the ex-

pected first passage time. We then numerically characterize the performance metric

and then use those results to offer guidance on optimal parameter selection. For more

information on how the algorithm is implemented on a real confocal microscope, see

Chapter 4. The work presented in this chapter is based on (Ashley and Andersson,

2016) where it was described in the context of the autonomous extremum-seeking of

three-dimensional scalar potential fields.
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2.1 Overview of Confocal Microscopy

The confocal microscope is an extension of the widefield epifluorescent microscope

illustrated in Fig. 1·1 that attempts to solve two issues inherent to widefield mea-

surements. First, the confocal microscope modestly improves the lateral resolution

of the microscope in the plane of focus. More importantly, the confocal microscope

allows for three-dimensional imaging due to the addition of confocal pinholes which

block out of focus light; thus, the confocal microscope possesses a finite axial resolu-

tion unlike the widefield epifluorescent microscope.

A typical beam path for an epifluorescent confocal microscope is shown in Fig.

2·1. In this configuration, an excitation light source, which is often a laser, is passed

through a pinhole and is reflected off a dichroic mirror. The light is then passed

through the objective lens where it is focused onto the sample. The fluorescent light

emitted by the sample (which is of a different wavelength relative to the excitation

light) is collected by the objective, passed through the dichroic, and focused onto a

single-pixel device, such as an avalanche photodiode (APD). Note that out-of-focus

light emitted by the sample is also collected by the objective but is subsequently

blocked by the pinhole which is confocal to the excitation pinhole. This, in fact, is

the primary reason why confocal microscopes have a finite axial resolution.

The process by which an image is acquired for confocal microscopes differs greatly

from that of widefield. Recall that widefield microscopes typically acquire pixelated

images of a large portion of the sample; in the confocal microscope, only a single

pixel is used. Thus, the confocal microscope must move the sample relative to the

fixed focal volume (or, in a laser-scanning confocal microscope, move the focal volume

relative to the fixed sample) and acquire point measurements of the intensity of the

emitted light. Consequently, acquiring full images of a specimen takes much longer for

confocal microscopes since it becomes akin to raster-based instruments like the AFM.
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Figure 2·1: A ray diagram of a confocal microscope. Here, an exci-
tation source (shown in blue) is passed through a pinhole and reflected
to the objective lens by a dichroic. The objective lens focuses the ex-
citation light onto the focal plane of the sample (shown as a black
line contained within a gray rectangle). The light emitted by the flu-
orophore (shown in red) is collected by the objective lens and passed
through the dichroic. The emitted light is then passed through another
pinhole which is confocal to the excitation pinhole. The intensity of
the light is then measured by an avalanche photodiode. Note that the
out of focus light (shown by the dashed magenta and orange rays) are
not confocal with either pinhole and are subsequently blocked.
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However, the improved spatial resolution and the capability of three-dimensional

optical sectioning often makes the sacrifice in temporal resolution worth it.

A very important feature of the confocal microscope, which we shall later exploit

in the tracking of a fluorescent particle, is the shape of its PSF. A theoretical model of

the confocal PSF sans aberration is illustrated in Fig. 2·2. Here, we observe two main

characteristics of the PSF: (1) it has a shape similar to that of a three-dimensional

Gaussian function, and (2) it has a maximum at the point-source. Regarding the

first point, it has been shown that, for a certain non-paraxial optical model based

off a Debye integral, a Gaussian approximation is “nearly perfect” for the confocal

microscope (Zhang et al., 2007). In regard to the second point, the maximum at the

center of the particle is global, isolated, and coincident with the particle.

Figure 2·2: A theoretical model of the confocal point spread function
(PSF) shown in two different planes. The picture on the left shows a
cross-section of the PSF within the focal plane, and the picture on the
right shows a cross-section along the axial plane. Note the differences
in axis lengths. Image reproduced from (Andersson, 2011).

Given the nature of image acquisition (which is formed by measuring the emitted
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intensity at single points in space) as well as the features of the PSF (which includes

the existence of a maximum coincident with the particle), one potential method for

tracking a fluorescent particle within a confocal microscope is by using the intensity

measurements as feedback to move the focal volume’s position so that it follows the

extremum of the PSF (and thereby follows the particle). This is the principle of

operation behind the tracking algorithm described in this chapter.

2.2 Problem Statement

The basis of the tracking algorithm presented here is built upon the two-dimensional

extremum-seeking control law proposed in (Baronov and Baillieul, 2011) which con-

siders a single sensor moving within a plane. It was assumed that the sensor follows

the nonholonomic dynamics given by

ẋ = v cos (θ) , x(0) = x0, (2.1a)

ẏ = v sin (θ) , y(0) = y0, (2.1b)

where v > 0 is a constant speed and θ = θ(t) is the time-varying heading angle; in

the context of confocal microscopy, the position of the sensor is synonymous with the

position of the focal volume. The sensor takes collocated, noiseless measurements of

an unknown scalar field F : R2 → R, which is synonymous with the confocal PSF.

Under the assumption that the field is a Morse function with a single maximum, it

was shown that by choosing

θ(t) = θ0 + ω1 (t−KpF ) , θ(0) = θ0, (2.2)

the sensor would move to a finite trapping region containing the maximum of the field

in finite time for certain values of parameters ω1 and Kp. Moreover, if in addition

the field F were radial (that is, if F only depended on the Euclidean norm of the
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sensor relative to the maximum), then (2.2) would drive the sensor to a periodic orbit

centered about the maximum. (Changing the sign of Kp would yield equivalent results

for F having instead a single minimum.) As compared to the scheme proposed in

(Cochran and Krstic, 2009), the controller in (2.2) has fewer controller parameters to

adjust, possesses a much simpler attractor, and does not require averaging methods

to prove its stability. Unfortunately, this algorithm is only applicable to the two-

dimensional case.

An extension to the control law (2.1) and (2.2) into three dimensions was originally

described in (Andersson, 2011). To extrapolate the two-dimensional trajectory into

three dimensions, a slow, time-varying SO(3) rotation was applied to the velocities

(2.1) to yield the sensor dynamics

ẋ = v cos (θ) , x(0) = x0, (2.3a)

ẏ = v sin (θ) cos (φ) , y(0) = y0, (2.3b)

ż = −v sin (θ) sin (φ) , z(0) = z0, (2.3c)

where v > 0 is a constant speed, θ is still defined by (2.2), and φ = φ(t) is the rotation

angle about the x axis. This rotation is governed by

φ(t) = φ0 + ω2t, φ(0) = φ0, (2.4)

with ω2 6= 0 controlling the rate of the axial rotation. This control law was successfully

demonstrated in the context of tracking a fluorescent particle in a confocal microscope

via simulation in (Andersson, 2011) and later experimentally in (Ashley et al., 2012).

A rigorous analysis of (2.3) is, unfortunately, quite challenging due to the fact

that no analytical formulae exist that describe its steady state solution, even for the

simplest PSFs. One approach for analysis that appears intuitive is to let ω2 be a small

perturbation on the two-dimensional dynamics (2.1); thus, a singular perturbation



25

approach could be used to infer the known stability properties of the two-dimensional

system (provided in (Baronov and Baillieul, 2011)) into the three-dimensional one.

The reduced system, however, cannot be shown to be exponentially stable and, as a

result, stability cannot be inferred using variants of Tikhonov’s theorem (Verhulst,

2005).

With this difficulty in mind, a contribution provided by this thesis is a modification

to (2.3) that allows for tractable analysis. Consider a confocal microscope which

is able to move the position of its focal volume xs , [xs, ys, zs]
T ∈ R3 relative to

some stationary frame and that takes collocated, noiseless intensity measurements

F : R3 → R of the fluorescence generated by a single point-source. The modification

to (2.3) proposed in this thesis is

ẋs = v cos (θ) , xs(0) = xs,0, (2.5a)

ẏs = v sin (θ) cos (φ) + v

(
ω2

ω1

)
cos (θ) sin (φ) , ys(0) = ys,0, (2.5b)

żs = −v sin (θ) sin (φ) + v

(
ω2

ω1

)
cos (θ) cos (φ) , zs(0) = zs,0, (2.5c)

where v > 0 is the constant speed of the focal volume, and ω1 and ω2 are angular

velocities describing the time-varying rotations θ(t) and φ(t). These angles evolve

according to (2.2) and (2.4). Note that the only difference between the original

dynamics (2.3) and the modified dynamics (2.5) is the addition of two perturbation

terms in the y and z velocities.

2.3 A Stationary Particle with Unbounded Support of PSF

For the results that follow in this section, we consider only the case where the PSF

has a single maximum located at x∗ ∈ R3. In addition, we assume the PSF is radial

about the maximum such that F (x∗ − xs) = f (‖x∗ − xs‖).
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2.3.1 Existence of Equilibrium Trajectory

Before discussing the stability of the algorithm, we first derive the equilibrium trajec-

tory. In the following proposition, we prove the existence of a sinusoidal equilibrium

trajectory which is centered about the maximum of the PSF.

Proposition 1. Consider the focal volume position (2.5) with angle dynamics defined

by (2.2) and (2.4). Assume that the confocal microscope takes noiseless measurements

of the point spread function F (x̃(t)) = f (‖x̃‖) which is radial about the isolated max-

imum x∗. Then, an equilibrium trajectory x̄(t) for the focal volume displacement

relative to the maximum x̃(t) , x∗ − xs is

x̄(t) = −R̄ sin (ω1t+ ᾱ) , (2.6a)

ȳ(t) = R̄ cos (ω1t+ ᾱ) cos
(
ω2t+ β̄

)
, (2.6b)

z̄(t) = −R̄ cos (ω1t+ ᾱ) sin
(
ω2t+ β̄

)
, (2.6c)

where

R̄ ,
v

ω1

(2.7)

is the steady state radius,

ᾱ , θ0 − ω1Kpf
(
R̄
)

(2.8)

is the primary phase offset, and

β̄ , φ0 (2.9)

is the secondary phase offset.

Proof. Define the difference between the focal volume displacement and the candi-

date equilibrium trajectory as e(t) , x̃(t)− x̄(t). The error coordinate thus has a

candidate equilibrium at the origin. Differentiating e(t) with respect to time yields

ėx = v (cos (ω1t+ ᾱ)− cos (ω1t+ Θ(e + x̄))) , (2.10a)
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ėy = v
(
sin (ω1t+ ᾱ) cos

(
ω2t+ β̄

)
− sin (ω1t+ Θ(e + x̄)) cos

(
ω2t+ β̄

))
+ v

(
ω2

ω1

)(
cos (ω1t+ ᾱ) sin

(
ω2t+ β̄

)
− cos (ω1t+ Θ(e + x̄)) sin

(
ω2t+ β̄

))
,

(2.10b)

ėz = −v
(
sin (ω1t+ ᾱ) sin

(
ω2t+ β̄

)
− sin (ω1t+ Θ(e + x̄)) sin

(
ω2t+ β̄

))
+ v

(
ω2

ω1

)(
cos (ω1t+ ᾱ) cos

(
ω2t+ β̄

)
− cos (ω1t+ Θ(e + x̄)) cos

(
ω2t+ β̄

))
,

(2.10c)

with

Θ(x) , θ0 − ω1KpF (x) . (2.11)

Evaluating (2.10) at the origin and noting that

Θ(x̄) = θ0 − ω1KpF (x̄) ,

= θ0 − ω1Kpf
(
R̄
)
,

= ᾱ,

allows us to verify that the origin is an equilibrium point. It follows that (2.6) is an

equilibrium trajectory for x̃.

Proposition 1 indicates that the equilibrium trajectory (2.6) is sinusoidal with fre-

quencies ω1, ω1 +ω2, and ω1−ω2. Specifically, the x coordinate exhibits the frequency

ω1 and the y and z coordinates exhibit the frequencies ω1 +ω2 and ω1−ω2. Moreover,

the amplitudes and phase shifts are governed by both the controller parameters and

the shape of the point spread function. Thus, the equilibrium trajectory provides the

user some guidance for controller parameter selection. For example, the user could set

the frequencies ω1 and ω2 in accordance with the microscope’s actuator bandwidths

such that ω1 + ω2 < ωmax. Additionally, a value for v may be selected to set the

steady-state radius R̄ which determines the distance between the focal volume orbit

and the point-source. Note, however, that Kp does not appear in the equilibrium

trajectory; as will be made apparent in the following proposition, this parameter only
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affects the stability of the algorithm.

2.3.2 Stability of Equilibrium Trajectory

We next consider the stability of the equilibrium trajectory developed in the previ-

ous section. First, we propose a lemma which will be used in a later proposition

which shows the equilibrium trajectory is locally exponentially stable given certain

conditions. Recall that the system defined by the error coordinates (2.10) has an

equilibrium point at the origin. Linearizing this system about the origin yields the

linear time-varying system

δė(t) = εA(t)δe(t), (2.12)

with the components of A(t) defined by

A11 , −ω2
1 sin2 (ω1t+ ᾱ) ,

A12 ,

(
ω2

1

2

)
sin (2ω1t+ 2ᾱ) cos

(
ω2t+ β̄

)
,

A13 , −
(
ω2

1

2

)
sin (2ω1t+ 2ᾱ) sin

(
ω2t+ β̄

)
,

A21 ,

(
ω2

1

2

)
sin (2ω1t+ 2ᾱ) cos

(
ω2t+ β̄

)
− ω1ω2 sin2 (ω1t+ ᾱ) sin

(
ω2t+ β̄

)
,

A22 , −ω2
1 cos2 (ω1t+ ᾱ) cos2

(
ω2t+ β̄

)
+
(ω1ω2

4

)
sin (2ω1t+ 2ᾱ) sin

(
2ω2t+ 2β̄

)
,

A23 ,

(
ω2

1

2

)
cos2 (ω1t+ ᾱ) sin

(
2ω2t+ 2β̄

)
−
(ω1ω2

2

)
sin (2ω1t+ 2ᾱ) sin2

(
ω2t+ β̄

)
,

A31 , −
(
ω2

1

2

)
sin (2ω1t+ 2ᾱ) sin

(
ω2t+ β̄

)
− ω1ω2 sin2 (ω1t+ ᾱ) cos

(
ω2t+ β̄

)
,

A32 ,

(
ω2

1

2

)
cos2 (ω1t+ ᾱ) sin

(
2ω2t+ 2β̄

)
+
(ω1ω2

2

)
sin (2ω1t+ 2ᾱ) cos2

(
ω2t+ β̄

)
,

A33 , −ω2
1 cos2 (ω1t+ ᾱ) sin2

(
ω2t+ β̄

)
−
(ω1ω2

4

)
sin (2ω1t+ 2ᾱ) sin

(
2ω2t+ 2β̄

)
,
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and

ε , −KpR̄

(
∂f

∂‖x‖

∣∣∣∣
‖x‖=R̄

)
. (2.14)

Here, Aij denotes the ith column and the jth row of matrix A(t). Under proper choice

of the frequencies ω1 and ω2, the time-varying matrix A(t) is periodic. With this, we

have the following lemma.

Lemma 1. Consider the linear time-varying system given by (2.12). Assume that

Kp, R̄, ω1, and ω2 are chosen strictly positive. Additionally, assume that ω1 and ω2

are commensurate with a common period T and that the point spread function f (‖x‖)
is radial with a single maximum. Then, there exists a positive constant ε∗ such that

for all 0 < ε < ε∗, the origin is an exponentially stable equilibrium point for (2.12).

Proof. Since (2.12) is a linear time-varying system, it is not sufficient to show that

the eigenvalues of A(t) are contained within the left half plane. Instead, consider the

time-averaged system defined by

ėavg = εAavgeavg (2.15)

with

Aavg ,
1

T

T∫
0

A(σ)dσ. (2.16)

Evaluation of (2.16) over the commensurate period T yields

A=
avg =

[−ω2
1/2 0 0
0 −ω2

1 (1 + 2δ) /8 0
0 0 −ω2

1 (3− 2δ) /8

]
(2.17)

for ω1 = ω2 with δ , cos2
(
2
(
ᾱ− β̄

))
, and

A6=avg =

[−ω2
1/2 0 0
0 −ω2

1/4 0
0 0 −ω2

1/4

]
(2.18)

for ω1 6= ω2 but commensurate. Note that ε > 0 since ∂f
∂‖x‖ < 0 for all ‖x‖ 6= 0 due to
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the existence of a single maximum. With this and the fact that both A=
avg and A6=avg

are Hurwitz, it follows that the origin is an exponentially stable equilibrium point for

the averaged system (2.15). From Theorem 10.4 in (Khalil, 2002) it follows that there

exists a positive constant ε∗ such that for all 0 < ε < ε∗, the origin is an exponentially

stable equilibrium point for the original (linearized) system (2.12).

Lemma 1 establishes that the linearized system (2.12) has an exponentially stable

equilibrium point at the origin for some non-zero choice of ε defined by (2.14). Given

this lemma, we may now infer stability for the full nonlinear system (2.10).

Proposition 2. Assume that Kp, R̄, ω1, and ω2 are chosen strictly positive. Addi-

tionally, assume that ω1 and ω2 are commensurate with a common period T and that

the point spread function f (‖x‖) is radial with a single maximum. Then, (2.6) is an

exponentially stable equilibrium trajectory for the deviation coordinates x̃.

Proof. In the nonlinear system ė = f(t, e) defined by (2.10), the function f is contin-

uously differentiable, and its Jacobian A(t) evaluated at the origin defined by (2.12)

is bounded and Lipschitz uniformly in t. By Lemma 1, there exists an ε∗ such that

for all 0 < ε < ε∗ the origin is an exponentially stable equilibrium point for (2.12),

and it follows from Theorem 4.13 in (Khalil, 2002) that the origin is an exponentially

stable equilibrium point for (2.10). Since the origin is an exponentially stable equi-

librium point for (2.10), the equilibrium trajectory (2.6) defined in Proposition 1 is

also exponentially stable for the deviation coordinates x̃.

Proposition 2 establishes the existence of a non-zero choice of ε such that the equi-

librium trajectory defined in Proposition 1 is locally exponentially stable. Recall from

(2.14) that ε is directly proportional to Kp, R̄, and the slope of the PSF evaluated at

R̄; Proposition 2 therefore implies there are values for these parameters guarantee-

ing exponential stability. The majority of these parameters can be controlled by the

user. As mentioned before, v in conjunction with ω1 may be chosen to guarantee a

regulated steady state distance from the maximum; if v (and therefore R̄) is chosen

to be particularly large, Kp may be reduced to compensate for a potential lack of

stability. Moreover, if a particular value for ε is known to result in stability and if an
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upper bound of the point spread function’s slope is known, values for Kp and R̄ may

be chosen relative to this upper bound that guarantee stability. We also note that

the evaluation of the slope of the PSF can be controlled by adjusting the intensity

of the microscope’s excitation source. Note that the secondary frequency ω2 does not

appear in ε; although this may appear to imply that it does not influence stability, it

will be shown in the following section that choosing ω2 too large relative to ω1 may

result in instability.

Fig. 2·3 presents a trajectory for the proposed feedback controller. The controller

parameters for this simulation were ω1 = 100 Hz, ω2 = 10 Hz, Kp = 0.005, and

R̄ = v/ω1 = 0.1; the PSF was parabolic f(‖x‖) = 10 (1− ‖x‖2) with the extremum

located at the origin. We note that the trajectory x̃(t) asymptotically approaches the

equilibrium trajectory x̄(t) as t increases. The error e(t) (as well as the linearized

δe(t) and averaged linearized errors) is also shown, and it appears to approach zero

asymptotically as t increases. In addition, the convergence to the equilibrium trajec-

tory in the x axis was much faster than that of y and z; this is to be expected due to

the definition of Aavg in the proof of Lemma 1 where it is shown that the magnitude

of the x eigenvalue is twice that of both y and z.

2.3.3 Numerical Characterization of Equilibrium Trajectory

Although Proposition 2 indicates exponential stability for some non-zero values of ε,

it does not provide any information on the values for which the result holds. Under-

standing the stability as a function of ε is of significant practical importance as the

candidate values for ε may be too small to be of any use to the user. Thus, in the

following section, we study the stability of (2.12) as a function of ε by using results

provided by Floquet theory.

Consider the linear, time-varying system defined by (2.12) with associated transi-

tion matrix Φ(t, t0) describing the transfer of the state δe from time t0 to time t. We
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Figure 2·3: A typical trajectory for the proposed tracking controller.
In the figures shown in the top row, the deviation (x̃, ỹ, z̃) of the focal
volume from the particle is shown in blue whereas the equilibrium tra-
jectory (x̄, ȳ, z̄) is shown in gray. Here, the deviation asymptotically
approaches the equilibrium trajectory in all three axes. In the figures
in the bottom row, the error between the deviation and the equilib-
rium trajectory is shown in blue; we also plot the resulting linearized
error (shown in red) as well as the averaged linearized error (shown in
dashed black). In all three axes, the errors asymptotically approach
zero. Here, the controller parameters were ω1 = 100 Hz, ω2 = 10 Hz,
Kp = 0.005, and R̄ = v/ω1 = 0.1. The PSF was assumed parabolic
with the maximum located at the origin.

once again assume ω1 and ω2 are chosen to have a commensurate period T so that

A(t) is also periodic with the same period. Define the corresponding monodromy
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matrix as

Φ(T, 0) , eRT , (2.19)

which yields a particular value for R ∈ C3×3. It follows by the Floquet-Lyapunov

theorem (see, e.g., Theorem 8.1 in (Brockett, 2015)) that the transition matrix for

A(t) may be written as

Φ(t, t0) = P−1(t)eR(t−t0)P (t0), (2.20)

with P−1(t) , Φ(t, 0)e−Rt; it can be shown that P−1(t) (and consequently P (t))

is periodic with period T . It follows that all solutions for (2.12) approach zero as

t approaches infinity if the zeros of det (sI− Φ(t0 + T, t0)) lie within the unit disk

|s| < 1 (see Theorem 10.3 in (Brockett, 2015)). Since Φ is periodic, it is sufficient to

show that exponential stability is implied if the eigenvalues of the monodromy matrix

Φ(T, 0) are contained within the unit circle, and consequently by Proposition 2, that

exponential stability is implied for the error coordinates (2.10).

To determine the stability of (2.12), one must first determine the monodromy

matrix (2.19) as a function of ε and then assess whether its eigenvalues lie within

the unit circle. Unfortunately, evaluation of the monodromy matrix in this case is

not analytically tractable, so it must be calculated numerically. To evaluate the

monodromy matrix, we use

d

dt
Φ(t, t0) = εA(t)Φ(t, t0), Φ(t0, t0) = I, (2.21)

and solve for Φ(T, 0) by numerically integrating over the time interval [0, T ] as a

function of the parameters ε, ω1, and ω2. Specifically, (ω1, ω2) was varied over the

region (0, 10]× (0, 25] Hz discretized with a spacing of 0.1 Hz, and ε was varied

over the interval [0.1, 2.5]. To reduce the size of the parameter space, we chose the
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initial conditions θ0 and φ0 such that ᾱ and β̄ are zero; although this assumption

limits the generality of the result, we note that the initial conditions do not appear

to significantly affect the results that follow. Equation (2.21) was integrated using

an explicit Runge-Kutta (4,5) method (Dormand and Prince, 1980) for the values

described in the aforementioned parameter space, and the eigenvalues of Φ(T, 0) were

numerically evaluated via the well-known QR algorithm.

Fig. 2·4 shows the resulting stability/instability regions for three particular values

of ε, namely ε = (0.1, 0.25, 0.5), over the (ω1, ω2) space. Given these results, it appears

that the region of instability (shown in red x’s) is approximately triangular in shape

and lies above the line ω1 = ω2. However, as ε increases, the region expands in size

with ω1. Further increasing ε beyond 0.5 makes no significant difference and generates

a result similar to ε = 0.5; thus, it appears that there may be a limiting behavior

to the shape of the instability region as ε increases. We also note that the general

raggedness of the instability region is likely due to numerical errors resulting from

both numerically evaluating Φ(T, 0) and its eigenvalues; this could be improved by

using more reliable methods such as those proposed in (Lust, 2001).

Although the red regions are labeled as “unstable” in Fig. 2·4, this claim is spe-

cific to the particular linearized system (2.12) and is not necessarily true for the

full nonlinear system (2.10). In general, instability of (2.10) cannot be inferred via

the method of linearization unless its linearization had yielded a linear time-invariant

system. Consequently, the red regions shown in Fig. 2·4 should be interpreted as “po-

tentially unstable” regions in the context of the full nonlinear system despite being

definitively unstable for the linearized system. It is to be noted, however, simulation

studies indicate that the red regions are reliable predictors of instability in the full

nonlinear system.
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Figure 2·4: Stability regions of linear time-varying system (2.12) for
three distinct values of ε defined in (2.14) as given by the numerical
evaluation of the monodromy matrix (2.19). The grey dots indicate
the region where the linear time-varying system is stable (i.e., where
the eigenvalues of the monodromy matrix are strictly within the unit
circle), whereas the red x’s mark the region of instability (i.e., where
the eigenvalues are on or outside the unit circle). Note that the size of
the instability region increases as ε increases. Also note that the region
of instability lies strictly above the solid black line ω1 = ω2.

2.4 A Diffusing Particle with Bounded Support of PSF

In the previous sections, we established that the position of the focal volume will

converge to a sinusoidal trajectory centered about the location of the source. These

results, however, depend on several rather strict assumptions. One limiting assump-

tion is that the slope of the PSF is strictly negative at all locations other than the

maximum; this is not true for realistic PSFs, especially when considering background

noise. The second limiting assumption is that the location of the particle does not

change in time. Thus, in the subsequent sections, we leverage the results from the

previous sections to determine the expected first passage time for the cases where the

PSF is bounded and the particle moves according to a Brownian motion.

For the results that follow, we assume the PSF is radial about the maximum

location x∗ and that its value becomes constant beyond a distance of R∗ from the
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maximum. Mathematically, this is defined as

fR∗(‖x‖) =


f(‖x‖) ‖x‖ < R∗

f(R∗) otherwise.

(2.22)

A one-dimensional depiction is shown in Fig. 2·5. The utility in this definition allows

us to define regions where the focal volume has significantly deviated from the particle

such that it is no longer trackable. Regions beyond R∗ are deemed untrackable since

no gradient information exists when the PSF is constant, and the focal volume will

be unable to converge toward the particle.

x*

f(x*-xs)

TrackableUntrackable Untrackable

R*

Figure 2·5: A one-dimensional illustration of a bounded field. The
width of the field is R∗ and is assumed to be radial about the maximum
x∗. When the distance between the focal volume and the maximum
exceeds R∗ (red region), the PSF becomes constant and the particle
becomes untrackable.

In addition to PSF boundedness, it is most often the case that the location of

the particle is not time-invariant nor deterministic. Given that the behavior of the

field is unknown to the tracking algorithm, one potentially useful motion model of

the particle is that of a random walk with unknown isotropic diffusion coefficient D.

In other words, the location of the particle is defined by the Itô stochastic differential
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equation (SDE)

dx∗(t) =
√

2DdW(t), (2.23)

where W(t) is a Wiener process on R3. As the particle moves, so does the location

of the maximum; as such, the focal volume, as it is driven toward the maximum of

the PSF, will also follow the particle. On the other hand, if D becomes large, then

the distance between the focal volume and the particle may become excessive. This

is problematic because if the particle deviates too far away from the focal volume,

then, due to the boundedness of the field (2.22), the focal volume may diverge from

the particle.

2.4.1 Approximate Formula for First Passage Time

One useful metric of tracking performance is the time at which the focal volume

first exceeds a certain distance from the particle. Recall that the error coordinates

e , x∗ − xs − x̄ denote the deviation of the particle (relative to the steady state

trajectory) from the focal volume. Given this, the time when the norm of the error

first exceeds the value ρ ∈ R+ is known as the first passage time and is defined for a

particular sample path to be

τρ = inf {t : t ≥ 0, ‖e(t)‖ = ρ} . (2.24)

The value of ρ, which determines an upper limit on how large the tracking error

may be, can be specified in numerous ways. One potential selection for ρ is the width

of the PSF minus the effective tracking radius, i.e. R∗ − R̄ with R̄ defined in (2.7).

This selection guarantees that the position of the focal volume is sufficiently close to

the particle so that no acquired information pertaining to the PSF is lost. In contrast,

if ρ were selected to be some value greater than R∗−R̄, then the focal volume may be
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allowed to spend much (if not all) of its time in the region where the field gradient is

zero. Since it is unknown whether tracking can be maintained when the focal volume

exits this bound, the best conservative value for ρ is R∗ − R̄. A two-dimensional

illustration of this concept is shown in Fig. 2·6.

x*

R*
R

e

xS+ x

R

R

Figure 2·6: A two-dimensional illustration depicting the definition of
tracking loss as defined by the stopping time (2.24). The coordinate
axis is centered at the particle’s location x∗ which exhibits a point
spread function of radius R∗ (shown as the dashed circle). There are
three smaller circles depicting different focal volume locations relative
to x∗, and the center of each circle is xs + x̄ which is the position of
the focal volume xs in addition to the steady state trajectory x̄. Since
the steady state trajectory is periodic with amplitude R̄ = v/ω1, the
effective radius of each circle is shown by the smaller solid circles of
radius R̄. The first circle, shown in green and residing in quadrant I,
does not satisfy the stopping criterion ‖e‖ < R∗ − R̄ and is therefore
trackable. The second circle, shown in yellow and residing in quadrant
IV, satisfies the stopping criterion and indicates the point at which
tracking would first be lost. The third circle, shown in red and residing
in quadrant III, details the scenario where the particle has significantly
deviated from the focal volume and therefore cannot be reliably tracked.
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To evaluate the expected first passage time (EFPT) for ρ = R∗ − R̄, we consider

the time evolution of the error coordinates. The error coordinates, originally defined

in the deterministic case as (2.10), may be rewritten as the solution of the Itô SDE

dex = v (cos (ω1t+ ᾱ)− cos (ω1t+ Θ(e + x̄))) dt+
√

2DdWx, (2.25a)

dey = v
(
sin (ω1t+ ᾱ) cos

(
ω2t+ β̄

)
− sin (ω1t+ Θ(e + x̄)) cos

(
ω2t+ β̄

))
dt

+ v

(
ω2

ω1

)(
cos (ω1t+ ᾱ) sin

(
ω2t+ β̄

)
− cos (ω1t+ Θ(e + x̄)) sin

(
ω2t+ β̄

))
dt

+
√

2DdWy,

(2.25b)

dez = −v
(
sin (ω1t+ ᾱ) sin

(
ω2t+ β̄

)
− sin (ω1t+ Θ(e + x̄)) sin

(
ω2t+ β̄

))
dt

+ v

(
ω2

ω1

)(
cos (ω1t+ ᾱ) cos

(
ω2t+ β̄

)
− cos (ω1t+ Θ(e + x̄)) cos

(
ω2t+ β̄

))
dt

+
√

2DdWz,

(2.25c)

with ᾱ, β̄, and Θ(·) defined as before. As expected, determining an analytical ex-

pression for the EFPT for this particular system of nonlinear SDEs is nontrivial.

An approximation to this system, however, may be made that allows for analytical

results.

Recall that the stability of the full nonlinear system (2.10) was inferred from the

much simpler linearized-then-averaged system. Following this notion and leveraging

the fact that the diffusion coefficient is independent of the state, then by substituting

the linearized-then-averaged dynamics (2.15) for the full stochastic error dynamics

(2.25) we obtain the approximation

dêx = −ε
(
ω2

1

2

)
êx dt+

√
2DdWx, (2.26a)
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dêy = −ε
(
ω2

1

4

)
êy dt+

√
2DdWy, (2.26b)

dêz = −ε
(
ω2

1

4

)
êz dt+

√
2DdWz, (2.26c)

which is a system of independent Ornstein-Uhlenbeck (OU) processes (Uhlenbeck

and Ornstein, 1930) with ε defined in (2.14). The OU process, commonly used in

financial mathematics, not only possesses several convenient properties, such as mean

reversion, but it also admits a closed-form solution for its EFPT. Note that (2.26)

assumes ω1 6= ω2; an equivalent system may be derived for the case of ω1 = ω2 by

considering A=
avg in (2.17) instead of A6=avg in (2.18).

The OU process admits an analytical formula for its EFPT out of the n-ball of

known radius. It was shown in (Graczyk and Jakubowski, 2008) that, for an isotropic

three-dimensional OU process X(t) governed by the Itô SDE

dX = −λX dt+
√

2DdW (2.27)

with X(0)
a.s.
= 0, the EFPT time out of the three-dimensional-ball of radius ρ is

E [τρ] =

(
ρ2

6D

)
2F2

(
1, 1;

5

2
, 2;

λρ2

2D

)
(2.28)

where 2F2(·; ·; ·) is the generalized hypergeometric function defined to be

2F2(a1, a2; b1, b2;x) =
∞∑
k=0

(a1)k (a2)k
(b1)k (b2)k

xk

k!
, (2.29)

and with (·)k denoting the kth Pochhammer symbol

(a)k =


1, k = 0,

a(a+ 1)(a+ 2) · · · (a+ n− 1), k ≥ 1.

(2.30)

Note that when the parameter λ becomes zero, the OU process becomes a three-
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dimensional Brownian motion and 2F2(·; ·; ·) in (2.28) becomes unity; the EFPT then

is ρ2/(6D) which is to be expected (Øksendal, 2013).

Unfortunately, (2.28) only pertains to OU processes that are isotropic with a

single parameter λ, and the linearized-then-averaged system (2.26) is anisotropic with

parameters εω2
1/2, εω2

1/4, and εω2
1/4. To make use of the analytical formula (2.28),

several numerical experiments were performed to determine a single value of λ that

best characterizes three isotropic parameters. These simulations indicated that the

geometric mean of the anisotropic parameters results in a useful approximation; that

is,

λ ≈ εω2
1

2 3
√

4
, (2.31)

for ε in (2.14) results in the theoretical EFPT (2.28) accurately approximating the

EFPT for (2.26).

Given the analytical formula for the EFPT (2.28) and the approximation (2.31),

the EFPT for the linearized-then-averaged system (2.26) out of the three-dimensional

ball of radius R∗ − R̄ is

E
[
τ(R∗−R̄)

]
=
(γ1

3

)
2F2

[
1, 1;

5

2
, 2;

γ1γ2

2 3
√

4

]
, (2.32a)

γ1 ,

(
R∗ − R̄

)2

2D
, (2.32b)

γ2 , −Kpω
2
1R̄

(
∂f

∂‖x‖

∣∣∣∣
‖x‖=R̄

)
, (2.32c)

for e(0)
a.s.
= 0. Although a general expression for the EFPT exists in (Graczyk and

Jakubowski, 2008) for the case of a non-zero initial condition, in this work we will

only consider the case where the focal volume begins sufficiently close to the particle

so as to provide an upper bound for the expected tracking time until it is lost.
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2.4.2 Numerical Characterization of First Passage Time

In the previous section, an analytical formula was provided for the approximate EFPT

of the nonlinear system (2.25). This formula relies on two important approximations;

the first approximation is the substitution of the linearized-then-averaged dynamics

(2.26) for the full nonlinear dynamics, and the second approximation is the use of the

geometric mean (2.31). To determine the validity of these of approximations and to

provide guidance on selecting the user-defined parameters ω1, ω2, Kp, and R̄, several

numerical experiments were performed.

Both the linearized-then-averaged system (2.26) and the nonlinear system (2.25)

were simulated for several parameter sets which were varied over a finite set of values.

Specifically, ω1 was varied among 10 Hz, 100 Hz, and 1000 Hz, D was varied among

0.5 s−2, 1.0 s−2, and 2.0 s−2, and R̄ was varied between 0 and 1 with a granularity of

0.01. For all of these parameter choices, the value Kp was varied over three discrete

values which were chosen individually for a given parameter set; these values will

be specified later. For all simulations, the secondary frequency ω2 was assumed to

be exactly 1/4 the value of ω1 within the respective simulation; this is valid since

the value of ε has no dependence on ω2 and the results from Sec. 2.3.3 indicate that

choosing ω2 < ω1 should result in a stable system. Additionally, the PSF was assumed

to be parabolic with a radius R∗ = 1; specifically, this is

f(‖x‖) =


1− ‖x‖2 ‖x‖ < 1

0 otherwise

(2.33)

Both systems were simulated using the Euler-Maruyama method with a time step of

∆t = 10−8 s; since the diffusion coefficient is independent of the state, this simulation

method achieves strong convergence of order 1.0 (Kloeden and Platen, 1999). All

simulations proceeded until the exit condition was met and the resulting duration
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was recorded. A total of 1000 simulations per parameter set were performed and the

means of the first passage times were evaluated. The means for both systems are

shown in Fig. 2·7.

Note that the shapes of the solid curves of respective color appear identical within

each subfigure in Fig. 2·7. This is due to the carefully chosen values of Kp which

were selected so that, given a value of D (i.e., within a row), the resulting εω2
1 value

was equivalent. For example, ω1 was reduced by a factor of 10 from subfigure (a) to

subfigure (b); consequently, Kp was increased in (b) by a factor of 100 since ε ∝ Kp.

Since the value of εω2
1 is constant for a particular color and diffusion coefficient (i.e.,

row), the solid curves are identical.

The resulting simulations illustrated in Fig. 2·7 indicate four important facts.

First, the mean of the simulated EFPTs for the linearized-then-averaged system

matches the theoretical EFPT. This can be seen by comparing the circle markers

(i.e., the mean value of the simulated EFPT) to the solid curve (i.e., the theoretical

EFPT) of the same color. This validates the use of the geometric mean (2.31) in the

derivation of the EFPT (2.32).

The second fact pertains to selecting a value for ω1 that maximizes the EFPT.

First, in Fig. 2·7 note that the mean of the simulated EFPTs of the nonlinear system

match the theoretical EFPTs for relatively large values of ω1. This can be seen

by observing the ‘x’ markers (i.e, the mean value of the simulated EFPTs for the

nonlinear system) relative to the solid curve of the same color. As the primary

frequency ω1 decreases (i.e, looking from left-to-right within the figure), not only

does the accuracy of the theoretical EFPT decrease but the mean simulated EFPT

approaches that of a pure Brownian motion. Further note that, given a fixed value of

ω1, the accuracy of the theoretical EFPT decreases as the diffusion coefficient increases

(i.e, looking from top-to-bottom within the figure). These observations indicate two
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Figure 2·7: A comparison among the theoretical expected first pas-
sage time (2.32) (denoted as a solid line) and numerical simulations of
the nonlinear system (2.25) (denoted by ‘x’ markers) and the linear-
averaged system (2.26) (denoted by ‘o’ markers).
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important facts governing the selection of ω1: (1) larger values of ω1 increase the

expected tracking time for a fixed value of ε, and (2) in order for the theoretical

EFPT (2.32) to be an accurate representation of the nonlinear system (2.25), the time

period corresponding to ω1 must be small (e.g., two orders of magnitude) relative to

(R∗)2/(6D). This is expected due to the fact that the theoretical expected passage

time is derived from the linearized-then-averaged system which relies upon averaging

over a full period. Thus, to maximize the EFPT, one should select ω1 as large as

possible subject to the bandwidths allowed by the microscope’s hardware.

The third fact pertains to choosing an optimal gain Kp that maximizes the EFPT

given a value of ω1 and D. We now turn our attention to Fig. 2·8 which shows the

theoretical EFPT as a function of radius R̄ for six distinct values of Kp and for a

given value of ω1 and D. It appears that increasing Kp (ordered from red indicating

small to violet indicating largest) introduces a bump near the middle of the curve. It

is clear that as Kp increases, this bump increases in magnitude; as to be expected,

as Kp approaches infinity the EFPT approaches infinity as well. This phenomenon

is reminiscent of a first order system in negative feedback with a proportional gain.

However, the influence of noise and other disturbances prohibits increasing Kp too far

without risking significant noise amplification or instability. Since Kp amplifies the

field measurement in the determination of θ (2.2), Kp should be chosen large enough

subject to the measurement noise of the microscope.

The final fact pertains to choosing an optimal radius R̄ that maximizes the EFPT

given a value of ω1, Kp, and D. In Fig. 2·8, observe the nature of the bump that

occurs as Kp increases from zero. Note that for significantly small values of Kp (e.g.,

shown by the red and orange dash-dotted curves), the radius R̄ that maximizes the

EFPT is zero. This indicates that if Kp is chosen too small, the optimal solution

is to not attempt to track the particle at all. However, there exists a critical point,
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indicated by the black solid curve in Fig. 2·8 where the optimal radius is no longer

zero. This discrete jump indicates that the optimal radius bifurcates as a function

of Kp. As Kp is subsequently increased (indicated by the green, blue, and violet

dashed curves in Fig. 2·8), the optimal radius continues to increase to approximately

R∗/2. Unfortunately, a closed-form expression for the optimal radius does not exist,

although it can be solved for numerically.
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Figure 2·8: The expected first passage time (2.32) as a function of the
tracking radius R̄ = v/ω1 asKp increases. The point spread function for
this figure was parabolic with a radius R∗ = 1 and the particle location
was diffusing with D = 1.0. Relatively low values of Kp are shown
by dash-dotted curves in red and orange, and relatively large values
are shown by dashed curves in green, blue, and violet. The black solid
curve represents the expected first passage time at the bifurcation point
which is denoted by the ‘x’ marker. Note that for small values of Kp

the optimal tracking radius is zero; this indicates that if Kp is too low,
then the expected first passage time will be maximized by not tracking
at all. When Kp is increased to a critical value, however, the optimal
tracking radius discontinuously changes to the solid vertical line (here,
RBif ≈ 0.34). As Kp is subsequently increased beyond the bifurcation
point, the expected first passage time increases in conjunction with the
optimal tracking radius.
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2.5 Summary

The confocal microscope is an extension of the widefield fluorescent microscope that

allows for three-dimensional imaging via optical sectioning. Unilke the widefield mi-

croscope, however, the confocal microscope acquires images by moving the location

of the focal volume relative to the sample and by measuring the intensity at vari-

ous locations. An important characteristic of the confocal microscope is that, when

imaging a point-source, the point spread function has a maximum collocated with the

position of the point-source. Thus, a potential method for tracking the a fluorescent

particle would be to seek the maximum of the resulting point spread function.

In this chapter, a feedback algorithm which is capable of tracking a fluorescent

particle in a confocal microscope has been presented. We have provided theoretical

and numerical results for two distinct cases. We first considered the case of a station-

ary particle and proved the existence of an equilibrium trajectory. In addition, we

proved stability of the equilibrium trajectory and characterized it as a function of the

controller parameters by using Floquet theory. We then considered the case where

the particle was diffusing and the PSF exhibited bounded support. In this case, we

derived a metric for tracking performance based on the expected first passage time

and proceeded to numerically characterize it using simulations. With this character-

ization, we provide insight on parameter selection that maximizes this performance

metric.

The presented tracking method is novel for several reasons. The method, which

is an active tracking method, requires no online localization and is computationally

simple to implement. Thus, the algorithm is especially applicable to systems with

tight real-time constraints and with high update-rates. Since the algorithm does

not require localization it also does not require a priori knowledge of the particle’s

motion or the microscope’s PSF aside from the existence of a maximum. In addi-
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tion, the trajectories generated by the algorithm are smooth and do not produce any

discontinuous jumps. Lastly, the method may implemented in a variety of confocal

microscopes without requiring any non-standard hardware.
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Chapter 3

Inference for Particle Tracking

Experiments

Recall from Chapter 1 that the common paradigm for inferring information from par-

ticle tracking data is sequential in nature. As such, it usually involves the process of

first localizing the particle within each image and subsequently applying some form of

regression analysis to estimate model parameters (for example, diffusion coefficients).

This procedure, however, is inherently problematic for several reasons. First, sep-

arately localizing the particle within each frame without regard to the entire data

set and some model of the particle’s motion could potentially reduce the precision of

localization. In addition, most localization methods only produce point-estimates of

the particle’s location given that specific image. Moreover, most optimal methods of

parameter estimation are limited to a purely diffusive motion model with normally

distributed localization error.

In this chapter, we present an inference method which solves the aforementioned

problems and limitations. The method, which was originally presented in the context

of nonlinear system identification (Schön et al., 2011), incorporates both the Expec-

tation Maximization (EM) algorithm and Sequential Monte Carlo (SMC) methods

to calculate two important quantities. First, the algorithm produces an approxima-

tion of the posterior probability density (i.e., conditioned on the entire measurement

history) of the particle’s location at a given time. Moreover, the algorithm provides

approximate Maximum Likelihood (ML) estimates for potentially nonlinear motion
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and observation models. Thus, the method can be applied in a large variety of

microscopy-related scenarios, including both widefield and confocal imaging modal-

ities. The method is iterative and both localization and parameter estimation are

cyclical, unlike the common paradigm which is serial.

This chapter is organized as follows. First, we provide an overview of the method

in the context of tracking fluorescent particles. We then present several biologically-

inspired models of particle motion and explain how the algorithm may be used in

each case. We then show the effectiveness of the method by applying it to simulated

widefield tracking data. The material presented in this chapter is based on (Ashley

and Andersson, 2015a; Ashley and Andersson, 2015b).

3.1 Problem Statement

Consider the problem of identifying an unknown fixed parameter θ ∈ Rnθ for the state

and observation models

xp,1 ∼ pInit
θ (xp,1), (3.1)

xp,k+1 ∼ pMot
θ (xp,k+1|xp,k), (3.2)

I1:P
k ∼ pObs

θ (I1:P
k |xp,k,xs

1:P
,k ). (3.3)

In this work, we use the notation I1:k to denote a collection from index 1 to k, i.e.,

I1:k , {I1, I2, . . . , Ik}; in the case of a pair of indices, a collection of all possible

pairs is implied such that I1:p
1:k , {I1

1 , I
2
1 , . . . , I

p
1 , I

1
2 , I

2
2 , . . . , I

p
2 , . . . , I

p
k}. Here, the state

xp,k ∈ Rnx is an nx-dimensional vector indexed by discrete time k, the measurement

Ipk ∈ R is a scalar indexed by both discrete time k and pixel p, and the input xs
p
,k ∈ Rnx

is an nx-dimensional vector indexed by both discrete time k and pixel p. We assume

that the forms of probability densities pθ(·|·) are of known form. Additionally, only

N × P scalar measurements I1:P
1:N are available from which to estimate θ.
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In the context of particle tracking, the state xp,k denotes the location of the

particle in either two or three dimensions at a discrete time index k. The distribution

pInit
θ describes the probability distribution of the particle location at the start of the

experiment. The motion model pMot
θ is a probability distribution describing how

the particle evolves in time and may be given by a diffusion, directed motion, or

other dynamic process. The observation model describes the fluorescent measurement

process. For example, assuming a widefield imaging modality, I1:P
k signifies a pixilated

image consisting of P pixels acquired at discrete time k. The observation model pObs
θ (·)

is a probability distribution capturing the statistics of the measurement process itself

and may involve, for example, Poisson-distributed shot noise, Gaussian read-out noise,

or other features specific to the experimental setting. The parameter θ may describe

properties of the motion (such as diffusion coefficients) as well as of the observation

process (such as peak intensity). The input xs
p
,k is the position of the pixel p which,

in conjunction with the particle position xp,k, yields the scalar measurement Ipk .

For example, in the context of widefield imaging, xs
1:P
,k could represent the center

positions of each of the camera pixels with respect to a fixed reference frame. If

preprocessing (e.g., segmentation) of the images is done which centers the particle’s

image within each frame, then xs
p
,k represents the resulting center position (relative

to a fixed reference frame) of the pth pixel at the kth time. Moreover, in the context

of confocal tracking by the algorithm presented in Chapter 2, xs
p
,k represents the

position of the focal volume at discrete time k; in this context, p = 1 since only

one measurement is taken at each time instant. It is critical to note that xs
p
,k is a

deterministic quantity and that it does not influence the particle’s motion. Moreover,

we specifically define xs
p
,k to be in the object space of the imaging process rather than

the image space.

One aim of the proposed inference method is to estimate the parameter θ. While
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many different techniques could be used, we focus on the maximum likelihood es-

timator due to its well-characterized properties, including asymptotic consistency,

efficiency, and normality (Pawitan, 2001). Deriving the maximum likelihood esti-

mate involves maximizing the joint density (i.e. the likelihood) of the observations

conditioned on the parameter θ,

θ̂ = arg max
θ

log pθ(I
1:P
1:N). (3.4)

It is most often the case that this density is unknown or intractable, and, consequently,

an ML estimate cannot be derived analytically. For example, in the context of tracking

a single particle, (3.4) corresponds to attempting to estimate motion and observation

parameters directly from the image data, without knowledge of the particle trajectory.

When the density in (3.4) is unknown or intractable, the EM algorithm provides an

alternative for finding the ML estimate.

3.2 The Expectation Maximization Algorithm

The EM algorithm, originally proposed in (Dempster et al., 1977), is a numerical,

iterative method for calculating ML estimates that is typically used when the joint

density pθ(xp,1:N , I
1:P
1:N) is known, where xp,1:N is often called the latent set of random

variables. Instead of calculating the full likelihood by integrating the joint density

over the full domain of the latent state, the EM algorithm approximates the likelihood

by conditionally averaging over the latent state; mathematically, this is given by

Q(θ, θ̂e) ,
∫

log
[
pθ(xp,1:N , I

1:P
1:N)

]
pθ̂e(xp,1:N |I

1:P
1:N)dxp,1:N . (3.5)

In the context of particle tracking, the latent state is the trajectory of the particle,

and thus EM takes advantage of the coupling between the trajectory and the image

data as encapsulated by the motion (3.2) and observation models (3.3).
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Note that the expectation in (3.5) is with respect to the conditional density

pθ̂e(xp,1:N |I
1:P
1:N) with θ̂e defined to be some estimate for θ at iteration e. It was shown in

(Dempster et al., 1977) that for each choice of θ̂e+1 such that Q(θ̂e+1, θ̂e) > Q(θ̂e, θ̂e),

the likelihood pθ̂e+1
(I1:P

1:N) subsequently increases. One method to guarantee an in-

crease for each iteration is to update the new value so that

θ̂e+1 = arg max
θ

Q(θ, θ̂e). (3.6)

By alternating between the expectation and maximization steps, Q as defined in

(3.5) will converge to a (local) maximum as e becomes large, and, consequently, θ̂e

will converge to a (local) ML estimate of θ.

Implementation of the EM algorithm requires evaluation of Q(θ, θ̂e). A tedious

but straightforward calculation (see (Schön et al., 2011)) allows (3.5) to be rewritten

as

Q(θ, θ̂e) = Q1 +Q2 +Q3, (3.7)

where

Q1 ,
∫

log
[
pInit
θ (xp,1)

]
pθ̂e(xp,1|I

1:P
1:N)dxp,1, (3.8a)

Q2 ,
N−1∑
k=1

∫ ∫
log
[
pMot
θ (xp,k+1|xp,k)

]
pθ̂e(xp,k+1,xp,k|I

1:P
1:N)dxp,kdxp,k+1, (3.8b)

Q3 ,
N∑
k=1

∫
log
[
pObs
θ (I1:P

k |xp,k,xs
1:P
,k )
]
pθ̂e(xp,k|I

1:P
1:N)dxp,k. (3.8c)

Here, (3.8a) corresponds to the initial distribution (3.1), (3.8b) corresponds to the

motion model (3.2), and (3.8c) corresponds to the observation model (3.3). The calcu-

lation of these expressions require evaluation of the posterior density pθ̂e(xp,k+1|I
1:P
1:N)

and the sequential-pairwise joint posterior density pθ̂e(xp,k+1,xp,k|I
1:P
1:N); these are,
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unfortunately, challenging to compute in most cases. For the case where both the

motion and observation models constitute a linear, time-invariant system, the poste-

rior densities are Gaussian with sufficient statistics calculated by optimal estimation

methods such as the Kalman filter and smoother (Rauch et al., 1965). In general,

however, the underlying models are nonlinear and non-Gaussian in nature, such as

when the particle motion follows a confined diffusion or when the presence of Poisson-

distributed shot noise is accounted for explicitly in the observation model. In this

work, these difficulties are overcome by using Sequential Monte Carlo (SMC) methods

to simplify (3.7) by approximating the posterior densities as discrete, weighted sums

of delta functions.

3.2.1 Sequential Monte Carlo

SMC methods approximate the conditional posterior densities in (3.8b) and (3.8c) at

each EM iteration e by assuming they may be approximated by a weighted sum of

M randomly-drawn point estimates such that

pθ̂e(xp,k|I
1:P
1:N) ≈

M∑
i=1

wik|N,eδ(xp,k − xik|N,e), (3.9a)

pθ̂e(xp,k,xp,k+1|I
1:P
1:N) ≈

M∑
i=1

M∑
j=1

wijk|N,eδ(xp,k − xik|N,e,xp,k+1 − xjk+1|N,e), (3.9b)

where xik|N,e is the ith Monte Carlo estimate of xp,k at discrete time k and EM

iteration e, δ(·) is a Dirac delta function, and wik|N,e and wijk|N,e are weights determined

by how well the point estimates approximate the posterior distribution. The value

of these weights are driven in part by determining how likely the ith measurement

was given the point estimate xik|N,e. In the context of tracking particles, this is

equivalent to setting the weight by how likely it was to acquire the actual image

data assuming that the particle was at the position of the point estimate. A general
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treatment for how these estimates and weights are calculated is beyond the scope of

this thesis and has been established elsewhere (Doucet and Johansen, 2011; Doucet

et al., 2001; Sanjeev Arulampalam et al., 2002). In the work that follows, we use two

specific algorithms, namely the Sampling Importance Resampling (SIR) algorithm

and the Forward-Filtering Backward-Smoothing (FFBS) algorithm, in the subsequent

demonstrations.

One approach to calculate the approximate posterior densities (3.9) is to break

the process into two steps. The first step, known as the filtering step, calculates

the approximate posterior densities pθ̂e(xp,k|I
1:P
1:k ) for k = 1, . . . , N ; here, the SIR

algorithm is used (Cappe et al., 2007). The second step, known as the smoothing

step, operates backward in time on the posterior densities produced in the filtering

step to produce the densities in (3.9); here, the FFBS algorithm is used (Lindsten

and Schön, 2013). A brief description of these two methods is given in Appendix A.

Upon application of the SMC approximation (3.9) to the calculation of Q(θ, θ̂e)

in (3.7), one obtains the approximation

Q(θ, θ̂e) ≈ Q̂(θ, θ̂e) = Q̂1 + Q̂2 + Q̂3, (3.10)

where

Q̂1 ,
M∑
i=1

wi1|N,e log
[
pInit
θ (xi1|N,e)

]
, (3.11a)

Q̂2 ,
N−1∑
k=1

M∑
i=1

M∑
j=1

wijk|N,e log
[
pMot
θ (xjk+1|N,e|x

i
k|N,e)

]
, (3.11b)

Q̂3 ,
N∑
k=1

M∑
i=1

wik|N,e log
[
pObs
θ (I1:P

k |xik|N,e,xs
1:P
,k )
]
, (3.11c)

Note the similarities between (3.8) and (3.11); the SMC approximation of the pos-

terior densities transforms potentially intractable integrals into straightforward sum-
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mations. The SMC-based EM algorithm proceeds by calculating Q̂(θ, θ̂e) for some θ̂e

and then by updating the estimate according to

θ̂e+1 = arg max
θ

Q̂(θ, θ̂e). (3.12)

These two steps, namely the calculation of Q̂(θ, θ̂e) via SMC (abbreviated as

the expectation step) and its subsequent maximization over θ (abbreviated as the

maximization step), are repeated until some convergence criterion is satisfied. For

the remainder of this thesis, this process is abbreviated as the SMC-EM algorithm.

It is to be noted that the SMC-EM algorithm, unlike the original EM algorithm,

provides no guarantee of convergence to a (local) maximum. However, as the number

of estimates M becomes large, Q̂ approaches Q, thereby implying greater likelihood

of converging to an extremum. Analysis of this behavior is further detailed in (Schön

et al., 2011).

3.3 Relevant Models in Fluorescence Microscopy

In this section, we present several motion and observation models that are relevant to

biological imaging. The models presented here may be incorporated into the SMC-EM

algorithm and will be used in the demonstrations that follow.

3.3.1 Brownian Motion

The first motion model considered is a Brownian motion. This model is applicable to

a large number of situations related to biology, including those involving membrane

dynamics and viral trafficking (Nelson, 2013). Assuming the motion for each axis

is independent and distinct, then, for the x axis in particular, the motion can be
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represented by the difference equation

xk+1 = xk +
√

2Dx∆t′wk, (3.13)

where Dx is the diffusion coefficient, ∆t′ is the sampling period, and wk is a standard

normal random variable. The transition density for this model is given by the solution

to the diffusion equation (Risken, 1996) and takes the form of a normal distribution;

thus, the transition density for the x axis is

p(xk+1|xk) =
1√

4πDx∆t′
exp

[
−(xk+1 − xk)2

4Dx∆t′

]
. (3.14)

Implementation of this motion model in the expectation step of the SMC-EM

algorithm is a straightforward process since it only requires drawing samples from a

normal distribution. Sampling from a normal distribution may be done with a variety

of methods; see, for example, (Press et al., 2007).

During the maximization step of the SMC-EM algorithm, maximizing (3.12) with

respect to Dx yields

D̂x,e+1 =
1

2N∆t′

N−1∑
k=1

M∑
i=1

M∑
j=1

wijk|N,e

(
xjk+1|N,e − x

i
k|N,e

)2

, (3.15)

which is the resulting optimal diffusion coefficient for the x axis at the eth EM it-

eration. For the anisotropic case where the positions in all axes are generated by

independent and distinct Brownian motions, then the optimal diffusion coefficient for

each axis is given by the same formula (3.15) but with the respective position esti-

mates inserted instead of x. For the isotropic case where the positions in all axes are

generated by independent Brownian motions but with the same diffusion coefficient

D, then D may be calculated as the average of each axis’s diffusion coefficient; for

example, D̂e+1 = 1
3

(
D̂x,e+1 + D̂y,e+1 + D̂z,e+1

)
is the optimal diffusion coefficient for
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a three-dimensional isotropic Brownian motion.

3.3.2 Diffusive Directed Motion

Deterministic flow is often present within biological samples. For example, the tra-

jectory of a molecular motor is dependent on the curvature of the filament to which

it is attached. Assuming the motion for each axis is independent and distinct, then

a simple model for a directed motion in a given direction is given by the difference

equation

xk+1 = xk + Vx∆t
′ +
√

2Dx∆t′wk, (3.16)

where Dx is the diffusion coefficient, Vx is the speed, ∆t′ is the sampling interval, and

wk is a standard normal random variable. The transition density is very similar to

that of a Brownian motion and is given by

p(xk+1|xk) =
1√

4πDx∆t′
exp

[
−(xk+1 − xk − Vx∆t′)2

4Dx∆t′

]
. (3.17)

Implementation of the expectation step in SMC-EM is similar to that of the

diffusion described in the previous section. As such, samples may be generated by

sampling from a normal distribution but with a mean of xk + Vx∆t
′.

For the maximization step of SMC-EM, maximizing (3.12) with respect to Vx and

Dx yields

V̂x,e+1 =
1

N∆t′

N−1∑
k=1

M∑
i=1

M∑
j=1

wijk|N,e

(
xjk+1|N,e − x

i
k|N,e

)
, (3.18)

D̂x,e+1 =
1

2N∆t′

N−1∑
k=1

M∑
i=1

M∑
j=1

wijk|N,e

(
xjk+1|N,e − x

i
k|N,e − V̂x,e+1∆t′

)2

, (3.19)

which are the optimal speed and diffusion coefficient (respectively) in the x axis at

the eth EM iteration. For a multidimensional diffusive flow, the optimal speeds and
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diffusion coefficients for both the anisotropic and the isotropic cases follow similarly

to the Brownian motion case.

3.3.3 Confined Diffusion

Although unconstrained Brownian motion is typically assumed in practice, it is often

not the case in real biological systems. For example, proteins on a membrane are

“corralled” by other skeletal membrane proteins which inhibits their motion (Sheetz

et al., 1980). As an example of this, we consider a diffusion that is confined to the

interval [−Lx/2, Lx/2] with Lx defining the length of the confinement channel. The

transition density for this axis (here, given by x) is given by the solution to the

diffusion equation with reflecting boundaries at x = −Lx/2 and x = +Lx/2, which is

p(xk+1|xk) =
1

Lx
+

2

Lx

∞∑
n=1

exp

[
−Dx∆t

′
(
nπ

Lx

)2
]
×

cos

[
nπ

Lx

(
xk+1 +

Lx
2

)]
cos

[
nπ

Lx

(
xk +

Lx
2

)]
;

(3.20)

a derivation is provided in (Carslaw and Jaeger, 1959).

Generation of samples from this distribution during the expectation step of SMC-

EM is more complicated than generating samples of a Brownian motion or a directed

diffusion. In cases where samples cannot be easily derived from a distribution, the

method known as rejection sampling may be employed (Robert and Casella, 2005).

To generate a sample xk+1 from (3.20) given xk using rejection sampling, first a

bound K must be selected such that K > Lx max
xk+1

[p(xk+1|xk)]. With K fixed, two

independent samples are drawn: u ∼ U(0, 1) and xcand ∼ U
(
−Lx

2
, Lx

2

)
, where U(0, 1)

represents a standard uniform distribution. If u <
(
Lx
K

)
p(xcand|xk) is satisfied, then

xcand is accepted as the random deviate; otherwise, u and xcand are resampled and

the process repeats.

In the context of the SMC-EM algorithm, the optimal value for the length of the
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confinement channel is found by inserting the motion model (3.20) into (3.12), using

the SMC approximation (3.11), and then maximizing. This yields

L̂x,e+1 = max
k,i

2
∣∣xik|N,e∣∣ , (3.21)

implying that the best estimate for the length of the channel is the absolute maximum

position estimate.

It is important to note that the initial value for the length parameter estimate

must be greater than its corresponding true value to guarantee convergence. To see

this, consider the length parameter estimate L̂x,e. During the expectation step at

iteration e + 1, position estimates generated according to (3.20) will be constrained

to the interval
[
−L̂x,e/2, L̂x,e/2

]
. During the subsequent maximization step, L̂e+1 is

set to be the absolute maximum of every position estimate via (3.21). From this, it

follows that L̂x,e+1 ≤ L̂x,e. As such, in practice, the user must always set the initial

length parameter estimate to a value that overestimates the true length.

Unfortunately, there is no analytical solution for the confined diffusion coefficient.

Thus, (3.12) must be maximized numerically with respect to Dx. For the simple

case where the motion in each axis is distinct and independent, however, D̂x can

be numerically calculated by solving a one-dimensional unconstrained optimization

problem via, for example, the bisection method.

3.3.4 Elastic Tethering

We next consider the case where a particle is elastically tethered to a fixed anchor.

This model is common in the case of tethered particle microscopy where one end of

biopolymer is fixed to a coverslip and a fluorescent particle is attached the other (free)

end; the position of the bead over time yields information regarding the structure of

the biopolymer (see, e.g. (Nelson et al., 2006)). We assume the location of the
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tethering point is known and fixed to the origin and that the tether is sufficiently stiff

and obeys Hook’s law. Inspired by the model presented in (Beausang et al., 2007),

the position of the particle can be modeled by the Ornstein-Uhlenbeck process with

transition density

p(xk+1|xk) =

√
Ax

2πDx (1− e−2Ax∆t′)
exp

{
− Ax

2Dx

[(
xk+1 − xke−Ax∆t′

)2

1− e−2Ax∆t′

]}
, (3.22)

in the x axis. The stiffness coefficient Ax > 0 and the diffusion coefficient Dx both

determine the behavior of the motion about the tethered point.

Implementation of the expectation step within the SMC-EM algorithm is similar

to that of the Brownian motion and directed diffusion cases. In particular, note that

(3.22) is of the form of a normal distribution with mean and variance

µOU = xke
−Ax∆t′ , (3.23)

σ2
OU =

(
Dx

Ax

)(
1− e−2Ax∆t′

)
; (3.24)

thus, samples may be drawn from a normal distribution with appropriate scale and

bias.

We break the maximization step of the SMC-EM algorithm into two separate

scenarios. We first consider the case where the motion is independent for each axis

but is isotropic, meaning that each axis has the same stiffness coefficient A and

diffusion coefficient D. For the three-dimensional case, maximization of (3.12) with

respect to A yields

Âe+1 = − 1

∆t
log

(
αe
βe

)
(3.25)
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with αe and βe defined by

αe =
N−1∑
k=1

M∑
i=1

M∑
j=1

wijk|N,e

(
αij,ak,e + αij,bk,e + αij,ck,e

)
, (3.26a)

αij,ak,e = xjk+1|N,e · x
i
k|N,e, (3.26b)

αij,bk,e = yjk+1|N,e · y
i
k|N,e, (3.26c)

αij,ck,e = zjk+1|N,e · z
i
k|N,e, (3.26d)

βe =
N−1∑
k=1

M∑
i=1

M∑
j=1

wik|N,e

(
βi,ak,e + βi,bk,e + βi,ck,e

)
, (3.27a)

βi,ak,e =
(
xik|N,e

)2
, (3.27b)

βi,bk,e =
(
yik|N,e

)2
, (3.27c)

βi,ck,e =
(
zik|N,e

)2
. (3.27d)

Similarly, the parameter update equation for the diffusion coefficient D is given by

D̂e+1 =
γeÂe+1

3N
(

1− exp
(
−2Âe+1∆t

)) (3.28)

with γe defined by

γe =
N−1∑
k=1

M∑
i=1

M∑
j=1

wijk|N,e

(
γij,ak,e + γij,bk,e + γij,ck,e

)
, (3.29a)

γij,ak,e =
(
xjk+1|N,e − x

i
k|N,e · e−2∆tÂe

)2

, (3.29b)

γij,bk,e =
(
yjk+1|N,e − y

i
k|N,e · e−2∆tÂe

)2

, (3.29c)

γij,ck,e =
(
zjk+1|N,e − z

i
k|N,e · e−2∆tÂe

)2

. (3.29d)

Note that the determination of the isotropic parameters A and D are not linear

combinations of the anistropic parameters for each individual axis as they are in the
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diffusive case. For the scenario where each axis is independent and anisotropic, then

the resulting parameters are of similar form to (3.25) and (3.28) but with αe, βe, γe

determined by the positions of each individual axis instead.

3.3.5 Normally Distributed Initial Condition

It is most often the case that the initial position of the particle is unknown. A simple

model for the initial position of the particle consists of a normal distribution with

unknown mean and variance; in the x axis for example, x1 ∼ N (µx, σ
2
x). Implemen-

tation of the expectation step in SMC-EM involves drawing samples from a normal

distribution. Evaluation of (3.12) with respect to the mean and variance yields

µ̂x,e+1 =
M∑
i=1

wi1|N,ex
i
1|N,e, (3.30)

σ̂2
x,e+1 =

M∑
i=1

wi1|N,e
(
xi1|N,e − µ̂x,e+1

)2
. (3.31)

3.3.6 Poissonian Shot Noise

A potential noise source during the imaging process, often termed shot noise, is due

to the quantized nature of light as discrete packets of photons are received by each

camera pixel. Since this is the prevalent noise source for widely used CCD cameras and

APDs, we next explain how to incorporate this as an observation model in SMC-EM.

It is to be noted that other devices, such as electron-multiplying CCDs (EMCCD),

exhibit more complicated noise models (Moran et al., 1997; Chao et al., 2012) and

could also be incorporated into the SMC-EM framework described in this thesis.

To model the effect of shot noise, we assume the measurement Ipk acquired at time

k and pixel p is modeled as a Poisson random variable with a mean λpk determined

by the location of the particle xp,k and the location of the respective pixel xs
p
,k. We

further assume the measurement acquired by each pixel is independent given the
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position of the particle. The observation density in the form of (3.3) is therefore

p
(
I1:P
k

∣∣∣xp,k,xs
1:P
,k

)
=

P∏
p=1

e−λ
p
k (λpk)

Ipk

(Ipk)!
(3.32)

with the expected intensity defined as

λpk = G · FPSF

(
xp,k,xs

p
,k

)
+Nbgd, (3.33)

where FPSF is the point spread function (PSF) of the microscope. In the determination

of the expected intensity (3.33) we also include two parameters which govern the

signal to noise ratio. Specifically, we assume the intensity of the light emitted by

the particle is controlled by the multiplicative gain G; this value is determined by

several factors including the intensity of the excitation source and material properties

of the fluorophore. In addition, we assume the existence of an additive, spatially-

uniform background noise with constant intensity Nbgd; this value is determined by

the particle’s environment and includes the existence of nearby fluorescent particles

as well as autofluorescence generated by the surrounding structures and media.

Obtaining a perfectly accurate model for the measurement process is often un-

realistic if not impossible. Although the PSF may be represented by one of several

models of varying degrees of accuracy and complexity, knowledge of the gain G or

the background noise Nbgd may never be known with certainty. Consequently, they

should be estimated.

Unfortunately, evaluation of (3.12) with respect to G or Nbgd does not yield an

analytical solution. Taking the derivative of Q̂(θ, θ̂e) with respect to G and with Nbgd

fixed we obtain the maximizing condition

N∑
k=1

M∑
i=1

P∑
p=1

wik|N,eF
i,p
k,e

(
Ipk

Ĝe+1F
i,p
k,e +Nbgd

− 1

)
= 0 (3.34)
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for Ĝe+1; here, F i,p
k,e is defined as

F i,p
k,e = FPSF

(
xik|N,e,xs

p
,k

)
. (3.35)

Similarly, evaluating the derivative of Q̂(θ, θ̂e) with respect to Nbgd and with G fixed

we obtain the maximizing condition

N∑
k=1

M∑
i=1

P∑
p=1

wik|N,e

(
Ipk

GF i,p
k,e + N̂bgd,e+1

− 1

)
= 0 (3.36)

for N̂bgd,e+1 and with F i,p
k,e defined in (3.35). Both of these equations may be inde-

pendently solved using any root-finding algorithm, such as the tangent-hyperbolas

method (Ortega and Rheinboldt, 2000).

It is important to note that even though it is possible to simultaneously estimate

both Nbgd and G, doing so may cause the SMC-EM algorithm to fail to converge. This

is due to the fact that both parameters may not be mutually identifiable in conjunction

with other unknown parameters. In other words, with a finite record of measurements

it may not be possible to determine whether measurement fluctuations are due to an

increased level of background noise or particle motion (which is dependent on motion

model), and if there are too many degrees of freedom then the parameters may not be

unique. One potentially remedy for this problem is to estimate Nbgd experimentally

by acquiring representative images of background; then, G may be estimated using

SMC-EM in the context of the experimentally measured Nbgd.

3.4 Demonstration: Widefield Fluorescence

In this section, we discuss four numerical demonstrations that showcase the capa-

bilities of the SMC-EM algorithm within a widefield imaging context. The four

demonstrations rely on three sets of data, each consisting of multiple trials with each
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trial an image sequence of a single particle undergoing motion according to one of the

models introduced in the previous section. The first data set is a two-dimensional

isotropic diffusion, the second is a three-dimensional isotropic diffusion with axial

confinement, and the third is a three-dimensional tether. The simulated experimen-

tal setup is a wide-field imaging scenario using a Debye diffraction integral satisfying

the sine condition, in all three data sets.

The three data sets are used throughout four separate demonstrations. The first

data set considers the two-dimensional diffusion and attempts to estimate, under the

assumption of anisotropicity, the two diffusion coefficients. To ground the results from

the SMC-EM algorithm, we compare them to a conventional localize-then-estimate

approach using Gaussian fit (GF) and the ML estimator developed in (Michalet and

Berglund, 2012). The second data set considers the three-dimensional axially-confined

isotropic diffusion and estimates each diffusion coefficient in addition to the confine-

ment length. The third data set considers the three-dimensional isotropic tether and

estimates the stiffness coefficient in addition to the diffusion coefficient. The three

aforementioned demonstrations assume precise knowledge of the PSF. This is, how-

ever, often not the case in most settings and thus in the fourth demonstration we

show that the SMC-EM algorithm is capable of estimating PSF parameters as well.

We revisit the three-dimensional tether and estimate the peak intensity of the PSF

in addition to the same parameters as before. The specific parameter values for each

of these demonstrations, such as diffusion coefficients, are defined in Table 3.1.

3.4.1 Generation of Ground-Truth Data

For each of the three models, we generated 40 data sets, each comprised of 100 images.

Specifically, the first set of images was generated from a two-dimensional isotropic

diffusion model, the second set of images was generated from the axially confined

diffusion model, and the third set of images was generated from the elastic tether
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Symbol Parameter Value
A Stiffness Coefficient 1.0 s−1

D Diffusion Coefficient 0.01 µm2/s
E Number of SMC-EM Iterations 10 iterations
G Peak Intensity 100 counts
K Number of Sequences 40 sequences
L Length of Channel 500 nm
M Number of SMC Point Estimates 125
n Refraction Index 1.33
N Sequence Length 100 images
Nbgd Background Noise 10 counts
Nsub Subsamples per Image 100 subsamples
NA Numerical Aperture 1.2
P Number of Pixels 25 pixels

∆x,∆y Effective Pixel Length 100 nm
δt Shutter Period 10 ms
∆t Imaging Period 100 ms
λ Emission Wavelength 540 nm

Table 3.1: Parameter values used in the generation of ground-truth
data and for each of the four widefield imaging demonstrations.

model. The observation models were identical for all image sequences. The number

of images N was chosen with regard to the imaging time ∆t = 100 ms (i.e. 10 frames

per second), yielding a total duration of 10 s for each sequence. In practice, N∆t is

selected according to the hardware’s imaging capabilities, the fluorophore’s emission

capacity, and the time scale of the particle’s motion; the values chosen in this work

were inspired by a recent competition (Chenouard et al., 2014) as well as a brief

survey of the literature.

To generate each sequence of images, independent trajectories consisting of N ×

Nsub positions were generated from one of the three aforementioned motion models;

here, Nsub = 100 represents a subsampling factor with each position in the trajectory

spaced δt = ∆t/Nsub seconds apart, where ∆t = 100 ms is the imaging period. In

this work, Nsub was chosen large enough so that the motion between subimages was
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negligible; specifically, the value was selected to ensure that the probability that a

particle following an isotropic three-dimensional diffusion deviated more than 25 nm

between each subimage was less than 0.2 %.

From these trajectories, images were generated using the Poisson shot noise model

with the PSF defined as

FPSF

(
xp,k,xs

p
,k

)
=

(xps,k+ ∆x
2 )∫

(xps,k−
∆x
2 )

(yps,k+ ∆y
2 )∫

(yps,k−
∆y
2 )

FWF (xp,k − ξ′, yp,k − ξ′′, zp,k) dξ′dξ′′, (3.37)

with

FWF(x, y, z) =

∣∣∣∣∣∣C
α∫

0

√
cos θJ0

(
κ sin θ

√
x2 + y2

)
exp (−iκz cos θ) sin θdθ

∣∣∣∣∣∣
2

, (3.38)

where C is a complex constant chosen so that FWF(0, 0, 0) = (∆x∆y)−1, J0(·) is a

zeroth-order Bessel function of the first kind, κ , 2πn/λ is the wavenumber of the

emitted light, and α , sin−1 (NA/n) is the maximum semiangle of the objective

lens. This PSF model, which is based on the Debye diffraction integral, is well-suited

for approximating the near-focus non-paraxial distribution of light and is valid for

high-NA objective lenses (Gu, 2000). The parameters describing the PSF were set to

NA = 1.2, λ = 540 nm, and n = 1.33, which are common values that one may find

in an experimental setting. In addition, we assumed the effective pixel width (after

magnification) was ∆x = ∆y = 100 nm.

Realistically, an image of the particle is formed by accumulating photons during

an exposure period. To replicate this effect, we assumed the camera accumulated

photons continuously during the first δt = 10 ms seconds of each imaging period

∆t = 100 ms by averaging the first ten consecutive images in the period and ignoring

the rest. As noted above, δt was chosen sufficiently small so that the motion of

particle during photon accumulation was negligible while remaining large enough to
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ensure an adequate number of photons was collected.

The particle was set to have a peak fluorescence of G = 100 counts over the entire

exposure time δt. The background noise was assumed to be uniform throughout the

image with a fixed number of Nbgd = 10 counts counts during the exposure period.

For simplicity we assumed there was no blinking or bleaching during the accumulation

period.

In practice, when one acquires images in real experimental situations, many parti-

cles may be present and segmentation and linking among frames must be performed.

The choice of method for this step affects the quality of the final localization and

parameter estimation. To use the algorithm presented in this work, however, any

segmentation and linking technique may be applied to generate a sequence of pixel

arrays (see, e.g. (Chenouard et al., 2014)). To abstract the impact of segmentation

from the behavior of the SMC-EM algorithm, “perfect segmentation” was assumed

in the trials presented here. Thus, each image was approximately centered in each

frame by an oracle, and only one particle was present throughout the image genera-

tion process. As will be discussed later, the computational complexity of the proposed

algorithm increases with the number of pixels observed per frame; consequently, the

user must be judicious as to how large the image should be to ensure that enough

information regarding the particle is present without including too many “empty”

pixels. For the image sequences described in this work, each image contained P = 25

pixels arranged into a square
√
P ×
√
P array; the effective length of each segmented

image was 0.5 µm which is approximately twice the full-width at half-maximum value

when the particle is in focus.

Since the localization resolution depends on the total number of informative pho-

tons acquired during the imaging process, one possible metric for comparing the three

data sets is the average number of photons acquired per (segmented) frame. The av-
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erage number of photons was 756 per frame for the first data set, 737 per frame for

the second data set, and 721 per frame; recall that each segmented frame consisted of

P = 25 pixels. Thus, the average number of photons per frame is nearly equivalent

for each of the demonstrations and one may expect similar localization resolution.

3.4.2 Algorithm Implementation

Recall that the SMC-EM algorithm iterates between two distinct steps. On the

first iteration of the algorithm, the expectation step yields an evaluation of (3.10)

through application of SMC-based filtering and smoothing techniques to the acquired

data (i.e. images) with respect to the motion (3.2) and observation (3.3) models

and an a priori parameter estimate θ̂0. The subsequent maximization step yields

an improved estimate θ̂1 through the evaluation of (3.12). The expectation step is

then executed again with respect to the new estimate θ̂1, and the maximization step

follows afterward yielding θ̂2. This process continues until a termination criterion is

satisfied.

For each of the demonstrations presented in this section, the SMC-EM algorithm

was terminated after a fixed number E = 10 of iterations. The number of iterations

was chosen large enough so that the parameters approximately converged to a fixed

value. We note that if the user is particularly concerned about the amount of compu-

tational time required to estimate the parameters then optimal change point methods,

such as those presented in (Poor and Hadjiliadis, 2008), could be considered.

The number of Monte Carlo estimates M was chosen to be 125 for each of the four

demonstrations. In general, proper selection of this parameter requires some degree of

experimentation. Ideally, to minimize the Monte Carlo variability the parameter M

should be large; however, as further discussed in the appendix the SMC-EM algorithm

implemented in this work has a computational complexity that scales quadratically

with M . Thus, using a large number of Monte Carlo estimates may significantly
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impede throughput. One way of determining an appropriate value for M is to process

the data using an initial value and then process the data again using double the

initial value. If the statistics of the resulting parameter estimates did not improve

between M0 and M1, then M0 may be deemed sufficient. Otherwise, process the data

again using quadruple the value and repeat the comparison. In this work, M = 125

was chosen because M = 250 did not yield an improvement in the variance of the

parameter estimates in any of the demonstrations.

For all the demonstrations, the initial parameter estimates were randomly gener-

ated within one order of magnitude of their true value (aside from the confinement

length L for which an upper bound was used instead). It is important to note that

the SMC-EM algorithm may fail to converge if the initial parameter estimates are

too far from their true values. Since the expectation step relies on a finite number

of Monte Carlo estimates to generate an approximate posterior density, a severe mis-

match between the data and assumed model may result in most of the Monte Carlo

estimates having low (or even zero) likelihood. In the case that all the estimates

have zero likelihood, the approximate posterior density becomes degenerate and the

algorithm fails. The probability of this failure occurring can be reduced by using a

larger number of Monte Carlo estimates or by using more efficient SMC algorithms.

Alternatively, if initial parameter estimates are not known to a degree so that the

SMC-EM algorithm converges, methods other than SMC-EM may be used to provide

an initial estimate that can be used in the subsequent application of SMC-EM.

3.4.3 Metrics for Algorithm Performance

Recall that the output of the SMC-EM algorithm consists of two parts - the parameter

estimates and the joint posterior density estimates on the position of the particle.

Although assessing the quality of the estimated parameters by comparing them to

their true values is straightforward, determining the performance of localization is
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not. This is mostly due to the fact that the SMC-EM algorithm yields a Monte

Carlo approximation of the full joint posterior density of the particle’s position over

time rather than just a point estimate. This provides significantly more information

than a point estimate. To assess the performance of localization in this work, we

assume the most representative estimate of the particle’s position at a given time is

the weighted arithmetic mean over all estimates. In other words, the position estimate

(x̂k,e, ŷk,e, ẑk,e) is used as a surrogate for the posterior density at time step k, where

x̂k,e ,
M∑
i=1

wik|N,ex
i
k|N,e, (3.39)

with ŷk,e and ẑk,e defined similarly. Given these surrogates, the Root Mean Squared

(RMS) localization error can be calculated for each image sequence.

The variability in the results presented in this section - specifically, the bias and

the standard deviations in both the parameter estimates and localization errors - are

primarily driven by two sources of random error. The first, experimental variability,

comes from several sources, including randomness in the motion of the particle, shot

and background noise in the measurement, motion blur in the data, and the finite

pixel size of the detector. This variability is inherent to the experimental setting itself

and is present regardless of the estimation scheme.

The second source of variability arises from the Monte Carlo nature of the SMC

element of the estimation scheme. This variability scales as
√
M and thus vanishes

in the limit of a large number of point estimates in the discrete representation of the

densities. However, the computation time of the algorithm is driven in large part

by the size of M and thus there is a trade off between error introduced by small M

and the computation time needed for large M . As noted previously, the value of 125

used in these demonstrations was selected based on the observation that the standard

deviations of the estimates did not diminish when doubling M to 250.



73

An additional source of variability includes experimental variability. For each of

the following demonstrations we report sample means and sample standard deviations

for both the parameter estimates and the RMS errors. As was mentioned previously,

40 independent experiments were performed for each demonstration; this value was

experimentally determined to be large enough so that the experimental variability

was small relative to the other sources.

We note that the fundamental limit of estimation variability for each of the fixed

parameters (e.g. A, L, D, and G) is given by the Cramér-Rao lower bound (CRLB). In

other words, the CRLB defines the absolute minimum variability one could obtain by

estimating a set of fixed parameters using a finite number of images N , given a choice

of motion and observation models but independent of the estimation algorithm used.

For the case of an isotropic diffusion with diffusion coefficient D and additive Gaus-

sian localization uncertainty with variance σ2, the corresponding CRLB was derived

analytically in (Michalet and Berglund, 2012). In general, however, the calculation of

CRLB for models that take the form of (3.2) and (3.3) are much more difficult since

the exact likelihood is unknown. One approach is to condition on a latent state, as

was done in the derivation of the SMC-EM algorithm, but this becomes numerically

intractable for a large number of images. Recognizing this difficulty, some attempts

have been made to estimate the CRLB via Monte Carlo simulations, e.g. (Spall,

2012), but there currently exists no analytical approach for the models we consider

in this work.

Since most conventional approaches assume the localization uncertainty is zero-

mean, additive, white, and Gaussian, a common approach is to treat the statistics of

this uncertainty as a fixed parameter and, as with the motion parameters, compare

localization uncertainty to the CRLB. In this case, however, the localized position of

the particle is described in the SMC-EM framework by the time-dependent posterior
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probability density function which takes into account the observed images. Since

the CRLB is limited to fixed parameters, i.e. quantities that are not dependent on

time and do not vary during the experiment, it is not an applicable measure for

localization error in this setting. One approach that is similar to the CRLB and can

handle time-varying parameters is the posterior Cramér-Rao lower bound (PCRLB).

The PCRLB was first presented in (Trees, 1968) and later extended to the context of

nonlinear filtering in (Tichavský et al., 1998). Much like the CRLB, the calculation

of the PCRLB for general models of the form (3.2) and (3.3) is computationally

intractable, and, although approaches have been made to numerically approximate

it, e.g. (Tulsyan et al., 2013), there is no currently analytically tractable method for

its calculation.

3.4.4 Demonstration No. 1: Two-Dimensional Diffusion

The goal of the first demonstration was to use the SMC-EM algorithm to estimate

the diffusion coefficients and trajectory for a particle undergoing two-dimensional

isotropic diffusion. For this demonstration, we analyzed the K image sequences from

the first set of data that was described in Sec. 3.4.1. In addition, we compared the

SMC-EM results to a conventional method of first localizing the particle in each image

with a nonlinear fit to a Gaussian function and then calculating the ML estimate of

the diffusion coefficients using the method proposed in (Michalet and Berglund, 2012);

for brevity, we refer to this method by GF-ML.

The motion model was assumed to be of the form (3.14) in both x and y axes; for

identification purposes, however, we assumed the diffusion was anisotropic and that

the diffusion coefficients for each axis, namely Dx and Dy, needed to be identified.

Moreover, the position of the particle in the z direction was assumed to be zero, its

true value.

To initialize the SMC-EM algorithm for each of the image sequences, the initial
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diffusion coefficient estimates, D̂x,0 and D̂y,0, were randomly generated within an

order of magnitude of their true value D = 0.01 µm2/s.

As described in the Appendix, the maximization step consisted of evaluating the

parameter update equation (3.12) with respect to the motion model (3.14) to yield

the parameter update equations (3.15) for both x and y axes.

For only this demonstration, we assumed

FWF(x, y, z) =
1

∆x∆y
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
(3.40)

instead of the Debye model (3.38); in fact, it was shown in (Zhang et al., 2007) that

the parameters

σx =

√
2λ

2πNA
, σy =

√
2λ

2πNA
, (3.41)

yield an optimal approximation of the Debye model (3.38) in an appropriate sense.

The parameters λ and NA were assumed known with certainty, as was the background

noise Nbgd and the z axis position of the particle (the latter of which was assumed

to be zero). To clarify, the true data was generated with the Debye model (3.38) as

described in Sec. 3.4.1.

The approximation (3.40) is not a requirement for use of the SMC-EM algorithm.

In fact, it will be shown in the three subsequent demonstrations that the SMC-EM

algorithm is not restricted to any particular PSF model and that it may incorporate

those from other imaging modalities. The primary benefit of using (3.40) is that it is

simple to calculate.

Recall that the true diffusion coefficient for both x and y axes was 0.01 µm2/s.

After ten iterations of SMC-EM, the resulting diffusion coefficient estimates were

0.009 ± 0.002 µm2/s in both x and y axes; the GF-ML algorithm yielded identical

results. Additionally, after ten iterations of SMC-EM, the RMS localization errors
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were 0.013 ± 0.001 µm and 0.012 ± 0.001 µm in x and y, respectively; the GF-ML

algorithm yielded 0.009 ± 0.001 µm in both x and y axes. The resulting diffusion

coefficient estimates as a function of EM iteration number are shown in Fig. 3·1

while the RMS localization errors are shown in Fig. 3·2. We note that convergence

for the SMC-EM algorithm was relatively fast in this case and only needed two to

three iterations to converge.

An illustration comparing the performance of the two algorithms (GF-ML and

SMC-EM) on estimating the particle trajectory is given in Fig. 3·3. Although the

two yielded similar parameter and localization estimates, the two methods make very

different assumptions on the underlying motion and observation models. In particu-

lar, the GF-ML algorithm assumes there is no information to be gained by considering

the time-history of the location of the particle during the localization step. In addi-

tion, the SMC-EM algorithm is not necessarily restricted to any motion or imaging

modality so long as it can be represented in the form (3.2) and (3.3); the GF-ML

algorithm is only applicable to a diffusing particle with a PSF that is approximately

Gaussian and localization uncertainty that is normally distributed. Moreover, the

SMC-EM algorithm yields a full, albeit approximate, probability distribution of the

particle position given the acquired images, whereas the GF-ML provides Gaussian

statistics.

It is important to note that blur during the exposure period may significantly affect

the accuracy of both localization and estimation, especially if there is no attempt to

compensate for it. To demonstrate its effect, we repeated Demonstration No. 1 with

δt = ∆t = 100 ms (i.e. full exposure during the imaging period). The SMC-EM

method resulted in diffusion coefficient estimates of 0.007 ± 0.001 µm/s and RMS

errors of 0.026 ± 0.002 µm for both x and y axes. The GF-ML method, however,

resulted in 0.010 ± 0.002 µm/s and RMS errors of 0.025 ± 0.002 µm for both x and



77

y axes. We note that although the localization errors were nearly equivalent for

both methods, the GF-ML method resulted in a more accurate diffusion coefficient

estimate. This is because the parameter estimation algorithm used in the GF-ML

method can compensate for the expected blur that occurs during the imaging process

and that corrupts the position estimate (details on how this is done can be found in

(Michalet and Berglund, 2012)).

Both the GF-ML and SMC-EM algorithms possess unique features and have their

time and place for proper use. For example, when long exposure times are required

(and blur contributes significantly to the localization uncertainty), the GF-ML al-

gorithm may yield more accurate estimates. In contrast, when the experimentalist

observes significant deviation from a standard diffusion and requires a more compli-

cated motion and/or observation models, the SMC-EM algorithm may yield superior

results.
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Figure 3·1: Box plots of the estimated diffusion coefficients as a
function of the number of iterations of the SMC-EM algorithm for the
first demonstration (2D diffusion, Sec. 3.4.4). The edges of the box
represent the first and third quartiles, the red line is the median, the
vertical dashed line indicates the bounds for data within 1.5 times the
interquartile range, and the red + symbols are data points outside this
range. The true values of the diffusion parameters, indicated by the
solid black lines, were Dx = Dy = 0.01 µm2/s.
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Figure 3·2: Box plots of the root mean square (RMS) localization
error as a function of the number of iterations of the SMC-EM algorithm
for the first demonstration (2D diffusion, Sec. 3.4.4). The edges of the
box represent the first and third quartiles, the red line is the median,
the vertical dashed line indicates the bounds for data within 1.5 times
the interquartile range, and the red + symbols are data points outside
this range.

3.4.5 Demonstration No. 2: Axially-Confined Diffusion

The second demonstration was an extension of the first; specifically, we considered an

isotropic diffusion where the axial motion was confined to the interval [−L/2, L/2].

For both the expectation and maximization steps, the motion models in the x and y

axes were assumed to be of the form of (3.14) whereas the motion model for the z axis

was assumed to be of the form of (3.20). For the purposes of estimation, the diffusion

was assumed to be independent and anisotropic in all three axes. The SMC-EM

algorithm was used to estimate the four motion parameters, namely the confinement

length L and the three diffusion coefficients Dx, Dy, and Dz.

The expectation step for this demonstration was performed similarly to the first.

However, unlike the previous demonstration which used a Gaussian approximation

(3.40) for its PSF model, we chose to implement the full Debye model (3.38) instead.

This choice was made for two reasons; first, because no accurate Gaussian approxima-

tion exists for three-dimensional widefield PSFs (Zhang et al., 2007), and second, to
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Figure 3·3: This figure illustrates a typical trajectory from the two-
dimensional diffusion in the first demonstration (2D diffusion, Sec.
3.4.4); only the x axis results are shown; y axis results were similar
in appearance. The random walk shown in gray represents the true
position of the particle over time. The red dots indicate the Gaus-
sian fit (GF) estimates and the red error bars are the 3σ uncertainties
of these estimates as determined via maximum likelihood estimation
(Michalet and Berglund, 2012). The shaded regions represent the ap-
proximate posterior probability densities for the particle positions after
ten iterations of the SMC-EM algorithm.

highlight the fact that complicated PSF models can be incorporated into the SMC-

EM algorithm. We assumed all PSF parameters, as well as the gain parameter G

and the background noise Nbgd, were known with certainty. We note that SMC-EM

is capable of also estimating parameters describing the observation model; this is

highlighted in the fourth demonstration.

The maximization step was also performed in a similar manner to the first demon-

stration. In particular, both the x and y diffusion coefficient estimates are of the form

(3.15). In contrast, the z axis diffusion coefficient and confinement length estimates

were calculated according to the procedures described in Sec. 3.3.3.

Similar to the first demonstration, the three initial diffusion coefficient estimates
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were randomly selected from within an order of magnitude of their true values D =

0.01 µm2/s. The initial length estimate L̂ was set to 1.0 µm for every image sequence.

The true value was 500 nm.

After ten iterations of SMC-EM, the resulting diffusion coefficient estimates were

0.010± 0.001 µm2/s, 0.009± 0.001 µm2/s, and 0.009± 0.004 µm2/s in the x, y, and

z axes, respectively, and the confinement length estimate was 0.53 ± 0.05 µm. The

RMS localization errors were 0.013±0.001 µm in both in x and y and 0.14±0.05 µm

in z. The resulting parameter estimates and RMS localization errors as a function of

EM iteration number are shown in Fig. 3·4 and 3·5.

Note that the error in localization along the z axis was an order of magnitude

worse than in x and y; further, as seen in Fig. 3·5, this localization error did not

show significant improvement over the initial condition. This reflects the fact that

there is a large amount of localization uncertainty in z since the two-dimensional

image of the symmetric three-dimensional PSF provides only limited information of

the particle’s axial position. This is due in part to the fact that the implemented

PSF (3.38) has an effective axial slope that is much smaller than the longitudinal

slope. Perhaps even more important, however, is that the axial symmetry of the

PSF causes “crossing” errors about the particle center. Due to the symmetry of

the PSF, the measurements cannot distinguish between positions above the focal

plane and positions below the focal plane and as a result, trajectories that are mirror

reflected through the focal plane are equally likely. In general, in the limit of very

large M , the SMC approximation to the posterior density can maintain a bi-modal

distribution reflecting these two possibilities. Given a finite (and small) M , however,

the estimator tends to lock the distribution onto one side of focal plane, chosen

essentially at random. (This effect is essentially the same as what is known in the SMC

literature as sample impoverishment. See, e.g., (Cappe et al., 2007).) Unlike point
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estimates based on a single frame, however, the SMC-EM approach uses the entire

set of frames in conjunction with the motion model to produce position estimates. As

a result the expected location of the particle will not hop from one side of the plane

to the other. This is illustrated in Fig. 3·6 which shows a typical z trajectory and

the posterior density estimates; the figure shows that the posterior sometimes follows

the true trajectory and sometimes is reflected through the focal plane at zero. In

either case, however, the dynamics are well-captured and as a result the estimates of

the z diffusion coefficient and confinement length were still both quite accurate. The

uncertainty did affect the convergence rate, however. As seen in Fig. 3·4, Dz took

nearly all ten iterations of SMC-EM to converge while Dx and Dy both converged

within two iterations.

This localization problem can be remedied in the experimental setting by using an

asymmetric PSF, such as those induced by astigmatism; since the SMC-EM algorithm

makes no assumption on the form of the PSF, such experimental settings can still be

analyzed with the SMC-EM method. Alternatively, one could recognize that the PSF

does not yield information about the sign of the z position relative to the focal plane

and use an estimator that gives only the distance from that plane. For example, one

could replace the arithmetic mean (3.39) with the absolute value of the arithmetic

mean. Doing so yields an RMS error (relative to the absolute value of the true z

position) of 0.048 ± 0.007 µm, a significant improvement over the 0.14 µm error for

the signed case; these values are indicated in Fig. 3·5 in the right-most figure by boxes

in blue.

3.4.6 Demonstration No. 3: Three-Dimensional Elastic Tethering

For the third demonstration, we considered the case where the fluorescent particle

was elastically tethered to a fixed point. We assumed that, in all three axes, the

motion was derived from the Ornstein-Uhlenbeck model (3.22). Although the motion
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Figure 3·4: Box plots of the estimated parameters as a function
of the number of iterations of the SMC-EM algorithm for the second
demonstration (confined diffusion, Sec. 3.4.5). In this case, the z posi-
tion of the diffusing particle was confined to the interval [−L/2, L/2];
the diffusion coefficients Dx, Dy, Dz and the confinement length L were
assumed unknown. The edges of the box represent the first and third
quartiles, the red line is the median, the vertical dashed line indicates
the bounds for data within 1.5 times the interquartile range, and the
red + symbols are data points outside this range. The true values,
indicated by the solid black lines, were Dx = Dy = Dz = 0.01 µm2/s
and L = 0.5 µm.

in each axis was assumed independent, each axes’ motion depended on the two to-

be-estimated parameters, A and D.

The implementation of the SMC-EM algorithm for this demonstration was nearly

identical to that of the second demonstration. The observation model was identical

to the second demonstration; that is, the full Debye model (3.38) was used and all of

its parameters were assumed known with certainty. The maximization step used the

formulae (3.25) and (3.28) to update the parameter estimates A and D, respectively.

The initial parameter estimates Â0 and D̂0 were randomly generated within an order

of magnitude of their true values, 1.0 s−1 and 0.01 µm2/s, respectively.
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Figure 3·5: Box plots of the root mean square (RMS) localization
error as a function of the number of iterations of the EM algorithm for
the second demonstration (confined diffusion, Sec. 3.4.5). The edges of
the box represent the first and third quartiles, the red line is the median,
the vertical dashed line indicates the bounds for data within 1.5 times
the interquartile range, and the red + symbols are data points outside
this range. The raw RMS errors for z are indicated in the right-most
figure as gray boxes (with outliers denoted by red diamonds), whereas
the RMS errors for the absolute value of z are indicated by blue boxes.

After ten iterations of SMC-EM, the resulting stiffness coefficient was 1.0±0.3 s−1

and the resulting diffusion coefficient was 0.009 ± 0.001 µm2/s. The resulting RMS

localization errors were 0.012 ± 0.001 µm in both x and y and 0.12 ± 0.05 µm in z.

The resulting parameter estimates and RMS localization errors as a function of EM

iteration number are shown in Figs. 3·7 and 3·8.

The results from the third demonstration were similar in character to that of the

second. In particular, we once again see significant axial localization uncertainty

due to properties of the PSF, though using the absolute value as before yielded a

much better error of 0.046±0.006 µm. In addition, the estimated parameters require

four or five iterations to converge instead of the expected two or three. This slower

convergence rate is due to the parameters’ dependence on the z position; had we

decoupled x and y from z and used four parameters instead, i.e. Axy, Az, Dxy, Dz, the

convergence rates would have been faster in x and y.
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Figure 3·6: A typical z trajectory from the second demonstration
(confined diffusion, Sec. 3.4.5). Here, the true trajectory is shown
in grey and the posterior density estimates after ten iterations of the
SMC-EM algorithm are shown with values according to the color bar.
Note that estimates occur only every 100 ms while the true trajectory
is defined (essentially) continuously. The dashed lines indicate the focal
plane (at z = 0) and the bounds of the channel (z = ±0.25 µm). From
this figure, it is clear that the PSF’s symmetry about the focal point
at z = 0 creates potential localization error in which the trajectory is
essentially reflected through the focal plane (for example, from time 0
s to approximately 1 s and again from approximately 4.5 s through the
end at 10 s). We note that this phenomenon is solely due to the PSF’s
symmetry about the focal point and is exhibited by all localization
algorithms; PSFs that are asymmetric will not produce this behavior.
Use of the motion model and the entire set of data prevent the estimates
from randomly changing their sign relative to the focal plane and thus
the motion model parameters can still be effectively estimated.

3.4.7 Demonstration No. 4: Elastic Tethering with Unknown PSF

Lastly, the fourth demonstration used exactly the same data as in the third demon-

stration but estimated one additional parameter. Unlike the third demonstration

which assumed complete knowledge of the observation model, the fourth demonstra-

tion assumed that the gain G must be estimated. Relative to the third demonstration,

the only major algorithmic change this requires is the additional calculation of the

estimate of G during the maximization step; the parameter estimate equation for G
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Figure 3·7: Box plots of the estimated parameters as a function
of the number of iterations of the SMC-EM algorithm for the third
demonstration (3D tether, Sec. 3.4.6). In this case, the particle was
assumed to be elastically tethered to a known location; the stiffness
coefficient A and the diffusion coefficient D were assumed unknown.
The edges of the box represent the first and third quartiles, the red line
is the median, the vertical dashed line indicates the bounds for data
within 1.5 times the interquartile range, and the red + symbols are
data points outside this range. The true values, indicated by the solid
black lines, were A = 1.0 s−1 and D = 0.01 µm2/s.

is shown in (3.34). The initial estimate for G was randomly generated within 20% of

the true value. In practice the initial estimate would be guided by the peak values in

the data.

The true diffusion coefficient was 0.01 µm2/s, the true stiffness coefficient was

1.0 s−1, and the true gain was 100 counts. After ten iterations of SMC-EM, the

resulting estimated diffusion coefficient was 0.009±0.001 µm2/s, the resulting stiffness

coefficient was 1.2± 0.3 s−1, and the resulting gain was 89± 1 counts. The resulting

RMS localization errors were 0.012±0.001 µm in both x and y and 0.10±0.03 µm in z.

The error for the absolute value of z was 0.047± 0.006 µm. The parameter estimates

and RMS localization errors as a function of EM iteration number are shown in Figs.

3·9 and 3·10.

Convergence for the fourth demonstration was very similar to the third. In par-

ticular, we see that the A, D, and G parameters all required four or five iterations to
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Figure 3·8: Box plots of the root mean square (RMS) localization
error as a function of the number of iterations of the SMC-EM algorithm
for the third demonstration (3D tether, Sec. 3.4.6). The edges of the
box represent the first and third quartiles, the red line is the median,
the vertical dashed line indicates the bounds for data within 1.5 times
the interquartile range, and the red + symbols are data points outside
this range. The raw RMS errors for z are indicated in the right-most
figure as gray boxes (with outliers denoted by red diamonds), whereas
the RMS errors for the absolute value of z are indicated by blue boxes.

converge. As in the third demonstration, the estimate of D is very close to the true

value. The estimate of A shows a larger error than previously and perhaps some bias

(though the true parameter value is within one standard deviation) while there is a

clear bias in the estimate of G. These errors likely arise from two sources. The first is

again the axial uncertainty in the PSF. Since the intensity gain G is affected by the

axial position of the particle, errors in that localization propagate into the gain esti-

mate. The second is the fact that the same amount of data is being used to estimate

a larger number of parameters; because the ML estimators are only asymptotically

efficient, a larger number of images would reduce variance and bias.

3.5 Summary

This chapter presented an inference method which solves some of the problems with

the common inference paradigm for fluorescent particle tracking. The method com-
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Figure 3·9: Box plots of the estimated parameters as a function
of the number of iterations of the SMC-EM algorithm for the fourth
demonstration (3D tether with unknown G, Sec. 3.4.7). In this case,
the particle was assumed to be elastically tethered to a known location;
the stiffness coefficient A, the diffusion coefficient D, and the peak
fluorescence intensity G were assumed unknown. The edges of the box
represent the first and third quartiles, the red line is the median, the
vertical dashed line indicates the bounds for data within 1.5 times the
interquartile range, and the red + symbols are data points outside
this range. The true values, indicated by the solid black lines, were
A = 1.0 s−1, D = 0.01 µm2/s, and G = 100 counts.

bines the Expectation Maximization algorithm with Sequential Monte Carlo methods

to simultaneously localize the particle’s location as well as infer model parameters

governing the behavior of the particle and the measurement process. Specifically,

the algorithm produces an approximation of the posterior probability density of the

particle’s location at a given time; it also produces approximate Maximum Likeli-

hood (ML) estimates for potentially nonlinear motion and observation models. The

method can be applied in a wide variety of microscopy-related scenarios and we have

presented four demonstrations pertaining to the widefield imaging case. In particu-

lar, we estimated the parameters for three different motion models (free, confined,

and tethered diffusions) as well as the multiplicative gain for a Poisson shot noise

observation model. The method is a flexible approach which, despite being unable to

account for intraframe motion blur, exceeds the capabilities of the common paradigm.
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Figure 3·10: Box plots of the root mean square (RMS) localization
error as a function of the number of iterations of the SMC-EM algorithm
for the fourth demonstration (3D tether with unknown G, Sec. 3.4.7).
The edges of the box represent the first and third quartiles, the red line
is the median, the vertical dashed line indicates the bounds for data
within 1.5 times the interquartile range, and the red + symbols are
data points outside this range. The raw RMS errors for z are indicated
in the right-most figure as gray boxes (with outliers denoted by red
diamonds), whereas the RMS errors for the absolute value of z are
indicated by blue boxes.
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Chapter 4

Tracking a Quantum Dot within a

Hydrogel

In Chapter 2, we developed a novel method for tracking a single fluorescent particle in

three dimensions within a confocal microscope. The method is unique in the fact that,

despite being an active tracking method, it requires no online localization to follow

the particle. In addition, it produces smooth trajectories unlike many other active

tracking methods. The method operates by adjusting the position of the focal volume

relative to the fluorescent source so that it converges to a region near the maximum

of the emitted light; in fact, the existence of a maximum is the only assumption the

algorithm makes to tracking the particle.

In this chapter, we demonstrate the effectiveness of this method by tracking a

quantum dot (QD) as it diffuses within a hydrogel. We begin by describing the

confocal microscope hardware as well as the algorithm implementation within a real-

time controller. We then describe the preparation process for the hydrogel and how

tracking was performed. Since the tracking algorithm does not explicitly localize

the particle, the experiment’s output is a time series of three dimensional position

each with an associated measured intensity; thus, the location of the particle is to be

estimated offline. As such, we employ the SMC-EM method described in Chapter 3

to estimate the particle’s location as well as its diffusion coefficient and speed.
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4.1 Confocal Microscope Setup

The instrument used in this work consisted of an inverted epifluorescent microscope

(Axiovert 200M, Zeiss) augmented with confocal optics. A 488 nm diode laser (Fib-

erTec II, Blue Sky Research) was expanded and collimated to overfill the back aperture

of the objective lens (C-Apochromat 63x/1.20 W Corr M27, Carl Zeiss). The colli-

mated beam, after being reflected off the dichroic filter (HW625/30m, Chroma), was

focused onto the sample by the objective lens. A three-axis piezoelectric nanoposi-

tioner (Nano-PDQ, Mad City Labs) with a 50× 50× 25 µm range of motion held the

sample above the objective lens. The generated fluorescence was imaged by the ob-

jective and passed through the dichroic filter and tube lens where it was focused onto

a 75 µm-diameter pinhole (P75S, Thorlabs) and avalanche photodiode (SPCM-AQR-

14, Perkin Elmer). For diagnostics, a pellicle beam splitter (CM1-BP133, Thorlabs)

split approximately one-third of the fluorescence onto a CCD camera (EXi Aqua,

QImaging); the CCD was used for finding regions of interest and was not used during

tracking. The tracking algorithm (2.5) was discretized in time using an Euler method

and was implemented using fixed-point arithmetic on the field programmable gate

array (FPGA, Spartan 6, Xilinx) of a real-time embedded controller (CompactRIO

9076, National Instruments); the real-time controller recorded the digital photodiode

pulses and calculated commands for the nanopositioner according to the tracking al-

gorithm. A picture of the instrument is shown in Fig. 4·1 and a block-diagram of the

instrument is shown in Fig 4·2.

4.2 Characterization of Confocal PSF

Although the tracking algorithm described in Chapter 2 requires no specific knowl-

edge of the point spread function (PSF) aside from it possessing a global maximum,

localizing the particle given the experimental data using the SMC-EM algorithm de-
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Figure 4·1: In image of the confocal microscope used for the experi-
ment described in this work. The device is based upon a Zeiss Axiovert
200 inverted microscope which can operate in both widefield and confo-
cal modes. The devices contains an internal dichroic (not shown) which
reflects the excitation source (shown in red) to a 3D piezoelectric nanos-
tage (shown in dashed orange). The nanostage holds the specimen and
can displace it in three dimensions. The fluorescence generated by the
specimen is passed through the dichroic and is reflected to both the
pinhole (shown in green) and the CCD camera (shown in purple) by a
beam splitter. In confocal operation the avalanche photodiode (shown
in yellow) measures the emitted light, whereas in widefield operation
the CCD camera measures it.

scribed in Chapter 3 relies on an accurate measurement of the PSF. In this section,

we describe how the PSF of the confocal microscope was measured and how it was

modeled for the application described in Chapter 4.

The PSF of the confocal microscope was measured by performing a three-dimensional

raster scan of a fixed, fluorescent point emitter. Quantum dots (Qdot 625, Life Tech-

nologies) were adhered to a coverslip using Qmount mounting media (Qdot Qmount,
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Figure 4·2: A block diagram of the optical path for the microscope
described in this work. The excitation light (shown in blue) is gener-
ated by a laser diode. The light is then reflected off a dichroic, passed
through the objective lens, and focused onto the sample. The sample
is held by a piezoelectric nanostage. The emitted fluorescence gener-
ated by the sample is collected by the objective and passed through
the dichroic where it is focused onto a pinhole which is confocal with
the laser excitation. The intensity of the emitted light is then mea-
sured by the avalanche photodiode. A real-time controller (here, an NI
cRIO) observes the APD’s intensity measurement and, during track-
ing, generates real-time position commands to the piezostages. Note
that although a beam-splitter reflects some of the emitted light onto a
CCD camera, the image is recorded by a host computer and is not used
during tracking.

Life Technologies) by following the manufacturer’s protocol. The slide of fixed quan-

tum dots was attached to the sample holder and the laser power was set to 7 µW.

A raster scan was performed with a resolution of 30 nm in x and y and 50 nm in

z with a range of 2 µm in all three axes. Intensity measurements were acquired by

accumulating photons during a period of 1 ms.
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We assumed the PSF took the form of a three-dimensional, rotated Gaussian

function. The rotation is needed to capture misalignment between the optical axis

and the z−axis of the nanopositioning stage used to move the sample relative to the

focal volume. Mathematically, the PSF model was

FPSF (x,xc) = F0 exp

(
−1

2
(x− xc)

T R(ψ)TΣ−1R (ψ) (x− xc)

)
, (4.1)

where F0 is the peak intensity, xc = [xc, yc, zc]
T denotes the particle center, ψ =

[ψx, ψy, ψz]
T denotes the rotation angles of the PSF, and Σ = diag

(
σ2
x, σ

2
y, σ

2
z

)
rep-

resents a diagonal matrix of widths. The rotation matrix R (ψ) describes a ZYX

rotation about the particle center such that, with some abuse of notation,

R(ψ) =

 cos(ψz) sin(ψz) 0
− sin(ψz) cos(ψz) 0

0 0 1

 cos(ψy) 0 sin(ψy)
0 1 0

− sin(ψy) 0 cos(ψy)

1 0 0
0 cos(ψx) sin(ψx)
0 − sin(ψx) cos(ψx)

 ,
(4.2)

The following parameters were fit to the acquired data using MATLAB’s nlinfit

method: F0, xc, yc, zc, σx, σy, σz, ψx, ψy, ψz. The relevant estimated parameters

were σ̂x = 216 nm, σ̂y = 270 nm, σ̂z = 533 nm, ψ̂x = 11.3◦, ψ̂y = −52.2◦, and

ψ̂z = 131.6◦.

The resulting fit can be visualized in three dimensions (Fig. 4·3) and in two dimen-

sions (Fig. 4·4). Specifically, Fig. 4·3 compares the data and the model side-by-side

and defines three mutually-orthogonal planes (denoted by the colors green, orange,

and magenta) that are formed by rotating the standard Cartesian unit vectors cen-

tered about the estimated particle center using the estimated rotations. These planes

are relevant to the images displayed in Fig. 4·4 where cross sections of the model and

data are compared.
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(a) Data
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(b) Gaussian Model

Figure 4·3: Three-dimensional point spread function (PSF) measure-
ments (left) and the corresponding Gaussian model (right) which was
calculated by a nonlinear least-squares fit. Three planes are shown in
magenta, orange, and green which enable the depiction of the cross
sections shown in Fig. 4·4. These planes were determined by calcu-
lating the planes through the estimated particle center, given by the
least-squares fit, and normal vectors specified by the three standard
Cartesian unit vectors transformed via (4.2) and the three rotations
(ψ̂x, ψ̂y, ψ̂z), also given by the least-squares fit. The intensity values
in the measured PSF (left) are normalized by the maximum measured
intensity value, and the intensity values in the model PSF (right) are
normalized by the peak intensity value calculated by least-squares fit.

4.3 Experiment Details

To demonstrate the tracking method, unconjugated quantum dots (QD) were tracked

in an agarose hydrogel. To prepare the sample, 1.745 g of water and 0.062 g of

powdered agarose (A9539, Sigma-Aldrich) were combined and heated until boiling.

Subsequently, 1.924 g of glycerol (G31-1, Fisher Scientific) was added to the mixture in

addition to 200 nL of a solution (2 nM per 50 mM borate) of carboxyl QDs (Qdot 625,

Life Technologies). The mixture was stirred for approximately one minute, poured

onto a glass coverslip which was then adhered to a sample slide, and allowed to cool

until it reached room temperature.

The hydrogel sample was fixed to the piezoelectric nanostage via a sample holder.
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Figure 4·4: Two-dimensional point spread function measurements
(top row) and their corresponding Gaussian models (bottom row)
through the three planes depicted in Fig. 4·3.

The laser power was set to 25 µW as measured after the beam expander and prior

to the collimating optics. The intensity measurement was formed by periodically

accumulating APD output pulses over a time duration of 1 ms. This duration was

selected to be fast relative to the (expected) motion while still providing significant

signal in each integration period. It is, however, a user-selectable parameter limited

primarily by the output emission rate and the capabilities of the avalanche photo-

diode. Prior to tracking, the background noise was measured to be approximately

4 counts per millisecond in a vacant section of the sample. A portion of the sample

was then selected with a concentration of fewer than 5 QDs per 1 µm2. Tracking was

initiated when the accumulated intensity reached a value higher than 40 count / ms

and was subsequently disabled when the intensity dropped to zero. The tracking al-
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gorithm parameters were set to have a scanning radius of R̄ = 50 nm, a convergence

gain of Kp = 5× 10−4, and angular frequencies ω1 = 15 Hz and ω2 = 7 Hz.

4.4 Experiment Results

The experimental output from the tracking algorithm is the position feedback from

the nanostage; it is not the position of the particle. As such, we employ the SMC-EM

method described in Chapter 3 to infer the position of the particle. In this work, we

assumed that the particle moved via a combination of unconfined anisotropic diffusion

and flow as described in Sec. 3.3.2; thus, the motion parameters to be estimated

included three diffusion coefficients and three velocities. In addition, we assumed

the observation model was in the form of the Poisson shot noise model presented in

Sec. 3.3.6. The PSF model was the rotated Gaussian as described in Sec. 4.2. The

peak intensity of the PSF was assumed unknown and was estimated in addition to

the six aforementioned motion parameters. The background noise was assumed to be

an additive constant to the rate of the Poisson process and was set to the previously

measured value of 4 counts / ms.

An experimental output of length 50 s was processed by the SMC-EM algorithm

using 50 Monte Carlo estimates. We note that the length of the trajectory was

limited by the amount of memory required by the SMC-EM algorithm and was not

due to loss of tracking during the experiment. After 1000 iterations of the SMC-EM

algorithm, the estimated diffusion coefficients were (0.139, 0.082, 0.087) µm2/s and the

estimated velocities were (−0.009,−0.001, 0.003) µm/s, in x, y, and z, respectively;

the peak intensity was 1376 count / ms. The estimated particle location, depicted in

blue in Fig. 4·5, was determined by calculating the weighted sample mean (3.39) of

the estimated posterior density as a function of time; this is plotted relative to the

measured focal volume position, depicted in black. Additionally, Fig. 4·5 shows the
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measured intensity, in black, in relation to the theoretical intensity, in blue, which

was determined by evaluating the Gaussian model as a function of the difference of

the measured focal volume position and the estimated particle location. A three-

dimensional plot of the inferred particle position is given in Fig. 4·6.

The inferred position of the particle during the experiment appears to suggest

that it is confined within an ellipsoidal region with semi-major lengths between 250

to 500 nm. It is well known that the structure of agar hydrogels is comprised of anti-

symmetric double helices and that agar forms fiber bundles through intermolecular

hydrogen bonding (Pines and Prins, 1973; Bulone and San Biagio, 1991). It has

also been observed (via fluorescence correlation spectroscopy and small angle neutron

scattering experiments) that there is a pore size distribution ranging from 1 nm to

900 nm (Fatin-Rouge et al., 2003; Fatin-Rouge et al., 2006). The inferred position

therefore appears consistent with what has been observed in the literature. It is

important to note, however, that the medium used in the presented work was not

a pure hydrogel since it was dilluted with glycerol. It has been observed that the

addition of glycerol to an agar hydrogel changes its structure (Boral and Bohidar,

2012). We further note that concentrated solutions of quantum dots tend to contain

a relatively large concentration of aggregate crystals. Since the solution of quantum

dots was not centrifuged prior to the experiment and since blinking was not observed

in the measured intensity, it is very likely that the tracked fluorescent particle was

much larger than expected for a single quantum dot (which is approximately 20-30 nm

in diameter).

4.5 Summary

In this chapter we have demonstrated both the tracking algorithm described in Chap-

ter 2 and the inference method described in Chapter 3 in an experimental setting.
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Specifically, we implemented the tracking algorithm in a real-time controller and used

it to track a quantum dot with a confocal microscope. Since the tracking algorithm

does not perform online localization, an offline inference method may be used to esti-

mate the position of the particle. In this chapter, we employed the SMC-EM algorithm

and determined that the particle appeared to be confined within the hydrogel.
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Figure 4·5: The inferred three-dimensional position of a quantum
dot, in blue, diffusing in a hydrogel relative to the position of the focal
volume, in black, which followed the particle in real-time using the ex-
tremum seeking method described in this work. The particle position
was inferred by employing the SMC-EM algorithm described in Chap-
ter 3. In the bottom graph, the measured intensity, in black, is shown
in relation to the theoretical intensity, in blue, which was calculated by
evaluating a Gaussian model of the point spread function (PSF) as a
function of the inferred particle position and the measured focal volume
position.
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Chapter 5

Summary and Future Directions

5.1 Summary

This thesis presented two primary contributions. First, an active tracking method

was developed in Chapter 2 which can be used to follow fluorescent particles in three

dimensions in a confocal microscope. Second, an inference method was described in

Chapter 3 which can be used for both localization and parameter estimation for a

wide variety of imaging modalities. Both methods were demonstrated in Chapter 4

where a quantum dot was tracked in an agar hydrogel.

The presented tracking algorithm is novel for several reasons. First, it is an active

tracking method which requires no online localization and is computationally simple;

thus, the method may be implemented in systems with severe real-time requirements

with fast (i.e., sub-millisecond) update rates). In addition, the method produces

smooth trajectories and its performance may be adjusted in a straightforward manner

using four distinct parameters. Moreover, the algorithm does not require any specific

knowledge of the microscope’s point spread function nor does it require any a priori

knowledge of how the particle moves; it only makes the assumption that the point

spread function has an isolated maximum that is coincident with the fluorescent

particle. Lastly, the algorithm is scalable, can be implemented on a large variety of

confocal microscopes, and does not require any specialized hardware.

In Chapter 2, we proved specific properties of the proposed tracking algorithm.

Specifically, we considered two separate scenarios. In the first scenario, we considered
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the case where the particle is stationary. We then showed the existence of an equi-

librium trajectory that is sinusoidal and centered about the maximum of the point

spread function. We then proved the stability of the equilibrium and then numerically

characterized it using Floquet multipliers. The second scenario considered the case

where the particle was moving according to a Brownian motion and the point spread

function possessed bounded support. We then derived a metric for the expected

tracking time and numerically characterized it via simulation. With these results, we

then provided insight on parameter selection.

The proposed inference method, which was based on the work (Schön et al., 2011),

solves many problems that currently exist within the common paradigm of particle

tracking inference. The common paradigm, which is serial in nature, is limited by the

fact that its localization step only produces point-estimates of the particle’s position

and does so without taking into account the entire set of measurements. In addition,

many optimal methods for parameter estimation are limited to simplistic motion

and noise models. Although regression to the mean squared displacement may offer

the flexibility of estimating parameters for more complex motion models, a general

statistical analysis for any motion but diffusion has not been considered. The method

described in Chapter 3, however, produces a posterior probability density of the

particle’s location given the entire measurement history. In addition, it produces

optimal estimates of model parameters that may correspond to a large variety of

motion and observation models that are applicable to biological microscopy. For

example, we demonstrated the method via simulation in the context of tracking free,

confined, and tethered diffusions.

To show the effectiveness of both tracking and inference methods, in Chapter 4 we

tracked a quantum dot in an agar hydrogel and used the proposed inference method

to estimate its position. We observed that the particle was confined to an ellipsoidal
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region within the gel.

5.2 Future Directions

Both of the proposed tracking and inference methods show great promise in their

applicability to single particle tracking in fluorescence microscopy. However, there

are several uncertainties and open questions which still need to be addressed.

5.2.1 Discrete-Time Analysis of Stability

In Chapter 2, a continuous-time argument was given for the stability of the tracking

algorithm. In the context of particle tracking, however, the intensity measurement

is obtained at discrete time instances. Although an argument can be made that the

continuous-time argument well-approximates that for a discrete-time system that is

sampled fast-enough, this argument may not be valid in this case. To see this, recall

that the intensity measurement is formed by accumulating photons over a periodic

window; thus, as the period decreases, fewer photons are acquired and the signal to

noise ratio decreases. Consequently, increasing the sample rate not only may inadver-

tently reduce the effectiveness of the tracking, but it could also reduce the precision

of localization. Thus, a discrete-time analysis should be performed to determine how

the sampling rate affects the performance of both procedures.

5.2.2 Accounting for Motion Blur

One frequently encounters low frame rates in the widefield imaging paradigm. This

is due to several factors, including the efficiency of the fluorophores relative to the

efficiency of the detector (which governs the signal to noise ratio, and thus the lo-

calization precision), as well as hardware limitations of the detector itself. Acquiring

images of moving features, however, may produce an imaging artifact known as motion

blur which can irreversibly reduce the precision of localization. Within the common
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inference paradigm, methods producing optimal estimates for diffusion coefficients

can directly compensate for this phenomenon. Unfortunately, in its current form, the

SMC-EM algorithm cannot compensate for motion blur because it produces a tempo-

ral correlation between subsequent measurements and thus violates the assumption

that the motion is Markov. Discrete-sampling of integrated diffusions was consid-

ered in (Gloter, 2000) and it was shown that it could be approximated by a Gaussian

ARMA(1,1) process; thus, if the SMC-EM algorithm could be extended to this simple

case, then it could at least approximately compensate for it. Parameter estimation for

discrete-sampled integrated diffusions was also considered in (Ditlevsen and Sørensen,

2004), but the approach was not based on Sequential Monte Carlo methods and, de-

spite producing maximum likelihood estimates, it would fail to produce a posterior

density of the particle’s location.

5.2.3 Non-Markovian Dynamics

When observed particle motion deviates from a standard diffusion, it is often termed

by experimentalists to be anomalous. The concept of anomalous diffusion, which has

given rise to the abstract terms subdiffusion and superdiffusion, describes a random

process that fluctuates according to σ2 ∝ Dtα rather than σ2 ∝ Dt. The α param-

eter determines whether it is a subdiffusion (α < 1) or a superdiffusion (α > 1) and

can be easily estimated via regression to the mean squared displacement. The de-

sire to understand the physical meaning behind anomalous diffusion has introduced

several new models to the field of biology; these models include fractional Brownian

motion as well as continuous-time random walks. Since these processes are inher-

ently non-Markov, they cannot be incorporated into the SMC-EM algorithm. Thus,

the utility of the SMC-EM algorithm could be significantly extended by allowing for

non-Markovian dynamics.
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Appendix A

Summary of Sequential Monte Carlo

Methods

Here we describe the two Sequential Monte Carlo (SMC) methods described in Chap-

ter 3 which constitute the expectation step of the SMC-EM algorithm. Specifically,

two algorithms, namely the Sampling Importance Resampling (SIR) algorithm and

the Forward-Filtering Backward-Smoothing (FFBS) algorithm, are described.

A.1 Sampling Importance Resampling Algorithm

The Sampling Importance Resampling (SIR) algorithm calculates the filtered pos-

terior densities by performing three distinct operations - sampling, weighting, and

resampling - at each time step. The sampling step is dependent on the discrete time

index k. Starting at k = 1, a total of M random samples are generated from the

initial condition model (3.1) such that

x̃i1|1,e ∼ pInit
θ̂e

(xp,1). (A.1)

Here, x̃ik|k,e ∈ Rnx denotes the ith randomly generated estimate of the state (for

i = 1, . . . ,M) at EM iteration e at time step k and given measurements I1:P
1:k ; the

“p” subscript is implied and has been omitted to simplify notation. Additionally, the

tilde denotes that the sample has not yet been resampled, a process which is discussed

below. Instead, if k > 1 then the M random samples are generated according to the
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motion model (3.2) such that

x̃ik|k,e ∼ pMot
θ̂e

(xp,k|x
i
k−1|k−1,e), (A.2)

for i = 1, . . . ,M ; note that the samples are randomly generated with respect to the

resampled randomly generated samples from the previous timestep.

The weighting step assesses the likelihood of the estimates generated in the sam-

pling step relative to the measurements. For each individual timestep k = 1, . . . , N ,

each random sample i is weighted according to the observation model (3.3). In other

words,

w̃ik|k,e ∝ pObs
θ̂e

(I1:P
k |x̃ik|k,e), (A.3)

for i = 1, . . . ,M . The weights are then scaled so that their sum over i is unity so as

to create a discrete probability measure over the randomly generated estimates.

The resampling step then generates a new set of M samples according to the

measure defined in the weighting step. Although there are many popular methods

by which one may resample a finite set (Douc and Cappé, 2005), we employ the

multinomial resampling method for its simplicity. Here, M new estimates j were

generated such that

P(xjk|k,e = x̃ik|k,e) = w̃ik|k,e, (A.4)

with corresponding weights wjk|k,e set to 1/M .

To summarize, the SIR algorithm performs three operations for each time step k

before proceeding to the next time step: first, M samples are randomly generated

via (A.1) (if k = 1) or (A.2) (if k > 1); secondly, the samples are weighted by the

observation model according to (A.3); finally, M new samples are generated according

to (A.4). Thus, the output of the SIR algorithm is the approximate posterior density



107

pθ̂e(xp,k|I
1:P
1:k ) for k = 1, . . . , N .

A.2 Forward-Filtering Backward-Smoothing Algorithm

The FFBS algorithm is a deterministic procedure (unlike SIR, which is stochastic)

which calculates the posterior densities pθ̂e(xp,k|I
1:P
1:N) for k = 1, . . . , N . To do so, it

operates backward in time on the estimates produced by SIR and produces a new

series of “smoothed” weights; the algorithm does not produce a new series of locations

and takes xik|k,e = xik|N,e. Note that at k = N , the smoothed weights are equivalent

to those produced by SIR. Proceeding backward in time, the smoothed weights are

calculated according to

wik|N,e = wik|k,e

M∑
m=1

wmk+1|N,e

pMot
θ̂e

(
xmk+1|k+1,e|xik|k,e

)
vmk

, (A.5a)

vmk ,
M∑
j=1

wjk|k,ep
Mot
θ̂e

(
xmk+1|k+1,e|x

j
k|k,e

)
, (A.5b)

for k = (N−1), . . . , 1. We also require an approximation of the pairwise joint density

(3.9); these were calculated in (Schön et al., 2011) to be

wijk|N,e =
wik|k,ew

j
k+1|N,ep

Mot
θ̂e

(
xjk+1|k+1,e|xik|k,e

)
∑M

l=1w
l
k|k,ep

Mot
θ̂e

(
xjk+1|k+1,e|xlk|k,e

) . (A.6)
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