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ABSTRACT 

Executive function describes high-level cognitive-abilities including planning, 

decision-making, set switching and response inhibition.  Impairments of the executive 

functions in disease states may be subtle but can greatly reduce the quality of life and 

independence.  The overarching theme of this project was to investigate the network of 

brain regions that are needed to support executive function.  This was undertaken using a 

two-fold approach: one, to apply network analysis to resting state functional Magnetic 

Resonance Imaging (rs-fMRI) and Diffusion Tensor Imaging (DTI) data in order to 

describe how differences in morphometry and connectivity correlate to executive 

function differences of individuals with Mild Cognitive Impairment (MCI), and two, to 

describe the brain networks involved in one form of executive function, decision-making 

under uncertain conditions, in young, healthy individuals.  Impaired decision-making can 

dramatically impact day-to-day functioning and understanding the underlying network of 

regions that support this task can provide a target for future intervention studies.  
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Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) were used in 

the studies of MCI.  Individuals were grouped by their executive abilities.   A regions-of-

interest approach was used to parcel and label various brain regions and a network of 

connections was constructed out of these regions.  Differences between the networks 

were then compared between the MCI subjects with good and poor executive functions.  

Those with high executive abilities showed decreased functional network connectivity 

and increased structural network connectivity.  

The second arm of these studies was based an original decision-making paradigm 

that was used to compare of networks involved in decision-making at times of 

uncertainty in healthy young individuals using both electroencephalography (EEG) and 

task-based functional magnetic resonance imaging (fMRI).  Overall we found greater 

network connectivity in the uncertain condition of the task than in the certain condition. 

This suggests that with increased uncertainty comes increased organized connectivity. 

Taken together, the results of this study re-iterate the notion that cognition depends upon 

the efficient communication between a network of brain regions rather than on isolated 

regions.  They also highlight the importance of having a well-defined network of nodes 

and connections for optimal executive functioning.   
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CHAPTER ONE: INTRODUCTION TO HIGH VERSUS LOW EXECUTIVE 

ABILITIES IN MILD COGNITIVE IMPAIRMENT 

 

This project is an examination of the executive abilities of individuals with mild 

cognitive impairment (MCI) using a network analysis involving resting state functional 

magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI).  While MCI 

is primarily thought of as a disorder of memory, the coincident impact this Alzheimer’s 

disease (AD) dementia precursor has on executive abilities cannot be overlooked. 

Executive abilities are required for normal functioning, and include decision-making, 

planning, task-switching and response inhibition.  Using data from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI), we grouped individuals diagnosed with mild 

cognitive impairment based on their executive abilities. We compared functional 

connectivity using rs-fMRI and white matter connectivity using DTI.  Network measures 

were performed to quantify the connectivity of the two groups.   

 A diagnosis of MCI is made when an individual “has mild but measurable 

changes that are noticeable to the person affected and to family members and friends, but 

that do not affect the individual’s ability to carry out everyday activities.” (Alzheimer’s 

Association 2013)   Half of all individuals who have been diagnosed with MCI progress 

to AD dementia within 4 years. While individuals may still be able to carry out day-to-

day activities, that does not mean that their functioning is unaffected – merely that they 

are able to compensate.  Diminished executive abilities in conjunction with memory 

impairment, in particular, may predict a conversion to AD dementia (Gibbons 2012).  

These executive ability impairments may be subtle enough to escape an MCI-mixed type 
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diagnosis, but are detectable and may signify greater underlying pathology. Zheng et al 

(2014) related grey matter atrophy in the right inferior frontal gyrus in individuals with 

MCI to diminished executive abilities.  Ye et al (2013) found bilateral dorsolateral 

prefrontal, anterior and medial temporal, and temporo-parietal association cortices, and 

the precuneus had diminished cortical thickness as MCI progressed.  AD dementia is 

correlated with widespread accumulation of tau tangles in the neurons.  These changes 

begin in the brainstem, progress into the entorhinal region and the hippocampus, and then 

move into the temporal neocortex, insula, subgenual and anterogenual frontal regions, 

and anterior cingulate areas.  Finally, the entire cortex is involved (Braak & Tredici 2014, 

p11).  Although widespread cortical involvement may be found in the terminal stage, 

because of the many brain regions that are dependent on and connected to those with 

earlier involvement, the network involving cortical regions may be impaired earlier. 

 The innovations in MRI over the past 20 years have enabled non-invasive, precise 

measurements of brain structure and function. The blood oxygen level dependent 

(BOLD) signal yielded by fMRI depends on the magnetic properties of the hemoglobin 

molecule.  Increases in blood flow to an active brain region will cause a paradoxic drop 

in deoxygenated hemoglobin, thus forming the basis of the signal (Logothetis 2012).  Rs-

fMRI describes how the brain functions as a network while an individual is not attending 

to a specific task.  Common activation patterns in healthy participants have been 

described and differences in these patterns have been measured in disease states or in 

correlation with other factors (Biswal 2012).  A voxel is a unit established by the 

limitations of the technology used and not a natural anatomical unit.  Many studies have 
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used a seed-based network measure, in which all correlating voxels to a voxel seed of 

interest are discovered. A regions-of-interest (ROI) based approach, in which the average 

of functional activity for all voxels in a given brain region, gives a more accurate measure 

of connectivity.   This approach allows brain regions that ostensibly work as a unit to be 

measured and correlated against other brain regions.  Also, it limits the network size to a 

more manageable unit and restricts the number of comparisons.  ROI-based analysis 

provides structural justification to the results.   DTI allows for white matter tracts to be 

examined based on the diffusion properties of fluid in neuronal axons.  DTI 

measurements yield magnitude of diffusion, degree of anisotropy, and anisotropy 

orientation.  From these measurements, calculations of fractional anisotropy (FA), radial 

diffusivity (RD), and tract volume can describe the structural integrity of the white matter 

tracts (Alexander et al 2007).  FA is the scaled (0-1) value of anisotropy in a given tract.  

RD is inversely related to fractional anisotropy and increases as diffusion increases about 

the axonal radius.  From the diffusion measurements, estimations of the tract boundaries 

and volume can be described. The structural network can then be defined as the 

connections found between the ROIs. 

 Network analysis is a simple way of describing the complex and large datasets 

that result from imaging experiments (Rubinov and Sporns 2010) and allows the brain to 

be treated as a whole. ROIs can be described in context of their interaction with other 

ROIs. Using DTI, we create edges based on the number of tracts connecting two ROIs.  

We used a threshold of 5 tracts for binary measures to ignore false positives.  In the rs-

fMRI experiment, we calculated a Pearson correlation coefficient measuring similarity in 
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BOLD signal levels between two ROIs. We used binary measures, which require a 

threshold, and weighted measures, which sum the values of the edges.  We then 

calculated network size, which is the sum of the count of the edges above a threshold.  

Node degree is the number of suprathreshold edges connected to a node, and node 

strength refers to the sum of all weighted edges attached to a given node.  These 

measures identify regions with high connectivity to other regions.  We calculated 

clustering coefficient and local efficiency, two related measures that describe how 

efficient or redundant the system is.  The clustering coefficient refers to the tendency of 

triangles to form around a node, which implies redundancy, and local efficiency is a 

measure of how efficient the network would be with the node missing.  Global efficiency 

is an average of local efficiency.  Assortativity is a measure the tendency of a node to 

connect to a node of similar degree.  Therefore, a high assortativity occurs in sparsely 

connected nodes connected to similarly sparse nodes, and densely connected nodes 

connected in dense regions.  These relatively simple measures can describe how the 

network behaves as a whole and the node-based measures describe how each region 

contributes to the network.   

 The purpose of this study is to describe the underlying network differences in 

individuals with high and low executive abilities.  Participants are grouped by their 

executive abilities and both structural and functional networks are examined.  By using 

similar participant criteria and similar network measures to compare the groups, we can 

describe brain structure and function and how they are interrelated.  We believe that these 

measures can provide insight into diminished executive abilities.  Because of the 
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systematic progression of MCI to Alzheimer’s disease dementia, some of the more subtle 

anatomical changes that occur early in disease progression may be discovered through 

network analysis.  The differences in executive abilities may coincide with how the 

disease progression affects individuals and how these changes manifest anatomically.  

 One limitation of this study is lack of control over participant data collection.  

Because the data were collected at various sites as part of ADNI, we did not examine the 

participants directly and the number of different researchers involved may have 

introduced some variability in the data collection procedure.  In addition, more 

information about the cognitive abilities and the educational history of the subjects would 

have been helpful.  Another limitation is small sample size due to the small number of 

individuals who had a diagnosis of MCI and had either a resting state scan or a diffusion 

scan in the ADNI dataset.  It would have been helpful also to add more executive tasks to 

the neuropsychological assessment.  The current tasks were adequate but relied on 

subtasks of a largely memory-based battery that had an executive component. Future 

studies would include more specifically executive tasks, with a larger study population 

size, and a more detailed educational and intelligence history collected.  
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CHAPTER 2: DIFFERENCES IN EXECUTIVE ABILITIES ARE ACCOUNTED 

FOR BY ALTERATIONS IN FUNCTIONAL NETWORKS 

Background 

MCI is a disorder characterized by diminished cognitive function that has been 

predominantly associated with memory loss.  The domain of executive function is often 

impacted, even in those diagnosed with the so-called amnestic variety of MCI (Aretouli 

& Brandt, 2010).  Diminished executive function can be particularly detrimental as it 

often disrupts appropriate decision-making, judgment, and other essential aspects of 

independent daily living. These executive deficits have been reported in MCI patients 

across all taxonomies (Aretouli & Brandt, 2010).  Decline in executive function has even 

been shown to predict mortality (Johnson, Lui & Yaffe 2007) therefore it is important to 

understand more about its neurobiological basis.  The Executive Function (EF) score 

developed by Gibbon’s et al (2012) is a composite score of executive subtasks of the 

neuropsychological battery of tests given to ADNI participants.  It includes such tasks as 

the Trails A and B, Digit Span Backwards, WAIS-R Digit Symbol, Clock Drawing and 

Category Fluency, and has been validated as predictive of progression to AD.   

Prior work has shown that the amnestic form of MCI is related to volumetric loss 

as measured by MRI in the medial temporal region including the parahippocampal cortex 

and hippocampal formation (Gold, Johnson, Powell & Smith 2012; Ferreira, Diniz, 

Forlena, Busatto & Zanetti, 2011).  However, the location and type of breakdown in 

neuronal integrity and circuitry that induces executive system failure in subjects with 

amnestic MCI is not yet well understood.  rs-fMRI has emerged over the past two 
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decades as a non-invasive means of measuring brain activity and functional connectivity 

(Biswal 2012).  This technique allows examination of the synchronicity of brain regions 

while they are not actively engaged in a task, and has been used to evaluate functional 

interactions between regions in both normal and diseased states (Biswal 2012).  We used 

an ROI-based analysis to model the brain as a network of interconnected regions and to 

evaluate the regions that are functionally connected.  Often, voxel-based analysis is used 

in network analysis, but this has limitations as it is more susceptible to noise and does not 

take the underlying anatomy in consideration.  We applied graph theory measures to 

constructed networks to evaluate and compare the regions of interest in individuals with 

MCI and low executive function (MCI-lowEF) as compared to those with MCI and high 

executive function (MCI-highEF).  Prior work has shown that individuals with MCI have 

increased resting state activation over normal individuals, which is often attributed to 

vascular compensation as a component of disease progression (Esposito et al 2012). We 

extend these findings to evaluate the functional connectivity as it pertains to executive 

function performance in MCI in order to demonstrate that the differences in executive 

ability are accounted for by functional network differences.   

Methods 

Participants 

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). For up-to-date information, see www.adni-info.org. 

The ADNI data archive was accessed on January 15, 2014 and the entire dataset was 

included in our search.  The primary selection criterion were 1) diagnosis of MCI, 



 

 

8

(including early or late MCI) and 2) had an rs-fMRI scan. The rs-fMRI scan was added to 

the ADNI protocol for all Philips Medical Systems scanners in the ADNI-GO phase of 

the study.  This search resulted in 94 eligible subjects. Subjects were organized by their 

Executive Function (EF) score recorded in the ADNI database (Gibbons et al 2012).  The 

mean EF score of the 94 participants was 0.34 with a standard deviation of 0.83.  

Subjects that were greater or less than one standard deviation from this population mean 

score were selected for the study groups, resulting in a group of fifteen subjects for the 

MCI-lowEF group and eighteen subjects for the MCI-highEF group.  

Procedure 

 Structural scans were acquired on 3T Phillip’s Medical Systems scanners using the 

3D MPRAGE protocol developed by ADNI (TR/TE  3000/4 ms; flip angle 8 –9°; section 

thickness 1.2 mm; 170 sagittal slices).  Functional data were acquired while subjects 

focused on a dot in the middle of the screen, per the ADNI protocol.  The rs-fMRI 

sequence was composed of functional imaging volumes collected in the same slice 

position as the preceding T1-weighted data. A seven-minute functional run was acquired 

using a T2*-sensitive gradient-recalled, single-shot echo-planar imaging pulse sequence 

(TR/TE 3000/30 ms, FoV = 212 mm, flip angle 80°, matrix size 64×64, inplane 

resolution 3.3 mm × 3.3 mm). Each volume consisted of 48 slices parallel to the 

bicommissural plane (slice thickness 3.3 mm, no gap), and each functional run was 

comprised of 140 volumes.  

Freesurfer software (surfer.nmr.mgh.harvard.edu version 5.1) was used to parcel 

and label the structural MPRAGE scans of each of the subjects (Desikan et al 2006). The 
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software identified grey matter regions in the cortex and sub-cortex.  The results were 

checked for accuracy manually. Sixty-four grey matter regions of interest (ROIs) from 

the cortex and sub-cortex were chosen from these labels, excluding those highly 

susceptible to field distortions. All of the rs-fMRI scans were visually inspected to ensure 

that they were free from any artifacts (i.e. pencil beam artifact).  No scans were excluded 

due to artifact. The fMRI data were preprocessed with motion correction using 

MCFLIRT, spatial smoothing with a kernel size of 5 mm, and highpass temporal filtering 

using a local fit of a straight line. FMRI Expert Analysis Tool (FEAT; Oxford, UK; v6.0 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) was used for this preprocessing (Smith et al 

2004).  Each subject was registered to the structural scan generated by Freesurfer and the 

resulting rs-fMRI sequence was labeled using the generated Freesurfer ROIs.  A mean 

time series for each ROI was calculated by averaging all fMRI voxel values within each 

ROI over time, resulting in 140 time points calculated for each 7 minute resting state 

session.   

A network consisting of nodes and edges was constructed for each subject.  Each 

node corresponds to the averaged time series of the voxels in each ROI.  Edges were 

calculated using a correlation coefficient between the time series of two nodes. A 

threshold of 0.4 was applied to determine the presence of an edge .  Two ROIs are said to 

be functionally connected if they have a high degree of similarity between averaged 

BOLD signal activities over time. 

The following network measures were calculated: network size, global efficiency, 

assortativity, cluster coefficient and node degree.  Node degree and cluster coefficient 
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were calculated for each node, while all other measures were calculated for the entire 

network.  Network size was calculated by counting the number of edges above the 

threshold per network, and node degree was calculated by counting the number of 

suprathreshold edges each node was connected to.  Assortativity, cluster coefficient and 

global efficiency were calculated using the Brain Connectivity Toolbox. 

A permutation test was performed by calculating a test statistic for each network 

measure.  This was done by taking the mean values for MCI-highEF and subtracting the 

values of the MCI-lowEF for each measure.  Then, ten thousand random permutations 

were generated by pooling the values of these two groups.  The exchangeable values, i.e., 

the value at each edge, were shuffled between subjects to obtain the new datasets.  Then 

the network measures were calculated for each of the random datasets.  Each dataset was 

separated into two groups, one of size 18 to correspond to the MCI-highEF group and one 

of size 15 to correspond to the MCI-lowEF group.  A statistic was then calculated for the 

given measure by averaging the measure for the first group, and subtracting the average 

measure of the second group. The number of values higher and lower than the test 

statistic were calculated and divided by the number of permutations in order to assess 

significance.  Because node degree and cluster coefficient both resulted in 64 

comparisons, one for each ROI, the false discovery rate method was used to control for 

the multiple comparisons problem.    

 

The Network-Based statistic (NBS) software was used to calculate network differences 

between the two groups (Zalesky, Fornito & Bullmore 2010).  This algorithm uses depth-
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first search to discover a significantly different network based on a threshold applied to t-

statistic calculations between groups.  A t-statistic threshold of 2.5 was set to measure 

edge difference between conditions.   

Results 

The ages, MCI diagnosis, gender and MMSE scores of MCI-highEF and MCI-lowEF 

groups are listed in Table 1.   

 EMCI LMCI M F MMSE 

mean 

MMSE 

standard 

deviation 

Age 

mean 

Age 

standard 

deviation 

MCI-

highEF 

7 11 8 10 29.2 

2.6 

67.3 5.6 

  MCI-

lowEF 

7 8 9 6 25.3 

2.9 

73 6.4 

p-value     0.0003  0.01  
Table 1.  Demographics of subjects selected from the MCI population who were classified as high or low 

executive functioning. 

 

All subjects had a Clinical Dementia Rating (CDR) score of 0.5, which is consistent with 

MCI diagnosis.  A non-parametric permutation test was used for calculations of statistical 

differences between the two groups.  The node degree calculation yielded a statistically 

significant difference in fifteen of the nodes (Table 2).   

Brain Region MCI-

highEF 

mean 

MCI-

highEF 

stdev 

 MCI-

lowEF 

mean 

 MCI-

lowEF 

stdev 

p-value 

Left Inferior 

Parietal Cortex 6.11 4.04 8.07 4.73 0.001 

Left Inferior 

Temporal Cortex 4.22 2.41 5.93 3.20 0.002 

Left Paracentral 

Cortex 6.94 4.15 10.80 5.31 <0.0001 

Left Precuneus 7.28 4.27 9.33 4.39 0.001 

Left Superior 

Frontal Cortex 8.67 5.11 11.00 5.22 0.003 
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Left Superior 

Parietal Cortex 6.89 4.24 9.80 6.94 <0.0001 

Right Inferior 

Parietal Cortex 5.67 2.54 8.80 5.44 <0.0001 

Right Inferior 

Temporal Cortex 4.33 3.25 6.20 4.11 0.001 

Right Paracentral 

Cortex 8.72 3.29 11.27 5.69 0.001 

Right Pars 

Orbitalis 8.06 3.92 10.07 2.65 0.003 

Right Postcentral 

Cortex 9.78 4.43 13.33 4.15 <0.0001 

Right Posterior 

Cingulate Cortex 7.06 4.61 10.33 5.98 <0.0001 

Right Precentral 

Cortex 9.33 4.35 11.53 5.63 0.004 

Right Precuneus  6.11 3.83 8.07 5.73 0.001 

Right Superior 

Frontal Cortex 4.22 5.19 5.93 5.82 0.002 
Table 2.  Regions of interest showing significantly different node degree in functional network connectivity 

between MCI-highEF and MCI-lowEF individuals. 

 

Cluster coefficient, or the measure of the tendency to form a small subnetwork around a 

given node, was significantly different in two of the brain regions (Table 3).   

Brain Region MCI-

highEF 

mean 

MCI-

highEF 

standard 

deviation 

  MCI-

lowEF 

mean 

  MCI-

lowEF 

stdev 

p-value  

Left Precentral 

Cortex 
0.50 

0.15 
0.57 

0.15 
0.0013 

Right 

Parahippocampa

l Cortex 

 

0.52 
0.37 

 

0.67 
0.37 

 

0.0019 

Table 3.  Regions of interest showing differences in cluster coefficient comparing functional networks of MCI-

highEF versus MCI-lowEF individuals. 

Assortativity, network size and global efficiency all showed statistically significant 

differences (Table 4).  
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 MCI-

highEF 

mean 

MCI-

highEF 

stdev 

MCI-lowEF 

mean 

MCI-

lowEF 

stdev 

Corrected p-

value 

Assortativity 0.370 
0.37 

0.312 
0.13 

0.0151 

Global 

efficiency 

0.379 

0.38 

0.400 

0.08 

<0.0001 

Network size 227.94 
227.94 

251.73 
79.39 

<0.0001 

Table 4. Global network measures comparing functional networks of MCI-highEF versus MCI-lowEF 

individuals. 

The NBS algorithm resulted in a network of forty-one edges that were shown to 

be strengthened (higher correlation coefficient) in those with high versus low executive 

abilities (Figure 1).  This is a nonspecific cortical network with ROIs spread across the 

frontal, temporal and parietal lobes. 
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Figure 1. Network differences between MCI-highEF and MCI-lowEF as calculated by the NBS algorithm.  

Discussion 

The term MCI defines a group of cognitive states that represents a somewhat 

broad range of functional abilities (Alzheimer’s Association 2013).  While it is true that 

some patients with MCI only exhibit a disorder of memory, many individuals with MCI 

not only evidence impaired memory, but also exhibit poor executive function abilities 

that cannot be simply attributed to memory dysfunction (Pereiro, Juncos-Rabadan & 

Facal 2014; Zheng et al 2014).  We found that individuals in the MCI-lowEF group 

showed more nonspecific connectivity when using a threshold of 0.4 to establish network 
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size – with a higher network size, and greater global efficiency than the MCI-highEF. 

The MCI-lowEF group showed a number of nodes that had greater node degree and a 

higher clustering coefficient.  The regions of greater node degree (thus higher 

connectivity) were largely centered in the bilateral frontal, temporal and parietal cortex.  

Clustering in some regions was also higher in individuals with low executive functioning.  

Taken together, these results indicate that individuals in the MCI-lowEF have 

nonspecific, diffuse connections between regions of the brain responsible for executive 

functions.  Those in the MCI-highEF group showed greater assortativity, or a tendency of 

nodes with similar degree measure to connect.  The NBS algorithm results showed a 

statistically significant network of regions in the MCI-highEF that was not apparent in 

the MCI-lowEF group.  The NBS algorithm measures differences in edge correlation 

strength and discovers a network above a t-statistic threshold, which was increased in the 

network of edges represented in Figure 1.  All of these data suggest that although 

individuals with low executive abilities have more nonspecific connections between brain 

regions, these connections lead to inefficient interactions that are detrimental to 

functioning.  Individuals with high executive abilities have a more specific, and thus 

more effective, network that may produce better performance on executive tasks in day-

to-day life. This function may represent a pre-existing state for these individuals or it may 

be a successful compensatory mechanism achieved in those living with MCI, which 

enables the preservation of executive abilities.   

Many of the current findings to date have measured differences in specific regions 

of the brain, rather than using a network-based approach.  For example, structural 
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alterations in the brains of patients with amnestic MCI include decreased hippocampal 

volume and thinning of the medial temporal lobe cortices (Franko & Joly 2013).  In 

addition, Zheng et al (2014) correlated measures of executive function to measures of 

cortical thickness in the right inferior frontal gyrus of amnestic MCI patients with 

impaired executive function. Decreased functional activity of the anterior cingulate, 

striatum, and thalamus has also been found to correlate with scores on a test of executive 

function the Trailmaking-B test (Terada et al 2013).  Diffusion Tensor Imaging (DTI) has 

demonstrated changes in mean diffusivity in the anterior cingulate and in the fornix of 

patients with MCI over time, which suggests altered structural connectivity in patients 

with MCI (Nowrangi et al 2013). The network approach that we used provides a means 

for assessing the combined impact of the underlying etiology on the brain and the 

interactions between relevant structures involved in cognition.  We found differences 

between the MCI-highEF and MCI-lowEF in the network interactions of the temporal, 

frontal, parietal, and anterior cingulate cortices.  Because of the known predominant 

impact of Alzheimer’s disease on the temporal lobe this result is unsurprising (Ferreira et 

al. 2011).  Our findings of network differences between groups with differing executive 

abilities is consistent with the known involvement of frontal, parietal and anterior 

cingulate regions in executive function.  We surmise that, in particular, greater numbers 

of weaker connections between these regions in those individuals with MCI-lowEF is 

responsible for their diminished performance on tests of executive function.   

Our findings suggest that the network connections responsible for efficient brain 

activity can be compromised early in the progression to Alzheimer's disease dementia 
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and reminds us that the diagnostic categories that are used to represent distinct stages of 

disease actually represent a continuum rather than discrete stages.  One interesting 

possibility is that early on in the disease process there are impaired connections between 

networks either as a direct response to the disease or as a compensatory mechanism.  

Buckner, Andrews-Hanna & Schacter (2008) found high amyloid accumulation in resting 

state hubs of individuals with Alzheimer’s disease, which correlated with the levels of 

functional connectivity across the brain.  It follows, then, that individuals with MCI due 

to Alzheimer’s disease would begin to show similar pathology in these hubs. Increased 

functional connectivity in individuals with MCI compared to controls has been shown in 

the default mode network (Bucker, Andrews-Hanna & Schacter 2008), suggesting the use 

of a potential compensatory strategy.  The default mode network consists of medial 

temporal lobe, medial prefrontal cortex, posterior cingulate cortex and the precuneus—

therefore, this is consistent with our findings in the temporal, frontal and cingulate 

cortices. Esposito et al (2013) found increased connectivity in resting state networks of 

individuals with MCI compared to normal aged adults.  They have hypothesized that this 

increased connectivity is due to compensation through recruiting other brain regions 

more heavily, a concept that is consistent with the findings of task based fMRI.  In the 

present study, when we compared the network connectivity in two subgroups of MCI 

subjects we found that those with low executive abilities had more isolated functional 

connections, greater node degree of numerous nodes, a greater clustering coefficient in 

the brain. However, the greater assortativity and the network resulting from the NBS 

algorithm in those individuals with MCI-highEF suggest that a more sparse and tightly 
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connected network allows for more efficient connections and greater executive function 

performance. As a consequence of functional isolation and noisy interactions, individuals 

with low executive capacities are less able to compensate as effectively and minimize 

disease effects in the executive function realm.   

Further studies will be needed to better determine the role of weakened network 

connections on the progression from MCI to Alzheimer’s disease dementia and the ability 

to cope with disease progression.  Analysis of functional connectivity in the brain has the 

potential for increasing our understanding of the impact of disease on the brain as a 

whole and may provide another means for assessing the efficacy of interventions.  

Finally, while functional network connectivity gives important information about 

interactions that take place in the brain, we would benefit from examining the structural 

network connections in these subjects in order to know if reductions in function are 

related to structural alterations in the brain.  
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CHAPTER 3: STRUCTURAL DIFFERENCES IN MCI PATIENTS WITH 

DISPARATE EXECUTIVE ABILITIES 

Introduction 

MCI is a disorder that is severe enough to cause cognitive deficits but not to disrupt day-

to-day function.  The most common complaint of those with MCI is memory loss though 

it is not uncommon for this impairment to be accompanied by executive deficits, which 

can have a deleterious impact on day-to-day activities (Aretouli and Brandt 2010). 

Gibbons et al (2012) developed an Executive Function (EF) score using a number of 

neuropsychological tasks in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

dataset, and have reported that this EF score is the major predictor of conversion from 

MCI to AD dementia.   Therefore, MCI patients who have better executive abilities may 

be more resilient to disease progression leading to a conversion to dementia.  From a 

cognitive neuroscience perspective, executive function has been described as the higher 

order ability that is needed in any task that involves planning, organization, memory, time 

management and flexible thinking.  As such, it requires integrated coordination between a 

number of brain regions across white matter connections.  In this study, we investigated 

whether alteration in the network of white matter connections in the brain leads to 

differences in executive abilities found in individuals with MCI.  By grouping subjects 

with MCI who have a high EF score (MCI-highEF) and those who have a low EF score 

(MCI-lowEF), we used a network-based and tract-based approach to investigate whether 

structural differences exist between these groups.  To date, major findings of differences 
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of individuals with AD have included widespread decrease in fractional anisotropy, most 

commonly in the uncinate fasciculus, fornix, and superior longitudinal fasciculus  (for 

review, Gold et al., 2012).  In addition, individuals with MCI have also shown changes in 

DTI measures, including FA in the frontal and parietal regions (Nowrangi et al 2015).  

Network changes in AD include widespread network disruption (Daiunu et al 2013), and 

changes in topological organization in a network analysis (Lo et al 2012).  Our study not 

only aims to describe MCI-related changes in white matter morphology in association 

with executive abilities, but we include both a graph-theory based network analysis in 

addition to tract-based analysis.  Because executive skills require a number of brain 

regions working in concert, evaluating the structural network connectivity is appropriate 

and can describe overall system functioning more completely than evaluating regions 

individually.  

We used an ROI-based approach to create networks using grey matter ROIs to represent 

nodes and the number of tracts between ROIs to represent edges.  We performed a series 

of network measures on these networks, and to assess the group differences between the 

networks.  We calculated global network measures, such as size and density, in addition 

to local network measures, such as nodal degree and clustering coefficient. We also 

performed a tract-based analysis using TRACULA to determine if the tract-based 

differences exist (Yendiki et al 2011).  We used permutation testing to assess the 

significance level between the two groups, and used the false discovery rate (FDR) for 

measures requiring multiple comparisons.  This study is unique because although a few 

studies have linked executive abilities and MCI using DTI, none that we know of have 
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used these network measures to describe differences in abilities.  These network 

measures can describe how brain regions function together, and how differences in these 

measures can illustrate the underlying anatomic differences that may cause diminished 

functioning.  

Methods 

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu). For up-to-date information, see www.adni-info.org.  The data archive 

was accessed on July 25, 2014 and the entire dataset was included in our search.  The 

primary selection criteria were 1) diagnosis of MCI (including early or late MCI) and 2) 

had a DTI scan.  The DTI scan was added to the ADNI protocol for GE scanners in the 

ADNI-GO phase of the study.  This search resulted in 128 eligible subjects. The mean EF 

score of this group was 0.15, with a standard deviation of .76.  MCI-highEF subjects 

were classified as being one standard deviation above the group mean EF score, resulting 

in 20 subjects with a score above 0.91.  MCI-lowEF subjects were classified as being one 

standard deviation below the group mean, resulting in 18 subjects with a score below -

0.61.  See Table 1 for demographic information. This study was approved by institutional 

review boards of all participating institutions and written informed consent was obtained 

by from all participants or authorized representatives. 

Male Female EMCI LMCI Age (mean) MMSE * (mean) 

High EF 8 6 16 4 70.9 28.4 

Low EF 11 6 9 10 77.45 25.6 

p-value 0.007 6.3E-05 

*MMSE: 1 value missing from high EF group, 2 values missing from Low EF 

group. 
Table 5. Population statistics for DTI EF analysis 
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MRI acquisition 

Standard anatomical T1- weighted spoiled gradient echo sequences were collected (256 · 

256 matrix; voxel size = 1.2 · 1.0 · 1.0 mm3; inversion time [TI] = 400 msec, repetition 

time [TR] = 6.984 msec; echo time [TE] = 2.848 msec; flip angle = 11°) in the same 

session as the diffusion-weighted images (DWI; 256 × 256 matrix; voxel size: 2.7 × 2.7 × 

2.7 mm3; TR = 9000 ms; scan time = 9 min; more imaging details can be found at 

http://adni.loni.ucla.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf) were 

collected. 46 separate images were acquired for each DTI scan: 5 T2-weighted images 

with no diffusion sensitization (b0 images) and 41 diffusion-weighted images (b = 1000 

s/mm2).  

Analysis 

Freesurfer software (surfer.nmr.mgh.harvard.edu version 5.1) was used to parcel and 

label the structural MPRAGE scans of each of the subjects (Desikan et al 2006). The 

software identified grey matter regions in the cortex and sub-cortex.  The results were 

checked for accuracy manually.  Ninety-three grey and white matter regions of interest 

(ROIs) from the cortex, sub-cortex, brainstem and cerebellum were chosen from these 

labels.  The DTI data were preprocessed using Freesurfer’s dt_recon, which performed 

eddy/motion correction on the DTI files. Freesurfer’s bbregister registered the structural 

data files to the DTI files.   Then, diffusion values for each ROI were then extracted from 

the registered and corrected data.  Fiber tracking files were generated from the DTI data 

using DSI_Studio and tract data was generated between each ROI using a seed count of 

10,000, an FA threshold of 0.0241, a turning angle of 60, and smoothing parameter of 
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0.3.  Tracts of size 20 mm – 140 mm were included.  A matrix was generated that 

included the number of tracts found between each ROI, and values normalized by 

dividing by seed count (10,000). 

 Network measures including network size, network density, binary clustering 

coefficient, node degree, and node strength were calculated on each network, and the 

MCI-highEF group was compared to the MCI-lowEF group.  Permutation testing as 

described in Chapter 2 was performed in order to assess significance of differences 

between the two groups. Network based measures were assessed for significance using a 

p-value threshold of 0.025, with both greater and less than measures calculated.  Node-

based measures were corrected for multiple comparisons using the false discovery rate.   

  Freesurfer TRACULA was used to perform tract-based analysis on the dt_recon 

processed DTI data.  18 major white matter tracts were reconstructed and calculations of 

volume, fractional anisotropy (FA), axial diffusivity (ADF), mean diffusivity (MD), and 

radial diffusivity (RD) were performed.  The MCI-highEF and MCI-lowEF groups were 

compared using t-testing and permutation testing for each measure.  The false discovery 

rate was used to control for multiple comparisons.   

Results 

A network was constructed by generating number of tracts between ROIs, and then 

normalizing by the number of seeds (10,000).  For binarized network measures, a 

threshold of 0.0005 (5 tracts) between regions was used to eliminate connections that 

were incorrectly generated.  Permutation testing was done by generating 10,000 random 

datasets and performing the same calculations on the dataset as on the actual dataset.  P-
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values were generated by comparing to permuted values and dividing by the number of 

permuted values.  A significance level of 0.025 per tail (high > low, and low > high) was 

applied to each test, with the False Discovery Rate method used to correct for family-

wise errors.   

 

Figure 2. Network measures, as reflected in ROIs of significant difference marked by circles, comparing MCI-

highEF and MCI-lowEF. a) Binary node degree.  b) Node strength. c) Clustering coefficient.  

The average network density of the MCI-highEF group and the average network 

size of the MCI-highEF group were significantly greater than the MCI-lowEF group.   

Measure pval HighEF LowEF 

Density <0.0001 0.1345 0.1313 

Size 0.0002 1194.60 1164.76 
Table 6. Network measures for DTI EF analysis 
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The MCI-highEF group had a higher binary clustering coefficient in 80 out of the 

93 ROIs than the MCI-lowEF group. 

ROI pval HighEF LowEF 

Left Cerebellum White Matter 0.0139 0.0098 0.0078 

Left Thalamus Proper 0.0003 0.0066 0.0043 

Left Caudate 0.0026 0.0074 0.0052 

Left Putamen <0.0001 0.0053 0.0035 

Left Pallidum 0.0001 0.0079 0.0042 

Left Accumbens area <0.0001 0.0082 0.0046 

Right Thalamus Proper <0.0001 0.0070 0.0040 

Right Caudate <0.0001 0.0081 0.0044 

Right Putamen <0.0001 0.0062 0.0041 

Right Pallidum 0.0039 0.0085 0.0059 

Right Amygdala 0.0004 0.0076 0.0055 

Right Accumbens area <0.0001 0.0097 0.0046 

Optic Chiasm 0.0071 0.0224 0.0059 

Corpus Callosum Anterior <0.0001 0.0079 0.0041 

Left Banks of the STS <0.0001 0.0141 0.0061 

Left Caudal Anterior Cingulate 0.0022 0.0057 0.0041 

Left Caudal Middle Frontal 

Cortex 

0.0001 0.0157 0.0049 

Left Cuneus <0.0001 0.0081 0.0046 

Left Entorhinal 0.0003 0.0106 0.0072 

Left Fusiform 0.0129 0.0102 0.0082 

Left Inferior Parietal <0.0001 0.0090 0.0044 

Left Inferior Temporal 0.0002 0.0134 0.0085 

Left Isthmus Cingulate <0.0001 0.0061 0.0035 

Left Lateral Occipital 0.0029 0.0088 0.0065 

Left Lateral Orbitofrontal 0.0006 0.0061 0.0044 

Left Lingual <0.0001 0.0075 0.0049 

Left Medial Orbitofrontal <0.0001 0.0069 0.0039 

Left Middle Temporal <0.0001 0.0096 0.0045 

Left Parahippocampal 0.0044 0.0094 0.0074 

Left Pars Opercularis 0.0005 0.0081 0.0051 

Left Pars Orbitalis 0.0021 0.0105 0.0069 

Left Pars Triangularis 0.0003 0.0107 0.0063 

Left Pericalcarine <0.0001 0.0095 0.0048 

Left Postcentral <0.0001 0.0097 0.0056 
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Left Posterior Cingulate 0.0065 0.0047 0.0038 

Left Precentral <0.0001 0.0075 0.0044 

Left Precuneus <0.0001 0.0057 0.0031 

Left Rostral Anterior Cingulate <0.0001 0.0070 0.0040 

Left Rostral Middle Frontal 0.0006 0.0075 0.0044 

Left Superior Frontal <0.0001 0.0051 0.0033 

Left Superior Parietal <0.0001 0.0086 0.0038 

Left Superior Temporal <0.0001 0.0053 0.0032 

Left Supramarginal 0.003 0.0092 0.0072 

Left Frontal Pole 0.0001 0.0079 0.0050 

Left Temporal Pole <0.0001 0.0070 0.0048 

Left Transverse Temporal <0.0001 0.0097 0.0062 

Left Insula <0.0001 0.0043 0.0033 

Right Banks of the STS 0.0003 0.0140 0.0079 

Right Caudal Anterior 

Cingulate 

<0.0001 0.0067 0.0040 

Right Caudal Middle Frontal <0.0001 0.0130 0.0055 

Right Cuneus <0.0001 0.0078 0.0042 

Right Entorhinal 0.0117 0.0099 0.0077 

Right Fusiform 0.0212 0.0094 0.0076 

Right Inferior Parietal <0.0001 0.0140 0.0053 

Right Inferior Temporal <0.0001 0.0134 0.0077 

Right Isthmus Cingulate 0.0002 0.0055 0.0040 

Right Lateral Occipital <0.0001 0.0117 0.0072 

Right Lateral Orbitofrontal 0.0005 0.0069 0.0051 

Right Lingual 0.0001 0.0072 0.0053 

Right Medial Orbitofrontal <0.0001 0.0070 0.0048 

Right Middle Temporal <0.0001 0.0101 0.0045 

Right Paracentral 0.0094 0.0094 0.0067 

Right Pars Opercularis 0.0004 0.0092 0.0055 

Right Pars Orbitalis <0.0001 0.0113 0.0072 

Right Pars Triangularis <0.0001 0.0111 0.0067 

Right Pericalcarine <0.0001 0.0079 0.0050 

Right Postcentral <0.0001 0.0086 0.0057 

Right Posterior Cingulate <0.0001 0.0058 0.0038 

Right Precentral 0.0005 0.0075 0.0052 

Right Precuneus <0.0001 0.0059 0.0035 

Right Rostral Anterior 

Cingulate 

<0.0001 0.0060 0.0040 
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Right Rostral Middle Frontal <0.0001 0.0075 0.0044 

Right Superior Frontal <0.0001 0.0046 0.0032 

Right Superior Parietal <0.0001 0.0074 0.0042 

Right Superior Temporal <0.0001 0.0064 0.0035 

Right Supramarginal <0.0001 0.0117 0.0066 

Right Frontal Pole <0.0001 0.0084 0.0048 

Right Temporal Pole <0.0001 0.0072 0.0050 

Right Transverse Temporal <0.0001 0.0149 0.0078 

Right Insula <0.0001 0.0047 0.0030 
Table 7. Binary Clustering Coefficient (threshold of 5 tracts) for the DTI EF analysis. 

 For the node degree, 7 ROIs were greater for the MCI-lowEF group, and 21 ROIs 

were greater for the MCI-highEF group (Figure 1a, Table 8). 

ROI pval HighEF LowEF Greater 

Group 

Left Amygdala <0.0001 11.33 8.41 High 

Left Accumbens area <0.0001 10.47 7.06 High 

Right Cerebellum Cortex 0.0021 31.60 28.35 High 

Right Accumbens area 0.0001 10.53 7.65 High 

Optic Chiasm <0.0001 12.07 6.65 High 

Corpus Callosum Posterior <0.0001 8.33 3.00 High 

Corpus Callosum Mid-posterior <0.0001 3.93 0.59 High 

Corpus Callosum Mid-anterior <0.0001 2.87 1.35 High 

Corpus Callosum Anterior 0.0006 13.00 10.18 High 

Left Lateral Occipital 0.0003 19.13 16.35 High 

Left Postcentral 0.0022 9.47 7.82 High 

Left Superior Parietal 0.0001 19.80 16.29 High 

Left Supramarginal 0.0019 8.80 7.53 High 

Right Caudal Middle Frontal 0.0008 4.47 3.35 High 

Right Cuneus 0.0004 12.13 9.24 High 

Right Fusiform 0.0001 19.53 16.18 High 

Right Inferior Parietal 0.001 9.80 8.06 High 

Right Lateral Occipital 0.0024 15.93 13.82 High 

Right Superior Parietal <0.0001 22.00 17.06 High 

Right Supramarginal 0.0015 9.00 7.47 High 

Right Frontal Pole 0.0001 11.93 8.94 High 

Left Putamen 0.0016 25.53 29.24 Low 

Left Pallidum <0.0001 16.87 23.00 Low 
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Right Putamen <0.0001 22.67 27.59 Low 

Right Pallidum 0.0001 16.80 21.41 Low 

Right Entorhinal 0.0005 8.13 10.35 Low 

Right Superior Frontal 0.0016 18.13 21.18 Low 

Right Temporal Pole <0.0001 18.80 21.94 Low 
Table 8. Node degree for DTI EF comparison.  

15 nodes had greater node strength for the high EF group (Figure 1b, Table 9).   

ROI pval HighEF LowEF 

Left Accumbens area <0.0001 0.073 0.031 

Right Accumbens area 0.0027 0.068 0.041 

Corpus Callosum Posterior <0.0001 3.933 0.010 

Corpus Callosum Mid-posterior <0.0001 0.018 0.001 

Corpus Callosum Anterior <0.0001 0.124 0.054 

Left Fusiform <0.0001 0.310 0.228 

Left Lateral Occipital <0.0001 0.380 0.133 

Left Middle Temporal <0.0001 0.201 0.109 

Left Frontal Pole 0.0027 0.065 0.028 

Left Temporal Pole 0.0017 0.391 0.252 

Right Cuneus 0.0007 0.089 0.057 

Right Lateral Occipital 0.0026 0.195 0.116 

Right Middle Temporal <0.0001 0.253 0.169 

Right Pericalcarine 0.0014 0.048 0.032 

Right Superior Parietal 0.0001 0.140 0.092 
Table 9. Node Strength for DTI EF comparison.  

A number of white matter tracts have greater volume (Table 10) and higher FA (Table 

11) average in the high EF group    

Tract Volume - 

High 

Volume - 

Low 

pval_lt 

Corpus Callosum - Forceps Major 1094.8 631.3125 0.0042 

Left Cingulum - Angular (Infracallosal) 

bundle 

451.6 251.0625 0.0077 

Right Cingulum - Angular (Infracallosal) 

bundle 

315.4 182.6 0.0106 

Right Inferior Longitudinal Fasciculus 673.4 463 0.001 

Table 10. Tract comparison of Volume, MCI-highEF > MCI-lowEF 
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Tract FA_Avg-

High 

FA_Avg-

Low 

pval_lt 

Left Inferior Longitudinal Fasciculus 0.48 0.42 0.001 

Left Superior Longitudinal Fasciculus - 

Parietal bundle 

0.41 0.38 0.0008 

Left Superior Longitudinal Fasciculus - 

temporal bundle 

0.44 0.41 0.0008 

Left Uncinate Fasciculus 0.39 0.37 0.021 

Right Inferior Longitudinal Fasciculus 0.46 0.42 0.0074 

Right Superior Longitudinal Fasciculus - 

Parietal bundle 

0.43 0.4 0.0003 

Right Superior Longitudinal Fasciculus - 

Temporal bundle 

0.44 0.41 0.0071 

Table 11. Tract comparison of FA, MCI-highEF > MCI-lowEF 

The low EF group has increased RD measures in a number of the white matter tracts 

(Table 12).   

 RD Avg – 

MCI-highEF 

RD Avg – 

MCI- 

lowEF 

pvals 

Left Inferior Longitudinal Fasciculus 5.8E-4 6.5E-4 0.001 

Left Superior Longitudinal Fasciculus - 

Parietal bundle 

5.8E-4 6.4E-4 0.0013 

Left Superior Longitudinal Fasciculus - 

Temporal bundle 

5.7E-4 6.2E-4 0.0006 

Right Inferior Longitudinal Fasciculus 5.8E-4 6.7E-4 0.0007 

Right Superior Longitudinal Fasciculus - 

Temporal bundle 

5.5E-4 6.0E-4 0.0001 

Table 12. Tract Comparison of RD, MCI-lowEF > MCI-highEF 

Using the network based statistic software, a statistically significant network difference 

(LEF > HEF) was found using a threshold of 1.8, suggesting a greater number of tracts 

between these specific regions (Figure 2).   This resulting network had 84 edges between 

63 nodes. 
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Figure 3. Results of NBS algorithm for MCI-highEF > MCI-lowEF. 

 

ROI 1 ROI 2 

Left Hippocampus Left Accumbens area 

Left Thalamus Proper 

Right Cerebellum White 

Matter 

Left Pallidum 

Right Cerebellum White 

Matter 

Left Hippocampus Right Caudate 

Right Thalamus Proper Right Putamen 

Left Accumbens area Right Hippocampus 

Brainstem Right Amygdala 

Left Hippocampus Right Accumbens area 

Right Cerebellum White Matter Optic Chiasm 

Left Accumbens area Left Fusiform 

Right Cerebellum White Matter Left Isthmus Cingulate 

Right Cerebellum Cortex Left Isthmus Cingulate 
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Right Putamen Left Isthmus Cingulate 

Left Amygdala Left Lateral Occipital 

Left Hippocampus Left Lateral Orbitofrontal 

Left Fusiform Left Lateral Orbitofrontal 

Left Inferior Temporal Left Lateral Orbitofrontal 

Left Hippocampus Left Lingual 

Left Inferior Temporal Left Middle Temporal 

Left Isthmus Cingulate Left Parahippocampal 

Left Caudal Middle Frontal 

Cortex Left Pars Triangularis 

Left Hippocampus Left Pericalcarine 

Left Amygdala Left Pericalcarine 

Corpus Callosum Posterior Left Postcentral 

Left Lateral Occipital Left Precentral 

Left Middle Temporal Left Precentral 

Left Amygdala Left Precuneus 

Right Cerebellum Cortex Left Precuneus 

Optic Chiasm Left Precuneus 

Corpus Callosum Posterior Left Precuneus 

Left Lingual Left Precuneus 

Corpus Callosum Central Left Rostral Middle Frontal 

Left Postcentral Left Rostral Middle Frontal 

Left Isthmus Cingulate Left Superior Frontal 

Left Pars Triangularis Left Superior Frontal 

Right Pallidum Left Superior Parietal 

Left Lingual Left Superior Parietal 

Left Parahippocampal Left Superior Parietal 

Left Pars Triangularis Left Superior Parietal 

Corpus Callosum Posterior Left Transverse Temporal 

Left Isthmus Cingulate Left Insula 

Left Lingual Left Insula 

Right Amygdala Right Cuneus 

Left Isthmus Cingulate Right Cuneus 

Left Lateral Occipital Right Cuneus 

Left Posterior Cingulate Right Cuneus 

Left Precuneus Right Cuneus 

Right Hippocampus Right Fusiform 

Left Isthmus Cingulate Right Fusiform 

Right Cuneus Right Fusiform 
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Right Cerebellum White Matter Right Lateral Occipital 

Right Cerebellum Cortex Right Lateral Occipital 

Right Hippocampus Right Lateral Orbitofrontal 

Right Entorhinal Right Lateral Orbitofrontal 

Left Cuneus Right Lingual 

Right Hippocampus Right Middle Temporal 

Right Fusiform Right Middle Temporal 

Right Lingual Right Middle Temporal 

Right Pallidum Right Parahippocampal 

Left Isthmus Cingulate Right Paracentral 

Right Cuneus Right Paracentral 

Right Isthmus Cingulate Right Paracentral 

Right Putamen Right Pars Opercularis 

Right Caudal Middle Frontal Right Pars Opercularis 

Right Amygdala Right Pericalcarine 

Right Isthmus Cingulate Right Pericalcarine 

Right Paracentral Right Pericalcarine 

Left Precentral Right Posterior Cingulate 

Right Amygdala Right Precuneus 

Left Superior Parietal Right Precuneus 

Right Postcentral Right Precuneus 

Left Isthmus Cingulate 

Right Rostral Anterior 

Cingulate 

Corpus Callosum Central Right Rostral Middle Frontal 

Right Thalamus Proper Right Superior Parietal 

Left Precuneus Right Superior Parietal 

Right Lingual Right Superior Parietal 

Right Precuneus Right Superior Parietal 

Right Amygdala Right Superior Temporal 

Right Accumbens area Right Superior Temporal 

Left Caudate Right Frontal Pole 

Left Lateral Orbitofrontal Right Frontal Pole 

Left Insula Right Frontal Pole 

Right Superior Frontal Right Frontal Pole 

Right Middle Temporal Right Temporal Pole 
Table 13. NBS algorithm edges for DTI analysis.  MCI-highEF> MCI-lowEF. 
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Discussion 

We found greater white matter integrity and a larger nonspecific network in the MCI-

highEF group.  Notably, the corpus callosum had a higher node degree, clustering 

coefficient in many of its corresponding ROIs, and higher FA in the forceps major.  The 

parietal and temporal regions had greater clustering coefficient and node degree, and the 

parietal and temporal components of the superior longitudinal fasciculus had higher FA.  

Because the temporal lobe is affected in MCI and AD dementia (Ferreira et al 2011), this 

result is unsurprising.  The higher node degree and strength of many regions of the MCI-

highEF group and the greater clustering coefficient of most regions in comparison to the 

MCI-lowEF group suggests that a more “small-world” structure of the MCI-highEF 

group – or, the ability to traverse from one region to another in a smaller number of steps.  

Small-world networks are more efficient in transferring information, and it follows that 

the group with higher executive abilities may have a more efficient network.  While a 

higher node degree was found for a number of regions in the MCI-lowEF group, the 

corresponding node strength (or weight based on number of fibers leaving the region) 

was not higher, which suggests that perhaps the MCI-lowEF group has more sparse 

connections in a few regions.  Application of the NBS algorithm resulted in a nonspecific 

suprathreshold network involving many regions, including the prefrontal, orbitofrontal, 

parietal and temporal regions of interest.  In the MCI-lowEF group, we found a higher 

RD in the superior and inferior longitudinal fasciculus, which corresponds to findings of 

greater increases in RD in a pre-AD state (Gold et al., 2012).  Because of the 
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requirements of the prefrontal, parietal and temporal regions in executive tasks (Gibbons 

et al 2012; Zheng et al 2014), the greater network connectivity of these regions suggests 

that the white matter integrity is instrumental in retaining these abilities.   

 The findings of this study reflect that the MCI-lowEF group shows more 

similarities in pathology to those with AD dementia than does the MCI-highEF group.  

These similarities include widespread network disruptions in AD dementia (Daianu et al 

2013), and disrupted topological organization (Lo et al 2010).  Decreased FA in a number 

of tracts has been shown to be a marker of AD dementia, including the uncinate fasciulus, 

the superior longitudinal fasciculus, and the corpus callosum (for review, Goveas et al 

2015).  FA has been shown to be less sensitive to early changes (Acosta-Cabronero 

2014); however, it appears that earlier FA changes may accompany diminished EF 

abilities in individuals with MCI (Nowrangi et al 2015). Our findings suggest underlying 

white matter abnormalities that correspond to decreased EF score, which Gibbons et al. 

(2012) describes as predictive of progression to AD.  These network measures and the 

differences in the white matter tracts is likely contributing to the EF dysfunction and may 

reflect the changes of those who will actually progress to AD.  Our previous findings 

demonstrated a high functional connectivity in an MCI-lowEF group, which may be 

compensation for the diminished structural integrity described in this study.   

 Limitations of this study include a lack of correction for age, educational level, 

and pre-MCI intelligence level.  It is possible that the differences observed here may be 

due to age (Table 1). It may also be that higher educational level induces a stronger white 

matter network but this needs further investigation.  Similarly, higher pre-morbid IQ may 
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be the result of better network connections, another notion that needs further 

investigation.  Because non-impaired individuals with greater intelligence tend to have 

better executive abilities, it is unclear if prior abilities confer a protection against the 

impairment of executive abilities associated with MCI, or if the disease progression is 

responsible for the diminished abilities. A study tracking subject educational level and 

intelligence prior to MCI onset could help resolve this. Also, tracking these individuals to 

assess who did, in fact, progress to AD dementia or another disorder would be 

instrumental in determining the significance of the white matter abnormalities and 

structural differences. 
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CHAPTER 4: INTRODUCTION TO DECISION-MAKING AND RULE 

UNCERTAINTY  

Decision-making is a ubiquitous executive ability required by humans and 

animals alike.   Many decisions require that a rule be applied.  For example, in picking a 

route to a destination, the desired outcome (reaching the destination) is known, but a few 

rules may be chosen from, such as optimizing for time, or optimizing for distance, or 

avoiding tolls.  Overcoming this uncertainty is required for intelligent behavior.  This 

project used both electroencephalography (EEG) and fMRI to describe the brain regions 

involved in applying rules under uncertain and certain conditions.  Using network 

analysis, we describe how the regions of the brain work together to complete a decision-

making task with rule uncertainty.     

 Pouget, Drugowitsch, and Kepecs (2016) have defined confidence as the 

probability a participant assigns to their perceived success.  They define uncertainty as 

involving the external factors that come into play in arriving at that confidence.  We 

compare conditions with high levels of certainty and uncertainty during rule application.  

Participants were given a task in which they could be certain or uncertain of the rule to 

apply in a set of trials.  

 Many studies measure responses to outcome uncertainty or risk, and use a small 

component of study payment dependent on task performance or food rewards for animals 

to simulate risk.   Fewer tasks look at rule uncertainty specifically.  In our study, we used 

a task in which a subject receives feedback (correct or incorrect) that thus carries a small 

but inherent risk.  However, the gains or losses are minimal, as they are neither being 
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compensated nor punished for their performance.  Risk requires that the individual have 

something to gain or lose (Anselme 2014; Zhang 2014).  Primate studies have found that 

subjects will work to avoid uncertainty, even to their detriment. This avoidance 

corresponds to activation in the ventral midbrain, which includes the substantia nigra pars 

compacta (Bromberg-martin and Hikosaka 2010; Fiorillo 2003).  In addition, Kiani and 

Shadlen (2009) described primates opting out of an uncertain condition even when it 

meant a smaller reward.  This suggests that certainty is inherently rewarding and that 

uncertainty is aversive (for review, see Bach 2010).  Humans show slowing in response 

time in uncertain conditions, which corresponds to ventral striatum activity (Buzzell et al 

2016). Studies using the intolerance of uncertainty (IU) task found a connection between 

uncertainty aversion and higher levels of anxiety and increase of worry (de Bruin, Rassin, 

Muris 2006; Rosen and Knauper 2009).  The anterior insula is found to be engaged in 

situations of increased certainty (Bhanji et al 2010), yet is also thought to be involved in 

prediction of risk (Bossaerts 2010, review), and modulated by rule complexity (Bhanji et 

al 2010).  

 Areas associated with reward are the orbitofrontal cortex and amygdala (Baxter et 

al 200; Kepecs 2008; Klein-Flugge 2013) as well as the hippocampus (Labreton 2013).  

Because of the minimization of reward in this task, we would expect to see less of this 

regional involvement.  However, because we are using a rule application paradigm, we 

would expect to see frontal cortex involvement (Badre et al; Badre and D’Esposito 2009).  

The dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, and bilateral anterior 

insula increase in activation with increasing rule complexity (Bhanji et al 2010).  The 
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anterior cingulate cortex is involved in conflict monitoring, outcome evaluation, and 

decision-making (Botvinick 2007).  A model of reinforcement learning and optimal 

decision-making developed by Bogacz and Larsen (2011) requires basal ganglia 

participation, most specifically communication between the striatum, subthalamic 

nucleus, and globus pallidus.  These regions interact with the cortex and thalamus to 

accomplish learning during decision-making. The lateral intraparietal sulcus has been 

found to encode choice accumulation in primate saccadic choice task (Churchland et al 

2011; Ganguli et al 2008; Beck et al 2008), and the parietal reach region (PRR) 

corresponds to expected reward coding (Anderson and Cui 2009).  

 The purpose of this study is to describe the brain regions involved in a novel 

uncertainty task, in which the risk is minimal but there is inherent certainty or 

uncertainty, allowing comparison of these two conditions in relative isolation from 

variations in reward and certainty levels.  The use of the methods described here as well 

as the novel task will help to describe the physiological mechanism involved in the brain 

applying rules under uncertain conditions.  This study will add information to the 

growing body of literature about brain regions involved in these states and their network 

interactions.  

 EEG measures the summed potential of millions of parallel neurons firing 

synchronously.  An excitatory post-synaptic potential (EPSP) or an inhibitory post-

synpatic potential (IPSP) will be generated at a neuron’s apical dendrites.  Summation to 

threshold of an EPSP will generate an action potential; however, the action potential is 

transient and not likely to contribute much to the EEG signal (Speckmann, Elger, and 
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Gorji 2010).  The EEG signal is thought to be generated by EPSP and IPSP summed and 

detected at the cortical surface.  The orientation of cortical neurons in parallel allows for 

a summation of these potentials.  Subcortical regions are oriented in a less organized 

fashion and thus are a less likely generator for EEG signal (Pizzagalli  2006).   EEG 

allows for detection of neural events at the millisecond time scale.  Averaging post-

stimulus epochs in order to find potential differences that occur is a means of examining 

focused, non-rhythmic events in the brain that are transient in nature.  Event-related 

potential (ERP) analysis is a means of capturing non-oscillatory signal (Rosler 2005).  

We are looking at the signal time locked to intervals of interest, and then comparing 

them.  This allows us to examine narrow (~100 ms) time intervals to look for differences 

in neural activity between conditions.  FMRI network analysis was performed in the same 

manner as described in Chapter 2.  In addition, we used a General Linear Model (GLM) 

in order to assess the components of the BOLD signal that are attributable to the task.    

We recruited 30 participants for EEG and 25 participants for fMRI.  Three EEG 

subjects and 2 fMRI subjects were excluded on the basis of excessive artifact. We used a 

card-matching task in which subjects were instructed to match a card to one of five other 

cards based on similarity in exactly one of five attributes. The subjects were not given 

any information on matching criteria.  In the certain condition, the subjects’ first choice 

of rule to apply was the choice for the remainder of the run.  In the uncertain condition, 

the rule to match changed at every interval.  The subjects were categorized in either the 

EEG or fMRI condition.  The fMRI paradigm had fixation blocks interspersed between 

tasks within each run, otherwise the timing for the conditions was identical.   
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 Limitations include not jittering the fMRI sequence, in order to allow for 

performing event-related analysis on the BOLD signal data to separate the feedback from 

task performance.  However, this would have sacrificed the simplicity of the GLM 

analysis and introduced some task confounding variables.  In addition, running the 

protocol on each participant for both the EEG and fMRI component would have been 

ideal in order to be able to compare the brain regions involved more directly.  However, 

this would have had some practice effect on the participant as they performed the task 

twice.  Educational history and intelligence level were not assessed for the participants.  

These may have been useful variables to control for in the analysis.   

 Future variations of this study would include a jittered component to the fMRI 

task, in order to allow for an event-related analysis of the fMRI data.  This would allow 

for the resolution of the subcomponents of the task, and for us to determine when and 

where BOLD signal activation is responding to either feedback or card presentation. 

Also,  a counterbalanced dual-modality approach for each subject.  This would allow for 

more specific study of in different events in the fMRI time frame, and for the union of the 

EEG and fMRI results.  Then, we could examine how these networks are affected in 

pathological states in which decision-making is affected, such as MCI.  In addition, we 

did not gather information about intelligence, educational level, or general psychological 

traits of the participants.  In future studies, this would be a helpful means of better 

describing neurologic response to the task.  
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CHAPTER 5: AN EVENT-RELATED POTENTIAL ANALYSIS OF BRAIN 

ACTIVITY IN DECISION-MAKING IN CERTAIN VERSUS UNCERTAIN 

CONDITIONS 

Background 

Decision-making is essential to human functioning, and encompasses such varied 

abilities as choosing a correct answer on a test, selecting a food to eat, making an 

investment, or selecting a life partner.  Resolving uncertainty is arguably the most 

difficult component of decision-making.  Uncertainty can arise when the desired outcome 

is known but the means to achieve that outcome is not.  In this case, an individual is 

uncertain of which rule to apply (rule uncertainty).  We created a card-matching task that 

alternated a condition in which the subject was certain of the rule to apply with a 

condition in which the subject was uncertain of the rule to apply. The aim of this study 

was to compare brain activity in the certain condition to the uncertain condition using 

EEG and ERP analysis.  128-lead high-density EEG and ERP can localize cortical 

activity and provide insight into early (0-2 second) brain activation.  In this study, we 

analyze the brain activity evoked by rule uncertainty using EEG and ERP.  EEG 

measures electrical brain activity with millisecond precision, and the use ERP allows for 

localization and timing of stimulus-locked responses.  Of the decision-making studies to 

date, some have focused on the potentials corresponding to feedback (Cui et al 2013; 

Trujillo 2007) and have found greater feedback-related negativity (FRN) potentials.  

These are reflected as an 80-100 ms negativity when subjects are presented with negative 

feedback.  Philastides et al (2010) describes a 220 ms post stimulus potential correlated 
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with decision difficulty, and advantageous and disadvantageous choices in an Iowa 

Gambling task corresponded with a left and right hemisphere p300, respectively (Cui et 

al 2013).    

 Decision-making is an executive function, and thus generally thought to require 

the frontal lobe.  However, complex tasks generally require many components of the 

cortex and the basal ganglia.  The importance of the basal ganglia in decision-making is 

becoming more apparent; the basal ganglia, in both the executive and limbic loops, 

contains many reciprocal connections with the cortex (Nieuwenhuys; Bogacz and 

Tobias).  In addition, the anterior cingulate cortex engages the prefrontal cortex in times 

of uncertainty (Nieuwenhuys; Botvinick 2007).   

 A complex network of brain regions is required in the resolution of uncertainty.  

This study helps describe the brain activity involved in this function, and the task 

performed neatly separates the certain and uncertain conditions – which allows for future 

study of gradations between these two conditions.  Decision-making is impaired in many 

pathological conditions, including schizophrenia, mild cognitive impairment, and 

obsessive-compulsive disorder (Triebel 2009; Matsuzawa 2014; Zhang 2015). The effects 

of this impairment provide daily challenges to those afflicted, and in providing a baseline 

for normal functioning we may begin to examine the changes that occur in pathological 

states.  In addition, we introduce a decision-making novel task for the examination of this 

function in both pathological and normal states.  

 Many studies use traditional neuropsychological tasks that have gradations of 

reward and levels of uncertainty to study decision-making.  We used a card-matching 
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task in which the level of uncertainty was controlled in order to compare the two 

extremes of certainty and uncertainty. We alternated a condition in which the first rule 

the subject used became the correct rule for the duration of the run with one in which the 

rule changed at every interval.  We examine the event-related potentials that occur after 

the card-matching stimulus is presented, while the subject is making the decision, as well 

as the potentials after the feedback occurs.  We measure peak amplitudes as well as plot 

scalp maps to describe the changes that occur in the brain in the certain and uncertain 

conditions. 

Methods 

Participants 

Thirty-one young right-handed individuals (11 males, ages 18-40) with no 

neurologic disease participated in the task.  Four female subjects were excluded based on 

heavy artifact in the data collected. Subjects signed a consent form approved by the 

institutional review board.  The entire session lasted approximately 90 minutes, with 60 

minutes of EEG setup and 30 minutes of task. 

Task 

 Subjects sat in front of an 18 inch computer monitor, 18 inches from the screen in 

a dark, quiet room with a 5-button keyboard to allow for selection of numbers 1-5 using 

the right hand.  Subjects were presented with a series of five cards in a row on the top 

half of the computer monitor, and one card in the bottom middle of the computer monitor 

(Figure 4).  Subjects were instructed to choose one of the five cards from the top of the 

screen that they believed matched the bottom card, and to press the corresponding button.   
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They were not given any information about the correct rule to apply.  Subjects were given 

four seconds to respond and were given feedback of “Correct”, “Incorrect”, or “Skipped” 

for two seconds.   Brief instructions were presented at the beginning of each run; there 

were six runs with 30 card presentations per run. At the end of the run, the instructions 

would reappear, and subjects would be allowed to adjust slightly and rest before 

beginning the next run with a key press.  

Figure 4.  Decision-making card-matching task paradigm.   

The cards had five attributes: background color, shape, shape color, number of 

shapes, and border.  Each of the top cards matched the bottom card in exactly one 

attribute.  In the certain condition, the rule was set by the match condition the subject first 

used and the rule did not change until the end of the run.  In the uncertain condition, the 

rule changed randomly at every card presentation.  Therefore, there was a correct rule at 

each match but there was no way for the subject to be sure of it.  The certain runs were 
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alternated with uncertain runs.   Half of the subjects began with the certain condition and 

the other half began with the uncertain condition.   

Electroencephalography setup 

We used a BioSemi Active 2 system with 128-channel Biosemi Active-headcap.  

Four sets of 32 Pin-Type Active Electrodes were connected to the ActiveTwo AD-box, 

which transmitted amplified EEG signal to a personal computer using ActiveView 

(Version 7.06) software on the Windows XP platform.  Stimuli were presented on a 

separate personal computer using a Java graphical user interface application, which sent 

triggers through a parallel port to the ActiveView software.  Impedance was adjusted to 

<20 kOhms.  A sampling rate of 1024 Hz was used, and later each output file was 

decimated to 256 Hz for processing ease.   

Analysis 

Output EEG files were preprocessed using EMSE software for detrending, 

baseline correction, band-pass filtering (0.03 to 30 Hz), and blink reduction.  Data were 

exported and the remainder of the analysis was performed using MATLAB software.  

Epochs were extracted for the first two seconds of the post-card presentation, as well as 

the first two seconds of post-feedback activity.  For the certain condition, intervals in 

which the subject was not certain (i.e., had just started the task or had incorrectly selected 

a match previously) were discarded.  For the uncertain condition, intervals in which the 

subject had randomly selected the correct match in the previous match were discarded.   
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Epochs were averaged and baseline corrected to the average 200 ms prestimulus 

interval.  An average for each epoch type was constructed for each electrode.  In addition, 

regions of interest (ROIs, shown in Figure 5) were averaged and calculated.  Scalp maps 

were generated using averages of time intervals and by plotting the values of these 

averages at each electrode.  Maximum, minimum and mean values for intervals of 

interest were extracted, and paired t-tests were used to assess significance. The values at 

electrodes and ROIs are not independent because the same sources of EEG signal will 

impact many electrodes to varying degrees, so we will report the values uncorrected.  

Although this does increase the risk for Type I error, our results are above the rate at 

which one would expect this error to occur. 

 

Figure 5.  ERP Regions of Interest.  
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Results 

Certain versus Uncertain    

In the certain versus uncertain conditions, there are small differences between the 

condition’s potentials, in the first 500 ms post-stimulus. Differences include small 

increases in the uncertain over the certain condition in the left anterior superior region, 

reflected in the ROI plot (Figure 6) and in the scalp map (Figure 7) between 300 – 500 

ms. After this interval, the differences are more pronounced, including a large increased 

positivity in the certain over the uncertain condition moves from the posterior scalp to the 

front of the brain.  From 500 – 1200 ms, this increase in the certain over the uncertain 

potential is reflected in the occipital and parietal regions.  This is reinforced by the ROI 

plots (Figure 3), which show the increase in certain over uncertain in the left posterior 

inferior, left posterior superior, centro-parietal, right posterior inferior, and right posterior 

superior ROIs.  After this interval, from 1000-2000 ms post-stimulus, the difference 

between certain and uncertain becomes smaller in the previously described ROIs, and 

becomes larger in the left anterior inferior region, the right anterior inferior region, and 

the centro-frontal region.   
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Figure 6. Certain and Uncertain condition averaged potentials from -200 ms to 2000 ms post card presentation.  

ROIs are grouped as described in Figure 2.  
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Figure 7. Scalp maps of 100 ms intervals from 0-2000 ms of the certain – uncertain condition, averaged and 

plotted at each electrode in the -4 to 4 uV scale.   

In the 500 to 1000 ms time frame, a central fronto-parietal region remained 

elevated in the uncertain condition, as demonstrated by the left anterior superior and the 

centro-frontal region.  In the post-1000 ms timeframe, the centro-parietal region and the 

right posterior superior region showed elevations in the certain over the uncertain 

condition.  The right anterior superior region showed very little difference between the 

two conditions.  Significance testing of the minimum, maximum and mean in each 100 

ms epoch revealed very similar values.  In all three cases 14% of the epochs tested 

yielded a p-value < 0.05, which is more than the 5% false positive rate one would expect 
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from multiple comparisons.  The greatest numbers of significant differences are reflected 

in the 500-1400 ms time frame, most in the parietal and occipital regions (Figure 8).   

 

Figure 8. Certain versus Uncertain condition. Significance of epoch per electrode.  T-tests comparing measure in 

each 100 ms interval (x-axis) for each electrode (y-axis). p-values < 0.05 represented by red, all others 

represented by blue.  336 of 2432 (14%) epochs had p < 0.05. a) min value compared for each 100 ms interval.   

b) Maximum value compared for each 100 ms interval. 352 of 2432 (14%) epochs had p < 0.05. c) mean value 

compared for each 100 ms interval.  347 of 2432 (14%) epochs had p < 0.05 
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Correct versus Incorrect 

An increase in the incorrect feedback condition over the correct feedback 

condition is reflected in the 300 to 600 ms post-stimulus timeframe in the left frontal 

region, which is shown in the scalp maps of that period and is reflected in the left anterior 

superior, left anterior inferior, and centro-frontal region (Figure 9 and Figure 10).  This 

increase is diminished between 600 to 1400 ms. Between 1400 to 2000 ms another 

increase in the incorrect feedback over the correct feedback is reflected in the right and 

left posterior inferior, and the right and left anterior superior regions.   Increased 

positivity in the correct over the incorrect condition is reflected in the 300 to 600 ms time 

frame in the right anterior inferior, and the right and left posterior inferior regions.  Also 

of note is the strong negative deviation in both conditions in the right anterior inferior, 

with a much stronger negative deflection in the incorrect condition.   Significance testing 

of the maximum, minimum, and mean in each interval reflected the greatest number of 

differences with p < 0.05 in the 300-600 ms interval (Figure 11).  There were 14%, 8%, 

and 14% with p-values < 0.05.  
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Figure 9. Correct and incorrect condition averaged potentials from -200 ms to 2000 ms post card presentation.  

ROIs are grouped as described in Figure 2.  
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Figure 10. Scalp maps of 100 ms intervals from 0-2000 ms of the correct – incorrect condition, averaged and 

plotted at each electrode in the -4 to 4 uV scale.   
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Figure 11. Significance of each epoch per electrode in correct versus incorrect condition.  T-tests comparing 

measure in each 100 ms interval (x-axis) for each electrode (y-axis). p-values < 0.05 represented by red, all 

others represented by blue.  185 of 2432 (8%) epochs had p < 0.05. a) min value compared for each 100 ms 

interval.   b) max value compared for each 100 ms interval. 352 of 2432 (14%) epochs had p < 0.05. c) mean 

value compared for each 100 ms interval.  347 of 2432 (14%) epochs had p < 0.05 
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Discussion 

Although the task introduced in this paper is novel, some studies have described 

ERP correlates of decision-making under uncertain conditions.  This has been examined 

in the context of gambling and risky decision-making, such as a study of advantageous 

choice and nonadvantageous choice in the Iowa Gambling task, which demonstrated an 

increased p300 in the right hemisphere during the advantageous choice and an increased 

p300 in the left hemisphere during the nonadvantageous choice (Cui et al 2013).  We 

confirmed an increased potential in the 300 ms time frame, but found opposite laterality 

from those in the Iowa Gambling Task results: higher potential in the uncertain condition 

in the left hemisphere, and higher potential in the right hemisphere in the certain 

condition.  Because the authors suggest the magnitude of the reward is the modulating 

effect on this potential, the uniformity of the reward/punishment in our task may 

contribute to the differences.  The effect that we found may be the p3a described by 

Polich (2007).  The p3a is generally associated with stimulus-driven frontal mechanisms 

and correlates to the location and task difficulty that we are describing.  However, the 

potential differences found in the 300-500 ms time frame were not as pronounced as 

those in the later interval.  The results from the 500-1000 ms time frame reflected a 

decreased potential in the parietal and occipital regions in the uncertain condition.  Bland 

and Schaefer (2011) describe task volatility, which was similar in quality to the task 

uncertainty defined in our study, as producing a N2/N400 complex.  Bland’s results are 

similar to the diminished potentials we saw in the uncertain condition in the 400-800 ms 

interval in most of the examined ROIs.  Conflict monitoring during a Go/NoGo task 
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produced an n400-like response that Brunner et al (2015) suggests is likely the work of 

the anterior cingulate cortex.  The later potentials (post 500 ms) show a greater positivity 

in the parietal/occipital regions in the certain condition.  This is similar to the late positive 

component (LPC), a phenomenon that arises during memory tasks and is associated with 

decision accuracy and confidence (Finnigan et al 2002; Chen et al 2014). While the LPC 

is generally associated with recognition of previously seen items, in this case recognition 

and reinforcement of the rule is occurring in the certain condition.   

Decision-making studies often focus on feedback-related negativity.  We found a 

negative right frontal deflection in the incorrect/uncertain condition that may correspond 

to the feedback related negativity.  This negativity is also present in the correct condition, 

but is not as pronounced.   Because the FRN is thought to be an early reflection of 

updating context or rules based on feedback (Cohen, Elger, and Ranganath 2007), the 

frontal presence of the FRN-like wave is consistent with expectations.  Because the 

anterior cingulate cortex is thought to be engaged in conflict anticipation (Botvinick 

2007), it follows that this signal may be resulting from prefrontal engagement by the 

anterior cingulate cortex. 

A widespread increase in amplitude in the left frontal and parietal regions is 

evidenced in the 300-500 ms timeframe.  This is consistent with both a p3a and p3b 

effect, which are associated with task processing and memory updating, respectively 

(Polich 2007).  It follows then that feedback may trigger rule updating or changing of the 

mental conception of the rule that is evidenced during the rule uncertain condition. 
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The results of this study reinforce current understanding of rule application, rule 

updating, and ERPs seen during times of uncertainty.  The increased potential in the 

frontal region in the 500-1000 ms time frame in the uncertain condition reflects increased 

cognitive processing, and the increased positivity in the certain condition in the posterior 

may reflect memory updating.  The feedback related negativity seen in the uncertain 

condition is consistent with what might be expected from the literature; however, the 

evidence of p3a and p3b suggests cognitive processing that occurs immediately after the 

subject realizes that they are not certain of the rule.  The results reinforce that the novel 

task developed is a good means of measuring cognitive response to uncertainty.  The 

markers described are a good baseline. Further study could include post-response 

processing, measures looking for specific ERPs – including fractional area analysis and 

timing and peak value in the intervals of interest.   
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CHAPTER 6: NETWORK-BASED ANALYSIS OF BRAIN ACTIVITY USING 

FMRI IN DECISION-MAKING UNDER UNCERTAIN CONDITIONS 

 

Introduction 

Individuals are faced with decisions daily that require that a rule be applied, such 

as selecting a route to reach a destination or choosing an investment strategy to optimize 

profit.  Uncertainty regarding the optimal rule to apply to reach the desired outcome is 

often inherent in these decision-making processes. Resolving this uncertainty is the most 

challenging component of the decision-making process.  However, being able to make 

decisions under conditions of rule uncertainty is vital to human function, and the 

impairment of this process in diseases such as MCI, schizophrenia and obsessive-

compulsive disorder is particularly harmful (Triebel et al 2009; Matsuzawa 2015; Zhang 

et al 2015).  The aim of this study is to describe the brain regions involved in decision-

making under conditions of rule uncertainty using fMRI, and to describe the interactions 

of these brain regions using network analysis.  The current analysis of decision-making 

during rule uncertainty is incomplete, therefore healthy young individuals are examined 

in this study in order to provide a baseline measurement of rule uncertainty activity.  This 

will allow for future comparison against pathological states to determine the neural 

regions that are particularly impaired in these conditions. FMRI is a non-invasive means 

of measuring the neuroanatomical activity correlating with the task conditions.  The 

BOLD signal is a measurement of the cerebral blood flow to a brain region, which 
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increases coincident with brain region activation (Logothetis 2002).  A decision-making 

task in which the correct rule to apply is either completely certain (known from first trial) 

or completely uncertain (changes at every trial) is used and an examination of BOLD 

signal differences between these two states yields information about the brain regions 

involved in decision-making in uncertain conditions. 

Much of the cortex is implicated in decision-making in conditions of uncertainty.  

Prior fMRI studies have suggested involvement of the orbitofrontal cortex (OFC), the 

dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) (Esslinger 

2013; White et al 2014) in making decisions in uncertain conditions.  Other implicated 

regions include the insula, the posterior parietal, the inferior parietal, and inferior 

temporal areas (White 2014; Krug 2013).  Studies have suggested that information about 

the correct decision is stored in the ventral temporal cortex and posterior parietal cortex 

(Philastides 2010; Hutchinson 2015), whereas the ventromedial prefrontal cortex 

(vMPFC) has been implicated in computing expected value and reward outcome in 

processing decisions (Daw and Doya, 2006). The vMPFC works with the hippocampus 

during mismatch detection (Garrido et al 2014).  In addition, the role of the basal ganglia 

in decision-making, particularly as rules are learned, is becoming increasingly evident. 

The striatum is involved with reward learning and habitual actions, and activation may 

correlate with prediction of punishment (Daw and Doya 2006; Stalnaker et al 2012; 

Samejima et al 2005).   A computational model of decision-making as performed by the 

basal ganglia, developed by Bogacz and Tobias (2011), involves a circuit that includes 

the cortex, striatum, subthalamic nucleus, and globus pallidus.  This corresponds to the 



 

 

60

dorsolateral prefrontal(executive) loop of the basal ganglia (Nieuwenhuys 2008 p 439).  

The ACC engages the prefrontal cortex and is implicated in conflict monitoring and 

outcome evaluation (Botvinick 2007).   

 The interactions between the brain regions involved in decision-making under 

uncertain conditions are complex and we would expect to see many areas of activation.  

By using the GLM to estimate the contribution of each task condition to BOLD signal 

over time, we can identify regions with increased blood flow and draw some conclusions 

about regional activity.  However, because so many regions are likely involved, 

functional network connectivity can describe similar activity between ROIs.  Network 

analysis has emerged as an instructive method for describing the brain – as brain regions 

rarely act in isolation – so we can learn much about how the brain regions interact. ROI-

based analysis allows for each region to be treated as a node of the network, and for the 

level of connectivity between ROIs to be established by BOLD signal correlation.  Graph 

theory measures such as network size, density, node degree, clustering coefficient, and 

assortativity describe the networks and the differences between them. 

 The comparison of BOLD signal response in the certain and uncertain states in a 

task that is otherwise matched in requirements allows for the comparison of the effect of 

certainty and uncertainty on various brain regions.  Other studies that measure responses 

to uncertainty have used the Iowa Gambling Tasks or tasks that manipulated the levels of 

uncertainty.  The task used in this study allows for a binary difference to be measured. 

The network analysis allows for a description of the functional connection between 
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participating regions of the brain, and various properties that these functional networks 

demonstrate.  

 

Methods 

Subjects 

Twenty-three healthy subjects ages 18-37 were selected (9 males) from the 

greater Boston community.  Subjects signed a consent form approved by the institutional 

review board.  Four subjects were excluded based on excessive artifact, leaving nineteen 

subjects (7 males).  The entire session lasted approximately 90 minutes, with 60 minutes 

in the MRI scanner.   

Paradigm 

The task was projected from a personal computer onto a high-resolution screen, 

which was reflected in a mirror above the subject’s face as he or she lay in the MRI.  The 

screen showed a row of five cards on the top, and a row at the bottom with a single card 

(Figure 4).  The subjects were instructed to match the bottom card to a card in the top row 

to the best of their ability, with no further instruction about matching criteria.  Each card 

had five different properties: shape, shape color, background color, number of shapes, 

and border.  Each of the top cards matched the bottom card in exactly one attribute.  The 

card-matching screen was presented for four seconds, and subjects were instructed to 

match within those four seconds.  Card presentation feedback was shown for two 

seconds.  Feedback was “Correct”, “Incorrect”, or “Skipped”.  There were thirty card 
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presentations per run; fixation periods of 30 seconds were alternated with task periods of 

30 seconds that contained five cycles of card presentation and feedback. The top row 

remained the same throughout each run, and the bottom card changed.  The fixation was 

a “#” symbol in the middle of the screen, and subjects were asked to watch the fixation 

mark while relaxed, attentive, and awake.  

There were two conditions, one in which the rule was certain, and one in which 

the rule was uncertain.  In the certain condition, the matching criteria were locked to the 

first matching rule the subject applied.  In the uncertain condition, the matching criteria 

changed at every single interval.  A run of thirty card matches would be entirely either 

the certain or uncertain condition, and the six runs alternated between certain and 

uncertain conditions. The sequence of cards shown was identical for pairs of uncertain 

and certain conditions – for example, the same top row and same series of bottom cards 

would be shown for runs 1 and 2. However, the matching rules would be set as described 

previously.  The start condition was varied between subjects. Some had the certain 

condition in runs 1, 3, and 5; some had the certain condition in runs 2, 4, and 6. Subjects 

were instructed to hold a five-fingered button box in their right hand and to select the 

button corresponding to their choice.  Choices aligned with the finger position (1 left to 5 

right).   

MRI Acquisition and Preprocessing 

Data were collected using a Phillips T3 Scanner and a 32-channel head coil.  The 

scan began with localization and a reference scan, followed by six functional runs of a 

single shot echo-planar imaging sequence (TR = 2 s, TE = 35 ms, 30 slices, 3 mm slice 
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thickness, inplane resolution 3 mm × 3 mm) and finally a T1-weighted structural image 

(1 mm3 voxel size).  

Freesurfer software (surfer.nmr.mgh.harvard.edu version 5.1) was used to parcel 

and label the structural scans of each of the subjects (Desikan et al 2006). The software 

identified grey and white matter regions in the cortex and sub-cortex.  Eighty-two gray 

matter regions were selected from this set for network analysis. The fMRI data were 

preprocessed with motion correction using MCFLIRT (Jenkinson et al 2001), spatial 

smoothing, and temporal filtering using fMRI Expert Analysis Tool (FEAT; Oxford, UK; 

v6.0 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL).  Filtering using FEAT applies a linear high 

pass filter to remove low frequency artifacts (Smith et al 2004). Using FEAT, the fMRI 

data were registered to both the T1-weighted structural image of the brain, extracted from 

Freesurfer, and the MNI152 average.  The preprocessed fMRI data were labeled using the 

generated Freesurfer ROIs.  A mean time series for each ROI was calculated by 

averaging all fMRI voxel values within each ROI over time, resulting in 90 time points 

calculated for each of the six six-minute runs. The portions of the time course associated 

with fixation were removed in order to only correlate task performance. 

Networks were constructed with the ROI time series as the nodes, and the Pearson 

correlation coefficients between each pair of nodes as the edges.  Network measures were 

calculated on these constructed networks.   Binary measures were calculated on networks 

constructed by using threshold values ranging from 0.4-0.9 of the correlation coefficient.  

Weighted measures were calculated using the Fisher transformation of the correlation 

coefficient of the matrix.  The measures calculated included: network size (the number of 
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suprathreshold edges present in the network), node strength (the sum of the edge weights 

for each node), cluster coefficient (the tendency of clusters of three node cycles to form 

around each node), network density (the average connectivity of the nodes in the 

network), and assortativity (the tendency of nodes with similar degree to connect to each 

other).  All of these measures except for size were calculated using the Brain 

Connectivity Toolbox (Rubinov and Sporns 2010).   

In order to assess significance, permutation testing was used.  10,000 random 

datasets were constructed by shuffling the edges between subjects.  Then, the network 

measures were calculated on each of these generated datasets, and the placement on the 

distribution of these network measures was assessed in order to calculate the p-value.   

Data were also analyzed by FEAT (Oxford, UK; v6.0 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL) and performed statistical analysis using the 

GLM to calculate task contribution to the BOLD signal.  For each subject and in each 

run, a GLM was constructed of the blood flow in each voxel in comparing the task 

condition to the fixation condition.  Higher-order FEAT stats were calculated by 

averaging within each subject for each condition.  A paired comparison of a subject’s 

averaged uncertain versus certain condition was calculated using the GLM.  Z-statistic 

images were thresholded with clusters in which Z > 2.3 and the corrected cluster 

significance was p < 0.05.  
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Results 

FEAT Analysis 

The GLM analysis determining the contributions of the task to each signal yielded 

significant differences between the two conditions.  In comparing certain > uncertain 

BOLD signal, the analysis yielded bilateral clusters in the insula that extend into the 

boundary of the parietal and temporal lobe, as well as a medial frontal cluster (Figure 2 

and 3, Table 14). The uncertain > certain comparison yielded 3 large clusters – a midline 

cluster that extended through midbrain, the thalamus, bilateral prefrontal cortex, the 

striatum, then bilateral clusters that extended through the parietal cortex and occipital 

cortex (Figure 4 and 5, Table 15). 

 

Cluster Index Voxels p-value 

1 858 0.000138 

2 1286 2.3e-6 

3 2074 3.5e-9 
Table 14. Clusters produced by FEAT analysis, Certain > Uncertain 
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Figure 12.  GLM analysis results of fMRI data as completed by FEAT: certain > uncertain, reflected in serial 

axial slices.  
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Figure 13.  GLM analysis results of fMRI as completed by FEAT: certain > uncertain, reflected in coronal and 

sagittal slices.   

 

 

Cluster 

Index 

Voxels p-value 

1 1809 2.81e-8 

2 13002 6.05e-43 

3 16777 1.92e-40 
Table 15. Clusters produced by FEAT analysis, Uncertain > Certain 
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Figure 14. GLM analysis results of fMRI data as completed by FEAT: uncertain > certain, reflected in serial 

axial slices.  
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Figure 15.  GLM analysis results of fMRI as completed by FEAT: uncertain > certain, reflected in coronal and 

sagittal slices.   

Network Analysis 

Using a threshold of 0.4-0.9 for binary network measures, we found a number of 

differences that were consistent across thresholds.  Network size was significant at all 

values with correction for multiple comparisons using the FDR method, except that at 

threshold 0.8 the network was larger for the certain condition (Table 16).   

 

Threshold Certain Mean Uncertain Mean P value 

0.4 3335 3915 <0.0001 

0.5 2279 2363 <0.0001 

0.6 1367 1429 <0.0001 

0.7 692 704 0.0052 

0.8 281 269 0.0001 
Table 16. Network size of fMRI networks, comparing certain versus uncertain conditions at varying thresholds. 
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Network density was significant for all p-values except 0.7 (Table 17), and assortativity 

was only significant at threshold 0.7 (Table 18).    

Threshold Certain Mean Uncertain Mean P value 

0.4 0.56 0.57 0.0002 

0.5 0.38 0.4 <0.0001 

0.6 0.23 0.24 <0.0001 

0.7 0.12 0.12 0.24 

0.8 0.056 0.054 <0.0001 
Table 17. Network density of fMRI networks, comparing certain versus uncertain conditions at varying 

thresholds. 

 

Threshold Certain Mean Uncertain Mean P value 

0.4 0.0817 0.0728 0.14 

0.5 0.15 0.15 0.27 

0.6 0.23 0.22 0.18 

0.7 0.28 0.32 0.0031 

0.8 0.08 0.07 0.14 
Table 18. Network assortativity of fMRI networks, comparing certain versus uncertain conditions at varying 

thresholds. 

Weighted clustering coefficient showed significant difference for 15 ROIs where certain 

> uncertain, and 23 ROIs for uncertain > certain (Figure 16; Table 19).   

ROI Mean 

Certain 

Mean 

Uncertain 

p-value 

Right Pallidum 0.41 0.40 0.0007 

Left Caudal Middle Frontal 0.47 0.45 <0.0001 

Left Frontal Pole 0.30 0.26 <0.0001 

Left Fusiform 0.49 0.47 0.0001 

Left Inferior Temporal 0.49 0.48 0.0021 

Left Lateral Occipital 0.46 0.44 <0.0001 

Left Lingual 0.48 0.47 0.0015 

Left Medial Orbital Frontal 0.39 0.37 <0.0001 

Left Rostral Anterior Cingulate 0.44 0.42 <0.0001 

Left Transverse Temporal 0.45 0.44 0.0002 

Right Entorhinal 0.31 0.29 0.003 

Right Frontal Pole 0.33 0.29 <0.0001 

Right Lateral Occipital 0.46 0.43 <0.0001 

Right Lateral Orbitofrontal 0.41 0.39 <0.0001 

Right Temporal Pole 0.31 0.27 <0.0001 
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Table 19. Weighted Clustering Coefficient: nodes of significant difference between certain and uncertain 

condition. 

 

Left Accumbens Area 0.36 0.38 0.001 

Left Amygdala 0.37 0.39 <0.0001 

Left Pallidum 0.38 0.39 <0.0001 

Right Accumbens 0.30 0.31 <0.0001 

Right Amygdala 0.28 0.30 <0.0001 

Right Hippocampus 0.41 0.42 0.0005 

Right Thalamus 0.51 0.53 0.0007 

Left Cuneus 0.49 0.51 <0.0001 

Left Inferior Parietal 0.50 0.52 <0.0001 

Left Insula 0.48 0.50 <0.0001 

Left Middle Temporal 0.48 0.49 0.0012 

Left Parahippocampal 0.30 0.33 <0.0001 

Left Pars Triangularis 0.45 0.46 0.0013 

Left Precuneus 0.52 0.54 <0.0001 

Left Superior Frontal 0.56 0.57 <0.0001 

Left Supramarginal 0.53 0.54 0.0021 

Left Temporal Pole 0.31 0.33 0.001 

Right Caudal Anterior Cingulate 0.50 0.51 <0.0001 

Right Isthmus Cingulate 0.48 0.50 0.0001 

Right Parahippocampal 0.39 0.40 <0.0001 

Right Precentral 0.53 0.54 0.0025 

Right Precuneus 0.53 0.55 0.0001 

Right Supramarginal 0.51 0.52 0.0002 
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Figure 16. Node-based comparison of weighted clustering coefficient in fMRI network data, comparing certain 

and uncertain conditions. 6 nodes greater in certain condition in blue, 20 nodes greater in uncertain in red.  

Node strength had 6 nodes significantly greater in the certain condition and 20 nodes 

significantly greater in the uncertain condition (Figure 17; Table 20).   

 

ROI Certain Mean  Uncertain Mean P value 

Right Pallidum 33.90 32.27 0.001 

Left Frontal Pole 21.89 18.78 <0.0001 

Left Lateral Occipital 40.74 39.06 0.0016 

Left Medial Orbital Frontal 32.06 30.37 0.0015 

Left Rostral Anterior 

Cingulate 37.54 35.49 0.0003 

Left Transverse Temporal 38.23 36.63 0.0013 

Right Frontal Pole 25.37 22.40 <0.0001 

Right Lateral Occipital 40.48 38.71 0.0011 

Right Lateral Orbitofrontal 33.61 31.87 0.0003 

Right Temporal Pole 23.10 19.75 <0.0001 

Left Amygdala 29.13 31.63 <0.0001 
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Left Pallidum 30.24 31.65 0.0044 

Right Accumbens 22.76 24.23 0.0028 

Right Amygdala 20.82 22.77 <0.0001 

Right Hippocampus 33.89 35.54 0.0015 

Left Cuneus 43.48 45.94 0.0002 

Left Inferior Parietal 44.69 47.38 <0.0001 

Left Insula 42.78 44.36 0.0032 

Left Parahippocampal 22.15 24.91 <0.0001 

Left Precuneus 47.76 50.39 <0.0001 

Left Superior Frontal 52.10 54.23 0.0004 

Left Temporal Pole 23.65 25.02 0.0018 

Right Caudal Anterior 

Cingulate 44.54 46.45 0.001 

Right Isthmus Cingulate 42.73 44.38 0.0021 

Right Parahippocampal 30.92 32.48 0.0008 

Right Precuneus 49.37 51.22 0.0016 
Table 20. Node strength: nodes of significant difference between certain and uncertain condition. 

The brain networks were visualized with the BrainNet Viewer 

(http://www.nitrc.org/projects/bnv/; Xia et al., 2013). 
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Figure 17. Node-based comparison of node strength in fMRI network data, comparing certain and uncertain 

conditions. 15 nodes greater in certain condition in blue, 23 nodes greater in uncertain condition in red. 

Discussion 

The increased activity demonstrated in the uncertain condition when compared 

with the certain condition yielded by the GLM analysis corresponded to a larger network 

and many ROIs with greater connectivity, as indicated by clustering coefficient and node 

strength.  However, a number of nodes showed greater clustering coefficients and node 

strengths in the certain condition, and some regional increases resulted from the GLM 

analysis. 

Certainty is inherently desirable and uncertainty inherently aversive (Bach 2010; 

Reuman et al 2015; Zhang et al 2014).  Therefore, even in our task with only the small 

gain or loss that coincides with feedback, we see activation in the reward circuits.  During 
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the certain condition, we saw greater activation in some areas associated with reward, 

including the vmPFC and the OFC. The vmPFC has been found to be active in valuating 

reward (Daw and Doya 2006; Bengtson 2009).  OFC activity has also been found to 

correlate with reward expectation (Kepecs 2008; Klein-Flugge 2013).  We also found 

increased insula activation, which has been shown to be more active in a decision-making 

task with a certainty component (Bhanji et al 2010). We found ROI-based network 

measures that showed increased connectivity in the OFC, frontal ROIs, and temporal 

ROIs.    

A meta-analysis conducted by White et al (2014) described that greater activation 

was observed in ACC, insula, and dlPFC and posterior parietal cortices in decision-

making under uncertain conditions.  We found some confirmation of the expected 

activation of brain regions under uncertain conditions, including activation of the ACC, 

the dlPFC, and the striatum.  We expected to see ACC activation based on the research 

describing its role in conflict monitoring and anticipation (Botvinick 2007; Nieuwenhuys 

2008 p390).  The ACC is known to engage the dlPFC and contains many reciprocal 

connections; therefore we would expect to see increased activity of the dlPFC. Likewise, 

the executive loop of the basal ganglia involves the dlPFC (Nieuwenhuys 2008 p249).  

The striatum is involved with reward-based learning, although activation may correlate 

with punishment (Daw and Doya 2006; Stalnaker et al 2012; Samejima et al 2005).  The 

computational model of decision-making developed by Bogacz and Tobias (2011) 

incorporates the cortex, the striatum, the subthalamic nucleus, and the thalamus.  
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A large increased parietal and occipital cluster of activation was shown in the 

uncertain condition.  Activation of the posterior parietal cortex has been shown to vary as 

a function of uncertainty (Hutchinson 2015).  In addition, the lateral intraparietal area has 

been shown to encode value for saccadic choices in primates (Kiani and Shadlen 2009; 

Beck et al 2008; Anderson and Cui 2009).  This area corresponds to the ventral 

intraparietal area in humans (Nieuwenhuys 2008 p607).  Therefore the activation may 

correlate with encoding the value of the choice involved.   

Unexpectedly, strong midbrain activation was found in the uncertain condition.  

The midbrain has generally been found to be active in reward (Reuman et al 2015; Zhang 

et al 2014); however, there are substantial connections in the direct circuit of the basal 

ganglia, which involves the substantia nigra and the striatum (Nieuwenhuys 2008 p249).  

The direct circuit is a motor circuit, and it could be that greater motor control is required 

in this task because of the increased uncertainty.  In addition, the increased activation of 

the occipital cortex in the uncertain condition was unexpected, given the equally visual 

nature of the certain and uncertain conditions.  However, because of the increased 

attention likely involved in the uncertain component of the task, this may correspond to 

increased occipital activation.  

ROIs reflecting greater network connectivity in the uncertain condition include 

the amygdala and hippocampus, as well as frontal and parietal regions that were 

discussed previously.  The amygdala is thought to encode emotional valence (Berntson et 

al 2009; Styliadis et al 2013), and because uncertainty correlates to increased anxiety and 

worry (de Bruin, Rassin, Muris 2006; Rosen and Knauper 2009), this may correspond to 
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the negative emotions that occur during uncertainty.  The hippocampus is generally 

active during memory tasks, and is also thought to help in valuating outcomes (Lebreton 

2013).  While this suggests a reward encoding, there are also substantial connections 

between the hippocampus and the amygdala (Nieuwenhuys 2008 p408), so it logically 

follows that if one is highly connected, the other will also be highly connected.  In 

addition, because of the memory capabilities required to discard and update the rule 

choices in the uncertain condition, the coincident activation of the hippocampus is 

expected.   

Taken together, these results reinforce many studies of decision-making under 

conditions of rule uncertainty versus rule certainty as well as include new information 

about the brain’s behavior between these two conditions.  The involvement of the insula, 

parietal cortex, temporal cortex, ventromedial cortex, and orbitofrontal cortex of the 

certain condition are generally associated with rule certainty and reward.  The activation 

of areas related to reward reinforces the notion that certainty is inherently rewarding.   

The widespread activation in the uncertain condition included the prefrontal cortex, the 

striatum, the thalamus, the midbrain, the amygdala, the hippocampus, and the parietal 

cortex and occipital cortex.  While the prefrontal cortex, parietal cortex, striatum, 

thalamus, amygdala and hippocampal involvement were expected, the occipital cortical 

involvement and the midbrain involvement were less expected.  The increased 

involvement of these regions may be attributed to increased visual attention and increased 

motor control.  Because the task involved in this study contains a binary condition with 

minimized outcome risk, this may explain these unexpected results.  
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Because we used a block design for our task, we could not separate the 

components of the task (i.e., performing the task and receiving feedback).  Had we 

jittered the intervals at which our stimuli were presented, the separate analyses would 

have been possible.  However, this would introduce an irregularity to the timing of our 

task that may have been disconcerting to subjects and introduced confounding variables.  

Therefore, this was the appropriate first experiment to complete. An event-related fMRI 

paradigm based on the current task would be an interesting next step and would allow us 

to resolve the task components even further. 
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CHAPTER 7: DECISION-MAKING UNDER UNCERTAIN CONDITIONS: A 

COHERENCE NETWORK ANALYSIS USING EEG 

Introduction 

As described in Chapters 4 and 5, many brain regions are involved in decision-

making during rule uncertainty. Having already described the correlates of decision-

making measured by fMRI using both GLM BOLD signal analysis and network analysis, 

as well as ERP analysis using EEG, we can now enhance the previous body of work with 

a network analysis of EEG data.  Frequency based analyses can reveal much about brain 

function.  This study builds on previous results by providing a description of frequencies, 

power, and network analysis of EEG electrodes in decision-making under uncertain 

conditions. 

Starting with Berger’s discovery in 1948 of EEG and a 10 Hz rhythm 

corresponding to relaxed wakefulness, activity at frequencies of interest are used to 

describe brain function (Gloor 1994).  The EEG waveform is thought to contain 

superimposed waves at various frequencies that arise from cortical and subcortical neural 

generators (Pizzagalli 2006).  The contribution of each frequency to the given waveform 

can be determined using a fast Fourier transformation (FFT) (Kramer 2013).  Power is a 

measure that represents the square of the FFT.  The most common frequency bands 

subject to EEG analysis include: delta (1:3 Hz), theta (4:7 Hz), alpha (8-12 Hz), and beta 

(13-30 Hz) (Pizzagalli 2006).  Gamma analysis (> 30 Hz) is useful but difficult to detect 

from outside of the scalp; however, some researchers place the gamma band at > 20 Hz, 

which would include this experiment’s high frequency beta band activity (Basar et al 
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2001; Logothetis 2008).  The frequency bands of interest have emerged as rhythms that 

occur in common states.   In this study, we examine low frequency alpha (8-10 Hz) and 

high frequency alpha (11-12 Hz) separately, as well as low frequency beta (13-17 Hz) 

and high frequency beta (18-30 Hz), as these bands can show differences in behavior 

from each other (Pizzagalli et al 2006).   

Delta oscillations are associated with inhibition of activity, pathological states, or 

infancy (Pizzagalli 2006; Pizzagalli 2004).  A diffuse increase in delta power has been 

associated with oddball responses in a p300 task (Basar Eroglu et al 1992).  Beta 

oscillations are associated with greater cognitive effort, and diminish after task rehearsal 

(Vecchiato et al 2013) and in value-based decision-making (Polania et al 2014).  Theta 

oscillations have been found to be involved in memory encoding in some studies (see 

Ward 2003), but has also been found to diminish in tasks with increased cognitive 

demand (Pandey et al 2015).  Pizzagalli et al (2004) found correlation between theta 

rhythm and increased glucose uptake by the rostral anterior cingulate cortex; similarly, 

Cavanagh (2015) describes an increased midline theta oscillations associated with rostral 

anterior cingulate cortex activation in cognitive control.  Cortical rhythms are thought to 

occur by cycles of neuronal activation from subcortical structures and cortical structures.  

A major contribution of the thalamus to the cortex is involved in theta rhythms for 

encoding of memory tasks and alpha rhythms for retrieval (Ward 2003; Klimesch1999). 

Increased alpha power is generally associated with diminished signal in event related 

tasks (Pandey et al 2015; Pizzagalli 2006) and correlates with decreased activation in the 

superior temporal, inferior frontal, and cingulate cortices (Goldman et al 2002).  This 
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suggests a diminished engagement of the uncertainty-related brain structures.  However, 

some studies have shown increased alpha power during internally focused attention 

(Cooper et al 2003; Klimesch, Sauseng, Hanslmeyer 2007; Palva and Palva 2007).   

Because the studies to date reflect disparate results, we expect to see differences 

between the conditions (certain versus uncertain, correct versus incorrect).  We looked 

the two seconds post-stimulus in both conditions in order to capture the widespread 

effects of the stimuli and to represent the associated cognitive processes.   

 We not only used power analysis to look at power differences between the 

electrodes in the certain versus uncertain and correct versus incorrect states but we also 

established networks based on coherence between each pair of electrodes for the 

frequency bands of interest.  Coherence can be a good approximation of connectivity 

between regions, as regions that oscillate in the same frequency likely have the same 

neural generators (Srinivasan et al 2007; Pizzagalli 2006; Gorisek et al 2015).  We 

generated a network for each participant, within each frequency band of interest, and 

applied network measures on each of these networks.  These measures describe the 

network, including how big it is, how efficiently it operates, and how each electrode 

behaves within the network.    
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Methods 

Analysis 

For task and electrophysiological setup, see chapter 5.  Data were preprocessed 

using EMSE as described in chapter 5.  Filtered data were exported and all subsequent 

analysis was conducted with MATLAB.   

Analyses were grouped into certain versus uncertain conditions and correct versus 

incorrect conditions. Coherence between the two conditions and power spectral data for 

each condition were calculated using the Chronux 2.10 package (chronux.org; Mitra and 

Bokil 2008).  Power spectra data were averaged across trials for each participant within 

each condition.  Taper calculations were set with a time-bandwidth product of 3 and a 

leading number of 5 tapers, in order to minimize rectangular windowing effects on the 

frequency data.  Coherence matrices were generated between each pair of electrodes, for 

each frequency from 1-30 Hz, for each participant.   

The 1-30 Hz frequency dataset was broken up into frequency bands of interest, 

and averaged within each band as follows:  delta: 1-3 Hz, theta: 4-7 Hz, alpha1 (low 

frequency alpha): 8-9 Hz, alpha2 (high frequency alpha): 10-12 Hz, beta1 (low frequency 

beta): 13-17 Hz, beta2 (high frequency beta): 18-30 Hz.  A matrix for each participant 

corresponding to each frequency band was used to represent a network.  The edges 

between each pair of electrodes were represented by coherence measurements within 

each frequency band. 

Network measures were calculated on each matrix.  These were averaged across 

participants within a given condition for each frequency band.   Network measures 
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included size, density (weighted and binary), cluster coefficient (weighted and binary), 

assortativity (weighted and binary), node degree, and node strength.  For binary 

measures, thresholds were varied between 0.4 and 0.9.  For weighted measures, a Fisher 

z-transformation was applied to the matrix to normalize the coherence values.  Then, the 

measures were applied.  The Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/; Rubinov and Sporns 2011) was used to calculate all 

previous values except for matrix size, which was calculated using MATLAB functions. 

Significance for network values was assessed using permutation testing.  10,000 

random networks datasets (of 27 participants, two conditions) were generated by 

shuffling edges of coherence values for each frequency band.  The network values were 

calculated on each generated dataset, and the false discovery rate method was used to 

correct for multiple-comparisons on node-based measures.  

Results 

Power spectra values were increased in the certain versus uncertain conditions for 

all frequency bands, for most electrodes.  Power spectra values for the certain condition 

are plotted in Figure 18, and values for the uncertain condition are plotted in Figure 19. 

ROIs of grouped electrodes (Figure 5) are used to compare the power spectra and are 

plotted in Figure 20.   
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Figure 18.  Scalp maps of EEG power spectral values at frequency bands of interest for the certain condition.   

Figure 19. Scalp maps of power spectral values at frequency bands of interest for the uncertain condition.  
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Figure 20.  Power spectra in the 1-30 Hz range plotted for each ROI, comparing the certain and uncertain 

conditions.   

Power spectra values are plotted for correct condition (Figure 21) versus incorrect 

condition (Figure 22).   
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Figure 21.  Scalp maps of EEG power spectral values at frequency bands of interest for the correct feedback.   

Figure 22.  Scalp maps of power spectral values at frequency bands of interest for the incorrect feedback.   
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The power values associated with correct feedback are greater than those associated with 

incorrect feedback for the delta frequency (1-3) Hz, and incorrect power values are 

greater than correct power values for 4-12 Hz (theta, low and high frequency alpha 

bands) and for > 20 Hz (high frequency beta band) (see Figure 23). 

Figure 23.  EEG power spectra in the 1-30 Hz range plotted for each ROI, comparing the correct and incorrect 

conditions.   

For the constructed coherence networks, the size of the network in certain versus 

uncertain conditions is displayed in Table 21.  The networks show a greater number of 

connections reflecting higher coherence at every threshold 0.4 – 0.9 and in every 

frequency band.   
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Table 21. Size of EEG network for certain versus uncertain conditions at varying thresholds and frequency 

bands.  

Frequency 

band 

Thresholds Mean Size, 

Certain 

Mean Size, 

Uncertain 

p-value 

Delta 0.4 7198.74 6806.59 <0.001 

0.5 5763.30 5295.11 <0.001 

0.6 4618.85 4053.22 <0.001 

0.7 3654.22 3037.52 <0.001 

0.8 2780.00 2118.74 <0.001 

0.9 1818.15 1252.44 <0.001 

Theta 0.4 7683.15 7046.56 <0.001 

0.5 6054.78 5270.37 <0.001 

0.6 4454.22 3663.37 <0.001 

0.7 3092.74 2354.89 <0.001 

0.8 2000.07 1377.07 <0.001 

0.9 1009.78 626.89 <0.001 

Alpha1 0.4 7398.19 6924.48 <0.001 

0.5 5659.52 5103.78 <0.001 

0.6 4043.96 3431.85 <0.001 

0.7 2624.56 2068.15 <0.001 

0.8 1625.81 1209.96 <0.001 

0.9 806.63 562.41 <0.001 

Alpha2 0.4 7441.11 6932.11 <0.001 

0.5 5635.44 5121.37 <0.001 

0.6 3960.52 3424.48 <0.001 

0.7 2550.56 2075.89 <0.001 

0.8 1550.22 1196.00 <0.001 

0.9 742.41 548.44 <0.001 

Beta1 0.4 7210.56 6827.26 <0.001 

0.5 5317.93 4959.04 <0.001 

0.6 3628.37 3283.93 <0.001 

0.7 2306.63 1985.67 <0.001 

0.8 1379.37 1129.70 <0.001 

0.9 649.44 526.59 <0.001 

Beta2 0.4 6873.89 6371.15 <0.001 

0.5 4894.11 4420.07 <0.001 

0.6 3208.44 2817.19 <0.001 

0.7 2021.26 1750.41 <0.001 

0.8 1229.41 1048.15 <0.001 

0.9 545.11 471.70 <0.001 
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Table 22. Certain versus uncertain EEG network density at varying thresholds and frequency bands. 

  

Frequency 

Band 

Threshold Certain 

density mean 

Uncertain density 

mean 

p-value 

Delta 0.4 0.5001 0.4754 <0.001 

0.5 0.4027 0.3723 <0.001 

0.6 0.3245 0.2883 <0.001 

0.7 0.2583 0.2191 <0.001 

0.8 0.1981 0.1539 <0.001 

0.9 0.1303 0.0930 <0.001 

Theta 0.4 0.5284 0.4844 <0.001 

0.5 0.4182 0.3650 <0.001 

0.6 0.3103 0.2570 <0.001 

0.7 0.2175 0.1683 <0.001 

0.8 0.1426 0.1018 <0.001 

0.9 0.0746 0.0503 <0.001 

Alpha1 0.4 0.5103 0.4783 <0.001 

0.5 0.3928 0.3555 <0.001 

0.6 0.2832 0.2426 <0.001 

0.7 0.1867 0.1497 <0.001 

0.8 0.1177 0.0909 <0.001 

0.9 0.0612 0.0462 <0.001 

Alpha2 0.4 0.5142 0.4802 <0.001 

0.5 0.3918 0.3580 <0.001 

0.6 0.2782 0.2432 <0.001 

0.7 0.1823 0.1507 <0.001 

0.8 0.1127 0.0902 <0.001 

0.9 0.0573 0.0455 <0.001 

Beta1 0.4 0.4972 0.4721 <0.001 

0.5 0.3687 0.3460 <0.001 

0.6 0.2540 0.2326 <0.001 

0.7 0.1642 0.1442 <0.001 

0.8 0.1007 0.0849 <0.001 

0.9 0.0513 0.0439 <0.001 

Beta2 0.4 0.4735 0.4403 <0.001 

0.5 0.3398 0.3091 <0.001 

0.6 0.2255 0.2009 <0.001 

0.7 0.1445 0.1279 <0.001 

0.8 0.0909 0.0796 <0.001 
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Table 23. Certain versus uncertain EEG network assortativity at different frequency bands and thresholds. 

Frequency 

band 

Threshold Mean Certain 

Assortativity 

Mean 

Uncertain 

Assortativity 

p-value 

Delta 0.4 0.2372 0.2189 <0.001 

0.5 0.3310 0.3028 <0.001 

0.6 0.3796 0.3530 <0.001 

0.7 0.4144 0.4283 .092 

0.8 0.5363 0.5713 <0.001 

0.9 NaN NaN <0.001 

Theta 0.4 0.2270 0.2212 0.066 

0.5 0.3194 0.3214 0.523 

0.6 0.4165 0.4245 0.794 

0.7 0.4947 0.5080 0.838 

0.8 0.5828 0.5961 0.753 

0.9 0.6660 0.7109 .008 

Alpha1 0.4 0.2589 0.2703 .01 

0.5 0.3576 0.3701 0.986 

0.6 0.4619 0.4470 0.003 

0.7 0.4951 0.5203 .016 

0.8 0.5928 0.6112 0.795 

0.9 0.6965 0.7484 .007 

Alpha2 0.4 0.2778 0.2949 0.001 

0.5 0.3721 0.3879 0.001 

0.6 0.4725 0.4789 0.701 

0.7 0.5098 0.5357 0.008 

0.8 0.5996 0.6015 0.381 

0.9 0.7153 0.7391 0.848 

Beta1 0.4 0.2809 0.3018 <0.001 

0.5 0.3835 0.4032 0.001 

0.6 0.4781 0.4775 0.331 

0.7 0.5290 0.5171 0.07 

0.8 0.5972 0.5935 0.267 

0.9 0.7070 0.7398 0.073 

Beta2 0.4 0.2788 0.2757 0.113 

0.5 0.3657 0.3679 0.471 

0.6 0.4557 0.4330 0 

0.7 0.5310 0.5043 0.003 

0.8 0.5732 0.5998 0.048 

0.9 0.7685 0.7976 0.013 
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Table 24. Correct versus incorrect EEG network size at varying frequency bands and thresholds 

Frequency 

band 

Threshold Correct 

Mean Size 

Incorrect 

Mean Size 

p-value 

Delta 0.4 6868.44 7095.44 <0.001 

0.5 5450.44 5484.22 0.002 

0.6 4356.96 4222.89 <0.001 

0.7 3442.11 3174.85 <0.001 

0.8 2663.59 2160.52 <0.001 

0.9 1845.22 1203.74 <0.001 

Theta 0.4 7599.56 7714.00 <0.001 

0.5 5923.07 6083.74 <0.001 

0.6 4337.44 4513.59 <0.001 

0.7 2922.74 3073.33 <0.001 

0.8 1812.30 1856.00 <0.001 

0.9 826.74 871.48 <0.001 

Alpha1 0.4 7515.70 7574.70 <0.001 

0.5 5712.78 5829.52 <0.001 

0.6 3990.52 4163.19 <0.001 

0.7 2526.00 2670.56 <0.001 

0.8 1461.33 1551.74 <0.001 

0.9 660.44 694.11 <0.001 

Alpha2 0.4 7488.41 7515.85 0.006 

0.5 5643.00 5721.26 <0.001 

0.6 3887.48 3981.81 <0.001 

0.7 2396.78 2503.33 <0.001 

0.8 1334.26 1397.33 <0.001 

0.9 610.96 632.22 <0.001 

Beta1 0.4 7255.59 7214.41 <0.001 

0.5 5421.52 5417.67 0.354 

0.6 3772.30 3755.48 0.021 

0.7 2321.59 2337.78 0.989 

0.8 1310.26 1308.56 0.376 

0.9 606.59 588.78 <0.001 

Beta2 0.4 7189.19 7301.85 <0.001 

0.5 5227.30 5339.85 <0.001 

0.6 3493.44 3614.26 <0.001 

0.7 2126.04 2204.41 <0.001 

0.8 1214.37 1238.44 <0.001 

0.9 538.26 537.22 0.402 
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Frequency 

band 

Threshold Density Density P-value 

Delta 0.4 0.4778 0.4957 0 

0.5 0.3818 0.3864 0.744 

0.6 0.3073 0.3003 0 

0.7 0.2444 0.2283 0 

0.8 0.1903 0.1578 0 

0.9 0.1325 0.0910 0 

Theta 0.4 0.5231 0.5314 0.002 

0.5 0.4095 0.4215 0 

0.6 0.3035 0.3156 0 

0.7 0.2073 0.2186 0 

0.8 0.1318 0.1355 0.753 

0.9 0.0637 0.0682 0 

Alpha1 0.4 0.5188 0.5230 0.351 

0.5 0.3970 0.4054 0 

0.6 0.2806 0.2931 0 

0.7 0.1810 0.1914 0 

0.8 0.1077 0.1147 0 

0.9 0.0525 0.0558 0.002 

Alpha2 0.4 0.5177 0.5198 0.016 

0.5 0.3929 0.3989 0.841 

0.6 0.2744 0.2820 0.003 

0.7 0.1731 0.1809 1 

0.8 0.0993 0.1044 0.001 

0.9 0.0495 0.0517 0.833 

Beta1 0.4 0.5007 0.4985 0 

0.5 0.3762 0.3769 0 

0.6 0.2642 0.2646 0 

0.7 0.1657 0.1682 0.037 

0.8 0.0968 0.0976 0 

0.9 0.0489 0.0485 0 

Beta2 0.4 0.4939 0.5031 0 

0.5 0.3611 0.3700 0 

0.6 0.2444 0.2534 0 

0.7 0.1514 0.1574 0.005 

0.8 0.0894 0.0910 0.025 

0.9 0.0443 0.0445 0 
Table 25. Correct versus incorrect EEG network density at varying thresholds and frequency bands 
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Frequency 

Band 

Threshold Mean Assortativity 

Correct 

Mean Assortativity 

Incorrect 

p-value 

Delta 0.4 0.2284 0.2162 0 

0.5 0.3137 0.2594 0 

0.6 0.3805 0.3362 0 

0.7 0.4349 0.4346 0.225 

0.8 0.5691 0.5305 0 

0.9 NaN NaN 0 

Theta 0.4 0.2275 0.2473 0 

0.5 0.3230 0.3370 0.008 

0.6 0.4075 0.4311 0.001 

0.7 0.4853 0.4755 0.082 

0.8 0.5806 0.5541 0.006 

0.9 0.7273 0.7184 0.215 

Alpha1 0.4 0.2565 0.2917 0 

0.5 0.3498 0.3658 0.001 

0.6 0.4525 0.4483 0.108 

0.7 0.5140 0.4923 0.003 

0.8 0.6338 0.5995 0.001 

0.9 0.7298 0.7395 0.553 

Alpha2 0.4 0.2767 0.2977 0 

0.5 0.3788 0.3878 0.926 

0.6 0.4712 0.4700 0.185 

0.7 0.5218 0.5362 0.87 

0.8 0.6196 0.6244 0.422 

0.9 0.7102 0.7343 0.806 

Beta1 0.4 0.2751 0.3034 0 

0.5 0.3809 0.4117 0 

0.6 0.4674 0.4924 0 

0.7 0.5323 0.5529 0.024 

0.8 0.6147 0.6168 0.396 

0.9 0.7262 0.7234 0.33 

Beta2 0.4 0.2707 0.2585 0 

0.5 0.3661 0.3624 0.037 

0.6 0.4572 0.4529 0.061 

0.7 0.5376 0.5307 0.062 

0.8 0.5969 0.6053 0.626 

0.9 0.7134 0.7097 0.314 
 

Table 26. Correct versus incorrect EEG network assortativity at varying thresholds and frequencies. 
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Similarly, network density shows a significantly higher value in the certain versus 

uncertain condition at every threshold 0.4-0.9 and in every frequency band (Table 23).  In 

the delta band, the certain assortativity is significantly greater than the uncertain 

assortativity, but the other frequency bands reflect inconsistent differences and 

significance (Table 24). The size of the network in the correct versus incorrect varies by 

frequency band (Table 25).   At thresholds 0.4 and 0.5, it is larger for the incorrect 

condition and from thresholds 0.6-0.9 it is larger for the correct condition.  All p-values 

for these comparisons are significant.  For the theta, low frequency alpha and high 

frequency alpha bands, the incorrect network size is significantly larger.  The correct 

condition is significantly larger in the low frequency beta band except for at threshold 

0.7.  The incorrect condition is significantly larger for the low beta frequency band for all 

thresholds except 0.9.  Network density follows this trend but there is less consistency 

across the thresholds (Table 26).  Density is higher in the correct condition for the delta 

and beta1 frequencies for most thresholds, and density is higher in the incorrect condition 

for the theta, alpha 1, alpha 2, and beta 2 frequency bands.   

Assortativity is higher for the correct condition in the delta frequency band, and 

higher for the incorrect condition in the beta frequency band thresholds 0.4-0.7.  

 For node-based weighted measures, such as strength and cluster coefficient, the 

certain condition shows significantly greater means in a number of nodes (Figures 24 and 

25).   
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Figure 24. Node strength for certain > uncertain condition for the EEG frequency bands of interest.  Green 

areas with unlabeled electrodes represent no significant difference.   
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Figure 25. Cluster coefficient for certain > uncertain condition for the EEG frequency bands of interest.  Green 

areas with unlabeled electrodes represent no significant difference.   

Most of the significance is lost in all frequency bands in the central region; in low 

frequency alpha, high frequency alpha, and low frequency beta, this lack of significant 

difference extends to the frontal region (Figure 24). The certain condition network has 

stronger cluster coefficient at most nodes in all frequencies bands (Figure 25).  

 Comparing the correct feedback network versus the incorrect feedback network 

shows limited increased strength in a few states (Figure 26). Delta coherence strength 

around the periphery of the scalp reflects a prominent difference, with little significant 

difference in the midline/center of the scalp.  This suggests frontal, temporal, and 

occipital cortical differences are occurring in the delta frequency band.   The incorrect 

network node strength is increased over the correct network node strength in a collection 
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of central electrodes (Figure 27).  These differences are most pronounced in the 

central/parietal region, with some temporal involvement.  There is greater involvement 

on the left than the right.  The cluster coefficient is increased in the delta frequency band 

of the correct coherence network, with very few differences in the rest of the frequency 

bands (Figure 28).  The cluster coefficient of the incorrect coherence network is increased 

in numerous electrodes of the theta, low and high frequency alpha, and low and high 

frequency beta networks.  These differences are most prominently seen over the central 

midline of the scalp, but they are more posterior than the corresponding node strength 

differences.  

 

Figure 26.  Electrodes reflecting increased node strength for the correct condition over the incorrect condition 

for the EEG network analysis.  
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Figure 27.  Electrodes reflecting increased node strength for the incorrect condition over the correct condition 

for the EEG network analysis.  
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Figure 28.  Electrodes reflecting increased cluster coefficient for the incorrect condition over the correct 

condition for the EEG network analysis.  

 

Discussion 

 Our results reflect an overall greater power in all frequency bands in the certain 

over the uncertain condition, and a greater measure of all network coherence values.  This 

suggests that the level of connectivity is high in the certain condition, and that 

desynchronization is occurring in the uncertain condition.  Given that results reflected in 

chapter six suggest desynchronization in the uncertain condition in the fMRI network, 

and temporally focused increases in potentials in the uncertain condition at various 

intervals post stimulus in chapter five, this is unsurprising.   The increased theta power in 
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the incorrect feedback interval is similar to that found in other uncertainty studies 

(Cavanagh 2014; Cohen 2007).  Increased theta power has been attributed to encoding in 

memory (Ward 2003) and has been found to correlate with increased activation in the 

superior frontal gyrus, the inferior frontal gyrus, the inferior parietal lobule, and the 

inferior temporal gyrus (O’Gorman et al 2013).  These regions are associated with 

memory and executive behavior that aligns with the memory-updating theory.  It follows 

that when receiving incorrect feedback, this causes the individual to update a mental 

schema that held the potential rule.  Increased theta activity in the incorrect condition is 

found not only in absolute increase but also in network size, cluster coefficient, and node 

strength of many nodes. The electrodes of significance of the theta band are mostly in the 

frontal midline with some left frontal involvement.  This supports the notion of mental 

updating in midline frontal cortical structures. 

 Differences in delta networks in the correct versus incorrect state are minimal.  

The network size is bigger in the incorrect state at low thresholds, and bigger in the 

correct state at higher thresholds.  This suggests an inconsistency in this measure across 

thresholds, which diminishes the significance of the results and makes them more 

difficult to interpret.  Node-based measures of node strength show many electrodes that 

are strengthened in the correct condition.  Because delta oscillations correspond to a 

slow-wave process thought to be inhibitory (Pizzagalli 2006), this may be related to 

inhibition of cognitive processes in the prevention of updating the mental schema 

associated with rule updating.  Brain regional activation that correlates negatively with 

increased delta activity includes the cingulate cortex, the middle frontal gyrus, and the 
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superior temporal gyrus (O’Gorman 2013).  The cingulate cortex is involved in error 

anticipation (Botvinick 2007) and the middle frontal and superior temporal gyri are 

involved in memory updating, so it follows that the suppression of activation of these 

structures may be occurring with the increased delta oscillations in specific regions of the 

brain during the correct feedback.   

 Interestingly, there was significant difference in both alpha bands in the incorrect 

> correct condition.  Alpha is typically thought of as a frequency band predominant at 

rest (Pizzagalli 2006), however, during the incorrect feedback, other results point to the 

brain being more active and involved with updating. Some studies have postulated that it 

is not a lack of attention, but rather a lack of externally directed attention that increases 

alpha power (Cooper et al 2003; Klimesch, Sauseng, Hanslmeyer 2007; Palva and Palva 

2007).  Ward (2003) suggests that alpha activity is associated with memory retrieval. 

During this task, it makes sense that individuals would be internally focused while 

updating the mental representation of the rule state.  Increased alpha signal is correlated 

with activation in the insula and thalamus (Goldman et al 2002).  The midline central 

(posterior frontal/anterior parietal) electrodes showed differences in cluster coefficient 

and node strength, whereas alpha activity typically is a more posterior, occipital finding.  

This suggests that the alpha oscillations are a function of thalamic input, coordinating 

attention in these regions to allow for updating of the mental representation of the rule 

state.   

 In the incorrect condition, the high frequency beta band showed notable 

differences in size and density, and notably in cluster coefficient in many frontal, midline, 
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and posterior electrodes. A small mid-left region of electrodes demonstrated greater node 

strength.  Beta activity is generally associated with greater attention and increased 

activity (Pizzagalli 2006).  However, the frequency band we are referring to is sometimes 

classified as gamma activity, which some researchers have defined as starting as low as 

20 Hz (Logothetis 2008 supplement).  Beta activity has been found to be diminished in a 

rehearsed task (Vecchiato et al 2013).  Beta activity increases correlate with middle 

frontal activation, superior parietal, and inferior temporal gyrus activation (O’Gorman 

2013).  This adds more evidence that these structures are used in context updating during 

the incorrect feedback epochs.  Beta activity shows a transient increase associated with 

the cessation of activity during a decision-making motor task (Wade and Brown 2016). 

 Our findings comparing the certain and uncertain card-matching component of the 

task found global measures describing greater connectivity and a larger network in the 

certain condition, suggesting that desynchronization at all frequency bands is occurring in 

the uncertain card-application condition.  However, the correct versus incorrect network 

comparisons yielded some interesting differences.  After incorrect feedback, the 

increased midline theta, midline alpha, and midline beta activities are consistent with a 

memory updating phenomena associated with adjusting the rule.  
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CHAPTER 8: CONCLUSION 

This project used multiple imaging modalities and analyses to evaluate executive 

brain function and decision-making, both in healthy individuals and in those with MCI.  

These analyses included not only traditional methods such as GLM analysis of fMRI and 

ERP analysis of EEG, but also less-used network methods.  This project highlighted brain 

network differences between an MCI-highEF group and an MCI-lowEF group, as well as 

between conditions of rule certainty and uncertainty during decision-making. This project 

sought to answer to two main questions: 

o What are the brain differences that exist between those with impaired 

executive abilities and those with intact executive abilities in MCI? 

o What are the underlying brain activation differences that occur in 

individuals when making decisions under uncertain conditions? 

 These two topics, while seemingly disparate, are importantly linked by the 

question of what causes impairment in decision-making in disorders such as MCI. 

Individuals with pathological conditions may be faced with medical care decisions and 

they may be uncertain of the best way to select a course of action to yield the best effect 

on their life. This project started with a preliminary study on network differences in 

individuals with MCI grouped by high versus low executive abilities.  Next, we provided 

an analysis of the brain regions involved in decision-making under conditions of rule 

certainty compared to rule uncertainty.  The results of this study will allow for future 

studies of decision-making under uncertain conditions in pathological states such as MCI.   
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 Chapter 2 provided an analysis of differences of rs-fMRI networks in an MCI-

lowEF group versus an MCI-highEF group. The MCI-highEF group had a larger, 

nonspecific network.  This network involved regions such as the frontal and parietal 

cortices, regions that are necessary for performing executive tasks and decision-making.  

The network results suggested functional compensation in those with low executive 

abilities.  Chapter 3 provided an analysis of differences of structural networks in an MCI-

lowEF group compared with an MCI-highEF group.  The results showed a more 

connected network and greater white matter structural integrity in the MCI-highEF group.  

This suggests that those with higher white matter integrity are able to perform better on 

executive tasks, and that perhaps the greater functional connectivity in those with low 

executive abilities is compensating for this diminished white matter integrity.  Chapter 5 

described greater network connectivity in rule uncertain decision-making, as indicated by 

a number of measures such as network size, strength, and clustering coefficient of many 

ROIs.  This coincided with increased BOLD signal activation in a number of the brain 

regions in the uncertain condition, particularly in the frontal, parietal, and occipital 

cortices and in regions of the basal ganglia.   Combined with the decreased structural 

connectivity in MCI-lowEF individuals, this suggests that the decreased white matter 

connections that coincide with low executive ability may correspond with diminished 

ability to overcome uncertainty in decision-making. Chapter 6 reflected the ERPs 

associated with decision-making under uncertain conditions.  The ERP analysis allowed 

for the study of the brain regions involved in making an uncertain decisions compared to 

a certain decisions, as well as a study of the brain regions involved in receiving feedback 
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during the two conditions.  An n400-like effect was noted during the uncertain condition, 

and then a long (500-1000 ms) interval of increased potential of the certain condition 

over the uncertain condition was observed.  We surmise that this could arise from the late 

positive component phenomenon, which is often associated with memory-reinforcing 

tasks.  During feedback, a positive component in the 300 ms post-stimulus timeframe was 

notable for a large positive amplitude when receiving incorrect feedback.  This may be a 

p300-like effect corresponding to memory updating when incorrect feedback was given.  

Chapter 7 illustrated that there is overall greater network connectivity in the certain 

condition during task performance than in the uncertain condition.  These networks 

measures reflected greater frequency coherence in frequency bands of interest: delta, 

theta, low and high alpha, and low and high theta.  The synchronization of these regions 

doesn’t necessarily reflect greater cognitive effort, as our fMRI BOLD signal results 

indicates.  This suggests diminished effort as brain regions synchronize, and 

desynchronization when effort is made to resolve rule uncertainty. However, during 

incorrect feedback there was some increased synchronization after incorrect feedback 

when compared to after correct feedback.  This increased power during incorrect 

feedback occurred in the theta, high and low frequency alpha, and the high frequency 

beta bands.  Taken together, these results suggest internally focused attention 

corresponding to rule updating, which is followed next by desynchronization as the effort 

is put forth to search for a new rule.   

  The results of this study suggest that an increased resting functional network and 

a decreased structural network, particularly in frontal and parietal regions, reflect 
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diminished executive abilities in MCI.  Because a number of these regions are involved 

in uncertain decision-making, it follows that in these networks decreased structural 

integrity may lead to decreased decision-making abilities.  In addition, ERP such as a late 

positive component-like wave arises from uncertainty, and a p300-like component arises 

from incorrect feedback during an uncertain condition.  These findings are markers of 

uncertainty that can be measured in pathological conditions in which decision-making is 

impaired, such as MCI.  The diminished white matter integrity in MCI may be keeping 

individuals from creating the focused brain activity necessary for executive abilities, 

which is paradoxically reflected as increased functional connectivity. 

 The limitations of this study have been discussed in detail in previous chapters. 

This study has provided some good initial baseline measures of networks involved in 

executive ability and decision-making.  Future studies that involve measuring the card-

matching task in pathological states would provide for greater understanding of the brain 

regions involved in decision-making and for understanding the pathological implications 

of impaired decision-making.  This would facilitate therapeutic interventions to target 

improvement of specific brain region interactions.   
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