
Boston University
OpenBU http://open.bu.edu
BU Open Access Articles BU Open Access Articles

2011

Least squares temporal difference
actor-critic methods with

applications to robot motion control

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

Version
Citation (published version): R Moazzez-Estanjini, X-C Ding, M Lahijanian, J Wang, CA Belta, I Ch

Paschalidis. "Least Squares Temporal Difference Actor-Critic Methods
with Applications to Robot Motion Control." Proceedings of the 50th
IEEE Conference on Decision and Control,

https://hdl.handle.net/2144/18014
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/142070198?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bu.edu/disc/share-your-open-access-story/

ar
X

iv
:1

10
8.

46
98

v2
 [

cs
.R

O
]

30
 A

ug
 2

01
1

Least Squares Temporal Difference Actor-Critic Methods with Applications
to Robot Motion Control∗

Reza Moazzez Estanjini†, Xu Chu Ding‡, Morteza Lahijanian‡, Jing Wang†,
Calin A. Belta‡, and Ioannis Ch. Paschalidis§

Abstract— We consider the problem of finding a control
policy for a Markov Decision Process (MDP) to maximize the
probability of reaching some states while avoiding some other
states. This problem is motivated by applications in robotics,
where such problems naturally arise when probabilistic models
of robot motion are required to satisfy temporal logic task
specifications. We transform this problem into a Stochastic
Shortest Path (SSP) problem and develop a new approximate
dynamic programming algorithm to solve it. This algorithm
is of the actor-critic type and uses a least-square temporal
difference learning method. It operates on sample paths of
the system and optimizes the policy within a pre-specified
class parameterized by a parsimonious set of parameters. We
show its convergence to a policy corresponding to a stationary
point in the parameters’ space. Simulation results confirm the
effectiveness of the proposed solution.

Index Terms— Markov Decision Processes, dynamic pro-
gramming, actor-critic methods, robot motion control, robotics.

I. I NTRODUCTION

Markov Decision Processes (MDPs) have been widely
used in a variety of application domains. In particular,
they have been increasingly used to model and control
autonomous agents subject to noises in their sensing and
actuation, or uncertainty in the environment they operate.
Examples include: unmanned aircraft [1], ground robots [2],
and steering of medical needles [3]. In these studies, the
underlying motion of the system cannot be predicted with
certainty, but they can be obtained from the sensing and
the actuation model through a simulator or empirical trials,
providing transition probabilities.

Recently, the problem of controlling an MDP from a
temporal logic specification has received a lot of attention.
Temporal logics such as Linear Temporal Logic (LTL) and
Computational Tree Logic (CTL) are appealing as they
provide formal, high level languages in which the behavior
of the system can be specified (see [4]). In the context

* Research partially supported by the NSF under grant EFRI-0735974,
by the DOE under grant DE-FG52-06NA27490, by the ODDR&E MURI10
program under grant N00014-10-1-0952, and by ONR MURI undergrant
N00014-09-1051.

† Reza Moazzez Estanjini and Jing Wang are with the Division of
Systems Eng., Boston University, 8 St. Mary’s St., Boston, MA 02215,
email: {reza,wangjing}@bu.edu.

‡ Xu Chu Ding, Morteza Lahijanian, and Calin A. Belta are with the
Dept. of Mechanical Eng., Boston University, 15 St. Mary’s St., Boston,
MA 02215, email:{xcding,morteza,cbelta}@bu.edu.

§ Ioannis Ch. Paschalidis is with the Dept. of Electrical & Computer
Eng., and the Division of Systems Eng., Boston University, 8St. Mary’s
St., Boston, MA 02215, email:yannisp@bu.edu.

§ Corresponding author

of MDPs, providing probabilistic guarantees means finding
optimal policies that maximize the probabilities of satisfying
these specifications. In [2], [5], it has been shown that, the
problem of finding an optimal policy that maximizes the
probability of satisfying a temporal logic formula can be
naturally translated to one of maximizing the probability
of reaching a set of states in the MDP. Such problems
are referred to as Maximal Reachability Probability (MRP)
problems. It has been known [3] that they are equivalent
to Stochastic Shortest Path (SSP) problems, which belong
to a standard class of infinite horizon problems in dynamic
programming.

However, as suggested in [2], [5], these problems usually
involve MDPs with large state spaces. For example, in order
to synthesize an optimal policy for an MDP satisfying an
LTL formula, one needs to solve an MRP problem on a
much larger MDP, which is the product of the original MDP
and an automaton representing the formula. Thus, computing
the exact solution can be computationally prohibitive for
realistically-sized settings. Moreover, in some cases, the
system of interest is so complex that it is not feasible to
determine transition probabilities for all actions and states
explicitly.

Motivated by these limitations, in this paper we develop a
new approximate dynamic programming algorithm to solve
SSP MDPs and we establish its convergence. The algorithm
is of the actor-critic type and uses aLeast Square Temporal
Difference(LSTD) learning method. Our proposed algorithm
is based on sample paths, and thus only requires transition
probabilities along the sampled paths and not over the entire
state space.

Actor-critic algorithms are typically used to optimize some
Randomized Stationary Policy(RSP) using policy gradient
estimation. RSPs are parameterized by a parsimonious set
of parameters and the objective is to optimize the policy
with respect to these parameters. To this end, one needs to
estimate appropriate policy gradients, which can be done
using learning methods that are much more efficient than
computing a cost-to-go function over the entire state-action
space. Many different versions of actor-critic algorithmshave
been proposed which have been shown to be quite efficient
for various applications (e.g., in robotics [6] and navigation
[7], power management of wireless transmitters [8], biology
[9], and optimal bidding for electricity generation companies
[10]).

A particularly attractive design of the actor-critic archi-
tecture was proposed in [11], where thecritic estimates

http://arxiv.org/abs/1108.4698v2

the policy gradient using sequential observations from a
sample path while theactor updates the policy at the same
time, although at a slower time-scale. It was proved that
the estimate of the critic tracks the slowly varying policy
asymptotically under suitable conditions. A center piece of
these conditions is a relationship between the actor step-size
and the critic step-size, which will be discussed later.

The critic of [11] uses first-order variants of theTemporal
Difference(TD) algorithm (TD(1) and TD(λ)). However, it
has been shown that the least squares methods – LSTD (Least
Squares TD) and LSPE (Least Squares Policy Evaluation) –
are superior in terms of convergence rate (see [12], [13]).
LSTD and LSPE were first proposed for discounted cost
problems in [12] and [14], respectively. Later, [13] showed
that the convergence rate of LSTD is optimal. Their results
clearly demonstrated that LSTD converges much faster and
more reliably than TD(1) and TD(λ).

Motivated by these findings, we propose an actor-critic
algorithm that adopts LSTD learning methods tailored to SSP
problems, while at the same time maintains the concurrent
update architecture of the actor and the critic. (Note that [15]
also used LSTD in an actor-critic method, but the actor had
to wait for the critic to converge before making each policy
update.) To illustrate salient features of the approach, we
present a case study where a robot in a large environment is
required to satisfy a task specification of “go to a set of goal
states while avoiding a set of unsafe states.” (We note that
more complex task specifications can be directly converted
to MRP problems as shown in [2], [5].)

The rest of the paper is organized as follows. We formulate
the problem in Sec. II. The LSTD actor-critic algorithm
with concurrent updates is presented in Sec.??, where the
convergence of the algorithm is shown. A case study is
presented in Sec. V. We conclude the paper in Sec. VI.

Notation: We use bold letters to denote vectors and
matrices; typically vectors are lower case and matrices upper
case. Vectors are assumed to be column vectors unless
explicitly stated otherwise. Transpose is denoted by prime.
For anym×n matrixA, with rowsa1, . . . , am ∈ R

n, v(A)
denotes the column vector(a1, . . . , am). ‖ · ‖ stands for the
Euclidean norm and‖·‖θ is a special norm in the MDP state-
action space that we will define later.0 denotes a vector or
matrix with all components set to zero andI is the identity
matrix. |S| denotes the cardinality of a setS.

II. PROBLEM FORMULATION

Consider an SSP MDP with finite state and action spaces.
Let k denote time,X denote the state space with cardinality
|X|, andU denote the action space with cardinality|U|. Let
xk ∈ X anduk ∈ U be the state of the system and the action
taken at timek, respectively. Letg(xk, uk) be the one-step
cost of applying actionuk while the system is at statexk.
Let x0 andx∗ denote the initial state and the special cost-
free termination state, respectively. Letp(j|xk, uk) denote
the state transition probabilities (which are typically not
explicitly known); that is,p(j|xk, uk) is the probability of
transition from statexk to state j given that actionuk

is taken while the system is at statexk. A policy µ is
said to beproper if, when using this policy, there is a
positive probability thatx∗ will be reached after at most
|X| transitions, regardless of the initial statex0. We make
the following assumption.

Assumption A
There exist a proper stationary policy.

The policy candidates are assumed to belong to a param-
eterized family ofRandomized Stationary Policies(RSPs)
{µθ(u|x) | θ ∈ R

n}. That is, given a statex ∈ X

and a parameterθ, the policy applies actionu ∈ U with
probabilityµθ(u|x). Define theexpected total cost̄α(θ) to
be limt→∞E{

∑t−1
k=0 g(xk, uk)|x0} whereuk is generated

according to RSPµθ(u|x). The goal is to optimize the
expected total cost̄α(θ) over then-dimensional vectorθ.

With no explicit model of the state transitions but only
a sample path denoted by{xk, uk}, the actor-critic algo-
rithms typically optimizeθ locally in the following way:
first, the critic estimates the policy gradient∇ᾱ(θ) us-
ing a Temporal Difference (TD)algorithm; then the actor
modifies the policy parameter along the gradient direc-
tion. Let the operatorPθ denote taking expectation af-
ter one transition. More precisely, for a functionf(x, u),
(Pθf)(x, u) =

∑

j∈X,ν∈U
µθ(ν|j)p(j|x, u)f(j, ν). Define the

Qθ-value function to be any function satisfying the Poisson
equation

Qθ(x, u) = g(x, u) + (PθQθ)(x, u),

whereQθ(x, u) can be interpreted as the expected future
cost we incur if we start at statex, apply controlu, and
then apply RSPµθ. We note that in general, the Poisson
equation need not hold for SSP, however, it holds if the policy
corresponding to RSPµθ is a proper policy [16]. We make
the following assumption.

Assumption B
For any θ, and for anyx ∈ X, µθ(u|x) > 0 if action u is
feasible at statex, andµθ(u|x) ≡ 0 otherwise.

We note that one possible RSP for which Assumption B
holds is the “Boltzmann” policy (see [17]), that is

µθ(u|x) =
exp(h

(u)
θ

(x))
∑

a∈U
exp(h

(a)
θ

(x))
, (1)

whereh(u)
θ

(x) is a function that corresponds to actionu and
is parameterized byθ. The Boltzmann policy is simple to
use and is the policy that will be used in the case study in
Sec. V.

Lemma II.1 If Assumptions A and B hold, then for anyθ
the policy corresponding to RSPµθ is proper.

Proof: The proof follows from the definition of a proper
policy.

Under suitable ergodicity conditions,{xk} and {xk, uk}
are Markov chains with stationary distributions under a fixed

policy. These stationary distributions are denoted byπθ(x)
and ηθ(x, u), respectively. We will not elaborate on the
ergodicity conditions, except to note that it suffices that
the process{xk} is irreducible and aperiodic given any
θ, and Assumption B holds. Denote byQθ the (|X||U|)-
dimensional vectorQθ = (Qθ(x, u); ∀x ∈ X, u ∈ U). Let
now

ψθ(x, u) = ∇θ lnµθ(u|x),

whereψθ(x, u) = 0 when x, u are such thatµθ(u|x) ≡
0 for all θ. It is assumed thatψθ(x, u) is bounded
and continuously differentiable. We writeψ

θ
(x, u) =

(ψ1
θ
(x, u), . . . , ψn

θ
(x, u)) wheren is the dimensionality ofθ.

As we did in definingQθ we will denote byψi
θ the(|X||U|)-

dimensional vectorψi
θ
= (ψi

θ
(x, u); ∀x ∈ X, u ∈ U).

A key fact underlying the actor-critic algorithm is that the
policy gradient can be expressed as (Theorem 2.15 in [13])

∂ᾱ(θ)

∂θi
= 〈Qθ,ψ

i
θ
〉θ, i = 1, . . . , n,

where for any two functionsf1 andf2 of x andu, expressed
as (|X||U|)-dimensional vectorsf1 and f2, we define

〈f1, f2〉θ
△
=

∑

x,u

ηθ(x, u)f1(x, u)f2(x, u). (2)

Let ‖ · ‖θ denote the norm induced by the inner product (2),
i.e., ‖f‖2

θ
= 〈f , f〉θ . Let alsoSθ be the subspace ofR|X||U|

spanned by the vectorsψi
θ
, i = 1, . . . , n and denote byΠθ

the projection with respect to the norm‖ · ‖θ onto Sθ, i.e.,
for any f ∈ R

|X||U|, Πθf is the unique vector inSθ that
minimizes‖f − f̂‖θ over all f̂ ∈ Sθ. Since for alli

〈Qθ,ψ
i
θ〉θ = 〈ΠθQθ,ψ

i
θ〉θ,

it is sufficient to know the projection ofQθ onto Sθ in
order to compute∇ᾱ(θ). One possibility is to approximate
Qθ with a parametric linear architecture of the following
form (see [11]):

Qr
θ
(x, u) = ψ′

θ
(x, u)r∗, r∗ ∈ R

n. (3)

This dramatically reduces the complexity of learning from
the spaceR|X||U| to the spaceRn. Furthermore, the temporal
difference algorithms can be used to learn such anr∗

effectively. The elements ofψ
θ
(x, u) are understood as

features associated with an(x, u) state-action pair in the
sense of basis functions used to develop an approximation
of theQθ-value function.

III. A CTOR-CRITIC ALGORITHM USING LSTD

The critic in [11] used either TD(λ) or TD(1). The
algorithm we propose uses least squares TD methods (LSTD
in particular) instead as they have been shown to provide
far superior performance. In the sequel, we first describe
the LSTD actor-critic algorithm and then we prove its
convergence.

A. The Algorithm

The algorithm uses a sequence of simulated trajectories,
each of which starting at a givenx0 and ending as soon
as x∗ is visited for the first time in the sequence. Once a
trajectory is completed, the state of the system is reset to the
initial statex0 and the process is repeated.

Let xk denote the state of the system at timek. Let rk,
the iterate forr∗ in (3), be the parameter vector of the critic
at time k, θk be the parameter vector of the actor at time
k, and xk+1 be the new state, obtained after actionuk is
applied when the state isxk. A new actionuk+1 is generated
according to the RSP corresponding to the actor parameter
θk (see [11]). The critic and the actor carry out the following
updates, wherezk ∈ R

n represents Sutton’s eligibility trace
[17], bk ∈ R

n refers to a statistical estimate of the single
period reward, andAk ∈ R

n×n is a sample estimate of
the matrix formed byzk(ψ

′
θk
(xk+1, uk+1) − ψ

′
θk
(xk, uk)),

which can be viewed as a sample observation of the scaled
difference of the observation of the state incidence vector
for iterationsk andk+1, scaled to the feature space by the
basis functions.

LSTD Actor-Critic for SSP
Initialization:

Set all entries inz0,A0,b0 and r0 to zeros. Letθ0 take
some initial value, potentially corresponding to a heuristic
policy.
Critic:

zk+1 = λzk +ψθk
(xk, uk),

bk+1 = bk + γk [g(xk, uk)zk − bk] ,
Ak+1 = Ak + γk[zk(ψ

′
θk
(xk+1, uk+1)−ψ

′
θk
(xk, uk))

−Ak],
(4)

whereλ ∈ [0, 1), γk
△
=

1

k
, and finally

rk+1 = −A−1
k bk. (5)

Actor:

θk+1 = θk − βkΓ(rk)r
′
kψθk

(xk+1, uk+1)ψθk
(xk+1, uk+1).

(6)
In the above,{γk} controls the critic step-size, while{βk}
andΓ(r) control the actor step-size together. An implemen-
tation of this algorithm needs to make these choices. The
role of Γ(r) is mainly to keep the actor updates bounded,
and we can for instance use

Γ(r) =

D

||r||
, if ||r|| > D,

1, otherwise,

for someD > 0. {βk} is a deterministic and non-increasing
sequence for which we need to have

∑

k

βk = ∞,
∑

k

β2
k <∞, lim

k→∞

βk
γk

= 0. (7)

An example of{βk} satisfying Eq. (7) is

βk =
c

k ln k
, k > 1, (8)

where c > 0 is a constant parameter. Also,ψ
θ
(x, u) is

defined as

ψ
θ
(x, u) = ∇θ lnµθ(u|x),

whereψθ(x, u) = 0 when x, u are such thatµθ(u|x) ≡
0 for all θ. It is assumed thatψθ(x, u) is bounded
and continuously differentiable. Note thatψ

θ
(x, u) =

(ψ1
θ
(x, u), . . . , ψn

θ
(x, u)) wheren is the dimensionality ofθ.

The convergence of the algorithm is stated in the following
Theorem (see theAppendix for the proof).

Theorem III.1 [Actor Convergence] For the LSTD actor-
critic with some step-size sequence{βk} satisfying (7), for
any ǫ > 0, there exists someλ sufficiently close to1, such
that lim infk ||∇ᾱ(θk)|| < ǫ w.p.1. That is,θk visits an
arbitrary neighborhood of a stationary point infinitely often.

IV. T HE MRP AND ITS CONVERSION INTO ANSSP
PROBLEM

In the MRP problem, we assume that there is a set of
unsafestates which are set to be absorbing on the MDP
(i.e., there is only one control at each state, corresponding to
a self-transition with probability1). Let XG andXU denote
the set of goal states and unsafe states, respectively. Asafe
state is a state that is not unsafe. It is assumed that if the
system is at a safe state, then there is at least one sequence of
actions that can reach one of the states inXG with positive
probability. Note that this implies that Assumption A holds.
In the MRP, the goal is to find the optimal policy that
maximizes the probability of reaching a state inXG from
a given initial state. Note that since the unsafe states are
absorbing, to satisfy this specification the system must not
visit the unsafe states.

We now convert the MRP problem into an SSP problem,
which requires us to change the original MDP (now denoted
as MDPM) into a SSP MDP (denoted as MDPS). Note that
[3] established the equivalence between an MRP problem and
an SSP problem where the expected reward is maximized.
Here we present a different transformation where an MRP
problem is converted to a more standard SSP problem where
the expected cost is minimized.

To begin, we denote the state space of MDPM by XM, and
defineXS, the state space of MDPS, to be

XS = (XM \ XG) ∪ {x∗},

wherex∗ denotes a special termination state. Letx0 denote
the initial state, andU denote the action space of MDPM.
We define the action space of MDPS to beU, i.e., the same
as for MDPM.

Let pM(j|x, u) denote the probability of transition to state
j ∈ XM if action u is taken at statex ∈ XM. We now define

the transition probabilitypS(j|x, u) for all statesx, j ∈ XS

as:

pS(j|x, u) =

∑

i∈XG

pM(i|x, u), if j = x∗,

pM(j|x, u), if j ∈ XM \ XG,
(9)

for all x ∈ XM \ (XG∪XU) and allu ∈ U. Furthermore, we
setpS(x∗|x∗, u) = 1 andpS(x0|x, u) = 1 if x ∈ XU , for all
u ∈ U. The transition probability of MDPS is defined to be
the same as for MDPM, except that the probability of visiting
the goal states in MDPM is changed into the probability of
visiting the termination state; and the unsafe states transit to
the initial state with probability1.

For allx ∈ XS , we define the costg(x, u) = 1 if x ∈ XU ,
and g(x, u) = 0 otherwise. Define the expected total cost
of a policy µ to be ᾱS

µ = limt→∞E{
∑t−1

k=0 g(xk, uk)|x0}
where actionsuk are obtained according to policyµ in
MDPS. Moreover, for each policyµ on MDPS, we can
define a policy on MDPM to be the same asµ for all states
x ∈ XM \ (XG∪XU). Since actions are irrelevant at the goal
and unsafe states in both MDPs, with slight abuse of notation
we denote both policies to beµ. Finally, we define the
Reachability ProbabilityRM

µ as the probability of reaching
one of the goal states fromx0 under policyµ on MDPM.
The Lemma below relatesRM

µ and ᾱS
µ:

Lemma IV.1 For any RSPµ, we have RMµ = 1
ᾱS

µ+1 .

Proof: From the definition of theg(x, u), ᾱS
µ is the

expected number of times when unsafe states inXU are
visited beforex∗ is reached. From the construction of MDPS,
reachingx∗ in MDPS is equivalent to reaching one of the
goal states in MDPM. On the other hand, for MDPM, by
definition ofXG andXU , in the Markov chain generated by
µ, the statesXG andXU are the only absorbing states, and
all other states are transient. Thus, the probability of visiting
a state inXU from x0 on MDPM is 1 − RM

µ , which is the
same as the probability of visitingXU for each run of MDPS,
due to the construction of transition probabilities (9). Wecan
now consider a geometric distribution where the probability
of success isRM

µ . BecauseᾱS
µ is the expected number of

times when an unsafe state inXU is visited beforex∗ is
reached, this is the same as the expected number of failures
of Bernoulli trails (with probability of success beingRM

µ)

before a success. This implies̄αS
µ =

1−RM

µ

RM
µ

. Rearranging

ᾱS
µ =

1−RM

µ

RM
µ

completes the proof.
The above lemma means thatµ as a solution to the SSP

problem on MDPS (minimizing ᾱS
µ) corresponds to a solution

for the MRP problem on MDPM (maximizingRM
µ). Note that

the algorithm uses a sequence of simulated trajectories, each
of which starting atx0 and ending as soon asx∗ is visited for
the first time in the sequence. Once a trajectory is completed,
the state of the system is reset to the initial statex0 and the
process is repeated. Thus, the actor-critic algorithm is applied
to a modified version of the MDPS where transition to a goal
state is always followed by a transition to the initial state.

V. CASE STUDY

In this section we apply our algorithm to control a robot
moving in a square-shaped mission environment, which is
partitioned into 2500 smaller square regions (a50×50 grid)
as shown in Fig. 1. We model the motion of the robot in the
environment as an MDP: each region corresponds to a state
of the MDP, and in each region (state), the robot can take
the following control primitives (actions): “North”, “East”,
“South”, “West”, which represent the directions in which the
robot intends to move (depending on the location of a region,
some of these actions may not be enabled, for example, in
the lower-left corner, only actions “North” and “East” are
enabled). These control primitives are not reliable and are
subject to noise in actuation and possible surface roughness
in the environment. Thus, for each motion primitive at a
region, there is a probability that the robot enters an adjacent
region.

X X

O X

Fig. 1. View of the mission environment. The initial region is marked by
o, the goal regions by x, and the unsafe regions are shown in black.

We label the region in the south-west corner as the
initial state. We marked the regions located at the other
three corners as the set ofgoal states as shown in Fig. 1.
We assume that there is a set ofunsafestatesXU in the
environment (shown in black in Fig. 1). Our goal is to find
the optimal policy that maximizes the probability of reaching
a state inXG (set of goal states) from the initial state (an
instance of an MRP problem).

A. Designing an RSP

To apply the LSTD Actor-Critic algorithm, the key step is
to design an RSPµθ(u|x). In this case study, we define the
RSP to be an exponential function of two scalar parameters
θ1 andθ2, respectively. These parameters are used to provide
a balance betweensafety and progress from applying the
control policy.

For each pair of statesxi,xj ∈ X, we defined(xi,xj)
as the minimum number of transitions fromxi andxj . We
denotexj ∈ N(xi) if and only if d(xi,xj) ≤ rn, wherern

is a fixed integer given apriori. Ifxj ∈ N(xi), then we say
xi is in the neighborhood ofxj , andrn represents the radius
of the neighborhood around each state.

For each statex ∈ X, the safety scores(x) is defined as
the ratio of the safe neighbouring states over all neighboring
states ofx. To be more specific, we define

s(x) =

∑

y∈N(x) Is(y)

|N(x)|
(10)

where Is(y) is an indicator function such thatIs(y) = 1
if and only if y ∈ X \ XU and Is(y) = 0 if otherwise. A
higher safety score for the current state of robot means it
is less likely for the robot to reach an unsafe region in the
future.

We define the progress score of a statex ∈ X as
dg(x) := miny∈XG

d(x,y), which is the minimum number
of transitions fromx to any goal region. We can now propose
the RSP policy, which is a Boltzmann policy as defined in
(1). Note thatU = {u1, u2, u3, u4}, which corresponds to
“North”, “East”, “South”, and “West”, respectively. We first
define

ai(θ) = Fi(x)e
θ1E{s(f(x,ui))}+θ2E{dg(f(x,ui))−dg(x)},

(11)

whereθ := (θ1, θ2), andFi(x) is an indicator function such
that Fi(x) = 1 if ui is available atxi and Fi(x) = 0 if
otherwise. Note that the availability of control actions ata
state is limited for the states at the boundary. For example,
at the initial state, which is at the lower-left corner, the set of
available actions is{u1, u2}, corresponding to “North” and
“East”, respectively. If an actionui is not available at state
x, we setai(θ) = 0, which means thatµθ(ui|x) = 0.

Note thatai(θ) is defined to be the combination of the
expected safety score of the next state applying controlui,
and the expected improved progress score from the current
state applyingui, weighted byθ1 and θ2. The RSP is then
given by

µ
θ
(ui|x) =

ai(θ)
∑4

i=1 ai(θ)
. (12)

We note that Assumption B holds for the proposed RSP.
Moreover, Assumption A also holds, therefore Theorem II.1
holds for this RSP.

B. Generating transition probabilities

To implement the LSTD Actor-Critic algorithm, we first
constructed the MDP. As mentioned above, this MDP repre-
sents the motion of the robot in the environment where each
state corresponds to a cell in the environment (Fig. 1). To
capture the transition probabilities of the robot from a cell
to its adjacent one under an action, we built a simulator.

The simulator uses a unicycle model (see,e.g., [19]) for
the dynamics of the robot with noisy sensors and actuators.
In this model, the motion of the robot is determined by spec-
ifying a forward and an angular velocity. At a given region,
the robot implements one of the following four controllers
(motion primitives) - “East”, “North”, “West”, “South”. Each
of these controllers operates by obtaining the difference

between the current heading angle and the desired heading
angle. Then, it is translated into a proportional feedback
control law for angular velocity. The desired heading angles
for the “East”, “North”, “West”, and “South” controllers are
0◦, 90◦, 180◦, and 270◦, respectively. Each controller also
uses a constant forward velocity. The environment in the
simulator is a 50 by 50 square grid as shown in Fig. 1. To
each cell of the environment, we randomly assigned a surface
roughness which affects the motion of the robot in that cell.
The perimeter of the environment is made of walls, and when
the robot runs to them, it bounces with the mirror-angle.

To find the transition probabilities, we performed a total of
5000 simulations for each controller and state of the MDP. In
each trial, the robot was initialized at the center of the cell,
and then an action was applied. The robot moved in that
cell according to its dynamics and surface roughness of the
region. As soon as the robot exited the cell, a transition was
encountered. Then, a reliable center-converging controller
was automatically applied to steer the robot to the center
of the new cell. We assumed that the center-converging
controller is reliable enough that always drives the robot
to the center of the new cell before exiting it. Thus, the
robot always started from the center of a cell. This makes
the process Markov (the probability of the current transition
depends only the control and the current state, and not on
the history up to the current state). We also assumed perfect
observation at the boundaries of the cells.

It should be noted that, in general, it is not required to
have all the transition probabilities of the model in order
to apply the LSTD Actor-Critic algorithm, but rather, we
only need transition probabilities along the trajectoriesof the
system simulated while running the algorithm. This becomes
an important advantage in the case where the environment
is large and obtaining all transition probabilities becomes
infeasible.

C. Results

We first obtained the exact optimal policy for this prob-
lem using the methods described in [2], [5]. The maximal
reachability probability is 99.9988%. We then used our
LSTD actor-critic algorithm to optimize with respect toθ
as outlined in Sec. III and IV.

Givenθ, we can compute the exact probability of reaching
XG from any statex ∈ X applying the RSPµθ by solving
the following set of linear equations

pθ(x) =
∑

u∈U

µθ(u|x)
∑

y∈X

p(y|x, u)pθ(y),

for all x ∈ X \ (XU ∪ XG) (13)

such thatpθ(x) = 0 if x ∈ XU andpθ(x) = 1 if x ∈ XG.
Note that the equation system given by (13) contains exactly
|X| − |XU | − |XG| number of equations and unknowns.

We plotted in Fig. 2 the reachability probability of the
RSP from the initial state (i.e.,pθ(x0)) against the number
of iterations in the actor-critical algorithm each timeθ
is updated. Asθ converges, the reachability probability
converges to 90.3%. The parameters for this examples are:

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

iteration

re
ac

ha
bi

lit
y

pr
ob

ab
ili

ty

Fig. 2. The dashed line represents the optimal solution (themaximal
reachability probability) and the solid line represents the exact reachability
probability for the RSP as a function of the number of iterations applying
the proposed algorithm.

rn = 2, λ = 0.9, D = 5 and the initialθ is (50,−10). We
use (8) forβk with c = 0.05.

VI. CONCLUSION

We considered the problem of finding a control policy for a
Markov Decision Process (MDP) to maximize the probability
of reaching some states of the MDP while avoiding some
other states. We presented a transformation of the problem
into a Stochastic Shortest Path (SSP) MDP and developed a
new approximate dynamic programming algorithm to solve
this class of problems. The algorithm operates on a sample-
path of the system and optimizes the policy within a pre-
specified class parameterized by a parsimonious set of pa-
rameters. Simulation results confirm the effectiveness of the
proposed solution in robot motion planning applications.

APPENDIX: CONVERGENCE OF THELSTD
ACTOR-CRITIC ALGORITHM

We first cite the theory oflinear stochastic approximation
driven by a slowly varying Markov chain[13] (with simpli-
fications).

Let {yk} be a finite Markov chain whose transition
probabilities depend on a parameterθ ∈ R

n. Consider a
generic iteration of the form

sk+1 = sk + γk(hθk
(yk+1)−Gθk

(yk+1)sk) + γkΞksk,
(14)

wheresk ∈ R
m, andhθ(·) ∈ R

m,Gθ(·) ∈ R
m×m are θ-

parameterized vector and matrix functions, respectively.It
has been shown in [13] that the critic in (14) converges if
the following set of conditions are met.

Condition 1
1) The sequence{γk} is deterministic, non-increasing,

and
∑

k

γk = ∞,
∑

k

γ2k <∞.

2) The random sequence{θk} satisfies||θk+1 − θk|| ≤
βkHk for some process{Hk} with bounded moments,
where{βk} is a deterministic sequence such that

∑

k

(

βk
γk

)d

<∞ for somed > 0.

3) Ξk is anm ×m-matrix valued martingale difference
with bounded moments.

4) For eachθ, there existh̄(θ) ∈ R
m, Ḡ(θ) ∈ R

m×m,
and correspondingm-vector andm×m-matrix func-
tions ĥθ(·), Ĝθ(·) that satisfy the Poisson equation.
That is, for eachy,

ĥθ(y) = hθ(y) − h̄(θ) + (Pθĥθ)(y),

Ĝθ(y) = Gθ(y) − Ḡ(θ) + (PθĜθ)(y).

5) For some constantC and for all θ, we have
max(||h̄(θ)||, ||Ḡ(θ)||) ≤ C.

6) For any d > 0, there existsCd > 0 such that
supk E[||fθk

(yk)||
d] ≤ Cd, wherefθ(·) represents any

of the functionŝhθ(·), hθ(·), Ĝθ(·) andGθ(·).
7) For some constantC > 0 and for all θ, θ̄ ∈ R

n,
max(||h̄(θ)− h̄(θ̄)||, ||Ḡ(θ)− Ḡ(θ̄)||) ≤ C||θ − θ̄||.

8) There exists a positive measurable functionC(·) such
that for everyd > 0, supk E[C(yk)

d] < ∞, and
||fθ(y) − fθ̄(y)|| ≤ C(y)||θ − θ̄||.

9) There existsa > 0 such that for all s ∈ R
m and

θ ∈ R
n

s′Ḡ(θ)s ≥ a||s||2.

For now, let’s focus on the first two items of Condition 1.
Recall that for any matrixA, v(A) is a column vector that
stacks all row vectors ofA (also written as column vectors).
Simple algebra suggests that the core iteration of the LSTD
critic can be written as (14) with

sk =

bk

v(Ak)
1

 , yk = (xk, uk, zk),

hθ(y) =

g(x, u)z
v(z((Pθψ

′
θ
)(x, u)−ψ′

θ
(x, u)))

1

 ,

Gθ(y) =
[

I
]

,

(15)

Ξk =

0 0 0

0 0 D
0 0 0

 ,

where

D = v(zk(ψ
′
θk
(xk+1, uk+1)− (Pθψθ)

′(xk, uk))),

andM is an arbitrary (large) positive constant whose role is
to facilitate the convergence proof, andy = (x, u, z) denotes
a value of the tripletyk.

The step-sizesγk andβk in (4) and (6) correspond exactly
to theγk andβk in Condition 1.(1) and 1.(2), respectively. If
the MDP has finite state and action space, then the conditions
on {βk} reduce to ([13])

∑

k

βk = ∞,
∑

k

β2
k <∞, lim

k→∞

βk
γk

= 0, (16)

where{βk} is a deterministic and non-increasing sequence.
Note that we can useγk = 1/k (cf. Condition 1). The
following theorem establishes the convergence of the critic.

Theorem VI.1 [Critic Convergence] For the LSTD actor-
critic (4) and (5) with some step-size sequence{βk} satis-
fying (16), the sequencesk is bounded, and

lim
k→∞

|Ḡ(θk)sk − h̄(θk)| = 0. (17)

Proof: To show that (14) converges with
s,y,hθ(·),Gθ(·) andΞ substituted by (15), the conditions
1.(1)-(9) should be checked. However, a comparison with
the convergence proof for the TD(λ) critic in [11] gives a
simpler proof. Let

Fθ(y) = z(ψ′
θ(x, u)− (Pθψθ)

′(x, u)).

While proving the convergence of TD(λ) critic operating
concurrently with the actor, [11] showed that

h̃θ(y) =

[

h̃
(1)
θ

(y)

h̃
(2)
θ

(y)

]

=

[

Mg(x, u)
g(x, u)z

]

,

G̃θ(y) =

[

1 0

z/M Fθ(y)

]

,

and

Ξ̃k =

[

0 0

0 zk(ψ
′
θk
(xk+1, uk+1)− (Pθψθ)

′(xk, uk))

]

satisfy Condition 1.(3)-1(8). In our case, (15) can be rewritten
as

hθ(y) =

h̃
(2)
θ

(y)
−Fθ(y)

1

 , Gθ(y) =
[

I
]

, Ξk =

[

Ξ̃k

0

]

.

(18)
Note that although the two iterates are very different, they
involve the same quantities and both in a linear fashion.
So, hθ(·),Gθ(·) andΞk also satisfy conditions 1.(3)-1(8).
Meanwhile, the step-size{γk} satisfies condition 1.(1), and
the step-size{βk} satisfies Eq. (16) (which is as explained
above implies condition 1.(2)). Now, only condition (9)
remains to be checked. To that end, note that all diagonal ele-
ments ofGθ(y) equal to one, so,Gθ(y) is positive definite.
This proves the convergence. Using the same correspondence
and the result in [11], one can further check that (17) also
holds here.

Proof of Theorem III.1:

The result follows by settingφθ = ψθ and following the
proof in Section 6 of [11].

REFERENCES

[1] S. Temizer, M. Kochenderfer, L. Kaelbling, T. Lozano-P´erez, and
J. Kuchar, “Collision avoidance for unmanned aircraft using Markov
decision processes.”

[2] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta, “Motion
planning and control from temporal logic specifications with proba-
bilistic satisfaction guarantees,” inIEEE Int. Conf. on Robotics and
Automation, Anchorage, AK, 2010, pp. 3227 – 3232.

[3] R. Alterovitz, T. Siméon, and K. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with Markov motion
uncertainty,” inRobotics: Science and Systems. Citeseer, 2007.

[4] C. Baier, J.-P. Katoen, and K. G. Larsen,Principles of Model Check-
ing. MIT Press, 2008.

[5] X. Ding, S. Smith, C. Belta, and D. Rus, “LTL control in uncertain
environments with probabilistic satisfaction guarantees,” in IFAC,
2011.

[6] J. Peters and S. Schaal, “Policy gradient methods for robotics,”
in Proceedings of the 2006 IEEE/RSJ International Conferenceon
Intelligent Robots and Systems, 2006.

[7] K. Samejima and T. Omori, “Adaptive internal state spaceconstruction
method for reinforcement learning of a real-world agent,”Neural
Networks, vol. 12, pp. 1143–1155, 1999.

[8] H. Berenji and D. Vengerov, “A convergent Actor-Critic-based FRL
algorithm with application to power management of wirelesstrans-
mitters,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp.
478–485, 2003.

[9] “Actor-critic models of reinforcement learning in the basal ganglia:
From natural to artificial rats,”Adaptive Behavior, vol. 13, no. 2, pp.
131–148, 2005.

[10] G. Gajjar, S. Khaparde, P. Nagaraju, and S. Soman, “Application
of actor-critic learning algorithm for optimal bidding problem of a
GenCo,” IEEE Transactions on Power Engineering Review, vol. 18,
no. 1, pp. 11–18, 2003.

[11] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM
Journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

[12] S. Bradtke and A. Barto, “Linear least-squares algorithms for temporal
difference learning,”Machine Learning, vol. 22, no. 2, pp. 33–57,
1996.

[13] V. R. Konda, “Actor-critic algorithms,” Ph.D. dissertation, MIT, Cam-
bridge, MA, 2002.

[14] D. Bertsekas and S. Ioffe, “Temporal differences-based policy iteration
and applications in neuro-dynamic programming,” LIDS REPORT,
Tech. Rep. 2349, 1996, mIT.

[15] J. Peters and S. Schaal, “Natural actor-critic,”Neurocomputing,
vol. 71, pp. 1180–1190, 2008.

[16] D. Bertsekas,Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[17] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[18] R. M. Estanjini, X. C. Ding, M. Lahijanian, J. Wang, C. A.Belta,
and I. C. Paschalidis, “Least squares temporal difference actor-critic
methods with applications to robot motion control,” 2011, available at
http://arxiv.org/submit/0304711.

[19] S. LaValle,Planning algorithms. Cambridge University Press, 2006.

http://arxiv.org/submit/0304711

	I Introduction
	II Problem Formulation
	III Actor-Critic Algorithm Using LSTD
	III-A The Algorithm

	IV The MRP and its conversion into an SSP problem
	V Case study
	V-A Designing an RSP
	V-B Generating transition probabilities
	V-C Results

	VI Conclusion
	References

