
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

Characterizing the Huntington's
disease, Parkinson's disease, and
pan-neurodegenerative gene
expression signature with RNA
sequencing

https://hdl.handle.net/2144/17865
Boston University



BOSTON UNIVERSITY 
 

GRADUATE SCHOOL OF ARTS AND SCIENCES 
 

AND 
 

COLLEGE OF ENGINEERING 
 
 
 

Dissertation 
 
 
 

CHARACTERIZING THE HUNTINGTON’S DISEASE, PARKINSON’S  
 

DISEASE, AND PAN-NEURODEGENERATIVE GENE EXPRESSION  
 

SIGNATURE WITH RNA SEQUENCING 
 
 
 

by 
 
 
 

ADAM THOMAS LABADORF 
 

B.S., Dickinson College, 2003 
M.S., Colorado State University, 2010 

 
 
 

 
 
 
 

Submitted in partial fulfillment of the 
 

requirements for the degree of 
 

Doctor of Philosophy 
	

2016



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 © 2016 by 
  Adam Thomas Labadorf 
  All rights reserved 



Approved by 

 

 

 

 

First Reader ___________________________________________________ 
 Richard H. Myers, Ph.D. 
 Professor of Neurology 
 
 

 

Second Reader ___________________________________________________ 
 Eric Kolaczyk, Ph.D. 
 Professor of Mathematics and Statistics 
 
 



	

	 iv 

ACKNOWLEDGMENTS 

This thesis would not have been possible without the lifelong support, patience, 

and devotion of my family, for which I am profoundly grateful. The people who 

stuck with me through the many life altering transitions that led me to this point 

continue to have my utmost respect, love, and admiration; there are no better 

friends in the world. To my teachers, professors, and mentors who guided me as 

I had, and indeed still have, very little idea of how much I don’t know, you are 

also of fundamental importance to me and who I am, and I could not be more 

thankful. I also wish to thank my closest mentor, Rick Myers, for his faith, 

guidance, and confidence in my abilities that helped propel me in times of 

frustration and difficulty. 



	

	 v 

CHARACTERIZING THE HUNTINGTON’S DISEASE, PARKINSON’S 

DISEASE, AND PAN-NEURODEGENERATIVE GENE EXPRESSION 

SIGNATURE WITH RNA SEQUENCING 

ADAM THOMAS LABADORF 
 

Boston University Graduate School of Arts and Sciences 

and College of Engineering, 2016 

Major Professor:  Richard H. Myers, Professor of Neurology 
 

ABSTRACT 

 Huntington's disease (HD) and Parkinson's disease (PD) are devastating 

neurodegenerative disorders that are characterized pathologically by 

degeneration of neurons in the brain and clinically by loss of motor function and 

cognitive decline in mid to late life. The cause of neuronal degeneration in these 

diseases is unclear, but both are histologically marked by aggregation of specific 

proteins in specific brain regions. In HD, fragments of a mutant Huntingtin protein 

aggregate and cause medium spiny interneurons of the striatum to degenerate. 

In contrast, PD brains exhibit aggregation of toxic fragments of the alpha 

synuclein protein throughout the central nervous system and trigger degeneration 

of dopaminergic neurons in the substantia nigra. Considering the commonalities 

and differences between these diseases, identifying common biological patterns 

across HD and PD as well as signatures unique to each may provide significant 

insight into the molecular mechanisms underlying neurodegeneration as a 

general process. State-of-the-art high-throughput sequencing technology allows 
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for unbiased, whole genome quantification of RNA molecules within a biological 

sample that can be used to assess the level of activity, or expression, of 

thousands of genes simultaneously. In this thesis, I present three studies 

characterizing the RNA expression profiles of post-mortem HD and PD subjects 

using high-throughput mRNA sequencing data sets. The first study describes an 

analysis of differential expression between HD individuals and neurologically 

normal controls that indicates a widespread increase in immune, 

neuroinflammatory, and developmental gene expression. The second study 

expands upon the first study by making methodological improvements and 

extends the differential expression analysis to include PD subjects, with the goal 

of comparing and contrasting HD and PD gene expression profiles. This study 

was designed to identify common mechanisms underlying the neurodegenerative 

phenotype, transcending those of each unique disease, and has revealed 

specific biological processes, in particular those related to NFkB inflammation, 

common to HD and PD. The last study describes a novel methodology for 

combining mRNA and miRNA expression that seeks to identify associations 

between mRNA-miRNA modules and continuous clinical variables of interest, 

including CAG repeat length and clinical age of onset in HD. 
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Chapter 1. Introduction 

Huntington’s Disease (HD) and Parkinson’s Disease (PD) are devastating 

neurodegenerative disorders that affect humans in mid to late life, causing 

progressive loss of motor function, cognitive ability, and ultimately death. Both 

diseases initially manifest with mild symptoms of motor dysfunction in the form of 

involuntary movement or bradykinesia (slowness of movement), but patients 

often develop cognitive deficits and personality changes as the disease 

progresses. The pathological cause of the diseases is the selective death of 

neurons in specific brain regions. Despite their similar symptomatology, the 

mechanisms underlying the pathology for these diseases are distinct in ways that 

make a comparison of HD and PD an attractive study to gain a better 

understanding of the molecular processes associated with neurodegeneration as 

a general phenotype. The studies in this thesis address this question by 

comparing RNA signatures identified by analyzing high-throughput gene 

expression measurements using samples extracted from post-mortem brains of 

individuals who have died of either HD or PD. 

Huntington’s Disease 

HD is an autosomal dominant neurodegenerative disorder that affects 

GABAergic medium spiny interneurons in the caudate nucleus and putamen of 

the brain (Vonsattel et al. 1985). The disease is caused by an expanded tri-

nucleotide CAG repeat sequence in the first exon of the Huntingtin (HTT) gene 

that encodes for a polyglutamine tract in the subsequently translated Htt protein 
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(MacDonald et al. 1993). Individuals with 40 or more CAG repeats exhibit full 

penetrance and will eventually develop the disease, while individuals with 36–39 

repeats show reduced penetrance (Walker 2007). The normal CAG repeat size 

range in unaffected individuals is 18–26 (Walker 2007). Individuals with an 

expanded repeat typically develop and live normally until middle age, on average 

40 years of age (R. H. Myers, Marans, and MacDonald 1998), when motor 

symptoms begin to present. The rapidity of disease progression is inversely 

correlated with the length of the CAG repeat, where individuals with longer repeat 

sizes will suffer an earlier age of onset (MacDonald et al. 1993). In extreme 

cases of 70 or more CAG repeats, individuals exhibit juvenile onset of symptoms 

within the first decade of life (Richard H. Myers 2004-4). From the age of onset, 

motor dysfunction steadily progresses, personality and mood changes may 

emerge, often followed by weight loss, cognitive decline, disability, and 

eventually death. The average duration of disease from age of onset to death is 

15 to 20 years (Richard H. Myers 2004-4). To date, no definitively effective 

therapies are available that consistently halt or slow the progression of symptoms 

in HD. 

Much is known about the mutant Huntingtin protein (mHtt) that causes HD. The 

N-terminal fragment containing the expanded polyglutamine tract of mHtt is 

cleaved by one of several mechanisms and becomes toxic via aberrant 

interactions with multiple other proteins (Rubinsztein and Carmichael 2003). In 

particular, mHtt fragments have been shown to interact with transcription factors 
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leading to large scale transcriptional dysregulation (S.-H. Li et al. 2002; A. T. 

Labadorf and Myers 2015; Cha 2007; Cha 2000), proteins in the NFkB pathway 

leading to aberrant NFkB activity in multiple central nervous system (CNS) cell 

types (O’Neill and Kaltschmidt 1997; Meffert et al. 2003; Marcora and Kennedy 

2010; Träger et al. 2014; Kaltschmidt et al. 1994–6), calpains and caspases 

(Rubinsztein and Carmichael 2003; Gafni et al. 2004; Y. J. Kim et al. 2001), and 

chaperone proteins (Qi and Zhang 2013). In addition to interfering with normal 

cellular function through aberrant protein-protein interactions, these fragments 

also form aggregates in the nucleus, dendrites, and synapses of neurons 

(Rubinsztein and Carmichael 2003) where the number and size of these 

aggregates correlate with the degree of degeneration (Vonsattel et al. 1985). It is 

not known conclusively whether mHtt aggregation causes neurodegeneration or 

whether it is a protective mechanism, but the presence of aggregates are 

coincident with degenerating neurons cell and animal models (Arrasate and 

Finkbeiner 2012; Rubinsztein and Carmichael 2003). 

Parkinson’s Disease 

PD is a progressive neurodegenerative disorder that affects dopaminergic 

neurons in the substantia nigra pars compacta (Shulman, De Jager, and Feany 

2011). Symptoms primarily manifest as motor deficits, including involuntary 

shaking, bradykinesia, rigidity, and difficulty with walking, but individuals may 

later develop mood and sleep disorders, depression, and dementia at late stages 

(Dexter and Jenner 2013). As several diseases may manifest with similar 



	

	

4 

symptoms, collectively termed “parkinsonism”, a final diagnosis of PD specifically 

is made by histological observation of protein aggregates containing the alpha-

synuclein protein, termed Lewy bodies, in the brain at autopsy(Shulman, De 

Jager, and Feany 2011). Both genetics and environment contribute to developing 

PD, where as much as 60% and 40% of the disease risk is heritable in all 

families and those excluding known with the most common PD-associated loci, 

respectively (Hamza and Payami 2010-4), with the remaining risk likely attributed 

to environmental agents including ageing, drugs, toxins, and pesticides (Allam, 

Del Castillo, and Navajas 2005; Polito, Greco, and Seripa 2016). As many as 24 

genomic loci have been discovered to associate with PD risk (Nalls et al. 2014), 

most notably in regions encoding the genes MAPT, SNCA (which encodes the 

alpha-synuclein protein itself), GBA, GAK, and LRRK2.  

 The mechanisms underlying PD pathology are unclear and appear to be 

quite varied. Four distinct but related molecular mechanisms have emerged as 

contributing to neurodegeneration in PD: oxidative stress, mitochondrial 

dysfunction, altered proteolysis, and inflammatory processes (Dexter and Jenner 

2013). Oxidative stress and resulting damage, most likely due to dopamine 

metabolism and mitochondrial dysfunction, appear to be major consistent 

contributors to dopaminergic neuronal toxicity (Jenner 2003). Mitochondrial 

dysfunction, likely caused by both environmental factors and mutations in PD-

linked genes, has been associated with cell death in PD via mechanisms 

involving defects in complex I and IV of the mitochondrial membrane and 
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sensitivity to oxidative stress(Schapira 2008). The presence of incorrectly 

processed protein aggregates is evidence of proteolytic dysfunction in PD 

neurons, and alterations in both major proteolytic systems, namely the ubiquitin-

proteasome and lysosome systems (McNaught and Jenner 2001). Finally, 

support for inflammatory process involvement in PD is increasing from gene 

expression studies in the blood and post-mortem brain tissues of PD patients 

(Dobbs et al. 1999). See (Dexter and Jenner 2013) for an excellent review of PD 

molecular pathology. 

HD and PD as Neurodegenerative Diseases 

HD and PD have a number of similarities and differences that allow interesting 

comparisons to be drawn concerning the neurodegenerative process. Most 

obviously, both are progressive neurodegenerative diseases that result in motor 

and behavioral deficits in mid to late life due to selective degeneration of neurons 

in the brain. Both diseases are histologically marked by aberrant protein 

aggregation, suggesting some feature of proteasomal dysfunction is common to 

both diseases. However, the specific neurons affected, namely medium spiny 

interneurons of the caudate nucleus and putamen in HD and dopaminergic 

neurons in the substantia nigra in PD, degenerate in one disease but are spared 

in the other. This mirror-image property of the degenerative pattern allows the 

identification of properties specific to each disease as well as mechanisms that 

may be common to the neurodegenerative phenotype overall. The two diseases 

are also genetically distinct in the sense that HD is monogenic, where a mutation 
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in a single gene is sufficient to predict disease, where PD is highly 

heterogeneous with multiple genetic risk factors and environmental influences 

that modify disease risk. Molecular signatures, e.g. differentially expressed 

genes, common to both HD and PD may therefore lead to a better understanding 

of mechanisms that underlie neurodegeneration as a general pathological 

process. A clearer understanding of the common response to neurodegenerating 

neurons may have significant impact on therapeutic approaches, and could also 

have important implications in how we approach therapies for other 

neurodegenerative diseases of the central nervous system. 

 A salient question in both HD and PD, and indeed to many diseases, 

pertains to which genes are involved in the processes underlying pathology. In 

the past fifteen years, multiple technologies have come available that allow 

genome-wide quantification of ribonucleic acid molecules (RNAs) in biological 

samples. One of the most recent of these technologies, so-called high-

throughput sequencing, allows unbiased abundance measurements of potentially 

all RNAs present within a biological sample of interest. Arguably the most 

important type of RNA molecules is messenger RNA (mRNA), which is 

transcribed from genes of the genome and are typically translated into protein. A 

second type of RNA molecule, microRNAs (miRNAs), play an important role in 

regulating the abundance of mRNA molecules. High-throughput sequencing 

technologies have been developed to measure the abundance of both mRNAs 

(mRNA-Seq) and miRNAs (miRNA-Seq). Since mRNAs are the precursors to 
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proteins, their abundance is thought to represent the abundance and, therefore 

activity, of the proteins that perform most cellular functions. Identifying which 

mRNA species differ between samples originating from diseased and healthy 

tissue is therefore an attractive means with which to assess the biological 

processes that are involved in disease pathogenesis. Analyzing differences in 

miRNA abundance between disease and control may lead to hypotheses about 

the causal effects behind the differential abundance of mRNAs, and therefore 

could lead to experiments that elucidate pathological mechanisms. 

To this end, the Myers lab has generated mRNA-Seq and miRNA-Seq datasets 

from the brains of post-mortem individuals who either died with HD or PD, and 

neuropathologically normal individuals who died of other causes. The hypothesis 

underlying these datasets is that the abundance of mRNAs and miRNAs is 

different between diseased and healthy individuals, and that identifying the 

specific species implicated by this comparison will yield insight into relevant 

disease processes. Additionally, as we have datasets from both HD and PD, we 

are able to compare not only diseased and healthy individuals, but also compare 

these diseases to one another in pursuit of identifying common 

neurodegenerative signatures. 

High-throughput mRNA-Seq and miRNA-Seq Data Analysis 

mRNA-Seq and miRNA-Seq technologies produce data in the form of short 

digitized biological sequences, termed reads, that represent the nucleotides (nt), 

i.e. strings of the letters A, C, G, and T symbolizing the nucleotides adenine, 
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cytosine, guanine, and thymine respectively, that make up the molecules in the 

originating sample. The reads are typically 35–150nt in length, and a single 

sequencing dataset, or library, may contain as many as 350 million reads. The 

first task in processing a short read dataset is to identify the biological sequence 

from which each read originated. For the datasets in these studies, the sequence 

of each read is compared to the digitized sequence of the human genome, 

hereafter called the reference genome, in a process called sequence alignment 

or mapping. The alignment process entails identifying the location(s) where the 

sequence of a read matches along the linear sequence of the reference. A read 

aligns to a location in the reference if there is a high degree of similarity between 

the read sequence and the reference sequence location. In so doing, the 

originating location of mRNA or miRNA molecules represented by a read may be 

determined and, in combination with a gene annotation that indicates where in 

the reference genome each gene is located, reads may be mapped to genes. 

The overall abundance of the RNA originating from each gene may then be 

estimated by counting the number of reads that map within the annotated region 

of the reference for each gene. In principle, this approach results in the relative 

quantification of RNA and miRNA molecules for all of the genes and miRNAs in 

the entire genome within a sample. 

 As described above, the abundance of each mRNA or miRNA is 

represented by the number of reads, or sequencing counts, that map to each 

annotated genomic region. By counting the reads for a set of samples against the 
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same annotation, e.g. gene annotation, the sequencing counts for each gene and 

each sample may be concatenated into a count matrix, where genes are rows 

and samples are columns. For groups of samples of two types, e.g. HD and 

healthy control, the counts for a gene within one group may be compared to the 

counts for the same gene in the other group to assess whether the relative 

abundance of the mRNAs are different between groups. However, since libraries 

for different samples may be of different size, e.g. one library has 250M reads 

while another has 300M, and the counts are in fact proportional to, and not 

absolute measurements of, the abundance of the originating biological 

molecules, the counts in this matrix are not directly comparable between 

samples. To account for this, the counts matrix is subjected to a normalization 

procedure that attempts to adjust the counts within each sample so that they may 

be compared to one another. 

Several count normalization strategies have been proposed, but most 

involve identifying a single numeric factor for each sample that will adjust sample 

counts across samples to make them comparable. The simplest such method is 

library size level, or total count, normalization, where all counts within a sample 

are divided in proportion to the overall library size from that sample. This 

approach, while reasonable, makes the often-violated assumption that highly 

abundant genes are consistent across samples and therefore performs poorly in 

practice (Dillies et al. 2013). Another popular approach, related to total count 

normalization, adjusts the counts of each gene by gene length as well as library 
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size, transforming counts into reads per gene kilobase per million library reads 

(RPKM) (Mortazavi et al. 2008). This approach has been found to suffer the 

same biases as total counts and additionally introduces per-gene variance bias 

leading to more false positives upon differential expression analysis (Dillies et al. 

2013). More sophisticated approaches, like that of the edgeR (Robinson, 

McCarthy, and Smyth 2010) and DESeq2 (Love, Huber, and Anders 2014) 

packages, assume the majority of genes are not different between samples and 

show more favorable properties on differential expression sets (Dillies et al. 

2013). All of the count matrices in this thesis have therefore been normalized 

using the DESeq2 method. 

After proper count normalization has been performed comes the task of 

identifying which genes exhibit statistically coherent count behavior. A common 

pattern in such analyses is to determine which genes demonstrate significantly 

different abundance between two groups of samples, such as HD vs. healthy 

control samples. This type of analysis, often termed differential expression (DE) 

analysis, essentially involves assessing differences in mean normalized counts 

accounting for variance across samples. Many such methods have been 

proposed (Soneson and Delorenzi 2013), but the most popular methods at the 

time of this writing use generalized linear regression, specifically negative 

binomial (NB) regression, to model gene counts as a function of a binary 

categorical variable (e.g. HD vs. control). edgeR (Robinson, McCarthy, and 

Smyth 2010) and DESeq2 (Love, Huber, and Anders 2014) are two such NB 
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regression methods that were designed specifically for the analysis of mRNA-

Seq data. 

The use of NB regression is motivated by the observation that normalized 

count data does not follow a Gaussian distribution, in particular because counts 

are non-negative and the variance and mean of gene counts are empirically not 

independent, making classical linear regression models inappropriate. NB 

regression, however, requires the estimation of a dispersion parameter before 

inference can be performed. Estimation of this parameter increases the 

computational and statistical complexity of the inference algorithm, and noisy 

counts can pose difficulty to the estimation procedure, leading to unreliable or 

spurious results. As an alternative, log-transformed normalized count data are 

approximately normally distributed, and a number of approaches first perform 

such a transformation on counts and then apply linear regression-based methods 

to these transformed counts. A number of such transformations have been 

proposed, including a moderated log transform (Leek 2014), the VOOM 

transform in the limma Bioconductor package (Law et al. 2014), and the variance 

stabilizing transform  (VST) in the DESeq2 package (Love, Huber, and Anders 

2014). When the number of samples per group is large (>5), these 

transformation+linear regression based methods perform well (Soneson and 

Delorenzi 2013). A positive attribute of both NB and transformation+linear 

regression methods is they allow for statistical adjustment for confounding 

variables whose effects are not related to the condition of interest, such as age at 
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death in HD vs. control models. 

Both negative binomial regression and transformation+linear regression 

based methods may be sensitive to outlier counts. It is often observed that a 

single sample may display one or two magnitudes greater counts than other 

samples in the same gene, posing significant inference challenges for 

regression-based methods DE methods. A family of nonparametric methods 

have been proposed (Shi, Chinnaiyan, and Jiang 2015; Bi and Davuluri 2013; 

Lin, Zhang, and Chen 2014; J. Li and Tibshirani 2013; Tusher, Tibshirani, and 

Chu 2001) that often use rank-based transformations of counts to identify 

consistent DE patterns between groups. These methods are robust to outlier 

counts by definition, and when the number of samples per group is sufficiently 

large detection of DE has been found to be quite accurate (Soneson and 

Delorenzi 2013). Non-parametric methods have two important drawbacks. The 

first is that, since the variance of the counts is not explicitly modeled due to the 

rank transformation, statistical adjustment for confounding variables is not 

possible. The second, also related to the rank transformation, is that effect-sizes 

are no longer based on count abundance but rather on rank, such that genes of 

both very high and very low abundance are treated equally for detection of DE. 

DE of very lowly abundant genes may not have significant biological relevance 

but dilute the genes that are more abundant. Though low relative abundance 

does not necessarily imply lack of biological significance, this consideration is 

nonetheless important when choosing a DE method and interpreting the results. 
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To date, no proposed DE methods are based on logistic regression (LR). The 

use of LR is widespread in genome wide association studies, where mutations in 

the genomes of large numbers of subjects are queried for association with a 

disease or condition of interest, and the LR methodology is equally well 

understood and established by the community as linear regression. For DE 

studies that seek to identify genes that have different mean counts between two 

conditions, LR is an apt model except for one property occasionally encountered 

in count data. It is sometimes the case that a gene exhibits dramatically different 

behavior between two conditions (e.g. extremely low counts in healthy control 

and extremely high in disease), such that the two groups have no counts that 

overlap. Such a condition is called complete separation, and logistic models fail 

when posed with parameter inference in these situations. However, two 

modifications to the classical LR method, Bayes logistic regression (Gelman et 

al. 2008) and Firth’s logistic regression (Firth 1993; Heinze and Schemper 2002), 

have been proposed that account for complete separation. As recently described 

(Choi et al 2016, under review), Firth’s LR overcomes the problem of complete 

separation in the analysis of the HD vs. control mRNA-Seq datasets described 

here and furthermore show favorable statistical properties with respect to type I 

error rates and statistical power under certain conditions. A novel aspect of the 

this thesis is the application of Firth’s LR to the datasets herein described found 

in Chapter 4. 
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In addition to genes that exhibit differential behavior between conditions, 

identifying genes with expression patterns that correlate with clinically relevant 

features is also of interest. For example, clinical age of onset is a particularly 

salient feature in the progression of HD and, despite being partially heritable 

(Richard H. Myers 2004-4), no common genetic markers have been found to 

strongly associate with this variable after adjusting for CAG repeat length. Genes 

whose expression correlates with CAG-adjusted age of onset are of particular 

interest in HD because these genes may not only inform our understanding of 

HD neurodegenerative mechanisms but may also give clues to new therapeutics 

that can modify the onset of symptoms, where presently no such therapies exist. 

While NB can accomplish this analysis by modeling the counts as a function of 

the clinical feature, linear regression may be canonically applicable by modeling 

the feature as a function of the sequencing counts, avoiding the expensive and 

sensitive NB parameter estimation steps. This approach assumes the clinical 

feature of interest is normally distributed, which is often the case. Employing a 

linear model in this way also allows for adjusting the association of counts to the 

clinical feature by potentially confounding variables. 

Relating mRNA and miRNA data 

As mentioned previously, miRNA are short RNA molecules, typically 18–22 

nucleotides in length, that inhibit mRNA molecules from being translated into 

protein by targeting specific nucleotide sequences contained within transcribed 

mRNAs. The mRNA/miRNA relationship is many-to-many, where a single miRNA 
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can target multiple mRNAs and a single mRNA may be targeted by many 

different miRNAs, resulting in a complex regulatory network that has been 

implicated in development and disease (W. Zhang et al. 2012; Hiddingh et al. 

2014; Cordes and Srivastava 2009; Shenoy and Blelloch 2014). Identifying the 

mRNA targets of miRNAs is a critical step in understanding the regulatory 

relationships between these molecules. Several complementary approaches 

have been proposed for predicting mRNA/miRNA relationships (Lewis, Burge, 

and Bartel 2005a; Enright et al. 2003; Coronnello et al. 2012; Wong and Wang 

2015; Y. Li et al. 2014). Identifying mRNA/miRNA relationships that are different 

between diseased and healthy tissue may provide important insights into disease 

processes. 

 Analysis of mRNA and miRNA abundance measurements using high-

throughput transcriptional data revealed that groups of interacting mRNAs and 

miRNAs, termed mRNA/miRNA modules, often work in concert to regulate 

specific biological processes and disease (W. Zhang et al. 2012; Hiddingh et al. 

2014; Coronnello et al. 2012; Z. Liu et al. 2015; Setty et al. 2012). modules can 

be detected using transcriptional data from multiple samples by examining the 

statistical relationship between the abundance of mRNAs and miRNAs. Many 

mRNA/miRNA module detection approaches have been proposed and generally 

employ one of four broad strategies. Sequence-based algorithms examine the 

predicted targets of each miRNA and group mRNAs by overrepresented 

numbers of shared targets. Expression based approaches use transcriptional 
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data to identify statistical, typically negative, correlations between mRNAs and 

miRNAs to identify groups of transcriptionally related species. Another approach 

uses regularized regression based methods, such as LASSO (Tibshirani 1994), 

to find statistical relationships between groups of mRNAs and miRNAs. And last, 

the most complex set of algorithms utilizes graphical models, typically 

implemented using Bayesian statistics, to directly predict the regulatory 

relationships between mRNAs and miRNAs. See Chapter 4 for more in-depth 

background regarding modules and module detection methods. 

 Some of the proposed module detection methods focus on identifying 

differential module behavior between two conditions of interest. Differences 

between module definition or activity within a disease, for example, may lead to a 

more complete understanding of the regulatory underpinnings of the disease. 

However, to date no algorithms have been proposed that attempt to identify 

modules that are associated with a continuous feature of interest, such as clinical 

age of onset in HD. The study in Chapter 4 presents a novel algorithm that takes 

paired mRNA and miRNA expression data that attempts to identify modules that 

are associated with continuous variables by integrating established module 

detection and statistical methods. 

Sample and Datasets Characteristics 

In total, the studies in this thesis use 29 HD, 29 PD, and 49 neurologically normal 

control mRNA-Seq samples and 25 HD miRNA-Seq samples generated from 

post-mortem human brains. Frozen brain tissue from prefrontal cortex Brodmann 
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Area 9 (BA9) was obtained from the Harvard Brain and Tissue Resource Center 

McLean Hospital, Belmont MA, the Human Brain and Spinal Fluid Resource 

Center VA West Los Angeles Healthcare Center (Los Angeles, California) and 

Banner Sun Health Research Institute (Beach et al. 2008-9) (Sun City, Arizona). 

For each brain sample, grey matter from the cortical ribbon was dissected by 

hand with a target mass of 0.08 g and used for RNA extraction. Total RNA was 

extracted from the samples using established protocols that were submitted for 

mRNA-Seq and miRNA-Seq sequencing as appropriate on the Illumina HiSeq 

2000 platform. There were 80M reads on average per mRNA-Seq dataset, and 

10M on average for each miRNA-Seq dataset. More detailed information on 

sample preparation is found in Chapter 2 methods section titled mRNA Sample 

Preparation and Sequencing. 

 A number of clinical features are available for HD and PD. For HD, the 

four primary features are CAG size (i.e. repeat length), clinical age of onset, and 

H-V cortical and striatal scores (Hadzi et al. 2012), which are histology-based 

numerical scores indicating degree of involvement in the cortex and striatum. 

Since there is a considerable level of correlation between these four covariates, 

particularly between CAG repeat length and age of onset, we created three new 

features using age of onset, cortical score, and striatal score to identify modules 

that are associated with the residual variance of these features after accounting 

for the contribution of CAG. These clinical features are described in more detail 

in Chapter 4. For PD, age of clinical onset and dementia status are the only 
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relevant clinical feature available for these samples. 

 The miRNA data used in this thesis has been previously analyzed and 

reported in the literature (Hoss et al. 2015; Hoss et al. 2014; Hoss et al. 2016). 

(Hoss et al. 2015) found a set of miRNAs, in particular miR-10b, were 

dramatically increased in HD and were associated with clinical features CAG-

adjusted age of onset and H-V cortical and striatal scores. The strong association 

of miR-10b expression and CAG-adjusted age of onset in particular suggest that 

this miRNA is somehow related to the progression of HD, either as a marker for 

disease severity or as a directly player in the pathogenic process. miR-10b was 

also found to be associated with age of onset, though in the opposite direction of 

effect as in HD, in a follow-up study of the PD miRNA-Seq data (Hoss et al. 

2016). These results are strong evidence that miRNA abundance may be a 

valuable marker for disease progression, and more may yet be learned by jointly 

analyzing mRNA and miRNA expression data. 

This thesis is organized as follows. The study in Chapter 2 attempts to 

discover differentially expressed genes in HD and elucidate the biological 

mechanisms underlying transcriptional differences between HD and 

neuropathologically normal brains. The study in Chapter 3 extends the HD 

differential expression study to include PD, and makes significant biological and 

methodological improvements over the HD specific study. Chapter 4 describes 

an analysis pipeline that seeks to identify and compare and contrast 

mRNA/miRNA modules in HD and PD as well as use those modules to explain 
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clinical features relevant to each disease. The thesis concludes with conclusions, 

projections, and future work consequent from the studies described. 
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Chapter 2. Differential Expression in HD 

Introduction 

Huntington’s Disease (HD) is a devastating neurodegenerative disorder 

characterized clinically by involuntary choreic movement, personality changes, 

and premature death (Huntington G. 1872; R. H. Myers, Marans, and MacDonald 

1998). The disease is caused by an expanded CAG repeat in the Huntingtin 

gene (HTT)(MacDonald et al. 1993) that produces selective neuronal loss in the 

brain (Vonsattel et al. 1985). Individuals commonly present characteristic motor 

signs in midlife with a mean onset age of 40 years (Richard H. Myers 2004-4). 

No therapy to date has definitively delayed onset or subsequent progression of 

these symptoms. Most studies in HD are conducted using model systems, (i.e. 

cell lines or mouse models) or peripheral human biospecimens such as blood 

and not in involved brain regions from human HD affected individuals. While 

collecting and analyzing human post-mortem samples presents challenges, the 

study of brain regions involved in HD provides relevant insight into the disease 

pathogenesis. 

Although transcriptional dysregulation has been convincingly implicated in 

HD(Cha 2007; Cha 2000), few genome-wide gene expression studies have 

targeted affected tissues in post mortem human brain to date. To expand our 

understanding of alterations in mRNA transcriptomics, we have performed mRNA 

expression profiling by next-generation sequencing in human post-mortem 

prefrontal cortex Brodmann area 9 (BA9) in 20 HD and 49 neuropathologically 
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normal individuals using Illumina high-throughput sequencing (See Table	1 and 

Table 2). Although the primarily affected brain region in HD is the striatum 

(Vonsattel et al. 1985), neuronal loss of up to 90% by the time of death impedes 

the interpretation of expression profiles derived from striatal whole tissue 

homogenate since the cell type distribution is altered from that of corresponding 

unaffected control tissue. It is well established that the prefrontal cortex is 

involved in HD pathogenesis (Sotrel et al. 1991; Sotrel et al. 1993) but suffers 

substantially less neuronal death than striatum (Hoss et al. 2014). The brains 

used in this study have been comprehensively characterized for pathological 

involvement through detailed histological examination as previously described 

(Hadzi et al. 2012), which enables direct interpretation of the results in the 

physiological context of neurodegeneration. We therefore used whole tissue 

homogenate from the BA9 region in this study. 
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H_0001 37.25 55 7.1 44 11 45 3 2.661 0.922	
H_0002 5.75 69 7.5 63 6 41 3 2.644 1.081	
H_0003 20.5 71 7.0 52 19 43 3 2.428 1.707	
H_0005 19.15 48 6.9 25 23 48 4 3.820 1.939	
H_0006 unk 40 6.2 34 6 51 4 3.522 1.431	
H_0007 8 72 8.5 55 17 41 3 2.593 0.849	
H_0008 21.3 43 7.4 28 15 49 3 2.701 1.701	
H_0009 3.73 68 7.8 45 23 42 3 2.668 1.701	
H_0010 6.16 59 8.3 35 24 46 3 2.621 1.200	
H_0012 12.75 68 6.0 52 16 42 3 2.661 1.077	
H_0013 25.1 57 6.1 40 17 49 3 2.911 1.491	
H_0539 14.5 54 6.5 42 12 45 3 2.132 0.401	
H_0657 24.3 61 8.1 36 25 45 4 3.290 1.604	
H_0658 11 48 7.8 42 6 44 3 2.410 0.978	
H_0681 19.06 69 7.0 50 19 42 3 2.484 1.088	
H_0695 16.15 55 7.9 36 19 45 4 3.581 2.062	
H_0700 15.66 50 8.0 33 17 47 3 2.741 1.202	
H_0726 14.75 50 9.2 27 23 48 4 3.598 1.201	
H_0740 13.58 75 6.4 60 15 42 3 2.621 2.361	
H_0750 16.16 53 6.0 38 15 48 4 3.260 1.010	

Table 1. HD sample statistics. 
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Sample ID PMI Age of Death RIN mRNA-Seq reads	
C_0012 19 66 7.1 118,327,116	
C_0013 15 69 7.8 89,478,160	
C_0014 21 79 8.0 65,377,604	
C_0015 10 61 8.2 123,746,070	
C_0016 20 58 8.4 67,758,208	
C_0017 21 70 8.2 72,238,818	
C_0018 17 66 8.5 64,688,322	
C_0020 24 60 7.9 83,696,384	
C_0021 26 76 7.3 79,487,172	
C_0022 17 61 7.8 73,133,936	
C_0023 18 62 6.6 94,493,436	
C_0024 26 69 8.7 62,989,822	
C_0025 25 61 8.1 55,810,684	
C_0026 11 88 7.1 72,581,752	
C_0029 13 93 6.4 59,386,108	
C_0031 24 53 7.3 73,283,170	
C_0032 24 57 8.3 70,994,352	
C_0033 15 43 7.5 69,505,712	
C_0034 14 71 7.8 65,979,612	
C_0035 21 46 7.6 62,300,754	
C_0036 17 40 7.5 63,961,372	
C_0037 28 44 8.3 60,288,132	
C_0038 20 57 7.7 61,019,098	
C_0039 15 80 7.3 74,892,650	
C_0050 2 74 8.5 85,310,070	
C_0053 2 69 8.4 167,044,880	
C_0060 2 76 7.5 103,952,680	
C_0061 3 78 7.6 95,393,100	
C_0062 2 87 8.7 83,773,400	
C_0065 2 86 8.7 115,714,502	
C_0069 24 54 8.3 128,459,102	
C_0070 19 68 6.3 145,087,692	
C_0071 21 106 7.6 86,840,836	
C_0075 23 52 7.4 99,946,984	
C_0076 30 46 8.2 85,890,116	
C_0077 21 36 8.5 80,103,722	
C_0081 26 55 7.6 82,917,984	
C_0082 18 57 7.8 123,118,398	
C_0083 32 66 8.4 80,696,360	
C_0087 19 64 8.7 77,198,978	
C_0002 2 73 7.7 120,108,434	
C_0003 2 91 7.9 38,420,004	
C_0004 2 82 8.6 75,850,406	
C_0005 2 97 9.1 150,661,916	
C_0006 5 86 8.6 63,607,838	
C_0008 2 91 8.7 66,131,458	
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C_0009 3 81 6.0 69,284,092	
C_0010 2 79 8.4 60,542,776	
C_0011 2 63 6.5 93,702,684	

Table 2. Control sample statistics. 
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Statistical analysis of the dataset yielded a large set of 5,480 differentially 

expressed (DE) genes, which prompted us to develop a novel hypothesis-free 

geneset enrichment method to categorize the large gene lists into functionally 

and transcriptionally relevant groups.  Our computational analytic approach, 

using Gene Ontology, biological pathway database, and transcription factor 

regulatory gene sets, implicates groups of related genes and functions that 

expose and visually organize the fundamental molecular dysfunctions of the 

disease.  Our computational analytic approach implicates a complex profile of 

genes related to development, most notably HOX genes, strongly reinforces a 

fundamental role for neuroinflammation in the HD brain, and expands our 

understanding of cellular involvement in the disease to implicate all major brain 

cell type as opposed to one of primarily neuronal degeneration. 

Methods 

Sample Information 

Frozen brain tissue from prefrontal cortex Brodmann Area 9 (BA9) was obtained 

from the Harvard Brain and Tissue Resource Center McLean Hospital, Belmont 

MA, the Human Brain and Spinal Fluid Resource Center VA West Los Angeles 

Healthcare Center (Los Angeles, California) and Banner Sun Health Research 

Institute (Beach et al. 2008-9) (Sun City, Arizona). Twenty Huntington's disease 

(HD) samples and forty nine neurologically normal control samples were selected 

for the study (See Tables 1 and 2). Age at death and RIN were significantly 



	

	

26 

different between cases and controls (p=0.01 and p=0.006, respectively, by 

Welch two sample t-test). The HD subjects had no evidence of Alzheimer or 

Parkinson disease comorbidity based on neuropathology reports. All samples 

were male. Neuropathological information for the HD samples includes the 

Vonsattel grading (Vonsattel et al. 1985), as well as striatal and cortical scoring 

recently described by Hadzi et al. (Hadzi et al. 2012). Additionally, CAG repeat 

size and age at onset were known for the HD samples (Table	1). 

Human Subjects 

This study has been designated exempt (Protocol # H-28974) by the Boston 

University School of Medicine Institutional Review Board, as no human subjects 

were studied and all data are derived from post-mortem human brain specimens. 

mRNA Sample Preparation and Sequencing 

For each brain sample, grey matter from the cortical ribbon was dissected by 

hand with a target mass of 0.08 g and used for RNA extraction. 1 ug of RNA was 

used to construct sequencing libraries using Illumina’s TruSeq RNA Sample Prep 

Kit according to the manufacturer’s protocol. All sample dissections and RNA 

extractions were performed by the same individual. RNA Integrity Number (RIN) 

was measured by the Agilent Bioanalyzer to assess RNA quality prior to 

sequencing. In brief, mRNA molecules were polyA selected, chemically 

fragmented, randomly primed with hexamers, synthesized into cDNA, 3’ end-

repaired and adenylated, sequencing adapter ligated and PCR amplified. Each 
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adapter-ligated library contained one of twelve TruSeq molecular barcodes. 

Multiplexed samples were equimolarly pooled into sets of three samples per 

flowcell lane and sequenced using 2x101bp paired-end runs on Illumina’s HiSeq 

2000 system at Tufts University sequencing core facility (http://tucf-

genomics.tufts.edu/). Demultiplexing and FASTQ file generation (raw sequence 

read plus quality information in Phred format) were accomplished using Illumina’s 

Consensus Assessment of Sequence and Variation (CASAVA) pipeline. 

Sequences were aligned against the hg19 reference genome (Lander et al. 

2001) using tophat v2.0.6 (D. Kim et al. 2013), with non-default parameters. 

Gene Expression Quantification, Data Cleaning, and DE Analysis 

Aligned reads were mapped to the Gencode v17 annotation (Harrow et al. 2012) 

using the htseq-count tool in the HTSeq v0.5.3p9 package (Anders, Pyl, and 

Huber 2014) with the intersection nonempty strategy. Genes that had less than 

half of HD and control samples with nonzero counts were filtered from the 

analysis due to low signal. No samples were identified as outliers, and extreme 

gene measurements considered outliers were adjusted. Outlier-trimmed raw 

counts were used in subsequent analyses. DESeq2 (Love, Huber, and Anders 

2014) was used to identify DE genes between HD and control, adjusting for age 

at death binned into intervals 0–45, 46–60, 61–75, and 90+ and a categorical 

RNA Integrity Number (RIN) variable indicating RIN>7 as covariates. Genes with 

FDR<0.05 were considered DE. 
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DAVID, GO, and MsigDB Enrichment Calculation 

The DAVID (Huang, Sherman, and Lempicki 2008; Huang, Sherman, and 

Lempicki 2009-1) functional enrichment clustering tool set to the lowest clustering 

stringency was used on the top 3000 DE genes to identify groups of enriched 

functions. DAVID limits the number of genes submitted for analysis to 3000. 

Clusters were considered significant if the cluster score was greater than –

log10(0.05). Separate enrichment analyses were performed using the Gene 

Ontology (GO) annotation database (Ashburner et al. 2000), the MsigDB 

(Subramanian et al. 2005) C2 Canonical Pathways gene sets, and the MsigDB 

C3 Transcription Factor target gene sets. Enrichment was calculated for subsets 

of top DE genes separately, i.e. enrichment analysis was performed on the top 

25 genes, then on the top 50, and so on. GO term enrichment was performed 

using topGO (Alexa and Rahnenfuhrer 2014) with the “weight01” algorithm and 

“fisher” statistic, and custom scripts in the R statistical environment (R 

Development Core Team 2008). Enrichment of MsigDB Canonical Pathways and 

Transcription Factor genesets was performed with custom R scripts using the 

“fisher.test” and “p.adjust” routines. Once enrichment profiles for each geneset 

was computed, the genesets were ranked based on the most significant 

enrichment found in any gene group. The top 15 most significant geneset 

enrichment profiles from each database were selected and concatenated into a 

single enrichment matrix with genesets as rows and gene groups as columns. 

The rows of this matrix were clustered using agglomerative hierarchical 
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clustering with Ward linkage. Further processing of enrichment results was 

performed using custom scripts to generate plots in python with matplotlib 

(Hunter 2007), ipython notebook (Pérez and Granger 2007), and pandas 

(McKinney 2010). 

Association with Clinical Covariates 

DESeq2 normalized counts were transformed using the Variance Stabilizing 

Transform (VST) available in the same package to produce approximately 

normally-distributed gene expression values. After the normal transformation, the 

standard linear regression model becomes appropriate for evaluating association 

with covariates. Linear models predicting VST transformed counts from each 

clinical covariate after adjusting for RIN were run for each gene in the R 

statistical environment. P-values were adjusted using the “p.adjust” function in R 

using the FDR method. To assess which DE genes were associated with H-V 

cortical score, DESeq2 was used to model read counts as predicted by H-V 

cortical score adjusting for RIN for each gene, adjusted for multiple hypothesis 

with the “p.adjust” function in R using the FDR method. 

Replication of DE Genes by RT-qPCR in an Independent Sample Set 

An independent set of 33 HD and 31 control prefrontal cortex brain samples not 

used in the sequencing study were subjected to RT-qPCR to replicate the 

findings of this study. RNA was reverse transcribed using iScript cDNA Synthesis 

Kit (Bio-Rad). Reverse transcriptase quantitative polymerase chain reaction (RT-
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qPCR) was carried out for all genes of interest in each sample using TaqMan 

Gene Expression Assays (Life Technologies) on an ABI 7900HT Real-Time PCR 

system, according to the manufacturer’s protocol. All probes were human and 

covered all transcripts: HOXC10 (Assay ID Hs00213579_m1) and NFKBIA 

(Assay ID Hs00355671_g1) probes were used. Peptidylprolyl isomerase A 

(PPIA, catalog #4333763F) and beta glucuronidase (GUSB, catalog # 4333767F) 

were used as endogenous controls. Samples were run in triplicate at 200ng 

mRNA per reaction. For HOXC10, presence or absence of transcripts was 

assessed by whether a critical threshold (CT) value was determined or 

undetermined, respectively, at the threshold chosen by Applied Biosystems SDS 

software v2.4. For NFKBIA, wells that caused the variance of the corresponding 

set of replicates to exceed 0.2 were marked as outliers and excluded from the 

analysis (9 such replicates from unique sample/assay combinations were 

excluded). To normalize sample input, deltaCT values were calculated for each 

sample by subtracting the average CT for a target gene by the averaged CT for 

both control genes. Two sample t-tests assuming equal variance with deltaCT 

values were used for statistical analysis. 

Validation of DE Genes by RT-qPCR 

The RNA used in the RT-qPCR was from the same extraction as submitted for 

sequencing and thus was intended to be a technical validation of the sequencing 

results. Validation samples were prepared and processed for RT-qPCR in the 

same manner as the replication samples, described above. All probes were 
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human and covered all transcripts: AHNAK nucleoprotein (AHNAK, Assay ID 

Hs01102463_m1), paired-like homeodomain (PITX, Assay ID Hs00267528_m1), 

aquaporin 4 (AQP4, Assay ID Hs00242342_m1), solute carrier family 38, 

member 2 (SLC38A7C, Assay ID Hs01089954_m1), gap junction protein, alpha 

1, 43kDa, (GJA1, Assay ID Hs00748445_s1), and tumor protein p53 inducible 

nuclear protein 2 (TP53INP2, Assay ID Hs00894008_g1) probes were used. As 

with the replication study, PPIA and GUSB were used as endogenous controls. 

Samples were run in triplicate at 30ng per reaction. Wells with critical threshold 

(CT) values higher than 3 standard deviations were removed from analysis. To 

normalize sample input, deltaCT values were calculated for each sample by 

subtracting the average CT for a target gene by the averaged CT for both control 

genes. Wells that were undeterminable were replaced with the maximum number 

of cycles (40) in order to calculate deltaCT. Two sample t-tests assuming equal 

variance with deltaCT values were used for statistical analysis. 

Results 

Widespread Differential Expression Changes Are Observed in HD 

After processing sequencing data to reduce noise, remove outliers, and 

normalize (see Methods), differential expression (DE) analysis identified 5,480 

out of 28,087 confidently expressed genes with significantly altered expression at 

FDR p-values<0.05 in HD vs. control samples, described in Figure	1. More genes 

are overexpressed in HD versus control than are underexpressed (3,004 vs. 

2,476, Figure	1A), and this effect is consistent across the whole list of DE genes 
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ranked by significance (Figure	1B). 76.7% of the DE genes are protein coding 

according to the Gencode v17 annotation (Harrow et al. 2012), while the 

remaining most abundant biotypes include lincRNAs, pseudogenes, and 

antisense transcripts. A greater portion of DE genes is protein coding when 

compared to the distribution of biotypes in all 28,087 detectable genes as shown 

in Figure	1C. Notably, the top DE genes are expressed almost exclusively in HD 

as illustrated in Figure	1D. 

 

Figure 1. DE statistics. A) Histogram of log2 fold changes for DE genes showing that 
54.8% of the DE genes are overexpressed in HD cases. B) Fraction of up vs. down 
regulated genes across the gene list ranked by significance. Top and bottom plots are 
top 500 and remaining genes, respectively. Sliding windows lines plot the fraction up 
vs. down in the 100 gene window of greater rank than the x coordinate. This plot 
shows that the most highly differentially expressed genes are predominantly over-
expressed in HD relative to control BA9. C) Pie chart shows proportions of biotypes 
for DE genes according to Ensembl. Protein coding genes are overrepresented among 
the DE genes. D) Normalized counts for all samples in HD and control for top ten 
significant genes. Rows are normalized for visualization such that the highest count is 
equal to 1. These genes are almost exclusively expressed in HD cases. 
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With so many DE genes, it is useful to sort the results in such a manner as to 

expose meaningful sets of relevant genes. As described in Table	3, the top genes 

sorted by significance are predominantly located in the Hox clusters and other 

related developmental genes, a novel result also recently observed for HD in our 

miRNA study (Hoss et al. 2014). Twenty-four of the 39 HOX genes across all four 

Hox clusters are DE. The majority of these genes are expressed almost 

exclusively in HD (see Table	3 and Figure	1D), and consequently attain high 

significance. However, the relative transcript abundance of these genes is low 

(e.g. HOXB9 has 8.72 normalized reads on average in the HD samples when the 

median normalized read count average is 96.6). We sought to identify genes that 

are both highly expressed and have a large statistically significant difference in 

expression between HD and control. We created a “differential expression score” 

(DES) that combines mean expression level, log2 fold change, and statistical 

significance of differential expression to generate a set of genes that may be 

relevant to the toxic HD cellular milieu. Table	4 presents the list of the top genes 

ranked by DES. 



	

	

34 

 
Gene 
Symbol 

Overall 
Mean 
Counts 

HD 
Mean 
Counts 

Control 
Mean 
counts 

log2 
FC 

p-value padj DES	

PITX1 5.64 18.68 0.32 4.76 9.57E-39 2.69E-34 903.98	
HOXB9 2.54 8.72 0.02 4.76 1.63E-25 2.29E-21 249.8732	
HOXC10 2.80 9.51 0.06 4.57 2.91E-24 2.72E-20 250.6672	
HOXA11 1.96 6.79 0 4.70 3.92E-24 2.75E-20 181.0905	
HOXA10 3.49 11.39 0.26 4.27 8.03E-24 4.51E-20 288.5972	
HOXD10 2.57 8.77 0.04 4.60 1.35E-23 6.33E-20 227.1957	
POU4F2 3.27 10.65 0.26 3.96 3.42E-23 1.37E-19 244.7754	
HOXA13 2.45 8.02 0.18 4.16 6.20E-23 2.18E-19 190.9965	
HOXD9 2.22 7.18 0.20 3.65 1.22E-18 3.80E-15 117.4429	
HOXD8 1.70 5.60 0.12 3.86 2.09E-18 5.88E-15 94.09001	
SLC16A12 55.42 167.66 9.60 3.51 4.74E-18 1.11E-14 2717.727	
HOXA5 2.19 7.08 0.20 3.87 4.49E-18 1.11E-14 119.0033	
HAND1 1.93 6.24 0.18 3.70 1.46E-17 3.16E-14 96.95744	
OTP 3.20 9.16 0.76 2.99 3.93E-17 7.88E-14 125.8704	
IL17RB 1311.10 2144.33 971.00 1.39 3.80E-16 7.12E-13 22182.16	
SLC6A20 173.03 433.28 66.81 2.35 2.49E-15 4.37E-12 4629.918	
HOXC6 1.32 4.41 0.06 3.60 4.26E-15 7.04E-12 53.19922	
PRKX 604.74 900.29 484.12 1.41 6.22E-15 9.20E-12 9471.658	
VNN2 25.74 62.90 10.57 2.49 6.03E-15 9.20E-12 707.7395	
HERC2P3 1987.22 3987.18 1170.91 2.06 8.09E-15 1.14E-11 44991.92	

Table 3. DE genes by significance. 
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Gene 
Symbol 

Overall 
Mean 
Counts 

HD Mean 
Counts 

Control 
Mean 
counts 

log2 
FC 

p-value padj DES	

MBP 180740.9 103940.8 212087.9 -1.14 0.000227 0.003282 513821.5	
GFAP 139594.9 147197.9 136491.6 0.74 0.001561 0.013498 194980.9	
CLU 98559.44 117016.8 91025.83 0.55 0.000197 0.00296 139030.9	
GLUL 61547.89 76676.16 55373.08 0.67 0.000218 0.003176 103210.9	
TUBB4A 20856.71 13003.3 24062.19 -0.84 3.44E-08 4.12E-06 94539.22	
AQP4 20362.81 27513.91 17443.99 1.09 2.29E-06 0.0001 89094.63	
GJA1 13340.95 19835.51 10690.11 1.26 7.06E-08 6.94E-06 86931.93	
FAM107A 38970.09 47446.88 35510.18 0.73 0.000164 0.002585 74321.76	
SLC38A2 5448.303 9251.666 3895.909 1.31 3.02E-13 2.83E-10 68291.6	
SLC1A3 26782.89 35129.11 23376.27 0.85 6.42E-05 0.001294 66171.29	
CALM1 83743.27 75824.67 86975.35 -0.34 0.000542 0.006243 64492.7	
CALM3 47941.46 38247.79 51898.06 -0.55 0.000424 0.005225 61221.65	
AHNAK 9570.149 14157.49 7697.765 1.19 9.48E-08 8.73E-06 57631.07	
CTD-
2328D6.1 

16679.1 5983.11 21044.81 -1.19 0.000217 0.003174 49731.65	

NRGN 39663.72 30172.8 43537.57 -0.69 0.002654 0.019734 47221.27	
GAS7 15300.17 11322.25 16923.81 -0.69 5.64E-07 3.50E-05 47122.17	
TP53INP2 6501.307 3430.574 7754.667 -1.37 8.45E-08 8.02E-06 45652.02	
HERC2P3 1987.225 3987.18 1170.917 2.06 8.09E-15 1.14E-11 44991.92	
ENO2 25831.65 20005.15 28209.81 -0.57 6.29E-05 0.001273 42930.44	
MAP1B 37563.64 29736.15 40758.53 -0.51 0.00057 0.006441 42770.9	

Table 4. DE genes by DES. Differential Expression Score (DES) is calculated as 
(overall mean counts) x abs(log2 FC) x –log10(adjusted p-value) 

A number of key proinflammatory genes appear as DE in this dataset. Four of the 

five NFkB family members NFkB1 (log2 fold change 0.32, q=0.004), NFkB2 (LFC 

0.73, q=0.001), RELA (LFC 0.63, q=5.6e-5), and RELB (LFC -0.56, q=0.005) are 

DE in this dataset. When we examine the 20 interleukin-related genes in the DE 

gene list, we find that fifteen are cytokine receptors (including IL17RB, IL13RA1, 

IL4R). However, the cytokines that correspond to these receptors are not DE, nor 

are TNFalpha or IL6, two primary cytokines of the immune and inflammatory 

response. 

An independent set of 33 HD and 31 control prefrontal cortex brain 

samples not used in the sequencing study were subjected to Reverse 
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transcriptase quantitative PCR (RT-qPCR) to replicate the findings of two genes 

found to be DE in this study. HOXC10 and NFKBIA, genes associated with 

developmental and neuroinflammatory processes, respectively, were chosen for 

the replication. HOXC10 mRNA species were not detected in any of the control 

samples, whereas 11 HD samples showed amplified product after 40 PCR cycles 

(p=0.0002). The presence of HOXC10 mRNA transcripts in HD, and absence in 

controls, is consistent with the sequencing findings. In the 16 HD and 16 control 

samples selected for highest mRNA quality, NFKBIA was detected in all samples 

and, after filtering outlier replicates, was found to be significantly more abundant 

in HD samples (T=-1.804, p=0.041). 

RT-qPCR was used to quantify and orthogonally validate mRNA 

differential expression from sequencing. Six genes were selected for the study 

AHNAK, AQP4, SLC38A7C, GJA1, TP53INP2, which had high DES scores, and 

PITX1, which was the most significantly differentially expressed gene. 21 controls 

and 15 HD samples from the sequencing study were selected for the assay. Four 

of the six genes were statistically significant (AHNAK p=0.02; SLC38A7C p=0.01, 

TP53INP2 p=0.03, PITX1 p=3.4e-10). Two genes did not meet significance 

(AQP4 p=0.08, GJA1 p=0.08). All differential expression was in the expected 

direction. 
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Immune Response, Development, and Transcriptional Regulation Functions Are 

Enriched in HD 

We sought to explore which biological processes are enriched among DE genes 

in HD. These analyses were performed using the DE list of 5,480 genes ranked 

by significance. DAVID Functional Enrichment Clustering (Huang, Sherman, and 

Lempicki 2008; Huang, Sherman, and Lempicki 2009-1) of the top 3000 DE 

genes (*the DAVID tool restricts the input list size to 3000 genes) identifies 

numerous biological functions related to immune response, development, cell 

growth, and transcriptional regulation. Table	5 contains a summary of the 

enriched clusters identified by DAVID that are significant at a cluster score 

corresponding to FDR p<0.05. DAVID does not enforce mutually exclusive gene 

membership between GO categories/pathways and thus one finds redundancy in 

the list of clusters. The themes of immune response, development, and 

transcriptional regulation are seen as the most consistent functional groups in 

this analysis. Figure	2 depicts the functional clusters identified by DAVID as a 

network where nodes are the DE genes underlying the clusters and edges 

represent common genes between clusters. The cluster with the largest number 

of genes is immune response with 1,248, followed by skeletal system 

development with 921. 
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 # Cluster Function Cluster Term Keywords # genes # terms score	
1 immune response membrane, plasma, 

transmembrane, receptor 
1248 27 3.764689	

2 identical protein 
binding 

protein, activity, identical, 
function 

212 5 3.346027	

3 metallothioneins metal, binding, ion-binding, 
cluster 

33 17 3.338415	

4 skeletal system 
development 

morphogenesis, embryonic, 
regulation, development 

577 80 3.186388	

5 skeletal system 
development 

regulation, transcription, 
process, negative 

921 76 3.143774	

6 gland development development, gland, 
mammary, lactation 

39 3 2.793014	

7 immune system 
development 

myeloid, differentiation, 
leukocyte, cell 

78 11 2.637665	

8 pattern specification 
process 

symmetry, determination, 
pattern, left/right 

62 5 2.39939	

9 response to oxygen 
levels 

response, oxygen, ovulation, 
process 

54 4 2.374104	

10 growth growth, regeneration, 
developmental, tissue 

52 4 2.325598	

11 extracellular matrix extracellular, matrix, 
proteinaceous, part 

63 4 2.27691	

12 cell growth growth, cell, developmental 36 3 2.222128	
Table 5. DAVID functional clustering. Cluster Function labels were assigned manually 
by inspecting the terms within the cluster but generally correspond to the name of the 
most enriched term within the cluster. The (1)  Immune response cluster contained 27 
distinct terms from across the default genesets used by DAVID. 
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Figure 2. DAVID functional clustering network. Network representation of the DAVID 
clusters from Table 5. Nodes represent clusters, the size of the node is proportional to 
the number of unique genes that make up the cluster and numbers within nodes are 
the number of unique genes mapped to terms in the cluster. Edges between nodes 
indicate the existence of overlapping genes, where the width is proportional to the 
percent overlap of genes in the smaller of two connected nodes. The color of nodes 
and edges is proportional to the average fold change of the genes in the node or edge. 

Integrated Geneset Enrichment Analysis Identifies                                      

Specific Enriched Functional Categories 

The DAVID results, while informative, did not provide sufficiently detailed 

information to understand how the DE gene list mapped to biological functions. 

To attain a more fine-grained understanding of the enriched biological functions 

and characteristics of the DE genes, we next performed a detailed analysis of 
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subsets of the DE gene list using the Gene Ontology (GO) annotation database 

(Ashburner et al. 2000) and the MsigDB (Subramanian et al. 2005) C2 Canonical 

Pathways and C3 Transcription Factor target gene sets (see Methods). Briefly, 

the central idea of the method is to partition the gene list into groups that include 

increasing numbers of DE genes, where the first group contains the top 25 DE 

genes, the second group the top 50, and so on for the entire gene list. The last 

group contains all 5,480 DE genes. Each of these groups is then used to 

calculate enrichment against each geneset separately using an appropriate 

statistical method (see below), and then the results from each gene set are 

concatenated and hierarchically clustered. 

GO Enrichment Analysis Implicates Development and Immune Response 

GO term enrichment was calculated using topGO (Alexa and Rahnenfuhrer 

2014), a tool that uses the GO term hierarchy to identify enrichment of the most 

biologically specific categories given a gene list. Figure	3 depicts GO term 

enrichment of ranked subsets of genes ordered by the most significant term 

across all subsets. Enrichment is only shown for gene subset/term pairs that 

attain significance at p<0.05. In total, 901 biological process (BP) terms, 168 

molecular function (MF) terms, and 68 cellular component (CC) terms were found 

to be significant in at least one of the ranked gene subsets. Performing analysis 

on subsets of top enriched genes reveals that developmental processes and 

transcriptional regulation are enriched among the most DE genes, while immune 

response genes are found throughout the DE gene list. Table	6 contains detailed 
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statistics on the top enriched GO terms. These detailed results are consistent 

with the cluster results from DAVID and better expose the specific biological 

functions involved in the DE gene list. 

 

 

Figure 3. Detailed GO enrichment. Top 25 enriched GO categories across all three GO 
namespaces identified by topGO for different numbers of DE genes. X-axis indicates 
the number of top genes used for the enrichment in each GO category, e.g. the first 
column uses the top 25 genes, the second column uses the top 50, and so on. The 
intensity is proportional to –log10(p-value) from topGO. White dots indicate the gene 
set with the most significant p-value, concordant with Table 5. This figure shows that 
the first three GO Categories are defined by genes that are among the top 25 to 150 
DE genes in the dataset. GO Categories further down the list are defined by genes 
whose differential expression is less pronounced between HD and controls. 
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GO Category Top n genes -log10(p-value)	
GO: sequence-specific DNA binding 25 12.211851	
GO: anterior/posterior pattern specification 350 10.890978	
GO: sequence-specific DNA binding transcription factor 
activity 

25 10.19469	

GO: cellular response to zinc ion 350 9.630161	
GO: proximal/distal pattern formation 25 8.874839	
GO: negative regulation of growth 350 7.983699	
GO: plasma membrane 2350 7.603115	
GO: embryonic digit morphogenesis 1350 7.542254	
GO: positive regulation of transcription from RNA 
polymerase II promoter 

50 7.350002	

GO: integral component of plasma membrane 5480 7.167156	
GO: inflammatory response 4850 7.057813	
GO: embryonic forelimb morphogenesis 25 6.633754	
GO: immune response 4350 6.311688	
GO: immunoglobulin binding 2100 6.178673	
GO: immune response-activating cell surface receptor 
signaling pathway 

1100 6.135233	

GO: skeletal system development 25 6.059758	
GO: neutrophil chemotaxis 1850 6.038185	
GO: blood microparticle 3350 5.968453	
GO: developmental growth 4600 5.939322	
GO: transcription factor complex 1100 5.636701	
GO: negative regulation of transcription from RNA 
polymerase II promoter 

850 5.624786	

GO: cellular response to cadmium ion 350 5.593366	
GO: extracellular vesicular exosome 3350 5.489169	
GO: positive regulation of tumor necrosis factor production 1350 5.481418	
GO: signaling pattern recognition receptor activity 1850 5.366574	

Table 6. Enriched GO Categories. The most enriched GO category GO:sequence-
specific DNA binding using the top 25 DE genes ranked by significance. The second 
most enriched GO category, GO:anterior/posterior pattern specification, was found 
when considering the top 350 DE genes. 

Pathways Involved in Multiple Immune System Processes Are Enriched 

To identify biological pathways as opposed to functional categories, we 

performed hyper-enrichment of the MsigDB C2 Canonical Pathways using a 

hypergeometric test on the same ranked subsets of genes as in the GO analysis. 

These analyses found 538 significantly enriched pathways in at least one gene 

subset. Enriched Canonical Pathways show a clear immune response and 

inflammation-related pattern across pathway databases, including Reactome 



	

	

43 

(Croft et al. 2014-1; Milacic et al. 2012) innate immune system [DOI: 

10.3180/REACT_6802.2], KEGG (Kanehisa and Goto 2000) complement and 

coagulation cascades [hsa04610] and cytokine-cytokine receptor interaction 

[hsa04060], and PID (Schaefer et al. 2009-1) IL4-mediated signaling events 

[Pathway id:il4_2pathway] and NFkB canonical pathways [Pathway 

id:nfkappabcanonicalpathway]. 

DE Genes Are Enriched as Targets of Transcription Factors Implicated In HD 

We next performed transcription factor (TF) target analysis using the MsigDB C3 

TF regulation gene set to identify potential regulators responsible for the 

observed differential expression. 237 TFs were identified as significantly enriched 

in at least one gene subset. A number of the enriched TFs are known to 

physically interact with the mutant Htt protein, including SP1 (S.-H. Li et al. 2002) 

and TBP (van Roon-Mom et al. 2002). The pattern of enrichment for the top TF, 

MYC-associated zinc finger protein (MAZ), tracks closely with pathways 

associated with immune response (i.e. both become more enriched as more 

genes are included) but otherwise has no previous connection with HD. The 

second most enriched TF is forkhead box O4 (FOXO4). Another notable 

enriched TF is NFkB, which plays a key role in innate immune response, is 

critical for glial and neuronal cell function and synaptic signaling (O’Neill and 

Kaltschmidt 1997) and impairs synaptic transport in the presence of mutant Htt 

protein (Marcora and Kennedy 2010). Other TFs implicated as potential 
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regulators of the DE genes include NFAT (Hayashida et al. 2010), HSF1 (Neef, 

Turski, and Thiele 2010), and PU1 (Crotti et al. 2014). 

Integrated Geneset Enrichment Analysis Links Biological Function                   

and Transcriptional Regulation 

The top fifteen most enriched gene set profiles from each of GO, Canonical 

Pathways, and Transcription Factors were concatenated and hierarchically 

clustered to identify which gene sets are enriched in similar DE genes, as shown 

in Figure	4. The clustering identifies five groups of genesets that correspond 

primarily to either immune response or developmental functions (A-C, and D-E 

respectively in Figure	4). Transcription Factor genesets are clustered with 

pathway and GO genesets, indicating which co-regulated genes are associated 

with which biological functions. Further remarks on this result are found in the 

Discussion section. 
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Figure 4. Clustergram of Top Enriched Pathway, TF, and GO terms. Concatenated 
enrichment profiles for GO, C2, and TF gene set collections, similar to Figure 3, 
ordered by hierarchical clustering of Euclidean distance between rows. Rows have 
been normalized by dividing by the row sum for visualization, intensity is proportional 
to normalized enrichment. Heatmap is partitioned into groups A-E based on 
hierarchical clustering. Clusters A, B, and C are primarily involved in the immune 
response and are enriched in gene subsets that include more genes. Clusters D and E 
are predominantly related to developmental and transcriptional regulation processes. 

  

Association of Gene Expression with Clinical Covariates 

Genes whose expression is associated with CAG-adjusted age at onset are 

potential genetic factors that modify the presentation of disease independent of 

CAG repeat length, though in the presence of the mutation, and thus may be 

useful as a biomarker in identifying patients at risk of early onset. Therefore, to 

identify genetic factors that may modify clinical covariates, each of the 28,087 
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confidently expressed genes was analyzed for association with CAG repeat 

length, CAG-adjusted residual age at onset, and scores representing cortical and 

striatal involvement using the Hadzi-Vonsattel (H-V) method (Hadzi et al. 2012). 

Due to the significant association between age at onset and CAG repeat length, 

a CAG-adjusted residual age at onset variable was constructed with the model 

from Djousse et al (Djousse et al. 2004-6) and used to test for association (see 

Methods). 

Association was assessed using a linear regression model predicting 

normalized, normally-transformed counts (see Methods) from each covariate 

separately, adjusting for RNA integrity number RIN. No gene associations 

reached genome-wide significance after multiple hypothesis adjustment, though 

many reached nominal significance as described in Table	7. We did not find any 

significant association between gene expression in HD brains and either the 

striatal or cortical H-V involvement scores. While this may be a consequence of 

the relatively small sample size of twenty HD brains studied here, it is also worth 

noting that these brains exhibited a wide range of cortical (from 0.401 to 2.361) 

and striatal (from 2.132 to 3.820) involvement on the H-V scale. To identify 

potential confounding in the DE gene list by cortical involvement, we analyzed 

the DE gene counts to identify any with significant association with H-V cortical 

score (see Methods). None of the DE genes attained significance after multiple 

hypothesis adjustment, indicating the DE gene results are not confounded by 

cortical involvement. 
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CAG Repeat Length CAG Adjusted Onset Cortical involvement score	

Gene beta p-value Gene beta p-value Gene beta p-value	
C2CD3 -0.07 0.0001 CAPN8 0.58 0.0001 STRADB 0.27 7.8E-05	
NPBWR1 0.22 0.0002 ARSF -0.58 0.0004 ABCF3 -0.36 0.00038	
GPR142 -0.13 0.0002 BICD2 -0.22 0.0004 BARD1 0.88 0.00042	
CEP95 -0.09 0.0004 MYB -0.68 0.0007 TMEM190 0.58 0.00051	
C18orf42 0.20 0.0005 GDF5 0.68 0.0012 GLUD1 0.62 0.00052	
NNAT 0.17 0.0006 KLHL40 0.53 0.0014 F2R 1.01 0.00054	
OFD1 -0.10 0.0006 PODNL1 0.55 0.0015 FAM64A -1.01 0.00054	
SOX1 0.11 0.0006 CRELD2 0.30 0.0017 SDC4 1.06 0.00055	
PCDH8 0.23 0.0007 PLEK2 -0.63 0.0018 RIN2 0.82 0.00067	
NAA20 0.06 0.0007 ZNF398 -0.25 0.0018 ANGPTL4 1.49 0.00075	
SH3TC2 -0.24 0.0008 EPS8L2 0.38 0.0025 STOX1 0.70 0.00078	
RWDD2B 0.10 0.0008 PAX5 -0.64 0.0025 DLK2 -0.77 0.00089	
IGF1 0.19 0.0008 GATSL1 -0.42 0.0028 WWOX 0.44 0.00099	
PAPL -0.21 0.0008 ICMT -0.24 0.0031 RFC5 -0.32 0.00102	
DST -0.13 0.0008 NPY2R -0.78 0.0032 DPH2 -0.30 0.00112	
C1orf131 -0.06 0.0008 POLA2 0.33 0.0034 ETNPPL 0.98 0.00118	
GDNF -0.15 0.0009 PRPSAP1 0.24 0.0035 PON2 0.71 0.00135	
PDCD2 0.034 0.0009 TTC16 0.45 0.0036 ELP4 0.60 0.00136	
NCKAP5 -0.14 0.0010 C3orf52 -0.56 0.0036 MYADM -0.40 0.00143	
FAM194A 0.16 0.0010 FAM127C 0.19 0.0040 NR5A1 -0.65 0.0014	

Table 7. Protein coding genes associated with clinical covariates. P-values are 
nominal. 

Discussion 

We conducted mRNA transcriptional analyses in HD and control brains to identify 

altered gene expression profiles in this disease. To our knowledge, these are the 

first reported results from a gene expression analysis of high-throughput mRNA 

sequencing from post-mortem human HD and control brains. Widespread DE 

genes strongly implicate immune response, transcriptional dysregulation, and 

extensive developmental processes across all primary brain cell types (i.e. 

astrocytes, oligodendrocytes, microglia, and neurons). The genes from the DES-

ranked list in Table	4 reveal a variety of disease related processes, implicating 

genetic signatures for different brain cell types as well as genes heavily 

associated with brain injury and neurodegeneration. The top two DES-ranked 
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genes, MBP (myelin basic protein) and GFAP (glial fibrillary acidic protein), are 

typical markers used to identify oligodendrocytes and reactive astrocytes, 

respectively (Baumann and Pham-Dinh 2001). These proteins have also been 

implicated in immune processes, blood-brain barrier permeability, and response 

to injury in the central nervous system (Baumann and Pham-Dinh 2001; 

D’Aversa et al. 2013-4; Lumpkins et al. 2008). The next highest DES-ranked 

gene, CLU (clusterin), is associated with clearance of cellular debris, lipid 

recycling, apoptosis, and, as a stress-induced secreted chaperone protein, has 

been genetically associated with late-onset Alzheimer’s disease (Jones and 

Jomary 2002). GLUL (glutamate-ammonia ligase) is a glutamine synthetase 

found primarily in astrocytes in the brain and is involved in neuron protection from 

excitotoxicity through the conversion of ammonia and glutamate to glutamine 

(Suárez, Bodega, and Fernández 2002). Alteration in TUBB4A (tubulin beta-4A 

chain), a major component of microtubules, has been associated with 

neurodegenerative diseases caused by hypomyelination with atrophy of the 

basal ganglia and cerebellum (Blumkin et al. 2014). AQP4 (aquaporin) is a 

specific marker for astrocytic endfeet and has been linked to Ca2+ induced 

edema (Thrane et al. 2011). ENO2 (ennolase), a neuron-lineage-specific gene 

ranked 19th by DES, has been identified as a marker for ischemic brain injury 

(Cronberg et al. 2011). Although it is not included in the top list, the analysis also 

identified CD40, a protein uniquely expressed in activated microglia for antigen 

presentation in the brain (Ponomarev, Shriver, and Dittel 2006). Together, these 
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genes suggest a systemic response in all brain cell types to stress and brain 

injury. 

While some of the differences in gene expression that are observed in our 

studies are almost certainly a consequence of alterations in the cellular 

distribution in HD due to the loss of neuronal cells and the reactive response to 

degeneration in the HD brain, it is important to note that we did not find that the 

levels of gene expression in HD brains were related to the extent of cortical 

involvement. Specifically, while the HD samples in this study range from very low 

(H-V cortical score 0.401) to very high (H-V cortical score 2.361) levels of cortical 

involvement, levels of differentially expressed genes were not found to be 

significantly associated with H-V cortical score. Because the H-V cortical score 

comprehensively characterizes the level of involvement and cellular architecture 

of the HD brains studied, these findings suggest that the differentially expressed 

genes are not simply a reflection of altered distribution of cell types in the 

samples studied. 

DAVID functional clustering analysis identified a number of functionally 

related clusters with overlapping genes. The network in Figure	2 illustrates that 

the immune system and developmental clusters are highly interrelated in their 

underlying genes, suggesting a link between these cellular processes. The 

detailed analysis of different gene subsets for enrichment of GO, Canonical 

Pathways, and Transcription Factors affords some insight into this relationship as 

illustrated in Figure	4. The top fifteen most enriched gene set profiles from each 
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collection were concatenated and hierarchically clustered to identify which gene 

sets are enriched in similar DE genes. The clustering identifies five distinct 

clusters that are functionally organized into coherent groups (labeled A-E in 

Figure	4). Clusters A, B, and C are primarily involved in the immune response 

and are enriched in gene subsets that include more genes. Transcription factors 

SP1, MAZ, MYC, E12, and PAX4 are enriched in similar sets of DE genes that 

are also involved in inflammatory and immune response, suggesting these 

functions are transcriptionally related. Clusters D and E are predominantly 

related to developmental and transcriptional regulation processes, and are 

clustered with transcription factor FREAC2 (Forkhead Box F2, also known as 

FOXF2) which, as a member of the forkhead family of transcription factors, is 

potentially implicated in development, organogenesis, regulation of metabolism, 

and immune system processes (Jackson et al. 2010). 

The strong implication of immune response and neuroinflammation in this 

study is consistent with prior reports as a critical aspect of the human response 

to HD (Ellrichmann et al. 2013; Silvestroni et al. 2009; Björkqvist et al. 2008). The 

set of DE genes is highly enriched for multiple immune system processes, 

including both innate and adaptive immune response, implicating a tissue-wide 

immune response at multiple cellular levels. The presence of the proinflammatory 

genes NFkB and interleukins (IL8, IL9, IL15, IL18) is strong indication of an 

innate immune response and is previously reported in the HD literature 

(Ellrichmann et al. 2013; Silvestroni et al. 2009; Björkqvist et al. 2008). 
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Except for our recent miRNA finding (Hoss et al. 2014), the Hox locus has 

not previously been implicated in HD in model or human systems. The extent of 

altered developmental genes is quite striking and affords no immediate 

interpretation since the enriched developmental processes seem to be specific to 

cell types that have no obvious role in the central nervous system (i.e. skeletal, 

limb morphogenesis, etc.). This apparently non-specific developmental 

enrichment might therefore be a consequence of profound transcriptional 

changes related to the extreme inflammatory stress experienced by the affected 

brain regions as well as transcriptional dysregulation due aberrant interactions 

between TFs and mutant HTT protein fragments. It is still unclear whether a 

subset or if all brain cell types are responsible for this signal, and elucidation of 

the source of the developmental gene transcription may provide further insight 

into the cell type specificity of transcriptional dysregulation. 

This dataset suggests the calpain family of proteolytic proteins plays a role 

in HD. Calpains have a direct role in the cleavage of mutant Htt into toxic 

fragments (Gafni and Ellerby 2002) and the inhibition of these proteins leads to 

decreased neuronal toxicity in in vitro settings (Gafni et al. 2004). Three calpains, 

CAPN2, CAPN7, and CAPN11, are significantly DE in this dataset, where 2 and 

7 are highly abundant and up-regulated in HD while 11 shows low expression 

and is down regulated. Calpains are typically activated by elevated intracellular 

Ca+2 levels (Goll et al. 2003) and there is significant evidence in this dataset that 

genes responsive to calcium and other ionic metals are activated. Four of the 
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eight calmodulin related genes (CALM1, CALM2, CALML3, CALML4) are DE in 

the dataset, and are all significantly down regulated with the exception of 

CALML4 (LFC -0.55, -0.35, -0.97, 0.42, respectively). Calcium plays a key role in 

apoptotic phagocytosis and the inflammatory response (Gronski et al. 2009; 

Razzell et al. 2013), processes that are strongly implicated in this dataset, and 

disrupted calcium concentration has been implicated in HD and 

neurodegeneration in general (Giacomello, Hudec, and Lopreiato 2011; Wojda, 

Salinska, and Kuznicki 2008). Among the enriched GO categories are calcium-

dependent protein binding, calcium-dependent phospholipid binding, cellular 

response to cadmium ion, and cellular response to zinc ion. Metallothioneins 

appear as one of the most enriched DAVID functional clustering results, with 

nearly every metallothionein 1 subtype DE in the dataset (all except MT1B). 

Altogether, this dataset strongly implicates the presence of metal ion 

disequilibrium in the HD context. Though the presence of ion disequilibrium is 

strongly implicated by this study, it is unclear whether this effect is a cause or a 

consequence of the toxic effects of mutant Htt. 

A popular hypothesis asserts that mitochondrial dysfunction contributes to 

neurodegeneration in HD (Damiano et al. 2010; Costa and Scorrano 2012; 

Schapira et al. 08/2014). Dysregulation of mitochondrial function in HD is thought 

to be induced by disrupted cytoplasmic Ca2+ concentrations (Damiano et al. 

2010) which lead to alterations in bioenergetic processes and mitochondrial 

morphology (Costa and Scorrano 2012). Several of the signals observed in this 
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study suggest an imbalance in calcium ion homeostasis in the human HD brain 

as described above, which supports the hypothesis that mitochondrial 

dysfunction is implicated in human HD. However, none of the mitochondrial 

genes are DE in this dataset. 

In contrast to this study, Hodges et al (Hodges et al. 2006) found no 

detectable gene expression changes for HD in post mortem BA9 tissue. 

Nonetheless, there are consistencies between our findings. First, although 

overall gene expression was observed to be down regulated in the striatum for 

Hodges et al, the distribution of fold changes for BA9 in both studies indicate 

overall up regulation. Second, and more significantly, there is suggestive overlap 

of enriched biological processes between the two datasets across brain regions. 

Specifically, they observed that central nervous system and neuronal 

developmental genes, ion transport, microtubule, and vesicle-related processes 

were enriched, signals also observed in this study. 

The discovery of thousands of statistically significant differences in gene 

expression presented a major challenge to the interpretation of this dataset. The 

DAVID analysis, which is specifically designed to interpret large gene lists, was 

not sufficiently detailed to readily provide insight about which genes were 

involved in which functions, nor did the tool organize its output in a way that 

presents how different enriched genesets are related. The method developed 

here addresses both of these issues, and allows the use of different statistical 

enrichment methods, as appropriate, for different gene sets. It also combines and 
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visualizes the enrichment information in such a way as to facilitate generating 

specific hypotheses concerning which genes are related through their enrichment 

profiles. The link between genes that are regulated by TFs known to interact with 

mHtt fragments and their immunological functions (Figure	4 cluster A) proposes a 

mechanism by which mHtt may play a toxic role to cells, namely via 

transcriptionally altering genes involved in the immune response. FOXF2 was 

also identified as a TF that is potentially responsible for aspects of both the 

inflammatory and developmental gene expression changes (Figure	4 cluster D). 

These insights were not obvious from the DAVID results, demonstrating the utility 

of our novel analytical methodology. 

These data represent the most comprehensive characterization of 

genome-wide gene expression in human HD subjects to date. The broad scope 

of changes across biological functions and cell types establishes HD as a 

systemic disease of the brain, implicating not only neurons but also the primary 

glial cell types. This new molecular evidence supports previous imaging-based 

observations of cortical and whole-brain structural changes in HD (Selemon, 

Rajkowska, and Goldman-Rakic 2004; Squitieri et al. 2009). The immune 

response is intrinsically intercellular in its activation and function, cued by the 

complex interaction of stressed neurons and the reactive glial cells of the central 

nervous system immune response. This brings into focus the importance of 

considering the HD brain as a whole organ, and important advances in 

understanding and mitigating HD pathogenesis may be gained by developing 
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and studying models of these complex multi-cellular interactions. In particular, in 

vitro studies of human-derived neuronal HD cell line models and HD mouse 

models cannot capture the complexity of the human brain microenvironment, an 

especially important point for mouse models due to the compelling differences 

between the human and murine inflammatory response (Seok et al. 2013). It 

remains to be shown precisely which cell types are responsible for which aspects 

of the biological response observed in this study. Similarly, it is not known how 

the immune and developmental DE genes are related, and whether some 

complex combination of these genes can be shown to modulate clinical features 

of disease, in particular age of onset. It is conceivable that subjects with a 

different or more extreme immune response may experience neurodegeneration 

differently than others, and we hypothesize that this avenue of research will yield 

important advances in our understanding of HD pathogenesis. 
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Chapter 3. Comparative Analysis of HD and PD Gene Expression 

Introduction 

Huntington’s Disease (HD) and Parkinson’s Disease (PD) are progressive 

neurodegenerative disorders that are marked by common histological patterns 

and, to a lesser degree, clinical symptoms. Broadly, both diseases are 

characterized clinically by loss of motor function and cognitive decline, and 

histologically by aberrant protein aggregation in neurons and the selective 

degeneration of neurons in contrasting patterns in the brain (Dexter and Jenner 

2013; Vonsattel et al. 1985). However, HD patients begin presenting symptoms 

on average by the age of 40 (R. H. Myers, Marans, and MacDonald 1998), where 

most PD patients onset is age 60 on average (Dexter and Jenner 2013), and 

both the proteins that aggregate and the types of neurons affected in the 

diseases are distinct. Specifically in HD, a polyglutamine expansion in the Htt 

protein encoded by a mutant HTT gene causes Htt protein fragments to 

aggregate, a process that the medium spiny neurons of the caudate nucleus and 

putamen regions in the brain are particularly vulnerable (Vonsattel et al. 1985). In 

PD, toxic fragments of the aSyn protein encoded by the SNCA gene aggregate, 

for which dopaminergic neurons of the substantia nigra are vulnerable (Dexter 

and Jenner 2013). Thus, protein aggregates are coincident with degenerating 

neurons in both diseases, but the contribution of the protein aggregates to 

substantively non-overlapping neuronal cell type and brain region vulnerability is 

unclear (Arrasate and Finkbeiner 2012; Rubinsztein and Carmichael 2003). 
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Consequently, proteolytic dysfunction is hypothesized to be a common 

mechanism to both diseases, but the extent to which other shared biological 

processes may underlie their neurodegenerative pathology is remains to be 

shown. 

Transcriptional dysregulation has been observed in both HD and PD (Cha 

2007; Elstner et al. 2011). Transcription, neuroinflammation, and developmental 

processes have been shown to be dysregulated in the brains of HD individuals 

(A. Labadorf et al. 2015), while inflammation and mitochondrial dysfunction were 

observed to be altered in the brains of PD individuals (Dumitriu et al. 2012). 

However, a systematic comparison of the transcriptional signatures of HD and 

PD has not been performed to date, and those genes and biological processes 

common to both diseases, if any, remain to be determined. To address this 

question, we sought to identify genes that are consistently differentially 

expressed (DE) in the post-mortem brains of HD and PD human subjects 

compared to neuropathologically normal control brains using mRNA-Seq. We 

hypothesize that common altered genes and pathways in HD and PD will 

elucidate the mechanistic underpinnings of the neurodegenerative process. 

This study presents the results of a comparison of DE genes for each of HD and 

PD versus controls analyzed separately. In addition, in order to identify 

consistent effects with lower effect size across diseases, an analysis was 

performed where the HD and PD datasets are concatenated as a single category 

(neurodegenerative disease, ND) and compared with controls. DE genes are 
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determined using a specialized form of logistic regression as described in (Choi 

et al, under review), which better controls type I errors when compared to 

negative binomial based DE detection methods. 

Materials and Methods 

Sample collection, processing, and sequencing 

The HD, PD, and control samples used in this study are those previously 

described in our past work (A. Labadorf et al. 2015; Dumitriu et al. 2012). An 

additional nine HD brain samples were included in this study beyond those in (A. 

Labadorf et al. 2015), including two HD gene positive asymptomatic individuals, 

obtained from the Harvard Brain Tissue Resource Center. All samples underwent 

the same tissue dissection and RNA extraction sample preparation protocol 

performed by the same individuals. Briefly, RNA was extracted from the 

prefrontal cortex of postmortem brains of HD and PD subjects, as well as 

neuropathologically normal controls. RNA was poly-A selected and subjected to 

mRNA sequencing on the Illumina HiSeq 2000 platform. Sample statistics are 

contained in Table	8. See (A. Labadorf et al. 2015) and (Dumitriu et al. 2012) for 

more detailed information about sample preparation. 

Sample type N Mean (SD) 
Age at death 

Mean (SD) 
PMI 

Mean (SD) 
RIN	

HD 29 60.5 (11.4) 16.4 (7.8) 7.1 (1.2)	
PD 29 77.5 (8.9) 11.1 (9.7) 7.0 (0.7)	

Control 49 68.6 (15.8) 14.6 (9.5) 7.8 (0.7)	
Table 8. Sample Statistics 
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mRNA-Seq data processing 

Each FASTQ file containing mRNA sequences was first trimmed for sequence 

quality using the sickle software package (Joshi NA, Fass NJ 2011) with default 

arguments. The resulting short reads were aligned against the hg38 build of the 

human reference genome using the STAR aligner v2.4.0h1 (Dobin et al. 2013) 

with permissive multimapping parameters (200 maximum alignments –

outFilterMultimapNmax 200) and otherwise parameter values suggested in the 

STAR manual. Multimapped reads were assigned unique alignment locations 

using the ORMAN software package (Dao et al. 2014). Aligned reads were 

counted against GENCODE v21 annotation (Harrow et al. 2012)using the HTSeq 

package v0.6.1p1 (Anders, Pyl, and Huber 2014). Read counts for all samples 

were normalized using the method described in the DESeq2 package v1.10.1 

(Love, Huber, and Anders 2014) and outlier counts were trimmed using the 

strategy described in (A. Labadorf et al. 2015). Since the original were poly-A 

selected, only genes with biotypes known to be polyadenylated (i.e. 

‘protein_coding’, ‘lincRNA’, ‘processed_transcript’, ’sense_intronic’, 

’sense_overlaping’, ’IG_V_gene’, ’IG_D_gene’, ’IG_J_gene’, ’IG_C_gene’, 

’TR_V_gene’, ’TR_D_gene’, ’TR_J_gene’, and ’TR_C_gene’) as annotated by 

Ensembl BioMart (Kinsella et al. 2011) downloaded on May 27th, 2015. To avoid 

spurious results due to low abundance, genes were further filtered if more than 

half of the ND or control samples had zero counts. 
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Differential expression and assessment of batch effects 

DE genes were identified using Firth’s logistic (FL) regression (Firth 1993; Heinze 

and Schemper 2002) applied to mRNA-Seq data as described in (Choi et al, 

under review). Briefly, in contrast to negative binomial regression models like 

edgeR (Robinson, McCarthy, and Smyth 2010) and DESeq2 (Love, Huber, and 

Anders 2014), this method models a binomial status variable (e.g. case vs. 

control) as a function of gene counts and any other potentially confounding 

variables (RIN value, PMI, etc.). Classical logistic regression has historically not 

been used to determine DE genes because of the so-called “complete 

separation” problem, where model parameter estimation fails when there is 

perfect or nearly perfect separation of a predictor with respect to a binomial 

variable (e.g. one condition has extremely high read counts and the other has 

very low read counts). FL regression addresses this issue by using a modified 

likelihood function to enable reliable parameter estimation, and has other 

statistical advantages with respect to type I error rates and power. Note the DE 

statistic from FL regression is log odds ratio (LOR) of case versus controls, that 

is, positive LOR indicates greater mRNA abundance in case and negative LOR 

indicates greater abundance in control. All reported p-values are Benjamini-

Hochberg (BH) (Benjamini and Hochberg 1995)adjusted unless noted otherwise. 

See (Choi et al, under review) for further information on this method applied to 

mRNA-Seq data. 
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The sequencing datasets in this study were sequenced in five separate batches. 

To evaluate whether there was evidence of batch effects confounding the 

identification of DE genes, we ran three statistical models and compared beta 

estimates. Within each of HD and PD, we ran a full FL model of case versus 

control against all case counts without a batch variable (FWoB), a full FL model 

with a categorical variable corresponding to batch (FWB), and separate models 

of case versus control within each batch and then meta-analyzed the beta 

estimates using a random-effect meta-analysis method (META). Consistent 

differences in gene-wise count beta estimates of FWoB and FWB models would 

indicate evidence of confounding, while the META model is free of confounding 

by batch by design. There was no evidence of a systemic effect of beta estimate 

differences between the three models. We therefore concluded that batch was 

not a significant confounder of DE between case and control and did not include 

a batch variable in the DE models. 

Identification of ND DE genes and enriched gene sets 

DE genes were identified as those with BH adjusted p-values < 0.01 from the 

Firth’s logistic regression models of HD vs. control, PD vs. control, and ND vs. 

control models, yielding three independent DE gene lists. Read counts for each 

gene were scaled to have a mean of zero and standard deviation of one to obtain 

standardized regression coefficients, which makes coefficients comparable 

across genes. All controls were used in each model. Gene set enrichment 

analysis was performed on each gene list ranked by read counts beta coefficient 
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using the GSEA (Subramanian et al. 2005) implementation in the DOSE software 

package  (Yu et al. 2015) against the MsigDB Canonical Pathway (C2) geneset 

database (Subramanian et al. 2005). GSEA enrichment was computed using the 

complete list of genes irrespective of significance ranked by standardized beta 

coefficient of the count variable. The robust rank aggregation (RRA) algorithm 

(Kolde et al. 2012) was used to identify individual genes that were consistently 

altered across these gene lists. Briefly, RRA is a probabilistic, non-parametric, 

rank-based method for detecting genes ranked consistently better than expected 

under the null hypothesis of uncorrelated inputs in the presence of noise and 

outliers. The genes identified as most significant by RRA are the most likely to be 

implicated in the general ND phenotype. 

In addition to producing independent HD and PD DE gene lists, we sought 

to functionally characterize the genes that are uniquely significant to each 

disease as well as those in common. To accomplish this, the DE genes from HD 

and PD were intersected, partitioning the genes into HD-specific, PD-specific, 

and DE genes common to the two gene lists. Each of these partitioned gene lists 

were then subjected to gene set enrichment on the MsigDB Canonical Pathway 

(C2), Transcription Factor Targets (C3), and Gene Ontology (C5) gene set 

databases (Subramanian et al. 2005) using a hypergeometric test. 

Results 

Firth’s logistic (FL) regression identified 2427, 1949, and 4843 significantly DE 

genes for HD, PD, and ND, respectively, at q-value < 0.01. Gene set enrichment 
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analysis of MsigDB C2 gene sets identified 226, 199, and 250 gene sets 

significantly enriched at q-value < 0.05 for HD, PD, and ND, respectively. Due to 

the large number of DE genes in each dataset, we focus exclusively on the 

GSEA enrichment results here. 

There was a high degree of overlap between the significantly enriched 

gene sets of HD and PD. 145 gene sets were significantly enriched in both DE 

gene lists, while 81 and 54 gene sets were uniquely significant in HD and PD, 

respectively. When a pathway was enriched in more than one list, the pathway 

was always, without exception, enriched in the same direction, either positively 

(genes are more abundant in disease) or negatively (genes are less abundant in 

disease). There were 24 gene sets uniquely significant in ND. Figure	5 depicts 

the enriched gene sets grouped by high-level biological category for HD, PD, and 

ND.  

We make several observations of Figure	5A. First, the plurality of enriched 

gene sets across all three data sets are related to immune processes (IM) and 

are with few exceptions positively enriched. Pathways related to neuronal 

processes (NE) are largely negatively enriched and there is a subset of these 

gene sets that are exclusively enriched in HD. With the exception of DNA 

damage, all remaining biological categories are represented for both HD and PD. 

DNA damage related pathways (DN) are unique to the PD dataset and are 

negatively enriched. Multiple apoptosis (AP), developmental (DE), 

transcription/translation (TR), and transcription factor target (TF) gene sets are 
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also enriched in all three gene lists. 

There were 83 gene sets that did not fit cleanly into a single category 

(OT), which notably include pathways related to endocytosis 

(KEGG_ENDOCYTOSIS), signaling (BIOCARTA_MAPK_PATHWAY, 

PID_RAS_PATHWAY, REACTOME_SIGNALING_BY_EGFR_IN_CANCER, 

REACTOME_PHOSPHOLIPASE_C_MEDIATED_CASCADE), cellular adhesion 

and extracellular matrix (KEGG_FOCAL_ADHESION, 

KEGG_CELLULAR_ADHESION_MOLECULES_CAM, 

REACTOME_COLLAGEN_FORMATION, 

REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION), glycans 

(KEGG_O_GLYCAN_BIOSYNTHESIS, PID_GLYPICAN_1PATHWAY, 

KEGG_GLYCOSAMINOGLYCAN_BIOSYNTEHSIS_HEPARAN_SULFATE), and 

metabolism (KEGG_GALACTOSE_METABOLISM, 

REACTOME_INTEGRATION OF_ENERGY_METABOLISM, 

REACTOME_INSULIN_SYNTHESIS_AND_PROCESSING).	
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Figure 5. A) Significantly enriched MsigDB C2 Canonical Pathway gene sets for HD, 
PD, and ND identified by GSEA. Each colored ring segment corresponds to a single 
enriched gene set. Red (outer), green (middle), and blue (inner) segmented rings 
indicate whether the HD, PD, or ND DE gene lists, respectively, were significantly 
enriched for the gene set. Dark and light colored segments indicate up and down 
regulation (positive, negative GSEA normalized enrichment score), respectively. Black 
ring around exterior groups gene sets into high-level categories as indicated by the 
two letter code. Gene set name is listed in interior of rings. B) Venn diagram 
illustrating overlap of significantly enriched gene sets for HD, PD, and ND. All but 24 
of the ND significant gene sets were significantly enriched in either HD, PD, or both. 
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RRA identified 1353 genes with a score < 0.01. The top ten genes identified by 

RRA as most highly ranked across all three gene lists are reported in Table	9. 

The rank of each gene in the individual gene lists are also reported in the table, 

showing that most genes are relatively highly ranked across all three studies as 

expected. 

Symbol Description 

R
R

A
 R

ank 

R
R

A
 

S
core 

H
D

 R
ank 

P
D

 R
ank 

N
D

 R
ank	

ENSG00000272403 no description 1 4.93e-9 25 15 1	
SPR sepiapterin reductase 2 1.13e-7 70 38 5	
DDIT4 DNA-damage-inducible transcript 4 3 1.27e-7 74 60 22	

TRIP10 thyroid hormone receptor interactor 
10 4 1.87e-7 84 59 7	

TNFRSF10D tumor necrosis factor receptor 
superfamily, member 10d 5 2.30e-7 90 55 20	

PRMT6 Protein arginine methyltransferase 
6 6 2.54e-7 29 93 10	

GPSM3 G-protein signaling modulator 3 7  2.62e-7 81 98 11	

GPCPD1 Glycerophosphocholine 
phosphodiesterase 1 8 2.79e-7 13 96 2	

GPR4 G protein-coupled receptor 4 9 2.97e-7 98 75 24	

NFKBIA 
Nuclear factor of kappa light 
polypeptide gene enhancer in B-
cells inhibitor, Alpha 

10 3.35e-7 11 103 3	

Table 9. Top ranked RRA genes. RRA Score can be thought of as a p-value. The 
remaining columns contain the rank of the corresponding gene in each individual 
gene list. 

The most consistently ranked gene is RP1-93H18.7 

(ENSG00000272403.1), a lncRNA, which was removed from Ensembl starting at 

version GRCh38.p2, but shows consistent transcription in these data. This gene 

is directly downstream of the gene DSE (dermatan sulfate epimerase), which is 

also DE in both HD and PD, is involved in embryonic development (Stachtea et 
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al. 2015; Habicher et al. 2015), and has been related to the immune response in 

cancer patients (Mizukoshi et al. 2012). Deficiencies in the second ranked gene, 

SPR (sepiapterin reductase), have been linked to DOPA-responsive dystonia 

(Wijemanne and Jankovic 2015). The third gene, DDIT4 (DNA-Damage-Inducible 

Transcript 4), is a multifunctional gene which, via its inhibition of the mammalian 

target of rapamycin complex 1 (mTORC1), regulates in cell growth, proliferation, 

and survival (Dennis et al. 2013), controls p53/TP53-mediated apoptosis in 

response to DNA damage(Cam et al. 2014; Vadysirisack et al. 2011), and plays 

a role in neurodegeneration, neuronal death and differentiation, and neuron 

migration during embryonic brain development (Romaní-Aumedes et al. 2014; 

Canal et al. 2014; Ota et al. 2014; Malagelada et al. 2011). TRIP10 (thyroid 

hormone receptor interactor 10), another multi-functional gene, is involved in 

insulin signaling (Chang, Chiang, and Saltiel 2013), endocytosis (Feng et al. 

2010), and structures specific to monocyte-derived cells (Linder et al. 2000). 

TNFRSF10D (Tumor Necrosis Factor Receptor Superfamily, Member 10d, 

Decoy With Truncated Death Domain) inhibits certain types of apoptosis and 

may play a role in NfkB pathway (Degli-Esposti et al. 1997).	

Figure	6 illustrates the differences in normalized counts for the top genes 

identified by RRA. With the exception of (12) PITX1, which is driven entirely by 

HD, all top genes demonstrate substantial differences between both disease 

conditions and control.	
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Figure 6. Box plots of normalized counts for top RRA genes split by condition, RRA 
rank is in parenthesis. Whiskers extend to 25th and 75th percentile counts, white bars 
are median counts. With the exception of (12) PITX1, which is driven entirely by HD, all 
top genes demonstrate substantial differences between both disease conditions and 
control. 

Finally, we examined the significant DE genes from HD and PD for 

intersection. Figure	7 illustrates the overlap of DE genes between diseases and 

describes gene set enrichment results for the intersection. Figure	8 contains the 

enrichment results for the HD unique genes.	
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Figure 7. A) Venn diagram of HD and PD DE gene list intersection for DE genes 
adjusted p<0.01. B) Bar chart indicating number of MsigDB C2 Canonical Pathway 
(CP), C3 miRNA Targets (miR), C3 Transcription Factor Targets (TF), and C5 Gene 
Ontology (GO) gene sets enriched for the HD unique (HD \ PD), intersection (HD n PD), 
and PD unique (PD \ HD) genes. For HD \ PD enrichment, 17 redundant or 
uninformative GO gene sets and 7 TF gene sets for motifs with unknown transcription 
factors were omitted from the figure results. C) Gene sets enriched for the intersection 
genes (HD n PD). Adjusted p-values are listed beside gene set name and the 
originating gene set (CP, miR, TF, or GO) are indicated by color. Gene sets that are 
groups into boxes share more than 20% of their DE genes and are therefore listed 
together. 

As shown in Figure	7A, there were 748 DE genes in common between HD 

and PD, while 1679 and 1201 DE genes were unique to HD and PD, 

respectively. When the genes from each partition were analyzed for enrichment 

against MsigDB C2 Canonical Pathway (CP), C3 miRNA Targets (miR), C3 

Transcription Factor Targets (TF), and C5 Gene Ontology (GO) gene sets using 

a hypergeometric test, the HD unique genes showed much more enrichment for 

all four gene set categories than the other two gene partitions (Figure	7B), with 

111 gene sets significantly enriched in total. By comparison, the intersection 
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genes were enriched for 33 gene sets, while PD was enriched for only one 

(GO:0031570 DNA_INTEGRITY_CHECKPOINT, p=0.049) despite having a 

comparable number of DE genes to the HD unique set (1201 vs. 1679).	

Figure	7C lists the gene sets enriched in the intersecting DE genes, where 

gene sets that share > 20% of their DE genes are grouped together. Multiple 

gene sets related to nuclear factor kappa-light-chain-enhancer of activated B 

cells, NFkB, and transcription factor cAMP response element-binding protein, 

CREB, targets are enriched in the intersection genes. Other transcription factor 

targets including heat shock transcription factor (HSF1), Protein C-ets-2 (ETS2), 

androgen receptor 1 (AR1), the Nuclear Factor, Erythroid 2-Like 1/V-Maf Avian 

Musculoaponeurotic Fibrosarcoma Oncogene Homolog G complex 

(TCF11/MAFG), and Sex Determining Region Y (SRY) are also enriched. 

Apoptosis related gene sets (KEGG_APOPTOSIS, 

PID_P53DOWNSTREAMPATHWAY), inflammatory gene sets 

(PID_CXCR4_PATHWAY, 

KEGG_LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION, 

PID_IL12_STAT4PATHWAY), pathways related to angiogenesis/axon guidance 

(PID_ANGIOPOIETINRECEPTOR_PATHWAY, PID_EPHRINBREVPATHWAY, 

KEGG_AXON_GUIDANCE), and insulin synthesis were observed.	
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Figure 8. Enriched gene sets for the HD unique (HD \ PD) genes from Figure 7 A and 
reported similarly as in Figure 7 C. Note 17 redundant or uninformative GO gene sets 
and 7 TF gene sets for motifs with unknown transcription factors were omitted from 
the figure results. 

HD specific enrichments are shown in Figure	8, where a broad spectrum of 

biological processes is implicated in the HD-unique DE genes. The most striking 

enriched gene set is KEGG_RIBOSOME, with many other related gene sets 

involved in translation and molecular metabolism similarly enriched. Multiple 

gene sets that share > 20% of their DE genes are associated with Jun Proto-

Oncogene (AP1), BTB And CNC Homology 1, Basic Leucine Zipper 

Transcription Factor 1 and 2 (BACH1, BACH2), and NRF2/TCF11 are also 

implicated. Other strongly implicated biological processes are ion channel 

activity, plasma membrane and signaling, apoptosis, immune system and 

inflammatory processes, developmental genes, neuron-related signaling 

pathways, many transcription factors, and two families of miRNAs. Only one 
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gene set (TFC11MAFG_01) was enriched in more than one of the three gene 

partitions. The remainder of the enriched gene sets, and indeed most of the 

biological processes, are distinct between the three gene partitions. 

Discussion 

To the authors’ knowledge, this study presents the first comprehensive 

comparative analysis of DE gene expression from HD, PD, and ND in post-

mortem human brains assessed with mRNA-Seq. The comparison of HD and PD 

in particular is motivated by the fact that these diseases can be viewed as mirror-

images of each other. GABAergic medium spiny interneurons, which compose 

most of the neurons in the striatum and selectively die in HD but are spared in 

PD, project directly into the substantia nigra and coordinate motor activity 

throughout the brain via dopamine-induced signaling (Yager et al. 2015). 

Dopaminergic neurons in the substantia nigra, on the other hand, which also are 

important in coordinating motor activity as well as arousal, reinforcement, and 

reward (Schultz 2007), selectively degenerate in PD but are spared in HD. It was 

observed in a study of 523 HD subjects that the incidence of PD in this cohort 

was lower than that of the general population, though both HD and PD 

individuals develop Alzheimer’s disease at the same rate (Hadzi et al. 2012), 

suggesting the selective death of medium spiny neurons might be 

neuroprotective of dopaminergic neuron death. Given the intimate neurological 

link between the affected neurons in HD and PD, and the mutual exclusivity of 

their degeneration, this comparison poses a very interesting contrast to identify 
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common responses to neurodegeneration that are not confounded by neuron 

type. Unfortunately, a direct comparison of neurons in these regions of 

postmortem human brains is not possible, precisely due to this mirror-image 

pathology. The choice of the BA9 brain region is motivated by the fact that, due 

to degeneration, the affected neurons are largely missing from the striatum and 

substantia nigra in HD and PD, respectively, whereas BA9 is generally free of 

involvement in both diseases (Hadzi et al. 2012; Braak et al. 2003; Halliday, Del 

Tredici, and Braak 2006). Because the primarily affected neurons in HD and PD 

do not exist in BA9, the biological processes implicated by this analysis are likely 

in part the response to, rather than direct cause of, the respective diseases. 

Nonetheless, the remarkable consistency between HD and PD observed in this 

analysis points to important mechanisms that further our understanding of 

neurodegenerative disease as a general process. 

The biological processes implicated by DE gene lists identified from each 

condition separately are compellingly similar. From Figure	5, we see that the 

majority of enriched biological pathways are common and that they are invariably 

perturbed in the same direction in both diseases. Furthermore, combining HD 

and PD data into an ND condition does not yield significantly more novel 

biological insights. This remarkable consistency between the pathway 

enrichment results suggest that the underlying molecular responses to 

neurodegeneration in HD and PD may be more similar than they are different, 

despite their different pathological underpinnings. Of particular significance is the 
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strong positive enrichment of immune and inflammatory pathways, which have 

been convincingly implicated in both diseases separately (A. Labadorf et al. 

2015; Kwan et al. 2012; Crotti et al. 2014; Ellrichmann et al. 2013; Dexter and 

Jenner 2013; Dobbs et al. 1999; Jenner 2003; Allen Reish and Standaert 2015), 

but the compelling similarity of these signatures between HD and PD revealed by 

this analysis has not been illustrated to date.  

The negative regulation of neuron-related pathways is also noteworthy, 

since the BA9 brain region, from which these samples are derived, is not known 

to be heavily involved in either of these diseases. Despite the lack of clear and 

consistent neurodegeneration in this brain region, the widespread biological 

pathways shown to be affected in this analysis strongly suggest neurons in BA9 

do indeed experience a common set of effects in the neuropathology for HD and 

PD. 

Many of the individual genes identified by RRA as most consistently 

different in HD, PD, and ND have previously been the focus of studies in 

neurodegeneration. The second highest ranked gene SPR has been the focus of 

significant study in PD and is related to the PARK3 gene locus (Sharma et al. 

2011; Tobin et al. 2007), but has not been previously implicated in HD. Inhibition 

of DNA-damage inducible transcript 4 (DDIT4/RTP801/REDD1) has been 

associated with neuroprotection in PD models and patients (Malagelada et al. 

2010) and is involved with mutant Huntingtin-induced cell death (Martín-Flores et 

al. 2015). Thyroid hormone receptor interactor 10 (TRIP10) has been shown to 
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interact directly with mutant huntingtin (Holbert et al. 2003), and while it not 

known to play a role in PD pathology, its elevated mRNA abundance in these PD 

samples suggest it may indeed be implicated. Other top genes have also been 

implicated in neurodegeneration: tumor necrosis factor receptor superfamily 10D 

(TNFRSF10D)  (López-Gómez et al. 2011; Frenkel 2015), protein arginine 

methyltransferase 6 (PRMT6) (Scaramuzzino et al. 2015), and toll-like receptor 5 

(TLR5) (Arroyo et al. 2011). Further investigation of this list of genes is likely to 

yield novel insights into the mechanisms of neurodegeneration. 

The intersection of DE genes between HD and PD also affords important 

insight into genes relevant to fundamental neurodegenerative processes. Most 

notably, pathways related to NFkB and transcriptional targets of CREB are 

prominent in the enrichment results. The NFkB pathway is prominent in both HD 

(Marcora and Kennedy 2010; Träger et al. 2014) and PD pathology (Flood et al. 

2011; Ghosh et al. 2007) through its central role in inflammatory signaling. CREB 

is directly targeted by brain derived-neurotrophic factor (BDNF) (Pizzorusso et al. 

2000), an important trophic factor in the brain. Both BDNF (Zuccato et al. 2008), 

and CREB (Choi et al. 2009; Obrietan and Hoyt 2004) have been directly 

implicated in HD pathology, while CREB is also believed to play a critical role in 

dopamine receptor-mediated nuclear signaling (Andersson, Konradi, and Cenci 

2001), and disruption of the protein's function leads to neurodegeneration (Devi 

and Ohno 2014; Mantamadiotis et al. 2002). The specific inflammation-related 

gene sets (HSF1 transcription factor targets, CXCR4, IL12) suggests there is 
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some specificity in the aspects of the pan-neurodegenerative neuroimmune 

response. Recent studies in both HD and PD have focused on the role of insulin 

sensitivity and metabolism in patients (Block et al. 2010; Aviles-Olmos et al. 

2013; Russo et al. 2013), supporting the role of insulin synthesis as an enriched 

biological pathway in the common gene list. While the enrichment of apoptosis-

related pathways was not surprising, pathways related to angiopoietin, ephrin, 

and axon guidance suggest that biological processes related to neuronal 

plasticity are active in both of these diseases and may even indicate that 

neuroprotective or neuroregenerative processes are a component of the 

neurodegenerative response. 

These data also point to compelling differences between HD and PD. 

Interestingly, two groups of genes, DNA damage and repair and tRNA related 

processes, seem to be uniquely perturbed and negatively enriched in PD. The 

DNA damage and repair gene set enrichment may be a reflection of 

mitochondrial DNA damage. In PD, dopaminergic neurons of the substantia nigra 

(though not cortical neurons) were found to be particularly vulnerable to 

mitochondrial DNA damage (Sanders et al. 2014), and Lewy body pathology, the 

histological hallmark of PD, is associated with mitochondrial DNA damage 

(Müller et al. 2013). More generally, mitochondrial DNA damage and oxidative 

stress are associated with several neurodegenerative diseases including PD, 

Alzheimer's disease (Moreira et al. 2010), and ALS (Coppedè 2011).  There is 

evidence supporting the involvement of aminoacyl tRNA synthetases in 



	

	

77 

neurological disease, including ALS, leukoencephalopathy, and PD (Park, 

Schimmel, and Kim 2008). 

In HD, there is a number of uniquely perturbed gene sets related to glycan 

biosynthesis and metabolism are negatively regulated, and these pathways have 

not been previously implicated in HD. The 1687 HD-unique DE genes are 

enriched for many gene sets across a broad spectrum of biological processes, 

including mRNA and protein metabolism, ion channel activity, signaling and 

kinase activity, apoptosis, immune response, and development. Other, more 

specific gene sets related to a large number of transcription factors further 

support the observation of transcriptional dysregulation in HD (Cha 2000). The 

specificity of these enriched TF gene sets is quite striking, as the targeted DE 

genes appear to be largely disjoint between them, suggesting potential, specific 

causes of the dysregulated transcriptional effects in HD. The enrichment of two 

miRNA families are also particularly relevant in light of recent reports of miRNA 

dysregulation in HD (Hoss et al. 2015; Hoss et al. 2016). 

It is interesting to note the disparity in enrichment between the HD and PD 

unique DE genes. Though the numbers of unique DE genes are comparable, the 

large number of enriched gene sets in HD stands in sharp contrast to the almost 

total absence of enrichment in PD. This result implies that the DE genes in HD 

are more consistently related to one another than in PD. One possible, and 

potentially important explanation for this is that HD is a much more 

homogeneous disease than PD. It is well established that PD has a significant 
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sporadic component (Lesage and Brice 2012), caused by a combination of 

genetic and environmental factors. The relative heterogeneity of PD may make 

finding consistently effective treatments difficult, and the absence of biological 

enrichment in specific pathways, other than those common to both diseases, 

from this analysis may be a reflection of an underlying molecular basis for this 

effect. It may be that, given sufficient sample size, coherent subgroups of 

patients may be identified by examining patterns in their gene expression using 

datasets such as those analyzed here. On the other hand, despite extensive 

molecular characterization of HD, effective, widely available therapies for HD 

have remained elusive despite the relative homogeneity of the disease process 

among HD patients. 

These findings have important implications on our understanding of the 

neurodegenerative disease process. The significant involvement of the 

inflammatory pathways in both diseases in an area not thought to be directly 

involved in disease pathogenesis suggests the response to neurodegeneration is 

widespread throughout the brain. NFkB in particular appears to be a major 

player, which is well supported in the HD and PD literature. It is unclear whether 

the neuroinflammatory response is protective, deleterious, or both from these 

data, but investigation into the role these processes play, and the potential 

therapeutic value of modulating them, should be made a high priority. 
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Chapter 4: mRNA/miRNA modules associated with clinical features in HD 

Introduction 

The abundance of mRNA transcripts in a cell is regulated by many mechanisms. 

microRNAs (miRNAs) are short RNA molecules, typically 18–22 nucleotides in 

length, that inhibit mRNA molecules from being translated into protein by 

targeting specific nucleotide sequences contained within transcribed mRNAs. 

Specifically, the first 7 nucleotides of each miRNA, termed the seed sequence, 

base pair with complementary nucleotide sequences found in mRNA transcripts. 

This short RNA duplex typically occurs in the 3’ untranslated region (3’UTR) of 

mRNA molecules and regulates mRNA expression by inhibiting the ribosomal 

complex during translation or marking the mRNA for degradation (Ling, Fabbri, 

and Calin 2013). The mRNA/miRNA relationship is many-to-many, where a 

single miRNA can target multiple mRNAs and a single mRNA may be targeted by 

many different miRNAs, resulting in a complex regulatory network that has been 

implicated in important biological processes, including development and disease 

(W. Zhang et al. 2012; Hiddingh et al. 2014; Cordes and Srivastava 2009; 

Shenoy and Blelloch 2014). 

Identifying the mRNA targets of miRNAs is a critical step in understanding 

the regulatory relationships between these molecules. Several complementary 

approaches have been proposed for predicting mRNA/miRNA relationships, 

including sequence-based predictions obtained by scanning 3’UTR sequences 

for conserved miRNA seed sequences (Lewis, Burge, and Bartel 2005b), 
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modeling the thermodynamic properties of the mRNA/miRNA duplex (Enright et 

al. 2003), modeling the 2 dimensional hairpin structure of precursor miRNAs 

(Rehmsmeier et al. 2004), and by identifying statistical relationships (e.g. 

Pearson correlation) between the abundance of mRNAs and miRNAs across 

multiple samples (Gennarino et al. 2009). Bioinformatic mRNA/miRNA target 

predictions are then used to design wet lab experiments to validate putative 

relationships, which further improves the confidence of computational target 

predictions and algorithms. Approaches that combine prediction information 

across methods have also been proposed that produce mRNA/miRNA target 

predictions that are more consistently validated in experimental settings than any 

one method alone (Kozomara and Griffiths-Jones 2011; Le et al. 2015). As a 

result, mRNA/miRNA prediction databases for multiple organisms are available 

(Kozomara and Griffiths-Jones 2011; Kozomara and Griffiths-Jones 2014) that 

aid in the analysis and interpretation of transcriptional mRNA and miRNA data. 

Analysis of mRNA and miRNA abundance measurements using high-

throughput transcriptional data revealed that groups of interacting mRNAs and 

miRNAs, termed mRNA/miRNA modules, often work in concert to regulate 

specific biological processes (W. Zhang et al. 2012; Hiddingh et al. 2014; 

Coronnello et al. 2012; Z. Liu et al. 2015; Setty et al. 2012). mRNA/miRNA 

modules can be detected using transcriptional data from multiple samples by 

examining the statistical relationship between the abundance of mRNAs and 

miRNAs. Specifically, since the regulatory effect of miRNAs on mRNAs is 
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typically inhibitory, we expect the abundance of miRNAs and their target mRNAs 

to be inversely correlated, since a greater abundance of a miRNA should result in 

a greater degradation of its targets. Therefore, the most consistent negatively 

correlated mRNA/miRNA pairs are the most likely candidates for direct miRNA 

regulatory relationships. However, indirect regulatory relationships may result in 

positive correlation between miRNAs and their targets. For example, if a miRNA 

targets an mRNA that encodes for a transcriptional inhibitor protein, the 

relationship between the miRNA and the targets of the transcriptional inhibitor will 

be positive, since decreasing the abundance of an inhibitor increases the 

abundance of its targets. In this instance, the miRNA in question does indeed 

have a regulatory relationship with the increased mRNAs, though not in the 

expected (i.e. negative) direction, and should therefore be considered a member 

of a module with those mRNAs. Figure	9 contains an illustration of the 

mRNA/miRNA module concept.	
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Figure 9. Cartoon of relationships involved with mRNA/miRNA modules. 

 

Many mRNA/miRNA module detection approaches have been proposed. The 

earliest method proposed to detect miRNA-mRNA modules was by Yoon & 

Micheli (Yoon and Micheli 2005), where sequence complementarity, free energy 

estimation, and evolutionary conservation were used in combination to define 

putative miRNA-mRNA interactions. (Joung et al. 2007) used coevolutionary 

learning and estimation-of-distribution algorithms to combine miRNA expression 

data and binding information with the goal of finding correlated sets of miRNAs 

and mRNAs. (Tran, Satou, and Ho 2008) used rule induction to identify miRNA-

mRNA modules. All pairwise mRNA expression value correlations were 

computed to split the dataset into “similar” and “dissimilar” classes with respect to 

each mRNA. (Peng et al. 2009) calculated all pairwise miRNA-mRNA 
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correlations from expression data, filtered those correlations by an FDR threshold 

identified by randomization and combined the thresholded correlation matrix with 

predicted target information to create an adjacency matrix of miRNA-mRNA 

pairs. (Joung and Fei 2009) proposed a hierarchical probabilistic graphical model 

that uses predicted miRNA targeting information and mRNA expression values to 

infer regulatory modules. (B. Liu, Li, and Tsykin 2009) defined the miRNA-mRNA 

regulatory network as a bipartite graph composed of bicliques (completely 

connected subgraphs of at least m miRNAs and n mRNAs) using predicted target 

information and miRNA and mRNA expression profiles. (B. Liu et al. 2010) 

created an algorithm inspired by Correspondence Latent Dirichlet Allocation, 

which is useful for modeling the joint probability distribution of a continuous and a 

discrete random variable. (S. Zhang et al. 2011) used miRNA target predictions, 

miRNA and mRNA expression data, and protein protein interaction data to infer 

functional miRNA-mRNA modules. (Lu et al. 2011) used Lasso regression to 

estimate the effect of TargetScan and PicTar predicted targets on mRNA by 

including targeting miRNAs as variables in the Lasso model to predict mRNA 

expression. (J. Zhang et al. 2012) proposed a semi-supervised model that uses 

differentially expressed miRNAs and mRNAs to infer functional miRNA-mRNA 

regulatory modules between two conditions with a probabilistic topic model, 

similar to that of (B. Liu et al. 2010). (Bryan et al. 2014) combined miRNA and 

mRNA expression values into expression correlation matrix, where negatively 

correlated relationships are considered direct and positive relationships are 
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considered putative indirect regulatory relationships. Most recently, (Y. Li et al. 

2014) combined miRNA expression, mRNA expression, and miRNA-mRNA 

target info to identify miRNA regulatory modules by calculating synergistic 

miRNA-mRNA interactions. 

Several of the proposed module detection methods [Peng 2009; Joung & 

Fei 2009b; Liu 2009; J. Zhang 2012] focus on using expression data to identify 

modules that show different behavior between two conditions, for example 

healthy versus diseased samples. The rationale behind identifying condition-

specific mRNA/miRNA modules is that dysregulated mRNA/miRNA relationships 

may be a mechanistic underpinning of a disease, or might be useful as a 

biomarker for disease treatment efficacy. In these studies, modules are 

evaluated for association with a categorical variable of interest (e.g. disease vs. 

healthy) but to date no algorithm has been proposed to identify association of 

modules to a continuous variable, for example fasting glucose levels in the blood, 

or clinical age of onset of neurodegenerative diseases. This chapter presents a 

novel approach to identify modules from paired miRNA and mRNA expression 

profiles combined with predicted target information that exhibit a statistical 

relationship with a continuous quantity of interest. The algorithm is applied to 

paired, high-throughput mRNA and miRNA sequencing datasets from individuals 

who have died of Huntington’s disease to evaluate how well the expression of 

module mRNAs and miRNAs can predict CAG repeat length, age of onset, and 

degree of neurodegeneration. 
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Methods 

The proposed method incorporates a priori miRNA-mRNA target prediction 

information, paired miRNA and mRNA expression data, and continuous variable 

information, as depicted in Figure 10A. The algorithm requires as input an mRNA 

expression matrix of S samples x N mRNAs, a miRNA expression matrix of S 

samples x M miRNAs, one S-length vector of continuous variables, hereafter 

called the feature, and a set of predicted miRNA/mRNA target pairs. The miRNA 

matrix is filtered to include only miRNAs found in the predicted target set. The 

mRNA and miRNA matrices and the predicted targets are used as input to the 

miRMAP program (Bryan et al. 2014) to detect miRNA/mRNA modules. Briefly, 

the miRMAP algorithm computes either Pearson or Spearman correlation of all 

mRNA/miRNA pairs and weights the correlation by the predicted target 

information. Since it is not necessarily appropriate to expect strictly linear 

relationships between miRNAs and their targets, Spearman correlation is used 

for this study. Correlations may be positive or negative, allowing for both direct 

and indirect regulatory relationships within modules. After constructing the 

weighted mRNA/miRNA correlations, the resulting matrix is subjected to a 

biclustering algorithm that “seeds and extends” modules based on highly 

correlated mRNA/miRNA pairs. The algorithm allows the same mRNAs/miRNAs 

to participate in more than one module and the number of modules returned is 

specified by the user, which is set to 25 for this study. The modules identified by 

miRMAP are collections of correlated mRNAs and miRNAs, termed module 
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members, that are used in downstream analysis.	

 

Figure 10. A) Schematic of analysis pipeline. B) Cartoon depiction of PCA dimensionality 
reduction procedure. 
 

The hypothesis underlying this methodology is that the statistical variance of a 

feature may be better explained by the expression of module members than 

otherwise unrelated mRNAs and miRNAs. To test this hypothesis, we use 

LASSO regression (Tibshirani 1994) to model a feature as a function of 

expression values from module members and compare the explained variance 

(model R2) to LASSO regressions using the same number of randomly selected 

mRNAs and miRNAs. The LASSO regressions are conducted as follows. 

Expression values for the members of each module identified by miRMAP are 
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extracted from the original expression matrices and concatenated into a per-

module matrix of size S samples x P, where P is the total number of members in 

the module. When sample size is small, as is often the case in gene expression 

studies, the number of variables (i.e. module members) in the model may exceed 

the number of samples, which motivates the choice of LASSO as opposed to 

classical linear regression. Also, by definition, the columns of the module 

expression matrix are highly collinear, since they were selected on the basis of 

high correlation. Such a matrix poses difficulty for meaningful parameter 

estimation in LASSO regression, so a dimensionality reduction procedure using 

is employed. Principal Component Analysis (PCA) is conducted on the module 

expression matrix from above, and the first ten components are retained. The 

projection of each sample from the original matrix is then computed for these ten 

components, creating a matrix of size S x 10, where each column contains the 

projection of a single component for all samples. The columns of this matrix are 

thus orthogonal by definition and eliminate the collinearity of the module 

expression values while maintaining a large proportion of the variance across 

columns. The feature is normalized to have zero mean and unit variance before 

applying LASSO regression. Normalizing the feature ensures that the scale of 

the variable does not impact the R2 value of the fitted model, as we are 

interested only in the explanatory relationship between the feature and PCA-

projected expression values. Figure 10B illustrates the PCA procedure described 

above. 
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To assess whether the module member expression explains more of the 

feature variance than unrelated mRNAs and miRNAs, a randomization procedure 

is performed. For each module, random mRNAs and miRNAs in the same 

numbers as the module members are selected from the original expression 

matrices. The expression values are concatenated together as for the true 

modules and the PCA-LASSO regression procedure described above is 

performed on this random module expression matrix using the feature, retaining 

the R2 value. This randomization procedure is performed 1000 times for each 

original module, forming a distribution of “null” R2 statistics. The R2 statistic for 

the true module is then compared to this distribution of R2 statistics, counting the 

number of times a module with random members exceeded the true R2. By 

dividing this count by the number of random trials, we arrive at an empirical 

evidence score that represents how well the true module better explains the 

feature than random modules. Though the evidence score lacks the statistical 

properties to be a p-value, the score is analogous to a significance value and 

therefore modules with an evidence score of less than 0.01 or 0.05 may be 

considered pseudo-significant. For brevity, such modules shall be described as 

significant in this text. The mRNAs within significant modules are subjected to 

gene set enrichment analysis using the MsigDB C2 Canonical Pathway 

(Subramanian et al. 2005) gene set database using a hypergeometric test, where 

a gene set is considered significantly enriched if it achieves Benjamini-Hochberg 

adjusted p-value < 0.05. 
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In addition to the evidence score randomization procedure above, 

additional permutations of the data are applied to the algorithm to better interpret 

the results from the true modules. It is possible that there is latent structure within 

the expression data that causes association with the feature. For example, if 

genome-wide transcriptional dysregulation is associated with the severity of a 

disease, it may be that any combination of mRNAs and miRNAs can explain the 

feature simply on account of this relationship, potentially confounding the 

interpretation of the association of a true module. To account for this, true and 

randomized module analyses as described above are run after the feature is 

randomly shuffled, breaking any potential relationship between the sample and 

the feature. These analyses represent the different “null” distribution describing 

the expected R2 statistics when there is no relationship between sample 

expression and the feature overall. 

The above methodology was applied to a set of 26 HD individuals with 

paired mRNA-Seq and miRNA-Seq dataset. The mRNA-Seq datasets were 

aligned against the hg38 human reference genome using STAR (Dobin et al. 

2013) and counted against Gencode v21 (Harrow et al. 2012) gene annotation 

using htseq-count in the HTSeq package (Anders, Pyl, and Huber 2014). Genes 

that had zero counts in any sample were filtered, resulting in 18,832 distinct 

genes left for module detection. The miRNA-Seq data was aligned against the 

hg38 human genome using bowtie (Langmead et al. 2009) and counted against 

the miRBase v21 miRNA annotation (Kozomara and Griffiths-Jones 2014) using 
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htseq-count in the HTSeq package (Anders, Pyl, and Huber 2014). The 

TargetScan v6.2 mRNA/miRNA conserved target database (Lewis, Burge, and 

Bartel 2005b; Grimson et al. 2007) was used to filter the miRNAs, resulting in 

1,074 distinct miRNAs left for module detection. 

Seven continuous clinical features were evaluated for association with 

modules for these HD samples, as described in Table	10. The four primary 

features are CAG size (i.e. repeat length), clinical age of onset, and H-V cortical 

and striatal scores (Hadzi et al. 2012), which are histology-based numerical 

scores indicating degree of involvement in the cortex and striatum, respectively. 

There is a considerable level of correlation between these four covariates, 

particularly between CAG repeat length and age of onset, since individuals with 

longer CAG repeat lengths experience more severe pathology and typically have 

a younger age of onset. However, CAG does not explain any of these features 

perfectly, and substantial variance remains after accounting for the statistical 

contribution of CAG. Therefore, we created three new features using age of 

onset, cortical score, and striatal score to identify modules that are associated 

with the residual variance of these features after accounting for the contribution 

of CAG. CAG-adjusted age of onset was created using results reported in  

(Djoussé et al. 2003). CAG-adjusted cortical and striatal scores were created by 

taking the residuals of a linear regression modeling each of these features as a 

function of CAG repeat length.	



	

	

91 

 

Covariate Min Mean (std) Max	
Onset 25 44.6 (11.5) 70	
CAG Size 40 44.5 (2.6) 51	
Striatal Score 1.4 2.6 (0.6) 3.8	
Cortical Score 0.4 1.2 (0.5) 2.8	
CAG-adj Onset -1.4 0.4 (0.8) 1.6	
CAG-adj Striatal -1.3 -0.1 (0.7) 1.4	
CAG-adj Cortical -1.4 -0.08 (0.9) 1.9	

Table 10. Clinical features and CAG-adjusted derivatives used in this study. 

Results 

Table	11 contains the number of module members and R2 values for the 

25 true modules identified by the PCA-LASSO analysis. Except for module 6, all 

modules had the same number of mRNAs and miRNAs (50, and 5, respectively). 

These numbers correspond to two user-specified parameters to miRMAP, 

namely the maximum number of mRNAs and minimum number of miRNAs 

allowed in any module. That nearly all modules were limited to this size suggests 

that there is a high level of correlation among mRNAs and a relatively lower level 

of correlation among miRNAs in these datasets. When we examined the 

correlations of mRNAs to miRNAs within each module, we found that a much 

larger proportion of mRNA/miRNA pairs were positively correlated than 

negatively correlated. Figure	11A is a heatmap depicting the correlation values 

for module 0, where red and blue cells represent positive and negative 

correlations, respectively. This pattern is consistent across all modules as 

depicted in Figure	11B. 
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Figure 11. A) Heatmap of mRNA/miRNA correlations in module 0, mRNA on the y axis 
and miRNA on the x axis. B) Stacked barplot of the proportions of negative (rho <= -
.1), near zero (-.1 < rho < .1), and positive (rho >= .1) correlations for all modules. 

	
Since the miRMAP algorithm does not require members to be disjoint 

between modules, some modules contained many of the same members, as 

depicted in Figure	12A. The two most similar modules (6 and 8) share 27 of their 

members (24 mRNAs and 3 miRNAs), and all but two modules (13 and 22), 

share at least 15 of their members with another module. 

	

 

Figure 12. A) Clustered matrix of member overlap between all modules. The number of 
overlapping members is listed within each cell, overlaps of zero are omitted. Diagonal 
entries have been set to zero. B) Boxplots of the R2 distributions from each feature for 
the true modules, true modules with shuffled features, random modules, and random 
modules with shuffled features. 
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The R2 values were varied across the modules and features, with onset 

and CAG-adjusted onset consistently having the highest R2 values whereas 

cortical and especially CAG-adjusted striatal score R2 values were very close to 

0. Figure	12B is a boxplot of the R2 values from Table	11 for the true modules, 

true modules with shuffled features, random modules, and random modules with 

shuffled features. The R2 values for true modules explaining CAG-adjusted onset 

are the most consistently higher than either of the random modules, followed by 

onset, striatal score, and cortical score. CAG size, CAG-adjusted striatal score, 

and CAG-adjusted cortical score were explained no better by true modules than 

random. As expected, when the relationship between expression and feature 

was broken by shuffling the feature, most of the explanatory power of the true 

modules reduced to nearly zero for all features. 
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0 50 5 0.12 (0.14) 0.00 (0.60) 0.06 (0.08) 0.00 (1.00) 0.21 (0.11) 0.00 (1.00) 0.00 (1.00)	
1 50 5 0.17 (0.04) 0.00 (1.00) 0.12 (0.02) 0.03 (0.04) 0.35 (0.00) 0.00 (1.00) 0.00 (1.00)	
2 50 5 0.03 (0.61) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 0.06 (0.77) 0.00 (1.00) 0.00 (1.00)	
3 50 5 0.13 (0.12) 0.00 (1.00) 0.12 (0.02) 0.03 (0.03) 0.28 (0.01) 0.00 (1.00) 0.00 (1.00)	
4 50 5 0.18 (0.03) 0.00 (0.58) 0.11 (0.02) 0.00 (1.00) 0.30 (0.01) 0.00 (1.00) 0.00 (1.00)	
5 50 5 0.14 (0.09) 0.00 (1.00) 0.16 (0.01) 0.05 (0.01) 0.30 (0.01) 0.00 (1.00) 0.00 (1.00)	
6 43 5 0.07 (0.38) 0.00 (1.00) 0.07 (0.06) 0.00 (1.00) 0.09 (0.62) 0.00 (1.00) 0.00 (1.00)	
7 50 5 0.01 (0.79) 0.05 (0.25) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 0.01 (0.53) 0.08 (0.21)	
8 50 5 0.06 (0.46) 0.00 (1.00) 0.00 (1.00) 0.00 (1.00) 0.12 (0.45) 0.00 (1.00) 0.00 (1.00)	
9 50 5 0.19 (0.02) 0.09 (0.11) 0.12 (0.02) 0.00 (1.00) 0.20 (0.14) 0.02 (0.50) 0.09 (0.16)	

10 50 5 0.21 (0.01) 0.07 (0.19) 0.15 (0.01) 0.02 (0.06) 0.25 (0.04) 0.00 (1.00) 0.06 (0.26)	
11 50 5 0.06 (0.45) 0.00 (1.00) 0.12 (0.02) 0.11 (0.01) 0.22 (0.10) 0.02 (0.49) 0.00 (1.00)	
12 50 5 0.20 (0.02) 0.06 (0.21) 0.13 (0.02) 0.00 (1.00) 0.24 (0.05) 0.00 (1.00) 0.06 (0.27)	
13 50 5 0.00 (1.00) 0.00 (1.00) 0.03 (0.15) 0.13 (0.00) 0.02 (0.92) 0.07 (0.16) 0.00 (1.00)	
14 50 5 0.19 (0.02) 0.06 (0.23) 0.11 (0.02) 0.00 (1.00) 0.24 (0.05) 0.00 (1.00) 0.05 (0.31)	
15 50 5 0.11 (0.17) 0.00 (1.00) 0.01 (0.24) 0.00 (1.00) 0.18 (0.18) 0.00 (1.00) 0.00 (1.00)	
16 50 5 0.07 (0.37) 0.00 (1.00) 0.01 (0.28) 0.00 (1.00) 0.15 (0.31) 0.00 (1.00) 0.00 (1.00)	
17 50 5 0.08 (0.35) 0.00 (1.00) 0.01 (0.28) 0.00 (1.00) 0.22 (0.10) 0.00 (1.00) 0.00 (1.00)	
18 50 5 0.03 (0.64) 0.00 (1.00) 0.09 (0.04) 0.00 (0.11) 0.12 (0.46) 0.00 (1.00) 0.00 (1.00)	
19 50 5 0.08 (0.30) 0.00 (1.00) 0.13 (0.02) 0.08 (0.01) 0.25 (0.04) 0.00 (0.60) 0.00 (1.00)	
20 50 5 0.22 (0.01) 0.05 (0.28) 0.19 (0.00) 0.04 (0.02) 0.30 (0.01) 0.00 (1.00) 0.04 (0.41)	
21 50 5 0.18 (0.03) 0.06 (0.21) 0.12 (0.02) 0.00 (1.00) 0.21 (0.11) 0.00 (1.00) 0.06 (0.28)	
22 50 5 0.23 (0.01) 0.04 (0.33) 0.22 (0.00) 0.08 (0.01) 0.34 (0.00) 0.00 (1.00) 0.02 (0.50)	
23 50 5 0.14 (0.10) 0.01 (0.51) 0.06 (0.07) 0.00 (1.00) 0.21 (0.12) 0.00 (1.00) 0.01 (0.60)	
24 50 5 0.16 (0.05) 0.00 (1.00) 0.10 (0.03) 0.00 (1.00) 0.31 (0.01) 0.00 (1.00) 0.00 (1.00)	

Table 11. Module sizes and R2 statistics for all features for the 25 modules. First column is module label. Feature columns 
report R2 values and evidence scores in parenthesis. 
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Evidence scores for each module for each feature are found in 

parenthesis of Table	11. Modules with evidence scores < 0.05 are considered 

interesting since they explain greater feature variance than 95% of the random 

modules evaluated. No modules for CAG size, CAG-adjusted striatal, or CAG-

adjusted cortical passed this threshold, while 10, 15, 8, and 10 modules had 

passing evidence scores for onset, striatal score, cortical score, and CAG-

adjusted onset features, respectively. Table	12 contains R2 values and top 

enriched gene sets for each module that was found to be significant in at least 

one feature. 
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O
nset 

striatal 

C
ortical 

C
A

G
adjO

nset 

# enriched 

Enrich 

1 0.17 0.11 0.02 0.34 154 

KEGG_RIBOSOME, 
REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCE
D_BY_THE_EXON_JUNCTION_COMPLEX, 
REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_
AND_REPLICATION, 
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PR
OTEIN_TARGETING_TO_MEMBRANE, 
REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REG
ULATION 

3 NA 0.12 0.03 0.27 2 
PID_ALK1PATHWAY, 
REACTOME_ACTIVATED_NOTCH1_TRANSMITS_SIGNAL
_TO_THE_NUCLEUS 

4 0.17 0.10 NA 0.30 17 

KEGG_RIBOSOME, 
REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCE
D_BY_THE_EXON_JUNCTION_COMPLEX, 
REACTOME_PEPTIDE_CHAIN_ELONGATION, 
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PR
OTEIN_TARGETING_TO_MEMBRANE, 
REACTOME_SYNTHESIS_OF_PIPS_AT_THE_PLASMA_M
EMBRANE 

5 NA 0.16 0.05 0.30 0 no enrichment 

9 0.19 0.12 NA NA 29 

KEGG_GLIOMA, 
REACTOME_CIRCADIAN_REPRESSION_OF_EXPRESSIO
N_BY_REV_ERBA, 
REACTOME_RORA_ACTIVATES_CIRCADIAN_EXPRESSI
ON, PID_HDAC_CLASSIII_PATHWAY, 
KEGG_PYRUVATE_METABOLISM 

10 0.21 0.14 NA 0.25 0 no enrichment 

11 NA 0.12 0.10 NA 14 

REACTOME_SIGNALING_BY_NOTCH4, 
REACTOME_SIGNALING_BY_NOTCH2, 
REACTOME_SIGNALING_BY_NOTCH3, 
REACTOME_ACTIVATED_NOTCH1_TRANSMITS_SIGNAL
_TO_THE_NUCLEUS, 
REACTOME_SIGNALING_BY_NOTCH 

12 0.19 0.12 NA NA 1 PID_RXR_VDR_PATHWAY 

13 NA NA 0.13 NA 2 PID_RANBP2PATHWAY, 
PID_BETACATENIN_NUC_PATHWAY 

14 0.19 0.10 NA 0.24 2 REACTOME_SYNTHESIS_OF_PIPS_AT_THE_PLASMA_M
EMBRANE, PID_MYC_PATHWAY 

18 NA 0.08 NA NA 0 no enrichment 

19 NA 0.12 0.08 0.25 162 

REACTOME_SIGNALING_BY_NOTCH2, 
REACTOME_SIGNALING_BY_NOTCH3, 
REACTOME_SIGNALING_BY_NOTCH4, 
PID_ILK_PATHWAY, 
REACTOME_SIGNALING_BY_CONSTITUTIVELY_ACTIVE
_EGFR 

20 0.22 0.19 0.04 0.29 3 PID_RXR_VDR_PATHWAY, 
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REACTOME_RORA_ACTIVATES_CIRCADIAN_EXPRESSI
ON, 
REACTOME_ELONGATION_ARREST_AND_RECOVERY 

21 0.17 0.12 NA NA 0 no enrichment 

22 0.22 0.22 0.07 0.33 17 

KEGG_P53_SIGNALING_PATHWAY, 
REACTOME_MYOGENESIS, 
REACTOME_BMAL1_CLOCK_NPAS2_ACTIVATES_CIRCA
DIAN_EXPRESSION, 
REACTOME_CELL_CELL_JUNCTION_ORGANIZATION, 
KEGG_CIRCADIAN_RHYTHM_MAMMAL 

24 0.15 0.10 NA 0.30 72 

KEGG_RIBOSOME, BIOCARTA_GATA3_PATHWAY, 
PID_RXR_VDR_PATHWAY, 
REACTOME_PEPTIDE_CHAIN_ELONGATION, 
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PR
OTEIN_TARGETING_TO_MEMBRANE 

Table 12. R2 values and top significantly enriched MsigDB C2 Canonical Pathway 
gene sets at BH-adjusted p<0.05 for modules. Only the top 5 most enriched gene sets 
by p-value are reported. 

Module 1, 20, and 22 are significantly associated with all four of the 

features in the table. Striatal score is significantly associated with the most 

modules (15), followed by onset and CAG-adjusted onset (10), and cortical score 

(8). Taken together, the modules are most associated with biological processes 

related to the ribosome, transcription and translation, vitamin D metabolism, 

circadian rhythm expression, apoptosis, extracellular matrix organization, and 

NOTCH signaling. Module 13 is exclusively significant for cortical score and is 

enriched for RANBP2 and beta catenin pathways. Four modules (5, 10, 18 and 

21) were not enriched for any gene sets but explained a comparable amount of 

feature variance as other modules that did have significant enrichment. 

Discussion 

We have presented a novel methodology for identifying mRNA/miRNA modules 

that are associated with a continuous variable and applied the technique to 

paired mRNA-Seq and miRNA-Seq datasets from post-mortem human HD 
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brains. The method combines existing tools (miRMAP, PCA, LASSO regression) 

into a pipeline that addresses a number of major challenges posed in elucidating 

the relationships between mRNA and miRNA abundance data and phenotypic 

features. First, using paired mRNA/miRNA data from the same individuals allows 

more accurate estimation of relationships between mRNA and miRNA 

abundance than by comparing unrelated datasets or computational approaches 

alone. Second, the miRMAP algorithm was chosen in part because it considers 

indirect (i.e. positively correlated) relationships as well as the expected negative 

correlations. This is important, since most of the mRNA/miRNA relationships 

identified are indeed positively correlated, and still the mRNAs within many of the 

modules are significantly enriched in biological processes, suggesting they are 

functionally related. Third, the use of PCA alleviates the problem of high 

collinearity among the regressors, which module members exhibit by definition, 

but still retains the majority of variance among the expression variables. And 

finally, using LASSO regression addresses the problem of having relatively few 

samples compared to the number of variables in the model, a common situation 

in gene expression studies. 

The analysis identified many modules that significantly explained a 

number of the clinical features. Of particular interest are the modules associated 

with CAG-adjusted age of onset, most of which explained much more variance in 

the feature than randomly chosen modules. This quantity represents the variance 

in age of onset that cannot be explained by CAG repeat size, which is the 
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primary determinant of disease severity. With few exceptions, GWAS studies of 

HD patients have yet to find genetic markers that are associated with residual 

age of onset after accounting for CAG size, making the finding in this study 

particularly compelling. What is potentially more interesting is the lack of modules 

found to be significantly associated with CAG size itself. We note that the original 

onset feature, unadjusted for CAG, is also significantly explained by a number of 

modules, but that the overall R2 values are less than those for CAG-adjusted 

onset. This suggests that the contribution of CAG to onset may involve genes 

that are less functionally related, since the modules that explain CAG-adjusted 

onset are significantly enriched in a number of biological processes. This may in 

turn suggest that the molecular responses to CAG and those driving age of onset 

are distinct, and that those genes which are driving the variance in age of onset 

beyond CAG may yet be identified. It is also interesting to note that the CAG-

adjusted striatal and cortical scores are not better explained by any module than 

random. This suggests that the relationship between CAG and age of onset is 

somehow different than that with the histological markers of neurodegeneration 

in HD. 

The analysis identified multiple modules that were significantly enriched in 

gene sets for specific biological processes that may be related to HD pathology. 

In particular, processes related to the ribosome and protein translation are 

enriched in multiple modules that are associated with age of onset, CAG-

adjusted age of onset, and striatal and cortical score, suggesting that the mRNAs 
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in these modules may influence, or be affected by, the neurodegenerative 

process. Another consistently implicated biological process across modules is 

NOTCH signaling, a process not previously implicated in HD. A third consistently 

enriched biological process relates to circadian rhythm, and there is growing 

evidence that circadian rhythm and sleep cycle disorder is a symptom of, and 

possible contributor to, HD pathology (Morton 2013). Together, these results 

present strong evidence that mRNA/miRNA modules may indeed reflect aspects 

of HD pathology. Further investigation into which specific genes are driving the 

association of these modules to the clinical features is likely to yield insight into 

the molecular mechanisms underlying HD. 

One shortcoming of this analysis is that it may be challenging to ascertain 

which genes within modules are the largest contributors to the overall association 

with features. This is due to the PCA data reduction step, where instead of 

individual genes in the model, associations are made against principal 

component projections of the module member expression values. Model 

variables therefore represent weightings of all module members, which makes 

the interpretation of the results somewhat challenging. Other methods that use 

PCA in this way have been proposed, e.g. WGCNA (Langfelder and Horvath 

2008), which may be helpful in this regard. 
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Chapter 5. Conclusions, Prospective, and Future Work 

The studies presented in this thesis constitute the most comprehensive 

characterization of transcriptional signatures of HD and PD in post mortem 

human brains to date. The use of mRNA-Seq libraries allows for unbiased, 

genome-wide assessment of differences in mRNA species abundance, and 

therefore provides both potent hypothesis-generation opportunities as well as a 

detailed dataset that may be queried for evidence supporting specific 

hypotheses. The wealth of biological information produced by these high-

throughput datasets is valuable in this regard but also presents significant 

challenges in how to best interpret large amounts of biological information. In 

both differential expression, studies, for example, there were on the order of 

thousands of differentially expressed genes, and even after gene set enrichment 

analysis, which attempts to condense gene lists into more manageable and 

interpretable numbers, we found hundreds of biological processes involved in 

neurodegeneration. The task of interpreting the biology implicated by these 

studies, and translating that knowledge into potentially actionable next steps, 

comprised much of the effort toward effectively present these results. 

Nonetheless, this analysis suggests coherent biological processes, some specific 

and others broad, that are implicated in distinguishing between 

neurodegenerated and healthy tissues as also related to clinical features of the 

diseases. 

The biological processes most prominently implicated in HD and PD are 
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neuroinflammatory and immune responses, which have considerable supporting 

evidence from prior studies [CITE], that seem to be reflected in both diseases in 

consistent ways. In particular, pathways related to NFkB activation are 

consistently perturbed in the pan-neurodegenerative phenotype observed in HD 

and PD. The involvement of NFkB in both diseases is interesting in several 

respects. First, NFkB is a critical pathway in cellular responses to stress, 

including inflammatory and immune response and is expressed in nearly all 

human tissue types [CITE]. Second, it functions as a transcriptional activator and 

perturbations to the NFkB pathway have been associated with multiple diseases 

[CITE]. While there is no direct evidence that there are alterations to the NFkB 

system itself other than increased activity in these datasets, such activity may 

nonetheless contribute to the environment of cellular stress observed in 

neurodegeneration. And third, NFkB pathways have been implicated specifically 

in the central nervous system as modulators of synaptic plasticity, learning, and 

other critical brain-related functions [CITE]. More generally, the datasets 

implicate gene signatures that span the broader spectrum of the inflammatory 

and immune response. In both diseases, pathways related to both innate and 

adaptive immune response are enriched, highlighted by multiple toll-like, 

interleukin, and other cytokine receptor signaling pathways. Thus, these 

processes likely play a significant role in neurodegeneration, but whether and 

how this role is protective, deleterious, or both remains to be conclusively shown. 

Other biological processes implicated by the datasets suggest a more 
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direct mechanistic role in neurodegeneration. Pathways related to neurons are 

consistently negatively enriched in both diseases. While it may be tempting to 

interpret this as reflective of a loss of neurons due to degeneration, it is important 

to note that the brain region studied is not known to be significantly involved in 

either HD or PD, and therefore not likely to be due to local neurodegeneration. It 

may be that these neurons are stressed in the same way, but to a lesser extent, 

than those primarily affected, or alternatively that they are unaffected by the 

primary effects of the disease but suffer in response to the consequences of 

neurodegenerating neurons elsewhere in the brain. Another explanation might be 

that, in response to the toxic microenvironment of the neurodegeneration, the 

activity of immune cells in the brain is increased in proportion to the number of 

neurons, resulting in an apparent down regulation of neuronal genes. However, 

this hypothesis is challenged by the observation that not all of the implicated 

neuronal gene sets are negatively enriched, and neuron-specific pathways 

related to PI3K and prion response are increased, suggesting that neurons are 

not substantially decreased relative to glia in neurodegenerative disease 

compared with healthy tissue. Fortunately, other enriched pathways may provide 

insight into the mechanisms underlying these differences and inspire new 

focused experiments to shed light on these aspects of neurodegenerative 

pathology. 

A greater understanding of how and why the differentially expressed 

genes associated with neurodegeneration are controlled will lead to insights that 
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may result in better therapies for neurodegeneration. Multiple transcription 

factors are implicated by the differentially expressed genes in both HD and PD, 

suggesting direct causal transcriptional mechanisms underlying the observed 

gene expression patterns. Further analysis of these specific transcription factors 

and their targets is an obvious first step in this pursuit, but studying other 

modulators of RNA transcriptional abundance may also improve our 

understanding of the mechanistic underpinnings of the disease. As described in 

this thesis, by combining miRNA abundance data with mRNA abundance data to 

identify regulatory patterns that explain clinical features, suggestive relationships 

of mRNAs to disease progression in HD were revealed. Specifically, groups of 

mRNAs and miRNAs whose collective abundances could explain as much as 

30% or more of the age of onset after adjusting for the contribution of CAG-

repeat size. Genetic or genomic factors explaining CAG-adjusted age of onset in 

particular have been elusive to date, and the presence of explanatory factors 

within gene and miRNA expression data is encouraging. It is remarkable that, by 

simply combining the mRNA and miRNA data from the same individuals, 

statistical (and potentially regulatory) patterns between mRNAs and miRNAs are 

so associated with clinical features, considering the analysis did not incorporate 

any information about genes characteristic of HD. It remains to be shown 

whether similar relationships between these molecular species exist in healthy 

tissues, but comparing and contrasting these regulatory patterns in this way may 

lead to a better understanding of why some HD subjects experience more severe 
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degeneration than others with the same mutational burden. 

The results of these studies highlight the considerable challenges 

neurodegenerative diseases pose to identifying successful therapies. The 

differential expression studies in HD (Chapter 2) and HD vs. PD (Chapter 3) 

show that the transcriptional differences between degenerated normal brains are 

vast and span a broad spectrum of biological processes. Considering the severe 

consequences of neuronal degeneration and the long duration of these diseases, 

it is somewhat unsurprising that the extent and breadth of these differences are 

so dramatic. As post-mitotic cells, neurons may be sensitive to small but chronic 

deleterious effects that can compound over time, making detection of strong 

causal molecular markers of disease elusive. The incremental effect of stressors 

leading to degeneration also pose difficulties for identifying and administering 

neuroprotective therapies, since the long-term studies required to assess efficacy 

are costly and logistically challenging. Furthermore, while studying human 

samples (vis a vis in vitro or animal models) provides a direct view into the 

neurodegenerative phenotype, it is difficult if not impossible to separate causal 

versus consequential patterns in data generated from post-mortem tissues. 

Though significant challenges remain, these studies suggest a number of 

clear next steps to further our understanding of neurodegeneration. The most 

important may be to thoroughly investigate the role of inflammation and immune 

response in the neurodegenerated brain. One particular challenge in this pursuit 

is to find an appropriate biological model of neuroinflammation, since common 
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animal models, most notably mice, exhibit significantly different immune 

response capabilities than humans [CITE] and in vitro systems that mimic the 

multicellular immune response are complex and can be difficult to culture. To 

follow up on the exciting finding that certain mRNA species explain clinical 

features, a high priority should be placed on assessing these relationships in 

peripheral material of living HD subjects, such as blood, cerebrospinal fluid, or 

other available tissues. Should similar relationships exist between clinical 

features and mRNA abundance measurements extracted from these tissues, the 

potential benefit of a reliable biomarker for progression in HD would be of 

immense significance for making clinical decisions and assessing the efficacy of 

HD therapies. These are but two immediate follow-up studies suggested by these 

data, but further mining of the expansive results presented in this thesis are 

certain to many potentially fruitful avenues of discovery.
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