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EVALUATION OF STATISTICAL METHODS, MODELING, AND MULTIPLE
TESTING IN RNA-SEQ STUDIES
SEUNG HOAN CHOI
Boston University Graduate School of Arts and Sciences, 2016
Major Professor: Anita L Destefano, Professor of Biostatistics
ABSTRACT
Recent Next Generation Sequencing methods provide a count of RNA

molecules in the form of short reads, yielding discrete, often highly non-normally
distributed gene expression measurements. Due to this feature of RNA
sequencing (RNA-Seq) data, appropriate statistical inference methods are
required. Although Negative Binomial (NB) regression has been generally
accepted in the analysis of RNA-Seq data, its appropriateness in the application
to genetic studies has not been exhaustively evaluated. Additionally, adjusting for
covariates that have an unknown relationship with expression of a gene has not
been extensively evaluated in RNA-Seq studies using the NB framework. Finally,
the dependent structures in RNA-Seq data may violate the assumptions of some
multiple testing correction methods. In this dissertation, we suggest an alternative
regression method, evaluate the effect of covariates, and compare various
multiple testing correction methods. We conduct simulation studies and apply
these methods to a real data set. First, we suggest Firth’s logistic regression for
detecting differentially expressed genes in RNA-Seq data. We also recommend

the data adaptive method that estimates a recalibrated distribution of test

Vii



statistics. Firth’ logistic regression exhibits an appropriately controlled Type-I
error rate using the data adaptive method and shows comparable power to NB
regression in simulation studies. Next, we evaluate the effect of disease-
associated covariates where the relationship between the covariate and gene
expression is unknown. Although the power of NB and Firth’s logistic regression
is decreased as disease-associated covariates are added in a model, Type-|
error rates are well controlled in Firth’ logistic regression if the relationship
between a covariate and disease is not strong. Finally, we compare multiple
testing correction methods that control family-wise error rates and impose false
discovery rates. The evaluation reveals that an understanding of study designs,
RNA-Seq data, and the consequences of applying specific regression and
multiple testing correction methods are very important factors to control family-
wise error rates or false discovery rates. We believe our statistical investigations

will enrich gene expression studies and influence related statistical methods.
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Chapter 1 Introduction

1.1 Gene expression studies

Gene expression studies have played important roles to understand
phenotypic variation including how tissues vary in gene expression and how
these variations are related to biologic function(Ramskald et al. 2009). Current
next generation sequencing (NGS) genome-wide gene expression measurement
methods simultaneously quantify tens of thousands of unique Ribonucleic Acid
(RNA) molecules extracted from biological samples. These RNA sequencing
(RNA-Seq) methods produce data that can be transformed into numerical values
that are proportional to the abundance of RNA molecules of interest, including
protein-coding, processed transcript, pseudo-genes, miRNAs, tRNAs, rRNAs,
snRNAs, snoRNAs, and scRNAs(Tarazona et al. 2011), and represent the
amount of expression of those molecules. A common task in the analysis of
RNA-Seq data is to evaluate the statistical differences of the mean expression of
genes between sets of samples from two different conditions, e.g. control versus
diseased patients. Identifying differentially expressed genes is the first important
step to understanding the molecular mechanism of the differentially expressed

genes and developing novel therapies for related diseases.

Microarray technology has been widely used to measure gene expression in the
past decades. Microarray technology quantifies the fluorescence of specific RNA

molecules and, after processing and normalization, expression values are



continuous and typically approximated by a normal distribution. Due to these
characteristics of microarray data, well-understood methods like two sample t-
tests and linear regression are often utilized to identify the association between
expression level and disease status. In contrast, NGS methods provide a count
of RNA molecules in the form of short reads, which are discrete measurements
that do not follow a normal distribution. Consequently, statistical methods that
assume normality are inappropriate for the analysis of these count data, and

therefore the development of appropriate statistical methods is necessary.

Because the total number of reads of each sample will likely be different, a
normalization step is required before analyzing the association between genes
and a condition. Anders et al. proposed a normalization method that divides each
count by the geometric mean count of the corresponding gene and takes the
medians of these scaled counts within each library(Anders and Huber 2010).
Robinson et al. developed the Trimmed Mean of M Values (TMM) method that
computes each normalization factor from the trimmed mean of the gene-wise log
fold-changes of the current library to a reference library(M. D. Robinson and
Oshlack 2010). Mortazavi et al. suggested the standard reads per kilobase of
transcript per million mapped reads (Mortazavi et al. 2008). An inappropriate
normalization method may result in a biased differential expression (DE)
inference(Bullard et al. 2010). Dillies et al. comprehensively evaluated

normalization methods and stated that TMM and Anders et al’'s methods provide



similar and reasonable results in their evaluating metrics(Dillies et al. 2013).
Appropriately normalized data allow us to perform unbiased differential

expression inferences.

1.2 Negative Binomial regression

Poisson models are a popular approach to analyze count data observed from
experiments or epidemics. Poisson models assume that the data follow a
Poisson distribution, where the mean and variance are the same. When the
variance is significantly larger than the mean, alternative models are required to
analyze the over-dispersed count data. A common alternative approach is the

Negative Binomial (NB) model, also known as the gamma-Poisson model.

This approach fits a NB generalized linear model (McCullagh and Nelder 1989)

to the data with estimated or fixed value of a dispersion parameter. Let Y be the
response variable and x be an explanatory variable. The marginal distribution of
Y, and negative binomial likelihood are

Y~ NB(u(x),¢),where u = 0 and ¢ = 0 such that

_ _ _To+¢™) 1 O oo Y
Pr(¥ =ylx) = I(¢p~Dry+1) (1+¢‘1u(x)) (1+¢‘1u(x)) y=012..,

E[Y|x] = u,and VAR[Y|x] = u + u*¢.
When ¢ is close to zero, the distribution of Y becomes a Poisson distribution.
Let Y;~ NB(u(x;), ¢),i = 1, ...,n be independent, where u(x;) = exp(x;£) and x; is

the px1 explanatory vector. The likelihood function is proportional to



169 = Mt () ()’

=Ir@Hrei+1 \1+¢=ulx) 1+¢~1u(xy)

and the log L(B, ¢) is

LB, @) = ?:1( ig)l log(1 + ¢j) +y;log(p(x)) — (v — ¢~ Hlog (1 + ¢.U(xi))-
The obtained (B, $4,.) Maximize 1(B, ¢) through scores and information
iterations(McCullagh and Nelder 1989). However, in general, a variance
parameter from maximum likelihood estimators is underestimated (M. D.
Robinson and Smyth 2007), hence alternative methods are suggested for the
estimation of ¢.

The pseudo-likelihood model (Breslow 1984) estimates the variance parameter

using a distribution free goodness-of-fit statistic by solving the moment function

n (3’1 AmL, l) _ 1
i=1~ =n- .
ﬂl(1+¢PLﬂML i)

The quasi-likelihood model (J. A. Nelder 2000) uses a deviance statistic rather
than the Pearson statistic in the pseudo-likelihood model to estimate dispersion

using a function

23 {yitog [ - i+ Gghlog [ 2P|k = -1

AmLi+gr
Nelder and Lee (1992) found that the variance parameter from the quasi-
likelihood model is more efficient than the parameter from pseudo-likelihood

model(J A Nelder and Lee 1992).



1.3 Logistic regression

When the response variable is binary, binomial regression is commonly used to
model the probability of an event using the inverse of a link function (g~1) to a
linear combination of predictors. The logit link function is widely adopted in social,

genetic, epidemiologic studies following the model,

1
Pr(y;) = Pr(y; = 1|x;) = Prve -y
where B* is a coefficient vector and x; is " row of a design matrix.

This model fits to a generalized linear model, and the likelihood function is

Pr(ylB*) = L(B*|y) = ?=1[(;)yi(1 ;)Hi]'

1+exp(—x;B*) - 1+exp(—x;B*)

When the likelihood does not have a maximum, the numerical procedure
provides an unstable erroneous finite value. This non-existing maximum of
likelihood is often found in the case of separation. Complete separation occurs
when a linear combination of predictors perfectly predicts the response variable,
and quasi-complete separation occurs when data is close to complete separation
or one factor in the response variable is completely predicted (Albert and
Aanderson 1984). Complete or quasi-complete separation is easily found in
studies having a small sample size. Although this separating predictor must be
strongly associated with response variable, due to infinite coefficient and
standard error estimates, the inferences could lead to inappropriate conclusions.

(Zorn 2005).



An alternative approach that provides stable estimates was proposed by Firth
(Firth 1993). This method removes first order bias from maximum likelihood

estimates through including a small bias term in the likelihood function.

logL* (8*ly) = log L(B*ly) + 5log |1(8")]
where () is the Fisher information matrix. This penalized likelihood approach
is equivalent to a Bayesian approach with a Jeffrey’s invariant prior in
exponential family models. Although this method was developed to reduce small

sample bias, the method performs well when the data display separation (Heinze

2006).

Gelman et al. (2008) also proposed an alternative method in a Bayesian
framework. They suggested standardizing non-binary variables having a mean of
0 and a standard deviation of 0.5 and a centering binary variable with a mean of
0 and range of 1. Then independent Student-t priors, called weakly informative
priors, are placed on the coefficients. The student-t priors are recommended
because flat-tailed distributions enable for robust inference(Berger and Berliner
1986). Specifically, Cauchy (0, 2.5) priors are suggested as a default choice
followed by the principle of weakly informative prior distributions. These priors
appropriately estimate coefficients, even when separation appears in the data

(Gelman et al. 2008).



1.4 Covariate Analysis
When analyzing genetic or genomic association studies, deciding whether to
include covariates and which covariates to include in a model is an important
consideration. Genetic studies often are structured to predict a trait from genetic
variants, meaning that genetic variants are predictors and hence, variables of
interest. A sample model is shown in Model 1.A

Model 1.A: g(E(Y))) = Bo + BiXij + BaXiz
where g is a link function, X;;is jth genetic variant of sample i (j = 1...m) , and
X;, is a covariate of sample i. The analysis is conducted for each genetic variant
(m times). The same covariate, X;,, is analyzed with each genetic variant
because of a relationship between the covariate and the response variable, Y;.
However, the relationships between each genetic variant and the covariate are
not known. In genomic studies, such as a case-control study, genomic
expression values are modeled as a function of a case-control status. The model
is

Model 1.B: g (E(X;)) = B5 + BiY; + BsXiz-
where X;; is the jth gene of sample i (j = 1..m"). Case-control status, Y;, is the

variable of interest. The analysis is repeated m* times with different response
variables. The relationship between the covariate, X;,, and the case-control
status, Y;, is known, but the relationships between each gene, X/, and the

ijr

covariate are unknown.



When the response variable is continuous, a covariate that is not associated with
the variable of interest but associated with response variable, called a non-
confounding predictive (NCP) covariate, often increases precision of the variable
of interest, because NCP covariates explains some variability of a trait (L. D.
Robinson and Jewell 1991). Such NCP covariates are commonly found in studies
using Model 1.A. However, when the response variable is binary, including NCP
covariates in a model can reduce power to detect associations(L. D. Robinson
and Jewell 1991; Pirinen, Donnelly, and Spencer 2012). Pirinen et al. argued that
the reduced power is caused by ascertainment of samples(Pirinen, Donnelly, and
Spencer 2012). In the presence of correlation in samples, they showed that

omitting covariates could improve the power.

A new approach was suggested by Zaitlen et al. (2012) to improve the power in
ascertained case-control design. This new method estimates the parameters of a
liability model utilizing externally identified information between a binary trait and
covariates. Then, this method tests association between a genetic variant and
residuals of the liability model (Zaitlen et al. 2012). Because these estimated
effects of covariates are independent from the case-control data, this approach

prevents the loss of power from ascertained covariates.



1.5 Multiple testing corrections
Multiple testing corrections are a crucial procedure when multiple hypotheses are
tested simultaneously. These methods are important in genetic or genomic
studies, where the number of tests may range from tens of thousands to several
millions. As the number of tests dramatically increases, the importance of
controlling Type-I errors also increases. One approach to handle Type-| error is
to control the family-wise error rate (FWER), defined as

FWER = P(V > 1),
where V is the number of Type-I| errors. In other words, it is the probability of one
or more Type-I| errors among a family of hypothesis tests. Another approach to

handle Type-I error is controlling the false positive rate (FDR), defined as
FDR = E (%R > 0) P(R > 0),

where R is the number of rejected hypotheses (Benjamini and Hochberg 1995).
FDR is developed to control the expected proportion of Type-| errors among
rejected hypotheses. Because FDR is less stringent in controlling Type-| errors
compared to FWER, FDR is more powerful than FWER but allows increased

Type-| errors.

Among multiple testing correction methods assumptions about the dependence
structure of p-values under the null hypotheses may vary. Statistical power is
generally greater for those methods with stronger assumptions. P-values from

alternative hypotheses are not involved in this dependence assumption.
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Multiple testing methods that do not make any assumptions about the
dependency structure of p-values utilize the Bonferroni’'s or Hommel's
inequalities(Galambos 1977; Hommel 1986). These methods are applicable to p-
values even when there is correlation among the tests performed (and hence the
p-values) under the null hypothesis. Some multiple correction methods assume
Positive Dependence through Stochastic Ordering, also known as the Positive
Regression Dependence on Subset. This assumption allows independent or
positively dependent p-values of null hypotheses. Some methods are only valid
under the assumption of independent p-values, and this independence

assumption is the strongest assumption.

Among multiple testing correction methods, one needs to consider whether a
method assumes dependency of p-values before determining if a method is
appropriate for a particular data set. Because dependency structures often exist
in high-dimensional data such as genetic and genomic data, appropriate

selection of a multiple testing correction method is necessary.

1.6 Dissertation outline
In this dissertation, we investigate alternative analysis methods and evaluate
important aspects in RNA-Seq studies. Our research focuses on statistical

inference methods including negative binomial and logistic regressions, covariate



11

adjustment, and multiple testing methods. Each topic describes limitations of
current methods, effects of those limitations, and an alternative method of
overcoming those limitations that is evaluated through comprehensive

simulations and a real data application.

In Chapter 2, we suggest an alternative regression method for differential
expression studies using RNA-Seq data. This method simplifies the analysis
procedures and removes non-biological assumptions required by conventional
methods. We expect this alternative approach to reduce complexities presented
in RNA-Seq studies while maintaining an appropriate Type-| error rate and power

comparable to current methods.

In Chapter 3, we investigate the effect of non-predictive covariates in negative
binomial regression. We expect this investigation of non-predictive covariates to
demonstrate that researchers should be cautious about selecting covariates to
include in statistical models for RNA-Seq data. However, this effect of non-
predictive covariates in negative binomial regression is not limited to RNA-Seq

studies.

In Chapter 4, we explore multiple testing correction methods specific to the
analysis of RNA-Seq data. The independence assumption in some multiple

testing correction methods precludes application to correlated data. The goal of
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this investigation is to identify a suitable multiple testing method for correlated

count data, such as RNA-Seq data.

In Chapter 5, we summarize our conclusions and recommendations, and provide

future directions.
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Chapter 2 Evaluation of Logistic Regression Models for Case-Control
Study in RNA-Seq Analysis

2.1 Introduction
Recent Next Generation Sequencing (NGS) technologies generate discrete
counts of RNA sequencing (RNA-Seq). Several characteristics of RNA-Seq count
data are important to account for in statistical analysis. The count of a particular
gene could range from zero to several thousand, and is frequently not normally
distributed. The initial RNA-Seq studies assumed the count data follow Poisson
distributions(Marioni et al. 2008; Mortazavi et al. 2008; Jiang and Wong 2009).
However, Poisson models cannot appropriately explain biologic dispersions of
genes because the mean is equal to the variance in Poisson models. The
Negative Binomial (NB) distribution more appropriately models the biological
dispersion of a gene, and this NB model has been generally taken to analyze
RNA-Seq data. Additionally, the total number of read counts can differ for each
sample, making an appropriate normalization of RNA-Seq data necessary prior
to statistical analysis of associations between status of samples (e.g. disease or

not diseased) and expression level of genes.

Even if the normalization issue is addressed by applying an appropriate
normalization method, the estimation of the dispersion parameter (g) of each
gene is very challenging with the small number of observations typically available

in RNA-Seq studies. An overestimated dispersion may result in loss of power to
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detect differently expressed genes and an underestimated dispersion parameter
may increase false discoveries. Many methods have been developed to
effectively estimate the dispersion parameters, including Quasi-Likelihood
(QL)(Si and Liu 2013), Weighted Quantile-Adjusted Conditional Maximum
Likelihood(M. D. Robinson and Smyth 2007; M. D. Robinson, McCarthy, and
Smyth 2010), Cox-Reid Adjusted Profile Likelihood(McCarthy, Chen, and Smyth
2012), and Empirical Bayes Shrinkage(Landau and Liu 2013; Love, Huber, and
Anders 2014; Wu, Wang, and Wu 2013) methods. Landau and Liu reported that
the selection of the estimation method may impact the test performance(Landau
and Liu 2013). Two of the most sophisticated and widely used software packages
for identifying differently expressed genes are DESeq2 and edgeR(Love, Huber,
and Anders 2014; M. D. Robinson, McCarthy, and Smyth 2010). These two
software packages estimate dispersion parameter of each gene using Empirical
Bayes Shrinkage and Cox-Reid Adjusted Profile Likelihood methods,

respectively.

Although NB regression has been generally accepted in the analysis of RNA-Seq
data, its appropriateness in this setting has not been exhaustively evaluated.
Furthermore, computational and mathematical complexity and an absence of
consensus concerning appropriate methods challenges researchers conducting
RNA-Seq studies(Landau and Liu 2013; Soneson and Delorenzi 2013). Because

many RNA-Seq studies are designed to compare cases and controls, we explore
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logistic regression as an alternative approach, in which disease status is
modeled as a function of RNA-Seq reads. Logistic regression is a standard
method in the context of Genome-Wide Association Studies (GWAS) of binary
traits. Execution of logistic regression becomes possible through reversing the
experimental and explanatory variables in the NB model in the RNA-Seq setting.
An attractive feature of the logistic framework in the application to RNA-Seq data
is that the estimation of a dispersion parameter for gene expression is not

necessary.

In this chapter, we investigate this alternative approach. We reverse the
dependent variable and independent variable specified in a NB model and
evaluate logistic regression models in which the dependent variable is disease
status and gene expression is the independent variable. Specifically, we
compare NB regression, as implemented in the DESeq2 package with Classical
Logistic (CL), Bayes Logistic (BL), and Firth Logistic (FL) regression approaches.
We use both simulated data sets and an application to a real Huntington’s

disease (HD) mRNA-Seq data set.

2.2 Dispersion estimation methods in negative binomial framework
This study treats each gene as a unit; hence various gene-based scenarios are
considered. Although several methods implemented in the RNA-Seq setting

utilize data from across all genes to improve estimation, we did not use those
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methods in our gene-focused simulations. Maximum likelihood (ML) and Quasi
likelihood (QL) methods (methods described in Chapter 1.2) and the true
parameter value used in simulation are used in NB regressions for analysis of all
simulated data. However, in our real data application, we analyzed the HD RNA-
Seq data set with the DESeq2 package and analyzed the whole gene set at
once. This statistical package implements the Empirical Bayes Shrinkage
Estimation method to estimate gene specific dispersion and this estimate was

used for all data analyses including permutation analyses.

2.3 Regression methods for analyzing RNA-Seq data

The following section describes regression methods that are used in this
comparative study. RNA-Seq reads are modeled as a function of case-control
status in NB models, and case-control status is modeled as a function of RNA-

Seq reads in logistic models.

2.3.1 Negative binomial regression

NB regression uses the same ML fitting process that estimates the ML
dispersion. This GLM framework is used by the leading software packages
DESeq2 and edgeR. In the current study, GLM was implemented using the
glm(,family=negative.binomial(1/¢)) function in R-package “MASS” and utilized
either the estimated dispersion from ML, QL, or the true dispersion value from

the simulation scenario. In our real data application, the original data and
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permuted data sets was analyzed with DESeqg2. DESeq2 incorporates the
Empirical Bayes Shrinkage method to estimate effect sizes of gene expression.
Because this method shrinks some large effect sizes that are not explained well
by the data toward zero, the shrunken effect sizes are more reliable than the

effect sizes from ML(Love, Huber, and Anders 2014).

2.3.2 Classical logistic regression

We conducted GLM in a logistic regression framework using the logit link
function. The glm(,family=binomial) function in R was used. Because RNA-Seq
studies are commonly designed for small samples, CL regression may confront
the small sample bias. Also, complete separation, which often occurs when the
effect size is large, may prevent utilizing CL regression when testing for
differential expression in the RNA-Seq setting. If the expression values of a gene
are completely or nearly completely separated between case and control groups,
the ML estimation from CL regression may fail to converge. Because observing
complete separation for genes may be a promising indicator of differential
expression, we implemented Bayes and Firth’s logistic regressions, which

overcome complete separation in the logistic framework.

2.3.3 Bayes logistic regression
Gelman et al. proposed a prior to estimate stable coefficients in a Bayesian

framework, when data show separation. The proposed prior is the Cauchy
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distribution with center 0 and scale 2.5(Gelman et al. 2008). They demonstrated
that this flat-tailed distribution has robust inference in logistic regression and is

computationally efficient. The procedure is implemented by incorporating an EM
algorithm into iteratively reweighted least squares. The bayesg/m function in the

R-package “arm” was used.

2.3.4 Firth’s logistic regression

The ML estimators may be biased due to the small sample size and the small
total Fisher information. Firth proposed a method that eliminates first-order bias,
O(m~1), in ML estimation by introducing a bias term in the likelihood function(Firth
1993). This correction is also equivalent to penalizing likelihood function with
Jeffery’s invariant prior in Bayesian framework if the target parameters follow
canonical parameters of an exponential family. Heinze and Schemper
demonstrated that Firth’s method is an ideal solution when the data show
separation (Heinze and Schemper 2002). Firth’s method was motivated to
correct the bias in case-control samples due to small sample size(Allison 2012).

The logistf function in the R-package “logistf” was used.

2.4 Data Adaptive (DA) distribution of test statistics
The following steps describe our DA method, which re-estimates a distribution of
test statistics under the null hypotheses of no association suggested by Han and

Pan(Han and Pan 2010). The DA approach enables one to obtain a recalibrated
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distribution of test statistics because when sample size is small, the theoretical
asymptotic distribution may not be appropriate. This method also avoids heavy
computing burden compared to implementing permutation tests with all possible

permutations.

To implement the DA approach we need to obtain a set of Wald Chi-square test
statistics (U™,.., U™)) from m number of null data sets. We calculate the
sample mean and variance of this null test statistic as U, and V,,. Because
U, .., U™ follow a null empirical distribution ay,; + b,
E[U] = Elay, + bl = a+b = U,,
var[U] = var[ay; + b] = 2(a)? = V,,

We can solve a and b in terms of U, and V,,, so that

a = ’var[U] _ \/E’
2 2
b=ru]- [y, - [

Our test statistic is then compared to the null empirical distribution ay,; + b.

2.5 Simulation study
The simulations varied various aspects of RNA-Seq data properties and study
design including sample size, mean expression value (1), log2 fold-change (12fc),

and dispersion. The performance of statistical models was evaluated through



20

different Type-I| error and power scenarios using combinations of the parameter
values in Table 2.1.

Table 2.1 Parameters and their values in simulation scenarios

Parameter Values
Design Balanced, Unbalanced2, Unbalanced4
Number of cases 10, 25, 75, 500
Mean expression value in controls(uy—_() 50, 100, 1000, 10000
Dispersion 0.01,0.01, 0.5, 1
log, fold-change (I12fc) 0,0.3,06,1.2,2

Design: Balanced has the same number of cases and controls. Unbalanced2 (4) has the 2 (or 4)

times more controls than cases. log2 fold-change: The 12fc equals to
mean expression value in cases (Up=1)
log, ( )

mean expression value in controls (up=q)

2.5.1 Generation of simulated RNA-Seq data

For each scenario, the read counts (y,) were sampled from the NB distribution

with mean and dispersion as specified in in Table 2.1. We simulated 10,000

replicates per scenario using the following steps.

First, we sampled cases and controls based on the study design. Then, a gene
expression value for each sample (Y;,) was sampled from the NB distribution
conditioning on the disease status of the sample. The 12fc determined the mean
expression values in cases (u,p-1) in power scenarios. When simulating under
the null hypothesis (Type-| error scenarios) I2fc was equal to 0 and the mean
expression value (u,4p) was equal for cases and controls. We considered only the

situation in which the gene is up-regulated, and assumed that the dispersion
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parameter was the same for cases and controls. We can write the simulation
model for the RNA-Seq count as

Yy~ NB(ugp, ¢4), where pyp = 0,¢, >0
where D is a binary case-control status of sample i, 4 is mean expression value
of gene g, up-,is the mean expression value for cases and is calculated as

12fc
27°X up=g

2.5.2 Analysis of simulated RNA-Seq data
The NB regression modeled gene expression values as a function of case-
control status, but the logistic regressions modeled cases-control status as a
function of gene expression values. We performed the NB regression with Model
2.A and performed the CL, BL, and FL regressions with Model 2.B.

Model 2. A: log(E[Y]) = By + B1D,

Model 2. B: logit(E[D]) = B; + p1Y.
The NB regression required estimation of a dispersion parameter. Three different
dispersions were used in analyses: One was estimated from ML, another was
estimated from QL, and the other was assigned to the true value from the

simulation scenario.

Scenarios for which 12fc is zero are Type-I error studies. Otherwise, the
scenarios are power studies. Type-| error rates, at significance (alpha) levels

0.05 and 0.01, were calculated based on replicates with converged results. For
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power studies, different Type-I error rates observed among the distinct
regression methods were corrected by computing the empirical power with an

empirical threshold calculated from different Type-| error scenarios.

The number of p—values<alpha levels

Type I error rate = , (2.1)

mg
Empirical Power = The number ofp—valu:ens<Empirical thresholds’ (22)
S
Empirical threshold = Q™ smallest p — value in null hypotheses, (2.3)

where m is the number of simulations, m; is the number of converged

simulations, and Q is alpha X m;

2.5.3 Cross-Validation of data adaptive method in simulated RNA-Seq data
The results from each Type-I error scenario were randomly and evenly
partitioned into 10 groups. Of the 10 groups, 9 were assigned as the training set
(9000) and the remaining one was assigned as the testing (1000) set. Then, the
scale (a) and location (b) parameters were estimated from test statistics using
the training set.

Xg ~ GgX1 + by where x, is a test statistic of scenario g
The p-values were re-generated using a scale and location adjusted chi-square
distribution. For all 10 combinations of testing and training set partitions, we
estimated the scale and location parameter and re-computed p-values. Type-|

error rates were re-calculated for all Type-| error scenarios.
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2.6 Simulation result

2.6.1 Simulation Type-l error result

Type-I error rates from the simulated results of the scenarios at two alpha levels
are presented in Table 2.2 and Table 2.3. The NB regressions using ML, QL and
true dispersions show almost identical levels of performance as shown in Table
2.2. When the sample size is small or the dispersion is high, the NB regression
shows inflated Type-| error rates but the CL and BL regressions are conservative
(see Table 2.3). Large sample size and low dispersion generally yielded Type-I
error rates that were close to the specified alpha levels. The increment of u,_, is
not influential, as shown in Table 2.3. The FL regression performs well or
presents moderate conservativeness at both alpha levels. The Type-| error rates
of the FL regression are less affected by the small sample size and the large
dispersion than other logistic regressions. The Type-I error rates of additional

scenarios exhibit patterns that are consistent with results in Tables 2.2 and 2.3.



24

Table 2.2 Type-I error rates of the NB regressions with the true dispersion and
ML and QL dispersions from the balanced design

a =0.05 a =0.01
Ncase mu Disp | NBMLD NB TD NB QLD | NB_MLD NB_TD NB_QLD
10 50 0.01 | 0.066 0.067 0.066 0.021 0.020 0.020
10 50 0.1 0.070 0.071 0.071 0.019 0.020 0.019
10 50 0.5 0.080 0.080 0.080 0.027 0.027 0.027
10 50 1 0.085 0.085 0.085 0.030 0.030 0.030
10 1000 0.01 | 0.066 0.066 0.066 0.018 0.018 0.018
10 1000 0.1 0.068 0.068 0.068 0.021 0.021 0.021
10 1000 0.5 0.077 0.077 0.077 0.024 0.024 0.024
10 1000 1 0.094 0.094 0.094 0.032 0.032 0.032
10 10000 0.01 | 0.067 0.067 0.067 0.019 0.019 0.019
10 10000 0.1 0.069 0.069 0.069 0.022 0.022 0.022
10 10000 0.5 0.076 0.076 0.076 0.025 0.025 0.025
10 10000 1 0.087 0.087 0.087 0.028 0.028 0.028
25 50 0.01 | 0.056 0.056 0.056 0.014 0.014 0.014
25 50 0.1 0.060 0.060 0.060 0.013 0.013 0.013
25 50 0.5 0.060 0.060 0.060 0.016 0.016 0.016
25 50 1 0.061 0.061 0.061 0.017 0.017 0.017
25 1000 0.01 | 0.057 0.057 0.057 0.014 0.014 0.014
25 1000 0.1 0.060 0.060 0.060 0.013 0.013 0.013
25 1000 0.5 0.062 0.062 0.062 0.018 0.018 0.018
25 1000 1 0.064 0.064 0.064 0.019 0.019 0.019
25 10000 0.01 | 0.059 0.059 0.059 0.015 0.015 0.015
25 10000 0.1 0.055 0.055 0.055 0.011 0.011 0.011
25 10000 0.5 0.064 0.064 0.064 0.016 0.016 0.016
25 10000 1 0.065 0.065 0.065 0.016 0.016 0.016
75 50  0.01 | 0.051 0.051 0.051 0.012 0.012 0.012
75 50 0.1 0.053 0.053 0.053 0.012 0.012 0.012
75 50 0.5 0.050 0.050 0.050 0.011 0.011 0.011
75 50 1 0.054 0.054 0.054 0.014 0.014 0.014
75 1000 0.01 | 0.054 0.054 0.054 0.012 0.012 0.012
75 1000 0.1 0.051 0.051 0.051 0.011 0.011 0.011
75 1000 0.5 0.055 0.055 0.055 0.011 0.011 0.011
75 1000 1 0.056 0.056 0.056 0.013 0.013 0.013
75 10000 0.01 | 0.052 0.052 0.052 0.011 0.011 0.011
75 10000 0.1 0.054 0.054 0.054 0.011 0.011 0.011
75 10000 0.5 0.056 0.056 0.056 0.011 0.011 0.011
75 10000 1 0.058 0.058 0.058 0.014 0.014 0.014

Ncase: The number of cases (equal number of controls), mu: mean expression value in cases
and controls, Disp: Dispersion, NB: Negative Binomial, TD: True dispersion specified in the
simulation, MLD: Maximum likelihood estimated Dispersion, QLD: Quasi-likelihood estimated
Dispersion
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Table 2.3 Type-I error rates of the NB and logistic regressions from the balanced
design

a =0.05 a =0.01
Ncase mu Disp | NB_.TD CL BL FL |[NB_.TD CL BL FL

10 50 0.01 | 0.066 0.026 0.026 0.045]| 0.021 0.000 0.001 0.008
10 50 0.1 0.070 0.024 0.023 0.044| 0.019 0.000 0.001 0.007
10 50 0.5 0.080 0.023 0.022 0.043| 0.027 0.000 0.001 0.008
10 50 1 0.085 0.016 0.018 0.038 ] 0.030 0.000 0.000 0.008
10 1000 0.01 | 0.066 0.023 0.023 0.044| 0.018 0.000 0.000 0.007
10 1000 0.1 0.068 0.024 0.025 0.046 | 0.021 0.000 0.001 0.009
10 1000 0.5 0.077 0.019 0.020 0.041 | 0.024 0.000 0.000 0.007
10 1000 1 0.094 0.016 0.017 0.039] 0.032 0.000 0.001 0.007
10 10000 0.01 | 0.067 0.024 0.023 0.044| 0.019 0.000 0.000 0.008
10 10000 0.1 0.069 0.025 0.026 0.045| 0.022 0.000 0.001 0.008
10 10000 0.5 0.076 0.022 0.022 0.044| 0.025 0.000 0.001 0.007
10 10000 1 0.087 0.013 0.014 0.038 ] 0.028 0.000 0.000 0.005
25 50 0.01 | 0.056 0.042 0.039 0.047| 0.014 0.004 0.004 0.010
25 50 0.1 0.060 0.042 0.038 0.049| 0.013 0.004 0.003 0.008
25 50 0.5 0.060 0.038 0.035 0.047| 0.016 0.004 0.003 0.009
25 50 1 0.061 0.030 0.028 0.041] 0.017 0.002 0.002 0.006
25 1000 0.01 | 0.057 0.044 0.040 0.049| 0.014 0.005 0.004 0.011
25 1000 0.1 0.060 0.043 0.038 0.048 | 0.013 0.004 0.004 0.009
25 1000 0.5 0.062 0.040 0.037 0.047 | 0.018 0.004 0.004 0.011
25 1000 1 0.064 0.034 0.032 0.044] 0.019 0.002 0.002 0.009
25 10000 0.01 | 0.059 0.045 0.041 0.049| 0.015 0.005 0.005 0.010
25 10000 0.1 0.055 0.039 0.034 0.044| 0.011 0.003 0.003 0.007
25 10000 0.5 0.064 0.039 0.036 0.046 | 0.016 0.004 0.003 0.008
25 10000 1 0.065 0.031 0.027 0.042] 0.016 0.002 0.002 0.008
75 50 0.01 | 0.051 0.046 0.045 0.048 | 0.012 0.009 0.008 0.010
75 50 0.1 0.053 0.048 0.046 0.050| 0.012 0.009 0.008 0.010
75 50 0.5 0.050 0.042 0.040 0.044| 0.011 0.006 0.005 0.008
75 50 1 0.054 0.042 0.040 0.047 | 0.014 0.007 0.007 0.011
75 1000 0.01 | 0.054 0.050 0.048 0.051] 0.012 0.009 0.008 0.010
75 1000 0.1 0.051 0.045 0.043 0.047| 0.011 0.007 0.007 0.009
75 1000 0.5 0.055 0.045 0.043 0.048 | 0.011 0.007 0.006 0.009
75 1000 1 0.056 0.045 0.043 0.048 ] 0.013 0.007 0.006 0.010
75 10000 0.01 | 0.052 0.047 0.046 0.049| 0.011 0.009 0.008 0.010
75 10000 0.1 0.054 0.049 0.047 0.050| 0.011 0.007 0.007 0.008
75 10000 0.5 0.056 0.047 0.045 0.050| 0.011 0.007 0.007 0.009
75 10000 1 0.058 0.045 0.043 0.049] 0.014 0.007 0.007 0.010

Ncase: The number of cases (equal number of controls), Disp: Dispersion, NB_TD: The Negative

binomial regression with the true dispersion specified in simulation, CL: Classical Logistic

regression, BL: Bayes Logistic regression, FL: Firth’s Logistic regression
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2.6.2 DA Type-l error simulation results

In most scenarios, the DA method reduces the inflation observed with NB
regressions and the deflation observed with the CL, BL, and FL regressions as
presented in Table 2.4. However, when the DA method is performed with CL and
BL results with small sample size, conservative results, especially with the CL
model, are still exhibited at alpha level 0.01. The DA method with NB and FL
regressions showed well-controlled Type-I error rates at all alpha levels even

with small sample size.
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Table 2.4 Type-| error rates of the NB and logistic regressions with the DA
method from the balanced design

a =0.05 a =0.01
Ncase mu Disp | NB_. TD CL BL FL |NB_TD CL BL FL
10 50 0.01 | 0.039 0.049 0.045 0.041]| 0.012 0.003 0.007 0.011
10 50 0.1 0.047 0.057 0.054 0.050 ] 0.010 0.003 0.005 0.010
10 50 0.5 0.046 0.068 0.061 0.054 ]| 0.010 0.004 0.007 0.011
10 50 1 0.048 0.051 0.049 0.047 ] 0.012 0.004 0.007 0.009

10 1000 0.01 | 0.048 0.060 0.057 0.054| 0.011 0.001 0.004 0.011
10 1000 0.1 0.040 0.050 0.047 0.042 ]| 0.008 0.001 0.006 0.009
10 1000 0.5 0.039 0.052 0.049 0.045] 0.008 0.003 0.006 0.006
10 1000 1 0.043 0.058 0.054 0.048 ] 0.009 0.005 0.006 0.007
10 10000 0.01 | 0.054 0.068 0.065 0.059| 0.014 0.003 0.009 0.014
10 10000 0.1 0.042 0.055 0.052 0.048 | 0.011 0.003 0.006 0.011
10 10000 0.5 0.044 0.049 0.045 0.044 | 0.006 0.003 0.005 0.006
10 10000 1 0.048 0.059 0.055 0.051] 0.011 0.001 0.004 0.007

25 50 0.01 | 0.051 0.056 0.055 0.053| 0.013 0.010 0.011 0.013
25 50 0.1 0.053 0.062 0.061 0.057 | 0.009 0.007 0.007 0.009
25 50 0.5 0.045 0.048 0.048 0.045] 0.011 0.006 0.006 0.008
25 50 1 0.061 0.061 0.061 0.061] 0.013 0.007 0.008 0.011

25 1000 0.01 | 0.056 0.061 0.061 0.058| 0.017 0.013 0.014 0.016
25 1000 0.1 | 0.047 0.054 0.053 0.049 | 0.008 0.005 0.006 0.007
25 1000 0.5 | 0.043 0.045 0.045 0.044 | 0.005 0.003 0.003 0.004
25 1000 1 0.049 0.056 0.055 0.052 | 0.008 0.005 0.006 0.007
25 10000 0.01 | 0.043 0.047 0.047 0.044 | 0.011 0.007 0.008 0.010
25 10000 0.1 | 0.054 0.057 0.056 0.054 | 0.010 0.008 0.009 0.010
25 10000 0.5 | 0.049 0.055 0.055 0.051| 0.008 0.004 0.005 0.007
25 10000 1 0.045 0.050 0.049 0.047 | 0.016 0.010 0.010 0.013

75 50 0.01 | 0.039 0.041 0.041 0.040| 0.008 0.007 0.007 0.008
75 50 0.1 0.054 0.057 0.057 0.055] 0.011 0.010 0.010 0.010
75 50 0.5 0.048 0.053 0.053 0.050 | 0.008 0.006 0.006 0.007
75 50 1 0.047 0.051 0.0561 0.050 ] 0.012 0.011 0.011 0.011

75 1000 0.01 0.050 0.052 0.052 0.050| 0.016 0.015 0.015 0.015
75 1000 0.1 0.053 0.056 0.056 0.053 | 0.009 0.008 0.008 0.009
75 1000 0.5 0.055 0.057 0.057 0.055| 0.012 0.010 0.010 0.012
75 1000 1 0.042 0.046 0.046 0.044 ] 0.011 0.008 0.008 0.009
75 10000 0.01 0.061 0.064 0.064 0.062 | 0.013 0.012 0.012 0.012
75 10000 0.1 0.047 0.048 0.048 0.047 | 0.010 0.009 0.009 0.009
75 10000 0.5 0.048 0.049 0.049 0.048 | 0.015 0.013 0.013 0.014
75 10000 1 0.0563 0.057 0.057 0.055] 0.009 0.008 0.008 0.008
Ncase: The number of cases (equal number of controls), Disp: Dispersion, NB_TD: The Negative
binomial regression with the true dispersion specified in simulation, CL: Classical Logistic
regression, BL: Bayes Logistic regression, FL: Firth’s Logistic regression
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2.6.3 Empirical power simulation results

We summarize the empirical power results in Tables 2.5 - 2.9. The performance
of the NB regressions with ML, QL and true dispersions are almost identical, as
seen in Table 2.5. Larger sample sizes increase power for all regression
methods as shown in Tables 2.6 - 2.9. The influence of mean expression in
controls appears with small 12fc (Table 2.6). When sample size, 12fc, and
dispersion are small, increase of mean expression in controls leads to an
increase of power at both alpha levels. When 12fc is large and dispersion is small,
the CL regression shows very low power as seen in Table 2.9. The NB, BL, and
FL regressions gain more power with large 12fc and low dispersion. These three
regression methods have comparable empirical power in all scenarios. The CL

regression yields the lowest power among all methods in all scenarios.
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Table 2.5 Empirical power of NB regression with the true dispersion and ML and
QL Dispersions from the balanced design with 12fc of 0.3

a =0.05 a=0.01
Ncase mu Disp | NB_MLD NB_TD NB_QLD | NB_MLD NB_TD NB_QLD

10 50 0.01 0.781 0.781 0.780 0.503 0.504 0.503
10 50 0.1 0.261 0.262 0.262 0.096 0.096 0.096
10 50 0.5 0.089 0.089 0.089 0.021 0.021 0.021
10 50 1 0.075 0.074 0.074 0.014 0.014 0.014
10 1000 0.01 0.989 0.989 0.989 0.939 0.940 0.940
10 1000 0.1 0.267 0.267 0.267 0.089 0.089 0.089
10 1000 0.5 0.093 0.093 0.093 0.024 0.024 0.024
10 1000 1 0.063 0.063 0.063 0.014 0.014 0.014
10 10000 0.01 0.992 0.992 0.992 0.948 0.948 0.948
10 10000 0.1 0.285 0.285 0.285 0.102 0.102 0.102
10 10000 0.5 0.093 0.093 0.093 0.025 0.025 0.025
10 10000 1 0.073 0.073 0.073 0.019 0.019 0.019
25 50 0.01 0.992 0.992 0.992 0.962 0.962 0.962
25 50 0.1 0.581 0.581 0.581 0.351 0.351 0.351
25 50 0.5 0.169 0.169 0.169 0.054 0.054 0.054
25 50 1 0.118 0.118 0.118 0.037 0.037 0.037
25 1000 0.01 1.000 1.000 1.000 1.000 1.000 1.000
25 1000 0.1 0.614 0.614 0.614 0.366 0.366 0.366
25 1000 0.5 0.162 0.162 0.162 0.043 0.043 0.043
25 1000 1 0.107 0.107 0.107 0.025 0.025 0.025
25 10000 0.01 1.000 1.000 1.000 1.000 1.000 1.000
25 10000 0.1 0.629 0.629 0.629 0.397 0.397 0.397
25 10000 0.5 0.169 0.169 0.169 0.065 0.065 0.065
25 10000 1 0.111 0.111 0.111 0.029 0.029 0.029
75 50 0.01 1.000 1.000 1.000 1.000 1.000 1.000
75 50 0.1 0.966 0.966 0.966 0.882 0.882 0.882
75 50 0.5 0.461 0.461 0.461 0.234 0.235 0.234
75 50 1 0.259 0.259 0.259 0.088 0.088 0.088
75 1000 0.01 1.000 1.000 1.000 1.000 1.000 1.000
75 1000 0.1 0.981 0.981 0.981 0.917 0.917 0.917
75 1000 0.5 0.424 0.424 0.424 0.216 0.216 0.216
75 1000 1 0.235 0.235 0.235 0.089 0.089 0.089
75 10000 0.01 1.000 1.000 1.000 1.000 1.000 1.000
75 10000 0.1 0.981 0.981 0.981 0.920 0.920 0.920
75 10000 0.5 0.417 0.417 0.417 0.208 0.208 0.208
75 10000 1 0.238 0.238 0.238 0.086 0.086 0.086

Ncase: The number of cases (equal number of controls), mu: mean expression values in cases

and controls, Disp: Dispersion, NB: Negative Binomial, TD: The dispersion is used for the

sampling, MLD: Maximum likelihood estimated Dispersion, QLD: Quasi-likelihood estimated

Dispersion
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Table 2.6 Empirical power of NB and logistic regressions from the balanced
design with 12fc equal to 0.03

a =0.05 a=0.01
Ncase Cont.mu Disp | NB_.TD CL BL FL NB_TD CL BL FL
10 50 0.01 ] 0.781 0.740 0.779 0.776 | 0.503 0.384 0.497 0.510
10 50 0.1 0.261 0.256 0.260 0.257 | 0.096 0.085 0.094 0.094
10 50 0.5 0.089 0.089 0.088 0.088 | 0.021 0.020 0.020 0.019
10 50 1 0.075 0.070 0.072 0.071] 0.014 0.011 0.012 0.012
10 1000 0.01 ] 0989 0.775 0.988 0.987 | 0939 0.510 0.930 0.929
10 1000 0.1 0.267 0.262 0.267 0.265| 0.089 0.077 0.089 0.091
10 1000 0.5 0.093 0.088 0.091 0.093 | 0.024 0.020 0.021 0.022
10 1000 1 0.063 0.062 0.064 0.064] 0.014 0.012 0.012 0.014

10 10000 0.01 | 0.992 0.744 0.992 0.991| 0948 0.515 0.946 0.944
10 10000 0.1 0.285 0.275 0.279 0.280| 0.102 0.083 0.099 0.102
10 10000 0.5 | 0.093 0.091 0.091 0.093| 0.025 0.022 0.026 0.025
10 10000 1 0.073 0.070 0.071 0.071 ] 0.019 0.018 0.019 0.020

25 50 0.01 | 0992 0992 0.992 0.992| 0.962 0.963 0.962 0.962
25 50 0.1 0.581 0.579 0.580 0.581 | 0.351 0.339 0.341 0.346
25 50 0.5 0.169 0.171 0.172 0.170 | 0.054 0.048 0.050 0.053
25 50 1 0.118 0.117 0.117 0.116 | 0.037 0.034 0.035 0.037
25 1000 0.01 | 1.000 0.996 1.000 1.000| 1.000 0.990 1.000 1.000
25 1000 0.1 0.614 0.609 0.610 0.611| 0.366 0.372 0.370 0.370
25 1000 0.5 0.162 0.159 0.159 0.160 | 0.043 0.045 0.044 0.045
25 1000 1 0.107 0.104 0.104 0.106 | 0.025 0.023 0.023 0.025

25 10000 0.01 | 1.000 0.997 1.000 1.000| 1.000 0.986 1.000 1.000
25 10000 0.1 0.629 0.630 0.630 0.630 | 0.397 0.391 0.392 0.391
25 10000 0.5 0.169 0.169 0.169 0.169 | 0.065 0.058 0.059 0.059
25 10000 1 0.111 0.110 0.109 0.113 | 0.029 0.032 0.032 0.030

75 50 0.01 | 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 50 0.1 0.966 0.966 0.966 0.966 | 0.882 0.883 0.883 0.883
75 50 0.5 0.461 0.455 0.455 0.457 | 0.234 0.235 0.234 0.232
75 50 1 0.259 0.253 0.253 0.255| 0.088 0.083 0.083 0.083
75 1000 0.01 | 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 1000 0.1 0.981 0.981 0.981 0.981| 0917 0917 0.917 0.917
75 1000 0.5 0.424 0.424 0424 0.424| 0216 0.215 0.215 0.211
75 1000 1 0.235 0.234 0.235 0.236 ] 0.089 0.090 0.090 0.091

75 10000 0.01 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000

75 10000 0.1 0.981 0.980 0.980 0.980| 0.920 0.920 0.920 0.921

75 10000 0.5 0.417 0.414 0415 0.415] 0.208 0.211 0.211 0.214

75 10000 1 0.238 0.239 0.239 0.239 | 0.086 0.087 0.087 0.091
Ncase: The number of cases (equal number of controls), Disp: Dispersion, NB_TD: The Negative
binomial regression with the true dispersion specified in simulation, CL: Classical Logistic
regression, BL: Bayes Logistic regression, FL: Firth’s Logistic regression
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Table 2.7 Empirical power of NB and logistic regressions from the balanced
design with 12fc equal to 0.06

a =0.05 a=0.01
Ncase Cont.mu Disp | NB_.TD CL BL FL NB_TD CL BL FL
10 50 0.01 1.000 0.497 1.000 0.998 | 0.995 0.303 0.995 0.995
10 50 0.1 0.728 0.682 0.720 0.721 ]| 0.465 0.342 0.445 0.455
10 50 0.5 0.222 0.210 0.210 0.215| 0.076 0.055 0.063 0.064
10 50 1 0.140 0.125 0.131 0.134] 0.039 0.024 0.030 0.032
10 1000 0.01 1.000 0.041 1.000 0.999 | 1.000 0.016 1.000 0.999
10 1000 0.1 0.782 0.731 0.775 0.775] 0.516 0.355 0.496 0.508
10 1000 0.5 0.240 0.215 0.225 0.231 | 0.082 0.058 0.069 0.076
10 1000 1 0.126 0.118 0.121 0.122 ] 0.037 0.025 0.027 0.031

10 10000 0.01 | 1.000 0.030 1.000 0.999| 1.000 0.011 1.000 0.999
10 10000 0.1 0.789 0.734 0.775 0.780| 0.526 0.358 0.500 0.520
10 10000 0.5 0.225 0.203 0.211 0.219| 0.074 0.055 0.067 0.069
10 10000 1 0.131 0.114 0.120 0.123 | 0.040 0.031 0.036 0.039

25 50 0.01 | 1.000 0.950 1.000 0.999| 1.000 0.887 1.000 0.999
25 50 0.1 0.987 0.986 0.986 0.986| 0.946 0.942 0.942 0.945
25 50 0.5 0.519 0.509 0.510 0.512| 0.267 0.243 0.248 0.267
25 50 1 0.295 0.284 0.284 0.284| 0.124 0.100 0.103 0.115
25 1000 0.01 | 1.000 0.258 1.000 0.997| 1.000 0.138 1.000 0.997
25 1000 0.1 0.995 0.994 0994 0.995| 0.971 0.970 0.970 0.971
25 1000 0.5 0.510 0.502 0.503 0.509 | 0.236 0.234 0.232 0.240
25 1000 1 0.286 0.274 0.274 0.280| 0.111 0.092 0.094 0.104

25 10000 0.01 | 1.000 0.198 1.000 0.998 | 1.000 0.104 1.000 0.998
25 10000 0.1 0.996 0.996 0.997 0.997 | 0976 0.973 0.974 0.975
25 10000 0.5 0.520 0.510 0.512 0.514| 0.290 0.265 0.269 0.275
25 10000 1 0.303 0.291 0.292 0.302 | 0.126 0.116 0.119 0.121

75 50 0.01 | 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 50 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 50 0.5 0.942 0.940 0.940 0.941| 0.831 0.828 0.827 0.828
75 50 1 0.715 0.709 0.709 0.712 ] 0.443 0.423 0.424 0.426
75 1000 0.01 | 1.000 0.835 1.000 0.996| 1.000 0.727 1.000 0.996
75 1000 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 1000 0.5 0.947 0945 0945 0946 | 0.842 0.840 0.840 0.838
75 1000 1 0.709 0.704 0.704 0.707 | 0.448 0.446 0.446 0.451

75 10000 0.01 1.000 0.763 1.000 0.995]| 1.000 0.634 1.000 0.995

75 10000 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000

75 10000 0.5 0.938 0.937 0.937 0.937| 0.828 0.829 0.829 0.831

75 10000 1 0.701 0.699 0.699 0.700 | 0.437 0.436 0.436 0.450
Ncase: The number of cases (equal number of controls), Disp: Dispersion, NB_TD: The Negative
binomial regression with the true dispersion specified in simulation, CL: Classical Logistic
regression, BL: Bayes Logistic regression, FL: Firth’s Logistic regression
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Table 2.8 Empirical power of the NB and logistic regressions from the balanced
design with 12fc equal to 1.2

a =0.05 a=0.01
Ncase Cont.mu Disp | NB_.TD CL BL FL NB_TD CL BL FL
10 50 0.01 1.000 0.001 1.000 1.000| 1.000 0.000 1.000 1.000
10 50 0.1 0.999 0.566 0.999 0998 | 0.992 0.331 0.986 0.988
10 50 0.5 0.670 0.569 0.619 0.637 | 0.384 0.208 0.299 0.331
10 50 1 0.401 0.323 0.349 0.367 ] 0.161 0.084 0.110 0.133
10 1000 0.01 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
10 1000 0.1 1.000 0.493 1.000 0.999 | 0.995 0.258 0.990 0.992
10 1000 0.5 0.696 0.584 0.638 0.656 | 0.398 0.219 0.318 0.358
10 1000 1 0.382 0.304 0.332 0.350 | 0.168 0.087 0.111 0.137

10 10000 0.01 | 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
10 10000 0.1 1.000 0.486 1.000 0.998 | 0.996 0.253 0.992 0.994
10 10000 0.5 | 0681 0.585 0.629 0.651| 0.400 0.220 0.321 0.357
10 10000 1 0.390 0.303 0.332 0.349 | 0.175 0.097 0.138 0.159

25 50 0.01 | 1.000 0.007 1.000 1.000| 1.000 0.002 1.000 1.000
25 50 0.1 1.000 0.971 1.000 1.000| 1.000 0.934 1.000 1.000
25 50 0.5 0.976 0971 0972 0.973| 0.904 0.864 0.871 0.895
25 50 1 0.810 0.781 0.785 0.792 ] 0.593 0.498 0.510 0.566
25 1000 0.01 ] 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
25 1000 0.1 1.000 0.951 1.000 1.000| 1.000 0.899 1.000 1.000
25 1000 0.5 0.979 0975 0976 0977 | 0.895 0.865 0.869 0.891
25 1000 1 0.800 0.767 0.771 0.785] 0.560 0.468 0.480 0.531

25 10000 0.01 | 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
25 10000 0.1 1.000 0.953 1.000 1.000| 1.000 0.906 1.000 1.000
25 10000 05 | 0979 0.975 0975 0977 | 0.921 0.892 0.896 0.909
25 10000 1 0.815 0.790 0.794 0.807 | 0.588 0.519 0.533 0.559

75 50 0.01 | 1.000 0.074 1.000 0.999 | 1.000 0.036 1.000 0.999
75 50 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 50 0.5 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 50 1 0.999 0.998 0.998 0.999 | 0.990 0.986 0.987 0.988
75 1000 0.01 ] 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
75 1000 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 1000 0.5 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 1000 1 0.999 0.999 0.999 0.999] 0.991 0.989 0.989 0.991

75 10000 0.01 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000

75 10000 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000

75 10000 0.5 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000

75 10000 1 0.999 0.999 0.999 0.999] 0.990 0.988 0.988 0.990
Ncase: The number of cases (equal number of controls), Disp: Dispersion, NB_TD: The Negative
binomial regression with the true dispersion specified in simulation, CL: Classical Logistic
regression, BL: Bayes Logistic regression, FL: Firth’s Logistic regression
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Table 2.9 Empirical power of NB and logistic regressions from the balanced
design with 12fc equal to 2

a =0.05 a=0.01
Ncase Cont.mu Disp | NB_.TD CL BL FL NB_TD CL BL FL
10 50 0.01 1.000 0.001 1.000 1.000| 1.000 0.000 1.000 1.000
10 50 0.1 0.999 0.566 0.999 0998 | 0.992 0.331 0.986 0.988
10 50 0.5 0.670 0.569 0.619 0.637 | 0.384 0.208 0.299 0.331
10 50 1 0.401 0.323 0.349 0.367 ] 0.161 0.084 0.110 0.133
10 1000 0.01 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
10 1000 0.1 1.000 0.493 1.000 0.999 | 0.995 0.258 0.990 0.992
10 1000 0.5 0.696 0.584 0.638 0.656 | 0.398 0.219 0.318 0.358
10 1000 1 0.382 0.304 0.332 0.350 | 0.168 0.087 0.111 0.137
10 10000 0.01 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
10 10000 0.1 1.000 0.486 1.000 0.998 | 0.996 0.253 0.992 0.994
10 10000 0.5 0.681 0.585 0.629 0.651| 0.400 0.220 0.321 0.357
10 10000 1 0.390 0.303 0.332 0.349] 0.175 0.097 0.138 0.159
25 50 0.01 1.000 0.007 1.000 1.000| 1.000 0.002 1.000 1.000
25 50 0.1 1.000 0.971 1.000 1.000 | 1.000 0.934 1.000 1.000
25 50 0.5 0976 0.971 0.972 0973 | 0.904 0.864 0.871 0.895
25 50 1 0.810 0.781 0.785 0.792 ] 0.593 0.498 0.510 0.566
25 1000 0.01 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
25 1000 0.1 1.000 0.951 1.000 1.000 | 1.000 0.899 1.000 1.000
25 1000 0.5 0979 0.975 0976 0977 | 0.895 0.865 0.869 0.891
25 1000 1 0.800 0.767 0.771 0.785] 0.560 0.468 0.480 0.531
25 10000 0.01 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
25 10000 0.1 1.000 0.953 1.000 1.000 | 1.000 0.906 1.000 1.000
25 10000 0.5 0979 0.975 0.975 0977 | 0921 0.892 0.896 0.909
25 10000 1 0.815 0.790 0.794 0.807 ] 0.588 0.519 0.533 0.559
75 50 0.01 1.000 0.074 1.000 0.999 | 1.000 0.036 1.000 0.999
75 50 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 50 0.5 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 50 1 0.999 0.998 0.998 0.999] 0.990 0.986 0.987 0.988
75 1000 0.01 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
75 1000 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 1000 0.5 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 1000 1 0.999 0.999 0.999 0.999 | 0.991 0.989 0.989 0.991
75 10000 0.01 1.000 0.000 1.000 1.000| 1.000 0.000 1.000 1.000
75 10000 0.1 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 10000 0.5 1.000 1.000 1.000 1.000| 1.000 1.000 1.000 1.000
75 10000 1 0.999 0.999 0.999 0.999] 0.990 0.988 0.988 0.990

Ncase: The number of cases; and the number of controls are the same, Disp: Dispersion,
NB_TD: The Negative binomial regression with the dispersion used for the sampling, CL:

Classical Logistic regression, BL: Bayes Logistic regression, FL: Firth’s Logistic regression
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2.7 Application to RNA-Seq data of Huntington’s Disease (HD)

A real RNA-Seq data set was analyzed using the DESeq2 R-package, which
implements a NB generalized linear model. The data set was also analyzed
outside the package utilizing R (v3.0.0) to implement CL, BL, and FL regressions.
DESeqg2 was not used to analyze our simulated data sets because DESeq2 was
designed for analyzing a set of genes whereas our simulations focused on
evaluating a scenario (gene) with a specified mean and dispersion. Although
DESeq2 introduced the empirical Bayes shrinkage method for estimating
dispersion and effect size, results from DESeq2 would be similar to those from
the NB regression used to analyze our simulated data, if all genes in a data set
come from the same distribution. The logistic regressions modeled case-control
status as a function of normalized counts of a gene and covariates. The

normalization was performed using DESeq2.

We examined a publicly available HD data set(Labadorf et al. 2015) downloaded
from the GEO database (GSE64810). RNA was extracted from frozen brain
tissue in prefrontal cortex Brodmann Area 9 from 20 HD cases and 49 controls
who were neurologically normal at death and sequenced using lllumina
HiSeq2000 technology for 100nucleotide paired-end reads. These reads were
aligned to the human reference genome (hg19) and annotated with Gencode
database (v17). Only genes that have non-zero counts in more than half of the

samples were kept for analysis, and extreme outliers in the raw counts were
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trimmed. After filtering, there were 28,087 genes in the final data set. Age at
death (AAD) categorized into 4 groups and the RNA Integrity Number (RIN)
defined as a binary variable specifying RIN > 7 or <= 7) were included in the
model as covariates to prevent spurious associations. Because AAD was
considered a non-ordinal, categorical variable, the total number of covariates is 4
in this model. The outlier correcting method implemented in DESeq2 was not

applied because the outliers were already trimmed in the raw data.

2.8 Permutation design

Permutations produce multiple null data sets from real data, and these null data
sets allow us to generate a null test statistic distribution for each gene.
Permutation tests compared with our alpha levels enable evaluation of Type-I
error rates of each gene. This analysis allows us to assess whether the results
from our simulations can be validated in real data. Permutation tests compared
with results from the original HD analysis obtain exact p-values of genes. Specific

details of the permutations performed are provided in Section 2.8.1.

We also applied the DA method used in our simulation studies to the real data.
The test statistic distribution of each gene is re-estimated using the test statistics

from permuted data sets.
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2.8.1 Generation of permuted RNA-Seq data

It is important that the permuted data sets are sampled from the distribution
under the null hypotheses. The following describes steps to generate a
completely null permuted data set considering the effect of covariates. The
original study used RIN and AAD as covariates in the model. RIN was adjusted in
a model due to the potential confounding effect between HD and the abundance
of RNAs. To remove the effect of RIN in our permutations, at first, samples were
divided by RIN categories. Then, each gene is resampled within each category of
RIN. Because AAD was included in the regression model due to its association
with HD, the relationship between HD and AAD was preserved during the

permutation process. We generated 10,000 Monte-Carlo permutations.

2.8.2 Analysis of permuted HD RNA-Seq data

For the original HD data and each permutated data set, DE genes between HD
cases and controls were identified using the NB model (Model 2.C) as
implemented in DESeqg2. We also implemented the CL, BL, and FL regressions
analyzing association between normalized gene counts and HD status with
Model 2.D to compare statistical models.

Model 2.C: log,(E[Y]) = By + 1D + B2AAD; ys» + B3AAD; 455 + BoAAD; s 4 + BsRIN,
Model 2.D: logit(E[D]) = g + BiY + B3AAD; 55 + B3AAD; 55 + BiAAD; ys 4 + BRIN,

where AAD consists of 4 groups and group 1 is the reference group.
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The Type-I error rates at our alpha levels and the exact p-values(Phipson and

Smyth 2010) were calculated with the results from the 10,000 permutations.

The number of p—values < alpha levels

* )
Mp

Type I error rate =

Mmp,t
ST F (im0

)

Exact p — value = ZZZ’@P(R <r|R, =1)P(R, = 1:|Hy) =

my c+1
where m,, is the number of permutations, my, is the number of converged
permutation results, R is the number of p-values less than or equal to the
observed p-value(r), R;is the total number of possible p-values less than or

equal to the observed p-value, p, is(R; + 1)/(m,. + 1), R assumes a binomial
distribution with size of m and probability of p, conditioning on R, = g;, and R,

follows a discrete uniform distribution on (0,m, ;) (Phipson and Smyth 2010).

The DA method was applied using our permutation results(Han and Pan 2010) to
measure Type-| error rates and to obtain adjusted p-values of each gene. The
same cross-validation procedures conducted in our simulation study were
applied to each gene at our alpha levels. The p-values of each gene in the
original results were re-computed with scale (a) and location (b) parameters as
follows

Xg ~ GgX1+ by, where y, is the test statistic of gt" gene,and g = 1,..,28087.
These parameters were estimated using 1,000 randomly selected permutation

results.
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Asymptotic, exact, and DA p-values were corrected for multiple testing by
imposing a False Discovery Rate (FDR) of 0.05. To assess the adequacy of our
models, QQ-plots of original, exact and DA p-values were generated, and the
genomic inflation factors, 4,., were calculated. The genomic inflation factor
quantifies how closely a distribution of observed p-values is to a null distribution

of expected p-values. Thus, a high genomic inflation factor may suggest

evidence of inflation in the test statistics(Devlin and Roeder 1999)

2.9 Permutation result

2.9.1 Permutation Type-l error result

The Type-I error rates from the permuted data sets at two alpha levels are shown
in Figure 2.1 and Table 2.10. We categorize genes into 5 groups by the
estimated dispersion of a gene: (0,0.05], (0.05, 0.15], (0.15, 0.8], (0.8, 1.5], and
(1.5, 10]. We may consider that a gene having an estimated dispersion

parameter greater than 0.8 is largely dispersed.

In DESeq2 results, as dispersion increases, the Type-I error rates increase when
genes are in the categories of the (0,0.05), (0.05, 0.15), and (0.15, 0.8).
However, genes in the (0.8, 1.5), and (1.5, 10) categories exhibit decreasing
Type-l error rates. Genes in the (0.8, 1.5), and (1.5, 10) categories largely have
very low mean expression values. After excluding genes having mean

expression values less than 3, Type-| error rates increase as the estimated
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dispersion increases as shown in Figure 2.1(B) and (D) and Table 2.10. These
increasingly liberal Type-| error rates are observed at both alpha levels of 0.05

and 0.01, and are consistent with our simulation results.
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Figure 2.1 Type-I error rates from DESeq2 analysis of the permuted HD data
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Figure 2.1 contains Type-I error rates from DESeq2 (negative binomial model) analysis of the
permuted HD data at alpha levels of 0.05 and 0.01. Each black empty dot represents Type-I| error
rate of a gene. The red dots denote average values of Type-| error rates in each category of
dispersion groups. The black dotted horizontal lines are the nominal alpha levels. Figure 2.1(A)
summarizes Type-| error rates of all genes at nominal alpha level of 0.05, and Figure 2.1(B)
shows Type-l error rates of genes having mean expression value of greater than 3 at alpha level
of 0.05. Figure 2.1(C) represents Type-I| error rates of all genes at alpha level of 0.01, and Figure
2.1(D) displays Type-I error rates of genes having mean expression value of greater than 3 at
alpha level of 0.01.
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Table 2.10 Type-l error rates from DESeq2 analysis of permuted HD data with
mean expression value > 3

Dispersion Group

mu >3 (0,0.05] (0.05,0.15] (0.15,0.8] (0.8,1.5] (1.5,10]
Mean 0.046 0.057 0.072 0.075  0.088
0.05 Sd  0.009 0.021 0.048 0.058  0.062
0.01 Mean  0.009 0.013 0.021 0.023  0.028
sd  0.003 0.008 0.024 0.030  0.032

mu: mean expression values of all samples, 0.05 and 0.01: Significant levels, Sd: Standard
Deviation.

In the CL, BL and FL regression results, we observe that genes in the categories
of (0,0.05), (0.05, 0.15), and (0.15, 0.8) produce increasingly conservative Type-I
error rates at both alpha levels, as presented in Figure 2.2 and Table 2.11.
However, these increasingly conservative Type-| error rates are attenuated in the
(0.8, 1.5), and (1.5, 10) categories. Because we observe this inconsistent pattern
of Type-I error rates among extremely lowly expressed genes in the DESeq2
results, we also examined the set of genes excluding those with mean
expression values less than or equal to 3. After exclusion, the remaining genes
show consistent increasingly conservative Type-I| error rates as dispersion
increases as shown in Figure 2.2(B) and (D) and Table 2.11. Although Type-|
error rates from the FL regression also shows more conservative when
dispersion is large, Type-| error rates are relatively well controlled at both alpha
levels compared to CL and BL regressions. The Type-| error rates observed in

the real data set using logistic regression confirm our simulation results.
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Figure 2.2 Type-| error rates from logistic models of the permuted HD data
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Figure 2.2 contains Type-I error rates from Classical Logistic (CL), Bayes Logistic (BL), Firth’s
Logistic (FL) regressions of the permuted HD data at alpha levels of 0.05 and 0.01. Each empty
dot represents Type-l error rate of a gene. The dots filled with colors inside of boxes denote
average values of Type-I error rates in each category of dispersion groups. The black dotted
horizontal lines are our alpha levels. Figure 2.2(A) summarizes Type-| error rates of all genes at
alpha level of 0.05, and Figure 2.2(B) shows Type-I| error rates of genes having mean expression
value of greater than 3 at alpha level of 0.05. Figure 2.2(C) represents Type-I error rates of all
genes at alpha level of 0.01, and Figure 2.2(D) displays Type-I error rates of genes having mean
expression value of greater than 3 at alpha level of 0.01.
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Table 2.11 Type-l error rates from CL, BL, FL regressions of permuted HD data
with mean expression value > 3

Dispersion Group

mu >3

(0,0.05] (0.05,0.15] (0.15,0.8] (0.8,1.5] (1.5,10]

Mean.CL 0.044 0.042 0.038 0.034 0.025
Sd.CL 0.005 0.007 0.009 0.010 0.011
Mean.BL 0.031 0.030 0.027 0.024 0.019

0.05 Sd.BL 0.004 0.006 0.007 0.008 0.007
Mean.FL  0.043 0.042 0.040 0.039 0.036
Sd.FL 0.004 0.005 0.007 0.007 0.007
Mean.CL 0.004 0.004 0.003 0.003 0.001
Sd.CL 0.001 0.001 0.002 0.001 0.001

0.01 Mean.BL  0.003 0.003 0.002 0.002 0.001
Sd.BL 0.001 0.001 0.001 0.001 0.001
Mean.FL  0.008 0.008 0.007 0.007 0.006
Sd.FL 0.001 0.001 0.002 0.002 0.002

mu: mean expression values of all samples, 0.05 and 0.01: Significant levels, Sd: Standard
Deviation. CL: Classical Logistic regression, BL: Bayes Logistic, FL: Firth’s Logistic

2.9.2 Permutation DA method Type-l error result

The DA method controls Type-I error rates well for the DESeq?2 results (Figure
2.3 and Table 2.12) and the FL regression results (Figure 2.4 and Table 2.13) at
both alpha levels, regardless of dispersions of all genes. Although the Type-I
error rates are well controlled in the results from CL and BL regressions at
significance level of 0.05, the Type-I error rates at significance level of 0.01 are

conservative as seen in Figure 2.4(B) and Table 2.13.
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Figure 2.3 Type-I error rates from DESeq2 analysis with the DA method from the
permuted HD data
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Figure 2.3 contains Type-I error rates from DESeq2 (negative binomial model) analysis with DA
method of the permuted HD data at alpha levels of 0.05 and 0.01. Each black empty dot
represents Type-| error rate of a gene. The red dots denote average values of Type-I error rates
in each category of dispersion groups. The black dotted horizontal lines are our alpha levels.
Figure 2.3(A) summarizes Type-| error rates of all genes with DA method at alpha level of 0.05.
Figure 2.3(B) displays Type-I error rates of all genes with DA method at alpha level of 0.01.

Table 2.12 Type-l error rates from DESeq2 analysis with the DA method from the
permuted HD data

Dispersion Group

DA (0,0.05] (0.05,0.15] (0.15,0.8] (0.8,1.5] (1.5,10]
Mean 0.049 0.049 0.050 0.050  0.049
005 54 0.002 0.002 0.002 0.002  0.003
0,01 _Mean 0010 0.010 0.010 0.010  0.010
sd  0.001 0.001 0.001 0.001  0.001

DA: Data Adaptive Method, 0.05 and 0.01: Significant levels, Sd: Standard Deviation.



45

Figure 2.4 Type-| error rates from logistic models with the DA method from the
permuted HD data
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Figure 2.4 presents Type-| error rates from Classical Logistic (CL), Bayes Logistic (BL), Firth’s
Logistic (FL) regressions with the DA method of the permuted HD data at alpha levels of 0.05 and
0.01. Each empty dot represents Type-I error rate of a gene. The dots filled with colors inside of
boxes denote average values of Type-| error rates in each category of dispersion groups. The
black dotted horizontal lines are our alpha levels. Figure 2.4(A) shows Type-I error rates of all
genes with DA method at alpha level of 0.05. Figure 2.4(B) represents Type-| error rates of all
genes with DA method at alpha level of 0.01.
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Table 2.13 Type-I error rates from logistic models with the DA method from the
permuted HD data

Dispersion Group

DA (0,0.05] (0.05,0.15] (0.15,0.8] (0.84.5] (1.510]
Mean.CL 0052  0.052 0.052 0052 _ 0.051
Sd.CL 0002 0002 0.003 0003 0.004
o5 MeanBL 0051 0.050 0.050 0050 _ 0.051
Sd.BL 0002 0003 0.004 0003 0.003
Mean.FL 0.048  0.048 0.048 0048  0.048
Sd.FL 0002 _ 0.002 0.002 0002 0002
Mean.CL 0007 __ 0.007 0.007 0006 _ 0.006
Sd.CL 0001 0.001 0.001 0001 0.001
0.0 MeanBL 0008  0.008 0.008 0008 _ 0.007
Sd.BL 0001 0.001 0.001 0001 _ 0.001
Mean.FL 0010 0.009 0.009 0009 _ 0.009
Sd.FL 0001 0.001 0.001 0001 _ 0.001

DA: Data Adaptive Method, mu: mean expression values of all samples 0.05 and 0.01: Significant
levels, Sd: Standard Deviation, CL: Classical Logistic regression, BL: Bayes Logistic, FL: Firth’s
Logistic

2.9.3 HD RNA-Seq data analysis results

We analyze the HD data using NB GLM in the DESeq2 R-package, and analyze
the data using CL, BL, and FL regressions also in R functions described in
Sections 2.3.2 — 2.3.4. All regression results are corrected with the DA method,
and are adjusted for multiple testing using an FDR of 0.05. The Q-Q plots and
genomic control lambdas are shown in Figure 2.5. The DA method reduced the
mean of the lambdas from the results of DESeq2 and increased the mean of the
lambdas from the results of the CL, BL, and FL regressions. As shown in Figure
2.6, we identified 3,203 genes that were significant across all methods. The FL
regression also identified 307 genes as differentially expressed that were not
identified by the other methods. The DESeq2 approach identified 944 genes that

were not identified as significant using the other methods. Of the genes that are
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not significant (FDR > 0.05) in the DESeqgZ2 analysis but significant (FDR < 0.05)
in CL, BL, FL regressions, the 10 most significant (FDR < 0.05) from the FL
regression are shown in Table 2.14. The most significant gene is SLC1A6 with p-
values 3.17E-06 from the FL regression, respectively. Of the genes that are not
significant (FDR > 0.05) in the CL, BL and FL analyses, the 10 most significant

(FDR < 0.05) from DESeqZ2 are shown in Table 2.15.
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Figure 2.5 Q-Q plots of HD data analysis by regression methods
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Figure 2.5 exhibits the Q-Q plots from the HD analysis adjusting for age at death and RIN from
DESeq2 (A), and Classical (B), Bayes (C), and Firth’s (D) Logistic regressions. Each regression
method contains three different ways of calculating p-values (Original, DA, and Perm). “Original”
p-values (Blue dots) are estimated from theoretical asymptotic distribution. “DA” p-values (Black
dots) are evaluated from data adaptive asymptotic distribution using 1,000 permutations. “Perm”
p-values (Yellow dots) are calculated using 10,000 permutations.
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Figure 2.6 Venn diagram of HD analysis results using DA method

CL BL

NB = Negative Binomia
—— CL= Classical L(.)g.IStIC 21154
—— BL = Bayes Logistic
—— FL = Firth Logistic

Each colored circle represents a different regression method. The numbers inside of the circles
are the number of genes significant at FDR 0.05 based on p-values adjusted using the Data
Adaptive (DA) method. There were 3,203 significant genes in common across all the methods.
The FL identified the largest number of significant genes compared to CL and BL. The NB

independently identified 944 genes.
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Table 2.14 Top 10 genes from FL regressions among genes having FDR > 0.05
in DESeq2 and FDR < 0.05 in CL, BL, and FL regressions using the DA method

Gene Case Cont Disp NB CL BL FL
SLC1A6 373.5 553.9 0.29 0.039 4.33E-04 4.52E-04 3.17E-06
SERHL2 209.7 163.4 0.17 0.016 3.17E-04  6.26E-03 1.15E-05
KCNK9 314.6 453.9 0.30 0.063 3.02E-04  9.22E-04 1.72E-05

DISP2 686.7 936.6 0.21 0.047 5.54E-04 8.17E-04  4.25E-05

SPOCK2  12370.2 15648.9 0.09 0.010 8.87E-04 1.05E-03 8.04E-05
C20orf27 726.0 933.5 0.11 0.019 5.91E-04 2.44E-04 9.50E-05

IST1 3387.8 3133.6 0.02 0.009 5.68E-04  4.54E-03 9.59E-05
ARC 595.8 1058.2 0.40 0.030 1.06E-03 1.15E-03 1.03E-04
STRADB 980.3 844.0 0.03 0.013 1.36E-03 1.54E-03 1.07E-04
PCP4 734.3 1329.5 0.37 0.086 1.09E-03 2.57E-03 1.15E-04

Case: Normalized mean expression value in cases, Cont: Normalized mean expression value in
controls, Disp: Dispersion, NB: P-values from negative binomial regression with true dispersion,
CL: P-values from classical logistic regression, BL: P-values from Bayes logistic regression, FL:
P-values from Firth’s logistic regression.

Table 2.15 Top genes from DESeq2 among genes having FDR > 0.05 in CL, BL
and FL regressions using the DA method

Gene Case Cont Disp NB CL BL FL
RP11-115J23.1 2.8 04 219 9.67E-06 0.019 0.011 0.012
CTD-2281E23.3 0.6 25 120 3.26E-05 0.028 0.016 0.020

LL22NCO03-104C7.1 1.1 73 154 3.42E-05 0.036 0.014 0.009
CEACAMS3 29 04 253 562E-05 0.044 0.020 0.016
RP11-351121.6 1.7 11.8 158 6.72E-05 0.043 0.022 0.023
LINC00310 29.7 99 073 991E-05 0.025 0.013 0.010
RP5-850015.3 0.4 28 155 1.06E-04 0.020 0.018 0.010
RP11-554A11.9 15.4 37.8 055 1.70E-04 0.014 0.009 0.009
GK3P 8.1 159 065 1.75E-04 0.020 0.013 0.014
S100A11 568.0 266.0 044 243E-04 0.019 0.015 0.013

Case: Normalized mean expression value in cases, Cont: Normalized mean expression value in
controls, Disp: Dispersion, NB: P-values from negative binomial regression with true dispersion,
CL: P-values from classical logistic regression, BL: P-values from Bayes logistic regression, FL:
P-values from Firth’s logistic regression.
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2.10 Discussion

We propose using a logistic regression framework as an alternative to Negative
Binomial (NB) regression to analyze RNA-Seq data for case-control studies. We
have shown in our simulations that Firth Logistic (FL) regression performs well in
terms of controlling Type-I error rates and shows comparable empirical power.
The dispersion is not estimated in the logistic framework, thus avoids potential
false association resulting from incorrectly estimated dispersions, and is
statistically succinct. Because the Bayes Logistic (BL) and FL regressions
overcomes complete separation, the empirical power for these methods are very
close to the power observed for NB regression in contrast to classic logistic (CL).
The simulations presented focused on single genes varying relevant parameters

(mean, dispersion, log fold change); transcriptome-wide data was not simulated.

The Type-I error simulations presented demonstrate that NB regression has
inflated Type-I error rates, and Classical Logistic (CL) and BL regressions are
very conservative with small sample size. The degrees of inflation/deflation
varied by the scale of the dispersion parameter within the same sample size.
This variation by the dispersion parameter is confirmed through the observed
Type-| error rates from permutation of a real data set. Although large sample size
could reduce the inflation from NB and the deflation from CL and BL regressions,
the high cost of RNA-Seq technology and difficulty of obtaining certain sample

tissues, such as human brain, may preclude a larger sample size in some
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studies. The distinct Type-| error rates observed with varying dispersion
parameter values may violate the general assumption that p-values from non-DE
genes follow a uniform distribution. However, the current simulation and
permutation studies validate that the DA (Data Adaptive) method is a suitable

alternative approach that controls Type-I error rates in all regression methods.

The empirical power of the NB, BL, and FL regressions are comparable across
all scenarios. Lower power was observed for CL regression, which appears to be
driven by scenarios of complete separation and a failure of CL models to
converge. When simulation scenarios have large 12fc and small dispersion,
simulated data are likely to show complete separation. The NB, BL and FL
regressions are powerful in these scenarios. In most scenarios, the CL

regression demonstrated the lowest empirical power among all methods.

Unlike NB, CL and BL regressions, FL regression controls Type-| error rates well
and maintains comparable power even with small sample size. Firth logistic
regression is an excellent alternative to NB regression for analysis of RNA-Seq

data in case-control studies.

Analysis of the HD data showed the genomic inflation factor was decreased after
applying the DA method to the results from NB GLM but the genomic lambdas

were increased after applying DA method to the results from CL, BL and FL
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regression models. The exact p-values from 10,000 permutations revealed the
same pattern. This pattern is consistent with our simulation results where we
observed inflated Type-| error rates in the NB framework and deflated in the
logistic framework when test statistics were compared with a theoretical

asymptotic distribution.

Although it is unknown which genes are truly differentially expressed in the HD
data set, we compared DE genes identified in the HD data by different statistical
approaches. We found that SLC1A6 (solute carrier family 1, member 6; EAAT4)
did not show evidence of association with HD when using DESeq2, but the gene
was highly significant when using the FL regression, as shown in Table 2.14.
SLC1A6, which is highly expressed in the cerebellum of human brain compared
to other brain regions(Furuta et al. 1997), showed lower levels of expression in
prior studies of mood disorder diseases such as bipolar and major depression
disorders in the striatum in situ hybridization study (McCullumsmith 2002).
Furthermore, the SLC1A6 is a member of glutamate transporter where one of the
members (SLC1A2) showed significantly low expression in the striatum of HD
samples in situ hybridization study (Arzberger et al. 1997). In addition, Utal et al.
showed that Purkinje cell protein 4(PCP4), also known as PEP-19, had dramatic
reduction in HD(Utal et al. 1998). This gene was not significantly associated with
HD status when using DESeqg2 (p-value = 0.086) but showed strong association

when using FL regression (p-value = 1.15 x 10%).
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Furthermore, we found that some highly expressed genes in both cases and
controls may not be detected in the NB framework, because the NB framework
utilizes the ratio of mean expressions of cases and controls. For instance, the
normalized mean expression value of SPOCK2 is 12,370 in cases and 15,649 in
controls. Although the difference of the means is very large, the gene might not
be statistically significant due to the small effect size (log, fold-change = -0.34) in
the NB framework. However, this gene is strongly associated with HD in our
logistic framework as shown in Table 2.14. It is reported that the SPOCK2 gene
expression levels were significantly down regulated in high-grade astrocytoma

samples.(MacDonald et al. 2007)

The top genes that showed associations exclusively in NB GLM, except for gene
ACO079959.1, have low average counts as shown in Table 2.15. The estimated
dispersions for these genes are also fairly large (¢ > 0.5). These genes require

further investigations to be called true DE genes.

These results showed that some differently expressed genes may not be
identified in the NB framework but are able to show statistical significances in the
logistic framework. Moreover, the large p-values of some genes in the logistic

framework impugns statistical evidence of association in the NB framework.
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We recommend implementing the DA method as part of the analysis of RNA-Seq
data to appropriately control Type-I error rates. If computational burden of
permutations required for the DA method precludes using this approach, the FL

regression is the best option for controlling Type-I errors with comparable power.
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Chapter 3  Evaluation of Effect of Covariates for Case-Control Study in
RNA-Seq Analysis

3.1 Introduction
An important component of differential expression analysis is to adjust for
confounders. Adjustment for confounders is crucial in protecting against spurious
associations. We define a confounder as a covariate that is associated with both
experimental and explanatory variables. Covariates used in RNA-Seq analysis
are associated with disease status, technical artifacts from experiments, or
intrinsic biological properties of RNA-Seq models. If these covariates affect the
abundance measurements of gene expression, then they consequently could

significantly confound the association between RNA-Seq and disease status.

In the prior chapters, we considered two approaches for differential expression
analysis: 1) Negative Binomial (NB) regression where gene expression is the
outcome variable and case-control status is the predictor variable and 2) logistic
regression where case-control status is a function of gene expression. First, we
discuss covariates in the NB setting. If covariates associated with a disease
status also are associated with gene expression, these covariates are
confounders. However, if disease-associated covariates are not associated with
gene expression, then these covariates are non-predictive (NP) covariates in

models with gene expression as the outcome. Covariates that are not associated



57

with the dependent variable (gene expression) but are associated with the
independent variable (disease status) in the NB model are defined as NP
covariates. Adjusting for covariates when the relationship with gene expression is
unknown has not been extensively evaluated in RNA-Seq studies using the NB
framework. If we alternatively consider a logistic model, the NP covariates in the
NB model become non-confounding predictive (NCP) covariates in the logistic
model, because the covariates are not associated with the independent variable
(gene expression) but are associated with the dependent variable (disease

status).

The effect of including covariates has been previously described in the Classical
Logistic (CL) regression setting in the context of Genome-wide association
studies (GWAS) (L. D. Robinson and Jewell 1991; Mefford and Witte 2012;
Pirinen, Donnelly, and Spencer 2012) but have not been explored in the context
of differential expression studies. Simulation and a real data set are used to
assess the effect of including different types of covariates (NP and NCP) in NB or

logistic models.

3.2 Analysis methods for evaluating effect of covariates
In our simulation, we used the NB regression model that is described in Section
2.3.1. This model includes a dispersion parameter. We utilized maximum

likelihood and quasi-likelihood approaches for estimating dispersion parameters
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as described in Section 1.2 and Section 2.2. Additionally, we used the true
dispersion parameter as set in the simulation. In our real data application, we
conducted the analysis with DESeq2 that implements a NB generalized linear
model detailed in Section 1.2. To compare with the NB framework, we also
applied Firth’s logistic (FL) regression (Section 2.3.4) was also applied to both
simulated and real data sets. For both the NB and logistic models, we also
implemented the data adaptive (DA) method described in Section 2.4 while
analyzing the simulated data sets in order to obtain a recalibrated distribution of
test statistics. The asymptotic distribution of test statistics may not be suitable for

analyses when the sample size is small.

3.3 Simulation study

The simulation scenarios considered important aspects of RNA-Seq data as well
as covariates. The simulation design varied sample size, mean expression value
(v), logz fold-change (I12fc), dispersion, covariate-case status odds (CovOR), and
the number of NP/NCP covariates in a model. The parameter values are

provided in Table 3.1. We simulated 10,000 replicates per scenario.

Table 3.1 Parameters and their values in simulation scenarios

Parameter Values
Design Balanced, Unbalanced2, Unbalanced4
Number of cases (Np-1) 10, 25, 75, 500
Mean expression value in controls(up=o) 50, 100, 1000, 10000
Dispersion 0.01, 0.01, 0.5, 1

Covariate OR 1,1.2,3,5,10
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log, fold-change (I12fc) 0,0.3,06,1.2,2

Number of Covariates 0,1,2,3,5,10

Design: Balanced has the same number of cases and controls. Unbalanced2 (4) has the 2 (or 4)
times more number of controls than number of cases. Covariate OR: The odds ratio between

covariates and case-control status. log, fold-change: The 12fc equals to
log ( mean expression value in cases (Up=1) )
2

mean expression value in controls (up=q)

3.3.1 Generation of simulated RNA-Seq data
The same procedure described in Section 2.5.1 was followed to generate

simulated RNA-Seq data.

3.3.2 Generation of simulated covariate data
The covariates (X) were simulated to follow a binomial distribution conditioning
on a case-control status of subjects. The conditional probability was calculated
based on the CovOR.

X|D~ B(Np, Pp),
where D is disease status (control is O; case is 1), N, is sample size of D, P,_, =
0.5, and P,_; = CovOR/(CovOR + 1). A set of covariates was generated based
on the pre-specified CovOR. Then, using this covariate data set, additional
covariates were included in a model. Of 10,000 replications in each scenario,
every 10 replications were analyzed with a newly generated covariate set to
incorporate within and between variances of covariates. In total, 1000 simulated
covariate sets were generated per scenario. All covariates in a model were

independent from each other and had the same CovOR.
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3.3.3 Analysis of simulated RNA-Seq data with simulated covariates
For the NB regression we considered three different dispersion parameters. We
analyzed the data using the maximum-likelihood and quasi-likelihood dispersion
estimates and the true value used in the simulations. Models 3.A and 3.B define
the NB and the FL regression models, respectively.

Model 3. A: 1og(E[Y]) = o + 1D + (Zfe=1 Brv1 Xi),

Model 3. B: logit(E[D]) = Bs + B1Y + (X%_1 Brr1 Xi),
where Y is gene expression values, D is a case-control status, X is a covariate,

and C is the number of covariates in a model.

Type-I error rates within each scenario were calculated using the equations (2.1)
at significance (alpha) levels 0.05 and 0.01. Considering the different Type-I error
rates observed between NB and FL regressions, an empirical power shown in

the equation (2.2) was computed with empirical threshold defined in the equation

(2.3) that was calculated based on the observed Type-I error rates.

3.3.4 Cross-validation of data adaptive method in simulated RNA-Seq data
Because the expected asymptotic distribution of test statistics could not be
achieved when sample size is small, we used the DA method to generate a re-
calibrated distribution of test statistic based on permutations. We applied the

cross-validation technique to calculate Type-| error rates. A detailed description
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of the cross-validation technique in the simulation study is presented in Section

2.5.3.

3.4 Simulation result

3.4.1 Type-l error simulation result

To evaluate the effect of inclusion of covariates in the models, we present Type-I
error rates from the simulated data in Tables 3.2 - 3.5. As shown in Table 3.2,
Type-I error rates with distinct dispersions are almost identical at both
significance levels. When sample size is small (Table 3.3), an increasing number
of NP covariates do not increase Type-I error rates in the NB models. The
number of covariates appears to increase Type-| error rates when dispersion is
0.01 and CovOR is 5 (Table 3.3). However, this slightly increased Type-| error
rate is close to the Type-I error rate without any covariates in the model when
dispersion is 0.01 and CovOR is 1.2. Adding more NP covariates when the
dispersion is large increases Type-I error rates. However, the effects of large
CovOR on Type-I error rates are not notable in NB models. Large sample size
(Table 3.3 and Table 3.4) weakens the inflation that arises from a large number

of NP covariates within large dispersion in the NB model.

As defined in Chapter 3.1, the same covariates that are NP covariates in an NB
model are NCP covariates in logistic models. Unlike the NB regression, even with

small sample size (Table 3.2), when the CovOR is small, the FL regression is
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robust with the increment of the number of NCP covariates. When CovOR is
large, Type-I error rates from FL regression become very conservative as the
number of NCP covariates increase. Type-| error rates are not affected by large
dispersion. When sample size increases, Type-| error rates at both significant
levels are less affected by increased number of NCP covariates with large

CovOR (Tables 3.3 and 3.4).
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Table 3.2 Type-I error rates of the NB regressions with the true dispersion and
ML and QL dispersions from balanced design of 10 cases and 1000 mean
expressions

a=0.05 a=0.01
Disp CovOR Ncov |NB_TD NB MLD NB QLD |NB_TD NB MLD NB_QLD

0.01 0.066 0.066 0.066 | 0.017 0.017 0.017
0.01 0.063 0.063 0.063 | 0.018 0.018 0.018
0.01 0.067 0.067 0.067 | 0.021 0.021 0.021
0.01 0.064 0.064 0.064 0.016 0.016 0.016
0.01 0.073 0.073 0.073 | 0.021 0.020 0.020
0.01 0.080 0.080 0.080 0.024 0.024 0.024

0.090 0.090 0.090 0.030 0.030 0.030
0.128 0.128 0.128 0.050 0.050 0.051
0.152 0.152 0.152 0.066 0.066 0.066

0.088 0.088 0.088 0.030 0.030 0.030
0.127 0.127 0.127 0.050 0.050 0.050
0.142 0.142 0.142 0.061 0.061 0.061
Disp: Dispersion, CovOR: Odds ratios between covariates and case-control status, Ncov: The
number of covariates in a model, NB: Negative Binomial, TD: The dispersion is used for the
sampling, MLD: Maximum likelihood estimated Dispersion, QLD: Quasi-likelihood estimated
Dispersion
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Table 3.3 Type-| error rates of the NB and Firth’s logistic regressions from
balanced design of 10 cases and 1000 mean expressions

a=0.05 a=0.01
Disp CovOR Ncov NB_TD FL NB_TD FL
0.01 1 0 0.066 0.045 0.017 0.007
0.01 1 3 0.063 0.043 0.018 0.008
0.01 1 5 0.067 0.044 0.021 0.008
0.01 1.2 0 0.072 0.048 0.022 0.009
0.01 1.2 3 0.072 0.049 0.024 0.010
0.01 1.2 5 0.076 0.050 0.026 0.009
0.01 5 0 0.064 0.042 0.016 0.008
0.01 5 3 0.073 0.036 0.021 0.004
0.01 5 5 0.080 0.021 0.024 0.001
1 1 0 0.090 0.040 0.030 0.006
1 1 3 0.128 0.043 0.050 0.007
1 1 5 0.152 0.045 0.066 0.008
1 1.2 0 0.091 0.040 0.031 0.007
1 1.2 3 0.128 0.043 0.054 0.007
1 1.2 5 0.151 0.045 0.067 0.008
1 5 0 0.088 0.038 0.030 0.007
1 5 3 0.127 0.034 0.050 0.005
1 5 5 0.142 0.020 0.061 0.001

Disp: Dispersion, CovOR: Odds ratios between covariates and case-control status, Ncov: The
number of covariates in a model, NB_TD: The Negative binomial regression with the dispersion
used for the sampling, FL: Firth’s Logistic regression
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Table 3.4 Type-| error rates of the NB and Firth’s logistic regressions from
balanced design of 25 cases and 1000 mean expression values

a=0.05 a=0.01
Disp CovOR Ncov NB_TD FL NB_TD FL
0.01 1 0 0.054 0.046 0.014 0.009
0.01 1 3 0.057 0.048 0.014 0.010
0.01 1 10 0.058 0.052 0.014 0.010
0.01 1.2 0 0.057 0.048 0.013 0.009
0.01 1.2 3 0.057 0.049 0.014 0.010
0.01 1.2 10 0.058 0.052 0.014 0.010
0.01 10 0 0.052 0.045 0.010 0.006
0.01 10 3 0.058 0.046 0.013 0.008
0.01 10 10 0.052 0.001 0.014 <0.001
1 1 0 0.065 0.043 0.017 0.007
1 3 0.080 0.044 0.022 0.007
1 1 10 0.116 0.050 0.037 0.008
1 1.2 0 0.065 0.044 0.019 0.009
1 1.2 3 0.079 0.046 0.025 0.009
1 1.2 10 0.116 0.049 0.041 0.010
1 1 0 0.066 0.046 0.019 0.008
1 10 3 0.082 0.040 0.023 0.007
1 10 10 0.122 0.004 0.045 <0.001

Disp: Dispersion, CovOR: Odds ratios between covariates and case-control status, Ncov: The
number of covariates in a model, NB_TD: The Negative binomial regression with the dispersion
used for the sampling, FL: Firth’s Logistic regression
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Table 3.5 Type-| error rates of the NB and Firth’s logistic regressions from
balanced design of 75 cases and 1000 mean expression values

a=0.05 a=0.01
Disp CovOR Ncov NB_TD FL NB_TD FL
0.01 1 0 0.055 0.052 0.013 0.011
0.01 1 3 0.055 0.052 0.013 0.011
0.01 1 10 0.054 0.052 0.012 0.011
0.01 1.2 0 0.053 0.050 0.013 0.012
0.01 1.2 3 0.053 0.049 0.014 0.013
0.01 1.2 10 0.053 0.051 0.013 0.012
0.01 10 0 0.052 0.049 0.012 0.010
0.01 10 3 0.051 0.045 0.011 0.009
0.01 10 10 0.052 0.035 0.011 0.004
1 1 0 0.057 0.050 0.013 0.009
1 3 0.062 0.049 0.015 0.010
1 1 10 0.073 0.050 0.019 0.010
1 1.2 0 0.054 0.046 0.013 0.010
1 1.2 3 0.058 0.046 0.015 0.010
1 1.2 10 0.067 0.049 0.020 0.011
1 1 0 0.057 0.048 0.013 0.009
1 10 3 0.063 0.049 0.016 0.010
1 10 10 0.077 0.038 0.022 0.008

Disp: Dispersion, CovOR: Odds ratios between covariates and case-control status, Ncov: The
number of covariates in a model, NB_TD: The Negative binomial regression with the dispersion
used for the sampling, FL: Firth’s Logistic regression
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3.4.2 Type-l error simulation result with DA method

In all scenarios, the DA method controls Type-| error rates well in the NB and FL
regressions at both 0.05 and 0.01 alpha levels as presented in Table 3.6. The
newly approximated distribution of test statistics diminishes deviated Type-I error
rates that were not controlled when many covariates were included in the NB and

FL models.

Table 3.6 Type-| error rates of the NB and Firth’s logistic regressions with DA
method from balanced design of 1000 mean expressions

a=0.05 a=0.05
Ncase Disp CovOR Ncov NB_TD FL NB_TD FL
10 1 5 5 0.042 0.052 0.011 0.010
25 1 10 10 0.047 0.043 0.010 0.011
75 1 10 10 0.046 0.049 0.010 0.011

Ncase: The number of cases; and the number of controls are the same, Disp: Dispersion,
CovOR: Odds ratios between covariates and case-control status, Ncov: The number of covariates
in a model, NB_TD: The Negative binomial regression with the dispersion used for the sampling,
FL: Firth’s Logistic regression
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3.4.3 Empirical power simulation result

The results of the power simulations to evaluate the inclusion of covariates in the
models are summarized in Figures 3.1 - 3.3. Similar to the Type-| error rate, the
empirical power of the NB regressions using different dispersion estimation
methods were similar for all power scenarios. When sample size is increased the

overall power is increased (Figure 3.1 - 3.3) in both NB and FL regression.

In our simulation, when sample size is fixed, the power of NB and FL regression
is affected by three factors 1) Dispersion, 2) CovOR, and 3) The number of
NP/NCP covariates in a model. Large dispersion, large CovOR, and increasing
number of NP/NCP covariates in a model decrease power. Power of NB
regression is less sensitive to the increase of NP covariates with small dispersion
than with large dispersion. As shown in Figure 3.1(A), NB regression shows
marginally more power than FL regression when the number of covariates is
large. When dispersion is large but CovOR is small, the loss of power in NB
regression is more sensitive to the increase of the number of NP covariates than
in FL regression as seen in Figure 3.1(D) and Figure 3.2(D). In particular, with
CovORs of 1 or 1.2, the power of FL regression with 10 covariates in a model is
more powerful than NB regression with 10 covariates. Regardless of dispersion,
when CovOR and the number of covariates in a model are large, NB regression
shows better power than FL regression. This is demonstrated in Figure 3.1 with

CovOR equal to 5 and Figure 3.2 with CovOR equal to 10.
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Figure 3.1 Empirical power of NB and FL regressions with covariates for a
balanced design with 10 cases and mean expression in controls of 1000
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Figure 3.1 contains power of the Negative Binomial with true dispersion (NB_TD) and Firth’s
Logistic (FL) regressions at alpha levels of 0.05 and 0.01. The black dotted horizontal lines
represent 95% and 90% of power from the top. The odds ratios between covariates and case-
control status (CovOR =1, 1.2, 3, and 5) are separated by black dotted vertical lines. Five values
of the number covariates in a model (0, 1, 2, 3, and 5) are placed within each mean expression
value. Dotted lines within each character imply 95% confidence interval of p.value. (A) and (B)
have I2fc values of 0.3 and 2 within the same dispersion of 0.01. (C) and (D) have 12fc values of
0.3 and 2 within the same dispersion of 1.
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Figure.3.2 Empirical power of NB and FL regressions with covariates for a
balanced design with 25 cases and mean expression in controls of 1000
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Figure 3.2 contains power of the Negative Binomial with true dispersion (NB_TD) and Firth’s
Logistic (FL) regressions at alpha levels of 0.05 and 0.01. The black dotted horizontal lines
represent 95% and 90% of power from the top. The odds ratios between covariates and case-
control status (CovOR =1, 1.2, 3, 5, and 10) are separated by black dotted vertical lines. Six
values of the number covariates in a model (0, 1, 2, 3, 5, and 10) are placed within each mean
expression value. Dotted lines within each character imply 95% confidence interval of p.value. (A)
and (B) have I2fc values of 0.3 and 2 within the same dispersion of 0.01. (C) and (D) have I2fc
values of 0.3 and 2 within the same dispersion of 1.

12 3 5
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Figure 3.3 Empirical power of NB and FL regressions with covariates for a
balanced design with 75 cases and mean expression in controls of 1000
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Figure 3.3 contains power of the Negative Binomial with true dispersion (NB_TD) and Firth’s
Logistic (FL) regressions at alpha levels of 0.05 and 0.01. The black dotted horizontal lines
represent 95% and 90% of power from the top. The odds ratios between covariates and case-
control status (CovOR =1, 1.2, 3, 5, and 10) are separated by black dotted vertical lines. Six
values of the number covariates in a model (0, 1, 2, 3, 5, and 10) are placed within each mean
expression value. Dotted lines within each character imply 95% confidence interval of p.value. (A)
and (B) have I2fc values of 0.3 and 2 within the same dispersion of 0.01. (C) and (D) have I2fc
values of 0.3 and 2 within the same dispersion of 1.
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3.5 Application to the real RNA-Seq data set of Huntington’s Disease (HD)
Details of the HD data set that has 20 cases and 49 controls are described in

Section 2.6

3.5.1 Analysis of HD RNA-Seq data with simulated covariates

To evaluate the effect of covariates in a model, the same method for generating
covariates in our simulation study was applied to the HD data set to create
simulated covariates. In this real data application, we focused on a moderate and

realistic covariate effect on HD status (CovOR = 1.2)

The original HD data with simulated covariates were analyzed using the NB

generalized linear model in DESeq2 with Model 3.C and using the FL regression

with Model 3.D.

Model 3.C: log,(E[Y]) = By + 1D + B2ADD1ys 2 + B3ADDyys5 + B4ADDyys4 + BsRIN +
(T8 Bi X)),

Model 3.D: logit(E[D]) = B + B1Y + B3ADD1ys 2 + B3ADDyys3 + BiADD;ys4 + B2RIN +
(T2 Bi Xa).

where C is the number of simulated covariates, and C=1, 2, 3, 5, or, 10. The

change of genomic inflation factors with the addition of a varying number of

simulated covariates in a model was evaluated.
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3.5.2 Result of HD RNA-Seq data with simulated covariates

The HD data was analyzed using DESeq2 with additional NP covariate models
and using FL regression with additional NCP covariate models. The summary of
genomic lambdas is presented in Table 3.7. An increase of NP/NCP covariates

leads to a marginally lower genomic inflation factor. The standard deviations of

the genomic inflation factors are increased with the increase of NP/NCP

covariates.

Table 3.7 Summary of genomic inflation factor from HD analyses with simulated

covariates
Method Ncov Median SD
1 4.046 0.095
2 4.021 0.139
NB 3 3.998 0.166
5 3.931 0.215
10 3.744 0.293
1 3.504 0.155
2 3.463 0.222
FL 3 3.404 0.273
5 3.281 0.352
10 2.949 0.525

NB: Negative binomial regression implemented in DESeq2, FL: Firth’s logistic regression, Ncov:
The number of simulated covariates in the model, SD: Standard deviation
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3.6 Discussion

The effect of NCP covariates was investigated in the context of GWAS by Pirinen
et al.(Pirinen, Donnelly, and Spencer 2012) using classical logistic regression.
They demonstrated that NCP covariates that are known to be associated with a
disease outcome may reduce power to identify associations between the disease
and genetic variants. Later, an improved method using the liability threshold
model with an informed relationship between disease and covariates was
proposed by Zaitlen et al.(Zaitlen et al. 2012) in GWAS with a case-control study
design, but the effect of including covariates has not been investigated for RNA-
Seq studies. The statistical relationship between covariates and disease status
could be conveniently identified through an individual association test or a
multivariate association test. However, identifying relationships with covariates
for all genes is computationally demanding. Existing software does not allow
defining gene-wise models for all genes, which makes this approach challenging
for many researchers. Therefore, RNA-Seq studies that include covariates in a
single model applied to all genes will likely result in some gene expression
models that include unassociated covariates. Hence, it is important to investigate

the effect of NP covariates for gene expression in RNA-Seq analysis.

Simulations that included NP covariates in the NB model showed inflated Type-I
error rates and a loss of power. With large dispersion, this inflation and loss of

power becomes severe.
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The Type-| error in the FL regression is not notably affected by the increment of
the number of NCP covariates when CovOR is small. With large CovOR and
increased number of NCP covariates, conservative Type-| error rates are
observed. The DA method effectively controls the increase of Type-I| error rates
even with larger CovOR and high number of NP/NCP covariates. Our analysis of
empirical power shows that the FL regression is more greatly influenced by the

increase of covariates than the NB regression, when CovOR is large.

Our HD analyses with simulated NP/NCP covariates demonstrated that an
increase in the number of NP/NCP covariates results in the increased variability
of the genomic inflation factor (Table 3.7). Adding more NP covariates to an NB
model slightly decreases the median of the genomic inflation factor. The
decreased genomic inflation factor indicates the increased median of p-values. In
other words, many p-values in a set are generally increased. In our simulation,
we found large dispersion significantly increases Type-| error rates, as the
number of NP covariates in a model increases. Also, power is significantly
decreased as the number of NP covariates in a model increases. The increased
Type-| error rates imply decreased p-values, and the decreased power indicate
increased p-values. Therefore, this slightly decreased median of the genomic
inflation factor may indicate that the loss of power is greater than the gain of

Type-| error rates.
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Adding more NCP covariates in a model also slightly decreases the median of
the genomic inflation factor in FL regression. This decreased median might be
caused by the loss of power, which may result from NCP covariates in a model
according to our simulation results. Under a moderate CovOR, the number of

NCP covariates in a model does not affect the Type-I error rates.

The change in the median of the genomic inflation factor with additional
covariates is larger in FL regression than NB regression because the FL
regression results are solely affected by the loss of power (Table 3.7). NB
regression results are influenced by both increased Type-I| error and decreased

power.

The standard deviation of genomic inflation factor is increased with adding
NP/NCP covariates in a model. This means that the results generated from a
model that includes many covariates is unreliable, even if these covariates are

associated with case-control status but not gene expression.

When covariates are not significantly associated with the expression of a
particular gene, their inclusion in the model may cause spurious association, and
miss true differential expression. Although it is not ideal to design a separate

model for each gene by identifying association between the gene expression and
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covariates, we need to be cautious that the unknown relationship between

expression level of a gene and covariates may induce a false association.

In conclusion, adding disease-associated covariates to a model may not control
Type-I error rates or improve power. Although the DA method is able to control
Type-I error rates, the computational burden of performing permutations for each
gene may prevent researchers from utilizing the DA method. However, if the
covariates in a model do not have strong relationship with case-control status,
Type-| error rates can be controlled in FL regression. This is in contrast to the NB
approach where the effect of dispersion on Type-| error rates cannot be
controlled. The loss of power cannot be avoided in both NB and FL regressions if
included covariates are NP or NCP covariates. Therefore, a parsimonious model

with FL regression is recommended in RNA-Seq studies.
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Chapter 4 Multiple testing correction methods in RNA-sequence data
4.1 Introduction
Multiple testing corrections are an important procedure when many hypotheses
are tested across an entire set of high dimensional data such as genetic or
genomic data. To control Type-| error, different approaches, that control Type-I
error in distinct ways, may be utilized depending on the study. Some multiple
testing correction approaches control the familywise error rate (FWER) while
others control the false discover rate (FDR). The FWER is defined as the
probability of one or more Type-I errors in a family of hypothesis tests, and the
FDR can be defined as the expected proportion of errors among the rejected
hypotheses(Benjamini and Hochberg 1995). Benjamini and Hochberg (BH)
proposed a procedure for controlling the FDR(Benjamini and Hochberg 1995),
and application of this procedure or one of the modifications to the BH approach
(Storey and Tibshirani 2003; Benjamini, Krieger, and Yekutieli 2006) is a
common strategy to address multiple testing issues in differential expression
studies. It is known that many genes are co-expressed and hence, their
expression values have a complex dependence structure(Stuart 2003). These
regulatory processes involve multiple genes and together create a complex
regulatory network. Jain et al. showed that a Bonferroni procedure is very
conservative to control FWER in microarray data(Jain et al. 2003). The reason is

that whereas this procedure is most robust for independent tests, the expression
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levels among many genes are correlated. Hence, the correlation among genes

should to be taken into account to control the FWER.

The BH procedure for controlling FDR successfully provides a reasonable
balance between true and false positives when applied to microarray data.
Microarray technology measures the fluorescence of targeted RNA molecules.
These processed measurements generally follow a normal distribution. However,
RNA-sequencing (RNA-Seq) reads generated from next generation sequencing
technologies are becoming more widely used because this technology provides
counts of targeted RNA molecules. Consequently, appropriate statistical methods
have to be developed to analyze RNA-Seq data. DESeq2 and edgeR are two
popular R-packages(Love, Huber, and Anders 2014; M. D. Robinson, McCarthy,
and Smyth 2010) that adopt the Negative Binomial (NB) framework to analyze
RNA-Seq count data. As an alternative to the NB approach, Firth’s logistic

regression has been described in Chapter 2 and Chapter 3.

Following analysis of this high dimensional RNA-Seq data, the BH procedure has
been widely used as a method for adjusting for multiple testing in RNA-Seq
analysis and this procedure was implemented in DESeq2 and edgeR as a default
option. However, the dependence structures in transcriptomic data may violate

the assumptions in the BH procedure, which requires the positive regression
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dependent on a subset condition. Correlations among RNA-seq count data

genes pairs can be both positive and negative.

Since the publication of the BH procedure, researchers have proposed
refinements. One area of interest is to estimate the proportion of null hypotheses
in multiple testing inferences. Incorporating this estimated null proportion in the
procedure to control FDR has been shown to be more powerful than the BH
method(Storey 2002; Black 2004). Storey and Tibshirani (2003), Nettleton et al
(2004), and Pounds and Cheng (2006) proposed methods to estimate the
proportion of null hypotheses(Storey and Tibshirani 2003; Nettleton et al. 2006;
Pounds and Cheng 2006). Dialsingh et al. evaluated the performance of methods
estimating the proportion of null hypotheses using RNA-Seq data (Dialsingh,

Austin, and Altman 2015).

Multiple studies have explored issues related to FDR in the analysis of RNA-Seq
(Burden, Qureshi, and Wilson 2014, Dialsingh, Austin, and Altman 2015; Rocke
et al. 2015; Li et al. 2012; Si and Liu 2013). Burden et al. showed that p-values
from null hypotheses frequently do not follow a uniform distribution in over-
dispersed RNA-Seq data. The non-uninform distribution of p-values from null
hypotheses leads to inaccurate FDR estimates(Burden, Qureshi, and Wilson
2014). Rocke et al. favor the use of a critical level (1 x 10'4) for multiple

comparisons over FDR procedures because the FDR adjusted p-values are a
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complex function of an entire vector of p-values and these adjusted p-values are
difficult to interpret (Rocke et al. 2015). Li et al. and Si et al. proposed novel
statistical inference tests to identify differentially expressed genes. They also
proposed improved procedures for estimating FDRs in RNA-Seq studies(Li et al.
2012; Si and Liu 2013). These studies strongly suggest that inappropriate usage
of multiple testing correction methods that control FDR may lead to spurious

conclusions.

Lehmann and Romano(Lehmann and Romano 2005) and Romano and
Shaikh(Romano and Shaikh 2006) proposed methods controlling FWER which
were free of an independence assumption while maintaining reasonable power.
Gao et al. also provided a method to compute the effective number of
independent tests and adjust the FWER in the context of GWAS(Gao, Starmer,
and Martin 2008). This method has been shown to be more powerful than other
methods that estimate the effective number of tests(Hendricks et al. 2014).
However, this method cannot be implemented when the sample size is small,
which is common in many RNA-Seq studies, including our HD example in
Chapters 2 and 3. Small sample size impedes the correct estimation of
eigenvalues that are required to determine the effective number of tests. If the
sample size is large (500 or more ,as shown in an example data in
http.//simplem.sourceforge.net/), estimating the effective number of tests can be

an attractive method.
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Many methods exist to control FDR for data sets with dependence structures.
Benjamini and Yekutieli(Yekutieli and Benjamini 2001) provided an FDR
correction method that accounts for dependence structures. Storey and
Tibshirani(Storey and Tibshirani 2003) also showed their method is powerful in
the presence of weak correlation structures. Benjamini, Krieger, and
Yekutieli(Benjamini, Krieger, and Yekutieli 2006) showed their method performed
well in data sets with a dependence structure. Blanchard and Roquain(Blanchard
and Roquain 2008) proposed a method applicable for any type of dependence
structure. Each of these methods is described in greater detail below (Sections

4.2.1and 4.2.2).

Although many multiple testing correction methods that are applicable to
correlated data have been developed to control FWER and FDR, these methods
have not been exhaustively investigated in the context of RNA-Seq data. In
particular, scenarios in which correlation exists among genes that are not
differentially expressed (under the null hypothesis) have not been investigated. In
this chapter, we compare the performance of multiple testing correction methods
using simulated RNA-Seq data sets containing correlated gene expression

measures.
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4.2 Methods

The multiple testing correction methods that control FWER are evaluated in
terms of false positive rates and power (1 - false negative rates). The multiple
testing correction methods that impose FDR are evaluated in terms of false

discovery rates and power.

4.2.1 Multiple testing correction procedures controlling FWER

We used the Bonferroni procedure as the reference method that controls the
FWER(Bonferroni 1936). The critical value (aZ°™/¢"7°") of Bonferroni procedure
is compared with p-values, where

, a
aBonferronL -
m

)

« is a nominal significance level, and m is the number of tests.
4.2.1.1 Lehmann and Romano (LR) procedure
k-FWER has been defined as the probability of having k or more false
positives(Lehmann and Romano 2005).

k — FWER = Pr { reject at least k hypotheses H; with i € I(P)}
where |(P) is the set of true null hypotheses when P is the true probability
distribution. Control of the k-FWER requires that k-FWER < « for all P. The LR
method provides a generalized step-down procedure and controls the FWER
under any dependence structure. The j™ ordered p-value among m individual

tests is compared with the step-down constant a'®, where
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aLR _ 7 Lf] < k
] ka c . .
m+k—1 lf] >k

4.2.1.2 Romano and Shaikh (RS) procedure

The RS approach proposes a generalized step-up procedure (Romano and
Shaikh 2006). Like the LR procedure, the RS procedure controls the FWER
under all dependence conditions. The RS procedure compares the j ordered p-

value with a critical value afs, where

LR

a
akS = J ,
J D, (k, m)
max Em—|1|-k Z Am—1]-j — Am—|1]-1
D, (k, = —+ |1 - ,
eom)y = o (=5 ;

k<j<|I|

and |I| is the number of alternative hypotheses. Romano and Shaikh (2006)
demonstrated that the critical value a** is approximately one-half of a;* This
indicates that RS procedure is more conservative than the LR method, but it is

not clear which is more appropriate for controlling the FWER under different

dependence structures in the data.

4.2.2 Multiple testing correction procedures controlling FDR
The BH procedure is used as a reference method for controlling the

FDR(Benjamini and Hochberg 1995). The critical value (af”) in the BH

procedure is compared with the /" ordered p-value, where
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BH j_a

m
4.2.2.1 Benjamini and Yekutieli (BY) procedure
The BY approach utilizes a step-up procedure that controls FDR under any
dependence structure(Yekutieli and Benjamini 2001). This procedure compares
the /" ordered p-value with a constant aj, where
ja

= T
myitiy

BY __
@;

This procedure is more conservative than the BH procedure because the critical

1
values of BY procedure are decreased by 1%, -

4.2.2.2 Storey and Tibshirani (ST) procedure

Storey (2002) first suggested the importance of knowing the proportion of null
hypotheses(Storey 2002). P-values for true alternative hypotheses presumably
are near to zero, but p-values of null hypotheses should follow a [0,1] uniform
distribution. Thus, the overall proportion of null p-values can be estimated as

#{pl >/1,l = 1,...,m}
m(l— 1) '

o W =

where 1 is a tuning parameter.
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Storey and Tibshirani proposed to estimate 4 by fitting a natural spine with 3
degrees of freedom to the values of 7,(41) with A ranging from 0.01 to 0.95(Storey
and Tibshirani 2003). With the estimated 7, the j™ g-value is calculated as

A( ) _ min fTomt
where t is a threshold between 0 and 1. Although the ST procedure assumes
independence of p-values, this procedure performed well in various simulations

under dependency(Storey and Tibshirani 2003).

4.2.2.3 Benjamini, Krieger, and Yekutieli (BKY) procedure

Benjamini et al (2006) suggested a two-stage procedure to control
FDR(Benjamini, Krieger, and Yekutieli 2006). This BKY procedure is an adaptive
version of the BH procedure. First, the BKY procedure estimates the number of

null hypotheses, myp, with following function

m—Tl
1-—

SBKY _

Mg = (m-n)1+a),

where q = ﬁ r1 is the number of rejections, and m is the total number of tests.

Then, the /" p-value is compared with a critical value where

aBKY = &
] r’ﬁgKY

Although the BKY procedure was developed under the independence
assumption, this procedure has shown good performance for positively

dependent test statistics(Benjamini, Krieger, and Yekutieli 2006).
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4.2.2.4 Blanchard and Roquain (BR) procedure

Blanchard and Roquain (2008) suggested a step-up method that controls FDR
with any dependence structure(Blanchard and Roquain 2008). This procedure is
a generalization of the BY procedure. Thej’h p-value is compared with a critical

value, a]BR, defined as:

a
BR _ . , h
a;" =— B(j),where

J
ﬁwzmm=fxwm

0

and v is an arbitrary probability distribution on (0, ©). We used a prior distribution

proportional to exp (ﬁ) as a default prior.

4.2.3 Simulation study

We partially follow a gene set simulation method proposed by Landau and Liu
(Landau and Liu 2013). This method simulates a set of gene expression
measures using pairs of mean (uy) and dispersion (gg4) of genes from a real RNA-
Seq data set. This method is able to generate unstructured correlations among

differentially expressed (DE) genes.

As a modification to the original simulation method, we include correlation
structures among simulated null-genes. Five correlated structures are simulated

as shown in Table 4.1. First, the gene sets labeled “exchangeable” have an



88

exchangeable structure that has the same pairwise positive correlation
coefficients. This exchangeable structure is often observed in clustered data.
Second, a set of genes has the same absolute correlation coefficient. However,
for every alternate cell by columns and rows, the sign of the coefficient is
changed. We call this correlation structure “exchangeable2”. Genes within this
correlation structure have 50% positive and 50% negative pairwise correlation
coefficients. For the third simulated structure, we used the observed correlation
structures from a real RNA-Seq data to model correlation. We call this the “real”
structure. A fourth correlation structure is “autoregressive1”. When genes have
an autoregressive1 structure, genes have the same variance and pair-wise
correlations exponentially decrease with distance. Finally, we simulate RNA-Seq

gene expression measures that have zero correlation (“independent”).

Because the assumption of dependence structures is imposed under the null
hypotheses, we simulated correlation structures restricted to gene expression
measured under the null hypotheses in our primary simulation. However, in our

secondary simulations, we specified correlations among DE and non-DE genes.

4.2.3.1 Generation of simulated RNA-Seq data sets
We simulate whole gene sets using the following steps and the combination of

parameters presented in Table 4.1.
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Randomly select 10,000 genes from the real RNA-Seq data (Pickrell et al.
2010) without replacement. The corresponding 10,000 pairs of yg and gq4
are used as the geometric mean expression level across treatments and

true dispersion, respectively, of simulated genes.

. Randomly select simulated genes to be either differentially expressed

across the two treatments or equivalently expressed such that exactly (17
x 100)% of the simulated genes are differentially expressed and the
remaining (1 - 1mp) x 700% are equivalently expressed.

Set the log fold-change across treatment levels, &4, to be zero for all
equivalently expressed genes. In order to have independent differentially
expressed genes, we draw the §¢'s of all differentially expressed genes
from a multivariate normal distribution with mean 0 and variance equal to
an identity matrix. Although Landau and Liu suggested implementing
dependent structures among DE genes, because this dependent structure
does not violate the assumptions of the multiple testing correction
methods, we assume independence among DE genes in our primary
analysis. We generate the unstructured correlations among DE genes
using the rcorrmatrix() function in “ClusterGeneration” R-package(Joe
2006) in our secondary analysis.

Compute the true mean expression level, u g4, of simulated gene, g, for

treatment levels k=1 and 2 using
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o)
_ g
gk = Qg €XPp (—1" 5 )

The log fold-change can then be expressed as

3, 2

)
log(fold change) = log M = log (exp ( M )) =4,

agy exp <— 7)
. Randomly draw the simulated count of each simulated gene, g, in library i
from a NB (g (i), 4) distribution, where k(i) is the treatment group of
library i.
. Only genes with simulated read counts greater than zero are included in
the following analysis. Hence, if the simulated counts of simulated gene g
are all zero, we keep &4 and redraw gy and g4, and then redraw the
simulated counts as in steps 4 and 5.
. We randomly select 20 genes among non-DE genes for exchangeable,
exchangeable2, autoregressive1, and real correlation matrices. The
selected genes simulated from the NB (ugx(;), ¢4) distribution and the
correlation among these genes has the specified structure with correlation
coefficient of p in Table 4.1 for exchangeable, exchangeable2, and
autoregressive1. For our secondary analysis, we only use p equal to 0.5.
The real correlation matrix is estimated from the Pickrell RNA-Seq
data(Pickrell et al. 2010). Using the observed values avoids a non-positive
definite correlation matrix. This sampling procedure is independently

performed 150 times per replicate, to form 150 clusters of 20 genes for
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each simulation replicate when the correlation structures are
exchangeable, exchangeable2, autoregressive1 or real. The correlated
discrete sampling method uses the rcounts function in the R-package
“corcounts” (Vinzenz and Claudia 2009). This function allows random
sampling from NB distributions with pre-specified Pearson correlation
coefficient(p). When the correlation structure is independent, all genes are

independently sampled from NB (g i), Pg)-

Table 4.1 Simulation parameters and values

Parameter Value
Sample size 5,10, 20
Proportion of null(r7y) 1,0.95,0.75
Strength of correlation(p) 0.3,0.5,0.75

Exchangeable, Exchangeable2, Real,

Correlation Structure Autoregressive1, Independent

Sample size: The number of samples in case and control groups. Each group has the same
sample size. Proportion of null: the proportion of null hypotheses in a whole gene set.

4.2.3.2 Analysis of simulated RNA-Seq data sets

We analyze the simulated data sets using the DESeg2 and edgeR R-packages
and using Firth’s logistic regression. DESeq2 and edgeR are the leading
software for analyzing RNA-Seq data. Firth’s logistic regression(Firth 1993;
Heinze and Schemper 2002) is an appropriate alternative approach as

demonstrated in Chapter 2 and Chapter 3 of this dissertation.
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Because DESeq2 and edgeR use the NB framework, gene expression values
are a function of case-control status. However, Firth’s logistic regression models
case-control status as a function of gene expression values. Hence, DESeq2 and
edgeR utilize Model 4.A and the Firth’s logistic regression approach utilizes
Model 4.B.

Model 4. A: log(E[Y]) = By + B:1D,

Model 4. B: logit(E[D]) = B; + p1Y.

Each simulation scenario is replicated 1000 times.

All simulated data are analyzed with DESeq2, edgeR and Firth’s logistic
regression. The p-values from DESeq2, edgeR, and Firth’s logistic regression
are corrected for multiple tests using Bonferroni, Romano and Shaikh (RS), and
Lehman and Romano (LR) procedures controlling FWER and Benjamini and
Hochberg (BH), Benjamini and Yekutieli (BY), Storey and Tibshirani (ST),
Benjamini, Krieger, and Yekutieli (BKY), and Blanchard and Roquain (BR)
procedures controlling FDR at significance level of 0.05. Using the multiple
testing corrected p-values from each multiple testing method, we identify Type-I
errors and Type-Il errors using the known DE status of genes in the simulation
process. For multiple testing methods controlling the FWER, we calculate false

positive rate (1 — specificity) and power (sensitivity; 1- false negative rate) at a
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significance level of 0.05. For multiple testing methods controlling the FDR, we

compute FDR and power at a significance level of 0.05.

4.3 Results
4.3.1 False positive rates from multiple testing correction procedures
controlling the FWER from simulated data
The false positive rates computed from simulated data sets with the proportion of
null hypotheses equal to 100%, 95% and 75% are presented in Figure 4.1,
Figure 4.2 and Figure 4.3, respectively. The false positive rates from edgeR are
higher than from DESeq2 and Firth’s logistic regression within the same multiple
testing methods. The LR procedure has higher false positive rates than the other
multiple testing correction methods within the same analysis methods. As sample
size increases, the differences of false positive rates among analysis methods
and among multiple testing methods decreases. In particular, with the sample
size of five cases and five controls (Figure 4.1(A)), Firth’s logistic regression did
not identify any significant genes among null hypotheses in any of the simulated
data sets. When sample size is small, the Firth’s logistic regression is very
conservative. Thus, Bonferroni, RS and LR procedures produced false positive
rates equal to zero. Within the same multiple testing correction approach, the
false positive rates from simulated data sets with different correlation structures

are similar.
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When the proportion of null hypotheses is decreased from 100% (Figure 4.1) to
75% (Figure 4.3), the false positive rates generally decrease. These decreases in

the false positive rates are larger when sample size is small.

The false positive rates for different strengths of correlation with the sample size
of five cases and five controls allowing no-correlation structures in DE genes
analyzed with edgeR are presented in Table 4.2. The strength of correlation
within the same correlation structure does not change false positive rates for

edgeR, DESeq2, or Firth’s logistic regression, as shown in Table 4.2.

Comparison of false positive rates for the sample size of five cases and five
controls analyzed with edgeR either with or without correlation structures in DE
genes is shown in Table 4.3. The false positive rates for data sets with
correlation structures in DE genes is similar to the false positive rates for data
sets with no-correlation structures in DE genes. This similarity is also observed in

the DESeq2 and Firth’s logistic regression results.
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Figure 4.1 False positive rates with 100% null hypotheses
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Figure 4.1 presents false positive rates from FWER methods. The analysis methods (DESeq2,
edgeR, and Firth) are separated by vertical lines. Three FWER methods (Bonferroni, RS

(Romano and Shaikh), LR (Lehman and Romano)) are placed within each analysis method.
Colored dots represent exchangeable (EX), exchangeable2 (EX2), real, autoregressive1(AR1),
and independent(IND) correlation structures in the null hypothesis. The dotted lines within each
colored dot are the 95% confidence intervals of false positive rates. (A) presents the false positive
rates for the sample size of five cases and five controls with correlation strength of 0.5, (B)
presents the false positive rates for the sample size of 10 cases and 10 controls with correlation
strength of 0.5, (C) presents the false positive rates for the sample size of 20 cases and 20
controls with correlation strength of 0.5
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Figure 4.2 False positive rates with 95% null hypotheses
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Figure 4.2 presents false positive rates from FWER methods. The analysis methods (DESeq2,
edgeR, and Firth) are separated by vertical lines. Three FWER methods (Bonferroni, RS
(Romano and Shaikh), LR (Lehman and Romano)) are placed within each analysis method.
Colored dots represent exchangeable (EX), exchangeable2 (EX2), real, autoregressive1(AR1),
and independent(IND) correlation structures in the null hypothesis. The dotted lines within each
colored dot are the 95% confidence intervals of false positive rates. (A) presents the false
positive rates for the sample size of five cases and five controls with correlation strength of 0.5,
(B) presents the false positive rates for the sample size of 10 cases and 10 controls with
correlation strength of 0.5, (C) presents the false positive rates for the sample size of 20 cases
and 20 controls with correlation strength of 0.5
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Figure 4.3 False positive rates with 75% null hypotheses
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Figure 4.3 presents false positive rates of the FWER methods. The analysis methods (DESeq2,
edgeR, and Firth) are separated by vertical lines. Three FWER methods (Bonferroni, RS
(Romano and Shaikh), LR (Lehman and Romano)) are placed within each analysis method.
Colored dots represent exchangeable (EX), exchangeable2 (EX2), real, autoregressive1(AR1),
and independent(IND) correlation structures in the null hypothesis. The dotted lines within each

colored dot are the 95% confidence intervals of false positive rates. (A) presents the false positive
rates for a sample size of five cases and five controls with correlation strength of 0.5, (B) presents
the false positive rates for the sample size of 10 cases and 10 controls with correlation strength of
0.5, (C) presents the false positive rates for the sample size of 20 cases and 20 controls with
correlation strength of 0.5
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Table 4.2 False positive rates for five cases and five controls from simulated data
with no-correlation among differentially expressed genes based on analysis with
edgeR.

Null Type Cor Bonferroni RS LR
1 EX 0.3 0.00031 0.00044 0.00062
1 EX 0.5 0.0003 0.00042 0.0006
1 EX 0.75 0.00029 0.00041 0.00058
1 EX2 0.3 0.00031 0.00044 0.00062
1 EX2 0.5 0.0003 0.00043 0.00061
1 EX2 0.75 0.00029 0.00041 0.00058
1 AR1 0.3 0.00032 0.00045 0.00063
1 AR1 0.5 0.00031 0.00045 0.00063
1 AR1 0.75 0.00031 0.00043 0.00061
0.95 EX 0.3 0.00031 0.00044 0.0006
0.95 EX 0.5 0.0003 0.00043 0.0006
0.95 EX 0.75 0.0003 0.00042 0.00059
0.95 EX2 0.3 0.00032 0.00044 0.00061
0.95 EX2 0.5 0.00031 0.00043 0.0006
0.95 EX2 0.75 0.00029 0.00042 0.00059
0.95 AR1 0.3 0.00033 0.00045 0.00062
0.95 AR1 0.5 0.00032 0.00045 0.00062
0.95 AR1 0.75 0.00031 0.00044 0.00061
0.75 EX 0.3 0.00026 0.00036 0.00051
0.75 EX 0.5 0.00026 0.00036 0.00051
0.75 EX 0.75 0.00025 0.00035 0.00051
0.75 EX2 0.3 0.00026 0.00036 0.00052
0.75 EX2 0.5 0.00026 0.00036 0.00051
0.75 EX2 0.75 0.00025 0.00036 0.00052
0.75 AR1 0.3 0.00026 0.00037 0.00052
0.75 AR1 0.5 0.00026 0.00037 0.00052
0.75 AR1 0.75 0.00026 0.00036 0.00052

Null: Proportion of null hypothesis in a gene set, Type: Correlation structure types; exchangeable
(EX), ecxchangeable2 (EX2), and autoregressive1(AR1), Cor: The strength of correlation in
correlation structures. RS: Romano and Shaikh procedure, LR: Lehman and Romano procedure.
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Table 4.3 False positive rates for five cases and five controls from simulated data
based on analysis with edgeR.

DE-Cor Null Type Cor Bonferroni RS LR
0.95 EX 0.5 0.0003 0.00043 0.0006
0.95 EX2 0.5 0.00031 0.00043 0.0006
0.95 REAL NA 0.00031 0.00043 0.0006
0.95 AR1 0.5 0.00032 0.00045 0.00062
No 0.95 IND NA 0.00028 0.0004 0.00058
0.75 EX 0.5 0.00026 0.00036 0.00051
0.75 EX2 0.5 0.00026 0.00036 0.00051
0.75 REAL NA 0.00025 0.00035 0.0005
0.75 AR1 0.5 0.00026 0.00037 0.00052
0.75 IND NA 0.00029 0.00041 0.00059
0.95 EX 0.5 0.00031 0.00043 0.0006
0.95 EX2 0.5 0.00031 0.00043 0.0006
0.95 REAL NA 0.0003 0.00042 0.00059
0.95 AR1 0.5 0.00032 0.00044 0.00062
Yes 0.95 IND NA 0.00029 0.0004 0.00057
0.75 EX 0.5 0.00025 0.00034 0.00048
0.75 EX2 0.5 0.00025 0.00035 0.0005
0.75 REAL NA 0.00024 0.00034 0.00048
0.75 AR1 0.5 0.00025 0.00035 0.0005
0.75 IND NA 0.00028 0.00041 0.00058

DE-Cor: Presence of correlation in differentially expressed genes, Null: Proportion of null
hypothesis in a gene set, Type: Correlation structure types; exchangeable (EX), ecxchangeable2
(EX2), real from Pickrell (REAL), autoregressive1(AR1) and independent (IND), Cor: The strength
of correlation in correlation structures. RS: Romano and Shaikh procedure, LR: Lehman and
Romano procedure.
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4.3.2 FDRs from multiple testing correction procedures controlling FDR
using simulated data.

The FDRs based on simulated data with 95% or 75% of the observations under
the null hypotheses are presented in Figure 4.4 and Figure 4.5. The FDRs from
analyses performed with edgeR are higher than FDRs from DESeqg2 and Firth’s
logistic regression. In general, the BH, ST and BKY procedures produce similar
FDRs, and the BY and BR procedures produce similar FDRs. However, the BH,
ST, and BKY procedures have higher FDRs than the BY and BR procedures.
FDRs based on data sets with different correlation structures within a multiple
testing correction method are not distinctive enough to suggest that choice of

multiple correction method should be influenced by correlation structure.

When the proportion of null hypotheses is 95% and the sample size for cases
and controls is five (Figure 4.4(A)), the FDRs for the BY and BR procedures
when using DESeqg2 or edge R are close to the significance level of 0.05. In
contrast, the BH, ST and BKY procedures have inflated false discovery rates
when the sample size is small. Firth’s logistic regression identifies no significant

results with five cases and five controls.

When sample size increases (Figure 4.4(B) and (C)), the observed FDRs of the
BH, ST, and BKY procedures are closer to of the specified 0.05 level. With

increasing sample size, the BY and BR procedures become very conservative.
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The FDRs of the BH, ST and BKY procedures computed from the DESeq2
method are closer to the specified FDR level of 0.05 than are the FDRs
computed from the edgeR method. The FDRs from Firth’s logistic regression are

conservative even with 20 cases and 20 controls.

FDRs for a sample size of five cases and five controls when there is no
correlation among DE genes from analysis with edgeR are shown in Table 4.4.
The strength of correlation within a correlation structure type does not notably
affect false discovery rates for any of the analysis methods under our
simulations. The assessment of FDRs for five cases and five controls from
analysis with edgeR between correlation and no correlation among DE genes is
presented in Table 4.5. The FDRs for correlation and no correlation among DE
genes are very similar. This similarity is also found in DESeg2 and Firth’s logistic

regression results.
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Figure 4.4 False discovery rates with 95% null hypotheses
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Figure 4.4 presents FDRs of the multiple testing correction methods controlling the FDR. The
analysis methods (DESeq2, edgeR, and Firth) are separated by vertical lines. Five FDR methods
(BH (Benjamini and Hochberg), BY (Benjamini and Yekutieli), ST (Story and Tibshirani), BKY
(Benjamini, Krieger, and Yekutieli), BR (Blanchard and Roquain)) are placed within each analysis
method. Colored dots represent exchangeable (EX), exchangeable2 (EX2), real,
autoregressive1(AR1), and independent(IND) correlation structures in the null hypothesis. The
dotted lines within each colored dot are the 95% confidence intervals of false discovery rates. (A)
presents the false discovery rates for the sample size of five cases and five controls with
correlation strength of 0.5, (B) presents the false discovery rates for the sample size of 10 cases
and 10 controls with correlation strength of 0.5, (C) presents the false discovery rates for the
sample size of 20 cases and 20 controls with correlation strength of 0.5
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Figure 4.5 False discovery rates with 75% null hypotheses
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Figure 4.5 presents FDRs of the multiple testing correction methods controlling the FDR. The
analysis methods (DESeq2, edgeR, and Firth) are separated by vertical lines. Five FDR methods
(BH (Benjamini and Hochberg), BY (Benjamini and Yekutieli), ST (Story and Tibshirani), BKY
(Benjamini, Krieger, and Yekutieli), BR (Blanchard and Roquain)) are placed within each analysis
method. Colored dots represent exchangeable (EX), exchangeable2 (EX2), real,
autoregressive1(AR1), and independent(IND) correlation structures in the null hypothesis. The
dotted lines within each colored dot are the 75% confidence intervals of false discovery rates. (A)
presents the false discovery rates for the sample size of five cases and five controls with
correlation strength of 0.5, (B) presents the false discovery rates for the sample size of 10 cases
and 10 controls with correlation strength of 0.5, (C) presents the false discovery rates for the
sample size of 20 cases and 20 controls with correlation strength of 0.5
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Table 4.4 False discovery rates for five cases and five controls from simulated
data with no-correlation among differentially expressed genes based on analysis
with edgeR

Null Type Cor BH BY ST BKY BR

0.95 EX 0.3 0.196 0.076 0.196 0.197 0.048
0.95 EX 0.5 0.196 0.076 0.196 0.197 0.047
0.95 EX 0.75 0.196 0.075 0.196 0.197 0.047
0.95 EX2 0.3 0.197 0.077 0.197 0.198 0.048
0.95 EX2 0.5 0.197 0.076 0.197 0.198 0.048
0.95 EX2 0.75 0.199 0.075 0.199 0.200 0.047
0.95 AR1 0.3 0.198 0.078 0.198 0.199 0.050
0.95 AR1 0.5 0.197 0.077 0.197 0.198 0.049
0.95 AR1 0.75 0.197 0.077 0.197 0.198 0.048
0.75 EX 0.3 0.065 0.021 0.065 0.068 0.026
0.75 EX 0.5 0.066 0.021 0.066 0.068 0.025
0.75 EX 0.75 0.069 0.021 0.069 0.071 0.026
0.75 EX2 0.3 0.066 0.021 0.066 0.068 0.026
0.75 EX2 0.5 0.067 0.021 0.067 0.070 0.026
0.75 EX2 0.75 0.072 0.022 0.072 0.074 0.027
0.75 AR1 0.3 0.066 0.021 0.066 0.068 0.026
0.75 AR1 0.5 0.066 0.021 0.066 0.068 0.026

0.75 AR1 0.75 0.066 0.021 0.066 0.068 0.026

Null: Proportion of null hypothesis in a gene set, Type: Correlation structure types; exchangeable
(EX), ecxchangeable2 (EX2), and autoregressive1(AR1), Cor: The strength of correlation in
correlation structures. BH: Benjamini and Hochberg, BY: Benjamini and Yekutieli, ST: Story and
Tibshirani, BKY: Benjamini, Krieger, and Yekutieli, BR: Blanchard and Roquain.
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Table 4.5 False discovery rates for five cases and five controls from simulated
data based on analysis with edgeR

DE-Cor  Null Type Cor BH BY ST BKY BR
0.95 EX 05 0196 0.076 0.196 0.197 0.047
0.95 EX2 0.5 0.197 0.076 0.197 0.198 0.048
0.95 REAL NA 0.194 0.075 0.194 0.195 0.048
0.95 AR1 0.5 0.197 0.077 0.197 0.198 0.049
NG 0.95 IND NA 0.209 0.080 0.209 0.210 0.046
0.75 EX 0.5 0.066 0.021 0.066 0.068 0.025
0.75 EX2 0.5 0.067 0.021 0.067 0.070 0.026
0.75 REAL NA 0.065 0.020 0.065 0.067 0.025
0.75 AR1 0.5 0.066 0.021 0.066 0.068 0.026
0.75 IND NA 0.085 0.027 0.087 0.088 0.031
0.95 EX 05 0196 0.076 0.196 0.197 0.048
0.95 EX2 0.5 0.197 0.076 0.197 0.198 0.048
0.95 REAL NA 0194 0.075 0.194 0.196 0.048
0.95 AR1 0.5 0.199 0.077 0.199 0.200 0.050
Yes 0.95 IND NA 0.209 0.081 0.209 0.210 0.047
0.75 EX 0.5 0.066 0.02 0.066 0.068 0.025
0.75 EX2 0.5 0.066 0.021 0.066 0.069 0.025
0.75 REAL NA 0.065 0.020 0.065 0.067 0.025
0.75 AR1 0.5 0.065 0.020 0.065 0.067 0.025
0.75 IND NA 0.085 0.026 0.087 0.088 0.030

DE-Cor: Presence of correlation in differentially expressed genes, Null: Proportion of null
hypothesis in a gene set, Type: Correlation structure types; exchangeable (EX), ecxchangeable2
(EX2), real from Pickrell (REAL), autoregressive1(AR1) and independent (IND), Cor: The strength
of correlation in correlation structures. BH: Benjamini and Hochberg, BY: Benjamini and Yekutieli,
ST: Story and Tibshirani, BKY: Benjamini, Krieger, and Yekutieli, BR: Blanchard and Roquain.
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4.3.3 Power comparison among the multiple testing correction methods
controlling FWER based on simulated data.
Power for different multiple testing methods controlling FWER applied to
simulated data sets with 75% null hypotheses is shown in Figure 4.6. The power
from DEseq2 and from edgeR are comparable, and are higher than the power
from Firth’s logistic regression. Although power using the LR procedure is greater
than RS and Bonferroni, with Bonferroni procedure showing the lowest power,
the differences in power among these three methods are very small except for
Firth’s logistic regression with 10 cases and 10 controls (Figure 4.6(B)). As
sample size increases, power increases. Power for 95% null hypotheses is
similar to power with 75% null hypotheses (Table 4.6). Strength of correlation
(Table 4.6) and presence of correlation structures in DE genes (Table 4.7) do not

influence power.
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Figure 4.6 Power with proportion of null hypotheses equal to 75% using the
multiple testing correction methods controlling FWER
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Figure 4.6 presents power from the multiple testing correction methods controlling FWER. The

analysis methods (DESeq2, edgeR, and Firth) are separated by vertical lines. Three FWER

methods (Bonferroni, RS (Romano and Shaikh), LR (Lehman and Romano)) are placed within
each analysis method. Colored dots represent exchangeable (EX), exchangeable2 (EX2), real,
autoregressive1(AR1), and independent(IND) correlation structures in the null hypothesis. The
dotted lines within each colored dot are the 95% confidence intervals of power(A) presents the

power for the sample size of five cases and five controls with correlation strength of 0.5, (B)

presents the power for the sample size of 10 cases and 10 controls with correlation strength of

0.5, (C) presents the power for the sample size of 20 cases and 20 controls with correlation
strength of 0.5
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Table 4.6 Power for sample size of five cases and five controls with no-
correlation among the differentially expressed genes based on analysis using
edgeR and the multiple testing correction methods controlling FWER

Null Type Cor Bonferroni RS LR

0.95 EX 0.3 0.163 0.174 0.185
0.95 EX 0.5 0.161 0.172 0.183
0.95 EX 0.75 0.156 0.167 0.178
0.95 EX2 0.3 0.163 0.174 0.186
0.95 EX2 0.5 0.161 0.172 0.183
0.95 EX2 0.75 0.155 0.166 0.177
0.95 AR1 0.3 0.164 0.175 0.187
0.95 AR1 0.5 0.164 0.175 0.186
0.95 AR1 0.75 0.162 0.173 0.185
0.75 EX 0.3 0.162 0.173 0.185
0.75 EX 0.5 0.160 0.171 0.183
0.75 EX 0.75 0.155 0.166 0.178
0.75 EX2 0.3 0.162 0.173 0.186
0.75 EX2 0.5 0.160 0.171 0.183
0.75 EX2 0.75 0.154 0.165 0.177
0.75 AR1 0.3 0.163 0.174 0.187
0.75 AR1 0.5 0.163 0.174 0.186
0.75 AR1 0.75 0.161 0.172 0.185

Null: Proportion of null hypothesis in a gene set, Type: Correlation structure types; exchangeable
(EX), ecxchangeable2 (EX2), and autoregressive1(AR1), Cor: The strength of correlation in
correlation structures. RS: Romano and Shaikh procedure, LR: Lehman and Romano procedure.
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Table 4.7 Power for the sample size of five cases and five controls based on
analysis using edgeR results and the multiple testing correction methods
controlling FWER

DE-Cor Null Type Cor Bonferroni RS LR
0.95 EX 0.5 0.161 0.172 0.183
0.95 EX2 0.5 0.161 0.172 0.183
0.95 REAL NA 0.162 0.172 0.184
0.95 AR1 0.5 0.164 0.175 0.186
No 0.95 IND NA 0.134 0.145 0.156
0.75 EX 0.5 0.160 0.171 0.183
0.75 EX2 0.5 0.160 0.171 0.183
0.75 REAL NA 0.161 0.172 0.184
0.75 AR1 0.5 0.163 0.174 0.186
0.75 IND NA 0.133 0.144 0.156
0.95 EX 0.5 0.159 0.170 0.181
0.95 EX2 0.5 0.159 0.170 0.181
0.95 REAL NA 0.159 0.170 0.182
0.95 AR1 0.5 0.161 0.172 0.184
Yes 0.95 IND NA 0.132 0.142 0.154
0.75 EX 0.5 0.159 0.170 0.182
0.75 EX2 0.5 0.159 0.170 0.182
0.75 REAL NA 0.160 0.171 0.183
0.75 AR1 0.5 0.162 0.173 0.185
0.75 IND NA 0.132 0.143 0.155

DE-Cor: Presence of correlation in differentially expressed genes, Null: Proportion of null
hypothesis in a gene set, Type: Correlation structure types; exchangeable (EX), ecxchangeable2
(EX2), real from Pickrell (REAL), autoregressive1(AR1) and independent (IND), Cor: The strength
of correlation in correlation structures. BH: Benjamini and Hochberg, BY: Benjamini and Yekutieli,
ST: Story and Tibshirani, BKY: Benjamini, Krieger, and Yekutieli, BR: Blanchard and Roquain.
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4.3.4 Power comparison among the multiple testing correction methods
controlling FDR based on simulated data.
Power for the multiple testing methods controlling FDR based on for simulated
data sets with 95% and 75% null hypotheses are shown in Figure 4.7 and Figure
4.8. The power from analysis with DEseq2 and from edgeR are comparable.
Although they are higher than the power from Firth’s logistic regression, as
sample size increases, this differences in power among analysis methods
decreases. The BH, ST, BKY procedures have similar power and are more
powerful than BY and BR. As sample size increases, the differences in power
among the multiple testing methods decreases. In general, large sample size
increases power across all analysis and multiple testing methods. When the
proportion of null hypotheses in a data set decreases from 95%(Figure 4.7) to
75%(Figure 4.8), power is increased. Strength of correlation (Table 4.8) and
presence of correlation structures in DE genes (Table 4.9) do not influence the

power.
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Figure 4.7 Power with proportion of null hypotheses equal to 95% using FDR
methods
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Figure 4.7 presents power from the multiple testing correction methods controlling FDR. The
analysis methods (DESeqg2, edgeR, and Firth) are separated by vertical lines. Five FDR methods
(BH (Benjamini and Hochberg), BY (Benjamini and Yekutieli), ST (Story and Tibshirani), BKY
(Benjamini, Krieger, and Yekutieli), BR (Blanchard and Roquain)) are placed within each analysis
method. Colored dots represent exchangeable (EX), exchangeable2 (EX2), real,
autoregressive1(AR1), and independent(IND) correlation structures in the null hypothesis. The
dotted lines within each colored dot are the 95% confidence intervals of power. (A) presents
power from the sample size of five cases and five controls with correlation strength of 0.5, (B)
presents power from the sample size of 10 cases and 10 controls with correlation strength of 0.5,
(C) presents power from the sample size of 20 cases and 20 controls with correlation strength of
0.5
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Figure 4.8 Power with proportion of null hypotheses equal to 75% using FDR
methods
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Figure 4.8 presents power from the multiple testing correction methods controlling FDR. The
analysis methods (DESeqg2, edgeR, and Firth) are separated by vertical lines. Five FDR methods
(BH (Benjamini and Hochberg), BY (Benjamini and Yekutieli), ST (Story and Tibshirani), BKY
(Benjamini, Krieger, and Yekutieli), BR (Blanchard and Roquain)) are placed within each analysis
method. Colored dots represent exchangeable (EX), exchangeable2 (EX2), real,
autoregressive1(AR1), and independent(IND) correlation structures in the null hypothesis. The
dotted lines within each colored dot are the 95% confidence intervals of power. (A) presents
power from the sample size of five cases and five controls with correlation strength of 0.5, (B)
presents power from the sample size of 10 cases and 10 controls with correlation strength of 0.5,
(C) presents power from the sample size of 20 cases and 20 controls with correlation strength of
0.5
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Table 4.8 Power for the sample size of five cases and five controls in no-
correlation in differentially expressed genes based on analysis using edgeR and
the multiple testing correction methods controlling FDR

Nuli Type Cor BH BY ST BKY BR

0.95 EX 0.3 0.254 0.198 0.254 0.254 0.177
0.95 EX 0.5 0.252 0.196 0.252 0.252 0.174
0.95 EX 0.75 0.246 0.190 0.246 0.246 0.168
0.95 EX2 0.3 0.254 0.198 0.254 0.254 0177
0.95 EX2 0.5 0.252 0.196 0.252 0.252 0.174
0.95 EX2 0.75 0.245 0.189 0.245 0.245 0.167
0.95 AR1 0.3 0.255 0.200 0.255 0.256 0.178
0.95 AR1 0.5 0.255 0.199 0.255 0.255 0.178
0.95 AR1 0.75 0.253 0.197 0.253 0.253 0.176
0.75 EX 0.3 0.301 0.230 0.301 0.304 0.241
0.75 EX 0.5 0.299 0.228 0.299 0.302 0.239
0.75 EX 0.75 0.294 0.222 0.294 0.297 0.233
0.75 EX2 0.3 0.301 0.230 0.301 0.304 0.241
0.75 EX2 0.5 0.299 0.228 0.299 0.302 0.239
0.75 EX2 0.75 0.293 0.221 0.293 0.296 0.232
0.75 AR1 0.3 0.302 0.232 0.302 0.305 0.243
0.75 AR1 0.5 0.302 0.231 0.302 0.305 0.242
0.75 AR1 0.75 0.300 0.229 0.300 0.303 0.240

Null: Proportion of null hypothesis in a gene set, Type: Correlation structure types; exchangeable
(EX), ecxchangeable2 (EX2), and autoregressive1(AR1), Cor: The strength of correlation in
correlation structures. BH: Benjamini and Hochberg, BY: Benjamini and Yekutieli, ST: Story and
Tibshirani, BKY: Benjamini, Krieger, and Yekutieli, BR: Blanchard and Roquain.
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Table 4.9 Power for the sample size of five cases and five controls based on
analysis using edgeR and the multiple testing correction methods controlling
FDR

DE-Cor  Null Type Cor BH BY ST BKY BR
0.95 EX 05 0252 0196 0252 0252 0.174
0.95 EX2 05 0252 0196 0252 0252 0.174
095 REALCOR NA 0252 0197 0252 0253 0.175
0.95 AR1 05 0255 0.199 0.255 0255 0.178
G 0.95 IND NA 0221 0166 0221 0222 0.142
0.75 EX 05 0299 0228 0299 0302 0.239
0.75 EX2 05 0299 0228 0299 0302 0.239
075 REALCOR NA 03 0229 03 0303 0.4
0.75 AR1 05 0302 0231 0302 0305 0.242
0.75 IND NA 0271 0198 0273 0274 0.206
0.95 EX 05 0249 0193 0249 0249 0172
0.95 EX2 05 0249 0193 0249 025 0.172
095 REALCOR NA 025 0194 025 025 0.172
0.95 AR1 05 0252 0196 0252 0253 0.175
0.95 IND NA 0219 0163 0219 0219 0.139
Yes 7475 EX 05 0298 0226 0298 03 0237
0.75 EX2 05 0298 0226 0298 03 0237
075 REALCOR NA 0298 0227 0298 0.301 0.238
0.75 AR1 05 03 0229 03 0303 0.24
0.75 IND NA 0269 0196 0271 0272 0.204

DE-Cor: Presence of correlation in differentially expressed genes, Null: Proportion of null
hypothesis in a gene set, Type: Correlation structure types; exchangeable (EX), ecxchangeable2
(EX2), real from Pickrell (REAL), autoregressive1(AR1) and independent (IND), Cor: The strength
of correlation in correlation structures. BH: Benjamini and Hochberg, BY: Benjamini and Yekutieli,
ST: Story and Tibshirani, BKY: Benjamini, Krieger, and Yekutieli, BR: Blanchard and Roquain.
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4.4 Discussion

In this chapter, we compare multiple testing correction methods that control
either FWER or FDR. Because the expression of many genes measured in RNA-
Seq data are correlated, we simulate correlations among expression values of
genes that are not differentially expressed. We demonstrate that power and type
| error or false positive rates do not differ among various correlation and
independence scenarios. Moreover, we find the strength of correlation among

genes does not have an impact on performance.

Compared with multiple testing correction methods controlling FWER, the LR
procedure, which controls FDR, has higher false positive rates than the
Bonferroni and RS procedures. However, the differences in false positive rates
among FWER methods are small. When the proportion of null hypotheses in a
data set is decreased, false positive rates also decrease. Interestingly, the
proportion of null hypotheses does not influence power. Although the LR
procedure has slightly greater power than the Bonferroni and RS procedure, the

differences in power are not substantive.

Multiple testing correction procedures imposing FDR, the BH, ST and BKY
procedures produce similar FDRs and power. These three procedures have
higher FDRs and power than the BY and BR procedures under our scenarios.

The proportion of null hypotheses plays a critical role in the multiple testing
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correction methods controlling FDR. As the proportion of null hypotheses

decreases, false discovery rates decrease, but power increases.

We also notice that although the RS and LR procedures were developed to
control false positive rates and to increase power under any correlation structure,
these procedures are not as powerful as other FDR methods. However, false
positive rates and power do not vary much with the proportion of null hypotheses
in the multiple testing correction methods controlling FWER. FDRs and power do
vary with the proportion of null hypotheses in the multiple testing correction
methods controlling FDR. The proportion of null hypotheses can differ widely
depending on the disease or tissue. Knowing the proportion of null hypotheses in
a RNA-Seq data set can be an important factor for interpreting results from the

multiple testing correction methods controlling FDR.

It is important for researchers to be aware of the study designs, RNA-Seq data
sets and the consequences of applying specific regression and multiple testing
correction methods. For example, although the BY procedure is known to be a
conservative method, the BY procedure controls the FDR well with five cases
and five controls when the proportion of null hypothesis is equal to 95% using
DESeq2 (Figure 4.4(A)).In contrast, when the proportion of null hypotheses is
equal to 75% for the same sample size and analysis method, the BY procedure

produces very conservative FDRs (Figure 4.5(A)). Researchers may seek a
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conservative false positive rate for their validation studies. Then, the LR
procedure, which showed consistent power regardless of proportion of null
hypotheses, is an attractive choice together with Firth’s logistic regression.
Equivalently, the BH, ST and BKY procedures from Firth’s logistic regression

provide conservative FDRs with reasonable power.
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Chapter 5 Summary and future work
5.1 Summary
Exploration of statistical methodology has been critical for gene expression
studies. This is particularly true for next generation sequencing technology in
which the expression data generated are count data rather than quantitative
measurements. Active statistical research in this field significantly improves the

capability of detecting truly differentially expressed transcripts.

In this dissertation, we suggest an alternative statistical approach, and we
evaluate the effect of covariates and the effect of correction structures in gene
expression studies. In Chapter 2, we recommend the use of Firth’s logistic
regression to analyze RNA-Seq data in case-control studies. Because estimation
of the dispersion parameter for each gene is not necessary in this approach,
Firth’s logistic regression provides a concise statistical inference process and
reduces false positives from inaccurately estimated dispersion parameters in the
negative binomial framework. Future work related to Firth’s logistic regression in
the RNA-Seq context will involve generating a genomic risk score that combines
risks of multiple genes into a single variable. This genomic risk score may
improve discrimination and calibration. In Chapter 3, we evaluate the effect of
non-predictive covariates in negative binomial models and the effect of non-
confounding predictive covariates in Firth’s logistic models. We suggest that

RNA-Seq data should be analyzed with a parsimonious model using Firth’'s
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logistic regression. When odds ratios between covariates and case-control status
are moderate, Firth’s logistic regression is robust to the increase in number of
non-confounding predictive covariates in a model. Because including a
confounder in the model results in a more accurate model, we will explore a new
algorithm that identifies relationships between covariates and genes, and then
generates gene-specific models. Comparing performance of a conventional
model and gene-specific models may underline the importance of precise
modeling. In Chapter 4, we compare performance of multiple testing correction
methods that control FWER or FDR. Although correlation structures under null
hypotheses follow the negative binomial distribution and thus do not have a huge
impact on performance of multiple testing correction methods, this study reveals
that understanding study design, RNA-Seq data, and the expected consequence
of analysis methods and multiple testing methods is imperative for RNA-Seq
studies. This prior knowledge significantly contributes to the identification of an

appropriate statistical method in gene expression studies.

In conclusion, we investigate analysis methods (Chapter 2), analysis models
(Chapter 3), and multiple testing methods (Chapter 4) of RNA-Seq studies. We
believe our conclusions and suggestions will enhance gene expression studies
(Section 1.1) and influence related statistical areas including count data analysis,

covariate analysis and correlated data analysis.



120

BIBLIOGRAPHY

Albert, A., and J A. Aanderson. 1984. “On the Existence of Maximum Likelihood
Estimates in Logistic Regression Models.” Biometrika 71 (1) (April 1): 1-10.
doi:10.1093/biomet/71.1.1.

Allison, Paul D. 2012. Logistic Regression Using SAS: Theory and Application.
Second. SAS Institute.

Anders, Simon, and Wolfgang Huber. 2010. “Differential Expression Analysis for
Sequence Count Data.” Genome Biology 11 (10): R106. doi:10.1186/gb-
2010-11-10-r106.

Arzberger, Thomas, Klaus Krampfl, Susanne Leimgruber, and Adolf WeindlI.
1997. “Changes of NMDA Receptor Subunit (NR1, NR2B) and Glutamate
Transporter (GLT1) mRNA Expression in Huntington’s Disease—An In Situ
Hybridization Study.” Journal of Neuropathology and Experimental
Neurology 56 (4) (April): 440-454. doi:10.1097/00005072-199704000-
00013.

Benjamini, Yoav, and Yosef Hochberg. 1995. “Controlling the False Discovery
Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the
Royal Statistical Society. Series B (Methodological) 57 (1): 289-300.

Benjamini, Yoav, A. M. Krieger, and D. Yekutieli. 2006. “Adaptive Linear Step-up
Procedures That Control the False Discovery Rate.” Biometrika 93 (3)
(September 1): 491-507. doi:10.1093/biomet/93.3.491.

Berger, James, and L. Mark Berliner. 1986. “Robust Bayes and Empirical Bayes
Analysis with $_\epsilon$-Contaminated Priors.” The Annals of Statistics 14
(2) (June 1): 461-486. doi:10.1214/a0s/1176349933.

Black, M A. 2004. “A Note on the Adaptive Control of False Discovery Rates.”
Journal of the Royal Statistical Society. Series B (Statistical Methodology) 66
(2) (January 1): 297-304. doi:10.2307/3647526.

Blanchard, Gilles, and Etienne Roquain. 2008. “Two Simple Sufficient Conditions
for FDR Control.” Electronic Journal of Statistics 2: 963—992.
doi:10.1214/08-EJS180.

Bonferroni, Carlo Emilio. 1936. “Teoria Statistica Delle Classi E Calcolo Delle
Probabilita.” Pubblicazioni Del R Istituto Superiore Di Scienze Economiche E
Commerciali Di Firenze 8: 3—62.

Breslow, N. E. 1984. “Extra-Poisson Variation in Log-Linear Models.” Applied



121

Statistics 33 (1): 38. doi:10.2307/2347661.

Bullard, James H, Elizabeth Purdom, Kasper D Hansen, and Sandrine Dudoit.
2010. “Evaluation of Statistical Methods for Normalization and Differential
Expression in mMRNA-Seq Experiments.” BMC Bioinformatics 11 (1)
(January): 94. doi:10.1186/1471-2105-11-94.

Burden, Conrad J, Sumaira E Qureshi, and Susan R Wilson. 2014. “Error
Estimates for the Analysis of Differential Expression from RNA-Seq Count
Data.” Peerd 2 (September 23): €576. doi:10.7717/peerj.576.

Devlin, B., and Kathryn Roeder. 1999. “Genomic Control for Association
Studies.” Biometrics 55 (4) (December 25): 997—-1004. doi:10.1111/j.0006-
341X.1999.00997 .x.

Dialsingh, Isaac, Stefanie R. Austin, and Naomi S. Altman. 2015. “Estimating the
Proportion of True Null Hypotheses When the Statistics Are Discrete.”
Bioinformatics 31 (14) (July 15): 2303—-2309.
doi:10.1093/bioinformatics/btv104.

Dillies, Marie-Agnés, Andrea Rau, Julie Aubert, Christelle Hennequet-Antier,
Marine Jeanmougin, Nicolas Servant, Céline Keime, et al. 2013. “A
Comprehensive Evaluation of Normalization Methods for lllumina High-
Throughput RNA Sequencing Data Analysis.” Briefings in Bioinformatics 14
(6) (November 1): 671-683. doi:10.1093/bib/bbs046.

Firth, David. 1993. “Bias Reduction of Maximum Likelihood Estimates.”
Biometrika 80 (1): 27-38. doi:10.1093/biomet/80.1.27.

Furuta, A, L.J Martin, C.-L.G Lin, M Dykes-Hoberg, and J. D. Rothstein. 1997.
“Cellular and Synaptic Localization of the Neuronal Glutamate Transporters
Excitatory Amino Acid Transporter 3 and 4.” Neuroscience 81 (4) (October):
1031-1042. doi:10.1016/S0306-4522(97)00252-2.

Galambos, Janos. 1977. “Bonferroni Inequalities.” The Annals of Probability 5
(4): 577-581.

Gao, Xiaoyi, Joshua Starmer, and Eden R Martin. 2008. “A Multiple Testing
Correction Method for Genetic Association Studies Using Correlated Single
Nucleotide Polymorphisms.” Genetic Epidemiology 32 (4) (May): 361-369.
doi:10.1002/gepi.20310.

Gelman, Andrew, Aleks Jakulin, Maria Grazia Pittau, and Yu-Sung Su. 2008. “A
Weakly Informative Default Prior Distribution for Logistic and Other
Regression Models.” The Annals of Applied Statistics 2 (4) (December):



122

1360-1383. doi:10.1214/08-A0AS191.

Han, Fang, and Wei Pan. 2010. “A Data-Adaptive Sum Test for Disease
Association with Multiple Common or Rare Variants.” Human Heredity 70
(1): 42-54. doi:10.1159/000288704.

Heinze, Georg. 2006. “A Comparative Investigation of Methods for Logistic
Regression with Separated or Nearly Separated Data.” Statistics in Medicine
25 (24) (December 30): 4216—4226. doi:10.1002/sim.2687.

Heinze, Georg, and Michael Schemper. 2002. “A Solution to the Problem of
Separation in Logistic Regression.” Statistics in Medicine 21 (16) (August
30): 2409-2419. doi:10.1002/sim.1047.

Hendricks, Audrey E, Josée Dupuis, Mark W Logue, Richard H Myers, and
Kathryn L Lunetta. 2014. “Correction for Multiple Testing in a Gene Region.”
European Journal of Human Genetics 22 (3) (March 10): 414-418.
doi:10.1038/ejhg.2013.144.

Hommel, G. 1986. “Multiple Test Procedures for Arbitrary Dependence
Structures.” Metrika 33 (1) (December): 321-336. doi:10.1007/BF01894765.

Jain, N., J. Thatte, T. Braciale, K. Ley, M. O’Connell, and J. K. Lee. 2003. “Local-
Pooled-Error Test for Identifying Differentially Expressed Genes with a Small
Number of Replicated Microarrays.” Bioinformatics 19 (15) (October 12):
1945-1951. doi:10.1093/bioinformatics/btg264.

Jiang, Hui, and Wing Hung Wong. 2009. “Statistical Inferences for Isoform
Expression in RNA-Seq.” Bioinformatics 25 (8) (April 15): 1026-1032.
doi:10.1093/bioinformatics/btp113.

Joe, Harry. 2006. “Generating Random Correlation Matrices Based on Partial
Correlations.” Journal of Multivariate Analysis 97 (10) (November): 2177—
2189. doi:10.1016/j.jmva.2005.05.010.

Labadorf, Adam, Andrew G Hoss, Valentina Lagomarsino, Jeanne C Latourelle,
Tiffany C Hadzi, Joli Bregu, Marcy E MacDonald, et al. 2015. “RNA
Sequence Analysis of Human Huntington Disease Brain Reveals an
Extensive Increase in Inflammatory and Developmental Gene Expression.”
Edited by Hiroyoshi Ariga. PLOS ONE 10 (12) (December 4): e0143563.
doi:10.1371/journal.pone.0143563.

Landau, William Michael, and Peng Liu. 2013. “Dispersion Estimation and Its
Effect on Test Performance in RNA-Seq Data Analysis: A Simulation-Based
Comparison of Methods.” Edited by Lin Chen. PLoS ONE 8 (12) (December



123

9): e81415. doi:10.1371/journal.pone.0081415.

Lehmann, E. L., and Joseph P. Romano. 2005. “Generalizations of the
Familywise Error Rate.” The Annals of Statistics 33 (3) (June 1): 1138-1154.
doi:10.1214/009053605000000084.

Li, Jun, Daniela M Witten, lain M Johnstone, and Robert Tibshirani. 2012.
“Normalization, Testing, and False Discovery Rate Estimation for RNA-
Sequencing Data.” Biostatistics 13 (3) (July 1): 523-538.
doi:10.1093/biostatistics/kxr031.

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated
Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2.”
Genome Biology 15 (12) (December 5): 550. doi:10.1186/s13059-014-0550-
8.

MacDonald, Tobey J, lan F Pollack, Hideho Okada, Soumyaroop Bhattacharya,
and James Lyons-Weiler. 2007. “Progression-Associated Genes in
Astrocytoma ldentified by Novel Microarray Gene Expression Data
Reanalysis.” In Methods in Molecular Biology (Clifton, N.J.), 377:203-221.
doi:10.1007/978-1-59745-390-5_13.

Marioni, John C, Christopher E Mason, Shrikant M Mane, Matthew Stephens,
and Yoav Gilad. 2008. “RNA-Seq: An Assessment of Technical
Reproducibility and Comparison with Gene Expression Arrays.” Genome
Research 18 (9) (July 30): 1509-1517. doi:10.1101/gr.079558.108.

McCarthy, Davis J, Yunshun Chen, and Gordon K Smyth. 2012. “Differential
Expression Analysis of Multifactor RNA-Seq Experiments with Respect to
Biological Variation.” Nucleic Acids Research 40 (10) (May 1): 4288—-4297.
doi:10.1093/nar/gks042.

McCullagh, Peter, and John A. Nelder. 1989. Generalized Linear Models.
Second. London: Chapman and Hall/CRC Press.

McCullumsmith, R. 2002. “Striatal Excitatory Amino Acid Transporter Transcript
Expression in Schizophrenia, Bipolar Disorder, and Major Depressive
Disorder.” Neuropsychopharmacology 26 (3) (March 17): 368-375.
doi:10.1016/S0893-133X(01)00370-0.

Mefford, Joel, and John S Witte. 2012. “The Covariate’s Dilemma.” Edited by
Peter M. Visscher. PLoS Genetics 8 (11) (November 8): e1003096.
doi:10.1371/journal.pgen.1003096.

Mortazavi, Ali, Brian A Williams, Kenneth McCue, Lorian Schaeffer, and Barbara



124

Wold. 2008. “Mapping and Quantifying Mammalian Transcriptomes by RNA-
Seq.” Nature Methods 5 (7) (July 30): 621-628. doi:10.1038/nmeth.1226.

Nelder, J A, and Y Lee. 1992. “Likelihood, Quasi-Likelihood and
Pseudolikelihood: Some Comparisons.” Journal of the Royal Statistical
Society. Series B (Methodological) 54 (1): 273—-284.

Nelder, J. A. 2000. “Quasi-Likelihood and Pseudo-Likelihood Are Not the Same
Thing.” Journal of Applied Statistics 27 (8) (November 2): 1007-1011.
doi:10.1080/02664760050173328.

Nettleton, Dan, J. T. Gene Hwang, Rico A. Caldo, and Roger P. Wise. 2006.
“Estimating the Number of True Null Hypotheses from a Histogram of P
Values.” Journal of Agricultural, Biological, and Environmental Statistics 11
(3) (September): 337-356. doi:10.1198/108571106X129135.

Phipson, Belinda, and Gordon K Smyth. 2010. “Permutation P-Values Should
Never Be Zero: Calculating Exact P-Values When Permutations Are
Randomly Drawn.” Statistical Applications in Genetics and Molecular Biology
9 (1) (January 31): Article39. doi:10.2202/1544-6115.1585.

Pickrell, Joseph K, John C Marioni, Athma A Pai, Jacob F Degner, Barbara E
Engelhardt, Everlyne Nkadori, Jean-Baptiste Veyrieras, Matthew Stephens,
Yoav Gilad, and Jonathan K Pritchard. 2010. “Understanding Mechanisms
Underlying Human Gene Expression Variation with RNA Sequencing.”
Nature 464 (7289) (April 1): 768—772. doi:10.1038/nature08872.

Pirinen, Matti, Peter Donnelly, and Chris C A Spencer. 2012. “Including Known
Covariates Can Reduce Power to Detect Genetic Effects in Case-Control
Studies.” Nature Genetics 44 (8) (July 22): 848-851. doi:10.1038/ng.2346.

Pounds, S., and C. Cheng. 2006. “Robust Estimation of the False Discovery
Rate.” Bioinformatics 22 (16) (August 15): 1979-1987.
doi:10.1093/bioinformatics/btl328.

Ramskold, Daniel, Eric T Wang, Christopher B Burge, and Rickard Sandberg.
2009. “An Abundance of Ubiquitously Expressed Genes Revealed by Tissue
Transcriptome Sequence Data.” Edited by Lars Juhl Jensen. PLoS
Computational Biology 5 (12) (December 11): e1000598.
doi:10.1371/journal.pcbi.1000598.

Robinson, Laurence D, and Nicholas P Jewell. 1991. “Some Surprising Results
about Covariate Adjustment in Logistic Regression Models.” International
Statistical Review / Revue Internationale de Statistique 59 (2) (August): 227.
doi:10.2307/1403444.



125

Robinson, Mark D, Davis J McCarthy, and Gordon K Smyth. 2010. “edgeR: A
Bioconductor Package for Differential Expression Analysis of Digital Gene
Expression Data.” Bioinformatics 26 (1) (January 1): 139-140.
doi:10.1093/bioinformatics/btp616.

Robinson, Mark D, and Alicia Oshlack. 2010. “A Scaling Normalization Method
for Differential Expression Analysis of RNA-Seq Data.” Genome Biology 11
(3) (January): R25. doi:10.1186/gb-2010-11-3-r25.

Robinson, Mark D, and Gordon K Smyth. 2007. “Small-Sample Estimation of
Negative Binomial Dispersion, with Applications to SAGE Data.” Biostatistics
9 (2) (July 11): 321-332. doi:10.1093/biostatistics/kxm030.

Rocke, David M, Luyao Ruan, Yilun Zhang, J Jared Gossett, Blythe Durbin-
Johnson, and Sharon Aviran. 2015. “Excess False Positive Rates in
Methods for Differential Gene Expression Analysis Using RNA-Seq Data.”
doi:10.1101/020784.

Romano, Joseph P., and Azeem M. Shaikh. 2006. “Stepup Procedures for
Control of Generalizations of the Familywise Error Rate.” The Annals of
Statistics 34 (4) (August 1): 1850-1873. doi:10.1214/009053606000000461.

Si, Yaqing, and Peng Liu. 2013. “An Optimal Test with Maximum Average Power
While Controlling FDR with Application to RNA-Seq Data.” Biometrics 69 (3)
(September 26): 594-605. doi:10.1111/biom.12036.

Soneson, Charlotte, and Mauro Delorenzi. 2013. “A Comparison of Methods for
Differential Expression Analysis of RNA-Seq Data.” BMC Bioinformatics 14
(1) (January): 91. doi:10.1186/1471-2105-14-91.

Storey, John D, and Robert Tibshirani. 2003. “Statistical Significance for
Genomewide Studies.” Proceedings of the National Academy of Sciences
100 (16) (August 5): 9440-9445. doi:10.1073/pnas.1530509100.

Storey, John D. 2002. “A Direct Approach to False Discovery Rates.” Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 64 (3)
(August): 479-498. doi:10.1111/1467-9868.00346.

Stuart, Joshua M. 2003. “A Gene-Coexpression Network for Global Discovery of
Conserved Genetic Modules.” Science 302 (5643) (October 10): 249-255.
doi:10.1126/science.1087447.

Tarazona, Sonia, F. Garcia-Alcalde, Joaquin Dopazo, Alberto Ferrer, and Ana
Conesa. 2011. “Differential Expression in RNA-Seq: A Matter of Depth.”
Genome Research 21 (12) (December 1): 2213-2223.



126

doi:10.1101/gr.124321.111.

Utal, A.K, A.L Stopka, M Roy, and P.D Coleman. 1998. “PEP-19
Immunohistochemistry Defines the Basal Ganglia and Associated Structures
in the Adult Human Brain, and |Is Dramatically Reduced in Huntington’s
Disease.” Neuroscience 86 (4) (June): 1055-1063. doi:10.1016/S0306-
4522(98)00130-4.

Vinzenz, Erhardt, and Czado Claudia. 2009. “A Method for Approximately
Sampling High-Dimensional Count Variables with Prespecified Pearson
Correlation.”
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.1847.

Wu, H., Chi Wang, and Zhijin Wu. 2013. “A New Shrinkage Estimator for
Dispersion Improves Differential Expression Detection in RNA-Seq Data.”
Biostatistics 14 (2) (April 1): 232—243. doi:10.1093/biostatistics/kxs033.

Yekutieli, Daniel, and Yoav Benjamini. 2001. “Under Dependency.” The Annals of
Statistics 29 (4) (August 1): 1165-1188. doi:10.1214/a0s/1013699998.

Zaitlen, Noah, Sara Lindstrom, Bogdan Pasaniuc, Marilyn Cornelis, Giulio
Genovese, Samuela Pollack, Anne Barton, et al. 2012. “Informed
Conditioning on Clinical Covariates Increases Power in Case-Control
Association Studies.” Edited by Peter M. Visscher. PLoS Genetics 8 (11)
(November 8): e1003032. doi:10.1371/journal.pgen.1003032.

Zorn, C. 2005. “A Solution to Separation in Binary Response Models.” Political
Analysis 13 (2) (March 1): 157-170. doi:10.1093/pan/mpi009.



127

CURRICULUM VITAE
Seung Hoan Choi

Department of Biostatistics
Boston University
801 Massachusetts Ave, 3rd Floor
Boston, MA 02118
E-mail: seuchoi@bu.edu

Professional Interests

Statistical Analysis in Genetic and Genomic data, RNA-Sequencing Analysis
Methods, Genome-Wide Association Studies, Multiple Testing Correction
Methods, Pathway Analysis, Meta-Analysis, Big Data.

Education

Boston University, Ph.D. in Biostatistics (May 2016) Boston, MA

Boston University, M.A. in Biostatistics (May 2011)  Boston, MA

The State University of New York at Stony Brook, B.S. in Applied Math & Statistics

and Mathematics (Dec. 2008) Stony Brook, NY

Chungnam National University, B.A. in Business Administration (Feb. 2009)
Daejeon, South Korea

Research Experience

2009-Present Research Assistant, Department of Biostatistics, Boston University

2007-2008 Research Assistant, Department of Applied Math & Statistics. The
State University of New York at Stony Brook

Teaching Experience

2013-2015 Course Grader (BS723: Introduction to statistical Computing,
BS858: Statistical Genetics I), Department of Biostatistics, Boston
University

2012-2014 Teaching Assistant (Statistical Genetics Section in SIBS:
Summer Institute for Training in Biostatistics), Department of
Biostatistics, Boston University

2008 Teaching Assistant (AMS315: Data Analysis, AMS210: Linear
Algebra), Department of Applied Math & Statistics, The State
University of New York at Stony Brook

Awards and Honors

2016 Best Poster Presentation, Cohorts for Heart and Aging Research
in Genomic Epidemiology, Houston

2015 Best Poster Presentation, Genome Science Institute Research
Symposium, Boston University

2013 CHARGE Rotterdam meeting travel award, Framingham Heart

Study



2012

128

CHARGE Reykjavik meeting travel award, Framingham Heart
Study

2009-Present Graduate Research Assistant Scholarship Program, Boston

2008
2008

University

Cum Laude, The State University of New York at Stony Brook
Undergraduate Research and Creativity Activity Summer Research
Fellowship, The State University of New York at Stony Brook

Poster Presentations

2016

2015

2014

2013

2013

2012

2011

2009

Evaluation of Logistic Regression Models and Effect of Covariates for
Case-Control Study in RNA-Seq Analysis. Cohorts for Heart and Aging
Research in Genomic Epidemiology, Houston, TX

Evaluation of Logistic Regression Models and Effect of Covariates for
Case-Control Study in RNA-Seq Analysis. Genome Science Institute
Research Symposium, Boston, MA

Six novel loci associated with circulating VEGF levels identified by a meta-
analysis genome-wide association study. The American Society of
Human Genetics, San Diego, CA

Genetic Variants associated with incidence of late-onset Alzheimer’s
disease in Caucasians. Alzheimer's Association International
Conference, Boston, MA

Genetic Variants associated with incidence of late-onset Alzheimer’s
disease in Caucasians. Cohorts for Heart and Aging Research in
Genomic Epidemiology, Rotterdam, Netherland

Pathway Analysis of Genes Identified by Genome Wide Association Study
of Circulating Vascular Endothelial growth factors Levels. Cohorts for
Heart and Aging Research in Genomic Epidemiology, Reykjavik,
Iceland

Pathway Analysis of Genes Identified by Genome Wide Association Study
of Circulating Vascular Endothelial growth factors Levels. Genome
Science Institute Research Symposium, Boston, MA

Growth Mixture Modeling as an Exploratory Analysis Tool in Longitudinal
QTL. Undergraduate Research and Creative Activity, Stony Brook, NY

Publications

1. Choi SH, Ruggiero D, Sorice R, Song C, Nutile T, Vernon Smith A, Concas
MP, Traglia M, Barbieri C, Ndiaye NC, Stathopoulou MG, Lagou V, Maestrale
GB, Sala C, Debette S, Kovacs P, Lind L, Lamont J, Fitzgerald P, Tonjes A,
Gudnason V, Toniolo D, Pirastu M, Bellenguez C, Vasan RS, Ingelsson E,
Leutenegger AL, Johnson AD, DeStefano AL, Visvikis-Siest S, Seshadri S,
Ciullo M. Six Novel Loci Associated with Circulating VEGF Levels Identified by
a Meta-analysis of Genome-Wide Association Studies. PLoS Genet. 2016 Feb
24;12(2):e1005874. doi: 10.1371/journal.pgen.1005874.



129

2. Jun G, Ibrahim-Verbaas CA, Vronskaya M, Lambert JC, Chung J, Naj AC,
Kunkle BW, Wang LS, Bis JC, Bellenguez C, Harold D, Lunetta KL, Destefano
AL, Grenier-Boley B, Sims R, Beecham GW, Smith AV, Chouraki V, Hamilton-
Nelson KL, lkram MA, Fievet N, Denning N, Martin ER, Schmidt H, Kamatani
Y, Dunstan ML, Valladares O, Laza AR, Zelenika D, Ramirez A, Foroud TM,

Choi SH, Boland A, Becker T, Kukull WA, van der Lee SJ, Pasquier F,
Cruchaga C, Beekly D, Fitzpatrick AL, Hanon O, Gill M, Barber R, Gudnason
V, Campion D, Love S, Bennett DA, Amin N, Berr C, Tsolaki M, Buxbaum JD,
Lopez OL, Deramecourt V, Fox NC, Cantwell LB, Tarraga L, Dufouil C, Hardy
J, Crane PK, Eiriksdottir G, Hannequin D, Clarke R, Evans D, Mosley TH Jr,
Letenneur L, Brayne C, Maier W, De Jager P, Emilsson V, Dartigues JF,
Hampel H, Kamboh MI, de Bruijn RF, Tzourio C, Pastor P, Larson EB, Rotter
JI, O'Donovan MC, Montine TJ, Nalls MA, Mead S, Reiman EM, Jonsson PV,
Holmes C, St George-Hyslop PH, Boada M, Passmore P, Wendland JR,
Schmidt R, Morgan K, Winslow AR, Powell JF, Carasquillo M, Younkin SG,
Jakobsdottir J, Kauwe JS, Wilhelmsen KC, Rujescu D, N6then MM, Hofman A,
Jones L; IGAP Consortium, Haines JL, Psaty BM, Van Broeckhoven C,
Holmans P, Launer LJ, Mayeux R, Lathrop M, Goate AM, Escott-Price V,
Seshadri S, Pericak-Vance MA, Amouyel P, Williams J, van Duijn CM,
Schellenberg GD, Farrer LA. A novel Alzheimer disease locus located near the
gene encoding tau protein. Mol Psychiatry. 2016 Jan;21(1):108-117. doi:
10.1038/mp.2015.23.

3. Desikan RS, Schork AJ, Wang Y, Witoelar A, Sharma M, McEvoy LK, Holland
D, Brewer JB, Chen CH, Thompson WK, Harold D, Williams J, Owen MJ,
O'Donovan MC, Pericak-Vance MA, Mayeux R, Haines JL, Farrer LA,
Schellenberg GD, Heutink P, Singleton AB, Brice A, Wood NW, Hardy J,
Martinez M, Choi SH, DeStefano A, Ikram MA, Bis JC, Smith A, Fitzpatrick
AL, Launer L, van Duijn C, Seshadri S, Ulstein ID, Aarsland D, Fladby T,
Djurovic S, Hyman BT, Snaedal J, Stefansson H, Stefansson K, Gasser T,
Andreassen OA, Dale AM. Genetic overlap between Alzheimer's disease and
Parkinson's disease at the MAPT locus. Mol Psychiatry. 2015
Dec;20(12):1588-95. doi: 10.1038/mp.2015.6.

4. Desikan RS, Schork AJ, Wang Y, Thompson WK, Dehghan A, Ridker PM,
Chasman DI, McEvoy LK, Holland D, Chen CH, Karow DS, Brewer JB, Hess
CP, Williams J, Sims R, O'Donovan MC, Choi SH, Bis JC, lkram MA,
Gudnason V, DeStefano AL, van der Lee SJ, Psaty BM, van Duijn CM, Launer
L, Seshadri S, Pericak-Vance MA, Mayeux R, Haines JL, Farrer LA, Hardy J,
Ulstein ID, Aarsland D, Fladby T, White LR, Sando SB, Rongve A, Witoelar A,
Djurovic S, Hyman BT, Snaedal J, Steinberg S, Stefansson H, Stefansson K,
Schellenberg GD, Andreassen OA, Dale AM; Inflammation Working Group and
International Genomics of Alzheimer’s Disease Project (IGAP) and DemGene



130

Investigatorst. Polygenic Overlap Between C-Reactive Protein, Plasma Lipids,
and Alzheimer Disease. Circulation. 2015 Jun 9;131(23):2061-9. doi:
10.1161/CIRCULATIONAHA.115.015489.

5. International Genomics of Alzheimer's Disease Consortium (IGAP).
Convergent genetic and expression data implicate immunity in Alzheimer's
disease. Alzheimers Dement. 2015 Jun;11(6):658-71. doi:
10.1016/j.jalz.2014.05.1757.

6. Debette S, Ibrahim Verbaas CA, Bressler J, Schuur M, Smith A, Bis JC, Davies
G, Wolf C, Gudnason V, Chibnik LB, Yang Q, deStefano AL, de Quervain DJ,
Srikanth V, Lahti J, Grabe HJ, Smith JA, Priebe L, Yu L, Karbalai N, Hayward
C, Wilson JF, Campbell H, Petrovic K, Fornage M, Chauhan G, Yeo R, Boxall
R, Becker J, Stegle O, Mather KA, Chouraki V, Sun Q, Rose LM, Resnick S,
Oldmeadow C, Kirin M, Wright AF, Jonsdottir MK, Au R, Becker A, Amin N,
Nalls MA, Turner ST, Kardia SL, Oostra B, Windham G, Coker LH, Zhao W,
Knopman DS, Heiss G, Griswold ME, Gottesman RF, Vitart V, Hastie ND,

Zgaga L, Rudan |, Polasek O, Holliday EG, Schofield P, Choi SH, Tanaka T,
An Y, Perry RT, Kennedy RE, Sale MM, Wang J, Wadley VG, Liewald DC,
Ridker PM, Gow AJ, Pattie A, Starr JM, Porteous D, Liu X, Thomson R,
Armstrong NJ, Eiriksdottir G, Assareh AA, Kochan NA, Widen E, Palotie A,
Hsieh YC, Eriksson JG, Vogler C, van Swieten JC, Shulman JM, Beiser A,
Rotter J, Schmidt CO, Hoffmann W, N6then MM, Ferrucci L, Attia J, Uitterlinden
AG, Amouyel P, Dartigues JF, Amieva H, Raikkonen K, Garcia M, Wolf PA,
Hofman A, Longstreth WT Jr, Psaty BM, Boerwinkle E, DeJager PL, Sachdev
PS, Schmidt R, Breteler MM, Teumer A, Lopez OL, Cichon S, Chasman DI,
Grodstein F, Muller-Myhsok B, Tzourio C, Papassotiropoulos A, Bennett DA,
lkram MA, Deary IJ, van Duijn CM, Launer L, Fitzpatrick AL, Seshadri S,
Mosley TH Jr; Cohorts for Heart and Aging Research in Genomic Epidemiology
Consortium. Genome-wide studies of verbal declarative memory in
nondemented older people: the Cohorts for Heart and Aging Research in
Genomic Epidemiology consortium. Biol Psychiatry. 2015 Apr 15;77(8):749-63.
doi: 10.1016/j.biopsych.2014.08.027.

7. van der Lee SJ, Holstege H, Wong TH, Jakobsdottir J, Bis JC, Chouraki V, van
Rooij JG, Grove ML, Smith AV, Amin N, Choi SH, Beiser AS, Garcia ME, van
|[Jcken WF, Pijnenburg YA, Louwersheimer E, Brouwer RW, van den Hout MC,
Oole E, Eirkisdottir G, Levy D, Rotter JI, Emilsson V, O'Donnell CJ, Aspelund
T, Uitterlinden AG, Launer LJ, Hofman A, Boerwinkle E, Psaty BM, DeStefano
AL, Scheltens P, Seshadri S, van Swieten JC, Gudnason V, van der Flier WM,
Ikram MA, van Duijn CM. PLD3 variants in population studies. Nature. 2015
Apr 2;520(7545):E2-3. doi: 10.1038/nature14038.

8. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL,



131

Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall
C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R; International Parkinson's
Disease Genomics Consortium (IPDGC); Parkinson's Study Group (PSG)
Parkinson's Research: The Organized GENetics Initiative (PROGENI);
23andMe; GenePD; NeuroGenetics Research Consortium (NGRC); Hussman
Institute of Human Genomics (HIHG); Ashkenazi Jewish Dataset Investigator;
Cohorts for Health and Aging Research in Genetic Epidemiology
(CHARGE); North American Brain Expression Consortium (NABEC); United
Kingdom Brain Expression Consortium (UKBEC); Greek Parkinson's Disease
Consortium; Alzheimer Genetic Analysis Group, lkram MA, loannidis JP,
Hadjigeorgiou GM, Bis JC, Martinez M, Perimutter JS, Goate A, Marder K,
Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K,
Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott
WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB. Large-scale
meta-analysis of genome-wide association data identifies six new risk loci for
Parkinson's  disease. Nat Genet. 2014 Sep;46(9):989-93. doi:
10.1038/ng.3043.

lbrahim-Verbaas CA, Fornage M, Bis JC, Choi SH, Psaty BM, Meigs JB, Rao
M, Nalls M, Fontes JD, O'Donnell CJ, Kathiresan S, Ehret GB, Fox CS, Malik
R, Dichgans M, Schmidt H, Lahti J, Heckbert SR, Lumley T, Rice K, Rotter JI,
Taylor KD, Folsom AR, Boerwinkle E, Rosamond WD, Shahar E, Gottesman
RF, Koudstaal PJ, Amin N, Wieberdink RG, Dehghan A, Hofman A, Uitterlinden
AG, Destefano AL, Debette S, Xue L, Beiser A, Wolf PA, Decarli C, Ikram MA,
Seshadri S, Mosley TH Jr, Longstreth WT Jr, van Duijn CM, Launer LJ.
Predicting stroke through genetic risk functions: the CHARGE Risk Score
Project. Stroke. 2014 Feb;45(2):403-12. doi:
10.1161/STROKEAHA.113.003044.

10.Weinstein G, Beiser AS, Choi SH, Preis SR, Chen TC, Vorgas D, Au R, Pikula

11.

A, Wolf PA, DeStefano AL, Vasan RS, Seshadri S. Serum brain-derived
neurotrophic factor and the risk for dementia: the Framingham Heart Study.
JAMA Neurol. 2014 Jan;71(1):55-61. doi: 10.1001/jamaneurol.2013.4781.

Escott-Price V, Bellenguez C, Wang LS, Choi SH, Harold D, Jones L,
Holmans P, Gerrish A, Vedernikov A, Richards A, DeStefano AL, Lambert JC,
Ibrahim-Verbaas CA, Naj AC, Sims R, Jun G, Bis JC, Beecham GW, Grenier-
Boley B, Russo G, Thornton-Wells TA, Denning N, Smith AV, Chouraki V,
Thomas C, lkram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF,
Schmidt H, Kunkle B, Dunstan ML, Vronskaya M; United Kingdom Brain
Expression Consortium, Johnson AD, Ruiz A, Bihoreau MT, Reitz C, Pasquier
F, Hollingworth P, Hanon O, Fitzpatrick AL, Buxbaum JD, Campion D, Crane
PK, Baldwin C, Becker T, Gudnason V, Cruchaga C, Craig D, Amin N, Berr C,



12.

13.

14.

132

Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S,
Letenneur L, Hernandez |, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate
AM, Fiévet N, Huentelman MJ, Gill M, Brown K, Kamboh MI, Keller L,
Barberger-Gateau P, McGuinness B, Larson EB, Myers AJ, Dufouil C, Todd S,
Wallon D, Love S, Rogaeva E, Gallacher J, George-Hyslop PS, Clarimon J,
Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P, Spalletta G, Proitsi P,
Collinge J, Sorbi S, Garcia FS, Fox NC, Hardy J, Naranjo MC, Bosco P, Clarke
R, Brayne C, Galimberti D, Scarpini E, Bonuccelli U, Mancuso M, Siciliano G,
Moebus S, Mecocci P, Zompo MD, Maier W, Hampel H, Pilotto A, Frank-Garcia
A, Panza F, Solfrizzi V, Caffarra P, Nacmias B, Perry W, Mayhaus M, Lannfelt
L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez
V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W,
Razquin C, Pastor P, Mateo |, Owen MJ, Faber KM, Jonsson PV, Combarros
O, O'Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH
Jr, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P,
Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA,
Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS,
Boerwinkle E, Riemenschneider M, Boada M, Hiltunen M, Martin ER, Schmidt
R, Rujescu D, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Néthen MM,
Graff C, Psaty BM, Haines JL, Lathrop M, Pericak-Vance MA, Launer LJ, Van
Broeckhoven C, Farrer LA, van Duijn CM, Ramirez A, Seshadri S,
Schellenberg GD, Amouyel P, Williams J; Cardiovascular Health Study (CHS).
Gene-wide analysis detects two new susceptibility genes for Alzheimer's
disease. PLoS One. 2014 Jun 12;9(6):e94661. doi:
10.1371/journal.pone.0094661

Bis JC, DeStefano A, Liu X, Brody JA, Choi SH, Verhaaren BF, Debette S,
Ikram MA, Shahar E, Butler KR Jr, Gottesman RF, Muzny D, Kovar CL, Psaty
BM, Hofman A, Lumley T, Gupta M, Wolf PA, van Duijn C, Gibbs RA, Mosley
TH, Longstreth WT Jr, Boerwinkle E, Seshadri S, Fornage M. Associations of
NINJ2 sequence variants with incident ischemic stroke in the Cohorts for Heart
and Aging in Genomic Epidemiology (CHARGE) consortium. PLoS One. 2014
Jun 24;9(6):€99798. doi: 10.1371/journal.pone.0099798

Chen H, Choi SH, Hong J, Lu C, Milton JN, Allard C, Lacey SM, Lin H, Dupuis
J. Rare genetic variant analysis on blood pressure in related samples. BMC
Proc. 2014 Jun 17;8(Suppl 1):S35. doi: 10.1186/1753-6561-8-S1-S35.

Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C,
DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, Russo G, Thorton-
Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D,
Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan

ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig



133

D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA,
Evans D, Lovestone S, Letenneur L, Mordén FJ, Rubinsztein DC, Eiriksdottir G,
Sleegers K, Goate AM, Fiévet N, Huentelman MW, Gill M, Brown K, Kamboh
MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers
AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-
Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P,
Spalletta G, Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy
J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M,
Matthews F; European Alzheimer's Disease Initiative (EADI); Genetic and
Environmental Risk in Alzheimer's Disease; Alzheimer's Disease Genetic
Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology,
Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M,
Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L,
Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V,
Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin
C, Pastor P, Mateo |, Owen MJ, Faber KM, Jonsson PV, Combarros O,
O'Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH Jr,
Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P,
Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA,
Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS,
Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt
R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A,
Nothen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M,
Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C,
Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P. Meta-
analysis of 74,046 individuals identifies 11 new susceptibility loci for
Alzheimer's disease. Nat Genet. 2013 Dec;45(12):1452-8. doi:
10.1038/ng.2802.

15.Schilling S, DeStefano AL, Sachdev PS, Choi SH, Mather KA, DeCarli CD,
Wen W, Hagh P, Raz N, Au R, Beiser A, Wolf PA, Romero JR, Zhu YC, Lunetta
KL, Farrer L, Dufouil C, Kuller LH, Mazoyer B, Seshadri S, Tzourio C, Debette
S. APOE genotype and MRI markers of cerebrovascular disease: systematic
review and meta-analysis. Neurology. 2013 Jul 16;81(3):292-300. doi:
10.1212/WNL.0b013e31829bfda4.

16.Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro
R, Appel K, Bartecek R, Bergmann @, Bernard M, Brown AA, Cannon DM,
Chakravarty MM, Christoforou A, Domin M, Grimm O, Hollinshead M, Holmes
AJ, Homuth G, Hottenga JJ, Langan C, Lopez LM, Hansell NK, Hwang KS, Kim
S, Laje G, Lee PH, Liu X, Loth E, Lourdusamy A, Mattingsdal M, Mohnke S,
Maniega SM, Nho K, Nugent AC, O'Brien C, Papmeyer M, Putz B, Ramasamy
A, Rasmussen J, Rijpkema M, Risacher SL, Roddey JC, Rose EJ, Ryten M,
Shen L, Sprooten E, Strengman E, Teumer A, Trabzuni D, Turner J, van Eijk



134

K, van Erp TG, van Tol MJ, Wittfeld K, Wolf C, Woudstra S, Aleman A, Alhusaini
S, Almasy L, Binder EB, Brohawn DG, Cantor RM, Carless MA, Corvin A,
Czisch M, Curran JE, Davies G, de Almeida MA, Delanty N, Depondt C,
Duggirala R, Dyer TD, Erk S, Fagerness J, Fox PT, Freimer NB, Gill M, Goring
HH, Hagler DJ, Hoehn D, Holsboer F, Hoogman M, Hosten N, Jahanshad N,
Johnson MP, Kasperaviciute D, Kent JW Jr, Kochunov P, Lancaster JL, Lawrie
SM, Liewald DC, Mandl R, Matarin M, Mattheisen M, Meisenzahl E, Melle |,
Moses EK, Muhleisen TW, Nauck M, Nothen MM, Olvera RL, Pandolfo M, Pike
GB, Puls R, Reinvang |, Renteria ME, Rietschel M, Roffman JL, Royle NA,
Rujescu D, Savitz J, Schnack HG, Schnell K, Seiferth N, Smith C, Steen VM,
Valdés Hernandez MC, Van den Heuvel M, van der Wee NJ, Van Haren NE,
Veltman JA, Volzke H, Walker R, Westlye LT, Whelan CD, Agartz |, Boomsma
DI, Cavalleri GL, Dale AM, Djurovic S, Drevets WC, Hagoort P, Hall J, Heinz
A, Jack CR Jr, Foroud TM, Le Hellard S, Macciardi F, Montgomery GW, Poline
JB, Porteous DJ, Sisodiya SM, Starr JM, Sussmann J, Toga AW, Veltman DJ,
Walter H, Weiner MW; Alzheimer's Disease Neuroimaging Initiative; EPIGEN
Consortium; IMAGEN Consortium; Saguenay Youth Study Group, Bis JC,
lkram MA, Smith AV, Gudnason V, Tzourio C, Vernooij MW, Launer LJ, DeCarli
C, Seshadri S; Cohorts for Heart and Aging Research in Genomic
Epidemiology Consortium, Andreassen OA, Apostolova LG, Bastin ME,
Blangero J, Brunner HG, Buckner RL, Cichon S, Coppola G, de Zubicaray Gl,
Deary IJ, Donohoe G, de Geus EJ, Espeseth T, Fernandez G, Glahn DC,
Grabe HJ, Hardy J, Hulshoff Pol HE, Jenkinson M, Kahn RS, McDonald C,
Mcintosh AM, McMahon FJ, McMahon KL, Meyer-Lindenberg A, Morris DW,
Muller-Myhsok B, Nichols TE, Ophoff RA, Paus T, Pausova Z, Penninx BW,
Potkin SG, Samann PG, Saykin AJ, Schumann G, Smoller JW, Wardlaw JM,
Weale ME, Martin NG, Franke B, Wright MJ, Thompson PM; Enhancing Neuro
Imaging Genetics through Meta-Analysis Consortium. ldentification of common
variants associated with human hippocampal and intracranial volumes. Nat
Genet. 2012 Apr 15;44(5):552-61. doi: 10.1038/ng.2250.

17.Bis JC, DeCarli C, Smith AV, van der Lijn F, Crivello F, Fornage M, Debette S,

Shulman JM, Schmidt H, Srikanth V, Schuur M, Yu L, Choi SH, Sigurdsson
S, Verhaaren BF, DeStefano AL, Lambert JC, Jack CR Jr, Struchalin M,
Stankovich J, Ibrahim-Verbaas CA, Fleischman D, Zijdenbos A, den Heijer T,
Mazoyer B, Coker LH, Enzinger C, Danoy P, Amin N, Arfanakis K, van Buchem
MA, de Bruijn RF, Beiser A, Dufouil C, Huang J, Cavalieri M, Thomson R,
Niessen WJ, Chibnik LB, Gislason GK, Hofman A, Pikula A, Amouyel P,
Freeman KB, Phan TG, Oostra BA, Stein JL, Medland SE, Vasquez AA, Hibar
DP, Wright MJ, Franke B, Martin NG, Thompson PM; Enhancing Neuro
Imaging Genetics through Meta-Analysis Consortium, Nalls MA, Uitterlinden
AG, Au R, Elbaz A, Beare RJ, van Swieten JC, Lopez OL, Harris TB, Chouraki
V, Breteler MM, De Jager PL, Becker JT, Vernooij MW, Knopman D, Fazekas
F, Wolf PA, van der Lugt A, Gudnason V, Longstreth WT Jr, Brown MA, Bennett



135

DA, van Duijn CM, Mosley TH, Schmidt R, Tzourio C, Launer LJ, lkram MA,
Seshadri S; Cohorts for Heart and Aging Research in Genomic Epidemiology
Consortium. Common variants at 12914 and 12924 are associated with
hippocampal volume. Nat Genet. 2012 Apr 15;44(5):545-51. doi:
10.1038/ng.2237.

18.Choi SH, Liu C, Dupuis J, Logue MW, Jun G. Using linkage analysis of large

pedigrees to guide association analyses. BMC Proc. 2011 Nov 29;5 Suppl
9:S79. doi: 10.1186/1753-6561-5-S9-S79.

19.Debette S, Visvikis-Siest S, Chen MH, Ndiaye NC, Song C, Destefano A, Safa

R, Azimi Nezhad M, Sawyer D, Marteau JB, Xanthakis V, Siest G, Sullivan L,

Pfister M, Smith H, Choi SH, Lamont J, Lind L, Yang Q, Fitzgerald P,
Ingelsson E, Vasan RS, Seshadri S. ldentification of cis- and trans-acting
genetic variants explaining up to half the variation in circulating vascular
endothelial growth factor levels. Circ Res. 2011 Aug 19;109(5):554-63. doi:
10.1161/CIRCRESAHA.111.243790.

20.Chang SW, Choi SH, Li K, Fleur RS, Huang C, Shen T, Ahn K, Gordon D,

Kim W, Wu R, Mendell NR, Finch SJ. Growth mixture modeling as an
exploratory analysis tool in longitudinal quantitative trait loci analysis. BMC
Proc. 2009 Dec 15;3 Suppl 7:S112.

21.Huang C, Li K, Fleur RS, Chang SW, Choi SH, Shen T, Shin SY, Finch SJ,

Mendell NR. Family-based analysis of a myocardial infarction endophenotype:
comparison of sampling designs. BMC Proc. 2009 Dec 15;3 Suppl 7:S120.



