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ABSTRACT

The objective of this dissertation is to investigate the impact of important market

participants such as Mutual Funds, Hedge Funds and the Federal Reserve Bank on

the equilibrium equity premium, risk free rate and asset volatility and to analyze the

effect of these institutions on risk shifting, portfolio allocation and financial stability.

Specific features of institutional investors and central banks as well as their role in

financial markets are reviewed and analyzed in Chapter 1.

In Chapter 2, it is shown that the competitive pressure to beat a benchmark may

induce institutional trading behavior that exposes retail investors to tail risk. In our

model, institutional investors are different from a retail investor because they derive

higher utility when they outperform the benchmark. This forces institutions to take

on leverage to over-invest in the benchmark. Institutions execute fire sales when the

benchmark asset experiences negative shocks. This behavior increases market volatil-

ity, raising the tail risk exposure of the retail investor. Nevertheless, ex-post, tail risk

is only short lived, all investors survive in the long run under standard conditions,

and the most patient investor dominates in the sense that she has the highest con-
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sumption wealth ratio. Ex-ante, however, benchmarking is welfare reducing for the

retail investor, and beneficial only to the impatient institutional investor.

Chapter 3 presents an analysis on how monetary authorities seeking to stabilize

inflation, output and smooth interest rates distort the term structure of interest rates

and prices of risk relative to an economy where central authorities adjust the money

supply without taking into consideration the slope of the yield curve. Closed-form

expressions for all equilibrium quantities are presented and the impact of quantitative

easing on prices, risk premium and volatility of financial markets instruments, such

as stocks and bonds, are evaluated. The changes in macroeconomic variables such

as consumption, money demand and investment policies are also investigated. Under

the adopted parametrization, quantitative easing is welfare improving. In addition,

quantitative easing increases nominal bond and equity volatility, while reducing both

real and nominal bond yields for all maturities.
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Chapter 1

Introduction

In September of 2008, global financial markets experienced the worst disruption since

the Great Depression of 1929. The collapse of the fourth largest investment bank

in U.S. spread panic across the financial system, leading to subsequent failures of

commercial and investment banks, insurance companies and non-financial corpora-

tions. In an effort to understand the main factors and actors responsible for the crisis,

many regulators and academics started to investigate the role played by financial

intermediaries. Their main concern was that the sheer size of these companies and

their trading pattern could potentially overexpose their companies to systemic risk

and trigger fire sales events, constituting a threat to the stability of financial markets.

Nearly a decade after the crisis, some of these investment companies have an even

bigger balance sheet and concerns about systemic risk prevail.

According to the 2015 report1 released by the Investment Companies Institute

(ICI), the U.S.-registered investment companies managed U$ 18.2 trillion dollars at

year-end of 2014. Only U.S. mutual fund and exchange-traded fund (ETF) account

for U$ 17.8 trillion of these assets. In fact, since 1997, the assets under management

of these firms grew 287%. The substantial growth of these financial institutions in

the past quarter of century is often justified by the accumulation of wealth of the

Baby Boom Generation, the aging of the U.S. population and the gradual change of

employer-based retirement systems.

1https://www.ici.org/pdf/2015_factbook.pdf.

https://www.ici.org/pdf/2015_factbook.pdf
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The colossal size of these companies is better put into perspective when we ana-

lyze the share of the equity and debt market owned by them. According to the same

report, by the end of 2014, investment companies hold roughly 30% of the outstand-

ing shares of U.S. equity market and 46% of the outstanding commercial papers. In

addition, other characteristics present in the industry, such as benchmarking incen-

tives and misalignment of interest between investors and managers, could potentially

induce trading behavior that is different from what is predicted by mean-variance

theory. Consequently, these firms’ trades could have a significant impact on prices

and volatilities of financial securities.

To investigate the effects induced by investment companies on financial markets

and their consequences for financial stability, I present in Chapter 2 an asset-pricing

model that allows to capture how the industry’s incentives lead to holdings that de-

viate from mean-variance portfolios and study the effects on volatility. The chapter

is divided in five main parts. Section 2.1 has an introduction on the topic of in-

stitutional investors as well as a literature review. Section 2.2 has the description

of the model. We indicate the available assets in the economy and describe agents’

preference. Specifically, the section contains a discussion on how we capture the bench-

marking incentives of investment companies. In Section 2.3, we describe the concept

of an exchange economy equilibrium in the presence of institutional investors. We

characterize the effect of benchmarking incentives on assets, portfolio plans and con-

sumption policies. The fourth part, Section 2.4, studies the systemic implications of

benchmarking incentives. Using the general equilibrium expressions derived in previ-

ous sections, we measure the impact of benchmarking on investors’ tail risk. We rely

on portfolio returns’ value-at-risk of financial institutions to access their exposure to

disaster events. In addition, we show what are the survival implications for survival

of agents that have benchmarking incentives. We also investigate which market par-
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ticipants are better off in the presence of investment companies that have incentives

to benchmark. Section 2.5 concludes.

Another key agent that played a crucial role during the crisis’ unwind was the

Federal Reserve Bank of United States (FED). In the aftermath of the financial

crisis of 2007-2009, the FED relied on unconventional and untested measures, such

as acquisition of mortgages securities, commercial papers and direct lending to non-

banks institutions, to restore financial stability and to prevent the collapsed of the

entire financial system. In essence, all these measures intend to ease loan conditions for

non-financial firms by supplying banks with a quantity of new money equal to the value

of the purchased assets. These measures are commonly referred to as Quantitative

Easing (QE).

The consecutive rounds of quantitative easing in U.S. extended the FED’s balance

sheet from less than $1 trillion dollars in 2007 to more than $4 trillion dollars in

2015. Other central banks around the world, such as the European Central Bank

(ECB), the People’s Bank of China (PBC) and the Bank of Japan (BOJ), have also

adopted similar policies in order to restore liquidity in financial markets. However,

several questions about the effectiveness of QE remain unsettled. First, it is still

unclear wether or not this massive flood of new cash has become another source of

uncertainty as central banks start selling these assets and reducing the money supply,

increasing market volatility. Second, it is not clear wether or not the large and cheap

money supply has stimulated reckless behavior of markets’ participants, contributing

to riskier exposure of financial institutions. Third, despite the relative success in

battling short-term deflation, central banks still struggle to boost markets’ confidence,

making firms reluctant to invest and hire. Consequently, the persistent unemployment

and sluggish economic recovery present a challenge for the central bank’s aim of

keeping low levels of medium and long-term inflation. Fourth, the massive inflow of
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money into emerging markets could potentially be a source of destabilization of these

financial markets, adding more global uncertainty and potentially feeding this risk

back to developed economies.

To address some of these questions, Chapter 3 presents continuous-time produc-

tion based monetary economy that investigate how central banks distort risk by seek-

ing to smooth financial variables through monetary policy. The chapter is divided

in four parts. Section 3.1 has an introduction on the topic monetary asset pricing

as well as a review literature. Section 3.2 has the description of the model. The role

of the central bank is outlined in this section. It also contains the complete char-

acterization of the equilibrium with closed-form expressions for the macro-financial

variables. The third part, Section 3.3, contains the numerical analysis of the model.

It discusses how quantitative easing impacts volatility, equity and term premium. A

welfare analysis shows that central banks’ interventions that smooth yield curve is

welfare improving. Last, the analysis of dynamics of output and price level quantify

how these macroeconomic variables are impacted by monetary shocks. Section 3.4

concludes.
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Chapter 2

The Systemic Effects of Benchmarking

2.1 Introduction

The asset management industry has grown exponentially over the past decades. Figure

3·1 displays the time series of assets under management by hedge funds worldwide,

which have grown from $100 billion in 1997 to roughly $2.5 trillion in 2014. Other

types of funds, such as mutual funds and index funds, have experienced similar growth.

Because of their sheer size, the trading behavior of funds can impact prices and

risks in financial markets in non-standard ways. This has sparked a discussion among

regulators and the media about the potential risks that asset management may pose to

financial stability. In this paper, we provide some first theoretical answers to questions

about potential threats that the asset management industry may pose to the stability

of financial markets.

One key feature of the asset management industry is that a manager is com-

pensated for the performance of the managed portfolio in excess of a predetermined

benchmark.1 This so called “benchmarking” incentivizes managers to invest in ways

that deviate from the standard theory. For example, Basak and Pavlova (2013), Bren-

nan (1993), Buffa et al. (2015), Cuoco and Kaniel (2011), Roll (1992), and others show

1Ma et al. (2015) document that about three-quarters of all mutual fund managers in the U.S.
receive performance-linked compensation. Indeed, when an individual investor delegates the manage-
ment of her portfolio to a manager that can exert effort to become informed about the distribution of
returns, then the optimal contract in this principal-agent setting is one that compensates the man-
ager for her performance in excess of a benchmark; see, e.g., van Binsbergen et al. (2008), Cvitanić
et al. (2014), Cvitanić et al. (2006), Li and Tiwari (2009), and Stoughton (1993).
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that benchmarking incites managers to overinvest in stocks that are highly correlated

with their benchmarks. Given this specific feature of the asset management industry,

the Financial Stability Oversight Council (FSOC) asks in a Notice released in De-

cember 2014 to which extent benchmarking can “create incentives to alter portfolio

allocation in ways that [...] do not take into account risks to the investment vehicle

or the broader financial markets?”2

We answer this question by analyzing a pure-exchange economy consisting of

a retail and two institutional investors who can invest in a benchmark and a non-

benchmark stock, and who can borrow and lend from each other. Stocks are in positive

net supply, and have price processes that may jump. Time runs continuously from 0

to infinity, and investors consume at all periods of time. The retail investor derives

standard log-utility from consumption, and can thus be interpreted as an individual

mean-variance investor. The institutional investors, on the other hand, derive higher

log-utility from consumption in states of the world in which the benchmark stock

outperforms relative to the non-benchmark stock. These preferences incentivize our

institutional investors to gain higher exposures to the benchmark stock than the

retail investor, consistent with the behavior of managers whose performances are

evaluated relative to a benchmark. Consequently, our institutional investors can be

interpreted as asset managers who derive log-utility from the compensation they

obtain for managing portfolios.

[Figure 1 about here.]

Investors in our model are heterogenous because they differ from each other

through their benchmarking and their time preferences. Despite the complexity of

our model, we can solve for all general equilibrium quantities in semi-closed form

2Notice Seeking Comment on Asset Management Products and Activities, Docket No. FSOC-
2014-0001, pp. 11-12.
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using the Fourier inverse methodology of Martin (2013). This allows us to run com-

parative statistics to analyze the systemic effects of benchmarking by measuring the

tail risk exposures of our retail and institutional investors in economies with differ-

ent benchmarking incentives. It also allows us to carry out a survival and a welfare

analysis.

Our main finding can be summarized as follows: Stronger benchmarking incen-

tives lead to higher (lower) tail risk exposure of the retail investor and the aggregate

market when the benchmark stock underperforms (outperforms). More precisely, we

find that stronger benchmarking incentives incite institutional investors to take on

leverage to overexpose themselves to the benchmark stock. This results in consump-

tion and portfolio plans of institutional investors that are highly sensitive to the

relative performance of the benchmark in states of the world in which the benchmark

underperforms. Institutional investors react strongly to news in such states of the

world. They trade large amounts of the stocks, resulting in large market volatility.

If very bad news about the benchmark arrive in the form of a jump, then institu-

tional investors initiate fire sales. That is, they sell large amounts of the benchmark

stock at a discounted price, and buy large amounts of the non-benchmark stock at

a premium price. This constitutes a flight-to-quality phenomenon. Even though this

behavior reduces the tail risk exposure of the institutional investors, higher volatility

and fire sales increase the tail risk exposure of the retail investor and the aggregate

market in bad states of the benchmark. In contrast, institutional investors carry out

buy-and-hold strategies in states of the world in which the benchmark outperforms.

This behavior reduces market volatility and therefore also the tail risk exposure of the

retail investor and the aggregate market in states of the world in which the benchmark

outperforms. However, because institutional investors barely react to news in good

states of the benchmark, they end up exposed to higher tail risk. Overall, with large
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benchmarking incentives, the retail investor and the aggregate market are exposed

to high tail risk in states of the world in which the institutional investor is exposed

to low tail risk, and viceversa. Benchmarking therefore introduces a channel through

which the trading behavior of institutional investors can impact the tail risk exposure

of the retail investor and the market.

We extend our analysis by considering the costs and benefits of benchmarking ex

post and ex ante. We find that benchmarking does not affect the long term perfor-

mance of our investors. All investors survive and become infinitely rich in the long

run under the mild condition that at least one stock has positive expected dividend

rate. We also find that the most patient investor dominates in the long run, regardless

of the benchmarking incentives of our institutional investors. As a result, the expo-

sure to tail risk borne by the retail investor is only short lived, and does not affect

her ex post performance in the long run. Ex ante, however, benchmarking is disad-

vantageous to the retail investor, and beneficial only to the impatient institutional

investor. We establish this fact by measuring the equivalent variation of consumption

for economies with and without benchmarking incentives. This analysis reveals that

the retail investor always needs to consume less in a world without benchmarking

incentives to achieve the same utility as in a world with benchmarking incentives.

The opposite result only holds for the impatient institutional investor. Consequently,

benchmarking is welfare reducing for the retail investor and potentially also for the

patient institutional investor ex ante, even though it does not affect the long term

performance of our investors ex post.

The results of our theoretical study have important implications for the regula-

tion of the asset management industry. Our findings indicate that benchmarking can

create incentives for asset managers to alter portfolios in ways that do not fully take

into account their effects on the tail risk exposure of individual investors and the
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aggregate market. Our results suggest that stronger benchmarking incentives gener-

ally make individual investors and potentially also patient fund managers worse off

ex ante due to an increased tail risk exposure when compared to a world without

benchmarking incentives. Still, tail risk does not materialize in the long run. These

results indicate that it is imperative for regulators to formulate precise objectives for

a potential regulation of the asset management industry. If the regulator is concerned

about investor failure, then our results suggest that there may not be any scope for

regulation. On the other hand, if the regulator is concerned about the tail risk ex-

posure of retail investors, then regulating the compensation packages offered to fund

managers may be one viable option. However, this option comes at the cost of making

fund managers worse off ex ante.

Our results also indicate that the regulation of the asset management industry

needs to be designed differently than the regulation of banks. We find that in an

economy with benchmarking, the retail investor and the aggregate market are only

exposed to low tail risk in states of the world in which institutional investors are

exposed to high tail risk. Consequently, standard regulatory tools for banks that

target their tail risk exposure, such as value-at-risk measurements and stress testing,

may not be able to identify scenarios in which retail investors and the aggregate

market are at risk of tail events. Because the higher tail risk exposure of the retail

investor and the aggregate market in our model is induced by frequent and large

trades by institutional investors, one potential tool for controlling for this effect may

be transaction taxes. However, transaction taxes may also affect the retail investor

in negative ways. Our results highlight that there is a need for further research that

carefully analyzes the costs and the benefits of a potential regulation of the asset

management industry.

This chapter is organized as follows. The remainder of this Section discusses the
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related literature. Section 2.2 introduces our model and discusses its main features.

We solve for the general equilibrium of our model in Section 2.3. Section 2.4 contains

our main results on the tail risk, survival, and welfare effects of benchmarking. Section

2.5 concludes. Appendix A.1 contains the proofs of our results, and one adapting the

Fourier inverse methodology of Martin (2013) for our setting.

2.1.1 Related literature

The model we formulate in this paper is closely related to the reduced-form model

of Basak and Pavlova (2013). Unlike Basak and Pavlova (2013), our institutional

investors consume at all times, and their marginal utility of consumption is increasing

in the dividend ratio attributed to the benchmark rather than in the dividend level.

Our institutional investors are heterogenous, allowing us to also analyze the impact

of time discount parameters on prices and risks in our market. We also allow for

jumps in the dividend and stock price processes. By incorporating jumps, we can

evaluate the impact of unanticipated negative news on portfolio allocations, stock

prices, volatilities, and tail risk. This is a key ingredient of our analysis of the systemic

effects of benchmarking. Despite these differences, asset prices in our model behave

comparably to asset prices in Basak and Pavlova (2013), and we can capture similar

features of managerial compensation.

Our results contribute to several strands of literature. First, we contribute to the

literature on institutional investors and their impact on asset prices.3 Consistent with

the existing literature, our institutional investors face incentives that incite them

to tilt their portfolios towards their benchmarks; see Brennan (1993), Gómez and

Zapatero (2003), Kapur and Timmermann (2005), and Roll (1992), among others.

This leads to an asset class effect that raises the price of the benchmark stock relative

to a similar non-benchmark stock (Cuoco and Kaniel (2011), Basak and Pavlova

3Stracca (2006) provides an extensive survey of this literature.
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(2013), and Hodor (2014)). It also induces an increase in the volatility of our stocks

(Basak and Pavlova (2013) and Buffa et al. (2015)). However, we differ from and

extend this literature in several ways. We do not consider the principal-agent problem

underlying the decision of an individual investor to delegate the management of her

wealth to a portfolio manager. We also neither derive nor model the optimal contract

between a principal (investor) and an agent (manager) in this setting. Instead, we

follow Basak and Pavlova (2013) and take a reduced-form approach to modeling the

incentives faced by institutional investors. This choice introduces sufficient tractability

to be able to solve the general equilibrium of our model is semi-closed form and to

carry out important comparative statics. In contrast to the existing literature, we also

allow for dividend jumps in our model. We find that even when just one asset has

an underlying dividend process that jumps, jump risk may spread to stocks whose

dividend processes do not jump. This is due to the fact that all investors update

their portfolio holdings when a jump occurs, changing the demand for all stocks and

affecting all stock prices. We also find that jumps in asset prices become less severe as

institutional investors have stronger benchmarking incentives. This is primarily driven

by the fact that institutional investors hold on to their stocks when benchmarking

incentives are high.

Second, our results contribute to the literature on the costs and benefits of bench-

marking. Admati and Pfleiderer (1997) analyze the use benchmarks in compensation

packages for managers, and find that benchmarking may result in suboptimal risk

sharing and portfolio choices. However, van Binsbergen et al. (2008) argue that these

negative effects may be offset by the benefits of benchmarking in aligning diversi-

fication and investment horizon incentives. Das and Sundaram (2002) compare two

types of performance-based compensation structures for managers, linear fulcrum fees

and option-like incentive fees, and find that investor welfare tends to be higher under
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option-like fees. Carpenter (2000) and Cuoco and Kaniel (2011) find that option-like

fees can push the manager to reduce the managed portfolio’s volatility if the man-

ager has HARA utility from terminal wealth. In contrast to this literature, we do not

explicitly model the type of performance-based compensation that a manager derives

from managing a portfolio. Still, our reduced-form analysis indicates that benchmark-

ing may introduce systemic effects that the literature was unaware of. We show that

when managers face strong benchmarking incentives, their trading behavior may in-

crease the tail risk exposure of retail investors, which reduces their welfare.

Third, we contribute to the literature on heterogenous agents with additively sep-

arable utility functions. Gollier and Zeckhauser (2005) analyze models with heteroge-

nous time preferences, and show that the shares of aggregate consumption attributed

to each agent vary dynamically over time. Consistent with Gollier and Zeckhauser

(2005), the consumption shares of our retail and institutional investors also change as

time evolves. However, in our model this is not only driven by heterogenous time pref-

erences but also by the fact that the consumption shares of our institutional investors

depend on the relative performance of the benchmark, which fluctuates stochastically.

Tran and Zeckhauser (2014) consider continuous-time, finite-horizon economies driven

by Brownian motions in which agents have heterogeneous risk and time preferences,

as well as heterogenous beliefs. These authors show that more risk tolerant investors

take on more volatile consumption plans.4 Compared to Tran and Zeckhauser (2014),

we allow for jumps in our dividend processes but not for heterogenous beliefs. In

our model, the risk tolerance of institutional investors is time-dynamic because it

depends on the performance of the benchmark. This yields another channel driving

the volatility of consumption plans of institutional investors. Yan (2008) analyzes

infinite-horizon Brownian motion economies in which agents have heterogenous time

preferences and beliefs, and shows that the investor with the lowest survival index

4Risk tolerance is understood as the marginal propensity to consume out of aggregate wealth.



13

dominates in the long run.5 We extend the findings of Yan (2008) by showing that the

investor with the lowest survival index also dominates, in the sense of consumption

wealth ratio, in the long run in homogenous belief economies in which dividend pro-

cesses may jump, and in which institutional investors face benchmarking incentives.

Cvitanić et al. (2012) solve for the general equilibrium of an infinite-horizon Brownian

motion economy in which agents have CRRA utility functions and heterogenous risk

and time preferences, as well as heterogeneous beliefs. These authors find that the

agents’ optimal portfolios exhibit substantial heterogeneity in equilibrium. Extending

these results, we find that benchmarking may undo some of the portfolio heterogene-

ity across heterogenous institutional investors. This is due to the fact that strong

benchmarking incentives force institutional investors to strongly tilt their portfolios

towards the benchmark, irrespective of their other preferences.

Finally, our results also contribute to the literature on financial stability. Most

of the current debate has focused on the influence of banking on financial stability;

see, e.g., the speech by former Federal Reserve Bank Chairman Ben Bernanke at the

2012 Federal Reserve Bank of Atlanta Financial Markets Conference.6 There are a few

papers that like us focus on the influence of asset management on financial stability.

Bank for International Settlements (2003) discusses how benchmarking may affect

financial markets, and concludes that benchmarking can negatively impact market

efficiency and volatility at most over the short term. We carry out a formal general

equilibrium analysis of the effects of benchmarking on financial markets, and find that

benchmarking can induce a short-term rise in tail risk exposure, but it cannot affect

the long-term performance of financial investors. Garbaravicius and Dierick (2005)

5The survival index of an investor is the sum of her time discount parameter, her optimism bias,
and the risk-adjusted expected dividend growth rate. Our investors do not have any optimism bias
because they are perfectly rational.

6A transcript of this speech is available at http://www.federalreserve.gov/newsevents/

speech/bernanke20120409a.pdf.

http://www.federalreserve.gov/newsevents/speech/bernanke20120409a.pdf
http://www.federalreserve.gov/newsevents/speech/bernanke20120409a.pdf
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analyze the Lipper TASS hedge fund data base, and identify three channels through

which hedge funds may pose threats to financial stability: (i) through hedge fund

failures, (ii) through banks exposures to hedge funds, and (iii) through the impact

of hedge funds’ trading behavior on financial markets. Our theoretical analysis shows

that benchmarking may enable the latter channel. Garbaravicius and Dierick (2005)

also document empirically that hedge funds tend to take on leverage, consistent with

the behavior of our institutional investors. Dańıelsson et al. (2005) survey the theo-

retical and empirical literature available at the time, and argue that hedge funds can

have systemic effects on financial markets primarily because of the market impact of

large hedge fund failures. Extending these results, we show that the trading behavior

of hedge fund managers may also have systemic implications because it can raise the

tail risk exposure of retail investors.

Dańıelsson and Shin (2003) coined the term “endogenous risk” as additional fi-

nancial risk that arises from the interactions and trading behavior of agents in a

financial system. Our results show that benchmarking by institutional investors may

give rise to endogenous risk. This occurs because benchmarking forces institutional

investors to react strongly to news about their benchmarks in states of the world

in which the benchmark underperforms. Our endogenous risk channel is similar to

the one posited by Dańıelsson and Zigrand (2008) and Dańıelsson et al. (2010). In

these papers, endogenous risk arises because financial institutions face value-at-risk

contraints, reducing their risk appetite whenever the value-at-risk constraint becomes

binding. Similarly as in Dańıelsson et al. (2013), endogenous risk in our model man-

ifests itself systemically in the form of increased tail risk exposures.
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2.2 Model

We analyze a pure-exchange economy populated by heterogenous agents with CRRA

utilities. There are three investors of two different types: a retail investor and two

institutional investors. Our economy is comprised of two risky assets and one safe

asset. Time is measured continuously and runs from zero to infinity. All dividends

and prices are modeled by stochastic processes that are measurable with respect to a

probability space (Ω,F ,P), and adapted to the complete information filtration (Ft)t≥0

that represents the flow of information over time.

2.2.1 Assets

There are two risky assets with prices S1 = (S1,t)t≥0 and S2 = (S2,t)t≥0. These assets

are in net positive supply. We normalize the supply of each asset to one without loss

of generality. The risky assets produce streams of dividends that satisfy the following

stochastic differential equations:

dD1,t

D1,t−
= µ1dt+ σ1dZt + J1dNt

dD2,t

D2,t−
= µ2dt+ σ2dZt + J2dNt

Here, Z = (Zt)t≥0 is a standard Brownian motion and N = (Nt)t≥0 is a Poisson

process with constant arrival rate λ > 0 that is independent of Z. For simplicity and to

ensure market completeness, we restrict to the case of two independent sources of risk.

However, generalizations to additional sources of risk are possible. The parameters

governing the evolution of dividends are assumed to be positive scalars with the

exception of J1 and J2, which are constants strictly larger than −1.

There is also a safe asset with price B = (Bt)t≥0. This asset has net zero supply.

The safe asset allows investor to borrow and lend in the money markets. Borrowing
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and lending occurs at the interest rate rt, which is stochastic and satisfies

dBt = rtBtdt.

2.2.2 Investors

There are three investors in our market: a retail investor and two institutional in-

vestors. Let the superscript “R” denote all variables corresponding to the retail in-

vestor, and the superscripts “A” and “B” denote all variables corresponding to the

institutional investors A and B, respectively.

Agents have non-negative initial endowments WR
0 , WA

0 , and WB
0 that correspond

to fractions of the total wealth of the economy at the time 0:

W0 = WR
0 +WA

0 +WB
0 .

Institutional investor j ∈ {A,B} owns a fraction αj of the total assets in positive

supply of the economy, while the retail investor R owns the remainder αR = 1−αA−

αB of total wealth. At time 0, agents maximize their expected lifetime discounted

utility stream subject to their budget constraints, and commit to fixed consumption

and portfolio plans. We refer toAppendix A.1 for details.

We list some notation. Let W j
t denote the wealth of investor j ∈ {R,A,B} at

time t > 0. Further, let cjt denote the amount of wealth consumed by investor j ∈

{R,A,B} at time t > 0. Finally, let πjt = (πj1,t, π
j
2,t, π

j
l,t) denote the portfolio of

investor j ∈ {R,A,B} at time t > 0. This portfolio consists of a fraction πj1,t of

wealth invested in asset 1, a fraction πj2,t of wealth invested in asset 2, and a fraction

πjl,t of wealth offered as lending on the money markets. We assume that any wealth

not consumed is invested in either the stock or the money markets. As a result, we

have πj1,t + πj2,t + πjl,t = 1.

We assume that agents have log preferences with respect to consumption as this
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yields a simple framework in which our results can be easily illustrated. However,

generalizations to other CRRA formulations are possible. Further, we illustrate our

results in a setting with only one retail and two institutional investors for simplicity.

Generalization to settings with more retail and institutional investors are also possible.

Retail investor

Investor R derives log-utility from intermediate consumption. She chooses a consump-

tion plan (cRt )t≥0 and a portfolio plan (πRt )t≥0 that maximizes

E

 ∞∫
0

e−ρRt log cRt dt

 (2.1)

subject to the budget constraint that the present value of her consumption plan

does not exceed her initial wealth; see Appendix A.1 for details. The retail investor

discounts time exponentially with rate ρR > 0.

Institutional investors

It is well-known that the performance of an institutional investor is measured in

relation to a benchmark. As a result, institutional investors have incentives to post

high returns in scenarios in which the underlying benchmark is posting high returns.

In order to capture this unique feature of an institutional investor’s incentives, we

assume that investors A and B benchmark against stock 2, and that their marginal

utilities of consumption are increasing in the performance of stock 2.

More concretely, we assume that investor j ∈ {A,B} chooses a consumption plan

(cjt)t≥0 and a portfolio plan (πjt )t≥0 as to maximize

E

 ∞∫
0

e−ρjt(1 + Ijst) log cjtdt

 (2.2)

subject to the budget constraint that the present value of the consumption plan does
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not exceed the corresponding initial wealth. Here, Ij ≥ 0 is a benchmark importance

parameter, and

st =
D2,t

D1,t +D2,t

is the ratio of dividends attributed to asset 2. Our institutional investors discount

time exponentially with rates ρA > 0 and ρB > 0, respectively.

2.2.3 Discussion

Our model of institutional investors can be viewed as a reduced-form model of bench-

marking portfolio managers. As we show in Section 2.3, large values of Ij incite

institutional investor j to strongly tilt her portfolio towards the benchmark stock.

This behavior is consistent with the behavior of portfolio managers who derive com-

pensation from the excess performance of the managed portfolio above a benchmark;

see Basak and Pavlova (2013), Brennan (1993), Buffa et al. (2015), Cuoco and Kaniel

(2011), Gómez and Zapatero (2003), and Roll (1992), among others. Consequently,

we can interpret our institutional investors as portfolio managers. We also show in

Section 2.3 that the institutional investors’ consumption plans in equilibrium reflect

several key features of compensation for managers whose performances are evalu-

ated relative to a benchmark. Therefore, consumption of our institutional investors

can be interpreted as managerial compensation, and IA and IB as measures of the

benchmarking incentives derived from managers’ compensation packages.

Our model is closely related to the model of Basak and Pavlova (2013), who

consider a pure-exchange economy with one retail and one institutional investor.

Stock prices in Basak and Pavlova (2013) do not jump. The agents in the model of

Basak and Pavlova (2013) derive utility from terminal wealth at the finite maturity

T <∞; i.e., there is no intermediate consumption. As a result, the agents in Basak and

Pavlova (2013) have stronger incentives to consume as time-to-maturity decreases. In
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contrast, we are interested only in changes in the portfolio-consumption policies of

different agents generated by their particular attitudes towards risk. By choosing an

infinite time horizon we eliminate incentives to consume stronger as time-to-maturity

decreases. In addition, by allowing for intermediate consumption we can study how

benchmarking affects borrowing and lending in the money markets. By introducing

jumps we can analyze how large shocks in one asset spread to other assets, and how

agents hedge against jump risk in a dynamic setting with benchmarking. Finally, we

allow for two heterogeneous institutional investors. As a result, we can study the

differences and similarities between the portfolios of our institutional investors, and

their impact prices and risks in financial markets. The answers to these questions

have important implications for policy making. Despite the differences between our

model and the one of Basak and Pavlova (2013), we can capture similar features of

managerial compensation. To be precise, our model of institutional investors captures

properties (i) and (iii) of Proposition D1 of Appendix D of Basak and Pavlova (2013),

as does the model of Basak and Pavlova (2013).

There are three key benefits of our model specification. First, our model can

be seen as a simple but powerful generalization of a Markowitz portfolio selection

model with retail and institutional investors that allows us to answer important ques-

tions about the systemic effects of benchmarking. Second, our model captures several

features of portfolio managers’ incentives that have been established by the extant

literature. Third, we can solve for the general equilibrium in our model in semi-closed

form up to numerical integration (see Section 2.3). This allows us to perform impor-

tant comparative statics. Still, a more realistic objective function for our institutional

investors would be

E

 ∞∫
0

e−ρjt
(

1 + Ij
S2,t

S1,t + S2,t

)
log cjtdt

 . (2.3)
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Because the prices S1,t and S2,t are determined endogenously in equilibrium, the

above formulation of the institutional investors’ incentives is intractable. Given the

Markovian structure of our model, we show in Section 2.3 that there is a one-to-one

mapping between prices and dividends of the form Sn,t = gn(D1,t, D2,t) for n ∈ {1, 2}.

As a result, our formulation of the institutional investors’ objective functions may be

seen as a first-order approximation of (2.3).

2.3 Equilibrium

An equilibrium at time 0 in our model consists of:

• Consumption plans (cRt )t≥0, (cAt )t≥0, and (cBt )t≥0 and portfolio plans (πRt )t≥0,

(πAt )t≥0, (πBt )t≥0 for the retail investor and each institutional investor that maxi-

mize (2.1) and (2.2) for j ∈ {A,B} subject to each investor’s budget constraints,

and

• Prices (S1,t)t≥0 and (S2,t)t≥0, as well as an interest rate process (rt)t≥0 such that

markets are cleared:

0 = πRl,tW
R
t + πAl,tW

A
t + πBl,tW

B
t ,

S1,t = πR1,tW
R
t + πA1,tW

A
t + πB1,tW

B
t ,

S2,t = πR2,tW
R
t + πA2,tW

A
t + πB2,tW

B
t .

An important property of our equilibrium is that we can solve for all relevant quanti-

ties in semi-closed form up to certain integrals which need to be computed numerically.

As a result, our model formulation ensures tractability and allows us to precisely pin

down the different mechanisms driving prices and risks in our market. This property

also allows us to carry out comparative statics relative to the different model pa-

rameters. We refer to Appendix A.1 for a precise characterization of the equilibrium.
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Proofs of the results are given in Appendix A.1.1.

Before proceeding, we introduce some notation that will be used throughout this

section. The stock prices (S1,t)t≥0 and (S2,t)t≥0 are determined endogenously in equi-

librium. Let σn,t denote the instantaneous diffusive volatility of stock n ∈ {1, 2} at

time t > 0 when no jump occurs. That is, if no jump occurs at time t > 0, then the

conditional time-t variance of the n-th stock return over the small time period ∆ ≈ 0

is

Vart

(
log

Sn,t+∆

Sn,t

)
≈ σ2

n,t∆.

In addition, let Jn,t denote the jump size of stock n ∈ {1, 2} if a jump occurs at time

t > 0; that is,

Sn,t − Sn,t−∆

Sn,t−∆

≈ Jn,t−∆

for ∆ ≈ 0 if a jump occurs at time t. Define the exposure matrix Σt that is composed

of the stocks’ exposure to each source of risk as

Σt =

[
σ1,t σ2,t

J1,t J2,t

]
.

The exposure matrix Σt plays a key role in the consumption-portfolio plans in equi-

librium. Finally, define the following moments of the benchmark dividend ratio for

j ∈ {R,A,B} and k ∈ {1, 2, 3}:

M j
k,t = Et

 ∞∫
t

e−ρj(v−t)skvdv

 ,
∆M j

k,t = Et

 ∞∫
t

e−ρj(v−t) (sv − sv−)k |Jump at time v dv

 .
M j

k,t measures the long-term conditional k-th moment of st given all information

at time t when discounted with the discount rate of investor j, while ∆M j
k,t gives

the long-term conditional k-th moment of the jump magnitude of st when a jump
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occurs given all information at time t after discounting with the discount rate of

investor j. We derive closed-form expressions for these moments in Appendix A.1

using the Fourier inverse methodology of Martin (2013). These expressions can be

easily computed via numerical integration.

We fix the model parameters as in Table 3.2 unless specified otherwise. Our pa-

rameter choice is inspired by the parameter estimates of Backus et al. (2011) for U.S.

equities derived from a Merton model of stock returns. Unlike Backus et al. (2011),

though, we assume that jumps are less frequent but more severe in order to illustrate

the impact of severe negative shocks on asset prices, risks, and portfolio allocations.

We choose our model parameters as to match the unconditional means and variances

of the growth rates of dividends 1 and 2, while allowing dividend 2 but not dividend

1 to jump. In other words, we choose

J1 = 0, µ1 −
σ2

1

2
= µ2 −

σ2
2

2
+ λJ2, and σ2

1 = σ2
2 + λJ2

2 .

By allowing jumps in D2,t but not in D1,t we can study how negative benchmark

shocks impact non-benchmark assets as well as portfolio allocations. By equalizing the

means and variances of the dividend growth rates we make a mean-variance optimizing

investor indifferent between holding stock 1 and stock 2. Therefore, unequal demands

for benchmark and non-benchmark assets under our parametrization can be entirely

attributed to the benchmarking incentives of institutional investors and their impact

on asset prices and risks. Our parameter choice allows us to focus exclusively on the

impact of benchmarking on asset prices, risks, and portfolio allocations without having

to worry about the influence of idiosyncratic risks. Still, we have experimented with

other parameter choices and find that the effects of benchmarking are significantly

amplified under a more realistic parametrization of our model.

[Table 1 about here.]
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Given the structure of financial markets with two risky assets and two independent

sources of uncertainty, we can show that our model has a unique state price density

to value assets in equilibrium, and our market is complete. Let ξ = (ξt)t≥0 denote

the unique state price density process. Define (θt)t≥0 as the process of market prices

of diffusion risk, and (ψt)t≥0 as the process of market prices of jump risk. These

processes represent the compensation that agents request for bearing volatility and

jump risk, respectively. The market prices of risks are also determined endogenously

in equilibrium.

2.3.1 State price density

We begin by characterizing the state price density in our market.

Proposition 2.3.1. Define

φj =

(
1

ρj
+ IjM

j
1,0

)−1

> 0.

The unique state price density of the economy is

ξt =
Qt/Q0

Dt/D0

, (2.4)

where

Dt = D1,t +D2,t,

Qt = αRρRe
−ρRt + αAφAe

−ρAt(1 + IAst) + αBφBe
−ρBt(1 + IBst).

The state price density has several interesting features. If there are no benchmark-

ing incentives (IA = IB = 0) and all agents have the same time discount parameter,

we obtain the standard state price density that is inversely proportional to aggre-

gate dividends. When institutional investors have positive benchmarking incentives

(IA > 0 or IB > 0), the pricing kernel is sensitive to the performance of the bench-

mark. In such cases, the benchmark influences the pricing kernel in two ways. The first
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influence comes through Qt in the numerator of (2.4), which encompasses the pricing

contribution of each agent in the market and is an increasing function of benchmark

dividend ratio st. This channel captures the index effect of Basak and Pavlova (2013).

In states of the world in which the benchmark is outperforming, institutional investors

are exposed to the risk of underperforming relative to the benchmark. These states of

the world carry high marginal utility for institutional investors, and this is reflected

in the pricing kernel. This effect is illustrated in Figure 3·2(a), which shows that the

pricing kernel is an increasing function of st.

[Figure 2 about here.]

A second channel through which benchmarking affects the pricing kernel is through

aggregate dividends in the denominator of (2.4). This channel reflects the fact that

states of the world in which the benchmark is outperforming relative to alternative

investment opportunities are more risky for institutional investors. In such states

it is hard for institutional investors to match the performance of the benchmark.

To understand this effect, consider the opposite scenario: If the benchmark level is

high whenever the alternative stock level is also high, then it is easy for institutional

investors to post high returns when the benchmark is posting high returns. Thus,

states of the world in which both the benchmark and the alternative investment

opportunity are booming are low risk states for our institutional investors. Such states

carry low marginal utility for institutional investors, and this is also reflected in the

pricing kernel. This is a relative index effect through which benchmarking affects

prices, and it complements the absolute index effect of Basak and Pavlova (2013).

Figure 3·2(b) illustrates the relative index effect. It shows that the pricing kernel

decreases if the benchmark dividend level increases and the non-benchmark dividend

level increases by the same amount.
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2.3.2 Prices of Risk

The state price density of Proposition 2.3.1 yields the prices of risk as well as the

interest rate in the market.

Proposition 2.3.2. The drift, volatility, and jump size functions of Dt and Qt are:

µd,t = (1− st)µ1 + stµ2, σd,t = (1− st)σ1 + stσ2, Jd,t = (1− st)J1 + stJ2,

µq,t = −ρRαRe−ρRt − αAφAρAe−ρAt(1 + IAst)− αBφBρBe−ρBt(1 + IBst)

+ (IAα
AφAe

−ρAt + IBα
BφBe

−ρBt)st(1− st)
[
µ2 − µ1

+ (σ1 − σ2) (σ1(1− st) + σ2st)
]
,

σq,t =
IAα

AφAe
−ρAt + IBα

BφBe
−ρBt

Qt

(σ2 − σ1)st(1− st),

Jq,t =
IAα

AφAe
−ρAt + IBα

BφBe
−ρBt

Qt

st(1− st)(J2 − J1)

1 + (1− st)J1 + stJ2

.

The market prices of volatility and jump risk are given by:

θt =σd,t − σq,t, (2.5)

ψt =
1 + Jq,t
1 + Jd,t

. (2.6)

The interest rate is

rt =µd,t − µq,t − σ2
d,t + σd,tσq,t + λ(1− ψt). (2.7)

Our prices of risk are not constant despite the fact that our dividend processes

have constant coefficients. There are two effects driving the stochasticity of market

prices of risk. First, the dividend ratio st is a state variable as in Cochrane et al.

(2008) and Martin (2013). Thus, fluctuations of st are mapped onto fluctuations of

risk prices. When the dividend ratio changes, agents change their portfolio holdings,

and this is reflected in fluctuating market prices of risks. Second, fluctuations of Qt are

also mapped onto fluctuations of market prices of risk when institutional investors

have benchmarking incentives (IA > 0 or IB > 0). In such scenarios, changes in
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the performance of the benchmark lead to changes in the institutional investors’

portfolios, yielding stronger fluctuations in market prices.

[Figure 3 about here.]

Figure 3·3 illustrates the behavior of market prices of volatility and jump risk as

the benchmark dividend ratio and the benchmark importance parameter vary. From

the expressions in Proposition 2.3.1 we see that the market price of volatility risk is

increasing in the benchmark importance parameters IA and IB if σ2 < σ1 (as in our

parametrization in Table 3.2), and decreasing in IA and IB otherwise. Similarly, the

market price of jump risk is decreasing in IA and IB if J2 < J1 (as in our parametriza-

tion in Table 3.2), and increasing otherwise. The stronger the benchmarking incentives

are, the higher demand the institutional investors will have for the benchmark asset,

as we show below. Therefore, institutional investors request less compensation to as-

sume the risks associated with the benchmark asset. Consequently, compensation for

volatility risk decreases if the benchmark dividend has higher volatility than the non-

benchmark dividend, while compensation for jump risk decreases if the benchmark

dividend has more severe jumps than the non-benchmark dividend.

Similar effects also lead to a time-varying interest rate in our model. Figure 3·4

plots the interest rate rt as a function of the benchmark dividend ratio st and the

benchmark importance parameters IA and IB. When the benchmark dividend ratio

is low, the interest rate decreases as institutional investors’ incentives to benchmark

increase. On the other hand, the interest rate increases as institutional investors’ in-

centives to benchmark increase when the benchmark dividend ratio is high.7 As we

will demonstrate below, this result is due to the institutional investors’ benchmark

hedging needs. Institutional investors reduce their leverage when the benchmark un-

derperforms, resulting in a lower interest rate. This phenomenon is exacerbated when

7We find similar interest rate dynamics for alternative parametrizations of our model.
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benchmarking incentives are large.

[Figure 4 about here.]

2.3.3 Asset prices

Next, we pin down the stock prices S1,t and S2,t, and their volatilities and jump sizes.

Proposition 2.3.3. The price of the benchmark stock is

S2,t =
Dt

Qt

(
αRρRe

−ρRtMR
1,t + αAφAe

−ρAt(MA
1,t + IAM

A
2,t) + αBφBe

−ρBt(MB
1,t + IBM

B
2,t)
)
,

and the price of the non-benchmark stock is

S1,t =
Dt

Qt

(
αRe−ρRt + αAφAe

−ρAt(ρ−1
A + IAM

A
1,t) + αBφBe

−ρBt(ρ−1
B + IBM

B
1,t)
)
− S2,t.

The stock volatility functions are

σ2,t =θt +
Dt(σ2 − σ1)

QtS2,t

[
αRρRe

−ρRt(MR
1,t −MR

2,t) + αAφAe
−ρAt(MA

1,t −MA
2,t)

+ αBφBe
−ρBt(MB

1,t −MB
2,t) + 2IAα

AφAe
−ρAt(MA

2,t −MA
3,t)

+ 2IBα
BφBe

−ρBt(MB
2,t −MB

3,t)

]
,

σ1,t =θt

(
1 +

S2,t

S1,t

)
+
Dt(σ2 − σ1)

QtS1,t

[
IAα

AφAe
−ρAt(MA

1,t −MA
2,t)

+ IBα
BφBe

−ρBt(M2B
1,t −M2B

2,t )

]
− σ2,t

S2,t

S1,t

.

The jump sizes of the stocks are

J2,t = ψ−1
t − 1 +

Dt

ψtQtS2,t

(
αRρRe

−ρRt∆MR
1,t + αAφAe

−ρAt∆MA
1,t + αBφBe

−ρBt∆MB
1,t

+ IAα
AφAe

−ρAt∆MA
2,t + IBα

BφBe
−ρBt∆MB

2,t

)
,

J1,t = ψ−1
t

(
1 +

S2,t

S1,t

+
1

S1,t

Dt

Qt

(IAα
AφAe

−ρAt∆MA
1,t + IBα

BφBe
−ρBt∆MB

1,t)

)
− 1− S2,t

S1,t

(1 + J2t).
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Figure 3·5 displays the stock prices as functions of the benchmark dividend ratio

and the benchmark importance parameters. Naturally, the benchmark stock is more

expensive than the non-benchmark stock whenever the benchmark is outperforming;

i.e., whenever st is large. On the other hand, the benchmark stock is cheaper than

the non-benchmark stock when st is low. We also see that the price S1,t of the non-

benchmark stock is highly sensitive to the benchmark importance parameters IA

and IB, while the price S2,t of the benchmark stock is not very sensitive to the

benchmark importance parameters. These price effects are driven by the institutional

investors’ needs to hedge against underperforming relative to the benchmark as we

will demonstrate in the next sections.

[Figure 5 about here.]

Figure 3·6 displays stock volatilities and jumps as functions of the benchmark div-

idend ratio and the benchmark importance parameters. The volatilities of both stocks

are increasing functions of the benchmark importance parameter. Jumps sizes are also

increasing functions of the benchmark importance parameters so that jumps become

less severe as institutional investors have stronger incentives to benchmark. In addi-

tion, we see that stock volatilities are highest when the benchmark dividend ratio is

low to intermediate, while jumps are most severe when the benchmark dividend ratio

is extremely high or extremely low. Again, these effects are driven by the institutional

investors’ needs to hedge against underperformance relative to the benchmark, as we

will show below. Figure 3·6 also illustrates the feedback effect from benchmark shocks

to the non-benchmark stock: even though the non-benchmark dividend process does

not jump, the stock price associated with the non-benchmark dividend stream does

jump. This is due to the fact that after a jump occurs, all investors update their

portfolios and alter the demand for all stocks, which affects all stock prices.

[Figure 6 about here.]
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2.3.4 Optimal portfolio plans

We are now in a position to describe the optimal portfolio plans of institutional

and retail investors. An important assumption is that the exposure matrix Σt is of

full rank. This assumption is closely related to market completeness as indicated by

Bardhan and Chao (1996) and Hugonnier et al. (2012). Sufficient conditions ensuring

this assumption are ad-hoc and technical. However, our simulations show that this

assumption is satisfied is most scenarios.

Proposition 2.3.4. Suppose that Σt has full rank for all t ≥ 0. For the retail investor,

the optimal portfolio plan is given by(
πR1,t
πR2,t

)
= Σ−1

t

(
θt

ψ−1
t − 1

)
.

For institutional investor j ∈ {A,B}, the optimal portfolio plan is given by(
πj1,t
πj2,t

)
= Σ−1

t

(
θt

ψ−1
t − 1

)
︸ ︷︷ ︸

mean-variance

+ Σ−1
t

(
(σ2 − σ1)(M j

1,t −M
j
2,t)

∆M j
1,tψ

−1
t

)
Ij

ρ−1
j + IjM

j
1,t︸ ︷︷ ︸

benchmark hedge

.

Finally, we have

πjl,t = 1− πj1,t − π
j
2,t,

for j ∈ {R,A,B}.

At any point of time, the portfolio held by the retail investor coincides with the

standard mean-variance portfolio given the log-utility formulation. The portfolio of

an institutional investors at time t is decomposed into two components: a compo-

nent that accounts for the standard mean-variance portfolio (the first summand) and

arises due to the institutional investors’ needs to hedge against volatility and jump

risk, and a component that hedges against fluctuations of the benchmark dividend

ratio st (the second summand). Our results indicate that institutional investors have

hedging motives beyond the mean-variance motives of Duffie and Richardson (1991).
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The additional hedging affects the demand for all assets. When an institutional in-

vestor has small incentives to benchmark (Ij ≈ 0), her optimal portfolio is close to

the optimal portfolio of the retail investor. Large incentives to benchmark shift the

institutional investors’ portfolios away from the retail investor’s portfolio, and closer

towards the benchmark stock. Figure 3·7 illustrates the portfolio plans of our retail

and institutional investors, and showcases that institutional investors tilt their port-

folios towards the benchmark stock as their incentives to benchmark grow large. It

is noticeable that institutional investors take on leverage to invest in the benchmark

stock as the benchmarking incentives grow large.

[Figure 7 about here.]

How do the portfolios of our institutional investors compare to each other? Our

institutional investors are heterogeneous and differ from each other through their

benchmark importance parameters and their time preferences. Thus, different insti-

tutional investors hold different portfolios. Note that, as Ij → ∞, the portfolio of

institutional investor j converges to(
πj1,t
πj2,t

)
= Σ−1

t

(
θt

ψ−1
t − 1

)
+ Σ−1

t

(
(σ2 − σ1)(1−M j

2,t/M
j
1,t)

ψ−1
t ∆M j

1,t/M
j
1,t

)
given that Ij/(ρ

−1
A + IjM

j
1,t) → 1/M j

1,t. The formulation of the moments of st in

Appendix A.1 implies that M j
2,t/M

j
1,t ≈ st and ∆M j

1,t/M
j
1,t ≈ ∆st conditional on a

jump at time t in the realistic setting ρj ≈ 0. Therefore, Proposition 2.3.4 tells us

that the differences between the portfolios of our institutional investors are only very

small whenever the benchmark importance parameters are large.

It is well understood that benchmarking incentives lead to deviations from the

standard mean-variance portfolio allocation (see Basak et al. (2007), Brennan (1993),

Gómez and Zapatero (2003), Jorion (2003), and Roll (1992), among many others).
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Our findings on the institutional investors’ portfolios complement the existing litera-

ture by allowing asset prices to jump, by allowing agents to consume at intermediate

times, and by allowing for heterogenous institutional investors. Basak and Pavlova

(2013) find that institutional investors that benchmark against the absolute level of

a benchmark and consume only at terminal time have additional demand for stocks

that are highly correlated with the benchmark. Similarly, our institutional investors

have additional demand for the benchmark stock. Nevertheless, the additional de-

mand for the benchmark stock depends on the risk preferences of each institutional

investor, as well as on the risk profiles of each stock. Consistent with risk aversion,

Figure 3·8 shows that the institutional investors’ demand for the benchmark stock

decreases and their demand for the non-benchmark stock increases as benchmark

dividend jumps become more severe. Figure 3·8 also indicates that, against the stan-

dard mean-variance intuition, increases in the volatility of a dividend stream raise

the institutional investors’ demand for the corresponding risky security. Both of these

effects are driven by the need of institutional investors to hedge against fluctuations

of the benchmark.

[Figure 8 about here.]

2.3.5 Consumption plans

The following proposition characterizes the optimal consumption policies of our agents.

Proposition 2.3.5. The optimal consumption plan for institutional investor j ∈
{A,B} is

cjt = ρj
1 + Ijst

1 + IjρjM
j
1,t

W j
t =

αjW0φje
−ρjt(1 + Ijst)

ξt
.

For the retail investor, the optimal consumption plan is

cRt = ρRW
R
t =

αRW0ρRe
−ρRt

ξt
.
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The consumptions plans of our investors are increasing functions of wealth. As

Figure 3·9(a) indicates, consumption is also nonlinearly increasing in the benchmark

dividend ratio st, and linearly increasing in the benchmark dividend level D2,t when

st is kept fixed. Consistent with our log-utility formulation, the retail investor con-

sumes a constant fraction of her wealth at any point of time. Institutional investors,

on the other hand, consume a time-varying fraction of their wealths. The wealth-

consumption ratios of institutional investors are nonlinear functions of the benchmark

dividend ratio st and the benchmark importance parameters IA and IB. Figure 3·9(b)

displays the wealth-consumption ratios of institutional investors as functions of st, IA,

and IB. We see that the wealth-consumption ratio of an institutional investor is in-

creasing in her benchmark importance parameter. An institutional investor consumes

the largest fraction of her wealth when the benchmark slightly overperforms and her

benchmark importance parameter is large.

[Figure 9 about here.]

Consumption by our institutional investors can be interpreted as compensation

for benchmarking portfolio managers. The literature has extensively studied optimal

contracts for portfolio managers in principal-agent settings in which an investor (prin-

cipal) delegates the management of her portfolio to a manager (agent) who must exert

effort to become informed about the distributions of returns (see Stracca (2006) for

a literature survey). There is consensus that optimal contracts specify compensation

packages that are nonlinear and increasing in the performance of the managed portfo-

lio over and above of a predetermined benchmark (see, e.g., Li and Tiwari (2009), and

Stoughton (1993)). The compensation plans of our institutional investors reflect this

feature. In Figure 3·10 we plot the consumption of institutional investor A in excess

of what is consumed by the retail investor. In order to make the consumption of both

investors comparable, we temporarily neglect institutional investor B and set αB = 0,



33

αA = αR = 0.5, and ρA = ρR = 0.02 for this figure. We see that the institutional in-

vestor consumes more than the retail investor if IA > 0. In particular, the institutional

excess consumption is increasing in the benchmark importance parameter. We also

see that the institutional excess consumption is nonlinearly increasing in the bench-

mark dividend ratio st, and linearly increasing in the benchmark dividend level D2,t

when st is kept fixed. We know from Figure 3·7 that institutional investors allocate

large fractions of their wealths on the benchmark when the benchmark importance

parameters are large. In such cases, the performance of an institutional investor is

highly linked to the performance of the benchmark stock. As a result, institutional

investors perform well when the benchmark performs well, and in such scenarios they

also consume more than a comparable retail investor. We conclude that institutional

investors in our model enjoy a consumption bonus when their portfolios perform well,

which is consistent with the optimal contacts for benchmarking portfolio managers

established by the literature.

[Figure 10 about here.]

2.4 Systemic Effects

Based on the general equilibrium of Section 2.3, we now study the systemic implica-

tions of benchmarking incentives. We proceed as follows. First, we measure the impact

of benchmarking on tail risk for investors in our market. To this extent we measure

value-at-risk of the portfolio returns of each institutional and retail investor, as well

as of the aggregate market. Value-at-risk is the percentage loss we can forecast for a

future period of time with a 1% probability. It gives a measure of the risk of large

systemic losses faced by our investors and the aggregate market. In a second step

we analyze what trading patterns of institutional investors expose retail investors to

large systemic losses. In particular, we study how benchmarking incentives may lead
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to large trading volumes and fire sales by institutional investors, resulting in large

volatilities. We then study how benchmarking affects the long-term survival of our

investors. In a final step we measure the impact of benchmarking on welfare.

2.4.1 Value-at-risk

We compute values-at-risk for our institutional investors, our retail investor, and the

aggregate market via exact Monte Carlo simulation. Figure 3·11 plots the 1-year

values-at-risk against the benchmark importance parameter Ij and the dividend ratio

s0. We see that values-at-risk across the board are highest in periods of extremely

positive or extremely negative benchmark performance; i.e., in periods in which the

dividend ratio s0 is very large or very small. However, we see that a shifting of tail

risk occurs as the benchmark dividend ratio falls from 1 to 0. Institutional investors

are most exposed to value-at-risk when s0 is large and the benchmark overperforms.

This is primarily due to the fact that institutional investors invest large fractions

of their wealths in the benchmark stock whenever s0 is large. The benchmark stock

has large negative jumps when s0 is large (Figure 3·6). Figure 3·7 suggests that the

institutional investors’ portfolio weights for stocks are least sensitive to fluctuations in

the dividend ratio s0 when the benchmark importance parameters IA and IB are large

and s0 is large. As a result, institutional investors carry out buy-and-hold strategies

when s0, IA, and IB are large, with large exposures to tail risk arising from the large

negative jumps of the benchmark.

[Figure 11 about here.]

In contrast, the retail investor is most exposed to value-at-risk when s0 is small

and the benchmark importance parameters are large. We see that value-at-risk for the

retail investor strongly increases when the benchmark importance parameters IA and

IB grow large in scenarios in which the dividend ratio s0 is low. The retail investor
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reduces her investment in the safe asset when s0 falls beyond a certain threshold

(Figure 3·7). Consequently, the retail investor is more exposed to the stock market in

scenarios in which s0 is low. When s0 is low and IA and IB are large, the volatilities

of both stocks are also large and their jumps are severe; see Figure 3·6. As a result,

the retail investor is more exposed to tail risk whenever s0 is small.

Aggregate market capitalization is equal to the sum of the wealths of all investors

because of market clearing. Because of the strong investment of institutional investors

in the benchmark when s0 is high, value-at-risk for the aggregate market is highest

when the benchmark dividend ratio is high. Still, we see that aggregate market value-

at-risk is increasing in the benchmark importance parameters IA and IB whenever

s0 is low. The large tail risk assumed by the retail investor when the benchmark

dividend ratio is low dominates the tail risk exposures of the institutional investors.

Consequently, the aggregate market is more exposed to tail risk when benchmark

incentives grow stronger in scenarios in which the benchmark underperforms.

2.4.2 Volatility and fire sales

Figure 3·7 indicates that the sensitivities of the institutional investors’ portfolio

weights for stocks are highest whenever the benchmark importance parameters IA

and IB are large and the dividend ratio s0 is small. As a result, small fluctuations of

the benchmark dividend ratio can result in large changes in the portfolios of institu-

tional investors. Institutional investors sell (buy) large amounts of the benchmark and

buy (sell) large amounts of the non-benchmark asset as a result of a small drop (rise)

in the dividend ratio when s0 is low. This behavior generates large trading volumes,

which induces large volatilities for both stocks and severe jumps for the benchmark

stock in scenarios in which s0 is small and IA and IB are large (Figure 3·6). As a result,

the portfolio volatilities of institutional investors decrease and the portfolio volatility

of the retail investor increases with increasing benchmarking importance parameters
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when the benchmark dividend ratio is small; see Figure 3·12. This naturally increases

the retail investor’s exposure to tail risk.

[Figure 12 about here.]

Large portfolio sensitivities open up the possibility of fire sales by institutional

investors after a jump occurs. Investors experience a cashflow shock when the bench-

mark dividend process jumps, prompting them to adjust their portfolio holdings. The

degree to which investors’ portfolios are adjusted critically depends on the benchmark

importance parameters and the dividend ratio. Consider first a market in which there

are no institutional investors; i.e., IA = IB = 0. Because the benchmark dividend

falls drastically when a jump occurs, the cashflows of the benchmark stock become

less profitable than the cashflows of the nonbenchmark stock. This results in a sub-

stitution effect in which investors reduce their exposure to the benchmark stock and

increase their exposure to the nonbenchmark stock. The outlook of smaller cashflows

also induces an income effect. Because investors expect less cashflows from the bench-

mark stock, they become less risk tolerant and reduce their exposure to both risky

stocks. Figure 3·13 indicates that the substitution effect dominates when there are no

institutional investors and when the dividend ratio is low. All investors reduce their

exposure to the benchmark.

[Figure 13 about here.]

Figure 3·13 indicates that the income effect for institutional investors gets exac-

erbated when benchmarking incentives are large and the dividend ratio is low. When

the benchmark importance parameters IA and IB are large, institutional investors

are under strong pressure to beat the benchmark. After a jump, the outlook of lower

cashflows incites institutional investors to strongly adjust their portfolios. They will

further reduce their exposure to the benchmark asset, and increase their exposure
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to the non-benchmark asset. They also slightly increase their exposure to the safe

asset; i.e., institutional investors reduce their leverage after a jump. These are flight-

to-quality phenomena.

Because of the large portfolio sensitivities, institutional investors sell off large frac-

tions of the benchmark stock and buy large fractions of the non-benchmark stock after

a jump when their benchmarking incentives are large and the dividend ratio is low.

They can only sell the benchmark stock at a discount and buy the non-benchmark

stock at a premium after a jump; see Figure 3·6. This phenomenon constitutes fire

sales in our model. Retail investors perceive the fire sales as a good opportunity to ac-

quire the benchmark stock and sell the non-benchmark stock. The substitution effect

for the retail investor is weak when benchmarking incentives are large. The income

effect incites the retail to buy the benchmark stock. These effects combined reduce

the degree to which the retail investor cuts down her exposure to the benchmark

stock after a jump when benchmarking incentives are large. Consequently, the retail

investor is more exposed to the benchmark stock after a jump when the dividend

ratio is low and benchmarking incentives are large. This results in a higher exposure

to tail risk.

2.4.3 Survival

How does the exposure to tail risk impact the long term survival of our investors? We

can answer this question by looking at the long-term consumption plans and shares.8

We can rewrite the consumption cjt of institutional investor j ∈ {A,B} as

(1 + Ijst)
Q0α

jW0φj
c̄(t)

·

·

(
(1− s0)e

(
µ1−

σ21
2

+λJ1−ρj+ρ̄
)
t+σ1Wt+J1N̄t

+ s0e

(
µ2−

σ22
2

+λJ2−ρj+ρ̄
)
t+σ2Wt+J2N̄t

)
8Given our log-utility formulation, consumption at any point of time is a fraction of total wealth.
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where Ī = max{IA, IB}, ρ̄ = max{ρR, ρA, ρB}, N̄t = Nt − λt is the compensated

Poisson jump martingale, and

c̄(t) = αRρRe
(ρ̄−ρR)t + αAφA(1 + IAst)e

(ρ̄−ρA)t + αBφB(1 + IBst)e
(ρ̄−ρB)t.

By construction, we have 0 < limt→∞ c̄(t) < ∞ and 0 < st < 1 almost surely for

all t > 0. As a result, the asymptotic behavior of cjt as t → ∞ is driven only by the

asymptotic behavior of discounted stock prices. From the expression above it becomes

obvious that cjt →∞ as t→∞ almost surely if

ρ̄+ µ1 −
σ2

1

2
+ λJ1 > ρj or ρ̄+ µ2 −

σ2
2

2
+ λJ2 > ρj. (2.8)

In this case we also have W j
t →∞ as t→∞ almost surely and institutional investor

j becomes infinitely rich in the long run through her investments. On the other hand,

we have cjt → 0 as t→∞ almost surely if

ρ̄+ µ1 −
σ2

1

2
+ λJ1 < ρj and ρ̄+ µ2 −

σ2
2

2
+ λJ2 < ρj. (2.9)

In this case, institutional investor j becomes extinct in the long run. Given that ρ̄ ≥ ρj,

an inspection of (2.9) reveals that extinction can only if both dividend process have

negative expected growth rate.

Similarly, we can rewrite the consumption cRt of the retail investor as

Q0α
RW0ρR
c̄(t)

[
(1− s0)e

(
µ1−

σ21
2

+λJ1−ρR+ρ̄

)
t+σ1Wt+J1N̄t

+ s0e

(
µ2−

σ22
2

+λJ2−ρR+ρ̄

)
t+σ2Wt+J2N̄t

]
.

We see that the retail investor becomes infinitely rich in the long run under condition

(2.8), and she goes extinct almost surely if condition (2.9) holds. As for institutional

investors, the retail investor can only go extinct in the long run if both dividend
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processes have negative expected growth rate.

The analysis of consumption plans indicates that, in the long run, either all in-

vestors survive and become infinitely rich, or all investors fail. By studying con-

sumption shares we can determine which investor dominates in the long run. The

consumption share of institutional investor A is

cAt
cRt + cAt + cBt

=
1

1 + αRρR
αAφA(1+IAst)

e(ρA−ρR)t + αBφB(1+IBst)
αAφA(1+IAst)

e(ρA−ρB)t
.

An analogous representation can be derived from the consumption share of institu-

tional investor B. The consumption share of the retail investor is

cRt
cRt + cAt + cBt

=
1

1 + αAφA(1+IAst)
αRρR

e(ρR−ρA)t + αBφB(1+IBst)
αRρR

e(ρR−ρB)t
.

Given that 1 ≤ 1 + Ijst ≤ 1 + Ī < ∞ for j ∈ {A,B}, consumption shares are only

driven by the relation between the time discount coefficients of our investors. The

investor that dominates in terms of relative consumption is the one with the smallest

time discount coeffient; i.e., the investor with ρj = min{ρR, ρA, ρB}. All other investors

will have consumption ratios that converge to zero. The most patient investor will be

the richest in the long run.

The conditions for survival we derive do not depend on the benchmarking im-

portance parameters IA and IB. As a result, survival occurs independently of the

benchmarking behavior of our institutional investors. In the same vein, the most pa-

tient investor dominates in the long run independently of the behavior of institutional

investors. We conclude that albeit benchmarking exposes the retail investor to tail

risk in the short term, tail risk does not materialize in the long run. The long term

performance of our investors is unaffected by the benchmarking incentives of our in-

stitutional investors. These results extend the findings of Yan (2008), who shows that

in a general class of infinite-horizon models driven by Brownian motions, the investor
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with the lowest survival index dominates in the long run.9 We show that this result

also holds when dividends are allowed to jump, and when institutional investors have

benchmarking incentives.

Condition (2.8) is satisfied in our numerical case study parametrized in Table 3.2.

All investors – institutional and retail – become infinitely rich in the long run in our

example. However, the retail investor has the smallest time discount coefficient. There-

fore, the retail investor will be the richest investor in the long run. Although the retail

investor is exposed to large tail risk when the benchmark stock underperforms due

to the trading behavior of institutional investors, these tail risks are only short-lived.

Our institutional investors take on large bets when the benchmark underperforms

(fire sales as in Figure 3·13), and they consume large fractions of their wealths (Fig-

ure 3·9). This behavior reduces the wealth of institutional investors relative to the

retail investor.

2.4.4 Welfare

Although benchmarking does not affect the long term performance of our investors,

ex ante it may be disadvantageous because of the higher exposure to tail risk. Next,

we analyze the welfare implications of benchmarking.

For fixed benchmark importance paramters IA and IB, the preferences formulated

in (2.1) and (2.2) are locally nonsatiated, the utility possibility set is convex, and the

equilibrium described in Section 2.3 is Pareto efficient. However, the utility possibility

set may no longer be convex as IA and IB change. As a result, we cannot analyze

the impact of benchmarking on welfare in our model by measuring changes in social

welfare as responses to changes in IA and IB. In order to circumvent this issue, we

adopt the notion of equivalent variation and evaluate the impact of benchmarking on

9The ranking of survival indices in our model is equal to the ranking of time discount parameters
of our investors given that our investors are perfectly rational and do not have optimism biases.
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welfare by computing how much additional consumption our investors would have to

consume at any given point of time in a world in which there are no benchmarking

incentives (IA = IB = 0) in order to achieve the same level of utility as in a world

with positive benchmarking incentives (IA > 0 or IB > 0). Because for IA = IB = 0

all investor have log preferences, positive equivalent variations of consumption for

investor j imply welfare gains for investor j, while negative equivalent variations

imply welfare losses for investor j.

Figure 3·14 displays the equivalent variations of consumption for our different

investors at inception. The equivalent variation of consumption of the retail investor

is negative for every value of the benchmark dividend ratio s0. The same result hold

for all other times t > 0. As a result, the retail investor is worse off in a world in

which institutional investors have benchmarking incentives. The analysis is subtle

for our institutional investors. We see that institutional investor A with the highest

discount rate has positive equivalent variation of consumption in every state of the

world. This implies that the most impatient institutional investor is better off in a

world with benchmarking incentives. However, institutional investor B with a low

discount rate has negative equivalent variation in states of the world in which the

benchmark underperforms. Unlike for the retail investor, for whom benchmarking

is always welfare reducing, benchmarking may be welfare reducing or increasing for

institutional investors depending on how patient they are.

We obtain similar results for alternative choices of discount parameters. The retail

investor is always worse off when institutional investors have benchmarking incentives.

[Figure 14 about here.]
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2.5 Conclusion

We show that benchmarking may induce trading behavior by institutional investors

which exposes a retail investor and the aggregate market to tail risk. To show this we

solve in semi-closed form the general equilibrium of a pure-exchange economy with

one retail investor and two institutional investors who can invest in a benchmark

stock, a non-benchmark stock, and a safe asset. Institutional investors have marginal

utility of consumption that increases in the relative performance of their benchmark.

This incites them to tilt their portfolios towards the benchmark stock. It also increases

their portfolio sensitivities with respect to the relative performance of the benchmark.

As a result, institutional investors trade large volumes of the stocks in states of the

world in which the benchmark underperforms, raising market volatility. This naturally

increases the tail risk exposure of the retail investor and the aggregate market.

Inspite of the higher tail risk exposure, we find that benchmarking does not affect

the long term performance of our investors. In the long run, all investors survive if

at least one stock has positive expected dividend rate, and the most patient investor

dominates in terms of relative wealth. Still, benchmark is welfare reducing for the

retail investor ex ante, and is only welfare increasing for the impatient institutional

investor.

Our results have important implications for the regulation of the asset manage-

ment industry. In December 2014, the FSOC released a notice asking if competitive

pressures faced by portfolio managers may incentivize them to trade in ways that do

not internalize risks to the broad financial markets.10 We find that the answer to this

question is yes – benchmarking may indeed incentivize portfolio managers to invest

in ways that induce additional risks in financial markets. We find that retail investors

may be worse off in economies with benchmarking than in economies without bench-

10Notice Seeking Comment on Asset Management Products and Activities, Docket No. FSOC-
2014-0001, pp. 11-12.
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marking due to a higher tail risk exposure, even though their long term performance

is unaffected by the trading behavior of institutional investors. These results indi-

cate that it is imperative for regulators to formulate precise objectives for a potential

regulation of the asset management industry. Do regulators wish to control for the

tail risk exposure of the retail investor or the aggregate market? Do regulators with

to prevent investor failures? These questions need to be answered first before any

effective regulatory policy can be formulated.

In any case, our results indicate that the regulation of the asset management in-

dustry will require different regulatory tools than the regulation of banks. We find

that the retail investor and the aggregate market are exposed to high tail risk when-

ever benchmarking institutional investors are exposed to low tail risk, and vice versa.

As a result, standard regulatory tools that measure tail risk exposures of financial

institutions, such as value-at-risk and stress tests, may be unable to detect situations

in which retail investors and the aggregate market are at risk of tail events.

This paper is the first to analyze the systemic implications of benchmarking from

a normative point of view by considering its general equilibrium effects. Still, our

model is of reduced form. We do not address the principal-agent problem underlying

the decision of individual investors to allocate their wealth among portfolio managers.

We also do not address the optimal contracting problem between individual investors

and portfolio managers that gives rise to benchmarking. We leave it to future research

to analyze the systemic effects of benchmarking in a principal-agent setting in which

these problems can be addressed. Furthermore, we do not analyze potential regulatory

tools for controlling for the systemic effects of benchmarking. Our results indicate that

more research is needed to be able to carefully evaluate the effectiveness of a potential

regulation of benchmarking.
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Chapter 3

Central Bank and Asset Pricing

3.1 Introduction

The recent turmoil in global financial markets triggered by the fear that the Chinese

economy is slowing down faster than what analysts predicted brought public attention

to central banks’ reaction to volatile financial markets. In an attempt to contain the

financial meltdown of 32% from June 12, 2015 to July 7, 2105, the Chinese central

bank, the People’s Bank of China, made a 25 basis point interest rates cut, bringing

rates to their record low on June 27, 2015. In addition, the central bank issued a loan

of $42 billion dollars to 21 brokerage firms, so they could purchase stocks directly.

Despite the intense effort to ease financial markets, it is still not well understood

how these types of government interventions could potentially generate more risk and

contribute further to market destabilization with consequences to the real economy. In

order to understand the effects of such interventions to macroeconomic variables, this

chapter investigates the following question: how does monetary authorities seeking to

stabilize inflation, output and smooth the slope of the yield curve distort the term

structure of interest rates and prices of risk relative to an economy where central

authorities adjust the money supply without taking into consideration the slope of

the yield curve?

The idea that monetary policy could target financial indicators goes back to Mc-

Callum (1994). The author shows that a monetary policy aiming to smooth interest
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rates and the yield curve could explain the rejection of the expectation hypothesis1.

Despite the important insights provided by McCallum (1994) on rationalizing Fama

and Bliss (1987) empirical puzzle, the exogenous specification of the risk premium

adopted by the author prevents one from understanding the feedback effects caused

by the central bank targeting the slope of the yield curve on prices of risk and inter-

est rate. In his concluding remarks, McCallum (1994) highlights the limitation of a

monetary policy seeking solely to smooth short-rate and the slope of the yield curve,

i.e., level and slope but not curvature (volatility):

“(It) represents a simplification relative to the actual behavior of the

FED, which almost certainly responds to recent inflation and output or

employment movements as well as the spread. So, if one were to attempt

to econometrically estimate actual reaction functions, then measures of

inflation and output gaps would need to be included. But in that case values

of these variables would need to be explained endogenously, so the system of

equations in the model would have to be expanded. (...) In short, this type

of study would require specification and estimation of a complete dynamic

macroeconometric model.”.

In order to circumvent the limitations highlighted in McCallum (1994), this chap-

ter develops a macro-finance model where monetary authorities target the slope of

the yield curve, inflation and output. Contrary to New Keynesian models that assume

an exogenous process for inflation or the short term rate, all three quantities involved

in the central bank’s decision to supply money to the economy are endogenous vari-

ables linked to the production side of the economy. Thus, the model provides a clear

1The simple version of the Expectation Hypothesis relates the forward rate with the expected
future short-rate and a risk premium. When confronted with data, the regression coefficient on the
term premium is significant smaller than predicted by the model.
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exposition on the mechanism through which monetary stabilization and capital gain

taxes change the conditional variance of the pricing kernel.

Other papers also attempt to address McCallum (1994)’s challenge by endogeniz-

ing the bond risk premium. Gallmeyer et al. (2005) resort to a specific dynamics of the

state variables and no-arbitrage condition on bonds to endogenize the risk premium.

As the authors observe, despite the fact that the exogenous specification of the risk

premium serves as a good descriptive tool and provides the desirable properties a

model should have in order to match the data, it does not explain how factors driving

the risk premium could also be related to interest rates movements. In order to match

empirical regularities, Gallmeyer et al. (2005) test two different model specifications:

one with a stochastic volatility factor and another with a stochastic price of risk.

These specifications are supported by the findings of Dai and Singleton (2003), who

argue in favor of models with state-dependent prices of risk instead of state variables

with stochastic volatility by showing that the former is equally tractable and tend

to deliver better empirical results. Gallmeyer et al. (2005) also provide a theoretical

set of restrictions on asset prices and macroeconomic variables such that the Taylor’s

rule is equivalent to the McCallum’s rule.

Following Gallmeyer et al. (2005) and Buraschi and Jiltsov (2005), the model

introduced in Section 3.2 generates a one factor term structure model where the state

variable with stochastic volatility is a persistent component embedded in the money

supply. Besides the clear economic interpretation of this state variable, the model’s

prices of risk also differs from Gallmeyer et al. (2005) in the sense that the endogenous

price of risk here is state-dependent. Therefore, some empirical regularities of the

term structure highlighted in Atkeson and Kehoe (2009), such as (1) the association

between movements in the yield spread - the difference between long and short-rate

- and movements in risk and (2) the fact that part of the short-rate movements
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are associated to changes in the conditional variance of the log marginal utility of

consumption, are also present in the model.

Another important term structure regularity emphasized by Atkeson and Kehoe

(2009) is the fact that, over the business cycle, the Federal Reserve Bank responds to

shocks in real risk. The authors show that factors identified by a principal component

analysis of the yield curve are associated with movements in the conditional mean

and variance of the pricing kernel. In particular, the model presented in this chapter

shows that the factor driving the yield curve is the time varying persistent component

of the money supply. As a result, the conditional moments of the pricing kernel move

according to changes in this factor. Atkeson and Kehoe (2009) highlight that most

of the existing literature traditionally assumes a constant conditional variance of the

pricing kernel which culminates in empirical inconsistencies that prevents one from

understanding the linkages between monetary policy, macroeconomic variables and

financial markets. Recently, some studies in the macro-finance literature support the

idea that the volatility of the pricing kernel is not constant. In particular, Bansal et al.

(2014) show that volatility risks carries a sizable positive risk premium, suggesting

that volatility risk is an important factor to understand the mechanics of asset prices

and macroeconomics dynamics. Boguth and Kuehn (2013) also find empirically that

the time varying conditional volatility of consumption is a priced risk factor.

The tractability of factor models for interest rates and their empirical fit are

studied in Rudebusch and Wu (2008). The authors develop a macroeconomic model

to study the impact of a monetary policy targeting inflation and output gap on the

term premium and term structure dynamics. Similar to the papers aforementioned,

their analysis relies on an exogenous specification of the prices of risk and the short-

rate, which are driven by unobservable factors linked to the slope and level of the

term structure. They conclude that the latent factors have important macroeconomics
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and monetary policy underpinnings. Similar to their analysis of output and price

level dynamics, the impulse response functions derived in this chapter help in the

understanding of how inflation and the nominal term structure shift as monetary and

productivity shocks realize. In addition to the limitations imposed by the assumption

of an exogenous specification of prices of risk, short-rate and output, Rudebusch and

Wu (2008) emphasize2 that their interpretation of the level factor as expected inflation

is conflicting with their assumption on the inflation dynamics. In the model introduced

in this chapter, the inconsistency is not present since both quantities are endogenous

variables emerging from equilibrium. Importantly, interest rates, yield curve slope,

prices of risk, inflation and output are linked together under a theoretical description

of preferences and production technology, resulting in an asset pricing kernel which

is consistent with the dynamics of macro-financial variables.

This work is closely related to Buraschi and Jiltsov (2005). In their paper, the

authors develop a real business cycle model with taxes and endogenous monetary

policy to analyze nominal and real risk premium of the yield curve. They are able

to deliver endogenous state-dependent prices of risk which results in the rejection

of the expectation hypothesis. Nevertheless, the authors do not take into account

central banks’ objective of smoothing interest rates, which prevent them to address

the concerns raised by McCallum (1994) and Rudebusch and Wu (2008).

This chapter is organized as follows. Section 3.2 describes the model, characterizes

the equilibrium and the term structure of interest rate. Section 3.3 provides a numer-

ical analysis of the model. Section 3.3.1 analyzes the impact of quantitative easing on

the welfare of the representative agent. Section 3.3.2 analyzes the dynamics of price

level and output by investigating the impulse response function of these quantities to

monetary shocks. Section 3.4 concludes.

2See Rudebusch and Wu (2008), footnote 9.
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3.2 Model

Consider a continuous time economy on [0,∞) where the uncertainty is represented

by a probability space (Ω,F ,P) with augmented filtration F = (Ft)t≥0 generated by

two independent Brownian motions: Zk = (Zk
t )t≥0, Z

m = (Zm
t )t≥0.

All the stochastic processes are assumed to be progressively measurable with re-

spect to F and all the equalities of random variables presented are considered to hold

P-a.s.

3.2.1 Households

There is a continuum of infinitely lived households that maximize the expected life-

time utility Jt by choosing the amount of consumption ct and real cash balances mt.

Each household maximizes the following expected utility function:

Jt = Et

 ∞∫
t

e−β(s−t)(α log cs + (1− α) logms)ds

 . (3.1)

In this formulation, β is the subjective rate of time preference and α is the expenditure

share on consumption. Throughout the text, it is assumed that 0 < β and 0 < α < 1.

The presence of money in the utility function is usually justified by the argument

that cash reduces the associated costs of obtaining a higher net consumption good.

These expenditures are commonly identified as transaction or liquidity costs. Exam-

ples of monetary asset pricing models that rely on this formulation are Sidrauski

(1967), Danthine and Donaldson (1986), Stulz (1986), Bakshi and Chen (1996),

Buraschi and Jiltsov (2005) and references therein. An alternative class of general

equilibrium asset pricing models that justify the presence of money is the one that

encompass a cash-in-advance type of constraint. This approach, adopted by Clower

(1967), Day (1984), Feenstra (1985), Lee (1989), Bakshi and Chen (1997) and others,

assumes that certain types of goods require cash in order to be consumed. However,
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the presence of cash-in-advance constraints limits the rate at which cash goods can

be purchased. Lucas and Stokey (1987) and Balduzzi (2007) combine features of both

cash-in-advance and money in the utility function approaches by allowing the repre-

sentative agent to have some flexibility in allocating consumption between cash goods

and goods that can be acquire directly in exchange for securities, the so called credit

goods.

Balduzzi (2007) analyzes an endowment economy where the representative agent

derives utility on cash goods, c1(t), and credit goods, c2(t), and maximizes the fol-

lowing expected utility function:

Jt = Et

 ∞∫
t

e−β(s−t)(α log c2(s) + (1− α) log c1(s))ds

 , (3.2)

where the cash good c1(s) is subject to the cash-in-advance constraint3:

m(t) ≥ c1(t). (3.3)

Similar to Bakshi and Chen (1997), the author focuses on the analysis of the

equilibrium where the constraint is always binding, i.e.,

c1(t) = m(t). (3.4)

Sidrauski (1967) also relies on (3.4) to justify the presence of money in the utility

function. In addition, Bakshi and Chen (1997) points out that the empirical findings

of Hodrick et al. (1991) support the idea that the constraint on cash goods almost

always bind.

3Formally, the constraint takes the form m(t) ≥
∫ t+ε

t
c1(s)ds ≈ εc1(t). Normalizing ε to one, we

obtain the cash-in-advance constraint in (3.3).
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3.2.2 Firms and Technology

In this economy, capital Kt is the only factor of production and the final good Yt is

generated according to the following AK technology:

Yt = AKt, (3.5)

where A is a constant production technology factor.

The aggregate physical capital stock has its dynamics represented by:

dKt =(It − δKt)dt+ σKtdZ
k
t − τKt

dpt
pt
. (3.6)

The first term on the right hand side of (3.6) illustrates that whenever the firm’s

investment It surpass depreciated capital δKt, there is a positive contribution to the

expected capital accumulation rate. The second term shows that the accumulation of

capital is risky and it is exposed the Brownian shock Zk. The exposure of capital to

this shock is exogenously set at the scalar σ, which is assumed to be positive. While

negative shocks have the natural interpretation of capital destruction in equation

(3.6), positive innovations can be interpreted as gains generated by the employment of

new capital relative to the old capital in place. The third component in (3.6) affecting

capital accumulation can be interpreted as a constant capital gain tax τ imposed by

fiscal authorities on capital gains. Thus, positive innovations on the variation of the

price level pt result in more tax collection and consequently less capital available. The

price level and its dynamics are an endogenous outcome of the equilibrium.

Other studies like Rebelo and Xie (1999), Buraschi and Jiltsov (2005), Wälde

(2011) and Posch (2011) also rely on a risky capital accumulation process. Rebelo and

Xie (1999) and Wälde (2011) highlight that despite the fact that equation (3.6) does

not represent the usual locally deterministic capital evolution commonly adopted in

neoclassical growth models, both capital evolution formulation become indistinguish-
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able once the market clearing condition and resources constraints are imposed4.

3.2.3 Monetary Authorities

Monetary authorities control the money supply, M s
t , and conduct the monetary policy

targeting the following variables: (1) the short-rate to the long-term yield level r̄, (2)

inflation to a level π̄, and (3) capital accumulation to a level k̄. Contrary to k̄ and

π̄ that are taken exogenously, the long-term yield level r̄ is an outcome from the

equilibrium. In addition to the targeting objectives, the money supply is also affected

by an exogenous persistent component gt that evolves according to the Feller diffusion:

dgt = κg(ḡ − gt)dt+ σg
√
gtdZ

m
t , (3.7)

where κg, ḡ and σg are positive constants.

Under these assumptions, the endogenous money supply can be summarized by

the following stochastic differential equation:

dM s
t

M s
t

= q1 (drt − r̄dt) + q2

(
dpt
pt
− π̄dt

)
+ q3

(
dKt

Kt

− k̄dt
)

+ dgt (3.8)

where q1, q2 and q3 are parameters that correspond to the authorities’ weights on

deviations from the target. If q1 = q2 = q3 = 0, the monetary policy is set exogenously.

The monetary policy described in (3.8) embodies the characteristics of the widely

adopted Taylor’s rule and it also contains a term that reflects the willingness of the

central bank to flat the term structure of interest rate.

Taylor (1993) proposes a monetary policy that consist in adjusting the short-

rate in response to variations to inflation and output from the central bank pre-

established targets. According to Orphanides (2003a), the Taylor’s rule is relatively

successful in explaining the Federal Reserve intervention during Paul Volcker and

4See Eaton (1981).
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Alan Greenspan’s tenure as chairman of the Federal Reserve. Nevertheless, McCallum

(1993) argues that information on inflation and output gap are usually not available

to policy makers at the moment of the short-rate setting. A similar argument is used

by Orphanides (2003b) to show that, when accounting for informational limitations,

the adoption of the Taylor’s rule by policymakers could have led to a worse economic

performance during the Great Inflation period in the seventies. Orphanides (2003a)

and Meyer (2002) also highlight that the classic Taylor’s rule does not encompass

forecast and expectations about economic activity, even thought both indicators are

crucial information for central bankers to shape monetary policy.

To overcome the difficulties of low frequency data, McCallum (1994) proposes a

monetary rule in which central authorities adjust the short-rate to smooth interest

rates across time and the yield curve. This specification is interesting from the stand-

point of implementation since high-quality financial market data is readily available

and it is usually reliable. McCallum (1994) framework is also able to rationalize the

empirical puzzle of Fama and Bliss (1987), also known as the failure of the expec-

tation hypothesis, by specifying an exogenous persistent process for risk premium.

Along with the yield curve smoothing, the risk premium persistence is able to explain

the empirical findings of Fama and Bliss (1987). Despite the fact that McCallum’s rule

serves as a useful statistical description of reality, the factors driving risk premium

and short-rate lack a clear economic interpretation.

Equation (3.8) is able to capture the essence of both rules described above. By

setting q1 = 0, monetary authorities respond to deviation of inflation and output

dynamics from their targets, which is how central banks behave according to Taylor

(1993). On the other hand, by setting q2 = q3 = 0, money is supplied whenever the

short-rate deviates from the endogenous long-term rate that the central bank targets.

The idea of yield curve smoothing relates with the policy advocated by McCallum
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(1994). Other financial indicators, such as bond and equity volatility, can be incor-

porated to (3.8) as a proxy of financial stability at the cost of simple equilibrium

expressions.

3.2.4 Equilibrium

This section presents the definition of an equilibrium in this continuous-time produc-

tion based monetary economy. The characterization of the equilibrium relies on the

construction of a representative agent5.

Definition 3.2.1. The representative agent equilibrium is defined as a set of prices

(interest rate, prices of risk and price level) given by the functions rt, θ
k
t , θ

m
t , pt, respec-

tively, a value function J(Kt, gt) and a set of decision rules on consumption, money

demand and investment, represented by the functions {ct,mt, It}, such that:

(i) The representative agent maximize expected utility described in (3.1) over con-

sumption and money demand subject to the resource constraints (3.6) and (3.5).

(ii) Money supply equals money demand: M s
t = mtpt.

(iii) Resource constraint: Yt = ct +mt + It.

The next proposition presents the equilibrium state price density.

Proposition 3.2.2. The state price density satisfies the following stochastic differ-

ential equation:

dξt
ξt

= −rtdt− θkt dZk
t − θmt dZm

t ; ξ0 = 1,

where the short-rate, rt, and prices of risk, θkt and θmt , are given by

rt = r0 + r1gt, θkt =σ − τσk, θmt = −(τσm + µ1σg)
√
gt,

5Buraschi and Jiltsov (2005) argued that despite the fact that externalities like taxes are generally
responsible for the failure of the Second Welfare Theorem, this is not the case when taxes are linear
in output and production technology has constant return to scale. See Stokey and Lucas (1989),
p.547, example 18.2.
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with

r0 =A− δ − τΠ0 − (σ − τσk)2, σk =
q3 − 1

1− q2 + τ(q3 − 1)
σ,

σm =
q1r1 + 1

1− q2 + τ(q3 − 1)
σg, ωn =(τ − 1)

σm
σg
,

µ1 =
−2Π1τ − σ2

mτ
2

2β(β + κg)
, Π1 =

τσ2
m − (q1r1 + 1)κg

1− q2 + τ(q3 − 1)
,

a1 =(d1 + c1)ωn − 1, c1 =−
κg +

√
κ2
g + 2σ2

gρ
n
1

2ρn1
,

b1 =
−d1(κg + 2ρn1c1) + a1(σ2

g − κg)
a1c1 − d1

, ρn1 =(1− τ)Π1 − (1 + τ 2)
θ2
m

2
+ (1− τ)

σm
σg
κg,

d1 =(1− c1)ωn
σ2
gωn − κg +

√
(σ2

gωn − κg)2 − σ2
g(σ

2
gω

2
n − 2ωnκg − 2ρn1 )

σ2
gω

2
n − 2ωnκg − 2ρn1

,

r1 =
(q2 + τ(1− q3)− 1)3

2q2
1σ

2
gτ

2(2− q2 + τ(q3 − 1))

(
q1τ

2σ2
gτ(q2 − 1 + τ(1− q3))

(q2 − 1 + τ(1− q3))3

+ q1τ
(q2 − 1 + τ(1− q3))2 − 2σ2

gτ

(q2 − 1 + τ(1− q3))3
+ 1

−

(
τ 2
(
(q2 − 1)(q1 − 3q3 + 3)(q1 − q3 + 1) + 4q1(q2 − 2)σ2

g

)
(q2 − 1 + τ(1− q3))3

+
(q2 − 1)2τ(2q1 − 3q3 + 3)

(q2 − 1 + τ(1− q3))3

−
(q3 − 1)τ 3

(
(q1 − q3 + 1)2 + 4q1σ

2
g

)
− (q2 − 1)3

(q2 − 1 + τ(1− q3))3

)1/2)
,

Π0 =
(q1r1 + 1)κgḡ + (q3 − 1)(A− δ − β)− (q1r̄ + q2π̄ + q3k̄)− σk(σ − τσk)

1− q2 + τ(q3 − 1)

r̄ =
1− q2 + τ(q3 − 1)

1− q2 + q1 + τ(q3 − q1 − 1)

(
A− δ + (τ − 1)

σm
σg
κgḡ + (σ − τσk)2

+σ2
k + σk(σ − τσk)− κgḡ

a1

d1

)
+(1− τ)

(q1r1 + 1)κgḡ + (q3 − 1)(A− δ − β)− (q2π̄ + q3k̄)− σk(σ − τσk)
1− q2 + q1 + τ(q3 − q1 − 1)

,

Proof. See Appendix A.2
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The expressions for prices of risk in Proposition 3.2.2 show that the price of risk

associated with shocks to capital, Zk, is constant and independent of the targeting

weight q1, also referred here as the quantitative easing parameter. In addition, if the

inequality

1− q2

1− q2 + τ(q3 − 1)
> 0

is satisfied, then the price of risk θkt is always positive. However, the price of risk asso-

ciated with monetary shocks, Zm, is time varying and depends on the state variable

gt. Moreover, its non-linear dependence on q1 does not allow one to unequivocally pin

down its sign. Here, the endogenous time-varying price of risk generates a time-varying

conditional variance of the pricing kernel, which, as discussed earlier, is essential to

explain the business cycle component of the term structure, as pointed by Atkeson and

Kehoe (2009). From the expression for the pricing kernel stated in Proposition 3.2.2,

it is clear that monetary authorities’ weights impact prices of risk, with consequences

to real risk.

Gallmeyer et al. (2005) also notice the importance of a time-varying price of risk in

explaining the term structure movements, but they rely on an exogenous specification

of the price of risk. Contrary to their framework, the model presented in Section 3.2

has short-rate (rt), price level (pt) and prices of risk (θkt , θ
m
t ) as endogenous quantities,

which allow one to further investigate the co-movements between prices of risk and

expected inflation (πt).

Another important observation is that the short-rate rt is an affine function of

the state variable gt. Nevertheless, due to the highly non-linear coefficient r1 as a

function of the quantitative easing parameter q1, one cannot determine if monetary

shocks would increase or decrease the short-rate.

Next, optimal policies, inflation, the endogenous evolution of capital and price

level are characterized. Proposition 3.2.3 presents the results.
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Proposition 3.2.3. The value function of the representative agent is

J(Kt, gt) =
1

β
log(βKt) + µ1gt + µ0, (3.9)

where

µ1 =
−2Π1τ − σ2

mτ
2

2β(β + κg)
,

µ0 =
(1− α) log(1− α) + α logα + A− β − δ + βḡκgµ1 − Π0τ − (σ−τσk)2

2

β2
.

(3.10)

The optimal policies for consumption, money demand and investment are, respec-

tively,

ct =αβKt, mt = (1− α)βKt, It = (A− β)Kt.

The equilibrium price level can be written as

dpt
pt

=πtdt+ σkdZ
k
t + σm

√
gtdZ

m
t ,

where expected inflation πt is a linear function of the state variable gt, expressed as

πt = Π0 + Π1gt.

The equilibrium capital accumulation satisfies the following stochastic differential

equation:

dKt

Kt

=(A− β − δ − τΠ0 − τΠ1gt)dt+ σk(σ − τσk)dZk
t − τσm

√
gtdZ

m
t .

Proof. See Appendix A.2

Note that all optimal policies - consumption, money demand and investment - are

linear in capital due to the structure of the utility function. Similar to the short-rate,

expected inflation, πt, is also an affine function of the state variable gt and the effect

of quantitative easing cannot be unequivocally determined since the coefficient Π1 is

a highly non-linear function of q1.
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The next proposition shows the expression for bond prices and yields.

Proposition 3.2.4. The nominal and real bond price are, respectively,

Bn(t, T ) =e−ρ
n
0 ·(T−t)+ηn0 (T−t)+(ηn1 (T−t)−ωn)gt ,

Br(t, T ) =e−ρ
r
0·(T−t)+ηr0(T−t)+(ηr1(T−t)−ωr)gt ,

(3.11)

where

ηn1 (T − t) =
1 + a1e

b1(T−t)

c1 + d1eb1(T−t) , ηr1(T − t) =
1 + ar1e

br1(T−t)

cr1 + dr1e
br1(T−t) ,

ηr0(T − t) =κgḡ
ar1c

r
1 − dr1

br1c
r
1d
r
1

log

(
cr1 + dr1e

br1(T−t)

cr1 + dr1

)
+
κgḡ

cr1
(T − t),

ρn0 =A− δ + (1− τ)Π0 + (τ − 1)
σm
σg
κgḡ + (σ − τσk)2 + σ2

k + σk(σ − τσk),

ηn0 (T − t) =κgḡ
a1c1 − d1

b1c1d1

log

(
c1 + d1e

b1(T−t)

c1 + d1

)
+
κgḡ

c1

(T − t),

dr1 =(1− cr1)ωr
σ2
gωr − κg +

√
(σ2

gωr − κg)2 − σ2
g(σ

2
g(ωr)

2 − 2ωrκg − 2ρr1)

σ2
g(ωr)

2 − 2ωrκg − 2ρr1
,

ρr0 =A− δ − τΠ0 − τ
σm
σg
κgḡ − (σ − τσk)2, ωn =(τ − 1)

σm
σg
,

ρn1 =(1− τ)Π1 − (1 + τ 2)
θ2
m

2
+ (1− τ)

σm
σg
κg, ωr =τ

σm
σg
,

ρr1 =−
(
τ
σm
σg
κg + τΠ1 +

(τσm)2

2

)
, cr1 =−

κg +
√
κ2
g + 2σ2

gρ
r
1

2ρr1
,

ar1 =(dr1 + cr1)ωr − 1, br1 =
−dr1(κg + 2ρr1c

r
1) + ar1(σ2

g − κg)
ar1c

r
1 − dr1

.

The nominal and real yield rate are, respectively,

Rn(t, T ) =− 1

T − t
logBn(t, T ) = ρn0 −

ηn0 (T − t)
T − t

+
ωn − ηn1 (T − t)

T − t
gt,

Rr(t, T ) =− 1

T − t
logBr(t, T ) = ρr0 −

ηr0(T − t)
T − t

+
ωr − ηr1(T − t)

T − t
gt.

Proof. See Appendix A.2.1.

Contrary to the findings of Bakshi and Chen (1996), the money supply impacts

directly not only the short-rate but also the nominal and real term structure. The
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main reason is that the capital evolution is affected explicitly by the tax on nominal

value of capital, which makes price variability impact real output. This mechanism is

absent in Bakshi and Chen (1996). Consequently, the real pricing kernel is impacted

by the capital fluctuation generated by changes in price level, which end up impacting

the short-rate and the term structure of nominal and real bonds.

The expressions for the nominal and real yield, indicated in Proposition 3.2.4,

show that both term structures belong to the class of the one factor model. Given

that the short-rate is also an affine function of the state variable gt, it follows that

both term premium are an affine function of gt. Consequently, all yields are perfectly

correlated across maturities. This result represents a shortcoming inherent to all single

factor models as pointed out by Cox et al. (1985).

To conclude the equilibrium characterization, expressions for nominal and real

claims over consumption are presented in Proposition 3.2.5.

Proposition 3.2.5. The price of a contingent claim over consumption are, in nom-

inal and real terms, respectively,

Snt =αβKt

∞∫
t

Bn(t, s)ds,

Srt =αKt.

(3.12)

The dynamics of (3.12), the nominal and real risk premium are shown in Appendix

A.2.2.

Proof. See Appendix A.2.2.

3.3 Numerical Analysis

In order to investigate the behavior of the equilibrium quantities derived in Section

3.2.4, this section presents a comparative statics analysis of the model’s outcomes rel-

ative to the quantitative easing parameter q1. Table 3.2 summarizes the parametriza-
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tion adopted and it follows the plausible values used by Buraschi and Jiltsov (2005)

and Matthys (2014).

[Table 2 about here.]

The top panels in Figure 3·15 shows the effect of flattening the term structure by

adjusting the weight q1. As monetary authorities increase the targeting intensity, the

short-rate moves towards the long-term yield, shortening the gap between both rates.

This results indicates that an increase in money supply due to smoothing the yield

curve could increase the short-term rate while dumping the long-term yield. Note

that depending on how intense the targeting weight q1 is, it could potentially invert

the slope of the yield curve.

The effects of quantitative easing on expected inflation is illustrated in the bottom

left panel of Figure 3·15. As monetary authorities increase the weight q1 to flatten the

term structure, the short-rate exposure r1 to monetary shocks increases. The negative

relationship between the short-rate exposure r1 and expected inflation exposure Π1

to monetary shocks6, results in a lower expected inflation.

The bottom right panel of Figure 3·15 depicts the effects of quantitative easing

on the price of risk associated with the monetary shocks. By increasing the weight q1,

the price level volatility increases and, as a result, the price of risk associated with the

monetary shocks also increases. In fact, the expression for σm shown in Proposition

3.2.2 reveals that the price of risk θm is increasing in q1 when the short-rate exposure

to gt, r1, responds positively to an increase in q1.

[Figure 15 about here.]

The weight q1 impacts the nominal and real term structure in different ways. As

it is illustrated in Panel (a) of Figure 3·16, the nominal yield curve decreases as q1

6See the expression for Π1 in Proposition 3.2.2
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increases. As discussed previously, quantitative easing drives expected inflation down.

Therefore, nominal bonds yields also decrease with the increase of q1. In addition, the

term structure is decreasing in the bond maturity. The reasoning behind this result is

the following: nominal long term bonds are exposed to expected inflation for a longer

period and, consequently, will collect the benefits of it for a longer period of time.

Thus, short term bonds should offer a higher rate to become attractive to risk averse

agents.

The effects for real bond yields are the opposite to the ones described for nominal

bond yields. First, Panel (b) of Figure 3·16 shows that the model generates an up-

ward real yield curve, which is consistent with the empirical findings of Alvarez and

Jermann (2005). Contrary to the case of nominal bonds, in which both the pricing

kernel and price level are affected by expected inflation, here only the pricing kernel

is affected by expected inflation through changes in the capital accumulation growth

rate, resulting in higher real rates.

According to Piazzesi and Schneider (2007) and Beeler and Campbell (2009),

long-run risk models have problems generating the upward sloping yield curves. As

explained in Albuquerque et al. (2012), the downward sloping curve is generated by

risk averse agents trying to protect against bad states, when consumption is drastically

low. Given that bonds’ payoff are certain in these states, agents are willing to pay

high prices to obtain such securities. If agents want to be insured for longer periods

of time, the price of the securities should be higher, which implies in lower returns.

Nevertheless, in the presented model, the longer the maturity, the longer the exposure

of capital accumulation to inflation risk. For this reason, risk averse agents require a

compensation for this exposure, which results into higher real premium.

[Figure 16 about here.]

Figure 3·17 displays the term premium for bonds maturing in 1, 5 and 10 years as
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a function of the quantitative easing parameter q1. As it is shown, both premiums are

negative, indicating that the claims serve as a hedge to inflation risk. The equilibrium

capital evolution stated in Proposition 3.2.3 shows that monetary shocks decrease the

current capital level but it increases expected capital growth if the exposure to the

persistent component gt is negative, i.e., Π1 < 0. Thus, a positive monetary shock

would drive expected future capital growth upward, leading the short-rate down and

bond prices up. Consequently, bonds hedge inflation risk and have a negative real

term premium.

[Figure 17 about here.]

Figure 3·18 illustrates the behavior of nominal and real bond variance as a func-

tion of quantitative easing for the bonds maturing in 1, 5 and 10 years. As it is shown,

the nominal bond variance is an increasing function of the maturity and the quan-

titative easing parameter q1. These results come from the fact that a higher weight

q1 increases the volatility of both the real pricing kernel and price level. Thus, while

real bond variance decreases with q1, the effect on the price level volatility dominates

the reduction of the real pricing kernel volatility, resulting in a more volatile nominal

pricing kernel.

[Figure 18 about here.]

A similar analysis can be conducted to investigate the nominal and real equity

premium. The expressions derived in Proposition 3.2.5 show that real stock is a frac-

tion of the capital good while the nominal stock is linear in capital but it also depends

on the expressions for nominal bonds. Thus, the same reasoning can be applied to ex-

plain the same pattern of results displayed in Figure 3·19. Similarly to the analysis of

the nominal bond yields, the more volatile nominal pricing kernel makes the nominal

premium more sensible to quantitative easing variations.
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[Figure 19 about here.]

Similar to the findings of Stulz (1986), the model is able to generate a positive

relation between expected nominal returns on consumption claims and expected in-

flation, while a mild negative relation between expected inflation and expected real

rate of return.

3.3.1 Welfare Analysis

This section presents the welfare effects of quantitative easing. In order to assess the

impact of quantitative easing on the welfare of the representative agent, a equivalent

variation measure is adopted.

Consider the definition for welfare cost/gain of Dibooglu and Kenc (2009):

Definition 3.3.1. The welfare cost/gain is defined as the percentage of capital the

representative agent is ready to give up in period zero to be as well off in a world with

quantitative easing intensity q1, as she is in a world with no quantitative easing, i.e.,

q1 = 0.

The next proposition present the welfare cost/gain of quantitative easing in closed

form.

Proposition 3.3.2. Let γ be the welfare cost/gain of quantitative easing as in Defi-

nition 3.3.1. Then,

γ(q1) =1− exp

{
− 1

β2

(
τ(Π0(q1)− Π0(0)) + τ

σm(q1)− σm(0)

σg
κgḡ

+

(
τ
σm(q1)− σm(0)

σg
κg + τ(Π1(q1)− Π1(0)) + τ 2σ

2
m(q1)− σ2

m(0)

2

)
ḡ

)
−
(
τ(Π1(q1)− Π1(q0)) + τ 2σ

2
m(q1)− σ2

m(q0)

2

)
g0 − ḡ

β(β + κg)

}
.

(3.13)

Figure 3·20 illustrates the welfare cost/gain of quantitative easing following the

parametrization presented in Table 3.2. As it is shown, an increase in money sup-
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ply generated by quantitative easing results in a welfare gain for the representative

agent. The deflationary effects induced by quantitative easing lead to higher capital

accumulation and, consequently, to a higher consumption ratio.

[Figure 20 about here.]

3.3.2 Analysis of Dynamics

In order to understand how shocks to monetary policy and capital accumulation

impact equilibrium output Yt and the price level pt, an analysis of the impulse response

function these quantities is provided. The analysis is similar to the one presented by

Rudebusch and Wu (2008). The next proposition characterizes these elasticities.

Proposition 3.3.3. The normalized impulse response functions for output and price

level are, respectively,

εY,kt,T =σ, εp,kt,T =σk,

εY,mt,T =
τσmσggt
Et [KT ]

Et

[
KT

( T∫
t

(
τΠ1 +

(τσm)2

2

)
e
−
∫ v
t

(
κg+

σ2g
8
√
gu

)
du+

∫ v
t

σg
2
√
gu
dZmu

dv

+ τσm

T∫
t

1

2
√
gv
e
−
∫ v
t

(
κg+

σ2g
8
√
gu

)
du+

∫ v
t

σg
2
√
gu
dZmu

dZm
v

)]
,

εp,mt,T =
σmσggt
Et [pT ]

Et

[
pT

( T∫
t

(
Π1 −

σ2
m

2

)
e
−
∫ v
t

(
κg+

σ2g
8
√
gu

)
du+

∫ v
t

σg
2
√
gu
dZmu

dv

+ σm

T∫
t

1

2
√
gv
e
−
∫ v
t

(
κg+

σ2g
8
√
gu

)
du+

∫ v
t

σg
2
√
gu
dZmu

dZm
v

)]
.

Proof. See Appendix A.2.4.

The top two panels in Figure 3·21 illustrate the behavior of the elasticities for

q1 = 1
2

with their respective 95% confidence bounds. The middle panels illustrate the

elasticities for q1 = 1. The bottom panels display the elasticities for q1 = 1, in dashed

line, and for q1 = 1
2
, in solid line.
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As it can be observed, the impact of monetary shocks is amplified when quantita-

tive easing is higher. In addition, a monetary shock has a positive permanent effect

on output while the effect on price level is negative and transient.

[Figure 21 about here.]

3.4 Conclusion

A macro-finance model where monetary authorities adjust the money supply target-

ing not only output and inflation gap but also the slope of the yield curve is presented

in this work. Under a continuous-time production based monetary economy, the per-

sistent component present in the money supply becomes the factor driving the term

structure movements. Moreover, the endogenous characterization of expected infla-

tion, short-rate and prices of risk in closed-form allow us to study the feedback effects

of quantitative easing on macroeconomic and financial variables.

Under the parametrization adopted, quantitative easing tends to flatten the term

structure, to generate deflation and to increase the time-varying prices of risk. In

addition, the model generates a downward sloping nominal term structure and an

upward sloping real term structure. The numerical exercise that analyzes the impact

of quantitative easing on the agent’s welfare, for q1 ∈ [0, 5], indicates that quantitative

easing could be potentially welfare improving.
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Figure 3·1: Assests under management in the global hedge fund in-
dustry. Source: Barclay Hedge.
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Here, we take IA = IB = 2 and D1,t = D2,t so that st = 0.5 is kept
fixed.

Figure 3·2: State price density. These figures plot the state price den-
sity ξt against the benchmark dividend ratio st and the benchmark
dividend level D2,t.
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(a) Market price of volatility risk θt at time t = 0.
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(b) Market price of jump risk ψt at time t = 0.

Figure 3·3: Market prices of risk. These figures give comparative stat-
ics of the market prices of volatility and jump risk, θt and ψt relative to
changes in the benchmark dividend ratio st and the benchmark impor-
tance parameters IA and IB. The analysis is done at time t = 0 under
the assumption that IA = IB.
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Figure 3·4: Interest rate. This figure gives comparative statics of the
interest rate rt relative to changes in the benchmark dividend ratio st
and the benchmark importance parameters IA and IB. The analysis is
done at time t = 0 under the assumption that IA = IB.
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The price is close to insensitive to the benchmark importance parameters
so that the lines for different values of IA and IB lie on top of each other.

Figure 3·5: Stock prices. These figures give comparative statics of
the prices of the benchmark and the non-benchmark stocks, S1,t and
S2,t, relative to changes in the benchmark dividend ratio st and the
benchmark importance parameters IA and IB. The analysis is done at
time t = 0 under the assumption that IA = IB.
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(a) Stock volatilities, σ1,t and σ2,t, for different values of IA and IB .
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(b) Stock jump sizes, J1,t and J2,t, for different values of IA and IB .

Figure 3·6: Stock volatilities and jump sizes. These figures give com-
parative statics of the volatilities (σ1,t and σ2,t) and jump sizes (J1,t

and J2,t) relative to changes in the benchmark dividend ratio st and
the benchmark importance parameters IA and IB. The analysis is done
at time t = 0 under the assumption that IA = IB.
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(a) Portfolio weights for the non-benchmark stock for different values of
IA and IB .
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(b) Portfolio weights for the benchmark stock for different values of IA
and IB .
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(c) Portfolio weights for the safe asset for different values of IA and IB .

Figure 3·7: Portfolios. These figures show the portfolio plans of dif-
ferent investors for different values of the benchmark dividend ratio st
and the benchmark importance parameters IA and IB. The analysis is
done at time t = 0 under the assumption that IA = IB.
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(a) Institutional investors’ portfolio weights for the non-benchmark
stock, πA

1,t (solid blue) and πB
1,t (dashed blue), and the benchmark stock,

πA
2,t (solid red) and πB

2,t (dashed red), as functions of the benchmark div-
idend jump size J2.
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(b) Institutional investors’ portfolio weights for the non-benchmark
stock, πA

1,t (solid blue) and πB
1,t (dashed blue), and the benchmark stock,

πA
2,t (solid red) and πB

2,t (dashed red), as functions of the non-benchmark
and benchmark dividend volatilities, σ1 and σ2.

Figure 3·8: Comparative statics of porfolios of institutional investors.
These figures are generated under the assumption that t = 0, IA =
IB = 2, and s0 = 0.5. They reflect ceteris paribus changes relative to
the parametrization of Table 3.2.
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the right plot, we assume D1,t = D2,t.
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j
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tion of the benchmark dividend ratio st and the benchmark importance
parameters IA and IB . We take t = 0 and IA = IB .

Figure 3·9: Consumption plans. These charts plot consumption as
functions of the dividend ratio st, the dividend levelD2,t, and the bench-
mark importance parameters IA and IB.
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Figure 3·10: Institutional excess consumption. These figures plot the
excess consumption of institutional investor, cAt −cRt , as functions of the
benchmark dividend ratio st, the dividend level D2,t, and benchmark
importance parameter IA. We take t = 0. To make the retail and in-
stitutional investors comparable, we assume here that αA = αR = 0.5,
αB = 0, and ρA = ρR = 0.02. For the right plot, we also assume
D1,t = D2,t.
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Figure 3·11: Value-at-Risk. These figures plot the 1-year value-at-risk
of the institutional and retail investors, and of the aggregate market
against the benchmark dividend ratio st and the benchmark importance
parameters IA and IB. The analysis is carried out at time t = 0 under
the assumption that IA = IB. We simulate 105 exact samples of D1,t

and D2,t for t = 1, and use these to construct samples of the benchmark
dividend ratio st, as well as wealths W j

t and realized portfolio returns
(W j

t −W j
0 )/W j

0 for j ∈ {R,A,B} at t = 1. Value-at-risk is the 1%-
quantile of the simulated realized return distribution times −1.



78

0.0 0.2 0.4 0.6 0.8 1.0

0.
17

11
0

0.
17

11
5

0.
17

12
0

0.
17

12
5

0.
17

13
0

0.
17

13
5

0.
17

14
0

0.
17

14
5

Investor A

Benchmark dividend ratio

P
or

tfo
lio

 v
ol

at
ili

ty

IA=IB= 0

IA=IB= 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
17

11
0

0.
17

11
5

0.
17

12
0

0.
17

12
5

0.
17

13
0

0.
17

13
5

0.
17

14
0

0.
17

14
5

Investor B

Benchmark dividend ratio

P
or

tfo
lio

 v
ol

at
ili

ty

IA=IB= 0

IA=IB= 5

0.0 0.2 0.4 0.6 0.8 1.0

0.
17

11
0.

17
12

0.
17

13
0.

17
14

0.
17

15
0.

17
16

0.
17

17

Investor R

Benchmark dividend ratio

P
or

tfo
lio

 v
ol

at
ili

ty
 o

f i
nv

es
to

r 
R

IA=IB= 0

IA=IB= 5

Figure 3·12: Portfolio volatilities. This figure plots portfolio volatil-
ities for investors A, B, and R at time t = 0 as a function of the
benchmark dividend ratio s0 and the benchmark importance parame-
ters IA and IB. The portfolio volatility of investor j ∈ {R,A,B} can be
computed as the square root of (σ1,tπ

j
1,t+σ2,tπ

j
2,t)

2+λ(J1,tπ
j
1,t+J2,tπ

j
2,t)

2.
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(a) Portfolio changes of institutional investor A.

−
1.

5
−

0.
5

0.
5

1.
5

Benchmark importance parameter

N
on

−
be

nc
hm

ar
k 

st
oc

k

0 5 10 15 20

Substitution

Income

Total

0 5 10 15 20

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0

Benchmark importance parameter

B
en

ch
m

ar
k 

st
oc

k Substitution

Income

Total

−
0.

00
00

5
0.

00
00

5
0.

00
01

5

Benchmark importance parameter
S

af
e 

as
se

t

0 5 10 15 20

Substitution

Income

Total

(b) Portfolio changes of institutional investor B.
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(c) Portfolio changes of retail investor R.

Figure 3·13: Portfolios changes after a jump when the dividend ratio is
low. These figures plot portfolio changes as functions of the benchmark
importance parameter when a jump occurs. We assume s0 = 0.2 and
IA = IB. If a jump occurs at time t, then the portfolio change of investor
j is measured as πjtW

j
t − π

j
t−W

j
t−, where πjt− and W j

t− are the portfolio
weights and wealths of investor j right before the jump occurs. Portfolio
changes are decomposed into substitution effects ((πjt − π

j
t−)W j

t−) and

income effects (πjt (W
j
t −W

j
t−)).
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(a) Equivalent variation of consumption for s0 ≤ 0.5.
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(b) Equivalent variation of consumption for s0 ≥ 0.5.

Figure 3·14: Equivalent variation of consumption. These figures show
the equivalent variation of consumption; i.e., the amount of additional
consumption that investor j ∈ {R,A,B} has to consume at any point
of time in a world in which IA = IB = 0 in order to achieve the same
level of utility as in a world with IA > 0 or IB > 0. Formally, letting
cj0,t denote the consumption at time t of investor j when IA = IB =
0, the equivalent variation of consumption (EV R

t , EV
A
t , EV

B
t ) satisfy

E[
∫∞

0
e−ρRt log cRt dt] = E[

∫∞
0
e−ρRt log(cR0,t + EV R

t )dt], E[
∫∞

0
e−ρAt(1 +

IAst) log cAt dt] = E[
∫∞

0
e−ρAt log(cA0,t + EV A

t )dt], and E[
∫∞

0
e−ρBt(1 +

IBst) log cBt dt] = E[
∫∞

0
e−ρBt log(cB0,t + EV B

t )dt]. We only plot EV j
t for

t = 0; analogous plots hold for all t > 0.
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Figure 3·15: Short-rate, long-rate, expected inflation and risk price.
These figures plot, respectively, the short-rate, long-rate, price of risk
and expected inflation against the quantitative easing parameter q1.
The analysis is done at time t = 0.
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(b) Real Yields.

Figure 3·16: Nominal and real yields. Panel (a) plots the nominal
yields against the quantitative easing parameter q1 for nominal bonds
maturing in 1, 5 and 10 years. Panel (b) plots the real yields against
the quantitative easing parameter q1 for real bonds maturing in 1, 5
and 10 years. The analysis is done at time t = 0.
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(a) Nominal Term Premium.
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(b) Real Term Premium.

Figure 3·17: Nominal and real term premium. Panel (a) plots the
nominal term premium against the quantitative easing parameter q1

for nominal bonds maturing in 1, 5 and 10 years. Panel (b) plots the
real term premium against the quantitative easing parameter q1 for real
bonds maturing in 1, 5 and 10 years. The analysis is done at time t = 0.
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(a) Nominal Bond Variance.
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(b) Real Bond Variance.

Figure 3·18: Nominal and real bond variance. Panel (a) plots the
nominal bond variance against the quantitative easing parameter q1

for nominal bonds maturing in 1, 5 and 10 years. Panel (b) plots the
real bond variance against the quantitative easing parameter q1 for real
bonds maturing in 1, 5 and 10 years. The analysis is done at time t = 0.
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Figure 3·19: Equity premium and variance. Panel (a) plots the nomi-
nal and real equity premium against the quantitative easing parameter
q1. Panel (b) plots the nominal and real equity variance against the
quantitative easing parameter q1. The analysis is done at time t = 0.
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Figure 3·20: Welfare Cost/Gain. The figure plots the welfare
cost/gain against the quantitative easing parameter q1. While a positive
variation indicates a loss of welfare generated by quantitative easing, a
negative variation indicates a welfare gain relative to an economy with-
out quantitative easing, i.e., with q1 = 0. The analysis is done at time
t = 0.
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Figure 3·21: Elasticities. The figure illustrates the output elasticity
against time, in the left column, and the price elasticity against time,
in the right column. The elasticities in the top panels are done holding
q1 = 1

2
and the 95% confidence bounds are also presented. The two

panels in the middle of the figure show the elasticities when q1 = 1. The
panels in the bottom overlay the elasticities for the cases q1 = 1

2
and

q1 = 1 for a better comparison. The confidence bounds are suppressed
for a better visualization. The time discretization adopted is ∆t = 0.1
and the number of simulations is equal to 3000.
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Preferences ρA = 0.03 ρB = 0.02 ρR = 0.01
IA = IB ∈ [0, 100]

Dividends µ1 = 0.0753 µ2 = 0.08 λ = 0.05
σ1 = 0.1715 σ2 = 0.17 J1 = 0
J2 = −0.1 D1,0 = 2 D2,0 ∈ [0.01, 10]

Initial Wealth αA = 0.375 αB = 0.375 αR = 0.25

Table 3.1: Model parameters. These parameter are chosen to roughly
match the parameters estimated by Backus et al. (2011) for U.S. eq-
uities and options. We assume that jumps are larger but less frequent
than Backus et al. (2011). Similar parameters for jump sizes and jump
frequencies of U.S. equities are estimated by Barro (2006) and Wachter
(2013).
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Preference and β = 0.08 α = 0.57 A = 0.08 σ = 0.03
Technology τ = 0.1 δ = 0.075 K0 = 1

State Variable κg = 0.1 σg = 0.09 ḡ = 0.0004 g0 = 0.07
Monetary Policy q1 ∈ [0, 5] q2 = −1.1 q3 = 1.1 k̄ = 0.034

π̄ = 0.043

Table 3.2: Parameters. These parameters are chosen to roughly match
the parameters estimated by Buraschi and Jiltsov (2005) and Matthys
(2014).
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Appendix A

Proofs

A.1 Chapter 2: Equilibrium formulation and solution

An equilibrium in our model consists of consumption plans (cRt )t≥0, (cAt )t≥0, and

(cBt )t≥0, portfolio plans (πRt )t≥0, (πAt )t≥0, (πBt )t≥0, benchmark importance parameters

IA and IB, stock prices (S1,t)t≥0 and (S2,t)t≥0, prices of diffusion (θt)t≥0 and jump

(ψt)t≥0 risk, and an interest rate process (rt)t≥0 such that the following conditions are

satisfied:

• (cRt )t≥0 and (πRt )t≥0 solve

sup E

 ∞∫
0

e−ρRt log cRt dt

 , subject to E

 ∞∫
0

ξtc
R
t dt

 ≤ αRW0.

• For j ∈ {A,B}, (cjt)t≥0 and (πjt )t≥0 solve

sup E

 ∞∫
0

e−ρjt(1 + Ijst) log cjtdt

 , subject to E

 ∞∫
0

ξtc
j
tdt

 ≤ αBW0

• Asset markets are cleared:

WR
t π

R
l,t +WA

t π
A
l,t +WB

t π
B
l,t = 0,

WR
t π

R
1,t +WA

t π
A
1,t +WB

t π
B
1,t = S1,t,

WR
t π

R
2,t +WA

t π
A
2,t +WB

t π
B
2,t = S2,t.
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Here, ξ = (ξt)t≥0 is the state price density in the market so that the process

t 7→ ξtW
j
t +

t∫
0

cjsξsds

is a martingale relative to the complete information filtration (Ft)t≥0 for each j ∈

{R,A,B}.

As showed by Martin (2013), all equilibrium quantities can be characterized based

on a set of moments of st. We follow the approach of Martin (2013), and derive

semi-analytical expressions for the dividend ratio moments of Section (2.3). These

expressions can be computed exactly except for some integrals which need to be

computed numerically.

Write ỹ2,v,t = y2,v − y2,t for y2,t = logD2,t. We can express the dividend share as

sv =
eỹ2,v,t+y2,t

eỹ2,v,t+y2,t + eỹ1,v,t+y1,t

for v ≥ t. Using this transformation, it follows that

Et

 ∞∫
t

e−ρA(v−t)svdv

 = Et

 ∞∫
t

e−ρA(v−t) eỹ2,v,t+y2,t

eỹ2,v,t+y2,t + eỹ1,v,t+y1,t
dv

 . (A.1)

By multiplying and dividing by e−(ỹ2,v,t+y2,t+ỹ1,v,t+y1,t)/2 and denoting uv,t = ỹ2,v,t +

y2,t − ỹ1,v,t − y1,t, we can rewrite the integrand as

euv,t/2

2cosh(uv,t/2)
. (A.2)

Fourier inversion implies that

1

2cosh(uv,t/2)
=

∫
G1(z)eizuv,tdz,

where G1(z) = 1
2
sech(πz). Because all integrands are bounded, the first moment can
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be expressed as

M j
1,t =Et

 ∞∫
t

e−ρj(v−t)
∫
G1(z)e(iz+1/2)uv,tdzdv

 =

∫
G1(z)e(iz+1/2)ut,t

ρj − c(−iz − 1/2, iz + 1/2)
dz

with the function c(·, ·) defined as

c(θ1, θ2) =

(
µ1 −

1

2
σ2

1

)
θ1 +

(
µ2 −

1

2
σ2

2

)
θ2 +

1

2
σ2

1θ
2
1 +

1

2
σ2

2θ
2
2 + σ1σ2θ1θ2

+ λ
(
(1 + J1)θ1 + (1 + J2)θ2 − 2

)
,

and j ∈ {A,B,R}.

The second and third moments can be calculated in an analogous same way,

leading to the expressions

M j
2,t =

∫
G2(z)e(iz+1)ut,t

ρj − c(−iz − 1, iz + 1)
dz, M j

3,t =

∫
G3(z)e(iz+3/2)ut,t

ρj − c(−iz − 3/2, iz + 3/2)
dz,

where

Gγ(z) =
1

2π

Γ(γ
2

+ iz)Γ(γ
2
− iz)

Γ(γ)
, γ ∈ {2, 3},

and Γ(·) represents the standard Euler gamma function. For the jump magnitude

moments we can use a similar approach and obtain

∆M j
γ,t =

∫
Gγ(z)e(iz+ γ

2
)ut

ρj − c(−iz − γ
2
, iz + γ

2
)

((
1 + J2

1 + J1

)iz+ γ
2

− 1

)
dz, γ ∈ {1, 2}.

A.1.1 Proofs

Proof of Proposition 2.3.1 and 2.3.2 . Since the state price density depends on ag-

gregate dividends and the dividend share st, we derive its dynamics in terms of these
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state variables. An application of Ito’s Lemma gives

dDt =Dt ((1− st)µ1 + stµ2)︸ ︷︷ ︸
:=µd,t

dt+Dt ((1− st)σ1 + stσ2)︸ ︷︷ ︸
:=σd,t

dZt

+Dt− ((1− st−)J1 + st−J2)︸ ︷︷ ︸
:=Jd,t−

dNt.

Market clearing implies that, at any time t, aggregate consumption equal to aggregate

dividend:

Dt = cAt + cBt + cRt .

As we show in Proposition 2.3.5,

cjt =
e−ρAt(1 + IAst)α

AW0φA
ξt

.

for j ∈ {A,B} and

cRt = ρRW
R
t =

αRW0ρRe
−ρRt

ξt
.

By plugging these in, we have

Dt =W0ξ
−1
t (γ1t + γ2t + γ3tst) ,

where

γ1t = αRρRe
−ρRt,

γ2t = αAφAe
−ρAt + αBφBe

−ρBt,

γ3t = αAIAφAe
−ρAt + αBIBφBe

−ρBt.

This gives the characterization of the state price density as

ξt = W0
Qt

Dt

, (A.3)

where we defined Qt = γ1t + γ2t + γ3tst. At t = 0 we have ξ0 = 1, which implies that

initial wealth can be expressed as W0 = D0

Q0
.
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Next, an application of Ito’s Lemma on st leads to the following stochastic differ-

ential equation,

dst = st(1− st) [µ2 − µ1 + (σ1 − σ2) (σ1(1− st) + σ2st)]︸ ︷︷ ︸
=µs,t

dt+ st(1− st) (σ2 − σ1)︸ ︷︷ ︸
=σs,t

dZt

+
st−(1− st−)(J2 − J1)

1 + (1− st−)J1 + st−J2︸ ︷︷ ︸
=Js,t−

dNt.

In order to use the method of undetermined coefficients to pin down market prices of

risk and interest rate, we also need the dynamics of D−1
t . Ito’s Lemma yields:

dD−1
t =(σ2

d,t − µd,t)D−1
t dt− σd,tD−1

t dZt −
Jd,t−

1 + Jd,t−
D−1
t− dNt.

Using the dynamics derived for st, we can express the dynamics of Qt as

dQt =Qtµq,tdt+ γ3tσs,t︸ ︷︷ ︸
:=Qtσq,t

dZt + γ3tJs,t−︸ ︷︷ ︸
:=Qt−Jq,t−

dNt,

where

µq,t =− ρRγ1t − αAφAρAe−ρAt(1 + IAst)− αBφBρBe−ρBt(1 + IBst) + γ3tµs,t.

An additional application of Ito’s Lemma on the right hand side of (A.3) gives

dξt =− ξt
(
µd,t − µq,t − σ2

d,t + σd,tσq,t +

[
1− 1 + Jq,t

1 + Jd,t

]
λ

)
dt

− ξt(σd,t − σq,t)dZt + ξt−

[
1 + Jq,t−
1 + Jd,t−

− 1

]
(dNt − λdt).

By matching the coefficients we obtain the following expressions for risk prices:

θt =σd,t − σq,t ; ψt =
1 + Jq,t
1 + Jd,t

;

rt =µd,t − µq,t − σ2
d,t + σd,tσq,t + (1− ψt)λ.

Proof of Proposition 2.3.3. Market completeness implies that ξtS2,t = Et
[∫∞
t
ξvD2vdv

]
.
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Therefore,

Qt

Dt

S2,t = Et
[ ∞∫
t

(
αRρRe

−ρRvsv + (αAφAe
−ρAv + αBφBe

−ρBv)sv

+ (IAα
AφAe

−ρAv + IBα
BφBe

−ρBv)s2
v

)
dv

]
= αRρRe

−ρRtMR
1,t + αAφAe

−ρAtMA
1,t + αBφBe

−ρBvMB
1,t

+ IAα
AφAe

−ρAtMA
2,t + IBα

BφBe
−ρBtMB

2,t. (A.4)

We reformulate and obtain:

S2,t =
Dt

Qt

(
αRρRe

−ρRtMR
1,t + αAφAe

−ρAt(MA
1,t + IAM

A
2,t) + αBφBe

−ρBt(MB
1,t + IBM

B
2,t)
)
.

We apply the same approach for asset S1,t and obtain:

S1,t =
Dt

Qt

(
αRe−ρRt + αAφAe

−ρAt(ρ−1
A + IAM

A
1,t) + αBφBe

−ρBt(ρ−1
B + IBM

B
1,t)
)
− S2,t.

Next, we compute the volatility and jump size functions for both asset prices by

the method of coefficient matching. Define the function f as

f(st; z, γ) ≡ e
(iz+ γ

2
) log

(
st

1−st

)
=

(
st

1− st

)iz+ γ
2

,

such that

M j
γ,t =

∫
Gγ(z)e(iz+ γ

2
)ut,t

ρj − c(−iz − γ
2
, iz + γ

2
)
dz =

∫
Gγ(z)f(st; z, γ)

ρj − c(−iz − γ
2
, iz + γ

2
)
dz.
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Ito’s formula implies that

dM j
γ,t = (· · · ) dt+

∫
Gγ(z)f ′(st; z, γ)σs,t

ρj − c(−iz − γ
2
, iz + γ

2
)
dzdZt

+

∫
Gγ(z) (f(st; z, γ)− f(st−; z, γ))

ρj − c(−iz − γ
2
, iz + γ

2
)

dzdNt

= (· · · ) dt+

∫ Gγ(z)(γ
2

+ iz)e(iz+ γ
2

)ut,t(σ2 − σ1)

ρj − c(−iz − γ
2
, iz + γ

2
)

dzdZt

+

∫
Gγ(z)e(iz+ γ

2
)ut,t

ρj − c(−iz − γ
2
, iz + γ

2
)

[(
1 + J2

1 + J1

)iz+ γ
2

− 1

]
dzdNt.

Because we are only matching the uncertainty coefficients, the drift is irrelevant to

our calculations. We have for γ ∈ {1, 2}:∫ (
iz +

γ

2

) Gγ(z)e(iz+ γ
2

)ut,t

ρA − c(−iz − γ
2
, iz + γ

2
)
dz = γ

(
M j

γ,t −M
j
γ+1,t

)
,∫

Gγ(z)e(iz+ γ
2

)ut,t

ρj − c(−iz − γ
2
, iz + γ

2
)

[(
1 + J2

1 + J1

)iz+ γ
2

− 1

]
dz = ∆M j

γ,t.

Therefore,

dM j
γ,t = (· · · ) dt+ γ(σ2 − σ1)

(
M j

γ,t −M
j
γ+1,t

)
dZt + ∆M j

γ,tdNt.

On the other hand, the product rule implies that

dξtS2,t = (· · · ) dt+ ξtS2,t (σ2,t − θt) dZt + ξt−S2,t−((1 + J2,t−)ψt− − 1)dNt.

A match of the coefficients on both sides of (A.4) and using the relations above results
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in:

σ2,t =θt +
Dt(σ2 − σ1)

QtS2,t

[
αRρRe

−ρRt(MR
1,t −MR

2,t) + αAφAe
−ρAt(MA

1,t −MA
2,t)

+ αBφBe
−ρBt(MB

1,t −MB
2,t) + 2IAα

AφAe
−ρAt(MA

2,t −MA
3,t)

+ 2IBα
BφBe

−ρBt(MB
2,t −MB

3,t)

]
,

J2,t =ψ−1
t − 1 +

Dt

ψtQtS2,t

(
αRρRe

−ρRt∆MR
1,t + αAφAe

−ρAt∆MA
1,t

+ αBφBe
−ρBt∆MB

1,t + IAα
AφAe

−ρAt∆MA
2,t + IBα

BφBe
−ρBt∆MB

2,t

)
.

An analogous approach for the price of asset 1 yields:

σ1,t =θt

(
1 +

S2,t

S1,t

)
+
Dt(σ2 − σ1)

QtS1,t

[
IAα

AφAe
−ρAt(MA

1,t −MA
2,t)

+ IBα
BφBe

−ρBt(M2B
1,t −M2B

2,t )

]
− σ2,t

S2,t

S1,t

J1,t =ψ−1
t

(
1 +

S2,t

S1,t

+
1

S1,t

Dt

Qt

(IAα
AφAe

−ρAt∆MA
1,t

+ IBα
BφBe

−ρBt∆MB
1,t)

)
− 1− S2,t

S1,t

(1 + J2t)

Proof of Proposition 2.3.4. With the optimal consumption policies and prices of risk

determined, we turn to the characterization of the optimal allocation rules. To simplify

the exposition of the result, let us introduce the matrix notation:

πAt = [πA1,t π
A
2,t]
′, πBt = [πB1,t π

B
2,t]
′, πRt = [πR1,t π

R
2,t]
′,

σσσt = [σ1,t σ2,t]
′, JJJ t = [J1,t J2,t]

′,

Σt = [σσσt JJJ t]
′, µµµt = [µ1,t µ2,t ]′ , rrrt = [rt rt]

′.

Then, the wealth process for agent j, with j ∈ {R,A,B}, satisfies

dW j
t = (W j

t (rt + [µµµt − rrrt]′πjt )− c
j
t)dt+W j

t [dZt dNt] · (Σtπ
j
t ).
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Given that the process ξtW
j
t +

∫ t
0
cjsξsds is a martingale with dynamics

d(ξtW
j
t ) + cjtξtdt =

(
σσσ′tπ

j
t − θt

)
dZt +

(
(1 + JJJ ′tπ

j
t )ψt − 1

)
(dNt − λdt), (A.5)

we use the equality ξtW
j
t +
∫ t

0
ξsc

j
sds = Et

[∫∞
0
ξsc

j
sds
]

and the optimal policies cjt char-

acterized above, to match uncertainty loadings and solve for the optimal allocation.

Starting with insitutional investor A, we have the following equality

ξtW
A
t =Et

 ∞∫
t

ξsc
A
s ds

 = Et

 ∞∫
t

e−ρA(v−t)(1 + IAsv)dv

αAW0φAe
−ρAt

ξtW
A
t =αAW0φAe

−ρAt
(
ρ−1
A + IAM

A
1,t

)
, (A.6)

where the last equality follows from MA
1,t = Et

[∫∞
t
e−ρA(v−t)svdv

]
.

Since we are only interested in the loadings on the uncertainty sources, we focus on

the last term on the right hand side in the expression above and match the coefficients

with the one in (A.5). Proceeding as we did in the previous section, we apply Ito’s

Lemma and match the uncertainty loadings. It follows that

ξtW
A
t (σ′tπ

A
t − θt) =IAφAα

AW0e
−ρAtEt

 ∞∫
t

e−ρA(v−t)(σ2 − σ1)sv(1− sv)dv


=IAφAα

AW0e
−ρAt(σ2 − σ1)

(
MA

1,t −MA
2,t

)
,

We can further simplify by substituting (A.6) in the expression above to obtain

σ′tπ
A
t =θt +

IA(σ2 − σ1)
(
MA

1,t −MA
2,t

)
ρ−1
A + IAMA

1,t

.

To conclude the characterization, we need to calculate the hedging against the

Poisson shock. Proceeding as before, we have

ξtW
A
t ((1 + J ′tπ

A
t )ψt − 1) =IAφAα

AW0e
−ρAt∆MA

1,t,

which can be simplified to

J ′tπ
A
t =ψ−1

t − 1 +
IA∆MA

1t

ψt(ρ
−1
A + IAMA

1,t)
.
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The optimal portfolio is characterized by

πAt = Σ−1
t

[
θt

ψ−1
t − 1

]
+ Σ−1

t

[
(σ2 − σ1)(MA

1,t −MA
2,t)

∆MA
1,tψ

−1
t

]
IA

ρ−1
A + IAMA

1,t

.

To conclude the proof, we solve the investor’s problem. From the martingale rela-

tion, we have

ξtW
R
t = Et

 ∞∫
t

ξsc
R
s dv

 =Et

 ∞∫
t

αRW0ρRe
−ρRvdv


ξtW

R
t =αRW0e

−ρRt. (A.7)

An application of Ito’s Lemma on the last term on (A.7) and matching the uncertain-

ties coefficients as done before, leads to the following characterization of the optimal

weights:

πRt = Σ−1
t

[
θt

ψ−1
t − 1

]
.

Proof of Proposition 2.3.5. We start solving the institutional investors’ problems. We

focus on investor A; the derivation for investor B is analogous. From the first order

condition we have

e−ρAt(1 + IAst)(c
A
t )−1 = yξt ⇒ cAt = e−ρAt(1 + IAst)ξ

−1
t y−1, (A.8)

where y is the Lagrange multiplier obtained by substituting (A.8) in the budget

constraint:

E

 ∞∫
0

ξtc
A
t dt

 =E

 ∞∫
0

e−ρAt(1 + IAst)y
−1dt

 = αAW0

y−1 =
αAW0

E
[∫∞

0
e−ρAt(1 + IAst)dt

] .
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By denoting

φA =

 1

ρA
+ IAE

 ∞∫
0

e−ρAtstdt

−1

,

and substituting y−1 in (A.8), we have the following expression for the optimal con-

sumption level for institutional investors:

cAt =
e−ρAt(1 + IAst)α

AW0φA
ξt

.

Now, we analyze the optimization problem for the retail investor. This agent’s

first order condition is

e−ρRt(cRt )−1 =yRξt ⇒ cRt = e−ρRtξ−1
t y−1

R . (A.9)

Plugging (A.9) in the investor’s budget constraint gives that

E

 ∞∫
0

ξtc
R
t dt

 = E

 ∞∫
0

e−ρRty−1
R dt

 = αRW0 ⇒ y−1
R =

αRW0

E
[∫∞

0
e−ρRtdt

] = αRW0ρR.

Substituting y−1
R back into (A.9) yields:

cRt =
e−ρRtαRW0ρR

ξt
.

A.2 Chapter 3: Equilibrium formulation and solution

The methodology I used can be summarized in the following steps:

(i) Given the affine structure of the problem, conjecture an affine structure for the

dynamics of the price level.

(ii) Using the evolution of the price level, obtain the dynamics for capital that only

depends on the capital itself and the state variable gt.
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(iii) Set the Hamilton-Jacobi-Bellman equation for the representative agent using

the capital accumulation equation (3.5) and the resources constraint present in

Definition 3.2.1, respectively.

(iv) Using the first order conditions, obtain the optimal policies for consumption

and money demand.

(v) Plugging the controls back into the Hamilton-Jacobi-Bellman equation and us-

ing the traditional guess for the value function, J(Kt, gt) = 1
β

log(βKt) +µ1gt +

µ0, obtain a system that it is linear on the state variable gt.

(vi) Using the method of undetermined coefficients, solve for µ0 and µ1.

(vii) Substitute the conjectured solution back into the Hamilton-Jacobi-Bellman equa-

tion and verified that it is in fact the true solution.

(viii) Obtain the optimal policies for consumption, money and investment as a linear

function on capital.

(ix) Conjecture an affine structure in the state variables for the short rate and use

it with the market clearing for money market to obtain a new equation repre-

senting the dynamics of the price level pt.

(x) Use the method of undetermined coefficients to pin down the price level expo-

sures to each shock.

(xi) Using household preferences and the capital accumulation equation, derive the

pricing kernel expression for the economy.

(xii) Apply Ito’s lemma to recover the short rate and solve the fixed point problem

for the exposures of rt to state variables.

(xiii) Derive the expression for the nominal bond using derived pricing kernel.
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(xiv) Derive the explicit solution for the nominal yield and take the limit on the

maturity to obtain the long-term rate and conclude the characterization of the

equilibrium.

There are two state variables in the problem: capital Kt and the money growth

persistence component gt. Capital accumulates according to the equation:

dKt = (It − δKt)dt+ σKtdZ
k
t − τKt

dpt
pt
. (A.10)

Using firm’s output equation

Yt = AKt,

the resources constraint

Yt = It + ct +mt,

I rewrite (A.10) as

dKt = ((A− δ − τπt)Kt − ct −mt)dt+ σKtdZ
k
t − τKt

dpt
pt
. (A.11)

Following Buraschi and Jiltsov (2005), I assume the following affine structure for the

evolution of price level pt, expected inflation πt and the short term rate rt:

dpt
pt

=πtdt+ σkdZ
k
t + σm

√
gtdZ

m
t , (A.12)

πt =Π0 + Π1gt, (A.13)

rt =r0 + r1gt, (A.14)

where σk, σm,Π0,Π1, r0 and r1 are determined in equilibrium.
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By substituting the evolution of pt and πt in (A.11), we have

dKt = ((A− δ − τ(Π0 + Π1gt))Kt − ct −mt)dt+ (σ − τσk)KtdZ
k
t − τσm

√
gtKtdZ

m
t .

(A.15)

We solve the investor’s utility maximization problem subject to (A.15) and the

evolution of the state variables gt, which satisfy the following stochastic differential

equation:

dgt =κg(ḡ − gt)dt+ σg
√
gtdZ

m
t .

The Hamilton-Jacobi-Bellman (HJB) equation for the social planner is

0 = sup
ct,mt

{
− βJ + α log ct + (1− α) logmt

+ JK((A− δ − τ(Π0 + Π1gt))Kt − ct −mt) +K2
t JKK

(
(σ − τσkt )2

2
+

(τσmt )2

2
gt

)
+ Jgκg(ḡ − gt) +

σ2
g

2
gtJgg − τσmσggtKtJKg

}
. (A.16)

The first order condition with respect to ct and mt gives

ct =
α

JK
,

mt =
1− α
JK

.

Plugging the optimal controls back and the conjecture

J(Kt, gt) =
1

β
log(βKt) + µ1gt + µ0, (A.17)
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where µ0 and µ1 are constants to be determined, in (A.16), we obtain

0 =− (1− α) log(1− α) + α logα + 2A− 2β(βµ0 − θgκgµ1 + 1)

β

− 2δ − 2Π0τ − (σ − σkτ)2

β
+ gt

(2β2µ1 + 2βκgµ1 + 2Π1τ + σ2
mτ

2)

β

For this equation to be satisfied at all time, we use the method of undetermined

coefficients, set all coefficients to zero and solve for µ0 and µ1. It follows that

0 =2β2µ1 + 2βκgµ1 + 2Π1τ + σ2
mτ

2,

µ1 =
−2Π1τ − σ2

mτ
2

2β(β + κg)
.

The expression for µ0 reduces to

µ0 =
(1− α) log(1− α) + α logα + A− β − δ + βḡκgµ1 − Π0τ − (σ−τσk)2

2

β2
.

With the conjectured solution completely characterized, I plug (A.17) into (A.16)

and verify that it is indeed the true solution. At this stage, I proved that, given

constants σk, σm,Π0,Π1, r0, r1, y0 and y1, (A.17) is the true solution associated with

the Hamilton-Jacobi-Bellman equation in (A.16). The following steps demonstrate

how to pin down these constants.

First, I use the expression derived for (A.17) to obtain the following expressions

for the optimal policies on consumption, money demand and investment, respectively,

ct =αβKt, (A.18)

mt =(1− α)βKt, (A.19)

It =(A− β)Kt. (A.20)

By replacing the optimal policies into (A.15), we have the following endogenous capital
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evolution in equilibrium

dKt

Kt

= (A− δ − β − τ(Π0 + Π1gt))dt+ (σ − τσk)dZk
t − τσm

√
gtdZ

m
t , (A.21)

with solution given by

KT =Kt exp

{ T∫
t

(
A− δ − β − τΠ0 −

(σ − τσk)2

2
−
(
τΠ1 +

(τσm)2

2

)
gv

)
dv

+ (σ − τσk)(Zk
T − Zk

t )− τσm

T∫
t

√
gvdZ

m
v

}
. (A.22)

Next, I turn to the money market clearing. By imposing money demand equals to

money supply, it follows that:

M s
t = mtpt = pt(1− α)βKt,

where the last equality follows from replacing mt by the optimal cash demand expres-

sion derived in (A.19). Applying Ito’s lemma and rearranging terms, we can express

the price level evolution as

dpt
pt

=
dM s

t

M s
t

− dKt

Kt

− covt

(
dpt
pt
,
dKt

Kt

)
dt. (A.23)

By using the expression in (A.12), I rewrite the covariance term above as

σmkt ≡covt

(
dpt
pt
,
dKt

Kt

)
= σk(σ − τσk)− τσ2

mgt. (A.24)

In addition, we used the money demand equation:

dM s
t

M s
t

= q1 (drt − r̄dt) + q2

(
dpt
pt
− π̄dt

)
+ q3

(
dKt

Kt

− k̄dt
)

+ dgt, (A.25)
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with the affine conjecture that the equilibrium short interest rate is given by:

rt = r0 + r1gt.

Substituting (A.21), (A.25) and (A.24) in (A.23), I have the following dynamics

for the price level pt:

dpt
pt

=

(
(q1r1 + 1)κgḡ + (q3 − 1)(A− δ − β − τΠ0)− (q1r̄ + q2π̄ + q3k̄)− σk(σ − τσk)

1− q2

+
τσ2

m − (q1r1 + 1)κg − τ(q3 − 1)Π1

1− q2

gt

)
dt+

q3 − 1

1− q2

(σ − τσk)dZk
t

+
(q1r1 + 1)σg − τ(q3 − 1)σm

1− q2

√
gtdZ

m
t .

Matching the coefficients above with the ones in (A.12), it follows that

σk =
q3 − 1

1− q2 + τ(q3 − 1)
σ, σm =

q1r1 + 1

1− q2 + τ(q3 − 1)
σg,

Π1 =
τσ2

m − (q1r1 + 1)κg
1− q2 + τ(q3 − 1)

,

Π0 =
(q1r1 + 1)κgḡ + (q3 − 1)(A− δ − β)− (q1r̄ + q2π̄ + q3k̄)− σk(σ − τσk)

1− q2 + τ(q3 − 1)
.

(A.26)

which gives the results presented in Proposition 3.2.3.

In order to complete the characterization of the equilibrium, we need to determine

the coefficients r0, r1 and r̄. For this reason, I turn to the characterization of the state

price density in this economy, which is given by

ξt = e−βt
K0

Kt

. (A.27)
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An application of Ito’s formula leads to

dξt
ξt

=−
(
A− δ − τΠ0 − (σ − τσk)2 − τ(Π1 + τσ2

m)gt
)
dt

− (σ − τσk)dZk
t + τσm

√
gtdZ

m
t .

The structure above implies that the prices of risk are given by

θk =σ − τσk,

θmt ≡θm
√
gt = −τσm

√
gt.

The expression for the short interest rate reduces to

rt =A− δ − τΠ0 − (σ − τσk)2 − τ(Π1 + τσ2
m)gt.

Observing that the short rate is an affine function of gt, we can rewrite it as rt =

r0 + r1gt, where the coefficients r0 and r1 solve the equations:

r1 =− τ(Π1 + τσ2
m),

r0 =A− δ − τΠ0 − (σ − τσk)2.

Substituting the expressions for Π1 and σm derived in (A.26), we obtain the following

quadratic equation for r1:

0 =r2
1

q2
1τ

2

(q2 − q3τ + τ − 1)3

+ r1

(
q1τ

1− q2 − τ(q3 − 1)

(
κg − τ

(
1 +

2

(1− q2 − τ(q3 − 1))2

))
+ 1

)
+

τ

1− q2 − τ(q3 − 1)

(
κg + τ

(
1− 1

(1− q2 − τ(q3 − 1))2

))
,

with solution given by



109

r1 =
(q2 + τ(1− q3)− 1)3

2q2
1σ

2
gτ

2(2− q2 + τ(q3 − 1))
·

·

(
q1τ
(
2σ2

gτ(q2 − 1 + τ(1− q3)) + (q2 − 1 + τ(1− q3))2 − 2σ2
gτ
)

(q2 − 1 + τ(1− q3))3
+ 1

−

(
τ 2
(
(q2 − 1)(q1 − 3q3 + 3)(q1 − q3 + 1) + 4q1(q2 − 2)σ2

g

)
(q2 − 1 + τ(1− q3))3

+
(q2 − 1)2τ(2q1 − 3q3 + 3)− (q3 − 1)τ 3

(
(q1 − q3 + 1)2 + 4q1σ

2
g

)
(q2 − 1 + τ(1− q3))3

+
(q2 − 1)3

(q2 − 1 + τ(1− q3))3

)1/2)
.

With the characterization of r1, I turn to the characterization of the nominal bond

price and its long term yield r̄. Once this quantity is determined, all other equilibrium

quantities are completely determined.

A.2.1 Nominal and Real Bonds

The expression for the nominal bond Bn(t, T ) is represented by

Bn(t, T ) =Et
[
ξT
ξt

pt
pT

]
= Et

[
e−β(T−t)KT,tpT,t

]
, (A.28)

where I defined

pT,t ≡
pt
pT
, KT,t ≡

Kt

KT

.

Using the evolution described in (A.12), the solution for the stochastic differential

equation for pt can be expressed as

pT =pt exp


T∫
t

(
πs −

σ2
k

2
− σ2

m

2
gs

)
ds+ σk(Z

k
T − Zk

t ) + σm

T∫
t

√
gsdZ

m
s

 (A.29)
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Rewriting the solution for gt in (3.7) as

σg

T∫
t

√
gsdZ

m
s = gT − gt − κgḡ(T − t) + κg

T∫
t

gsds,

and substituting it on (A.29), along with πt = Π0 + Π1gt, I write the ratio pT,t ≡ pt
pT

as

pT,t = exp

{ T∫
t

(
σ2
k

2
− Π0 +

σm
σg
κgḡ +

(
σ2
m

2
− Π1 −

σm
σg
κg

)
gs

)
ds

− σk(Zk
T − Zk

t ) +
σm
σg

(gT − gt)
}
.

(A.30)

Similarly, I write KT,t ≡ Kt
KT

as

KT,t = exp

{ T∫
t

(
δ + β − A+ τΠ0 − τ

σm
σg
κgḡ +

(σ − τσk)2

2

+

(
(τσm)2

2
+ τΠ1 + τ

σm
σg
κg

)
gs

)
ds− (σ − τσk)(Zk

T − Zk
t ) + τ

σm
σg

(gT − gt)
}
.

(A.31)

Using that shocks are independent and substituting (A.30) and (A.31) in (A.28),

it follows that

Bn(t, T ) =Et
[

exp

{ T∫
t

(
δ − A+ (τ − 1)Π0 + (1− τ)

σm
σg
κgḡ + (σ − τσk)2

+ σ2
k + σk(σ − τσk) +

[
σ2
m

2
(τ 2 + 1) + (τ − 1)Π1 + (τ − 1)

σm
σg
κg

]
gs

)
ds

+ (τ − 1)
σm
σg

(gT − gt)
}]

=e−ωngt−ρ
n
0 ·(T−t)Et

[
e−

∫ T
t ρn1 gsds+ωngT

]
,

(A.32)
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where

ρn0 =A− δ + (1− τ)Π0 + (τ − 1)
σm
σg
κgḡ + (σ − τσk)2 + σ2

k + σk(σ − τσk), (A.33)

ρn1 =(1− τ)Π1 − (1 + τ 2)
θ2
m

2
+ (1− τ)

σm
σg
κg, ωn = (τ − 1)

σm
σg
. (A.34)

Following Cox et al. (1985) and Duffie et al. (2000), the conditional expectation

in (A.32) can be expressed as a function of gt, taking the form

Et
[
e−

∫ T
t ρn1 gsds+ωngT

]
=eη

n
0 (T−t)+ηn1 (T−t)gt ,

where ηn0 (·) and ηn1 (·) are functions of time to maturity and they are determined by

solving the associated Riccati equation:

ηn′1 (t) =− ηn1 (t)κg +
1

2
(ηn1 (t))2σ2

g − ρn1 ,

ηn′0 (t) =ηn1 (t)κgḡ,

with boundary conditions given by

ηn1 (0) =ωn,

ηn0 (0) =0.

I follow Duffie (2005) and express ηn1 and ηn0 as

ηn1 (T − t) =
1 + a1e

b1(T−t)

c1 + d1eb1(T−t) ,

ηn0 (T − t) =κgḡ
a1c1 − d1

b1c1d1

log

(
c1 + d1e

b1(T−t)

c1 + d1

)
+
κgḡ

c1

(T − t),
(A.35)
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where

c1 =−
κg +

√
κ2
g + 2σ2

gρ
n
1

2ρn1
,

d1 =(1− c1)ωn
σ2
gωn − κg +

√
(σ2

gωn − κg)2 − σ2
g(σ

2
g(ωn)2 − 2ωnκg − 2ρn1 )

σ2
g(ωn)2 − 2ωnκg − 2ρn1

,

a1 =(d1 + c1)ωn − 1,

b1 =
−d1(κg + 2ρn1c1) + a1(σ2

g − κg)
a1c1 − d1

.

(A.36)

Using the characterization above, the nominal bond can be written as

Bn(t, T ) =e−ρ
n
0 ·(T−t)+ηn0 (T−t)+(ηn1 (T−t)−ωn)gt , (A.37)

and the nominal yield rate as

Rn(t, T ) =− 1

T − t
logBn(t, T ) = ρn0 −

ηn0 (T − t)
T − t

+
ωn − ηn1 (T − t)

T − t
gt. (A.38)

To conclude the equilibrium, we take the limit of (A.38) as T goes to infinity to

obtain the long term rate:

r̄ = lim
T→∞

Rn(t, T ).

Assuming that the limits exist and using L’Hôpital’s rule, I obtain:

lim
T→∞

ηn0 (T − t)
T − t

= κgḡ
a1

d1

,

lim
T→∞

ωn − ηn1 (T − t)
T − t

= 0.

Thus, the long-term rate is given by

r̄ = ρn0 − κgḡ
a1

d1

. (A.39)
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Substituting the expression for ρn0 derived in (A.33) in (A.39), we have

r̄ = A− δ + (1− τ)Π0 + (τ − 1)
σm
σg
κgḡ + (σ − τσk)2 + σ2

k + σk(σ − τσk)− κgḡ
a1

d1

.

Using the expression for Π0 derived in (A.26) and solving for r̄, I obtain:

r̄ =
1− q2 + τ(q3 − 1)

1− q2 + q1 + τ(q3 − q1 − 1)

(
A− δ + (τ − 1)

σm
σg
κgḡ + (σ − τσk)2

+ σ2
k + σk(σ − τσk)− κgḡ

a1

d1

)
+ (1− τ)

(q1r1 + 1)κgḡ

1− q2 + q1 + τ(q3 − q1 − 1)

+ (1− τ)
(q3 − 1)(A− δ − β)− (q2π̄ + q3k̄)− σk(σ − τσk)

1− q2 + q1 + τ(q3 − q1 − 1)

This complete the characterization of all equilibrium quantities in my model.

Next, I determine the dynamics of Bn
t , which can be recovered by applying Ito’s

lemma on (A.37). It follows that

dBn
t

Bn
t

=(ρn0 − ηn′0 − ηn′1 gt)dt+ (ηn1 (T − t)− ωn)(κg(ḡ − gt)dt

+ σg
√
gtdZ

m
t ) + (ηn1 (T − t)− ωn)2

σ2
g

2
gtdt

=

(
ρn0 − ηn′0 + (ηn1 (T − t)− ωn)κgḡ

+

(
(ηn1 (T − t)− ωn)

(
(ηn1 (T − t)− ωn)

σ2
g

2
− κg

)
− ηn′1

)
gt

)
dt

+ (ηn1 (T − t)− ωn)σg
√
gtdZ

m
t .

The bond risk premium, also know as the term premium, TPt, can be expressed

as:

TPt =ρn0 − ηn′0 + (ηn1 (T − t)− ωn)κgḡ − r0

+

(
(ηn1 (T − t)− ωn)

(
(ηn1 (T − t)− ωn)

σ2
g

2
− κg

)
− ηn′1 − r1

)
gt

(A.40)

The expressions for the real bonds is easier to obtain. Using the expression for the
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state price density in (A.27), we have

Br(t, T ) = Et[ξt,T ] = Et
[
e−β(T−t) Kt

KT

]

= Et

[
exp

{ T∫
t

(
δ + β − A+ τΠ0 − τ

σm
σg
κgḡ +

(σ − τσk)2

2

+

(
(τσm)2

2
+ τΠ1 + τ

σm
σg
κg

)
gs

)
ds− (σ − τσk)(Zk

T − Zk
t )

+ τ
σm
σg

(gT − gt)
}]

= e−ρ
r
0·(T−t)+ηr0(T−t)+(ηr1(T−t)−ωr)gt .

(A.41)

where

ρr0 =A− δ − τΠ0 − τ
σm
σg
κgḡ − (σ − τσk)2

ρr1 =−
(
τ
σm
σg
κg + τΠ1 +

(τσm)2

2

)
,

ωr =τ
σm
σg
.

Invoking Cox et al. (1985) and Duffie et al. (2000) one more time and proceeding

as in Appendix A.2.1, I rewrite the conditional expectations as a function of the state

variable gt:

Et
[
e−

∫ T
t ρr1gsds+ωrgT

]
=eη

r
0(T−t)+ηr1(T−t)gt ,

where ηr0(·) and ηr1(·) are characterized by solving the associated Riccati equations in

the exact same way as in Appendix A.2.1.

Using the characterization above, the real bond can be written as

Br(t, T ) =e−ρ
r
0·(T−t)+ηr0(T−t)+(ηr1(T−t)−ωr)gt . (A.42)
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The real yield rate is

Rr(t, T ) =− 1

T − t
logBr(t, T ) = ρr0 −

ηr0(T − t)
T − t

+
ωr − ηn1 (T − t)

T − t
gt.

The dynamics of Br(t, T ) can be recovered by applying Ito’s lemma on (A.42). It

follows that

dBr
t

Br
t

=

(
ρr0 − ηr′0 + (ηr1(T − t)− ωr)κgḡ

+

(
(ηr1(T − t)− ωr)

(
(ηr1(T − t)− ωr)

σ2
g

2
− κg

)
− ηr′1

)
gt

)
dt

+ (ηn1 (T − t)− ωr)σg
√
gtdZ

m
t .

The bond real risk premium is denoted by:

TP r
t =ρr0 − ηr′0 + (ηr1(T − t)− ωr)κgḡ − r0

+

(
(ηr1(T − t)− ωr)

(
(ηr1(T − t)− ωr)

σ2
g

2
− κg

)
− ηr′1 − r1

)
gt.

A.2.2 Nominal Asset Prices

The characterization of the state price density allows us to compute the price of a

continent claim on consumption in nominal terms. The price can be expressed as

St =Et

 ∞∫
t

ξt,sps,tcsds

 = Et

 ∞∫
t

e−β(T−t)Kt

Ks

pt
ps
αβKsds


=αβKt

∞∫
t

Et
[
e−β(T−t) pt

ps

]
ds = αβKt

∞∫
t

Bn(t, s)ds

=αβKt

∞∫
t

e−ρ
n
0 ·(T−t)+ηn0 (T−t)+(ηn1 (T−t)−ωn)gtds = αβKth(gt),
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where I defined

h(gt) =

∞∫
t

e−ρ
n
0 ·(T−t)+ηn0 (T−t)+(ηn1 (T−t)−ωn)gtds.

Note that the expression for real stock price can only be solve in closed form up to

an integral.

To obtain the evolution of the real stock price, I apply Ito’s lemma in (3.12) and

obtain the following dynamics for St:

dSt
St

=
dh(gt)

h(gt)
+
dKt

Kt

+ cov

(
dh(gt)

h(gt)
,
dKt

Kt

)
dSt
St

=

(
∂gh

h
κg(ḡ − gt) +

σ2
g

2

∂ggh

h
gt

)
dt+

∂gh

h
σg
√
gtdZ

m
t + (A− δ − β)dt

+ (σ − τσk)dZk
t − τσm

√
gtdZ

m
t − τσmσg

∂gh

h
gtdt

dSt
St

=

(
A− δ − β +

∂gh

h
κgḡ +

(
σ2
g

2

∂ggh

h
− (τσmσg + κg)

∂gh

h

)
gt

)
dt

+ (σ − τσk)dZk
t +

(
∂gh

h
σg − τσm

)
√
gtdZ

m
t .

The nominal equity premium can be expressed by

RPt =A− δ − β +
∂gh

h
κgḡ − r0 +

(
σ2
g

2

∂ggh

h
− (τσmσg + κg)

∂gh

h
− r1

)
gt.

The characterization of a claim on consumption in real terms follows directly from

the relation:

Srt =Et

 ∞∫
t

ξt,scsds

 = Et

 ∞∫
t

e−β(s−t)Kt

Ks

αβKsds

 = αKt.

Thus, the evolution of the real stock price is equal the evolution of capital.

The real equity premium can be expressed by

RP r
t =A− δ − β − τΠ0 − r0 − (τΠ1 + r1)gt.
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A.2.3 Welfare Analysis

Let J(q1, K0) be the expected utility of the representative investor in an economy

where monetary authorities target the slope with intensity q1. By denoting 1− γ the

fraction of capital K0 that the representative agent should receive or waive in order

to obtain the same utility level from the economy with no short-rate targeting, i.e.,

q1 = 0. Thus, we want to find γ such that the following identity holds:

J(q1, K0) = J(0, (1− γ)K0). (A.43)

Using the expressions for the optimal consumption and money demand derived in

(A.18) and (A.19), respectively, we have

J(q1, K0) =Et

 ∞∫
0

e−βt (α log ct + (1− α) logmt) dt


=Et

 ∞∫
0

e−βt (α log(αβKt) + (1− α) log(1− α)βKt) dt


=
α logα + (1− α) log(1− α) + log β

β
+ Et

 ∞∫
0

e−βt logKtdt


(A.44)

Using the expression for capital stock in (A.22), it follows that

E[logKt] = logK0 +

(
A− δ − β − τΠ0 − τ

σm
σg
κgḡ −

(σ − τσk)2

2

)
t

−
(
τ
σm
σg
κg + τΠ1 +

(τσm)2

2

) t∫
0

E[gv]dv − τ
σm
σg

(E[gt]− g0).

(A.45)

Substituting the expression

E[gv] = g0e
−κgv + ḡ(1− e−κgv),
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into (A.45), we obtain the following expression for E[logKt]

E[logKt] = logK0 +

(
A− δ − β − τΠ0 − τ

σm
σg
κgḡ −

(σ − τσk)2

2

−
(
τ
σm
σg
κg + τΠ1 +

(τσm)2

2

)
ḡ

)
t−
(
τΠ1 +

(τσm)2

2

)
·

·
(

1− e−κgt

κg

)
(g0 − ḡ)

(A.46)

It follows that the final expression for the expected utility is

J(q1, K0) =
α logα + (1− α) log(1− α) + log β

β
+

logK0

β

+
1

β2

(
A− δ − β − τΠ0 − τ

σm
σg
κgḡ −

(σ − τσk)2

2

−
(
τ
σm
σg
κg + τΠ1 +

(τσm)2

2

)
ḡ

)
−
(
τΠ1 +

(τσm)2

2

)
g0 − ḡ

β(β + κg)

(A.47)

Note that in the expression above, only Π0,Π1 and σm are functions of q1. I make

this dependence on q1 explicit in the welfare cost/gain expression.

Using the identity (A.43) and solving for γ, I obtain the following expression for

the welfare cost/gain:

γ(q1) =1− exp

{
− 1

β2

(
τ(Π0(q1)− Π0(0)) + τ

σm(q1)− σm(0)

σg
κgḡ

+

(
τ
σm(q1)− σm(0)

σg
κg + τ(Π1(q1)− Π1(0)) + τ 2σ

2
m(q1)− σ2

m(0)

2

)
ḡ

)
−
(
τ(Π1(q1)− Π1(q0)) + τ 2σ

2
m(q1)− σ2

m(q0)

2

)
g0 − ḡ

β(β + κg)

}
.

(A.48)
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A.2.4 Impulse Response

To calculate the output and price level elasticities, I follow Detemple et al. (2003).

First, at time t < T , I calculate the Malliavin derivative of output YT in the direction

of the persistent monetary shock Zm. Given that output is an AK model with constant

productivity factor A, we can focus on the Malliavin derivative of capital and I denote

this quantity by Dmt KT . By Malliaving differentiating the expression in (A.22), we

have

Dmt KT =−KT

 T∫
t

(
τΠ1 +

(τσm)2

2

)
Dmt gvdv + τσm

T∫
t

Dmt gv
2
√
gv
dZm

v + τσm
√
gt

 .

(A.49)

The Malliavin derivative of the state variable gt, Dmt gv, can be solved in closed

form. By Malliavin differentiating the dynamics of gt in (3.7),

dDmt gu =− κgDmt gudu+Dmt gu
σg

2
√
gu
dZm

u , Dmt gt = σg
√
gt.

and integrating from t to T , we obtain:

Dmt gT =σg
√
gtEt

[
e
−
∫ T
t

(
κg+

σ2g
8
√
gv

)
dv+

∫ T
t

σg
2
√
gv
dZmv

]
. (A.50)

Using Clark-Hausmann-Ocone representation and the expression in (A.50) for

Dmt gT , we can write the monetary shock elasticity of output as:

εY,mt,T =
Et [DtKT ]

Et [KT ]
= −

σg
√
gt

Et [KT ]
·

·Et

[
KT

( T∫
t

(
τΠ1 +

(τσm)2

2

)
e
−
∫ v
t

(
κg+

σ2g
8
√
gu

)
du+

∫ v
t

σg
2
√
gu
dZmu

dv

+τσm

T∫
t

1

2
√
gv
e
−
∫ v
t

(
κg+

σ2g
8
√
gu

)
du+

∫ v
t

σg
2
√
gu
dZmu

dZm
v

)]
− τσmσggt.
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A similar calculation gives the expression for the monetary shock elasticity of price

level. By Malliavin differentiating the solution of (A.12), I obtain:

Dmt pT =pT

 T∫
t

(
Π1 −

σ2
m

2

)
Dmt gvdv + σm

T∫
t

Dmt gv
2
√
gv
dZm

v + σm
√
gt

 , (A.51)

which results into the following monetary shock elasticity of price:

εp,mt,T =
Et [DtpT ]

Et [pT ]
=
σmσggt
Et [pT ]

·

·Et

[
pT

( T∫
t

(
Π1 −

σ2
m

2

)
e
−
∫ v
t

(
κg+

σ2g
8
√
gu

)
du+

∫ v
t

σg
2
√
gu
dZmu

dv

+σm

T∫
t

1

2
√
gv
e
−
∫ v
t

(
κg+

σ2g
8
√
gu

)
du+

∫ v
t

σg
2
√
gu
dZmu

dZm
v

)]
+ σgσmgt.
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