
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

Motion planning and control: a
formal methods approach

https://hdl.handle.net/2144/17081
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

MOTION PLANNING AND CONTROL: A FORMAL

METHODS APPROACH

by

CRISTIAN-IOAN VASILE

B.S., Politehnica University of Bucharest, 2009
M.S., Politehnica University of Bucharest, 2011

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

c© 2016 by
CRISTIAN-IOAN VASILE
All rights reserved

Approved by

First Reader

Calin Belta, PhD
Professor of Mechanical Engineering
Professor of Systems Engineering
Professor of Bioinformatics

Second Reader

John Baillieul, PhD
Distinguished Professor of Mechanical Engineering
Distinguished Professor of Systems Engineering
Distinguished Professor of Electrical and Computer Engineering

Third Reader

Sean Andersson, PhD
Associate Professor of Mechanical Engineering
Associate Professor of Systems Engineering

Fourth Reader

Roberto Tron, PhD
Assistant Professor of Mechanical Engineering
Assistant Professor of Systems Engineering

“Deep in the human unconscious is a pervasive need for a logical universe
that makes sense. But the real universe is always one step beyond logic.”
– Frank Herbert, Dune

iv

Acknowledgments

First and foremost, I want to thank my advisor, mentor and friend, Professor Calin

Belta. His guidance and support helped me grow as a person and researcher. This

dissertation is the result of his encouragement, advice, and persistent challenge to

surpass myself. I am also grateful for his friendship that made my PhD experience a

pleasant one.

I want to thank Mac Schwager for his advice and encouragement thoughtout my

time at BU. I would like to thank Igor for his support as a starting PhD student and

introducing me to the experimental setup in HyNeSs lab. I want to thank Derya for

our long and useful discussions on control and formal methods, and her support and

advice. Our fruitful collaboration produced the results presented in Chapters 5 and 7.

I want to thank Eric and Kevin for our discussions spanning far too many subject to

recount, and fun adventures with the quadrotors and ground robots. Chapter 4 and

the experiments in Chapters 6 and 7 are the result of our collaboration. I would also

like to thank Vlad for our yearlong lunch conversation, and Prashant and Curtis for

our high-spirited and enjoyable meetings while trying to figure out difficult problems

in systems and bio-engineering, and game theory. There are many more people that

helped and supported me during my PhD, and I am very grateful to have met you:

Yushan, Ana Medina, Austin, Joe, Fran, Alphan, Ebru, Guilhem, Maja, Kayhan,

Xi, Alyssa, Brian, Trevor, Aamodh, Xiadong, Konstantinos, Iman, Sadra, Demarcus,

Rachael, Janos, Dingjiang, Zijian, Junmin.

I would like to extend my gratitude to the members of my dissertation committee,

Professors John Baillieul, Sean Andersson, Roberto Tron, and Pirooz Vakili, for their

time and valueable comments and suggestions.

Finally, I want to thank my family: my father Liviu, my mother Carmen, my

v

brother Dan, and my grandmother Doina, and friends: Eduard, Roxana, and Denisa,

back in Romania for their unconditional love, support and advice.

vi

MOTION PLANNING AND CONTROL: A FORMAL

METHODS APPROACH

CRISTIAN-IOAN VASILE

Boston University, College of Engineering, 2016

Major Professor: Calin Belta, PhD
Professor of Mechanical Engineering
Professor of Systems Engineering
Professor of Bioinformatics

ABSTRACT

Control of complex systems satisfying rich temporal specification has become an

increasingly important research area in fields such as robotics, control, automotive,

and manufacturing. Popular specification languages include temporal logics, such as

Linear Temporal Logic (LTL) and Computational Tree Logic (CTL), which extend

propositional logic to capture the temporal sequencing of system properties. The

focus of this dissertation is on the control of high-dimensional systems and on timed

specifications that impose explicit time bounds on the satisfaction of tasks. This

work proposes and evaluates methods and algorithms for synthesizing provably cor-

rect control policies that deal with the scalability problems. Ideas and tools from

formal verification, graph theory, and incremental computing are used to synthesize

satisfying control strategies. Finite abstractions of the systems are generated, and

then composed with automata encoding the specifications.

The first part of this dissertation introduces a sampling-based motion planning

algorithm that combines long-term temporal logic goals with short-term reactive re-

vii

quirements. The specification has two parts: (1) a global specification given as an

LTL formula over a set of static service requests that occur at the regions of a known

environment, and (2) a local specification that requires servicing a set of dynamic re-

quests that can be sensed locally during the execution. The proposed computational

framework consists of two main ingredients: (a) an off-line sampling-based algorithm

for the construction of a global transition system that contains a path satisfying the

LTL formula, and (b) an on-line sampling-based algorithm to generate paths that

service the local requests, while making sure that the satisfaction of the global spec-

ification is not affected.

The second part of the dissertation focuses on stochastic systems with temporal

and uncertainty constraints. A specification language called Gaussian Distribution

Temporal Logic is introduced as an extension of Boolean logic that incorporates tem-

poral evolution and noise mitigation directly into the task specifications. A sampling-

based algorithm to synthesize control policies is presented that generates a transition

system in the belief space and uses local feedback controllers to break the curse of

history associated with belief space planning. Switching control policies are then

computed using a product Markov Decision Process between the transition system

and the Rabin automaton encoding the specification. The approach is evaluated in

experiments using a camera network and ground robot.

The third part of this dissertation focuses on control of multi-vehicle systems with

timed specifications and charging constraints. A rich expressivity language called

Time Window Temporal Logic (TWTL) that describes time bounded specifications

is introduced. The temporal relaxation of TWTL formulae with respect to the dead-

lines of tasks is also discussed. The key ingredient of the solution is an algorithm

to translate a TWTL formula to an annotated finite state automaton that encodes

all possible temporal relaxations of the given formula. The annotated automata

viii

are composed with transition systems encoding the motion of all vehicles, and with

charging models to produce control strategies for all vehicles such that the overall

system satisfies the mission specification. The methods are evaluated in simulation

and experimental trials with quadrotors and charging stations.

ix

Contents

1 Introduction 1

1.1 Reactive Temporal Logic Path Planning 4

1.2 Control in Belief Space with Temporal Logic Specifications 7

1.3 Time Window Temporal Logic . 10

1.4 Persistent Vehicle Routing Problem with Charging and Temporal Logic

Constraints . 13

1.5 Dynamic Persistent Vehicle Routing Problem with Charging and Tem-

poral Logic Constraints . 15

1.6 Contributions . 16

2 Formal Methods Preliminaries 18

3 Reactive Temporal Logic Path Planning 24

3.1 Problem formulation . 25

3.1.1 Outline of the Approach . 28

3.2 Solution . 29

3.2.1 Off-line Algorithm . 31

3.2.2 On-line algorithm . 45

3.3 Case study . 58

3.3.1 Off-line algorithm . 59

3.3.2 On-line algorithm . 62

4 Control in Belief Space with Temporal Logic Specifications 65

x

4.1 Gaussian Distribution Temporal Logic 65

4.2 Problem Formulation . 69

4.2.1 Motion and sensing models . 69

4.2.2 Problem definition . 70

4.3 Solution . 71

4.3.1 Sampling-based algorithm . 72

4.3.2 Computing transition and intersection probability 74

4.3.3 GDTL-FIRM Product MDP 76

4.3.4 Finding satisfying policies . 78

4.3.5 Dynamic program for Maximum Probability Policy 79

4.3.6 Complexity . 79

4.4 Case Studies . 80

5 Time Window Temporal Logic 86

5.1 Preliminaries on Formal Languages 86

5.2 Time Window Temporal Logic . 87

5.3 Temporal Relaxation . 92

5.4 Optimization over Temporal Relaxation 93

5.4.1 Verification, synthesis, and learning 93

5.4.2 Overview of the solution . 97

5.5 Properties of TWTL . 97

5.6 Automata construction . 103

5.6.1 Construction Algorithm . 103

5.6.2 Annotation . 104

5.6.3 Operators . 107

5.6.4 Correctness . 115

5.6.5 Complexity . 117

xi

5.7 Verification, Synthesis, and Learning Algorithms 117

5.7.1 Compute temporal relaxation for a word 118

5.7.2 Control policy synthesis for a finite transition system 120

5.7.3 Verification . 126

5.7.4 Learning deadlines from data 127

5.8 TWTL Python Package . 128

5.9 Case Studies . 129

5.9.1 Automata Construction and Temporal Relaxation 130

5.9.2 Control Policy Synthesis . 133

5.9.3 Verification . 135

5.9.4 Learning deadlines from data 136

6 Persistent Vehicle Routing Problem with Charging and Temporal

Logic Constraints 139

6.1 Environment and Vehicle Models . 139

6.2 P-VRP Formulation . 142

6.3 Control Policy . 145

6.3.1 Motion model . 145

6.3.2 Charging model . 148

6.3.3 Specification . 149

6.3.4 Completeness . 149

6.3.5 Optimality . 151

6.3.6 Complexity . 152

6.3.7 Generalizations . 154

6.4 Implementation, Results, and Experimental Validation 155

7 Dynamic Persistent Vehicle Routing Problem with Charging and

Temporal Logic Constraints 159

xii

7.1 Problem Formulation . 160

7.1.1 Environment Model . 160

7.1.2 Vehicle Model . 160

7.1.3 Control Policy . 161

7.1.4 Problem Definition . 162

7.2 Control Synthesis . 163

7.2.1 Multiple-Vehicle Motion . 164

7.2.2 Specification . 166

7.2.3 Operational Control Policy . 167

7.3 Analysis of the Hybrid Control Policy 168

7.3.1 Performance . 168

7.3.2 Safety . 170

7.3.3 Complexity . 171

7.4 Case Study . 171

7.4.1 Simulation Results . 171

7.4.2 Experimental Results . 173

8 Conclusions and Future Work 176

References 180

Curriculum Vitae 191

xiii

List of Tables

5.1 The representation of (5.3) in TWTL, BLTL, and MTL. 91

5.2 The representation of (5.4) in TWTL, BLTL, and MTL. 91

xiv

List of Figures

2·1 A simple example of a transition system 20

3·1 Simplified representation of a disaster scenario considered in Exam-

ple. 3.1. 26

3·2 A simple example showing the near, far, and isSimpleSegment prim-

itive functions. 35

3·3 Global and local transition systems. 56

3·4 One of the solutions corresponding to Case Study 1. 60

3·5 Transition systems at earlier iterations. 61

3·6 On-line trajectories of the robot. 64

4·1 State space of the one dimensional system. 69

4·2 Experimental setup with a ground robot and camera network. 83

4·3 On-line trajectories of the ground robot. 84

5·1 An AST corresponding to the TWTL in (5.6). 100

5·2 The AST corresponding to the TWTL formula in (5.19). 130

5·3 Annotated automata corresponding to subformulae of the TWTL spec-

ification in (5.19). 131

5·4 The environment where the robot operates and its abstraction T . . . 134

5·5 A simple transition system T simple. 135

5·6 The training set contains 50 positive and 50 negative labeled trajectories.138

6·1 An environment with 3 sites and 3 charging stations. 143

xv

6·2 Quadrotor docked at a charging station. 156

6·3 Two quadrotors in an environment with three sites and three charging

stations. 158

7·1 An environment containing four monitoring sites and a base. 165

7·2 Simulation and experimental results. 172

7·3 Two quadrotors in an environment with 4 sites and 2 charging stations. 175

xvi

List of Abbreviations

AST Abstract Syntax Tree
BLTL Bounded Linear Temporal Logic
CTL Computation Tree Logic
DAG Directed Acyclic Graph
DFA Deterministic Finite State Automaton
DFS Depth-First Search
DFW Disjunction-Free Within Form
DRA Deterministic Rabin Automaton
DTS Deterministic Transition System
EC End Component
EST Expansive Space Tree
FIRM Feedback Information Roadmap
GDTL Gaussian Distribution Temporal Logic
GR(1) Generalized Reactivity with rank 1
LQG Linear Quadratic Gaussian
LTI Linear Time Invariant
LTL Linear Temporal Logic
LTL−X LTL without the next operator
MDP Markov Decision Process
MTL Metric Temporal Logic
PCTL Probabilistic CTL
PLTL Probabilistic LTL
POMDP Partially Observable Markov Decision Process
PRM Probabilistic Roadmap
PSTL Parametric Signal Temporal Logic
PTS Product Transition System
RRG Rapidly exploring Random Graph
RRT Rapidly exploring Random Tree
SCC Strongly Connected Component
scLTL Syntactically Co-safe LTL
SRFS Self-Reachable Final State
STL Signal Temporal Logic
TR Temporal Relaxation
TLI Temporal Logic Inference
TWTL Time Window Temporal Logic

xvii

1

Chapter 1

Introduction

Motion planning is a fundamental problem in robotics (LaValle, 2006). The goal

is to generate a feasible path for a robot to move from an initial to a final con-

figuration while avoiding obstacles. Approaches based on potential fields, naviga-

tion functions, and cell decompositions are among the most commonly used (Choset

et al., 2005). These, however, become prohibitively expensive in high dimensional

configuration spaces. Sampling-based methods were proposed to overcome this lim-

itation. Examples include the probabilistic roadmap (PRM) algorithm proposed by

Kavraki et.al. (Kavraki et al., 1996), which is very useful for multi-query problems,

but is not well suited for the integration of differential constraints. In (LaValle and

Kuffner, 1999), Kuffner and LaValle proposed rapidly-exploring random trees (RRT).

These grow randomly, are biased to explore “new” space (LaValle and Kuffner, 1999)

(Voronoi bias), and find solutions quite fast. Moreover, PRM and RRT were shown to

be probabilistically complete (Kavraki et al., 1996; LaValle and Kuffner, 1999), but

not probabilistically optimal (Karaman and Frazzoli, 2011b). Karaman and Frazzoli

proposed RRT∗ and PRM∗, the probabilistically optimal counterparts of RRT and

PRM in (Karaman and Frazzoli, 2011b).

A recent trend in robot motion planning is the development of computational

frameworks that allow for automatic deployment from rich, high-level, temporal logic

specifications. As opposed to traditional methods, which only allow to specify a goal

position, these frameworks can capture more complex tasks such as sequencing (e.g.,

2

“Reach A, then B, and then C”), convergence (“Go to A and stay there for all future

times”), persistent surveillance (“Visit A, B, and C, in this order, infinitely often”),

and more complex logical combinations of the above, such as “Visit A and then B

or C infinitely often. Always avoid D. Never go to E unless F was reached before.”

It was shown that temporal logics, such as Linear Temporal Logic (LTL), Compu-

tational Tree Logic (CTL), and µ-calculus, and their probabilistic versions (PLTL,

PCTL), can be used as formal languages for motion planning (Kress-Gazit et al.,

2007; Wongpiromsarn et al., 2009; Bhatia et al., 2010; Karaman and Frazzoli, 2009;

Ding et al., 2011). Adapted model checking algorithms and automata game tech-

niques (Kress-Gazit et al., 2007; Chen et al., 2012) have been used to generate plans

and control policies for finite models of robot motion. Such models were obtained

through abstractions, which are essentially partitions of the robot configuration space

that capture the ability of the robot to steer among the regions in the partition (Belta

et al., 2005). As a result, they suffer from the same scalability issues as the cell-based

decomposition methods.

Scalability is also an issue when dealing with stochastic systems, where the prob-

lem arises due to the curse of history that is associated with belief space planning. We

use sampling-based techniques to synthesize switched closed-loop control policies for

a dynamical system with observation noise while achieving high-level tasks given as

temporal logic formulae. Significant observation and actuation noises are inherent in

many engineering applications, such as robotics or power networks, in which control

actions must be made in real time in response to uncertain or incomplete state and

model information. Temporal logic formulae interleave Boolean logic and temporal

operators with system properties to specify rich global behaviors. In the domain of

robotics, an example of a task that can be encoded in temporal logic is “Periodically

clean the living room and then the bathroom. Put the trash in the bin in the kitchen

3

or outside. Go to a charging station after cleaning is complete. Always avoid the

bedroom.” In the absence of observation noise, tools from formal synthesis can be

used to synthesize control policies that ensure these rich specifications are met (Maly

et al., 2013). On the other hand, modern control techniques can be used to syn-

thesize controllers automatically to enforce properties such as “drive the state of the

system to a safe set while avoiding unsafe states” under observation and dynamics

noise (Kaelbling et al., 1998; van den Berg et al., 2011; Hauser, 2011; Bachrach et al.,

2012; Vitus and Tomlin, 2011; Lesser and Oishi, 2015).

Lastly, the routing problem of multi-vehicle systems suffers from scalability is-

sues as well with respect to the number of vehicles. In the Vehicle Routing Problem

(VRP), the goal is to find N trajectories for N vehicles achieving a task (e.g., visiting

all locations in minimum time). There are various extensions of VRP addressing time

capacities, service time windows, service orders (e.g., (Toth and Vigo, 2001; Vasile and

Belta, 2014b)), or uncertainty in service requests, travel time, or vehicle availability

(e.g., (Bullo et al., 2011; Mu et al., 2011; Chen et al., 2006)). The VRPs are NP-

hard combinatorial optimization problems. Typically, finding the optimal trajectories

requires to explore all the possible routes. Such an exploration can be achieved by

various optimization methods (e.g., integer linear programming, dynamic program-

ming, branch and bound), whose computational complexities increase exponentially

with the problem size. This has motivated the development of heuristics or approx-

imate algorithms that result in acceptably good solutions with a lower complexity

(e.g., (Laporte, 1992; Pavone et al., 2009)).

In some VRPs, simultaneous visits or relative timings between visiting particular

locations might be critical for the task accomplishment. In general, if there exist

some tasks that involve a temporal and logical ordering, it is hard to formulate them

in the classical optimization setup. Temporal logics (TL) are rich and expressive

4

specification languages that can be used to address this issue. For example, the

authors of (Bhatia et al., 2010) and (Kress-Gazit et al., 2009) address motion planning

problems with specifications given in linear temporal logic. Alternatively, a VRP with

metric temporal logic formulae is solved in (Karaman and Frazzoli, 2008).

In this dissertation, we tackle planning problems in robotics that pose scalabil-

ity issues due to: (a) high-dimensional configuration space, (b) stochastic nature,

and (c) multi-system structure (i.e., multi-vehicle systems). Another major prob-

lem considered is the control of systems from timed specifications. In the third part

of the dissertation, we propose a logic called Time Window Temporal Logic and an

automata-based framework for solving synthesis, verification, and learning problems.

We then employ this framework to solve persistent multi-vehicle routing problems in

two setting: (1) deterministic models for motion and charging with fixed specification;

(2) stochastic charging and relaxed specifications.

1.1 Reactive Temporal Logic Path Planning

In the first part of the dissertation, we address the problem of generating a path for a

robot required to satisfy a (global) LTL specification over some known, static service

requests, while at the same time servicing a set of locally sensed requests ordered

according to their priorities. Consider, for example, a disaster relief scenario requiring

an unmanned aircraft to provide persistent surveillance of some affected regions in

order to assess the danger posed by unsafe structures with known locations (e.g., by

repeatedly taking photos of such regions and uploading the photos at a base region).

During flight, by using an onboard camera, the robot looks for survivors and fires. If

detected, such requests need to be serviced (e.g., fires need to be extinguished and

rescue teams need to be alerted if survivors are detected), possibly with predefined

priorities, while making sure that the global, surveillance mission is not compromised.

5

To address the scalability issues mentioned above, we propose a randomized sampling

approach that consists of two components:(1) an off-line algorithm that generates a

finite transition system that contains a run satisfying the global specification, and (2)

an on-line algorithm that finds local paths that satisfy the local specification, while

at the same time making sure that progress is made towards satisfying the global

specification.

For the off-line component of the framework, we propose a sampling-based path

planning algorithm that finds an infinite path satisfying an LTL formula over a set

of properties that hold at some regions in the workspace. The procedure is based

on the incremental construction of a transition system in the configuration space

followed by the search for one of its satisfying paths. One important feature of the

algorithm is that, at a given iteration, it only scales with the number of samples and

transitions added to the transitions system at that iteration. This, together with

a notion of “sparsity” that we define and enforce on the transition system, play an

important role in keeping the overall complexity at a manageable level. In fact, we

show that, under some mild assumptions, our definition of sparsity leads to the best

possible complexity bound for finding a satisfying path. Finally, while the number of

samples increases, the probability that a satisfying path is found approaches 1, i.e.,

our algorithm is probabilistically complete.

The closest to our proposed off-line algorithm is the work by Karaman and Fraz-

zoli (Karaman and Frazzoli, 2009; Karaman and Frazzoli, 2012), where the speci-

fications are given in deterministic µ-calculus. As in this paper, in (Karaman and

Frazzoli, 2009), the authors guarantee probabilistic completeness and scalability with

added samples only at each iteration of their algorithm. However, deterministic µ-

calculus formulae have unnatural syntax based on fixed point operators, and are

difficult to use by untrained human operators. In contrast, Linear Temporal Logic

6

(LTL) has friendly syntax and semantics, which can be easily translated to natural

language (Raman et al., 2013). Note that there is no known procedure to transform

an LTL formula φ into a µ-calculus formula Ψ such that the size of Ψ is polynomial

in the size of φ (for details see (Cranen et al., 2011)). In (Karaman and Frazzoli,

2009), the authors employ the fixed point (Knaster-Tarski) theorem to find a satis-

fying path. Their method is based on maintaining a “product” graph between the

transition system and every sub-formula of their deterministic µ-calculus specification

and checking for reachability and the existence of a “type” of cycle on the graph. On

the other hand, our algorithm maintains the product automaton between the tran-

sition system and a Büchi automaton corresponding to the given LTL specification.

Note that, as opposed to LTL model checking (Baier and Katoen, 2008), we use a

modified version of product automaton that ensures reachability of the final states.

Moreover, we impose that the states of the transition system be bounded away from

each other (by a given function decaying in terms of the size of the transition system).

Sparseness is also explored by Dobson and Berkis in (Dobson and Bekris, 2013) for

PRM using different techniques.

The on-line component of our framework uses sampling-based methods as well.

However, in this case the focus is on servicing local request and avoiding local ob-

stacles within the bounded sensing area of the robot, while ensuring the satisfaction

of the global specification in the long term. The proposed on-line algorithm is based

on the definition of a potential function over the global transition system that en-

sures progress toward satisfaction of the global specification. This idea is inspired

from (Ding et al., 2014). The new algorithm that we propose for the computation

of the potential function improves the complexity of the algorithm from (Ding et al.,

2014) by a polynomial factor. The new algorithm is shown to be correct and to have

the same complexity as Dijkstra’s algorithm.

7

The main contribution of this work is a sampling-based, formal framework that

combines infinite-time satisfaction of temporal logic global specifications with reac-

tivity to requests sensed locally. Related works include (Maly et al., 2013; Livingston

and Murray, 2013; Livingston et al., 2013; Tumova et al., 2013b; Ulusoy et al., 2013a).

In (Maly et al., 2013), the authors consider global specifications given in the more

restrictive scLTL fragment of LTL. To deal with the state-space explosion problem,

they propose a layered path planning approach which uses a cell decomposition of

the configuration space for high-level temporal planning and expansive space trees

(EST) for kino-dynamic planning of the low-level, cell-to-cell motion. The on-line al-

gorithm from (Tumova et al., 2013b) finds minimum violating paths for a robot when

the global specification can not be enforced completely. In (Livingston and Mur-

ray, 2013; Livingston et al., 2013), the global specifications are given in the GR(1)

fragment of LTL, and on-line local re-planning is done through patching invalidated

paths based on µ-calculus specifications. Finally, the idea of using a potential func-

tion to enforce the satisfaction of an infinite-time specification through local decisions

is inspired from (Ding et al., 2014; Ulusoy et al., 2013a).

1.2 Control in Belief Space with Temporal Logic Specifica-

tions

In the second part of the dissertation, we present an automatic, hierarchical control

synthesis algorithm that extends tools from formal synthesis and stochastic control to

enforce temporal logic specifications. Though our approach is quite general, we use

examples from robotic navigation throughout the paper to motivate our approach. We

evaluate our algorithm with experiments using a wheeled robot with noisy actuators

localized by a noisy, static camera network performing a persistent navigation task.

While synthesizing control policies to enforce temporal logic properties under dy-

8

namics noise has been extensively considered in the literature (Zamani et al., 2014),

observation noise has only recently been considered (Maly et al., 2013; Jones et al.,

2013; Leahy et al., 2015; Svorenova et al., 2013; Ayala et al., 2014). One of the

technical challenges of incorporating observation noise into formal synthesis is that

satisfaction of temporal logic properties is in general defined with respect to the state

trajectory of the system rather than the evolution of the belief (as measured by a

posterior probability distribution) about this state. In this paper, we introduce the

paradigm of Gaussian distribution temporal logic (GDTL) which allows us to specify

properties involving the uncertainty in the state of the system, e.g. “Ensure that the

uncertainty (measured by variance) of the robot’s x position is always below 0.1 m2”.

GDTL formulae can be translated to Rabin automata using off-the-shelf tools (Jones

et al., 2013).

The problem of synthesizing controllers to enforce a GDTL specification is in gen-

eral a discrete time, continuous space partially observable Markov decision process

(POMDP). Our approach approximates the optimal solution with a computation-

ally feasible hierarchical sampling-based control synthesis algorithm. Most existing

sampling-based algorithms sample points directly in belief space (Patil et al., 2015;

Burns and Brock, 2007; Bry and Roy, 2011; Prentice and Roy, 2009), which re-

quires synthesizing distribution-to-distribution controllers. Such synthesis problems

are computationally difficult and may require significant modeling on the part of a

control designer. To circumvent these challenges, we base the core of our algorithm

on feedback information roadmaps (FIRMs). The FIRM motion planner extends

probabilistic roadmaps (PRMs) (Thrun et al., 2005), to handle observation noise. In

FIRM, points are sampled directly in the state space (rather than in belief space) and

feedback control policies, e.g. linear quadratic Gaussian (LQG) controllers, stabilize

the system about nodes along paths in the roadmap. The behavior of the closed-

9

loop system is then used to predict how the state estimate evolves. The associated

trajectories of the estimate induce a roadmap in the belief space.

If the goal of the problem were only to reach a given region of the belief space,

one could construct a switched controller by finding a path in the roadmap from the

initial distribution to a node contained within the goal set and then applying the cor-

responding sequence of controllers. During the application of the controller, however,

we do not have any guarantees about whether or not the evolution of the system will

violate the given specification. Therefore, we can only estimate with what probabil-

ity the given controller drives the distribution to the next collection of nodes without

violating the specification. This allows us to construct a Markov decision process in

which the states correspond to nodes, actions correspond to controller pairs, and tran-

sition probabilities correspond to the probability of the closed-loop system reaching

the next node without violating the specification. Applying dynamic programming to

this system yields a policy that maps the current region of belief states to the pair of

controllers to be applied. Combining the policy with the synthesized LQG controllers

yields a state-switched feedback controller that satisfies the system specifications with

some minimum probability.

Given a Rabin automaton constructed from a GDTL formula and a FIRM, we

construct a graph product between the two, called the GDTL-FIRM, to check if the

state space has been sampled sufficiently to synthesize a switched controller satisfying

the specification with positive probability. We use techniques similar to those in

sampling-based formal synthesis work (Agha-mohammadi et al., 2014; Karaman

and Frazzoli, 2009; Karaman and Frazzoli, 2012; Vasile and Belta, 2013; Vasile and

Belta, 2014a) to construct the GDTL-FIRM incrementally until we find a policy with

sufficiently high satisfaction probability.

10

1.3 Time Window Temporal Logic

Temporal logics provide mathematical formalisms to reason about (concurrent) events

in terms of time. Due to their rich expressivity, they have been widely used as speci-

fication languages to describe properties related to correctness, termination, mutual

exclusion, reachability, or liveness (Manna and Pnueli, 1981). Recently, there has

been great interest in using temporal logic formulae in the analysis and control of

dynamical systems. For example, linear temporal logic (LTL) (Baier and Katoen,

2008) has been extensively used in motion planning and control of robotic systems,

e.g., (Ulusoy et al., 2013c; Karaman and Frazzoli, 2008; Aksaray et al., 2015; Wong-

piromsarn et al., 2010; Belta et al., 2005; Wongpiromsarn et al., 2009; Kloetzer and

Belta, 2008; Fainekos et al., 2009; Kress-Gazit et al., 2009; Leahy et al., 2014).

In some real-world applications, the tasks may involve some time constraints

(e.g., (Solomon, 1987; Pavone et al., 2009)). For example, consider a robot that

is required to achieve the following tasks: every visit to A needs to be immediately

followed by visiting B within 5 time units; two consecutive visits to A need to be at

least 10 time units apart; or visiting A and visiting B need to be completed within 15

time units. Such tasks cannot be described by LTL formulae since LTL cannot deal

with temporal properties with explicit time constraints. Therefore, bounded temporal

logics are used to capture the time constraints over the tasks. Examples are bounded

linear temporal logic (BLTL) (Tkachev and Abate, 2013; Jha et al., 2009), metric

temporal logic (MTL) (Koymans, 1990), and signal temporal logic (STL) (Maler and

Nickovic, 2004).

We propose a specification language called time window temporal logic (TWTL).

The semantics of TWTL is rich enough to express a wide variety of time-bounded

specifications, e.g., “monitor A for 3 time units within the time interval [0, 5] and

11

after that monitor B for 2 time units within [4, 9]. This logic was defined in (Vasile

and Belta, 2014b; Aksaray et al., 2016), and used to specify persistent surveillance

tasks for multi-robot systems. Moreover, we define a notion of temporal relaxation of

a TWTL formula, which is a quantity computed over the time intervals of a given

TWTL formula. In this respect, if the temporal relaxation is: negative, then the tasks

expressed in the formula should be completed before their designated time deadlines

(i.e., satisfying the relaxed formula implies the satisfaction of a more strict formula

than the original formula); zero, then the relaxed formula is exactly the same as the

original formula; positive, then some tasks expressed in the formula are allowed to be

completed after their original time deadlines (i.e., satisfying the relaxed formula may

imply the violation of the original formula or the satisfaction of a less strict formula).

We propose an automata-based framework to solve verification, synthesis, and

learning problems that involve TWTL specifications. One property of TWTL specifi-

cations we exploit in the proposed solutions is that the associated languages are finite.

In the theoretical computer science literature, finite languages and the complexity of

constructing their corresponding automata have been extensively studied (Maia et al.,

2013; Han and Salomaa, 2007; Câmpeanu et al., 2001; Gao et al., 2011; Daciuk, 2003).

One of the main benefits of the proposed framework is its capability to efficiently con-

struct the annotated automata that can encode not only the original formula but also

all temporal relaxations of the given formula. Such an efficient construction mainly

stems from the proposed algorithms that are specifically developed for TWTL for-

mulae.

The proposed language TWTL has several advantages over existing temporal log-

ics. First, a desired specification can be represented in a more compact and compre-

hensible way in TWTL than BLTL, MTL, or STL. For example, deadlines expressed

in a TWTL formula indicate the exact time bounds as opposed to an STL formula

12

where the time bounds can be shifted. Consider a specification as “stay at A for

4 time steps within the time window [0, 10]”, which can be expressed in TWTL as

[H4A][0,10]. The same specification can be expressed in STL as F[0,10−4]G[0,4]A where

the outermost time window needs to be modified with respect to the inner time

window. Furthermore, compared to BLTL and MTL, the existence of an explicit con-

catenation operator results in a more compact representation for serial tasks that are

prevalent in various applications including robotics, sensor systems, and manufactur-

ing systems. Under some mild assumptions, we provide a very efficient (linear-time)

algorithm to handle concatenation of tasks. In general, the complexity associated

with the concatenation operation is exponential in the worst case, even for finite

languages (Maia et al., 2013).

Second, the notion of temporal relaxation enables a generic framework to construct

the automaton of all possible relaxations of a TWTL formula. In the literature, there

are some studies investigating the control synthesis problems for minimal violations of

LTL fragments (Reyes Castro et al., 2013; Tumova et al., 2013a; Tumova et al., 2014;

Livingston et al., 2013; Guo and Dimarogonas, 2015). In contrast to existing works,

the annotated automaton proposed in this paper can encode all possible temporal

relaxations of a given formula. Accordingly, such an automaton can be used in a

variety of problems related to synthesis, verification, and learning to satisfy minimally

relaxed formulae. Third, we show that the complexity of constructing the automata

for a given TWTL formula is independent of the corresponding time bounds. To

achieve this property, we exploit the structure of finite languages encoded by TWTL

formulae.

We present a set of provably-correct algorithms to construct the automaton of a

given TWTL formula (both for the relaxed and unrelaxed cases). We formulate a

generic problem in terms of temporal relaxation of a TWTL formula, which can be

13

specialized into problems such as verification, synthesis, and learning. We developed

a Python package to solve these three problems, which is available for download from

hyness.bu.edu/twtl.

1.4 Persistent Vehicle Routing Problem with Charging and

Temporal Logic Constraints

The Vehicle Routing Problem (VRP) was first formulated in (Dantzig and Ramser,

1959) as a distribution problem for gasoline from a terminal to service stations using

trucks. The basic formulation of VRP is as follows (Karaman and Frazzoli, 2011a;

Beck et al., 2003): given N identical vehicles initially located at a depot, a set of

sites, and a distance matrix between the sites and the depot, compute a tour for

each vehicle such that each tour starts and ends at the depot, every site is visited

exactly once, and the overall travelled distance is minimized. The VRP is known

to be NP-hard (Garey and Johnson, 1979). Several versions of this problem, which

incorporate constraints on the carrying capacity, delivery time frames, and delivery

order have been developed (Toth and Vigo, 2001). With particular relevance to this

paper is the VRP with Time Windows (VRPTW), in which a service time interval

(window) is specified for each site (Toth and Vigo, 2001).

We introduce P-VRP, a persistent surveillance version of VRP. The new problem

formulation can be seen as a four-fold extension of a relaxed version of VRPTW, in

which no restriction is implicitly assumed about the number of visits to the sites.

First, we allow for rich, temporal logic constraints on the order in which sites are to

be visited. Second, to accommodate persistent surveillance missions, our problem has

infinite-time semantics. For example, in our new, user-friendly specification language,

called Time-Window Temporal Logic (TWTL), see Chapter 5, we can describe mis-

sions such as “Service sites A, B, and C infinitely often within time windows [2,7],

http://hyness.bu.edu/twtl

14

[6,12], and [5,20], respectively. The service times for A, B, and C are 2, 3, and 1,

respectively.” 1 Third, we incorporate resource constraints. We assume that, while

moving in the environment, each vehicle consumes a resource (e.g., battery charge or

fuel) proportionally to the time away from a depot. There is an upper limit on the

quantity of the resource each vehicle can store. To replenish their reserves, the vehi-

cles need to return to the depots. Finally, to allow for many revisits to a particular

location, we explicitly model and deal with the collision avoidance problem.

Our proposed technical approach brings together concepts and tools from au-

tomata theory, formal verification, and optimization. Given a specification as a for-

mula of TWTL, we first translate it to a finite state automaton that accepts the

satisfying language. This is then composed with finite transition systems modeling

the motion of the vehicles in the environment and the charging constraints. In this

product automaton, among all the collision-free motion plans that satisfy the spec-

ification and the charging constraints, we select an optimal one. We explore two

different optimization criteria. The first is the infinite-time limit of the duration

needed for the completion of a surveillance round. The second penalizes the long-

term average of the same quantity. These criteria lead to NP-complete problems.

We impose some additional restrictions to reduce the problems to manageable sizes.

We present simulation case studies and experimental trials with a team of quadro-

tors involved in a temporal logic persistent surveillance mission with deadlines. The

quadrotors can automatically land and charge at a set of fixed charging stations.

This work is related to (and inspired from) several recent works that promote

the use of temporal logics and formal methods (Baier and Katoen, 2008) for robot

motion planning and control (Kress-Gazit et al., 2007; Wongpiromsarn et al., 2009;

Bhatia et al., 2010; Karaman and Frazzoli, 2009; Ding et al., 2011; Smith et al.,

1The “classical” VRP constraint that all sites need to be visited exactly once can be easily
enforced as a TWTL formula.

15

2011; Ulusoy et al., 2013c). In particular, (Smith et al., 2011; Ulusoy et al., 2013c)

consider optimal persistent surveillance problems with temporal logic constraints and

optimality guarantees. However, resource constraints are not considered. In addition,

the specification language, which is off-the-shelf LTL, does not capture time windows.

Resource constraints for the routing problem restricted to one vehicle and the clas-

sical setup of servicing all sites (i.e., no temporal logic specifications) are considered

in (Sundar and Rathinam, 2014).

The closest related work is (Karaman and Frazzoli, 2008), which contains a mixed

integer linear programming formulation of VRP called VRP-MTL. The specifications

are given as formulas in a fragment of Metric Temporal Logic (MTL) (Koymans,

1990), where the temporal operators can only be applied to atomic propositions or

their negations. The durations of the transition between sites are fixed and each site

can be visited at most once. Our logic, TWTL, strictly contains the MTL fragment

used in (Karaman and Frazzoli, 2008). In our approach, a site can be serviced mul-

tiple times during a tour if it is required by the specification, and bounds (intervals)

on transition durations are allowed. VRL-MTL does not take into account resource

constraints related to vehicle movement, such as fuel or battery life, considers a single

task over a finite horizon, and optimizes a weighted sum of the distances traveled by

the vehicles.

1.5 Dynamic Persistent Vehicle Routing Problem with

Charging and Temporal Logic Constraints

This part of the dissertation addresses a persistent VRP involving a group of energy-

aware vehicles. The vehicles work together to satisfy a global task infinitely many

times. The task is given as a Time-Window Temporal Logic (TWTL) formula over

a set of locations. The semantics of TWTL is rich enough to capture a wide variety

16

of timed temporal logic specifications, e.g., “Service A for 3 time units within [0, 5],

and after this, service B for 2 time units within [4, 9]. Within 9 time units, if C is

serviced for 2 time units, then D should be serviced for 3 time units.” Each vehicle is

assumed to have a stochastic fuel consumption model, and it leaves the mission area

for refueling when necessary. We propose a decoupled and efficient control policy, in

which each vehicle makes an individual decision for refueling whenever it reaches a

critical fuel threshold, and a centralized controller plans only the trajectories of the

vehicles in the mission area.

This work extends the results from the previous section in three ways. First, the

previous method is an off-line strategy, which can not handle uncertainty. Here, due

to stochasticity in fuel consumption, we propose an on-line control policy that recom-

putes the trajectories during the mission whenever a change occurs in the number of

available vehicles. Second, by decoupling refueling decisions from trajectory planning,

the proposed policy exhibits a significantly lower computational complexity than the

strategy presented in the previous section. Third, while the previous method returns

failure in cases where the given TWTL formula cannot be satisfied, here we allow for

satisfaction of minimally relaxed formulae. We quantify the temporal relaxation of a

TWTL formula and compute trajectories by minimizing it. Accordingly, the resulting

trajectories provide the best possible satisfaction performance.

1.6 Contributions

In conclusion, the contributions of the dissertation are the following. In the first

part of the dissertation, Chapter 3, a sampling-based, formal framework is proposed

that combines infinite-time satisfaction of temporal logic global specifications with

reactivity to locally sensed requests. We showed that the planning algorithm is prob-

abilistically complete and the incremental checking procedure for the existence of

17

satisfying policies has the best possible complexity bound. In the second part of the

dissertation, Chapter 4, we propose a sampling-based, formal framework to synthe-

size feedback policies for stochastic systems with maximum satisfaction probability.

Experiments with a ground robot were performed to show the performance of the

procedures. In the third part of the dissertation the focus is on temporal specifica-

tions with timing constraints, and multi-vehicle routing with limited resources. In

Chapter 5, we propose a timed logic called Time Window Temporal Logic, temporal

relations of TWTL formulae, and an automata-based framework for policy synthesis

from relaxed TWTL formulae. Finally, we propose an automata-based framework for

Persistent Vehicle Routing Problems with temporal and charging constraints. Chap-

ter 6 deals with the deterministic case, where we assume that both the motion and

the charging of the vehicles are deterministic, and collision between vehicles is explic-

itly avoided. We proved that our solution is complete and optimality with respect

to two cost functions. In Chapter 7, the setup is changed to account uncertainty in

the fuel model. Collisions are penalized in terms of fuel and satisfaction of relaxed

TWTL formulae is allowed. The performance of the proposed procedures for both

the deterministic and stochastic cases were evaluated in experimental trials.

18

Chapter 2

Formal Methods Preliminaries

In this chapter, we introduce the notation and briefly review the main concepts from

formal languages, automata theory, and formal verification. For a detailed exposition

of these topics, the reader is refereed to (Baier and Katoen, 2008; Hopcroft et al.,

2006) and the references therein.

Let Σ be a finite set. We denote the cardinality and the power set of Σ by |Σ|

and 2Σ, respectively. ∅ denotes the empty set. A word over Σ is a finite or infinite

sequence of elements from Σ. In this context, Σ is also called an alphabet. The length

of a word w is denoted by |w| (e.g., |w| = ∞ if w is an infinite word). Let k, i ≤ j

be non-negative integers. The k-th element of w is denoted by wk, and the sub-word

wi, . . . , wj is denoted by wi,j. A set of words over an alphabet Σ is called a language

over Σ. The languages of all finite and infinite words over Σ are denoted by Σ∗ and

Σω, respectively. These are also called Kleene- and ω-closures, respectively.

Definition 2.1 (Deterministic Transition System, DTS). A weighted deterministic

transition system (DTS) is a tuple T = (X, x0,∆, ω,Π, h), where:

• X is a finite set of states;

• x0 ∈ X is the initial state;

• ∆ ⊆ X ×X is a set of transitions;

• ω : ∆→ R+ is a positive weight function;

19

• Π is a set of properties (atomic propositions);

• h : X → 2Π is a labeling function.

We also denote a transition (x, x′) ∈ ∆ by x →T x′. A trajectory (or run) of

the system is an infinite sequence of states x = x0x1 . . . such that xk →T xk+1 for

all k ≥ 0. A state trajectory x generates an output trajectory o = o0o1 . . ., where

ok = h(xk) for all k ≥ 0. The (generated) language corresponding to a TS T is the

set of all generated output words, which we denote by L(T). The absence of inputs

(control actions) in a DTS implicitly means that a transition (x, x′) ∈ ∆ can be

chosen deterministically at every state x.

A Linear Temporal Logic (LTL) formula over a set of properties Π is defined using

standard Boolean operators, ¬ (negation), ∧ (conjunction) and ∨ (disjunction), and

temporal operators, X (next), U (until), F (eventually), G (always). The semantics

of LTL formulae over Π are given with respect to infinite words over 2Π, such as

the output trajectories of the DTS defined above. Any infinite word satisfying a

LTL formula can be written in the form of a finite prefix followed by infinitely many

repetitions of a suffix. Verifying whether all output trajectories of a DTS with set

of propositions Π satisfy an LTL formula over Π is called LTL model checking. LTL

formulae can be used to describe rich mission specifications. For example, formula

G(F(R1 ∧ FR2) ∧ ¬O1) specifies a persistent surveillance task: “visit regions R1

and R2 infinitely many times and always avoid obstacle O1” (see Figure 2·1). In

the first part of the dissertation, we consider a particular fragment of LTL, called

LTL−X (Baier and Katoen, 2008), which does not include the X (next) operator.

Formal definitions for the LTL syntax, semantics, and model checking can be found

in (Baier and Katoen, 2008).

Definition 2.2 (Büchi Automaton). A (nondeterministic) Büchi automaton is a

20

Figure 2·1: A simple map with three features: an obstacle O1 and
two regions of interest R1 and R2. The mission specification is φ =
G(F(R1 ∧FR2)∧¬O1). The initial position of the robot is marked by
the blue disk. The graph (in black and red) represents the generated
transition system T . The red arrows specify a satisfying trajectory
composed of a prefix [0, 2, 3] and infinitely many repetitions of the suffix
[4, 3, 2, 3].

tuple B = (SB, SB0 ,Σ, δ, FB), where:

• SB is a finite set of states;

• SB0 ⊆ SB is the set of initial states;

• Σ is the input alphabet;

• δ : SB × Σ→ 2SB is the transition function;

• FB ⊆ SB is the set of accepting states.

A transition (s, s′) ∈ δ(s, σ) is also denoted by s
σ→B s′. A trajectory of the Büchi

automaton s0s1 . . . is generated by an infinite sequence of symbols σ0σ1 . . . if s0 ∈ SB0
and sk

σk→B sk+1 for all k ≥ 0. An infinite input sequence over Σ is said to be accepted

21

by a Büchi automaton B if it generates at least one trajectory of B that intersects

the set FB of accepting states infinitely many times.

It is shown in (Baier and Katoen, 2008) that for every LTL formula φ over Π there

exists a Büchi automaton B over alphabet Σ = 2Π such that B accepts all and only

those infinite sequences over Π that satisfy φ. There exist efficient algorithms that

translate LTL formulae into Büchi automata (Gastin and Oddoux, 2001).

Note, that the converse is not true, there are some Büchi automata for which there

is no corresponding LTL formulae. However, there are logics such as deterministic

µ-calculus which are in 1-to-1 correspondence with the set of languages accepted by

Büchi automata.

Next, deterministic finite state automaton (DFA) are introduced, which are similar

to Büchi automata. While Büchi automata may be used to encode general infinite-

horizon properties, DFAs may only capture finite-time specifications. However, DFAs

have a simpler structure than Büchi automata, and induce simpler verification and

synthesis procedures.

Definition 2.3 (Deterministic Finite State Automaton). A deterministic finite state

automaton (DFA) is a tuple A = (SA, s0,Σ, δA, FA), where:

• SA is a finite set of states;

• s0 ∈ SA is the initial state;

• Σ is the input alphabet;

• δA : SA × Σ→ SA is the transition function;

• FA ⊆ SA is the set of accepting states.

A transition s′ = δA(s, σ) is also denoted by s
σ→A s′. A trajectory of the DFA

s = s0s1 . . . sn+1 is generated by a finite sequence of symbols σ = σ0σ1 . . . σn if s0 ∈ SA

22

is the initial state of A and sk
σk→A sk+1 for all k ≥ 0. The trajectory generated by σ

is also denoted by s0
σ→A sn+1. A finite input word σ over Σ is said to be accepted

by a finite state automaton A if the trajectory of A generated by σ ends in a state

belonging to the set of accepting states, i.e., FA . A DFA is called blocking if the

δA(s, σ) is a partial function, i.e., the value of the function is not defined for all values

in the domain. A blocking automaton rejects words σ if there exists k ≥ 0 such that

sk
σk→A sk+1 is not defined. The (accepted) language corresponding to a DFA A is the

set of accepted input words, which we denote by L(A).

Model checking a DTS against an LTL formula is based on the construction of

the product automaton between the DTS and the Büchi automaton corresponding to

the formula. In this work, we used a modified definition of the product automaton

that is optimized for incremental search of a satisfying run. Specifically, the product

automaton is defined such that all its states are reachable from the set of initial states.

Definition 2.4 (Product Automaton). Given a DTS T = (X, x0,∆, ω,Π, h) and an

automaton (Büchi B or DFA A) K = (SK, SK0 , 2
Π, δK, FK), their product automaton,

denoted by P = T × K, is a tuple P = (SP , SP0 ,∆P , ωP , FP) where:

• SP0 = {x0} × SK0 is the set of initial states (for DFAs there is only one initial

state);

• SP ⊆ X × SK is a finite set of states which are reachable from some initial

state: for every (x∗, s∗) ∈ SP there exists a sequence of x = x0x1 . . . xnx
∗, with

xk →T xk+1 for all 0 ≤ k < n and xn →T x∗, and a sequence s = s0s1 . . . sns
∗

such that s0 ∈ SK0, sk
h(xk+1)→ K sk+1 for all 0 ≤ k < n and sn

h(x∗)→ T s
∗;

• ∆P ⊆ SP × SP is the set of transitions, defined by: ((x, s), (x′, s′)) ∈ ∆P iff

x→T x′ and s
h(x)→ K s

′;

23

• ωP : ∆P → R+ is inherited from T such that ωP(((x, s), (x′, s′))) = ω((x, x′));

• FP = (X × FK) ∩ SP is the set of accepting states of P.

A transition in P is also denoted by (x, s) →P (x′, s′) if ((x, s), (x′, s′)) ∈ ∆P . A

trajectory p = (x0, s0)(x1, s1) . . . of P is a finite or infinite sequence, where (x0, s0) ∈

SP0 and (xk, sk)→P (xk+1, sk+1) for all k ≥ 0. The acceptance condition is inherited

from the specification automaton, Büchi or DFA. A trajectory of P = T × B is said

to be accepting if and only if it intersects the set of final states FP infinitely many

times. A trajectory of P = T × A is said to be accepting if and only if it ends in

a state that belongs to the set of final states FP . It follows by construction that a

trajectory p = (x0, s0)(x1, s1) . . . of P is accepting if and only if the trajectory s0s1 . . .

is accepting in K. As a result, a trajectory of T obtained from an accepting trajectory

of P satisfies the given specification encoded by K. We denote the projection of a

trajectory p = (x0, s0)(x1, s1) . . . onto T by γT (p) = x0x1 A similar notation

is used for projections of finite trajectories. For x ∈ X and K = B, we define

βP(x) = {s ∈ SB : (x, s) ∈ SP} as the set of Büchi automaton states that correspond

to x in P .

For both DTS and automata, we use |·| to denote size, which is the cardinality

of the corresponding set of states. A state of a DTS or an automaton is called non-

blocking if it has at least one outgoing transition.

24

Chapter 3

Reactive Temporal Logic Path Planning

In this chapter, we develop a sampling-based motion planning algorithm that com-

bines long-term temporal logic goals with short-term reactive requirements. The mis-

sion specification has two parts: (1) a global specification given as a Linear Temporal

Logic (LTL) formula over a set of static service requests that occur at the regions

of a known environment, and (2) a local specification that requires servicing a set

of dynamic requests that can be sensed locally during the execution. The proposed

computational framework consists of two main ingredients: (a) an off-line sampling-

based algorithm for the construction of a global transition system that contains a path

satisfying the LTL formula, and (b) an on-line sampling-based algorithm to generate

paths that service the local requests, while making sure that the satisfaction of the

global specification is not affected.

The off-line algorithm has four main features. First, it is incremental, in the sense

that the procedure for finding a satisfying path at each iteration scales only with the

number of new samples generated at that iteration. Second, the underlying graph

is sparse, which implies low complexity for the overall method. Third, it is proba-

bilistically complete. Fourth, under some mild assumptions, it has the best possible

complexity bound. The on-line algorithm leverages ideas from LTL monitoring and

potential functions to ensure progress towards the satisfaction of the global speci-

fication while servicing locally sensed requests. Examples and experimental trials

illustrating the usefulness and the performance of the framework are included.

25

3.1 Problem formulation

Consider a robot moving in an environment (workspace) D containing a set of disjoint

regions of interest RG. We assume that the robot can precisely localize itself in the

environment. There is a set of service requests ΠG at the regions in RG and their

location is given by a map LG : RG → 2ΠG . We assume that these regions as well as

the labeling map are static and a priori known to the robot. We will refer to these

as global regions and requests, because these are used to define the long-term goal of

the robot’s mission. An example of an environment with global regions and requests

is shown in Figure 3·1.

While the robot moves in the environment, it can locally sense a set of dynamic

service requests denoted by ΠL and a particular type of avoidance request denoted by

πO, which captures moving obstacles, unsafe areas, etc. We assume ΠG∩(ΠL∪{πO}) =

∅. A dynamic request from ΠL occurs at a point in the environment and has an

associated servicing radius, which specifies the maximum distance from which the

robot can service it. The servicing radius of a request is determined by its type (ΠL)

and all servicing radii are known a priori. The robot may service a dynamic request

by moving inside the request’s servicing radius and performing an appropriate action.

We assume that once a request is serviced, it disappears from the environment. The

region around the robot in which the robot can sense a dynamic request, including

πO, is called the sensing area of the corresponding sensor. For simplicity, we assume

that all sensors have the same sensing area. The sensing area may be of any shape and

size provided that it is connected and full-dimensional (see Figure 3·1). We assume

that the avoidance request πO is associated with whole regions, parts of which can be

detected when they intersect with the robot’s sensing area. For simplicity, we refer

to regions satisfying πO as local obstacles. The set of regions corresponding to local

26

obstacles present in the environment at time t ≥ 0 is denoted by RL(t).

x

y

Region A

Region B

Region C

unsafe

fire

survivor

Figure 3·1: Simplified representation of a disaster scenario considered
in Example. 3.1. The environment contains three global regions A, B
and C colored in green, blue and red, respectively. Three dynamic
requests are also shown as colored points: a survivor (yellow), a fire
(orange), and a local obstacle (black). The circles around them delimit
the corresponding servicing areas. The initial position of the robot is
shown in magenta and the cyan rectangle corresponds to its sensing
area. In this figure the robot does not detect any dynamic request or
local obstacles.

The mission specification is composed of two parts: a global mission specification,

which is defined over the set of global properties ΠG, and a local mission specification,

which specifies how on-line detected requests ΠL must be handled. The global mission

specification, which defines the long-term motion of the robot, is given as an LTL−X

formula ΦG. When the robot passes over a global region, it is assumed that the

robot services the requests associated with the region. Therefore, a path traveled

27

by the robot generates a word over ΠG. A path is said to satisfy the global mission

specification ΦG if the corresponding word satisfies ΦG. The local mission specification

is given as a priority function prio : ΠL → N. We assume that prio is an injective

function that assigns lower values to higher priority requests. If the robot detects

dynamic requests, it must go and service the request with the highest priority. If

multiple requests have the same (highest) priority, then the robot can choose any one

of them. Also, the robot must avoid all local obstacles marked by πO.

Planning is performed in the configuration space of the robot. Let C be the

compact configuration space of the robot and H : C → D be a submersion that maps

each configuration x to a position y = H(x) ∈ D. Formally, the problem can be

formulated as follows:

Problem 3.1 (Reactive Path Planning). Given a partially known environment de-

scribed by (D,RG,ΠG,LG,ΠL), an initial configuration x0 ∈ C, an LTL−X formula

ΦG over the set of properties ΠG, and a priority function prio : ΠL → N, find an (in-

finite) path in the configuration space C originating at x0 such that the path y = H(x)

in the environment satisfies ΦG and on-line detected dynamic requests, while avoiding

local obstacles.

Example 3.1. Figure. 3·1 shows a simplified disaster response scenario, in which

a fully actuated point robot is deployed in an environment where three global re-

gions of interest A, B and C are defined. The set of dynamic requests is ΠL =

{fire, survivor} and the local obstacle is πO = unsafe. If the robot detects requests

fire or survivor, it must service them by going within the corresponding servicing

radii and initiating appropriate actions (i.e., extinguishing the fire and providing med-

ical relief, respectively). If the robot detects the local obstacle unsafe (shown in black

in Figure 3·1), the robot must avoid that region. The limited sensing area of the

robot’s sensors is depicted in Figure 3·1 by a cyan rectangle.

28

The global mission specification is: “Go to region A and then go to regions B or

C infinitely often”. This specification can be expressed in LTL−X as:

ΦG := GFA ∧G(A U (¬A U (B ∨ C))) (3.1)

The local mission specification is to “Extinguish fires and provide medical assis-

tance to survivors, with priority given to survivors, while avoiding unsafe areas.”.

Thus the priority function is defined such that prio(survivor) = 0 and prio(fire) = 1.

3.1.1 Outline of the Approach

We propose a computational framework to solve Problem 3.1 that consists of two

parts: (a) an off-line sampling-based algorithm to compute a global transition system

TG in the configuration space C of the robot that contains a path whose image in the

workspaceD satisfies the global mission specification ΦG, and (b) an on-line sampling-

based algorithm that computes at every time step a local control strategy that takes

into account dynamic requests such that both local and global mission specifications

are met.

A possible approach to the off-line part of Problem 3.1 is to construct a partition

of the configuration space such that its image in the workspace contains the regions

of interest as elements of the partition. By using input-output linearizations and

vector field assignments in the regions of the partition, it was shown that “equivalent”

abstractions in the form of finite (not necessarily deterministic) transition systems

can be constructed for a large variety of robot dynamics that include car-like vehicles

and quadrotors (Belta et al., 2005; Lindemann and LaValle, 2009; Ulusoy et al.,

2013b). Model checking and automata game techniques can then be used to control

the abstractions from the temporal logic specification (Kloetzer and Belta, 2008).

The main limitation of this approach is its high complexity, as both the synthesis

29

and abstraction algorithms scale at least exponentially with the dimension of the

configuration space.

In this paper, we propose a sampling-based algorithm for the construction of TG

that can be summarized as follows: (1) the LTL formula φG is translated to the

Büchi automaton B; (2) a transition system TG is incrementally constructed from the

initial configuration x0 using an RRG-based algorithm; (3) concurrently with (2), the

product automaton PG = TG×B is updated and used to check if there is a trajectory

of TG that satisfies ΦG. As it will become clear later, our proposed algorithm is

probabilistically complete (LaValle, 2006; Karaman and Frazzoli, 2011b) (i.e., it finds

a solution with probability 1 if one exists and the number of samples approaches

infinity) and the resulting transition system TG is sparse (i.e., its states are “far”

away from each other). Also, it is incremental, in the sense that its complexity scales

only with the number of samples generated at the current iteration, rather than with

size of TG.

The proposed approach to the on-line part of Problem 3.1 is based on the RRT

algorithm, a probabilistically complete sampling-based path planning method. RRT

randomly grows trees instead of general graphs. We modify the standard RRT in

order to find local paths which preserve the satisfaction of the global specification

ΦG, while servicing on-line requests and avoiding locally sensed obstacles. We use

ideas from (Bauer et al., 2011) on monitors for LTL formulae and (Ding et al., 2014)

on potential functions to ensure the correctness of the local random paths with respect

to ΦG.

3.2 Solution

In the following, we will denote by TG = (XG, x0,∆G, ωG,ΠG, hG) the global transition

system, by B the Büchi automaton encoding the LTL−X formula ΦG and by PG = TG×

30

B their product. The local transition system is given by TL = (XL, xc,∆L, ωL,ΠL ∪

{πO}, hL) which is incrementally generated at each time step of the on-line procedure

(see Section 3.2.2) from the current configuration xc. An element of D will be called a

position. The states of TG and TL are configurations in C. The weight of a transition

of TG or TL is given by the distance between its endpoints in C. The labeling function

hG(x), x ∈ XG, is defined as the proposition set corresponding to the region the

projection of x belong to. Formally, hG(x) = LG(R) if H(x) ∈ R for some R ∈

RG, and hG(x) = ∅ otherwise. Similarly, the labeling function hL(x), x ∈ XL is

defined as the set of local requests which are satisfied at position y = H(x) if y /∈

RL(t), and hL(x) = πO, otherwise. Recall that the robot has knowledge only about

the local requests and obstacles inside its sensing area, which is determined by the

current position H(xc). Also, hL(x) may be ∅ if no local requests are satisfied by the

corresponding position y = H(x) and y does not fall inside a local obstacle.

We make the following additional assumptions that are necessary in the technical

treatment below. For a set R ⊆ D that is connected and has full dimension in D,

we assume that the inverse set H−1(R) also has full dimension in C. The global

regions and local obstacles are connected sets with non-empty interior, (i.e. they

have full dimension in D). Also, all the connected regions in the free space, between

global regions and obstacles, respectively, are full dimensional. This implies that all

global regions, local obstacles, service areas for dynamic requests, and connected free

space regions (all subsets of D) have corresponding inverse sets (through H−1) of

non-zero Lebesgue measure in C. It is important to note that these are just technical

assumptions, which are normally made in sampling-based approaches, and we do not

need to construct the inverse map H−1. In the sampling-based algorithms described

below, we only need to check how the environment image of a configuration satisfies

features of interest in the environment. Finally, we assume that the robot knows its

31

configuration precisely and it can follow trajectories in the configuration space made

of connected line segments. A path x in C is said to satisfy the specification ΦG if

the corresponding path y = H(x) in D satisfies ΦG. The initial configuration x0 of

the robot is known and H(x0) = y0.

3.2.1 Off-line Algorithm

The starting point for our solution to Problem 3.1 is the off-line algorithm to gen-

erate the global transition system TG. The algorithm is based on the RRG algo-

rithm, which is an extension of RRT (Karaman and Frazzoli, 2011b) that maintains

a digraph instead of a tree, and can therefore be used as a model for general ω-

regular languages (Karaman and Frazzoli, 2009). However, we modify the RRG to

obtain a “sparse” transition system that satisfies a given LTL formula ΦG. More

precisely, a transition system TG is “sparse” if the minimum distance between any

two states of T is greater than a prescribed function dependent only on the size of

TG (minx,x′∈TG ‖x− x′‖2 ≥ η(|TG|)). The distance used to define sparsity is inherited

from the underlying configuration space and is not related to the graph theoretical

distance between states in TG. Throughout this chapter, we will assume that this

distance is Euclidean.

As stated in Section 3.1.1, sparsity of TG is desired because the transition system

is then used in the on-line part of the framework. The environment is partially

known by the robot before the start of the mission. Since transitions of TG may

need to be locally re-planned on-line, TG must only capture the essential features of

D such that ΦG is satisfied. Sparseness also plays an important role in establishing

the complexity bounds for the incremental search algorithm (see Section Incremental

search for a satisfying run).

32

Primitive functions

We first briefly introduce the functions used by the algorithm.

Sampling function The algorithm has access to a sampling function sample :

N → C, which generates independent and identically distributed samples from a

given distribution P . We assume that the support of P is the entire configuration

space C.

Steer function The steer function steer : C × C → C is defined based on the

robot’s dynamics. 1 Given a configuration x and goal configuration xg, it returns a

new configuration xn that can be reached from x by following the dynamics of the

robot and that satisfies ‖xn − xg‖2 < ‖x− xg‖2. If a third parameter η is given, then

xn must be within η distance away from x, ‖xn − x‖2 < η.

Near function near : C×R→ 2X is a function of a configuration x and a parameter

η, which returns the set of states from the transition system TG that are at most at

η distance away from x. In other words, near returns all states in TG that are inside

the n-dimensional sphere of center x and radius η.

Far function far : C × R × R → 2X is a function of a configuration x and two

parameters η1 and η2. It returns the set of states from the transition system TG

that are at most at η2 distance away from x. However, the difference from the near

function is that far returns an empty set if any state of TG is closer to x than η1.

Geometrically, this means that far returns a non-empty set for a given state x if there

are states in TG which are inside the n-dimensional sphere of center x and radius η2

1In this paper, we will assume that we have access to such a function. For more details about
planning under differential constraints see (LaValle, 2006).

33

and all states of TG are outside the sphere with the same center, but radius η1. Thus,

x has to be “far” away from all states in its immediate neighborhood (see Figure 3·2).

This function is used to achieve the “sparseness” of the resulting transition system.

isSimpleSegment function isSimpleSegment : C × C → {0, 1} is a function

that takes two configurations x1, x2 in C and returns 1 if the line segment [x1, x2]

({x ∈ Rn : x = λx1 + (1 − λ)x2, λ ∈ [0, 1]}) is simple, otherwise it returns 0. Let

y1 = H(x1), y2 = H(x2) and [y1, y2] = H([x1, x2]) be the projections of x1, x2 and

the line segment [x1, x2] onto the workspace D, respectively. A line segment [x1, x2]

is simple if [x1, x2] ⊂ C and the number of times [y1, y2] crosses the boundary of any

region R ∈ R is at most one. Therefore, isSimpleSegment returns 1 if either: (1)

y1 and y2 belong to the same region R and [y1, y2] does not cross the boundary of R

or (2) y1 and y2 belong to two regions R1 and R2, respectively, and [y1, y2] crosses

the common boundary of R1 and R2 once. R or at most one of R1 and R2 may be a

free space region (a connected set in D \
⋃
R∈RR). See Figure 3·2 for examples. In

Algorithm 1, a transition is rejected if it corresponds to a non-simple line segment

(i.e. isSimpleSegment function returns 0).

Bound functions η1 : Z+ → R (lower bound) and η2 : Z+ → R (upper bound)

are functions that define the bounds on the distance between a configuration in C

and the states of the transition system TG in terms of the size of TG. These are used

as parameters for functions far and near. We impose η1(k) < η2(k) for all k ≥ 1.

We also assume that c η1(k) > η2(k), for some finite c > 1 and all k ≥ 0. Also, η1

tends to 0 as k tends to infinity. The rate of decay of η1(·) has to be fast enough

such that a new sample may be generated. Specifically, the set of all configurations

where the center of an n-sphere of radius η1/2 may be placed such that it does not

intersect any of the d-spheres corresponding to the states in TG has to have non-zero

34

measure with respect to the probability measure P used by the sampling function.

One conservative upper bound is η1(k) < 1√
π
d

√
µ(C)Γ(d/2+1)

k
for all k ≥ 1, where µ(C)

is the total measure (volume) of the configuration space, d is the dimension of C, and

Γ is the gamma function. This bound corresponds to the case when C is convex and

there is enough space to insert an n-sphere of radius η1/2 between every two distinct

states of TG. To simplify the notation, we drop the parameter for these functions and

assume that k is always given by the current size of the transition system, k = |T |.

Sparse RRG

The goal of the modified RRG algorithm (see Algorithm 1) is to find a satisfying run,

but such that the resulting transition system is “sparse”, i.e. states are “sufficiently”

apart from each other. The algorithm iterates until a satisfying run originating in x0

is found.

At each iteration, a new sample xr is generated (line 6 in Algorithm 1). For

each state x in TG which is “far” from the sample xr (x ∈ far(xr, η1, η2)), a new

configuration x′r is computed such that the robot can be steered from x to x′r and the

distance to xr is decreased (line 10). The two loops of the algorithm (lines 7–13 and

16–21) are executed if and only if the far function returns a non-empty set. However,

x′r is regarded as a potential new state of TG, and not xr. Thus, the steer function

plays an important role in the “sparsity” of the final transition system. Next, it is

checked if the potential new transition (x, x′r) is a simple segment (line 9). It is also

verified if x′r may lead to a solution, which is equivalent to testing if x′r induces at

least one non-blocking state in PG (see Algorithm 2). If configuration x′r and the

corresponding transition (x, x′r) pass all tests, then they are added to the list of new

states and list of new transitions of TG, respectively (lines 12–13).

After all “far” neighbors of xr are processed, the transition system is updated.

35

Figure 3·2: A simple map with three features: an obstacle O1 and two
regions R1, R2. The robot is assumed to be a fully actuated point and
C = D ⊂ R2. At the current iteration the states of TG are {0, 1, 2, 3}.
The transitions of TG are represented by the black arrows. The initial
configuration is 0 and is marked by the blue disk. The radii of the
dark gray (inner) disks and the light gray (outer) disks are η1 and η2,
respectively. A new sample new1 ∈ C is generated, but it will not
be considered as a potential new state of TG, because it is within η1

distance from state 3 (far(new1, η1, η2) = ∅). Another sample new2 ∈ C
is generated, which is at least η1 distance away from all states in TG.
In this case, far(new2, η1, η2) = {0, 1, 2, 3} and the algorithm attempts
to create transition to and from the new sample new2. The transitions
{(new2, 0), (0, new2), (new2, 1), (1, new2), (new2, 2), (2, new2)} (marked
by black dashed lines) are added to TG, because all these transitions
correspond to simple line segments (isSimpleSegment returns 1 for all
of them). For example, isSimpleSegment(new2, 0) = 1, because new2

and 0 belong to the same region (the free space region) and [new2, 0]
does not intersect any other region. isSimpleSegment(new2, 2) = 1,
because [new2, 2] crosses the boundary between the free space region
and region R1 once. On the other hand, the transitions {(new2, 3),
(3, new2)} (marked by red dashed lines) are not added to TG, since they
pass over the obstacle O1. In this case, isSimpleSegment(3, new2) = 0,
because 3 and new2 are in the same region, but [3, new2] crosses the
boundary of O1 twice.

36

Note that at this point TG was only extended with states that explore “new space”.

However, in order to model ω-regular languages the algorithm must also close cycles.

Therefore, the same procedure as before (lines 7–14) is also applied to the newly

added states X ′G (lines 15–21 of Algorithm 1). The difference is that it is checked

if states from X ′G can steer the robot back to states in TG in order to close cycles.

Also, because we know that the states in X ′G are “far” from their neighbors, the near

function will be used instead of the far function. The algorithm returns a (prefix,

suffix) pair in TG obtained by projection from the corresponding path (p0
∗→PG pF)

and cycle (pF
+→PG pF) in PG, respectively. The ∗ above the transition symbol means

that the length of the path can be 0 or more, while + denotes that the length of the

cycle must be at least 1.

In the end, the result is a transition system TG which captures the general topology

of the environment. In the next section, we will show that TG also yields a run that

satisfies the given specification.

Incremental search for a satisfying run

The proposed approach of incrementally constructing a transition system raises the

problem of how to efficiently check for a satisfying run at each iteration. As mentioned

in the previous section, the search for satisfying runs is performed on the product

automaton. Note that testing whether there exists a trajectory of TG from the initial

configuration x0 that satisfies the given LTL−X formula ΦG is equivalent to searching

for a path from an initial state p0 to a final state pF in the product automaton

PG = TG × B and for a cycle containing pF of length greater than 1, where B is the

Büchi automaton corresponding to ΦG. If such a path and a cycle are found then their

projection onto TG represents a satisfying infinite trajectory (line 23 of Algorithm 1).

Testing whether pF belongs to a non-degenerate cycle (length greater than 1) is

37

Algorithm 1: Sparse RRG

Input: B – Büchi automaton corresponding to ΦG

Input: x0 initial configuration of the robot
Output: (prefix, suffix) in TG

1 Construct TG with x0 as initial state
2 Construct PG = TG × B
3 Initialize scc(·)
4 while ¬(x0 |= φ) (≡ ¬(∃p ∈ FPG s.t. |scc(p)| > 1)) do
5 X ′G ← ∅, ∆′G ← ∅
6 xr ← sample()
7 foreach x ∈ far(xr, η1, η2) do
8 x′r ← steer(x, xr)
9 if isSimpleSegment(xr, x

′
r) then

10 added← updatePA(PG,B, (x, x′r))
11 if added is True then
12 X ′G ← X ′G ∪ {x′r}
13 ∆′G ← ∆′G ∪ {(x, x′r)}

14 TG ← TG ∪ (X ′G,∆
′
G)

15 ∆′G ← ∅
16 foreach x′r ∈ X ′G do
17 foreach x ∈ near(x′r, η2) do
18 if (x = steer(x′r, x)) ∧ isSimpleSegment(x′r, x) then
19 added← updatePA(PG,B, (x, x′r))
20 if added is True then
21 ∆′G ← ∆′G ∪ {(x′r, x)}

22 TG ← TG ∪ (X ′G,∆
′
G)

23 return (γTG(p0
∗→PG pF), γTG(pF

+→PG pF)), where pF ∈ FP

equivalent to testing if pF belong to a non-trivial strongly connected component –

SCC (the size of the SCC is greater than 1). Checking for a satisfying trajectory in

PG is performed incrementally as the transition system is modified.

The reachability of the final states from initial ones in PG is guaranteed by con-

struction (see Definition 2.4). However, we need to define a procedure (see Algo-

rithm 2) to incrementally update PG when a new transition is added to TG. Consider

38

the (non-incremental) case of constructing PG = TG×B. This is done by a traversal of

P̄G = (XG×SB, ∆̄PG) from all initial states, where ((x, s), (x′, s′)) ∈ ∆̄PG if x→TG x′

and s
hG(x)→ s′. P̄G is a product automaton but without the reachability requirement.

This suggests that the way to update PG when a transition (x, x′) is added to TG, is

to do a traversal from all states p of PG such that γTG(p) = x. Also, it is checked

if x′ induces any non-blocking states in PG (lines 1-3 of Algorithm 2). The test is

performed by computing the set S ′PG of non-blocking states of PG (line 1) such that

p′ ∈ S ′PG has γTG(p′) = x′ and p′ is obtained by a transition from {(x, s) : s ∈ βPG(x)}.

If S ′PG is empty then the transition (x, x′) of TG is discarded and the procedure stops

(line 3). Otherwise, the product automaton PG is updated recursively to add all

states that become reachable because of the states in S ′PG . The recursive procedure

is performed from each state in S ′PG as follows: if a state p (line 9) is not in PG, then

it is added to PG together with all its outgoing transitions (line 10) and the recursive

procedure continues from the outgoing states of p; if p is in PG then the traversal

stops, but its outgoing transitions are still added to PG (line 14). The incremental

construction of PG has the same overall complexity as constructing PG from the final

TG and B, because the recursive procedure just performs traversals that do not visit

states already in PG. Thus, we focus our complexity analysis on the next step of the

incremental search algorithm.

The second part of the incremental search procedure is concerned with maintaining

the strongly connected components (SCCs) of PG (line 14 of Algorithm 2) as new

transitions are added (these are stored in ∆′PG in Algorithm 2). To incrementally

maintain the SCCs of the product automaton, we employ the soft-threshold-search

algorithm presented in (Haeupler et al., 2012). The algorithm maintains a topological

order of the super-vertices corresponding to each SCC. When a new transition is added

to PG, the algorithm proceeds to re-establish a topological order and merges vertices if

39

Algorithm 2: Incremental Search for a Satisfying Run

Input: PG – product automaton
Input: B – Büchi automaton
Input: (x, x′) – new transition in TG
Output: Boolean value – indicates if PG was modified

1 S ′PG ← {(x
′, s′) : s

hG(x)→ B s
′, s ∈ βPG(x), s′ non-blocking}

2 ∆′PG ← {((x, s), (x
′, s′)) : s ∈ βPG(x), s

hG(x)→ B s
′, (x′, s′) ∈ S ′PG}

3 if S ′PG 6= ∅ then
4 PG ← PG ∪ (S ′PG ,∆

′
PG)

5 stack ← S ′PG
6 while stack 6= ∅ do
7 p1 = (x1, s1)← stack.pop()

8 foreach p2 ∈ {(x2, s2) : x1 →TG x2, s1
hG(x1)→ B s2} do

9 if p2 /∈ SPG then
10 PG ← PG ∪ ({p2}, {(p1, p2)})
11 ∆′PG ← ∆′PG ∪ {(p1, p2)}
12 stack ← stack ∪ {p2}
13 else if (p1, p2) /∈ ∆PG then
14 ∆PG ← ∆PG ∪ {(p1, p2)}
15 ∆′PG ← ∆′PG ∪ {(p1, p2)}

16 updateSCC(P , scc, ∆′PG)

17 return True

18 return False

new SCCs are formed. The details of the algorithm are presented in (Haeupler et al.,

2012). The authors of (Haeupler et al., 2012) also offer insight about the complexity of

the algorithm. They show that, under a mild assumption, the incremental algorithm

has the best possible complexity bound.

Incrementally maintaining PG and its SCCs yields a quick way to check if a tra-

jectory of TG satisfies ΦG (line 4 of Algorithm 1). Theorem 3.1 establishes the overall

complexity of Algorithm 2.

40

Complexity of the Off-line Algorithm

In this section, the overall complexity of Algorithm 2 is established and we show

that this is the best possible under some mild assumptions. The proofs of Theo-

rems 3.1 and 3.5 are based on the analysis from (Haeupler et al., 2012) of incremental

algorithms for cycle detection and maintenance of SCCs.

Algorithm 2 uses the soft-threshold-search algorithm presented in (Haeupler et al.,

2012) to incrementally maintain SCCs. The soft-threshold-search algorithm has

O(m
3
2) complexity and is very efficient for sparse graphs (in asymptotic sense), where

m is the number of edges added to TG. Recall that a graph is sparse if the number

of edges m is asymptotically the same as the number of nodes n, i.e. m = O(n).

Theorem 3.1. The overall execution time of the incremental search algorithm (Algo-

rithm 2) is O(n
3
2), where n = |TG| is the number of states added to TG in Algorithm 1.

Remark 3.2. First, note that the execution time of the incremental procedure is

better by a polynomial factor than naively running a linear-time SCC algorithm at

each step, since this will have complexity O(m2), where m = |∆G|. The algorithm

presented in (Haeupler et al., 2012) improves the previously best known bound by a

logarithmic factor (for sparse graphs). The proof of Theorem 3.1 exploits the fact that

the “sparseness” (metric) property we defined implies a topological sparseness, i.e.,

TG is a sparse graph.

Proof. The soft-threshold-search algorithm attains the desired complexity only for

sparse graphs. Therefore, what we need to show is that the transition system gener-

ated by Algorithm 1 is a sparse graph. Note that although we run the SCC algorithm

on the product automaton, the asymptotic execution time is not affected by ana-

lyzing the transition system instead of the product automaton, because the Büchi

automaton is fixed. This follows from |SPG| ≤ |SB| · |XG| and |∆PG| ≤ |δB| · |∆G|.

41

Intuitively, the underlying graph of TG is sparse, because the states were generated

“far” from each other. When a new state is added to TG, it will be connected to other

states that are at least η1 and at most η2 distance away. Also, all states in TG are

at least η1 distance away from each other. This implies that there is a bound on

the density of states. Using this intuition, the problem of estimating the maximum

number of neighbors of a state can be restated as a sphere packing problem (Conway

and Sloane, 1999).

Let x be the state added to TG and S1 and S2 be two spheres centered at x and

with radii η1 and η2, respectively. Each neighbor of x can be thought of as a sphere

with radius η1/2 and center belonging to the volume delimited by the two spheres S1

and S2. Since, η1 < η2 < cη1, for some c > 1, it follows that there will be only a finite

number of spheres which can be placed inside the described volume. Let NS be the

number of spheres, then a conservative upper bound is given by the following ratio

NS ≤
V (η2)− V (η1)

V (η2
2

)
<
V (cη1)− V (η1)

V (η1
2

)
= 2d(cd − 1) ≤ 2d(1+log2 c) (3.2)

where d is the dimension of the configuration space C and V (α) is the volume of a

d-sphere of radius α ≥ 0. Thus, x has at most O(1) neighbors. This implies that

Algorithm 1 adds at most O(1) transitions to TG when adding a new state x. Since

TG is a sparse graph before adding the state x, it follows that TG will remain a sparse

graph.

Remarks 3.3. Note that the exact value of NS may depend not only on the dimension

d of the configuration space C, but also on the shape of C if x is close to its boundary.

NS is closely related to the kissing number (Conway and Sloane, 1999) in dimen-

sion d. The kissing number τd is the maximum number of non-overlapping d-spheres

that touch another given d-sphere. It is easy to see that τd is a lower bound for the

42

maximum value of NS. In (Conway and Sloane, 1999), a linear optimization procedure

to compute an upper bound for any dimension is presented. It is also known (Talata,

1998) that τd is exponential in d, i.e. τd ≥ 2αd, where α > 0 is a constant. Thus, the

maximum value of NS is of order 2d.

In (Haeupler et al., 2012), Haeupler et.al. show that any incremental algorithm

that maintain a topological order and satisfies a “locality” property must take at least

Ω(n
√
m) time, where n is the number of nodes in the graph and m is the number

of edges. The “locality” property is a mild assumption that restricts the algorithm

to reorder only vertices that are affected by the addition of an edge. A vertex x is

affected by the additional edge u, v if there is another vertex y such that x < y in

the original topological ordering, but must be changed to x > y. For more details

see (Haeupler et al., 2012). However, it is conjectured (Haeupler et al., 2012) that

this bound holds in general (Conjecture 3.4).

In the following, we assume that m = Ω(n). Also, to simplify the exposition, we

assume without loss of generality that initially TG has all n states and no transitions.

This assumption is not restrictive, because vertex addition takes only O(1).

Conjecture 3.4. Any incremental cycle detection algorithm takes at least Ω(n
√
m)

time, where n is the number of vertices the graph and m is the number of edges added

to it.

Theorem 3.5. If Conjecture 3.4 is true, then the complexity of any incremental

checking algorithm for satisfying paths in a given transition system TG is at least

Ω(n
√
m), where n = |TG| and m is the number of transitions added to TG.

Proof. Let TG be a transition system with n states and m transitions, and ∆TG =

{tr1, . . . , trm}. In the following we consider algorithms that return true or false

whether adding a given transition to a transition system TG yields a satisfying run

43

or not with respect to a given specification ΦG. Let A(TG,ΦG) be an incremental

checking algorithm. We want to show that any such incremental algorithm takes at

least Ω(n
√
m) time.

It is well known (Baier and Katoen, 2008) that for any ω-regular language L there

is a corresponding non-deterministic Büchi automaton, which accepts all and only

the (infinite) words of L. As such, any encoding of the specification (LTL, CTL,

CTL∗, µ-calculus, etc.) has a corresponding Büchi automaton. Let B be the Büchi

automaton corresponding to the ω-regular specification and P̄G = TG ×B be the full

product automaton without the reachability requirement.

Assume without loss of generality that the first m − 1 transitions of TG do not

induce a satisfying run. Thus, only the mth transition may induce a satisfying run.

Note, that the assumption is not limiting, because after a satisfying run is detected

any additional transition will not change the result.

Let P0
G, . . . ,PmG be a sequence of subgraphs of P̄G with the following properties:

1. P0
G, . . . ,Pm−1

G are acyclic;

2. PmG is cyclic if and only if there is a satisfying run in TG with respect to ΦG;

3. ∅ = ∆P0
G
⊆ ∆P1

G
⊆ . . . ⊆ ∆PmG ;

4. m′ =
∣∣∆PmG ∣∣ = Ω(m).

It follows that procedure A solves the incremental cycle detection problem for

P0
G, . . . ,PmG . Therefore, A must take at least Ω(n′

√
m′) = Ω(n

√
m).

To complete the proof, we must show that there exists a subsequence (P iG)0≤i≤m

for a given P̄G and a sequence {tr1, . . . trm} of transitions of TG. We will define the

subgraphs recursively as follows: (1) PmG is the maximum acyclic spanning subgraph

of P̄G if TG does not contain a satisfying run or PmG = P̄G, otherwise; (2) P iG is

44

the maximum acyclic spanning subgraph of P i+1
G |Ei for all i ∈ {0, . . . ,m− 1}, where

Ei = {tr1, . . . , tri}×δB and P i+1
G |Ei is the subgraph of P i+1

G with transitions restricted

to Ei. From the definition it immediately follows that ∆PiG ⊆ (Ei ∩∆Pi+1
G

) ⊆ ∆Pi+1
G

for all 0 ≤ i ≤ m− 1 and ∆P0
G

= ∅. Thus, by construction conditions (1), (2) and (3)

are satisfied. The last requirement is trivially true when TG contains a satisfying run.

Also, when TG does not contain a satisfying run, then the maximum acyclic graph

of P̄G retains at least half the transitions. Any digraph G may be decomposed into

two acyclic subgraphs (Wood, 2004) such that their edge sets form a partition of the

edge set of G. It follows that at least one (acyclic) subgraph has half of the edges of

G. Thus, we have that m′ = Ω(m).

Remark 3.6. Note that Theorem 3.1 gives a lower bound for all incremental checking

procedures with respect to the number of states and transitions which are added.

The following corollaries of Theorem 3.5 are easy to prove.

Corollary 3.7. If Conjecture 3.4 is true, then Algorithm 2 has the best possible

complexity for transition systems that are sparse graphs.

Corollary 3.8. Algorithm 2 has the best possible complexity for transition systems,

which are sparse graphs, among all incremental algorithms with the “locality” prop-

erty.

Probabilistic completeness

The presented RRG-based algorithm retains the probabilistic completeness of RRT,

since the constructed transition system is composed of an RRT-like tree and some

transitions that close cycles.

Theorem 3.9. Algorithm 1 is probabilistically complete.

45

Proof. First we start by noting that any word in a ω-regular language can be gener-

ated by a finite prefix path and a finite suffix path that is repeated indefinitely in the

corresponding Büchi automaton (Baier and Katoen, 2008). This is important, since

this shows that a solution, represented by a transition system, is completely charac-

terized by a finite number of states. Let us denote by X̄ the finite set of states that

define a solution. It follows from the way regions are defined that we can choose a

neighborhood around each state in X̄ such that the system can be steered in one step

from all points in one neighborhood to all points in the next neighborhood. Thus, we

can use induction to show that (Karaman and Frazzoli, 2012): (1) there is a non-zero

probability that a sample will be generated inside the neighborhood of the first state

in the solution sequence; (2) if there is a state in T that is inside the neighborhood of

the k-th state from the solution sequence, then there is a non-zero probability that a

sample will be generated inside the k + 1-st state’s neighborhood. Therefore, as the

number of samples goes to infinity, the probability that the transition system T has

nodes belonging to all neighborhoods of states in X̄ goes to 1. To finish the proof,

note that we have to show that the algorithm is always able to generate samples with

the desired “sparseness” property. However, recall that the bound functions must

converge to 0 (as the number of states goes to infinity) fast enough such that the

set of configurations for which “far” function returns a non-empty list has non-zero

measure with respect to the sampling distribution. This concludes the proof.

3.2.2 On-line algorithm

The approach for solving the on-line part of the planning problem is based on the RRT

algorithm, a probabilistically complete sampling-based path planning method. We

modify the standard RRT in order to find local paths which preserve the satisfaction

of the global specification ΦG, while servicing on-line requests and avoiding locally

46

sensed obstacles.

To keep track of validity of samples (random configurations) with respect to the

global specification ΦG, we propose a method that combines the ideas presented

in (Bauer et al., 2011) on monitors for LTL formulae and (Ding et al., 2014) on

potential functions. The problem considered in (Bauer et al., 2011) is to decide as

soon as possible if a given (infinite) word w satisfies a LTL formula φ. The main

idea is to keep track of Büchi states corresponding to a finite prefix of w with respect

to both φ and ¬φ concurrently. If one of the two sets of Büchi states corresponding

to φ or ¬φ becomes empty, then we can conclude that the specification is either

violated or satisfied. If both sets are non-empty then nothing can be said about

w |= φ. In our case, we just use half of a monitor, since we are interested only in

checking if steering the robot to new samples violates ΦG. The potential functions

approach described in (Ding et al., 2014) is used to address the problem of connecting

the locally generated path to states in the global transition system such that ΦG is

satisfied.

Potential functions

In (Ding et al., 2014) the authors define a potential function over the states of the

product automaton between a transition system and a Büchi automaton. The po-

tential function captures the distance from each state of the product to the closest

final state. It can be thought of as a distance to satisfaction and resembles a Lya-

punov function. We extend this notion to define potential functions on the states of

the global transition system. This extension allows us to reason about the change

of potential between nodes of TG connected through local paths instead of a direct

transition. The local paths are generated as branches of a tree by the proposed

RRT-based algorithm. The definitions of self-reachable set and potential function for

47

product automaton states presented below are adapted from (Ding et al., 2014).

Let PG = TG × B = (SPG , SPG0
,∆PG , ωPG , FPG) be a product automaton between

a transition system TG and Büchi automaton B. We denote by D(p, p′) the set of all

finite trajectories from a state p ∈ SPG to a state p′ ∈ SPG :

D(p, p′) = {p1 . . . pn|p1 = p, pn = p′; pk →PG pk+1∀k = 1, . . . , n− 1;∀n ≥ 2} (3.3)

A state p ∈ SPG is said to reach a state p′ ∈ SPG if D(p, p′) 6= ∅. The length

of a path is defined as the sum of the weights corresponding to the transitions it is

composed of:

L(p) =
n−1∑
k=1

ωPG(pk, pk+1) (3.4)

For p, p′ ∈ SPG , the distance between p and p′ is defined as follows:

d(p, p′) =


minp∈D(p,p′)(L(p)) if D(p, p′) 6= ∅

∞ if D(p, p′) = ∅
(3.5)

The weight function ωPG is positive, because it is induced by the distance of the

underlying (metric) space. This implies (Ding et al., 2014) that d(p, p′) > 0 for all

p, p′ ∈ SPG .

A set A ⊂ SPG is self-reachable if and only if all states in A can reach a state in

A. Formally, a set A is self-reachable if for all p ∈ A there is a state p′ such that

D(p, p′) 6= ∅.

Definition 3.1 (Potential function of states in PG). The potential function VPG(p),

p ∈ SPG is defined as:

VPG(p) =


minp′∈F ∗PG

d(p, p′) if p /∈ F ∗PG

0 if p ∈ F ∗PG

(3.6)

48

where F ∗PG ⊂ FPG is the maximal self-reachable set of final states of PG.

The potential function is non-negative for all states of PG. It is zero for some

p ∈ SPG if and only if p is a final state and p can reach itself or a self-reachable final

state. Also, if VPG(p) = ∞, p ∈ SPG , then p does not reach any self-reachable final

states.

Definition 3.2 (Potential function of states in TG). Let x ∈ X and B ⊆ βPG(x).

The potential function of x with respect to B is defined as:

VTG(x,B) = mins∈BVPG((x, s)) (3.7)

Also, the minimum potential of x is defined as V ∗TG(x) = VTG(x, βPG(x)).

The minimum potential of a state x of TG is the minimum potential of all states

in PG which correspond to x. The actual potential is defined to capture the fact that

not all Büchi states may be available in order to achieve the minimum potential.

In (Ding et al., 2014), the authors present an algorithm to compute the potential

function VPG(·) over the states of the product automaton. The complexity of the

algorithm is O(|FPG|
3 + |FPG|

2 + |SPG |
2 × |FPG |) (Ding et al., 2014).

We propose an improved algorithm (see Algorithm 3), which reduces the complex-

ity by a polynomial factor.

Theorem 3.10. Algorithm 3 correctly computes the potential function VPG(·) for a

given product automaton PG and its complexity is O(|SPG | log |SPG |+ |∆PG|).

Remark 3.11. In the proposed framework, the computation of the SCC in Algo-

rithm 3 (lines 1–3) may be skipped, because the off-line planning Algorithm 1 already

maintains SCCs of PG. Thus, Algorithm 3 is better suited for use in conjunction with

the off-line algorithms.

49

Algorithm 3: Compute potential function VPG(·)
Input: PG – product automaton
Output: Boolean value indicating whether there are self-reachable final states

1 PG ← PG ∪ ({v}, {(v, p, 0) : p ∈ SPG}) // add virtual state v and

connect it to all initial states

2 scc, dag ← StronglyConnectedComponentsDAG(PG) // compute SCC DAG

for PG
3 sccv ← {v}
4 F ∗PG ← ComputeSRFS(dag, FPG , sccv) // compute self-reachable final

states

5 PG ← PG \ {v} // remove virtual state v and all its incident

transitions

6 if F ∗PG = ∅ then // if there are no self-reachable final states

7 return False

8 PG ← PG ∪ ({v}, {(p, v, 0) : p ∈ F ∗PG}) // add virtual state v and

connect all self-reachable final states to it with weight 0

9 VPG ← ReverseDijkstra(PG, sink = v) // compute potentials for each

state with v as sink

10 PG ← PG \ {v} // remove virtual state v and all its incident

transitions

11 return True

Proof. The improvement achieved by Algorithm 3 is based on two observations: (1)

if the maximal self-reachable final states set F ∗PG is known then the potential function

VPG(·) can be computed by running Dijkstra’s algorithm once instead of |FPG| times

as in (Ding et al., 2014); (2) self-reachability is a property about the existence of cycles

in PG and can therefore be inferred from the SCC directed acyclic graph (DAG) of

PG.

Algorithm 3 computes the potential function VPG(·) by first computing F ∗PG (lines

1–5) using the SCC DAG (line 2) and Algorithm 4. However, Algorithm 4 performs a

depth-first search (DFS) of dag starting from a given SCC sccr. Thus, it returns only

the states of F ∗PG which belong to sccr and its descendants. In order to avoid calling

Algorithm 4 for all SCC, we add a virtual node v to PG (line 1), which is connected to

50

Algorithm 4: Compute Self-Reachable Final States – computeSRFS()

Input: dag – the SCC directed acyclic graph of PG
Input: FPG – the set of final states of PG
Input: sccr – the current root SCC used by the DFS algorithm
Output: srfs – the set of self-reachable final states

1 srfs← ∅
2 visited(sccr)← True
3 foreach sccn ∈ dag.out(sccr) do
4 if ¬visited(sccn) then
5 srfs← srfs ∪ computeSRFS(dag, FPG , sccn)
6 else
7 srfs← srfs ∪ S(sccn)

8 if |sccr| > 1 ∨ srs 6= ∅ ∨ (sccr = {p} ∧ (p, p) ∈ ∆PG) then
9 srfs← srfs ∪ (FPG ∩ sccr)

10 S(sccr)← srfs
11 return srfs

all states of PG, and then compute the SCC DAG. Because v only has outgoing tran-

sitions, it can not belong to any cycle. Thus, the SCC sccv containing v is a singleton

and is connected to all other SCCs in dag. It follows that running Algorithm 4 on dag

with starting SCC sccv (line 4) correctly computes F ∗PG . Afterwards, v is removed and

all incident transitions from PG (line 5). If there are self-reachable final states (line

6), then the algorithm proceeds to compute the potentials using Dijkstra’s algorithm

starting from F ∗PG and traversing transitions in the opposite direction (lines 8–10), i.e.

using the incoming transitions instead of the outgoing transitions. Again, in order to

avoid calling Dijkstra’s algorithm for every state in F ∗PG , we add a virtual node v to

PG. All states in F ∗PG are connected to v with weight 0. Because v has only ingoing

transitions and ωPG((p, p′)) > 0 for all (p, p′) ∈ ∆PG , it follows that v does not belong

to any cycles and Dijkstra’s algorithm correctly computes the potential function for

51

every p ∈ SPG :

d(p, v) =


minp′∈F ∗PG

{d(p, p′) + ωPG((p′, v))} if p /∈ F ∗PG

ωPG((p′, v)) if p ∈ F ∗PG

=


minp′∈F ∗PG

d(p, p′) if p /∈ F ∗PG

0 if p ∈ F ∗PG
= VPG(p)

The analysis presented above relies on the fact that Algorithm 4 correctly com-

putes F ∗PG . In the following, we prove by structural induction with respect to dag that

Algorithm 4 correctly computes F ∗(sccr), where sccr is an SCC of dag and F ∗(sccr)

is the maximal subset of F ∗PG whose states belong to sccr and its descendants.

First, note that by definition a final state pf belongs to F ∗PG if and only if: (1)

pf belongs to a cycle or equivalently to a SCC of PG with more than one state;

(2) pf has a self-loop; or (3) pf reaches another state in F ∗PG . Since dag is acyclic

if follows that condition (3) can be reduced to checking if F ∗(sccn) is non-empty

for some successor sccn of sccr. This implies that F ∗(sccr) is unique for every sccr

and it can be computed recursively using depth-first search. The recursive algorithm

starts by marking the current SCC sccr as visited (line 2) and proceeds to compute

the union of F ∗() for all successors of sccr (lines 3–7). If a successor sccn was not

previously visited then the procedure is called recursively starting from sccn (lines

4–5), otherwise the stored set corresponding to sccn is used (line 7). The next step is

to add the self-reachable final states of sccr to srfs (lines 8–9). The srfs is stored in

S(sccr) for possible later use. We need to show that S(sccr) = F ∗(sccr), for all sccr

in dag.

52

The base case is trivial, because it involves the SCCs without any outgoing tran-

sitions in dag. It follows that srfs at line 8 is empty. Also, all final states in sccr

satisfying conditions (1) or (2) are added to srfs. Thus, S(sccr) = F ∗(sccr).

For the induction step, we assume that Algorithm 4 correctly computes F ∗(sccn)

for all successors of sccr (line 5). Note that if a successor sccn was already visited

at some previous step, Algorithm 4 was called with sccn as starting SCC. Therefore,

S(sccn) (line 7) is assumed to be computed correctly by the induction hypothesis.

As in the base case, if either condition (1) or (2) hold, then Algorithm 4 adds all

final states in sccr to srs and it follows that S(sccr) = F ∗(sccr). The remaining case

is when sccr is a singleton {p} and p has no self-loop. In this case, p ∈ F ∗(sccr) if

and only if p reaches some other state in F ∗(sccr). Since dag is acyclic, p can only

reach states in the descendants SCC of sccr. On the other hand, by the induction

hypothesis we have that srfs = F ∗(sccr) \ {p} at line 8. It follows that p is added to

S(sccr) if srfs is non-empty at line 8. Thus, we have S(sccr) = F ∗(sccr) in this case

as well when Algorithm 4 returns.

The complexity of Algorithm 3 is O(|SPG | log |SPG | + |∆PG|). It is easy to see

that the operations on lines 1, 5, 8 and 10 take O(|SPG|), while computing the SCC

DAG (line 2) and Dijkstra’s algorithm (line 9) have O(|∆PG|) and O(|SPG | log |SPG |+

|∆PG |) complexity, respectively. Also, computing F ∗PG using Algorithm 4 takes at

most O(|SPG | + |∆PG|). The SCC DAG graph dag has at most the same number of

states and transitions as PG. Also, Algorithm 4 is a DFS and each SCC is processed

once and each transition of dag is transversed once. Therefore, the overall complexity

of processing the SCCs in Algorithm 4 (lines 8–10) is linear in the number of states of

PG. Adding the complexity of all steps, we obtained the stated complexity bound.

53

Satisfying local paths with respect to ΦG

Local paths in our RRT based algorithm connect states of the global transition system.

Let x, x′ ∈ TG and x = x1 . . . xn be a local path connecting x1 = x and xn = x′ and

o = o1 . . . on be the output trajectory corresponding to x with respect to the global

proprieties (ok ∈ 2ΠG ,∀k = 1 . . . n). We need to ensure that there is a satisfying run

in TG starting at x′ after traversing x. Thus, we need to consider two problems: (1)

how to keep track of available Büchi states as local samples are generated and (2)

how to connect a local path’s endpoint (tree leaf) to the global transition system TG.

The first problem is solved by Algorithm 5, which determines the set of Büchi

states given a word w over 2ΠG . Algorithm 5 solves this problem by repeatedly

computing the set of outgoing neighboring states of B for all states in the previous

iteration. To check if a local path can be connected to the state xn = x′ ∈ X, we just

need to verify that it has finite potential, i.e. VTG(x′, B) < ∞, where B is the set of

available Büchi states after traversing x, in this case w = o.

The second problem has a simple solution in this setting. We choose the state in

TG which has (finite) minimum potential after traversing a branch of the RRT tree.

Also, the line segment between the leaf state from the tree and the state in TG must

be collision free (see Section 7).

On-line planning algorithm

The overall planning algorithm, outlined in Algorithm 6, is composed of the off-

line preprocessing steps of computing the global transition system TG, the product

automaton PG = TG × B and the potential function for PG and the on-line loop. At

each step of the loop, the robot scans for local requests and obstacles and checks if

it needs to compute a new local path. Re-planning is performed in four cases: (1) if

the current path is empty; (2) a higher priority request was detected; (3) the chosen

54

Algorithm 5: Tracking Büchi states of local samples

Input: B – Büchi automaton corresponding to ΦG

Input: w = σ1 . . . σn – a finite word over 2ΠG

Input: B – a set of Büchi states from which the tracking starts
Output: Bf – set of Büchi states available after the last symbol of w

1 Bf ← B
2 for k ← 1 . . . (n− 1) do
3 B′ ← ∅
4 foreach s ∈ Bf do
5 B′ ← B′ ∪ {s′ ∈ SB|(s, s′) ∈ ∆B}
6 Bf ← B′

7 return Bf

request disappeared; and (4) the local path collides with a local obstacle. Büchi states

are tracked starting from the initial configuration of the robot, corresponding to the

initial state of TG. Map B is used to store the tracked Büchi states. Figure 3·3 shows

how a the local planning algorithm interacts with the TG and locally sensed requests

and obstacles.

The local path planning algorithm is shown in Algorithm 7 and is based on RRT.

The procedure incrementally constructs the local transition system TL. The initial

(root) state of TL is the current configuration of the robot xc. The map serv indicates

whether a state or any of its ancestors serviced the on-line request with the highest

priority. If there are no requests then serv is true for all states of TL.

The construction of the RRT proceeds by generating a new random sample (line

4) inside the sensing area of the robot, steer the system towards it (lines 5–6) and

checking if it is a valid state (lines 8–9). Samples are generated such that their

images in D belong to the sensing area of the robot. The nearest function (line

5) is a standard RRT primitive which returns the nearest state in TL based on the

distance function associated with C. We assume that we have access to a steer

function (see Section 3.2.1) which drives the system from xn to a configuration x ∈

55

Algorithm 6: Planning algorithm

Input: ΦG – the global LTL−X specification
Input: prio – the priority function for on-line requests
Input: x0 initial configuration of the robot

1 Convert ΦG to Büchi automaton B
2 Compute TG and PG = TG × B starting at x0 using Algorithm 1
3 Compute potential function VPG(·)
4 path← emptyList()
5 xc ← x0

6 B(xc)← βPG(xc)
7 while True do
8 I ← getLocalRequests()
9 if checkPath(I, path) ∨ ¬path.hasNext() then

10 path← planLocally(xc,PG,B, prior, I)

11 xn ← path.next()
12 enforce(xc → xn)
13 xc ← xn

C, where x is the closest configuration to the new sample xs and it is within ηL

distance from xn (LaValle and Kuffner, 1999; Karaman and Frazzoli, 2011b). The

label primitive function (line 7) is used to annotate x with the global properties it

satisfies. The new state x is valid if its corresponding set of Büchi states is non-empty

and the line segment from its parent xn to itself is a simple collision free line segment.

Algorithm 5 is used to compute the set of available Büchi states for x. The primitive

function isSimpleSegment is used to ensure that the set of global properties along

the potential new transition (xn, x) changes at most once (see Section 3.2.1). The

collisionFree primitive is used to check if the image in the workspace of the line

segment (xn, x) ∈ C collides with a local obstacle in D. If these tests are passed, the

procedure adds the state x and the transition (xn, x) to TL (line 11–12). Also the

serv map is updated by checking if either the parent state xn (or some ancestor) or

the state itself x has serviced the selected on-line request.

56

x

y

Region A

Region B

Region C

unsafe

fire

survivor

x

y

Region A

Region B

Region C

unsafe

fire

survivor

Figure 3·3: The figure presents the same environment as in Figure 3·1,
but also shows the global transition system TG (in black) and the local
transition system TL (in blue and red). The robot’s current position xc
is marked by the magenta disk and coincides with the root of TL. The
sensing area is again in cyan and a fire request and a local obstacle
(unsafe) are detected. Note that in this figure only the portion of
the unsafe area which is inside the sensing area is detected. Also,
the survivor request is not detected at all. The local control strategy,
which corresponds to a path from xc to a leaf and then to a state in TG,
was found and is shown in red. The last transition of the local path
is the link between TL and TG. This local path satisfies the global and
local mission specification described in Example 3.1.

Also, we require that the state xG of TG have a lower (actual) potential than the

last visited state x′G of TG. This condition is not enforced, if the potential of x′G is

zero, but we still require xG 6= x′G.

Correctness of local paths with respect to ΦG

Theorem 3.12. Let x = x1, . . . be an infinite path in C generated by Algorithm 6 and

o = o1, . . . be the corresponding (infinite) output word generated by traversing x. If

every call of Algorithm 7 finishes in finite time, then o satisfies the global specification

ΦG, i.e., o |= ΦG.

57

Algorithm 7: Local path planning
Input: xc – current configuration of the robot
Input: PG – the product automaton TG × B
Input: B – Büchi automaton corresponding to global specifications ΦG

Input: prior – on-line requests priority function
Input: I – sensed requests and local obstacles
Output: path – computed local control strategy

1 Construct TL = (XL, xc,∆L, ωL,ΠL ∪ {πO}, hL) with xc as initial state
2 serv(xc)← ¬I.hasRequest()
3 while @ xc →∗TL xT → xG w/ VTG(xG, B(xG)) <∞ ∨ ¬serv(xT) do

4 xs ← generateSample(xc, I.area)
5 xn ← nearest(TL, xs)
6 x← steer(xn, xs, ηL)
7 x← label(x, I)
8 B(x)← trackBuchiStates(B, hL(xn), B(xn))
9 if B(x) 6= ∅ ∧ isSimpleSegmnent(xn, x) ∧ collisionFree(xn, x) then

10 serv(x)← serv(xn) ∨ I.serviced(x, prior)
11 XL ← XL ∪ {x}
12 ∆L ← ∆L ∪ {(xn, x)}

13 return xc →∗TL xT → xG

Proof. The condition that local path planning algorithm (Algorithm 7) always finishes

in finite time implies that it was able to successfully find a local strategy every time

the robot detected on-line requests and local obstacles. Therefore, this assumption

implies that the environment is not adversary to the robot, i.e. it does not actively

try to stop the robot from performing its mission.

By construction, every time Algorithm 7 finishes successfully it returns a local

path which ends in a state x of TG with finite (actual) potential. This implies that

there is a state p = (x, s) of PG with finite potential, where s ∈ B(x), and its potential

is less than the potential of the previous state of TG occurring in x. As shown in (Ding

et al., 2014), this guarantees that there is a state x′ in x with zero potential and x′ is

a finite number of steps after x in x.

By the hypothesis, x contains infinitely many states of TG and an infinite number

58

of them has zero potential. This concludes the proof, since the states with zero

potential correspond to final Büchi states.

Remark 3.13. The complexity of the local path planning algorithm (Algorithm 7)

is the same as for the standard RRT. The functions generateSample, steer and

nearest are stardard primitives (LaValle and Kuffner, 1999; Karaman and Frazzoli,

2011b). label, isSimpleSegment and collisionFree primitives and checking if an

on-line request was serviced, can be reduced to collision detection in the lower dimen-

sional workspace. Tracking Büchi states takes constant time (O(1)), because the global

specification ΦG is fixed.

3.3 Case study

In this section, we present some examples scenarios and show that the proposed

framework is able to generate off-line and on-line control policies such that the global

and local mission specifications are met. At the end of the sections, we present a proof-

of-concept experiment, which shows a differential drive robot performing a persistent

surveillance mission in a planar environment while reacting to locally sensed events.

In all cases, we assume for simplicity that the Steer function is trivial, i.e., there are

no actuation constraints at any given configuration.

The algorithms presented in this section are implemented in Python2.7 and the

LOMAP (Ulusoy et al., 2013c) and networkx (Hagberg et al., 2008) libraries. The

ltl2ba tool (Gastin and Oddoux, 2001) was used to convert the LTL specifications

into Büchi automata. All examples were ran on an iMac system with a 3.4 GHz Intel

Core i7 processor and 16GB of memory.

59

3.3.1 Off-line algorithm

In this section, we focused on investigating the scalability of the off-line algorithm

with respect to the dimension of the configuration space. As such, in the following

we will assume that the workspace coincides with the configuration space and the

submersion H is trivial.

Case Study 1: Consider the configuration space depicted in Figure 3·4. The

initial configuration is at (0.3; 0.3). The specification is to visit regions r1, r2, r3 and

r4 infinitely many times while avoiding regions o1, o2, o3 and o4. The corresponding

LTL formula for the given mission specification is

φ1 = G(Fr1 ∧ (Fr2 ∧ (Fr3 ∧ (Fr4))) ∧ ¬(o1 ∨ o2 ∨ o3 ∨ o4)) (3.8)

A solution to this problem is shown in Figures 3·4 and 3·5. We ran the overall

algorithm 20 times and obtained an average execution time of 6.954 sec, out of which

the average of the incremental search algorithm was 6.438 sec. The resulting transition

system had a mean size of 51 states and 277 transitions, while the corresponding

product automaton had a mean size of 643 states and 7414 transitions. The Büchi

automaton corresponding to φ1 had 20 states and 155 transitions.

Case Study 2: Consider a 10-dimensional unit hypercube configuration space.

The specification is to visit regions r1, r2, r3 infinitely many times, while avoiding

region o1. The LTL formula corresponding to this specification is

φ2 = G(Fr1 ∧ (Fr2 ∧ (Fr3)) ∧ ¬o1). (3.9)

The corresponding Büchi automaton has 9 states and 43 transitions. Regions r1 =

[0; 0.4]× [0; 0.75]9, r2 = [0.6; 1]× [0.25; 1]9, r3 = [0.6; 1]× [0; 0.2]× ([0.2; 1]× [0; 0.8])4

and o1 = [0.41; 59] × [0.3; 0.9] × [0.12; 0.88]8 are hypercubes and their volumes are

60

Figure 3·4: One of the solutions corresponding to Case Study 1: the
specification is to visit all the colored regions labelled r1 (yellow), r2
(green), r3 (blue) and r4 (cyan) infinitely often, while avoiding the
dark gray obstacles labelled o1, o2, o3, o4. The black dots represent
the states of the transition system T (51 states and 264 transitions).
The starting configuration of the robot (the initial state of T) is denoted
by the blue circle. The red arrows represent the satisfying run (finite
prefix, suffix pair) found by Algorithm 1, which is composed of 21 states
from T . In this case, the prefix and suffix are [0, 1, 4, 3] and [7, 10,
16, 40, 50, 40, 32, 34, 35, 43, 47, 36, 37, 29, 11, 19, 11, 8, 5, 1, 4, 3],
respectively.

0.03, 0.03, 0.013 and 0.012, respectively. r1, r2, r3 are positioned in the corners

of the configuration space, while o1 is positioned in the center. In this case, the

algorithm took 16.75 sec on average (20 experiments), while just the incremental

search procedure for a satisfying run took 14.471 sec. The transition system had a

mean size of 69 states and 1578 transitions, while the product automaton had a mean

61

Figure 3·5: Transition systems obtained at earlier iterations corre-
sponding to the solution shown in Figure 3·4 (to be read from left to
right and top to bottom). The black dots and arrows represent the
state and transitions of T , respectively.

size of 439 states and 21300 transitions.

Case Study 3: We also considered a 20-dimensional unit hypercube configuration

space. Two hypercube regions r1 and r2 were defined and the robot was required

to visit both of them infinitely many times (φ3 = G(F(r1 ∧ Fr2))). The overall

62

algorithm took 7.45 minutes, while the transition system grew to 414 states and

75584 transitions. The corresponding product automaton had a size of 1145 states

and 425544 transitions. This example illustrates the fact that the bound on the

number of neighbors of a state in the transition system grows at least exponentially

in the dimension of the configuration space.

3.3.2 On-line algorithm

In this section, we present simplified scenario involving a fully actuated point in a

planar environment to highlight the on-line planning algorithm. Thus, the workspace

coincides with the configuration space and they are both two-dimensional.

Consider the configuration space depicted in Figure 3·6a. The initial configuration

is x0 = (−9;−9). The global specification is to visit regions r1, r2, r3 and r4 infinitely

many times while avoiding regions o1, o2, o3, o4 and o5. The corresponding LTL−X

formula is ΦG = G(Fr1 ∧ Fr2 ∧ Fr3 ∧ Fr4 ∧ ¬(o1 ∨ o2 ∨ o3 ∨ o4 ∨ o5)).

There are four local obstacles labeled uo and three dynamic requests: two survivor

requests and a fire request. The three dynamic requests have a cyclic motion at a

lower speed than that of the robot. The maximum distance traveled by the robot in

one discrete time step is η = 1 (see the steer primitive in Algorithm 7, line 6). The

priority function prior is defined such that survivor request have higher priority than

fire request.

A solution to this problem is shown in Figure 3·6. To emphasize working of

the on-line planner and simplify the figures for the reader, we chose a simple global

transition system TG. However, the transition system is generated by the off-line

algorithm and we present an example of the whole planning framework in the next

section. The product automaton has a single accepting state, which corresponds to

xaccept = (−7, 0) in TG. The robot must visit xaccept infinitely many times and is the

63

starting and ending point of a surveillance cycle. In each surveillance cycle, the three

dynamic requests described above are created. We ran the path planning algorithm

in order to complete 100 surveillance cycles. During the simulation, the local path

planning algorithm (Algorithm 7) was executed 5947 times. The overall execution

time dedicated to local planning (lines 7–8 of Algorithm 6) for a single surveillance

cycle was on average 0.743 seconds (std. 0.216, min. 0.436sec, max. 1.645sec).

The mean size of the generated local transition system TL is 7.6 (std. 13.15, max.

165). The path planning algorithm computed local paths which serviced 292 on-line

requests from a total of 296 detected. Thus, we can conclude that the robot was able

to satisfy the local mission specification in almost all cases while also ensuring the

satisfaction of the global specification.

64

(a) At the start of the mission (b) After a few steps

(c) Sensing area with local RRT
tree

(d) After completing one surveil-
lance cycle

Figure 3·6: The environment contains four global regions of interest
r1 (red), r2 (green), r3 (blue) and r4 (magenta), five global obstacles
o1, . . . , o5 (dark grey) and four local a priori unknown obstacles labeled
uo (light grey). There are also three dynamic requests, two survivor
(green) and a fire (yellow). The circles around the on-line requests
delimit their corresponding service area. The sensing range of the robot
is shown as a light blue rectangle (length of its side is 5) around the
current position of the robot (blue dot), Figure 3·6b. The black arrows
and dots represent the global transition system TG. The trajectory of
the robot is shown as a sequence of red arrows. Figure 3·6d shows the
trajectory of the robot after completing a surveillance cycle. Figure 3·6c
is a close up view of the sensing area of the robot at position (4.9, 7.3)
where an RRT tree is generated. The red arrows mark the trajectory
of the robot, and the black ones belong to TG.

65

Chapter 4

Control in Belief Space with Temporal

Logic Specifications

In this chapter, we present a sampling-based algorithm to synthesize control policies

with temporal and uncertainty constraints. We introduce a specification language

called Gaussian Distribution Temporal Logic (GDTL), an extension of Boolean logic

that allows us to incorporate temporal evolution and noise mitigation directly into

the task specifications, e.g. “Go to region A and reduce the variance of your state

estimate below 0.1 m2.” Our algorithm generates a transition system in the belief

space and uses local feedback controllers to break the curse of history associated with

belief space planning. Furthermore, conventional automata-based methods become

tractable. Switching control policies are then computed using a product Markov

Decision Process (MDP) between the transition system and the Rabin automaton

encoding the task specification. We present algorithms to translate a GDTL formula

to a Rabin automaton and to efficiently construct the product MDP by leveraging

recent results from incremental computing. Our approach is evaluated in hardware

experiments using a camera network and ground robot.

4.1 Gaussian Distribution Temporal Logic

In this section, we define Gaussian Distribution Temporal Logic (GDTL), a predicate

temporal logic defined over the space of Gaussian distributions with fixed dimension.

66

Notation: Let A ⊆ Rn and B ⊆ Rm, n,m ≥ 0, we denote by M(A,B) the set

of functions with domain A and co-domain B, where A has positive measure with

respect to the Lebesgue measure of Rn. The set of all positive semi-definite matrices

of size n × n, n ≥ 1, is denoted by Sn. E[·] is the expectation operator. The m × n

zero matrix and the n × n identity matrix are denoted by 0m,n and In, respectively.

The supremum and Euclidean norms are denoted by ‖·‖∞ and ‖·‖2, respectively.

Let G denote the Gaussian belief space of dimension n, i.e. the space of Gaussian

probability measures over Rn. For brevity, we identify the Gaussian measures with

their finite parametrization, mean and covariance matrix. Thus, G = Rn × Sn. If

b = b0b1 . . . ∈ Gω, we denote the suffix sequence bibi+1 . . . by bi, i ≥ 0.

Definition 4.1 (GDTL Syntax). The syntax of Gaussian Distribution Temporal

Logic is defined as

φ := > | f ≤ 0 | ¬φ | φ1 ∧ φ2 | φ1Uφ2,

where > is the Boolean constant “True”, f ≤ 0 is a predicate over G, where f ∈

M(G,R), ¬ is negation (“Not”), ∧ is conjunction (“And”), and U is “Until”.

For convenience, we define the additional operators: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2),

♦ φ ≡ >Uφ, and � φ ≡ ¬ ♦ ¬φ, where ≡ denotes semantic equivalence.

Definition 4.2 (GDTL Semantics). Let b = b0b1 . . . ∈ Gω be an infinite sequence of

belief states. The semantics of GDTL is defined recursively as

bi |= >

bi |= f ≤ 0 ⇔ f(bi) ≤ 0

67

bi |= ¬φ ⇔ ¬(bi |= φ)

bi |= φ1 ∧ φ2 ⇔ (bi |= φ1) ∧ (bi |= φ2)

bi |= φ1 ∨ φ2 ⇔ (bi |= φ1) ∨ (bi |= φ2)

bi |= φ1Uφ2 ⇔ ∃j ≥ i s.t. (bj |= φ2) ∧ (bk |= φ1,∀k ∈ {i, . . . j − 1})

bi |= ♦ φ ⇔ ∃j ≥ i s.t. bj |= φ

bi |= � φ ⇔ ∀j ≥ i s.t. bj |= φ

The word b satisfies φ, denoted b |= φ, if and only if b0 |= φ.

By allowing the definition of the atomic predicates used in GDTL to be quite

general, we can potentially enforce interesting and relevant properties on the evolution

of a system through belief space. Some of these properties include

• Bounds on determinant of covariance matrix det(P). This is used when we want

to bound the overall uncertainty about the system’s state.

• Bounds on trace of covariance matrix Tr(P). This is used when we want to

bound the uncertainty about the system’s state in any direction.

• Bounds on state mean x̂. This is used when we want to specify where in state

space the system should be.

Example 4.1. Let R be a system with Gaussian noise evolving along a straight line

with state denoted by x ∈ R. The belief space for this particular robot is thus (x̂, P) ∈

R × [0,∞), where x̂ and P are its state estimate and covariance obtained from its

sensors. The system is tasked with going back and forth between two goal regions

(denoted as πg,1 and πg,2 in the top of Figure 4·1). It also must ensure that it never

overshoots the goal regions or lands in obstacle regions πo,1 and πo,2. The system must

68

also maintain a covariance P of less than 0.5 m2 at all times and less than 0.3 m2

when in one of the goal regions. These requirements can be described by the GDTL

formula

φ1d =φavoid ∧ φreach ∧ φu,1 ∧ φu,2 , where

φavoid = � ¬((box(x̂,−4, 0.35) ≤ 1) ∨ (box(x̂, 4, 0.35) ≤ 1))

φreach = � ♦ (box(x̂,−2, 0.35) ≤ 1) ∧ � ♦ (box(x̂, 2, 0.35) ≤ 1)

φu,1 = � (P < 0.5)

φu,2 = � ((box(x̂,−2, 0.35) ≤ 1) ∧ (box(x̂, 2, 0.35) ≤ 1))⇒ (P < 0.3) ,

(4.1)

where box (x̂, xc, a) =
∥∥aT (x̂− xc)

∥∥
∞ is a function bounding x̂ inside an interval of

size 2 |a| centered at xc. Subformula φavoid encodes keeping the system away from

the obstacle regions. Subformula φreach encodes periodically visiting the goal regions.

Subformula φu,1 encodes maintaining the uncertainty below 0.5 m2 globally and sub-

formula φu,2 encodes maintaining the uncertainty below 0.3 m2 in the goal regions.

The belief space associated with this problem is shown in the bottom of Figure 4·1.

The curves in the figure correspond to the borders between the satisfaction and viola-

tion of predicates in (4.1), e.g. the level sets that are induced by the predicates when

inequalities are replaced with equality. In the figure, + denotes that the predicate is

satisfied in that region and - indicates that it is not. An example belief trajectory

that satisfies (4.1) is shown in black. Note that every point in this belief trajectory

has covariance P less than 0.5, which satisfies φu,1. Further, the forbidden regions in

φavoid (marked with red stripes) are always avoided while each of the goal regions in

φreach (marked with green stars) are each visited. Further, whenever the belief is in a

goal region, it has covariance P less than 0.3, which means φu,2 is satisfied.

69

Figure 4·1: (Top) The state space of a system evolving along one
dimension and (Bottom) the predicates from (4.1) as functions of the
belief of the system from Example 4.1.

4.2 Problem Formulation

In this section, we define the problem of controlling a system to satisfy a given GDTL

formula with maximum probability.

4.2.1 Motion and sensing models

We assume the system has noisy linear time invariant (LTI) dynamics given by

xk+1 = Axk +Buk + wk, (4.2)

where xk ∈ X is the state of the system, X ⊆ Rn is the state space, A ∈ Rn×n is

the dynamics matrix, B ∈ Rn×p is the control matrix, uk ∈ U is a control signal,

U ⊆ Rp is the control space, and wk is a zero-mean Gaussian process with covariance

70

Q ∈ Rn×n. The state is observed indirectly according to the linear observation model

yk = Cxk + vk, (4.3)

where yk ∈ Y is a measurement, Y ⊆ Rm is the observation space, C ∈ Rm×n

is the observation matrix and vk is a zero-mean Gaussian process with covariance

R ∈ Rm×m. We assume the LTI system (4.2), (4.3) is controllable and observable,

i.e., (A,B) is a controllable pair and (A,C) is an observable pair. Moreover, we

assume that C is full rank. These assumptions apply to many systems, including

nonlinear systems that can be linearized to satisfy the assumptions.

The belief state at each time step is characterized by the a posteriori state and er-

ror covariance estimates, x̂k and Pk, i.e., bk = (x̂k, Pk). The belief state is maintained

via a Kalman filter (Kalman, 1960; Bertsekas, 2012), which we denote compactly as

bk+1 = τ(bk, uk, yk+1), b0 = (x̂0, P0) , (4.4)

where b0 is the known initial belief about the system’s state centered at x̂0 with

covariance P0. For a belief state (x, P) ∈ G we denote the uncertainty ball of radius

δ in the belief space centered at (x, P) by Nδ(x, P) = {b ∈ G | ‖b− (x, P)‖G ≤ δ},

where ‖·‖G over G is a suitable norm in G.

The system model together with the Kalman filter may be represented as a

POMDP (Kaelbling et al., 1998; Puterman, 2014; Pineau et al., 2003).

4.2.2 Problem definition

Definition 4.3 (Policy). A control policy for the system is a feedback function from

the belief space G to the control space, e.g., µ : G → U . Denote the space of all policies

by M =M(G,U).

We now introduce the main problem under consideration in this chapter:

71

Problem 4.1 (Maximum Probability Problem). Let φ be a given GDTL formula and

let the system evolve according to dynamics (4.2), with observation dynamics (4.3),

and using a Kalman filter defined by (4.4). Find a policy µ∗ such that

µ∗ = arg max
µ∈M

Pr[b |= φ]

subject to (4.2), (4.3), (4.4).

(4.5)

4.3 Solution

In our approach, we use sampling-based techniques to generate paths throughout the

state space. Local controllers drive the systems along these paths and stabilize at

key points. The closed-loop behavior of the system induces paths in the belief space.

The FIRM describes the stochastic process that generates these paths. We build an

MDP by combing the FIRM with a Rabin automaton which then allows us to check

if sample paths satisfy a GDTL formula. We compute transition probabilities and

intersection probabilities (probability of intersecting a good or bad set from the Rabin

automaton’s acceptance condition) for each edge in this structure. We use dynamic

programming to find the policy in this structure that maximizes the probability of

satisfying the formula. The resulting policy can then be translated to a non-stationary

switched local controller that approximates the solution to Problem 4.1. An important

property of the proposed solution is that all operations are incremental with respect

to the size of the FIRM. Note that the proposed solution may be applied to nonlinear

systems whose linearizations around random samples in the state space satisfy the

assumptions in Section 4.2.1. The details of our solution Algorithm 8 are presented

below.

72

4.3.1 Sampling-based algorithm

We propose a sampling-based algorithm to solve Problem 4.1 that overcomes the curse

of dimension and history generally associated with POMDPs. In short, a sampling-

based algorithm iteratively grows a graph T in the state space, where nodes are

individual states, and edges correspond to motion primitives that drive the system

from state to state (LaValle, 2006). The extension procedure is biased towards ex-

ploration of uncovered regions of the state space. Similar to (Agha-mohammadi

et al., 2014), we adapt sampling-based methods to produce finite abstractions (e.g.,

graphs) of the belief space. Algorithm 8 incrementally constructs a transition system

T = (BT , B0,∆T , CT), where the state space BT is composed of belief nodes, i.e.,

bounded hyper-balls in G, ∆T is the set of transitions, and CT is a set of controllers

associated with edges. The center of a belief node is a belief state b = (x, P∞), where

the mean x is obtained through random sampling of the system’s state space, and

P∞ is the stationary covariance. The initial belief node is denoted by B0.

Sampling-based algorithms are built using a set of primitive functions that are

assumed to be available:

• sample(X) generates random states from a distribution over the state space X ,

• nearest(xr, T) = arg minxu{‖xr − xu‖2 | ∃P u ∧ Nδ(x
u, P u) ∈ BT } returns the

mean xu of a belief node’s center in T such that xu is closest to the state xr

using the metric defined on X ,

• near(Bn,BT , γ) returns the closest γ belief nodes in BT to Bn with respect to

the distance between their centers induced by ‖·‖G, and

• steer(xi, xt) returns a state obtained by attempting to drive the system from xi

towards xt.

73

Using these primitive functions, an extension procedure extend(X , T) of the transi-

tion system T can be defined as:

1. generate a new sample xr ← sample(X),

2. find nearest state xu ← nearest(xr, T), and

3. drive the system towards the random sample xn ← steer(xu, xr).

For more details about sampling-based algorithms, primitive functions and their im-

plementations see (LaValle, 2006; Karaman and Frazzoli, 2011b; Vasile and Belta,

2013) and Chapter 3.

Transitions are enforced using local controllers which are stored in CT , i.e., we

assign to each edge e ∈ ∆T a local controller ece ∈ CT . Under the assumptions of

our model (Agha-mohammadi et al., 2014), the local controllers are guaranteed to

stabilize the system to belief nodes along a path in finite time. Thus we abstract the

roadmap to a deterministic system. In Algorithm 8, local controllers are generated

using the method localController(). The design of the node controllers is presented

Section 4.4.

The algorithm checks for the presence of a satisfying path using a deterministic

Rabin automaton (DRA) R that is computed from the GDTL specification using

an intermediate linear temporal logic (LTL) construction (Jones et al., 2013). There

exist efficient algorithms that translate LTL formulae into Rabin automata (Klein

and Baier, 2006). We denote the set of predicates in GDTL formula φ as Fφ.

Definition 4.4 (Rabin Automaton). A (deterministic) Rabin automaton is a tuple

R = (SR, s
R
0 ,Σ, δ,ΩR), where SR is a finite set of states, sR0 ∈ SR is the initial state,

Σ ⊆ 2Fφ is the input alphabet, δ : SR × Σ → SR is the transition function, and ΩR

is a set of tuples (Fi,Bi) of disjoint subsets of SR which correspond to good (Fi) and

bad (Bi) states.

74

A transition s′ = δ(s, σ) is also denoted by s
σ→R s′. A trajectory of the Rabin

automaton s = s0s1 . . . is generated by an infinite sequence of symbols σ = σ0σ1 . . .

if s0 = sR0 is the initial state of R and sk
σk→R sk+1 for all k ≥ 0. Given a state

trajectory s we define ϑ∞(s) ⊆ SR as the set of states which appear infinitely many

times in s. An infinite input sequence over Σ is said to be accepted by a Rabin

automaton R if there exists a tuple (Fi,Bi) ∈ ΩR of good and bad states such that

the state trajectory s of R generated by σ intersects the set Fi infinitely many times

and the set Bi only finitely many times. Formally, this means that ϑ∞(s) ∩ Fi 6= ∅

and ϑ∞(s) ∩ Bi = ∅.

4.3.2 Computing transition and intersection probability

Given a transition e = (Bu, Bv) and its associated local controller ece, Algorithm 9

computes the transition distribution from an initial DRA state su to a some random

DRA state, and a set of intersection distributions associated with each pair (Fi,Bi)

of the acceptance set of R. These distributions are hard to compute analytically.

Therefore, we estimate them from sample trajectories of the closed-loop system en-

forcing edge e. In Algorithm 9, the function sampleBeliefSet(S) returns a random

sample from a uniform distribution over the belief set S.

The distribution πSR captures the probability that sv is the state of R at the end

of closed-loop trajectory generated by controller ece to steer the system from belief

node Bu and DRA state su to belief node Bv: π
SR = Pr[sv | e, su, ece], where sv ∈ SR,

su
σ0:T−1→ sv, b

0:T = ece(bu), bu ∈ Bu, and σk ← {f | f(bk) ≤ 0,∀f ∈ Fφ}.

Each intersection distribution represents the probability that edge e intersects Fi,

Bi or neither, where (Fi,Bi) ∈ ΩR, and the controller ece was used to drive the system

along the edge e starting from the DRA state su:

75

Algorithm 8: ConstructTS(x0, φ, ε)

Input: initial state x0, GDTL specification φ, and lower bound ε
Output: belief transition system T , product MDP P , and satisfying policy µ∗

1 convert GDTL formula φ to LTL formula ϕ over the set of atomic propositions
AP = Fφ

2 compute DRA R = (SR, s
R
0 , 2

AP , δ,ΩR) from ϕ
3 ec0, P

∞
0 ← localController(x0)

4 B0 ← Nδ(x
0, P∞0)

5 e0 = (B0, B0)

6 πSR0 , πΩR
0 ← computeProb(e0, s0, ec0,R)

7 initialize belief TS T = (BT = {B0}, B0,∆T = {e0}, CT = {(e0, ec0)})
8 construct product MDP

P = T ×R = (SP = BT × SR, (B0, s0), Act = BT , δP = {πSR0 },ΩP = {πΩR
0 })

9 for index = 1 to N do
10 xn ← extend(X , T)
11 ecn, P

∞
n ← localController(xn)

12 Bn ← Nδ(x
n, P∞n)

13 Nn ← near(Bn,BT , γ)

14
∆n ← {(Bi, Bn)|xn = steer(xi, xn), Bi ∈ Nn}

∪ {(Bn, Bi)|xi = steer(xn, xi), Bi ∈ Nn}
15 BT ← BT ∪ {Bn}, ∆T ← ∆T ∪∆n

16 SP ← SP ∪ ({Bn} × SR)
17 foreach e = (Bu, Bv) ∈ ∆n do
18 CT ← CT ∪ {(e, ecv)}
19 foreach su ∈ SR s.t. (Bu, su) ∈ SP do
20 πSRe , πΩR

e ← computeProb(e, su, ecv,R)
21 δP ← δP ∪ {πSRe }
22 ΩP ← ΩP ∪ {πΩR

e }

23 ∆n
P = {(p, p′) ∈ ∆P | (p, p′)�T ∈ ∆n}

24 foreach (Fi,Bi) ∈ ΩR do // update ECs

25 Γi = {(p, p′) ∈ ∆n
P | πΩR(e,Fi) = 0 ∧ πΩR(e,Bi) > 0, e = (p, p′)�T }

26 ci.update(∆
n
P \ Γi)

27 if existsSatPolicy(P) then
28 solve DP (4.7) and compute policy µ∗ with probability of satisfaction p
29 if p ≥ ε then return (T ,P , µ∗)

30 return (T ,P , ∅)

76

Algorithm 9: computeProb(e = (Bu, Bv), su, ece,R)

Input: transition between belief nodes e = (Bu, Bv), starting DRA state su,
controller enforcing e ece, and deterministic Rabin automaton R

Output: transition distribution πSR , and intersection distribution πΩR

Parameter: NP – number of particles

1 t← 0|SR|,1
2 rai ← 03,1, ∀(Fi,Bi) ∈ ΩR
3 for p = 1 : NP do
4 bu ← sampleBeliefSet(Bu)
5 b0:T ← ece(bu)
6 for k = 0 to T − 1 do
7 σk ← {f | f(bk) ≤ 0,∀f ∈ Fφ}

8 s = s0:T ← (su
σ0:T−1→ sT)

9 t[sT]← t[sT] + 1
10 for (Fi,Bi) ∈ |ΩR| do
11 if Fi ∩ s 6= ∅ then rai[1]← rai[1] + 1
12 if Bi ∩ s 6= ∅ then rai[2]← rai[2] + 1
13 if (Fi ∪ Bi) ∩ s = ∅ then rai[3]← rai[3] + 1

14 return
(
πSR = t

NP
, πΩR =

{
rai
NP
| 1 ≤ i ≤ |ΩR|

})

πΩR =




Pr[s ∩ Fi | e, su, ece]

Pr[s ∩ Bi | e, su, ece]

Pr[s ∩ (Fi ∪ Bi) | e, su, ece]

∣∣∣∣∣∣∣∣∣∣∣
∀(Fi,Bi) ∈ ΩR


(4.6)

For convenience, we use the following notation πΩR(e,X) = Pr[s ∩X | e, su, ece],

where X ∈ {Fi,Bi,Fi ∪ Bi}.

4.3.3 GDTL-FIRM Product MDP

In this section, we define a construction procedure of the product MDP between the

(belief) TS T and the specification DRA R.

77

Definition 4.5 (GDTL-FIRM MDP). Given a DTS T = (BT , B0,∆T , CT), a Ra-

bin automaton R = (SR, s
R
0 ,Σ = 2AP , δ,ΩR), and the transition and intersection

probabilities πSR, πΩR, their product MDP, denoted by P = T × R, is a tuple

P = (SP , s
P
0 , Act, δP ,ΩP) where sP0 = (B0, s

R
0) is the initial state; SP ⊆ BT × SR

is a finite set of states which are reachable from the initial state by runs of positive

probability (see below); Act = BT is the set of actions available at each state; δP :

SP×Act×SP → [0, 1] is the transition probability defined by δP((Bi, si), Bj, (Bj, sj)) =

πSR(sj; eij, si, CT (eij)), eij = (Bi, Bj); and ΩP is the set of tuples of good and bad tran-

sitions in the product automaton.

We denote by ∆P =
{(

(Bi, si), (Bj, sj)
)
| δP((Bi, si), Bj, (Bj, sj)) > 0

}
the set of

transitions of positive probability. A transition in P is also denoted by pi →P pj if

(pi, pj) ∈ ∆P . A trajectory (or run) of positive probability of P is an infinite sequence

p = p0p1 . . ., where p0 = sP0 and pk →P pk+1 for all k ≥ 0.

The acceptance condition for a trajectory of P is encoded in ΩP , and is induced

by the acceptance condition of R. Formally, ΩP is a set of pairs (FPi ,BPi), where

FPi = {e ∈ ∆P |πΩR(e,Fi) > 0}, BPi = {e ∈ ∆P |πΩR(e,Bi) > 0}, and (Fi,Bi) ∈ ΩR.

A trajectory of P = T × R is said to be accepting if and only if there is a tuple

(FPi ,BPi) ∈ ΩP such that the trajectory intersects the sets FPi and BPi infinitely

and finitely many times, respectively. It follows by construction that a trajectory

p = (B0, s0)(B1, s1) . . . of P is accepting if and only if the trajectory s0
0:T0−1s

1
0:T1−1 . . .

is accepting in R, where si0:Ti
is the random trajectory of R obtained by traversing

the transition e = (Bi, Bi+1) using the controller CT (e) and si0 = si for all i ≥ 0. Note

that siTi = si+1
0 . As a result, a trajectory of T obtained from an accepting trajectory of

P satisfies the given specification encoded by R with positive probability. We denote

the projection of a trajectory p = (B0, s0)(B1, s1) . . . onto T by p�T = B0B1 A

similar notation is used for projections of finite trajectories.

78

Remark 4.1. Note that the product MDP in Definition 4.5 is defined to be amenable

to incremental operations with respect to the growth of the DTS, i.e., updating and

checking for a solution of positive probability. This property is achieved by requiring

the states of P to be reachable by transitions in ∆P . The incremental update can

be performed using a recursive procedure similar to the one described in (Vasile and

Belta, 2013) and Chapter 3.

Remark 4.2. The acceptance condition for P is defined by its transitions and not

in the usual way in terms of its states, due to the stochastic nature of transitions

between belief nodes in T . We only record the initial and end DRA states of the DRA

trajectories induced by the sample paths obtained using the local controllers. Our

construction is conservative, but avoids the need to store a (possibly large) number of

intermediate states in P for spurious sample paths deviating from the nominal one.

4.3.4 Finding satisfying policies

The existence of a satisfying policy with positive probability can be checked efficiently

on the product MDP P by maintaining end components EC1 for induced subgraphs

of P determined by the pairs in the acceptance condition ΩP . For each pair FPi ,BPi ,

let ci denote the ECs associated with the graphs GPi = (SP ,∆P \ Γi), where Γi =

{(p, p′) ∈ ∆P |πΩR(e,Fi) = 0 ∧ πΩR(e,Bi) > 0, e = (p, p′)�T }. Given ci, checking

for a satisfying trajectory in procedure existsSatPolicy(P) becomes trivial. We test

if there exists an EC that contains a transition (p, p′) such that πΩR(e,Fi) > 0,

where e = (p, p′)�T . Note that we do not need to maintain ΩP explicitly, we only

need to maintain the ci. Efficient incremental algorithms to maintain these ECs were

proposed in (Haeupler et al., 2012; Bender et al., 2015)

1An EC of an MDP is a sub-MDP such that there exists a policy such that each node in the EC
can be reached from each other node in the EC with positive probability.

79

4.3.5 Dynamic program for Maximum Probability Policy

Given a GDTL-FIRM MDP, we can compute the optimal switching policy to maxi-

mize the probability that the given formula φ is satisfied. In other words, we find a

policy that maximizes the probability of visiting the states in Fi infinitely often and

avoiding Bi. To find this policy, we first decompose P into a set of end components

and find the accepting components. Since any sample path that satisfies φ must end

in an accepting component, maximizing the probability of satisfying φ is equivalent

to maximizing the probability of reaching such a component. The optimal policy is

thus given by the relationship

J∞(s) =


1, s ∈ ci

max
a∈Act(s)

∑
s′ δ(s, a, s

′)J∞(s′) else

m(s) =arg max
a∈Act(s)

∑
s′

δ(s, a, s′)J∞(s′)

(4.7)

This can be solved by a variety of methods, including approximate value iteration

and linear programming (Bertsekas, 2012).

4.3.6 Complexity

The overall complexity of maintaining the ECs used for checking for satisfying runs in

P is O(|ΩR| |SP |
3
2). The complexity bound is obtained using the algorithm described

in (Haeupler et al., 2012) and is better by a polynomial factor |SP |
1
2 than computing

the ECs at each step using a linear algorithm. Thus, checking for the existence of

a satisfying run of positive probability can be done in O(|ΩR|) time. The dynamic

programming algorithm is polynomial in |SP | (Papadimitriou and Tsitsiklis, 1987).

80

4.4 Case Studies

In this section, we apply our algorithm to control a unicycle robot moving in a

bounded planar environment. To deal with the non-linear nature of the robot model,

we locally approximate the robot’s dynamics using LTI systems with Gaussian noise

around samples in the workspace. This heuristic is very common, since the non-

linear and non-Gaussian cases yield recursive filters that do not in general admit finite

parametrization. Moreover, the control policy is constrained to satisfy a rich temporal

specification. The proposed sampling-based solution overcomes these difficulties due

to its randomized and incremental nature. As the size of the GDTL-FIRM increases,

we expect the algorithm to return a policy, if one exists, with increasing satisfaction

probability. Since it is very difficult to obtain analytical bounds on the satisfaction

probability, we demonstrate the performance of our solution in experimental trials.

Motion model

The motion model for our system is a unicycle. We discretize the system dynamics

using Euler’s approximation. The motion model becomes:

xk+1 = f(xk, uk, wk) = xk +

cos(θk) 0
sin(θk) 0

0 1

 · uk + wk (4.8)

where xk =
[
pxk p

y
k θk

]T
, pxk, p

y
k and θk are the position and orientation of the robot in

a global reference frame, uk =
[
v′k ω

′
k

]T
= ∆t

[
vk ωk

]T
, vk and ωk are the linear and

rotation velocities of the robot, ∆t is the discretization step, and wk is a zero-mean

Gaussian process with covariance matrix Q ∈ R3×3. Next, we linearize the system

around a nominal operating point (xd, ud) without noise,

xk+1 = f(xd, ud, 0) + A (xk − xd) +B (uk − ud) + wk, (4.9)

81

where A = ∂f
∂xk

(xd, ud, 0) and B = ∂f
∂uk

(xd, ud, 0) are the process and control Jacobians,

xd =
[
px d py d θd

]T
, and ud =

[
v′dk ω′dk

]T
.

In our framework, we associate with each belief node Bg ∈ BT centered at (x̂g, P)

an LTI system obtained by linearization (4.9) about (x̂g, ug), where ug = [0.1, 0]T

corresponds to 0.1 m/s linear velocity and 0 angular velocity.

Observation Model

We localize the robot with a camera network. This reflects the real world constraints

of sensor networks, e.g. finite coverage, finite resolution, and improved accuracy with

the addition of more sensors. The network was implemented using four TRENDnet

Internet Protocol (IP) cameras with known pose with respect to the global coor-

dinate frame of the experimental space. Each 640 × 400 RGB image is acquired

and segmented, yielding multiple pixel locations that correspond to a known pat-

tern on the robot. The estimation of the planar position and orientation of the

robot in the global frame is formulated as a least squares problem (structure from

motion) (Ma et al., 2003). The measurement, yk ∈ Y , is given by the discrete obser-

vation model: yk = Cxk + vk. The measurement error covariance matrix is defined

as R = diag(rx, ry, rθ), where the value of each scalar is inversely proportional to the

number of cameras used in the estimation, i.e. the number of camera views that iden-

tify the robot. These values are generated from a camera coverage map (Figure 4·2b)

of the experimental space.

Specification

The specification is given over belief states associated with the measurement y of the

robot as follows: “Visit regions A and B infinitely many times. If region A is visited,

then only corridor D1 may be used to cross to the right side of the environment.

82

Similarly, if region B is visited, then only corridor D2 may be used to cross to the

left side of the environment. The obstacle Obs in the center must always be avoided.

The uncertainty must always be less than 0.9. When passing through the corridors

D1 and D2 the uncertainty must be at most 0.6.”

The corresponding GDTL formula is:

φ1 = φavoid ∧ φreach ∧ φu,1 ∧ φu,2 ∧ φbounds (4.10)

φavoid = � ¬φObs

φreach = �
(
♦ (φA ∧ ¬φD2UφB) ♦ (φB ∧ ¬φD1UφA)

)
φu,1 = � (tr(P) ≤ 0.9)

φu,2 = �
(
(φD1 ∨ φD2)⇒ (tr(P) ≤ 0.6)

)
φbounds = � (box(x̂, xc, a) ≤ 1),

where (x̂, P) is a belief state associated with y, a =
[

2
l

2
w

0
]

so that x̂ must remain

within a rectangular l × w region with center xc =
[
l
2

w
2

0
]
, l = 4.13m and w =

3.54m. The 5 regions in the environment are defined by GDTL predicate formulae

φReg = (box(x̂, xReg, rReg) ≤ 1), where xReg and rReg are the center and the dimensions

of region Reg ∈ {A,B,D1, D2, Obs}, respectively.

Local controllers

We used the following simple switching controller to drive the robot towards belief

nodes:

uk+1 =


[
kD
∥∥αT (xg − x̂k)

∥∥
2
kθ(θ

los
k − θ̂k)

]T
if
∣∣∣θlosk − θ̂k∣∣∣ < π

12[
0 kθ(θ

los
k − θ̂k)

]T
, otherwise

,

83

(a) Environment (b) Camera coverage

(c) Pose estimation (d) Transition system

Figure 4·2: Figure a shows an environment with two regions A and
B, two corridors D1 and D2 and an obstacle Obs. Figure b shows the
coverage of the cameras. Figure c shows the pose of the robot computed
from the images taken by the 4 cameras. Figure d shows the transition
system computed by Algorithm 8.

where kD > 0 and kθ > 0 are proportional scalar gains, xg is the goal position, θlosk is

the line-of-sight angle and α = [1 1 0]T . We assume, as in (Agha-mohammadi et al.,

2014), that the controller is able to stabilize the system state and uncertainty around

the goal belief state (xg, P∞), where P∞ is the stationary covariance matrix.

84

Experiments

The algorithms in this paper were implemented in Python2.7 using LOMAP (Ulusoy

et al., 2013c) and networkx (Hagberg et al., 2008) libraries. The ltl2star tool (Klein

and Baier, 2006) was used to convert the LTL specification into a Rabin automaton.

All computation was performed on a Ubuntu 14.04 machine with an Intel Core i7

CPU at 2.4 Ghz and 8GB RAM.

Figure 4·3: The figure shows the trajectory of the robot over 10
surveillance cycles. At each time step, the pose of the robot is marked
by an arrow. The true trajectory of the robot is shown in green. The
trajectory obtained from the camera network is shown in yellow, while
the trajectory estimated by the Kalman filter is shown in black.

A switched feedback policy was computed for the ground robot described by (4.8)

operating in the environment shown in Figure 4·2a with mission specification (4.10)

using Algorithm 8. The overall computation time to generate the policy was 32.739

seconds and generated a transition system and product MDP of sizes (23, 90) and

85

(144, 538), respectively. The Rabin automaton obtained from the GDTL formula has

7 states and 23 transitions operating over a set of atomic propositions of size 8. The

most computationally intensive operation in Algorithm 8 is the computation of the

transition and intersection probabilities. To speed up the execution, we generated

trajectories for each transition of the TS and reused them whenever Algorithm 9

is called for a transition of the product MDP. The mean execution time for the

probability computation was 0.389 seconds for each transition of T .

We executed the computed policy on the ground vehicle over 9 experimental trials

for a total of 24 surveillance cycles. The specification was met in all of surveillance

cycles. A trajectory of the ground robot over 10 surveillance cycles (continuous

operation) is shown in Figure 4·3.

86

Chapter 5

Time Window Temporal Logic

This chapter introduces time window temporal logic (TWTL), a rich expressivity lan-

guage for describing various time bounded specifications. In particular, the syntax

and semantics of TWTL enable the compact representation of serial tasks, which are

prevalent in various applications including robotics, sensor systems, and manufac-

turing systems. This chapter also discusses the relaxation of TWTL formulae with

respect to the deadlines of the tasks. Efficient automata-based frameworks are pre-

sented to solve synthesis, verification and learning problems. The key ingredient to

the presented solution is an algorithm to translate a TWTL formula to an annotated

finite state automaton that encodes all possible temporal relaxations of the given for-

mula. Some case studies are presented to illustrate the expressivity of the logic and

the proposed algorithms.

5.1 Preliminaries on Formal Languages

Notation: Given x,x′ ∈ Rn, n ≥ 2, the relationship x ∼ x′, where ∼∈ {<,≤, >,≥},

is true if it holds pairwise for all components. x ∼ a denotes x ∼ a1n, where a ∈ R

and 1n is the n-dimensional vector of all ones. The extended set of real numbers is

denoted by R = R ∪ {±∞}

Definition 5.1 (Prefix language). Let L1 and L2 be two languages. We say that

L1 is a prefix language of L2 if and only if every word in L1 is a prefix of some

87

word in L2, i.e., for each word w ∈ L1 there exists w′ ∈ L2 such that w = w′0,i,

where 0 ≤ i < |w′|, The maximal prefix language of a language L is denoted by

P (L) = {w0,i | w ∈ L, i ∈ {0, . . . , |w| − 1}}.

Definition 5.2 (Unambiguous language). A language L is called unambiguous lan-

guage if no proper subset L of L is a prefix language of L \ L.

The above definition immediately implies that a word in an unambiguous language

can not be the prefix of another word. Moreover, it is easy to show that the converse

is also true.

Definition 5.3 (Language concatenation). Let L1 be a language over finite words,

and let L2 be a language over finite or infinite words. The concatenation language

L1 · L2 is defined as the set of all words ww′, where w ∈ L1 and w′ ∈ L2.

5.2 Time Window Temporal Logic

Time window temporal logic (TWTL) was first introduced in the conference pa-

per (Vasile and Belta, 2014b) as a rich specification language for robotics applica-

tions. Besides robotics, TWTL can be used in various domains (e.g., manufacturing,

control, software development) that involve specifications with explicit time bounds.

In particular, TWTL formulae can express tasks, their durations, and their time

windows. TWTL is a linear-time logic encoding sets of discrete-time sequences with

values in a finite alphabet.

A TWTL formula is defined over a set of atomic propositions AP and has the

following syntax:

φ ::= Hds |Hd¬s |φ1 ∧ φ2 |φ1 ∨ φ2 | ¬φ1 |φ1 · φ2 | [φ1][a,b]

where s is either the “true” constant > or an atomic proposition in AP ; ∧, ∨, and

88

¬ are the conjunction, disjunction, and negation Boolean operators, respectively; · is

the concatenation operator; Hd with d ∈ Z≥0 is the hold operator; and [][a,b] with

0 ≤ a ≤ b is the within operator.

The semantics of the operators is defined with respect to the finite subsequences of

a (possibly infinite) word o over 2AP . Let ot1,t2 be the subsequence of o, which starts

at time t1 ≥ 0 and ends at time t2 ≥ t1. The hold operator Hds specifies that s ∈ AP

should be repeated for d time units. The semantics of Hd¬s is defined similarly, but

for d time units only symbols from AP \{s} should appear. For convenience, if d = 0

we simply write s and ¬s instead of H0s and H0¬s, respectively. The word ot1,t2

satisfies φ1 ∧ φ2, φ1 ∨ φ2, or ¬φ if ot1,t2 satisfies both formulae, at least one formula,

or does not satisfy the formula, respectively. The within operator [φ][a,b] bounds the

satisfaction of φ to the time window [a, b]. The concatenation operator φ1 ·φ2 specifies

that first φ1 must be satisfied, and then immediately φ2 must be satisfied.

Formally, the semantics of TWTL formulae is defined recursively as follows:

ot1,t2 |= Hds iff s ∈ ot,∀t ∈ {t1, . . . , t1 + d} ∧ (t2 − t1 ≥ d)

ot1,t2 |= Hd¬s iff s /∈ ot,∀t ∈ {t1, . . . , t1 + d} ∧ (t2 − t1 ≥ d)

ot1,t2 |= φ1 ∧ φ2 iff (ot1,t2 |= φ1) ∧ (ot1,t2 |= φ2)

ot1,t2 |= φ1 ∨ φ2 iff (ot1,t2 |= φ1) ∨ (ot1,t2 |= φ2)

ot1,t2 |= ¬φ iff ¬(ot1,t2 |= φ)

ot1,t2 |= φ1 · φ2 iff (∃t = arg mint1≤t<t2{ot1,t |= φ1}) ∧ (ot+1,t2 |= φ2)

ot1,t2 |= [φ][a,b] iff ∃t ≥ t1 + a s.t. ot,t1+b |= φ ∧ (t2 − t1 ≥ b)

A word o is said to satisfy a formula φ if and only if there exists T ∈ {0, . . . , |o|} such

that o0,T |= φ.

A TWTL formula φ can be verified with respect to a bounded word. Accordingly,

89

we define the time bound of φ, i.e., ‖φ‖, as the maximum time needed to satisfy φ,

which can be recursively computed as follows:

‖φ‖ =



max(‖φ1‖ , ‖φ2‖) if φ ∈ {φ1 ∧ φ2, φ1 ∨ φ2}

‖φ1‖ if φ = ¬φ1

‖φ1‖+ ‖φ2‖+ 1 if φ = φ1 · φ2

d if φ ∈ {Hds,Hd¬s}

b if φ = [φ1][a,b]

(5.1)

We denote the language of all words satisfying φ by L(φ). Note that TWTL

formulae are used to specify prefix languages of either Σ∗ or Σω, where Σ = 2AP .

Moreover, the number of operators in a TWTL formula φ is denoted by |φ|.

Some examples of TWTL formulae for a robot servicing at some regions can be

as follows:

- servicing within a deadline: “service A for 2 time units before 10”,

φ1 = [H2A][0,10] and ‖φ1‖ = 10. (5.2)

- servicing within time windows: “service A for 4 time units within [3, 8] and B for

2 time units within [4, 7]”,

φ2 = [H4A][3,8] ∧ [H2B][4,7] and ‖φ2‖ = 8. (5.3)

- servicing in sequence: “service A for 3 time units within [0, 5] and after this service

B for 2 time units within [4, 9]”,

φ3 = [H3A][0,5] · [H2B][4,9] and ‖φ3‖ = 15. (5.4)

90

- enabling conditions: “if A is serviced for 2 time units within 9 time units, then B

should be serviced for 3 time units within the same time interval (i.e., within 9 time

units)”,

φ4 = [H2A⇒ [H3B][2,5]][0,9] and ‖φ4‖ = 9, (5.5)

where ⇒ denotes implication.

In order to describe rich specifications, a temporal logic can be selected based on

the expressivity of the logic and the complexity of the corresponding algorithms (e.g.,

for automata construction). In general, expressivity and complexity are coupled terms

such that a logic with very rich expressivity has very high complexity. Furthermore,

the easiness to express the specifications and to comprehend the meaning of the

formulae is also a crucial aspect when choosing temporal logics. TWTL induces

finite languages, and it has the same expressivity of BLTL. On the other hand, STL

and MTL are more expressive languages than TWTL since they are developed for

real-time systems and can express continuous-time properties.

TWTL provides some benefits over other time-bounded temporal logics. From the

perspective of easiness to express specifications and to comprehend formulae, a main

benefit of TWTL is the existence of concatenation, within, and hold operators. In

particular, these operators lead to compact (shorter length) representation of specifi-

cations, which greatly improves the readability of the formulae. For example, consider

the specifications in (5.3) and (5.4), which are expressed in various temporal logics

in Table 5.1 and 5.2. Note that the TWTL formulae are short and comprehensible

whereas an expert in formal methods might be required to create the other formulae

to take into account the nested temporal operators, the shifted time windows, and

the disjunction of numerous sub-formulae.

From the perspective of complexity, a main benefit of TWTL is the existence

of explicit concatenation operator. In particular, the concatenation of two tasks

91

Table 5.1: The representation of (5.3) in TWTL, BLTL, and MTL.

TWTL [H4A][3,8] ∧ [H2B][4,7]

BLTL F≤8−4G≤4A ∧ F≤7−2G≤2B
MTL

∨8−4
i=3 G[i,i+4]A ∧

∨7−2
i=4 G[i,i+2]B

Table 5.2: The representation of (5.4) in TWTL, BLTL, and MTL.

TWTL [H3A][0,5] · [H2B][4,9]

BLTL F≤5−3(G≤3A ∧ F≤9−2+3G≤2B)
MTL

∨5−3
i=0 (G[i,i+3]A ∧

∨i+3+9−2
j=i+3+4 G[j,j+2]B)

can be expressed in other logics in a more sophisticated way than TWTL. In Ta-

ble 5.2, we illustrate that the MTL formula contains a set of recursively defined

sub-formulae connected by disjunctions whereas the BLTL formula contains nested

temporal operators with conjunction. In both cases, dealing with the disjunction of

numerous sub-formulae and the nested temporal operators with conjunction signif-

icantly increases the complexity of constructing the automaton (i.e., in exponential

and quadratic ways, respectively (Maia et al., 2013)). On the other hand, we provide

a linear-time algorithm in Section 5.6 to handle the concatenations of tasks under

some mild assumptions.

Moreover, the automata construction algorithms in Section 5.6 are specifically

developed for TWTL. Thus, an automaton for the satisfying language of a TWTL

formula can be constructed directly (without translating it to another logic to use

an off-the-shelf tool). For example, the authors of (Tkachev and Abate, 2013) trans-

late a BLTL formula to a syntactically co-safe linear temporal logic (scLTL) formula

(Kupferman and Y. Vardi, 2001) to use the automata construction tool scheck (Lat-

vala, 2003), which increases the complexity due to additional operations. Finally,

for a given TWTL formula φ, we show that all possible temporally relaxed φ can be

encoded to a very compact representation, which is enabled from the definition of

92

temporal relaxation introduced in the next section.

5.3 Temporal Relaxation

In this section, we introduce a temporal relaxation of a TWTL formula. This notion is

used in Section 5.4 to formulate an optimization problem over temporal relaxations.

To illustrate the concept of temporal relaxation, consider the following TWTL

formula:

φ1 = [H1A][0:2] ·
[
H3B ∧ [H2C][0:4]

][1:8]
. (5.6)

In cases where φ1 cannot be satisfied, one question is: what is the “closest” achiev-

able formula that can be performed? Hence, we investigate relaxed versions of φ1.

One way to do this is to relax the deadlines for the time windows, which are captured

by the within operator. Accordingly, a relaxed version of φ1 can be written as

φ1(τ) = [H1A][0:(2+τ1)] · [H3B ∧ [H2C][0:(4+τ2)]][1:(8+τ3)], (5.7)

where τ = (τ1, τ2, τ3) ∈ Z3. Note that a critical aspect while relaxing the time win-

dows is to preserve the feasibility of the formula. This means that all sub-formulae

of φ enclosed by the within operators must take less time to satisfy than their corre-

sponding time window durations.

Definition 5.4 (Feasible TWTL formula). A TWTL formula φ is called feasible, if

the time window corresponding to each within operator is greater than the duration

of the corresponding enclosed task (expressed via the hold operators).

Remark 5.1. Consider the formula in (5.7). For φ1(τ) to be a feasible TWTL

formula, the following constraint must hold: (i) 2 + τ1 ≥ 1; (ii) 4 + τ2 ≥ 2 and (iii)

7+τ3 ≥ max{3, 4+τ2}. Note that τ may be non-positive. In such cases, φ1(τ) becomes

a stronger specification than φ1, which implies that the sub-tasks are performed ahead

of their actual deadlines.

93

Let φ be a TWTL formula. Then, a τ−relaxation of φ is defined as follows:

Definition 5.5 (τ−Relaxation of φ). Let τ ∈ Zm, where m is the number of within

operators contained in φ. The τ -relaxation of φ is a feasible TWTL formula φ(τ),

where each subformula of the form [φi]
[ai,bi] is replaced by [φi]

[ai,bi+τi].

Remark 5.2. For any φ, φ(0) = φ.

Definition 5.6 (Temporal Relaxation). Given φ, let φ(τ) be a feasible relaxed for-

mula. The temporal relaxation of φ(τ) is defined as |τ |TR = maxj(τj).

Remark 5.3. If a word o |= φ(τ) with |τ |TR ≤ 0, then o |= φ.

5.4 Optimization over Temporal Relaxation

In this section, first, we propose a generic optimization problem over temporal relax-

ations of a TWTL formula. Then, we show how this setup can be used to formulate

verification, synthesis, and learning problems.

The objective of the following optimization problem is to find a feasible relaxed

version of a TWTL formula that optimizes a cost function penalizing the sets of

satisfying and unsatisfying words, and the vector of relaxations.

Problem 5.1. Let φ be a TWTL formula over the set of atomic propositions AP , and

let L1 and L2 be any two languages over the alphabet Σ = 2AP . Consider a cost func-

tion F : Z≥0 × Z≥0 × Zm → R, where m is the number of within operators contained

in φ. Find τ such that F (|L(φ(τ)) ∩ L1| , |L(¬φ(τ)) ∩ L2| , τ) is minimized.

5.4.1 Verification, synthesis, and learning

In the following, we formulate three specific problems related to verification, syn-

thesis, and learning based on Problem 5.1. The synthesis problem addressed in this

94

paper follows a recent trend of methods that return policies with reasonable perfor-

mance even in the case when the specification cannot be met. In literature, some

synthesis problems are framed as an optimization problem where the objective is to

find a solution satisfying the minimal relaxation of a given specification (Reyes Castro

et al., 2013; Tumova et al., 2013a; Tumova et al., 2014; Kim et al., 2015; Guo and

Dimarogonas, 2015). Alternatively, some studies impose a hierarchical structure on

the input specification based on some given priorities (Reyes Castro et al., 2013; Tu-

mova et al., 2013a; Guo and Dimarogonas, 2015). As such, lower priority properties

may be disregarded in case the original specification cannot be satisfied. Yet another

approach is presented in (Livingston et al., 2013) where the authors consider a desired

global specification and a local specification. Accordingly, the local one defines how

the global one may be modified in case of infeasibility. Note that in these approaches

it is very hard to translate and evaluate relaxed policies with respect to the original

specifications.

The objective of the synthesis problem formulated in this section is to find a

control policy (or strategy) that results in the satisfaction of the original formula

or its minimal relaxation in case of infeasibility. Our solution approach differs from

existing studies (Reyes Castro et al., 2013; Tumova et al., 2013a; Tumova et al., 2014;

Kim et al., 2015; Guo and Dimarogonas, 2015) in that the relaxation is defined at a

semantic level, i.e., the TWTL formulae are parametrized. The main benefit of our

approach is that the results of a synthesis algorithm can be interpreted in the same

semantics as the original specification without using an additional representation (e.g.,

automata) for the relaxed formulae.

The verification problem addressed in this chapter checks if a system satisfies

the structure of a specification without considering the time parameters, i.e., the

deadlines of the within operators. This formulation differs from the generic ones that

95

consider properties with fixed (temporal or spatial) parameters. Verification problems

involving parametric formulae were also considered in (Yang et al., 2012) for STL and

in (Alur et al., 2001) for LTL properties. In (Yang et al., 2012), the authors consider a

(dense-time) STL specification with a single parameter and the problem of estimating

bounds for that parameter. The solution is obtained using an optimization procedure

that is defined in terms of robustness degree for STL properties. The problems

explored in (Alur et al., 2001) are closer to the ones proposed in this paper. However,

both bounded and unbounded properties are considered in (Alur et al., 2001) and

the focus of the exposition is geared towards establishing decidability and complexity

bounds.

Lastly, we address a parameter learning problem where the goal is to learn the

time parameters of a TWTL formula from a given data set. The parameter synthesis

for PSTL formulae is tackled in (Asarin et al., 2012; Jin et al., 2015). Moreover,

Temporal Logic Inference, which is the problem of learning both the structure and

parameters of properties, is considered in (Kong et al., 2014; Bombara et al., 2016).

In this paper, we focus only on the inference of deadlines for TWTL formulae from

labeled data such that the misclassification rate is minimized.

Verification1

Given a transition system T and a TWTL formula φ, we want to check if there exists

a relaxed formula φ(τ) such that all output words generated by T satisfy φ(τ).

In Problem 5.1, we can set L1 = ∅ and L2 = L(T), and we choose the following

cost function:

F (x, y, τ) = 1− δ(y), (5.8)

1 This problem is not a verification problem in the usual sense, but rather finding a formula that
is satisfied by all runs of a system.

96

where x, y ∈ Z≥0 and δ(x) =


1 x = 0

0 x 6= 0

. The cost function in (5.8) has a single

global minimum value at 0 which corresponds to the case L(T) ∩ L(¬φ(τ)) = ∅.

Synthesis

Given a transition system T and a TWTL formula φ, we want to find a policy (a

trajectory of T) that produces an output word satisfying a relaxed version φ(τ) of

the specification with minimal temporal relaxation |τ |TR.

In Problem 5.1, we can set L1 = L(T) and L2 = ∅, and we choose the following

cost function:

F (x, y, τ) =


|τ |TR x > 0

∞ otherwise

, (5.9)

where x, y ∈ Z≥0. The cost function in (5.9) is minimized by an output word of

T , which satisfies the relaxed version of φ with minimum temporal relaxation, see

Definition 5.6.

Learning

Let φ be a TWTL formula and Lp and Ln be two finite sets of words labeled as positive

and negative examples, respectively. We want to find a relaxed formula φ(τ) such

that the misclassification rate, i.e., |{w ∈ Lp | w 6|= φ(τ)}| + |{w ∈ Ln | w |= φ(τ)}|,

is minimized.

This case can be mapped to the generic formulation by setting L1 = Ln, L2 = Lp

and choosing the cost function

F (x, y, τ) = x+ y, (5.10)

which captures the misclassification rate, where x, y ∈ Z≥0.

97

5.4.2 Overview of the solution

We propose an automata-based approach to solve the verification, synthesis, and

learning problems defined above. Specifically, the proposed algorithm constructs an

annotated DFA A∞, which captures all temporal relaxations of the given formula

φ, i.e., L(A∞) = L(φ(∞)) (see Definition 5.9 for the definition of φ(∞)). Note

that the algorithm can also be used to construct a (normal) DFA A which accepts

the satisfying language of φ, i.e., L(A) = L(φ). Using the resulting DFA A∞, we

proceed in Section 5.7 to solve the synthesis and verification problems using a product

automaton approach. For the synthesis problem, we propose a recursive algorithm

that computes a satisfying path with minimum temporal relaxation. The learning

problem is solved by inferring the minimum relaxation for each trajectory and then

combining these relaxations to ensure minimum misclassification rate.

5.5 Properties of TWTL

In this section, we present properties of TWTL formulae, their temporal relaxations,

and their accepted languages.

In this chapter, languages are represented in three ways: as TWTL formulae, as

automata, and as sets. As one might expect, there is a duality between some oper-

ators of TWTL and set operations, i.e., conjunction, disjunction, and concatenation

correspond to intersection, union, and concatenation languages, respectively. Nega-

tion may be mapped to complementation with respect to the language of all bounded

words, where the bound is given by the time bound of the negated formula.

Proposition 5.4. The following properties hold

(φ1 · φ2) · φ3 = φ1 · (φ2 · φ3) (5.11)

98

φ1 · (φ2 ∨ φ3) = (φ1 · φ2) ∨ (φ1 · φ3) (5.12)

[φ1 ∨ φ2][a,b] = [φ1][a,b] ∨ [φ2][a,b] (5.13)

¬(Hdp) = [¬p][0,d] (5.14)

[φ1][a1,b1] = (Ha1−1>) · [φ1][0,b1−a1] (5.15)

(Hd1p) · (Hd2p) = Hd1+d2+1p (5.16)

[φ1][a,b] ⇒ [φ1][a,b+τ] (5.17)

(φ1 ⇒ φ2)⇒ ([φ1][a,b] ⇒ [φ2][a,b]) (5.18)

where φ1, φ2, and φ3 are TWTL formulae, p ∈ {s,¬s}, s ∈ AP ∪ {>}, and a, b, a1,

b1, d, d1, d2, τ ∈ Z≥0 such that a ≤ b and 1 ≤ a1 ≤ b1.

Proof. These follow directly from the semantics of TWTL formulae.

Definition 5.7 (Disjunction-Free Within form). Let φ be a TWTL formula. We say

that φ is in Disjunction-Free Within (DFW) form if for all within operators contained

in the formula the associated enclosed subformulae do not contain any disjunction

operators.

An example of a TWTL formula in DFW form is φ1 = [H2A][0,9] ∨ [H5B][0,9],

while a formula not in DFW form is φ2 = [H2A ∨H5B][0,9]. However, φ1 and φ2 are

equivalent by (5.13) of Proposition 5.4. The next proposition formalizes this property.

Proposition 5.5. For any TWTL formula φ, if the negation operators are only in

front of the atomic propositions, then φ can be written in the DFW form.

Proof. The result follows from the properties of distributivity of Boolean operators

and Proposition 5.4, which can be applied iteratively to move all disjunction operators

outside the within operators.

99

In the following, we define the notion of unambiguous concatenation, which en-

ables tracking of progress for sequential specifications. Specifically, if the property

holds, then an algorithm is able to decide at each moment if the first specification

has finished while monitoring the satisfaction of two sequential specifications.

Definition 5.8. Let L1 and L2 be two languages. We say that the language L1 · L2

is an unambiguous concatenation if each word in the resulting language can be split

unambiguously, i.e.,
(
L1,L1,L1 · (P (L2) \ {ε})

)
is a partition of P (L1 · L2), where

L1 = {w0,i | w ∈ L1, i ∈ {0, . . . , |w| − 2}} and P (L) denotes the maximal prefix

language of L.

The three sets of the partition from Definition 5.8 may be thought as indicating

whether the first specification is in progress, the first specification has finished, and

the second specification is in progress, respectively.

Proposition 5.6. Consider two languages L1 and L2. The language L1 · L2 is an

unambiguous concatenation if and only if L1 is an unambiguous language.

Proof. Let
(
L1,L1,L1 · (P (L2)\{ε})

)
be a partition of P (L1 · L2) and L be a proper

subset of L1. Assume that there exists w ∈ L and w′ ∈ L1 \ L such that w = w′0,i,

for some i ∈ {0, . . . , |w′| − 1}. It follows that w ∈ L1, because w 6= w′. However, this

contradicts the fact that L1 and L1 are disjoint.

Conversely, let L1 be unambiguous and consider a word w ∈ P (L1 · L2). Assume

that w ∈ L1 ∩ L1. It follows that {w} is a prefix language for L1 \ {w}, which

contradicts with the hypothesis that L1 is unambiguous. Similarly, if we assume that

there exists w ∈ P (L1)∩
(
L1 · (P (L2)\{ε})

)
, then there exists w′, w′′ ∈ L1 such that

w′ is a prefix of w, w is a prefix of w′′, and |w′| < |w| ≤ |w′′|. Thus, we arrive again

at a contradiction with the unambiguity of L1. Thus, the three sets form a partition

of P (L1 · L2).

100

In the following results, we frequently use the notion of abstract syntax tree of a

TWTL formula. An Abstract Syntax Tree (AST) of φ is denoted by AST (φ), where

each leaf corresponds to a hold operator and each intermediate node corresponds to a

Boolean, concatenation, or within operator. Given a TWTL formula φ, there might

exist multiple AST trees that represent φ. In this paper, AST (φ) is assumed to be

computed by an LL(*) parser (Parr, 2007). The reader is referred to (Hopcroft et al.,

2006) for more details on AST and parsers. An example of an AST tree of (5.6) is

illustrated in Figure 5·1.

·

[][1,8] ∧

H3B

[][0,4] H3C

[][0,2] H1A

Figure 5·1: An AST corresponding to the TWTL in (5.6). The inter-
mediate orange nodes correspond to the Boolean, concatenation, and
within operators, while the cyan leaf nodes represent the hold operators.

Proposition 5.7. Let τ ′, τ ′′ ∈ Zm such that φ(τ ′) and φ(τ ′′) are two feasible relaxed

formulae, where m is the number of within operators in φ. If τ ′ ≤ τ ′′, then φ(τ ′)⇒

φ(τ ′′).

Proof. The proof follows by structural induction over AST (φ). The base case is

trivial, since the leafs correspond to the hold operators. For the induction step,

the result follows trivially if the intermediate node is associated with a Boolean or

concatenation operator. The case of a within operator follows from (5.17) and (5.18) in

101

Proposition 5.4, i.e. [φ(τ)][a,b+τ1] ⇒ [φ(τ ′)][a,b+τ1] ⇒ [φ(τ ′)][a,b+τ
′
1], where a < b ∈ Z≥0

and τ ≤ τ ′ ∈ Zm. We assumed without loss of generality that the first component of

the temporal relaxation vectors is assigned to the root node.

Definition 5.9. Given an output word o, we say that o satisfies φ(∞), i.e., o |=

φ(∞), if and only if ∃τ ′ <∞ s.t. o |= φ(τ ′).

The next corollary follows directly from Proposition 5.7.

Corollary 5.8. Let τ <∞, then φ(τ)⇒ φ(∞), ∀τ .

Proposition 5.9. Let φ(τ ′) and φ(τ ′′) be two feasible relaxed formulae. If τ ′ ≤ τ ′′,

then ‖φ(τ ′)‖ ≤ ‖φ(τ ′′)‖.

Proof. The result follows by structural induction from (5.1) using a similar argument

as in the proof of Proposition 5.7.

An important observation about TWTL is that the accepted languages corre-

sponding to formulae are finite languages. In the following, we characterize such

languages in terms of the associated automata.

Definition 5.10. A DFA is called strict if and only if (i) the DFA is blocking, (ii)

all states reach a final state, and (ii) all states are reachable from the initial state.

Proposition 5.10. Any DFA A may be converted to a strict DFA in O(|SA|) time.

Proof. States unreachable from the initial state can be identified by traversing the

automaton graph from the initial state using either breath- or depth-first search.

Similarly, the states not reaching a final state can be removed by traversing the

automaton graph using the reverse direction of the transitions. Both operations take

at most O(|δA|) = O(|SA|), since there are at most |Σ| transitions outgoing from each

state, where Σ is the alphabet of A.

102

Note that a strict DFA is not necessarily minimal with respect to the number of

states.

Proposition 5.11. If L is a finite language over an alphabet Σ, then the correspond-

ing strict DFA is a directed acyclic graph (DAG). Moreover, given a (general) DFA

A, checking if its associated language L(A) is finite takes O(|SA|) time.

Proof. For the first part, assume for the sake of contradiction that A has a cycle.

Then, we can form words in the accepted language by traversing the cycle n ∈ Z≥0

times before going to a final state. Note that the states in the cycle are reachable

from the initial state and also reach a final state, because A is a strict DFA. It follows

that L is infinite, which contradicts the hypothesis. Checking if a DFA A is DAG

takes O(|SA|) by using a topological sorting algorithm, because of the same argument

as in Proposition 5.10.

Corollary 5.12. Let L be a finite unambiguous language over the alphabet Σ and A

be its corresponding strict DFA. The following two statements hold:

1. if s ∈ FA, then the set of outgoing transitions of s is empty.

2. A may be converted to a DFA with only one final states.

Proof. Consider a final state s ∈ FA. Assume that there exists s′ ∈ SA such that

s
σ→A s′, where σ ∈ Σ. Since A is strict, it follows that there is another final state

s′′ ∈ FA which can be reached from s′. Next, we form the words w and w′ leading

to s and s′′ passing trough s′, respectively. Clearly, w is a prefix of w′, which implies

that L is not an unambiguous language. The second statement follows from the first

by noting that in this case, merging all final states does not change the accepted

language of the DFA A.

103

5.6 Automata construction

In this section, we present a recursive procedure to construct DFAs for TWTL for-

mulae and their temporal relaxations. The resulting DFA are used in Section 5.7 to

solve the proposed problems in Section 5.4.1.

Throughout the paper, a TWTL formula is assumed to have the following prop-

erties:

Assumption 1. Let φ be a TWTL. Assume that (i) negation operators are only in

front of atomic propositions, and (ii) all sub-formulae of φ correspond to unambiguous

languages.

The second part (ii) of Assumption 1 is a desired property of specifications in

practice, because it is related to the tracking of progress towards the satisfaction of

the tasks. More specifically, if (ii) holds, then the end of each sub-formula can be

determined unambiguously, i.e., without any look-ahead.

5.6.1 Construction Algorithm

In (Vasile and Belta, 2014b), a TWTL formula φ is translated to an equivalent scLTL

formula, and then an off-the-shelf tool, such as scheck (Latvala, 2003) and spot (Duret-

Lutz, 2013), is used to obtain the corresponding DFA. In this section, we propose an

alternative construction, shown in Algorithm 10, with two main advantages: (i) the

proposed algorithm is optimized for TWTL formulae so it is significantly faster than

the method used in (Vasile and Belta, 2014b), and (ii) the same algorithm can be

used to construct a special DFA, which captures all τ -relaxations of φ, i.e., the DFA

A∞ corresponding to φ(∞).

Algorithm 10 constructs the DFA recursively by traversing AST (φ) computed via

an LL(*) parser (Hopcroft et al., 2006; Parr, 2007) from the leaves to the root. If the

104

Algorithm 10: Translation algorithm – translate(·)
Input: φ – the specification as a TWTL formula in DFW form
Output: A – translated DFA

1 if φ = φ1 ⊗ φ2, where ⊗ ∈ {∧,∨, ·} then
2 A1 ← translate(φ1), A2 ← translate(φ2)
3 A ← %⊗(A1,A2)

4 else if φ = Hdp, where p ∈ {s,¬s} and s ∈ AP then
5 A ← %H(p, d, AP)

6 else if φ = [φ1][a,b] then
7 A1 ← translate(φ1)
8 if inf then A ← %∞(A1, a, b)
9 else A ← %[](A1, a, b)

10 return A

parameter inf is true, then the returned DFA is an annotated DFA A∞ corresponding

to φ(∞); otherwise a normal DFA A is returned. Each operator has an associated

algorithm %⊗ with ⊗ ∈ {∧,∨, ·, H,∞, []}, which takes the DFAs corresponding to the

operands (subtrees of the operator node in the AST) as input. Then, %⊗ returns the

DFA that accepts the formula associated with the operator node. In the following,

we present elaborate on all operators and related operations, such as annotating a

DFA, relabeling the states of a DFA, or returning the truncated version of a DFA

with respect to some given bound.

5.6.2 Annotation

The algorithms presented in this section use DFAs with some additional annotation.

In this subsection, we introduce an annotated DFA and two algorithms, Algorithm 12

and Algorithm 11, that are used to (re)label DFAs and the associated annotation data,

respectively.

We assume the following conventions to simplify the notation: (i) there is a global

boolean variable inf accessible by all algorithms, which specifies whether the normal

105

or the annotated DFAs are to be computed; (ii) in all algorithms, we have Σ = 2AP ;

(iii) an element of σ ∈ Σ is called a symbol and is also a set of atomic propositions,

σ ⊆ AP ; (iv) a symbol σ is called blocking for a state s if there is no outgoing

transition from s activated by σ.

Annotation

An annotated DFA is a tuple A = (SA, s0,Σ, δ, FA, TA), where the first five compo-

nents have the same meaning as in Definition 2.3 and TA is a tree that corresponds

to the AST of the formula associated with the DFA. Each node T of the tree contains

the following information:

1. T.op is the operation corresponding to T ;

2. T.I is the set of initial states of the automaton corresponding to T ;

3. T.F is the set of final states of the automaton corresponding to T ;

4. T.left and T.right are the left and right child nodes of T , respectively.

Additionally, if T.op is ∨ (disjunction), then T has another attribute T.choice, which

is explained in Section Conjunction and disjunction.

Note that the associated trees are set to ∅ and are ignored, if the normal DFAs

are computed, i.e., inf is false.

The labels of the states change during the construction of the automata. Algo-

rithm 11 is used to update the labels stored in the data structures of the tree. The

algorithm takes the tree T as input, a mapping m from the states to the new labels,

and a boolean value e that specifies if the states are mapped to multiple new states.

The first step is to convert the states’ new labels to singleton sets if e is false (line

1). Then, the algorithm proceeds to process the tree recursively starting with T . The

106

mapping m is then used to compute t.I and t.F by expanding each state to a set and

then computing the union of the corresponding sets (lines 5-6). In the case of op = ∨,

the three sets B, L, and R, which form the tuple t.choices are also processed. The

elements of all three sets are pairs of a state s and a symbol σ ∈ Σ. Algorithm 11

converts the states of all these pairs in the tree sets (lines 7-12).

Algorithm 11: relabelTree(T,m, e)

Input: T – a tree structure
Input: m – (complete) relabeling mapping
Input: e – boolean, true if m maps states to sets of states

1 if ¬e then m(s)← {m(s)},∀s
2 stack ← [T]
3 while stack 6= [] do
4 t← stack.pop()
5 t.I ←

⋃
s∈t.I m(s)

6 t.F ←
⋃
s∈t.F m(s)

7 if op = ∨ then
8 B,L,R← t.choices
9 B′ ←

⋃
(sB ,σ)∈B{(s, σ) | s ∈ m(sB)}

10 L′ ←
⋃

(sL,σ)∈L{(s, σ) | s ∈ m(sL)}
11 R′ ←

⋃
(sR,σ)∈R{(s, σ) | s ∈ m(sR)}

12 t.choices← (B′, L′, R′)

13 if t.left 6= ∅ then stack.push(t.left)
14 if t.right 6= ∅ then stack.push(t.right)

Relabeling a DFA

The Algorithm 12 relabels the states of a DFA A with labels given by the mapping

m. The map m can be a partial function of the states. The states not specified are

labeled with integers starting from i0 in ascending order. If m is empty, then all states

are relabeled with integers. Lastly, if inf is true then the tree TA associated with the

DFA is also relabeled, otherwise it is set as empty.

107

Algorithm 12: relabel(A,m, i0)

Input: A = (SA, s0,Σ, δ, FA) – a DFA
Input: m – (partial) relabeling mapping
Input: i0 – start labeling index
Output: the relabeled DFA

1 for s ∈ SA s.t. @m(s) do
2 m(s)← i0
3 i0 ← i0 + 1

4 S ′A ← {m(s) | s ∈ SA}
5 δ′ ← {m(s)

σ→A m(s′) | s σ→A s′}
6 F ′A ← {m(s) | s ∈ FA}
7 if inf then T ′A ← relabelTree(TA,m)
8 else T ′A ← ∅
9 return (S ′A,m(s0),Σ, δ′, F ′A, T

′
A)

5.6.3 Operators

Hold

The DFA corresponding to a hold operator is constructed by Algorithm 13. The

algorithm takes as input an atomic proposition s in positive or negative form, a

duration d, and the set of atomic propositions AP . The computed DFA has d + 2

states (line 1) that are connected in series as follows: (i) if s is in positive form then

the states are connected by all transitions activated by symbols which contain s (lines

2-4); and (ii) if s is in negative form then the states are connected by all transitions

activated by symbols which do not contain s (lines 5-7). Lastly, if inf is true, a new

leaf node is created (line 8).

Conjunction and disjunction

The construction for conjunction and disjunction operations is based on the syn-

chronous product construction and is similar to the standard one (Hopcroft et al.,

2006). However, %∧ and %∨ produce strict DFAs, which only have one accepting state.

108

Algorithm 13: %H(p, d, AP)

Input: p ∈ {s,¬s}, s ∈ AP
Input: d – hold duration
Input: AP – set of atomic propositions
Output: DFA corresponding to Hdp

1 S ← {0, . . . , d+ 1}
2 if p = s then
3 Σs ← 2AP \ 2(AP\{s})

4 δ ← {i σ→A (i+ 1) | i ∈ {0, . . . , d}, σ ∈ Σs}
5 else
6 Σ¬s ← 2(AP\{s})

7 δ ← {i σ→A (i+ 1) | i ∈ {0, . . . , d}, σ ∈ Σ¬s}
8 if inf then T ← tree(Hd, ∅, ∅, {0}, {d+ 1})
9 else T ← ∅

10 return (S, 0, 2AP , δ, {d+ 1}, T)

Both algorithms recursively construct the product automaton starting from the initial

composite state. In the following, we describe the details of the algorithms separately.

Conjunction: The DFA corresponding to the conjunction operation is constructed

by Algorithm 14. The procedure is recursive and the synchronization condition,

i.e., the transition relation, is the following: given two composite states (s1, s2) and

(s′1, s
′
2), there exists a transition from the first state to the second state if there exists

a symbol σ such that: (i) there exists pairwise transitions enabled by σ in the two

automata (lines 9-11), i.e., s1
σ→A1 s

′
1 and s2

σ→A2 s
′
2; (ii) one automaton reached

a final state and the other has a transition enabled by σ (lines 5-8), i.e., either (a)

s1 = s′1 = sf1 and s2
σ→A2 s

′
2, or (b) s1

σ→A1 s
′
1 and s2 = s′2 = sf2. The first case

covers the synchronous execution (simulation) of both A1 and A2 when a symbol is

encountered. The second case corresponds to the situation when the two automata

require words of different sizes to accept an input. A simple example of this case

is the DFA encoding H2A ∧ H3B and the input word {A,B}, {A,B}, {A,B}, {B},

which clearly satisfies the TWTL formula.

109

Algorithm 14: %∧(A1,A2)

Input: A1 = (SA1 , s01,Σ, δ1, {sf1}, TA1) – left DFA
Input: A2 = (SA2 , s02,Σ, δ2, {sf2}, TA2) – right DFA
Output: DFA corresponding to L(A1) ∩ L(A2)

1 S ← {(s01, s02)}, E ← ∅
2 stack ← [(s01, s02)]
3 while stack 6= [] do
4 s = (s1, s2)← stack.pop()
5 if s1 = sf1 then

6 Sn ← {((s1, s
′
2), σ) | s2

σ→A2 s
′
2}

7 else if s2 = sf2 then

8 Sn ← {((s′1, s2), σ) | s1
σ→A1 s

′
1}

9 else
10 Sn ← {((s′1, s′2), σ) | ∃σ ∈ Σ s.t.

11 (s1
σ→A1 s

′
1) ∧ (s2

σ→A2 s
′
2)}

12 E ← E ∪ {(s, σ, s′) | (s′, σ) ∈ Sn}
13 S ′ ← {s′ | ∃σ ∈ Σ s.t. (s′, σ) ∈ Sn}
14 stack.extends(S ′ \ S)
15 S ← S ∪ S ′

16 mL =
{

(u, {(u, v) ∈ SA}) | u ∈ SA1

}
17 mR =

{
(v, {(u, v) ∈ SA}) | v ∈ SA2

}
18 TA ← tree(∧, relabelTree(TA1 ,mL,>),
19 relabelTree(TA2 ,mR,>), {(s01, s02)}, {(sf1, sf2)})
20 A ← (S, (s01, s02),Σ, E, {(sf1, sf2)}, TA)
21 return relabel(A, ∅, 0)

Note that Algorithm 14 generates only composite states which are reachable from

the initial composite state (s01, s02). The resulting automaton has a single final state

(sf1, sf2) which captures the fact that both automata must accept the input word in

order for the product automaton to accept it.

After the automaton is constructed, the corresponding tree is created (lines 16-

19). The child subtrees are taken from A1 and A2, and relabeled. The relabeling

mapping expands each state s to the set of all composite states, which have s as the

first or second component corresponding to whether s is a state of the left or right

110

automaton, respectively.

Disjunction: The disjunction operations is translated using Algorithm 15. The

first step of the algorithm is to add a trap state in each of the two automata A1

and A2 (line 1). All states of an automaton, except the final state, are connected via

blocking symbols to the trap state ./ (lines 3-4). The trap state has self-transitions for

all symbols. Afterwards, the algorithm creates the synchronous product automaton

in the same way as for the conjunction operation (lines 4-13). However, in this case,

we do not need to treat composite states that contain a final state of one of the two

automata separately. This follows from the semantics of the disjunction operation,

which accepts a word as soon as at least one automaton accepts the word.

In the standard construction (Hopcroft et al., 2006), the resulting automaton

would have multiple final states, which are computed in line 17. However, because

finals states do not have outgoing transitions, we can merge all final states and obtain

an automaton with only one final state (lines 17-20). The composite trap state is also

removed from the set of states (line 18).

The annotation tree is created similarly to the conjunction case (lines 21-24).

However, for the disjunction case, we add additional information on the automaton.

This information T.choices is used in latter algorithm to determine if a word has

satisfied the left, right, or both sub-formulae corresponding to the disjunction formula.

This is done by partitioning the transitions incoming into finals states (line 14-16)

and storing this partition in the associated tree node (line 25). Note that only the

start state and the symbol of each transition is stored in the partition sets and these

are well defined, because the DFAs are deterministic.

111

Algorithm 15: %∨(A1,A2)

Input: A1 = (SA1 , s01,Σ, δ1, {sf1}, TA1) – left DFA
Input: A2 = (SA2 , s02,Σ, δ2, {sf2}, TA2) – right DFA
Output: DFA corresponding to L(A1) ∪ L(A2)

1 S ′A1
← SA1 ∪ {./}, S ′A2

← SA2 ∪ {./}
2 δ′1 ← δ1 ∪ {(s, σ, ./) | s ∈ S ′A1

\ {sf1}, σ ∈ Σ,@δ1(s, σ)}
3 δ′2 ← δ2 ∪ {(s, σ, ./) | s ∈ S ′A2

\ {sf2}, σ ∈ Σ,@δ2(s, σ)}
4 S ← {(s01, s02)}, E ← ∅
5 stack ← [(s01, s02)]
6 while stack 6= [] do
7 s = (s1, s2)← stack.pop()
8 Sn ← {((s′1, s′2), σ) | ∃σ ∈ Σ s.t.
9 (s′1 = δ′1(s1, σ)) ∧ (s′2 = δ′2(s2, σ))}

10 E ← E ∪ {(s, σ, s′) | (s′, σ) ∈ Sn}
11 S ′ ← {s′ | ∃σ ∈ Σ s.t. (s′, σ) ∈ Sn}
12 stack.extends(S ′ \ S)
13 S ← S ∪ S ′

14 B ← {(s, σ) | ∃σ s.t. (s, σ, (sf1, sf2)) ∈ E}
15 L← {(s, σ) | ∃s2 6= sf2,∃σ s.t. (s, σ, (sf1, s2) ∈ E}
16 R← {(s, σ) | ∃s1 6= sf1,∃σ s.t. (s, σ, (s1, sf2) ∈ E}
17 F ← {(s1, s2) ∈ S | (s1 = sf1) ∨ (s2 = sf2)}
18 S ← S \ (F ∪ {(./, ./)})
19 E ← E \ {(s, σ, s′) ∈ E | s′ ∈ F}
20 E ← E ∪ {(s, σ, (sf1, sf2)) | (s, σ) ∈ B ∪ L ∪R}
21 mL =

{
(u, {(u, v) ∈ SA}) | u ∈ SA1

}
22 mR =

{
(v, {(u, v) ∈ SA}) | v ∈ SA2

}
23 TA ← tree(∨, relabelTree(TA1 ,mL,>),
24 relabelTree(TA2 ,mR,>), {(s01, s02)}, {(sf1, sf2)})
25 TA.choices← (B,L,R)
26 A ← (S, (s01, s02),Σ, E, {(sf1, sf2)}, TA)
27 return relabel(A, ∅, 0)

Concatenation

The algorithm to compute an automaton accepting the concatenation language of

two languages is shown in Algorithm 16. The special structure of the unambiguous

languages, see Section 5.5 for details, admits a particularly simple and intuitive con-

112

struction procedure. The composite automaton is obtained by identifying the final

state of left automaton A1 with the initial state of the right automaton A2.

Algorithm 16: %·(A1,A2)

Input: A1 = (SA1 , s01,Σ, δ1, {sf1}, TA1) – left DFA
Input: A2 = (SA2 , s02,Σ, δ2, {sf2}, TA2) – right DFA
Output: DFA corresponding to L(A1) · L(A2)

1 A1 ← relabel(A1, ∅, 0)
2 A2 ← relabel(A2, {(s02, sf1)}, |SA1|)
3 if inf then T ← tree(·, TA1 , TA2 , {s01}, {sf2})
4 else T ← ∅
5 return (SA1 ∪ SA2 , s01,Σ, δ1 ∪ δ1, {sf2}, T)

Within

There are two algorithms used to construct a DFA associated with a within operator,

Algorithm 17 and Algorithm 18 correspond to the relaxed and normal construction

(lines 6-9 of Algorithm 10).

Relaxed within: The construction procedure Algorithm 17 is as follows: starting

from the DFA corresponding to the enclosed formula, all states are connected via

blocking symbols to the initial state (lines 3-4). The last step is to create a number

of a states connected in sequence for all symbols, similarly to Algorithm 13, and

connecting the a-th state to the initial state also for all symbols (lines 5-8).

Connecting all states to the initial state represents a restart of the automaton in

case a blocking symbol was encountered. Thus, the resulting automaton offers infinite

retries for a word to satisfy the enclosed formula. The a states added before the initial

state represent a delay of length a for the start of the tracking of the satisfaction of the

enclosed formula. Note that the procedure and resulting automaton do not depend

on the upper bound b.

Normal within: The algorithm for the normal case builds upon Algorithm 17. In

113

Algorithm 17: %∞(A, a, b)
Input: A = (SA, s0,Σ, δ, {sf}, TA) – child DFA
Input: a – lower bound of time-window
Input: b – upper bound of time-window
Output: computed DFA

1 A ← relabel(A, ∅, 0)
2 S ← ∅, E ← ∅
3 for s ∈ SA \ {sf} do
4 E ← E ∪ {(s, σ, s0) | @s′ = δ(s, σ)}
5 if a > 0 then
6 S ← {|SA| , . . . , |SA|+ a− 1}
7 E ← E ∪

{
(i, σ, i+ 1) | i ∈ S \ {|SA|+ a− 1}, σ ∈ Σ

}
8 E ← E ∪ {(|SA|+ a− 1, σ, s0) | σ ∈ Σ}

9 T ← tree([]
[a,b]
∞ , TA, ∅, {|SA|}, {sf})

10 return (SA ∪ S, |SA| ,Σ, δ ∪ E, {sf}, T)

this case the construction procedure Algorithm 18 must take into account the upper

time bound b. Similarly to the relaxed case, we need to restart the automaton of the

when a blocking symbol is encountered. However, there are two major differences:

(i) the automaton must track the number of restarts, because there are only a finite

number of tries depending on the deadline b, and (ii) the automaton A may need to

be truncated for the last restart retries, i.e., all paths must have a length of at most

a given length, in order to ensure that the satisfaction is realized before the upper

time limit b.

In Algorithm 18, first the maximum number of restarts p is computed in lines

1-2. Then, p DFAs are created (lines 3-12), which correspond to the relabeled and

truncated copies of A, see Algorithm 19, and their union is computed iteratively. The

truncation bound is computed as the remaining time units until the limit b is reached.

The final state is always labeled with −1 (line 7) and, therefore, the resulting DFA

has exactly one final state. Next, the restart transitions are added (lines 13-18).

114

Algorithm 18: %[](A, a, b)
Input: A = (SA, s0,Σ, δ, {sf}, TA) – child DFA
Input: a – lower bound of time-window
Input: b – upper bound of time-window
Output: computed DFA

1 l← Dijkstra(A, s0, sf)
2 p← b− a− l + 2
3 I ← [] // list

4 n← 0
5 Ar ← (SAr = ∅,∞,Σ, δr = ∅, ∅, ∅)
6 for k ∈ {1, . . . , p} do
7 m← {(sf ,−1)} // mark final state

8 Aa ← relabel(A,m, n)
9 At ← truncate(Aa, b− a+ 2− k)

10 Ar ← (SAr ∪ SAt ,∞,Σ, δr ∪ δt, {−1}, ∅)
11 I ← I + [s0t]
12 n← n+ |SAt|
13 Sc ← {I[0]}, E ← ∅
14 for sr ∈ I[1 :] do
15 Sn ← ∅
16 for s ∈ Sc \ {−1} do
17 E ← E ∪ {(s, σ, sr) | σ ∈ Σ s.t. @δr(s, σ)}
18 Sc ← Sc ∪ {sr}
19 S ← ∅
20 if a > 0 then
21 S ← {|SAr | , . . . , |SAr |+ a− 1}
22 E ← E ∪

{
(i, σ, i+ 1) | i ∈ S \ {|SAr |+ a− 1}, σ ∈ Σ

}
23 E ← E ∪ {(|SAr |+ a− 1, σ, s0) | σ ∈ Σ}
24 return (SAr ∪ S, I[0],Σ, δr ∪ E, {−1}, ∅)

Note that the transitions, enabled by blocking symbols, lead to initial states of the

proper restart automaton. For example, if a blocking symbol was encountered after

two symbols, then the restart transition (if it exists) leads to the initial state of the

fourth copy of the automaton. Lastly, a delay of a time units is added before the

initial state of the automaton similar to the relaxed case.

115

Truncate

Algorithm 19 takes as input a DFA A and a cutoff bound l and returns a version of

A with all paths guaranteed to have length at most l. The algorithm is based on a

breath-first search and returns a strict DFA.

Algorithm 19: truncate(A, l)
Input: A = (SA, s0,Σ, δ, {sf}, TA) – a DFA
Input: l – cutoff value
Output: computed DFA

1 S ← {s0}
2 E ← ∅
3 Ln ← {s0}
4 for i ∈ {1, . . . , l} do
5 Lc ← Ln
6 Ln ← ∅
7 for s ∈ Lc do

8 for (sc, σc) ∈ {(s′, σ)|∃σ ∈ Σ s.t. s
σ→A s′} do

9 E ← E ∪ (s, σc, sc))
10 if sc /∈ S then
11 S ← S ∪ {sc}
12 Ln ← Ln ∪ {sc}

13 At = (SA, s0,Σ, δ \ E, {sf}, TA)

14 Straps = {s ∈ SA|@σ ∈ Σ∗ s.t. s
σ→At sf}

15 return (SA \ Straps, s0,Σ, δ \ E, {sf}, TA)

5.6.4 Correctness

The following theorems show that the proposed algorithms for translating TWTL

formulae to (normal or annotated) automata are correct.

Theorem 5.13. If φ is a TWTL formula satisfying Assumption 1 and the global

parameter inf is true, then Algorithm 10 generates a DFA A∞ such that L(A∞) =

L(φ(∞)).

116

Proof. The proof follows by structural induction on AST (φ) and the properties of

TWTL languages.

Before we proceed with the induction, notice that all construction algorithms

associated with the operators of TWTL generate strict DFAs with only one final

state without any outgoing transitions.

The base case corresponds to the leaf nodes of AST (φ) which are associated with

hold operators, see Figure 5·1, and follows by construction from Algorithm 13.

The induction hypothesis requires that the theorem holds for the DFAs returned

by the recursion in Algorithm 10. In the case of the conjunction and disjunction

operators, the property follows from the product construction method (Hopcroft et al.,

2006). The theorem holds also for the concatenation operator, because: (a) the

returned DFAs have one final state without any outgoing transitions, and (b) the

languages corresponding to the two operand formulae are unambiguous. Thus, the

correctness of the construction described in Algorithm 16 follows immediately from

the unambiguity of the concatenation, see Definition 5.8. Lastly, the case of the

within operator (relaxed form), follow from the Assumption 1. The within operator

adds transitions to a DFA from each state to the initial state on all undefined symbols.

In other words, the operator restarts the execution of a DFA from the initial state.

If there are no disjunction operators, then going back to the initial state is the only

correct choice. Otherwise, because of alternative paths induced by disjunction, there

might be other states from which the DFA might need to go back to in order to

correctly restart.

Theorem 5.14. If φ is a TWTL formula satisfying Assumption 1 and the global

parameter inf is false, then Algorithm 10 generates DFA A such that L(A) = L(φ).

Proof. The proof is similar to that of Theorem 5.13 and is omitted for brevity.

117

5.6.5 Complexity

In this section, we review the complexity of the algorithms presented in the previous

section for the construction of DFAs from TWTL formulae. The complexity of basic

composition operations for incomplete and acyclic DFAs has been explored in (Maia

et al., 2013; Han and Salomaa, 2007; Câmpeanu et al., 2001; Gao et al., 2011; Daciuk,

2003). Our construction algorithms differ from the ones in the literature because we

specialized and optimized them to translate TWTL formulae and handle words over

power sets of atomic propositions.

The complexity of the relabeling procedures are O(|T |) and O(|SA|) corresponding

to Algorithm 11 and Algorithm 12, respectively. The complexity of the hold operator

Algorithm 13 is O(d ·2|AP |). The construction algorithms for conjunction and disjunc-

tion Algorithm 14 and Algorithm 15 have the same complexity O(|SA1 | · |SA2| · 2|AP |),

because these are based on the product automaton construction. Concatenation has

complexity O(|SA1| + |SA2|) due to the relabeling operations. Lastly, the within op-

eration can be performed in O(a · 2|AP | + |SA| · 2|AP |) and O(a · 2|AP | + b |SA| · 2|AP |)

for the infinity Algorithm 17 and the normal Algorithm 18 construction, respectively,

where Algorithm 19 used in the normal construction procedure takes O(|SA| · 2|AP |).

The overall translation algorithm Algorithm 10 takes at most O(2|φ|+|AP |).

It is very important to notice that the infinity construction does not depend on the

deadline b, which makes the procedure more efficient than the normal construction.

5.7 Verification, Synthesis, and Learning Algorithms

In this section, we will use the following notation. Let T be an annotation tree

associated with a DFA. We denote by φT the TWTL formula corresponding to the

tree T . Given a finite sequence p = p0, . . . , pn, we denote the first and the last

118

elements by b(p) = p0 and e(p) = pn, respectively.

Definition 5.11 (Primitive). Let φ be a TWTL formula. We say that φ is primitive

if φ does not contain any within operators.

5.7.1 Compute temporal relaxation for a word

The automata construction presented in Section 5.6 can be used to compute the

temporal relaxation of words with repsect to TWTL formulae. Let φ be a TWTL

formula and σ be a word. In this section, we show how to infer (synthesize) a set of

temporal relaxations τ of the deadlines in φ such that σ satisfies φ(τ) and |τ |TR is

minimized. Algorithm 20 computes the vector of temporal relaxations corresponding

to each within operator. First, the annotated DFA A∞ is computed together with

the associated annotation tree T (line 2). Next, additional annotations are added to

the tree T using the initTreeTR() procedure (line 3). Each node corresponding to

a within operation is assigned three variables T.ongoing, T.done and T.steps, which

track whether the processing of the operator is ongoing, done, and the number of steps

to process the operator, respectively. The three variables are initialized to ⊥, ⊥, and

−1, respectively. Then, Algorithm 20 cycles through the symbols of the input word

σ and updates the tree using updateTree() via Algorithm 21. Finally, the temporal

relaxation vector is returned by the evalTreeTR() procedure via Algorithm 22.

The tree is updated recursively in Algorithm 21. A within operator is marked as

ongoing, i.e., T.ongoing = >, when the current state is in the set of initial states

associated with the operator (line 2). Similarly, when the current state is in the set

of final states associated with the operator, the within operator is marked as done

(lines 3-6), i.e. T.done = > and T.ongoing =⊥. The number of steps T.steps of all

ongoing within operators is incremented (line 7).

To enforce correct computation of the temporal relaxation with respect to the

119

Algorithm 20: tr(·) – Compute temporal relaxation

Input: σ a word over the alphabet 2AP

Input: φ a TWTL formula
Output: τ ∗ - minimum maximal temporal relaxation
Output: τ - temporal relaxation vector

1 if φ is primitive then return (−∞, [])
2 A∞, T ← translate(φ; inf = >)
3 initTreeTR(T)
4 sprev ←⊥; sc ← s0

5 updateTreeTR(T, sc, sprev, ∅, ∅)
6 for σ ∈ σ do
7 if sc ∈ FA∞ then break
8 sprev ← sc
9 sc ← δA∞(sc, σ)

10 updateTreeTR(T, sc, sprev, σ, ∅)
11 return evalTreeTR(T)

disjunction operators, Algorithm 21 keeps track of a set of constraints C. The set

C is composed of state-symbol pairs, and is used to determine which of the two

subformulae of a disjunction are satisfied by the input word (lines 12-17). To achieve

this, we use the annotation variables T.choices (see Algorithm 15), which capture

both cases. For all other operators, the constraint sets are propagated unchanged

(lines 8, 10, 11).

Finally, Algorithm 22 extracts the temporal relaxation from the annotation tree T

after all symbols of the input word σ were processed. Algorithm 22 also computes the

minimum maximum temporal relaxation value, which may be −∞ if φ is primitive

(line 1). The recursion in Algorithm 22 differs between disjunction and the other

operators. One subformula is sufficient to hold to satisfy the formula associated

with a disjunction operator. Thus, the optimal temporal relaxation is the minimum

or maximum between the two optimal temporal relaxations of the subformulae for

disjunction (line 12), and conjunction and concatenation (line 13), respectively. Lines

120

Algorithm 21: updateTreeTR(·)
Input: sc – current state
Input: sprev – previous state
Input: σ – current symbol in word
Input: C – set of constraints associated with the states

1 if T.op = [][a,b] then
2 if sc ∈ T.I then T.ongoing ← >
3 if sc ∈ T.F then
4 if (C = ∅) ∨ (σ ⊆ C(sprev)) then
5 T.ongoing ←⊥
6 T.done← >

7 if T.ongoing then T.τ ← T.τ + 1
8 updateTreeTR(T.left, sc, sprev, σ, C)

9 else
10 if T.op = · then CL ← ∅; CR ← C
11 else if T.op = ∧ then CL ← C; CR ← C
12 else if T.op = ∨ then
13 CL ← T.choices.L ∪ T.choices.B
14 CR ← T.choices.R ∪ T.choices.B
15 if C 6= ∅ then
16 CL ← C ∩ CL
17 CR ← C ∩ CR

18 updateTreeTR(T.left, sc, sprev, σ, CL)
19 updateTreeTR(T.right, sc, sprev, σ, CR)

15-16 of Algorithm 22 cover the cases involving primitive subformulae.

The complexity of Algorithm 20 is O(2|φ|+|AP | + |σ| · |φ|), where the first term is

the complexity of constructing A∞ in line 1 and the second term corresponds to the

update of the tree for each symbol in σ and the final evaluation of the tree.

5.7.2 Control policy synthesis for a finite transition system

Let T be a finite transition system, and φ a specification given as a TWTL formula.

The procedure to synthesize an optimal control policy by minimizing the temporal

relaxation has three steps:

121

Algorithm 22: evalTreeTR(·)
Input: T – annotated tree
Output: τ ∗ - minimum maximal temporal relaxation
Output: τ - temporal relaxation vector

1 if φT is primitive then return (−∞, [])

2 else if T.op = [φ][a,b] then
3 τ ∗ch, τ ch = evalTreeTR(tree.left)
4 if T.done = > then
5 return

(
max{τ∗ch, T.steps− b}, [τ ch, T.steps− b]

)
6 else
7 return

(
−∞, [τ ch,−∞]

)
8 else // ∧, ∨ or ·
9 τ ∗L, τL = evalTreeTR(tree.left)

10 τ ∗R, τR = evalTreeTR(tree.right)
11 if (τ ∗L 6= −∞) ∧ (τ ∗R 6= −∞) then
12 if T.op = ∨ then τ ∗ ← min{τ ∗L, τ ∗R}
13 else τ ∗ ← max{τ ∗L, τ ∗R}
14 else
15 if T.op = ∨ then τ ∗ ← max{τ ∗L, τ ∗R}
16 else τ ∗ ← −∞
17 return

(
τ ∗, [τL, τR]

)

1. constructing the annotated DFA A∞ corresponding to φ,

2. constructing the synchronous product P = T × A∞ between the transition

system T and the annotated DFA A∞,

3. computing the optimal policy on P using Algorithm 23 and generating the

optimal trajectory of T from the optimal trajectory of P by projection.

Before we present the details of the proposed algorithm, we want to point out

that completeness may be decided easily by using the product automaton P . That

is, testing if there exists a temporal relaxation such that a satisfying policy in T may

be synthesized can be performed very efficiently as shown by the following theorem.

122

Theorem 5.15. Let φ be a TWTL formula and T be a finite transition system.

Deciding if there exists a finite τ ∈ Zm and a trajectory x of T such that o |= φ(τ),

can be performed in O(|∆| · |δA∞|), where m is the number of within operators in φ,

A∞ is the annotated DFA corresponding to φ, o is the output trajectory induced by

x, and ∆ and δA∞ are the sets of transitions of T and A∞, respectively.

Remark 5.16. The complexity in Theorem. 5.15 is independent of the deadlines of

the within operators φ.

Proof. The result follows immediately using Dijkstra’s algorithm on the product au-

tomaton P .

Note that Dijkstra’s algorithm may not necessarily provide an optimal trajectory

of T with respect to the minimum maximum temporal relaxation of the induced out-

put word. Thus, we present a Dijkstra-based procedure to compute an optimal policy

using the product automaton P . The proposed solution is presented in Algorithm 23,

which describes a recursive procedure over an annotated AST tree T .

The recursive procedure in Algorithm 23 has six cases. The first case (lines 1-3)

corresponds to a primitive formula. In this case, there are no deadlines to relax since

the formula does not contain any within operators. Thus, solutions (if any exist)

can be computed using Dijkstra’s algorithm. The next two cases treat the within

operators. In the former case (lines 4-5), the enclosed formula is a primitive formula

and the only deadline which must be optimized is the one associated with the current

within operator. In the latter case (lines 7-10), the enclosed formula is not primi-

tive. Therefore, there are multiple deadlines that must be considered. To optimize

the temporal relaxation |·|TR, we take the maximum between the previous maximum

temporal relaxation and the current temporal relaxation (line 10). The fourth case

(lines 11-15) handles the concatenation operator. First, the paths and the corre-

123

Algorithm 23: Policy synthesis – policy(T,P)

Input: T – the annotation AST tree
Input: P – product automaton

1 if φT is primitive then
2 M = {p | b(p) ∈ T.I, e(p) ∈ T.F}
3 τ ∗[p] = −∞,∀p ∈M
4 else if T.op = [][a,b] ∧ φT.left is primitive then
5 M = {p | b(p) ∈ T.I, e(p) ∈ T.F}
6 τ ∗[p] = |p| − b,∀p ∈M
7 else if T.op = [][a,b] ∧ φT.left is not primitive then
8 Mch, τ

max
ch = policy(T.left,P)

9 M = {pi
a→ p

∗→ p′ | pi ∈ T.I, p
∗→ p′ ∈Mch}

10 τ ∗[p] = max{|p| − b, τ ∗ch[p]},∀p ∈M
11 else if T.op = · then
12 ML, τ

∗
L = policy(T.left,P)

13 MR, τ
∗
R = policy(T.right,P)

14 M = {p1 · p2 | p1 ∈ML,p2 ∈MR, e(p1)→P b(p2)}
15 τ ∗[p] = max{τ ∗L(p), τ ∗R(p)}, ∀p ∈M
16 else if T.op = ∨ then
17 ML, τ

∗
L = policy(T.left,P)

18 MR, τ
∗
R = policy(T.right,P)

19 M = ML ∪MR

20 τ ∗[p] =


τ ∗L[p] p ∈M \MR

τ ∗R[p] p ∈M \ML

min{τ ∗L[p], τ ∗R[p]} p ∈ML ∩MR

21 else if T.op = ∧ then
22 ML, τ

∗
L = policy(T.left,P)

23 MR, τ
∗
R = policy(T.right,P)

24 M = ML ∩MR

25 τ ∗[p] = max{τ ∗L(p), τ ∗R(p)}, ∀p ∈M
26 return (M , τ ∗)

sponding temporal relaxations are computed for the left and the right subformulae in

lines 12 and 13, respectively. Afterwards, the paths satisfying the left subformula are

concatenated to the paths satisfying the right formula. However, the concatenation

124

of paths pL and pR is restricted to pairs which have the following property: there

exists a transition in P between the last state of pL and the first state in pR. The

temporal relaxation of the concatenation of two paths is the maximum between the

temporal relaxations of the two paths (line 15). The next case is associated with

the disjunction operator (lines 16-20). As in the concatenation case, first the paths

satisfying the left ML and the right MR subformulae are computed in lines 17 and

18, respectively. The set corresponding to the disjunction of the two formulae is the

union of the two sets because the paths must satisfy either one of the two subfor-

mulae. The temporal relaxation of a path p in the union is computed as follows

(line 20): (a) if a path is only in the left, p ∈ ML \MR, or only in the right set,

p ∈ MR \ML, then the temporal relaxation is τ ∗L[p] or τ ∗R[p], respectively; (b) the

path is in both sets, p ∈ML ∩MR, then the temporal relaxations is the minimum of

the two previously computed ones, min{τ ∗L[p], τ ∗R[p]}. In the case (a), p satisfies only

one subformula and, therefore, only one temporal relaxation is available. In the case

(b), p satisfies both subformulae. Because only one is needed, the subformula that

yields the minimum temporal relaxation is chosen, i.e., the minimum between the two

temporal relaxations. The last case handles the conjunction operator (lines 21-25).

As in the previous two cases, the paths satisfying the left and the right subformulae

are computed first (lines 22-23). Then the intersection of the two sets is computed

as the set of paths satisfying the conjunctions because the paths must satisfy both

subformulae. The temporal relaxations of the paths in the intersections are computed

as the maxima between the previously computed temporal relaxations for the left and

the right subformulae.

Note that considering primitive formulae in Algorithm 23, instead of traversing the

AST all the way to the leaves, optimizes the running time and the level of recursion

of the algorithm.

125

A very important property of Algorithm 23 is that its complexity does not depend

on the deadlines associated with the within operators of the TWTL specification

formula φ. This is an immediate consequence of the DFA construction proposed in

Section 5.6. Moreover, it follows from Remark 5.3 that the completeness with respect

to φ (unrelaxed) may also be decided independently of the values of the deadline

values. Formally, we have the following results.

Theorem 5.17. Let φ be a TWTL formula and T be a finite transition system.

Synthesizing a trajectory x of T such that o |= φ(τ) and |τ |TR is minimized can be

performed in O(|φ| · |∆| · |δA∞|), where τ ∈ Zm, m is the number of within operators

in φ, A∞ is the annotated DFA corresponding to φ(∞), o is the output trajectory

induced by x, and ∆ and δA∞ are the sets of transitions of T and A∞, respectively.

Proof. The worst-case complexity of Algorithm 23 is achieved when the TWTL for-

mula φ has the form of primitive formulae enclosed by within operators and then

composed by either the conjunction, disjunction, and concatenation operators.

The recursive algorithm stops when it encounters the primitive formulae and ex-

ecutes Dijkstra’s algorithm that takes at most O(|∆P |) = O(|∆| · |δA∞|) time. Since

the recursion is performed with respect to an AST T of φ, the algorithm processes

each operator only once. The complexity bound follows because the size of the set of

paths M returned by the algorithm is at most the sum of the sized of the sets cor-

responding to the left and the right sets ML and MR, respectively. Thus, we obtain

the bound O(|φ| · |∆| · |δA∞|) by summing up the time complexity over all nodes of

T .

Corollary 5.18. Let φ be a TWTL formula and T be a finite transition system.

Deciding if there exists a trajectory x of T such that o |= φ can be performed in

O(|φ| · |∆| · |δA∞|), where A∞ is the annotated DFA corresponding to φ, o is the

126

output trajectory induced by x, and ∆ and δA∞ are the sets of transitions of T and

A∞, respectively.

Proof. It follows from Theorem. 5.17 and Remark 5.3.

5.7.3 Verification

The procedure described in Algorithm 24 solves the verification problem of a transi-

tion system T against all relaxed versions of a TWTL specification First, the anno-

tated DFA A∞ corresponding to φ is computed (line 1). Then a trap state ./ is added

in line 2 (see Algorithm 15 for details). Note that the final state is not connected to

trap state. The transition system T is composed with the DFA A∞ to produce the

product automaton P (line 3).

Lastly, it is checked if all trajectories of P reach the final state in finite time (line

4), i.e., satisfy a relaxation of φ. The condition in line 4 ensures that: (i) there are

final states; (ii) all paths are finite, i.e., P is a DAG; and (iii) the only allowed sink

states are the final states, i.e., the out degree deg(v) of all non-final states v of P is

positive.

Algorithm 24: Verification

Input: T – transition system
Input: φ – TWTL specification
Output: Boolean value

1 A∞ ← translate(φ; inf = >)
2 add trap state ./ to A∞
3 P ← T ×A∞
4 return FP 6= ∅ ∧ isDAG(P) ∧

(∧
p∈SP\FP deg(v) > 0

)

127

5.7.4 Learning deadlines from data

In this section, we present a simple heuristic procedure to infer deadlines from a

finite set of labeled traces such that the misclassification rate is minimized. Let φ be

a TWTL formula and Lp and Ln be two finite sets of words labeled as positive and

negative examples, respectively. The misclassification rate is |{w ∈ Lp | w 6|= φ(τ)}|+

|{w ∈ Ln | w |= φ(τ)}|, where φ(τ) is a feasible τ -relaxation of φ. The terms of the

misclassification rate are the false negative and false positive rates, respectively.

The procedure presented in Algorithm 25 uses Algorithm 20 to compute the tight-

est deadlines for each trace. Then each deadline is determined in a greedy way such

that the misclassification rate is minimized. The heuristic in Algorithm 20 is due to

the fact that each deadline is considered separately from the others. However, the

deadlines are not independent with respect to the minimization of the misclassifica-

tion rate.

Notice that the algorithm constructs A∞ only once at line 1. Then the automaton

is used in the tr(·) function to compute the temporal relaxation of each trace, lines

2-3. Thus, the procedure avoids building A∞ for each trace.

In Algorithm 25, m denotes the number of within operators and b is the m-

dimensional vector of deadlines associated with each within operator in the TWTL

formula φ. We assume that the order of the within operators is given by the post-order

traversal of AST (φ), i.e., recursively traversing the children nodes first and then the

node itself.

The complexity of the learning procedure is O
(
2|φ|+|AP | + (|Lp|+ |Ln|) · lm · |φ|+

m2 ·(|Lp|+ |Ln|)
)
, where: (a) the first term is the complexity of constructing A∞ (line

1); (b) the second term corresponds to computing the tight deadlines for all traces

positive and negative in lines 2 and 3, respectively; (c) the third term is the complexity

of the for loop, which computes each deadline separately in a greedy fashion (lines

128

Algorithm 25: Parameter learning

Input: Lp – set of positive traces
Input: Ln – set of negative traces
Input: φ – template TWTL formula
Output: d – the vector of deadlines

1 A∞ ← translate(φ; inf = >)
2 Dp ← {tr(p,A∞) + b | p ∈ Lp}
3 Dn ← {tr(p,A∞) + b | p ∈ Ln}
4 d← (−∞,−∞, . . . ,−∞) // m-dimensional

5 for k ∈ {1, . . . ,m} do
6 Dk ← {d′[k] | d′ ∈ Dp ∪Dn}
7 d[k]← arg mind∈Dk

(∣∣Dk
FP (d)

∣∣+
∣∣Dk

FN(d)
∣∣), where

8 Dk
FP (d)← {d′[k] | d′[k] > d,d′ ∈ Dn}

9 Dk
FN(d)← {d′[k] | d′[k] ≤ d,d′ ∈ Dp}

10 return d

5-9). The maximum length of a trace (positive or negative) is denoted by lm in the

complexity formula.

5.8 TWTL Python Package

We provide a Python 2.7 implementation named PyTWTL of the proposed algorithms

based on LOMAP (Ulusoy et al., 2013c), ANTLRv3 (Parr, 2007) and networkx (Hag-

berg et al., 2008) libraries. PyTWTL implementation is released under the GPLv3

license and can be downloaded from hyness.bu.edu/twtl. The library can be used to:

1. construct a DFA Aφ and a annotated DFA A∞ from a TWTL formula φ;

2. monitor the satisfaction of a TWTL formula φ;

3. monitor the satisfaction of an arbitrary relaxation of φ, i.e., φ(∞);

4. compute the temporal relaxation of a trace with respect to a TWTL formula;

5. compute a satisfying control policy with respect to a TWTL formula φ;

http://hyness.bu.edu/twtl

129

6. compute a minimally relaxed control policy with respect to a TWTL formula

φ, i.e., for φ(τ) such that |τ |TR is minimal;

7. verify if all traces of a system satisfy some relaxed version of a TWTL formula

φ;

8. learn the parameters of a TWTL formula φ, i.e., the deadlines of the within

operators in φ.

The parsing of TWTL formulae is performed using ANTLRv3 framework. We

provide grammar files which may be used to generate lexers and parsers for other

programming languages such as Java, C/C++, Ruby. To support Python 2.7, we used

version 3.1.3 of ANTLRv3 and the corresponding Python runtime ANTLR library,

which we included in our distribution for convenience.

5.9 Case Studies

In this section, we present some examples highlighting the solutions for the verifica-

tion, synthesis and learning problems. First, we show the automaton construction

procedure on a TWTL formula and how the tight deadlines are inferred for a given

trace. Then, we consider an example involving a robot whose motion is modeled as

a TS. The policy computation algorithm is used to solve a path planning problem

with rich specifications given as TWTL formulae. The procedure for performing ver-

ification, i.e., all robot trajectories satisfy a given TWTL specification, is also shown.

Finally, the performance of the heuristic learning algorithm is demonstrated on a

simple example.

130

5.9.1 Automata Construction and Temporal Relaxation

Consider the following TWTL specification over the set of atomic propositions AP =

{A,B,C,D}:

φ = [H2A][0,6] · ([H1B][0,3] ∨ [H1C][1,4]) · [H1D][0,6] (5.19)

·

·

[][0,6] H1D

∨

[][1,4] H1C

[][0,3] H1B

[][0,6] H2A

Figure 5·2: The AST corresponding to the TWTL formula in (5.19).

An AST of formula φ is shown in Figure 5·2. The TWTL formula φ is converted

to an annotated DFA A∞ using Algorithm 10. The procedure recursively constructs

the DFA from the leafs of the AST to the root. A few processing steps are shown in

Figure 5·3. The construction of DFA corresponding to a leaf, i.e., a hold operator, is

straightforward, see Figure 5·3a. Next, the transformation corresponding to a within

operator is shown in Figure 5·3b. Note that the delay of one time unit is due to the

lower bound of the time window of the within operator. Also, note that the automaton

restarts on symbols that block the DFA corresponding to the inner formula H1C.

The next two figures, Figure 5·3c and Figure 5·3d, show the translation of the

disjunction operator. Specifically, Figure 5·3c, shows the product DFA corresponding

to the disjunction without merging the final states. Since none of the final states have

131

s0 s1 s2 s3
A A A

(a) H2A

s0 s1 s2 s3
> C

¬C

C

¬C
(b) [H1C][1,]

s00

s11 s22

s01 s02 s13

s12 s23

s21

s03

B

¬
B

B ∧ ¬C

B ∧ C

¬
B
∧
¬
C

¬
B
∧
C

¬B ∧ ¬C

B
∧
¬
C B

∧ C

¬B ∧ C

¬B ∧ ¬C

B
∧
¬
C

¬B ∧ C

B ∧ C

¬B
∧ ¬

C

B ∧ C

B
∧ ¬
C

¬
B
∧
C

(c) [H1B][0,] ∨ [H1C][1,]

s00

s11

s01

s02

s12

sf

B

¬
B

B

¬
B
∧
¬
C

¬B ∧
C

¬B ∧ ¬C

B
∧
¬
C

B ∧ C
¬B
∧ C

¬B
∧ ¬
C

B ∧ ¬C

C

¬B ∧ ¬C

B
∨
C

(d) [H1B][0,] ∨ [H1C][1,]

s0 s1 s2 s3

s4

s5

s6

s7

s8

s9 s10
A

¬A

A

¬A

A

¬A

B

¬
B

B

¬
B
∧
¬
C

¬B ∧
C

¬B ∧ ¬C

B
∧
¬
C

B ∧ C
¬B
∧ C

¬B
∧ ¬
C

B ∧ ¬C

C

¬B ∧ ¬C

B
∨
C

D

¬D

D

¬
D

(e) [H2A][0,] · ([H1B][0,] ∨ [H1C][1,]) · [H1D][0,]

Figure 5·3: Annotated automata corresponding to subformulae of the
TWTL specification in (5.19).

132

outgoing transitions, see Corollary 5.12, and they can be merged into a single final

state, see Figure 5·3d. However, we still need to keep track of which subformula of

the disjunctions holds. The annotation variable T.choices, introduced in Section 10,

stores this information as
L = {(s11, B ∧ ¬C), (s11, B ∧ C), (s12, B ∧ ¬C)},

R = {(s02,¬B ∧ C), (s02, B ∧ C), (s12,¬B ∧ C)},

B = {(s12, B ∧ C)}.

(5.20)

Notice that the tuples in (5.20) correspond to the ingoing edges of the final states in

the DFA from Figure 5·3c. Finally, the DFA corresponding to the overall specification

formula φ is shown in Figure 5·3e.

Let φA = [H2A][0,6], φB = [H1B][0,3], φC = [H1C][1,4], and φD = [H1D][0,6] be

subformulae of φ associated with the within operators. The annotation data for these

subformulae is shown in the following table.

Subformula T.I T.F

φ {s0} {s10}
φA {s0} {s3}
φB {s3, s5, s6} {s8}
φC {s3} {s3}
φD {s8} {s10}

Consider the following word over the alphabet Σ = 2AP :

σ = ε, {A}, {A}, {A}, ε, {B,C}, {B,C}, ε, {D}, {D} (5.21)

where ε is the empty symbol. The following table shows the stages of Algorithm 20

as the symbols of the word σ are processed:

133

No. Symbol State φA φB φC φD

Init s0 (>,⊥, 0) (⊥,⊥,−1) (⊥,⊥,−1) (⊥,⊥,−1)
0 ε s0 (>,⊥, 1) (⊥,⊥,−1) (⊥,⊥,−1) (⊥,⊥,−1)
1 {A} s1 (>,⊥, 2) (⊥,⊥,−1) (⊥,⊥,−1) (⊥,⊥,−1)
2 {A} s2 (>,⊥, 3) (⊥,⊥,−1) (⊥,⊥,−1) (⊥,⊥,−1)
3 {A} s3 (⊥,>, 3) (>,⊥, 0) (>,⊥, 0) (⊥,⊥,−1)
4 ε s5 (⊥,>, 3) (>,⊥, 1) (>,⊥, 1) (⊥,⊥,−1)
5 {B,C} s7 (⊥,>, 3) (>,⊥, 2) (>,⊥, 2) (⊥,⊥,−1)
6 {B,C} s8 (⊥,>, 3) (⊥,>, 2) (⊥,>, 2) (>,⊥, 0)
7 ε s8 (⊥,>, 3) (⊥,>, 2) (⊥,>, 2) (>,⊥, 1)
8 {D} s9 (⊥,>, 3) (⊥,>, 2) (⊥,>, 2) (>,⊥, 2)
9 {D} s10 (⊥,>, 3) (⊥,>, 2) (⊥,>, 2) (⊥,>, 2)

where each 3-tuple in last four columns represents the annotation variables T.ongoing,

T.done and T.steps, respectively. The temporal relaxation for σ can be extracted from

the values in the last row by subtracting the deadlines of the within operators from

them. Thus, the vector of tightest τ values is (−3,−1,−2,−3). However, because φB

and φC are in disjunction, we have the temporal relaxation τ = (−3,−∞,−2,−3),

where we choose to ignore the subformula containing φB. Thus, the maximum tem-

poral relaxation is |τ |TR = −2.

5.9.2 Control Policy Synthesis

Consider a robot moving in an environment represented as the finite graph shown

in Figure 5·4a. The nodes of the graph represent the points of interest, while the

edges indicate the possibility of moving the robot between the edges’ endpoints. The

numbers associated with the edges represent the travel times, and we assume that all

the travel times are integer multiples of a time step ∆t. The robot may also stay at

any of the points of interest.

The motion of the robot is abstracted as a transition system T , which is obtained

from the finite graph by splitting each edge into a number of transitions equal to the

corresponding edge’s travel time. The generated transition system thus has 27 states

134

and 67 transitions and is shown in Figure 5·4b.

Base

A

D

B

C

2 1

12

3

23 3

3

(a) An environment with five points of interest, Base A, B, C, and D. The edges indicate
the existence of paths between their endpoints, while the associated numbers represent the
travel times of the edges. The robot may stay at a region of interest.

Base

A

ε ε

ε

ε

Bεε

ε

ε

C

ε

ε

εε

D ε ε

ε

ε ε

ε

εε

εε

(b) The transition system T obtained from the environment graph shown in Figure 5·4a.

Figure 5·4: The environment where the robot operates and its ab-
straction T .

Consider the TWTL specification φ from (5.19). The product automaton P =

T × A∞ is constructed, where A∞ is the annotated DFA corresponding to φ(∞)

shown in Figure 5·3e. The product automaton P has 204 states and 378 transitions.

135

The control policy computed by using Algorithm 23 is

x = Base,A,A,A,C,C,Base,D,D, (5.22)

which generates the output word

σ = ε, ε, {A}, {A}, {A}, ε, {C}, {C}, ε, ε, {D}, {D}. (5.23)

The minimum temporal relaxation for σ is |τ |TR = −2, where τ = (−2,−∞,−2,−3)

is the minimal temporal relaxation vector associated with σ.

5.9.3 Verification

In the verification problem, we are concerned with checking for the existence of relaxed

specifications for every possible run of a transition system.

To illustrate this problem, consider the transition system in Figure 5·5 and the

following two TWTL specifications:

φ1 = [H1A][1,2] (5.24)

φ2 = [H3¬B][1,2] (5.25)

A

B

B

εA

Figure 5·5: A simple transition system T simple.

To check the transition system T simple against the two specifcations, we can use

Algorithm 24. It is straightforward that the procedure will return true for φ1, because

136

every run of T simple satisfies φ1(3) = [H1A][1,2+3]. Note that the runs of the transition

system may not need to satisfy the original specification as the satisfaction of a

relaxed version is sufficient. Similarly, Algorithm 24 returns false for φ2, because

there exists a run of T simple that does not satisfy any relaxation of the specification,

e.g., x = (A,B,B, ε, A)∗.

An important conclusion highlighted by the two examples is that the verification

problem proposed in this paper is concerned with checking a system against the logical

structure of a specification and not against any particular time bounds. This might

be useful in situation where the deadlines of the specification are not known a priori,

but the logical structure of the specification is.

5.9.4 Learning deadlines from data

In the previous two cases, we use the TWTL specifications in conjunction with prob-

lems involving infinite sets of words encoded as transition systems. However, it is

often the case that only finite sets of (output) trajectories are available. In this

section, we give a simple example of the learning problem presented in Section 5.4.

Consider the specification φl = [H1A][0,d1] · [H2B][0,d2] with unknown deadlines and

the following set of labeled trajectories, where Cp and Cn are the positive and negative

example labels, respectively:

Word Label Deadlines

σ1 ={A},{A},{A},{B},{B},{B},{B},ε Cp (1, 3)
σ2 =ε, {A},{A},ε, {B},{B},{B},ε Cp (2, 3)
σ3 ={B},ε, {A},{A},{B},{B},{B},{B} Cn (3, 2)
σ4 =ε, {A},{A},ε, ε, {B},{B},{B} Cn (2, 4)

The last column in the above table shows the tight deadlines obtained in lines 2

and 3 of Algorithm 25. Next, the learning algorithm computes the heuristic sets Dk
FP

and Dk
FN , k ∈ {d1, d2}, of false positive and false negative trajectories, respectively:

137

Deadline Value Dk
FP Dk

FN

∣∣Dk
FP

∣∣+
∣∣Dk

FN

∣∣
d1 1 ∅ {σ2} 1
d1 2 {σ4} ∅ 1
d1 3 {σ3,σ4} ∅ 2
d2 2 {σ3} {σ1,σ2} 3
d2 3 {σ3} ∅ 1
d2 4 {σ3,σ4} ∅ 2

Finally, Algorithm 25 chooses the deadline pair d = (d1, d2) = (1, 3) that has the

lowest heuristic misclassification rate,
∣∣Dk

FP

∣∣ +
∣∣Dk

FN

∣∣ shown in the last column of

the above table, for d1 and d2, respectively. An important observation is that the

inferred formula φd
l = [H1A][0,1] · [H2B][0,3] has zero as actual misclassification rate.

The discrepancy between the values in the table and the actual value of the final mis-

classification rate are due to the heuristic of synthesizing each deadline separately.

Thus, the heuristic procedure in Algorithm 25 ignores the temporal and logical struc-

ture of the template TWTL formula which may lead to suboptimal performance, i.e.,

misclassification rate.

We also tested the learning algorithm on larger sets of trajectories. Algorithm 25

was ran using the template TWTL formula [H2A][0,d1] · [H3B][2,d2] · [H2C][0,d3]. The

inference was performed using a set of 100 trajectories, 50 positive and 50 nega-

tive, shown in Figure 5·6. Executing Algorithm 25 returned the vector of deadlines

(d1, d2, d3) = (29, 40, 31) that induces a misclassification rate of 14%.

138

Figure 5·6: The training set contains 50 positive and 50 negative
labeled trajectories.

139

Chapter 6

Persistent Vehicle Routing Problem with

Charging and Temporal Logic Constraints

We propose a new formulation and algorithms for the Vehicle Routing Problem

(VRP). To accommodate persistent surveillance missions, which require executions in

infinite time, we define Persistent VRP (P-VRP). The vehicles consume a resource,

such as gas or battery charge, which can be replenished when they visit replenish sta-

tions. The mission specifications are given as rich, temporal logic statements about

the sites, their service durations, and the time intervals in which services should

be provided. Two different optimization criteria are considered. The first is the

infinite-time limit of the duration needed for the completion of a surveillance round.

The second penalizes the long-term average of the same quantity. The proposed

algorithms, which are based on concepts and tools from formal verification and opti-

mization, generate collision-free motion plans automatically from the temporal logic

statements and vehicle characteristics such as maximum operation time and mini-

mum replenish time. Illustrative simulations and experimental trials for a team of

quadrotors involved in persistent surveillance missions are included.

6.1 Environment and Vehicle Models

For simplicity of presentation, we assume the team is made of N identical vehicles.

At the end of the paper, we discuss how this assumption can be relaxed. Let E =

140

(Q = S ∪ C,∆, $) be a graph environment, where S is the set of sites and C is the

set of replenish stations or depos. An edge e ∈ ∆ ⊆ Q×Q denotes that a vehicle can

move between the source and destination of the edge. We assume that the vehicles

can deterministically choose to traverse the edges of E , stay at a site for service, or

stay docked in a charging station. Each edge has an associated duration given by

$: ∆ → Z≥1. We assume that the duration associated to an edge includes the

time for obstacle avoidance maneuvers and docking or undocking, if applicable. For

now, we assume that this value is the exact time that a vehicle needs to travel the

corresponding edge. However, the method developed in this paper also works for the

case when this value is an upper bound for the travel time.

We assume that a collision between two vehicles can occur in one of the following

three situations: (1) both are at the same node at the same time; (2) both traverse

the same edge at the same time (they may start the motion at different times); (3) a

vehicle arrives at a node less that tcol after the departure of another vehicle from the

same node.

Each vehicle has a limited amount of a resource, such as fuel or battery charge,

and must regularly return to a replenish station. For simplicity, we assume that

the resource is battery charge (level), and we will refer to the replenish stations as

charging stations. We use top to denote the maximum operation time for a vehicle

starting with a fully charged battery and tch to denote the charging time starting

with an empty battery. For simplicity, we assume that time is discretized, and all

durations (e.g., $(∆), tcol, top, tch) are expressed as an integer multiple of a time

interval ∆t. Let γ = tch
top
≥ 1 be the charge-discharge (integer) ratio.

The battery state bt(i) of vehicle i ∈ {1, . . . , N} at time t ∈ Z≥0 is discretized such

that bt(i) ∈ {0, . . . , tch}. The update rule for bt(i) after d time units is defined as

141

follows:

bt+d(i) =


min{bt(i) + d, tch} vehicle i is docked

bt(i)− γd otherwise

(6.1)

The batteries may be charged at any of the charging stations C. Charging may start

and stop at any battery state. Once a vehicle is fully charged, it will remain fully

charged until it leaves the charging station. We assume that at the start of the mission

all vehicles are fully charged and docked.

At each time, each vehicle may be in one of the following four states: (1) moving

between sites and charging stations, (2) servicing a request at a site, (3) charging or

(4) idle if docked and fully charged. If a vehicle is either moving or servicing a request,

we will say that the vehicle is active. A time interval such that all vehicles are docked

and at least one is charging is called no flight time (NFT). A time interval in which all

vehicles are idle is called idle time. We require that NFTs and idle times are maximal

time intervals, i.e. they may not be extended on either side while maintaining their

defining property.

For q ∈ Q, we use ~q to denote that a vehicle is moving towards q. Let ~Q = {~q | q ∈

Q}. A control policy for the N vehicle system is a sequence v = v1v2 . . . where

vt ∈ (Q ∪ ~Q)N specifies at each time t ∈ Z≥0 and for each vehicle i ∈ {1, . . . , N}

if vehicle i is at a site or charging station or if it is moving. Let vt(i) and v(i),

i ∈ {1, . . . , N}, denote the control value for vehicle i at time t and the control policy

for vehicle i (i.e., the sequence of control values), respectively. Then a transition

(q1, q2) ∈ ∆ performed by vehicle i starting at time t will correspond to vt(i) = q1,

vt+d(i) = q2 and vt+k(i) = ~q2, k ∈ {1, . . . , d−1}, where d = $((q1, q2)) is the duration

of the transition. Servicing or charging for one time interval (∆t time) by vehicle i

at time t corresponds to vt(i) = vt+1(i) ∈ Q.

For a control policy v = v1v2 . . . we define the corresponding output word o =

142

o1o2 . . ., where ot = {vt(i)|vt(i) ∈ S, i ∈ {1, . . . , N}} is the set of all sites occupied by

the N vehicles at time t ∈ Z≥0. We use ε to denote that no site is occupied. Let q[d]

and qω denote d and infinitely many repetitions of q, respectively.

Example 6.1. An example for the case of N = 2 vehicles, 3 sites, and 3 charging

stations is shown in Figure 6·1. A possible control policy v for vehicle 1 (blue) and

vehicle 2 (red) is:

v(1) = Ch
[1]
3
~C [3]C [4] ~A[2], A[3] ~Ch

[3]

1 , Ch
[18]
1 Ch

[54]
1(

Ch
[1]
1
~C [3]C [4] ~A[2]A[3] ~Ch

[3]

1 Ch
[18]
1 Ch

[54]
1

)ω
v(2) = Ch

[1]
2 Ch

[17]
2

~B[3]B[3] ~C [4]C [3] ~Ch
[4]

3 Ch
[54]
3(

Ch
[1]
3 Ch

[17]
3

~B[3], B[3] ~C [4]C [3] ~Ch
[4]

3 Ch
[54]
3

)ω (6.2)

Under control strategy (6.2), the blue vehicle services sites C and A and the red

vehicle services sites B and A infinitely often. The blue and red vehicles always

return to Ch1 and Ch3, respectively. The corresponding output word is

o =
(
ε[4]C [4]ε[2]A[3]ε[8]B[3]ε[4]C [3]ε[58]

)ω
.

6.2 P-VRP Formulation

Let v be a control policy. We say that v is feasible if at each moment in time the N

vehicles are pairwise in collision free states and have non-negative battery states, i.e.,

bt(i) ≥ 0 for all i ∈ {1, . . . , N} and t ∈ Z≥0.

Definition 6.1 (Persistent surveillance). A control policy is said to satisfy the per-

sistent surveillance specification Gφ, where φ is a TWTL formula, if the generated

output word satisfies the TWTL formula φ infinitely often and there is no idle time

between any two consecutive satisfactions of φ.

143

Figure 6·1: An environment with 3 sites, S = {A,B,C}, and 3 charg-
ing stations, C = {Ch1, Ch2, Ch3}. The two numbers associated to each
edge correspond to the durations for the two directions of the edge, e.g.,
the durations of edges (B,C) and (C,B) are 5 and 6, respectively. The
vehicles, shown in blue and red, start fully charged from the charging
stations Ch3 and Ch2, respectively. The charging time is tch = 60, the
operation time is top = 20 (γ = 3), and the collision time is tcol = 2.

Note that, while the satisfaction of Gφ does not allow for idle time between suc-

cessive satisfactions of φ, there may be no flight time to allow for the vehicles to

recharge.

Problem 6.1 (P-VRP Completeness). Given an environment E = (Q = S∪C,∆, $),

N vehicles, operation time top, charging time tch, collision time tcol, and a TWTL

formula φ over S, find a feasible control policy that satisfies Gφ if one exists, otherwise

report failure.

Let v be a feasible control policy satisfying Gφ. We define a loop as a finite

subsequence of v starting with the satisfaction of the formula φ and ending before

the next satisfaction.

144

Example 6.2 (Example 6.1 revisited). Consider a mission in which it is required to

service site A for 2 time units within [0, 12] and site C for 3 time units within [0, 9].

In addition, within [0, 32], site B needs to be serviced for 2 time units followed by

either A or C for 2 time units within [0, 8]. All the above requirements need to be

satisfied infinitely often. The corresponding formula is Gφtw, where

φtw = [H2A][0,12] ∧ [H2B[H2A ∨ C][0,8]][0,32] ∧ [H3C][0,9]

The control policy from (6.2) satisfies the above persistent surveillance specifica-

tion. It is easy to note that it is also feasible because at most one vehicle is active at

all times and the battery states for both vehicles are always non-negative. For each

vehicle, the control policy has a loop ending after a NFT, which is marked in gray.

The NFTs ensure that the vehicles start each loop fully charged.

Let T (k) be the start time of the k-th loop and ∆T (k) = T (k + 1)− T (k) be the

loop time. Let

J1(v) = lim sup
k→∞

∆T (k) (6.3)

and

J2(v) = lim
k→∞

T (k + 1)

k
= lim

k→∞

∑k
i=1 ∆T (i)

k
(6.4)

be two cost functions that penalize the asymptotic upper bound of the loop time and

the long-term average loop time, respectively.

Problem 6.2 (Optimality). Under the same assumptions stated in Problem 6.1,

find a satisfying and feasible control policy that minimizes J1 (or J2) if one exists,

otherwise report failure.

Our approach to Problems 6.1 and 6.2 is inspired from automata-based model

checking. The TWTL formula is translated to a finite state automaton that accepts

145

the satisfying language. This is then composed with finite transition systems modeling

the motion of the vehicles in the environment and the charging constraints. The

satisfiability and optimality problems are solved on the resulting product automaton.

6.3 Control Policy

For a finite set Σ, we denote by Pk(Σ) the set of k-permutations.

Algorithm 26: Product Automaton

Input: T – transition system
Input: φ – specification as a TWTL formula
Input: N – number of vehicles
Input: tcol – collision time
Input: top, tch – operation time and charging time

1 Construct product transition system T N for the ME or FC operation mode
2 Generate charging FSA Ach with top, tch for N vehicles
3 Construct product Pch = T N ×Ach
4 Transform φ to an scLTL formula ψ
5 Construct the FSA Aspec corresponding to ψ
6 Construct product automaton P = Pch ×Aspec

6.3.1 Motion model

We consider two modes of operation: (1) mutually exclusive mode, which assumes that

at any given time at most one vehicle is active (i.e., moving or servicing a request),

and (2) fully concurrent mode, which does not place any restrictions except that the

vehicles must be in collision free states at all times. The mutually exclusive mode of

operation has the advantage that it guarantees collision free control policies and also

extended overall operation time for the vehicles. This is a good fit for surveillance

missions, but may not be desired for rescue missions, where a parallel search approach

may be more effective. Also, as discussed at the end of the section, the complexity of

the presented algorithms is lower for the mutually exclusive mode.

146

Algorithm 27: Planning Algorithm – completeness

Input: T – transition system
Input: φ – specification as a TWTL formula
Input: N – number of vehicles
Input: tcol – collision time
Input: q0 ∈ PN(C) – initial vehicle locations
Input: top, tch – operation time and charging time
Output: v – control policy

1 P ← ConstructPA(T , φ,N, tcol, top, tch)
2 G = (V,E), V = PN(C), E = ∅
3 for (q1, q2) ∈ V × V do
4 if there is a satisfying path in P starting fully charged in q1 and ending

fully charged in q2 then E ← E ∪ (q1, q2) and controlP(q1, q2) stores the
computed path in P

5 if G is acyclic or no cycle is reachable from q0 then
6 return Failure
7 else
8 find a cycle qc and a path qp to the cycle in G
9 return βT N (controlP(qp)(controlP(qc))

ω)

The motion of a single vehicle is captured by a weighted transition system T =

(Q, q0, ∆̄, $̄,Π, h), where Q = S∪C is the set of states, q0 ∈ C is the initial state, ∆̄ =

∆ ∪ {(q, q)|q ∈ Q} is the set of transitions, $̄ : ∆̄→ Z≥1 is the weight function, Π =

S∪{ε} is the alphabet, and h : Q→ Π is the labeling function. The weights represent

the durations of transitions such that $̄(q, q′) = $(q, q′), for q 6= q′, and $̄(q, q′) = 1,

for q = q′. Thus, servicing and docking are modeled as self-loop transitions with

duration 1. The labeling function only assigns values to sites, i.e. h(q) = q for q ∈ S

and h(q) = ε otherwise.

Mutually exclusive (ME) operation mode

In order to capture the motion of all vehicles at the same time, we define a mutually-

exclusive product transition system (PTS) as a tuple T N = (Q̃, q̃0, ∆̃, ω̃,Π
N , h̃).

The set of states is defined such that there is at most one active vehicle, Q̃ =

147

PN(C) ∪ (
⋃N
k=1{(q1, . . . , qN)|qk ∈ S, (q1, . . . , qk−1, qk+1, . . . , qN) ∈ PN−1(C)}). At the

initial state, it is assumed that all vehicles are docked, q̃0 ∈ PN(C). A transition

(q1, . . . , qN)→ (q′1, . . . , q
′
N) ∈ ∆̃ if: (1) qi = q′i, ∀i, or (2) qk → q′k ∈ ∆, qi = q′i, ∀i 6= k

and q′k 6= qj, ∀j 6= k. The weight of a transition is 1 if the two endpoints are the same

or equal to the weight of the transition in ∆ corresponding to the second case above.

The labeling function is defined component-wise, h̃(q1, . . . , qN) = (h(q1), . . . , h(qN)).

Fully concurrent (FC) operation mode

We define a similar product transition system (PTS) T N = (Q̃, q̃0, ∆̃, ω̃,Π
N , h̃) as

before, but in this case we account for simultaneous active vehicles and collisions.

The simultaneous motions of the vehicles lead to a synchronization problem. Due to

space constraints, we only include an informal description of how this synchronization

problem is solved. We split all the edges of the single-vehicle transition system T into

edges of duration 1. We then proceed to compute the full PTS, which captures all

possible motions of the N vehicles, using this modified transition system. The last

step is to eliminate the states and edges of the PTS that determine collisions according

to the description from Section 6.1.

Note that we achieve collision avoidance using temporal separation, instead of

spatial separation as in the case of geometric approaches such as RRT (LaValle and

Kuffner, 1999; LaValle, 2006) or PRM (Kavraki et al., 1996). In our case, this is

beneficial since it prunes the PTS of undesired states and actually helps lower the

computation time in the fully concurrent mode. Also, for the case of quadrotors,

temporal separation also avoids undesired aerodynamic effects which may arise due

to close proximity of the vehicles. One example is the loss of lift when a quadrotor

is directly below another one. These phenomena are somewhat hard to encode in

geometric approaches.

148

6.3.2 Charging model

The charging process is modeled as a Finite State Automaton (FSA). Recall that the

charging time tch is an integer multiple of ∆t and γ = tch
top
∈ Z≥1 (see Section 6.2).

For the ME operation mode, the charging FSA is Ach = (SchA , s
ch
0 ,Σ

ch, δchA , F
ch
A).

SchA = ({0, . . . , tch})N is the set of states. A state stores the battery states for all

vehicles. The initial state is sch0 = (tch, . . . , tch) and corresponds to all vehicles be-

ing fully charged. The alphabet is Σch = ({(i, 0)|1 ≤ i ≤ N} ∪ {(0, i)|1 ≤ i ≤

N} ∪ {(i, i)|0 ≤ i ≤ N}) × D, where D is the set of the durations of all transition

of T . Each triple represents the current and previous active vehicle and the duration

of a transition from T . The value 0 for the current or previous active fields indicates

that no vehicle is active. By this convention, the three sets of pairs in the definition

of the alphabet capture undocking, docking, and moving or servicing performed by

vehicle i, respectively. The transition function is defined for two cases: (1) if all robots

are recharging (c = p = 0), then

δchA ((t1, . . . , tN), (c, p, d)) = (min(t1 + d, tch), . . . ,min(tN + d, tch));

(2) if one robot is active (c > 0 or p > 0), then

δchA ((t1, . . . , tN), (c, p, d)) = (min(t1 + d, tch), . . . , ta − γd, . . . ,min(tN + d, tch)),

where a = max(c, p). Note that the transition function resembles the charging rule

defined in Section 6.1. The set of final states F ch
A can be the whole set of states SchA if

no restrictions on the final battery states are defined. However, we will impose some

restrictions on F ch
A later in this section.

For the FC operation mode, we modify the alphabet to Σch = {0, 1}N × {0, 1}N ,

which specifies for each vehicle if it was docked or active in the current and pre-

149

vious time steps, respectively. The transition function must also be adapted. Let

(t′1, . . . , t
′
N) = δchA ((t1, . . . , tN), ((c1, . . . , cN), (p1, . . . , pN))). Then t′i = min(ti + 1, tch)

if ci = pi = 0, or t′i = ti−γ otherwise, for all i ∈ {1, . . . N}. Note that, in this case, we

do not include the durations of transitions in the alphabet, because by construction

all the transitions of the PTS have duration one in the FC mode.

6.3.3 Specification

To enforce the specification, we encode it as an automaton. We use the Algorithm 10

from Chapter 5 to obtain a FSA Aspec that accepts the language over 2S that satisfies

the formula.

Another, less efficient, option is to first translate the TWTL formula into scLTL

formula (Kupferman and Y. Vardi, 2001), and then use an off-the-shelf tool, such as

scheck (Latvala, 2003). Note that the size of obtained scLTL formulae is of the order

of the size of the TWTL formula times its time bound, thus yielding formulae which

are too long to handle by an operator. Consider the specification is to “satisfy A for

2 time units before 10”. The TWTL is [H2A][0,10], while the corresponding scLTL

formula has 24 operands and 75 operators for a total size of 99. Thus, a specification

language such as TWTL, which incorporates time bounds in the operators and avoids

the explosion of the formulae sizes, becomes necessity, rather than convenience.

6.3.4 Completeness

To provide a solution to Problem 6.1, we first define a product automaton that cap-

tures all feasible motions of the team that satisfy the specification and the charg-

ing constraints. First, we construct the product automaton Pch = T N × Ach be-

tween the motion model T N and the charging FSA Ach. We define it as Pch =

(SchP , s
ch
P0,∆

ch
P , ω

ch
P ,Π

N , hchP), where SchP = Q̃ × SchA is the set of states, schP0 = (q0, s
ch
0)

150

is the initial state, ∆ch
P ⊆ ∆̃ × δchA is the transition function, ωchP : ∆ch

P → Z≥1 is the

weight function, and hchP : SchP → ΠN is the labeling function. ωchP and hchP are inher-

ited from the transition system T N , i.e. for all (q, t) ∈ SchP and ((q, t), (q′, t′)) ∈ ∆ch
P

we have ωchP ((q, t), (q′, t′)) = ω̃(q, q′) and hchP (q, t) = h̃(q).

In the ME mode, a transition (q̃, t)→ (q̃′, t′) is in ∆ch
P if q̃ → q̃′ ∈ ∆̃, t→(c,p,d) t′,

d = ω̃(q, q′) and c and p are the indices of the active vehicle in states q′ and q,

respectively. If all vehicles are charging at state q or q′, then p = 0 or c = 0,

respectively. For the FC mode, a transition (q̃, t) → (q̃′, t′) is in ∆ch
P if q̃ → q̃′ ∈ ∆̃

and t →(c,p) t′, where c = (c1, . . . , cN) and p = (p1, . . . , pN) specify for each vehicle

i ∈ {1, . . . N} if it is active in states q′ and q, respectively.

Second, we construct the product automaton P = Pch × Aspec. This is de-

fined as P = (SP , s0, δP , ωP , FP), where SP = SchP × SspecA is the set of states,

s0 = ((q0, s
ch
0), sspec0) is the initial state, δP ⊆ ∆ch

P × δspecA is the transition func-

tion, ωP : δP → Z≥1 is the weight function and FP = SchP × F
spec
A is the set of final

states. A transition (p, s) → (p′, s) ∈ ∆P if p → p′ ∈ ∆ch
P and s →σ s′. In the

ME mode, σ = ε[d−1]hchP (q′c) if c > 0 and σ = ε[d] otherwise, where c is the index of

the active vehicle in p′ and d = ωchP ((p, s), (p′, s′)) is the duration of the transition.

For the FC mode, σ = {h(q′i)|i ∈ {1, . . . , N}} ∈ 2Π. As before, the weight func-

tion is inherited from the product Pch, i.e. for every ((p, s), (p′, s′)) ∈ ∆P we have

ωP((p, s), (p′, s′)) = ωchP (p, p′).

The algorithm to compute the product automaton P is outlined in Algorithm 26.

A feasible and satisfying control policy is computed in Algorithm 27 as a projection

on T N of a path from P . In Algorithm 27, βT denotes the canonical projection on

the T -component of the product.

We now show that Algorithm 27 produces a feasible and satisfying control policy

if one exists, thus solving Problem 6.1. The following statements are true for both

151

modes of operation (ME and FC). The only difference is in the construction of the

product automaton P , line 1 in Algorithm 27.

In the following, for two vectors b and b′, b′ ≥ b if the relationship holds component-

wise. The following proposition holds trivially.

Proposition 6.1. Let v be a feasible control policy starting with an initial charging

state b. Then v is a feasible control policy starting with any initial battery state b′ ≥ b.

Theorem 6.2. Algorithm 27 is complete.

Proof. Let q0 be the initial state of the N vehicle system. First, we reduce the

problem using Proposition 6.1, which implies that if a control policy v is feasible

then we can construct another control policy from it by appending at the end of each

loop a NFT such that every loop starts with the vehicles fully charged. Thus, in

order to asses feasibility we only need to check reachability between states where all

vehicles are docked and fully charged. Consider the graph G = (V = PN(C), E) from

Algorithm 27. The existence of a control policy is equivalent with the existence of

an infinite path in G. This in turn implies that there must be a cycle in G reachable

from the initial state q0. If we assume that there is no such cycle, then all paths

starting at q0 are finite, which implies that no control policy exists. It follows that

Algorithm 27 is complete.

6.3.5 Optimality

In Section 6.3.4, we showed that if Problem 6.1 admits a solution, then there is a

feasible control policy which has a prefix-suffix structure that can be computed on a

finite graph. In this section, we will establish the same result for the optimal version

of the problem (Problem 6.2) corresponding to the two cost functions J1 and J2.

Let Gopt = (V,E,w) be a weighted graph, where V = SchP is the vertex set. As in

Algorithm 27, we proceed to construct the edge set E such that (q, q′) ∈ E if there

152

is a satisfying path in P starting at (q, sspec0) and ending at (q′, sspecf), sspecf ∈ F spec.

The weight of w(q, q′) is equal to the minimum loop time. Note that loops that are

not minimal can be replaced by the minimal ones to decrease the overall cost. To

minimize J1, a cycle in Gopt with minimum maximum weight must be computed,

because the objective is to minimize the maximum loop time of any loop that is

repeated infinitely often. The J2 criterion is attained by a cycle in Gopt of minimum

average weight as shown by Proposition 6.3.

Proposition 6.3. Let G = (V,E,w) be a strongly connected graph with possible self-

loops and a weight map w : E → R+. There is a path v∗ = v1, . . . vp (vp+1, . . . vp+s)
ω

that minimizes J2 and J2(v∗) = 1
s
(w(vp+s, vp+1) +

∑s−1
i=1 w(vp+i, vp+i+1)).

Proof. It is easy to see that ignoring any finite prefix of v does not change the value

of J2. Let cs be the minimum average weight cycle in G and v be an infinite path.

Since v is infinite and V is finite it follows that there is a node vinf ∈ V such that

vinf appears infinitely often in v. Any finite sub-sequence of v delimited by vinf

defines a cycle. However, since cs has minimum average weight it follows that each

cycle in v delimited by vinf has a greater cost that vs. This in turn implies that

J2(v) ≥ J2((vs)
ω).

Remark 6.4. Finding the minimum average weight cycle is NP-complete. The re-

duction can be made from the Hamiltonian cycle problem. Therefore, we have to

impose some additional restrictions on the control policies in order to reduce Gopt to

a manageable size.

6.3.6 Complexity

The complexities of Algorithm 26 are different for the ME and FC modes. The con-

struction of the product transition system is O
(

|C|!
(N−|C|)! +N |R| |C|!

(N−|C|)! +N |∆|
)

for

153

the ME mode andO
(
((|Q|+ |∆|)dmaxtcol)N

)
for the FC mode, where dmax is the max-

imum duration of an edge in ∆. Constructing the charging FSA takesO
(
tNch(N

2dmax)
)

and O
(
tNch2

N
)

in ME and FC modes, respectively. We describe the complexity of the

next steps of Algorithm 26 in a unified manner. However, the actual complexity

differs between modes for steps 3 and 6, because they depend on the size of the

product transition system and the charging FSA. The complexity of these steps are

as follows: O
(∣∣∣Q̃∣∣∣ ∣∣SchA ∣∣+

∣∣∣∆̃∣∣∣ ∣∣δchA ∣∣) for constructing the first product, O (‖φ‖ |φ|)

for converting the TWTL formula φ to scLTL formula ψ, where |φ| is the length of

the formula (number of operators and propositions), O(2S22|ψ|) for converting the

scLTL formula to an FSA using scheck and O
(∣∣SchP ∣∣ |SspecA |+

∣∣δchP ∣∣ |δspecA |
)

for the final

product automaton.

The complexity of Algorithm 27 is O
(

|C|!
(N−|C|)!(SP + δP)

)
for constructing the

graph G = (V,E) and O(V + E) to test if there is a reachable cycle from the initial

state. Obtaining an optimal solution is NP-complete and therefore exponential in

|V |.

It is not surprising that the proposed algorithms have exponential complexity,

because the VRP problem itself is NP-hard. However, the one outstanding question

is how our approach compares to a MILP formulation in terms of scalability w.r.t.

the number of vehicles N . The automata-based approach is well suited for the per-

sistent VRP problem because it decreases the worst-case complexity over a MILP

implementation. In our approach, we compute a product automaton once and from

it we can compute control policies for loops. We then solve an NP-complete problem

on the one-loop reachability graph, whose vertex set is polynomial in the number of

robots N. Thus, the overall procedure has worst-case complexity O(2N + Nk+12N),

where k is the fixed difference between the number of depos and robots. On the

other hand, a MILP approach does not reuse previous computation and redundant

154

operations may be performed. As such, the worst-case complexity is O(2N +N2k2N).

This analysis only considers N as a variable (the other parameters are fixed) and that

the robots are identical. If we lift the latter assumption, the difference in complexity

becomes even greater, because the size of the vertex set of the one-loop reachability

graph becomes factorial in N . Thus, the automata-based approach has complexity

O(2N +N(N + k)!2N) and MILP has O(2N + (N + k)!22N). In practice, a MILP ap-

proach may be faster in computing a solution for a single loop, but since we need to

perform the operation repeatedly the automata approach may be faster overall. Also,

encoding the whole problem as a MILP program leads to 2-EXPTIME(N) complexity.

6.3.7 Generalizations

The presented framework can easily be modified to account for differences among

vehicles, with respect to both motion and replenishing models. Different motion

models can be specified as different individual transition systems {Ti}N1 , which can

be used to construct the product transition system T N . The resource model can also

be customized with vehicle specific charging and operation times, each satisfying the

assumptions from Section 6.3.2. The framework can also be minimally modified to

support the case when top
tch
∈ Z≥1, e.g., when the resource is fuel. In this case, tch and

top are interchanged in the construction of the state set of the charging FSA Ach and

the inverse of γ is used in the update rule.

Also, the proposed algorithms can be used for the case when the weights of the

edges in ∆ are upper bounds for travel times, rather than fixed durations. In this

case, worst-case feasible control policies are computed off-line, i.e. as described above,

and replanning is performed on-line when the actual transition durations become

available.

155

6.4 Implementation, Results, and Experimental Validation

We implemented the algorithms developed in this paper in a software tool that takes as

input an environment topology (i.e., the positions of the sites and charging stations),

the durations of the motions, the operation, charging times, and collision times, and

a mission specification in the form Gφ, where φ is a TWTL formula. The output

is a vehicle control policy. The tool, which was implemented in Python2.7, uses

the LOMAP (Ulusoy et al., 2013c) and networkx (Hagberg et al., 2008) packages

to manipulate and process automata. The tool has an input-output graphical user

interface (Figure 6·1 was generated using the tool).

The tool, running on a Linux system with a 2.1 GHz processor and 32GB memory,

was used to generate control policies for the case study presented in Examples 6.1

and 6.2. The TWTL formula φtw was translated to an FSA with 1468 states and

5845 transitions. In the ME mode, the construction of T N , Ach, Pch, and P took

1.7 msec, 491 msec, 13.5 sec, and 16 sec to compute. Their sizes were 24, 3721,

89304, 75538 states and 108, 127734, 332328, 263144 transitions, respectively. The

test for feasibility took 11 sec to execute. Note that the size of the final product

automaton P is not larger than the size of Pch. This is due to the implementation of

the construction of P , which contains only the states reachable from the initial ones.

A ME control policy is given in (6.2) from Example 6.1. The control policy is

feasible and satisfies the specification. Furthermore, it is also optimal with respect

to both J1 and J2 with the assumption that vehicles start each loop fully charged.

Without this assumption, the optimization problem would have to be solved on a

graph with 89304 vertices, which is intractable (see Section 6.3.5).

Using the FC mode and the same setup, but with top = 20 and tch = 40, the

construction of T N , Ach, Pch, and P took 662 msec, 387 msec, 25.8 min and 35.2 min

156

to compute. Their sizes were 3066, 1681, 5153946, 6487656 states and 5200, 24964,

7942452, 9669808 transitions, respectively. Feasibility was established in 6.65 min. A

feasible and satisfying control policy for the FC mode is

vFC(1) =
(
Ch

[2]
3
~Ch

[3]

3 C
[4] ~A[2]A[3] ~Ch

[6]

2 Ch
[40]
2 Ch

[1]
2
~Ch

[3]

2 B
[2] ~Ch

[3]

3 Ch
[49]
3

)ω
vFC(2) =

(
Ch

[1]
2
~Ch

[3]

2 B
[2] ~Ch

[3]

3 Ch
[49]
3 Ch

[2]
3
~Ch

[3]

3 C
[4] ~A[2]A[3] ~Ch

[6]

2 Ch
[40]
2

)ω
and the corresponding output word is

o =
(
ε[3]B[2]{B,C}[1]C [3]ε[2]A[3]ε[46]

)ω
,

where {B,C}[1] indicates that both sites B and C are occupied at the same time.

Figure 6·2: Quadrotor docked at a charging station.

The above case study was also implemented in our aerial vehicle experimental

setup, which consists of a team of quadrotors flying autonomously in an indoor space

equipped with a motion capture system, short-throw projectors that generate images

on the floor, and fully automatic charging stations that can detect the presence of a

vehicle and its charging level (see Figures 6·2 and 6·3). To generate transitions among

sites and charging stations, the 3D space was partitioned into small rectangular re-

gions. Using the framework developed in (Belta and Habets, 2006), vector fields were

157

designed in each rectangle to guarantee safe transitions between adjacent rectangles

and stabilization to the center of a rectangle (i.e., for servicing a site, which corre-

sponds to hover). The tool developed in (Gol and Belta, 2013) was used to determine

the (upper bounds for the) durations of the transitions. The durations of the landing

and take-off maneuvers at the charging stations were included in the durations of

the transitions to and from the charging stations. Quadrotor feedback control laws

were generated to follow the designed vector fields by using the framework developed

in (Zhou and Schwager, 2014).

We used the same setup as described in Example 6.1 (Figure 6·1) with the spec-

ification from Example 6.2. We consider the MC mode and a time interval ∆t of

6 sec. Four snapshots from a successful experimental trial are shown in Figure 6·3.

Consider the loop starting at Ch3 and Ch2 and ending at Ch1 and Ch3, respectively.

In this loop, the blue quadrotor visits site C, services C for at least 18 sec, visits

site A, services A for at least 12 sec, and lands at Ch1. After the first blue quadrotor

lands, the red one takes-off and visits site B, services B for at least 12 sec, visits

site C, services C for 12 sec, and lands at Ch3. The actual transition and servicing

durations were 21.47, 18.0, 5.55, 12.0, 23.9, 23.08, 12.0, 28.19, 12.01, 13.72 (all in

sec and in the order described above). These durations are bounded above by the

estimated durations that were used to compute the control policy, which were 24, 18,

18, 12, 24, 24, 12, 30, 12, 30. Note that specification φtw is satisfied, because: (1) A

is serviced in 57.01sec, before its deadline of 72 sec; (2) C is serviced in 38.47 sec,

before its deadline of 54 sec; (3) B followed by C are serviced in 156.2 sec, before the

deadline of 192 sec; and (4) C is serviced in 42.2 sec after B, before the deadline of

48 sec.

158

(a) Initial state (b) Servicing site A

(c) Docking at Ch1 (d) State at the end of the loop

Figure 6·3: Two quadrotors in an environment with three sites and
three charging stations. Figure 6·3a: the quadrotors are fully charged
and docked at the start of the mission. Figure 6·3b: the blue quadrotor
is servicing site A, while the red quadrotor is still docked at charging
station Ch2. The docking procedure is shown in Figure 6·3c. The blue
quadrobot attempts to land on charging station Ch1. At the end of the
first loop (Figure 6·3d), the quadrotors are docked at Ch1 and Ch3.

159

Chapter 7

Dynamic Persistent Vehicle Routing

Problem with Charging and Temporal

Logic Constraints

This chapter addresses a persistent vehicle routing problem, where a team of vehicles is

required to achieve a task repetitively. The task is given as a Time-Window Temporal

Logic (TWTL) formula defined over the environment. The fuel consumption of each

vehicle is explicitly captured as a stochastic model. As vehicles leave the mission area

for refueling, the number of vehicles may not always be sufficient to achieve the task.

We propose a decoupled and efficient control policy to achieve the task or its minimal

relaxation. We quantify the temporal relaxation of a TWTL formula and present

an algorithm to minimize it. The proposed policy has two layers: 1) each vehicle

decides when to refuel based on its remaining fuel, 2) a central authority plans the

joint trajectories of the available vehicles to achieve a minimally relaxed task. We

demonstrate the proposed approach via simulations and experiments involving a team

of quadrotors that conduct persistent surveillance. The framework presented in this

chapter differs from the one in Chapter 6 in four aspects: (a) it is developed for on-line

execution, (b) it assumes stochastic fuel models, (c) it penalized collisions between

vehicles instead of requiring avoidance, and (d) it considers relaxed specifications.

160

7.1 Problem Formulation

In this section, we formulate a VRP based on a persistent surveillance scenario.

Notation: q[d] denotes d repetitions of q.

7.1.1 Environment Model

Consider an environment that contains a set of monitoring sites (S) and a set of bases

(or charging stations) (C). Let E = (Q,∆, $) denote a weighted directed connected

graph, where Q = S ∪ C is the set of nodes representing the sites and the bases,

∆ ⊆ Q×Q is the set of edges representing the feasible travel between the nodes, and

$: ∆ → Z≥1 is the edge weight that represents the travel time between the nodes.

In this setting, we assume that there exists a path from any site to one of the bases

without visiting any other sites (e.g., dashed edges in Figure 7·1a).

7.1.2 Vehicle Model

Given E = (Q,∆, $), a team of vehicles move on the edges ∆ to pursue persistent

operations. For any q ∈ Q, ~q denotes moving towards q. Let ~Q = {~q|q ∈ Q}.

At any t, the state of vehicle i is [fi(t), xi(t)], where fi(t) is its remaining fuel, and

xi(t) ∈ Q ∪ ~Q is its target state (i.e., either the node it is occupying or the node

it is traveling to). In this paper, we only focus on the high-level planning. We

assume that low-level controllers drive the vehicles from their current states to the

designated target states (more information is provided in Section 7.4.2 for a case when

the vehicles are quadrotors).

Communication Model: We assume that 1) each vehicle can communicate with

all the other vehicles through a complete communication graph, 2) there is no cost

in communication, and 3) the information propagates significantly faster than the

motion of the vehicles.

161

Fuel Model: Each vehicle has limited fuel capacity and consumes fuel unless it is

located at a base. Accordingly, we use the following stochastic fuel model:

f(t+ 1) =

{
min

{
f(t) + δf c, fmax

}
if at base,

f(t)− δfd + ξ(t)− δf p otherwise,
(7.1)

where δf c > 0 is a constant refuel rate at the base, δfd > 0 is a constant fuel

consumption while operating, fmax is the maximum fuel capacity, ξ(t) is a random

variable modeling uncertainty in the fuel consumption, and δfp ∈ {0, β1, β2} models a

fuel penalty if the vehicles avoid collisions through some maneuvers. In other words,

if multiple vehicles travel the same edge or operate at the same node, they avoid

each other by modifying their trajectories, e.g., a change in flight altitude. Such

operational changes typically cause more fuel consumption. Thus, δf p = β1 > 0 for

each vehicle traveling the same edge or occupying the same node; δf p = β2 > β1

for each vehicle traveling the same edge and arriving the same node simultaneously;

δf p = 0 in other cases.

7.1.3 Control Policy

In a persistent surveillance mission, each vehicle needs to (i) avoid running out of fuel,

and (ii) work collaboratively to achieve a desired objective. Thus, each vehicle needs

an efficient decision for when to refuel and how to move. In this paper, we propose

to decouple the decision-making for refueling and operating in the surveillance area.

In the proposed policy, each vehicle has a label as active or inactive. A vehicle

changes its label from active to inactive if it decides to return to the base, whereas

its label switches from inactive to active when it arrives at the surveillance area after

refueling. We assume that each vehicle broadcasts any change in its label through

the communication network. Then, a central authority assigns a target node to each

active vehicle. Consequently, each vehicle’s trajectory depends on two policies: the

162

refuel policy results in a strategic decision for safe return to a base, and the operational

control policy results in efficient movement in the surveillance area.

Refuel Policy

In this paper, the vehicles follow a threshold policy for refueling. Accordingly, given

a fuel threshold f cri (t) for an active vehicle i, if fi(t) > f cri (t), then i remains to be

active and it is in the surveillance area. Otherwise, i is inactive and moves towards a

base.

Operational Control Policy

For M active vehicles, the operational control policy is a sequence ΠM = π(t)π(t +

1) . . . where π(t) ∈ (Q ∪ ~Q)M specifies at each time t and for each vehicle i ∈

{1, . . . ,M} where to stay or to go at t + 1. We denote πi(t) as the target state

of i at t and πi as the control policy for i (the sequence of the target states).

7.1.4 Problem Definition

In this paper, achieving a persistent task means infinitely many satisfactions of a

TWTL formula φ (i.e., Gφ where G stands for always). To formalize this concept, we

define the infinite concatenation closure of φ as the concatenation of infinitely many

copies of φ, i.e., (φ · φ · . . .). Similarly, we define the infinite concatenation closure

of relaxed TWTL formulae as (φ(τ 1) · φ(τ 2) · . . .), where any φ(τ i) corresponds to a

τ i-relaxation of φ. Note that a control policy ΠM = π(1)π(2) . . . induces an output

word o.

Definition 7.1 (Output word). The output word generated by a control policy, ΠM =

π(1)π(2) . . ., is o = o1o2 . . ., where ot = {πi(t)|πi(t) ∈ S, i ∈ {1, . . . ,M}} is the set of

all monitoring sites occupied by M vehicles at time t.

163

Ideally, it is desired to find a policy that generates o satisfying (φ(τ 1) ·φ(τ 2) · . . .),

where τ 1 = τ 2 = · · · = 0. However, τ i may contain nonzero elements due to uncertain

vehicle availability in the surveillance area. In that case, the objective becomes to

find a policy that minimizes |τ i|TR, i.e., the temporal relaxation.

Problem 7.1. Given an environment E = (S ∪ C,∆, $), M active vehicles, and a

persistent task Gφ, let ΠM generate an output word o that satisfies (φ(τ 1)·φ(τ 2)·. . .).

Find an optimal operational control policy

Π∗M = arg min
ΠM
|τ i|TR , ∀i. (7.2)

Note that if M is constant during the mission, Π∗M results in the optimal trajectories

minimizing the temporal relaxation. However, M varies during the mission due to fuel

uncertainty. Thus, solving (7.2) as M changes results in switching control policies.

In Sec. 7.3, we show that there always exists a solution under the switching policies

and our proposed algorithm can find one. Nonetheless, resulting trajectories under

the switching policies are not necessarily optimal.

7.2 Control Synthesis

Our proposed solution to Problem 7.1 (Algorithm 28) is inspired from automata-

based model checking and has two phases. In the off-line computations, first, a list of

active modes are created (e.g, a total number of N vehicles corresponds to N modes,

where mode n represents the presence of n active vehicles in the environment). For

each mode, a transition system is generated from the environment model. These

are then combined with a special finite state automaton to obtain a list of product

automata, each of which captures both motion and satisfaction in the corresponding

mode. In the on-line computations, a centralized controller uses the product automata

164

to compute the target states of all active vehicles. To this end, the control policy,

ΠM , is computed on the currently active product automaton using a Dijkstra-based

algorithm, and it is recomputed if any change occurs in M . Overall, we propose a

hybrid control policy shown in Algorithm 28.

Algorithm 28: Hybrid Control Policy

Input: E = (Q,∆, $) environment, φ TWTL formula, N number of vehicles
1 Extract T and T full from E and construct T k, 1 ≤ k ≤ N // Off-line

2 A∞ ← translate(φ), the FSA corresponding to φ(∞)
3 Create product automata Pk = T k ×A∞, 1 ≤ k ≤ N
4 while True do // On-line

5 foreach active vehicle do
6 if vehicle.fuel is critical then
7 vehicle.mode ← inactive; controls.inactive ← returnToBase()

8 controls.active ← operationalPolicy(active vehicles)
9 foreach vehicle do

10 vehicle.move(); vehicle.updateFuel()

11 if vehicle.state ∈ Q̂ (surveillance area) then vehicle.mode ← active
12 else vehicle.mode ← inactive

7.2.1 Multiple-Vehicle Motion

The motion model of a single vehicle is captured by a deterministic transition system,

T = (Q, q0,∆, AP, h), where AP is the set of observations.

The DTS of a vehicle is obtained by transforming the environment graph into an

unweighted directed graph. To this end, we split up all transitions to have an edge

weight of 1 and define new auxiliary states on the divided edges. Let Saux and Caux

denote the set of auxiliary states between the sites and between the sites and the

bases, respectively. The DTS of a vehicle is T full = (Qfull, q0,∆
full, AP, h), where

Qfull = S ∪ C ∪ Qaux and Qaux = Saux ∪ Caux; q0 ∈ Qfull; ∆full ⊆ Qfull × Qfull;

AP = S ∪ {ε} where ε indicates that no site is occupied; and h : Qfull → AP is the

165

BASE

A B

C D

1

1

1

12

2 23 3

1

1 1

1

(a) Environment E

BASE

A B

C D

1

1

1

1

1

1 1

1

1

1

1
1

1

1

1

1

1

1

1

11

1

1

1

(b) full DTS T full

A B

C D

(c) reduced DTS T

Figure 7·1: (a) Environment E containing four monitoring sites
A,B,C,D and a base, (b) the full motion DTS on E , and (c) the
reduced DTS modeling motion only in the surveillance area.

166

labeling function such that it assigns a label to each site, i.e., h(q) = q if q ∈ S and

h(q) = ε for q /∈ S.

For example, Figure 7·1b illustrates the full DTS of a vehicle, which is extracted

from the environment in Figure 7·1a. We also define a reduced DTS that disregards

the bases as T = (Qred, q0,∆
red, AP, h), where Qred = S ∪Saux involves only the sites

and the auxiliary states connecting them as shown in Figure 7·1c.

We use T for the planning of active vehicles in the surveillance area. This enables

to decouple the operational planning from the refuel decisions. Moreover, using a

reduced DTS in planning significantly reduces the state-space of the overall system

since the concurrent motion of the vehicles is represented by a product transition

system.

Definition 7.2. A Product Transition System (PTS) T k for k ≥ 1 is a DTS

T k = (Qk, qk0 ,∆
k, 2AP , hk), where Qk ⊆ Qred × · · · × Qred for k times is the set of

states; qk0 ∈ Qk is the initial state; ∆k ⊆ Qk × Qk is the set of transitions such that

([x1, . . . xk], [x
′
1, . . . x

′
k]) ∈ ∆k if (xi, x

′
i) ∈ ∆red for all i ∈ {1, . . . , k}; 2AP is the set of

observations (power set of AP); and hk([x1, . . . , xk]) = {h(xi)|i ∈ {1, . . . , k}}.

In the proposed approach, the centralized controller only tracks the occupied states

of T with multiplicities. Thus, we use quotient PTSs, whose states are equivalence

classes induced by the permutation of the state vectors (e.g., the states (A,A,B),

(A,B,A) or (B,A,A), representing 3 vehicles occupying A and B, are merged into a

single state). This representation greatly reduces the sizes of the resulting PTSs, and

any PTS along the paper implies a quotient PTS.

7.2.2 Specification

The specification is enforced using a deterministic finite state automaton. Note that

A can be constructed from any φ. However, A represents only the specification with

167

the given time windows. In order to compactly represent all temporal relaxations

of φ, a special automaton A∞ is constructed based on the procedure in Chapter 5.

Accordingly, A∞ represents φ(τ) for all possible τ .

7.2.3 Operational Control Policy

The operational control policy is computed on the product automata between the

PTSs and A∞, which capture both the motion of the active vehicles and satisfaction

of the formula.

Definition 7.3. A Product Automaton (PA) Pk = T k × A∞ for 1 ≤ k ≤ N is

a tuple Pk = (SPk , (q
k
0 , s0),∆Pk , FPk), where SPk = Qk × SA∞ is the finite set of

states; (qk0 , s0) ∈ SPk is the initial state; ∆Pk ⊆ SPk × SPk is the set of transitions;

FPk = Qk × FA∞ is the set of accepting states.

A transition
(
(q, s), (q′, s′)

)
∈ ∆Pk implies (q, q′) ∈ Qk and s

h(q)→A∞ s′. The notions of

trajectory and acceptance are the same as in FSA. A satisfying run of T k with respect

to φ can be obtained by computing a path from the initial state to an accepting state

over Pk and projecting the path onto T k.

We propose Algorithm 29 (line 8 in Algorithm 28) to compute the target states

of the active vehicles at each time step. Algorithm 29 stores a local policy generated

on the currently selected PA P and the last returned PA state p = (q, s) ∈ SP , where

q is the PTS state, and s is the state on A∞. The switching between PAs occurs

when the last stored q is different than the actual PTS state of active vehicles q′ (line

4). When s reaches an accepting state and the policy becomes empty, s is set to the

initial state of A∞ and the next satisfaction of φ initiates (line 8). Using P and p,

the target states of the active vehicles are computed in line 10 by computePolicy(),

which proceeds by traversing the structure of φ from smaller to larger sub-formulae.

It uses special annotation on the automaton A∞ to compute satisfying paths in P

168

without considering within operators. Then, these paths are recursively filtered and

extended based on the boolean and temporal operators connecting them. If there is no

satisfying policy, then the procedure returns the current p. The detailed description

of computePolicy() can be found in Chapter 5. The target states are distributed to

vehicles via Hopcroft-Karp algorithm (line 11).

Algorithm 29: On-line planning – operationalPolicy()

Input: the set of active vehicles
Output: the next state for each active vehicle
Data: p = (q, s) – last PA state,P – selected PA, policy – current policy

1 if no active vehicles then return {}
2 q′ = [vehicle.state | vehicle.mode = active]
3 replan = False
4 if q 6= q′ then // any change in the PTS state

5 P ← P|q′|; q ← q′; replan← True // switch PA

6 else
7 if policy 6= {} then p = policy.next() else replan← True

8 if s ∈ FA∞ then s← s0 // update FSA state

9 if replan = True then
10 policy ← computePolicy(P , p); p← policy.next()

11 return distributeControls(q)

7.3 Analysis of the Hybrid Control Policy

In this section, we discuss the performance, safety, and complexity of the proposed

control policy.

7.3.1 Performance

First, we show that a relaxed TWTL formula can always be satisfied under an as-

sumption on vehicle capabilities.

Definition 7.4 (Operational Cycle). An operational cycle of a vehicle is an ordered

169

sequence of traveling to the area, operating in the area, returning to the base, and

refueling.

Definition 7.5 (Formula Primitive). Given φ, a formula primitive is a maximal

subtree in AST (φ), which does not contain a within operator.

Assumption 2. Given φ, a vehicle is able to satisfy any φ primitive(s) at least once

in one operational cycle.

Consider φ = [H4A][3,8] ∧ [H2B ·H1C][4,9] whose formula primitives are H4A and

H2B · H1C. Assumption 2 implies that, in one operational cycle, the vehicle can

reach A, stay there for 4 time steps, and return to the base safely. Similarly, it can

also reach B, stay there for 2 time steps, then reach C, stay there for 1 time step,

and return to the base.

Definition 7.6 (Feasible Sequence of Formula Primitives). Given φ, a feasible se-

quence of formula primitives is an ordered sequence of formula primitives, whose

overall satisfaction implies a feasible relaxation of φ.

Again, consider φ = [H4A][3,8] ∧ [H2B · H1C][4,9]. There exist only two feasible

sequences of formula primitives, which are (H4A,H2B ·H1C) and (H2B ·H1C,H4A).

Theorem 7.1. Let φ be a TWTL formula. If Assumption 2 holds, then there always

exists a feasible sequence that induces a valid relaxation φ(τ) such that ‖φ(τ i)‖ ≤

k t∗OC, where k is the length of the longest feasible sequence of φ primitives, and t∗OC

is the maximum duration to finish a cycle.

Proof. Let T be the AST obtained from AST (φ) by contracting each primitive to

a single leaf node. Each intermediate node of T corresponds to either: (i) a within

operator, or (ii) a binary operation (∧, ∨, ·) and at least one child which corresponds

to a within operator. It follows by structural induction that there exists a feasible

170

sequence of φ primitives ϑ = ϑ1, ..., ϑk, k ≥ 1, because either: (i) a sub-formula

corresponding to the node can be relaxed, or (ii) a sub-formula associated with a

child node is satisfied and the other child node is relaxed until the vehicles satisfy

it. Let t∗OC denote the maximum duration of an operational cycle among all vehicles.

Based on Assumption 2, each ϑi can be satisfied one by one within t∗OC . Thus, the

relaxation induced by ϑ has a finite bound given by ‖φ(τ)‖ ≤ k t∗OC .

7.3.2 Safety

In Algorithm 28, the decision to refuel (be inactive) based on the threshold policy

should ensure safe return to the base.

Proposition 7.2. Let Ni(t) be the set of adjacent nodes to vehicle i on T full and

let ξ̄ be the maximum uncertainty in the fuel consumption. Executing Algorithm 28

ensures safe return to the base for vehicle i, if the refuel policy has a threshold

f cri (t) ≥ max
qj∈Ni(t)

(1 +$qjqB)(δfd + ξ̄ + 2β) (7.3)

Proof. We will show that if (7.3) is satisfied, then vehicle i never runs out of fuel

before reaching the base. According to the refuel policy, a vehicle is active, if it

is operating in the surveillance area and fi(t) > f cri (t). Thus, (7.3) implies fi(t) >

max
qj∈Ni(t)

(1+$qjqB)(δfd+ξ̄+2β). Based on (7.1), fi(t) > fi(t+1) ≥ fi(t)−(δfd+ξ̄+2β).

Using the previous inequalities, we get fi(t+ 1) > max
qj∈Ni(t)

$qjqB(δfd + ξ̄ + 2β), where

qj ∈ Ni(t) is a state vehicle i can reach at t+ 1. Since max
qj∈Ni(t)

$qjqB(δfd + ξ̄ + 2β) ≥

$qjqB(δfd + ξ̄ + 2β), the vehicle has sufficient fuel to go back to the base from any

qj ∈ Ni(t) when its label is active at t.

171

7.3.3 Complexity

In Algorithm 28, the construction of T and T full has complexity O(
∑

e$e), where $e

is the weight of edge e in E . For N vehicles, the complexity of constructing all PTS

is O
((|Qred|+N

N

))
since the size of PTS T k is equal to the number of permutations of

k objects from Qred with repetitions, i.e.,
(|Qred|+k−1

k

)
(Vilenkin, 1971). Constructing

A∞ from φ has complexity O(2|φ|) where |φ| is the length of the formula (Vasile

et al., 2016). Finally, the complexity of computing each PA Pk is O(
∣∣Qk
∣∣ · |SA∞|).

In Algorithm 29, the on-line planning is O(|SPk | + |∆Pk |) for 1 ≤ k ≤ N (Vasile

et al., 2016). Moreover, how to return to the base is computed by running Dijkstra’s

algorithm on T full, which gives a complexity of O(
∣∣Qfull

∣∣ +
∣∣∆full

∣∣). Overall, we

improve the complexity of the solution (compared to the one in (Vasile and Belta,

2014b)) by 1) using multiple smaller PAs instead of a single complex PA, 2) decoupling

the refuel decision from the trajectory planning, which significantly reduces the state-

space, 3) representing φ via the special automaton A∞ in a more compact way, and

4) using quotient PTSs instead of the normal ones.

7.4 Case Study

In this section, we show some simulations and experimental results for two identical

quadrotors.

7.4.1 Simulation Results

We consider two identical vehicles, an environment with four sites and a base as in

Figure 7·1a, and the TWTL formula φ = [H2A][0,8] · [H3B ∧ [H2C][1,5]][0,7] · [H1D][0,3],

which means “perform in order: 1) service A for 2 time units within [0, 8]; 2) within

[0, 7], service B for 3 time units and service C for 2 time units within [1, 5]; and 3)

service D for 1 time unit within [0, 3]”. Note that ‖φ‖ = 20 so a single satisfaction of

172

φ needs to be achieved in 20 time units. The parameters of each vehicle are selected

as fmax = 20, δf c = 0.5, δfd = 1, δf p ∈ {0, 0.2, 0.4}, ξ(t) ∼ unif(−0.1, 0.1).

The simulations were implemented in Python2.7 on a Intel Core i7 laptop with

a 1.8 GHz processor and 8GB memory. φ was translated to A∞ with 16 states and

36 transitions in 9 msec. The construction of T 1, T 2, P1, and P2 took <1 msec,

1 msec, 3 msec, and 19 msec, respectively. Moreover, T 1, T 2, P1, and P2 have 5,

15, 80, 240 states and 11, 78, 255, 2115 transitions, respectively. Overall, the off-line

computation of Algorithm 28 took 65 msec, while a single iteration in its on-line

computation took less than 1 msec.

(a) (b) (c)

Figure 7·2: (a) Simulation results: 10 satisfactions of the relaxed for-
mulas via the proposed policy, (b) Simulation results: 10 satisfactions of
the original formula via the benchmark policy, (c) Experimental results
with two quadrotors.

The remaining fuel of each vehicle at each time step is displayed in Figure 7·2(a).

The green and red markers indicate that the vehicle is active and inactive, respec-

tively. In order to measure the progress towards satisfaction, we define the distance to

173

satisfaction (dsat) at each t as the length of the shortest path in A∞ from the current

specification state to a final state. The vertical lines in this figure indicate a single

satisfaction of φ(τ i), which we call a satisfaction loop. The first 2 relaxed formulae sat-

isfied by the vehicles are: φ(τ 1) = [H2A][0,8−4] ·[H3B∧[H2C][1,5−2]][0,7−4] ·[H1D][0,3−2];

φ(τ 2) = [H2A][0,8−6] · [H3B ∧ [H2C][1,5+37]][0,7+35] · [H1D][0,3−2].

In Figure 7·2(a), dsat decreases if there is at least one active vehicle. While two

vehicles are active, whenever one of them becomes inactive, dsat increases abruptly.

Also, if there are no active vehicles, dsat becomes undefined, shown as gaps in Fig-

ure 7·2(a). If both vehicles return to the base and dsat 6= 0, the satisfaction loop is

not re-initiated. Instead, whenever a vehicle becomes active, it continues to make

progress for the uncompleted loop. Hence, the results demonstrate that a relaxed φ

is eventually satisfied in a periodic fashion.

We also compare the proposed policy with a benchmark policy (ΠB) where a

relaxation is not allowed. In other words, if φ can not be satisfied by the active ve-

hicles, all vehicles return to the base. While ΠB results in only the satisfaction of φ,

it causes a significant amount of time gaps between the satisfactions as illustrated in

Figure 7·2(b). Note that 10 satisfactions of φ require 550 time steps whereas 10 sat-

isfactions of the relaxed formulae are achieved in 380 time steps. The results indicate

that allowing temporal relaxation of a formula increases the number of satisfactions.

7.4.2 Experimental Results

We present some preliminary results on a multi-quadrotor testbed at the BU Robotics

Laboratory. The flight space is equipped with an indoor OptiTrack localization

system, which tracks reflective markers mounted on K500 quadrotors from KMel

Robotics. Each quadrotor is equipped with an 11.57 V 3-cell LiPo battery and cus-

tom charging gear, which allows them to automatically recharge their batteries at a

174

charging station. The quadrotors hover and move via local controllers, which were de-

signed based on the differential flatness property of the quadrotors’ dynamics (Leahy

et al., 2014).

We consider two quadrotors and a grid environment with 4 sites and 2 charging

stations as in Figure 7·3a. A quadrotor can move to any adjacent cell other than the

brown cell (representing an obstacle). A unique flight altitude and charging station is

assigned to each quadrotor to avoid collisions. The objective is to satisfy repeatedly

φ = [H2A ∧H2C][0,8] · [H3B ∧H3D][0,7] · [[H2A][2,6] ∨ [H2C][1,5]]. (7.4)

The remaining fuel, the distance to satisfaction, and the number of active vehicles are

shown in Figure 7·2(c) . Fuel in this case is interpreted as battery voltage level. In

Figure 7·2(c), there exists some fluctuations in the remaining fuel due to the potential

measurement errors, but a decreasing trend is observed in both the remaining fuel

and the distance to satisfaction.

175

(a) Initial state (b) Servicing A and C

(c) Servicing B and D (d) Servicing C and end of loop

Figure 7·3: Two quadrotors in an environment with 4 sites and 2
charging stations. a the quadrotors are fully charged and docked; b the
quadrotors are servicing sites A and C; c the quadrotors are servicing
sites B and D; d a quadrotor is servicing site C, thus one satisfaction
of (7.4) is achieved.

176

Chapter 8

Conclusions and Future Work

In this dissertation we considered control problems involving system that pose scal-

ability issues. The scalability problems are due to (a) high-dimensional configura-

tion spaces, (b) stochastic nature, and (c) multi-system structure (i.e., multi-vehicle

systems). Another major problem considered is the control of systems from timed

specifications. We propose a logic called Time Window Temporal Logic that can

express rich timed temporal properties, and an automata-based framework for solv-

ing synthesis, verification, and learning problems. We then employ this framework

to solve persistent multi-vehicle routing problems with charging and temporal logic

constraints.

In the first part of the dissertation, we introduced a sampling-based motion plan-

ning algorithm that combines long-term temporal logic goals with short-term reactive

requirements. The specification has two parts: (1) a global specification given as an

LTL formula over a set of static service requests that occur at the regions of a known

environment, and (2) a local specification that requires servicing a set of dynamic re-

quests that can be sensed locally during the execution. The proposed computational

framework consists of two main ingredients: (a) an off-line sampling-based algorithm

for the construction of a global transition system that contains a path satisfying the

LTL formula, and (b) an on-line sampling-based algorithm to generate paths that

service the local requests, while making sure that the satisfaction of the global spec-

ification is not affected. Plans for future work include the implementation of these

177

algorithms for robots with realistic dynamics moving in complex environments, ex-

perimental trials for aerial and ground vehicles.

In the second part of the dissertation, we presented a sampling-based algorithm

that generates feedback policies for stochastic systems with temporal and uncertainty

constraints. The desired behavior of the system is specified using Gaussian Distribu-

tion Temporal Logic such that the generated policy satisfies the task specification with

maximum probability. The proposed algorithm generates a transition system in the

belief space of the system. A key step towards the scalability of the automata-based

methods employed in the solution was breaking the curse of history for POMDPs.

Local feedback controllers that drive the system within belief sets were employed

to achieve history independence for paths in the transition system. Also contribut-

ing to the scalability of our solution is a construction procedure for an annotated

product Markov Decision Process called GDTL-FIRM, where each transition is asso-

ciated with a “failure probability”. GDTL-FIRM captures both satisfaction and the

stochastic behavior of the system. Switching feedback policies were computed over

the product MDP. Lastly, we showed the performance of the computed policies in

experimental trials with a ground robot tracked via camera network. The case study

shows that properties specifying the temporal and stochastic behavior of systems can

be expressed using GDTL and our algorithm is able to compute control policies that

satisfy the specification with a given probability.

In the third part of the dissertation, we introduced a specification language called

time window temporal logic (TWTL), which is a linear-time logic encoding sets of

discrete-time bounded-time trajectories. We showed that TWTL has several benefits

over other bounded temporal logics in terms of complexity and easiness to express

and comprehend specifications. Different from other temporal logics, TWTL has an

explicit concatenation operator, which enables the compact representation of serial

178

tasks. Such a compact representation significantly reduces the complexity of con-

structing the automaton for the accepting language. In this paper, we also presented

temporal relaxations of TWTL formulae and provided provably-correct algorithms

to construct an annotated automaton that can encode all temporal relaxations of a

given TWTL formula. Moreover, we demonstrated the potential of TWTL and its

relaxation on three problems related to verification, synthesis, and learning. In the

verification problem, we checked whether a system can satisfy the structure of a given

formula without considering its time bounds. In the synthesis problem, we found a

control policy for a system that satisfies the original TWTL formula or its minimal

relaxation in case of an infeaisbility. In the learning problem, we considered a data

set and a template TWTL formula with parametric time bounds, and we synthesized

the time parameters by minimizing the misclassification rate. Finally, we developed

a Python package for the solutions of the aforementioned problems.

As future work, we plan to improve the proposed methods to make them more

applicable to various areas. For example, TWTL is a good fit for statistical model

checking, where the problem of learning deadlines can be modified to yield statistically

robust deadline values in a template formula. The current version of the learning

algorithm can find the time bounds of a given template formula (with fixed structure)

from a data set. We are also working on more advanced algorithms that can infer not

only the time bounds but also the structure of the template. Furthermore, we plan

to improve the Python package PyTWTL by integrating automata minimization in

the construction procedure in a way that (i) preserves annotation, and (ii) takes into

account structure of the generated automata. Since the languages associated with

TWTL formulae are finite, specialized minimization techniques may be used. For

instance, one approach is to use Deterministic Finite Cover Automata (Körner, 2003;

Körner, 2003; Câmpeanu et al., 2006) that can decrease the return automata’s sizes

179

significantly with almost no additional computational cost. Other small optimizations

we plan to include in PyTWTL are: (i) the case when the satisfaction of atomic

propositions is assumed mutually exclusive; and (ii) preprocessing of TWTL formulae

for performance improvement using AST rewriting rules. We also plan to develop AST

rewriting rules to automatically transform a TWTL formula to DFW form.

Also in the third part of the dissertation, we considered a persistent vehicle routing

problem involving a team of vehicles that are required to achieve a task repetitively

while refueling when necessary. We expressed the task as a TWTL formula over

a set of locations. We investigated two settings of the problem: (1) deterministic

models for motion and charging with fixed specification; (2) stochastic charging and

relaxed specifications. In the first case, we proposed a centralized automata-based

framework that we show is complete and optimal with respect to two cost functions,

e.g., average and maximum long-term loop time. For the second case, we proposed

a hybrid control policy that decouples the refueling decision of each vehicle from the

joint planning in the mission area. The proposed policy has two main benefits. First,

the trajectories are computed on-line, and they are updated whenever a change occurs

in the mission area. Second, if the TWTL formula is unsatisfiable, the trajectories for

the active vehicles are computed by minimally relaxing the formula. To achieve this,

we exploited the notion of “temporal relaxation”. We demonstrated the performance

of the proposed policies in both settings via simulations and experiments.

References

Agha-mohammadi, A., Chakravorty, S., and Amato, N. (2014). FIRM: Sampling-
based feedback motion-planning under motion uncertainty and imperfect measure-
ments. The International Journal of Robotics Research, 33(2):268–304.
doi:10.1177/0278364913501564.

Aksaray, D., Leahy, K., and Belta, C. (2015). Distributed Multi-Agent Persistent
Surveillance Under Temporal Logic Constraints. Proceedings of the 5th IFAC
Workshop on Distributed Estimation and Control in Networked Systems (NecSys),
48(22):174–179. doi:10.1016/j.ifacol.2015.10.326.

Aksaray, D., Vasile, C.-I., and Belta, C. (2016). Dynamic routing of energy-aware
vehicles with temporal logic constraints. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA).

Alur, R., Etessami, K., La Torre, S., and Peled, D. (2001). Parametric Tempo-
ral Logic for “Model Measuring”. ACM Transactions on Computational Logic,
2(3):388–407. doi:10.1145/377978.377990.

Asarin, E., Donzé, A., Maler, O., and Nickovic, D. (2012). Parametric Identifica-
tion of Temporal Properties. In Khurshid, S. and Sen, K., editors, Proceedings
of the International Conference on Runtime Verification, pages 147–160, Berlin,
Heidelberg. Springer. doi:10.1007/978-3-642-29860-8 12.

Ayala, A. M., Andersson, S. B., and Belta, C. (2014). Formal Synthesis of Control
Policies for Continuous Time Markov Processes From Time-Bounded Temporal
Logic Specifications. IEEE Transactions on Automatic Control, 59(9):2568–2573.
doi:10.1109/TAC.2014.2309033.

Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A., Krainin, M., Maturana, D.,
Fox, D., and Roy, N. (2012). Estimation, planning, and mapping for autonomous
flight using an RGB-D camera in GPS-denied environments. The International
Journal of Robotics Research, 31(11):1320–1343. doi:10.1177/0278364912455256.

Baier, C. and Katoen, J.-P. (2008). Principles of model checking. MIT Press.

Bauer, A., Leucker, M., and Schallhart, C. (2011). Runtime Verification for LTL and
TLTL. ACM Transactions on Software Engineering and Methodology, 20(4):14:1–
14:64. doi:10.1145/2000799.2000800.

180

http://dx.doi.org/10.1177/0278364913501564
http://dx.doi.org/10.1016/j.ifacol.2015.10.326
http://doi.acm.org/10.1145/377978.377990
http://dx.doi.org/10.1007/978-3-642-29860-8_12
http://dx.doi.org/10.1109/TAC.2014.2309033
http://dx.doi.org/10.1177/0278364912455256
http://dx.doi.org/10.1145/2000799.2000800

181

Beck, J., Prosser, P., and Selensky, E. (2003). Vehicle Routing and Job Shop Schedul-
ing: What’s the difference? In Proceedings of the 13th International Conference
on Automated Planning and Scheduling (ICAPS), Trento, Italy.

Belta, C. and Habets, L. (2006). Control of a class of nonlinear systems on rectangles.
IEEE Transactions on Automatic Control, 51(11):1749 – 1759.
doi:10.1109/TAC.2006.884957.

Belta, C., Isler, V., and Pappas, G. J. (2005). Discrete abstractions for robot planning
and control in polygonal environments. IEEE Transactions on Robotics, 21(5):864–
874. doi:10.1109/TRO.2005.851359.

Bender, M., Fineman, J., Gilbert, S., and Tarjan, R. (2015). A New Approach
to Incremental Cycle Detection and Related Problems. ACM Transactions on
Algorithms, 12(2):1–22. doi:10.1145/2756553.

Bertsekas, D. (2012). Dynamic Programming and Optimal Control. Athena Scien-
tific, 4th edition.

Bhatia, A., Kavraki, L., and Vardi, M. (2010). Sampling-based motion planning with
temporal goals. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 2689–2696. doi:10.1109/ROBOT.2010.5509503.

Bombara, G., Vasile, C. I., Penedo Alvarez, F., Yasuoka, H., and Belta, C. (2016).
A Decision Tree Approach to Data Classification using Signal Temporal Logic. In
Proceedings of the Hybrid Systems: Computation and Control (HSCC), Vienna,
Austria.

Bry, A. and Roy, N. (2011). Rapidly-exploring Random Belief Trees for motion
planning under uncertainty. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), pages 723–730.
doi:10.1109/ICRA.2011.5980508.

Bullo, F., Frazzoli, E., Pavone, M., Savla, K., and Smith, S. L. (2011). Dynamic
Vehicle Routing for Robotic Systems. Proceedings of the IEEE, 99(9):1482–1504.
doi:10.1109/JPROC.2011.2158181.

Burns, B. and Brock, O. (2007). Sampling-based motion planning with sensing
uncertainty. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 3313–3318. doi:10.1109/ROBOT.2007.363984.

Câmpeanu, C., Culik, K., I., Salomaa, K., and Yu, S. (2001). State Complexity of
Basic Operations on Finite Languages. In Boldt, O. and Jrgensen, H., editors,
Automata Implementation, volume 2214 of Lecture Notes in Computer Science,
pages 60–70. Springer Berlin Heidelberg. doi:10.1007/3-540-45526-4 6.

http://dx.doi.org/10.1109/TAC.2006.884957
http://dx.doi.org/10.1109/TRO.2005.851359
http://dx.doi.org/10.1145/2756553
http://dx.doi.org/10.1109/ROBOT.2010.5509503
http://dx.doi.org/10.1109/ICRA.2011.5980508
http://dx.doi.org/10.1109/JPROC.2011.2158181
http://dx.doi.org/10.1109/ROBOT.2007.363984
http://dx.doi.org/10.1007/3-540-45526-4_6

182

Câmpeanu, C., Păun, A., and Smith, J. R. (2006). Incremental construction of mini-
mal deterministic finite cover automata. Theoretical Computer Science, 363(2):135–
148. doi:10.1016/j.tcs.2006.07.020.

Chen, H.-K., Hsueh, C.-F., and Chang, M.-S. (2006). The real-time time-dependent
vehicle routing problem. Transportation Research Part E: Logistics and Trans-
portation Review, 42(5):383–408. doi:10.1016/j.tre.2005.01.003.

Chen, Y., Tumova, J., and Belta, C. (2012). LTL Robot Motion Control based
on Automata Learning of Environmental Dynamics. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), Saint Paul, MN,
USA. doi:10.1109/ICRA.2012.6225075.

Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., and
Thrun, S. (2005). Principles of Robot Motion: Theory, Algorithms, and Imple-
mentations. MIT Press, Boston, MA.

Conway, J. H. and Sloane, N. J. (1999). Sphere Packings, Lattices and Groups.
Springer-Verlag, New York, US, 3rd edition.

Cranen, S., Groote, J. F., and Reniers, M. (2011). A linear translation from CTL∗

to the first-order modal µ-calculus. Theoretical Computer Science, 412(28):3129–
3139. doi:10.1016/j.tcs.2011.02.034.

Daciuk, J. (2003). Comparison of Construction Algorithms for Minimal, Acyclic, De-
terministic, Finite-State Automata from Sets of Strings. In Champarnaud, J.-M.
and Maurel, D., editors, Proceedings of the 7th International Conference Imple-
mentation and Application of Automata, pages 255–261. Springer. doi:10.1007/3-
540-44977-9 26.

Dantzig, G. B. and Ramser, J. H. (1959). The Truck Dispatching Problem. Man-
agement Science, 6(1):80–91. doi:10.1287/mnsc.6.1.80.

Ding, X. C., Kloetzer, M., Chen, Y., and Belta, C. (2011). Automatic Deploy-
ment of Robotic Teams. IEEE Robotics and Automation Magazine, 18:75–86.
doi:10.1109/MRA.2011.942117.

Ding, X. C., Lazar, M., and Belta, C. (2014). LTL Receding Horizon Control for
Finite Deterministic Systems. Automatica, 50(2):399–408.
doi:10.1016/j.automatica.2013.11.030.

Dobson, A. and Bekris, K. E. (2013). Improving Sparse Roadmap Spanners. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 4106–4111. doi:10.1109/ICRA.2013.6631156.

http://dx.doi.org/10.1016/j.tcs.2006.07.020
http://dx.doi.org/10.1016/j.tre.2005.01.003
http://dx.doi.org/10.1109/ICRA.2012.6225075
http://dx.doi.org/10.1016/j.tcs.2011.02.034
http://dx.doi.org/10.1007/3-540-44977-9_26
http://dx.doi.org/10.1007/3-540-44977-9_26
http://dx.doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1109/MRA.2011.942117
http://dx.doi.org/10.1016/j.automatica.2013.11.030
http://dx.doi.org/10.1109/ICRA.2013.6631156

183

Duret-Lutz, A. (2013). Manipulating LTL formulas using Spot 1.0. In Proceedings of
the 11th International Symposium on Automated Technology for Verification and
Analysis (ATVA), volume 8172 of Lecture Notes in Computer Science, pages 442–
445, Hanoi, Vietnam. Springer. doi:10.1007/978-3-319-02444-8 31.

Fainekos, G. E., Girard, A., Kress-Gazit, H., and Pappas, G. J. (2009). Tem-
poral logic motion planning for dynamic robots. Automatica, 45(2):343–352.
doi:10.1016/j.automatica.2008.08.008.

Gao, Y., Salomaa, K., and Yu, S. (2011). Transition Complexity of Incomplete DFAs.
Fundamenta Informaticae, 110(1-4):143–158.

Garey, M. and Johnson, D. (1979). Computers and Intractibility: a Guide to Theory
of NP-completeness. W.H. Freeman Co, New York.

Gastin, P. and Oddoux, D. (2001). Fast LTL to Büchi Automata Translation. In
Berry, G., Comon, H., and Finkel, A., editors, Proceedings of the 13th International
Conference on Computer Aided Verification (CAV), volume 2102 of Lecture Notes
in Computer Science, pages 53–65, Paris, France. Springer. doi:10.1007/3-540-
44585-4 6.

Gol, E. A. and Belta, C. (2013). Time-Constrained Temporal Logic Control of Multi-
Affine Systems. Nonlinear Analysis: Hybrid Systems, 10:21–23.
doi:10.1016/j.nahs.2013.03.002.

Guo, M. and Dimarogonas, D. V. (2015). Multi-agent plan reconfiguration under lo-
cal LTL specifications. The International Journal of Robotics Research, 34(2):218–
235. doi:10.1177/0278364914546174.

Haeupler, B., Kavitha, T., Mathew, R., Sen, S., and Tarjan, R. E. (2012). Incremen-
tal Cycle Detection, Topological Ordering, and Strong Component Maintenance.
ACM Transactions on Algorithms, 8(1):3:1–3:33. doi:10.1145/2071379.2071382.

Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network struc-
ture, dynamics, and function using NetworkX. In Proceedings of the 7th Python in
Science Conference, pages 11–15, Pasadena, CA USA.

Han, Y.-S. and Salomaa, K. (2007). State Complexity of Union and Intersection of
Finite Languages. In Harju, T., Karhumki, J., and Lepist, A., editors, Develop-
ments in Language Theory, volume 4588 of Lecture Notes in Computer Science,
pages 217–228. Springer Berlin Heidelberg. doi:10.1007/978-3-540-73208-2 22.

Hauser, K. (2011). Algorithmic Foundations of Robotics IX: Selected Contributions
of the Ninth International Workshop on the Algorithmic Foundations of Robotics,
chapter Randomized Belief-Space Replanning in Partially-Observable Continuous

http://dx.doi.org/10.1007/978-3-319-02444-8_31
http://dx.doi.org/10.1016/j.automatica.2008.08.008
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/10.1016/j.nahs.2013.03.002
http://dx.doi.org/10.1177/0278364914546174
http://dx.doi.org/10.1145/2071379.2071382
http://dx.doi.org/10.1007/978-3-540-73208-2_22

184

Spaces, pages 193–209. Springer, Berlin, Heidelberg. doi:10.1007/978-3-642-
17452-0 12.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006). Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Jha, S. K., Clarke, E. M., Langmead, C. J., Legay, A., Platzer, A., and Zuliani, P.
(2009). A Bayesian Approach to Model Checking Biological Systems. In Pro-
ceedings of the 7th International Conference on Computational Methods in Sys-
tems Biology, CMSB ’09, pages 218–234, Berlin, Heidelberg. Springer-Verlag.
doi:10.1007/978-3-642-03845-7 15.

Jin, X., Donze, A., Deshmukh, J., and Seshia, S. (2015). Mining requirements from
closed-loop control models. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 34(11):1704–1717. doi:10.1109/TCAD.2015.2421907.

Jones, A., Schwager, M., and Belta, C. (2013). Distribution temporal logic: Combin-
ing correctness with quality of estimation. In Proceedings of the IEEE Conference
on Decision and Control (CDC), pages 4719–4724. doi:10.1109/CDC.2013.6760628.

Kaelbling, L., Littman, M., and Cassandra, A. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1–2):99 – 134.
doi:10.1016/S0004-3702(98)00023-X.

Kalman, R. (1960). A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45. doi:10.1115/1.3662552.

Karaman, S. and Frazzoli, E. (2008). Vehicle Routing Problem with Metric Temporal
Logic Specifications. In Proceedings of the IEEE Conference on Decision and
Control (CDC), pages 3953 – 3958. doi:10.1109/CDC.2008.4739366.

Karaman, S. and Frazzoli, E. (2009). Sampling-based Motion Planning with De-
terministic µ-Calculus Specifications. In Proceedings of the IEEE Conference on
Decision and Control (CDC), Shanghai, China. doi:10.1109/CDC.2009.5400278.

Karaman, S. and Frazzoli, E. (2011a). Linear temporal logic vehicle routing with
applications to multi-UAV mission planning. International Journal of Robust and
Nonlinear Control, 21(12):1372–1395. doi:10.1002/rnc.1715.

Karaman, S. and Frazzoli, E. (2011b). Sampling-based Algorithms for Optimal
Motion Planning. International Journal of Robotics Research, 30(7):846–894.
doi:10.1177/0278364911406761.

http://dx.doi.org/10.1007/978-3-642-17452-0_12
http://dx.doi.org/10.1007/978-3-642-17452-0_12
http://dx.doi.org/10.1007/978-3-642-03845-7_15
http://dx.doi.org/10.1109/TCAD.2015.2421907
http://dx.doi.org/10.1109/CDC.2013.6760628
http://dx.doi.org/10.1016/S0004-3702(98)00023-X
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/CDC.2008.4739366
http://dx.doi.org/10.1109/CDC.2009.5400278
http://dx.doi.org/10.1002/rnc.1715
http://dx.doi.org/10.1177/0278364911406761

185

Karaman, S. and Frazzoli, E. (2012). Sampling-based Optimal Motion Planning with
Deterministic µ-Calculus Specifications. In Proceedings of the American Control
Conference (ACC). doi:10.1109/ACC.2012.6315419.

Kavraki, L., Svestka, P., Latombe, J., and Overmars, M. (1996). Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans-
actions on Robotics and Automation, 12(4):566–580. doi:10.1109/70.508439.

Kim, K., Fainekos, G., and Sankaranarayanan, S. (2015). On the minimal revi-
sion problem of specification automata. The International Journal of Robotics
Research. doi:10.1177/0278364915587034.

Klein, J. and Baier, C. (2006). Experiments with deterministic ω-automata for
formulas of linear temporal logic. Theoretical Computer Science, 363(2):182 – 195.
doi:10.1016/j.tcs.2006.07.022.

Kloetzer, M. and Belta, C. (2008). A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions on Automatic
Control, 53(1):287–297. doi:10.1109/TAC.2007.914952.

Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., and Belta, C. (2014). Tem-
poral Logic Inference for Classification and Prediction from Data. In Proceedings
of the 17th International Conference on Hybrid Systems: Computation and Control
(HSCC), pages 273–282, New York, NY, USA. ACM. doi:10.1145/2562059.2562146.

Körner, H. (2003). On Minimizing Cover Automata for Finite Languages in O(N
Log N) Time. In Proceedings of the 7th International Conference on Implemen-
tation and Application of Automata, CIAA’02, pages 117–127, Berlin, Heidelberg.
Springer-Verlag.

Körner, H. (2003). A time and space efficient algorithm for minimizing cover au-
tomata for finite languages. International Journal of Foundations of Computer
Science, 14(06):1071–1086. doi:10.1142/S0129054103002187.

Koymans, R. (1990). Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299. doi:10.1007/BF01995674.

Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J. (2007). Where’s Waldo?
Sensor-based temporal logic motion planning. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 3116–3121.
doi:10.1109/ROBOT.2007.363946.

Kress-Gazit, H., Fainekos, G. E., and Pappas, G. J. (2009). Temporal-logic-based
reactive mission and motion planning. IEEE Transactions on Robotics, 25(6):1370–
1381. doi:10.1109/TRO.2009.2030225.

http://dx.doi.org/10.1109/ACC.2012.6315419
http://dx.doi.org/10.1109/70.508439
http://dx.doi.org/10.1177/0278364915587034
http://dx.doi.org/10.1016/j.tcs.2006.07.022
http://dx.doi.org/10.1109/TAC.2007.914952
http://dx.doi.org/10.1145/2562059.2562146
http://dx.doi.org/10.1142/S0129054103002187
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1109/ROBOT.2007.363946
http://dx.doi.org/10.1109/TRO.2009.2030225

186

Kupferman, O. and Y. Vardi, M. (2001). Model Checking of Safety Properties.
Form. Methods Syst. Des., 19(3):291–314. doi:10.1023/A:1011254632723.

Laporte, G. (1992). The vehicle routing problem: An overview of exact and ap-
proximate algorithms. European Journal of Operational Research, 59(3):345–358.
doi:10.1016/0377-2217(92)90192-C.

Latvala, T. (2003). Effcient model checking of safety properties. In Proceedings of
the 10th International Conference on Model Checking Software, SPIN, pages 74–88,
Berlin, Heidelberg. Springer-Verlag.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cam-
bridge, U.K. Available at http://planning.cs.uiuc.edu/.

LaValle, S. M. and Kuffner, J. J. (1999). Randomized kinodynamic planning. In
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), pages 473–479. doi:10.1109/ROBOT.1999.770022.

Leahy, K., Jones, A., Schwager, M., and Belta, C. (2015). Distributed information
gathering policies under temporal logic constraints. In Proceedings of the IEEE
Conference on Decision and Control (CDC), pages 6803–6808.
doi:10.1109/CDC.2015.7403291.

Leahy, K., Zhou, D., Vasile, C.-I., Oikonomopoulos, K., Schwager, M., and Belta,
C. (2014). Provably Correct Persistent Surveillance for Unmanned Aerial Vehicles
Subject to Charging Constraints. In Proceedings of the International Symposium
on Experimental Robotics (ISER).

Lesser, K. and Oishi, M. (2015). Finite State Approximation for Verification of
Partially Observable Stochastic Hybrid Systems. In Proceedings of the 18th Inter-
national Conference on Hybrid Systems: Computation and Control (HSCC), pages
159–168, New York, NY, USA. ACM. doi:10.1145/2728606.2728632.

Lindemann, S. R. and LaValle, S. M. (2009). Simple and Efficient Algorithms for
Computing Smooth, Collision-Free Feedback Laws Over Given Cell Decomposi-
tions. The International Journal of Robotics Research, 28(5):600–621.
doi:10.1177/0278364908099462.

Livingston, S. C. and Murray, R. M. (2013). Just-in-time synthesis for motion
planning with temporal logic. In Proceedings of the International Conference on
Robotics and Automation (ICRA). doi:10.1109/ICRA.2013.6631298.

Livingston, S. C., Prabhakar, P., Jose, A. B., and Murray, R. M. (2013). Patch-
ing task-level robot controllers based on a local µ-calculus formula. In Pro-
ceedings of the International Conference on Robotics and Automation (ICRA).
doi:10.1109/ICRA.2013.6631229.

http://dx.doi.org/10.1023/A:1011254632723
http://dx.doi.org/10.1016/0377-2217(92)90192-C
http://dx.doi.org/10.1109/ROBOT.1999.770022
http://dx.doi.org/10.1109/CDC.2015.7403291
http://dx.doi.org/10.1145/2728606.2728632
http://dx.doi.org/10.1177/0278364908099462
http://dx.doi.org/10.1109/ICRA.2013.6631298
http://dx.doi.org/10.1109/ICRA.2013.6631229

187

Ma, Y., Soatto, S., Kosecka, J., and Sastry, S. S. (2003). An Invitation to 3-D Vision:
From Images to Geometric Models. Springer-Verlag.

Maia, E., Moreira, N., and Reis, R. (2013). Incomplete Transition Complexity of
Some Basic Operations. In van Emde Boas, P., Groen, F. C., Italiano, G. F.,
Nawrocki, J., and Sack, H., editors, SOFSEM: Theory and Practice of Com-
puter Science, volume 7741 of Lecture Notes in Computer Science, pages 319–331.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-35843-2 28.

Maler, O. and Nickovic, D. (2004). Monitoring temporal properties of continuous sig-
nals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, pages 152–166. Springer. doi:10.1007/978-3-540-30206-3 12.

Maly, M., Lahijanian, M., Kavraki, L. E., Kress-Gazit, H., and Vardi, M. Y. (2013).
Iterative Temporal Motion Planning for Hybrid Systems in Partially Unknown
Environments. In Proceedings of the ACM International Conference on Hybrid
Systems: Computation and Control (HSCC), pages 353–362, Philadelphia, PA,
USA. doi:10.1145/2461328.2461380.

Manna, Z. and Pnueli, A. (1981). Verification of Concurrent Programs. Part I. The
Temporal Framework. Technical report, DTIC Document.

Mu, Q., Fu, Z., Lysgaard, J., and Eglese, R. (2011). Disruption management of
the vehicle routing problem with vehicle breakdown. Journal of the Operational
Research Society, 62(4):742–749. doi:10.1057/jors.2010.19.

Papadimitriou, C. and Tsitsiklis, J. (1987). The complexity of Markov Decision
Processes. Mathematics of Operations Research, 12(3):441–450.
doi:10.1287/moor.12.3.441.

Parr, T. (2007). The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages . Pragmatic Bookshelf.

Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., and Abbeel, P. (2015).
Algorithmic Foundations of Robotics XI: Selected Contributions of the Eleventh In-
ternational Workshop on the Algorithmic Foundations of Robotics, chapter Scaling
up Gaussian Belief Space Planning Through Covariance-Free Trajectory Optimiza-
tion and Automatic Differentiation, pages 515–533. Springer, Cham.
doi:10.1007/978-3-319-16595-0 30.

Pavone, M., Bisnik, N., Frazzoli, E., and Isler, V. (2009). A stochastic and dynamic
vehicle routing problem with time windows and customer impatience. Mobile
Networks and Applications, 14(3):350–364. doi:10.1007/s11036-008-0101-1.

http://dx.doi.org/10.1007/978-3-642-35843-2_28
http://dx.doi.org/10.1007/978-3-540-30206-3_12
http://dx.doi.org/10.1145/2461328.2461380
http://dx.doi.org/10.1057/jors.2010.19
http://dx.doi.org/10.1287/moor.12.3.441
http://dx.doi.org/10.1007/978-3-319-16595-0_30
http://dx.doi.org/10.1007/s11036-008-0101-1

188

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based Value Iteration: An Any-
time Algorithm for POMDPs. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), Acapulco, Mexico.

Prentice, S. and Roy, N. (2009). The belief roadmap: Efficient planning in belief
space by factoring the covariance. The International Journal of Robotics Research.
doi:10.1177/0278364909341659.

Puterman, M. L. (2014). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, New York, NY, USA.

Raman, V., Lignos, C., Finucane, C., Lee, K. C. T., Marcus, M., and Kress-Gazit,
H. (2013). Sorry Dave, I’m Afraid I Can’t Do That: Explaining Unachievable
Robot Tasks Using Natural Language. In Proceedings of the Robotics: Science and
Systems Conference (RSS), Berlin, Germany.

Reyes Castro, L., Chaudhari, P., Tumova, J., Karaman, S., Frazzoli, E., and Rus,
D. (2013). Incremental sampling-based algorithm for minimum-violation motion
planning. In Proceedings of the IEEE Conference on Decision and Control (CDC),
pages 3217–3224. doi:10.1109/CDC.2013.6760374.

Smith, S., Tumova, J., Belta, C., and Rus, D. (2011). Optimal Path Planning
for Surveillance with Temporal Logic Constraints. The International Journal of
Robotics Research, 30(14):1695–1708. doi:10.1177/0278364911417911.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations research, 35(2):254–265.
doi:10.1287/opre.35.2.254.

Sundar, K. and Rathinam, S. (2014). Algorithms for routing an unmanned aerial
vehicle in the presence of refueling depots. IEEE Transactions on Automation
Science and Engineering, 11(1):287–294. doi:10.1109/TASE.2013.2279544.

Svorenova, M., Cerna, I., and Belta, C. (2013). Optimal control of MDPs with
temporal logic constraints. In Proceedings of the IEEE Conference on Decision
and Control (CDC), pages 3938–3943. doi:10.1109/CDC.2013.6760491.

Talata, I. (1998). Exponential Lower Bound for the Translative Kissing Number of
d-Dimensional Convex Bodies. Discrete & Computational Geometry, 19:447–455.
doi:10.1007/PL00009362.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press.

http://dx.doi.org/10.1177/0278364909341659
http://dx.doi.org/10.1109/CDC.2013.6760374
http://dx.doi.org/10.1177/0278364911417911
http://dx.doi.org/10.1287/opre.35.2.254
http://dx.doi.org/10.1109/TASE.2013.2279544
http://dx.doi.org/10.1109/CDC.2013.6760491
http://dx.doi.org/10.1007/PL00009362

189

Tkachev, I. and Abate, A. (2013). Formula-free Finite Abstractions for Linear Tem-
poral Verification of Stochastic Hybrid Systems. In Proceedings of the 16th Int.
Conference on Hybrid Systems: Computation and Control (HSCC), Philadelphia,
PA. doi:10.1145/2461328.2461372.

Toth, P. and Vigo, D., editors (2001). The Vehicle Routing Problem. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA.

Tumova, J., Hall, G. C., Karaman, S., Frazzoli, E., and Rus, D. (2013a). Least-
violating control strategy synthesis with safety rules. In Proceedings of the 16th
International Conference on Hybrid Systems: Computation and Control (HSCC),
pages 1–10, New York, NY, USA. ACM. doi:10.1145/2461328.2461330.

Tumova, J., Marzinotto, A., Dimarogonas, D., and Kragic, D. (2014). Maximally
satisfying ltl action planning. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 1503–1510.
doi:10.1109/IROS.2014.6942755.

Tumova, J., Reyes-Castro, L., Karaman, S., Frazzoli, E., and Rus, D. (2013b).
Minimum-violating planning with conflicting specifications. In Proceedings of the
American Control Conference (ACC). doi:10.1109/ACC.2013.6579837.

Ulusoy, A., Marrazzo, M., and Belta, C. (2013a). Receding Horizon Control in
Dynamic Environments from Temporal Logic Specifications. In Proceedings of the
Robotics: Science and Systems Conference (RSS).

Ulusoy, A., Marrazzo, M., Oikonomopoulos, K., Hunter, R., and Belta, C. (2013b).
Temporal Logic Control for an Autonomous Quadrotor in a Nondeterministic En-
vironment. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). doi:10.1109/ICRA.2013.6630596.

Ulusoy, A., Smith, S. L., Ding, X. C., Belta, C., and Rus, D. (2013c). Optimality
and Robustness in Multi-Robot Path Planning with Temporal Logic Constraints.
International Journal of Robotics Research, 32(8):889–911.
doi:10.1177/0278364913487931.

van den Berg, J., Abbeel, P., and Goldberg, K. (2011). LQG-MP: Optimized path
planning for robots with motion uncertainty and imperfect state information. The
International Journal of Robotics Research, 30(7):895–913.
doi:10.1177/0278364911406562.

Vasile, C. and Belta, C. (2013). Sampling-Based Temporal Logic Path Planning. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Tokyo. doi:10.1109/IROS.2013.6697051.

http://dx.doi.org/10.1145/2461328.2461372
http://dx.doi.org/10.1145/2461328.2461330
http://dx.doi.org/10.1109/IROS.2014.6942755
http://dx.doi.org/10.1109/ACC.2013.6579837
http://dx.doi.org/10.1109/ICRA.2013.6630596
http://dx.doi.org/10.1177/0278364913487931
http://dx.doi.org/10.1177/0278364911406562
http://dx.doi.org/10.1109/IROS.2013.6697051

190

Vasile, C. and Belta, C. (2014a). Reactive Sampling-Based Temporal Logic Path
Planning. In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Hong Kong.

Vasile, C.-I., Aksaray, D., and Belta, C. (2016). Time Window Temporal Logic.
arXiv preprint arXiv:1602.04294v1.

Vasile, C.-I. and Belta, C. (2014b). An Automata-Theoretic Approach to the Vehicle
Routing Problem. In Proceedings of the Robotics: Science and Systems Conference
(RSS), Berkeley, California, USA.

Vilenkin, N. Y. (1971). Combinatorics. Academic Press, NY, USA.

Vitus, M. P. and Tomlin, C. J. (2011). Closed-loop belief space planning for linear,
gaussian systems. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 2152–2159. doi:10.1109/ICRA.2011.5980257.

Wongpiromsarn, T., Topcu, U., and Murray, R. M. (2009). Receding Horizon Tempo-
ral Logic Planning for Dynamical Systems. In Proceedings of the IEEE Conference
on Decision and Control (CDC), pages 5997–6004. doi:10.1109/CDC.2009.5399536.

Wongpiromsarn, T., Topcu, U., and Murray, R. M. (2010). Receding horizon control
for temporal logic specifications. In Proceedings of the 13th International Confer-
ence on Hybrid Systems: Computation and Control (HSCC), pages 101–110. ACM.
doi:10.1145/1755952.1755968.

Wood, D. R. (2004). Bounded degree acyclic decompositions of digraphs. Journal
of Combinatorial Theory, Series B, 90(2):309–313. doi:10.1016/j.jctb.2003.08.004.

Yang, H., Hoxha, B., and Fainekos, G. (2012). Querying Parametric Temporal
Logic Properties on Embedded Systems. In Nielsen, B. and Weise, C., editors,
Proceedings of the IFIP WG 6.1 International Conference on Testing Software and
Systems, pages 136–151, Berlin, Heidelberg. Springer. doi:10.1007/978-3-642-
34691-0 11.

Zamani, M., Esfahani, P. M., Majumdar, R., Abate, A., and Lygeros, J. (2014).
Symbolic Control of Stochastic Systems via Approximately Bisimilar Finite Ab-
stractions. IEEE Transactions on Automatic Control, 59(12):3135–3150.
doi:10.1109/TAC.2014.2351652.

Zhou, D. and Schwager, M. (2014). Vector Field Following for Quadrotors using
Differential Flatness. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). doi:10.1109/ICRA.2014.6907828.

http://dx.doi.org/10.1109/ICRA.2011.5980257
http://dx.doi.org/10.1109/CDC.2009.5399536
http://dx.doi.org/10.1145/1755952.1755968
http://dx.doi.org/10.1016/j.jctb.2003.08.004
http://dx.doi.org/10.1007/978-3-642-34691-0_11
http://dx.doi.org/10.1007/978-3-642-34691-0_11
http://dx.doi.org/10.1109/TAC.2014.2351652
http://dx.doi.org/10.1109/ICRA.2014.6907828

CURRICULUM VITAE

Cristian-Ioan Vasile

Contact Information

H 001-617-763-1251
B cvasile@bu.edu
B cristian.ioan.vasile@gmail.com
m www.cristianvasile.com

Division of Systems Engineering
15 Saint Mary’s Street
Brookline, MA 02446

Education

2012–
current

PhD Candidate, Hybrid and Networked Systems (Hyness) Group,
BU Robotics Lab, Division of Systems Engineering, College of Engi-
neering, Boston University,
Advisor: Prof PhD Calin Belta
Systems Engineering

2011–2014 PhD, Department of Automatic Control and Systems Engineering,
Politehnica University of Bucharest,
Advisor: Prof PhD Ioan Dumitrache
Control Engineering

2009–2011 Master, Department of Automatic Control and Systems Engineer-
ing, Politehnica University of Bucharest, 10.00
Intelligent Control Systems

2009–2010 Certificate, Department of Teacher Training, Politehnica University
of Bucharest, 10.00
Pedagogical Studies Graduate Program – Level 2 (Advanced)

2005–2009 Bachelor, Faculty of Automatic Control and Computers, Politehnica
University of Bucharest, 9.49
Conputer Science, focus on Embedded Systems

2005–2009 Certificate, Department of Teacher Training, Politehnica University
of Bucharest, 10.00
Pedagogical Studies – Level 1 (annex to bachelor diploma)

mailto:cvasile@bu.edu
mailto:cristian.ioan.vasile@gmail.com
http://www.cristianvasile.com

192

Research Fellowships and Summer Schools

11–18 March
2012

Research Fellowship, Faculty of Philosophy and Science in Opava,
Silesian University in Opava, Czech Republic – reference: Prof
PhD Jozef Kelemen

5–7 September

2011

First International School on Biomolecular and Biocellular Com-
puting, Osuna, Spain – awarded tuition, travel and accommoda-
tion grant – reference: Prof PhD Miguel A. Gutiérrez, ISBBC2011

24 September –
1 October 2010

Neural Dynamics Approaches to Cognitive Robotics,
Ruhr-Universität, Bochum, Germany – awarded tuition, travel
and accommodation grant – reference: Prof PhD Gregor Schöner,
Neural Dynamics 2010

22–26 July
2010

1stCooperative Cognitive Control for Autonomous Underwater Ve-
hicles, Jacobs University, Bremen, Germany – awarded tuition and
accommodation grant – reference: Prof PhD Kaustubh Pathak
and Prof PhD Andreas Birk, Co3-AUVs 2010

Awards

NSF Student
Travel Award

IEEE International Conference on Robotics and Automation (ICRA)
2014 in Hong Kong, China.

SE PhD
Student Travel
Award

Systems Engineering Division, Boston University: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS) 2013
in Tokyo, Japan; European Control Conference (ECC) 2015 in Linz,
Austria.

BU Dean’s
Fellow

2012–2013, from the Division of Systems Engineering, College of Engi-
neering, Boston University.

Roberto Rocca

Scholarship

Merit-based award for academic excellence and leadership, national se-
lection process, Roberto Rocca Educational Program, TenarisSilcotub.

Academic
Scholarship

Merit-based scholarship during my undergraduate and graduate studies
(5.5 years), performance evaluated each semester.

Award for
Scientific
Publication

Awards for publication by the Romanian National Council of Scientific
Research for the papers in Applied Soft Computing journal and BMC
Bioinformatics journal.

1st prize at
Student
Scientific
Session

1st prize at Student Scientific Session in the Automatic Control and
Systems Engineering section, Politehnica University of Bucharest, Ro-
mania, 2007 for the implementation of a vision system for a garbage
collector robot and for the paper: “Ana Pavel, Cristian Ioan Vasile,
Artificial vision system of the ReMaster robot using the CMUCam2+
camera”

http://www.redbiocom.es/ISBBC/ISBBC11/
http://www.robotics-school.org/
http://robotics.jacobs-university.de/projects/Co3-AUVs/summerschool2010.htm
http://www.robertorocca.org

193

Publications

Journal Articles

1. Vasile Cristian Ioan, Aksaray Derya, and Belta Calin. Time Window Tem-
poral Logic. Theoretical Computer Science, page (submitted).

2. Vasile Cristian Ioan, Schwager Mac, and Belta Calin. Translational and
Rotational Invariance in Networked Dynamical Systems. IEEE Transactions
on Control of Network Systems, page (submitted).

3. Leahy Kevin, Zhou Dingjiang, Vasile Cristian Ioan, Oikonomopoulos Kon-
stantinos, Schwager Mac, and Belta Calin. Persistent Surveillance for Un-
manned Aerial Vehicles Subject to Charging and Temporal Logic Constraints.
Autonomous Robots, page 1–16, 2016. doi:10.1007/s10514-015-9519-z.

4. Vasile Cristian Ioan, Pavel Ana Brânduşa, and Dumitrache Ioan. Improv-
ing the universality results of Enzymatic Numerical P Systems. International
Journal of Computer Mathematics (special issue: Membrane Computing), 90(4),
February 2013. if=0.589, doi: 10.1080/00207160.2012.748897.

5. Vasile Cristian Ioan, Pavel Ana Brânduşa, Dumitrache Ioan, and Păun Ghe-
orghe. On the Power of Enzymatic Numerical P Systems. Acta Informatica,
49(6):395–412, September 2012. if=0.809, doi:10.1007/s00236-012-0166-y.

6. Buiu Cătălin, Vasile Cristian Ioan, and Arsene Octavian. Development
of membrane controllers for mobile robots. Information Sciences, 187:33–51,
March 2012. if=2.833, doi:10.1016/j.ins.2011.10.007.

7. Pavel Ana Brânduşa and Vasile Cristian Ioan. PyElph – a Software Tool for
Gel Images Analysis and Phylogenetics. BMC Bioinformatics, 13(9), January
2012. if=3.03, doi:10.1186/1471-2105-13-9 (Open Access).

8. Vasile Cristian Ioan and Buiu Cătălin. A software system for collabora-
tive robotics applications and its application in particle swarm optimization
implementations. Applied Soft Computing, 11(8):5498–5507, December 2011.
if=2.084, doi:10.1016/j.asoc.2011.05.009.

9. Vasile Cristian Ioan and Constantinescu Alexandru. On the quotient crite-
rion. Gazeta Matematică, CX(9):420–422, 2005. in Romanian.

http://dx.doi.org/10.1007/s10514-015-9519-z
http://www.tandfonline.com/doi/abs/10.1080/00207160.2012.748897
http://www.springerlink.com/content/x77850021373gh64/
http://www.sciencedirect.com/science/article/pii/S0020025511005421
http://www.biomedcentral.com/1471-2105/13/9/abstract
http://www.sciencedirect.com/science/article/pii/S1568494611001682

194

Conference Articles

1. Vasile Cristian Ioan, Leahy Kevin, Cristofalo Eric, Jones Austin, Schwager
Mac, and Calin Belta. Control in Belief Space with Temporal Logic Specifica-
tions. In IEEE Conference on Decision and Control (CDC), page (submitted),
December 2016.

2. Vasile Cristian Ioan, Vaidyanathan Prashant, Madsen Curtis, Densmore
Douglas, and Calin Belta. Compositional Signal Temporal Logic with Appli-
cations to Synthetic Biology. In IEEE Conference on Decision and Control
(CDC), page (submitted), December 2016.

3. Vasile Cristian Ioan, Pavel Ana Brandusa, and Dumitrache Ioan. Variable
Structure Controllers Using Hybrid Numerical P Systems. In IEEE Conference
on Decision and Control (CDC), page (submitted), December 2016.

4. Bombara Giuseppe, Vasile Cristian Ioan, Penedo Alvarez Francisco, and
Belta Calin. A Decision Tree Approach to Data Classification using Signal
Temporal Logic. In Hybrid Systems: Computation and Control (HSCC), page
(accepted), Vienna, Austria, April 2016.

5. Aksaray Derya, Vasile Cristian Ioan, and Belta Calin. Dynamic Routing of
Energy-Aware Vehicles with Temporal Logic Constraints. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), page (accepted), 2016.

6. Vasile Cristian Ioan, Schwager Mac, and Belta Calin. SE(N) Invariance in
Networked Systems. In European Control Conference (ECC), pages 186–191,
Linz, Austria, July 2015. doi:10.1109/ECC.2015.7330544.

7. Vasile Cristian Ioan and Belta Calin. An Automata-Theoretic Approach to
the Vehicle Routing Problem. In Robotics: Science and Systems Conference
(RSS), pages 1–9, Berkeley, California, USA, July 2014. link.

8. Leahy Kevin, Zhou Dingjiang, Vasile Cristian Ioan, Oikonomopoulos Kon-
stantinos, Schwager Mac, and Belta Calin. Provably Correct Persistent Surveil-
lance for Unmanned Aerial Vehicles Subject to Charging Constraints. In Inter-
national Symposium on Experimental Robotics (ISER), Marrakech, Essaouira,
Morocco, June 2014.

9. Vasile Cristian Ioan and Belta Calin. Reactive Sampling-Based Temporal
Logic Path Planning. In IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4310–4315, Hong Kong, China, June 2014.
doi:10.1109/ICRA.2014.6907486.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7330544
http://www.roboticsproceedings.org/rss10/p45.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6907486&tag=1

195

10. Vasile Cristian Ioan and Belta Calin. Sampling-Based Temporal Logic Path
Planning. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 4817–4822, Tokyo, Japan, November 2013.
doi:10.1109/IROS.2013.6697051.

11. Pavel Ana Brânduşa, Vasile Cristian Ioan, and Dumitrache Ioan. Robot
localization implemented with enzymatic numerical P systems. In Proc. of the
Living Machines 2012: The International Conference on Biomimetic and Bio-
hybrid Systems, volume 7375 of Lecture Notes in Computer Science, pages 204–
215, Barcelona, Spain, July 2012. Springer Berlin Heidelberg. doi:10.1007/978-
3-642-31525-1 18.

12. Vasile Cristian Ioan, Pavel Ana Brânduşa, and Dumitrache Ioan. Improving
the universality results of Enzymatic Numerical P Systems. In Proc. of the 10th
Brainstorming Week on Membrane Computing, pages 215–228, Seville, Spain,
February 2012. link.

13. Vasile Cristian Ioan, Pavel Ana Brânduşa, Dumitrache Ioan, and Păun Ghe-
orghe. Numerical P Systems. In Proc. of the 10th Brainstorming Week
on Membrane Computing, pages 26–29, Seville, Spain, February 2012. collec-
tive paper: Research Topics in Membrane Computing: After CMC 12, Before
BWMC 10, Eds. Gheorghe M., Paun Gh., Perez-Jimenez M.J.

14. Vasile Cristian Ioan, Pavel Ana Brânduşa, Dumitrache Ioan, and Kelemen
Jozef. Implementing obstacle avoidance and follower behaviors on Koala robots
using Numerical P Systems. In Proc. of the 10th Brainstorming Week on
Membrane Computing, pages 207–214, Seville, Spain, February 2012. link.

15. Buiu Cătălin, Pavel Ana Brânduşa, Vasile Cristian Ioan, and Dumitrache
Ioan. Perspectives of using membrane computing in the control of mobile
robots. In Proc. of the Beyond AI - Interdisciplinary Aspect of Artificial
Inteligence Conference, pages 21–26, Pilsen, Czech Republic, December 2011.
link.

16. Vasile Cristian Ioan, Pavel Ana Brânduşa, and Buiu Cătălin. Integrating
human swarm interaction in a distributed robotic control system. In Proc. of
the IEEE 7th Annual IEEE Conference on Automation Science and Engineering
(CASE), pages 743–748, Trieste, Italy, August 2011.
doi:10.1109/CASE.2011.6042493.

17. Vasile Cristian Ioan, Pavel Ana Brânduşa, and Buiu Cătălin. Chidori - a
bio-inspired cognitive architecture for collective robotics applications. In Proc.
of the IFAC Workshop on Intelligent Control Systems, pages 52–57, Sinaia,
Romania, September 2010. link.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6697051
http://www.springerlink.com/content/70605m8t67661205/
http://www.springerlink.com/content/70605m8t67661205/
http://www.gcn.us.es/10BWMC/10BWMCvolII/bravol2012II.pdf
http://www.gcn.us.es/files/megapaperMG.pdf
http://www.gcn.us.es/files/megapaperMG.pdf
http://www.gcn.us.es/10BWMC/10BWMCvolII/bravol2012II.pdf
http://beyondai.zcu.cz/files/BAI2011_proceedings.pdf
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6042493
http://www.ifac-papersonline.net/Detailed/43593.html

196

18. Pavel Ana Brânduşa, Vasile Cristian Ioan, and Buiu Cătălin. Cognitive
vision system for an ecological mobile robot. In Proc. of the 13th International
Symposium on System Theory, Automation, Robotics, Computers, Informatics,
Electronics and Instrumentation (SINTES), volume 1, pages 267–272, Craiova,
Romania, October 2007. link.

Books and Chapters

1. Kevin Leahy, Dingjiang Zhou, Cristian-Ioan Vasile, Konstantinos Oikonomo-
poulos, Mac Schwager, and Calin Belta. Provably correct persistent surveillance
for unmanned aerial vehicles subject to charging constraints. In M. Ani Hsieh,
Oussama Khatib, and Vijay Kumar, editors, Experimental Robotics, volume 109
of Springer Tracts in Advanced Robotics, pages 605–619. Springer International
Publishing, 2016. isbn: 978-3-319-23777-0, link.

2. Pavel Ana Brânduşa, Vasile Cristian Ioan, and Dumitrache Ioan. Membrane
computing in robotics, volume 4 of Topics in Intelligent Engineering and Infor-
matics (special issue: Beyond Artificial Intelligence), pages 125–136. Springer,
2013. isbn-13: 978-3642344213.

3. Pavel Ana Brânduşa, Vasile Cristian Ioan, and Buiu Cătălin. Biomathe-
matics and Bioinformatics – Concepts and Applications. Editura Universitară,
Bucharest, Romania, 2011. isbn: 978-606-591-178-9, in Romanian.

4. Buiu Cătălin, Pavel Ana Brânduşa, and Vasile Cristian Ioan. Cognitive
Robots – Bio-inspired Applications. Editura Universitară, Bucharest, Romania,
2010. isbn: 978-973-749-835-9, in Romanian.

5. Pavel Ana Brânduşa and Vasile Cristian Ioan. Cognitive Robots – Concepts,
Architecures, Applications, chapter II: Robots with cognitive vision. Case study
– ReMaster One robot, pages 35–97. Editura Universitară, Bucharest, Romania,
2008. isbn: 978-973-749-443-6, in Romanian.

Posters

1. Vasile Cristian Ioan and Belta Calin. Reactive Sampling-Based Temporal
Logic Path Planning. In 5th Workshop on Formal Methods for Robotics and
Automation, page Poster, Berkeley, CA, USA, July 2014. link.

2. Vasile Cristian Ioan, Pavel Ana Brânduşa, Arsene Octavian, Popescu Nir-
vana, and Buiu Cătălin. Human-swarm interface design and new control tech-
niques for swarms autonomous mobile robots. In Proc of the 4th International
Conference on Cognitive Systems (CogSys), page Poster, ETH Zurich, Switzer-
land, January 2010. link.

http://www.ace.ucv.ro/sintes13/SINTES13_2007/Mechatronics/12%20Pavel%2037.pdf
http://dx.doi.org/10.1007/978-3-319-23778-7_40
http://verifiablerobotics.com/RSS14/Abstracts.html
http://www.cogsys2010.ethz.ch/doc/cogsys2010_proceedings/cogsys2010_0032.pdf

197

Talks and demonstrations

Talks

8 December
2015

Temporal Logic Planning and Inference, Distributed Robotics Labora-
tory, MIT.

5 September
2011

“Membrane Controllers for Mobile Robots” at the First International
School on Biomolecular and Biocellular Computing, Osuna, Spain – ref-
erence: Prof PhD Miguel A. Gutiérrez, ISBBC2011

18 June 2011 “Modeling and simulation of human HIV-1 gp120 envelope glycopro-
tein” at the IBM High Performance Scientific Computing Workshop,
Bucharest, Romania

10 November

2010

“Particle Swarm Optimization and its applications in collaborative
robotics” at the Laboratory of Natural Computing and Robotics

Demonstrations

19–20
February
2011

“Chidori Architecture – Distributed Swarm Control System and User In-
terface” poster and stand at the Artificial Intelligence – Multi-Agent Sys-
tems (AI-MAS) Winter Olympics, Politehnica University of Bucharest,
Bucharest, Romania

Membership and Community Service

Membership IEEE Student Member, IEEE RAS Member, EuCogIII member, Found-
ing member of Romanian Robotics Education Initiative (RREI)

Reviewer International Journal of Robotics Research, IEEE Robotics and Au-
tomation Letters, IEEE Transactions on Automation Science and Engi-
neering, Theoretical Computer Science Journal, Discrete Event Dynamic
Systems, IEEE Transactions on NanoBioscience, Applied Soft Comput-
ing Journal, Sensors Journal, Robotics: Science and Systems Conference
(RSS 2016), IEEE International Conference on Robotics and Automation
(ICRA 2015, 2016), IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2016), ACM International Conference on
Hybrid Systems: Computation and Control (HSCC 2016), IEEE Con-
ference on Decision and Control (CDC 2014, 2015), IFAC Workshop
on Distributed Estimation and Control in Networked Systems(NecSys
2015), IFAC Workshop on Intelligent Control Systems (WICS 2010)

Organizer IFAC Workshop on Intelligent Control Systems (WICS, 2010)

Judge
Advisor

CEESA First Tech Challenge robotics competition, American Interna-
tional School of Bucharest, April 2011 and March 2012

http://www.redbiocom.es/ISBBC/ISBBC11/
http://www.aiolympics.ro/event/ai-mas-village/

198

Interests

Robotics formal methods, path planning, swarm robotics, distributed and de-
centralized control

Control
engineering

correct-by-construction control strategies, temporal logics, sampling
based algorithms, incremental computing

Other bioinformatics, graph coloring

Research Experience

2013–
current

Research Assistant, Hybrid and Networked Systems (HyNeSs)
Group, BU Robotics Lab, Division of Systems Engineering, College
of Engineering, Boston University,

2007–2012 Volunteer Researcher, Laboratory of Natural Computing and
Robotics, Politehnica University of Bucharest,

Teaching Experience

2011–2012 Teaching Assistant, Politehnica University of Bucharest,
Laboratory Classes:
• Robotics and Virtual Reality (Spring 2012);
• Control Engineering (Spring 2012);
• Programming real-time applications (Spring 2012);
• Diagnosis and Decision Techniques (Spring 2012);
• Artificial Intelligence (Fall 2011).

2010–2011 Associate Teaching Assistant, Politehnica University of
Bucharest,
Laboratory Classes:
• Robotics and Virtual Reality (Spring 2010, Spring 2011);
• Control Engineering (Spring 2011);
• Cognitive Robotics (winter 2010);
• Intelligent Multi-agent Systems for Ambient Assistance (winter 2010).

2009–2010 Volunteer Teaching Assistant, Politehnica University of
Bucharest,
Laboratory Classes:
• Robotics and Virtual Reality (Spring 2009);
• Microprocessor Based Design (Spring 2009, Spring 2010).

199

Projects

Current

2016– Temporal Logic Planning for Support by Fire Operations in Uncertain
and Adversarial Environments

2013– Persistent Vehicle Routing Problem with Temporal Logic and Charging
Constraints

2013– Sampling-Based Motion Planning for Stochastic Systems with Distri-
bution Temporal Logic

2012– Reactive Sampling-Based Path Planning with Temporal Logic Specifi-
cations

2015– Compositional Signal Temporal Logic with Applications to Synthetic
Biology

2014– Translational and Rotational Invariance in Networked Systems

2015– Data-driven Inference of Temporal Logic Specifications

2014– Time Window Temporal Logic

2014– Bio-Electrical Cell Networks

2012– Hybrid Numerical P Systems. Controllers with Time-Varying Structure

2011– PyElph – open source software tool for gel image analysis and phylo-
genetics

Finished

2009–2012 Chidori, a distributed multi-agent control architecture for multi-
robot systems using JADE

2009–2011 Robot controllers modeled with Numerical P Systems (NPS) and
Enzymatic NPS

2009–2010 PSO based search algorithm of a target in an unknown environment
using Khepera III and e-puck robots

2009 Software package for working with Khepera and e-puck robots

2009 Fuzzy filters for noise reduction in images

2008 Design and construction of an autonomous robot (JBot)

2008 Compiler for the Cool didactic programming language

2008 Development of a ssh client for the Android platform

2008 Didactic processor on a FPGA, Sparten3E

2006–2007 Design and construction of ReMaster, an autonomous service robot

2006–2007 Artificial vision system for the ReMaster robot

http://sourceforge.net/projects/pyelph/files/

200

Skills

Computer skills

Programming
languages

Python, C, Java, R, Matlab, PHP, SQL, Bash

Frameworks ROS, ANTLR, MPI, wxPython, matplotlib, numpy, scipy

Languages

Romanian native language

English Advanced TOEFL Score: 111 – R:30, L:30, S: 23, W: 28

German Advanced German Certificate “Zertifikat Deutsch”, Goethe In-
stitute (98%)

Other skills

Driving license category B

Artistic violin and music theory, received 9.95/10 in the national exami-
nation “Capacitate” (2001)

	Introduction
	Reactive Temporal Logic Path Planning
	Control in Belief Space with Temporal Logic Specifications
	Time Window Temporal Logic
	Persistent Vehicle Routing Problem with Charging and Temporal Logic Constraints
	Dynamic Persistent Vehicle Routing Problem with Charging and Temporal Logic Constraints
	Contributions

	Formal Methods Preliminaries
	Reactive Temporal Logic Path Planning
	Problem formulation
	Outline of the Approach

	Solution
	Off-line Algorithm
	On-line algorithm

	Case study
	Off-line algorithm
	On-line algorithm

	Control in Belief Space with Temporal Logic Specifications
	Gaussian Distribution Temporal Logic
	Problem Formulation
	Motion and sensing models
	Problem definition

	Solution
	Sampling-based algorithm
	Computing transition and intersection probability
	GDTL-FIRM Product MDP
	Finding satisfying policies
	Dynamic program for Maximum Probability Policy
	Complexity

	Case Studies

	Time Window Temporal Logic
	Preliminaries on Formal Languages
	Time Window Temporal Logic
	Temporal Relaxation
	Optimization over Temporal Relaxation
	Verification, synthesis, and learning
	Overview of the solution

	Properties of TWTL
	Automata construction
	Construction Algorithm
	Annotation
	Operators
	Correctness
	Complexity

	Verification, Synthesis, and Learning Algorithms
	Compute temporal relaxation for a word
	Control policy synthesis for a finite transition system
	Verification
	Learning deadlines from data

	TWTL Python Package
	Case Studies
	Automata Construction and Temporal Relaxation
	Control Policy Synthesis
	Verification
	Learning deadlines from data

	Persistent Vehicle Routing Problem with Charging and Temporal Logic Constraints
	Environment and Vehicle Models
	P-VRP Formulation
	Control Policy
	Motion model
	Charging model
	Specification
	Completeness
	Optimality
	Complexity
	Generalizations

	Implementation, Results, and Experimental Validation

	Dynamic Persistent Vehicle Routing Problem with Charging and Temporal Logic Constraints
	Problem Formulation
	Environment Model
	Vehicle Model
	Control Policy
	Problem Definition

	Control Synthesis
	Multiple-Vehicle Motion
	Specification
	Operational Control Policy

	Analysis of the Hybrid Control Policy
	Performance
	Safety
	Complexity

	Case Study
	Simulation Results
	Experimental Results

	Conclusions and Future Work
	References
	Curriculum Vitae

