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ABSTRACT

Control and optimization of Stochastic Hybrid Systems (SHS) constitute increas-

ingly active fields of research. However, the size and complexity of SHS frequently

render the use of exhaustive verification techniques prohibitive. In this context, Per-

turbation Analysis techniques, and in particular Infinitesimal Perturbation Analysis

(IPA), have proven to be particularly useful for this class of systems. This work fo-

cuses on applying IPA to two different problems: Traffic Light Control (TLC) and

control of cancer progression, both of which are viewed as dynamic optimization

problems in an SHS environment.

The first part of this thesis addresses the TLC problem for a single intersection

modeled as a SHS. A quasi-dynamic control policy is proposed based on partial state

information defined by detecting whether vehicle backlogs are above or below cer-

tain controllable threshold values. At first, the threshold parameters are controlled

v



while assuming fixed cycle lengths and online gradient estimates of a cost metric with

respect to these controllable parameters are derived using IPA techniques. These

estimators are subsequently used to iteratively adjust the threshold values so as to

improve overall system performance. This quasi-dynamic analysis of the TLC prob-

lem is subsequently extended to parameterize the control policy by green and red cycle

lengths as well as queue content thresholds. IPA estimators necessary to simultane-

ously control the light cycles and thresholds are rederived and thereafter incorporated

into a standard gradient based scheme in order to further ameliorate system perfor-

mance.

In the second part of this thesis, the problem of controlling cancer progression is

formulated within a Stochastic Hybrid Automaton (SHA) framework. Leveraging the

fact that cell-biologic changes necessary for cancer development may be schematized

as a series of discrete steps, an integrative closed-loop framework is proposed for de-

scribing the progressive development of cancer and determining optimal personalized

therapies. First, the problem of cancer heterogeneity is addressed through a novel

Mixed Integer Linear Programming (MILP) formulation that integrates somatic mu-

tation and gene expression data to infer the temporal sequence of events from cross-

sectional data. This formulation is tested using both simulated data and real breast

cancer data with matched somatic mutation and gene expression measurements from

The Cancer Genome Atlas (TCGA). Second, the use of basic IPA techniques for op-

timal personalized cancer therapy design is introduced and a methodology applicable

vi



to stochastic models of cancer progression is developed. A case study of optimal

therapy design for advanced prostate cancer is performed. Given the importance of

accurate modeling in conjunction with optimal therapy design, an ensuing analysis is

performed in which sensitivity estimates with respect to several model parameters are

evaluated and critical parameters are identified. Finally, the tradeoff between system

optimality and robustness (or, equivalently, fragility) is explored so as to generate

valuable insights on modeling and control of cancer progression.

vii
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Chapter 1

Introduction

A dynamical system is characterized by a set of mathematical rules that define how

elements of the system evolve throughout time. Much of the theory developed in

this field was initially motivated by the study of classical mechanical systems, whose

behavior is usually described by ordinary differential equations. Such systems are

commonly referred to as continuous dynamical systems, and contrast with discrete

dynamical systems, whose evolution is driven by the occurrence of instantaneous

events. With the advent of computers and ensuing modern technologies, a new gen-

eration of hybrid systems was identified by researchers. Hybrid systems comprise an

interesting, albeit challenging, class of systems that combine continuous and discrete

dynamics, and provide a useful abstraction for describing several complex systems.

Hybrid systems theory has roots in various fields of science; in fact, motivation

for the study of hybrid systems has spawn from several different lines of research. At

present the reverse is also seen to hold, as hybrid systems theory is seen to increasingly

contribute to the development of more established fields such as computer science,

mathematical programming, and control theory. Indeed, researchers in software ver-

ification, in search of a more precise description of the processes in which computers
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play a role, have begun to incorporate continuous dynamics to their discrete systems.

Similarly, hybrid systems theory has influenced the introduction of differential equa-

tions in mathematical programming problems. Additionally, switching control has

frequently proven advantageous over smooth control, and various types of switch-

ing have been used for nonlinear control, as in the case of sliding mode control, gain

scheduling, programmable-logic controllers, and even fuzzy control (to the extent that

fuzzy schemes are composed of different operating regimes).

At present it is becoming increasingly clear that many problems of interest can be

cast within a hybrid system framework. Several such problems also frequently share

additional features, such as stochasticity, which render their analysis, control and

optimization particularly challenging. At the same time, recent technological devel-

opments in system control and optimization call for data driven techniques that can

be easily implemented online. These challenges motivate our study of efficient control

and optimization techniques (such as perturbation analysis) that can be applied to

such complex stochastic hybrid problems.

1.1 Stochastic Hybrid Systems

A great deal of work has been undertaken in the field of hybrid systems using de-

terministic models that fully describe system dynamics. Nevertheless, the fact that

uncertainty may be an inherent part of such complex systems has recently moti-

vated the study of non-deterministic models, in which stochastic processes may affect

discrete state transitions or may be present within the continuous state dynamics.
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Stochastic Hybrid Systems (SHS) comprise a family of models that incorporate sev-

eral types of randomness which, in its most general form, is associated with probability

distributions for both discrete and continuous transitions (Bujorianu, 2012).

Simple SHS models were introduced in control engineering a few decades ago,

being initially used to describe, with high accuracy, the corrective actions taken to

prevent significant deviations in plane trajectories due to turbulence. Since then, SHS

analysis has been increasingly used in all activities that relate to systems engineering,

and the modeling, control, and optimization of such systems constitute increasingly

active fields of research (Cassandras and Lygeros, 2007).

1.1.1 Models for SHS

Models are the ultimate tools for representing knowledge about phenomena, and

much effort has been undertaken to develop appropriate mathematical models for

hybrid systems not only in engineering, but also in other fields such as philosophy,

biology, and economics (Schutter et al., 2009). A suitable modeling language for

hybrid systems should be descriptive, composable, and abstractable. The descriptive

power of these languages allows for (i) capturing different types of continuous and

discrete dynamics; (ii) modeling different ways in which discrete evolution affects and

is affected by continuous evolution; (iii) capturing the inherent uncertainty of non-

deterministic models. Furthermore, it should be possible to construct large models

by composing different simple ones. Finally, abstraction is desirable both in allowing

composite models to be refined down to design problems for individual components,



4

as well as in allowing performance results of individual components to be used to

study the performance of the overall system (Lygeros et al., 2008).

To date, many models have been proposed which possess at least some subset of

these properties; different languages emphasize different aspects, depending on the

applications that they are designed to address. Some of the most well-known modeling

frameworks proposed for hybrid systems include switched systems, hybrid Petri nets,

and hybrid automata.

Switched systems (Liberzon, 2003) seek to represent hybrid systems as continu-

ous systems with switching, and hence place more emphasis on the properties of the

continuous state. A complete switched system model specifies the dynamics govern-

ing the evolution of the system’s continuous and discrete states, where the latter is

termed a switching signal, which is a piecewise constant function of time. The use of

such models is motivated by the fact that a continuous feedback law capable of stabi-

lizing a continuous-time control system may not exist. In such situations, logic-based

decisions are incorporated into the control law so as to implement switching among

a family of controllers, resulting in a switched (hybrid) closed-loop system. Classes

of problems for which switched systems techniques are particularly appropriate in-

clude nonholonomic systems, systems with large-scale modeling uncertainty, as well

as systems with sensor and/or actuator limitations.

Petri nets (David and Alla, 2001) are widely used to model discrete systems, being

frequently applied in areas such as manufacturing, communications, software design,
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and reliability engineering, among others. A Petri net is a directed bipartite graph

in which the nodes represent transitions (i.e., events that may occur) and places

(i.e., conditions for the occurrence of events), and directed arcs describe conditions

for each transition. Places in a Petri net may contain a discrete number of marks

(termed tokens), and the marking of a place may correspond either to the Boolean

state of a device (e.g., availability of a certain resource) or to an integer number

(e.g., the number os parts in a buffer). This implies, however, that the number of

reachable states explodes as the number of tokens increases. Hybrid Petri nets address

this limitation by representing the firing of transitions as continuous processes and

allowing for the number of tokens to be a real value.

The concept of hybrid Petri nets was introduced in (David and Alla, 1987) and

subsequently developed in (Bail et al., 1991). Two distinct parts are defined in a

hybrid Petri net: a discrete part (formed by a set of discrete places and a set of

discrete transitions), and a continuous part (formed by a set of continuous places and

a set of continuous transitions). These parts are connected through arcs such that

one part may affect the behavior of the other without changing its own marking. The

model of a hybrid Petri net was extended to account for a stochastic discrete part in

(Dubois and Alla, 1993), and applications of hybrid Petri nets models were reported

in (Alla et al., 1992) for production systems and in (Alla and David, 1998) for water

supply systems. Although such models may be designed intuitively, their quantitative

analysis is a substantially more complex task.
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Hybrid automata (Cassandras and Lafortune, 2008) are the most commonly used

modeling framework for hybrid systems due to a great extent to their power of anal-

ysis. The Alur automaton (Alur et al., 1995), developed primarily for algorithmic

analysis of hybrid systems model checking, remains one of the most popular hybrid

automaton model. A hybrid automaton is a finite state machine with a finite set

of continuous variables whose evolution is described by ordinary differential equa-

tions. An extension of such models exists in the form of stochastic hybrid automaton

models, which are especially suited for cases where state evolution may not be fully

determined. Since we make use of stochastic hybrid automata throughout our work,

we will presently limit ourselves to this brief introduction; a more detailed account

this modeling framework will be presented in later parts of this document.

1.1.2 Optimization of SHS

In essence, Stochastic Hybrid System (SHS) control is a class of stochastic opti-

mization problems, whose solution relies on models and methods capable of optimiz-

ing system performance while explicitly accounting for uncertainty. In recent years,

the area of stochastic optimization has evolved considerably due, to a great extent,

to new theoretical developments and advances in computational power. As a re-

sult, stochastic optimization techniques are being increasingly applied to problems in

energy planning, national security, supply chain management, health care, finance,

transportation, revenue management, among others. The problem of optimizing a
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general stochastic system can be formulated as

min
θ∈Θ

J (θ) (1.1)

where θ is a vector of all the decision variables, Θ is the feasible region and J (θ)

is the objective function (note that (1.1) may also represent deterministic optimiza-

tion problems, in which no randomness is considered, but since we are interested in

systems with inherent uncertainty, we will henceforth assume that (1.1) is defined in

a stochastic setting). If the objective function J (θ) is linear in θ and the feasible

region can be written as a set of linear equations in θ, (1.1) reduces to a stochastic

linear programming problem. Similarly, if some of the constraints that make up Θ

contain integer restrictions, (1.1) is referred to as a stochastic integer programming

problem. Nonlinear versions of (1.1) also exist, but many algorithms developed for

the linear case carry over to stochastic nonlinear programming (Sahinidis, 2004). Ro-

bust stochastic optimization is a variant of (1.1) in which the underlying assumption

that the decision-maker is risk-neutral is relaxed. On the other hand, (1.1) is defined

as a probabilistic programming problem when the focus is on the system’s ability to

meet feasibility in a stochastic environment.

In the above approaches, uncertainty is modeled through discrete or continuous

probability functions, in contrast with fuzzy programming (Sahinidis, 2004), where

random parameters are represented by fuzzy numbers and constraints are treated as

fuzzy sets. Different types of fuzzy programming techniques exist to deal with ran-
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domness in the objective function coefficients and/or constraint coefficients, and all

such approaches allow for constraints to be violated to a certain extent. Member-

ship functions are thus used to represent the degree to which a certain constraint is

satisfied, as well as the range of uncertainty of the coefficients.

Stochastic dynamic programming (Bertsekas, 2005) constitutes yet another ap-

proach to optimization under uncertainty where randomness is considered as an in-

tegral part of the dynamic multi-stage decision process. In this context, system un-

certainty follows some probability distribution that depends on the current state and

control action. The procedure for solving (1.1) involves many subproblems and suffers

from the curse of dimensionality, i.e., computational time and storage requirements

grow exponentially in the number of state and control variables. In order to bypass

such limitations, various approximation techniques have been developed, which make

use of heuristic learning schemes or simulation.

The aforementioned methods apply to instances of (1.1) where the objective func-

tion can be evaluated in closed form so that the optimal solution may be determined

by solving the necessary and/or sufficient conditions. However, it may be desirable

or even unavoidable not to make any assumptions about the structure of J (θ), in

which case the goal becomes to choose θ, frequently through some form of random

search, so as to find a solution with desirable properties such as asymptotic optimality

or probabilistic optimality guarantees. Indeed, in many applications, little is known

regarding the convexity, continuity, or differentiability of J (θ), and the system must
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inevitably be repeatedly simulated under different values of θ in order to ultimately

approximate the value of the objective function as

J (θ) = E [L (θ, ω)] (1.2)

where L (θ, ω) is the sample performance function, ω ∈ Ω denotes an observed sample

path, and Ω represents the set of all possible sample paths. This approach is known

as stochastic simulation optimization (Chen and Lee, 2010), and the estimation al-

gorithms that fall into this category generally consist of a sequence of (i) stochastic

simulations, from which the values of the sample performance function are obtained

for several sample paths; (ii) performance estimation, where (1.2) is computed for

different θ; (iii) optimality search, whereby the decision variables yielding the best

estimated performance are chosen. A schematic representation of this estimation

procedure is shown in Figure 1·1.

In (1.2), the sample mean performance is commonly computed as an estimate

of the objective function. If the observed sample paths are independent so that the

sequence {L (θ, ω1) , . . . , L (θ, ωn)} is iid (Cassandras and Lafortune, 2008), the strong

law of large numbers can be applied to yield

J (θ) = lim
n−→∞

[
1

n

n∑
i=1

L (θ, ωi)

]
(1.3)

At this point, it is clear that two primary efficiency concerns in stochastic sim-

ulation optimization relate to the fact that (i) the quality of the estimate of J (θ)
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Figure 1·1: Typical framework of a stochastic simulation optimization

increases with the number of sample paths n, and (ii) J (θ) must be evaluated for

many different values of θ before the best one can be determined. For instances

where the feasible region Θ is relatively small, enumeration can, in principle, be used

to find the optimum. This eliminates the need to repeatedly estimate system per-

formance, but multiple simulation replications are still required. In most cases of

interest, however, the system’s size and complexity frequently render the use of ex-

haustive verification techniques prohibitive, so that efficient simulation methods must

be used. Such methods can be broadly classified as metaheuristics and model-based

approaches (Chen and Lee, 2010). The former do not assume that an underlining re-

sponse function exists for J (θ); in fact, such methods frequently start with an initial

population of decision variables, from which elite variable(s) is(are) selected, and then

improve upon this selection at each iteration. Some of the approaches that fall within
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this category include evolutionary and genetic algorithms (Boesel et al., 2003), sim-

ulated annealing (Alrefaei, 1999), model reference adaptive search (Hu et al., 2008),

as well as population-based algorithms from nonlinear optimization (Kim and Zhang,

2010),(Barton and Ivey, 1996).

In contrast to metaheuristics, model-based approaches consist of iterative algo-

rithms that use statistical methods to search the feasible region, and implicitly assume

that an underlining response function exists for J (θ). Gradient-based approaches are

a class of model-based methods in which the local search for optimality is carried out

using the gradient of the performance measure with respect to the decision variables.

There are several ways in which the gradient of the performance measure, or some

estimate of it, can be used for analysis and control of stochastic systems. In the case

where θ is a scalar parameter, the gradient of J (θ) with respect to θ is simply the

derivative dJ
dθ

, and we note that, for notational simplicity, and without loss of gen-

erality, we will assume this to be the case in the remainder of this discussion. The

derivative dJ
dθ

at θ = θ0 ∈ Θ is a measure of the sensitivity of J (θ) with respect to θ at

the point θ = θ0, thus providing some local information regarding the effect of this de-

cision variable on the system’s performance (Cassandras and Lafortune, 2008). Such

information could include, for instance, the sign of the derivative, which reveals the

direction in which θ should be changed. Additionally, the magnitude of the derivative

is also useful in determining how sensitive J (θ) is to changes in the decision variable;

a very small derivative value, for example, indicates that the performance would not
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be significantly improved by changes in the current parameter and that it would be

more advantageous to consider other decision variables.

Another useful type of information that may be obtained through sensitivity anal-

ysis relates to the structural properties of the system, such as monotonicity and con-

vexity. A case in point is when the derivative of the sample function dL
dθ

, which

represents an estimate of dJ
dθ

, is found to be always positive (or negative) for any

given sample path. In this setting, J (θ) can be seen to be monotonically increasing

(or decreasing), although its actual value may not be determined.

Finally, the value of dJ
dθ

can also be used to improve current operating conditions or

(under certain conditions) to compute an optimal θ∗ through an iterative optimization

algorithm of the form

θn+1 = θn − ρn
(
dJ

dθ

)
θ=θn

n = 1, 2, . . . (1.4)

where ρn is the step size at the nth iteration. Since the objective function J (θ) is not

known, we must approximate its derivative by the derivative of the sample function

dL
dθ

. There are two main techniques for obtaining such derivative estimates: methods

based on finite differences, and direct approaches. The former rely on computing a

finite difference approximation as

dL

dθ
≈ L(θ + ∆θ)− L(θ)

∆θ
(1.5)

This approach requires simulating the system under two different but very close values
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of θ, i.e., it is necessary to generate one sample path under θ (from which L(θ)

is computed), and subsequently change the parameter by a small amount ∆θ, thus

obtaining L(θ+∆θ) from a second sample path. The difference between the objective

function estimates is then used to compute an estimate of dL
dθ

. Such procedure is

clearly inefficient; moreover, it is possible that, in an attempt to improve the estimate,

a decrease in ∆θ could make it necessary to evaluate a ratio of two small numbers,

thus leading to numerical problems.

More efficient alternatives to computing dL
dθ

exist in the form of direct approaches,

such as the likelihood ratio method (Rubinstein and Shapiro, 1993) and perturbation

analysis (Glasserman, 1991),(Ho and Cao, 1991),(Fu and Hu, 1997). Perturbation

Analysis (PA) techniques monitor a single unperturbed (nominal) sample path of the

simulation and subsequently attempt to predict what would have happened if the

values of the parameters had actually been changed. The attractive feature of such

techniques is that the derivative estimates are extracted from a single sample path

in a non-intrusive manner, so that the computational cost of doing so is, in most

cases of interest, minimal. One of the basic assumptions underlying the use of PA

methods is that any changes made to the parameter of interest may lead to event

order changes as long as the final state of the system is the same. This property

is referred to as the commuting condition (Glasserman, 1991), being important for

ensuring the unbiasedness of PA-based derivative estimates.
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1.2 Infinitesimal Perturbation Analysis

The simplest class of PA algorithms is Infinitesimal Perturbation Analysis (IPA),

which constitutes a set of techniques for explicitly evaluating sample derivative val-

ues. The central idea behind IPA, and PA in general, involves two distinct, but

complementary, issues: perturbation generation and perturbation propagation. De-

termining local generation of perturbations amounts to finding the realized difference

between the nominal and perturbed values of the decision variable. Interestingly,

however, explicit knowledge of the value of ∆θ is never used by IPA to compute the

instantaneous derivative of the objective function. In fact, it suffices to keep track

of the state of the system under the nominal value of the parameter θ, so that little

additional effort is needed beyond the computation required for one simulation of the

system.

Although perturbation generation can be carried out independently of the magni-

tude of ∆θ, the way in which such perturbation propagates is nevertheless dependent

on the system, parameter, and objective function of interest. Hence, instead of an

underlying theory of propagation, a collection of algorithms exist that share a com-

mon thread yet have individual modifications for different applications. This, in turn,

makes it more difficult for such algorithms to be incorporated into general-purpose

simulation environments, constituting the main factor hindering the application of

IPA to more general problems.

Much of the theory of infinitesimal perturbation generation and propagation was
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originally developed for evaluating gradients of sample performance functions in

queueing systems (Cassandras and Lafortune, 2008),(Glasserman, 1991), (Ho and

Cao, 1991). The unbiasedness of such gradient estimates is guaranteed as long as the

commuting condition holds. However, several aspects of queueing systems such as

multiple user classes, blocking due to limited resource capacities, as well as various

forms of feedback control, cause significant discontinuities in the sample function,

thus leading to the violation of the commuting condition.

These limitations can frequently be overcome when IPA is applied to some classes

of Stochastic Hybrid Systems (SHS), in particular Stochastic Flow Models (SFMs)

(Cassandras et al., 2010),(Wardi et al., 2010), for which, under mild technical con-

ditions, simple unbiased gradient estimates of useful metrics can be obtained, thus

making tractable many classes of problems which would not previously have been

solved directly using IPA. SFMs are fluid models in which flow rates are treated as

stochastic processes, and were introduced in (Cassandras et al., 2002) to carry out

IPA for a queueing system. Although the use of fluid models may not necessarily

allow for accurately predicting the performance of the underlying system, such mod-

els are nevertheless capable of capturing those system features needed for designing

an effective controller. As a result, it is possible to optimize system performance

without the need to precisely estimate the corresponding optimal value of the system

performance.

Over the past decade, SFMs and IPA have been successfully applied in several
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different settings, including those comprising serial networks (Sun et al., 2004a), sys-

tems with feedback control mechanisms (Yu and Cassandras, 2006), multi-class mod-

els (Sun et al., 2003),(Panayiotou, 2004),(Sun et al., 2004b), systems with blocking

due to limited capacity (Sun et al., 2003), fluid scheduling (Kebarighotbi and Cassan-

dras, 2009),(Kebarighotbi and Cassandras, 2011a), and systems with delay thresholds

(Kebarighotbi and Cassandras, 2011b). Current results on the application of IPA to

SFMs are encouraging enough to motivate the search for extensions to more compli-

cated problems. This thesis focuses on developing IPA-based optimization schemes

for SHS representations of two challenging problems, namely traffic light control and

control of cancer progression. Since IPA is at the core of the work presented here, a

technical introduction to this technique is included in Appendix A; we thus proceed

by introducing each of the aforementioned problems separately in the sections that

follow.

1.3 Traffic Light Control

The Traffic Light Control (TLC) problem involves dynamically adjusting roads’ green

and red light cycle lengths in order to control the traffic flow through an intersection.

In its broader conception, the TLC problem encompasses a set of intersections and

traffic lights, which are monitored with the objective to minimize congestion in the

urban perimeter within which they are located. There exist two types of control

strategies for the TLC problem: fixed-cycle strategies and traffic-responsive strategies

(Papageorgiou et al., 2003).
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Traffic signals are typically regulated through fixed-cycle strategies, whereby sev-

eral timing plans covering different traffic-intensity scenarios are periodically inter-

changed. The most popular such systems are the Urban Traffic Control System

(UTCS) (Wey, 2000), TRANSYT (Robertson, 1969), and MAXBAND (Little et al.,

1981). UTCS was developed by the Federal Highway Administration in the 1970s

and is to this day the most commonly used TLC system in the United States. This

system generates signal timing schedules off-line and subsequently implements them

according to the time of day. The chosen timing schedules are the ones that either

(i) maximize the period of time available for traffic flow on arterial streets (i.e. max-

imize bandwidth), or (ii) minimize a disutility index, which is defined as a measure

of traffic delay and number of stops.

The TRANSYT system is the most well-known and frequently used TLC strat-

egy worldwide, serving as an unofficial international standard against which other

methods that operate at constant and common cycle lengths can be compared. The

system makes use of average traffic flow information along any given network of roads

to generate optimal fixed-cycle plans and hence coordinate the corresponding traffic

light signals. Finally, MAXBAND also operates off-line by setting traffic light signals

on arterial roads so as to achieve maximal bandwidth. Some distinguishing features

of this system include (a) allowing a queue clearance time for secondary flow accu-

mulated during a red light; (b) accepting user-specified weights for the green bands

in each direction; and (c) handling a simple network in the form of a three-artery
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triangular loop.

The main limitation of all such fixed-cycle methods has to do with the fact that

they use historical traffic flow data to determine light cycle settings off-line, and

are thus incapable of adapting in real time to evolving traffic conditions. Traffic-

responsive strategies address this limitation by making use of current traffic informa-

tion to determine optimal signal settings online. To date, most adaptive traffic control

systems have been developed and/or deployed in Europe; in fact, in the United States,

only about 1% of all traffic signals have been estimated to operate adaptively (NTS,

2007). Traffic-responsive systems consist of algorithms that adjust a signal’s phase

length and phase sequences so as to minimize delays and reduce the number of stops,

and require transit surveillance, typically implemented using pavement loop detectors,

in order to adjust signal timing in real time (Stevanovic, 2010). The two most widely

used such systems are the Sydney Coordinated Adaptive Traffic System (SCATS)

(Lowrie, 1982) and the Split Cycle Offset Optimization Technique (SCOOT) (Hunt

et al., 1982).

SCATS operates in real time by reacting to changes in traffic demand and system

capacity. Instead of adjusting signal timings for isolated intersections, the system

simultaneously manages groups of intersections (i.e. subsystems). Each subsystem

typically consists of any number between one and ten intersections that are coor-

dinated as a group. Coordination is also enforced among adjacent subsystems by

dividing traffic flow on major roads into platoons (groups of vehicles). Network ca-
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pacity is then maximized by allowing just enough time for each platoon to progress

through the system while ensuring the required amount of green time for competing

flows.

In SCOOT optimal traffic control in a given network of roads is achieved through

small, regular variations in signal timings, so as to avoid major disturbances of traffic

flow. The system generates a model for estimating queue lengths based on flow-

occupancy profiles from upstream detectors, thus maintaining a detailed, real-time

representation of the traffic network. Such model is run repeatedly online to determine

the effects of incremental changes in signal timing on the overall performance of the

region’s network. When the changes lead to a reduction in vehicle delays and number

of stops, they are transmitted to the local signal controllers.

Recent technological developments, which exploit the ability to collect traffic data

in real time, have made it possible for new methods to be applied to the TLC problem,

hence several other traffic-responsive methods have been under development, includ-

ing ACS Lite (Shelby et al., 2008), OPAC (Gartner et al., 2002), PRODYN (Henry

and Farges, 1990), and RHODES (Sen and Head, 1997). Leveraging the fact that TLC

is fundamentally a form of scheduling for systems operating through simple switching

control actions, numerous solution algorithms have been proposed using artificial in-

telligence techniques (including fuzzy logic, expert systems, evolutionary algorithms,

artificial neural networks, and reinforcement learning), game theory, mixed integer

linear programming, as well as perturbation analysis techniques.
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Fuzzy Logic (FL) is a computational approach based on degrees of truth rather

than the most common Boolean logic, being originally developed to simulate the

understanding of natural language. The main idea behind FL is that data can be

aggregated into a number of partial truths, which are subsequently aggregated into

higher truths, which ultimately produce some outcome when certain thresholds are

exceeded. The use of fuzzy logic is particularly relevant in cases where it is unlikely

that an exact mathematical model of the phenomenon of interest may be obtained

(Niittymaki et al., 2002). In fact, its underlying principle is that the knowledge of

a human expert can be taught to the FL system, whose behavior then closely re-

sembles that of an intelligent biological system. In the context of adaptive traffic

signal control, FL was first used in (Pappis and Mamdani, 1977) for a single inter-

section without turning traffic. Subsequent applications expanded upon this work by

incorporating left-turning traffic and oversaturated conditions for single intersections

(Murat and Gedizlioglu, 2005),(Trabia et al., 1996),(Wei et al., 2001), and considering

two consecutive intersections with one-way movements (Nakatsuyama et al., 1984),

as well as a multiple intersections (Lee et al., 1995),(Chiu, 1992),(Chou and Teng,

2002). Considering multiple intersections and relying on sensor information regarding

traffic congestion, a first-order Sugeno fuzzy model was developed and incorporated

into a fuzzy logic controller in (Choi et al., 2002).

Expert Systems (ES) emulate the decision-making ability of a human expert and

constitute some of the first artificial intelligence softwares to be successfully deployed.
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An ES is composed of two sub-systems: the knowledge base and the inference engine.

The former consists of facts and if-then rules, while the latter evaluates the current

state of the knowledge base and feeds new knowledge into it by applying relevant rules.

Expert systems were used in (Findler and Strapp, 1992) to design a distributed control

network where each intersection was equipped with a processor that runs an identical

ES and communicates directly with its four adjacent processors. A dynamic and

automatic ES-based TLC system focusing on the road congestion problem was also

presented in (Wen and Hsu, 2006). Additionally, a flexible and general online method

was proposed in (Findle et al., 1997) to determine whether protected left-turns are

required for certain traffic flow scenarios.

Evolutionary algorithms, such as genetic algorithms, ant algorithms, and parti-

cle swarm optimization, are population-based metaheuristic optimization algorithms

inspired by the principles of biological evolution, namely reproduction, mutation,

recombination, and selection. Candidate solutions to the optimization problem are

treated as individual members of a population; in this sense, the quality of any given

solution is equated to an individual’s chance of survival, which is determined by a

fitness function. Population evolution is driven by the fittest solutions, which are

determined through random search. As a result, these methods are capable of con-

verging to a global optimal solution in spite of the existence of several local minima.

In the context of TLC, an improved immunity genetic algorithm was proposed in (Liu,

2007), a chaos-particle swarm optimization algorithm was presented in (Dong, 2004),
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a catastrophe-particle swarm optimization algorithm was used in (Dong, 2006), and

an ant algorithm was proposed in (Wen and Wu, 2005).

Artificial Neural Networks (ANN) are computational models designed to repro-

duce the functioning of the animal brain. The basic unit of these models is termed

a neuron, which is capable of evaluating input information and transmitting the cor-

responding result throughout the network. Some of the main uses of ANN include

machine learning, pattern recognition, and automatic control. Several approaches to

applying ANN for traffic signal control have been reported. In (Spall and Chin, 1997)

and (Henry et al., 1998), an ANN-based model is used for TLC, while in (Dong et al.,

2005) ANN are used to improve the generalization capability of other methods, which

are simultaneously applied to the TLC problem. In yet another instance, the preci-

sion of fuzzy controller is enhanced through the use of ANN to map fuzzy relations

and implement fuzzy reasoning (Liu et al., 1997),(Xu et al., 1992).

Reinforcement Learning (RL) is a class of machine learning techniques that focuses

on determining which actions should be taken by certain agents within a given envi-

ronment in order to maximize some cumulative reward. The environment is frequently

formulated as a Markov Decision Process (MDP), which is a particularly appropriate

framework for dealing with sequential decision making problems whose complexity

prohibits the straightforward computation of optimal solutions. An MDP was used

to model traffic light intersections in (Yu and Recker, 2006), and in (Abdulhai et al.,

2003) a method for controlling a single traffic intersection was proposed based on
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RL with full state representation. An RL algorithm with function approximation

and feedback policies was used in (Prashant and Bhatnagar, 2011) for traffic signal

control, and additional RL approaches to the TLC problem have been presented in

(Thorpe, 1997), (Wiering et al., 2004), and (Bazzan, 2009).

Numerous other solution algorithms have also been proposed for the TLC problem.

A game theoretic approach was applied to a finite controlled Markov chain model

in (Alvarez and Poznyak, 2010). In (Porche et al., 1996), a decision tree model

was used with a Rolling Horizon Dynamic Programming (RHDP) approach, while a

multiobjective Mixed Integer Linear Programming (MILP) formulation was proposed

in (Dujardin et al., 2011). The optimal traffic light control problem was also stated as

a special case of an Extended Linear Complementarity Problem (ELCP) in (Schutter,

1999), and formulated as a hybrid system optimization problem in (Zhao and Chen,

2003). Robust optimization methods that take into account uncertain traffic flows

have also been proposed. For example, in (Ukkusuri et al., 2010), a semidefinite

programming routine for model predictive control is used; in (Wen and Hsu, 2006),

a robust optimal signal control problem is formulated as a linear program; in (Zhao

and Chen, 2003), signal timings were determined so as to minimize the mean delay

per vehicle under daily traffic flow variations.

At this point, it is worthwhile to point out that the aforementioned real-time

adaptive traffic control approaches differ mainly with regards to how they address

the issues of developing a mathematical model for a stochastic and highly nonlinear
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traffic system, as well as the design of appropriate control laws. Although most of the

signal control strategies previously described implicitly recognize that variations in

traffic conditions are caused by random processes, some resort to using deterministic

models that significantly simplify the description of vehicle flow. In addition to this,

some TLC methods (e.g. those that are based on artificial intelligence techniques)

employ heuristic control strategies, which rely on historical data, without an embed-

ded traffic flow model. Such applications are consequently better suited for analyzing

traffic systems in steady state, which is a state seldom attained due to the random

nature of vehicle flow. Stochastic control approaches address this limitation by explic-

itly accounting for the random variations in traffic flow, but the methods presented

thus far do so within a Markov Decision Process (MDP) framework, which requires

assumption of specific probability models. Furthermore, many of these approaches,

such as those based on dynamic or linear programming, are computationally inef-

ficient and learning rate dependent, and thus not immediately amenable to online

implementations. Conversely, perturbation analysis techniques allow for stochastic

control without the need for limiting assumptions on the stochastic processes that

represent vehicle flow, and have proven to be adaptive and simple to implement on-

line.

Perturbation analysis techniques were used in (Head et al., 1996) and (Fu and

Howell, 2003) for modeling a traffic light intersection as a stochastic Discrete Event

System (DES), while an Infinitesimal Perturbation Analysis (IPA) approach, which
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made use of a Stochastic Flow Model (SFM) to represent the queue content dynamics

of roads at an intersection, was presented in (Panayiotou et al., 2005). In (Geng

and Cassandras, 2012), IPA was applied with respect to controllable green and red

cycle lengths for a single isolated intersection and in (Geng and Cassandras, 2015) for

multiple intersections. Traffic flow rates need not be restricted to take on deterministic

values, but may be treated as stochastic processes (Cassandras et al., 2002), which

are suited to represent the continuous and random variations in traffic conditions.

Using the general IPA theory for SHS in (Wardi et al., 2010),(Cassandras et al.,

2010), on-line gradients of performance measures are estimated with respect to several

controllable parameters with only minor technical conditions imposed on the random

processes that define input and output flows. These IPA estimates have been shown

to be unbiased, even in the presence of blocking due to limited resource capacities

and of feedback control (Yao and Cassandras, 2011a). It should be emphasized that

IPA is not used to estimate performance measures, but only their gradients, which

may be subsequently incorporated into standard gradient-based algorithms in order

to effectively control parameters of interest.

Hence, there are several advantages associated with the use of IPA for the TLC

problem. First, IPA estimates have been shown to be unbiased under very mild

conditions; second, IPA estimators are robust with respect to the stochastic processes

used to model random traffic processes. Furthermore, IPA is event driven and hence

scalable in the number of events in the system, and does not explode with the space
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dimensionality. Finally, IPA possesses a decomposability property (Cassandras, 2015)

and can be easily implemented online, thus taking advantage of directly observed data.

In contrast to earlier works where the adjustment of light cycles did not make

use of real-time state information, the authors in (Geng and Cassandras, 2013) pro-

posed an SFM model within a quasi-dynamic control setting in which partial state

information is used to adjust the light cycle lengths conditioned upon a given queue

content threshold being reached. Our work is also based on modeling traffic flow

through an intersection controlled by switching traffic lights as an SFM, which con-

veniently captures the system’s inherent hybrid nature: while traffic light switches

exhibit event-driven dynamics, the flow of vehicles through an intersection is best

represented through time-driven dynamics. Moreover, we also draw upon a quasi-

dynamic setting, but rather than controlling only the light cycle lengths as in (Geng

and Cassandras, 2013), here we initially focus on the threshold parameters and de-

rive IPA performance measure estimators necessary to optimize these parameters,

while assuming fixed cycle lengths. In this first step, our goal is to compare the

relative effects of the threshold parameters and the light cycle length parameters on

our objective function. Building upon these results, we then derive IPA estimators

necessary to simultaneously optimize light cycle lengths and queue content threshold

values within a quasi-dynamic control setting. By incorporating the IPA estimators

into a gradient-based optimization algorithm, we show that the quasi-dynamic control

approaches proposed in this work offer considerable improvements over prior results.
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1.4 Modeling and Control of Cancer Progression

In spite of significant scientific advances, cancer remains one of the deadliest diseases

known to mankind. Recent critical biological discoveries, such as the existence and

function of the DNA molecule, have not only led to the view of cancer as a genetic

disease, but also fueled important undertakings such as the mapping of the cancer

genome. Nevertheless, the knowledge that tumors arise due to genetic malfunctioning

has yet to be adequately translated into therapy design. In fact, cancer treatment

protocols have traditionally been devised based on the results of clinical trials aver-

aged over a cohort of patients. Consequently, the current standard of care consists

of applying a common therapy to any given patient; unfortunately, tumor recurrence

(accompanied by drug resistance) frequently ensues. By shifting the paradigm of can-

cer treatment to genetically tailored protocols, the concept of personalized medicine

is emerging as the state-of-the-art in cancer care.

Personalized cancer treatments involve therapies whose design (choice of drug(s),

dosage, duration of treatment, etc.) is based on the unique set of genetic abnormalities

found in each patient’s tumor. However, tumors harboring a common genetic muta-

tion do not respond consistently to the same therapy. For example, approximately

25% of breast cancer patients with a particular amplification or overexpression of the

ERBB2 growth factor receptor tyrosine kinase may be assigned trastuzumab (Vogel

et al., 2001). Unfortunately, less than half of patients with ERBB2-positive breast

cancer actually respond positively to this drug (Park et al., 2008). Such limited suc-
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cess is largely due to our incomplete understanding of the mechanisms that drive

tumor initiation, growth and recurrence.

Tumorigenesis (i.e., the production or formation of a tumor) is frequently depicted

as a multistep process along which normal cells acquire a succession of traits. Such

traits, also termed hallmarks of cancer (Hanahan and Weinberg, 2011), have been

described as distinctive and complementary capabilities that must be acquired in

order for cancer cells to be able to survive, replicate and eventually spread from one

part of the body to another. The process of acquiring such capabilities varies with

regards to the order in which each is attained, as well as the time spent by the system

in each distinctive state. As a result, the number and type of mutated genes can

vary significantly not only across different tumor types (inter-patient heterogeneity),

but also within different regions of the same tumor and different stages of the disease

(intra-tumor heterogeneity).

The existence of intra-tumor heterogeneity (Dexter and Leith, 1986),(Somasun-

daram et al., 2012) is now widely accepted, albeit seldom explored in practice due to

insufficient knowledge regarding how different molecular subtypes correlate with clin-

ical behavior and hence treatment options. Moreover, intra-tumor heterogeneity has

been frequently associated with the acquisition of drug resistance (Zahreddine and

Borden, 2013),(Wadhwa et al., 2002), a highly undesirable phenomenon that has been

linked to ephemeral treatment response and eventual tumor recurrence. A deeper un-

derstanding of both such phenomena is expected to facilitate the development of the
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next generation of personalized therapies (Lee and Swanton, 2012); indeed, oncol-

ogists already make use of molecular information extracted from tumor samples to

aid in the selection of appropriate therapies. Such samples, however, represent a

limited proportion of the cancer tissue and may, therefore, not be representative of

the several different types of cells that populate the tumor (Bedard et al., 2013).

Moreover, clinicians also face time constraints for trying out different therapies, and

only a small number of the available combination protocols end up being tested. In

addition to these limitations, the use of targeted therapies, in which drugs are chosen

to target the single most common population of cancer cells, currently prevails in

the clinic. However, the fact that other less frequently occurring cell populations are

not accounted for during therapy design significantly limits predictions of treatment

response (Turner and Reis-Filho, 2012).

In this context, much effort has been undertaken to collect, organize and make

publicly available data obtained from genetic analysis of tumor samples (e.g., in The

Cancer Genome Atlas). Effectively analyzing such data for the purposes of prognosis

and therapy design remains one of the biggest challenges in modern cancer research

mainly because samples are usually only obtained from patients at one point in time

(commonly that of initial diagnosis). Furthermore, significant variations are observed

in the patterns of somatic mutations across different patients. In light of this, much of

the research currently being undertaken using cross-sectional data aims at determin-

ing whether the order in which somatic mutations occur in tumors follows common
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progression paths. Although not all patients with the same type of cancer harbor

the exact same set of mutated genes, there seems to exist at least a subset of such

genes that are consistently mutated across a large set of different patients. This sug-

gests that different underlying sequences of events can drive tumor progression along

equivalent evolutionary paths; in other words, different sequences of mutations can

lead to similar phenotypes or disease states.

Recent pilot studies (e.g., (TCGA, 2008),(TCGA, 2014)) have investigated how

genomic changes affect genetic pathways that, in turn, determine cancer phenotypes,

thus suggesting common pathways of cancer progression. Driver genes (i.e., genes

that, when mutated, drive tumorigenesis) have been identified and classified into sig-

naling pathways that regulate core cellular processes (e.g., (Vogelstein and Kinzler,

2004),(Vogelstein et al., 2013)). These findings are well aligned with the view of can-

cer as a “disease of stages” in which tumors must progress through a series of “states”

in order to ultimately become malignant. Existing datasets of cross-sectional data

have been extensively used to derive temporal models capable of inferring sequences of

mutational events and/or sequences of affected pathways responsible for driving can-

cer progression (e.g., (Gerstung et al., 2011), (Loohuis, 2013), (Raphael and Vandin,

2015)), and the importance of connecting different genomic alterations (as opposed

to a single type of genomic data) was recognized in (Vaske et al., 2010). The afore-

mentioned approaches analyze cancer development on a molecular level. Hence, they

cannot explicitly account for the effect of the tumor microenvironment on tumor
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progression, and do not provide suitable frameworks for analyzing the evolution of

different cancer cell subpopulations that coexist within any given tumor.

Addressing this limitation, population-level approaches yield mathematical mod-

els for tumor population evolution considering mutations as the driving force behind

cancer. Most of the work done in this area (e.g., (Michor et al., 2004), (Beerenwinkel

et al., 2007), (Dingli et al., 2007), (Rodriguez-Brenes et al., 2011), (Werner et al.,

2011), (Gentry and Jackson, 2013), (Werner et al., 2013), (Rodriguez-Brenes et al.,

2014)) propose valid formalisms for investigating cancer evolution within a multi-step

framework, but do not incorporate information obtained from genetic analyses of tu-

mor samples. The model derived in (Michor et al., 2004) provided a quantitative

understanding of the dynamics of tumorigenesis with respect to mutation, selection,

genetic instability, and tissue architecture. The authors in (Beerenwinkel et al., 2007)

developed a model of somatic evolution of colorectal cancer based on published data

and used it to investigate the effect of different parameters on tumor evolution on

a global scale, while those in (Dingli et al., 2007) suggested that stochastic dynam-

ics alone might be responsible for either remission or rapid growth of tumors in the

hematopoietic systems. In (Rodriguez-Brenes et al., 2011), evolutionary computa-

tional models were used to study the dynamics of feedback escape and their role in

the progression of stem cell-driven cancer. Using a hierarchical multi compartment

model, the authors in (Werner et al., 2011) analyzed the dynamics of mutant cells

based on their origin and specific proliferation properties. A model of mutation acqui-
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sition was developed in (Gentry and Jackson, 2013) to investigate how deregulation

of the mechanisms preserving stem cell homeostasis contributes to tumor initiation.

In (Werner et al., 2013), a model was developed to predict the average number of

passenger mutations acquired from a single cell at any stage of hierarchy of organized

tissues. Using a stem cell-based model, the authors in (Rodriguez-Brenes et al., 2014)

suggested that the risk of cancer progression may be associated with the type of cell

where mutations originate, such that mutations occurring in the stem cells are much

more capable of driving tumor evolution than those occurring in progenitor cells.

More recently, efforts at deriving mathematical models that take into account

tumor cellular heterogeneity and acquired resistance in order to determine optimal

treatment schedules have been reported in (Leder et al., 2014) and (Liu et al., 2015).

However, such approaches frequently rely on simplifying assumptions (and hence fail

to include several potential important biological factors) and do not take into account

noise and fluctuations that are inevitably involved in cell population dynamics. In

short, most attempts to mathematically represent cancer evolution are capable of gen-

erating descriptive (open-loop), but not prescriptive, tools for inferring the behavior

of cancer evolution, while recent attempts at personalized therapy design have relied

on deterministic and often overly simplified models.

In order to address these limitations, we propose an integrative closed-loop frame-

work capable not only of describing the progressive development of cancer, but also

ultimately determining optimal personalized therapies. The aforementioned model-
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ing and optimization framework incorporates a complex stochastic model of tumor

evolution based on which effective computer simulation tools for cancer progression

can be developed to quantify the effects of alternative courses of action and to analyze

the outcomes of different therapies in a timely and minimally invasive manner. While

this approach does not focus on finding a cure, it can help overcome current issues of

intra-tumor heterogeneity, being ultimately also useful to the development of robust

clinical biomarkers.

Adopting the view that (i) cell-biologic changes necessary for cancer development

may be schematized as a series of discrete states, and (ii) transitions between states

may be delayed or prevented by appropriate treatment, the critical observation that

motivates this work is that these are precisely the characteristics of a Discrete Event

System (DES). In other words, DES models are ideally suited to the view of cancer as

a “disease of stages” and can subsequently lead to more elaborate Stochastic Hybrid

Automata (SHA) models capturing additional details.

In this context, we ultimately envision the development of a Stochastic Hybrid

Automaton (SHA) model representation of cancer progression in which cell-biologic

changes necessary for cancer development are schematized as a series of discrete steps,

and the stages of disease progression can be conveniently represented by distinct states

of the automaton. Furthermore, the fact that transitions between such stages may

be delayed or prevented by appropriate treatment can be accounted for within a

SHA framework. An illustrative depiction of a general stochastic model of tumor
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progression is given in Figure 1·2.

Figure 1·2: Illustrative depiction of a stochastic model of tumor evo-
lution (normal cells in orange and mutated cells in red)

Hence, a well-designed integrative framework must be founded upon two pillars.

The first one is a SHA model of tumor evolution whose development is based on

multiple data types obtained from genetic analysis of tumor samples. In particular,

cross-sectional data can be used to infer temporal reconstructions of cancer progres-

sion, which can then be abstracted to specify the components of the SHA model. The

second pillar consists of system analysis, control, and optimization techniques that

can be used to evaluate and design personalized cancer treatment schemes. More

specifically, the inherent nature of SHA dynamics allows for the use of Perturbation

Analysis (PA), specially Infinitesimal Perturbation Analysis (IPA) techniques to pre-

dict the system’s behavior under different therapy regimes before such therapies are

actually assigned to patients, thus aiding in the design of optimal personalized treat-
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ment schemes. The elaboration of such framework is clearly an ambitious multistep

undertaking whose completion lies outside the scope of this work. Nevertheless, given

the incipient state of current research in the field, this thesis represents an important

effort towards laying the foundations for such development.

In this context, the contributions of this thesis are twofold. First, we address the

problem of cancer heterogeneity by proposing a novel Mixed Integer Linear Program-

ming (MILP) formulation that integrates somatic mutation and gene expression data

to infer the temporal sequence of events from cross-sectional data. This formulation

is tested using both simulated data and real breast cancer data with matched so-

matic mutation and gene expression measurements from The Cancer Genome Atlas

(TCGA). Second, we set the stage for the use of basic IPA techniques for optimal per-

sonalized cancer therapy design by advancing a methodology applicable to stochastic

models of cancer progression and subsequently illustrating our analysis with a case

study of optimal prostate cancer therapy design.

1.5 Contributions of this Work

The main contributions of this thesis are as follows.

• We consider the Traffic Light Control (TLC) problem for a single intersection

modeled as a Stochastic Hybrid System (SHS) and study a quasi-dynamic policy

based on partial state information defined by detecting whether vehicle back-

logs are above and below certain controllable thresholds. We initially focus on
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controlling the threshold parameters, rather than the light cycle lengths, and de-

rive online gradient estimates of a cost metric with respect to controllable queue

content thresholds using Infinitesimal Perturbation Analysis (IPA). These esti-

mators are subsequently used to iteratively adjust the threshold values so as to

improve overall system performance.

• We compare the relative effects of the threshold parameters and the light cycle

length parameters on our objective function, and extend our methodology to

parameterize the control policy by green and red cycle lengths as well as the

queue content thresholds. We then derive online gradient estimates of a cost

metric with respect to controllable cycle lengths and thresholds using IPA. By

incorporating these estimators in quasi-dynamic control setting, we consistently

obtain reductions in the mean queue content of the roads in the order of 50%

with respect to static IPA approaches to the TLC problem.

• We address the problem of cancer heterogeneity by proposing a novel Mixed

Integer Linear Programming (MILP) formulation that integrates somatic mu-

tation and gene expression data to infer the temporal sequence of events from

cross-sectional data. We test this formulation using both simulated data and

real breast cancer data with matched somatic mutation and gene expression

measurements from The Cancer Genome Atlas (TCGA). First, we classify the

genes as oncogenes or tumor suppressors based on the frequency of driver mu-

tations and select those genes with the most frequent driver mutations. Then,
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we apply the MILP to identify the temporal order in which genes mutate and,

simultaneously, the changes they produce at the gene expression level during

cancer progression. Finally, we identify known causal relationships between

mutations and gene expression changes in important breast cancer pathways.

• We set the stage for the use of basic IPA techniques for optimal personalized can-

cer therapy design by proposing a methodology applicable to stochastic models

of cancer progression and illustrating our analysis with a case study of advanced

prostate cancer. We develop a threshold-based policy for optimal prostate can-

cer therapy design that is parameterized by lower and upper threshold values

and is associated with a cost metric that combines clinically relevant measures

of therapy success. We initially focus on controlling the threshold parameters

and derive online gradient estimates of our cost metric using IPA. These esti-

mators are subsequently used to iteratively adjust the threshold values so as to

improve therapy outcomes. Results obtained by applying our methodology to

clinical data from real prostate cancer patients suggest that optimal treatment

schemes are those in which both the lower and upper thresholds take values as

small as possible.

• We extend our analysis of the stochastic model of prostate cancer evolution

and focus on the importance of accurate modeling in conjunction with optimal

therapy design. In particular, we evaluate sensitivity estimates with respect

to several model parameters and identify critical ones. We use IPA to explore
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the tradeoff between optimality and robustness (or, equivalently, fragility) and

verify the extent to which our model is robust to certain critical parameters.

Assuming that an underlying, and most likely poorly understood, equilibrium

of prostate cancer cell subpopulation dynamics exists at suboptimal therapy

settings, we verify that relaxing the optimality condition in favor of increased

robustness to modeling errors provides an alternative objective to therapy design

for at least some patients.

1.6 Document Outline

The rest of this document is organized as follows. Chapters 2 and 3 address the

Traffic Light Control (TLC) problem for a single isolated intersection. In Chapter

2, we study a quasi-dynamic policy based on partial state information defined by

detecting whether vehicle backlogs are above or below certain controllable thresholds.

A Stochastic Flow Model (SFM) representation of the traffic light intersection is

detailed in Section 2.1. In Section 2.2, we use Infinitesimal Perturbation Analysis

(IPA) to derive gradient estimators with respect to the threshold parameters; by

incorporating these estimators into a gradient-based algorithm, we iteratively adjust

the threshold values so as to improve overall system performance under various traffic

conditions. Simulation results are presented in Section 2.3. In Chapter 3, we extend

our quasi-dynamic analysis to parameterize the control policy by green and red cycle

lengths as well as the road content thresholds. We reintroduce the TLC problem

formulation in Section 3.1 and derive the corresponding IPA estimators in Section
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3.2. Results obtained by applying this methodology to a simulated urban setting are

included in Section 3.3.

In Chapter 4, we address the problem of cancer heterogeneity by modeling can-

cer progression using somatic mutation and gene expression cross-sectional data. In

Section 4.1, we propose a MILP formulation for stratifying molecular events such

as mutation and gene expression changes. Results obtained using both simulated

data and real breast cancer data are presented in Section 4.2. Chapters 5 and 6

address the challenge of optimal personalized cancer therapy design. In Chapter 5,

we present a framework for IPA applications to personalized cancer therapy design

which is illustrated with a case study of advanced prostate cancer. A SHA model of

prostate cancer evolution is detailed in Section 5.1.1. In Section 5.1.2, we introduce a

threshold-based policy for optimal prostate cancer therapy design that is associated

with a cost metric which combines clinically relevant measures of therapy success. We

use IPA to derive gradient estimators of this cost metric with respect to controllable

threshold parameters and subsequently use these estimators to iteratively adjust the

threshold values so as to improve therapy outcomes. Results obtained using clinical

data from real prostate cancer patients are given in Section 5.3. In Chapter 6, we

extend our analysis of the SHA model of prostate cancer evolution and focus on the

importance of accurate modeling in conjunction with optimal therapy design. The

derivation of IPA estimators of our cost metric with respect to several additional

model parameters is detailed in Section 6.2. In Section 6.3, we present the ensuing
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sensitivity analysis results. In Chapter 7, we summarize the main results and discuss

future research directions.
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Chapter 2

Traffic Light Control with Fixed Light

Cycles

In this chapter, we consider the Traffic Light Control (TLC) problem for a single in-

tersection modeled as a Stochastic Hybrid System (SHS) and study a quasi-dynamic

policy based on partial state information defined by detecting whether vehicle back-

logs are above and below certain controllable thresholds. In contrast to (Geng and

Cassandras, 2013), where real-time partial state information was used to adjust light

cycles conditioned upon a fixed queue content threshold being reached, here we fo-

cus on controlling the threshold parameters rather than the light cycle lengths. Our

goal is to compare the relative effects of the threshold parameters and the light cycle

length parameters on our objective function, build upon these results, and ultimately

control both the light cycle lengths and the queue content thresholds simultaneously.

In what follows, we formulate the TLC problem for a single intersection as a

Stochastic Flow Model (SFM) and subsequently detail the derivation of an Infinitesi-

mal Perturbation Analysis (IPA) estimator for the cost function gradient with respect

to a controllable parameter vector defined by the queue content thresholds. The IPA

estimator is then incorporated into a gradient-based optimization algorithm and we
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present simulation results showing that, by controlling the threshold parameters, per-

formance improvements are obtained over prior quasi-dynamic and static approaches.

2.1 TLC Problem Formulation

The system we consider comprises a single intersection, as depicted in Figure 2·1. For

simplicity, left-turn and right-turn traffic flows are not considered and yellow light

cycles are implicitly accounted for within a red light cycle. Within the quasi-dynamic

setting considered in this chapter, the controllable parameter vector of interest is

given by s = [s1, s2], where sn ∈ <+ is the queue content threshold value for road n,

n = 1, 2. Let us then define a state vector x(s, t) = [x1(t), x2(t)], where xn(s, t) ∈ <+

is the content of road n. Although we stress the dependence of the state variable on

the queue content threshold values, for notational simplicity, we will henceforth write

x(t) when no confusion arises.

Figure 2·1: A single traffic light intersection with two cross-roads

Let us now partition the queue content state space into the following four regions
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(as illustrated in Figure 2·2):

X0 = {(x1, x2) : x1(t) < s1, x2(t) < s2}

X1 = {(x1, x2) : x1(t) < s1, x2(t) ≥ s2}

X2 = {(x1, x2) : x1(t) ≥ s1, x2(t) < s2}

X3 = {(x1, x2) : x1(t) ≥ s1, x2(t) ≥ s2}

Figure 2·2: State space representation

Let us also define a left-continuous clock state variable zn(t) ∈ [0, θn,max], which

measures the time elapsed since the last light switch from RED to GREEN on road

n. It is thus reset to 0 as soon as the GREEN light switches to RED, and remains

at this value while the light is GREEN for road n, where n is the index of the

road perpendicular to road n. In this context, each road is guaranteed a minimum

GREEN cycle length θn,min, which may be prolonged up to θn,max depending on the

queue content of both roads. At any time t, let the control be defined as:

u (x(t), z(t)) ≡

{
1

2

set road 1 GREEN and road 2 RED

set road 2 GREEN and road 1 RED
(2.1)
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Although the queue content of any given road is usually not observable (i.e. there

is no way of knowing the full state of the system in real time), it is feasible to obtain

information regarding whether such content is above or below some threshold value.

Therefore, it is possible to use partial state feedback in order to quasi-dynamically

control the traffic light switches. In this context, we shall define a quasi-dynamic

controller of the form u (X(t), z(t)), with X(t) ∈ {X0, X1, X2, X3}, as follows:

For X(t) ∈ {X0, X3}:

u (z(t)) =

{
1

2

if z1(t) ∈ (0, θ1,max) and z2(t) = 0

otherwise
(2.2)

For X(t) = X1:

u (z(t)) =

{
1

2

if z1(t) ∈ (0, θ1,min) and z2(t) = 0

otherwise
(2.3)

For X(t) = X2:

u (z(t)) =

{
2

1

if z2(t) ∈ (0, θ2,min) and z1(t) = 0

otherwise
(2.4)

The stochastic processes involved in this system are defined on a common prob-

ability space (Ω, F, P ). Each road is treated as a queue with arrival flow process

{αn(t)}, n = 1, 2, such that αn(t) corresponds to the instantaneous vehicle arrival

rate at time t. Furthermore, the departure flow process on road n is defined as:

βn(t) =


hn(t)

αn(t)

0

if xn(t) > 0 and u = n

if xn(t) = 0 and u = n

otherwise

(2.5)
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where hn(t) corresponds to the instantaneous vehicle departure rate at time t. We

can now write the dynamics of the state variables xn(t) and zn(t) as follows, where we

adopt the notation n to denote the index of the road perpendicular to road n = 1, 2,

and note that the symbols t+ (t−, respectively) denote the time instant immediately

following (preceding, respectively) time t:

·
xn(t) =


αn(t)

0

αn(t)− βn(t)

if zn(t) = 0

if xn(t) = 0 and αn(t) ≤ hn(t)

otherwise

(2.6)

·
zn(t) =

{
1

0

if zn(t) = 0

otherwise
(2.7)

zn(t+) = 0 if zn(t) = θn,max

or zn(t) = θn,min, xn(t) < sn, xn(t) ≥ sn

or zn(t) > θn,min, xn(t−) > sn, xn(t+) = sn, xn(t) ≥ sn

or zn(t) > θn,min, xn(t) < sn, xn(t−) < sn, xn(t+) = sn

The dynamics of the “clock” state variable can be more easily understood graph-

ically, and an illustrative representation of (2.7) is given in Figure 2·3.

In this context, the traffic light intersection illustrated in Figure 2·1 can be viewed

as a hybrid system in which the time-driven dynamics are given by (2.6) and (2.7),

and the event-driven dynamics are associated with light switches and with events

that cause the value of xn(t) to change from strictly positive to zero or vice-versa. It

is then possible to derive a Stochastic Hybrid Automaton (SHA) model (Cassandras

and Lafortune, 2008) containing 14 modes, which are defined by combinations of xn(t)

and zn(t) (details of this derivation may be found in (Geng, 2013)). The event set for
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Figure 2·3: Illustrative representation of the dynamics of the “clock”
state variable

this SHA is Φn = {e1, e2, e3, e4, e5, e6, e7}, where:

e1 is the guard condition [xn = sn from below]

e2 is the guard condition [xn = sn from above]

e3 is the guard condition [zn = θn,min]

e4 is the guard condition [zn = θn,max]

e5 is the guard condition [xn = 0 from above]

e6 is a switch in the sign of αn(t)− hn(t) from non-positive to strictly positive

e7 is a switch in the sign of αn(t) from 0 to strictly positive

For easier reference, we shall rename events e1 through e4 as ζn, γn, λn, and µn,

respectively, where the subscript n refers to the road where the event occurred. This

notation is especially convenient for defining the control rules which must be met in

order for traffic light switches to take place. In fact, if we label light switching events

from RED to GREEN and GREEN to RED as R2Gn and G2Rn, respectively (the

subscript n once again refers to the road where the event occurred), we can specify
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the following simple hysteresis control rules:

Rule 1 The occurrence of event ζn, while zn > θn,min and xn < sn, results in event

R2Gn.

Rule 2 The occurrence of event γn, while zn > θn,min and xn ≥ sn, results in event

G2Rn.

Rule 3 The occurrence of event λn, while xn < sn and xn ≥ sn, results in event

G2Rn.

Rule 4 The occurrence of event µn always results in event G2Rn.

We present the SHA of this system, defined in terms of the queue content state

X(t), in Figure 2·4 and concentrate on analyzing a typical sample path of any one

of the queue contents, which is shown in Figure 2·5. Such sample path consists of

alternating Non-Empty Periods (NEPs) and Empty Periods (EPs), which correspond

to time intervals when xn(t) > 0 (i.e. queue n is non-empty) and xn(t) = 0 (i.e. queue

n is empty), respectively. Let us then label the events corresponding to the end and

to the start of an NEP as En and Sn, respectively, and note that En is induced by

event e5, while Sn may be induced by events e6 or e7 or G2Rn.

The purpose of our analysis is to apply IPA to sample path data in order to ob-

tain unbiased gradient estimates of a system performance measure, and subsequently

incorporate such estimates into a gradient-based optimization scheme. In this con-

text, let us choose our performance metric to be the weighted sum of the mean queue
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Figure 2·4: Stochastic Hybrid Automaton for aggregate states X(t)
under quasi-dynamic control

Figure 2·5: Typical sample path of a traffic light queue

lengths over a fixed time interval [0, T ]. Since we wish to adjust the controllable

parameter vector s in such a way as to minimize the chosen cost function, let the

sample function be defined as

L (s;x(0), z(0), T ) =
1

T

2∑
n=1

∫ T

0

wnxn (s, t) dt (2.8)

where wn is a cost weight associated with road n, and x(0), z(0) are given initial
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conditions. Since the queue content is null during EPs, (2.8) can be rewritten as

L (s;x(0), z(0), T ) =
1

T

2∑
n=1

Mn∑
m=1

∫ ηn,m

ξn,m

wnxn (s, t) dt (2.9)

where Mn is the total number of NEPs during the sample path of road n. Finally, let

us define the overall performance metric as

J (s;x(0), z(0), T ) = E [L (s;x(0), z(0), T )] (2.10)

Recall that it is not possible to derive a closed-form expression of J (s;x(0), z(0), T )

without imposing limitations on the processes {αn(t)} and {βn(t)}. Nevertheless, by

assuming that αn(t) and βn(t) are piecewise continuous w.p. 1, and that {αn(t)} and

{βn(t)} are stationary random processes over [0, T ], we can successfully apply IPA to

obtain an estimate of ∇J (s) and then determine s∗ through (A.4). We will further

assume that the derivatives dL
dsi

exist for all si ∈ <+ w.p. 1, and proceed to derive the

IPA estimators of dJ
dsi

, i = 1, 2.

2.2 IPA for TLC with Fixed Light Cycles

For simplicity of notation, let us define the derivatives of the states xn(s,t) and zi(s,t)

and event times τk(s) with respect to si, i = 1, 2, as follows:

x′n,i(t) ≡
∂xn(s,t)

∂si
, z′i,i(s,t) ≡

∂zi(s,t)

∂si
, τ ′k,i ≡

∂τk(s)

∂si
(2.11)

Using the definition of L (s) in (2.9), we may obtain the sample performance
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derivatives dL
dsi

as follows:

dL (s)

dsi
=

1

T

2∑
n=1

Mn∑
m=1

[
wnxn (ηn,m)

∂ηn,m
∂si

− wnxn (ξn,m)
∂ξn.m
∂si

+
ηn,m
ξn.m

wnx
′
n,i (t) dt

]

Note that, at the start and end of an NEP, we have that xn (ξn,m) = xn (ηn,m) = 0.

Moreover, based on (2.6), we will have
∂fn,k(t)

∂xn
=

∂fn,k(t)

∂si
= 0, n, i = 1, 2, so that in

(A.7) we have d
dt
x′ (t) = 0 for t ∈ [τk, τk+1). This means that the value of the state

derivative of any road remains unaltered while the system is in a given discrete mode,

i.e.

x′n,i(t) = x′n,i(τ
+
k ), t ∈ [τk, τk+1) (2.12)

which, in turn, implies that we can decompose each NEP into time intervals of the

form
[
ξn,m, t

1
n,m

)
,
[
t1n,m, t

2
n,m

)
, . . . [t

Jn,m
n,m , ηn,m). Letting

Ln,m(s) =

∫ ηn,m

ξn,m

xn(s, t)dt

we get

dLn,m(s)

dsi
= x′n,i((ξn,m)+) · (t1n,m − ξn,m)

+ x′n,i((t
Jn,m
n,m )+) · (ηn,m − tJn,mn,m )

+

Jn,m∑
j=2

x′n,i((t
j
n,m)+) · (tjn,m − tj−1

n,m) (2.13)

In what follows, we derive the IPA state and event time derivatives for the events

identified in our SHA model.
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2.2.1 State and Event Time Derivatives

We shall proceed by considering each of the event types (En, G2Rn, R2Gn, Sn)

identified in the previous section and deriving the corresponding event time and state

derivatives. We begin with a general result which applies to all light switching events

G2Rn and R2Gn. Let us denote the time of the jth occurrence of a light switching

event by σj and define its derivative with respect to the control parameters as σ′j,i ≡

∂σj
∂si

, i = 1, 2.

Lemma 2.1 The derivative σ′j,i, i = 1, 2, of light switching event times σj, j =

1, 2, . . . with respect to the control parameters s1, s2 satisfies:

σ′j,i =


1

αn(σj)
· 1 [n = i]− x′n,i(σ−j ) if ζn occurs at σj
1

αn(σj)−hn(σj)
· 1 [n = i]− x′n,i(σ−j ) if γn occurs at σj

σ′j−1,i otherwise

(2.14)

where 1 [·] is the usual indicator function.

Proof: See Appendix C.

We now proceed by considering each of the event types (G2Rn, R2Gn, En, Sn).

(1) Event G2Rn

Two cases must be considered: (a) G2Rn occurs at τk while road n is undergoing

an NEP; (b) G2Rn occurs at τk while road n is undergoing an EP. In case (a), the fact

that xn(τ−k ) > 0 means that fn,k−1(τ−k ) = αn(τk)−hn(τk). Additionally, since road n is

undergoing a RED cycle at time τ+
k , we must have fn,k(τ

+
k ) = αn(τk). It follows from

(A.8) that x′n,i(τ
+
k ) = x′n,i(τ

−
k )− hn(τk)τ

′
k,i, n = 1, 2, i = 1, 2. In case (b), xn(τ−k ) = 0,

so that fn,k−1(τ−k ) = 0, and it is simple to verify that x′n,i(τ
+
k ) = x′n,i(τ

−
k )−αn(τk)τ

′
k,i,
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n = 1, 2, i = 1, 2. Moreover, if the kth event corresponds to the jth occurrence of

a light switching event, we have τ ′k,i = σ′j,i for some j = 1, 2, . . . Combining these

results, we get, for n = 1, 2 and i = 1, 2,

x′n,i(τ
+
k ) = x′n,i(τ

−
k )−

{
hn(τk)σ

′
j,i

αn(τk)σ
′
j,i

if xn(τk) > 0

if xn(τk) = 0
(2.15)

where σ′j,i is given by (2.14) in Lemma 2.1 with σj = τk.

(2) Event R2Gn

Once again, two cases must be considered: (a) R2Gn occurs at τk while road n

is undergoing an NEP; (b) R2Gn occurs at τk while road n is undergoing an EP. In

case (a), the fact that road n is undergoing a RED cycle within an NEP at time τ−k

means that fn,k−1(τ−k ) = αn(τk). Additionally, since road n is undergoing a GREEN

cycle at time τ+
k , we must have fn,k(τ

+
k ) = αn(τk) − hn(τk), and (A.8) reduces to

x′n,i(τ
+
k ) = x′n,i(τ

−
k ) + hn(τk).τ

′
k,i, n = 1, 2, i = 1, 2. In case (b), the fact that road n

is empty while undergoing a RED cycle at time τ−k implies that fn,k−1(τ−k ) = αn(τk)

with 0 < αn(τk) ≤ hn(τk), while fn,k(τ
+
k ) = 0. Substituting these expressions into

(A.8) yields x′n,i(τ
+
k ) = x′n,i(τ

−
k ) + αn(τk).τ

′
k,i, n = 1, 2 and i = 1, 2. Combining these

two cases, we get, for n = 1, 2 and i = 1, 2,

x′n,i(τ
+
k ) = x′n,i(τ

−
k ) +

{
αn(τk)σ

′
j,i

hn(τk)σ
′
j,i

if xn(τk) = 0 and 0 < αn(τk) ≤ hn(τk)

otherwise
(2.16)

where again σ′j,i is given by (2.14) in Lemma 2.1 with σj = τk.
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(3) Event En

This event corresponds to the end of an NEP on road n and is induced by e5,

which is an endogenous event at τk with gk = xn = 0. Since at time τ−k road n

is in an NEP, we must have fn,k−1(τ−k ) = αn(τk) − hn(τk), and (A.12) implies that

τ ′k,i =
−x′n,i(τ

−
k )

αn(τk)−hn(τk)
. Moreover, the fact that road n is in an EP at time τ+

k implies

that fn,k(τ
+
k ) = 0, and (A.8) reduces to x′n,i(τ

+
k ) = x′n,i(τ

−
k )− x′n,i(τ−k ) so that

x′n,i(τ
+
k ) = 0, n = 1, 2 and i = 1, 2 (2.17)

(4) Event Sn

This event corresponds to the start of an NEP and can be induced by a G2Rn, e7

or e6 event. These three cases are analyzed in what follows.

1. Sn is induced by a G2Rn event. Suppose that this G2Rn event initiated the

mth NEP on road n. Therefore, during the preceding EP, i.e. during the time interval

[ηn,m−1, ξn,m), we have xn(t) = 0 for t ∈ [ηn,m−1, ξn,m), and, consequently, x′n,i(t) = 0

for t ∈ [ηn,m−1, ξn,m) and i = 1, 2. As a result, x′n,i(η
+
n,m−1) = x′n,i(ξ

−
n,m) = 0, and since

τk = ξn,m it follows that x′n,i(τ
−
k ) = x′n,i(ξ

−
n,m) = 0. Therefore, (2.15) reduces to

x′n,i(τ
+
k ) = −αn(τk)τ

′
k,i (2.18)

The value of τ ′k,i above depends on the event inducing G2Rn. If the kth event

corresponds to the jth occurrence of a light switching event, then τ ′k,i = σ′j,i which is

obtained from (2.14). Note, however, that event Sn cannot be induced by γn due to
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the fact that the occurrence of γn is conditioned upon road n being in an NEP, which

cannot be the case here. As a result, the second case in (2.14) is excluded.

2. Sn is induced by an e7 event. Recall that e7 corresponds to a switch from

αn(t) = 0 to αn(t) > 0 while road n is undergoing a RED cycle, i.e. zn(t) = 0.

Since this is an exogenous event, τ ′k,i = 0, i = 1, 2, and (A.8) reduces to x′n,i(τ
+
k ) =

x′n,i(τ
−
k ). We know that τk corresponds to the time when the NEP starts at road n,

i.e. τk = ξn,m, and we have shown that x′n,i(ξ
−
n,m) = x′n,i(η

+
n,m−1) = 0. It thus follows

that x′n,i(τ
−
k ) = x′n,i(ξ

−
n,m) = 0, so that

x′n,i(τ
+
k ) = 0, n, i = 1, 2 (2.19)

3. Sn is induced by an e6 event. Event e6 corresponds to a switch from αn(t) −

hn(t) ≤ 0 to αn(t) − hn(t) > 0 while road n is undergoing a GREEN cycle, i.e.,

zn(t) > 0. Since this is an exogenous event, τ ′k,i = 0, i = 1, 2, and the subsequent

analysis is similar to that of the previous case, so that (2.19) holds.

This completes the derivation of all state and event time derivatives required to

apply IPA to the TLC problem setting contemplated in this chapter.

2.2.2 Cost Derivatives

It is clear from (2.13) that computing the IPA estimator of dJ
dsi

, i = 1, 2, requires

knowledge of: (i) the event times ξn,m, ηn,m, and tjn,m, and (ii) the value of the state

derivatives x′n,i (t), whose expressions were derived in the previous section, during

each time interval. The quantities in (i) are easily observed using timers, and those
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in (ii) ultimately depend on the values of the arrival and departure rates αn(t) and

hn(t) at event times only, which may be estimated through simple rate estimators.

As a result, an algorithm for updating the value of dL(s)
dsi

after each observed event is

straightforward to implement (and can be found in Appendix B). We also point out

that our IPA estimator is linear in the number of events in the SFM, not in its states.

Thus, our method could be readily extended to a network of intersections.

2.3 Simulation Results

With the intent of showing that performance improvements can be obtained when

IPA is used to control the queue content thresholds, two sets of simulations were

performed: one in which the thresholds were optimized considering a priori fixed

values of cycle lengths θ = [θ1,min, θ1,max, θ2,min, θ2,max] for each road, and another in

which the cycle lengths and thresholds s = [s1, s2] were optimized sequentially. Thus,

first, the IPA algorithm from (Geng and Cassandras, 2013) was applied to determine

optimal θ; then the values of s1 and s2 were optimized using the IPA algorithm

described in this chapter.

In all our simulations, we assume that the vehicle arrival process is Poisson with

rate αn, n = 1, 2, and approximate the departure rate by a constant value hn(t) =

H when road n is non-empty, which amounts to considering that the speed with

which vehicles cross an intersection depends only on the behavior of the vehicles

themselves. We emphasize, however, that our methodology applies independently

of the distributions chosen to represent the arrival and departure processes. We
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estimate the values of the arrival rate at event times as αn(τk) = Na/tw, where Na

is the number of vehicle arrivals during a time window tw around τk. Simulations

of the intersection modeled as a pure DES are thus run to generate sample paths

to which the IPA estimator is applied. We also make use of a brute-force (BF)

approach to generate a cost surface along which the convergence of the IPA-driven

optimization algorithm is depicted. The BF method consists of discretizing the values

of si and generating 10 sample paths for each pair of discretized threshold values

(s1, s2) = (1, 1), (1, 2), . . . , (2, 1), . . ., from which the average total cost can then be

obtained. In all results reported here, we set H = 1, wn = 1, n = 1, 2, and measure

the sample path length in terms of the number of observed light switches, which we

choose to be N = 5000.

In our first set of simulations, the GREEN light cycles are fixed and equal on

both roads by setting θn,min = 10 sec and θn,max = 30 sec, n = 1, 2. Two scenarios are

considered: Scenario A, in which road 1 exhibits high traffic intensity while road 2

exhibits low traffic intensity (where we choose 1/α1 = 2 and 1/α2 = 6); Scenario B,

in which both roads exhibit high but unequal traffic intensity (and we choose 1/α1 = 2

and 1/α2 = 3). We further consider two different initial threshold configurations for

each scenario. Table 2.1 shows the optimal threshold values determined by both the

BF method and the IPA-driven optimization algorithm, along with the cost reduction

achieved by the latter (denoted as R and computed as a percentage of the initial cost).

Sample convergence plots of the cost J and thresholds s are presented in Figure 2·6,
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while the cost surfaces of both scenarios, along with curves (black and yellow) that

represent the trajectories corresponding to each initial configuration, are shown in

Figures 2·7 and 2·8. Visual inspection of Figure 2·7 reveals that both trajectories

converge to the same optimal point, namely s∗IPA = [1.9, 3.7], as presented in Table

2.1. Similarly for Scenario B, both trajectories depicted in Figure 2·8 converge to

the optimal point shown in Table 2.1, i.e. s∗IPA = [4.6, 5.1].

Table 2.1: Optimization results for system with a priori fixed cycle
lengths

Initial Point IPA BF
1/α s0 J0 s∗IPA J∗IPA R s∗BF J∗BF
[2, 6] [10, 1] 12.8 [1.9, 3.7] 4.3 66 [1, 4] 4.4
[2, 6] [9, 10] 6.2 [1.9, 3.7] 4.3 31 [1, 4] 4.4
[2, 3] [15, 3] 18.9 [4.6, 5.1] 7.9 58 [5, 6] 8.8
[2, 3] [15, 15] 13.1 [4.6, 5.1] 7.9 40 [5, 6] 8.8

In our second set of simulations, we perform a sequential optimization of the

cycle lengths and threshold values. We make use of the optimal light cycle lengths

obtained through IPA (denoted by θ∗IPA =
[
θ∗1,min, θ

∗
1,max, θ

∗
2,min, θ

∗
2,max

]
) in (Geng and

Cassandras, 2013), and subsequently apply the IPA estimator derived in this chapter

to optimize the queue content thresholds. The optimal light cycle lengths obtained in

(Geng and Cassandras, 2013) for fixed and predetermined threshold values of s = [8, 8]

are reproduced in Table 2.2.

A comparison between IPA and BF results, including a quantitative assessment of

the additional cost reduction achieved (computed as a percentage of the initial cost

and labeled R) is shown in Table 2.3.
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Figure 2·6: Sample cost and parameter trajectories for 1/α =
[2, 6],θ = [10, 30, 10, 30], and s0 = [9, 10]

Table 2.2: Optimal cycle lengths obtained in (Geng and Cassandras,
2013) for s = [8, 8]

1/α θ∗IPA
[2, 3] [10.2, 19.3, 10.1, 16.3]

[1.7, 3] [10.1, 20.1, 10.6, 11.9]

In order to further illustrate the advantage of quasi-dynamically controlling the

light cycle lengths and threshold values over a static IPA approach to the TLC prob-

lem, we include a comparison of the results generated by our methodology with those

obtained when static control (as described in (Geng and Cassandras, 2012)) is ap-

plied to determine the optimal cycle lengths θ∗static. The static controller defined in

(Geng and Cassandras, 2012) adjusts the green light cycles subject to some lower

and upper bounds and determines θ∗static = [θ∗1, θ
∗
2], where θ∗1 (θ∗2, respectively) is the
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Figure 2·7: Cost surface and convergence trajectories for Scenario A
(note: the color scale refers to the cost values)

green cycle length which should be allotted to road 1 (road 2, respectively) in order to

minimize the average queue content on both roads. Table 2.4 summarizes the results

obtained by each of the IPA approaches considered in this work: Method 1, in which

a static controller is used to adjust the light cycles (results were obtained by using

the same setting as in our second set of quasi-dynamic simulations and constraining

θ ∈ [10, 40]); Method 2, in which only the light cycles are controlled quasi-dynamically

(i.e. fixed and predetermined queue content thresholds are incorporated into the sys-

tem model); Method 3, in which a sequential quasi-dynamic optimization of light

cycle lengths and threshold values is performed in between two adjustment points.

The columns labeled Ri, i = 2, 3, present the cost reduction achieved by the quasi-
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Figure 2·8: Cost surface and convergence trajectories for Scenario B
(note: the color scale refers to the cost values)

dynamic methods with respect to the static approach, i.e. Ri =
J∗1−J∗i
J∗1
∗ 100.

The numerical results presented thus far show that a considerable reduction in the

mean queue content of both roads can be achieved by quasi-dynamically controlling

the thresholds in systems with non-optimal cycle lengths. Moreover, determining op-

timal threshold values allows for additional improvements to the performance of sys-

tems running under optimal light cycle lengths. Such results indicate that a method

in which the light cycle lengths and queue content thresholds are controlled simulta-

neously is likely to provide improved solutions to the TLC problem. We verify this

in the following chapter, where we derive an IPA-based optimization algorithm that

incorporates all such controllable parameters and ultimately determines the optimal



61

Table 2.3: Optimization results for system with optimal cycle lengths

IPA BF
1/α s∗IPA J∗IPA R (%) s∗BF J∗BF
[2, 3] [2.8, 4.3] 7.1 15 [2, 5] 7.2

[1.7, 3] [4.8, 6.1] 14.9 11 [3, 8] 15.7

Table 2.4: Comparison between three IPA-based approaches to the
TLC problem

Method 1 Method 2 Method 3
1/α J∗1 J∗2 R2 (%) J∗3 R3 (%)
[2, 3] 14.4 8.4 42 7.1 51

[1.7, 3] 23.9 16.7 30 14.9 38

light cycle length/threshold configuration capable of minimizing traffic build-up at a

given intersection.
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Chapter 3

Traffic Light Control with Quasi-Dynamic

Light Cycles and Thresholds

In this chapter, we extend our quasi-dynamic analysis of the TLC problem to param-

eterize the control policy by green and red cycle lengths as well as the road content

thresholds. In what follows, we reintroduce the TLC problem formulation and derive

an IPA estimator for the cost function gradient with respect to a controllable param-

eter vector defined by the light cycle lengths and threshold values. Results obtained

by applying this methodology to a simulated urban setting are then presented.

3.1 TLC Problem Formulation

We continue to consider the system comprised of a single intersection, as shown in Fig-

ure 2·1, where, for simplicity, left-turn and right-turn traffic flows are not considered

and yellow light cycles are implicitly accounted for within a red light cycle. In keeping

with the notation defined in Chapter 2, xi(t) ∈ R+ denotes the content of queue i,

and, for each queue i, we also define a “clock” state variable zi(t), i = 1, 2, which

measures the time since the last switch from RED to GREEN of the traffic light for

queue i. Setting z(t) = [z1(t), z2(t)], the complete system state vector is [x(t), z(t)].
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In contrast to the previous part of this work, we now define the controllable param-

eter vector of interest as υ = [θ1,min, θ1,max, θ2,min, θ2,max, s1, s2], where si ∈ <+ is the

queue content threshold value for road i = 1, 2, and θi,min (θi,max, respectively) denotes

the minimum (maximum, respectively) GREEN cycle length allotted to road i. The

notation x(υ, t) = [x1(υ, t), x2(υ, t)] is used to stress the dependence of the state on

these controllable parameters. However, for notational simplicity, we will henceforth

write x(t) when no confusion arises; the same applies to z(t).

We will continue to make use of the quasi-dynamic controller defined by (2.2)-(2.4),

so that the hysteresis control rules presented in Section 2.1 still hold. Furthermore, we

will maintain all assumptions regarding the underlying input stochastic processes, as

well as consider the same feasible events and system dynamics that were introduced

in Section 2.1. A simplified state transition diagram for the resulting SHA, in which

the state variable dynamics have been omitted and the states xn(t) = 0 and xn(t) > 0

have been combined into a single one, is shown in Figure 3·1. In what follows, we

derive the IPA state and event time derivatives for the events identified in Section

2.1.
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Figure 3·1: SHA under quasi-dynamic control

3.2 IPA for TLC with Quasi-Dynamic Light Cycles and

Thresholds

For simplicity of notation, let us define the derivatives of the states xn(υ, t) and zi(υ, t)

and event times τk(υ) with respect to υi, i = 1, . . . , 6, as follows:

x′n,i (t) ≡
∂xn (υ, t)

∂υi
, z′n,i (t) ≡

∂zn (υ, t)

∂υi
, τ ′k,i ≡

∂τk(υ)

∂υi
(3.1)

We have shown that
∂fn,k(t)

∂xn
=

∂fn,k(t)

∂si
= 0, n, i = 1, 2, so that in (A.7) we have

d
dt
x′ (t) = 0 for t ∈ [τk, τk+1). This means that the value of the state derivative of any

road remains unaltered while the system is in a given discrete mode, so that (2.12)
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holds. As a result, the IPA estimator here will also be given by (2.13). As in Chapter

2, we will proceed to revisit each of the event types (G2Rn, R2Gn, En, Sn) identified

in Section 2.1 and derive the corresponding event time and state derivatives.

We will once again start by presenting a general result which applies to all light

switching events G2Rn and R2Gn. Let us denote the time of occurrence of the

jth light switching event by σj and define its derivative with respect to the control

parameters as σ′j,i ≡
∂σj
∂υi

, i = 1, . . . , 6.

Lemma 3.1 The derivative σ′j,i, i = 1, . . . , 6, of light switching event times σj, j =

1, 2, . . . with respect to the control parameters υi satisfies:

σ′j,i =



1
αn(σj)

· 1 [i = n+ 4]− x′n,i(σ−j ) if ζn occurs at σj
1

αn(σj)−hn(σj)
· 1 [i = n+ 4]− x′n,i(σ−j ) if γn occurs at σj

1 [i = 2n− 1] + σ′j−1,i if λn occurs at σj
1 [i = 2n] + σ′j−1,i if µn occurs at σj
σ′j−1,i otherwise

(3.2)

where 1 [·] is the usual indicator function.

Proof: See Appendix C.

Recall that, based on (A.8), the value of the state derivative at time τ+
k depends

on the state dynamics fk−1

(
τ−k
)

and fk
(
τ+
k

)
, as well as on the event time derivative

τ ′k. The analysis of the state dynamics at τ−k and τ+
k in the present context is the same

as the one presented in Section 2.2.1. As a result, the state derivative expressions

corresponding to each event type (G2Rn, R2Gn, En, Sn) will again be given by

(2.15)-(2.19), the only change being that now τ ′k = σ′j,i as given by (3.2). In a similar

manner, the cost derivative expressions derived in Section 2.2.2 remain valid, so that

the form of the IPA estimator is still given by (2.13). Once again, computing such
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estimator requires knowledge of the time when events take place and of the value of the

state derivatives, which ultimately depend on the values of the arrival and departure

rates estimated at event times only. Hence, it is simple to implement an algorithm

for updating the value of dL(υ)
dυi

after each observed event. We will thus proceed to

present results obtained by applying this methodology to a simulated urban setting.

3.3 Simulation Results

In what follows, we detail how an IPA-driven gradient based optimization technique

can be used to simultaneously control the light cycle lengths and the queue con-

tent thresholds for an isolated traffic light intersection, which is modeled as a DES.

Two sets of simulations were performed: one in which the same initial light cy-

cle length/threshold setting was used for different traffic intensities, and another in

which different starting points were used for certain values of traffic intensity.

In all our simulations, we assume that the vehicle arrival process is Poisson with

rate αn, n = 1, 2, and approximate the departure rate by a constant value hn(t) = H

when road n is non-empty, which amounts to considering that the speed with which

vehicles cross an intersection depends only on the behavior of the vehicles themselves.

We nevertheless note that our methodology applies independently of the distribution

chosen to represent the arrival and departure processes. We estimate the values of the

arrival rate at event times as αn(τk) = Na/tw, where Na corresponds to the number

of vehicle arrivals during a time window of size tw around τk. Simulations of the

intersection modeled as a pure DES are thus run to generate sample path data to
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which the IPA estimator is applied. In all results reported here, we set H = 1, wn = 1,

n = 1, 2, and measure the sample path length in terms of the number of observed

light switches, which we choose to be N = 5000.

In our first set of simulations, the initial configuration was chosen to be θ0 =

[15, 30, 15, 30] and s0 = [10, 10]. Table 3.1 presents the optimization results associated

with different traffic intensities (denoted by 1/α), where θ∗IPA and s∗IPA denote the

optimal light cycle lengths and threshold values, respectively, and J∗IPA is the cost

associated with the optimal configuration. We also include here a comparison of the

results generated by our methodology with those obtained when static control, as

defined in (Geng and Cassandras, 2012), is applied to determine the optimal cycle

lengths. The cost reduction with respect to the static approach (labeled R) for

different traffic intensities is shown in Table 3.1, and sample convergence plots of

the cost J , the light cycles θ, and the queue content thresholds s are presented in

Figure 3·2. The left plot of Figure 3·2 shows the average cost, which in this work

corresponds to the weighted mean of the queue length of both roads, while the middle

and right plots display the convergence behavior of green phase lengths and threshold

values, respectively.

Table 3.1: Optimization results for different traffic intensities

1/α θ∗IPA s∗IPA J∗IPA R(%)
[1.7, 3] [12.3, 39.9, 12, 27.3] [4.1, 8.2] 12.9 46
[1.8, 3] [12.8, 30.8, 10, 29.9] [3.6, 4.1] 10 47
[1.9, 3] [14.4, 30, 11.2, 29.9] [5.4, 6.6] 8.9 47
[2, 3] [13.3, 29.9, 10, 30] [3.8, 4.4] 7.7 47

[2.2, 2.7] [14.5, 30, 12.8, 30] [6.3, 6.9] 8.5 57
[2, 6] [15, 31.5, 12.1, 29.9] [5.7, 9.9] 5.6 48
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The results presented in Chapter 2 served to establish the advantage of quasi-

dynamically controlling the light cycle lengths and threshold values over a static IPA

approach to the TLC problem. In fact, using the sequential optimization approach

detailed in Section 2.3, it was possible to obtain a cost reduction of the order of

38 to 51%, i.e. the queue build-up for a system operating under sequential quasi-

dynamic optimal light cycle lengths and thresholds was 38 to 51% lower than that

of a system operating under static optimal light cycle lengths. As shown in Table

3.1, however, simultaneously optimizing both light cycle lengths and threshold values

provides a cost reduction that is in most cases at least as high as the aforementioned

sequential approach. Indeed, for 1/α = [1.7, 3], sequential optimization yielded a

38% cost reduction, while the simultaneous method described in this chapter allowed

for a reduction of 46%, and for 1/α = [2, 3] both approaches resulted in the same

overall cost, which was 51% lower than the one obtained under static control. Most

importantly, the present methodology consistently yields results in which the traffic

build-up at the intersection is approximately half the size of the one under static

control, unlike the sequential approach (recall, for instance, the cost reduction of 38%

for the setting where 1/α = [1.7, 3]).

It is worthwhile to note that, in most of the analyzed scenarios, the value of the

average cost converges much more slowly than the values of the controllable parame-

ters. However, the purpose of this work is precisely to identify controllable parameters

whereby an effective quasi-dynamic TLC may be imposed. As such, existing oscilla-
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Figure 3·2: Sample cost and parameter trajectories for 1/α = [1.7, 3]

tions in the average cost value, albeit small once the green phase lengths and threshold

values have converged, point to the robustness of the proposed approach. Another

issue that warrants discussion is the difference in convergence time between the green

phase length parameters and threshold parameters. It can be observed from Figure

3·2 that the real challenge in convergence lies with the threshold values, which repre-

sent the quasi-dynamic parameters introduced by our methodology, while the green

phase lengths generally converge much faster to their optimal configuration.

In our second set of simulations, we analyze convergence results in light of the ex-

istence of local minima, and three different traffic intensity settings are contemplated.

Table 3.2 summarizes the results obtained when different initial configurations (θinit

and sinit values) are used, and also displays information on the resulting cost reduc-

tion with respect to the static approach (labeled R). It comes as no surprise that

local minima exist throughout the six-dimensional cost surface of this system, imply-
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ing that the optimal configuration to which the algorithm converges may depend on

the starting point. More interestingly, however, is the fact that, for any given traffic

intensity, this approach is able to consistently achieve a cost reduction of the order

of 50% across different optimal configurations.

Table 3.2: Convergence results for different initial configurations

Initial configuration Optimal configuration
1/α θinit sinit θ∗opt s∗opt J∗opt R(%)

[15, 30, 15, 30] [10, 10] [12.3, 39.9, 12, 27.3] [4.1, 8.2] 12.9 46
[1.7, 3] [10, 20, 10, 20] [5, 5] [10, 39.9, 10.9, 19.3] [2.3, 6.1] 12.6 47

[10, 20, 10, 30] [10, 5] [10, 39.9, 11.2, 28.9] [5.7, 8.3] 12.7 47
[15, 30, 15, 30] [10, 10] [12.8, 30.8, 10, 29.9] [3.6, 4.1] 10 47

[1.8, 3] [10, 20, 10, 20] [5, 5] [10, 23, 10, 18.8] [4.6, 5.1] 10.2 49
[10, 20, 10, 30] [10, 5] [10.5, 33.4, 10.5, 27.9] [5.3, 7.0] 10.5 45
[15, 30, 15, 30] [10, 10] [14.4, 30, 11.2, 29.9] [5.4, 6.6] 8.9 47

[1.9, 3] [10, 20, 10, 20] [5, 5] [10, 21.9, 10, 19.5] [3.6, 4.7] 8.6 49
[10, 20, 10, 30] [10, 5] [11, 26.3, 10, 28.3] [4.6, 5.8] 8.7 48

An example of the simulated traffic flow variation is given in Figure 3·3, where the

queue content on both roads is shown as a function of the simulation time. For ease

of visualization, the entire sample path length in between updates of the controllable

parameters is not shown in Figure 3·3. Nevertheless, it is possible to note that

the queue lengths on both roads become increasingly bounded as the simulation

progresses. This indicates that, as the algorithm converges to the optimal phase

length and threshold settings, the number of vehicles on each road tends to oscillate

within tighter bounds, whose values are directly related to the optimal threshold

values determined for each road.
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Figure 3·3: Simulated traffic flow variation for 1/α = [2.2, 2.7]
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Chapter 4

Integrating Genomic Data to Infer Cancer

Progression

In this chapter, we propose a novel formulation for integrating somatic mutation and

gene expression data to infer the temporal sequence of events from cross-sectional

data. Existing methods for identifying cancer specific markers and therapeutic targets

typically analyze genetic, transcriptomics, proteomics or epigenetic data in search

of common patterns. One of the biggest challenges in biomarker discovery is the

heterogeneity of cancer data. Specific patterns discovered in one study often fail to

validate in other studies or different data sets. The heterogeneity observed in clinical

data may be due to

(i) Limitations associated with the platforms used for generating molecular data

(e.g., sequencing, microarray, etc.), since batch effects are commonly observed

between different platforms or protocols;

(ii) Limitations associated with existing cancer data sets, which are currently pre-

dominantly cross-sectional. This means that one time point measurements are

generated for all patients, although such measurements may not necessarily be

the most informative ones. In fact, certain genes dynamically change expres-
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sion levels during the cell cycle, so that one time point measurements of gene

expression may not capture the steady state expression level;

(iii) Imperfections of clinical diagnosis and the ensuing difficulty in assessing the

stage of each patient’s tumor. As a result, clinical samples may not always be

properly annotated;

(iv) The reduced sample size with respect to the large number of measured features

(genes or other molecules), which decreases the statistical power of the majority

of commonly used approaches for biomarker discovery and patient stratification;

(v) The heterogeneity of cancer mechanisms, which may also dynamically change

during cancer progression.

In light of this, much of the research currently undertaken using cross-sectional

data aims at determining whether the order in which genetic alterations occur within

tumors follows common progression paths. Although not all patients with the same

type of cancer harbor the exact same set of genetic abnormalities, there seems to

be at least a subset of such changes that are consistent across a set of patients.

This suggests that several combinations of mutations and gene expression patterns

may lead to similar changes in cancer initiation and progression mechanisms such

as apoptosis, differentiation, migration, and proliferation. In other words, different

molecular patterns may contribute to cancer growth and proliferation in a similar

way, i.e., through the deregulation of similar cellular mechanisms.
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Much effort has recently been undertaken to collect, organize and make publicly

available multiple data types obtained from genetic analysis of tumor samples. A case

in point is the research developed by the The Cancer Genome Atlas (TCGA) Network,

whereby different types of cancer have been profiled, such as breast invasive carci-

noma (The Cancer Genome Atlas Research Network, 2012c), lung adenocarcinoma

(The Cancer Genome Atlas Research Network, 2014), lung squamous carcinoma (The

Cancer Genome Atlas Research Network, 2012a), colon cancer (The Cancer Genome

Atlas Research Network, 2012b), among others.

Existing data sets of cross-sectional data have been extensively used to derive tem-

poral models capable of inferring sequences of mutational events and/or sequences of

affected pathways responsible for driving cancer progression. In (Gerstung et al.,

2011), Bayesian networks constructed using mutation data were used to infer the

temporal order of genetic mutations. The concept of probability raising was applied

to copy number variation (CNV) data to infer causal models of cancer progression in

(Loohuis et al., 2014). The model derived in (Michor et al., 2004) provided a quan-

titative understanding of the dynamics of tumorigenesis with respect to mutation,

selection, genetic instability, and tissue architecture. The authors in (Beerenwinkel

et al., 2007) developed a model of somatic evolution of colorectal cancer based on

published data and used it to investigate the effect of different parameters on tu-

mor evolution on a global scale, while those in (Dingli et al., 2007) suggested that

stochastic dynamics alone might be responsible for either remission or rapid growth
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of tumors in the hematopoietic system.

The importance of connecting different types of genomic alterations (as opposed

to a single type of genomic data) was recognized in (Vaske et al., 2010) and (Ng

et al., 2012), where probabilistic inference was used to predict the degree to which

the activity of a pathway was altered in a given patient. For this purpose, each gene

was modeled as a set of interconnected variables associated with expression, CNV

and protein levels, and a priori information of molecular pathways was used to define

the gene groups of interest and model the gene interactions.

Additional studies (Huzarski et al., 2014), (Nicolini et al., 2007), (Ahrendt et al.,

2003) have established a correlation between certain mutations and survival rates,

thus revealing the genetic heterogeneity of cancer and the existence of multiple sub-

types. Another example is the prognostic role of BRCA1 mutation in patients with

triple-negative breast cancer (Maksimenko et al., 2013).

Thus far, most attempts at reconstructing tumor progression at the pathway level

have considered only known, a priori defined, pathways. The problem of simulta-

neously inferring the order of genetic mutation occurrence from somatic mutation

cross-sectional data was formulated as an Integer Linear Program (ILP) in (Raphael

and Vandin, 2015). Unlike existing work, our approach neither correlates a single type

of cross-sectional data (e.g., mutation, gene expression, etc.) with cancer prognosis,

nor analyzes these different types of data separately to combine the resulting analyses

post-factum. Instead we combine the information from somatic mutations and gene
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expression data using mathematical techniques and develop a model capable of infer-

ring the chronological sequence of alterations at the genome as well as at the pathway

level. Furthermore, our inference model is not restricted to a priori defined cellular

pathways, but is also able to identify such pathways and the sequence in which these

become altered during tumor evolution. Of note, our approach is general and easily

applicable to various types of cancer; in what follows, we analyze breast cancer data

as a case study.

4.1 Problem Formulation

The problem of partitioning mutational events into a temporal sequence of events

was formulated in (Raphael and Vandin, 2015) as an Integer Linear Program (ILP),

in which an optimal partition must satisfy two biologically meaningful requirements.

The first, termed exclusivity of mutations, derives from the common assumption that

at most one driver mutation takes place during each step (or phase) of cancer progres-

sion. The second one establishes progression across phases by enforcing that, for any

given patient, a mutation in some gene must take place in a given progression phase

in order for another gene to become mutated in a subsequent phase. The existence of

passenger mutations, false positives and false negatives in mutation detection, among

other factors, may lead to the violation of these requirements. Therefore, in order to

enforce both exclusivity and progression, changes may need to be made to the original

mutation data set.

Our work extends the model in (Raphael and Vandin, 2015) by adding the in-
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teraction between somatic mutations and gene expression. We propose a new Mixed

Integer Linear Program (MILP) formulation which identifies the order in which mu-

tations appear and produce changes of gene expression. In our approach, a phase

of cancer progression is defined by both a group of mutation genes and a group of

expression genes. We hypothesize that during a cancer progression phase, certain

mutations lead to gene expression changes in multiple genes. Moreover, gene expres-

sion changes may cause mutations and expression changes in the downstream cancer

progression phases.

Our formulation is based on the following assumptions:

(A1) Exclusivity of driver mutations within each cancer progression phase. This im-

plies that each sample can have only one mutated gene and each gene can only

be assigned to one phase;

(A2) Progression of mutations across subsequent phases, so that each sample must

have one gene mutated in the previous phase in order to have a mutation in a

subsequent phase;

(A3) Causality relationship between mutated genes and genes with abnormal expres-

sion. Mutations in driver genes lead to changes in expression of certain genes.

Hence, if a sample has no mutated genes in a given phase, all genes in the

expression subset of that phase must have normal expression;

(A4) The strength of the connection between expression and mutation genes deter-
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mines the assignment of the abnormal expression genes to the corresponding

phases. This means that each expression gene is assigned to a certain phase

based on the strength of this gene’s connection to the mutation genes that

belong to that phase.

Our input data consists of an m × n binary mutation matrix M , as well as an

m × r expression matrix E, where m is the number of samples (patients) in our

database, n is the number of mutation genes considered in our study, and r is the

number of expression genes considered in our study. The values of the entries Mij of

the mutation matrix are

Mij =

{
1 if mutation gene j is mutated in sample i

0 otherwise

while the entries Eih of the expression matrix correspond to the measured expression

level of expression gene h for sample i. We define the connectivity between mutation

gene j and expression gene h to be the product between the mutation status of gene

j and the expression level of gene h, compounded across all samples. Hence, we

construct an r × n real-valued connectivity matrix C ≡ ET ·M .

The value of entry Chj of the connectivity matrix can be interpreted as follows:

values closer to zero indicate that most samples exhibit small absolute values of

expression levels for gene h and/or have no mutation in gene j; conversely, the further

away the value of Chj is from zero, the stronger is the connectivity between expression

gene h and mutation gene j across the data set.
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It is thus clear that a stronger connectivity is obtained when |Eih| � 1
m

m∑
i=1

Eih and

Mij = 1 for i = 1, . . . ,m and ∀ pair (h, j) of expression and mutation genes. Note

that, in what concerns the expression levels, this condition implies that the most

under/over expressed genes yield higher connectivity scores. This in turn points to

the relevance of preprocessing matrix E so as to identify abnormally low/high Eih

values. Such task can be easily accomplished through outlier detection techniques.

While outliers are typically associated with erroneous data, in this case values of

Eih that deviate markedly from the mean expression level are particularly relevant.

Indeed, our ultimate goal is to infer sequences of abnormal cellular behavior that lead

to cancer progression, which means that we are interested in analyzing genes that

exhibit mutations and/or abnormal expression levels. As a result, we performed a

percentile analysis for each expression gene h, h = 1, . . . , r and considered entry Eih

to be over (under, respectively) expressed if it belonged to the 99th (1st, respectively)

percentile of gene h. As a final preprocessing step, we modified the values of all entries

Eih so as to generate a binary expression matrix, where the value of 1 indicated that

sample i belonged to either the 1st or 99th percentile of gene h, and the value of zero

indicated otherwise.

In this context, the problem of inferring a model of cancer progression can be

cast as that of finding a partition of the n columns of matrix M into K mutation

phases and a partition of the r columns of matrix E into K expression phases. We

address the role of the number of phases K in a subsequent discussion, but note that
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the value of K is externally selected and varies depending on the desired number of

phases. Intuitively, K reflects the level of abstraction of the model: a large (small,

respectively) value of K corresponds to a microscopic (macroscopic, respectively)

model. However, for the problem we consider here, it is not reasonable to assume

that a microscopic model is necessarily superior to a macroscopic one, hence the need

to vary the value of K and scrutinize the corresponding results. In this context, our

problem can be formulated as the following MILP:

min

[
1−W
m · n

m∑
i=1

K∑
k=1

(
n∑
j=1

Mi,jp
M
j,k − aMi,k + 2fMi,k

)
− W

K · r

K∑
k=1

r∑
h=1

pEh,k

]
(P1)

s.t.
∑K

k=1 p
M
j,k = 1 ∀ mutation gene j (C1)∑K

k=1 p
E
h,k ≥ 0 ∀ expression gene h (C2)∑n

j=1 p
M
j,k ≥ 1 ∀ phase k (C3)∑r

h=1 p
E
h,k ≥ 0 ∀ phase k (C4)

aMi,k ≥ aMi,k+1 ∀ sample i,∀ phase k (C5)

aMi,k ≤ fMi,k +
∑n

j=1Mi,j · pMj,k ∀ sample i,∀ phase k (C6)

pEh,k =
∑n

j=1Ch,j · pMj,k ∀ expression gene h,∀ phase k (C7)

where the optimization is performed over variables pMj,k, f
M
i,k , and aMi,k , which all take

values in {0, 1} such that pMj,k = 1 if mutation gene j is assigned to phase Pk; f
M
i,k = 1

if we need to flip one entry of columns in phase k in order for phase k to be mutated in

sample i; aMi,k = 1 if sample i is considered mutated in phase k after any required flips.

We also optimize over variable pEh,k ∈ [0, 1], which is the probability of expression gene

h being assigned to phase k.

The objective function in (P1) contains two terms, the first of which was proposed

in (Raphael and Vandin, 2015). As mentioned previously, several factors may lead
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to the violation of constraints (C1)− (C6), which means that it may be necessary to

alter the mutation matrix M by flipping some of its entries from 0 to 1 (non-mutated

to mutated) or 1 to 0 (mutated to non-mutated). In this context, the first term of

the objective function corresponds to the number of entries of matrix M that need to

be flipped, which should be minimized. This term can be interpreted as follows: for

a given sample i, i = 1, . . . ,m and phase k, k = 1, . . . , K, once the values of variables

pMj,k, f
M
i,k , and aMi,k have been fixed, the contribution of each sample i to the objective

function corresponds to the number of entries in phase k that are flipped in sample i.

Since two types of flips are possible (i.e., fMi,k = 1 if either a 0 to 1 flip or a 1 to 0 flip

is performed), this number is given by
∑n

j=1Mi,jp
M
j,k − aMi,k + 2fMi,k . The second term

of the objective function, which we seek to maximize, compounds the probability of

expression gene h being assigned to phase k, for h = 1, . . . , r and k = 1, . . . , K.

Note that because we define our objective function as a combination of objectives,

it is necessary to ensure that each objective (i.e., each term of the objective function)

is properly normalized. For each term, a normalization factor was defined as an upper

bound on the corresponding objective component. It is simple to verify that, for the

first term, the upper bound on the number of flips that could potentially need to be

made corresponds to the total number of elements in matrix M , which is given by

the product m ·n. In the case of the second term, since pEh,k is compounded across all

expression genes and all phases, the natural normalization factor is simply given by

the product r ·K. Recall that we define variable pEh,k as the probability of expression
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gene h being assigned to phase k, so that it is also necessary to scale its value to the

range [0, 1]. From (C7), it can be seen that variable pEh,k is a combination of matrix

C and binary variable pMj,k. The latter is naturally normalized, and the entries Chj of

the former can be scaled as follows, for h = 1, . . . , r:

Chj =
Chj∑n
j=1Ch,j

Additionally, it can be seen that (P1) includes a weight W associated with the

second objective component. In order to ensure that the objective function is a

convex combination of objectives, we associate a weight 1 −W with the first term.

It is also important to mention that these weights are not necessary for the purposes

of normalization, but that their values can be chosen so as to ultimately reflect a

desired trade-off (e.g., more importance can be assigned to the mutation data by

setting W < 0.5, and vice-versa for the gene expression data).

Finally, we briefly discuss the interpretation of constraints (C1) − (C7). The

first constraint ensures that each mutation gene is assigned to exactly one cancer

progression phase, while constraint (C2) enforces the assignment of each expression

gene to at least one cancer progression phase. Moreover, any phase must consist of at

least one mutated gene, but may have no expression genes assigned to it (constraints

(C3) and (C4), respectively). Progression of mutational events is ensured in the fifth

constraint, whereby sample i must have a certain mutated gene assigned to phase

k, in order for this same sample to have another mutated gene assigned to phase



83

k+ 1. Constraint (C6) simply enforces the fact that, if sample i has a given mutated

gene j assigned to phase k, then this gene is either already mutated in the original

mutation matrix M , or its mutation status is a result of a 0 → 1 mutation flip. The

last constraint ensures that the assignment of each expression gene h to any phase k

is determined in terms of the corresponding probability pEh,k.

We end by noting that, while exclusivity of driver mutations within each cancer

progression phase is enforced in our formulation, exclusivity of changes in expression

levels is not. As a result, for any given sample i, more than one expression gene h may

be assigned to phase k. Nevertheless, our formulation enforces a temporal association

between mutational events and changes in gene expression. In other words, for any

given sample i, no expression genes may be assigned to phase k, unless a given

mutation gene j has been assigned to this phase. For illustrative purposes, an example

of a feasible solution for the proposed MILP is presented in Figure 4·1.

Figure 4·1: Example of a feasible solution of the MILP formulation
proposed in this paper. Red boxes represent genes with mutation. Or-
ange boxes mark genes with altered gene expression levels. White boxes
correspond to those entries with no mutations or no expression changes.
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4.2 Results

In what follows we present the results obtained by applying our methodology to both

simulated data and real patient data from breast cancer studies. In all cases the

MILP was solved using CPLEX v12.6 with default parameters.

4.2.1 Simulated data

We performed an experiment using simulated data to illustrate the desired behavior of

our model. For such, we used an m×n binary simulated mutation matrix MS and an

r×n real-valued simulated connectivity matrix CS, where m is the number of samples

in our data set, n is the number of mutation genes, and r is the number of expression

genes. For simplicity, and without loss of generality, we take MS to be the mutation

matrix obtained from the TCGA breast cancer data set, where m = 529 samples and

n = 72 mutation genes. We defer a detailed description of this data set until Section

4.2.2., since complete details of the TCGA data are not necessary at this point. The

purpose of our simulation experiments is to show that our MILP model is capable of

correctly extracting the information contained in mutation and gene expression data

regarding which expression genes are more strongly connected to which mutation

genes. Hence, we arbitrarily assigned values to the entries cShj of matrix CS such that

n∑
j=1

cShj = 1, for h = 1, . . . , r. This condition enforces an extreme scenario in which

each expression gene is only connected to a single mutation gene. Thus, the expected

outcome of applying our MILP model to such data is that each expression gene should
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be uniquely assigned to the same phase as the mutation gene to which it is connected.

For simplicity, and also without loss of generality, we took r = 319 expression genes,

so as to make the dimensions of the simulated data compatible with those of the real

data we analyze.

Three simulation runs were performed by varying the number of phases K such

that K ∈ {2, 3, 4}, and the corresponding results are shown in Tables 4.1 - 4.3. In all

cases, our results showed that expression genes were partitioned in complete agree-

ment with the connectivity data contained in CS. In other words, each expression

gene h, h = 1, . . . , r, was assigned to phase k, k = 1, . . . , K, iff cShj = 1 and mutation

gene j, j = 1, . . . , n, was also assigned to phase k. For example, by analyzing Table

4.3 and the data in matrix CS, it is possible to verify that the 101 expression genes

in phase k = 1 are precisely the same ones that are connected to the mutation genes

assigned to phase 1 (a similar analysis also holds for phases k = 2, 3, 4).

Table 4.1: Number of mutation and expression genes assigned to each
phase of cancer progression using simulated data for K=2

Phase (k) Number of mutation genes Number of expression genes
1 39 175
2 33 144

TOTAL 72 319

Table 4.2: Number of mutation and expression genes assigned to each
phase of cancer progression using simulated data for K=3

Phase (k) Number of mutation genes Number of expression genes
1 26 117
2 25 111
3 21 91

TOTAL 72 319
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Table 4.3: Number of mutation and expression genes assigned to each
phase of cancer progression using simulated data for K=4

Phase (k) Number of mutation genes Number of expression genes
1 22 101
2 22 99
3 19 82
4 9 37

TOTAL 72 319

4.2.2 TCGA breast cancer data

Publicly available somatic mutation data (level 2) and gene expression data (level 3)

from breast invasive carcinoma (BRCA) were downloaded from The Cancer Genome

Atlas (TCGA) (Weinstein et al., 2013). The somatic mutation data was profiled for

993 subjects by Whole-Exome Sequencing on Illumina GA DNA Sequencing platform.

Gene expression generated on UNC Agilent G4502A was profiled for 547 subjects

(The Cancer Genome Atlas Research Network, 2012c). For our analysis, we consider

529 subjects with both types of data measurements (somatic mutations and gene

expression). It is worthwhile to mention that the proposed MILP approach is general,

and can thus be used to infer the sequence of events for any gene set. This thesis

presents a case study in which we consider genes that are more relevant to breast

cancer.

In order to determine the sequence of somatic mutation and gene expression

changes, we first narrow down the mutation and expression gene sets to interest-

ing breast cancer genes. In (Raphael and Vandin, 2015) the authors consider all

present mutations. However, since many somatic mutations are passenger and do

not impact cancer progression, we first select those genes that are more likely to be
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drivers. Moreover, some genes are known to be involved in cancer associated cell

processes, such as proliferation, migration and apoptosis. We are interested to see

how the expression of these genes is affected by the driver mutation and which is the

temporal order of changes that occur during cancer progression.

To select the relevant cancer driver genes based on their mutation frequency, we

first classify genes into oncogenes or tumor suppressors by using the 20/20 rule (Vo-

gelstein et al., 2013). This method takes into account particular types of mutations

and their frequencies. First, for a given gene, the total number of variants is com-

puted across the data set. Then, each gene is assigned an oncogene (ONG) score and

a tumor suppressor gene (TSG) score which are computed based on the frequency

of gain-of-function or loss-of-function mutations, respectively. Gain-of-function mu-

tations are defined as missense or in-frame indels that are recurrently mutated at

the same aminoacid position, while loss-of-function mutations are nonstop, nonsense

and frameshift indels (Vogelstein et al., 2013). For each gene, the ONG score is the

frequency of gain-of-function mutations out of the total number of variants, while the

TSG score is the frequency of all loss-of-function mutations out of the total number

of variants. If the ONG score is greater than 20%, then the gene is classified as an

oncogene. Similarly, if the TSG score is higher than 20%, then the gene is classified

as a tumor suppressor.

We consider a gene to be a potential cancer driver if it presents mutations across

the data set (a minimum number of 20) and has an ONG or a TSG score greater than
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20%. Based on this criterion, 72 genes are selected. The list of 72 genes include genes

that were previously found to be highly mutated in breast cancer, such as: PIK3CA,

PTEN, TP53, GATA3, CDH1, RB1, MLL3, MAP3K1, TBX3, RUNX1, CBFB, NF1

(The Cancer Genome Atlas Research Network, 2012c) .

To infer the cancer progression phases of gene expression changes we consider the

Pathways in Cancer set from the Kyoto Encyclopedia of Genes and Genomes database

(KEGG) (Kanehisa et al., 2014), (Kanehisa and Goto, 2000). After overlapping this

set with our data, we obtain 319 genes which are known to play a role in cancer

initiation and progression. Therefore, we consider two sets of genes: genes that

present driver mutations and genes implicated in cancer development.

In order to infer the stages in which mutations occur and the relations between

mutational events and gene expression changes, we applied the proposed MILP for-

mulation with a different number of predefined phases K = 2, 3, 4, 5 and selected the

most biologically meaningful one. For a number of 3 phases, the algorithm was able

to stratify the mutation and expression genes in different proportions within each

phase. For K = 2, 4, 5, most of the expression genes were placed in one phase and the

results do not reflect a gradual progression. Figures 4·2(a),(b), 4·3(a),(b), 4·4(a),(b),

and 4·5(a),(b) illustrate the number of genes assigned to each phase for the expression

and mutation groups.

For a number of 3 phases, the mutation genes are more or less evenly distributed

across the 3 phases (Figure 4·3(a)). The mutation genes of each phase are shown
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(a) (b)

(c) (d)

Figure 4·2: Number of genes assigned to each phase of cancer pro-
gression for K = 2 (a) cancer mutation genes; (b) cancer expression
genes; (c) random mutation genes; (d) random expression genes: 20%
of genes were not assigned to any phase.

in Figure 4·6. In addition, one can notice that the number of gene expression mod-

ifications gradually decrease from phase 1 to phase 3 (Figure 4·3(b)). As expected,

more cancer genes present abnormal expression under the influence of earlier stage

mutations, such as PIK3CA and PTEN, since these genes are important in cancer
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(a) (b)

(c) (d)

Figure 4·3: Number of genes assigned to each phase of cancer pro-
gression for K = 3 (a) cancer mutation genes; (b) cancer expression
genes; (c) random mutation genes; (d) random expression genes: 20%
of genes were not assigned to any phase.

initiation.

In an additional set of simulations, we further validate our results by running

similar experiments of different number of phases, on the same number of arbitrarily

selected genes, both for mutation and expression sets (Figures 4·2(c),(d), 4·3(c),(d),
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(a) (b)

(c) (d)

Figure 4·4: Number of genes assigned to each phase of cancer pro-
gression for K = 4 (a) cancer mutation genes; (b) cancer expression
genes; (c) random mutation genes; (d) random expression genes: 20%
of genes were not assigned to any phase.

4·4(c),(d), and 4·5(c),(d)). To ensure that these experiments will serve as a negative

control, we randomly select genes from the entire data set of 17814 mutation and

expression genes. As expected, in this set of simulations the MILP assigns most



92

(a) (b)

(c) (d)

Figure 4·5: Number of genes assigned to each phase of cancer pro-
gression for K = 5 (a) cancer mutation genes; (b) cancer expression
genes; (c) random mutation genes; (d) random expression genes: 20%
of genes were not assigned to any phase.

of the genes to one phase, not being able to find a temporal sequence of events. In

addition, 20% of the expression genes are not assigned to any phase. Figures 4·3(c),(d)

illustrate the random results for K=3 phases using random gene sets. The difference
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Figure 4·6: Optimal solution of the MILP algorithm for cancer mu-
tation and expression genes (K=3). Shown here is the assignment of
mutation genes to each phase of cancer progression.

between the progression of cancer genes compared to random genes can be easily

verified upon visual comparison of Figures 4·3(a),(b) and Figures 4·3(c),(d).

It is worthwhile to mention that the most adequate value for K will most likely

change when different cancer data sets or gene sets are used. Hence, selection of

the best configuration should take into account not only which configuration yields

the most biologically meaningful results, but also how much this configuration differs

from the negative control. In this context, comparing the results generated using the
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genes of interest with those from a randomly selected set of genes could serve as a

general approach for selecting K. This approach could be broadly applied to any

cancer data set, provided it is used in combination with biological insight about the

analyzed set of genes.

Additionally, for any given phase of mutation and expression genes, a patient

has one and only one mutated gene during each phase which is associated to one

or more genes with abnormal gene expression level, which clearly indicates that our

method is able to stratify the heterogeneity of mutations and gene expression changes

into a temporal order of events. This crucial observation points to the contribution

of this work, but it also brings to light the issue of uniqueness of solution of the

proposed MILP formulation, which we briefly address here. Note that the existence

of a single optimal solution to our problem indicates that it is possible to find a unique

configuration of phases that optimally satisfies our formulation. On the other hand,

the lack of a unique optimum means that several equivalent solutions could potentially

be identified, and that different configurations of phases could yield similar results.

More importantly, either scenario (unique or multiple optimal solutions) may bring

new insights for understanding the mechanisms of cancer development. In what

follows, we discuss the insights provided by the results reported in this work.

We begin by evaluating the proposed partition so as to identify known causal

gene relationships from cancer pathways, such as PI3K/AKT and TP53 from KEGG

(Kanehisa and Goto, 2000). Figure 4·7(a) shows such interactions which occur in
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phase 1. PIK3CA is an oncogenic driver which is highly mutated in breast cancer

(the ONG score computed based on the method in (Vogelstein et al., 2013) is 90%

compared to a TSG score of 0.5%). Also, PTEN gene presents significant loss-of-

function mutations (the TSG score is 51% compared to an ONG score of 5%). We

find PIK3CA and PTEN as being mutated in early stage during phase 1. Also,

the events in phase 1 produce abnormal gene expression changes of TP53. TP53

is a well known tumor suppressor (Hollstein and Hainaut, 2010), (Payne and Kemp,

2005), (Vassilev et al., 2004), situated downstream PIK3CA and PTEN in PI3K/AKT

pathway. Mutations in PIK3CA or PTEN genes may decrease the gene expression

level of TP53 tumor suppressor through AKT/MDM2 cascade. Consequently, low

expression of TP53 may induce cell survival (Figure 4·7(a)).

Next, we evaluate the number of patients that present a potentially active

PI3K/AKT pathway. We find 20% of patients to have mutations in PIK3CA, as

well as decreased TP53 expression. In addition, about 2% of patients present PTEN

mutations, as well as decreased TP53 expression (Figure 4·7(a)). In order to estimate

if a gene is over- or under-expressed, we compare the log normalized gene expression

to 0, where negative values indicate under-expression in respect to the normal level,

while positive values indicate over-expression in respect to the normal level.

Moreover, we identify changes in TP53 pathway during phase 2 of progression,

as shown in Figure 4·7(b). Mutations in TP53 gene generally produce the loss-of-

function of its tumor suppressor activity (Payne and Kemp, 2005). Loss-of-function
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Figure 4·7: MILP model identifies causal relationships from
PI3K/AKT and TP53 pathways (KEGG) (a) PI3K/AKT pathway is
altered in phase 1 of breast cancer progression; (b) TP53 pathway is
altered in phase 2 of breast cancer progression.

of TP53 gene may cause abnormal gene expression levels of the downstream genes,

such as PTEN and IGF-1, which may activate the IGF1-mTOR cellular growth path-

way and inhibit apoptosis. As expected, PTEN and IGF-1 are assigned to phase 2
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expression genes of the proposed 3-phase partition. We find 29% of patients to have

a mutation in TP53 gene and increased IGF-1 expression. Moreover, 6% of patients

present a TP53 mutation, as well as both increased IGF-1 expression and decreased

PTEN expression (Figure 4·7(b)).

Interestingly, about 5% of patients present mechanisms of both PI3K/AKT and

TP53 pathways. They have a mutation in PIK3CA gene and decreased TP53 expres-

sion (Figure 4·7(a)). In addition, they present mutations in TP53 gene and increased

IGF-1 expression (Figure 4·7(b)). Based on our approach, we are able to infer that

mutations in PIK3CA (phase 1) precede the mutations in TP53 (phase 2).
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Chapter 5

Personalized Cancer Therapy Design

In this chapter, we present a framework for Infinitesimal Perturbation Analysis (IPA)

applications to personalized cancer therapy design which is illustrated with a case

study of optimal prostate cancer therapy design. Prostate cancer is known to be a

multistep process. For instance, a patient diagnosed with localized prostate cancer

who has had all the tumor surgically removed is considered to remain in the state of

“localized disease” until he progresses to a new state. At each state, distinct therapies

can be prescribed, and the time spent by the patient in any given state is a measure

of the efficacy of the corresponding intervention.

The primary treatments for patients with localized prostate cancer are surgery,

radiation therapy, or active surveillance (Longo et al., 2012), which can be used alone

or in combination. For patients who evolve into a state of metastatic disease, standard

treatment is hormone therapy in the form of continuous androgen suppression (CAS)

(Longo et al., 2012). The initial response to CAS is frequently positive, leading to

a significant decrease in tumor size; unfortunately, most patients eventually develop

resistance and relapse. A generally acceptable mechanism for explaining such relapse

is the existence of an androgen-independent cancer cell phenotype that is resistant to
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secondary endocrine therapy and whose outgrowth leads to tumor recurrence (Jack-

son, 2004a).

Intermittent androgen suppression (IAS) therapy is an alternative treatment strat-

egy for delaying or even preventing time to relapse. The goal of IAS is to prevent

the existing tumor from progressing into an androgen-independent state. In spite

of extensive recent clinical experience with IAS, the design of an ideal protocol for

any given patient remains one of the main challenges associated with effectively im-

plementing this therapy (Hirata et al., 2010a). Although clinical trials (Bruchovsky

et al., 2006),(Bruchovsky et al., 2007) revealed that the success of IAS ultimately

depends on the ability to tailor on and off-treatment schemes to individual patients,

defining optimal personalized IAS treatment schemes remains an unsolved problem.

A number of mathematical models have been proposed to explain the progres-

sion of prostate cancer in patients who are submitted to hormone therapy. (Jackson,

2004a) proposed a model in which prostate tumors are composed of two subpopula-

tions of cancer cells, one that is sensitive to androgen suppression and another that

is not, without directly addressing the issue of IAS therapy design. (Ideta et al.,

2008) modeled the evolution of a prostate tumor under IAS using a hybrid dynamical

system approach and applied numerical bifurcation analysis to study the effect of

different therapy protocols on tumor growth and time to relapse. Various works that

extend (Jackson, 2004a) and (Ideta et al., 2008) have recently been developed, and

we briefly review some of them. (Shimada and Aihara, 2008) developed a nonlinear
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model to explain the competition between different cancer cell subpopulations, while

(Tao et al., 2010) proposed a model based on switched ordinary differential equations.

(Suzuki et al., 2010) developed a piecewise affine system model and formulated the

problem of personalized prostate cancer treatment as an optimal control problem.

(Hirata et al., 2010a) performed patient classification using a feedback control system

to model the prostate tumor under IAS, and (Hirata et al., 2010b) extended this work

by deriving conditions for patient relapse.

Although the majority of existing models provide insights into the dynamics of

prostate cancer evolution under androgen deprivation therapy, they fail to address the

issue of therapy design. Moreover, previous works that suggest optimal treatment

schemes by classifying patients into groups have been based on more manageable,

albeit less accurate, approaches to nonlinear hybrid dynamical systems. Addressing

this limitation, a nonlinear hybrid automaton model was recently developed and δ-

reachability analysis was performed to identify patient-specific treatment schemes in

(Liu et al., 2015). In spite of being in good agreement with published clinical data,

this model does not account for noise and fluctuations inherently associated with cell

population dynamics and monitoring of clinical data. In contrast, a hybrid model of

tumor growth under IAS therapy that incorporates stochastic effects is proposed in

(Tanaka et al., 2010), but is not used for personalized therapy design.

In what follows, we propose a threshold-based policy for optimal IAS therapy

design that is parameterized by lower and upper threshold values and is associated
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with a cost metric that combines clinically relevant measures of therapy success. We

use a Stochastic Hybrid Automaton (SHA) model of prostate cancer evolution under

IAS and apply IPA to adaptively adjust threshold values so as to improve therapy

outcomes. We also apply this methodology to clinical data from real patients, and

obtain promising results and valuable insights for personalized IAS therapy design.

5.1 Problem Formulation

5.1.1 Stochastic Model of Prostate Cancer Evolution

The system we consider comprises a prostate tumor under IAS therapy, which is mod-

eled as a Stochastic Hybrid Automaton (SHA). We adopt a standard SHA definition

(Cassandras and Lafortune, 2008), as detailed in Appendix A. Within this framework,

we define a SHA model of prostate cancer progression in terms of the following:

1. Discrete state set Q. Hormone therapy for prostate cancer consists of ad-

ministering medical agents that cause androgen suppression in an effort to decrease

the population of prostate cancer cells and hence the size of the tumor. A com-

mon biomarker used to monitor the efficacy of such treatment is the serum level of

Prostate-Specific Antigen (PSA), whose value provides an estimate of the size of the

prostate cancer population.

In IAS therapy, medication is suspended when a sufficient reduction in the size

of the cancer cell populations is achieved. Since population sizes are not directly

observable, this reduction is estimated in terms of the patient’s PSA level; hence,

the patient goes off therapy once his PSA reaches a lower threshold value. Similarly,
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medication is reinstated once the cancer cell populations have significantly recovered,

which corresponds to when the patient’s PSA level reaches an upper threshold value.

Thus, we defineQ =
{
qON , qOFF

}
, where qON (qOFF , respectively) is the on-treatment

(off-treatment, respectively) operational mode of the system.

2. State space X. The continuous state space X is defined in terms of the

biomarkers commonly monitored during IAS therapy, namely the PSA level and the

androgen concentration in the patient’s serum. We assume the coexistence of two

subpopulations of cancer cells within the tumor: Hormone Sensitive Cells (HSCs)

and Castration Resistant Cells (CRCs). The proliferation of the former is nega-

tively affected by hormone therapy, while the survival rate of the latter decreases in

androgen-rich environments.

We thus define a state vector x(t) = [x1(t), x2(t), x3(t)] with xi(t) ∈ R+, such that

x1(t) is the total population of HSCs, x2(t) is the total population of CRCs, and x3(t)

is the concentration of androgen in the serum. Since prostate cancer cells secrete

high levels of PSA, it is frequently assumed that the serum PSA concentration can

be modeled as a linear combination of the cancer cell subpopulations, i.e., c1x1(t) +

c2x2(t). Another common assumption is that both HSCs and CRCs secrete PSA

equivalently, so that c1 = c2 = 1 (Ideta et al., 2008). In this work, we adopt these

assumptions. We also define a “clock” state variable zi(t) ∈ R+, i = 1, 2, where

z1(t) (z2(t), respectively) measures the time spent by the system in state qON (qOFF ,

respectively). The clock is reset to zero once a state transition takes place. Setting
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z(t) = [z1(t), z2(t)], the complete state vector is [x(t), z(t)].

3. Admissible control set U . As described earlier, IAS therapy consists of cycles

of androgen deprivation delivered intermittently with off-treatment periods. The

cycles of androgen deprivation are suspended when the patient’s PSA level reaches

a lower threshold value, while therapy recommences once the PSA level reaches an

upper threshold value. Hence, an IAS therapy can be viewed as a controlled process

characterized by two parameters: θ = [θ1, θ2] ∈ Θ, where θ1 ∈
[
θmin

1 , θmax
1

]
is the lower

threshold value of the patient’s PSA level, and θ2 ∈
[
θmin

2 , θmax
2

]
is the upper threshold

value of the patient’s PSA level, with θmax
1 < θmin

2 . At any time t, the feasible control

set for the IAS therapy controller is U = {0, 1} and the control is defined as:

u (x(t), z(t)) ≡

{
0 if x1(t) + x2(t) < θ2, q(t) = qOFF

1 if x1(t) + x2(t) > θ1, q(t) = qON
(5.1)

This is a simple form of hysteresis control to ensure that hormone therapy will be

suspended whenever a patient’s PSA level drops below a minimum threshold value,

and that therapy will resume whenever a patient’s PSA level reaches a maximum

threshold value. An illustrative representation of such threshold-based IAS therapy

scheme is depicted in Figure 5·1. Simulation driven by clinical data (Bruchovsky

et al., 2006),(Bruchovsky et al., 2007) was performed to generate the plot in Figure

5·1, which shows a typical profile of PSA level variations along several treatment

cycles.

4. Event set E. We define the SHA event set as E = {e1, e2}, where e1
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Figure 5·1: Schematic representation of Intermittent Androgen Sup-
pression (IAS) therapy

corresponds to the condition [x1(t) + x2(t) = θ1 from above] and e2 corresponds to

[x1(t) + x2(t) = θ2 from below].

5. System dynamics. The SHA system dynamics describe the evolution of contin-

uous state variables over time, as well as the rules for discrete state transitions. First,

the continuous (time-driven) dynamics capture the prostate cancer cell population

dynamics, which are defined in terms of their proliferation, apoptosis, and conver-

sion rates. Existing studies commonly use Michaelis-Menten-like functions to model

the rates of proliferation and apoptosis (Ideta et al., 2008),(Jackson, 2004a),(Jackson,

2004b). Recently (Liu et al., 2015) obtained greater consistency between clinical data

and simulated population dynamics by modeling these rates using sigmoid functions.

In what follows, we incorporate stochastic effects into the deterministic model from
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(Liu et al., 2015) and obtain:

ẋ1(t) = α1

[
1 + e−(x3(t)−k1)k2

]−1 · x1(t)

−β1

[
1 + e−(x3(t)−k3)k4

]−1 · x1(t)

−
[
m1

(
1− x3(t)

x3,0

)
+ λ1

]
· x1(t)

+µ1 + ζ1(t)

(5.2)

ẋ2(t) =
[
α2

(
1− dx3(t)

x3,0

)
− β2

]
x2(t)

+m1

(
1− x3(t)

x3,0

)
x1(t) + ζ2(t)

(5.3)

ẋ3(t) =


−x3(t)

σ
+ µ3 + ζ3(t)

if x1(t) + x2(t) > θ1

and q(t) = qON

x3,0−x3(t)

σ
+ µ3 + ζ3(t)

if x1(t) + x2(t) < θ2

and q(t) = qOFF

(5.4)

ż1(t) =

{
1 if q(t) = qON

0 otherwise
(5.5)

z1(t+) = 0
if x1(t) + x2(t) = θ1

and q(t) = qON

ż2(t) =

{
1 if q(t) = qOFF

0 otherwise
(5.6)

z2(t+) = 0
if x1(t) + x2(t) = θ2

and q(t) = qOFF

where α1 and α2 are the HSC proliferation constant and CRC proliferation constant,

respectively; β1 and β2 are the HSC apoptosis constant and CRC apoptosis constant,

respectively; k1 through k4 are HSC proliferation and apoptosis exponential constants;

m1 is the HSC to CRC conversion constant; x3,0 corresponds to the patient-specific
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androgen constant; σ is the androgen degradation constant; λ1 is the HSC basal

degradation rate; µ1 and µ3 are the HSC basal production rate and androgen basal

production rate, respectively. Finally, {ζi(t)}, i = 1, 2, 3, are stochastic processes

which we allow to have arbitrary characteristics and only assume them to be piecewise

continuous w.p. 1.

Observe that (5.2) and (5.3) seem to be independent of the discrete state (mode)

q(t); however, their dependence on x3(t), whose dynamics are affected by mode tran-

sitions, implies that x1(t), x2(t) also change due to such transitions. To make this

behavior explicit, we can solve (5.4) for x3(t) and substitute this solution into (5.2)

and (5.3), as detailed next.

Consider a sample path of the system over [0, T ] and denote the time of oc-

currence of the kth event (of any type) by τk(θ). Since our complete system state

vector is [x(t), z(t)], we shall denote the state dynamics over any interevent interval

[τk(θ), τk+1(θ)) as follows:

ẋn(t) = fxnk (t), żi(t) = f zik (t), n = 1, . . . , 3, i = 1, 2

Although we include θ as an argument in the expressions above to stress the de-

pendence on the controllable parameter, we will subsequently drop this for ease of

notation as long as no confusion arises.

We start our analysis by assuming q(t) = qON for t ∈ [τk, τk+1). It is clear from
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(5.4) that ẋ3(t) = −x3(t)
σ

+ µ3 + ζ3(t), which implies that, for t ∈ [τk, τk+1),

x3(t) = x3(τ+
k )e−(t−τk)/σ

+e−t/σ ·
∫ t
τk
eε/σ [µ3 + ζ3(ε)] dε

For notational simplicity, let

ζ̃3(t) =

t∫
τk

e−(t−ε)/σζ3(ε)dε (5.7)

and define, for t ∈ [τk, τk+1),

hON
(
t, ζ̃3(t)

)
≡ x3(τ+

k )e−(t−τk)/σ

+µ3σ[1− e−(t−τk)/σ] + ζ̃3(t)
(5.8)

Now let q(t) = qOFF for t ∈ [τk, τk+1), so that (5.4) implies that, for t ∈ [τk, τk+1),

x3(t) = x3(τ+
k )e−(t−τk)/σ

+(µ3σ + x3,0)[1− e−(t−τk)/σ] + ζ̃3(t)

Similarly as above, we define, for t ∈ [τk, τk+1),

hOFF
(
t, ζ̃3(t)

)
≡ x3(τ+

k )e−(t−τk)/σ

+(µ3σ + x3,0)[1− e−(t−τk)/σ] + ζ̃3(t)
(5.9)

It is thus clear that

x3(t) =

 hON
(
t, ζ̃3(t)

)
if q(t) = qON

hOFF
(
t, ζ̃3(t)

)
if q(t) = qOFF

Although we include ζ̃3(t) as an argument in (5.8)-(5.9) to stress the dependence on

the stochastic process, we will subsequently drop this for ease of notation as long as

no confusion arises. It is now clear that, by using (5.8)-(5.9) in (5.2)-(5.3), we may
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rewrite the state variable dynamics as

ẋ1(t) =



{
α1

[
1 + φONα (t)

]−1 − β1

[
1 + φONβ (t)

]−1

+m1

(
hON (t)
x3,0

)
− (m1 + λ1)

}
· x1(t)

+µ1 + ζ1(t) if q(t) = qON{
α1

[
1 + φOFFα (t)

]−1 − β1

[
1 + φOFFβ (t)

]−1

+m1

(
hOFF (t)
x3,0

)
− (m1 + λ1)

}
· x1(t)

+µ1 + ζ1(t) if q(t) = qOFF

(5.10)

and

ẋ2(t) =



[
α2

(
1− dh

ON (t)
x3,0

)
− β2

]
x2(t)

+m1

(
1− hON (t)

x3,0

)
x1(t) + ζ2(t)

if q(t) = qON[
α2

(
1− dh

OFF (t)
x3,0

)
− β2

]
x2(t)

+m1

(
1− hOFF (t)

x3,0

)
x1(t) + ζ2(t)

if q(t) = qOFF

(5.11)

with

φONα (t) = e−(hON (t)−k1)k2

φONβ (t) = e−(hON (t)−k3)k4

φOFFα (t) = e−(hOFF (t)−k1)k2

φOFFβ (t) = e−(hOFF (t)−k3)k4

The discrete (event-driven) dynamics are dictated by the occurrence of events

that cause state transitions. Based on the event set E = {e1, e2} we have defined,

the occurrence of e1 results in a transition from qON to qOFF and the occurrence of e2

results in a transition from qOFF to qON . The corresponding SHA model of prostate
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cancer evolution under IAS therapy is shown in Figure 5·2.

Figure 5·2: Stochastic Hybrid Automaton model of prostate cancer
evolution under IAS therapy

5.1.2 IAS Therapy Evaluation and Optimization

Within the SHA framework we propose, the problem of personalizing an IAS treat-

ment scheme can be cast as the search for the optimal IAS therapy that satisfies some

performance criterion. In this sense, an IAS therapy can be viewed as a controlled

process u (θ, t) characterized by the parameter vector θ, as in (5.1), whose effect can

be quantified in terms of performance metrics of the form J [u (θ, t)]. Although it is
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clearly infeasible to evaluate J [u (θ, t)] over all possible values of θ, there exist very

efficient ways to accomplish this goal for stochastic hybrid systems. In particular,

Perturbation Analysis (PA) is a methodology to efficiently estimate the sensitivity of

the system’s performance with respect to θ (note that when θ is a real-valued scalar,

this amounts to estimating the derivative dJ/dθ). This is accomplished by extracting

data from a sample path (simulated or actual) of the observed system based on which

an unbiased estimate of dJ/dθ can indeed be obtained. The attractive feature of

PA is that the resulting estimates are extracted from a single sample path in a non-

intrusive manner and the computational cost of doing so is, in most cases of interest,

minimal (Cassandras and Lafortune, 2008). This is in contrast to the conventional

finite difference estimate of dJ/dθ obtained through [J (θ + ∆)− J (θ)] /∆. Thus, for

a vector θ of dimension N , estimating the gradient ∇J (θ) requires a single sample

path (with some overhead) instead of N + 1 sample paths. The simplest family of

PA estimators is Infinitesimal Perturbation Analysis (IPA), which has been shown to

provide unbiased gradient estimates (Cassandras et al., 2010) for virtually arbitrary

stochastic hybrid systems. For the SHA model of prostate cancer evolution we con-

sider here, our goal is to estimate the effects of different therapies u (θ, t) by adapting

IPA estimators of the form dJ [u (θ, t)] /dθ, and to ultimately design optimal therapy

schemes by solving problems of the form minθ∈Θ J [u (θ, t)].

We define a sample function in terms of complementary measures of therapy suc-

cess. In particular, we consider the most adequate IAS treatment schemes to be those
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that (i) ensure PSA levels are kept as low as possible; (ii) reduce the frequency of on

and off-treatment cycles. From a practical perspective, (i) translates into the ability

to successfully keep the size of cancer cell populations under control, which is directly

influenced by the duration of the on and off-treatment periods. On the other hand,

(ii) aims at reducing the duration of on-treatment periods, thus decreasing the ex-

posure of patients to medication and their side effects, and consequently improving

the patients’ quality of life throughout the treatment. Clearly there is a trade-off

between keeping tumor growth under control and the cost associated with the cor-

responding IAS therapy. The latter is related to the duration of the therapy and

could potentially include fixed set up costs incurred when therapy is reinstated. For

simplicity, we disconsider fixed set up costs and take (ii) to be linearly proportional

to the length of the on-treatment cycles. Hence, we define our sample function as

the sum of the average PSA level and the average duration of an on-treatment cycle

over a fixed time interval [0, T ]. We also take into account that it may be desirable to

design a therapy scheme which favors (i) over (ii) (or vice-versa) and thus associate

weight W with (i) and 1 −W with (ii), where 0 ≤ W ≤ 1. Finally, to ensure that

the trade-off between (i) and (ii) is captured appropriately, we normalize our sample

function: we divide (i) by the value of the patient’s PSA level at the start of the first

on-treatment cycle (PSAinit), and normalize (ii) by T .

Recall that the total population size of prostate cancer cells is assumed to reflect

the serum PSA concentration, and that we have defined clock variables which measure
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the time elapsed in each of the treatment modes, so that our sample function can be

written as

L (θ, x(0), z(0), T ) =
1

T

W T∫
0

[
x1 (θ, t) + x2 (θ, t)

PSAinit

]
dt+ (1−W )

T∫
0

z1 (t)

T
dt


(5.12)

where x(0) and z(0) are given initial conditions. We can then define the overall

performance metric as

J (θ, x(0), z(0), T ) = E [L (θ, x(0), z(0), T )] (5.13)

Hence, the problem of determining the optimal IAS therapy can be formulated as

min
θ∈Θ

E [L (θ, x(0), z(0), T )] (5.14)

We note that it is not possible to derive a closed-form expression of J (θ, x(0), z(0), T )

without imposing limitations on the processes {ζi(t)}, i = 1, . . . , 3. Nevertheless, by

assuming only that ζi(t), i = 1, . . . , 3, are piecewise continuous w.p. 1, we can

successfully apply the IPA methodology developed for general SHS in (Cassandras

et al., 2010) and obtain an estimate of ∇J (θ) by evaluating the sample gradient

∇L (θ). The knowledge of such gradient values can then be used to improve current

operating conditions or to compute an optimal θ∗ through an iterative optimization

algorithm of the form

θi,k+1 = θi,k − ρkHi,k (θk, x(0), T, ωk) (5.15)
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where ρk is the step size at the kth iteration, k = 0, 1, ..., and ωk denotes a sample

path from which data are extracted and used to compute Hi,k (θk, x(0), T, ωk), which

is an estimate of dJ (θ) /dθi. We will assume that the derivatives dL (θ) /dθi exist

w.p. 1 for all θi ∈ R+. It is also simple to verify that L (θ) is Lipschitz continuous

for θi ∈ R+. We will further assume that {ζi(t)}, i = 1, . . . , 3, are stationary random

processes over [0, T ] and that no two events can occur at the same time w.p. 1. Under

these conditions, it has been shown in (Cassandras et al., 2010) that dL (θ) /dθi is

an unbiased estimator of dJ (θ) /dθi, i = 1, 2. Hence, our goal is to compute the

sample gradient ∇L (θ) using data extracted from a sample path of the system (e.g.,

by simulating a sample path of our SHA model using clinical data), and use this value

as an estimate of ∇J (θ).

5.2 IPA for the SHA Model of Prostate Cancer Evolution

For simplicity of notation, let us define the derivatives of the states xn(θ, t) and zj(θ, t)

and event times τk(θ) with respect to θi, i = 1, 2, n = 1, . . . , 3, as follows:

x′n,i(t) ≡
∂xn(θ, t)

∂θi
, z′j,i(t) ≡

∂zj(θ, t)

∂θi
, τ ′k,i ≡

∂τk(θ)

∂θi
(5.16)

In what follows, we derive the IPA state and event time derivatives for the events

identified in our SHA model of prostate cancer progression.
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5.2.1 State and Event Time Derivatives

For simplicity of notation, let us define the derivatives of the states xn(θ, t) and zj(θ, t)

and event times τk(θ) with respect to θi, i = 1, 2, n = 1, . . . , 3, as follows:

x′n,i(t) ≡
∂xn(θ, t)

∂θi
, z′j,i(t) ≡

∂zj(θ, t)

∂θi
, τ ′k,i ≡

∂τk(θ)

∂θi
(5.17)

We proceed by analyzing the state evolution of our SHA model of prostate cancer

progression considering each of the states (qON and qOFF ) and events (e1 and e2)

therein defined.

1. The system is in state qON over interevent time interval [τk, τk+1). Using (A.7)

for x1 (t), we obtain, for i = 1, 2,

d
dt
x′1,i(t) =

∂f
x1
k (t)

∂x1
x′1(t) +

∂f
x1
k (t)

∂x2
x′2(t)

+
∂f

x1
k (t)

∂z1
z′1(t) +

∂f
x1
k (t)

∂z2
z′2(t) +

∂f
x1
k (t)

∂θi

From (5.10), we have
∂f

x1
k (t)

∂x2
=

∂f
x1
k (t)

∂zi
=

∂f
x1
k (t)

∂θi
= 0, i = 1, 2, and

∂f
x1
k (t)

∂x1
= α1

[
1 + φONα (t)

]−1 − β1

[
1 + φONβ (t)

]−1

−m1

(
1− hON (t)

x3,0

)
− λ1

It is thus simple to verify that solving (A.7) for x′1,i(t) yields, for i = 1, 2,

x′1,i(t) = x′1,i(τ
+
k )eA(t), t ∈ [τk, τk+1) (5.18)

with

A (t) ≡
∫ t
τk

[
α1

1+φONα (t)
− β1

1+φONβ (t)

]
dt

−
∫ t
τk

m1

x3,0
hON (t) dt− (m1 + λ1) (t− τk)

(5.19)
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In particular, at τ−k+1:

x′1,i(τ
−
k+1) = x′1,i(τ

+
k )eA(τk) (5.20)

where A (τk) is given from (6.5).

Similarly for x2 (t), we have from (5.11) that
∂f

x2
k (t)

∂zi
=

∂f
x2
k (t)

∂θi
= 0, i = 1, 2, and

∂f
x2
k (t)

∂x1
= m1

(
1− hON (t)

x3,0

)
∂f

x2
k (t)

∂x2
= α2

(
1− dh

ON (t)
x3,0

)
− β2

Combining the last two equations and solving for x′2,i(t) yields, for i = 1, 2 and

t ∈ [τk, τk+1),

x′2,i(t) = x′2,i(τ
+
k )eB1(t) +B2

(
t, x′1,i(τ

+
k ), A (t)

)
(5.21)

with

B1 (t) ≡
t∫

τk

[
α2

(
1− dh

ON (t)

x3,0

)
− β2

]
dt (5.22)

B2 (·) ≡ eB1(t)

t∫
τk

G1 (t, τk) e
−B1(t)dt

where G1 (t, τk) = m1

(
1− hON (t)

x3,0

)
x′1,i(τ

+
k )eA(t), t ∈ [τk, τk+1).

In particular, at τ−k+1:

x′2,i(τ
−
k+1) = x′2,i(τ

+
k )eB1(τk) +B2

(
τk, x

′
1,i(τ

+
k ), A (τk)

)
(5.23)

where B1 (τk) and B2

(
τk, x

′
1,i(τ

+
k ), A (τk)

)
are given from (6.14).

Finally, for the “clock” state variable, from (5.5)-(5.6) we have
∂f

zi
k (t)

∂xn
=

∂f
zi
k (t)

∂zi
=
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∂f
zi
k (t)

∂θi
= 0, n, i = 1, 2, so that d

dt
z′j,i(t) = 0, j, i = 1, 2, for t ∈ [τk, τk+1). Hence,

z′j,i(t) = z′j,i(τ
+
k ), j, i = 1, 2 and t ∈ [τk, τk+1).

2. The system is in state qOFF over interevent time interval [τk, τk+1). Starting

with x1 (t), based on (5.10) we once again have
∂f

x1
k (t)

∂x2
=

∂f
x1
k (t)

∂zi
=

∂f
x1
k (t)

∂θi
= 0,

i = 1, 2, but now

∂f
x1
k (t)

∂x1
= α1

[
1 + φOFFα (t)

]−1 − β1

[
1 + φOFFβ (t)

]−1

−m1

(
1− hOFF (t)

x3,0

)
− λ1

Therefore, (A.7) implies that, for i = 1, 2:

x′1,i(t) = x′1,i(τ
+
k )eC(t), t ∈ [τk, τk+1) (5.24)

with

C (t) ≡
∫ t
τk

[
α1

1+φOFFα (t)
− β1

1+φOFFβ (t)

]
dt

−
∫ t
τk

m1

x3,0
hOFF (t) dt− (m1 + λ1) (t− τk)

(5.25)

In particular, at τ−k+1:

x′1,i(τ
−
k+1) = x′1,i(τ

+
k )eC(τk) (5.26)

where C (τk) is given from (6.23).

Similarly for x2(t), we have

∂f
x2
k (t)

∂x1
= m1

(
1− hOFF (t)

x3,0

)
∂f

x2
k (t)

∂x2
= α2

(
1− dh

OFF (t)
x3,0

)
− β2

It is thus straightforward to verify that (A.7) yields, for i = 1, 2 and t ∈
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[τk, τk+1),

x′2,i(t) = x′2,i(τ
+
k )eD1(t) +D2

(
t, x′1,i(τ

+
k ), C (t)

)
(5.27)

with

D1 (t) ≡
t∫

τk

[
α2

(
1− dh

OFF (t)

x3,0

)
− β2

]
dt (5.28)

D2 (·) ≡ eD1(t)

t∫
τk

G2 (t, τk) e
−D1(t)dt

where G2 (t, τk) = m1

(
1− hOFF (t)

x3,0

)
x′1,i(τ

+
k )eC(t), t ∈ [τk, τk+1).

In particular, at τ−k+1:

x′2,i(τ
−
k+1) = x′2,i(τ

+
k )eD1(τk) +D2

(
τk, x

′
1,i(τ

+
k ), C (τk)

)
(5.29)

where D1 (τk) and D2

(
τk, x

′
1,i(τ

+
k ), C (τk)

)
are given from (6.32).

Finally, for the “clock” state variable, based on (5.5)-(5.6) we once again have

∂f
zi
k (t)

∂xn
=

∂f
zi
k (t)

∂zi
=

∂f
zi
k (t)

∂θi
= 0, n, i = 1, 2, so that d

dt
z′j,i(t) = 0, j, i = 1, 2, for

t ∈ [τk, τk+1). As a result, z′j,i(t) = z′j,i(τ
+
k ), j, i = 1, 2 and t ∈ [τk, τk+1).

3. A state transition from qON to qOFF occurs at time τk. This necessarily implies

that event e1 took place at time τk, i.e., q(t) = qON , t ∈ [τk−1, τk) and q(t) =

qOFF , t ∈ [τk, τk+1). From (A.8) we have, for i = 1, 2,

x′1,i(τ
+
k ) = x′1,i(τ

−
k ) +

[
fx1k (τ−k )− fx1k+1(τ+

k )
]
· τ ′k,i (5.30)
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and

x′2,i(τ
+
k ) = x′2,i(τ

−
k ) +

[
fx2k (τ−k )− fx2k+1(τ+

k )
]
· τ ′k,i (5.31)

where fx1k (τ−k )−fx1k+1(τ+
k ) and fx2k (τ−k )−fx2k+1(τ+

k ) ultimately depend on hON
(
τ−k
)

and hOFF
(
τ+
k

)
. Evaluating hON

(
τ−k
)

from (5.8) over the appropriate time

interval results in

hON
(
τ−k
)

= x3(τ+
k−1)e−(τk−τk−1)/σ

+µ3σ[1− e−(τk−τk−1)/σ] + ζ̃3(τk)

and it follows directly from (5.9) that hOFF
(
τ+
k

)
= x3(τ+

k ). Moreover, by

continuity of xn(t) (due to conservation of mass), xn(τ+
k ) = xn(τ−k ), n = 1, 2.

Also, since we have assumed that {ζi(t)}, i = 1, . . . , 3, is piecewise continuous

w.p.1 and that no two events can occur at the same time w.p.1, ζi(τ
−
k ) = ζi(τ

+
k ),

i = 1, . . . , 3. Hence, for x1(t), evaluating ∆1
f (τk) ≡ fx1k (τ−k )− fx1k+1(τ+

k ) yields

∆1
f (τk, ζ3 (τk)) =

{
α1

[
1 + φONα (τ−k )

]−1

− α1

[
1 + φOFFα (τ+

k )
]−1 − β1

[
1 + φONβ (τ−k )

]−1

+ β1

[
1 + φOFFβ (τ+

k )
]−1

+ m1

x3,0

[
hON

(
τ−k
)
− x3(τk)

]}
· x1(τk)

(5.32)

Finally, the term τ ′k,i, which corresponds to the event time derivative with re-

spect to θi at event time τk, is determined using (A.12), as detailed in (6.48)

later.

A similar analysis applies to x2(t), so that fx2k (τ−k ) and fx2k+1(τ+
k ) ultimately

depend on hON
(
τ−k
)

and hOFF
(
τ+
k

)
, respectively. Hence, evaluating ∆2

f (τk) ≡
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fx2k (τ−k )− fx2k+1(τ+
k ) from (5.11) yields

∆2
f (τk, ζ3 (τk)) = α2d

x3,0

[
x3(τk)− hON

(
τ−k
)]
· x2(τk)

− m1

x3,0

[
hON

(
τ−k
)
− x3(τk)

]
· x1(τk)

(5.33)

In the case of the “clock” state variable, z1(t) is discontinuous in t at t =

τk, while z2(t) is continuous. Hence, based on (A.9) and (5.5), we have that

z′1,i(τ
+
k ) = 0. From (A.8) and (5.6), it is straightforward to verify that z′2,i(τ

+
k ) =

z′2,i(τ
−
k )− τ ′k,i, i = 1, 2.

4. A state transition from qOFF to qON occurs at time τk. This necessarily implies

that event e2 took place at time τk, i.e., q(t) = qOFF , t ∈ [τk−1, τk) and q(t) =

qON , t ∈ [τk, τk+1). The same reasoning as above holds, so that (6.41)-(6.42)

also apply. For x1(t), fx1k (τ−k ) − fx1k+1(τ+
k ) can be evaluated from (5.10) and

ultimately depends on hOFF
(
τ−k
)

and hON
(
τ+
k

)
. Evaluating hOFF

(
τ−k
)

from

(5.9) over the appropriate time interval results in

hOFF
(
τ−k
)

= x3(τ+
k−1)e−(τk−τk−1)/σ

+(µ3σ + x3,0)[1− e−(τk−τk−1)/σ] + ζ̃3(τk)

and it follows directly from (5.8) that hON
(
τ+
k

)
= x3(τ+

k ).

As in the previous case, continuity due to conservation of mass applies, so that

evaluating ∆1
f (τk) ≡ fx1k (τ−k )− fx1k+1(τ+

k ) yields

∆1
f (τk, ζ3 (τk)) =

{
α1

[
1 + φOFFα (τ−k )

]−1

− α1

[
1 + φONα (τ+

k )
]−1 − β1

[
1 + φOFFβ (τ−k )

]−1

+ β1

[
1 + φONβ (τ+

k )
]−1

+ m1

x3,0

[
hOFF

(
τ−k
)
− x3(τk)

]}
· x1(τk)

(5.34)
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Similarly for x2(t), by evaluating ∆2
f (τk) ≡ fx2k (τ−k )− fx2k+1(τ+

k ) from (5.11), and

making the appropriate simplifications due to continuity, we obtain

∆2
f (τk, ζ3 (τk)) = α2d

x3,0

[
x3(τk)− hOFF

(
τ−k
)]
· x2(τk)

− m1

x3,0

[
hOFF

(
τ−k
)
− x3(τk)

]
· x1(τk)

(5.35)

In the case of the “clock” state variable, z1(t) is continuous in t at t = τk,

while z2(t) is discontinuous. As a result, based on (A.8) and (5.5), we have

that z′1,i(τ
+
k ) = z′1,i(τ

−
k )− τ ′k,i. From (A.9) and (5.6), it is simple to verify that

z′2,i(τ
+
k ) = 0, i = 1, 2.

Note that, since z′j,i(t) = z′j,i(τ
+
k ), t ∈ [τk, τk+1), we will have that z′j,i(τ

−
k ) =

z′j,i(τ
+
k−1), j, i = 1, 2. Moreover, the sample path of our SHA consists of a sequence

of alternating e1 and e2 events, which implies that z′1,i(τ
−
k ) = 0 if event e1 occurred

at τk−1, while z′2,i(τ
−
k ) = 0 if event e2 occurred at τk−1. Then, adopting the notation

p, p = {1, 2} such that p+ p = 3, we have:

z′p,i(τ
+
k ) =

{
−τ ′k,i if event ep occurs at τk

0 otherwise
(5.36)

We now proceed with a general result which applies to all events defined for our

SHA model. We denote the time of occurrence of the jth state transition by τj, define

its derivative with respect to the control parameters as τ ′j,i ≡
∂τj
∂θi

, i = 1, 2, and also

define fxnj (τj) ≡ ẋn(τj), n = 1, 2.

Lemma 5.1 When an event ep, p = 1, 2, occurs, the derivative τ ′j,i, i = 1, 2, of state

transition times τj, j = 1, 2, . . . with respect to the control parameters θi, i = 1, 2,
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satisfies:

τ ′j,i =


1−x′1,i(τ

−
j )−x′2,i(τ

−
j )

f
x1
j−1(τ−j )+f

x2
j−1(τ−j )

if event e1 occurs and i = 1
or event e2 occurs and i = 2

−x′1,i(τ
−
j )−x′2,i(τ

−
j )

f
x1
j−1(τ−j )+f

x2
j−1(τ−j )

if event e1 occurs and i = 2
or event e2 occurs and i = 1

(5.37)

Proof. See Appendix C.

We note that the numerator in (6.48) is determined using (6.8) and (6.17) if

q(τ−j ) = qON , or (6.26) and (6.38) if q(τ−j ) = qOFF . Moreover, the denominator in

(6.48) is computed using (5.10)-(5.11) and it is simple to verify that, if event e1 takes

place at time τj,

fx1j−1(τ−j ) + fx2j−1(τ−j ) = α1

[
1 + φONα (τ−j )

]−1 · x1(τj)

−
{
β1

[
1 + φONβ (τ−j )

]−1
+ λ1

}
· x1(τj) + µ1

+

[
α2

(
1− dh

ON(τ−j )
x3,0

)
− β2

]
· x2(τj)

+ ζ1(τj) + ζ2(τj)

(5.38)

and, if event e2 takes place at time τj,

fx1j−1(τ−j ) + fx2j−1(τ−j ) = α1

[
1 + φOFFα (τ−j )

]−1 · x1(τj)

−
{
β1

[
1 + φOFFβ (τ−j )

]−1
+ λ1

}
· x1(τj) + µ1

+

[
α2

(
1− dh

OFF (τ−j )
x3,0

)
− β2

]
· x2(τj)

+ ζ1(τj) + ζ2(τj)

(5.39)

We now proceed to present the expression of the cost derivative corresponding to

the performance metric defined in (5.12).
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5.2.2 Cost Derivative

Let us denote the total number of on and off-treatment periods (complete or incom-

plete) in [0, T ] by KT . Also let ξk denote the start of the kth period and ηk denote the

end of the kth period (of either type). Finally, let MT = bKT
2
c be the total number

of complete on-treatment periods, and ∆ON
m denote the duration of the mth complete

on-treatment period, where clearly

∆ON
m ≡ ηm − ξm, m = 1, 2, . . .

Theorem 5.1 The derivative of the sample function L(θ) with respect to the control

parameters satisfies:

dL(θ)
dθi

= W
T

KT∑
k=1

∫ ηk
ξk

[
x′1,i(θ,t)+x

′
2,i(θ,t)

PSAinit

]
dt

+ (1−W )
T

MT∑
m=1

∆ON
m

T
·
(
η′m,i − ξ′m,i

)
− (1−W )

T
1 [KT is odd] · ξ′MT+1,i ·

(
T−ξMT+1

T

) (5.40)

where 1 [·] is the usual indicator function and PSAinit is the value of the patient’s

PSA level at the start of the first on-treatment cycle.

Proof. See Appendix C.

It is clear that evaluating (6.51) requires knowledge of: (i) the event times ξn,m

and ηn,m, and (ii) the value of the state derivatives x′1,i(θ, t) and x′2,i(θ, t) over all

on and off-treatment periods. The quantities in (i) are easily observed using timers

whose start and end times are observable events; eventually knowledge of the noise

processes ζ1(t) and ζ2(t) evaluated at event times only is also needed to compute

(6.49)-(6.50). Information on the noise processes can be extracted from the observed
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sample path, as explained in Section 5.3. The state derivatives in (ii) are obtained

from (6.2) and (6.11) over on-treatment periods, and from (6.20) and (6.29) over off-

treatment periods. Ultimately, these expressions depend on (5.8) and (5.9), so that

it is necessary to evaluate the integral of the noise process ζ3(t), which can also be

accomplished using data extracted from the observed sample path.

As a result, it is straightforward to implement an algorithm for updating the value

of dL (θ) /dθi after each observed event, as outlined in Algorithm 1.

Algorithm 1 IPA Algorithm for Optimal IAS Therapy Design

Whenever an event occurs at time τk, k = 1, 2, . . .
Step 1 Update event time derivatives using (6.48)
Step 2 Update state derivatives using (6.41)-(6.42) and (6.47)
Step 3 Update cost derivatives using (6.51)
End
Repeat

Note that Step 1 requires knowledge of the noise processes ζ1(t) and ζ2(t) in order

to evaluate (6.49) whenever an event e1 takes place, and (6.50) whenever an event e2

occurs. In what follows, details are given on how to include this type of information

using data from the observed sample path.

5.3 Simulation Results

The results shown here represent a first attempt at incorporating randomness into

a SHA model of prostate cancer evolution in which we consider only noise and fluc-

tuations associated with cell population dynamics, and do not account for noise in

the patient’s androgen level. Representing randomness as Gaussian white noise, the
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authors in (Tanaka et al., 2010) verified that variable time courses of the PSA levels

were produced without losing the tendency of the deterministic system, thus yielding

simulation results that were comparable to the statistics of clinical data. For this

reason, in this work we take {ζi (t)}, i = 1, 2, to be Gaussian white noise with zero

mean and standard deviation of 0.001, similarly to (Tanaka et al., 2010), although

we remind the reader that our methodology applies independently of the distribution

chosen to represent {ζi (t)}, i = 1, 2. We estimate the noise associated with cell pop-

ulation dynamics at event times by randomly sampling from a uniform distribution

with zero mean and standard deviation of 0.001. Simulations of the prostate cancer

model as a pure DES are thus run to generate sample path data to which the IPA

estimator is applied. In all results reported here, we measure the sample path length

in between updates of the controllable parameter vector θ in terms of the number of

days elapsed since the onset of IAS therapy, which we choose to be T = 2500 days.

We also adopt the notation ”Patient #k”, as in (Liu et al., 2015), in reference to

the system dynamics model of patient k (complete details on how such models were

generated using clinical data from the corresponding patients can be found in (Liu

et al., 2015)).

Two sets of simulations were performed: one in which we set W = 0.5 and deter-

mine personalized treatment schemes for two different patients, and another in which

we analyze the effect of W on the design of a given patient’s optimal therapy. For

the former, we make use of the clinical models of Patient #15 and Patient #1 (Liu
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et al., 2015).

Figures 5·3-5·5 present the convergence plots of the average cost and control pa-

rameters considering different initial configurations for Patient #15.

Figure 5·3: Convergence plots of average cost and PSA threshold
values for initial configuration [θinit1 , θinit2 ] = [2.5, 14.0] (Patient #15)

Figure 5·4: Convergence plots of average cost and PSA threshold
values for initial configuration [θinit1 , θinit2 ] = [7.0, 12.5] (Patient #15)
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Figure 5·5: Convergence plots of average cost and PSA threshold
values for initial configuration [θinit1 , θinit2 ] = [6.5, 9.0](Patient #15)

Figures 5·6-5·8 present the convergence plots of the average cost and control pa-

rameters considering different initial configurations for Patient #1.

Figure 5·6: Convergence plots of average cost and PSA threshold
values for initial configuration [θinit1 , θinit2 ] = [5.5, 14.5] (Patient #1)
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Figure 5·7: Convergence plots of average cost and PSA threshold
values for initial configuration [θinit1 , θinit2 ] = [7.0, 15.0] (Patient #1)

Figure 5·8: Convergence plots of average cost and PSA threshold
values for initial configuration [θinit1 , θinit2 ] = [4.5, 11.5] (Patient #1)

Using a brute force approach, the response surface corresponding to our cost

function was generated. In Figure 5·9, the convergence trajectories from Figures 5·3-

5·5 are plotted against the response surface of Patient #15, and it can be seen that
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all configurations converge to the region of minimum cost.

Figure 5·9: Response surface and convergence trajectories (Patient
#15)

In Figure 5·10, the convergence trajectories from Figures 5·6-5·8 are plotted against

the response surface of Patient #1, and again it can be seen that all configurations

converge to the region of minimum cost.

Figure 5·10: Response surface and convergence trajectories (Patient
#1)



129

In our second set of simulations, we use the clinical model of Patient #1 (Liu

et al., 2015) and take W ∈ {0.1, 0.5, 0.9}. Recall that our sample function contains

two terms, each of which represents complementary measures of therapy success. We

take into account the fact that it may be desirable to design a therapy scheme that

favors one of these terms over the other by associating weight W with the first term

and 1 − W with the second term, as detailed in Section 5.1.2. Table 5.1 presents

the values of optimal lower and upper PSA threshold values (θ∗1 and θ∗2, respectively)

and the corresponding cost of treatment (J∗) using the clinical model Patient #1 for

different values of W . In what follows, we adopt the notation x ≈ y to indicate that

x takes values approximately equal to y, and x & y to indicate that x takes values

approximately equal or slightly greater than y.

Table 5.1: Optimization results for different values of W using the
clinical model of Patient 1

W θ∗1 θ∗2 J∗

0.1 ≈ 2.5 ≈ 8.0 0.017
0.5 ≈ 2.5 ≈ 8.0 0.086
0.9 ≈ 2.5 ≈ 8.0 0.154

It can be seen from Table 5.1 that the ranges of optimal lower and upper PSA

threshold values are equivalent for W ∈ {0.1, 0.5, 0.9}, i.e., θ∗1 & θmin
1 and θ∗2 & θmin

2 for

all values of W considered here. In other words, the value of J∗ changes with the value

of W , but the regions of minimum and maximum cost remain essentially unchanged.

This means that a common optimal treatment scheme exists irrespective of the chosen

value of W . Hence, it is possible to consistently achieve therapy personalization, as

detailed next.
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5.3.1 Achieving Therapy Personalization

Recall that solving problem (5.14) is equivalent to searching for the IAS treatment

scheme that not only keeps PSA levels as low as possible, but that also reduces the

frequency of on and off-treatment cycles. In this context, the resulting optimal IAS

therapy is one in which both the low and high PSA thresholds take values as small

as possible, i.e., θ∗1 & θmin
1 and θ∗2 & θmin

2 . This tendency is verified in Figures 5·9 and

5·10, where it can be seen that the regions of minimum cost are those immediately

surrounding
[
θmin

1 , θmin
2

]
.

Moreover, it is interesting to note that although this tendency is consistent across

different patients, successful IAS therapy schemes are only obtained when θ1 ≥ 1.5

for Patient #15 and θ1 ≥ 2.5 for Patient #1. This means that, for Patient #15, a

therapy in which the low PSA threshold takes values smaller than 1.5 will eventually

lead to uncontrolled cancer cell growth and disease relapse. The same analysis holds

for Patient #1, except that in this case, there is a higher lower bound on the value

of θ1. Clearly this variation across patients is associated with the fact that each

patient responds differently to IAS therapy; hence the underlying need for designing

personalized treatment schemes.

Finally, personalizing IAS therapy based on the cost metric proposed in this work

involves, among other things, assessing the smallest value that the low PSA threshold

can be allowed to reach, which varies across patients. This can be done using clinical

data from patients, when available. In cases where no model exists to predict a pa-
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tient’s response to therapy (e.g., for patients who have never been submitted to IAS

therapy), a possible course of action would be to devise an optimal therapy scheme

using another patient’s model, which could be selected based on clinical indicators

of patient similarity and/or insights from the physician. After recording the new

patient’s response to the first cycle(s) of treatment, it would be possible to itera-

tively adjust his initial treatment until an improved scheme is found. Such iterative

search for an optimal IAS therapy scheme could be successfully performed using the

methodology outlined in this chapter.
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Chapter 6

Issues in Cancer Therapy Personalization:

Robustness vs. Optimality

In this chapter we focus on the importance of accurate modeling in conjunction with

optimal therapy design. In particular, by evaluating sensitivity estimates with respect

to several model parameters, we identify critical parameters and verify the extent

to which the SHA model of prostate cancer evolution is robust to them. In what

follows, we reintroduce the SHA model of prostate cancer evolution and apply IPA

to derive estimators of the cost metric gradient with respect to various model and

therapy parameters. These estimators are subsequently used for system analysis.

Simulation results demonstrate that relaxing the optimality condition in favor of

increased robustness to modeling errors provides an alternative objective to therapy

design for at least some patients.

6.1 Problem Formulation

We continue to consider the system comprised of a prostate tumor under IAS therapy,

which is modeled as a Stochastic Hybrid Automaton (SHA), as detailed in Chapter 5.

In contrast to the previous part of this work, here we use IPA to explore the tradeoff
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between system optimality and robustness (or, equivalently, fragility), thus providing

valuable insights on modeling and control of cancer progression. Of note, several po-

tentially critical parameters exist in the SHA model of prostate cancer evolution. The

results shown here reflect a first step towards analyzing their relative importance, in

which we select a subset of all model parameters in order to illustrate the applicability

of our IPA-based methodology. The parameters we consider here are α1 and α2 (HSC

proliferation constant and CRC proliferation constant, respectively), as well as β1

and β2 (HSC apoptosis constant and CRC apoptosis constant, respectively). These

constants are intrinsically related to the cancer cell subpopulations’ net growth rate,

whose value dictates how fast the PSA threshold values will be reached, and ulti-

mately how soon treatment will be suspended or reinstated. As a result, correctly

estimating the values of αi and βi, i = 1, 2, is presumably crucial for the purposes of

personalized IAS therapy design.

In this context, we define an extended parameter vector θ = [θ1, . . . , θ6], where

θ1 (θ2, respectively) corresponds to the lower (upper, respectively) threshold value of

the patient’s PSA level, θ3 (θ4, respectively) corresponds to the HSC (CRC, respec-

tively) proliferation constant, and θ5 (θ6, respectively) corresponds to the HSC (CRC,

respectively) apoptosis constant.

We will continue to make use of the sample function defined by (5.12) and will

maintain all assumptions regarding the underlying stochastic processes, as well as

consider the same feasible events and system dynamics that were introduced in Section
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5.1. In what follows, we derive the IPA state and event time derivatives for the events

identified in Section 5.1.

6.2 IPA for the SHA Model of Prostate Cancer Evolution

For simplicity of notation, let us define the derivatives of the states xn(θ, t) and zj(θ, t)

and event times τk(θ) with respect to θi, i = 1, . . . , 6, n = 1, . . . , 3, as follows:

x′n,i(t) ≡
∂xn(θ, t)

∂θi
, z′j,i(t) ≡

∂zj(θ, t)

∂θi
, τ ′k,i ≡

∂τk(θ)

∂θi
(6.1)

In what follows, we derive the IPA state and event time derivatives for the events

identified in our SHA model of prostate cancer progression.

6.2.1 State and Event Time Derivatives

We proceed by analyzing the state evolution of our SHA model of prostate cancer

progression considering each of the states (qON and qOFF ) and events (e1 and e2)

therein defined.

1. The system is in state qON over interevent time interval [τk, τk+1). Using (A.7)

for x1 (t), we obtain, for i = 1, . . . , 6,

d
dt
x′1,i(t) =

∂f
x1
k (t)

∂x1
x′1(t) +

∂f
x1
k (t)

∂x2
x′2(t)

+
∂f

x1
k (t)

∂z1
z′1(t) +

∂f
x1
k (t)

∂z2
z′2(t) +

∂f
x1
k (t)

∂θi
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From (5.10), we have
∂f

x1
k (t)

∂x2
=

∂f
x1
k (t)

∂zj
=

∂f
x1
k (t)

∂θi
= 0, i = 1, 2, 4, 6, j = 1, 2, and

∂f
x1
k (t)

∂x1
= α1

[
1 + φONα (t)

]−1 − β1

[
1 + φONβ (t)

]−1

−m1

(
1− hON (t)

x3,0

)
− λ1

∂f
x1
k (t)

∂θ3
= x1

[
1 + φONα (t)

]−1

∂f
x1
k (t)

∂θ5
= −x1

[
1 + φONβ (t)

]−1

It is thus simple to verify that solving (A.7) for x′1,i(t) yields, for t ∈ [τk, τk+1),

x′1,i(t) = x′1,i(τ
+
k )eA1(t), i = 1, 2, 4, 6 (6.2)

x′1,3(t) = x′1,3(τ+
k )eA1(t) + A2 (t) (6.3)

x′1,5(t) = x′1,5(τ+
k )eA1(t) + A3 (t) (6.4)

with

A1 (t) ≡
∫ t
τk

[
α1

1+φONα (t)
− β1

1+φONβ (t)

]
dt

−
∫ t
τk

m1

x3,0
hON (t) dt− (m1 + λ1) (t− τk)

(6.5)

A2 (t) ≡ eA1(t)

t∫
τk

[
x1 (t)

1 + φONα (t)
e−A1(t)

]
dt (6.6)

A3 (t) ≡ eA1(t)

t∫
τk

[
− x1 (t)

1 + φONβ (t)
eA1(t)

]
dt (6.7)

In particular, at τ−k+1:

x′1,i(τ
−
k+1) = x′1,i(τ

+
k )eA(τk) (6.8)

x′1,3(τ−k+1) = x′1,3(τ+
k )eA(τk) + A2 (τk) (6.9)
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x′1,5(τ−k+1) = x′1,5(τ+
k )eA(τk) + A3 (τk) (6.10)

where A1 (τk), A2 (τk), and A3 (τk) are given from (6.5).

Similarly for x2 (t), we have from (5.11) that
∂f

x2
k (t)

∂zj
=

∂f
x2
k (t)

∂θi
= 0, i = 1, 2, 3, 5,

j = 1, 2, and
∂f

x2
k (t)

∂x1
= m1

(
1− hON (t)

x3,0

)
∂f

x2
k (t)

∂x2
= α2

(
1− dh

ON (t)
x3,0

)
− β2

∂f
x2
k (t)

∂θ4
=
(

1− dh
ON (t)
x3,0

)
x2 (t)

∂f
x2
k (t)

∂θ6
= −x2 (t)

Combining the last four equations and solving for x′2,i(t) yields, for t ∈ [τk, τk+1),

x′2,i(t) = x′2,i(τ
+
k )eB1(t) +B2

(
t, x′1,i(τ

+
k ), A1 (t)

)
, i = 1, 2, 3, 5 (6.11)

x′2,4(t) = x′2,4(τ+
k )eB1(t) +B3

(
t, x′1,4(τ+

k ), B1 (t)
)

(6.12)

x′2,6(t) = x′2,6(τ+
k )eB1(t) +B4

(
t, x′1,6(τ+

k ), B1 (t)
)

(6.13)

with

B1 (t) ≡
t∫

τk

[
α2

(
1− dh

ON (t)

x3,0

)
− β2

]
dt (6.14)

B2 (·) ≡ eB1(t)

t∫
τk

G1 (t, τk) e
−B1(t)dt

B3 (·) ≡ eB1(t)

t∫
τk

G2 (t, τk) e
−B1(t)dt (6.15)

B4 (·) ≡ eB1(t)

t∫
τk

G3 (t, τk) e
−B1(t)dt (6.16)

where, for t ∈ [τk, τk+1), G1 (t, τk) = m1

(
1− hON (t)

x3,0

)
x′1,i(τ

+
k )eA1(t),
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G2 (t, τk) = e−B1(t)x2 (t)
(

1− dh
ON (t)
x3,0

)
+ e−B1(t)x′1,4(t) ·m1

(
1− dh

ON (t)
x3,0

)
,

G3 (t, τk) = e−B1(t)
[
x′1,6(t) ·m1

(
1− dh

ON (t)
x3,0

)
− x2 (t)

]
.

In particular, at τ−k+1:

x′2,i(τ
−
k+1) = x′2,i(τ

+
k )eB1(τk) +B2

(
τk, x

′
1,i(τ

+
k ), A (τk)

)
(6.17)

x′2,4(τ−k+1) = x′2,4(τ+
k )eB1(τk) +B3

(
t, x′1,4(τ+

k ), B1 (τk)
)

(6.18)

x′2,6(τ−k+1) = x′2,6(τ+
k )eB1(τk) +B4

(
t, x′1,6(τ+

k ), B1 (τk)
)

(6.19)

where B1 (τk), B2

(
τk, x

′
1,i(τ

+
k ), A (τk)

)
, B3

(
t, x′1,4(τ+

k ), B1 (τk)
)
,

and B4

(
t, x′1,6(τ+

k ), B1 (τk)
)

are given from (6.14).

Finally, for the “clock” state variable, from (5.5)-(5.6) we have
∂f

zi
k (t)

∂xn
=

∂f
zi
k (t)

∂zj
=

∂f
zi
k (t)

∂θi
= 0, n, j = 1, 2, i = 1, . . . , 6, so that d

dt
z′j,i(t) = 0, j = 1, 2, i = 1, . . . , 6, for

t ∈ [τk, τk+1). Hence, z′j,i(t) = z′j,i(τ
+
k ), j = 1, 2, i = 1, . . . , 6, and t ∈ [τk, τk+1).

2. The system is in state qOFF over interevent time interval [τk, τk+1). Starting

with x1 (t), based on (5.10) we once again have
∂f

x1
k (t)

∂x2
=

∂f
x1
k (t)

∂zj
=

∂f
x1
k (t)

∂θi
= 0, j = 1, 2,

i = 1, 2, 4, 6, but now

∂f
x1
k (t)

∂x1
= α1

[
1 + φOFFα (t)

]−1 − β1

[
1 + φOFFβ (t)

]−1

−m1

(
1− hOFF (t)

x3,0

)
− λ1

∂f
x1
k (t)

∂θ3
= x1

[
1 + φONα (t)

]−1

∂f
x1
k (t)

∂θ5
= −x1

[
1 + φONβ (t)

]−1



138

Therefore, (A.7) implies that, for t ∈ [τk, τk+1):

x′1,i(t) = x′1,i(τ
+
k )eC1(t), i = 1, 2, 4, 6 (6.20)

x′1,3(t) = x′1,3(τ+
k )eC1(t) + C2 (t) (6.21)

x′1,5(τ−k+1) = x′1,5(τ+
k )eC1(τk) + C3 (t) (6.22)

with

C1 (t) ≡
∫ t
τk

[
α1

1+φOFFα (t)
− β1

1+φOFFβ (t)

]
dt

−
∫ t
τk

m1

x3,0
hOFF (t) dt− (m1 + λ1) (t− τk)

(6.23)

C2 (t) ≡ eC1(t)

t∫
τk

[
x1 (t)

1 + φOFFα (t)
e−C1(t)

]
dt (6.24)

C3 (t) ≡ eC1(τk)

τk+1∫
τk

[
− x1 (t)

1 + φOFFβ (t)
eC1(t)

]
dt (6.25)

In particular, at τ−k+1:

x′1,i(τ
−
k+1) = x′1,i(τ

+
k )eC1(τk) (6.26)

x′1,3(τ−k+1) = x′1,3(τ+
k )eC1(τk) + C2 (τk) (6.27)

x′1,5(τ−k+1) = x′1,5(τ+
k )eC1(τk) + C3 (τk) (6.28)

where C1 (τk), C2 (τk), and C3 (τk) are given from (6.23).
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Similarly for x2(t), we have

∂f
x2
k (t)

∂x1
= m1

(
1− hOFF (t)

x3,0

)
∂f

x2
k (t)

∂x2
= α2

(
1− dh

OFF (t)
x3,0

)
− β2

∂f
x2
k (t)

∂θ4
=
(

1− dh
OFF (t)
x3,0

)
x2 (t)

∂f
x2
k (t)

∂θ6
= −x2 (t)

It is thus straightforward to verify that (A.7) yields, for t ∈ [τk, τk+1),

x′2,i(t) = x′2,i(τ
+
k )eD1(t) +D2

(
t, x′1,i(τ

+
k ), C1 (t)

)
, i = 1, 2, 4, 6 (6.29)

x′2,4(t) = x′2,4(τ+
k )eD1(t) +D3

(
t, x′1,4(τ+

k ), D1 (t)
)

(6.30)

x′2,6(t) = x′2,6(τ+
k )eD1(t) +D4

(
t, x′1,6(τ+

k ), D1 (t)
)

(6.31)

with

D1 (t) ≡
t∫

τk

[
α2

(
1− dh

OFF (t)

x3,0

)
− β2

]
dt (6.32)

D2 (·) ≡ eD1(t)

t∫
τk

G2 (t, τk) e
−D1(t)dt

D3 (·) ≡ eD1(t)

t∫
τk

G3 (t, τk) e
−D1(t)dt (6.33)

D4 (·) ≡ eD1(t)

t∫
τk

G4 (t, τk) e
−D1(t)dt (6.34)
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where, for t ∈ [τk, τk+1),

G2 (t, τk) = m1

(
1− hOFF (t)

x3,0

)
x′1,i(τ

+
k )eC1(t) (6.35)

G3 (t, τk) = x2 (t)

(
1− dh

OFF (t)

x3,0

)
+ x′1,4(t) ·m1

(
1− dh

OFF (t)

x3,0

)
(6.36)

G4 (t, τk) = x′1,6(t) ·m1

(
1− dh

OFF (t)

x3,0

)
− x2 (t) (6.37)

In particular, at τ−k+1:

x′2,i(τ
−
k+1) = x′2,i(τ

+
k )eD1(τk) +D2

(
τk, x

′
1,i(τ

+
k ), C (τk)

)
(6.38)

x′2,4(t) = x′2,4(τ+
k )eD1(t) +D3

(
t, x′1,4(τ+

k ), D1 (τk)
)

(6.39)

x′2,6(t) = x′2,6(τ+
k )eD1(t) +D4

(
t, x′1,6(τ+

k ), D1 (τk)
)

(6.40)

where D1 (τk), D2 (·), D3 (·), and D4 (·) are given from (6.32).

Finally, for the “clock” state variable, based on (5.5)-(5.6) we once again have

∂f
zi
k (t)

∂xn
=

∂f
zi
k (t)

∂zj
=

∂f
zi
k (t)

∂θi
= 0, n, j = 1, 2, i = 1, . . . , 6, so that d

dt
z′j,i(t) = 0, j = 1, 2,

i = 1, . . . , 6, for t ∈ [τk, τk+1). As a result, z′j,i(t) = z′j,i(τ
+
k ), j = 1, 2, i = 1, . . . , 6, and

t ∈ [τk, τk+1).

3. A state transition from qON to qOFF occurs at time τk. This necessarily implies

that event e1 took place at time τk, i.e., q(t) = qON , t ∈ [τk−1, τk) and q(t) = qOFF ,

t ∈ [τk, τk+1). From (A.8) we have, for i = 1, . . . , 6,

x′1,i(τ
+
k ) = x′1,i(τ

−
k ) +

[
fx1k (τ−k )− fx1k+1(τ+

k )
]
· τ ′k,i (6.41)
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and

x′2,i(τ
+
k ) = x′2,i(τ

−
k ) +

[
fx2k (τ−k )− fx2k+1(τ+

k )
]
· τ ′k,i (6.42)

where fx1k (τ−k ) − fx1k+1(τ+
k ) and fx2k (τ−k ) − fx2k+1(τ+

k ) ultimately depend on hON
(
τ−k
)

and hOFF
(
τ+
k

)
. Evaluating hON

(
τ−k
)

from (5.8) over the appropriate time interval

results in

hON
(
τ−k
)

= x3(τ+
k−1)e−(τk−τk−1)/σ

+µ3σ[1− e−(τk−τk−1)/σ] + ζ̃3(τk)

and it follows directly from (5.9) that hOFF
(
τ+
k

)
= x3(τ+

k ). Moreover, by continuity

of xn(t) (due to conservation of mass), xn(τ+
k ) = xn(τ−k ), n = 1, 2. Also, since we

have assumed that {ζi(t)}, i = 1, . . . , 3, is piecewise continuous w.p.1 and that no

two events can occur at the same time w.p.1, ζi(τ
−
k ) = ζi(τ

+
k ), i = 1, . . . , 3. Hence,

for x1(t), evaluating ∆1
f (τk) ≡ fx1k (τ−k )− fx1k+1(τ+

k ) yields

∆1
f (τk, ζ3 (τk)) =

{
α1

[
1 + φONα (τ−k )

]−1

− α1

[
1 + φOFFα (τ+

k )
]−1 − β1

[
1 + φONβ (τ−k )

]−1

+ β1

[
1 + φOFFβ (τ+

k )
]−1

+ m1

x3,0

[
hON

(
τ−k
)
− x3(τk)

]}
· x1(τk)

(6.43)

Finally, the term τ ′k,i, which corresponds to the event time derivative with respect

to θi at event time τk, is determined using (A.12), as detailed in (6.48) later.

A similar analysis applies to x2(t), so that fx2k (τ−k ) and fx2k+1(τ+
k ) ultimately depend

on hON
(
τ−k
)

and hOFF
(
τ+
k

)
, respectively. Hence, evaluating ∆2

f (τk) ≡ fx2k (τ−k ) −

fx2k+1(τ+
k ) from (5.11) yields

∆2
f (τk, ζ3 (τk)) = α2d

x3,0

[
x3(τk)− hON

(
τ−k
)]
· x2(τk)

− m1

x3,0

[
hON

(
τ−k
)
− x3(τk)

]
· x1(τk)

(6.44)
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In the case of the “clock” state variable, z1(t) is discontinuous in t at t = τk,

while z2(t) is continuous. Hence, based on (A.9) and (5.5), we have that z′1,i(τ
+
k ) = 0.

From (A.8) and (5.6), it is straightforward to verify that z′2,i(τ
+
k ) = z′2,i(τ

−
k ) − τ ′k,i,

i = 1, . . . , 6.

4. A state transition from qOFF to qON occurs at time τk. This necessarily implies

that event e2 took place at time τk, i.e., q(t) = qOFF , t ∈ [τk−1, τk) and q(t) = qON ,

t ∈ [τk, τk+1). The same reasoning as above holds, so that (6.41)-(6.42) also apply.

For x1(t), fx1k (τ−k ) − fx1k+1(τ+
k ) can be evaluated from (5.10) and ultimately depends

on hOFF
(
τ−k
)

and hON
(
τ+
k

)
. Evaluating hOFF

(
τ−k
)

from (5.9) over the appropriate

time interval results in

hOFF
(
τ−k
)

= x3(τ+
k−1)e−(τk−τk−1)/σ

+(µ3σ + x3,0)[1− e−(τk−τk−1)/σ] + ζ̃3(τk)

and it follows directly from (5.8) that hON
(
τ+
k

)
= x3(τ+

k ).

As in the previous case, continuity due to conservation of mass applies, so that

evaluating ∆1
f (τk) ≡ fx1k (τ−k )− fx1k+1(τ+

k ) yields

∆1
f (τk, ζ3 (τk)) =

{
α1

[
1 + φOFFα (τ−k )

]−1

− α1

[
1 + φONα (τ+

k )
]−1 − β1

[
1 + φOFFβ (τ−k )

]−1

+ β1

[
1 + φONβ (τ+

k )
]−1

+ m1

x3,0

[
hOFF

(
τ−k
)
− x3(τk)

]}
· x1(τk)

(6.45)

Similarly for x2(t), by evaluating ∆2
f (τk) ≡ fx2k (τ−k ) − fx2k+1(τ+

k ) from (5.11), and
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making the appropriate simplifications due to continuity, we obtain

∆2
f (τk, ζ3 (τk)) = α2d

x3,0

[
x3(τk)− hOFF

(
τ−k
)]
· x2(τk)

− m1

x3,0

[
hOFF

(
τ−k
)
− x3(τk)

]
· x1(τk)

(6.46)

In the case of the “clock” state variable, z1(t) is continuous in t at t = τk, while

z2(t) is discontinuous. As a result, based on (A.8) and (5.5), we have that z′1,i(τ
+
k ) =

z′1,i(τ
−
k ) − τ ′k,i. From (A.9) and (5.6), it is simple to verify that z′2,i(τ

+
k ) = 0, i =

1, . . . , 6.

Note that, since z′j,i(t) = z′j,i(τ
+
k ), t ∈ [τk, τk+1), we will have that z′j,i(τ

−
k ) =

z′j,i(τ
+
k−1), j = 1, 2, i = 1, . . . , 6. Moreover, the sample path of our SHA consists of a

sequence of alternating e1 and e2 events, which implies that z′1,i(τ
−
k ) = 0 if event e1

occurred at τk−1, while z′2,i(τ
−
k ) = 0 if event e2 occurred at τk−1. Then, adopting the

notation p, p = {1, 2} such that p+ p = 3, we have:

z′p,i(τ
+
k ) =

{
−τ ′k,i if event ep occurs at τk

0 otherwise
(6.47)

We now proceed with a general result which applies to all events defined for our

SHA model. We denote the time of occurrence of the jth state transition by τj, define

its derivative with respect to the control parameters as τ ′j,i ≡
∂τj
∂θi

, i = 1, . . . , 6, and

also define fxnj (τj) ≡ ẋn(τj), n = 1, 2.

Lemma 6.1 When an event ep, p = 1, 2, occurs, the derivative τ ′j,i, i = 1, . . . , 6,

of state transition times τj, j = 1, 2, . . . with respect to the control parameters θi,
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i = 1, . . . , 6, satisfies:

τ ′j,i =


1−x′1,i(τ

−
j )−x′2,i(τ

−
j )

f
x1
j−1(τ−j )+f

x2
j−1(τ−j )

if e1 occurs and i = 1
or e2 occurs and i = 2

−x′1,i(τ
−
j )−x′2,i(τ

−
j )

f
x1
j−1(τ−j )+f

x2
j−1(τ−j )

if e1 occurs and i 6= 1
or e2 occurs and i 6= 2

(6.48)

Proof. The proof is analogous to that of Lemma 5.1, which can be found in

Appendix C.

We note that the numerator in (6.48) is determined using (6.8) and (6.17) if

q(τ−j ) = qON , or (6.26) and (6.38) if q(τ−j ) = qOFF . Moreover, the denominator in

(6.48) is computed using (5.10)-(5.11) and it is simple to verify that, if event e1 takes

place at time τj,

fx1j−1(τ−j ) + fx2j−1(τ−j ) = α1

[
1 + φONα (τ−j )

]−1 · x1(τj)

−
{
β1

[
1 + φONβ (τ−j )

]−1
+ λ1

}
· x1(τj) + µ1

+

[
α2

(
1− dh

ON(τ−j )
x3,0

)
− β2

]
· x2(τj)

+ ζ1(τj) + ζ2(τj)

(6.49)

and, if event e2 takes place at time τj,

fx1j−1(τ−j ) + fx2j−1(τ−j ) = α1

[
1 + φOFFα (τ−j )

]−1 · x1(τj)

−
{
β1

[
1 + φOFFβ (τ−j )

]−1
+ λ1

}
· x1(τj) + µ1

+

[
α2

(
1− dh

OFF (τ−j )
x3,0

)
− β2

]
· x2(τj)

+ ζ1(τj) + ζ2(τj)

(6.50)

6.2.2 Cost Derivative

Let us denote the total number of on and off-treatment periods (complete or incom-

plete) in [0, T ] by KT . Also let ξk denote the start of the kth period and ηk denote the

end of the kth period (of either type). Finally, let MT = bKT
2
c be the total number
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of complete on-treatment periods, and ∆ON
m denote the duration of the mth complete

on-treatment period, where clearly

∆ON
m ≡ ηm − ξm, m = 1, 2, . . .

It was shown in Section 5.2.2 that the derivative of the sample function L(θ) with

respect to the control parameters satisfies:

dL(θ)
dθi

= W
T

KT∑
k=1

∫ ηk
ξk

[
x′1,i(θ,t)+x

′
2,i(θ,t)

PSAinit

]
dt

+ (1−W )
T

MT∑
m=1

∆ON
m

T
·
(
η′m,i − ξ′m,i

)
− (1−W )

T
1 [KT is odd] · ξ′MT+1,i ·

(
T−ξMT+1

T

) (6.51)

where 1 [·] is the usual indicator function and PSAinit is the value of the patient’s

PSA level at the start of the first on-treatment cycle.

The derivation of (6.51) is detailed in Section 5.2.2. We now proceed to present

the results obtained from our IPA-driven sensitivity analysis.

6.3 Simulation Results

We continue to consider only noise and fluctuations associated with cell population

dynamics, and take {ζi (t)}, i = 1, 2, to be Gaussian white noise with zero mean and

standard deviation of 0.001, similarly to (Tanaka et al., 2010), although we remind

the reader that our methodology applies independently of the distribution chosen to

represent {ζi (t)}, i = 1, 2. We estimate the noise associated with cell population

dynamics at event times by randomly sampling from a uniform distribution with zero
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mean and standard deviation of 0.001. Simulations of the prostate cancer model as

a pure DES are thus run to generate sample path data to which the IPA estimator

is applied. In all results reported here, we measure the sample path length in terms

of the number of days elapsed since the onset of IAS therapy, which we choose to be

T = 2500 days. We also adopt the notation ”Patient #k”, as in (Liu et al., 2015), in

reference to the system dynamics model of patient k (complete details on how such

models were generated using clinical data from the corresponding patients can be

found in (Liu et al., 2015)).

Three sets of simulations were performed: in the first one we consider the optimal

therapy configuration determined for Patient #15 in Section 5.3 and vary the values

of θi, i = 3, . . . , 6 (one at a time). For the second, we use PSA threshold values that

yield a therapy of maximum cost and once again vary the values of θi, i = 3, . . . , 6

(one at a time). Finally, in our third set of simulations, we let θi, i = 3, . . . , 6, take

the nominal values from (Liu et al., 2015) and vary the values of θ1 and θ2 along their

allowable ranges.

Table 6.1 presents the sensitivity of the model parameters, dL
dθi

, i = 3, . . . , 6, around

the optimal configuration [θ∗1, θ
∗
2] = [1.5, 8.0] for the values of θi, i = 3, . . . , 6, fitted to

the model of Patient #15 in (Liu et al., 2015). We note that the results from the first

two sets of simulations are representative of the phenomena that may be uncovered

by this type of analysis, and were hence generated using the model of a single patient.

Moreover, while the use of different patient models may potentially reveal additional
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phenomena, the insights presented below are interesting in their own right and thus

set the stage for extending this analysis to other patients.

Table 6.1: Sensitivity of model parameters around the optimal ther-
apy configuration

dL
dθ3

dL
dθ4

dL
dθ5

dL
dθ6

5.44 −0.25 −5.95 0.28

Recall that θ3 and θ4 correspond to the HSC proliferation constant and CRC

proliferation constant, respectively, while θ5 and θ6 are the HSC apoptosis constant

and CRC apoptosis constant, respectively. Several interesting remarks can be made

based on the above results; in what follows, we adopt the notation x ≈ y to indicate

that x takes values approximately equal to y.

From Table 6.1, it can be seen that dL
dθ3
≈ − dL

dθ5
and dL

dθ4
≈ − dL

dθ6
, which indicates

that the sensitivities of proliferation and apoptosis constants are of the same order

of magnitude (in absolute value) for any given cancer cell subpopulation. It is also

possible to verify a large difference in the values of the sensitivities across different

subpopulations; in fact the sensitivities of HSC proliferation and apoptosis constants

are approximately 21 times higher than those of CRC constants. In other words,

the system is more sensitive to changes in the HSC constants than changes in the

CRC constants, i.e., θ3 and θ5 are more critical model parameters than θ4 and θ6 .

Additionally, dL
dθ3

> 0 and dL
dθ6

> 0, while dL
dθ4

< 0 and dL
dθ5

> 0. A possible explanation

for this has to do with the fact that HSCs are the dominant subpopulation in a

prostate tumor under IAS therapy, which means that the size of this subpopulation
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has a greater impact on the overall size of the tumor, and consequently, on the value

of the PSA level. As a result, increasing θ3 (or decreasing θ5) leads to an increase in

the size of the HSC population, reflected in the PSA level, thus increasing the overall

cost. On the other hand, increasing θ4 (or decreasing θ6) directly increases the size

of the CRC population; however, since the conditions under which CRCs thrive are

those under which HSCs perish, an increase in the size of the CRC population implies

that the size of the HSC population will decrease. Given that HSCs are the dominant

subpopulation, the PSA level would ultimately decrease, thus decreasing the overall

cost.

The effect of changes in θi, i = 3, . . . , 6, on the sensitivity of model parameters

was analyzed next. As the values of θi, i = 3, . . . , 6, were progressively altered,

two scenarios emerged: Scenario A - a set of model parameter values was found for

which the evolution of the prostate tumor is permanently halted after one or two

cycles of treatment, i.e., the simulated IAS therapy scheme is curative; Scenario B

- a set of model parameter values was found for which the prostate tumor grows

in an uncontrollable manner, i.e., the simulated IAS therapy scheme is ineffective.

Scenario A occurred when θ3 took on values that were at least 15% smaller than the

nominal value given in (Liu et al., 2015), or when θ5 took on values that were at least

30% smaller than the nominal value given in (Liu et al., 2015); no variations in either

θ4 or θ6 lead to such scenario. On the other hand, Scenario B occurred when θ3 took

on values that were at least 15% higher than the nominal value given in (Liu et al.,
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2015), or when θ4 took on values that were at least 10% higher than the nominal

value given in (Liu et al., 2015), or when θ5 took on values that were at least 30%

higher than the nominal value given in (Liu et al., 2015), or when θ6 took on values

that were at least 10% smaller than the nominal value given in (Liu et al., 2015).

In practical terms, the above results reinforce the importance of customizing treat-

ment schemes to individual patients. In fact, if the optimal IAS therapy (designed

using the model of Patient #15) were applied to a new patient whose HSC population

dynamics are slower than those of Patient #15 (i.e., the new patient’s HSC prolifer-

ation constant is at least 15% smaller than that of Patient #15; or the new patient’s

HSC apoptosis constant is at least 30% smaller than that of Patient #15), then the

size of the new patient’s tumor would remain stable and under control after at most

two treatment cycles. On the other hand, if the optimal IAS therapy (designed using

the model of Patient #15) were applied to a new patient whose HSC population dy-

namics are faster than those of Patient #15, then the size of the new patient’s tumor

would grow uncontrollably.

In our second set of simulations, we let θ1 and θ2 take suboptimal values and

once again vary the values of θi, i = 3, . . . , 6 (one at a time). Table 6.2 presents

the sensitivity of the model parameters, dL
dθi

, i = 3, . . . , 6, around the suboptimal

configuration [θ1, θ2] = [7.5, 15.0] for the values of θ1, i = 3, . . . , 6, fitted to the model

of Patient #15 in (Liu et al., 2015).

Once again, the effect of changes in θi, i = 3, . . . , 6, on the sensitivity of model
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Table 6.2: Sensitivity of model parameters around a suboptimal ther-
apy configuration

dL
dθ3

dL
dθ4

dL
dθ5

dL
dθ6

17.78 0.014 −17.15 −0.016

parameters was analyzed. Scenario A occurred when θ3 took on values that were at

least 10% smaller than the nominal value given in (Liu et al., 2015), or when θ5 took

on values that were at least 20% larger than the nominal value given in (Liu et al.,

2015); no variations in either θ4 or θ6 lead to such scenario. Moreover, Scenario B did

not emerge in any of the simulations performed under this suboptimal configuration.

In our third set of simulations, we investigate the behavior of the model parameter

sensitivities, dL
dθi

, i = 3, . . . , 6, across different PSA threshold settings. In particular,

we study how the sensitivity values change as we move from an optimal therapy

setting towards various suboptimal settings. For such, we let θi, i = 3, . . . , 6, take the

nominal values given in (Liu et al., 2015) and vary the values of the lower and upper

PSA thresholds along
[
θmin

1 , θmax
1

]
and

[
θmin

2 , θmax
2

]
, respectively.

Figures 6·1-6·4 show how the values of the sensitivities dL
dθi

, i = 3, . . . , 6, vary as a

function of the values of the lower and upper PSA thresholds (θ1 and θ2, respectively)

for the model of Patient #15.

Figures 6·5-6·8 show how the values of the sensitivities dL
dθi

, i = 3, . . . , 6, vary as a

function of the values of the lower and upper PSA thresholds (θ1 and θ2, respectively)

for the model of Patient #1.

The above results lend themselves to the following discussion: first, the values
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Figure 6·1: Sensitivity of θ3 as a function of the values of θ1 and θ2

(Patient #15)

of the model parameter sensitivities, dL
dθi

, i = 3, . . . , 6, are neither monotonically

increasing nor monotonically decreasing along the allowable ranges of θ1 and θ2; this

is verified for both patients. Second, the system is more sensitive to parameters θ3

and θ5 (HSC proliferation and apoptosis constants, respectively), and more robust

to θ4 and θ6 (CRC proliferation and apoptosis constants, respectively); again this is

verified across different patients. A possible explanation for this has to do with the

fact that HSCs are commonly assumed to be the dominant subpopulation is a prostate

tumor undergoing IAS therapy, which means that the size of the this subpopulation

has a greater impact on the overall size of the tumor and, consequently, on the value

of the PSA level.

Additionally, note that two points are marked in Figures 6·1-6·5: a star marks

the optimal therapy configuration and a square marks the values of θ1 and θ2 for
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Figure 6·2: Sensitivity of θ4 as a function of the values of θ1 and θ2

(Patient #15)

which the sensitivities dL
dθi

, i = 3, . . . , 6, are minimal. In Section 5.3, the optimal

therapy configurations were found to be [θ∗1, θ
∗
2] = [1.5, 8.0] for Patient #15 and

[θ∗1, θ
∗
2] = [2.5, 8.0] for Patient #1. As it can be seen in Figures 6·1-6·5, these settings

are not located in the regions of minimum sensitivities. Of note, the sensitivities dL
dθi

,

i = 3, . . . , 6, take their minimum value at the same suboptimal configuration (namely

[θ1, θ2] = [7.5, 8.0]) across different patients. This could potentially point to the

existence of an underlying, and most likely as of yet poorly understood, equilibrium

of cancer cell subpopulation dynamics at this suboptimal setting.

Moreover, the tradeoff between system fragility and optimality seems more strongly

applicable to θ1, and less so to θ2; interestingly, the value of θ∗1 differed across patients,

while θ∗2 did not. In this sense, relaxing the optimality condition in favor of increased

system robustness could potentially be worthwhile in at least some cases. In fact, for
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Figure 6·3: Sensitivity of θ5 as a function of the values of θ1 and θ2

(Patient #15)

Patient #1, moving from an optimal therapy setting to a slightly suboptimal setting

along θ2 (namely [θ1, θ2] = [2.5, 9.0]) leads to a 9% increase in the cost of treatment.

However, the model parameter sensitivities at this setting decrease by approximately

30% for θ3 and θ5 and by approximately 70% for θ4 and θ6. If we move to a subopti-

mal setting along θ1 (namely [θ1, θ2] = [3.5, 8.0]), the cost increases by 16%, while the

sensitivities decrease by approximately 50% for θ3 and θ5 and by approximately 90%

for θ4 and θ6. In this case, it seems advantageous to tradeoff optimality for increased

robustness.

It is interesting to note that the above analysis is not consistently verified across

different patients. In fact, for Patient #15, a marked decrease in system fragility only

occurs when we move to a suboptimal setting along θ1 (namely [θ1, θ2] = [7.5, 8.0]),

at which point the sensitivities decrease by approximately 70% for θ3 and θ5 and by
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Figure 6·4: Sensitivity of θ6 as a function of the values of θ1 and θ2

(Patient #15)

approximately 99% for θ4 and θ6. However, there is an increase in the cost value of the

order of 70%, which indicates that system optimality is significantly compromised.

These results highlight the importance of applying our methodology on a patient-by-

patient basis. More generally, they validate recent efforts favoring the development of

personalized cancer therapies, as opposed to traditional treatment schemes that are

typically generated over a cohort of patients and thus effective only on average.
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Figure 6·5: Sensitivity of θ3 as a function of the values of θ1 and θ2

(Patient #1)

Figure 6·6: Sensitivity of θ4 as a function of the values of θ1 and θ2

(Patient #1)
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Figure 6·7: Sensitivity of θ5 as a function of the values of θ1 and θ2

(Patient #1)

Figure 6·8: Sensitivity of θ6 as a function of the values of θ1 and θ2

(Patient #1)
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Chapter 7

Conclusion

In the first part of this work, we modeled a single traffic light intersection as a Stochas-

tic Flow Model (SFM) and formulated the corresponding Traffic Light Control (TLC)

problem within a quasi-dynamic control setting to which Infinitesimal Perturbation

Analysis (IPA) techniques were applied in order to derive gradient estimates of a cost

metric with respect to controllable parameters of interest. We initially defined the

controllable parameters to be the queue content threshold values and, by incorporat-

ing the corresponding IPA estimators into a gradient-based optimization algorithm,

obtained a considerable reduction in the mean queue content of both roads with

respect to a static IPA-based control approach. We subsequently derived IPA es-

timators necessary for simultaneously controlling the light cycle lengths and queue

content thresholds. By applying this methodology to a simulated urban setting con-

sisting of an isolated intersection, we were able to consistently reduce traffic build-up

by approximately half of that under static control.

The second part of this work entailed the problem of controlling cancer progres-

sion and its formulation within a Stochastic Hybrid Automaton (SHA) framework.

Leveraging the fact that cell-biologic changes necessary for cancer development may
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be schematized as a series of discrete steps, we proposed an integrative closed-loop

framework for describing the progressive development of cancer and determining op-

timal personalized therapies. Our contributions to this end were twofold: first, we

addressed the problem of cancer heterogeneity by proposing a novel Mixed Inte-

ger Linear Program (MILP) formulation that integrated somatic mutation and gene

expression data. We tested this formulation using both simulated and real breast

cancer data from The Cancer Genome Atlas (TCGA). By applying our MILP, we

were able to infer the order in which genes mutate and, simultaneously, the changes

they produce at the gene expression level during cancer progression. Additionally, we

identified known causal relationships between mutations and gene expression changes

in important breast cancer pathways. Second, we proposed a methodology appli-

cable to stochastic models of cancer progression and illustrated our analysis with a

case study of optimal Intermittent Androgen Suppression (IAS) therapy design for

advanced prostate cancer. We developed a threshold-based policy for optimal IAS

therapy design that is parameterized by lower and upper Prostate-Specific Antigen

(PSA) threshold values and is associated with a cost metric that combines clinically

relevant measures of therapy success. Results obtained by applying this methodology

to clinical data from real prostate cancer patients suggest that optimal IAS treatment

schemes are those in which both the lower and upper PSA thresholds take values as

small as possible.

We subsequently extended our analysis to explore the tradeoff between system
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optimality and robustness (or, equivalently, fragility), thus providing valuable insights

on modeling and control of cancer progression. We performed sensitivity analysis with

regards to the proliferation and apoptosis constants of the Hormone Sensitive Cell

(HSC) and Castration Resistant Cell (CRC) subpopulations and found the system to

be more sensitive to changes in the HSC constants than changes in the CRC constants.

Moreover, we also identified a set of model parameter values for which the simulated

IAS therapy scheme is essentially curative, as well as a set of parameter values for

which the prostate tumor grows in an uncontrollable manner. Finally, assuming

that an underlying, and most likely poorly understood, equilibrium of cancer cell

subpopulation dynamics exists at suboptimal therapy settings, we found that relaxing

the optimality condition in favor of increased robustness to modeling errors provides

an alternative objective to therapy design for at least some patients.

7.1 Future Directions

In what follows, an outline is given of future research possibilities that extend the

work presented in this thesis.

Quasi-dynamic TLC. Possible future research directions include extending the

proposed controller to incorporate bidirectional and left/right turn traffic, as

well as acceleration/deceleration due to light switches. Assuming that traf-

fic lights can communicate with each other, it is also possible to extend our

methodology to a network of multiple intersections, in which a downstream
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light is endowed with the ability to predict an impending flow of vehicles and

adjust its light cycle within the proposed quasi-dynamic framework. Finally, it

is worth acknowledging the emergence of a virtual traffic light setting (Dressler

et al., 2014), in which case IPA techniques are equally applicable to the switch-

ing control of a virtual rather than actual traffic light.

Modeling and Control of Cancer Progression. Possible future research direc-

tions include extending our MILP formulation to other sets of genes of interest,

as well as other types of cancer. For instance, cancer data sets that provide

somatic mutation and gene expression measurements of the same patient, such

as TCGA colorectal cancer, glioblastoma, lung squamous cell carcinoma, and

ovarian cancer could be analyzed. It would also be worthwhile to leverage the

temporal sequence of events proposed by our MILP formulation by correlating

it with additional patient data. In particular, it would be interesting to study

whether meaningful correlations can be detected between our proposed phases

of cancer progression and e.g., patient survival rates. Moreover, it is also pos-

sible to extend the SHA framework presented in Chapter 5 to analyze different

potentially interesting controllable parameters, such as different drugs and/or

dosages, in order to yield information on the effect of e.g., mixing different med-

ication components or timing therapy periods, on the overall effectiveness of the

treatment. Given that there exist several other potentially critical parameters

in our SHA model of prostate cancer evolution, extending the sensitivity anal-
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ysis study to other model parameters constitutes an additional future research

topic. Finally, it would also be interesting to extend our methodology not only

to other types of cancer, but also to other diseases that are known to progress

in stages (e.g., tuberculosis).
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Appendix A

IPA for Stochastic Hybrid Systems

We present here an introduction to Infinitesimal Perturbation Analysis (IPA) in

the setting of Stochastic Hybrid Systems (SHS), as introduced in (Wardi et al.,

2010),(Cassandras et al., 2010). Since an SHS is frequently described by means of a

Stochastic Hybrid Automaton (SHA), we begin by defining an SHA and then proceed

to contextualize the use of IPA within this framework.

An SHA may be obtained from a timed automaton with guards by replacing its

clock structure with time-driven dynamics characterizing continuous state variables

(Cassandras and Lafortune, 2008). There are generally several ways in which we can

incorporate randomness into a hybrid automaton model: we may describe the time-

driven dynamics through stochastic differential equations; we may define a stochastic

clock structure for the events that control discrete state transitions; we may determine

the next mode (resulting from a state transition) probabilistically. In this context,

an SHA is defined as the eleventuple

G = (Q,X,E, U, f, φ, Inv, guard, ρ, q0,x0)

where
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Q ⊂ Z+ is a set of discrete states;

X is a continuous state space;

E is a finite set of events;

U is a set of admissible controls;

f is a continuous vector field, f : Q×X × U → X;

φ is a discrete state transition function, φ : Q×X × E → Q;

Inv is a set defining an invariant condition, Inv ⊆ Q×X × U ;

guard is a set defining a guard condition, guard ⊆ Q×Q×X;

ρ is a reset function, ρ : Q×Q×X × E → X;

q0 is an initial discrete state;

x0 is an initial continuous state.
Let us define θ ∈ Θ to be the control parameter vector of G, where Θ ⊂ Rn is

a compact and convex set. As such, θ may denote a system design parameter, a

parameter of the underlying stochastic processes, or a parameter that characterizes

the system’s control policy. In the ensuing analysis, we assume that all stochastic

processes are defined over a common probability space (Ω, F, P ). For any given value

of θ, we can generate a sample path of the SHS, denoted by ω ∈ Ω, over a time

interval [0, T ]. We can further denote the event times on this sample path ω by

τk (θ, ω), k = 1, 2, . . ., which we will write as τk when no confusion arises. Over any

interevent interval [τk, τk+1) the system remains at a given state qk ∈ Q and evolves

according to continuous dynamics of the form

·
x = fk (x, u, θ, t) (A.1)

where
·
x ≡ dx

dt
. In this context, IPA efficiently captures how changes in θ affect the

event times and the state of the SHA, and can ultimately be used to infer the effect
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that a perturbation in θ will have on the system’s performance.

When an event takes place at time τk+1, the system enters a new state qk+1,

but such discrete state transition may not be accompanied by a change in the sys-

tem’s continuous dynamics. For instance, the system’s performance may be measured

differently in state qk+1, while fk+1 = fk. Furthermore, the interactions between time-

driven and event-driven system dynamics depend not only on the event times, but

also on the types of events that occur. In the case of a linearized system, such in-

teractions will be shown to depend on the derivatives of the event times with respect

to the control parameters, i.e. ∂τk
∂θ

. Due to the fact that variations in θ may change

the sequence of events, such event time derivatives are generally not continuous in θ

for all θ ∈ Θ. Nevertheless, it is shown in (Cassandras and Lafortune, 2008) that the

derivatives ∂τk
∂θ

exist w.p.1 under mild technical conditions, and we will discuss this

in greater depth further on.

Now consider the performance function of the control parameter θ to be

J(T, θ, x(0, θ)) = Eω [L(T, θ, x(0, ω), ω)] (A.2)

where L(T, θ, x(0, ω), ω) is a sample cost function of interest evaluated over [0, T ]

with initial conditions x(0, ω). For notational simplicity, we will write L(θ) and J(θ).

Let us further assume that all underlying input stochastic processes are piecewise
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continuously differentiable w.p. 1, so that we can write

L(θ) =
N∑
k=0

τk+1∫
τk

Lk(t, x, θ)dt (A.3)

where N corresponds to the number of events occurring in the interval [0, T ], so

that τ0 = 0 and τN+1 = T . At this point it is important to mention that it is also

possible to consider free-time cost functions, and that we restrict our analysis of J(θ)

to a finite horizon T for simplicity. We also note that it is infeasible to derive a

closed-from expression of J(θ) without full knowledge of the random processes that

characterize the discrete or continuous disturbance inputs in the SHA model. As a

result, the search for optimality must be driven by estimates of the cost function

gradient with respect to the parameter of interest, i.e. we must rely on estimating

dJ(θ)
dθ

based on sample path data. Such gradient estimates can then be used to improve

current operating conditions or (under certain conditions) to compute an optimal θ∗

through an iterative optimization algorithm of the form

θn+1 = θn − ρnHn (θn, x(0, θ), T, ωn) , n = 0, 1, . . . (A.4)

where ρn is the step size at the nth iteration and ωn denotes a sample path from

which data are extracted and used to compute Hn (·), which is an estimate of dJ(θ)
dθ

.

The success of the IPA approach relies, however, on the unbiasedness of dL(θ)
dθ

, i.e. on

the following condition:

E

[
dL(θ, ω)

dθ

]
=
dE [L(θ, ω)]

dθ
=
dJ(θ)

dθ
(A.5)
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In the case of an SHS, the unbiasedness condition (A.5) is guaranteed under the

following assumptions:

Assumption A.1 W.p. 1 all underlying input stochastic processes are piecewise

analytic in the interval [0, T ].

Assumption A.2 W.p. 1 and for every θ ∈ Θ, two events cannot occur at exactly

the same time, unless the occurrence of one causes the other to take place at the same

time.

Assumption A.3 W.p. 1 there is a finite number of events observed in the sample

path.

Throughout the work presented in this thesis, we assume that the above assump-

tions hold, so that our IPA estimators are unbiased estimators of dJ(θ)
dθ

. Let us then

denote the state and event time derivatives with respect to parameter θ as

x′ (θ, t) ≡ ∂x (t, θ)

∂θ
, τ ′k (θ) ≡ ∂τk (θ)

∂θ
, k = 0, . . . , N (A.6)

Although θ is included as an argument in the expressions above to stress the

dependence on the control parameter, we will subsequently drop this for ease of

notation as long as no confusion arises. The dynamics of x (t) are fixed over any

interevent interval [τk, τk+1), so that taking derivatives of (A.1) with respect to θ

yields

d

dt
x′ (t) =

∂fk (t)

∂x
x′ (t) +

∂fk (t)

∂θ
(A.7)

with the following boundary condition (Cassandras et al., 2010):

x′
(
τ+
k

)
= x′

(
τ−k
)

+
[
fk−1

(
τ−k
)
− fk

(
τ+
k

)]
· τ ′k (A.8)
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when x(θ, t) is continuous in t at t = τk. Otherwise,

x′(τ+
k ) =

dρ (q, q′, x, e)

dθ
(A.9)

where ρ (q, q′, x, e) is the reset function defined in (A).

Given the initial condition x′
(
τ+
k

)
, it is possible to solve (A.7) and thus compute

the linearized state trajectory x′ (t) over [τk, τk+1) as follows:

x′(t) = e
t
τk

∂fk(s)

∂x
ds

 t∫
τk

∂fk (v)

∂θ
e−

v
τk

∂fk(τ)

∂x
dτdv + x′

(
τ+
k

) (A.10)

In order to evaluate (A.8), we must first determine τ ′k, whose expression depends

on the type of event that takes place at time τk. As detailed in (Cassandras et al.,

2010), the following three types of events are defined for a general SHS:

(i) Exogenous Events. These events are typically associated with the occurrence

of uncontrolled random changes in the input processes. Exogenous events cause a

discrete state transition which is independent of parameter θ and, as a result,

τ ′k = 0 (A.11)

(ii) Endogenous Events. In this case, there exists a continuously differentiable

function gk : R+ ×X ×Θ→ R such that τk = min {t > τk−1 : gk (t, x, θ) = 0}, where

the function gk usually corresponds to a guard condition in a hybrid automaton.

Taking derivatives with respect to θ, it is straightforward to obtain

τ ′k = −
[
∂gk
∂x

fk−1

(
τ−k
)]−1(

∂gk
∂θ

+
∂gk
∂x

x′
(
τ−k
))

(A.12)
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with ∂gk
∂x
fk−1

(
τ−k
)
6= 0.

(iii) Induced Events. Such an event occurs at time τk if it is triggered by the

occurrence of another event at time τm ≤ τk, so that the expression of τ ′k depends on

that of τ ′m (details can be found in (Cassandras et al., 2010)).

As a result, IPA estimators of dJ(θ)
dθ

may be obtained by differentiating (A.3) with

respect to θ as follows:

dL(θ)

dθ
=

N∑
k=0

d

dθ

τk+1

τk

Lk(t, x, θ)dt

so that, applying the Leibnitz rule for k = 0, . . . , K, we obtain

dL(θ)
dθ

=
N∑
k=0

[
Lk(τk+1, x, θ)τ

′
k+1 − Lk(τk, x, θ)τ ′k

]
+

N∑
k=0

τk+1

τk

[
∂Lk
∂x

(t, x, θ)x′(t) + ∂Lk
∂θ

(t, x, θ)
]
dt

(A.13)

In the case of an SHS, the IPA estimator given by (A.13) can often be greatly

simplified. For one, under the conditions given in Lemma A.1 (Yao and Cassandras,

2011b), only the first part of (A.13) needs to be computed. Additionally, if Lemma A.2

is also satisfied, it may be possible to evaluate x′
(
τ+
k

)
without knowledge of the state

trajectory prior to time τk. Finally, as will be discussed later, the perturbation process

may eventually be reset, meaning that the effect of θ is forgotten, i.e. x′
(
τ+
k

)
= 0,

which considerably simplifies the bookkeeping required for computing the gradient

estimate.

Lemma A.1 If condition (i) or (ii) below holds, dL(θ)
dθ

depends only on information

available at even times τk, k = 0, . . . , K:
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(i) Lk(t, x, θ) is independent of t over [τk, τk+1) for all k = 0, . . . , N .

(ii) Lk(t, x, θ) is only a function of x and the following condition holds for all

t ∈ [τk, τk+1), k = 0, . . . , N :

d

dt

∂lk
∂x

=
d

dt

∂fk
∂x

=
d

dt

∂fk
∂θ

= 0

Lemma A.2 Suppose an endogenous event with switching function gk (x, θ) occurs

at event time τk. If fk
(
τ+
k

)
= 0, then x′

(
τ+
k

)
is independent of fk−1. If, in addition,

∂gk
∂θ

= 0, we have that x′
(
τ+
k

)
= 0.
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Appendix B

IPA Algorithm for TLC with Fixed Light

Cycles

The IPA algorithm developed for the TLC problem with fixed light cycle lengths is

presented below.

if EVENT ζ1

1. Estimate α1 (τk)

2. Compute event time derivatives

τ ′k,1 =
1−x′1,1(τ−k )

α1(τk)

τ ′r,2 = −x′1,2(τ−k )

α1(τk)

3. Check conditions for light switch (R2G1/G2R2)

if x1 ≥ s1 and x2 < s2 and z2 > θ2,min

3.1. Update σ-dynamics

σ′j,1 = τ ′k,1

σ′j,2 = τ ′k,2

3.2. Update state derivatives

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)

+ h1.σ
′
j,1
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x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)

+ h1.σ
′
j,2

if road 2 in NEP

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)
− h2.σ

′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)
− h2.σ

′
j,2

if road 2 in EP

Estimate α2 (τk)

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)
− α2 (τk) .σ

′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)
− α2 (τk) .σ

′
j,2

if EVENT ζ2

1. Estimate α2 (τk)

2. Compute event time derivatives

τ ′k,1 = −x′2,1(τ−k )

α2(τk)

τ ′r,2 =
1−x′2,2(τ−k )

α2(τk)

3. Check conditions for light switch (G2R1/R2G2)

if x1 < s1 and x2 ≥ s2 and z1 > θ1,min

3.1. Update σ-dynamics

σ′j,1 = τ ′k,1

σ′j,2 = τ ′k,2

3.2. Update state derivatives
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if road 1 in NEP

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)
− h1.σ

′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)
− h1.σ

′
j,2

if road 1 in EP

Estimate α1 (τk)

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)
− α1 (τk) .σ

′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)
− α1 (τk) .σ

′
j,2

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)

+ h2.σ
′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)

+ h2.σ
′
j,2

if EVENT γ1

1. Estimate α1 (τk)

2. Compute event time derivatives

τ ′k,1 =
1−x′1,1(τ−k )

α1(τk)−h1

τ ′r,2 = − x′1,2(τ−k )

α1(τk)−h1

3. Check conditions for light switch (G2R1/R2G2)

if x1 < s1 and x2 ≥ s2 and z1 > θ1,min

3.1. Update σ-dynamics

σ′j,1 = τ ′k,1

σ′j,2 = τ ′k,2

3.2. Update state derivatives
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x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)
− h1.σ

′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)
− h1.σ

′
j,2

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)

+ h2.σ
′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)

+ h2.σ
′
j,2

if EVENT γ2

1. Estimate α2 (τk)

2. Compute event time derivatives

τ ′k,1 = − x′2,1(τ−k )

α2(τk)−h2

τ ′r,2 =
1−x′2,2(τ−k )

α2(τk)−h2

3. Check conditions for light switch (R2G1/G2R2)

if x1 ≥ s1 and x2 < s2 and z2 > θ2,min

3.1. Update σ-dynamics

σ′j,1 = τ ′k,1

σ′j,2 = τ ′k,2

3.2. Update state derivatives

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)

+ h1.σ
′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)

+ h1.σ
′
j,2

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)
− h2.σ

′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)
− h2.σ

′
j,2



174

if EVENT λ1

1. Check conditions for light switch (G2R1/R2G2)

if x1 < s1 and x2 ≥ s2 and z1 > θ1,min

1.1. No change to σ-dynamics

σ′j,1 = σ′j−1,1

σ′j,2 = σ′j−1,2

1.2. Update state derivatives

if road 1 in NEP

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)
− h1.σ

′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)
− h1.σ

′
j,2

if road 1 in EP

Estimate α1 (τk)

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)
− α1 (τk) .σ

′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)
− α1 (τk) .σ

′
j,2

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)

+ h2.σ
′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)

+ h2.σ
′
j,2

if EVENT λ2

1. Check conditions for light switch (R2G1/G2R2)

if x1 ≥ s1 and x2 < s2 and z2 > θ2,min
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1.1. No change to σ-dynamics

σ′j,1 = σ′j−1,1

σ′j,2 = σ′j−1,2

1.2. Update state derivatives

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)

+ h1.σ
′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)

+ h1.σ
′
j,2

if road 2 in NEP

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)
− h2.σ

′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)
− h2.σ

′
j,2

if road 2 in EP

Estimate α2 (τk)

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)
− α2 (τk) .σ

′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)
− α2 (τk) .σ

′
j,2

if EVENT µ1 (G2R1/R2G2)

1. No change to σ-dynamics

σ′j,1 = σ′j−1,1

σ′j,2 = σ′j−1,2

2. Update state derivatives

if road 1 in NEP
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x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)
− h1.σ

′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)
− h1.σ

′
j,2

if road 1 in EP

Estimate α1 (τk)

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)
− α1 (τk) .σ

′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)
− α1 (τk) .σ

′
j,2

if road 2 in NEP

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)

+ h2.σ
′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)

+ h2.σ
′
j,2

if road 2 in EP

Estimate α2 (τk)

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)

+ α2 (τk) .σ
′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)

+ α2 (τk) .σ
′
j,2

if EVENT µ2 (R2G1/G2R2)

1. No change to σ-dynamics

σ′j,1 = σ′j−1,1

σ′j,2 = σ′j−1,2

2. Update state derivatives

if road 1 in NEP
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x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)

+ h1.σ
′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)

+ h1.σ
′
j,2

if road 1 in EP

Estimate α1 (τk)

x′1,1
(
τ+
k

)
= x′1,1

(
τ−k
)

+ α1 (τk) .σ
′
j,1

x′1,2
(
τ+
k

)
= x′1,2

(
τ−k
)

+ α1 (τk) .σ
′
j,2

if road 2 in NEP

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)
− h2.σ

′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)
− h2.σ

′
j,2

if road 2 in EP

Estimate α2 (τk)

x′2,1
(
τ+
k

)
= x′2,1

(
τ−k
)
− α2 (τk) .σ

′
j,1

x′2,2
(
τ+
k

)
= x′2,2

(
τ−k
)
− α2 (τk) .σ

′
j,2
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Appendix C

Mathematical Proofs

C.1 Chapter 2

C.1.1 Proof of Lemma 2.1

We begin with a G2R light switching event. This event is induced by one of four

possible endogenous events, which we analyze separately in what follows.

1. Event ζ1 occurs at time σj. In this case, a G2R2 event occurs, hence also an

R2G1 event. Since road 1 must be undergoing a RED cycle within an NEP, it follows

from (A.12) with gj = x1 − s1 and (2.6) that σ′j,1 =
1−x′1,1(σ−j )

α1(σj)
and σ′j,2 =

−x′1,2(σ−j )

α1(σj)
.

2. Event ζ2 occurs at time σj. This results in aG2R1 event and the same reasoning

as above applies to verify that σ′j,1 =
−x′2,1(σ−j )

α2(σj)
and σ′j,2 =

1−x′2,2(σ−j )

α2(σj)
.

3. Event γ1 occurs at time σj. This results in a G2R1 event. Moreover, since this

a light switching event, it follows from (2.3) that x1(σ−j ) > s1 and x1(σj) = s1, which

means that road 1 must be in an NEP with β1(σj) > 0. As a result, it follows from

(A.12) with gj = x1 − s1 and (2.6) that σ′j,1 =
1−x′1,1(σ−j )

α1(σj)−h1(σj)
and σ′j,2 =

−x′1,2(σ−j )

α1(σj)−h1(σj)
.

4. Event γ2 occurs at time σj. This results in a G2R2 event and the same

reasoning as above applies to verify that σ′j,1 =
−x′2,1(σ−j )

α2(σj)−h2(σj)
and σ′j,2 =

1−x′1,2(σ−j )

α2(σj)−h2(σj)
.

5. Event λn, n = 1, 2, occurs at time σj. Let ∆j = σj − σj−1, j = 1, 2, . . ., where
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(without loss of generality) we set σ0 = 0. Therefore, we can write σj = σj−1 + ∆j,

j = 1, 2, . . . Recall that, by definition, whenever a light switching event is induced by

λn we must have ∆j = θn,min, which is independent of s1, s2. Therefore, σ′j,i = σ′j−1,i

for all j = 1, 2, . . . and i = 1, 2.

6. Event µn, n = 1, 2, occurs at time σj. This is similar to the previous case with

∆j = θn,max and once again we have σ′j,i = σ′j−1,i for all j = 1, 2, . . . and i = 1, 2.

This concludes the proof for a G2Rn light switching event. The analysis for an

R2Gn event is similar, due to the fact that the end of a RED cycle on road n (R2Gn

event) must coincide with the start of a RED cycle on road n (G2Rn event).

C.2 Chapter 3

C.2.1 Proof of Lemma 3.1

We begin by considering the occurrence of a G2Rn light switching event, which may

be induced by one of four different endogenous events. Each of these cases will be

analyzed separately in what follows.

1. Event ζ1 occurs at time σj

This is an endogenous event with gj = x1−s1 = 0, so that
∂gj
∂x1

= 1,
∂gj
∂υ5

= −1, and

all remaining partial derivatives are equal to zero. Since x1(σ−j ) < s1 and x1(σ+
j ) = s1,

road 1 is necessarily in NEP when this event takes place. Furthermore, the fact that

road 1 is undergoing a RED cycle at time σ−j but will be undergoing a GREEN cycle

at σ+
j means that f1,j−1(σ−j ) = α1(σj) and f1,j(σ

+
j ) = α1(σj)− h1(σj). As a result, it
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is simple to verify that (A.12) reduces to

σ′j,i =


1−x′1,i(σ

−
j )

α1(σj)
if i = 5

−x′1,i(σ
−
j )

α1(σj)
otherwise

(C.1)

2. Event ζ2 occurs at time σj

This is an endogenous event with gj = x2 − s2 = 0, resulting in a G2R1 event.

The same reasoning as above applies to verify that (A.12) becomes

σ′j,i =


1−x′2,i(σ

−
j )

α2(σj)
if i = 6

−x′2,i(σ
−
j )

α2(σj)
otherwise

(C.2)

3. Event γ1 occurs at time σj

This is an endogenous event with gj = x1 − s1 = 0, resulting in a G2R1 event.

In order for this event to take place at time σj, we must have x1(σ−j ) > s1 and

x1(σ+
j ) = s1, which means that road 1 must be in an NEP with outflow. Furthermore,

the occurrence of this event will only induce a light switch if x2(σj) ≥ s2, which means

that road 2 must also be in NEP at σj. Since road 1 is undergoing a GREEN cycle

at time σ−j but will be undergoing a RED cycle at σ+
j , we will have that f1,j−1(σ−j ) =

α1(σj)− h1(σj) and f1,j(σ
+
j ) = α1(σj). As a result, (A.12) can be seen to become

σ′j,i =


1−x′1,i(σ

−
j )

α1(σj)−h1(σj)
if i = 5

− x′1,i(σ
−
j )

α1(σj)−h1(σj)
otherwise

(C.3)

4. Event γ2 occurs at time σj

This is an endogenous event with gj = x2 − s2 = 0, resulting in a G2R2 event.
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The same reasoning as above applies to verify that (A.12) reduces to

σ′j,i =


1−x′2,i(σ

−
j )

α2(σj)−h2(σj)
if i = 6

− x′2,i(σ
−
j )

α2(σj)−h2(σj)
otherwise

(C.4)

5. Event λ1 occurs at time σj

This is an endogenous event with gj = z1 − θ1,min = 0, resulting in a G2R1 event.

Let τp be the time of occurrence of the last R2G1 event before λ1 takes place at time

σj. We have shown that d
dt
z′1,i (t) = 0, i = 1, . . . , 6 and it thus follows that z′1,i(σ

−
j ) =

z′1,i(τ
+
p ). Furthermore, the fact that road 1 is undergoing a RED cycle at time τ−p but

will be undergoing a GREEN cycle at τ+
p means that f1,p−1(τ−p ) = 0 and f1,p(τ

+
p ) = 1.

Let also τr be the time of occurrence of the last G2R1 event before τp, so that we

will have that z′1,i(τ
−
p ) = z′1,i(τ

+
r ). Since z1(t) is reset to zero whenever a G2R1 event

takes place, we will have that z′1,i(τ
+
r ) = 0. As a result, (A.8) can be easily seen to

yield z′1,i(τ
+
p ) = −τ ′p,i, i = 1, . . . , 6. Using a similar reasoning to the one applied for

determining the change in state dynamics due to an R2G1 event at τp, it is simple to

verify that f1,j−1(σ−j ) = 1 and f1,j(σ
+
j ) = 0. By substituting these expressions into

(A.12), and recalling that τp = σj−1, we obtain

σ′j,i =

{
1 + σ′j−1,1 if i = 1

σ′j−1,1 otherwise
(C.5)

6. Event λ2 occurs at time σj

This is an endogenous event with gj = z2 − θ2,min = 0, resulting in a G2R2 event.

Let τr be the time of occurrence of the last G2R1 event before λ2 takes place at time
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σj. The same reasoning as above applies to verify that z′2,i(σ
−
j ) = z′2,i(τ

+
r ), i = 1, . . . , 6.

Furthermore, since light switches are coupled, road 2 is undergoing a RED cycle at

time τ−r but will be undergoing a GREEN cycle at τ+
r , so that f2,r−1(τ−r ) = 0 and

f2,r(τ
+
r ) = 1. As a result, (A.8) can be easily seen to yield z′2,i(τ

+
r ) = −τ ′r,i. By

substituting these expressions into (A.12), and recalling that τp = σj−1, we obtain

σ′j,i =

{
1 + σ′j−1,1 if i = 3

σ′j−1,1 otherwise
(C.6)

7. Event µ1 occurs at time σj

This is an endogenous event with gj = z1 − θ1,max = 0, resulting in a G2R1 event.

The same reasoning as in case 5 applies to verify that (A.12) reduces to

σ′j,i =

{
1 + σ′j−1,1 if i = 2

σ′j−1,1 otherwise
(C.7)

8. Event µ2 occurs at time σj

This is an endogenous event with gj = z2 − θ2,max = 0, resulting in a G2R2 event.

The same reasoning as in case 6 applies to verify that (A.12) reduces to

σ′j,i =

{
1 + σ′j−1,1 if i = 4

σ′j−1,1 otherwise
(C.8)

This concludes the proof for a G2Rn light switching event. The analysis for an

R2Gn event is similar, due to the fact that the end of a RED cycle on road n (R2Gn

event) must coincide with the start of a RED cycle on road n (G2Rn event).
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C.3 Chapter 5

C.3.1 Proof of Lemma 5.1

We begin with an occurrence of event e1 which causes a transition from state qON to

state qOFF at time τj. This implies that gj(x, θ) = x1 + x2 − θ1 = 0. As a result,

∂gk
∂x1

= ∂gk
∂x2

= 1, ∂gk
∂x3

= ∂gk
∂zi

= ∂gk
∂θ2

= 0, i = 1, 2, and ∂gk
∂θ1

= −1, and it is simple to verify

that (6.48) follows from (A.12).

Next, consider event e2 at time τj, leading to a transition from state qOFF to state

qON . In this case, gj(x, θ) = x1 + x2 − θ2 = 0, so that ∂gk
∂x1

= ∂gk
∂x2

= 1, ∂gk
∂x3

= ∂gk
∂zi

=

∂gk
∂θ1

= 0, i = 1, 2, and ∂gk
∂θ2

= −1. Substituting into (A.12) once again yields (6.48).

C.3.2 Proof of Theorem 5.1

We assume, without loss of generality, that the start of our sample path will coin-

cide with the start of the first on-treatment period. Note also that we choose to

end our sample path at time T , and that this choice is independent of θi, i = 1, 2.

Consequently, we will have [0, T ] ≡ [ξ1, ηKT ], which implies that ∂ξ1
∂θi

=
∂ηKT
∂θi

= 0,

i = 1, 2. Recall that the sample path of our SHA will consist of alternating on and

off-treatment periods.

Since z1(t) = 0 when q(t) = qOFF , we can rewrite (5.12) as

L (θ, x(0), z(0), T ) = W
T

KT∑
k=1

∫ ηk
ξk

[
x1(θ,t)+x2(θ,t)

PSAinit

]
dt

+ (1−W )
T

[
MT∑
m=1

∫ ηm
ξm

z1(t)
T
dt+

∫ T
ξMT+1

z1(t)
T
dt

] (C.9)

Note that our sample path can either (a) end with an incomplete on-treatment
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period, or (b) end with an incomplete off-treatment period. In (C.9), we assume

that (a) holds, since (b) is a special case of (a) for which
∫ T

0
z1(t)
T
dt =

MT∑
m=1

∫ ηm
ξm

z1(t)
T
dt.

Observe that the end of an on-treatment period is coupled with the start of the

subsequent off-treatment period, i.e., xi (ηk) = xi (ξk+1), i = 1, 2, k = 1, . . . , KT − 1.

Using this notation and taking the derivative of (C.9) yields

dL(θ)
dθi

= W
T ·PSAinit

KT−1∑
k=1

∫ ξk+1

ξk

[
x′1,i(θ, t) + x′2,i(θ, t)

]
dt

+ W
T ·PSAinit

KT−1∑
k=1

[x1 (ξk+1) + x2 (ξk+1)] ∂ξk+1

∂θi

− W
T ·PSAinit

KT−1∑
k=1

[x1 (ξk) + x2 (ξk)]
∂ξk
∂θi

+ W
T ·PSAinit

∫ T
ξKT

[
x′1,i(θ, t) + x′2,i(θ, t)

]
dt

+ W
T ·PSAinit [x1(T ) + x2(T )] ∂T

∂θi

− W
T ·PSAinit [x1(ξKT ) + x2(ξKT )]

∂ξKT
∂θi

+ (1−W )
T

MT∑
m=1

[∫ ηm
ξm

z′1,i(t)dt

T
+ z1(η−m)

T
∂ηm
∂θi
− z1(ξ+m)

T
∂ξm
∂θi

]
+ (1−W )

T

∫ T
ξMT+1

z′1,i(t)

T
dt+ z1(T−)

T
∂T
∂θi
−

z1(ξ+MT+1)

T

∂ξM+1

∂θi

(C.10)

Observe that multiple cancelations of the second, third and sixth terms in (C.10)

simplify to
KT−1∑
k=1

[x1 (ξk+1) + x2 (ξk+1)] ∂ξk+1

∂θi

−
KT−1∑
k=1

[x1 (ξk) + x2 (ξk)]
∂ξk
∂θi

= [x1(ξKT ) + x2(ξKT )]
∂ξKT
∂θi

(C.11)

Further note that the sixth term in (C.10) cancels out with the second term on the

right hand side of (C.11). Moreover, it is clear from (5.5) that z1(ξ+
MT+1) = z1(ξ+

m) = 0

and z1(η−m) = ηm − ξm, m = 1, . . . ,MT . Since z′j,i(t) = z′j,i(τ
+
k ), j, i = 1, 2, over any

interevent interval [τk, τk+1), and recalling that ∂T
∂θi

= ∂ξ1
∂θi

= 0, the last two terms in
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(C.10) simplify to

(1−W )
T 2

[
MT∑
m=1

z′1,i(ξ
+
m) (ηm − ξm) + (ηm − ξm) ∂ηm

∂θi

]
+ (1−W )

T 2 z′1,i(ξ
+
MT+1) (T − ξMT+1)

Recall that ξm is the start of the mth on-treatment period, which necessarily cor-

responds to the (m − 1)th occurrence of event e2. Hence, z′1,i(ξ
+
m) = −ξ′m,i, m =

1, . . . ,MT+1 from (6.47). As a result, (C.10) can be further simplified to

dL(θ)
dθi

= W
T ·PSAinit

KT−1∑
k=1

∫ ξk+1

ξk

[
x′1,i(θ, t) + x′2,i(θ, t)

]
dt

+ W
T ·PSAinit

∫ T
ξKT

[
x′1,i(θ, t) + x′2,i(θ, t)

]
dt

+ (1−W )
T 2

[
MT∑
m=1

− ξ′m,i (ηm − ξm) + (ηm − ξm) η
′
m,i

]
− (1−W )

T 2 ξ
′
MT+1 (T − ξMT+1)

(C.12)

The result in (C.12) is obtained under the assumption that our sample path ends with

an incomplete on-treatment period, i.e., KT is odd. If this is not the case, the last

term in (C.12) can be disregarded. It is then straightforward to verify that (C.12)

can be rewritten as (6.51).



References

(2007). National traffic signal report card. Technical report, National Traffic Oper-
ations Coalition. available at www.ntoctalks.com /ntocmembers.php.

Abdulhai, B., Pringle, R., and Karakoulas, G. (2003). Reinforcement learning for true
adaptive traffic signal control. Journal of Transportation Engineering, 129(3):278–
285.

Ahrendt, S., Hu, Y., Buta, M., McDermott, M. P., Benoit, N., Yang, S. C., Wu, L.,
and Sidransky, D. (2003). p53 mutations and survival in stage i non-small-cell
lung cancer: Results of a prospective study. JNCI Journal of the National Cancer
Institute, 95(13):961–970.

Alla, H., Cavaille, J.-B., Bail, J. L., and Bel, G. (1992). Les systemes de produc-
tion par lot: une approche discret-continu utilisant le reseaux de petri hybrides.
Automatisation des Procedes Mixtes Continus et Sequentiels: Les Processus Dis-
continus; 29-30 janvier 1992 = Automation of Mixed Continuous and Sequential
Processes. Paris: Ministere de la Recherche et de la Technologie.

Alla, H. and David, R. (1998). Continuous and hybrid petri nets. Journal of
Circuits, Systems and Computers, 8(1):159–188.

Alrefaei, M. (1999). A simulated annealing algorithm with constant temperature for
discrete stochastic optimization. Management Science, 45(5):748–764.

Alur, R., Courcoubetis, C., Halwachs, N., Henziger, T., Ho, P., Nicollin, X., Olivero,
A., Sifakis, J., and Yovine, S. (1995). The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34.

Alvarez, I. and Poznyak, A. (2010). Game theory applied to urban traffic light control
problem. In ICCAS 2010: International Conference on Control, Automation and
Systems, pages 2164–2169. Piscataway, NJ: IEEE.

Bail, J. L., Alla, H., and David, R. (1991). Hybrid petri nets. pages 1472–1477.
Paris: Hermes.

Barton, R. and Ivey, J. (1996). Nelder-mead simplex modifications for simulation
optimization. Management Science, 42(7):954–973.

186



187

Bazzan, A. (2009). Opportunities for multiagent systems and multiagent reinforce-
ment learning in traffic control. Autonomous Agents and Multi-Agent Systems,
18(3):342–375.

Bedard, P., Hansen, A., Ratain, M., and Siu, L. (2013). Tumor heterogeneity in the
clinic. Nature, 501:355–364.

Beerenwinkel, N., Antal, T., Dingli, D., Traulsen, A., Kinzler, K., Velculescu, V.,
Vogelstein, B., and Nowak, M. (2007). Genetic progression and the waiting time
to cancer. PLoS Computational Biology, 3(11):2239–2246.

Bertsekas, D. (2005). Dynamic Programming and Optimal Control. Athena Scien-
tific.

Boesel, J., Nelson, B., and Ishii, N. (2003). A framework for simulation-optimization
software. IIE Transactions, 35(3):221–229.

Bruchovsky, N., Klotz, L., Crook, J., Malone, S., Ludgte, C., Morris, W., Gleave, M.,
Goldenberg, S., and Rennie, P. (2006). Final results of the Canadian prospective
phase II trial of intermittent androgen suppression for men in biochemical recur-
rence after radiotherapy for locally advanced prostate cancer. Cancer, 107:389–395.

Bruchovsky, N., Klotz, L., Crook, J., Malone, S., Ludgte, C., Morris, W., Gleave, M.,
Goldenberg, S., and Rennie, P. (2007). Locally advanced prostate cancer biochem-
ical results from a prospective phase II study of intermittent androgen suppression
for men with evidence of prostate-specific antigen recurrence after radiotherapy.
Cancer, 109:858–867.

Bujorianu, L. (2012). Stochastic Reachability Analysis of Hybrid Systems. Springer.

Cassandras, C. (2015). Event-driven control and optimization in hybrid systems. In
Event-based control and signal processing. CRC Press/Taylor and Francis.

Cassandras, C. and Lafortune, S. (2008). Introduction to Discrete Event Systems.
Springer.

Cassandras, C. and Lygeros, J., editors (2007). Stochastic Hybrid Systems. CRC
Press.

Cassandras, C., Wardi, Y., Melamed, B., Sun, G., and Panayiotou, C. (2002). Per-
turbation analysis for on-line control and optimization of stochastic fluid models.
IEEE Transactions on Automatic Control, 47(8):1234–1248.

Cassandras, C., Wardi, Y., Panayiotou, C., and Yao, C. (2010). Perturbation anal-
ysis and optimization of stochastic hybrid systems. European Journal of Control,
6(6):642–664.



188

Chen, C. and Lee, L. (2010). Stochastic Optimization: An Optimal Computing
Budget Allocation. World Scientific.

Chiu, S. (1992). Adaptive traffic signal control using fuzzy logic. Proceedings of the
Intelligent Vehicles ’92 Symposium, pages 98–107. Piscataway, NJ: IEEE Service
Center.

Choi, W., Yoon, H., Kim, K., Chung, I., and Lee, S. (2002). A traffic light control-
ling FLC considering the traffic congestion. In Pal, N. and Sugeno, M., editors,
Advances in Soft Computing. AFSS 2002. 2002 AFSS International Conference on
Fuzzy Systems, volume 2275 of Lecture Notes in Computer Science, pages 69–75.
Berlin, New York: Springer.

Chou, C. and Teng, J. (2002). A fuzzy logic controller for traffic junction signals.
Information Sciences, 143(1):73–97.

David, R. and Alla, H. (1987). Continuous petri nets. In Papers Presented at the
8th European Workshop on Application and Theory of Petri Nets, Zaragoza, Spain,
pages 275–294.

David, R. and Alla, H. (2001). On hybrid petri nets. Discrete Event Dynamic
Systems: Theory and Applications, 11:9–40.

Dexter, D. and Leith, J. (1986). Tumor heterogeneity and drug resistance. Journal
of Clinical Oncology, 4(2):244–257.

Dingli, D., Traulsen, A., and Pacheco, J. (2007). Stochastic dynamics of hematopoi-
etic tumor stem cells. Cell Cycle, 6(4):461–466.

Dong, C. (2004). Area traffic signal timing optimization based on chaotic and genetic
algorithm approach. Computer Engineering and Applications, 40(29):32–34.

Dong, C. (2006). Chaos-particle swarm optimization algorithm and its application
to urban traffic control. International Journal of Computer Science and Network
Security, 61(1):97–101.

Dong, C., Liu, Z., and Qiu, Z. (2005). Urban traffic signal timing optimization based
on multi-layer chaos neural networks involving feedback. In Wang, L., Chen,
K., and Ong, Y., editors, Advances in Natural Computation. First International
Conference. ICNC 2005, volume 3610-3612 of Lecture Notes in Computer Science,
pages 340–344. Berlin, New York: Springer.

Dressler, F., Hartenstein, H., Altintas, O., and Tonguz, O. (2014). Inter-vehicle
communication Quo Vadis. IEEE Communications Magazine, 52(6):170–177.



189

Dubois, E. and Alla, H. (1993). Hybrid petri nets with a stochastic discrete part.
In Nieuwenhuis, J., Praagman, C., and Trentelman, H., editors, Proceedings of the
Second European Control Conference. ECC ’93. Netherlands.

Dujardin, Y., Boillot, F., Vanderpooten, D., and Vinant, P. (2011). Multiobjective
and multimodal adaptive traffic light control on single junctions. 2011 14th In-
ternational IEEE Conference on Intelligent Transportation Systems (ITSC), pages
1361–1368. Piscataway, NJ: IEEE.

Findle, N., Surender, S., and Catrava, S. (1997). On-line decision about permit-
ted/protected left-hand turns in distributed traffic signal control. Engineering
Applications of Artificial Intelligence, 10(3):315–320.

Findler, N. and Strapp, J. (1992). A distributed approach to optimized control of
street traffic signals. Journal of Transportation Engineering, 118(1):99–110.

Fu, M. and Howell, W. (2003). Application of perturbation analysis to traffic light
signal timing. 42nd IEEE Conference on Decision and Control: Proceedings, pages
4837–4840. Piscataway, NJ: IEEE.

Fu, M. and Hu, J. (1997). Applications of perturbation analysis to the design and
analysis of control charts. Technical Report. available at http://drum.lib.umd.edu
/handle/1903/5893.

Gartner, N., Pooran, F., and Andrews, C. (2002). Implementation and field testing of
the OPAC adaptive control strategy in RT-TRACS. Journal of the Transportation
Research Board, pages 148–156.

Geng, Y. (2013). Optimization Methods for Intelligent Transportation Systems in
Urban Settings. PhD thesis, Boston University.

Geng, Y. and Cassandras, C. (2012). Traffic light control using infinitesimal pertur-
bation analysis. In IEEE 51st Annual Conference on Decision and Control (CDC),
pages 7001–7006. Piscataway, NJ: IEEE.

Geng, Y. and Cassandras, C. (2013). Quasi-dynamic traffic light control for a single
intersection. 2013 IEEE 52nd Annual Conference on Decision and Control (CDC),
pages 880–885. Piscataway, NJ: IEEE.

Geng, Y. and Cassandras, C. (2015). Multi-intersection traffic light control with
blocking. Journal of Discrete Event Dynamic Systems, 25(1):7–30.

Gentry, S. and Jackson, T. (2013). A mathematical model of stem cell driven tumor
initiation: Implications of niche size and loss of homeostatic regulatory mechanisms.
PLoS ONE, 8(8):e71128.



190

Gerstung, M., Eriksson, N., Lin, J., Vogelstein, B., and Beerenwinkel, N. (2011). The
temporal order of genetic and pathway alterations in tumorigenesis. PLoS ONE,
6(11):e27136.

Glasserman, P. (1991). Gradient Estimation via Perturbation Analysis. Kluwer
Academic.

Hanahan, D. and Weinberg, R. (2011). Hallmarks of cancer: The next generation.
Cell, 144:646–674.

Head, L., Ciarallo, F., and Kaduwela, D. (1996). A perturbation analysis approach
to traffic signal optimization. INFORMS National Meeting.

Henry, J. and Farges, J. (1990). PRODYN control, computers, communications in
transportation. Pergamon Press.

Henry, J., Farges, J., and Gallego, J. (1998). Neuro-fuzzy techniques for traffic
control. Control Engineering Practice, 6:755–761.

Hirata, Y., Bruchovsky, N., and Aihara, K. (2010a). Development of a mathematical
model that predicts the outcome of hormone therapy for prostate cancer. Journal
of Theoretical Biology, 264:517–527.

Hirata, Y., di Bernardo, M., Bruchovsky, N., and Aihara, K. (2010b). Hybrid opti-
mal scheduling for intermittent androgen suppression of prostate cancer. Chaos,
20:045125.

Ho, Y. and Cao, X. (1991). Perturbation Analysis of Discrete Event Dynamic Sys-
tems. Kluwer Academic.

Hollstein, M. and Hainaut, P. (2010). Massively regulated genes: the example of
tp53. The Journal of Pathology, 220(2):164–173.

Hu, J., Fu, M., and Marcus, S. (2008). A model reference adaptive search method for
stochastic global optimization. Communications Information Systems, 8(3):245–
276.

Hunt, P., Robertson, D., and Bretherton, R. (1982). The SCOOT on-line traffic
signal optmization technique. Traffic Engineering and Control, 23:190–192.

Huzarski, T., Cybulski, C., Wokolorczyk, D., Jakubowska, A., Byrski, T., Gronwald,
J., Domagaa, P., Szwiec, M., Godlewski, D., Kilar, E., Marczyk, E., Sioek, M.,
Winiowski, R., Janiszewska, H., Surdyka, D., Sibilski, R., Sun, P., Lubiski, J., and
Narod, S. (2014). Survival from breast cancer in patients with chek2 mutations.
Breast Cancer Research and Treatment, 144(2):397–403.



191

Ideta, A., Tanaka, G., Takeuchi, T., and Aihara, K. (2008). A mathematical model
for intermittent androgen suppression for prostate cancer. Journal of Nonlinear
Science, 18:593–614.

Jackson, T. (2004a). A mathematical investigation of the multiple pathways to
recurrent prostate cancer: comparison with experimental data. Neoplasia, 6:697–
704.

Jackson, T. (2004b). A mathematical model of prostate tumor growth and androgen-
independent replace. Discrete and Continuous Dynamical Systems. Series B,
4:187–201.

Kanehisa, M. and Goto, S. (2000). Kyoto encyclopedia of genes and genomes. Nu-
cleic Acids Research, 28:27–30.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., and Tanabe, M.
(2014). Data, information, knowledge and principle: back to metabolism in kegg.
Nucleic Acids Research, 42:D199–D205.

Kebarighotbi, A. and Cassandras, C. (2009). Revisiting the optimality of cµ rule
with stochastic flow models. Proceedings of 48th IEEE Conference on Decision
and Control, 2009, pages 2304–2309.

Kebarighotbi, A. and Cassandras, C. (2011a). Optimal scheduling of parallel queues
using stochastic flow models. Journal of Discrete Event Dynamic Systems, 21:547–
576.

Kebarighotbi, A. and Cassandras, C. (2011b). Timeout control in distributed systems
using perturbation analysis. 2011 50th IEEE Conference on Decision and Control
and European Control Conference (CDC-ECC), pages 5437–5442. Piscataway, NJ:
IEEE.

Kim, S. and Zhang, D. (2010). Convergence properties of direct search methods for
stochastic optimization. Proceedings of the 2010 Winter Simulation Conference,
pages 1003–1011. Piscataway, NJ: IEEE.

Leder, K., Pitter, K., LaPlant, Q., Hambardzumyan, D., Ross, B., Chan, T., Holland,
E., and Michor, F. (2014). Mathematical modeling of PDGF-driven glioblastoma
reveals optimized radiation dosing schedules. Cell, 156:603–616.

Lee, A. and Swanton, C. (2012). Tumor heterogeneity and drug resistance: Person-
alising cancer medicine through functional genomics. Biochemical Pharmacology,
83:1013–1020.

Lee, J., Lee, K., and Lee-Kwang, H. (1995). Fuzzy controller for intersection group.
1995 International IEEE/IAS Conference on Industrial Automation and Control.
Emerging Technologies, pages 367–382. Piscataway, NJ: IEEE.



192

Liberzon, D. (2003). Switching in Systems and Control. Birkhauser.

Little, J., Kelson, M., and Gartner, N. (1981). Maxband: a program for setting sig-
nals on arteries and triangular networks. Transportation Research Record, 795:40–
46.

Liu, B., Kong, S., Gao, S., Zuliani, P., and Clarke, E. (2015). Towards personalized
cancer therapy using delta-reachability analysis. HSCC’15: 18th ACM Interna-
tional Conference on Hybrid Systems, Computation and Control. New York: ACM.

Liu, Z. (2007). A survey of intelligent methods in urban traffic signal control. Inter-
national Journal of Computer Science and Network Security, 7(7):105–112.

Liu, Z., Wu, J., Li, X., and Wan, B. (1997). Hierarchical fuzzy neural network control
for large scale urban traffic systems. Information and Control, 26(6):441–448.

Longo, D., Fauci, A., Kasper, D., Hauser, S., Jameson, J., and Loscalzo, J., editors
(2012). Harrison’s principles of internal medicine. McGraw-Hill, Medical Pub.
Division, New York, 18th edition.

Loohuis, L. (2013). Cancer Progression: Model, Therapy and Extraction. PhD
thesis, The City University of New York.

Loohuis, L., Caravagna, G., Graudenzi, A., Ramazzotti, D., Mauri, G., Antoniotti,
M., and Mishra, B. (2014). Inferring causal models of cancer progression with a
shrinkage estimator and probability raising. preprint available at http://biorxiv.org.

Lowrie, P. (1982). The sydney co-ordinated adaptive traffic system - principles,
methodology, algorithms. International Conference on Road Traffic Signaling,
pages 67–70. London; New York: Institution of Electrical Engineers.

Lygeros, J., Tomlin, C., and Sastry, S. (2008). Hybrid systems: Modeling, analysis
and control. Lecture Notes, UC Berkeley.

Maksimenko, J., Irmejs, A., Nakazawa-Miklasevica, M., Melbarde-Gorkusa, I., Trofi-
movics, G., Gardovskis, J., and Miklasevics, E. (2013). Prognostic role of BRCA1
mutation in patients with triple-negative breast cancer. Oncology Letters, 7(1):278–
284.

Michor, F., Iwasa, Y., and Nowak, M. (2004). Dynamics of cancer progression.
Nature Reviews Cancer, 4:197–205.

Murat, Y. and Gedizlioglu, E. (2005). A fuzzy logic multi-phased signal control
model for isolated junctions. Transportation Research Part C, 18:19–36.



193

Nakatsuyama, M., Nagahashi, H., and Nishizuka, N. (1984). Fuzzy logic phase con-
troller for traffic junctions in the one-way arterial road. In Gertler, J. and Kevicky,
L., editors, A Bridge Between Control Science and Technology: Proceedings of the
Ninth Triennial World Congress of IFAC, pages 2865–2870. Oxford; New York:
Published for IFAC by Pergamon Press.

Ng, S., Collisson, E. A., Sokolov, A., Goldstein, T., Gonzalez-Perez, A., Lopez-Bigas,
N., Benz, C., Haussler, D., and Stuart, J. M. (2012). Paradigm-shift predicts the
function of mutations in multiple cancers using pathway impact analysis. Bioin-
formatics, 28(18):i640–i646.

Nicolini, F., Corm, S., L, Q., Roche-Lestienne, C., and Preudhomme, C. (2007). The
prognosis impact of bcr-abl p-loop mutations: worse or not worse. Leukemia,
21:193–194.

Niittymaki, J., Nevala, R., and Turunen, E. (2002). Fuzzy traffic signal control
and a new interface method for maximal fuzzy similarity. Proceedings of the
13th Mini-EURO Conference Handling Uncertainty in the Analysis of Traffic and
Transportation Systems, pages 716–728. Bari: Polytechnic University of Bari.

Panayiotou, C. (2004). On-line resource sharing in communication networks using
infinitesimal perturbation analysis of stochastic fluid models. Proceedings of 43rd
IEEE Conference on Decision and Control, 2004. CDC, pages 563–568.

Panayiotou, C., Howell, W., and Fu, M. (2005). Online traffic light control through
gradient estimation using stochastic flow models. Proceedings of the 16th IFAC
World Congress. Oxford: Elsevier Ltd.

Papageorgiou, M., Diakaki, C., Dinopoulou, V., Kotsialos, A., and Wang, Y. (2003).
Review of road traffic control strategies. Proceedings of the IEEE, 91(12):2043–
2067.

Pappis, C. and Mamdani, E. (1977). A fuzzy logic controller for a traffic junction.
IEEE Transactions on Systems, Man, and Cybernetics SMC-7, 7(10):707–717.

Park, J., Neve, R., Szollosi, J., and Benz, C. (2008). Unravelling the biologic and
clinical complexities of HER2. Clinical Breast Cancer, 8(5):392–401.

Payne, S. R. and Kemp, C. J. (2005). Tumor suppressor genetics. Carcinogenesis,
26(12):2031–2045.

Porche, I., Sampath, M., Sengupta, R., Chen, Y.-L., and Lafortune, S. (1996). A
decentralized scheme for real-time optimization of traffic signals. Proceedings of
the 1996 IEEE International Conference on Control Applications, pages 582–589.
New York: IEEE.



194

Prashant, L. and Bhatnagar, S. (2011). Reinforcement learning with function approx-
imation for traffic signal control. IEEE Transactions on Intelligent Transportation
Systems, 12(2):412–421.

Raphael, B. and Vandin, F. (2015). Simultaneous inference of cancer pathways and
tumor progression from cross-sectional data. Journal of Computational Biology,
22(6):510–527.

Robertson, D. (1969). TRANSYT method for area traffic control. Traffic Engineer-
ing and Control, 10:276–281.

Rodriguez-Brenes, I., Komarova, N., and Wodarz, D. (2011). Evolutionary dynamics
of feedback escape and the development of stem-cell-driven cancers. Proceedings of
the National Academy of Sciences of the United States of America, 108(47):18983–
18988.

Rodriguez-Brenes, I., Komarova, N., and Wodarz, D. (2014). Cancer-associated
mutations in healthy individuals: assessing the risk of carcinogenesis. Cancer
Research, doi:10.1158/008-5472.CAN-13-1452.

Rubinstein, R. and Shapiro, A. (1993). Discrete Event Systems: Sensitivity Analysis
and Stochastic Optimization by the Score Function Method. Wiley.

Sahinidis, N. (2004). Optimization under uncertainty: State-of-the-art and opportu-
nities. Computers and Chemical Engineering, 28:971–983.

Schutter, B. D. (1999). Optimal traffic light control for a single intersection. Pro-
ceedings of the 1999 American Control Conference, 3:2195–2199. Piscataway, NJ:
IEEE.

Schutter, B. D., Heemels, W., Lunze, J., and Prieur, C. (2009). Survey of modeling,
analysis, and control of hybrid systems. In Lunze, J. and Lamnabhi-Lagarrigue,
F., editors, Handbook of Hybrid Systems Control - Theory, Tools, Applications.
Cambridge University Press.

Sen, S. and Head, L. (1997). Controlled optimization of phases at an intersection.
Transportation Science, 31:5–17.

Shelby, S., Bullock, D., Gettman, D., Ghaman, R., Sabra, Z., and Soyke, N. (2008).
Overview and performance evaluation of ACS lite - a low cost adaptive signal
control system. no. 08-0334. In TRB 87th Annual Meeting: Compendium of
Papers DVD. Washington, D.C.: Transportation Research Board.

Shimada, T. and Aihara, K. (2008). A nonlinear model with competition between
prostate tumor cells and its application to intermittent androgen suppression ther-
apy of prostate cancer. Mathematical Biosciences, 214:134–139.



195

Somasundaram, R., Villanueva, J., and Herlyn, M. (2012). Intratumoral hetero-
geneity as a therapy resistance mechanism: Role of melanoma subpopulations.
Advances in Pharmacology, 65:335–359.

Spall, J. and Chin, D. (1997). Traffic-responsive signal timing for system wide traffic
control. Transportation Research Part C: Emerging Technologies, 5(3):153–163.

Stevanovic, A. (2010). Adaptive traffic light control systems: Domestic and foreign
state of practice. Transportation Research Board NCHRP Synthesis 403.

Sun, G., Cassandras, C., and Panayiotou, C. (2004a). Perturbation analysis and op-
timization of stochastic flow networks. IEEE Transactions on Automatic Control,
49(12):2113–2128.

Sun, G., Cassandras, C., and Panayiotou, C. (2004b). Perturbation analysis of
multiclass stochastic fluid models. Journal of Discrete Event Dynamic Systems,
14(3):267–307.

Sun, G., Cassandras, C., Panayiotou, C., and Wardi, Y. (2003). Perturbation analysis
and control of two-class stochastic fluid models for communication networks. IEEE
Transactions on Automatic Control, 48(5):770–782.

Suzuki, T., Bruchovsky, N., and Aihara, K. (2010). Piecewise affine systems mod-
elling for optimizing therapy of prostate cancer. Philosophical Transactions of the
Royal Society of London. Series A, 368:5045–5059.

Tanaka, G., Hirata, Y., Goldenberg, S., Bruchovsky, N., and Aihara, K. (2010).
Mathematical modelling of prostate cancer growth and its application to hormone
therapy. Philosophical Transactions of the Royal Society of London. Series A,
368:5029–5044.

Tao, Y., Guo, Q., and Aihara, K. (2010). A mathematical model of prostate tumor
growth under hormone therapy with mutation inhibitor. Journal of Nonlinear
Science, 20:219–240.

TCGA (2008). Comprehensive genomic characterization defines human gliobastoma
genes and core pathways. Nature, 455:1061–1068.

TCGA (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature,
511:543–550.

The Cancer Genome Atlas Research Network (2012a). Comprehensive genomic char-
acterization of squamous cell lung cancers. Nature, 489(7417):519–525.

The Cancer Genome Atlas Research Network (2012b). Comprehensive molecular
characterization of human colon and rectal cancer. Nature, 487(7407):330–337.



196

The Cancer Genome Atlas Research Network (2012c). Comprehensive molecular
portraits of human breast tumours. Nature, 490(11412):61–70.

The Cancer Genome Atlas Research Network (2014). Comprehensive molecular
profiling of lung adenocarcinoma. Nature, 511(7511):543–550.

Thorpe, T. (1997). Vehicle traffic light control using SARSA. Master’s thesis,
Department of Computer Science, Colorado State University.

Trabia, M., Kaseko, M., and Ande, M. (1996). A two-stage fuzzy logic controller for
traffic signals. Transportation Research Part C, 7(16):353–367.

Turner, N. and Reis-Filho, J. (2012). Genetic heterogeneity and cancer drug resis-
tance. Lancet Oncology, 13:e178–e185.

Ukkusuri, S., Ramadurai, G., and Patil, G. (2010). A robust transportation sig-
nal control problem accounting for traffic dynamics. Computers & Operations
Research, 37(5):869–879.

Vaske, C., Benz, S., Sanborn, J., Earl, D., Szeto, C., Zhu, J., Haussler, D., and Stuart,
J. (2010). Inference of patient-specific pathway activities from multi-dimensional
cancer genomic data using paradigm. Bioinformatics, 26:i237–i245.

Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong,
N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., and Liu, E. A. (2004). In vivo
activation of the p53 pathway by small-molecule antagonists of mdm2. Science,
303(5659):844–848.

Vogel, C., Cobleigh, M., Tripathy, D., Gutheil, J., Harris, L., Fehrenbacher, L., Sla-
mon, D., Murphy, M., Novotny, W., Burchmore, M., Shak, S., and Stewart, S.
(2001). First-line, single-agent herceptin(c) (transtuzumab) in metastatic breast
cancer. European Journal of Cancer, 37(Suppl.1):25–29.

Vogelstein, B. and Kinzler, K. (2004). Cancer genes and the pathways they control.
Nature Medicine, 10(8):789–799.

Vogelstein, B., Papadopoulos, N., Velculescu, V., Zhou, S., Jr., L. D., and Kinzler,
K. (2013). Cancer genome landscapes. Science, 339:1546–1558.

Wadhwa, P., Zielske, S., Roth, J., Ballas, C., Bowman, J., and Gerson, S. (2002).
Cancer gene therapy: Scientific basis. Annual Review of Medicine, 53:437–452.

Wardi, Y., Adams, R., and Melamed, B. (2010). A unified approach to infinitesi-
mal perturbation analysis in stochastic flow models: the single-stage case. IEEE
Transactions on Automatic Control, 55(1):89–103.



197

Wei, W., Zhang, Y., Mbede, J., Zhang, Z., and Song, J. (2001). Traffic signal
control using fuzzy logic and MOGA. In Bahill, T., editor, 2001 IEEE International
Conference on Systems, Man, and Cybernetics, pages 1335–1340. Piscataway, NJ:
IEEE.

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A.,
Ellrott, K., Shmulevich, I., Sander, C., and Stuart, J. M. (2013). The cancer
genome atlas pan-cancer analysis project. Nature genetics, 45(10):1113–1120.

Wen, W. and Hsu, H. (2006). A dynamic and automatic traffic light control system for
solving the road congestion problem. WIT Transactions on the Built Environment,
89:307–316.

Wen, Y. and Wu, T. (2005). Reduced-order rolling horizon optimization of traf-
fic control based on ant algorithm. Journal of Zhejiang University (Engineering
Science), 39(6):835–839.

Werner, B., Dingli, D., Lenaerts, T., Pacheco, J., and Traulsen, A. (2011). Dynamics
of mutant cells in hierarchical organized tissues. PLoS Computational Biology,
7(12):e100290.

Werner, B., Dingli, D., and Traulsen, A. (2013). A deterministic model for the
occurrence and dynamics of multiple mutations in hierarchically organized tissues.
Journal of the Royal Society, Interface, 10:20130349.

Wey, W.-M. (2000). Model formulation and solution algorithm of traffic light control
in an urban network. Computers, Environment and Urban Systems, 24:355–377.

Wiering, M., Vennen, J., and Koopman, A. (2004). Intelligent traffic light control.
Technical Report UU-CS-2004.

Xu, D., Fang, J., and Shao, S. (1992). A fuzzy controller of traffic systems and its
neural network implementation. Information and Control, 21(2):74–78.

Yao, C. and Cassandras, C. (2011a). Perturbation analysis of stochastic hybrid
systems and applications to resource contention games. Frontiers of Electric and
Electronic Engineering China, 6:453–467.

Yao, C. and Cassandras, C. (2011b). Resource contention games in multiclass
stochastic flow models. Nonlinear Analysis:Hybrid Systems, 5(2):301–319.

Yu, H. and Cassandras, C. (2006). Perturbation analysis and feedback control of
communication networks using stochastic hybrid models. Journal of Nonlinear
Analysis, 65(6):1251–1280.

Yu, X.-H. and Recker, W. (2006). Stochastic adaptive control model for traffic light
systems. Transportation Research Part C: Emerging Technology, 14:263–282.



198

Zahreddine, H. and Borden, K. (2013). Mechanisms and insights into drug resistance
in cancer. Frontiers in Pharmacology, 4:1–8.

Zhao, X. and Chen, Y. (2003). Traffic light control method for a single intersection
based on hybrid systems. Proceedings of the 2003 IEEE International Conference
on Intelligent Transportation Systems. Vol. 2, pages 1105–1109. Piscataway, NJ:
IEEE.



CURRICULUM VITAE

Julia Lima Fleck
jfleck@bu.edu

EDUCATION

Boston University, Boston, MA

Ph.D. in Systems Engineering - Expected May 2016

Current Research: Design of personalized cancer therapy using Infinitesimal Pertur-
bation Analysis

Related Coursework: Optimization Theory, Dynamic Programming, Nonlinear Sys-
tems and Control, Discrete Event and Hybrid Systems

Related Skills: Algorithm development, Programming in Matlab and C/C#

Catholic University (PUC-Rio), Rio de Janeiro, Brazil

M.S. in Mechanical Engineering - August 2008

Thesis: “Artificial Neural Network Modeling for Quality Inference of a Polimeriza-
tion Process”

Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

B.Eng. in Chemical Engineering - August 2006

Areas of Concentration: Modeling and control of dynamical systems

HONORS AND AWARDS

National Institute of Cancer Travel Award - sponsored speaker at the Systems Ap-
proaches to Cancer Biology Meeting, Woods Hole, MA - April 2016

Center for Information and Systems Engineering Award - 1st prize, Boston Univer-
sity - April 2015

Boston University Women’s Guild Scholarship, Boston University - May 2014

Full Tuition Academic Scholarship, Catholic University - August 2006 - August 2008

RELATED EXPERIENCE

Boston University, Boston, MA

Graduate Research Assistant - May 2012 - Present

Graduate Teaching Assistant - September 2011 - May 2012

Tecgraf/Catholic University (PUC-Rio), Rio de Janeiro, Brazil

Researcher - September 2008 - August 2011



200

Catholic University (PUC-Rio), Rio de Janeiro, Brazil

Graduate Teaching Assistant - January 2007 - June 2007

Chemtech - A Siemens Company, Rio de Janeiro, Brazil

Engineering Intern - October 2005 - September 2006

Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

Undergraduate Teaching Assistant - January 2002 - June 2005

Undergraduate Research Assistant - March 2003 - July 2004

PAPERS AND PUBLICATIONS

Fleck, J.L., Pavel, A.B., and Cassandras, C.G. Integrating mutation and gene ex-
pression cross-sectional data to infer cancer progression, BMC Systems Biology,
DOI 10.1186/s12918-016-0255-6, 2016.

Fleck, J.L. and Cassandras, C.G. Optimal design of personalized prostate cancer
therapy design using Infinitesimal Perturbation Analysis, Nonlinear Analysis:
Hybrid Systems, under review.

Fleck, J.L. and Cassandras, C.G. Personalized cancer therapy design: Robustness
vs. Optimality, 55th IEEE Conference on Decision and Control, submitted.

Fleck, J.L. and Cassandras, C.G. Infinitesimal Perturbation Analysis for personal-
ized cancer therapy design, Proceedings of the 5th IFAC Conference on Analysis
and Design of Hybrid Systems, p. 205-210, 2015.

Fleck, J.L., Cassandras, C.G., and Geng, Y. Adaptive quasi-dynamic traffic light
control, IEEE Transactions on Control Systems Technologies, to appear.

Fleck, J.L. and Cassandras, C.G. Infinitesimal Perturbation Analysis for quasi-
dynamic traffic light controllers, Proceedings of the 2014 Intl. Workshop on
Discrete Event Systems, p. 235-240, 2014.

PROJECTS

Cancer Hybrid Automaton - New York University, New York, NY - July
2014

The Cancer Hybrid Automaton (CHA) is a formalism to model the progression
of cancer through various stages based on the concept of hybrid automata.
Involvement encompassed developing control theory associated with the CHA.

IBM Smarter Cities Challenge - Boston, MA - June 2012

The Smarter Cities Challenge is a program launched by IBM to help cities become
more instrumented, interconnected, and intelligent. Involvement ecompassed
developing a common data model and implementing preliminary visualizations
of analyzed data.



201

ORGANIZATIONS

West End House Boys & Girls Club, Boston, MA - Mentor - September
2014 - May 2015

The Girls Science Club is an outreach program organized by Graduate Women in
Science and Engineering (GWSE), a student organization at Boston University
that seeks to strengthen the role of women in science and technology. Mentors
(female STEM students from Boston University) use fun, hands-on activities to
convey important concepts from the STEM field to elementary school girls.

Student Association of Graduate Engineers, Boston University, Boston,
MA - Vice president, Systems Engineering Representative - Septem-
ber 2012 - May 2014

The Student Association of Graduate Engineers (SAGE) is a student organization
whose members and officers are graduate students in the College of Engineering
at Boston University. The goal of SAGE is to address the issues and concerns
of engineering graduate students. SAGE officers act as liaisons between the
graduate student body and university officials and also organize non-academic
activities that foster interactions between students.

LANGUAGES

English - bilingual proficiency

French - full professional proficiency

German - professional working proficiency

Portuguese - bilingual proficiency


