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ABSTRACT

Multiphase flows are ubiquitous across engineering disciplines: water-sediment river

flows in civil engineering, oil-water-sand transportation flows in petroleum engineer-

ing; and sorbent-flue gas reactor flows in chemical engineering. These multiphase

flows can include a combination of momentum, heat, and mass transfer. Studying

and understanding the behavior of multiphase, multiphysics flow configurations can

be crucial for safe and efficient engineering design.

In this work, a framework for the development and validation, verification and

uncertainty quantification (VVUQ) of subgrid models for heat transfer in multiphase

flows is presented. The framework is developed for a carbon capture reactor; however,

the concepts and methods described in this dissertation can be generalized and applied

broadly to multiphase/multiphysics problems. When combined with VVUQ methods,

these tools can provide accurate results at many length scales, enabling large upscaling

problems to be simulated accurately and with calculable errors.

The system of interest is a post-combustion solid-sorbent carbon capture reactor

featuring a solid-sorbent bed that is fluidized with post-combustion flue gas. As the

flue gas passes through the bed, the carbon dioxide is exothermically adsorbed onto
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the sorbent particles surface, and the clean gas is passed onto further processes. To

prevent overheating and degradation of the sorbent material, cooling cylinders are

immersed in the flow to regulate temperatures.

Simulating a full-scale, gas-particle reactor using traditional methods is computa-

tionally intractable due to the long time scale and variations in length scales: reactor,

O(10 m); cylinders, O(1 cm); and sorbent particles, O(100 µm). This research devel-

oped an efficient subgrid method for simulating such a system. A constitutive model

was derived to predict the effective suspension-cylinder Nusselt number based on the

local flow and material properties and the cylinder geometry, analogous to single-

phase Nusselt number correlations. This model was implemented in an open source

computational fluid dynamics code, MFIX, and has undergone VVUQ. Verification

and validation showed great agreement with comparable highly-resolved simulations,

achieving speedups of up to 100,000+ times faster. Our model is currently being used

to simulate a 1 MW, solid-sorbent carbon capture unit and is outperforming previous

methods in both speed and physically accuracy.
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Cp,g, Cp,s . . . . . . . . . . . . . specific heat capacity (J/kg·K)

dp . . . . . . . . . . . . . diameter of solid phase particles (cm, m)

Dc . . . . . . . . . . . . . cylinder diameter (m)

D . . . . . . . . . . . . . rate of strain (1/s)

e . . . . . . . . . . . . . coefficient of restitution (-)

fb . . . . . . . . . . . . . bubble frequency (bubbles/s)

Fs . . . . . . . . . . . . . sampling frequency (Hz)

g . . . . . . . . . . . . . gravitational acceleration (m/s2)

G . . . . . . . . . . . . . filter function (-)

hcs . . . . . . . . . . . . . suspension-cylinder heat transfer coefficient (W/m2·K)

hgs . . . . . . . . . . . . . gas-cylinder heat transfer coefficient (W/m2·K)

I . . . . . . . . . . . . . unit tensor (-)

kg, ks . . . . . . . . . . . . . thermal conductivity (W/m·K)

Ki . . . . . . . . . . . . . granular stress constants

` . . . . . . . . . . . . . unit-cell domain length (m)

L . . . . . . . . . . . . . filter length (m)

L∗ . . . . . . . . . . . . . characteristic length (m)

Nb . . . . . . . . . . . . . total number of bubbles

Nugs . . . . . . . . . . . . . gas-cylinder Nusselt number (-)

Nucs . . . . . . . . . . . . . suspension-cylinder Nusselt number (-)

p . . . . . . . . . . . . . pressure (Pa)

Res . . . . . . . . . . . . . Reynolds number for a single particle (-)

q̄Θ . . . . . . . . . . . . . diffusive flux of granular energy (J/m2·s)
Q̇s . . . . . . . . . . . . . solids heat transfer rate (W)

t . . . . . . . . . . . . . time (s)

tbc . . . . . . . . . . . . . total bubble contact time (s)

tbcmin
. . . . . . . . . . . . . minimum contact time for classification as bubble (s)

ts . . . . . . . . . . . . . total sampling time (s)

Tg, Ts . . . . . . . . . . . . . temperature (K)

Tc . . . . . . . . . . . . . cylinder surface temperature (K)

Tsusp . . . . . . . . . . . . . suspension temperature (K)

Umf . . . . . . . . . . . . . minimum fluidization velocity (m/s)

1Units given in nomenclature are default units and variables may be represented with different
prefixes depending on the magnitude.
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Vg, Vs . . . . . . . . . . . . . corrected velocity (m/s)

x̄ . . . . . . . . . . . . . experimental inputs

ȳ . . . . . . . . . . . . . experimental outputs
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β . . . . . . . . . . . . . interphase momentum transfer coefficient

βi . . . . . . . . . . . . . regression coefficients (-)

γΘ . . . . . . . . . . . . . granular energy dissipation (J/m3·s)
δ . . . . . . . . . . . . . discrepancy

δ95% . . . . . . . . . . . . . 95% confidence bands

δb . . . . . . . . . . . . . bubble phase fraction (-)

∆x, ∆y . . . . . . . . . . . . . computational grid cell size (m)

ε . . . . . . . . . . . . . measurement error

φg, φs . . . . . . . . . . . . . phase fraction (-)

Φg, Φs . . . . . . . . . . . . . corrected phase fraction (-)

η . . . . . . . . . . . . . emulator

θ̄ . . . . . . . . . . . . . model parameters

Θ . . . . . . . . . . . . . granular temperature (m2/s2)

Θg, Θs . . . . . . . . . . . . . corrected temperature (-)

µ . . . . . . . . . . . . . mean bubble frequency (bubbles/s)

µg, µs . . . . . . . . . . . . . solids viscosity (kg/m·s)
Π . . . . . . . . . . . . . interphase exchange of granular energy (J/m3·s)
Πi . . . . . . . . . . . . . dimensionless Pi groups (-)

Π̇s . . . . . . . . . . . . . solids heat generation rate (K/s)

ρg, ρs . . . . . . . . . . . . . density (kg/m3)

σ . . . . . . . . . . . . . standard deviation (-)

τ g, τ s . . . . . . . . . . . . . stress tensor (Pa)
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Chapter 1

Introduction

Multiphase flows can be found in most engineering disciplines, but they are used

extensively in chemical engineering systems and processes, for example, combustion,

gasification, coating, fluid-catalytic cracking, and carbon capture. The flow behavior

within these systems is typically chaotic and coupled with heat and/or mass transfer.

These complex multiphase, multiphysics systems pose a significant problem to design

engineers, who need to predict their behavior for design and process optimization.

Approximations of such systems are typically done by building costly experimental

systems or through computational fluid dynamics (CFD) simulations. However, few

computational methods exist for simulating such systems at large scales. Traditional

methods tend to scale poorly and become computationally intractable due to the

long time scales and large variations in length scales. This dissertation details the

framework for- and the development of an efficient subgrid method for simulating

large, complex, multiphase, multiphysics systems.
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1.1 Modeling Multiphase Flows

Multiphase flow defines any flow with more than one phase, typically two or three

phases. These flows include both mixtures of similar phase states, e.g., oil-water

(liquid-liquid) and different phase-states, e.g., air-solid particles (gas-solid). This

results in many possible unique combinations of flows, each of which can behave

in significantly different ways, and thus need to be modeled accordingly. Many nu-

merical methods have been developed for- and applied to various multiphase systems.

These methods can be largely broken down into three frameworks: continuous phases,

discrete phases, and a hybrid of continuous and discrete phases.

Continuous phase models (CPMs), also known as Eulerian-Eulerian models, model

all phases as interpenetrating continua, for example, the two-fluid model (TFM) [1].

For multi-fluid flows this is an accurate representation of the physics; however, for gas-

solid flows, this involves approximating the solid phase as a fluid through constitutive

models for equivalent properties (e.g, viscosity and stress). CPMs are typically applied

through the mesh-based finite volume and finite element methods due to their ease of

implementation: CPMs solve the same governing equations for each individual phase

and simply couple them by considering the volume fraction of each phase present

and transport coupling terms (e.g., interphase drag, heat transfer, and mass transfer

terms). These methods have been widely implemented in CFD codes, including:

Fluent R©, COMSOL R©, Multiphase Flow with Interphase eXchanges (MFIX) [2] and

OpenFOAM [3], and used to model complex systems [4–8].

Discrete phase models (DPMs), also known as Lagrangian-Lagrangian models,

model all phases as discrete particles, such as in the discrete element method (DEM) [9].

These methods solve Newton’s equations of motion for each individual particle. Con-

trary to the CPMs, DPMs are well suited for solid-solid flows due to their accurate

physical representation, while fluid-solid flows must be handled carefully to ensure
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the fluid-phase particles are sufficiently small to accurately represent the continuum

transport phenomena. DPMs have also been widely implemented in CFD codes,

including: Fluent R©, Barracuda R©, and OpenFOAM.

Hybrid continuous and discrete mixture phase models couple the transport phe-

nomena between continuous phases (CPMs) and discrete particles (DPMs). These

methods best physically represent gas-solid flows; however, because of the complex

coupling and numerical methods, these models can be unstable and computation-

ally intensive. These methods are still in early research and development [10–13],

but could be excellent candidates for gas-solid flows once fully verified and validated

methods have been developed.

Each of these modeling frameworks are highly dependent on the simulation res-

olution. High-resolution models, such as direct numerical simulation, can accurately

model these systems, but are limited to very small time and length scales. Medium-

resolution models employ simplifying assumptions, such as modeling the fluidized

solid phases as a continua (multi-fluid model) or solid phase clustering (discrete el-

ement method), and are capable of modeling systems of laboratory-scale and some

full-scale; however, full-scale models are typically computationally intractable, espe-

cially in three-dimensions. Low-resolution models can make use of subgrid models to

approximate the unresolved physics using constitutive relations. While these assump-

tions reduce the ability to predict fine-scale behavior, they can sufficiently predict

bulk flow behavior of full-scale simulations at a small fraction of the computation

time [14–18].

1.2 Subgrid Methods

Subgrid models were originally developed to simplify and speed up turbulent flow

calculations [19]. Smagorinsky was attempting to model single-phase turbulent flow
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for meteorological applications. It was obvious that resolving the intricacies of turbu-

lence was not possible for such large length scales. Smagorinsky proposed a solution:

use a low-pass filter to smooth out the physics and model the unresolved turbulence

explicitly through an effective viscosity term. This would allow the calculation of

large-scale systems while still providing sufficiently accurate results.

To develop the effective stress term, Smagorinsky used small, periodic domains to

simulate the average flow occurring anywhere in a large system. Because the periodic

domain is small, a fine grid could be used to resolve the details of the turbulent

flow while remaining computationally tractable. Using the small domain, several

simulations were carried our with varying flow field properties. From these an effective

viscosity model was developed that related the microscopic stress to a function of the

grid-cell volume and the filtered stress. This model is known as the Smagorinsky-Lilly

model.

This filtering process was first introduced in large eddy simulation (LES) methods

and has been used extensively to calculate effective single-phase turbulent flow be-

havior with coarse-grid simulation [19]. This field is continually under active research

trying to develop more accurate and efficient models/methods [16, 20, 21]. More

recently these methods were extended to consider gas-solid multiphase flows with a

focus on interphase drag by Igci et al. [16–18]. Igci et al. used a similar filtering

process to investigate the chaotic nature of gas-particle flows in risers1. In such a

system, a grid size of approximately 10 times the solid particle diameter is typically

required to resolve the hydrodynamics. In a riser that spans several meters tall this

results in a mesh of millions of cells. Igci et al. used small, periodic domain sim-

ulations to simulate the flow in a riser and developed an effective gas-particle drag

term. Sarkar et al. [14, 15] extended the Igci drag model by considering multiphase

flow with immersed horizontal cylinders. A small periodic domain with immersed

1A tall, narrow, vertical tube reactor; often used in petroleum refining. [22, 23]
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cylinders was used to developed an effective cylinder drag model. Agrawal et al. also

extended the Igci model by considering simple gas-particle interphase heat transfer.

Using the same filtering methods, Agrawal et al. [24] derived a subgrid model for effec-

tive gas-particle heat transfer. The Igci and Sarkar models have been implemented in

the open source CFD code, MFIX and undergone verification and validation, showing

excellent results. The Agrawal model has not yet been implemented.

The framework for developing all of the aforementioned models is identical:

1) Construct a high-resolution sub-system from the full-scale system. This must be

done carefully such that it minimizes computational time but still represents the av-

erage flow behavior of the full-scale system. This is usually achieved by using periodic

domains; however, it can be done with larger systems and applying a filter over vary-

ing regions. 2) Simulate the sub-system many times with varying flow and geometry

conditions, e.g., solid phase fractions, flow velocities, and cylinder diameter and spac-

ing. These flow and geometry conditions will be the input variables to your model, so

it is important to know how the system behaves under all possible conditions. Design

of experiments methods [25, 26] can optimize the number of simulations and param-

eter values to be simulated. 3) Calculate filtered quantity of interest. This quantity

must be derived for each problem by filtering the governing equations. 4) Construct

model by regressing the quantity of interest to the predictor variables—the flow and

geometry conditions. Using parametric non-linear regression methods, an algebraic

constitutive relation can be developed. 5) Implement the subgrid model within a

CFD package and perform verification and validation experiments. Depending on

the CFD code, implementation can be as simple as a user-defined function or can

require the modification of the source code. Verifying and validating the model is the

most important step as it gives insight to the accuracy and uncertainty in the newly

developed model.
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1.3 Upscaling & Uncertainty Quantification

It is important to note that due to the nature of filtering in subgrid models, infor-

mation is being sacrificed for computation speed. Because of this loss of information,

it is critical to quantify the uncertainties associated with the model to determine the

accuracy of the predictions. This is known as uncertainty quantification (UQ). When

combined with upscaling techniques, UQ should be applied at each length scale. This

ensures accurate propagation of error through upscaling and gives confidence levels

for all predictions.

Statistical UQ techniques, such as sensitivity analysis and Bayesian calibration,

can help quantify uncertainties in the system and make out-of-sample output predic-

tions [27–30]. A sensitivity analysis quantifies the variation in output that is directly

related to the uncertainty and variation in the model input parameters. This can iden-

tify important (and unimportant) model parameters, allowing for improved control

and simplification of the model being assessed. Additionally, Bayesian calibration

methods [31] can be implemented with statistical response surface models (emula-

tors) that are capable of quickly approximating the system. Bayesian calibration

uses Markov chain Monte Carlo methods to determine the optimal model parameter

values (i.e., values that could have plausibly reproduced the experiment).

1.4 Applications

This work was done in collaboration with the Department of Energy as part of their

Carbon Capture Simulation Initiative (CCSI). The goal of CCSI is to develop a com-

putational tool set to expedite the research and development of new carbon capture

technologies. These tools could then be used to design efficient carbon capture reac-

tors, capable of reducing the rate of carbon dioxide (CO2) emissions from combustion

power plants.
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The system of interest is a post-combustion, multiphase carbon capture reactor,

featuring a solid-sorbent particulate bed that is fluidized with post-combustion, CO2

rich, flue gas. As the flue gas passes through the bed, the CO2 is adsorbed onto

the sorbent particle’s surface and the clean gas is passed onto further processes.

The adsorption process is exothermic, releasing heat into the system. To prevent

overheating and degradation of the sorbent material, cooling heat transfer cylinders

are immersed in the flow to regulate temperatures. To maximize the CO2 capture rate

we wish to optimize the operating conditions of the reactor through simulations. As

a result, a subgrid model was developed for gas-particle flows around heated/cooled

horizontal cylinders. However, the framework is presented such that it can be applied

to a variety of problems/systems. The subgrid model was used to simulated a 1

MW solid-sorbent carbon capture reactor as an intermediate step in upscaling from

decoupled-physics unit problems to a full-scale 650 MW reactor for VVUQ purposes.

1.5 Dissertation Structure

This dissertation is broken into six chapters: Chapter 2 details the numerical meth-

ods employed by MFIX. Chapter 3 describes a framework for upscaling and VVUQ of

large-scale systems. The framework is applied to unit problems examining gas-particle

hydrodynamics and heat transfer from immersed geometry. The subgrid model devel-

opment framework, including the derivation, implementation, verification, validation,

and uncertainty quantification are detailed in Chapter 4. Chapter 5 briefly compares

the results of a 1 MW pilot-scale carbon-capture system using the developed subgrid

model versus an alternative coarse-grid approach. Conclusions and future work are

summarized in Chapter 6.
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Chapter 2

Numerical Methods

Throughout this work the Department of Energy’s open source CFD code, Multi-

phase Flow with Interphase eXchanges (MFIX) [2] was used to simulate all systems

considered. Many other CFD software packages and codes are capable of simulating

multiphase flow, such as ANSYS Fluent R©, Barracuda R©, and OpenFOAM R©; however,

MFIX was chosen for this work because it has been developed explicitly for solving

multiphase systems and is open source. The ability to view and modify the source

code, makes MFIX ideal for our research purposes. Additionally, MFIX has been used

to simulate numerous multiphase and multiphysics systems (e.g., circulating and bub-

bling fluidized beds, combustion reactors, and chemical vapor depositors) [32–36] and

is continuously going through systematic verification and validation (V&V).

MFIX is capable of simulating multiphase flow using CPMs (MFIX-TFM) or

DPMs (MFIX-DEM or MFIX-MPPIC). Both modeling frameworks have been used

to successfully simulate fluidized beds [32, 37, 38]. DPMs more closely simulate the

physics of granular systems due to the discrete particles. As such, a DPM approach

was previously considered for the carbon capture system modeling of CCSI [39]. How-

ever, due to numerical stability issues and the computational expense of the DPM,

it was decided the CPM was more appropriate for our applications. A summary of

the equations used by MFIX-TFM for solving non-reacting, two-phase flow can be

found below. For a complete description of the equations implemented in MFIX, see

Benyahia et al. [2].
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2.1 Governing Equations

The governing equations for the TFM are similar to those used in single-phase flow,

with a few important differences. To account for the fraction of each phase present in

a given location, a volume fraction variable is included in each term, and coupled by

an additional continuity equation. The momentum and energy equations are further

coupled by interphase transport terms that allow the transfer of momentum and

energy between the phases. These terms are described in detail below.

The continuity equations are written as

∂

∂t
(φgρg) +∇ · (φgρgvg) = 0 (2.1)

∂

∂t
(φsρs) +∇ · (φsρsvs) = 0 (2.2)

φg + φs = 1, (2.3)

where φ is phase fraction, ρ is density, v is velocity, and subscripts g and s denote

the gas and solid phases, respectively. The momentum equations are written as

∂

∂t
(φgρgvg) +∇ · (φgρgvgvg) = −∇ · τ g − φg∇p+ φgρgg − Igs (2.4)

∂

∂t
(φsρsvs) +∇ · (φsρsvsvs) = −∇ · τ s − φs∇p+ φsρsg + Igs, (2.5)

where τ is stress, p is pressure, g is gravitational acceleration, and Igs is the interphase

momentum transfer. And the energy equations are written as

∂

∂t
(φgρgCp,gTg) +∇ · (φgρgCp,gvgTg) = ∇ · (φgkg∇Tg)−Hgs (2.6)

∂

∂t
(φsρsCp,sTs) +∇ · (φsρsCp,svsTs) = ∇ · (φsks∇Ts) +Hgs, (2.7)

where T is temperature, Cp is specific heat capacity, k is thermal conductivity, and
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Hgs is the interphase heat transfer.

Solving the momentum governing equations in the TFM requires appropriate clo-

sure relations to calculate the solids properties (e.g., viscosity and pressure). The

Kinetic Theory of Granular Flow provides necessary closures by quantifying the en-

ergy in the solid-phase through an additional governing equation. This energy is

proportional to the mean square of the solid-phase velocity and is referred to as the

granular temperature (GT). The full partial differential equation for GT is written as

3

2

[
∂

∂t
(φsρsΘ) +∇ · (φsρsΘ)vs

]
= τ s : ∇vs −∇ · q̄Θ − γΘ + Π, (2.8)

where Θ is granular temperature, q̄Θ is diffusive flux of granular energy, γΘ is granular

energy dissipation, and Π is interphase exchange of granular energy [40]. Because

solving the full GT partial differential equation can be computationally demanding,

Syamlal [41] proposed an algebraic expression for GT that neglects convection and

diffusion terms and retains the generation and dissipation terms [40]. The algebraic

expression for GT is

Θ =

−K1φstr(Ds) +
√
K2

1tr(Ds)φ2
s + 4K4φs

[
K2tr(Ds)2 + 2K3tr(D2

s)
]

2φsK4


2

(2.9)

K1 = 2(1 + ess)ρsg0 (2.10)

K2 =
4dsρs(1 + ess)φsg0

e
√
π

− 2

3
K3 (2.11)

K3 =
dsρs

2

{ √
π

3(3− ess)

[
1

2
(1 + 3ess) + 0.4(1 + ess)(3ess − 1)φsg0

]
+

8φsg0(1 + ess)

5
√
π

}
(2.12)

K4 =
12(1− e2

ss)ρsg0

ds
√
π

, (2.13)

where K1−4 are granular stress constants, ess is the coefficient of restitution for solid-
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solid interactions, g0 is the radial distribution function at contact, e is the coefficient

of restitution for solid-wall interactions, and ds is the diameter of solid-phase particles.

The GT is then used to calculate the solids viscosity and pressure, which are used

to calculate the gas- and solid-phase stress tensors.

τ g = 2µgt

{
1

2

[
∇vg + (∇vg)

T
]
− 1

3
∇ · vgI

}
(2.14)

τ s = (−Ps + ηµb∇ · vs)I + 2µs

{
Ds −

1

3
∇ · vsI

}
(2.15)

Ds =
1

2

[
∇vs + (∇vs)

T
]
, (2.16)

where µgt is turbulent viscosity, I is the unit tensor, Ps is solids pressure, η is a function

of the coefficient of restitution, µs is solids viscosity, and Ds is rate of strain.

2.2 Interphase Momentum Exchange

The interphase momentum exchange term consists of a drag model (β) and difference

of velocities between the phases

Igs = β(vg − vs). (2.17)

The drag model is a correlation that is developed through empirical studies and

quantifies the interaction between the two phases. Many correlations have been

proposed, for example, Wen-Yu [42, 43], Gidaspow [43], Syamlal-O’Brien [43, 44],

Koch-Hill [45, 46], BVK [47], and HYS [48]. This work primarily uses the Wen-Yu

correlation, but also considered the Gidaspow and Syamlal-O’Brien correlations for

a comparison study.

The Wen-Yu model is the simplest of the three models [2]
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β =
3

4

ρgφgφs
ds

CD|vg − vs|φ−2.65
g (2.18)

CD =


24

φgRes

[
1 + 0.15(φgRes)

0.687
]

Res < 1000

0.44 Res ≥ 1000,

(2.19)

where Res is Reynolds number based on slip velocity and solid-phase particle diam-

eter. The Gidaspow model is a combination of the Ergun [49] and Wen-Yu models.

Here, the drag model is piecewise and is driven by the flow regime of the system, i.e.,

dense versus dilute flow [2],

β =


3

4

ρgφgφs
ds

CD|vg − vs|φ−2.65
g φg < 0.8

150
φ2
sµg
φgd2

s

+ 1.75
φsρg
ds
|vg − vs| φg ≥ 0.8

(2.20)

CD =


24

φgRes

[
1 + 0.15(φgRes)

0.687
]

Res < 1000

0.44 Res ≥ 1000.

(2.21)

The Syamlal-O’Brien [2, 44] model is the most complicated of the three. It is loosely

based on the Wen-Yu model; however, it uses a modified drag coefficient and ad-

ditional supporting equations. Furthermore, the drag model must be iterated to

determine the values of the model coefficients, B–D, which go into the calculation of

β via Ur [2],

β =
3

4

ρgφgφs
U2
r ds

CD|vg − vs| (2.22)

CD =

(
0.63 + 4.8

√
Ur
Res

)2

(2.23)

A = φ4.41
g (2.24)
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B =


Cφ1.28

g φg < 0.85

φDg φg ≥ 0.85

(2.25)

D = 1.28 +
log(C)

log(0.85)
, (2.26)

where Ur is the ratio of terminal settling velocity of a multi-particle system to that of

a single particle. The iterative process minimizes the difference between the theoret-

ical and experimental minimum fluidization velocities (i.e., |U th
mf − U

exp
mf | → 0, where

U th
mf and U exp

mf are theoretical and experimental minimum fluidization velocities, re-

spectively).

For each simulation utilizing the Syamlal-O’Brien drag model, the model coef-

ficients are calculated and set based on the physical properties of the system. The

coefficients are not further adjusted to change the fluidization behavior of the system.

2.3 Interphase Energy Exchange

Interphase energy exchange is calculated in an analogous manner to interphase mo-

mentum exchange by using a simple convection-type model

Hgs = γgs(Ts − Tg), (2.27)

where γgs is the interphase heat transfer coefficient, which can be related to the

interphase Nusselt number via

γgs =
6kgφsNugs

d2
p

, (2.28)

where Nugs is the interphase Nusselt number. There exist several different correla-

tions to calculate the interphase Nusselt number [50–52]. MFIX employs the Gunn
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correlation [50] which takes the form

Nugs =
(
7− 10φg + 5φ2

g

) (
1 + 0.7Re0.2

g Pr1/3
g

)
(2.29)

+
(
1.33− 2.4φg + 1.2φ2

g

)
Re0.7

g Pr1/3
g ,

where Prg is the Prandtl number for the gas phase, given by

Prg =
Cp,gµg
kg

. (2.30)
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Chapter 3

VVUQ Framework for Upscaling CFD

Simulating full-scale systems with CFD methods is usually computationally intractable.

Resolving complex multiphysics spanning several orders of magnitude in length-scales

requires supercomputers with extensive run-times. One alternative approach to such

problems is to separate the length scales and decouple the physics. This reduces the

system to sub-systems that can easily be simulated to give insight into the building

blocks of the system. These decoupled sub-systems can then be combined and up-

scaled to intermediate laboratory-scales to create small-scale representations of the

full-scale system. As the complexity and scales are increased, the error in the predic-

tions can be propagated through the upscaling to give an idea of the total uncertainty

at each scale. To best quantify these errors and uncertainties, intermediate systems

should be compared with experimental setups. This process is referred to as a VVUQ

hierarchy.

The system of interest, a full-scale (650 MW), solid-sorbent, carbon capture re-

actor, is too large to simulate using traditional CFD methods. Instead, we apply a

VVUQ hierarchy and the problem is broken down into several intermediate scales

(pilot- and laboratory-scales) and the physics are decoupled. This reduces the prob-

lem to the fundamental building blocks (unit problems) of the full-scale reactor: hy-

drodynamics of a bubbling fluidized bed, heat transfer, reaction kinetics, and hydro-

dynamics of a moving fluidized bed (Figure 3·1) [53]. This hierarchical road map

provides a clear path to simulating the full-scale system, starting with the basic unit
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problems, then upscaling, incorporating multiphysics, and further upscaling. At each

upscaling phase, VVUQ methods are applied to quantify the error for the associated

sub-systems. This error is then propagated through to the next level.

In this chapter we begin the VVUQ upscaling process and consider the first two

unit problems: the hydrodynamics and heat transfer of a bubbling fluidized bed with

immersed heat transfer cylinders. These unit problems will provide the necessary

data (i.e., errors and uncertainties) for upscaling to a laboratory-scale CO2 adsorber

reactor (Figure 3·1).

Figure 3·1: CCSI validation hierarchy [53]. The full scale model is
broken into smaller, simplified unit problems with decoupled physics.
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3.1 Gas-Particle Hydrodynamics

The first unit problem consists of validating the hydrodynamics of gas-particle flow

around immersed geometry. There are many reports of experimental results for such

systems [54–58]; however, each publication has different foci (e.g., bubble characteris-

tics, tracer concentration, mixing times, solids hold up, and pressure drops). For the

validation of the hydrodynamics, we use the experimental work of Kim et al. [58],

who investigated the effects of immersed horizontal tubes in a bubbling bed by ob-

serving bubble frequency, phase fraction, and contacting time. This case was chosen

because the domain was sufficiently small to run many simulations, they provided

several different validation quantities, and the setup, methods, and results were all

reported in detail (and with quantified errors).

As demonstrated in Chapter 2, approximating a granular material as a liquid with

the TFM requires additional mathematical models, such as drag, granular tempera-

ture, and friction. These models have been developed based on empirical and theo-

retical constitutive relations. Consequently, results can vary significantly depending

on the choice of models used. Furthermore, physical quantities, such as coefficients of

restitution, friction angle, and packed bed void fraction, can be difficult to measure

experimentally and are often chosen based on previous studies or without rational-

ization. Because there is no single correct choice for the aforementioned models and

quantities, there exists an associated uncertainty for each choice. These uncertainties

must be quantified and propagated through each scale of the VVUQ hierarchy to

ensure integrity of the large-scale predictions.

Statistical UQ techniques, such as sensitivity analysis and Bayesian calibration,

can help quantify uncertainties in the system and make out-of-sample output pre-

dictions [27–30]. A sensitivity analysis quantifies the variation in output that is

directly related to the uncertainty and variation in the model input parameters. This
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can identify important (and unimportant) model parameters, allowing for improved

control and simplification of the model being assessed. Additionally, Bayesian cal-

ibration methods [31] can be implemented with statistical response surface models

(emulators) that are capable of quickly approximating the system. Bayesian cali-

bration uses Markov chain Monte Carlo methods to determine the optimal model

parameter values (i.e., values that could have plausibly reproduced the experimental

results). These approaches are used in this study and are discussed in further detail

in Section 3.1.2.

3.1.1 Setup

Kim et al.’s [58] experimental setup measured 34 × 48 × 60 cm with 25 horizontal 2.54

cm diameter tubes. As seen in Figure 3·2a, the tubes were arranged in a triangular

configuration with horizontal spacing of 8 cm, vertical spacing of 7 cm, pitch spacing

of 8 cm, and positioned 10 cm above the distributor plate (measured to the center

of the bottom tubes). The central tube, marked “Probe” in Figure 3·2a, contained

optical sensors and thermocouples spaced 45◦ apart, clockwise from +90◦ (top surface)

to −90◦ (bottom surface), as shown in Figure 3·2b. Ambient air and sand (silicon

dioxide, SiO2) were used as the gas and solid phases, respectively. The experimental

parameters are tabulated in Table 3.1.
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Table 3.1: Experimental parameters and physical properties.

Parameter Value Parameter Value

Bed Tube Bank

Width (cm) 48 Number of tubes 25

Height (cm) 60 Diameter (cm) 2.54

Depth (cm) 34 Spacing, horz. (cm) 8

Bed height (cm) 42 Spacing, vert. (cm) 7

Pressure (kPa) 101.3 Pitch (cm) 8

Gas Phase Solid Phase

Density (g/cm3) 1.2·10−3 Diameter (µm) 240

Viscosity (Pa·s) 1.8·10−5 Density (g/cm3) 2.582

Min. fluidization 4.8

velocity (cm/s)

Experimental hydrodynamics data were collected at four gas velocities: vg = {5.5,

7.0, 11.0, 12.6} cm/s. Bubble frequency (frequency at which bubbles passed by the

probe sensors) and bubble contacting time (root-square-average of time that bubbles

were in contact with the probe sensors) were measured for all gas velocities, while

bubble phase fraction (ratio of time bubbles were in contact with the probe sensors)

was only measured for the gas velocity of vg = 12.6 cm/s. Data from the optical

sensors were recorded for 28 seconds at a sampling frequency of 500 Hz. Kim et al.’s

calculation methods for these quantities are detailed in [58].

A two-dimensional (2D) Eulerian CFD model was developed using the MFIX code.

This 2D model neglects the 34 cm depth of the experimental setup [58], and represents

a slice through the middle of the domain. The use of a 2D simulation model for this

domain was studied by Li et al. [32] and was shown to provide reasonable predictions

of bubble dynamics. The simplified MFIX domain can be seen in Figure 3·2c. The
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vertical sidewalls were treated with no-slip boundary conditions, while the base and

top had fixed velocity inflow and pressure outflow boundary conditions. Based on

a previous study by Li et al. [32], the domain was discretized into approximately

39,000 cells (cell size ∆x = ∆y = 2.7 mm ≈ 10 dp) and the system was simulated

for 60 seconds, of which the last 30 seconds were analyzed. Measurements were

extracted from MFIX simulations by defining simulation cells that coincided with the

experimental optical sensor locations (Figure 3·2b).

Kim et al. [58] studied the hydrodynamics of bubble behavior through bubble fre-

quency, phase fraction, and contacting time. These output variables were calculated

from the optical sensor data. Similarly, gas-fraction measurements from the MFIX

simulations were used to calculate the simulated bubble frequency and phase fraction

by

fb =
Nb

ts
δb =

tbc
ts
, (3.1)

where fb is bubble frequency, δb is bubble phase fraction, Nb is total number of bubbles

observed at the sensor, ts is total sampling time, and tbc is total contacting time [58].

Converting void fraction to bubbles requires a threshold value to differentiate bubbles

from emulsion. Studies by Li et al. [32, 59] used void fraction values of 0.7 and 0.8

for bubble thresholds and showed best agreement with literature data using 0.8. As a

result, a bubble threshold of 0.8 was used throughout this study. Additionally,bubbles

needed to be differentiated from an instantaneous void. This was accomplished by

defining a bubble to be a void fraction that remained above the bubble threshold for

two consecutive sampling time steps,

tbcmin
= 2

1

Fs
, (3.2)

where tbcmin
is minimum contact time for classification as a bubble and Fs is sampling
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rate (100 Hz in this study).

3.1.2 Statistical Analysis

The MFIX CFD model was analyzed with statistical UQ techniques, including sensi-

tivity analysis and Bayesian calibration. These tools were used to evaluate the model,

determine the optimal model input parameters and predict outputs with associated

uncertainties.

Parameter Selection and Statistics

Analysis began by identifying CFD model input parameters θ̄ = (θ1, θ2, ...θn) that

were thought to be important and had an associated uncertainty in their values. Six

model parameters were chosen for this study: θ1,2 = coefficients of restitution for

solid-solid and solid-wall interactions, respectively; θ3 = packed bed void fraction,

θ4,5 = friction angles for solid-solid and solid-wall interactions, respectively; and θ6

= drag model. A review of the literature of numerical studies on fluidized beds and

solicitation of expert advice was used to determine physical ranges and most likely

values of these parameters [60–69]; the results are summarized in Table 3.2.
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Table 3.2: Model parameters and statistics.

Parameter Distribution

Continuous Range Mode

θ1 = coefficient of restitution, solid-solid (-) 0.8–0.997 0.9

θ2 = coefficient of restitution, solid-wall (-) 0.8–0.997 0.9

θ3 = packed bed void fraction (-) 0.3–0.4 0.35

θ4 = friction angle, solid-solid (◦) 25.0–45.0 28.5

θ5 = friction angle, solid-wall (◦) 25.0–45.0 28.5

Categorical Likelihood

θ6 = drag model

Gidaspow 33.3̄%

Syamlal-O’Brien 33.3̄%

Wen-Yu 33.3̄%

From these values, prior distributions (probability density functions, PDFs) were

constructed to approximate the likelihood of values for each parameter. Coefficients

of restitution and packed bed void fraction had symmetric distributions and were as-

signed shifted and scaled β-distributions centered at their respective modes. Friction

angles had asymmetric distributions and were also assigned shifted and scaled β-

distributions that matched their respective modes. The drag models were treated as

categorical variables and were weighted equally with a discrete uniform distribution.

The prior distributions are shown by the dashed lines in Figure 3·3.

The variables used for the analysis were aligned with the experimental inputs and

outputs of Kim et al. [58]. The input parameters were angular position of probe

sensors (ȳ1) and gas velocity (x̄2). The output parameters were bubble frequency

(x̄1) and phase fraction (ȳ2) (Table 3.3).
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Table 3.3: Bayesian calibration variables.

Experimental Inputs (x̄i)

x̄1 angular positions (◦)

x̄2 gas velocities (cm/s)

Experimental Outputs (ȳi)

ȳ1 bubble frequency (bubbles/s), for

x̄1 ∈ {±90,±45, 0}, x̄2 ∈ {5.5, 7.0, 11.0, 12.6}

ȳ2 bubble phase fraction (−), for

x̄1 ∈ {±90,±45, 0}, x̄2 ∈ {12.6}

Sampling

The joint prior distribution for all 6 parameters was formed by assuming all 6 parame-

ters were independent (i.e., resulting in a product of the marginal prior densities). To

design an efficient matrix of simulations, special care was taken to properly sample the

prior distributions. Many sampling methods exist (e.g., random, Latin Hypercube,

and Monte Carlo); however, the choice is application dependent. Latin Hypercube

Sampling (LHS) [70] was used in this study because of its efficiency (versus Monte

Carlo sampling) and its ability to guarantee sampling of the entire state space (versus

random sampling). The LHS method can be broken down into 3 steps: 1) define the

prior distribution (Figure 3·4a), 2) divide the distribution into equal-probability areas

(Figure 3·4b), and 3) randomly sample each area (Figure 3·4c). The LHS realizations

of the prior distributions are shown by the histograms in Figure 3·3.

Each simulation produced (after post-processing) the ȳ1 and ȳ2 values at angu-

lar locations {±90.0, ±67.5, ±45.0, ±22.5, 0}◦ (additional intermediate values were

recorded to smooth the data trends). Therefore we had 7 “free parameters” for which

to choose values in the LHS, {x̄1, θ1, θ2, ..., θ6}. For the initial analysis, gas velocity
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was restricted to x̄2 = 12.6 cm/s because extra experimental data was available at

that velocity. This initial analysis consisted of a LHS of size 60. A subsequent LHS

of size 30 was then designed to evaluate the effects of varying the velocity, where x̄2

= {5.5, 7.0, 11.0} cm/s. The additional 30 CFD simulations were distributed evenly

across the values of x̄2 and used the same prior distributions that were used in the

initial LHS (Figure 3·3).

Calibration

To explore the state-space of the input parameters, a Bayesian calibration [71] was

performed. A brief overview of the calibration methods can be found below; however,

the specifics of this approach are provided in Storlie et al. [72]. In this calibration

procedure, an emulator (i.e., statistical response surface model) was developed to

approximate the behavior of the CFD model. The emulator is designed such that it

is computationally efficient, allowing thousands of pseudo simulations (emulations)

to be computed quickly. The emulator can then be used to predict the experimental

data (ȳi) as

ȳi = η(x̄i, θ̄) + δ(x̄i) + εi, (3.3)

where η(x̄i, θ̄) is the emulator, δ(x̄i) is the model form discrepancy, and εi is the

measurement error. In principle the CFD model could be used directly for η, but

due to the computational expense of running the CFD model, it is replaced with the

emulator. In this approach, the emulator and discrepancy terms are modeled with

Bayesian Smoothing Spline ANalysis Of VAriance (BSS-ANOVA) models [73], where

the BSS-ANOVA model is merely a Gaussian Process (GP) with a special covariance

function [72]. Compared to the standard GP, the BSS-ANOVA model increases the

ease of handling categorical inputs and correlated outputs, and improves computa-
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tional efficiency. It is important to understand that the emulator is not simply a

fast surrogate model for the CFD code, it accounts for the additional uncertainty

inherent in the estimation of a response surface. To approximate the posterior dis-

tribution of the emulator, discrepancy, and model parameters, Markov chain Monte

Carlo (MCMC) was used. While many forms of MCMC have been developed (e.g.,

Gibbs, reversible jump, and Langevin), a hybrid Gibbs, Metropolis-Hastings sampling

scheme [74] was chosen and run for 40,000 MCMC iterations (run time of 4 hours).

The results of this analysis thus include an emulator capable of predicting output

values (bubble frequency and phase fraction) with uncertainty at untested input and

model parameter values.

3.1.3 Results

The results from the LHS campaign of simulations can be seen in Figures 3·5 and 3·6,

for bubble frequency and phase faction, respectively. The CFD simulation results of

bubble frequency showed three important traits: low bubble frequencies at angular

positions −90◦ > x̄1 > 0◦ with a gas velocity of x̄2 = 5.5 cm/s (Figure 3·5a), wide

variation of bubble frequencies at angular positions −90◦ > x̄1 > 0◦ with gas velocities

x̄2 = {5.5, 7.0} cm/s (Figures 3·5a and 3·5b), and over prediction of bubble frequencies

across all gas velocities (Figures 3·5a–3·5d). The smallest gas velocity, x̄2 = 5.5 cm/s,

was just slightly larger than the reported minimum fluidization velocity (Umf = 4.8

cm/s) [58]. This minimal difference in velocities resulted in poor fluidization of the

simulated systems depending on the drag model chosen. Gidaspow and Syamlal-

O’Brien models both resulted in poor fluidization for a gas velocity of x̄2 = 5.5 cm/s,

while the Wen-Yu model was unaffected. The Syamlal-O’Brien model also resulted

in poor fluidization for a gas velocity of x̄2 = 7.0 cm/s, while Wen-Yu and Gidaspow

models were unaffected. These fluidization problems are also responsible for the wide

variation in results at lower velocities. Over prediction of bubble frequency occurred
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at all velocities (of systems that reached fluidization) and is thought to be a result of

the simplified simulation domain. Simplifying the system from 3D to 2D eliminated

front- and rear-wall effects. Had these effects been present, the additional drag forces

would have resulted in slower moving bubbles and an overall lower bubble frequency.

The CFD simulation results of bubble phase fraction showed similar trends

compared to the bubble frequency: low bubble phase fraction at angular positions

−90◦ > x̄1 > 0◦, with a gas velocity of x̄2 = 5.5 cm/s (Figure 3·6a), wide variation of

bubble phase fraction at angular positions −90◦ > x̄1 > 0◦ with gas velocities x̄2 =

{5.5, 7.0} cm/s (Figures 3·6a and 3·6b), and under prediction of bubble phase fraction

for gas velocities x̄2 = 12.6 cm/s (Figure 3·6d). The low values and wide variation

of bubble phase fraction at low gas velocities were also thought to be caused by the

poor fluidization of the system. The slower moving bubbles in a full 3D system would

remain at the tube surface for longer periods of time, resulting in a higher bubble

phase fraction.

The resulting emulator from the calibration procedure was used to perform a

global sensitivity analysis [27] of the CFD model (on the bubble frequency output)

as in Storlie et al. [75] and Storlie & Helton [76, 77]. The total variance index

was calculated for each of the parameters across several values of the input space

and is displayed in Figure 3·7. The total variance index values identify which input

parameters contribute significantly to the overall fluctuation of the output. It is

clear from Figure 3·7 that the parameter importance does not change significantly

across input space. In this problem, friction angle for solid-solid interactions and drag

model were the two parameters that had the largest effect on bubble frequency. The

same results for bubble frequency were also obtained using the Adaptive COmponent

Selection and Smoothing Operator (ACOSSO) response surface [75].

The Bayesian calibration resulted in an approximate sample from the posterior
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velocities: (a) vg = 5.5, (b) vg = 7.0, (c) vg = 11.0, and (d) vg = 12.6
cm/s; where G, W-Y, and S-O are Gidaspow, Wen-Yu and Syamlal-
O’Brien drag models, respectively, and Exp. is experimental results
[58].



31

0.0

0.1

0.2

0.3

0.4

(a)
G

W-Y

S-O

Exp.

0.0

0.1

0.2

0.3

0.4

(b)

0.0

0.1

0.2

0.3

0.4

(c)

−90 −45 0 45 90

Angular Position (◦)

0.0

0.1

0.2

0.3

0.4

(d)

B
ub

bl
e

Ph
as

e
Fr

ac
ti

on
(-
)

Figure 3·6: Bubble phase fraction results for 90 simulations using
LHS of sizes 60 (vg = 12.6 cm/s) and 30 (vg = {5.5, 7.0, 11.0} cm/s)
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vg = 12.6 cm/s; where G, W-Y, and S-O are Gidaspow, Wen-Yu and
Syamlal-O’Brien drag models, respectively, and Exp. is experimental
results [58].
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Figure 3·7: Results of sensitivity analysis for bubble frequency across
angular location for gas velocities: (a) vg = 5.5, (b) vg = 7.0, (c)
vg = 11.0, and (d) vg = 12.6 cm/s.



33

distribution for the model parameters based on the MCMC simulation. The marginal

posterior distributions (i.e., histograms from 20,000 observations from the MCMC ap-

proximated posterior sample) can be seen in Figure 3·8 compared with their respective

prior distributions (shown as dashed lines). The posterior distributions for the model

parameters: coefficients of restitution for solid-solid and solid-wall interactions (Fig-

ures 3·8a and 3·8b, respectively); packed bed void fraction (Figure 3·8c); and friction

angle for solid-wall interactions (Figure 3·8e) did not change significantly from their

prior distributions. This makes intuitive sense in light of the sensitivity analysis re-

sults. A lack of sensitivity in the output to these parameters will necessarily mean

that there is not much information in these data to inform the value of these param-

eters. This may or may not be the case for different outputs, or a different problem

with different physics, geometry, etc. The insignificant change in posterior distribu-

tion for friction angle for solid-wall interactions can be attributed to the choice of

boundary conditions. Because no-slip boundary conditions were used for the vertical

walls, only internal friction was considered. This resulted in the parameter acting

as a dummy variable. The friction angle for solid-solid interactions (θ4) exhibited a

posterior distribution strongly shifted to the left (Figure 3·8d), significantly more so

than the prior distribution. The drag model (θ6) posterior distribution also changed

significantly from the prior distribution. Originally all three models were weighted

equally; however, as seen in Figure 3·8f, the Wen-Yu model is strongly favored. These

results suggest that in future simulations of similar systems and flow regimes, the fric-

tion angle for solid-solid interactions be set to ∼25◦ and the drag model be set to

Wen-Yu, while the remaining parameters be set within their respective ranges listed

in Table 3.2.

The posterior distribution of the model parameters along with the emulator can

be used to predict output variables with uncertainty (e.g., bubble frequency (Figure
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3·9) and bubble phase fraction), at untested input values. To assess the predictive

capability of the calibrated model (including the discrepancy term), we fit the cal-

ibration procedure four more times, each time holding out experimental data at a

particular velocity. The resulting calibration fit is then used to predict the held out

data to assess how well it performs out-of-sample predictions. This process is called

cross-validation. At low gas velocities (i.e., x̄2 = {5.5, 7.0} cm/s), the confidence

bands are very wide and the mean over predicts the bubble frequency. At higher gas

velocities (i.e., x̄2 = {11.0, 12.6} cm/s), the emulated confidence bands are tighter,

encompassing the experimental data and error [58], and the emulated mean passed

through the experimental data confidence intervals [58]. Given the wide variance of

CFD model results at low gas velocities (Figures 3·5a, 3·5b, 3·6a, and 3·6b), and the

small variance at high gas velocities (Figures 3·5c, 3·5d, 3·6c, and 3·6d), these results

are not unexpected.
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Figure 3·9: Out-of-sample bubble frequency predictions from the cal-
ibration model (including discrepancy) with 95% confidence bands for
gas velocities: (a) vg = 5.5, (b) vg = 7.0, (c) vg = 11.0, and (d)
vg = 12.6 cm/s; where µ is mean predicted bubble frequency, δ95% are
95% confidence bands, and Exp. is experimental results [58].
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3.2 Gas-Particle Heat Transfer

Similar to the previous problem, there are many experiments which consider gas-

particle flows around heated cylinders [58, 78–81]. Since we had already validated

the hydrodynamics with Kim et al.’s system [58], it made most sense to validate

the heat transfer with the same system. Kim et al. heated the center tube and

observed the resulting local temperature profiles and heat transfer coefficients around

the probe [58].

3.2.1 Setup

Using the same setup from Section 3.1, the center tube was set to a constant surface

temperature of 60 ◦C. The physical parameters all remained the same, as listed in

Table 3.1, with the addition of thermal properties. The thermal conductivity and

specific heat capacity for the gas phase were set to 0.029 W/m·K and 1004 J/kg·K,

respectively. The thermal conductivity and specific heat capacity for the solid phase

were set to 0.2 W/m·K and 710 J/kg·K, respectively. The domain was initialized to

20 ◦C. Kim et al. considered several different inlet gas velocities; for this study we

used an inlet gas velocity of 11 cm/s.

While a grid size of 10dp is often cited as a sufficiently small grid for modeling

gas-particle hydrodynamics, it does not hold true for heat transfer. This is largely due

to the significant differences in the size of the fluid boundary layer and the thermal

boundary layer. When the grid cells are too large the energy is diffused too quickly

and results in over prediction of the heat transfer rate. Resolving the surface heat

transfer requires significantly finer grids. To overcome this issue, we consider three

locally refined grid sizes, where the smallest cells are 5dp, 2dp, and 1dp (Figure 3·10)

and the largest cells in the domain are 10dp.
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(a)

(b)

Figure 3·10: Refined mesh for Kim et al.’s system simulation, smallest
grid cells are 1dp and largest grid cells are 10dp: a) mesh of entire
domain, b) close up of local refinement around cylinders.

3.2.2 Analysis

In experimental setups, it is common for the researcher to measure the heat transfer

coefficient based on the power consumption from heating the cylinder (Q)

h =
Q

Ac∆T
, (3.4)

where Ac is the cylinder area, and ∆T is the different between the cylinder tempera-

ture and the bulk temperature. However, in a simulation we can not directly measure

the power consumption because the wall temperature is enforced by a boundary con-
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dition. Instead we have to use local derivatives on the surface of the cylinder to

calculate the rate of heat transfer [82, 83]

h =
φgkg

∂Tg
∂x

+ φsks
∂Ts
∂x

Tc − Tbulk

, (3.5)

where the derivatives are taken on the cylinder wall, and Tbulk is the average temper-

ature of the bulk mixture. This can be written discretely as

h =
φgkg

∆Tg
∆x

+ φsks
∆Ts
∆x

Tc − Tbulk

, (3.6)

where ∆T is the difference between the wall boundary temperature and the nearest

fluid cell, and ∆x is the distance from the wall to the center of the nearest fluid cell.

3.2.3 Results

Using similar post-processing methods as Section 3.1.1, regions around the cylinder

were identified as the corresponding probe locations for −90◦, −45◦, 0◦, 45◦, and 90◦.

The local heat transfer coefficients were calculated for each location with (3.6) and

are shown in Figure 3·11 with the results from Kim et al. The results for all grid sizes

show poor agreement with the literature data. The simulations consistently under

predict the heat transfer and have trouble achieving the right profiles, regardless of

magnitude. Even with a refined grid size of 1dp we observe the highest local heat

transfer coefficient is only 256 W/m·K, where as the average heat transfer coefficient

for Kim et al. is around 400 W/m·K.

Snapshots of the temperature field for grid sizes 10dp, 2dp, and 1dp are shown in

Figure 3·12. We can see that as the grid cells get smaller, the heat transfer occurs

more slowly and has time to heat up the surrounding area, whereas the large grid

dissipates the heat too quickly due to the large distance it has to diffuse over (i.e., the

length of one grid cell). Reviewing (3.6), it can be seen that the main contributors
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Figure 3·11: Local heat transfer coefficients from MFIX based on
different grid sizes compared with data from Kim et al. with an inlet
velocity of 11 cm/s [58].

to the heat transfer coefficient calculation are the temperature drop at the cylinder

wall ∆T and the diffusion distance to the cell center ∆x.

Because of these limiting factors in the heat transfer coefficient calculation, it

is worth considering the theoretical limit achievable with this method. To maxi-

mize (3.6), we consider a cell next to the tube at maximum solids packing, φs = 0.64

and φg = 0.36. This maximizes the solids contribution, which typically has a signifi-

Figure 3·12: Temperature field around the central cylinder for differ-
ent grid sizes: a) 10dp, b) 2dp, and c) 1dp.
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cantly higher thermal conductivity than the gas phase. The maximum drop in heat

transfer would be equal to the difference between the cylinder wall temperature and

the bulk temperature, ∆T = Tc − Tbulk. These assumptions simplify the equation to

a function of material properties, which are constant, and the grid size

h =
0.36kg + 0.64ks

∆x
, (3.7)

where ∆x = ∆grid/2 since the finite difference is taken to the cell center. This function

was plotted for varying grid cell sizes and compared with the Kim et al. average heat

transfer coefficient (Figure 3·13). We see that for any grid cell larger than 1.3dp,

the theoretical maximum is lower than the literature value. However, as Figure 3·11

showed, even a grid cell size of 1dp was insufficient for predicting the local heat

transfer coefficients. Using even smaller grid cells (< 1dp) becomes computationally

intractable, because not only does the number of grid cells increase at an O(n2) rate

as size changes, but the time steps must reduce to maintain stability of the system.

Because it not possible to accurately predict local heat transfer properties (us-

ing these numerical methods), we investigated the prediction of global heat transfer

properties and the overall temperature field by developing a subgrid model for the

unresolved cylinder-suspension heat transfer (Chapter 4).
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Figure 3·13: Theoretical maximum heat transfer coefficient attainable
with (3.7) compared with Kim et al.’s average value [58].



43

Chapter 4

Subgrid Models

As demonstrated in Section 3.2, calculating accurate local heat transfer coefficients

can be computationally intractable, requiring extremely fine meshes and small time

steps. Even with modern super computers, solving a laboratory-scale system can

take months with many processors working in parallel. This is the motivation behind

developing subgrid models for coarse-grid heat transfer.

The proposed heat transfer subgrid model builds on- and is analogous to the

subgrid model for drag developed by Sarkar et al. [14], where coarse-grid cylinder-

suspension drag was calculated as a function of flow behavior and geometry config-

urations, and implemented through source terms in the momentum governing equa-

tions. Similarly, we constitute a coarse-grid cylinder-suspension heat transfer model

in terms of the materials properties, flow conditions, and geometry configurations,

and implement it via a source term in the energy governing equations. The result is

an accurate, efficient method for simulating large-scale multiphase systems with heat

transfer due to immersed geometry. However, it is worth nothing that due to the

nature of the coarse-grid, we sacrifice the ability to make local predictions of heat

transfer coefficients (as reported by [58, 84]) for efficiency.

This chapter details the development and testing of the subgrid model. Section 4.1

describes the domain and simulation setup. Section 4.2 details the mathematical for-

mulation of the filtering method. Sections 4.3 and 4.4 present the grid-cell-size and

filter-size convergence studies, respectively. Section 4.5 describes the model develop-
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ment and optimization and Section 4.6 details the model implementation in MFIX.

The verification, validation, and uncertainty quantification of the model are covered

in Sections Sections 4.7, 4.8, and 4.9, respectively.

4.1 Setup

The simulation domain is motivated by the system presented in Chapter 3 (left-hand

side of Figure 4·1). Based on this system, we construct a smaller 2D unit cell sub-

domain (right-hand side of Figure 4·1). This sub-domain is representative of the full

system, that is, the periodic unit cell denotes a region in the interior of the bed away

from the walls. By using a smaller sub-domain, the full range of possible flow con-

ditions and geometric configurations can be simulated more efficiently. Hereinafter,

domain will refer to the reduced 2D periodic unit cell unless explicitly noted otherwise.

To idealize the flow that occurs in the interior of a fluidized bed, the domain’s

boundaries are periodic, shown as black-dashed lines in Figure 1. A macroscopic flow

is induced within the domain by imposing a pressure difference along the y-direction,

opposite gravity. This pressure drop across the vertical periodic boundaries is defined

as a surplus to the suspension pressure, i.e., the pressure needed to balance the weight

of the gas-solid mixture, given by:

pg = (φgρg + φsρs) g` (4.1)

where pg is the suspension gas pressure, φ is phase fraction, ρ is density, g is

gravitational acceleration, ` is the length of the domain, and subscripts g and s denote

gas and solid phases, respectively. The rate and direction of flow are controlled using

the value of the gas pressure drop, ∆pg. When ∆pg is positive, the net suspension

momentum is positive (i.e., upwards), against gravity, and conversely when ∆pg is

negative the net momentum is negative. Thus, we are able to prescribe the various
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Figure 4·1: Laboratory-scale fluidized bed simulation (left) and pe-
riodic unit-cell domain (right), where Dc is cylinder diameter, ac is
cylinder spacing, Tc is cylinder surface temperature, φs is solids frac-
tion, pg is gas pressure, ∆p is the gas pressure drop, g is gravitational
acceleration, ` = ac is the length of the domain, and CV is the control
volume, shown in gray.

flow velocities typically encountered in a large-scale device. Immersed horizontal

heat transfer cylinders are present in the domain. The boundary conditions on the

cylinder surfaces are defined as no-slip flow for both gas and solids, and a constant pre-

defined surface temperature Tc (i.e., Dirichlet boundary condition). The curvature of

the immersed cylinders is approximated using MFIX’s Cartesian cut-cell feature [85],

which truncates cells that intercept curvilinear boundaries, creating quadrilateral and

triangular cut-cells.

The flow region is initialized as a stationary, homogeneous mixture of gas and

solids with an initial suspension temperature of 20 ◦C. The gas phase is modeled as air
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and the solid phase represents carbon-capture sorbent (based on physical properties).

For the purpose of model derivation and error analysis, a generic source term Q̇s is

appended to the solid phase governing energy equation (2.7) with the form

Q̇s = φsρsCp,sΠ̇s, (4.2)

where Π̇s is the heat generation rate. The value of the generation rate is arbitrary and

does not affect the resulting model. Material properties are adapted from previous

studies [24, 53] and are listed in Table 4.1. Additionally we define two characteristic

values used to non-dimensionalize quantities: a length and a velocity. These charac-

teristic values are based on the solids terminal velocity vt, which has been shown to

describe the hydrodynamics of the solids phase well in past studies [14, 16, 24, 86].

These characteristic values are also defined in Table 4.1.

In gas-solid flows, hydrodynamic grid-independent (statistically averaged) results

are typically achieved using grid-cell sizes near 10 times the particle diameter dp

[20, 87]. As such, previous work on gas-particle sub-grid model development has

employed fine-grid sizes of 16.667 dp [16] and 8.333 dp [14, 16, 20, 24]. However, as

will be described in Section 4.3, accurate resolution of the heat transfer was only

achieved with grid-cells no larger than 400 µm, independent of particle size. As a

result, this study uses a finer grid size of 400 µm, with the exception of the cut cells

which varied and had a minimum cell length of 100 µm. MFIX employs an adaptive

time step algorithm to maintain stability. The time steps were bounded between

10−10 and 10−3 seconds, with a mean time step of approximately 10−5 seconds.
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Table 4.1: Material properties and parameters.

Parameter Symbol Value Units

Gas phase

Density ρg 1.2 kg/m3

Viscosity µg 18·10−6 m2/s2

Thermal conductivity kg 0.024 W/m·K

Specific heat capacity Cp,g 1000 J/kg·K

Solid phase

Diameter dp 100 µm

Density ρs 441 kg/m3

Thermal conductivity ks 0.2 W/m·K

Specific heat capacity Cp,s 1000 J/kg·K

Restitution coefficient e 0.9

Friction angle θ 28.0 ◦

Generation rate Π̇s 1 K/s

Characteristic values

Length L∗ = v2
t /g 0.00180 m

Velocity v∗ = vt 0.133 m/s

Cylinder geometry

Diameter Dc 3 cm

Spacing ac 12 cm

4.2 Filtering Methods

Calculation of the effective cylinder-suspension heat transfer can be accomplished by

filtering the governing energy equations over the simulation domain. The filtering

approach outlined in this study is analogous to that used by Igci et al. [16], Sarkar

et al. [14], and Agrawal et al. [24].
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We define a top-hat filter function, G(x), over the control volume, CV , such that

∫
CV

G(x) dV = 1. (4.3)

This filter is then applied to the flow variables: phase volume fractions, velocities,

and temperatures, to define new, filtered flow variables:

φ̄i =
1

VCV

∫
CV

φi dV, (4.4)

φ̄iṽi =
1

VCV

∫
CV

φivi dV, (4.5)

φ̄iT̃i =
1

VCV

∫
CV

φiTi dV, (4.6)

where i = g, s, the overbar denotes the volume averages, and the overtilde denotes

the Favre average weighted by respective phase fractions. The Reynolds decompo-

sition for the flow variables can then be written in terms of these filtered quantities

as:

φi = φ̄i + φ′i, (4.7)

vi = ṽi + v′i, (4.8)

Ti = T̃i + T ′i , (4.9)

where the prime denotes the spatial fluctuating components about the respective

mean values.

To obtain the net cylinder-suspension heat transfer, we write the total energy of

the system by summing (2.6) and (2.7), eliminating the interphase heat transfer terms
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∂

∂t
(φgρgCp,gTg + φsρsCp,sTs) +∇ · (φgρgCp,gvgTg + φsρsCp,svsTs)

= ∇ · (φgkg∇Tg + φsks∇Ts) + Q̇s. (4.10)

Applying the filter G(x) to Equation (4.10) yields

1

VCV

∫
CV

∂

∂t
(φgρgCp,gTg + φsρsCp,sTs) dV

+
1

VCV

∫
CV

∇ · (φgρgCp,gvgTg + φsρsCp,svsTs) dV

=
1

VCV

∫
CV

∇ · (φgkg∇Tg + φsks∇Ts) dV +
1

VCV

∫
CV

Q̇s dV (4.11)

Substituting the values from (4.2) and (4.7)–(4.9) reduces (4.11) to

∂

∂t
(φ̄gρgCp,gT̃g+φ̄sρsCp,sT̃s) =

1

VCV

∮
Sc

(φgkg∇Tg+φsks∇Ts)·n̂cdS+φ̄sρsCp,sΠ̇s (4.12)

where Sc is the cylinder surface and n̂c is the normal vector to the cylinder surface,

pointing outward. This simplification is made possible by the divergence theorem;

the convective terms can be converted to two surface integrals: one over the periodic

boundaries and the other over the cylinders. The surface integrals of the convective

terms computed over the periodic boundaries are identically zero. If we analyze the

system after it has reached pseudo steady-state the expression is further simplified

as the transient term disappears. The remaining surface-integral about the cylin-

ders represents the averaged or filtered volumetric suspension-cylinder heat transfer,

defined as Qsc, for which we want to constitute a closure equation for
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Qsc = −φ̄sρsCp,sΠ̇s. (4.13)

We propose a standard convective heat transfer model for the filtered volumetric

cylinder-suspension heat transfer rate

Qsc =
h̄scAc(Tc − T̃susp)

VCV
, (4.14)

where h̄sc is the filtered cylinder-suspension heat transfer coefficient, Ac is cylinder

surface area, Tc is the cylinder surface temperature, and T̃susp is the average suspension

temperature, defined as

T̃susp =
1

VCV

∫
CV

φgTg + φsTs dV. (4.15)

With (4.13) and (4.14) we can calculate the filtered cylinder-suspension heat trans-

fer coefficient, h̄sc

h̄sc =
φ̄sρsCp,sΠ̇sVCV

Ac(Tc − T̃susp)
, (4.16)

The cylinder-suspension heat transfer can then be non-dimensionalized by formu-

lating a filtered cylinder-suspension Nusselt number,

Nucs =
h̄scL

∗

ks
, (4.17)

where L∗ is the characteristic length and ks is the solids thermal conductivity

(Table 4.1).

Using the propagation of error formula [88] we can formulate the standard devia-

tion of the filtered cylinder-suspension Nusselt number as
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σNucs
=

√√√√( φ̄sρsCp,sΠ̇s

Ac(Tc − T̃susp)2

)2

σ2
T̃susp

. (4.18)

where σT̃susp is the standard deviation of the filtered suspention temperature.

In this work, we seek to construct a correlation for Nucs for different material

properties, flow conditions, and geometry configurations.

4.3 Grid Size Determination

A grid sensitivity study was performed to determine the appropriate cell size. Chap-

ter 3.2 showed that even 1dp was not sufficient for resolving local heat transfer coef-

ficients however, because we are now calculating global heat transfer rates, we must

perform another set of grid tests to determine the largest possible grid size for pro-

ceeding with the subgrid model development.

A campaign of 9 simulations was setup to study the convergence of results when

varying the grid cell size. Three sizes of particle diameters were considered: 100,

200, and 300 µm. For each particle size, three grid cell sizes were considered: 200,

400, and 800 µm. All other material and simulation properties were identical for all

simulations (Table 4.1). The simulations were run for 10 seconds, sufficient time for

determining the pseudo steady-state filtered suspension temperature. Using (4.17)

and (4.16) the filtered cylinder-suspension Nusselt number was calculated for each

simulation and scaled to the [0,1] interval for each particle diameter (Figure 4·2).
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Figure 4·2: Scaled filtered Nusselt number vs. grid size for particle
diameters: 100, 200, and 300 µm, with φ̄s = 0.3 and |ṽs| = 0.5. Error
bars denote 95% confidence intervals.

From this we see that grid independence is achieved for grid cell sizes around

400 µm. Unlike the hydrodynamics-only simulations, for this particular system, the

appropriate grid cell size is not a function of particle size. This seems reasonable as

the thermal boundary layer is generally a function of the Prandtl number, i.e., related

to the thermal properties of the fluid. The remaining simulations in this study were

performed using a grid size of 400 µm.

4.4 Filter Size Determination

The domain in Figure 4·1 represents the minimum filter size possible and is referred to

as a unit cell. Using this unit cell we can construct filters of various sizes (Figure 4·3),

with the restriction that they are integer multiples of the unit cell. It is important

to ensure that the filter is large enough to capture the flow and heat transfer char-

acteristics at all length scales. Conversely, we want to minimize the size to reduce
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computation time. To determine the minimum acceptable filter size, we consider four

different filter sizes: `, 2`, 3`, and 4`, where ` represents the smallest unit-cell size

(Figure 4·3). Identical simulation conditions were used for each filter size (Table 4.1)

and the simulations were run for 10 seconds, sufficient time for determining the pseudo

steady-state filtered suspension temperature.

ℓ
2ℓ

3ℓ
4ℓ

Figure 4·3: Filter domains considered to determine the optimal filter
size, expressed as integer multiples of the unit-cell size `, with φ̄s = 0.3
and |ṽs| = 0.5 m/s.
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The simulations were processed using the same method described in the grid

study (Section 4.3). The results show no significant differences across all filter sizes,

indicating that filter size independence is achieved at the smallest filter size, L = `

(Figure 4·4). For the remainder of the study, all simulations were run with domains

of filter-size L = ` = ac.
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Figure 4·4: Nusselt number vs. filter size to determine minimum
acceptable filter size, with φ̄s = 0.3 and |ṽs| = 0.5. The error bars
represent 95% confidence intervals.

4.5 Developing the Constitutive Model

To develop the sub-grid model, we first complete a dimensional analysis to deter-

mine the effective terms for formulation. Using the Buckingham-Pi theorem [89]

with the set of variables {φ̄s, |ṽs|, ρs, Cp,s, ks, dp, Dc, ac, h̄sc} and set of basis variables:

{L∗, vt, ρs, ks} results in the following dimensionless Pi groups:
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Π1 = φs, (4.19)

Π2 = |ṽs|/vt, (4.20)

Π3 = Dc/ac, (4.21)

Π4 = ρsCp,svtL
∗/ks = Pecs, (4.22)

Π5 = h̄scL
∗/ks = Nucs, (4.23)

where Π2 is the dimensionless filtered solids velocity, Π3 is the ratio of cylinder di-

ameter to spacing, Π4 is the filtered Peclet number, and Π5 is the filtered cylinder-

suspension Nusselt number. Note that we have chosen to exclude the gas viscosity,

and the corresponding dimensionless Prandtl number (Prg = Cp,gµg/kg), from the list

above. The cylinder-suspension heat transfer occurs primarily through the particles,

and not through the gas and, therefore, the influence of the Prandtl number on Nucs

is not important for particle-laden flows.

According to the Buckingham-Pi theorem, the Nusselt number can be written as

a function of the other dimensionless Π groups. We choose to correlate Nucs using a

decoupled expression of the form

Nucs = f1(φ̄s)f2(|ṽs|/vt)f3(Dc/ac)f4(Pecs), (4.24)

where f1, f2, f3, and f4 are yet unknown functions of their respective arguments.

To determine these functions, we vary the dimensionless groups over a physically

relevant range (Table 4.2) while holding the others at constant values, similar to a

factorial experimental design.
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Table 4.2: Pi-group values for simulation campaign.

Values

Variable Nominal Minimum Maximum

φ̄s 0.3 0.01 0.6

Dc/ac 0.25 0.1 0.4

|ṽs|/vt 3.8 0.6 7.0

Pecs 530 370 1,330

First the solids fraction is varied between 0.01–0.6 to simulate the spectrum from

very dilute to very dense systems. The Nusselt number dependence on solids fraction

is significant (Figure 4·5). We see that the behavior is similar to a power law, and we

propose the following model form

f1(φ̄s) ∝ φ̄β1s , (4.25)

where β1 is an exponent determined through nonlinear regression. Similar behavior

is observed with previous models [14, 16, 24]. The model was generated using SciPy’s

nonlinear regression called curve fit [90]. The value of β1 was found to be 0.125,

which agrees well with the data (Figure 4·5). In the limit where the solid fraction goes

to zero, a standard single-phase Nusselt number correlation may be used, detailed in

Section 4.6.
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Figure 4·5: The Nusselt number vs. solids fraction for Dc/ac = 0.25,
|ṽs|/vt = 3.8, and Pecs = 530, except as noted by the legend. Markers
represent simulated data with ±σNucs

error bars and the solid lines
denote the model fit.

The ratio of cylinder diameter to spacing was varied between 0.1–0.4, a range

often reported in textbooks and literature (see, for example, [91, 92]), by varying the

cylinder spacing and holding the cylinder diameter at 3 cm. The effect of Dc/ac on the

Nusselt number was also well-correlated to a power-law and fitted using a polynomial

model with an unknown power,

f2

(
Dc

ac

)
∝ 1 + β2,1

(
Dc

ac

)β2,2
, (4.26)

where β2,1 and β2,2 are determined through nonlinear regression. The values of β2,1

and β2,2 are found to be 2.94 and 1.76 respectively, which agrees well with the data

(Figure 4·6), capturing the trend and passing through the error bars of the data.

Furthermore the proposed form ensures that as the cylinder diameter increases so

does the Nusselt number, and inversely as the cylinder spacing increases the term
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decreases asymptotically. A similar relationship is observed in single phase flow [92].
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Figure 4·6: The Nusselt number vs. cylinder diameter-spacing ratio
for φ̄s = 0.3, |ṽs|/vt = 3.8 and Pecs = 530, except as noted by the
legend. Markers represent simulated data with ±σNucs

error bars and
the solid lines denote the model fit.

The dimensionless filtered solids velocity was varied between 0.6–7.0 by varying

the pressure drop to achieve a mean solids velocity of 0.1–1.0 m/s. We propose a

power-law model, analogous to the Reynolds number term present in single-phase

flow heat transfer correlations,

f3

(
|ṽs|
vt

)
∝
(
|ṽs|
vt

)β3
, (4.27)

where β3 was found to be 0.341 through nonlinear regression. This form fits the data

well and satisfies the limits of going to zero when net flow is zero (Figure 4·7).
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Figure 4·7: The Nusselt number vs. filtered solids velocity for φ̄s
= 0.3, Dc/ac = 0.25, and Pecs = 530, except as noted by the legend.
Markers represent simulated data with ±σNucs

error bars and the solid
lines denote the model fit.

The filtered Peclet number was varied between 370–1,330, by varying the specific

heat capacity between 700–2,500 J/kgcdotK. The Nusselt number is fit well using a

power law,

f4(Pecs) ∝ Pe
β4
cs , (4.28)

where β4 is determined to be 0.353 through nonlinear regression (Figure 4·8).

Thus, we find a relationship between the Nusselt number and thermal properties

Nusc ∝ Cpk
−1
s , which is similar to the Prandtl number term present in traditional

single-phase heat transfer correlations.
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Figure 4·8: The Nusselt number vs. Peclet number for φ̄s = 0.3, Dc/ac
= 0.25, and |ṽs|/vt = 3.8, except as noted by the legend. Markers
represent simulated data with ±σNucs

error bars and the solid lines
denote the model fit.

In summary, the individual function forms f1, f2, f3, and f4, are substituted back

in (4.24) to provide the form of the closure model,

Nucs ∝ φ̄β1s

[
1 + β2,1

(
Dc

ac

)β2,2]( |ṽs|
vt

)β3
Pe

β4
cs . (4.29)

This equation is then fit with all of the data simultaneously to determine the final

values for all unknowns and the proportionality factor,

Nucs = 0.354 φ̄0.125
s

[
1 + 2.94

(
Dc

ac

)1.76
](
|ṽs|
vt

)0.341

Pe
0.353

cs . (4.30)
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4.6 Implementation

The rate of heat transfer is largely driven by the flow conditions, as such for coarse

grid simulations we must ensure that the hydrodynamics are correcly calculated to

ensure the accuracy of the heat transfer model. We implement the Igci et al. gas-

particle drag model [16] in regions where no cylinders are present and the Sarkar

et al. cylinder-suspension drag model [14] in regions containing cylinders. When

performing coarse grid simulations the grid cells are often O(cm), too coarse to allow

resolution of the immersed geometry. The cylinder-suspension drag model calculates

the drag due to the immersed bodies by implementing a secondary, stationary solid

phase, and modifying the governing equations. The stationary solid phase is modeled

as a porous media and has a constant phase fraction equal to the volume ratio of the

cylinders to the unit cell,

Φc =
Vc
Vtot

=
π
4
D2
c

1
2
a2
c

, (4.31)

where Φc is the cylinder’s filtered phase fraction. With this, we calculate the

corrected filtered phase-fractions, velocities, and temperatures for the gas and moving

solid phase:

Φi = (1− Φc)φ̄i, (4.32)

Ṽi = Φiṽi, (4.33)

Θ̃i = ΦiT̃i. (4.34)

Using (4.14) and (4.32)–(4.34), we can re-write the corrected governing energy

equations,
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∂

∂t
(ΦgρgCp,gΘ̃g) +∇ · (ΦgρgCp,gṼgΘ̃g) = ∇ · (Φgkg∇Θ̃g) +Hgs +Qgc, (4.35)

∂

∂t
(ΦsρsCp,sΘ̃s) +∇ · (ΦsρsCp,sṼsΘ̃s) = ∇ · (Φsks∇Θ̃s)−Hgs +Qsc. (4.36)

In addition to the newly developed constitutive model for cylinder-suspension heat

transfer, we also include a known heat transfer correlation in the gas-phase energy

equation [92]. This allows for calculation of heat transfer in the freeboard where no

solids may be present. It is implemented similarly to the cylinder-suspension model,

Qgc = h̄gcAc(Tc − T g), (4.37)

where h̄gc is the filtered gas-cylinder heat transfer coefficient and is calculated

from the Nusselt correlation developed by Khan et al. [92]. It is important to note

that both of these models operate on the uncorrected variables, φ̄i, ṽi, and T̃i.

For both source terms the area is calculated by the ratio of unit cell area to grid

cell area,

A′ci =
∆x∆y

a2
c

πDc, (4.38)

where A′ci is the area for a single computational cell and ∆x and ∆y are cell lengths

in the x and y direction. Because the model has been developed, implemented, and

tested in 2D, the area calculation is actually 1D (the circumference of the cylinder).

4.7 Verification

To ensure the new model performs well under a wide range of mixed conditions, we

performed several verification tests comparing the model formulation to steady-state,

high-resolution simulations (Section 4.7.1), and comparing the implemented model
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Table 4.3: Model verification input parameters distributions.

Variable Distribution Units

φ̄s U(0.01, 0.6)

Dc U(0.95, 4.5) cm

ac U(6, 12) cm

dp U(50, 350) µm

Cp,s U(500, 4000) J/kg·K

with transient, high-resolution simulations (Section 4.7.2).

4.7.1 Model form

Using the same periodic unit-cell geometry from Section 4.5, we design a campaign of

simulations to evaluate our heat transfer model for combinations of φ̄s, Dc/ac, |ṽs|/vt,

and Pecs values that were not included in the development of the model. To provide

thorough coverage of the variables’ state space, nearly orthogonal Latin hypercube

(NOLH) sampling is used to design the set of 15 experiments [93, 94]. The NOLH

values are sampled from the distributions listed in Table 4.3. The complete list of

sampled values for the verification campaign are presented in Table 4.4.
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Table 4.4: Model verification input parameters, sampled using nearly
orthogonal Latin hypercube sampling [93, 94].

n φ̄s Dc/ac |ṽs|/vt Pecs

1 0.6 0.396 2.07 4,880

2 0.56 0.173 0.653 60,200

3 0.53 0.4 1.85 9,850

4 0.49 0.417 0.0798 5,370,000

5 0.45 0.139 0.533 3,140,000

6 0.38 0.351 0.435 303,000

7 0.34 0.237 6.38 85.7

8 0.3 0.357 0.608 155,000

9 0.23 0.138 2.44 30,500

10 0.19 0.171 0.353 627,000

11 0.16 0.43 3.66 582

12 0.12 0.251 21.9 16.8

13 0.08 0.27 0.386 885,000

14 0.05 0.33 0.93 148,000

15 0.01 0.306 0.209 530,000

Each simulation was run for 10 seconds, and post processed to calculate the ob-

served (i.e., MFIX simulation) and predicted (i.e., subgrid model equation (4.30))

filtered Nusselt numbers and their uncertainties (only calculated for the simulation

results). Results are shown on a log-log plot (Figure 4·9) to fit the large range of

data. Overall there is good agreement with the predicted values, with few outliers

and no obvious correlations associated with them.
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Figure 4·9: Model verification results showing predicted vs. observed
filtered Nusselt numbers. Circles and numbers correspond to the pa-
rameter input combinations in Table 4.4. The light-red dashed line
represents an exact match, and the light-blue dashed-dotted lines rep-
resent ± 20% bands.
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4.7.2 Implemented model

To verify the numerical integrity of the implemented subgrid model, we consider 2

small-scale test cases and compare the transient and steady state behaviors. The

domains are similar to the domain described in Section 4.5. Highly-resolved simula-

tions are used as the “control” simulations, while coarse-grid simulations are used to

demonstrate the necessity of subgrid models. These domains are described in detail

below.

Case 1: Simple cooling

The first case consists of a square periodic domain measuring 3 cm × 3 cm. Cylinders

measuring 1 cm in diameter are spaced 1.5 cm apart within the domain (Figure 4·10).

A mixture of 70% gas and 30% solids occupies the empty region in the system,

initialized at 30 ◦C. The cylinder walls are held at a constant temperature of 20 ◦C.

A pressure gradient ∆pg is imposed along the y-direction, opposing gravity, to drive

the flow. This gradient is adjusted to achieve a mean flow velocity of 0.5 m/s. The

system is simulated for 10 seconds, allowing it to reach 90% of thermal steady state.

Material properties are reported in Table 4.5.
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Figure 4·10: Simulation domain schematic for verification Case 1.
Domain boundaries are periodic and a pressure gradient is imposed
along the y-direction.

To demonstrate the effects of the grid-dependence and subgrid models, we consider

three configurations: a) highly-resolved grid, ∆high−res.
grid /dp = 2, where the cylinders

and transport phenomena are fully resolved, b) coarse-grid, ∆coarse
grid /dp = 8, where the

cylinders are explicitly resolved; however, the physics are no longer converged, and c)

coarse-grid with the subgrid model, ∆coarse
subgrid/dp = 8, where the cylinders are modeled

as an effective porous media and the transport phenomena are corrected using subgrid

models. Figure 4·11 shows the meshes for the respective configurations.

The results are presented in Figure 4·12. The control case follows an expected

Table 4.5: Material properties for verification Case 1.

Parameter Gas Solids Units

Density 1.3 441 kg/m3

Viscosity 1.8·10−5 m2/s2

Diameter 200 µm

Thermal conductivity 0.024 0.2 W/m·K
Specific heat capacity 1150 2000 J/kg·K
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(b) (c)(a)

Figure 4·11: Simulation domains and meshes for verification Case
1: (a) high-resolution, “control” case, explicitly modeling the cylinders
and fully resolving the heat transfer, ∆high−res.

grid /dp = 2; (b) coarse-
grid, explicitly modeling the cylinders, no longer fully resolving the
heat transfer, ∆coarse

grid /dp = 8; and (c) coarse-grid with subgrid model,
∆coarse

subgrid/dp = 8.

exponential-decay cooling curve, reaching approximately 90% of steady-state by 10

seconds. When the grid is coarsened and no subgrid model is used, we observe

significantly different transient behavior. While the system tends to the same steady-

state (dictated by the cylinders’ temperature), the time-scale is significantly different,

showing under-prediction of the heat transfer rates. Substituting the subgrid model

for the cylinders, we are able to match the transient temperature profile of the high-

resolution simulation very well within a 95% confidence interval, shown by the shaded

regions.

The control system took 15 hours × 16 processors = 240 CPU hours to simulate.

The coarse-grid system only took 0.6 hours × 4 processors = 2.4 CPU hours. And

the subgrid system fell in between, taking 1 hour × 4 processors = 4 CPU hours.

The time difference between the coarse-grid and the subgrid system is negligible, but

the difference in simulation results are very significant. We achieve almost identical

results compared to the high-resolution simulation for 1/60 of the computation time.
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Figure 4·12: Temperature profiles from verification Case 1. Shaded
regions represent 95% confidence regions.

Case 2: Cooling with heat generation

The second case uses a similar setup to Case 2 (Section 4.7.2). The domain measures

12 cm × 12 cm with 3 cm diameter cylinders spaced 6 cm apart, held at 20 ◦C. The

domain is initialized with a 70/30% mixture of gas and solids, respectively, at 20 ◦C.

The pressure gradient is set to achieve a mean field velocity of 0.5 m/s. To simulate

an exothermic gas-solids reaction, a generation term is added to the solids, heating

the system at a rate of Πs = 1 ◦C/s. Material properties are tabulated in Table 4.6.
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Figure 4·13: Simulation domain schematic for verification Case 2.
Domain boundaries are periodic and a pressure gradient is imposed
along the y-direction. Cylinder walls are held at Ts = 20◦ and a heat
generation is added to the solids, Πs = 1K/s.

Similar to Case 1, we consider three meshes for the system: a) high-resolution grid,

∆high−res.
grid /dp = 4, b) coarse-resolution grid (with cylinders), ∆coarse

grid /dp = 32, and c)

coarse-resolution grid with subgrid model, ∆coarse
subgrid/dp = 32, shown in Figure 4·14.

The results from Case 2 (Figure 4·15) are even more pronounced than those from

Case 1 (Figure 4·12). The control system heats up due to the included generation

term. After 50 seconds it has reached 99% steady state, equilibrating near 35 ◦C. The

coarse-grid simulation without a subgrid model, again, under predicts the cylinder-

Table 4.6: Material properties for verification Case 2.

Parameter Gas Solids Units

Density 1.2 441 kg/m3

Viscosity 1.8·10−5 m2/s2

Diameter 100 µm

Thermal conductivity 0.024 0.2 W/m·K
Specific heat capacity 1000 1000 J/kg·K
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(b) (c)(a)

Figure 4·14: Simulation domains and meshes for verification case 2:
(a) high-resolution, “control” case, explicitly modeling the cylinders
and fully resolving the heat transfer, ∆high−res.

grid /dp = 4; (b) coarse-
grid, explicitly modeling the cylinders, no longer fully resolving the
heat transfer, ∆coarse

grid /dp = 32; and (c) coarse-grid with subgrid model,
∆coarse

subgrid/dp = 32.

suspension heat transfer in the system. The domain continues to heat up and would

take approximately 360 seconds to reach an equilibrium temperature of 93 ◦C. Com-

paritively, the subgrid model does an excellent job tracking the transient and steady

state behavior, equilibrating near 38 ◦C, falling just outside the 95% confidence inter-

val of the control simulation. The percent different between the two is approximately

20%. While this may seem like a large error, typical Nusselt correlations are often

cited as only being accurate with ±20%.

We observed similar performance gains compared to Case 1. The control system

took 110 hours × 16 processors = 1760 CPU hours to simulate. The coarse-grid

system only took 2.9 hours × 4 processors = 11.6 CPU hours. For this system, the

subgrid system beat the coarse-grid model, taking only 1.6 hours × 4 processors =

6.4 CPU hours. The subgrid system outperforms the coarse-grid system both in time

and accuracy and achieves similar results compared to the high-resolution simulation

for 1/275 of the computation time.
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Figure 4·15: Temperature profiles from verification Case 2. Shaded
regions represent 95% confidence regions.

It is important to note that due to the way the subgrid model is developed and

implemented, the same filtered Nusselt number will always be returned for a given

system (provided the input parameters: φ̄s, Dc/ac, |ṽs|/vt, and Pecs, remain con-

stant). However, based on the previous results, it is obvious that without the subgrid

models, the filtered Nusselt number is grid-dependent and can be unphysical. This

is further demonstrated in Figure 4·16, where the subgrid value for Nucs remains

constant across all grid sizes while the regular simulations show decreasing filtered

Nusselt numbers as the grid size increases.
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Figure 4·16: Filtered Nusselt number vs grid size for Case 2, com-
paring the subgrid model prediction versus the observed (simulated)
values.

4.8 Validation

To ensure the subgrid models function well in general applications (as opposed to

small, periodic domains) we consider two large scale validation cases, borrowed from

Sarkar et al. [15]: a bubbling fluidized bed and a turbulent fluidized bed. The

geometry, operating conditions (Table 4.7), and material properties (Table 4.8) were

replicated from Sarkar et al., with the exception of the heat transfer conditions and

properties, which were not considered in Sarkar et al.’s work. The bubbling bed is

set up as active cooling, with a heated gas inlet at 30 ◦C along the bottom and a

constant cylinder temperature of 20 ◦C. Conversely, the turbulent bed is set up as

active heating, where the gas-inlet is cool (20 ◦C) and the cylinders are held at 30

◦C. The different flow regimes (i.e., gentle bubbling vs. turbulent) coupled with the

different heating/cooling configurations provide extreme cases for validation.
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Table 4.7: Geometry, initial conditions, and boundary conditions for
the bubbling and turbulent bed validation cases.

Parameter Bubbling Turbulent Units

Width × height 1.2 × 1.0 0.9 × 1.8 m

Cylinder diameter 0.03 0.03 m

Cylinder spacing 0.1 0.1 m

Cylinder temperature 20 30 ◦C

Initial bed height 0.7 1.3 m

Initial solids fraction 50 20 %

Initial bed temperature 20 30 ◦C

Gas inlet velocity 0.022 0.19 m/s

Gas inlet temperature 30 20 ◦C

Outlet pressure 101 101 kPa

Cell size (high-res.) 600 600 µm

Subgrid cell sizes 4.8, 9.6 19.2, 38.4 4.8, 9.6 19.2, 38.4 cm

Table 4.8: Material properties for the bubbling and turbulent bed
validation cases.

Parameter Gas Solids Units

Density 1.142 441 kg/m3

Viscosity 2·10−5 m2/s2

Diameter 100 µm

Terminal velocity 0.27 m/s

Thermal conductivity 0.026 0.2 W/m·K
Specific heat capacity 1040 830 J/kg·K
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4.8.1 Bubbling bed

The bubbling bed case was simulated for 100 seconds for all grid sizes. The initial

state of the systems can be seen in Figure 4·18. Time-averaged temperature fields are

shown in Figure 4·19. The elapsed time and required resources for the simulations

are listed in Table 4.9. The high-resolution model took more than 10,000 times

longer to simulate, compared to the slowest subgrid system; however, we noticed

large discrepancies between the two systems when near the inlet boundary.

Table 4.9: Simulation benchmark timing for the bubbling bed case.

System Hours Processors CPU Hours

∆high−res.
grid /dp = 4 900 63 56,500

∆coarse
subgrid/dp = 32 2.0 16 32.0

∆coarse
subgrid/dp = 64 1.9 4 7.6

∆coarse
subgrid/dp = 128 0.9 4 3.6

∆coarse
subgrid/dp = 256 0.5 4 2.0

The temperature field was averaged over time and then again across the horizontal

direction to produce a temperature profile along the vertical direction. These profiles

were compared across all systems to quantify the accuracy of the subgrid model (Fig-

ure 4·20). We see the subgrid systems all follow a similar trend: near the boundary

the temperature is higher and it decays as we move away from the boundary until

we reach approximately y = 0.2 m, at which point the remaining profile is constant.

This differs from the high-resolution which has a much faster decay rate. The high-

resolution system has a high temperature near the boundary, but by y = 0.02 m the

profile is no longer changing. This discrepancy is attributed to the implementation

of the boundary condition.

MFIX implements boundary conditions via ghost cells. That is, there is a hidden
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layer of grid cells surrounding the entire domain to enforce the boundary conditions.

For example, hot air (Tg = 30 ◦C) is being injected into the bottom of the system.

To satisfy the boundary condition of the temperature, the average temperature of the

ghost-cell and the grid-cell next to the wall must be equal to the boundary condition.

As a result we observe fast “diffusion” of heat to the first row of grid cells. This energy

is passed between phases and moves through the system, eventually being dissipated;

however, because of the physical size of the grid cells, the dissipation covers a larger

distance (e.g., 0.2 m vs. 0.02 m).

The other observable discrepancy is also related to the boundary condition: the

larger the subgrid cells, the lower the temperature value at the cell next to the bound-

ary. The high-resolution model is closest to the boundary condition (Tg = 30 ◦C) and

as the grid is coarsened, the value in wall-cell decreases. This is also believed to be a

product of the grid size, where large grid cells will have a lower temperature change

for a given amount of energy, compared to a smaller grid cell as it can spread the

energy out.

Both of these discrepancies are unavoidable as they are byproducts of the numeri-

cal methods and the subgrid size. However, the second discrepancy can be minimized

by using local grid refinement along the boundaries. Figure 4·17 shows an example

of the ∆coarse
subgrid/dp = 128 system with the wall-cell continuously split in half until the

wall-cell was ∆wall
subgrid/dp = 4. This system was run for 100 seconds, taking only slightly

longer than its’ unrefined counterpart, 0.9 vs. 0.8 CPU hours. The temperature pro-

file results are shown in Figure 4·21. The temperature profile of the refined mesh show

significantly better agreement with the finer coarse grid: achieving a higher wall-cell

temperature and dissipating the heat earlier, by approximately 0.15 m.

While these discrepancies may seem large, it is important to remember the goal of

this model: to simulate large-scale systems for design optimization. These methods
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will certainly allow rapid prototyping of designs and exploration of variables, with

minimal data loss.

(a) (b)
(c)

Figure 4·17: Local grid refinement along the boundary to capture the
inlet conditions.
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Figure 4·20: Temperature profiles for the bubbling bed along the
height, averaged across the width for 100 seconds of simulation.

20 22 24 26 28 30

Temperature (◦C)

0.0

0.2

0.4

0.6

0.8

1.0

H
ei

gh
t

(m
)

∆coarse
subgrid/dp = 32

∆coarse
subgrid/dp = 256

∆coarse
subgrid/dp = 256∗

Figure 4·21: Temperature profiles for the bubbling bed along the
height, averaged across the width for 100 seconds of simulation. The
asterisk denotes the use of local grid-refinement near the inlet boundary.
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4.8.2 Turbulent bed

The turbulent bed case was also simulated for 100 seconds; however, due to compu-

tational resources and time limitations, the high-resolution case could only be simu-

lated for 20 seconds. The increased Simulation run times are tabulated in Table 4.10.

The high-resolution system takes approximately 80 times longer to simulate than the

smallest subgrid system, and about 138,000 times longer than the coarse subgrid sys-

tem. Figure 4·22 shows the initial conditions and the temporally averaged (over 20

seconds) temperature field for the high-resolution and the subgrid system (∆coarse
subgrid/dp

= 128). Similar to the bubbling bed case, we observe discrepancies near the boundary.

The temperature profiles averaged over the first 20 seconds show excellent agree-

ment between the high-resolution system and all subgrid systems (Figure 4·23). The

wall-cells at the boundary exhibit different behavior than those in the bubbling bed

case. The high-resolution system wall-cells tend toward the boundary condition (Tg

= 20 ◦C), while the subgrid wall-cells tend toward the boundary condition as the grid

is coarsened, contrary to the bubbling bed case.

The subgrid systems were then averaged over the entire 100 seconds to compare

steady-state profiles in a turbulent regime (Figure 4·24). An additional subgrid system

with local grid-cell refinement near the inlet boundary was included for comparison.

With the refined system we see a much better agreement with the boundary condition,

with the wall cells very near 20 ◦C. However, a new discrepancy is also evident from

this figure: the bed height (denoted by the maximum height of the profile) for the

∆coarse
subgrid/dp = 64 system is significantly lower than the other profiles. This is also

visible in Figure 4·23. This difference is related to the subgrid model for the cylinder-

suspension drag, not the heat transfer model, but it could be the cause of some

of the other discrepancies identified. The subgrid drag model may have additional

limitations that are unknown or have not been explored at this point in time.



82

Similar to the bubbling bed, this validation case really exemplifies the need for

subgrid models for heat transfer. By reducing the simulation time by over 100,000

times, the simulation can be run on a workstation within a few hours and return

accurate results.

Table 4.10: Simulation timing for the turbulent bed case.

System Hours Processors CPU Hours

∆high−res.
grid /dp = 4 4,5801 72 330,000

∆coarse
subgrid/dp = 64 19 16 304

∆coarse
subgrid/dp = 128 1.0 4 4.0

∆coarse
subgrid/dp = 256 0.5 4 2.0

1Because the system was only simulated for 20 seconds, the computation time was adjusted
(extrapolated to 100 seconds) to remain comparable with the other systems.
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Figure 4·23: Temperature profiles for the turbulent bed along the
height, averaged across the width for 20 seconds of simulation.
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Figure 4·24: Temperature profiles for the turbulent bed along the
height, averaged across the width for 100 seconds of simulation. The
asterisk denotes the use of local grid-refinement near the inlet boundary.
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4.9 Uncertainty Quantification

Quantifying the uncertainties and errors in the subgrid model requires a slightly

different approach than that used in Chapter 3 because there is no experimental data

available for the periodic sub-system we constructed. That eliminates the possibility

of performing a calibration of the parameters; however, we can still quantify the

sensitivity of the model and the prediction errors.

4.9.1 Sensitivity analysis

Similar to Section 3.1, we use a variance-based sensitivity analysis to estimate the

effects of each parameter. First-order and total-effect Sobol indices [95, 96] are cal-

culated using the Python package SALib [97]. Saltelli’s cross sampling method [98]

is applied to uniform distributions for each variable, resulting in 50,000 parameter

sets [97]. These sets are evaluated and their variance contributions calculated. The

parameter distributions and resulting Sobol indices are listed in Table 4.11.

These results can be interpreted in the same manner as those presented in Sec-

tion 3.1: the first-order indices indicated the amount of variance in the output that

can be attributed to varying each parameter individually. Because there is no inter-

action between parameters, the first-order indices sum to 1. The total-effect indices

Table 4.11: First-order and total-effect Sobol indices measuring model
sensitivity to parameters.

Sobol Indices

Parameter Distribution First-Order Total-Effect

φ̄s U(0, 0.64) 0.0614 0.0718

Dc/ac U(0, 0.5) 0.249 0.275

|ṽs|/vt U(0, 1.0) 0.311 0.369

Pecs U(0, 2000) 0.308 0.356
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measure the total variance for a given parameter including interaction effects and as a

result have a sum greater than 1. Because our results show minor differences between

the first-order and total-effect indices, we can conclude that there are not significant

interaction effects that are not being captured by the model. The ratio of cylinder

diameter to spacing, dimensionless velocity, and Peclet number all have similar vari-

ances, contributing equally to the model variance, while the phase fraction accounts

for only 6% of the model variation. This can be explained with Figure 4·5, where

there is little change in Nusselt number once solids fraction is greater than 5%. How-

ever, the behavior below 5% solids is critical to accurate predictions in dilute regions,

and as such, the solids fraction parameter can not be considered insignificant.

4.9.2 Model-prediction error

The proposed model from Section 4.5 can provide a point estimate for the filtered

Nusselt number based on the input parameters; however, the model was regressed

to minimize the squared residuals (noise). This noise can provide information about

the error for a given point estimate. We use two methods to quantify this error and

build confidence intervals around our subgrid model predictions: using MATLAB’s

non-linear prediction confidence interval function, nlpredci, and a bootstrapping

method using SciPy’s non-linear regression function curve fit [90].

MATLAB’s nlpredci function uses the non-linear regression model information,

including the regression coefficient, residuals, and variance-covariance matrix to build

confidence intervals. Figures 4·25–4·27 show 95% confidence interviews using this

approach as blue dashed lines.

Secondary confidence regions were constructed using a bootstrap method. The

original data was sampled at 80% of its’ size to create a new data set. This new

data set was regressed to the same form of the model (4.29) and plotted. These steps

were repeated 1000 times (bootstrap realizations) to create an ensemble of solutions,
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shown in Figures 4·25–4·27 as solid gray lines.

The results show excellent agreement between the two methods of confidence in-

terval construction. If we denote these regions as the error in our predictions, then

we can quantify that our filtered Nusselt number predictions are accurate within

± 5–15% of the predicted value. This percent error compares well with errors re-

ported in experimental and numerical calculations of Nusselt numbers/heat transfer

coefficients [99–105].
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Figure 4·25: Filtered Nusselt number vs filtered solids fraction. Mean
predicted values are shown as a red solid line with corresponding 95%
confidence intervals shown as blue dashed lines (MATLAB). The en-
semble of grey lines represents 1000 bootstrap realizations.



88

0.10 0.15 0.20 0.25 0.30 0.35 0.40
Ratio of cylinder diameter to spacing, Dc/ac

0

2

4

6

8

10

Fi
lt

er
ed

N
us

se
lt

nu
m

be
r,

N
u s

c

Prediction

Bootstrap

MATLAB

Figure 4·26: Filtered Nusselt number vs ratio of cylinder diameter to
spacing. Mean predicted values are shown as a red solid line with cor-
responding 95% confidence intervals shown as blue dashed lines (MAT-
LAB). The ensemble of grey lines represents 1000 bootstrap realiza-
tions.
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Figure 4·27: Filtered Nusselt number vs dimensionless filtered sus-
pension velocity. Mean predicted values are shown as a red solid line
with corresponding 95% confidence intervals shown as blue dashed lines
(MATLAB). The ensemble of grey lines represents 1000 bootstrap re-
alizations.
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Figure 4·28: Filtered Nusselt number vs solids Peclet number. Mean
predicted values are shown as a red solid line with corresponding 95%
confidence intervals shown as blue dashed lines (MATLAB). The en-
semble of grey lines represents 1000 bootstrap realizations.
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Chapter 5

Carbon Capture System

With the unit problems validated, subgrid models developed, and validation of the

laboratory-scale carbon capture unit finished [106], the next step in the hierarchy is

a pilot-scale, 1 MW, fully reacting, carbon capture system (Chapter 3). Research on

this system has been ongoing between Pacific Northwest National Laboratory and

the National Energy Technology Laboratory, who have attempted to simulate the

reactor using process models and CFD with an crude ad-hoc heat transfer model.

For brevity, most details have been omitted but are available [107]; however, basic

geometry and physical properties are described in Section 5.1.

5.1 Setup

The 1 MW carbon capture system measures 1.332 m wide by 6.884 m tall by 1.221

m deep (Figure 5·1a). For simplicity, we consider a 2D slice approximation of the

system (Figure 5·1b/c). The system starts as an empty reactor with flue gas entering

along the bottom. A mixture of neutral gas and fresh sorbent is constantly injected at

the top of the downchute on the left. As time evolves the system fills up and reaches

a side outlet, achieving a pseudo steady-state. As the fresh sorbent mixes with the

flue gas, the CO2 is adsorbed onto the particles and heat is given off, heating the

surrounding gas-particle mixture. The system is simulated for 500 seconds and the

hydrodynamics, heat transfer, and mass transfer rates are all investigated.

The geometry and basic boundary conditions are listed in Table 5.1. Due to the
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Figure 5·1: 1 MW carbon capture reactor: a) 3D geometry showing
boundary conditions and immersed geometry, b) 2D slice approxima-
tion showing effective cylinder area, and c) dimensions of downchute
and pressure outlet.

size of the system it is not possible to simulate a high-resolution version; we can only

compare with the existing simulation results from previous attempts. Our model uses

the subgrid model with a grid size of 3.7 cm, resulting in a mesh of 36 × 186 cells.

Some material properties are provided in Table 5.2; however, because it is a fully

reacting system, the gas phase is a mixture of CO2, nitrogen (N2), water vapor (H2O),

and oxygen (O2), and thus some properties, such as density and heat capacity are

constantly changing depending on the makeup. Similarly, the solid phase has 6 pos-
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Table 5.1: Geometry and boundary conditions for the 1 MW carbon
capture system.

Parameter Value Units

Width × height 1.332 × 6.882 m

Cylinder diameter 0.01 m

Cylinder spacing 0.11 m

Cylinder temperature 32 ◦C

Sorbent inlet mass flow rate 2.54 kg/s

Sorbent carrier-gas inlet mass flow rate 0.0066 kg/s

Sorbent/gas mixture inlet temperature 59 ◦C

Flue gas inlet mass flow rate 0.6 kg/s

Flue gas inlet temperature 59 ◦C

Outlet pressure 101 kPa

Cell size 3.7 cm

Table 5.2: Material properties for the 1 MW carbon capture system.

Parameter Gas Solids Units

Density varying 484 kg/m3

Viscosity 1.8·10−5 m2/s2

Diameter 118 µm

Thermal conductivity 0.026 0.2 W/m·K
Specific heat capacity varying varying J/kg·K

sible species: silicon dioxide, polyethyleneimines, carbamate ions, protonated amine,

bicarbonate ions, and physisorbed water. The chemical reactions are described in

detail in [107].

5.2 Results

Previous attempts to model the 1 MW reactor employed an ad-hoc model for the

heat transfer via a stationary porous media the size of the tube bank, with porosity

equal to the would-be area occupied by cylinders. The properties of the porous media
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mimicked iron, with two important distinctions: the particle diameter was set equal to

the cylinder diameter and a very large heat capacity was set to prevent heat transfer

to the porous media. A constant temperature of 32 ◦C was set throughout the porous

media. The results of this study are shown in Figure 5·2.

It is immediately obvious that this heat transfer model is insufficient. The porous

media prevents mixing and over-predicts heat transfer rates, holding the entire region

almost exactly at the boundary temperature, 32 ◦C, with no noticeable fluctuations.

While it may be a computationally efficient method, it provides physically inaccurate

results.

Using the same setup, we simulated the system with the subgrid heat transfer

model. Because the subgrid model takes into account the local fluctuations of material

properties and flow conditions, it provides more realistic, inhomogeneous flow fields,

as shown in Figure 5·3b. We see that the flue gas enters the system and reacts

immediately with the sorbent on the bottom of the reactor, generating heat that is

dissipated moving upward through the bed. Additionally, we can see from Figure 5·3c

that the adsorption process is working as designed, where most of the CO2 is being

adsorbed.

To evaluate the overall performance of the system, we averaged the field data

over the 200–500 second interval (pseudo steady-state). The results show excellent

behavior of the subgrid model (Figure 5·4b), where a smooth axial profile shows the

active cooling in effect. The same averaging was applied to the solids fraction and

CO2 species fractions (Figure 5·4a and Figure 5·4c).

Lai et al. [107] reported abnormally high CO2 capture rates: upwards of 99% of

the CO2 entering the system was being captured in the bed. Meanwhile, a process

model of the same system was reporting capture rates around 80%. With our subgrid

model, the initial simulations were still predicting 99% capture rates. However, it was
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Figure 5·2: Snapshot of a) solids fraction and b) solids temperature
fields in a 1 MW solid-sorbent carbon capture (using an ad-hoc heat
transfer model [107]) after 500 seconds.

discovered that the simulation was sensitive to the initial loading of polyethyleneimine.

When the initial loading was lowered from 20%, more realistic capture rates were

observed, e.g., 10% loading resulted in a capture rate of 90%. This work is ongoing

in collaboration with the process modelers to quantify the error in both models.

The ad-hoc heat transfer model took 1.3 hours × 16 processors = 21 CPU hours to

simulate, while the subgrid model took 6.7 hours × 16 processors = 107 CPU hours.

Though the subgrid model is approximately five times slower than the ad-hoc model,

the overall time scale (21 vs 108 CPU hours) is sufficiently small that the differ-
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Figure 5·3: Snapshot of a) solids fraction, b) solids temperature, and
c) carbon dioxide species fraction fields in a 1 MW solid-sorbent carbon
capture (using the subgrid heat transfer model) after 500 seconds.

ences are negligible, especially when considering the advantages of physically realistic

results.
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Figure 5·4: Average a) solids fraction, b) solids temperature, c) and
carbon dioxide species fraction fields in a 1 MW solid-sorbent carbon
capture (using the subgrid heat transfer model). Data was averaged
from 200–500 seconds.



98

Chapter 6

Conclusions

6.1 VVUQ Framework for CFD

A framework for the verification, validation, and uncertainty quantification for ex-

pensive, multiscale, computer models was developed. The statistical methods were

applied to a specific case of a fluidized bed as an example; however, the method

was presented such that it can be applied to any system. The framework consists

of 7 steps: 1) identify model parameters of interest, 2) determine prior distributions,

3) design numerical experiments, 4) complete numerical experiments and tabulate

data, 5) perform sensitivity analysis, 6) using the calibration procedure, explore the

parameter state-space with MCMC by evaluating the emulator tens of thousands of

times to generate posterior distributions, and 7) cross validate the model by providing

out-of-sample predictions with confidence bands.

Using this statistical framework, the hydrodynamics of a bubbling fluidized bed

with immersed horizontal tubes was studied to quantify the uncertainty associated

with CFD model input parameters. From this conclusions could be drawn about the

optimal parameter values for operation. This framework was intended to also consider

heat transfer in the same system; however, due to numerical limitations, it was not

possible. The results from these studies were used to model the DOE National Energy

Technology Laboratory’s experimental bench-scale carbon capture system, the C2U

[8, 108].
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6.2 Subgrid Models

Using traditional filtering methods, a subgrid model for predicting heat transfer in

gas-particle flows with immersed horizontal heat transfer cylinders was developed.

The model is analogous to existing single-phase heat transfer correlations but includes

the effects of the solids phase (i.e., density, particle diameter, thermal conductivity,

specific heat capacity, solids fraction, and velocity). The model went through verifica-

tion, validation, and uncertainty quantification. It showed excellent agreement with

the verification and validation tests. The uncertainty quantification determined the

accuracy of the model predictions were similar to to standard single-phase Nusselt

correlations. Computational-time savings were observed anywhere from 60 to 100,000

times faster, depending on the size of the system and grid, and the included physics.

Similar to the VVUQ framework, the model development framework was pre-

sented such that it could be adapted to suit different multiphase and/or multiphysics

problems.

6.3 Future Work

The subgrid model developed in this research considered only flow across horizon-

tal cylinders; however, multiphase flow can be quite abrasive and cause pitting and

degradation on the cylinders in a horizontal configuration. This is usually avoided by

using vertical cylinders. While the flow behavior changes (there is more channeling

and less bifurcation), good mixing and high heat- and mass-transfer rates can still be

achieved.

Extending this model to consider vertical cylinders configurations would be very

valuable. However, simulating such a system requires small, periodic, 3D domains

(due to the nature of simulating vertical cylinders). These simulations can be com-

putationally intensive, and as a result were not completed and included in this work.
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Additionally, this framework could be readily applied to mass transfer. Similar

to drag and heat transfer, using coarse grids likely under-predicts the rate of mass

transfer. By using a subgrid filtering approach it should be possible to constitute a

mass transfer correlation to predict the unresolved physics.
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Appendix A

Simulation Data

The input data used to generate the results for the non-linear regression to form the

subgrid model are listed in Table A.1.

Table A.1: Data used to generate the subgrid model.

φ̄s Dc/ac |ṽs|/vt Pecs Nucs φ̄s Dc/ac |ṽs|/vt Pecs Nucs

0.05 0.10 3.68 531 3.71 0.30 0.10 0.83 531 2.85

0.05 0.15 3.83 531 3.81 0.30 0.15 0.75 531 2.98

0.05 0.20 3.60 531 3.97 0.30 0.20 0.68 531 2.97

0.05 0.25 3.75 531 4.62 0.30 0.25 0.68 531 3.00

0.05 0.30 3.91 531 5.28 0.30 0.30 0.68 531 3.40

0.05 0.35 3.68 531 5.84 0.30 0.35 0.83 531 3.45

0.05 0.40 3.83 531 6.44 0.30 0.40 0.75 531 3.69

0.30 0.10 3.98 531 4.74 0.60 0.25 3.91 531 4.79

0.30 0.15 3.60 531 4.72 0.55 0.25 3.83 531 5.76

0.30 0.20 3.75 531 5.14 0.45 0.25 3.75 531 5.93

0.30 0.25 3.91 531 5.65 0.30 0.25 3.91 531 5.66

0.30 0.30 3.91 531 6.50 0.15 0.25 3.91 531 5.10

0.30 0.35 3.68 531 6.63 0.05 0.25 3.68 531 3.99

0.30 0.40 3.83 531 7.29 0.01 0.25 3.75 531 2.60

0.30 0.10 3.91 1170 6.32 0.60 0.40 3.60 531 7.07

0.30 0.15 3.68 1170 6.35 0.55 0.40 6.76 531 7.20

0.30 0.20 3.68 1170 6.68 0.45 0.40 3.83 531 7.30
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φ̄s Dc/ac |ṽs|/vt Pecs Nucs φ̄s Dc/ac |ṽs|/vt Pecs Nucs

0.30 0.25 3.91 1170 7.58 0.30 0.40 3.83 531 7.29

0.30 0.30 3.91 1170 8.17 0.15 0.40 3.75 531 7.19

0.30 0.35 3.68 1170 8.45 0.05 0.40 3.83 531 6.48

0.30 0.40 3.75 1170 9.28 0.01 0.40 3.98 531 2.45

0.60 0.25 4.13 1170 6.65 0.30 0.25 1.65 1170 5.81

0.55 0.25 3.83 1170 7.61 0.30 0.25 2.55 1170 6.39

0.45 0.25 3.83 1170 7.67 0.30 0.25 3.91 531 5.65

0.30 0.25 3.91 1170 7.53 0.30 0.25 4.96 531 6.38

0.15 0.25 3.68 1170 7.00 0.30 0.25 6.08 531 6.91

0.05 0.25 3.68 1170 5.95 0.30 0.25 6.68 531 7.04

0.01 0.25 3.75 1170 4.31 0.30 0.25 0.68 531 3.00

0.60 0.25 0.83 531 3.62 0.30 0.25 1.58 531 3.88

0.55 0.25 0.83 531 3.64 0.30 0.25 2.55 531 4.80

0.45 0.25 0.75 531 3.43 0.05 0.25 3.83 372 3.88

0.30 0.25 0.68 531 3.00 0.05 0.25 3.68 531 4.00

0.15 0.25 0.83 531 2.71 0.05 0.25 3.83 690 4.78

0.05 0.25 0.68 531 1.79 0.05 0.25 3.83 849 5.36

0.01 0.25 0.68 531 0.74 0.05 0.25 3.83 1010 5.49

0.05 0.25 3.83 531 5.01 0.05 0.25 3.75 1170 5.77

0.05 0.25 4.81 531 5.42 0.05 0.25 3.68 1330 5.96

0.05 0.25 6.16 531 5.72 0.30 0.40 3.83 372 6.37

0.05 0.25 6.98 531 5.90 0.30 0.40 3.83 531 7.29

0.05 0.25 0.90 531 1.88 0.30 0.40 3.83 690 7.94

0.05 0.25 1.43 531 2.64 0.30 0.40 3.83 849 8.47

0.05 0.25 2.70 531 3.80 0.30 0.40 3.83 1010 8.88

0.30 0.40 0.75 531 3.69 0.30 0.40 3.83 1170 9.28

0.30 0.40 1.43 531 5.13 0.30 0.40 3.83 1330 9.66



103

φ̄s Dc/ac |ṽs|/vt Pecs Nucs φ̄s Dc/ac |ṽs|/vt Pecs Nucs

0.30 0.40 2.63 531 6.61 0.30 0.25 3.91 372 5.16

0.30 0.40 3.83 531 7.29 0.30 0.25 3.91 531 5.65

0.30 0.40 4.88 531 7.84 0.30 0.25 3.91 690 6.48

0.30 0.40 6.16 531 8.23 0.30 0.25 3.83 849 6.90

0.30 0.40 6.83 531 8.34 0.30 0.25 3.91 1010 7.32

0.30 0.25 3.91 1170 7.53 0.30 0.25 3.91 1170 7.53

0.30 0.25 4.96 1170 8.05 0.30 0.25 3.91 1330 7.81

0.30 0.25 6.16 1170 8.55 0.30 0.25 0.60 372 2.46

0.30 0.25 6.61 1170 8.59 0.30 0.25 0.60 531 2.92

0.30 0.25 0.60 1170 4.12 0.30 0.25 0.60 690 3.31

0.30 0.25 0.60 849 3.65 0.30 0.25 0.60 1010 3.96

0.30 0.25 0.60 1170 4.24 0.30 0.25 0.60 1330 4.48
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Appendix B

Source Code

The FORTRAN source code for the MFIX implementation of the subgrid model for

cylinder-gas heat transfer [92] is included below:

IF (FLUID_AT(IJK)) THEN

APO = ROP_GO(IJK)*C_PG(IJK)*VOL(IJK)*ODT

S_P(IJK) = APO + S_RPG(IJK)*VOL(IJK)

S_C(IJK) = APO*T_GO(IJK)-HOR_G(IJK)*VOL(IJK)+S_RCG(IJK)*VOL(IJK)

! Lane sub-grid models - 07/2015

IF (SG_CYL_ENERGY) THEN

IF (EP_S(IJK,1) <= DIL_EP_S .AND. EP_S(IJK,2) > ZERO) THEN

! Variables for Nusselt number calculation

EP_G_STAR = EP_G(IJK)/(1.0-EP_S(IJK,2))

V_G_MAG = SQRT(U_G(IJK)**2 + V_G(IJK)**2 + W_G(IJK)**2)

RE_CG = RO_g(IJK)*V_G_MAG*SG_CYL_D/MU_G(IJK)

PR_CG = C_PG(IJK)*MU_G(IJK)/K_G(IJK)

! Nusselt number and heat transfer coefficient

NU_CG = (0.289 + 2.53*(SG_CYL_D/SG_CYL_A)**1.65) &

* RE_CG**0.564 * PR_CG**0.430

H_CG = NU_CG*K_G(IJK)/SG_CYL_D

! Area calculation and correction

L_R = DX(I)*DY(J)/SG_CYL_A**2 ! Length-scaling ratio

A_C = 2.0*PI*(L_R*SG_CYL_D) ! 2D/3D Correction factor

! Source term

Q_CG = EP_G_STAR*H_CG*A_C*(SG_CYL_T-T_G(IJK))

S_C(IJK) = S_C(IJK) + Q_CG

ENDIF

ENDIF

IF(USE_MMS) S_C(IJK) = S_C(IJK) + MMS_T_G_SRC(IJK)*VOL(IJK)

ELSE

S_P(IJK) = ZERO

S_C(IJK) = ZERO

ENDIF
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The FORTRAN source code for the MFIX implementation of the subgrid model for

cylinder-suspension heat transfer is included below:

IF (FLUID_AT(IJK)) THEN

APO = ROP_SO(IJK,M)*C_PS(IJK,M)*VOL(IJK)*ODT

S_P(IJK) = APO + S_RPS(IJK,M)*VOL(IJK)

S_C(IJK) = APO*T_SO(IJK,M) - HOR_S(IJK,M)*VOL(IJK) &

+ S_RCS(IJK,M)*VOL(IJK)

IF (SG_CYL_ENERGY) THEN

IF (EP_S(IJK,1) > DIL_EP_S .AND. EP_S(IJK,2) > ZERO) THEN

! Variables for Nusselt number calculation

EP_G_STAR = EP_G(IJK)/(1.0-EP_S(IJK,2))

EP_S_STAR = EP_S(IJK,1)/(1.0-EP_S(IJK,2))

V_T = D_P(IJK,1)**2*GRAVITY*(RO_S(IJK,1)-RO_G(IJK)) &

/(18.0*MU_G(IJK))

L_STAR = V_T**2/GRAVITY

V_S_STAR = SQRT(U_S(IJK,1)**2 + V_S(IJK,1)**2 &

+ W_S(IJK,1)**2)/V_T

PE_CS = RO_S(IJK,1)*C_PS(IJK,1)*V_T*L_STAR/K_S(IJK,1)

! Nusselt number and heat transfer coefficient

NU_CS = 0.354 * EP_S_STAR**0.125 * V_S_STAR**0.341

* (1.0 + 2.94*(SG_CYL_D/SG_CYL_A)**1.76) * PE_CS**0.353

H_CS = NU_CS*K_S(IJK,1)/L_STAR

! Area calculation and correction

L_R = (DX(I)*DY(J))/SG_CYL_A**2

A_C = 2.0*PI*(L_R*SG_CYL_D) ! 2D/3D Correction factor

! Source term

T_SUSP = EP_G_STAR*T_G(IJK) + EP_S_STAR*T_S(IJK,1)

Q_CS = H_CS*A_C*(SG_CYL_T - T_SUSP)

S_C(IJK) = S_C(IJK) + Q_CS

ENDIF

ENDIF

VXGAMA(IJK,M) = GAMA_GS(IJK,M)*VOL(IJK)

EPS(IJK) = EP_S(IJK,M)

IF(USE_MMS) S_C(IJK) = S_C(IJK) + MMS_T_S_SRC(IJK)*VOL(IJK)

ELSE

S_P(IJK) = ZERO

S_C(IJK) = ZERO

VXGAMA(IJK,M) = ZERO

EPS(IJK) = ZERO

IF(USE_MMS) EPS(IJK) = EP_S(IJK,M)

ENDIF
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