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ABSTRACT

Rather than designing focused experiments to test individual hypotheses, scientists
now commonly acquire measurements using massively parallel techniques, for post hoc
interrogation. The resulting data is both high-dimensional and structured, in that ob-
served variables are grouped and ordered into related subspaces, reflecting both natural
physical organization and factorial experimental designs. Such structure encodes critical
constraints and clues to interpretation, but typical unsupervised learning methods assume
exchangeability and fail to account adequately for the structure of data in a flexible and
interpretable way. In this thesis, | develop computational methods for exploratory analysis
of structured high-dimensional data, and apply them to study gene expression regulation
in Parkinson’s (PD) and Huntington’s diseases (HD).

BOMBASTIC (Block-Organized, Model-Based, Tree-Indexed Clustering) is a method-
ology to cluster and visualize data organized in pre-specified subspaces, by combining
independent clusterings of blocks into hierarchies. BOMBASTIC provides a formal spec-
ification of the block-clustering problem and a modular implementation that facilitates
integration, visualization, and comparison of diverse datasets and rapid exploration of
alternative analyses.

These tools, along with standard methods, were applied to study gene expression in
mouse models of neurodegenerative diseases, in collaboration with Dr. Myriam Heiman
and Dr. Robert Fenster. In PD, | analyzed cell-type-specific expression following levodopa
treatment to study mechanisms underlying levodopa-induced dyskinesia (LID). | identified

likely regulators of the transcriptional changes leading to LID and implicated signaling



pathways amenable to pharmacological modulation (Heiman, Heilbut et al, 2014). In HD,
| analyzed multiple mouse models (Kuhn, 2007), cell-type specific profiles of medium spiny
neurons (Fenster, 2011), and an RNA-Seq dataset profiling multiple tissue types over time
and across an mHTT allelic series (CHDI, 2015). | found evidence suggesting that altered
activity of the PRC2 complex significantly contributes to the transcriptional dysregulation

observed in striatal neurons in HD.
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Chapter 1

Introduction: Analysis of Structured (Biological) Data

1.1 Data-intensive biology

Technological improvements in measurement, computation, and storage over the last two
decades have changed the way that many scientific investigations are conducted [52].
Rather than designing focused, individual experiments to test individual hypotheses, it
has become common to acquire high-dimensional measurements using massively parallel
techniques and then interrogate these datasets after the fact. Doing science this way
demands very different statistical tools and approaches to those developed for traditional
focused experiments designed to test pre-specified hypotheses.

In cell and molecular biology, for example, one can profile the states of tens of thou-
sands of molecular species over multiple cell types (and even individual cells), conditions,
and time points. Extracting scientific value from such datasets requires statistical methods
to assist in efficiently generating and ranking interpretations and hypotheses. To be use-
ful, these methods ought to satisfy at least three demands. First, scientists need methods
— and practical software tools — for visualization and exploratory data analysis. Large
datasets need to be presented in ways that facilitate identification of interesting and rele-
vant aspects using human pattern recognition and intuition, even when specific biological
questions and statistical hypotheses are formulated imprecisely or not at all. Second, data
generated in different experiments must be easily integrated. For example, one would
hope to be able to use the results of expensive systematic profiling efforts, such as the
ENCODE project which characterized genomic functional elements and regulators [[129],

or the Allen Brain Atlas survey of gene expression in the brain [126], to help interpret



results of smaller but more directed studies. Tools should allow scientists to focus efforts
on consideration of scientific hypotheses, rather than expending time and resources im-
plementing repetitive ad hoc analyses. Finally, since quantities of data to be analyzed
now exceed human capacities, and questions are often not easily formulated as simple
classification or regression problems, unsupervised methods will be essential to extract
useful knowledge at scale.

Biological data often has important structure, which comes both from natural biolog-
ical organization and from experimental designs. Organisms are built from compartmen-
talized systems and specialized cells, and molecular activities are dynamic and depend on
context and stimuli. Dynamics and context dependence greatly complicates the study of
physiology, development, and disease mechanisms. However, all this structure reflects
evolutionary, ontogenic, and biophysical constraints. Biological systems have evolved
and develop over cycles of duplication and specialization, so regulatory systems are re-
used and repurposed over different cell types and contexts. It is therefore critical to be
able both to recognize common mechanisms and to identify those that are specialized
or context-specific. The need to acquire measurements over multiple contexts and time
increases experimental cost and complexity and introduces redundancy, but also affords
opportunities to inform analyses with priors about continuity and causality.

Now that modern methods enable systematic measurements over many dimensions
such as cell types, treatments, and time, analysis should make effective use of the resulting
structure, and of the relationships to underlying experimental and biological structure that

provide constraints and clues to interpretation. Specifically, we seek methods to:

¢ identify biologically relevant similarities and differences among cell types and con-

texts

* integrate prior knowledge — especially systematic molecular profiling experiments
— with data from more focused experiments, over multiple contexts, perturbations,

and time-points

e concisely and non-redundantly define, represent and identify bio-molecular state

and state-spaces



e efficiently generate comprehensible, mechanistically grounded, and experimentally

verifiable biological hypotheses

Unifying these requirements is a need to identify subsets of molecules with similar be-
haviours that have common causes or consequents. From a statistical and machine learn-
ing perspective, this is just clustering, but to be biologically relevant, clusters should relate
to biochemical mechanisms and explanations. Even the large, high-resolution datasets
now being generated remain insufficient for inference of causal structure directly from
observations, especially in complex multicellular organisms. But by making better use of
structured data acquired across experimental designs and multiple contexts, one can in-
corporate knowledge of biochemical mechanism and the embedded evolutionary history
and constraints that inform how mechanisms are reused and refined, and perhaps at least
attempt to automatically generate and rank possible mechanistic hypotheses to explain

observations.

1.2 Clustering and structured data

Most existing unsupervised clustering [59] and supervised feature selection algorithms
[A45] presume that objects and/or features are exchangeable. We are interested in the
case in which objects or variables are grouped in subspaces, ordered, or arranged in hier-
archies. Such data arises naturally from experimental designs with multiple factors, where
objects are measured over multiple experimental modalities or endowed with multiple
kinds of prior information. For example, in a hypothetical biological experiment, depicted
in Figure , expression of each gene might be quantified by RNA-seq over a panel of
cell types, each treated with a dozen different drugs, with measurements taken at six
time-points. Each gene may be annotated with genomic features, such as occurrence of
cis-regulatory motifs in promoters and inferences about context- and location-dependent
binding of regulatory proteins from chromatin immunoprecipitation experiments.

For such data, the analysis goals described above are not well satisfied by existing
clustering methods. We offer some methods to cluster and model structured, high-
dimensional data that seek to better exploit known structure and prior data, and relate

clusters to potential causal explanations. We focus on the situation in which structure of

3



("~ Disease Model 1 Disease Model 2 Disease Model 2 (

Disease Model 1 i ( B
Celltype A Celltype B Celltype A Celltype B Expressonin WTuhol tsus | Epression of ortnoog n
t

mmmmmmmmmmmmm
123456780910 disease brain

5 12345 12345 128345

F

v EEEE Y FEEEE IO D D I )

Figure 1.1: Cartoon of complex, structured data integrated from multiple sources

the input data is assumed to be fixed by experimental or analysis designs, and propose
BOMBASTIC (Block-Organized, Model-Based, Tree-Indexed Clustering), a framework for
interactive clustering that is guided and constrained by the structures of the inputs. (The
case in which structure is incompletely specified, and must be learned, shall be left for

future consideration.)

1.3 Motivating problems in molecular neuroscience and neurodegenerative disease

Neuroscience presents some particularly pathological examples of structured data anal-
ysis problems involving processes that are both dynamic and context-dependent. There
are thousands of molecularly distinct neuronal subtypes, and neurons are adaptive to
changes in inputs over both long and short time-scales. Neurodegenerative diseases,
such as Huntington Disease (HD) and Parkinson Disease (PD), preferentially affect specific
anatomical regions and cell types. Explaining this selectivity is central to understanding

pathophysiology and informing development of more effective and tolerable therapies.

1.3.1 Levodopa-induced dyskinesia

Parkinson disease is caused by death of cells of the substantia nigra, which normally pro-
vides dopaminergic inputs to the striatum. The main therapy for Parkinson’s is to in-
crease levels of dopamine in the brain by supplementation with the metabolic precursor
to dopamine, [64]. Over time, however, L-DOPA therapy leads to maladaptive

changes in medium-spiny neurons, resulting in abnormal striatal function and debilitating



levodopa-induced dyskinesias (@) [60, 18], which ultimately limits the clinical utility of
L-DOPA. Defining the molecular mechanisms responsible for LID is therefore important
so that we may identify and prioritize targets to modulate to better manage Parkinson’s
disease and L-DOPA side-effects.

Levodopa-induced dykinesia results from dysfunction of specific sub-populations of
striatal neurons, and develops over time. To investigate the mechanisms of LID pathogen-
esis, our collaborator, Dr. Myriam Heiman, conducted an experiment in which cell-type
specific gene expression was measured in a mouse model of LID. The resulting dataset
offers an example of the kind of high-dimensional, structured data discussed above; mea-
surements over 20,000 genes are indexed by cell-type, time, and different L-DOPA treat-

ment regimens.

1.3.2 Huntington Disease

The genetic cause of HD was discovered in 1993 to be a trinucleotide expansion in the
HTT gene, which codes for a expanded polyglutamine repeat in the huntingtin protein
[130]. Despite decades of study of huntingtin biochemistry and genetics, relatively little
progress has been made in defining the molecular mechanisms mediating the disease
process or in developing disease-modifying therapies. HD preferentially affects medium-
spiny neurons in the striatum. Lying deep in the brain, these cells are difficult to study in
living patients, necessitating the development of mouse models.

Two enduring mysteries of HD are the repeat-length dependence of age of onset of
the disease, and the selective vulnerability of certain cell types to the effects of the mu-
tant Huntingtin gene, despite its ubiquitous expression in both neuronal and non-neuronal
cells. Among the many cellular changes that occur in vulnerable cells, gene expression is
severely dysregulated, and this is thought to play a central role in HD pathophysiology.
This has motivated many studies of the impact of mutant Huntingtin on gene expression
(eg. [69)). To study the cell-type selectivity and repeat length dependence of expression
changes in HD requires profiling expression over time, multiple cell types, and alterna-
tive mutant Htt alleles and models, again generating highly-structured, high-dimensional

datasets to analyze.



1.4 Organization

The first part of this dissertation proposes some general methodology and software for
clustering datasets with pre-defined structure. In Chapter 2, we more carefully define the
structured clustering problem and review relevant prior work from several disparate fields.
Chapter 3 describes BOMBASTIC, a software tool to facilitate clustering, comparisons,
and visualization of such data.

Parts 2 and 3 describe biological analyses which either motivated or applied the meth-
ods that were developed. Chapter 4 contains an analysis of transcriptional dysregulation
in mouse models of levodopa-induced dyskinesia associated with Parkinson’s disease.
Part 3 consists of three related analyses of gene expression data in HD models. Chapter
5 reviews the role of transcriptional dysregulation in HD. Chapter 6 describes a re-analysis
of several published HD expression datasets to identify potential transcriptional regula-
tors. In Chapter 7, we extend these analyses to cell-type specific expression data. In
Chapter 8, we apply BOMBASTIC to interrogate an even larger collection of mRNA-seq

expression measured across multiple time-points, tissues, and Huntington alleles.
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Chapter 2

Background: Clustering Structured Data

2.1 Introduction

Cluster analysis is one of the principal tools used for exploratory data analysis and unsu-
pervised learning [59]. The objective of clustering is to group similar items together. Many
different clustering algorithms have been invented; some are heuristic (eg. hierarchical
clustering), others based on fitting to an underlying generative model (eg. mixture mod-
els), and many more are inspired by the idea of finding a lower-dimensional approximation
of a dataset under various constraints (eg. NMF).

Another way to cluster clustering algorithms is by the type of output data generated.
The simplest type of clustering algorithm learns a one-to-one function mapping each mul-
tivariate observation to a single discrete label from a finite set. A canonical example of
such an algorithm is k-means.

The second major type of clustering algorithm takes multivariate observations and
produces an ordered tree in which each observation is represented by a leaf. Agglomer-
ative algorithms such as hierarchical clustering are familiar examples, in which the tree is
constructed to minimize the sum of a distance metric along the branches. The resulting
clustering tree can be then be cut at an arbitrary depth to produce a simple partitioning
of the first type.

Most clustering algorithms operate on a set of objects represented as multidimen-
sional vectors that form the rows of a matrix, in which the columns are considered to
be exchangeable. That is, re-ordering the columns is assumed to not have an effect on

the results of clustering. In many real-world situations, where data does have consider-



able structure, this may be neglecting useful information. We will refer to data in which
columns are grouped and/or ordered as having block structure. For example, when data
is measured over time, the order of observations is clearly important, and it is possible
that certain time points are more informative than others. When data is measured across
two different contexts (for example, gene expression time-series measured after treat-
ment with two different drugs) the sets of columns corresponding to each context should
be considered separately, and in the correct order. A clustering algorithm that produced
the same results from a version of such data in which columns were randomly permuted
would potentially be discarding information and producing less interpretable results.

A related, but distinct and much older [4] problem than clustering is that of construct-
ing or learning taxonomies. Taxonomies can can be useful for discovering, representing,
and reasoning about natural structure. Taxonomies also have important practical uses in
identification or diagnostic keys, which provide a simple algorithm to identify objects by
recursively partitioning a space of possible labels using a sequence of tests, which can be
dichotomous or polytomous. Classical examples of these kinds of taxonomies are the keys
in field guides used identify plants by visual features of their leaves, or diagnostic keys to
identify a disease name by from a sequence of questions and tests. Taxonomies are con-
structed using a set of pre-defined discrete taxonomic characters, features by which the
objects being classified can be distinguished, and these characters and the order in which
they are used are carefully chosen to be easily observable and maximally informative (i.e.
to partition the space of possibilities in a minimal number of steps). Very often, the fea-
tures used to partition at each level also have functional or phylogenetic interpretations;
good features “carve nature at its joints” [97]].

When high-dimensional data is also highly structured, the problem of finding an infor-
mative and interpretable partitioning can involve aspects of both unsupervised clustering
and of taxonomy construction. Within the subspaces (blocks) defined by experimental
designs or different data types, one must rely on unsupervised clustering. Depending
on the nature of the data, different algorithms or clustering objectives may be appro-
priate for partitioning within each of the subspaces. But combining information across

pre-define subspaces is more akin to taxonomy construction. Instead of using taxonomic



characters derived from easily observable features, one can rely on unsupervised meth-
ods to learn the distinctions at each level, and then combine those learned features into
a taxonomy. Since high-dimensional, block-structured data is increasingly common, clus-
tering it in this semi-supervised manner is becoming an important practical problem, not
generally addressed by currently available tools.

Since trees and hierarchies arise in many clustering algorithms, it is also worth clarify-
ing a distinction between the approach sketched out above and some existing methods.
While hierarchical clustering and other agglomerative clustering algorithms involve learn-
ing a tree, such a clustering tree is not a taxonomy in the sense we have defined above,
because the branching of the tree at every level is determined by the same distance met-
ric. The branching at different depths in a hierarchical clustering tree represents differing
scales of viewing a projection of the data onto a single dimension, rather than represent-

ing conceptually different types of categorizations (i.e.. distinct taxonomic characters).

2.1.1 A motivating example: CHDI HD Allelic Series Dataset

As an example of biological data with significant structure, we consider a recent dataset
generated and made available by the CHDI Foundation (CHDI) (http://www.hdinhd.org).
To study the mechanisms of Huntington’s Disease, CHDI measured gene expression in an
allelic series of knock-in mouse models of HD, heterozygous for mutant Huntingtin genes
with CAG repeats of varying lengths (WT, Q20, Q80, Q92, Q111, Q140, Q175). Each type
of mouse was studied over development, and phenotype monitored by a variety of motor
and behavioural assays. Mice were sacrificed at 2 months, 6 months, and 10 months of
age, and at each of these time-points, mRNA (23,351 genes) and miRNA (626 miRNAs)
expression was measured from various brain structures and other tissues: striatum, cortex,
liver, cerebellum, and hippocampus. Several more tissues — Gonadal adipose, Intestinal
white adipose, corpus callosum, Hypothalamus, Brainstem, Skin, Gastrocnemius, Heart,
and Brown Adipose — were also characterized in the WT and Q175 mice at the 6 month
time point only. The organization of this data is depicted in Figure .

It is often not obvious how or where to begin looking at such data. A naive strategy

might be to lay all of the data out in a very wide matrix, and cluster the rows of this
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matrix. However, a biologist might ask if some genes have similar profiles in the striatum,
but not in the cerebellum? What if the dysregulation due to HD is only apparent at the 10
month time-point? Or if the dysregulation begins only when the repeat length exceeds
some critical value? There are many such questions to ask, and it could be tedious to
explicitly write programs to consider every possible question serially. Instead, one might
prefer to parameterize the space of all possible scientific questions and their attendant
computational analyses, to allow questions to be posed and answered (almost) as quickly

and easily as they could be formulated.

2.1.2 Importance and sources of block structure

Many biological datasets have natural structure, because the common set of genes en-
coded in the genome are reused in different ways across different tissue and cell types
and in different responses to stimuli. Experimental designs, by choosing which cell types
to measure, and at which time points, encapsulate prior knowledge and hypotheses about
the experimental contexts thought to be relevant to specific scientific questions. Retain-
ing this structure throughout analysis is therefore important, so that results can be related
back to the scientific questions that motivated experimental design decisions.

Data is often acquired from multiple contexts simultaneously in profiling experiments
that measure every accessible or potentially relevant context. For any particular scientific
question, however, only a subset of contexts or times may be relevant, and some may
be more relevant than others. Sometimes these decisions are completely obvious and
unambiguous, and are implicit in the way an experimenter chooses to analyze data. Often,
however, the choices of subsets of the data to examine are less obvious. It would therefore
be useful to be able to easily and rapidly choose alternative subsets of contexts of interest
to formulate and prioritize alternative scientific questions.

Clustering that makes use of subspace structure also produces more interpretable
results, because a potentially large number of possible partitionings can be succinctly
encoded as paths through a tree. This can enable navigation through the resulting space
of partitionings along scientifically meaningful dimensions. For example, one would like

to be able to express queries such as “the set of genes encoding transcription factors that
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Figure 2.1: Schematic outline showing multidimensional structure of CHDI Allelic Series
mRNA expression dataset
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are down-regulated beginning at 6 months of age and continue to decline monotonically
in the striatum of HD model mice, which have striatal-specific expression in the wild-type,
and which have constant expression in the cortex of HD mice and in the striatum of wild-
type mice”, as opposed to “cluster #317".

Statistical considerations also motivate preservation of subspace structure in cluster-
ing. When distributions, dynamic ranges, noise characteristics, and sampling resolution
vary, different transformations, clustering algorithms, and parameter settings may be op-
timal for each block, so a block-based approach might be better at recovering the true
underlying structure than simply treating all the data homogeneously. Time- or location-
indexed data also demands special consideration to impose prior beliefs about continu-
ity and to be able to effectively distinguish differences in shapes, relative magnitudes of
changes, and absolute levels, and any of these characteristics may differ between sub-
spaces.

Useful applications of structured clustering will require integration of the clustering
algorithms and models themselves with tools for visualization, navigation and filtering of
results, and we will need effective representations to expressively and efficiently specify
and manipulate desired analyses and computations. Next, we review relevant prior work
from three areas: clustering algorithms for structured data (and for learning structure),
with a focus on applications to biological data; methods for visualization of clustering
results and for navigation and querying of complex datasets; and declarative approaches

to formalizing search queries and specifying statistical graphics and analyses.

2.2 Clustering structured data

2.2.1 Numerical taxonomy

In the 1960s and 1970s, biological taxonomists discovered computers and developed the
field of numerical taxonomy [[118, 32], which applied quantitative similarity metrics and
numerical clustering algorithms to the task of classifying organisms. These methods were
applicable both to phenetics, in which organisms are classified by phenotypic features, as

well as to the cladistic and phylogenetic methods that have come to dominate modern
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taxonomy. Classifying organisms by phenotype requires first choosing a set of characters
to use. For example, to classify micro-organisms, Sneath [117, 32] proposes using charac-
teristics such as morphology (number of flagella, shape of spores), biochemical properties
(anaerobic vs aerobic; oxidase activity), drug sensitivity (penicillin sensitive?), etc. When
used to classify objects in a taxonomy, such properties are referred to as taxonomic char-
acters. In the task of classifying or identifying organisms, these characters have typically
been chosen by experts to be easily observable and informative.

The distinctions between the different kinds of characters used in phenetics are usually
clear-cut: morphology is one thing, and drug sensitivity is another, and there are typically
a limited number of easily observable characteristics to work with. When these methods
are applied to more abstract and plentiful data, it may be less obvious whether different
variables reflect different characters, which variables should be considered together as
groups, and which variables and combinations should be used at all to construct a useful

taxonomy or partitioning of objects.

2.2.2 Biclustering, 3D biclustering, and Plaid Models

Biclustering methods address the question of finding subsets of variables that are relevant
to distinguish only subsets of objects, usually for the case where there is no prior sugges-
tion of a natural organization of the variables. Biclustering [82] was popularized by [23]
as a method that "groups items based on a similarity measure that depends on context”,
relaxing the assumption of standard clustering methods in which all conditions (columns)
are given equal weight. The objective in biclustering is to simultaneously discover subsets
of both genes and conditions with similar profiles. This is potentially a much more com-
putationally difficult problem than the one to be addressed by the BOMBASTIC method
to be introduced in this dissertation (Chapter 3), which assumes that the column subsets
are pre-specified, and that a user explicitly chooses which blocks to use.

Either ordinary clustering or biclustering can be extended to data with higher dimen-
sional structure. For example, if gene expression is measured across both time and mul-
tiple conditions, the resulting data set can be imagined as a three dimensional matrix, or

equivalently, as a set of two-dimensional matrices that are aligned on one or both axes.
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TRICLUSTER [[143] is a graph-based clustering algorithm that extends the idea of bi-
clustering to three-way data, such as that indexed by gene, condition, and time. TRI-
CLUSTER searches for clusters that are homogenous across two of the dimensions, such
as genes that have the same temporal pattern over all of the experimental conditions.
While this is one potentially useful objective, note that it might also be biologically inter-
esting to discover clusters that have different patterns in different conditions, or clusters
that exist only in a single condition.

Strauch et al. [[124] proposed an interesting "two-step’ algorithm for 3-dimensional
genes-time-condition data. In an example application, the levels of 23,000 genes were
measured under 9 abiotic stress conditions, each at 6 to 9 time points. For their two-step
algorithm, k-means clustering is first used to cluster data for only one of the conditions.
The profiles for the corresponding genes in each of the other conditions are then com-
pared to their cluster assignments learned in the first condition. The modules are cate-
gorized as either single-response modules, which cluster only in the seed condition but
not in the others, coherent-response modules, which cluster together and have the same
temporal pattern in all conditions, or as independent response modules, which cluster in
other conditions, but have distinct dynamic profiles in each condition. This entire pro-
cess is then repeated using each of the conditions as the seed to learn initial clusters.
The Strauch et al. algorithm is thus able to identify clusters across subsets of conditions
whether or not the exact profiles are condition-dependent.

EDISA [127] extends the ISA biclustering algorithm, which performs matrix factoriza-
tion with some additional thresholding and constraints. EDISA extends to 3-way data
by considering a fixed time-course vector for each (object, condition) pair. EDISA itera-
tively samples observations from the data and assigns them to modules, which as in [124],
are categorized as being single-response (clustering in one condition only), coherent re-
sponse (similar profiles over all conditions), or independent responses (a common set of

genes with potentially different profiles in different conditions).
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2.2.3 Functional and time-course clustering

Clustering time-indexed and other functional data has motivated development of special-
ized algorithms, and many strategies are reviewed in [58]. The simplest approach is to use
standard clustering algorithms with the common distance metrics such as correlation. This
mostly ignores the time-dependent character of the data. A common improvement is to
transform the raw observations to a more meaningful basis, for example by fitting splines,
and then using the parameters of the spline fits as the inputs to standard algorithms, as

in [81].

2.2.4 Time-course clustering for biological data

Several algorithms have been developed specifically for clustering biological time-course
data, which tends to be short and noisy. STEM, the short time-series expression miner,
developed by Ernst et al. [35] is a notable example of gene expression time course clus-
tering. STEM begins with the idea of enumerating all possible patterns using a fixed,
quantized step size between successive time points. To reduce the number of clusters,
STEM proposes a greedy algorithm to maximize the diversity of the chosen set of po-
tential cluster profiles for a specified number of clusters. The choice of these patterns is
independent of the data, and is determined solely by the quantization scheme and num-
ber of clusters specified. Genes are then assigned to profiles based on the correlation
coefficient between the measured profile and the cluster pattern. STEM also supports
comparing clusterings between two conditions, using the hypergeometric test to assess

overlap between the set of genes assigned to each cluster in each condition.

2.2.5 Model-based clustering of multi-factor data

Many standard clustering methods, such as k-means, can also be viewed as fitting prob-
abilistic generative models to data [38]. For multi-factor data such as gene expression
measured over conditions and time, hierarchical mixture models can be used to model
the effects of the various factors. For example, Jornsten and Keles [62] proposed us-

ing 2-level Gaussian mixture models for clustering, fitting the models using expectation-
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maximization. The parameters of such models can be interpreted in different ways to
explicitly encode alternative scientific questions, such as modeling differential expression
between conditions at each time point separately, modeling the trajectories of differential

expression between time points, or comparing expression levels at individual time points.

2.3 Visualizing Clustering Results

2.3.1 Multiple clustering visualization

Once clusters have been found, by whatever methods are used, the clusters must be
presented to the user in an accessible way. For visualizing clustered data matrices in
biology, heat maps and ’cluster-grams’ [34] are ubiquitous. Such views are static and rows
can be arranged in only one order. While a carefully chosen ordering can be used to
emphasize relationships between different subsets of columns, heat maps on their own
do not provide an effective way to compare alternative blocks and orderings.
StratomeX [74] is an interesting tool developed for visualization of cancer subtypes,
where a set of samples are partitioned using a variety of different types of data. StratomeX
has similar motivations to BOMBASTIC and shares the concept of composing analyses by
relating blocks of data. Each (fixed) partitioning by some type of data (e.g. RNA ex-
pression, miRNA expression, mutation status) is represented in a column, and partitions
within each data type are drawn as blocks. Ribbons are drawn to represent intersections
between partitions across blocks, adopting the Parallel Sets idea originally presented in
[68]. Earlier applications of the parallel coordinates / parallel sets method to compare mul-
tiple partitionings include [[144] and [44]. StratomeX also provides 'dependent’ columns
that display a representation of a dependent variable within a selected subset of the data.
StratomeX was described as a visualization technique aimed specifically at compar-
ing pre-computed cancer subtype stratifications. A related method, Domino [42], has
also recently been proposed to aid in the manipulation of subsets across multiple tabu-
lar datasets, reinforcing the emerging recognition of the importance of this class of data
analysis problems. BOMBASTIC has been developed contemporaneously with both of

these systems [48], and while it includes a visualization component, aims to provide a
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more generic methodology for structured clustering, as well as to offer specializations for

time-indexed data.

2.3.2 Faceted Search

An alternative way to frame the problem of analyzing and discovering scientifically inter-
esting subsets of items within a large dataset is as an information retrieval or search task,
in which the scientist’s job is to formulate queries. Unfortunately, scientists’ queries are
often vague and uncertain. One important technique that has been developed in the field
of information retrieval to help users explore complex databases in the face of uncertaintly
and poorly specified queries is faceted navigation and search [[134, 104], and BOMBASTIC
may also be considered as an attempt to provide a dynamic, faceted navigation system
to query structured quantitative data.

Faceted search extends the notion of a fixed, hierarchical taxonomy to permit dy-
namic, iterative composition of facets drawn from separate taxonomies that describe
different aspects of objects. Each individual facet is itself a “hierarchy formed using a
[distinct] characteristic of division” [134] (i.e. a facet is similar to a taxonomic character,
though facets may be hierarchical themselves). Specific points within these facet hierar-
chies can be selected, and choices from multiple facets can be combined to define sets of
objects matching all of the chosen predicates. The number of facets used, and the order
in which selections are made is flexible, and a faceted classification system is “hospitable”
to extension with new facets that do not fit into the existing hierarchies.

The original faceted search system was the “colon classification” library system by
Ranganathan in 1933 [[134]. More recently, faceted search has become nearly ubiquitous
in both e-commerce and document information retrieval systems. Faceted databases
can be queried with combinations of boolean predicates on the facets, and this process
can be facilitated by providing interfaces that list the possible parameters for each facet.
Modern faceted navigation extends the parametric search idea by dynamically updating
the interface to show only the allowable remaining parameters as a user iteratively refines
a search.

An extension in some modern systems is to allow classification and identity within a
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facet to be either fixed or dynamic. In the colon classification system, the taxonomies used
for each the facets (describing aspects such as location (Earth->USA->Massachusetts-
>Boston) or time (20th century -> Late 20th century -> 1980s) are pre-defined. Modern
faceted search systems are often used for semi-structured datasets that may have some
rigidly defined facets, but also permit ‘dynamic facets’ to be defined by full-text queries.
These 'search’ facets have typically been unstructured, although a recent extension has
been to construct hierarchical facets dynamically [27, 3] using unsupervised methods such

as topic models.

2.3.3 Dynamic Queries

Clustering provides a mechanism to assign discrete, hierarchically organized category
labels to observations, against which to formulate queries. However, many of the prop-
erties on which one might like to filter are continuous variables, such as parameters used
in clustering algorithms or any other statistics computed from the data. Dynamic query
interfaces [[1]] provide graphical representations of parametric queries and statistical sum-
marizations of data, allowing users to interactively select subsets of observations by direct
interaction to define regions of interest on plots of variables and their distributions, and
to see how the distributions of different variables relate to each other. An important de-
sign goal of BOMBASTIC will be to facilitate queries over both discrete categories and

associated continuous properties simultaneously.

2.4 Formalizing Statistical Graphics and Analyses

The practical implementation of any computational method requires some formal repre-
sentation that a computer can execute. For methods that are potentially complicated and
may change frequently, it is worth considering how to best specify computations in ways
that are easy both to understand and manipulate.

Most standard statistical algorithms, including those for clustering, have readily avail-
able implementations in open source packages, such as those offered by the R project
[98] or Python'’s scikit-learn [95].

Composition of algorithms to perform more complex analyses is typically done by
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writing programs in imperative or functional languages. For certain classes of problems
that tend to recur often, writing ad-hoc programs for every new instance may become
tiresome. Instead, a common approach is to develop domain-specific languages that can
more succinctly and elegantly encode programs to solve particular classes of problems.
Two problem domains in which this strategy has been fruitfully applied are the query-
ing of databases and construction of statistical graphics. In both cases, specialized declar-
ative languages enable the specification of desired outputs, and those specifications can
be automatically transformed into the detailed sequences of operations needed to pro-
duce those results. This enables more concise expression of programs which are often
easier for users to understand and manipulate because program semantics map closely

to the user’s conceptualization of the problem at hand.

2.4.1 Database Query Languages

Database query languages are one of the most familiar applications of declarative pro-
gramming. Relational databases [25] are defined using formal data definition languages,
and modified and queried using SQL, structured query language. On-line analytical pro-
cessing (OLAP) offers a model for querying multidimensional data [103], using a declar-
ative query language called MDX (Multi-Dimensional eXpressions). Both SQL and MDX
provide basic analytical operations, such as computing summary statistics (eg. means,
sums, max, min). However, such languages do not provide support for more complex

analyses, such as clustering.

2.4.2 Graphics Algebras

In statistical graphics, Wilkinson’s Grammar of Graphics [[141] has been extremely influ-
ential. The Grammar of Graphics (GoG) formalized the specification and construction
of many kinds of statistical visualizations. Wilkinson’s formal syntax included six kinds of
statements: Data, Transformations, Scales, a Coordinate system, Visual elements (and
rules to specify their aesthetics), and Guides (such as axis labels). These statements pro-
vide a concise and easily manipulated specification of a visualization, and can be auto-

matically rendered to produce graphical output. The GoG was implemented in R by the
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ggplot2 package, which [[140] has become one of the most popular ways to construct
visualizations in R.

Stolte’s Polaris system [[122, 123] developed a declarative algebra, along with a corre-
sponding visual representation, to facilitate interactive manipulation and specification of
visualizations of relational data that may have hierarchically structured dimensions. Polaris
is primarily distinguished from GoG by the model of the data on which it operates [[122].
GoG proposed its own data model to represents sets of variables, and provides a vari-
ety of operators to support statistical transformations and relations between variables.
Polaris, in contrast, was designed to work strictly on data conforming to the relational
model.

GoG and Polaris are similar, however, in that they are primarily designed to operate
on datasets with fixed structure. While both systems support basic summarizations over
a fixed set of dimensions, they are not designed to facilitate clustering and other such
algorithms that project an entire dataset into a new space, nor to facilitate the visualization
and comparison of clustering results.

Neither relational query languages nor graphics algebras capture the semantics of
clustering. A central goal of BOMBASTIC is therefore to offer a declarative formalism to
specify clustering analyses, which could be more succinct and more easily manipulated

than the ad hoc imperative code typically used.

2.5 Summary

Structured high-dimensional data is becoming more prevalent. Clustering such data in a
way that makes optimal use of the structure may benefit from an extension of the stan-
dard view of clustering with old ideas borrowed from taxonomy construction and some
newer ideas from information retrieval. Special kinds of data, such as time series, often de-
mand specialized clustering algorithms, and different subspaces of a dataset may require
application of different algorithms and parameter choicess. Exploring the large space
of potential alternative clustering analyses would benefit from having succinct and eas-
ily manipulated computational representations. Declarative programming approaches,

which have found successful application to both querying and visualization of databases,
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may offer a means to formalize and automate the clustering analysis of structured data.
In the next chapter, we propose BOMBASTIC, an attempt to formalize the specification
of clustering analyses on structured data, and implement software to construct, query and

visualize structured clustering analyses and their results.
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Chapter 3

BOMBASTIC: Block-Organized, Model-based, Tree-indexed Clustering

BOMBASTIC is motivated by the idea that many scientific questions can be framed in
terms of comparisons between clusterings or partitionings of various subspaces that de-
scribe different aspects of the same set of objects. In this chapter, we attempt to for-
malize and decompose the problem of clustering structured data, and propose methods
to address each of these subproblems. We then describe the design of software that
implements these methods. Finally, we compare and contrast BOMBASTIC to related
work, and discuss how BOMBASTIC, within its limited scope of structured clustering, of-
fers an example of a declarative, interactive, and visual approach to the construction and
exploration of complex analyses. An application and evaluation of BOMBASTIC on a real
biological data analysis problem will be described in Chapter 8.

BOMBASTIC offers a simple and general methodology for clustering data that is or-
ganized into multiple predefined blocks or subspaces. We assume that these blocks
define distinct taxonomic characters, and then use transformations and clustering algo-
rithms of choice to learn partitionings of the observations within each block. By treating
blocks independently, optimal algorithms and parameters can be used to cluster objects
within each block. Re-combining the blocks into taxonomies allows one to make more
fine-grained distinctions between objects and to compare and contrast clusters between
blocks. Although the underlying statistical methods used are not novel, by formalizing
and automating the construction of these trees of clusterings, BOMBASTIC enables more
efficient and comprehensible enumeration and exploration of potentially large spaces of

alternative clusterings and trees.
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3.0.1

Problems Addressed

Accounting for block structure in clustering will require:

¢ Clear specification of the block structure of input data

e Clustering each block individually, using appropriate algorithms and parameters. In

particular, it is important to provide interpretable and queryable clustering outputs

for time- and location-indexed data.

¢ Selection and recombination of block clusterings into a taxonomy

e Efficient interactive exploration of the resulting tree of partitionings

3.1 BOMBSTIC Methods

3.1.1 Overview

We describe the main concepts and steps involved in BOMBASTIC, which are summarized

in Figure .

1
Input Data
Specification

Define input
data and types

Define
transformations

Define blocks

2
Block Clustering
Specification

Choose blocks

Choose block
clustering
generators

Set clustering
parameters

Define block
clustering
ordering

3
Clustering Tree
Constructiion

Cluster blocks
independently

Construct tree
of cluster
intersections

Visualize
clustering tree

4
Tree Decoration,
Exploration, Filtering

Explore and
filter tree

Apply additional
analyses to
clusters in tree

Examine cluster
members in
detail

Adjust clustering
and filtering
parameters

Figure 3.1: High-level overview of BOMBASTIC methods and usage

First, some data to analyze is chosen. The types of the items being analyzed must

be specified explicitly and precisely, to ensure that only meaningful combinations of clus-
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terings are permitted, and to allow annotation of results with ancillary information. For
example, one might be clustering mouse genes, indexed by gene symbol.

Blocks are defined; these specify a sequence of the data columns to be used as inputs
to some clustering algorithm. In the CHDI data (Chapter 8), one might define a block
for the expression time-course in the wild-type mouse striatum, additional blocks for the
expression time courses in each of the knock-in models. Blocks might also be defined
based on relative expression in each cell type from a different dataset [30], to allow filtering
for cell-type-specific genes.

BlockClusteringResults are produced by a BlockClusteringGenerator. Clustering data
requires the specification of the Block itself, the clustering algorithm to use, and any pa-
rameters required by the clustering algorithm.

A BlockClusteringResult contains a partitioning of that block into clusters, as well as
any ancillary statistics (on each object) from the clustering algorithm, such as parameters
of any transformations applied (eg. centering and scaling) or statistics associated with
the cluster assignment itself (such as a measure of fit, cluster assignment probability, or
p-value). A BlockClusteringResult may be queried to report the membership of one or
more of the clusters, and these sets may be filtered by predicates defined on any of the
attached statistics.

A sequence of BlockClusteringGenerators produces a sequence of corresponding Block-
ClusteringResults.

Such a sequence of n BlockClusteringResults (or FilteredResults) implicitly defines a
tree of depth n+1, in which each node contains a subset of the items. The root of this
tree contains all items in the domain. The children of each node X are formed by taking
the intersections between the items in X and each of the clusters in the next BlockClus-
teringResult in the sequence. This procedure is explained in more detail in Figure @

This tree makes explicit all of the potential relationships and intersections between
the BlockClusterings in a sequence. The leaves represent the intersections between clus-
ters for all of the combinations of clusters produced by the cross-product of all of the
clusterings, while the internal nodes reflect successively refined subsets. The leaves will

be the same regardless of the ordering of the BlockClusterings in a sequence, while the
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Figure 3.2: Cartoon example showing basic BOMBASTIC cross-product operation be-
tween two BlockClusteringResults. Applying this operation recursively to a sequence of
BlockClusteringResults generates a tree.

nodes along the internal paths depend on the sequence in which the BlockClusterings
were specified.

Picking a node in this tree represents a selection of the items falling into a particular
combination of clusters, or behaviours over the specified blocks. The set of items in every
node, or in a particular node, can then be further analyzed by inspection of the items,
their raw data, and annotations, or by applying some other function to the set of items
specified by that node (such as an over-representation test.) Such analyses can be applied
to a single node at a time, or to all of the nodes in the tree, and the results can then be

encoded into a visualization of the tree.

3.1.2 BOMBASTIC Concepts

We briefly describe the main concepts that need to be represented by BOMBASTIC ob-

jects.
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Dataset

A dataset consists of a matrix of numerical values, with rows indexed by an object identifier
and columns indexed by some observation identifier, along with row (object) and column

(observation) metadata.

Transformations

A transformation takes a dataset and produces a new one which has the same row index

as the original.

Filters

A filter takes a dataset and produces a new one which has the same row index type as

the input, but which contains only a subset of the rows.

Blocks

A Block specifies a sequence of columns chosen from a dataset to be used as input to

clustering or visualization, and retains a reference back to the source dataset.

Block Clustering Algorithm

A BlockClusteringAlgorithm takes as input a Block and any required parameters, and pro-
duces a partitioning (BlockClustering) along with a dataset containing any statistics asso-
ciated with the clustering. We assume a hard clustering in which each item is assigned to

exactly one cluster.

Block Clustering Generator

A BlockClusteringGenerator binds a Block with a particular BlockClusteringAlgorithm and
settings for any parameters required by the clustering algorithm, and produces a Block-

ClusteringResult. These results may be computed on-the-fly, or pre-computed.
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Block Clustering Sequence

Any particular BOMBASTIC analysis is defined by a sequence of BlockClusteringGener-
ators. Typically this sequence is constructed interactively by dragging around available

block clusterings.

Block Clustering Result

A BlockClusteringResult contains the set of clusters and any associated statistics produced
by the application of a BlockClusteringAlgorithm to a single block, with a particular set
of parameters. Each cluster has an integer ID, a label generated by the clustering algo-
rithm, the parameters that define the identity of the cluster (eg. the centroid or vector of

contrasts that it represents), along with the set of items assigned to it.

Block Clustering Result Sequence

The resulting sequence of BlockClusteringResults provides the data that drives the rest

of the BOMBASTIC interface.

Block Clustering Result Sequence Query

Any combination of clusters can be extracted from a Block Clustering result sequence.
For each BlockClusteringResult in the sequence, a query specifies one or more of the
clusters, and optionally, a set of inequalities that further filter the selection by the values

of clustering statistics.

Block Clustering Result Tree

A sequence of BlockClusteringResults can also be used to generate a tree that represents
all of the intersections between clusters (this is explained in more detail in the next section
and in Figure @). This tree can be constructed explicitly, so that analyses can be applied
to the sets of clustered objects represented by each node, and so that it can be drawn as

a figure.
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3.1.3 Block Clustering Methods

BOMBASTIC is intended to be modular and agnostic about the specific clustering algo-
rithms used to produce the independent block clusterings. The major restriction is that
clusterings are assumed to be 'hard’; each object should be assigned to exactly one clus-

ter. Initially, we implemented several very simple but widely-applicable algorithms.

Binary label assignments

The simplest possible ‘clustering’ is to partition objects based the value of some binary
label, (eg. indicating membership in a some set). This is useful for restricting analyses
to subsets of objects of interest; for example, when clustering genes, one might wish
to investigate only the set of transcription factors. Calling such restrictions a clustering

allows us to implement this frequent task within the general BOMBASTIC framework.

Real Filters

A slightly more complicated but equally common scenario is that of filtering objects based
on the values of some associated real-valued statistics. In gene expression analysis ap-
plications, for example, one often wants to filter genes by fold-change or variance. It is
therefore useful to be able to define a clustering of objects by specifying a set of ranges
for some statistic. Such ranges may be specified interactively by selecting regions on a
histogram. While there are well-established tools to filter quantitative data in this manner
(eg. Spotfire), providing partitioning based on such filters allows this task to fit naturally
into the BOMBASTIC scheme and to be used in combination with other clustering algo-

rithms.

Testing individual contrasts

Building on the above two clustering types is the common case of partitioning objects
based on the results of a statistical test for a single contrast between two conditions.
This produces a partitioning of the objects at multiple levels (eg. up-regulated, down-

regulated, unchanged) based on a combination of filters on both statistical significance
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and data values.

Trivial Indexed Quantized Contrast Clustering (TIQCC)

Time-course data can be represented as a sequence of contrasts between successive time-
points. Given an observation vector x = [xo,a:h ..xt], one can construct the vector of
contrasts ¢ = [x1 — %0, T2 — X1 ... %y — Tp_1]

This leads to a very simple way to cluster such data, which we call Trivial Indexed
Quantized Contrast Clustering (TIQCC). We define a set of ¢ levels for quantization (eg.
the intervals between log2 fold changes of [—o0, —2, -1, 0, 1, 2, +0]), and then enumerate
all possible quantized contrast vectors. We then quantize each contrast vector, and assign
it to the matching cluster. (Since many of the possible clusters may be unoccupied, one
can start with the data and keep track of only those clusters that have support).

This scheme has several useful properties:

¢ Observations are clustered by shape, rather than absolute level. This is particularly
important when analyzing bio-molecular data, since there are wide variations in dy-
namic range, and biological relevance is not necessarily related to absolute levels.

Moreover, many common experimental techniques measure only relative changes.

e Every potential pattern will be represented; one does not have to choose the num-

ber of clusters to use, and even rare patterns will be represented by clusters.

® The number of quantization levels can be adjusted to generate more or less granular

clusterings

e The quantization method can easily be extended to incorporate other statistics
about the contrasts. For example, if we perform significance tests for each con-

trast, they can be used as a filter in the quantization and assignment to clusters.

e The algorithm is extremely simple and fast, and scales linearly with the number of

observations.

A limitation of TIQCC is that it is only suitable for relatively short time-courses, since

if ¢ is the number of quantization levels for each delta, and ¢ the number of time-points,
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the number of possible clusters will be ¢/~ .

Ernst et al. also proposed a time series clustering algorithm based on quantized pat-
terns [364], although the patterns used were not exhaustive, and the choice of patterns to
be used as clusters was independent of the observed data.

Another related approach is to cluster time-courses by their derivatives, after transfor-
mation to splines. For example, Dejean [29] described an algorithm in which time-course
data was smoothed and represented by cubic splines. The profiles were then clustered
(using k-means) on the first derivatives of those functions, to cluster the profiles by their
shapes rather than absolute levels.

The same approach can also be used for the case in which two conditions are com-
pared over time, such as disease vs. normal. In such an experiment, often it is the contrast
between disease and normal that is of the greatest interest, and so the vector of these
contrasts can be used without comparing successive time points, although if relevant, one

could also cluster by the time-dependent changes in the disease vs. normal changes.

Scaled, centered K-means

Another simple algorithm suitable for clustering short time-course data is k-means. When
the shapes of the time-courses are of interest, the data may first be transformed by cen-
tering and then scaling to a uniform range. Importantly, the parameters used in these
transformations are recorded and propagated to the resulting BlockClusteringResult, so
that queries can be specified both on cluster shape (eg. a cluster that is monotonically
increasing) and which satisfy additional criteria (eg. having expression above a baseline

level and spanning a dynamic range of at least a 4-fold change).

3.1.4 BOMBASTIC Tree
3.1.5 Tree visualization, decoration and interactive filtering

The tree of cluster intersections induced by a sequence of Block Clusterings can be ex-
plored in two ways. A cross-filter view (Figure @) provides a compact representation

of clusters and permits selection of combinations of clusters. When multiple clusters are
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Figure 3.3: BOMBASTIC cross-filter / cluster selection interface. Two BlockClusteringRe-
sults are shown. The table on the left shows a partitioning of genes for a test performed
at a single contrast (expression change due to HD in the brainstem at 6 months; see Ch.
8). The table on the right shows a TIQCC clustering for the combinations of HD vs. nor-
mal contrasts over time in striatum. For example, the current selection in the example
(highlighted in grey) queries for the set of genes that were significantly up-regulated (>
1.5-fold) in the HD condition in Brainstem at émo and which were also up-regulated in
HD starting at 6mo, and continuing at 10mo, in striatum.

selected within a block, the resulting selection is the union of those clusters. Selections
across blocks represent the intersections between the selections within each block.

The tree may also be drawn explicitly (Figure @, panel 5), which allows all of the
resulting subsets to be seen, and the sizes of clusters can be reflected in the visualization.
If additional analyses (eg. over-representation tests) are applied to these clusters, the
drawing of the tree can be decorated to indicate those clusters with statistically significant
or potentially interesting results, or clusters exhibiting over-representation of a specified

set.

3.1.6 Pickset annotation and interpretation

After a user has selected a particular set of objects (one or more nodes in the tree), two
common analysis tasks are examination of the set members in detail, and functional or
mechanistic interpretation. A tabular view (Figure @ panel 6) displays the currently
picked set, along with annotations and primary data. To support generation of functional

or mechanistic hypotheses, analyses (initially, over-representation tests) are automatically
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applied to the current set (Figure @, panels 7 and 8). Even when used in a manual mode,
this offers an easy way to browse the results of such analyses applied to a large number

of possible subsets.

3.2 Implementation

The methods described above were implemented in Python. The user interface was devel-
oped using the PyQt (https://riverbankcomputing.com/software/pyqt/intro) bind-
ings to the cross-platform Qt 5 framework (http://www.qt.io).

The core module defines the python objects representing the concepts outlined in
section 3.1.2, and the algorithms for clustering, filtering and tree construction. The user
interfaces are implemented in four modules, each of which implements Qt objects to
provide models that wrap the underlying BOMBASTIC structures, views that render the
interface, and controllers. The AnalysisTemplate module provides support to to manage
specification and setup of analyses. The BCResult module display BlockClusteringResults
in a grid view and implements selection and filtering. The BCTree module rendering the
clustering trees. The Pickset module supports display of the currently selected cluster,
shows annotation associated with the individual items, and shows the results of further
analyses performed on the selected cluster. A screenshot of the BOMBASTIC interface is

shown in Figure @

3.3 Discussion

The main contribution of BOMBASTIC is to explicate a generalized and modular method-
ology for block-organized clustering that is relevant to many data analysis problems in
biology and to provide a software implementation that facilitates efficient visualization,

filtering, and exploration of a large space of potential analyses and their results.
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Overview of BOMBASTIC interface. To construct an analysis, the user drags blocks from
a menu of available datasets (1) to assemble a sequence of BlockClusteringGenerators
(2). Such a sequence suffices to specify the generation of the rest of the analyses,
clustering each block independently. Statistics associated with each resulting
BlockClustering are shown in histograms (3), which may be used to interactively select
and filter subsets of the data. A cross-filter view of BlockClusteringResults is shown in
(4), and the full representation of the clustering tree in (5). A user may select any
combination of clusters and their intersections using either the cross-filter or the tree
view, and the objects (eg. genes) comprising that cluster can then be interrogated in
detail (6), and additional analyses (eg. computing over-representation of associated
regulatory motifs) applied to annotate the constituents of the currently selected node (7,
8). The entire system is scriptable and can be controlled through an integrated python
console (9).

Figure 3.4: Screenshot and overview of BOMBASTIC interface.
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3.3.1 Benefits over traditional methods
Comparing sizes of subsets with Venn diagrams

Comparison of discretized changes in gene expression between several groups offers
one of the simplest examples of a useful application of BOMBASTIC. Genes might be
measured in different contexts and classified as being up-regulated, down-regulated, or
unchanged. Venn diagrams are very often used to visualize comparisons between 2, 3,
or 4 groups. Beyond 5 groups, however, Venn diagrams become so visually complex that
they are unhelpful. Venn diagrams also can only show the sizes of intersections, and the
identity (eg. time-course patterns) of each set is indicated only by colors or labels. In con-
trast, the cross-filter and tree visualizations provided by BOMBASTIC can efficiently and
comprehensibly display intersections across an arbitrary number of sets, and the identity

of each set and intersection can be directly encoded in the visualization.

Concatenation and clustering

Instead of clustering blocks independently, one could concatenate data and employ stan-
dard algorithms. Doing so immediately presents the choice of which blocks to use, which
is part of the problem addressed by BOMBASTIC. Once a desirable collection of columns
had been concatenated, one would likely be able to find the same partitioning that
would be produced by a combination of independent clusterings, assuming that indi-
vidual blocks were of comparable sizes and had similar characteristics. If the blocks were
of different sizes or contained data with very different distributions, it would be necessary

to develop specialized clustering algorithms or objective functions to account for this.

3.3.2 Comparisons to related approaches and systems

BOMBASTIC was first presented at VIZBI 2013 [48] in April 2013, and was also described
at the NYAS Data Science Learning and Applications to Biomedical and Health Sciences
Workshop in January 2016 [47]. There are a number of earlier and contemporaneously

developed systems addressing the same class of problems, having both similarities and

differences to BOMBASTIC.
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Declarative visualization algebras As was reviewed in the previous chapter, BOMBAS-
TIC is inspired by declarative visualization techniques such as Polaris/Tableau [122] and the
Grammar of Graphics [[141|, 140]. These tools, however, formalize the problem of mapping
a fixed tabular dataset (potentially with hierarchically structured dimensions) into graphical
representations. Their algebras do not include primitives for clustering or for combining
combinations of clusterings into taxonomies. Such tools also do not aim to provide an
interactive interface that relates the summary visualizations of a clustering (e.g. the cross-
filter or tree views of BOMBASTIC) to analyses and visualizations of the constituents of

particular clusters (i.e. the individual genes and results of over-representation analysis).

STEM STEM [34], the short time-series expression miner, was an early and influential
tool for analysis of biological time-course data. For time-course clustering, the simple
TICQ approach we have proposed makes fewer assumptions than the STEM method and
avoids attempting to prune the space of possible patterns, while preserving the possibil-
ity of identifying clusters that might be sparsely populated. STEM also offered a tool for
comparing membership between the clusters of clusterings from two contexts. BOMBAS-
TIC generalizes this to an arbitrary number of independent clusterings, and can generate

the combined clustering result formed by all of the intersections.

StratomeX and Domino StratomeX [74] is a visualization tool aimed at the problem of
comparing cancer subtype stratifications. BOMBASTIC is distinguished from StratomeX
by its goal of providing a formalization of the clustering problem, in which the combination
of two block clusterings produces a new partitioning which can viewed used as a 'first-
class’ clustering itself, whereas StratomeX is primarily described as a visualization method
to compare and relate fixed, alternative stratifications.

Gratzl and colleagues [42], (from the same group that developed StratomeX), also re-
cently proposed Domino, a system for “extracting, comparing, and manipulating subsets
across multiple tabular datasets”. Like BOMBASTIC, Domino recognizes that perform-
ing comparisons across heterogenous datasets is an important problem not well served
by existing tools. Domino provides a number of relationship operators to connect blocks

that indexed by the same object types, and even supports selection of clusters across mul-
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tiple partitionings. BOMBASTIC again differs from Domino in providing a cross-product
operator that explicitly constructs a new partitioning by combining two independent par-
titionings, as well as in providing an the explicit tree view. Furthermore, BOMBASTIC sup-
ports conducting analyses (eg. over-representation tests) systematically over each subset
in the resulting tree, to facilitate searches for interesting paths and cluster combinations,
whereas Domino relies more heavily on selection of subsets under the direction of the
user. Finally, neither StratomeX nor Domino are specifically intended for clustering of
time-course data, which was a major motivation for BOMBASTIC and the simple but ef-

fective TIQCC method that it implements.

3.4 Future Work

3.4.1 Implementation improvements and additional features
Interface for Block and Clustering specification

In the current implementation, BlockClusterings are constructed using the python API,
and then pre-computed BlockClusteringResults are saved for use by the analysis interface.
It would be preferable to provide an interface to configure new BlockClusterings on new
data, as well as to facilitate computation of BlockClusterings with different parameter

settings through the graphical interface.

Additional Pickset analyses

The existing implementation, which is specialized for analysis of genes, performs over-
representation analysis of cis-regulatory motifs and chromatin-binding regulators for sub-
sets defined by any selected clusters of combinations of clusters. These are among the
simplest possible analyses that can be done. Application of more sophisticated and mod-
ern models of transcriptional regulation would extend the utility of BOMBASTIC for anal-

ysis of gene expression data.
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3.4.2 Empirical and theoretical analysis of advantages of block clustering

We have claimed that when the data in different blocks have different characteristics (eg.
dynamic range, variability, number of actual clusters, and distribution of objects over clus-
ters), it makes intuitive sense to cluster blocks independently and then combine clusters.
It will be valuable and necessary to more rigorously study the conditions when this is ac-
tually true, and to compare the results and performance of clustering using BOMBASTIC

to alternative methods.

3.4.3 Searching for informative clusterings and orderings

A key advantage of a formal representation for alternative block clusterings is the possibil-
ity of automatically enumerating and searching over alternative analyses to identify those
that are potentially informative and of scientific interest. For example, given a (reasonably
small) set of blocks or block clusterings, one could enumerate all possible subsequences
and generate the corresponding trees. The associated clusters could used as input to
over-representation tests (or better models), and each tree assigned a score and ranked

based on whether, or how many of its clusters had statistically significant overlaps.

3.4.4 Empirical user studies

Since one of the goals of BOMBASTIC is to make it easier for end-user scientists to more
efficiently explore large, structured datasets, it will be important to evaluate its utility
in the hands of a larger sample of users. We plan to accomplish this by curating sets of
relevant datasets for which BOMBASTIC might be useful to make comparisons, beginning
with the neurodegenerative disease datasets discussed in the other chapters. Since user
interaction with BOMBASTIC is restricted to the operations permitted by the formalism
and interface, (i.e. selection, ordering, and filtering of Blocks and BlockClusterings), it is
straightforward to record these interactions for later analysis. To maximize the population

of potential users, we may also develop a web-based version of the interface.

38



Part Il

Parkinson’s Disease

39



Chapter 4

Analysis of Transcriptional Dysregulation in Models of Levodopa-induced Dyskinesia

The analysis and parts of the text and organization of this chapter were joint work with
Myriam Heiman and published in:

Heiman M, Heilbut A, Francardo V, Kulicke R, Fenster RJ, Kolaczyk ED, Mesirov JP, Surmeier
DJ, Cenci MA, Greengard P. “Molecular adaptations of striatal spiny projection neurons

during levodopa-induced dyskinesia”, PNAS, 2014 Mar 25 111(12):4578-83. .

4.1 Introduction and Background

4.1.1 Parkinson’s Disease

Parkinson’s Disease (@) is a movement disorder that affects over 1 million patients in the
United States, and 10 million globally. Parkinson'’s is characterized by akinesia, bradyki-
nesia, rigidity, and tremor, and deficiencies in motor coordination and in movements that
are normally automatic [64]. These motor symptoms are the result of degeneration of
dopamine-producing neurons in the substantia nigra pars compacta that project to the
striatum, a subcortical structure consisting of the caudate nucleus and putamen which is
particularly important for transmitting signals from the cortex to the basal ganglia and for
planning and coordination of motor activity.

In the 1960s, Birkmayer and Hornykiewicz showed that supplementation with lev-
odopa (L-DOPA,; L-3,4-Dihydroxyphenylalanine), the physiological precursor to dopamine,
dramatically improved motor functions in Parkinson’s. L-DOPA, in combination with dopamine

decarboxylase inhibition, remains the main pharmacotherapy for PD.
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Figure 4.1: Classical model of changes to the direct and indirect pathways in Parkinson'’s
and Levodopa-induced dyskinesia. Normally, the activities of the direct pathway (primarily
D1-expressing neurons) and indirect pathway (primarily D2-expressing neurons) are bal-
anced and effectively transduce instructions from the cortex to facilitate voluntary move-
ment. Both pathways are modulated by dopamine inputs from the substantia nigra. b) In
Parkinson'’s disease, degeneration of the substantia nigra reduces the dopamine input to
the striatum. This results in an increase in activity of the indirect pathway, which increases
its inhibition of movement, and a decrease in activity of the direct pathway that normally
facilitates voluntary movement. c) Excessive, non-physiological stimulation by dopamine
from exogenous L-DOPA results in changes to the behavior of D1 and D2 neurons lead-
ing to overactivity of the direct pathway and underactivity of the indirect pathway, which
causes involuntary movements (dyskinesia). Adapted from Figure 2 of Jenner, 2008 [@]
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4.1.2 Levodopa-induced Dyskinesia (LID)

While levodopa is initially very effective, its clinical utility is eventually limited by dyskine-
sias that frequently develop with chronic treatment. It is thought that these effects are due
to the intermittent and non-physiological kinetics of levodopa delivery to the medium-
spiny neurons (MSNs) of the striatum, which, over time, cause maladaptive changes in
these neurons. Moreover, the depletion of dopamine caused by PD prior to treatment
primes and hypersensitize MSNs to the changes that lead to dyskinesia. While there have
been efforts to optimize dosing and delivery of L-DOPA, systemic dosing inevitably pro-
duces non-physiological exposure of dopamine to the MSNs. It is therefore important to
understand the biology of the strial adaptations due to L-DOPA so that pharmacological

interventions to prevent or mitigate dyskinesias might be developed.

4.1.3 6-OHDA Hemiparkinsonian model

Rodent models recapitulate import aspects of Parkinson’s disease and LID pathology.
Stereotactic injection of the neurotoxin 6-OHDA (6-hydroxydopamine) can be used to
create relatively specific lesions in the rodent brain [[113]. Unilateral injection of 6-OHDA
into the Medial Forebrain Bundle (MFB), the nerve bundle projecting from the substan-
tia nigra pars compacta to the striatum, damages the substantia nigra and generates a
hemiparkinsonian motor phenotype within a few weeks in mice. This motor phenotype
can be ameliorated by administration of L-DOPA. Moreover, prolonged administration
of L-DOPA produces a dyskinesia-like phenotype with abnormal involuntary movements,

and therefore serves as a model for LID [80].

4.1.4 Intracellular signaling pathways and transcriptional dysregulation in LID

Studies of both non-human primate and rodent models of LID have found profound
molecular changes in the neurons of the striatum as levodopa-induced dyskinesia emerges,
affecting gene expression, protein expression, post-translational modifications, and synap-
tic organization [[18]. Figure @ summarizes some of the major pathways thought to play

roles in dopamine- dependent signaling in the striatum.
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Early studies using in situ hybridization and staining focused on changes in the ex-
pression of neurotransmitters and enzymes involved in neurotransmitter metabolism in
the striatum, and found that expression changes of specific mMRNAs were were correlated
with the emergence of L-DOPA-induced dykinesia and that these expression changes
were region- and cell-type specific. [19]

There are two main types of dopamine receptors expressed in the striatum, known
as D; and D,. These are G-protein coupled receptors that transduce signals through
a number of mechanisms, include cAMP dependent signaling via the adenylyl cyclase-
PKA-DARPPP-32 pathway, phospholipase C and IP3 signaling, and cross-talk with MAPK
cascades [[137]], and ultimately lead to transcriptional regulation. Looking at changes in
receptor levels in non-human primate models of both Parkinson’s and LID, Aubert et al.
observed changes in expression and sensitivity of D receptor signaling, both at the level
of the D; receptor itself and in the activity of downstream effectors including Cdk5 and
DARPP-32 [8].

Dopamine depletion in PD leads to hypersensitivity of the neurons that normally re-
spond to dopamine. It is believed that this sensitization is mainly due to changes in the
signaling pathways downstream of the dopamine receptors, rather than simply an increase
in the number of dopamine receptors expressed [106]. The D1Rs signal through activa-
tion of adenylyl cyclase, leading to a number of cAMP-depdendent downstream effects.
In particular, excessive dopamine stimulation leads to PKA activity that causes activation
of CREB and induction of immediate early genes, and PKA-dependent hyperphosphoryla-
tion of DARPP-32, which appears to play an central role in the development of dyskinesia
through actions on the ERK/MAPK pathway [[104]. Ultimately, these signals lead to pro-
found changes in transcription.

Microarrays have been applied to characterize expression changes associated with the
emergence of dykinesias in rat models [67, 43]. In these rat models, not all rats treated
with L-DOPA develop dyskinesia over the course of the experiment, so analyses empha-
sized comparisons between levodopa-treated rats that develop dyskinesia vs. those that
do not. In an early study interrogating 8000 genes (of which only 3000 were well an-

notated at the time), Konradi et al. [67] observed many genes differentially expressed
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between dyskinetic and non-dyskinetic rats in striatal tissue. These genes were involved
in diverse processes including ion homeostasis, neurotransmission, synaptic plasticity, ki-
nases and phosphatases, stress response and apoptosis, and ribosomal proteins. More
recently, Grunblatt [43] compared the effects of pulsatile dopaminergic stimulation, which
tends to induce dyskinesia in the 6-OHDA rat model, to continuous dopaminergic treat-
ment, which does not. Among the genes with the greatest expression differences in stria-
tum between these two conditions were several growth factors including Neurotrophin
3, and genes involved in neurotransmission, including multiple glutamate and serotonin
receptors. Since these microarray studies have relied on measurements of homogenized
tissue, it has been impossible to know whether expression changes are specific to sub-
types of neurons present in the striatum, despite the evidence from in situ studies and the
standard model of striatal physiology which would suggest that the D; direct pathway

MSNs are most relevant to LID.

4.1.5 Pharmacological Therapy for Parkinson Disease

The drugs used for PD were recently reviewed by Connolly and Lang [24]. Although lev-
odopa remains the most effective treatment for the motor symptoms of PD, a number
other agents are also used, especially at early stages of disease, to avoid the high risk of
levodopa-associated dyskinesias and other side effects. For mild symptoms, monoamine
oxidase type B (MAO-B) inhibitors, such as selegiline or rasagiline are often an initial ther-
apy. By inhibiting MAO-B, which metabolizes dopamine, these increase levels of endoge-
nous dopamine.

Once motor symptoms become severe, levodopa is the main treatment. When dopamine
levels are increased, motor function can be restored (‘on time’), but when these drugs are
metabolized and levels drop, Parkinsonian symptoms return (‘off time’). To manage the
kinetics of L-DOPA treatment, it is often combined with MAO-B inhibitors, catechol-O-
methyl transferase (COM-T) inhibitors, and carbidopa, an inhibibitor of dopamine decar-
boxylase (DDC), which all help to slow down dopamine metabolism, raising dopamine
levels and smoothing out the effects and reducing the dose and frequency of L-DOPA or

dopamine agonists required.
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Figure 4.2: Summary of major pathways downstream of D1 and D2 dopamine receptors
in striatal neurons. Adapted from Cenci, 2010 [] with input from M. Heiman
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While levodopa leads to increases in dopamine itself, which then acts on all of its
physiological targets, a variety of dopamine agonists have been developed, each of which
has distinct affinities for the various dopamine receptors. The are often used as adjuncts
to levodopa and carbidopa to maximize ‘on time’ while reducing levodopa doses and
side effects. The dopamine agonists used for PD, such as Cabergoline, Ropinirole and

Pramiprexole, have higher affinity for the Ds (and D3 and D) receptors than for D;.

4.1.6 Current Therapies and Therapeutic Targets in LID

Pharmacological factors contributing to LID and the approaches that have been explored
to prevent or treat it are reviewed comprehensively by Schaeffer et al. [107]. While
dopamine is the main player, many other neurotransmitter systems may also be potentially
relevant to prevention and modulation of LID.

The primary strategy to prevent dyskinesia is simply to delay using L-DOPA, and then
to use the smallest doses possible. Since the pulsatile changes in concentration produced
by oral L-DOPA is thought to be one of the key factors contributing to LID, there has
also been work to develop alternative formulations, such as intra-intestinal infusions, to
provide more stable levels of dopamine.

Development of more selective dopamine receptor agonists has both provided tools
to better manage L-DOPA therapies and revealed relationships between dyskinesia and
the stimulaion of specific dopamine receptors (and the cell types that express them). The
dopamine agonists typically used in PD mainly activate D receptors, and tend to be less
likely to cause LID. Whether the differences in dyskinesia development with these agonists
is primarily due to differences in their kinetics or receptor selectivity is unclear; it has also
been suggested that the function of Dj receptors is important [14].

Many drugs have been evaluated for treatment of dyskinesias after they develop.
Amantadine, an NMDA glutamate receptor antagonist, and clozapine, an atypical an-
tipsychotic with both serotonin and dopamine receptor agonist activities are the the main
drugs currently used to treat dyskinesia symptoms.

Among other strategies studied are NMDA receptor antagonists, mGluR antagonists,

AMPA antagonists, anticonvulsants, 5HT agonists, a-adrenergic antagonists, opiod antag-
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onists, endocannabinoid antagonists, adenosine As4 antagonists, and nicotinic receptor
antagonists, none of which have been established to reduce LID in the clinic [107].

Most of the preclinical studies of potential drugs for LID rely on either rat or primate
models of Parkinsons and dyskinesia generated either by 6-OHDA or MPTP. Motor phe-
notypes are the primary endpoints evaluated, although recent studies have also included
molecular measurements. For example, BN82451 / IPS-082451 is a compound originally
investigated for its anti-oxidant activity, since oxidative stress is thought to be a com-
mon feature of many neurodegenerative diseases [21]. Further study revealed that it
acts through multiple targets and mechanisms: it blocks neuronal Na* channels, reduc-
ing glutamate release and thus reducing excitotoxicity; it inhibits cyclooxygenase activity,
reducing inflammation; it provides general protection against oxidative stress; and pro-
tects against toxicity caused by mitochondrial dysfunction. Interestingly, IPS-082451 was
shown to ameliorate levodopa-induced dyskinesias in both rat [120] and primate models
[6], and it reversed LID-associated up-regulation of cFos, FosB, Arc, and Nur77/Nrd4A1,
but did not have an effect on GAD67, Homer, PDyn, and PPE genes which are also up-
regulated in LID.

4.1.7 TRAP

To enable measurement of gene expression from specific cell types, Heiman et al. de-
veloped Translating Ribosome Affinity Purification (TRAP) [49]. In TRAP, transgenic mice
express an EGFP-tagged copy of the of the L10a large ribosomal subunit under the con-
trol of a cell-type specific promoter. This allows the tagged ribosomes from the targeted
cell type to be affinity-purified using an antibody to EGFP, and any mRNA molecules that
were being translated are brought along with the ribosomes. This population of mMRNAs

can then be purified and characterized using microarrays or RNA sequencing.

4.2 Heiman TRAP LID study

The pathophysiology of both Parkinson’s and LID are are influenced by how the distinct
motor pathways and cell types in the striatum are changed. Since earlier studies have

meaured gene expression changes from whole tissue, it has been difficult to untangle
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precisely how different cell types are affected, and when cells are homogenized, expres-
sion changes in one cell type could be obscured by opposing changes in other cell types.
Using the TRAP technology in combination with a mouse model of PD and LID enables

much more precise definition of changes in the relevant cell types.

4.3 Experimental Design and Data

To allow comparisions between expression changes in D1 to D2 MSNs, TRAP mice ex-
pressing eGFP-taggged ribosomes under control of either the Drd1a or the Drd2 pro-
moter were studied. In these mice, the Parkinson’s model of dopamine deficiency is first
induced by unilateral injection of 6-OHDA into the MFB, and compared to a mock le-
sion in which mice were subjected to the same surgery, but with injection of ascorbate.
This allowed assessment of the transcriptional changes due to dopamine depletion alone,
modeling the Parkinsonian condition. Since L-DOPA does not produce a significant phe-
notype in non-Parkinsonian mice, only the 6-OHDA (dopamine depleted) mice were then
subjected to levodopa treatment. As levodopa dose is a critical factor influencing devel-
opment of dyskinesia, both low-dose and high-dose L-DOPA regimens were applied, and
compared to a saline control. Since L-DOPA is likely to have acute effects on striatal neu-
ron functions, in addition to the the chronic effects which are though to be more relevant
to emergence of dyskinesia, transcriptional changes were also assessed following acute
L-DOPA administration in the D1 arm of the study. Dykinesia phenotype was measured by
counting abnormal involuntary movements to derive an AIM score, based on a previously
validated scale [39]. Each mouse was then sacrificed so that a profile of gene expression
in the targeted cell type could be assayed using the Affymetrix 430 2.0 microarray. Figure

B summarizes the experimental groups and the number of subjects in each.
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4.4 Methods

4.4.1 Differential expression analysis

TRAP-purified mRNAs from either Drd1a- or Drd2-expressing SPNs were reverse-transcribed,
amplified, and used to interrogate Affymetrix 430 2.0 GeneChip microarrays. Affymetrix
CEL files were processed and normalized using the RMA algorithm from the Bioconductor
“affy” package [40]. For each (Dose, Cell Type) group, log2 fold-change for each probe-
set was computed as the difference in mean expression compared with the matched
saline-treated group. Significance of differences between groups was calculated by Welch's
t test using scipy.stats or R [?8]. To report counts for comparisons between groups, we
defined significantly differentially expressed genes as those having any probe-set with
greater than 1.5-fold change and a Benjamini-Hochberg adjusted P value from Welch’s
t test < 0.10. Source code and data files to replicate all statistical analyses are provided
on the Web site http://pd.sciencespace.org and at http://github.com/aheilbut/PDmouse.
Dataset S20 contains all statistical results for all probe-sets, and Table provides links

to complete files with all data tables discussed.

4.4.2 Linear modeling of AIM scores from L-DOPA dose and expression

Since there is variability in the timing and severity of dyskinesias both in the clinic and
in these mouse models, one of the initial questions considered was whether there were
genes associated specifically with the emergence of dyskinesia, distinct from other expres-
sion changes associated with L-DOPA treatment but which might not be directly related to
dyskineia. To test the hypothesis that differences in gene expression may be correlated to
variation in AlMs severity, we considered two sets of nested linear models relating expres-
sion of each probe-set, L-DOPA dose, and AIM score: AIM ~ Expression + C(Dose),
AIM ~ C(Dose), and AIM ~ Ezxpression, as well as Expression ~ AIM + C(Dose),
Ezxpression ~ C(Dose), and Expression ~ AIM. C(Dose) refers to the factor vari-
able representing high- or low-dose levodopa treatment. Models were fit using the “ols”
procedure in the python statsmodels module [108]. Comparing these models allowed

assessment of whether expression was correlated with AIM score, and whether that cor-
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relation was more than would have been expected given the common dependence of
dyskinesia and expression on levodopa dose. This process distinguishes three possible
sets of genes: (i) dose-dependent genes with the expected correlation with dyskinesia
severity (i.e., significant differential expression across dose, and significant association of
AIM score and dose, but nonsignificant associa- tion of AIM score and expression, adjust-
ing for dose); (ii) dose- dependent genes with excess correlation with dyskinesia (i.e., as
in i, but with significant association of AIM score and expression, adjusting for dose); and
(iii) genes with expression independent of dose yet correlated with dyskinesia (i.e., as in ii,
but without significant differential expression between doses). Fig. ?? shows theoretical
examples of each of these types of possible probe- sets. Dataset S16 reports statistics
for all model fits and comparisons, to enable comparisons among models and sorting
probe-sets by correlations with AlMs, statistical significance, or magnitudes of expres-
sion changes. Probe-sets are sorted by the significance of the multiple correlation for the
model Expression ~ C(Dose) + AIM, after filtering for significant changes of 1.5-fold or

greater between the high- and low-dose groups.

4.4.3 Pathways Overlap Analysis

For each treatment group, the set of statistically significant differentially expressed genes
(Benjamini-Hochberg FDR, cut-off of 0.10), independent of magnitude of change, was
compared against the Wikipathways gene sets to compute over- laps. Statistical signifi-

cance of gene set overlaps was assessed by a hypergeometric test.

4.4.4 Multiple Hypothesis Testing Adjustment

P values from all statistical tests were adjusted using the Benjamini-Hochberg procedure
with “multicomp.multipletests” in python statsmodels [108] to control false-discovery rate
over all probe-sets. Bonferroni-adjusted and nominal P values are also reported.

Full details on experimental methods and biological reagents are provided in the text

and supplement of Heiman, 2014. [51]
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Figure 4.4: Hypothetical examples of genes with
different relationships to AIM scores that are dis-
tinguished by comparisons between alternative
linear models. Each panel shows a scatter plot
of AIM score vs. log2 expression. Each point
represents one gene in one mouse; its expres-
sion is encoded by horizontal position, and the
integrated AIM score of that mouse is encoded
by vertical position. Blue points represent mea-
surements from mice treated with low-dose lev-
odopa; red points are from mice treated with the
high dose of the drug. (A) An example of a gene
in group 1. The expression of this gene is de-
pendent on dose. Fine dotted lines show the
predicted AIM score for a model of AIM score
as a function of dose (blue for low-dose and red
for high dose). If the AIM score is modeled as
a function of gene expression alone (AIM @ Ex-
pression), there is a significant correlation be-
tween AIM score and expression (green dotted
line). Red and blue large dashed lines depict
AIM score prediction from a model using both
dose and expression (AIM [ Dose + Expression).
For group 1, there is no significant difference be-
tween the dashed and dotted lines; conditional
on knowledge of dose, AIM score is not corre-
lated with expression. (B) A hypothetical gene in
group 2. For this gene, there is a significant dif-
ference between the dashed and dotted lines;
the model (AIM & Dose + Expression) fits signifi-
cantly better than (AIM @ Dose). (C) A hypothet-
ical gene in group 3, for which AIM score is not
well modeled by gene expression alone (AIM
expression), because expression measurements
overlap between the dose groups. However,
there is again a significant difference between
(AIM [ Dose + Expression) and (AIM @ Dose)
models.



4.5 Results

As expected from earlier studies, Drd1a MSNs were found to have many more significant
expression changes than do Drd2 cells following L-DOPA treatment. Figure @ shows a
graphical summary of statistically significant changes over all of the experimental contrasts

involving chronic L-DOPA treatment.
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Figure 4.5: Genome-wide heatmap showing statistically significant expression changes
over experimental contrasts. Drd1a cells exhibit many more changes than Drd2a cells.

4.5.1 Effects of Striatal Dopamine Depletion on SPNs

In D1 dSPNs, there were 226 genes, represented by 291 probesets, that were differentially
expressed following striatal dopamine depletion, while 156 genes (196 probesets) were
changed in the D2 iSPNs. The probesets with the largest changes (greater than 2-fold
up- or down-regulated) are listed in Tables and @ respectively. To understand the
major biological processes affected by these changes, we performed an overlap analysis
against gene sets defined by pathways in the the Wikipathways database.

In D1 dSPNs, biological pathways with significant changes upon dopamine depletion
(Table @) included IL-3 signaling, the EGFR1 signaling pathway, and regulators of the
MAPK signaling pathway. Among genes associated with MAPK signaling are numerous
Dusp family (Dual specificity phosphatase) genes, which are downregulated. Dusps are
normally negative regulators of MAPK signaling, so their downregulation may lead to
disinhibition and supersensitivity of the ERK pathways that respond to dopamine signaling
in dSPNs.

In D2 iSPNs, pathways associated with genes that were changed on dopamine deple-
tion included TGF-3 and G-protein signaling pathways @

Only 22 genes have significant changes in both dSPNs and iSPNs (Table @). Most,
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Probeset Gene Symbol Gene Description P-value log2 FC

1438967_x_at Amhr2 anti-Mullerian hormone type 2 receptor 2.09 1073 3.65
1457021_x_at Amhr2 anti-Mullerian hormone type 2 receptor 1.63-107% 2.35
1437226_x_at Marcksl1 MARCKS-like 1 8.6-103 1.69
1452473_at Prr15 proline rich 15 7.26 - 102 1.58
1438852_x_at Mcmé minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe) (S. cerevisiae) 2.59 - 102 1.49
1434458 _at Fst follistatin 8.86-1072  1.41
1441306_at 6820408C15Rik RIKEN cDNA 6820408C15 gene 1.06 - 102 1.29
1421365_at Fst follistatin 5.62 - 102 1.25
1415922 _s_at Marcksl1 MARCKS-like 1 2.54.102 1.24
1436919_at Trp53i11 transformation related protein 53 inducible protein 11 8.95.103 1.22
1442180_at Dleu7 deleted in lymphocytic leukemia, 7 1.24 1072 1.22
1416406_at Pea15a phosphoprotein enriched in astrocytes 15A 1.52- 1074 1.21
5.45-107%  1.19
1429372_at Sox11 SRY-box containing gene 11 4.51-1073 1.19
1434436_at Morc4 microrchidia 4 6.27 - 102 1.18
1455324 _at Plexd2 phosphatidylinositol-specific phospholipase C, X domain containing 2 2.43.102 1.16
1436790_a_at Sox11 SRY-box containing gene 11 1.14 - 102 1.15
1422130_at Nptx1 neuronal pentraxin 1 4.31-1072 1.13
1422662 _at Lgals8 lectin, galactose binding, soluble 8 2.71-1073 1.13
1450724_at Fam126a family with sequence similarity 126, member A 9.57-10"4% 1.13
1418726_a_at Tnnt2 troponin T2, cardiac 2.09 - 1073 1.11
1424967 _x_at Tnnt2 troponin T2, cardiac 6.1-10"4 1.11
1422661_at Lgals8 lectin, galactose binding, soluble 8 1.16 - 1073 1.1
5.33-1072 1.1
1435627 _x_at Marcksl1 MARCKS-like 1 1.11-10"2 1.09
1455628_at Epb4.114b erythrocyte protein band 4.1-like 4b 2.35.1072 1.09
1418369_at Prim1 DNA primase, p49 subunit 1.45-1072 1.08
1453002_at Sox11 SRY-box containing gene 11 2.6- 102 1.08
1416410_at Pafah1b3 platelet-activating factor acetylhydrolase, isoform 1b, subunit 3 6.26 - 103 1.07
1453125_at Sox11 SRY-box containing gene 11 5.63- 102 1.05
1416407 _at Pea15a phosphoprotein enriched in astrocytes 15A 2.43-10"4 1.04

Table 4.1: Probe sets up-regulated > 2-fold upon dopamine depletion in D1 dSPNs

though not all of these changes were in opposing directions between the two cell types.
The relatively small number of opposing changes suggests that the cell type specific re-
sponses are a product more of intrinsic differences in the cell types, rather than simply
being due to the classical opposition between the G, . and G; pathways that interact

with Drd1a and Drd2 receptors.

4.5.2 Effects of Levodopa Treatment on Dopamine-depleted SPNs

When dopamine-depleted hemiparkinsonian mice are treated with a low dose of lev-
odopa, forelimb use on the affected side can be restored. After chronic levodopa treat-
ment at a higher dose, however, these mice develop abnormal involuntary movements
(AlMs) affecting axial, orofacial and limb muscles. Notably, in the mouse model, almost all
mice do exhibit AIMs after high-dose levodopa treatment, which is different from some
reports of rat models in which only some of levodopa-treated rats develop dyskinesias;
it is unclear whether this reflects intrinsic biological differences between the models or

simply a differences in the effective levodopa doses studied.
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ccProbeset Gene Symbol Gene Description P-value fc

1443722 _at 0.080227716  -1.004929565
1420860_at ltga9 integrin alpha 9 0.014470969 -1.01259148
1417602_at Per2 period circadian clock 2 0.017863723 -1.020555574
1420998_at Etv5 ets variant gene 5 0.018811118 -1.025240512
1451705_a_at Oprm1 opioid receptor, mu 1 0.028843744 -1.046919705
1458413_at Fbxw8 F-box and WD-40 domain protein 8 0.044367617 -1.049376773
1429072_at Col6ad collagen, type VI, alpha 4 0.066905288 -1.059686436
1426721 _s_at Tiparp TCDD-inducible poly(ADP-ribose) polymerase 0.012875622 -1.061443354
1455956_x_at Cend2 cyclin D2 0.006889739 -1.063499724
1438672_at Parvb parvin, beta 0.085468055 -1.066935787
1420654_a_at Gbel glucan (1,4-alpha-), branching enzyme 1 0.008596545 -1.074902655
1454884 _at Zbtb4é zinc finger and BTB domain containing 46 0.018117194 -1.078537366
1419606_a_at Tnnt1 troponin T1, skeletal, slow 0.069373426 -1.079877924
1416700_at Rnd3 Rho family GTPase 3 0.069847635  -1.083252055
1425608_at Dusp3 dual specificity phosphatase 3 (vaccinia virus phosphatase VH1-related) 0.000543978 -1.092687546
1419144 _at Cd163 CD163 antigen 0.020635694 -1.094528415
1459941_at Clvs1 clavesin 1 0.060311638 -1.103306147
1449484 _at Stc2 stanniocalcin 2 0.093986755 -1.110465455
1453334_at B230216N24Rik RIKEN cDNA B230216N24 gene 0.0240589 -1.118632232
1420462_at 1rapl2 interleukin 1 receptor accessory protein-like 2 0.060311638 -1.118771412
1429952 _at Mospd4 motile sperm domain containing 4 0.011228591 -1.133904911
1416123_at Cend2 cyclin D2 0.000174909 -1.135277657
1450082_s_at Etv5 ets variant gene 5 0.046103495 -1.135690637
1430332_a_at Gusb glucuronidase, beta 0.056932472 -1.135741667
1456280_at Clspn claspin 0.034930075 -1.135761804
1448754 _at Rbp1 retinol binding protein 1, cellular 0.007469616 -1.13643762
1449133_at Sprria small proline-rich protein 1A 0.032054256 -1.139575307
1437950_at Fam149a family with sequence similarity 149, member A 0.048940099 -1.146935888
1436405_at Dock4 dedicator of cytokinesis 4 0.004212193 -1.177432288
1416122_at Cend2 cyclin D2 0.00951358 -1.182960456
1421979 _at Phex phosphate regulating gene with homologies to endopeptidases on the X chromo- 0.006889739 -1.18405527

some (hypophosphatemia, vitamin D resistant rickets)
1450212_at Fmnl1 formin-like 1 0.005802704 -1.19325141
1435852_at Spred3 sprouty-related, EVH1 domain containing 3 0.025986042 -1.227385994
1449374 _at Pipox pipecolic acid oxidase 0.034102497 -1.228193555
1454256_s_at 0.016786616 -1.228486073
1423606_at Postn periostin, osteoblast specific factor 0.021082199 -1.236529732
1429637_at Fam198b family with sequence similarity 198, member B 0.019229388 -1.269591877
1449584 _at Dgkg diacylglycerol kinase, gamma 0.021082199 -1.273989947
1449188_at Midn midnolin 0.002258877 -1.279165662
1426210_x_at Parp3 poly (ADP-ribose) polymerase family, member 3 0.010683401 -1.279187142
1450029_s_at ltga9 integrin alpha 9 0.072565857 -1.285791837
1441914 _x_at Fof3 fibroblast growth factor 3 0.029209964 -1.302902536
1443888_at AU023762 expressed sequence AU023762 0.006889739 -1.303651692
1416805_at Fam198b family with sequence similarity 198, member B 0.001013089 -1.304524411
1450445_at Phex phosphate regulating gene with homologies to endopeptidases on the X chromo- 0.033923248 -1.330576397
some (hypophosphatemia, vitamin D resistant rickets)

1415834_at Duspé dual specificity phosphatase 6 0.001013089  -1.333785975
1451969 _s_at Parp3 poly (ADP-ribose) polymerase family, member 3 0.066752042 -1.334633606
1428142_at Etv5 ets variant gene 5 0.001013089 -1.346831722
1423505_at Tagln transgelin 0.028843744  -1.361606086
1423506_a_at Nnat neuronatin 0.004746895 -1.37884082
1449519 _at Gadd45a growth arrest and DNA-damage-inducible 45 alpha 0.027034826 -1.399956207
1439985_at Abcc12 ATP-binding cassette, sub-family C (CFTR/MRP), member 12 0.001538811 -1.40523437
1455760_at Slc9a5 solute carrier family 9 (sodium/hydrogen exchanger), member 5 0.004041789 -1.467262759
1430127_a_at Cend2 cyclin D2 0.007117806 -1.471328167
1438796_at Nrda3 nuclear receptor subfamily 4, group A, member 3 0.047872093 -1.613834029
1442754 _at C030013G03Rik RIKEN cDNA C030013G03 gene 0.059472728 -1.676542519
1427683_at Egr2 early growth response 2 0.056172044 -1.739839538
1426278_at Ifi2712a interferon, alpha-inducible protein 27 like 2A 0.000223113 -1.874592417
1432073_at 0.027627299 -1.948721277
1427682_a_at Egr2 early growth response 2 0.015739617 -1.958022672
1436094 _at Vgf VGF nerve growth factor inducible 0.000338438 -2.137487929
1455275_at E530001K10Rik RIKEN cDNA E530001K10 gene 0.00259659 -2.167667125

Table 4.2: Probe sets down-regulated > 2-fold upon dopamine depletion in D1 dSPNs
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Probeset Gene Symbol Gene Description P-value log2 FC

1460330_at Anxa3 annexin A3 9.067E-05 4.236560507
1422825_at Cartpt CART prepropeptide 0.001082682 3.890656887
1442754 _at C030013G03Rik RIKEN cDNA C030013G03 gene 0.004014201 3.273084675
1416505_at Nrdal nuclear receptor subfamily 4, group A, member 1 0.000590965 2.827500676
1422860_at Nts neurotensin 1.0186E-05 2.59660318
1420720_at Nptx2 neuronal pentraxin 2 0.000640343 2.59021096
1423100_at Fos FBJ osteosarcoma oncogene 0.073043831 2.426296369
1434528_at Aard alanine and arginine rich domain containing protein 0.029706557 2.238873825
1459145_at A930033H14Rik RIKEN cDNA A930033H14 gene 0.090322637 2.194986711
1450347_at Syt10 synaptotagmin X 0.083831393 1.90848127
1460043_at 0.033272303 1.908017505
1450708_at Scg2 secretogranin || 0.000359282 1.89818906
1437247 _at Fosl2 fos-like antigen 2 0.01223872 1.819254844
1419592 _at Unc5c unc-5 homolog C (C. elegans) 0.055733024 1.693009328
1436094_at Vgf VGF nerve growth factor inducible 2.16893E-05 1.653749189
1423851_a_at Shisa2 shisa homolog 2 (Xenopus laevis) 0.004128802 1.652623308
1450117_at Tcf711 transcription factor 7 like 1 (T cell specific, HMG box) 0.028776312 1.649445606
1434243 _s_at Tomm70a translocase of outer mitochondrial membrane 70 homolog A (yeast) 0.000590965 1.61797314
1419647 _a_at ler3 immediate early response 3 0.004268132 1.605653794
1451342_at Spon1 spondin 1, (f-spondin) extracellular matrix protein 0.026420145 1.560673332
1422053_at Inhba inhibin beta-A 0.027196734 1.554124256
1454256_s_at 0.078707444 1.541844266
1425110_at Sorcs3 sortilin-related VPS10 domain containing receptor 3 0.001082682 1.493188138
1437841 _x_at Csdc2 cold shock domain containing C2, RNA binding 0.033372134 1.4831511
1434877 _at Nptx1 neuronal pentraxin 1 0.001802109 1.476337609
1418817_at Chmp1b charged multivesicular body protein 1B 0.033982044 1.467821129
1417018_at Efemp2 epidermal growth factor-containing fibulin-like extracellular matrix 0.064099936 1.467137043
protein 2
1435917_at QOciad2 OCIA domain containing 2 0.061775407 1.46679379
1426225_at Rbp4 retinol binding protein 4, plasma 0.034849593 1.442362381
1423852_at Shisa2 shisa homolog 2 (Xenopus laevis) 0.013124915 1.427286112
1449037 _at Crem cAMP responsive element modulator 0.024174349 1.412913365
1429643 _a_at Pdelc phosphodiesterase 1C 0.012755763 1.403677843
1452729 _at Dpm3 dolichyl-phosphate mannosyltransferase polypeptide 3 0.01223872 1.394366092
1422256_at Sstr2 somatostatin receptor 2 0.067651577 1.378763774
1416701 _at Rnd3 Rho family GTPase 3 0.041834303 1.371417518
1453387_at 4833432E10Rik RIKEN cDNA 4833432E10 gene 0.089660297 1.361192572
1449286_at Ntng1 netrin G1 0.029706557 1.357176164
1426036_a_at Pdelc phosphodiesterase 1C 0.024839636 1.329982363
1424831 _at Cpne2 copine |l 0.064950324 1.307232065
1443523_at Fam135b family with sequence similarity 135, member B 0.008980017 1.282381322
1431422_a_at Dusp14 dual specificity phosphatase 14 0.012782502 1.263071042
1447669 _s_at Gngé guanine nucleotide binding protein (G protein), gamma 4 0.092661651 1.237418904
1456186_at Prdm11 PR domain containing 11 0.092958072 1.236601239
1419425_at Cnr1 cannabinoid receptor 1 (brain) 0.033372134 1.220632394
1443558 _s_at Nt5dc3 5'-nucleotidase domain containing 3 0.005072121 1.207482426
1459299 _at Myo3b myosin |lIB 0.081406023 1.200579447
1440374_at Pdelc phosphodiesterase 1C 0.054528039 1.175234449
1422931 _at Fosl2 fos-like antigen 2 0.089660297 1.174816953
1435472_at Kremen1 kringle containing transmembrane protein 1 0.017888879 1.164250654
1453187_at Ociad2 OCIA domain containing 2 0.000318085 1.158705508
1435628_x_at 0.017888879 1.150086915
1441894 _s_at Grasp GRP1 (general receptor for phosphoinositides 1)-associated scaf- 0.060058661 1.128127817
fold protein
1441728_at Scnla sodium channel, voltage-gated, type |, alpha 0.062577766 1.124587057
1435621 _at Far2 fatty acyl CoA reductase 2 0.030661148 1.11686058
1417192_at Tomm70a translocase of outer mitochondrial membrane 70 homolog A (yeast) 4.47069E-05 1.099563773
1425608_at Dusp3 dual specificity phosphatase 3 (vaccinia virus phosphatase VH1- 0.017888879 1.086737514
related)
1440147 _at Lgi2 leucine-rich repeat LGI family, member 2 0.000318085 1.06240188
1429714 _at Sumf2 sulfatase modifying factor 2 0.068869598 1.054498875
1426106_a_at Syté synaptotagmin VI 0.005289356 1.054310344
1423285_at Coch coagulation factor C homolog (Limulus polyphemus) 0.060310752 1.054209852
1438796_at Nrda3 nuclear receptor subfamily 4, group A, member 3 0.091163869 1.039769818
1431253_s_at Thc1d9 TBC1 domain family, member 9 0.035751362 1.037413877
1457040_at Lgi2 leucine-rich repeat LGI family, member 2 0.052041173 1.029388582
1427057 _at Nt5dc3 5'-nucleotidase domain containing 3 0.004268132 1.022546826
1423985_at 0.00160732 1.011936336
1435598_at BB319198 expressed sequence BB319198 0.083593179 1.010679529
1417944 _at Gng4 guanine nucleotide binding protein (G protein), gamma 4 0.068602361 1.010314872
1423786_at 8430410A17Rik RIKEN cDNA 8430410A17 gene 0.029706557 1.005074113

Table 4.3: Probe sets up-regulated > 2-fold upon dopamine depletion in D2 iSPNs
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Figure 4.6: Genome-wide analysis of gene expression changes induced by dopamine de-
pletion and levodopa treatment. (A) Venn diagrams showing the total numbers of genes
changing across treatments in Drd1a (dSPN) cells (Left) and Drd2 (iSPN) cells (Right) for
statistically significant changes (Benjamini- Hochberg adjusted P value < 0.10) of 1.5-fold
or greater. (B) Venn diagrams comparing the numbers of genes up-regulated and down-
regulated by each treatment between Drd1a (dSPN) and Drd2a (iSPN) cells for statistically
significant changes (Benjamini-Hochberg adjusted P value < 0.10) of 1.5-fold or greater.
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Probeset Gene Symbol Gene Description P-value log2 FC

1452135_at Gpx6 glutathione peroxidase 6 3.24.102 —2.6

1438200_at Sulf1 sulfatase 1 4.18-1072  —2.22
1455753_at Fam163b family with sequence similarity 163, member B 1.31-1072 —1.96
1456642_x_at $100a10 $100 calcium binding protein A10 (calpactin) 3.96 - 102 —1.93
1457437 _at Fam163b family with sequence similarity 163, member B 3.16- 102 —1.92
1426065_a_at Trib3 tribbles homolog 3 (Drosophila) 7.87 1072 —1.62
1418726_a_at Tnnt2 troponin T2, cardiac 6.41-102 —1.58
1436493 _at Ctxn2 cortexin 2 4.53-1072 —1.48
1423836_at Zfp503 zinc finger protein 503 4.55.102 —1.44
1416762_at $100a10 S100 calcium binding protein A10 (calpactin) 7.83.1073 —1.35
1416368_at Gsta4 glutathione S-transferase, alpha 4 3.07-102 —1.35
1441302_at LOC100502835 uncharacterized LOC100502835 5.57 - 102 —1.34
1419200_at Fxyd7 FXYD domain-containing ion transport regulator 7 1.93.1072 —1.31
1421992_a_at Igfbp4 insulin-like growth factor binding protein 4 3.68- 1072 —1.31
1422821_s_at Stard5 StAR-related lipid transfer (START) domain containing 5 8.97 - 102 —1.3

1438399 _at Pex5| peroxisomal biogenesis factor 5-like 8.73-102 —1.29
1434868_at 4933431E20Rik RIKEN cDNA 4933431E20 gene 5.12-102 —1.26
1448554 _s_at 3.16-1072  —1.24
1457052_at Keng1 potassium voltage-gated channel, subfamily G, member 1 8.96 - 102 —1.16
1449129 _a_at Kenip3 Kv channel interacting protein 3, calsenilin 6.4-1074 —1.13
1436193_at Man1c1 mannosidase, alpha, class 1C, member 1 6.26 - 1072 —1.13
1428221 _at Klhdc8b kelch domain containing 8B 1.52.1072 —-1.1

1424534 _at Mmd2 monocyte to macrophage differentiation-associated 2 2.35.102 —1.09
1435307_at Ankrd34b ankyrin repeat domain 34B 4.74.1072 —1.03
1427070_at Snx21 sorting nexin family member 21 8.63- 1072 —1.02
1455961_at 3.07-1072  —1.02
1434115_at Cdh13 cadherin 13 8.97-1072  —1.01

Table 4.4: Probe sets down-regulated > 2-fold upon dopamine depletion in D2 iSPNs

Effects of levodopa treatment in D1 dSPNs

InD1 dSPNs, over 3100 genes (4545 probe sets) had expression changes following dopamine
depletion and low-dose levodopa treatment; 1,352 genes were up-regulated and 1,758
were down-regulated. Pathways represented in this set of genes are listed in Table .
Many of the same pathways affected by dopamine depletion alone are further affected by
levodopa. Notably, many of the Dusp genes that regulate ERK/MAPK signaling and were
downregulated with dopamine depletion, have increased expression following chronic
low-dose L-DOPA administration. This is presumably a homeostatic feedback response
to increased ERK / MAPK signaling stimulated by L-DOPA (Figure @).

With high-dose levodopa treatment, 4,603 genes (7,118 probe sets) have significant
differential expression. 1,898 of theese genes were up-regulated, and 2,733 were down-
regulated. 3,635 of the genes changed with high-dose levodopa also had statistically
significant changes with the lower dose. The top 50 genes changing are listed in Table
. Most of the pathways represented among genes changing with a high dose (Table
) were the same as those observed using a low dose. One pathway that only appeared

to be overrepresented at the higher dose was Regulation of Actin Cytoskeleton, which
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Set Name Matches Genes in Overlap Size of Set p-value Bonf adj p-val b-h FDR adj p-val
Hypertrophy Model 5 NR4A3, DUSP14, ANKRD1, 20 4.107% 412102 1.84 102
HBEGF, JUND
IL-3 Signaling Pathway 11 PTK2,  BCL2L11, SOCS2, 102 5.57-10"% 5.74-1072 1.84-102
PPP2CA, PRKCB, MAP2K1,
JAK1, KCNIP3, PAK1, HRAST,
BCL2
Electron Transport Chain 12 NDUFV3, NDUFA7, NDUFA2, 119 5.87-10"%  6.04-102 1.84-102
NDUFA1, UQCR11, NDUFS2,
NDUFS3, COX6B1, COX7A2,
ATP5G1, ATPSE, ATP5D
EGFR1 Signaling Pathway 15 EPS15, RPS6KA3, APPL1, ND- 176 7.8.10"% 8.03- 102 1.84-1072
UFA13, JUND, PRKCB, SNCA,
SPRY2, MAP2K1, ELK1, HRAST1,
JAK1, DUSP1, PAK1, PTPN5
MAPK signaling pathway 14 RPS6KA3, STMN1, PPM1B, 160 8.92-10"% 9.19.1072 1.84-1072
GADD45A,  PRKCB,  JUND,
MAP2K1, ELK1, ECSIT, SRF,
DUSP6, DUSP1, PAK1, PTPN5
Oxidative phosphorylation 8 NDUFV3, NDUFA7, NDUFA2, 69 1.95-1073 0.2 3.34-1072
NDUFS2, NDUFS3, ATP5G1,
ATPSE, ATP5D
ErbB signaling pathway 6 PTK2, HBEGF, MAP2K1, ELK1, 46 3.9-1073 0.4 5.73 .10 2
NRG3, HRAS1
Signaling of Hepatocyte Growth 5 ELK1, MAP2K1, PTK2, PAK1, 34 4.91-1073%  0.51 6.07 - 102
Factor Receptor HRAS1
estrogen signalling 8 TAF13, MAP2K1, ELK1, 81 5.3-103 0.55 6.07 - 102
POLR2A,  CREBBP,  BCL2,
HRAS1, POLR2J
Kit Receptor Signaling Pathway 7 SOCS5, PRKCB, SPRED1, 68 7.11-107%  0.73 6.71-10~2
SPRED2,  MAP2K1,  MITF,
HRAS1
TGF Beta Signaling Pathway 6 CTNNB1, HRAS1, FST, SKIL, 52 7.17-1073 0.74 6.71-102
JAK1, CREBBP
B Cell Receptor Signaling Path- 12 NFATC2, PRKCB, BCL2L11, 163 8.12-1073  0.84 6.74- 1072
way ARPC3, CCND2, CTNNBI,
MAP2K1,  ELK1,  HNRNPK,
DUSP6, PTK2, BCL2
Myometrial Relaxation and Con- 12 RGS14, RGS20, ATP2A2, 164 8.51-10"3  0.88 6.74-102
traction Pathways CAMK2D, CAMK2G, RAMP1,
PKIA, PRKCB, RGS4, RGS7,
IGFBP6, RGS2
Diurnally regulated genes with 6 IDI1, SUMO3, PER2, UGP2, 55 9.4-10"3 0.97 6.91 - 102
circadian orthologs ERC2, NCKAP1
Calcium Regulation in the Car- 11 KCNJ3, RGS14, CAMK2G, 154 1.36 - 1072 1 8.81-102
diac Cell ATP2A2, CAMK2D, PRKCB,
PKIA, RGS4, RGS20, RGS2,
RGS7
T Cell Receptor Signaling Path- 10 DLG1, RASGRP2, NFATC2, 134 1.37-1072 1 8.81-1072
way PTK2, CTNNB1, MAP2K1,
DUSP3,  TUBA4A,  PAKI,
CREBBP
Circadian Exercise 6 D1, SUMO3, PER2, UGP2, 61 1.53-1072 1 9.24-1072
ERC2, NCKAP1
G1to'S cell cycle control 6 GADD45A, CCND2, RPA3, 62 1.64-102 1 9.4.1072
MCMé, CCNG2, PRIM1
IL-7 Signaling Pathway 5 MAP2K1, CCND2, BCL2L11, 46 1.75-1072 1 9.48 - 1072
HRAS1, JAK1

Table 4.5: Wikipathways pathways over-represented among
dopamine depletion in D1 dSPNs

genes changed upon
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Set Name Matches Genes in Overlap Size of Set p-value Bonf adj p-val b-h FDR adj p-val
Myometrial Relaxation and Con- 11 RGS4, PRKCB, RGS2, ATP2A2, 164 5.27-10"6  4.17.107% 4.17-10"4
traction Pathways FOS, GNAS, GUCY1A3, SFN,
GNG4, IGFBPé, IGFBP4
TGF Beta Signaling Pathway 5 SMAD4, MAPK3, FOS, SKIL, IN- 52 4.07-107% 3.22.1072 1.55 - 1072
HBA
Calcium Regulation in the Car- 8 RGS4, ATP2A2, GNAS, PRKCB, 154 5.88-10"%  4.65-10"2 1.55 - 1072
diac Cell SFN, GNG4, RGS2, SLC8A3
Splicing factor NOVA regulated 4 DAB1, CADM3, NTNG1, 42 1.63-10~3%  0.13 3.22-1072
synpatic proteins TERF2IP
One carbon metabolism and re- 4 AHCYL1, GAD1, GAD2, GPX6 45 2.11-107%  0.17 3.34.1072
lated pathways
Selenium 3 GPX6, CREM, FOS 26 3.71-107%  0.29 4.88-1072
metabolism/Selenoproteins
G Protein Signaling Pathways 5 PDE1C, GNG4, PDE7B, PRKCB, 99 7.09.10"3 0.56 8.10"2
GNAS
Alanine and aspartate 2 GAD1, GAD2 12 8.89-1073 0.7 8.17-1072
metabolism
Kit Receptor Signaling Pathway 4 PRKCB, KITL, SPRED1, SPRED2 68 9.31-1073 0.74 8.17-1072
Homologous recombination 2 ATM, NBN 13 1.04-1072 0.82 8.23-1072
Biogenic Amine Synthesis 2 GAD1, GAD2 14 1.21-1072 0.95 8.66 - 102
Table 4.6: Wikipathways pathways over-represented among genes changed upon
dopamine depletion in D2 iSPNs
Probeset Gene Symbol Gene Description D1 p-val D1log2 FC D2 p-val D2 log2 FC
1442754 _at C030013G03Rik RIKEN cDNA C030013G03 gene 5.95 .10 2 —1.68 4.01-1073 3.27
1416123_at Ccnd2 cyclin D2 1.75 - 104 —1.14 0.33 —0.78
1448229 _s_at Cend2 cyclin D2 1.8-1073 —0.94 0.12 —0.68
1455956 x_at  Ccnd2 cyclin D2 6.89-1073  —1.06 3.07-1072  —0.83
1430127_a_at  Ccnd2 cyclin D2 7121073  —1.47 0.72 —0.32
1416122 _at Cend2 cyclin D2 9.51-10"3 —1.18 0.15 —0.84
1434745 _at Cend2 cyclin D2 2.6-1072 —0.99 6.41-1072  —0.77
1449037 _at Crem cAMP responsive element modulator 7.97-10"2 —0.82 2.42.1072 1.41
1437841 _x_at Csdc2 cold shock domain containing C2, RNA binding 1.95.1072 0.58 3.34.102 1.48
1423845_at Csdc2 cold shock domain containing C2, RNA binding 3.59 - 102 0.76 0.35 0.78
1451147 _x_at Csdc2 cold shock domain containing C2, RNA binding 3.99 .10 2 0.7 0.34 0.8
1431422_a_at Dusp14 dual specificity phosphatase 14 5.33 .10 2 —0.81 1.28 - 102 1.26
1434472_at Dusp3 dual specificity phosphatase 3 (vaccinia virus phos- 1.75-10~% —0.65 3.72-103 0.57
phatase VH1-related)
1425608_at Dusp3 dual specificity phosphatase 3 (vaccinia virus phos- 5.44 .10 4 —1.09 1.79 - 102 1.09
phatase VH1-related)
1456769 _at Dusp3 dual specificity phosphatase 3 (vaccinia virus phos- 0.11 —0.64 3.86 - 102 0.85
phatase VH1-related)
1448807 _at Hrh3 histamine receptor H3 1.57-1072  0.84 8.38-1072  —0.9
1417933_at Igfbpé insulin-like growth factor binding protein 6 1.33-1072  —0.76 3.16-1072 1
1457052_at Keng1 potassium voltage-gated channel, subfamily G, 3.2.102 —0.69 8.96 - 102 —1.16
member 1
1423506_a_at  Nnat neuronatin 4.75 1073  —1.38 8.98-107% 0.9
1422130_at Nptx1 neuronal pentraxin 1 4.31-102 1.13 0.28 1.26
1434877 _at Nptx1 neuronal pentraxin 1 7.63-10"2  0.73 1.8-1073 1.48
1438796_at Nrda3 nuclear receptor subfamily 4, group A, member 3 4.79 .10 2 —1.61 9.12-1072 1.04
1421080_at Nrda3 nuclear receptor subfamily 4, group A, member 3 9.25.102 —0.76 0.39 0.73
1416406_at Peal5a phosphoprotein enriched in astrocytes 15A 1.52-10"4 1.21 0.55 —0.61
1416407 _at Peal5a phosphoprotein enriched in astrocytes 15A 2.43-10"4 1.04 4.12-102 —0.7
1426225_at Rbp4 retinol binding protein 4, plasma 5.38 - 102 —0.7 3.48 - 102 1.44
1416700_at Rnd3 Rho family GTPase 3 6.98 - 102 —1.08 0.42 1.13
1416701_at Rnd3 Rho family GTPase 3 0.21 —0.82 4.18 -102 1.37
1450708_at Scg2 secretogranin |l 2.4.1072 —0.75 3.59- 104 1.9
1423851_a_at Shisa2 shisa homolog 2 (Xenopus laevis) 8.12-10"2 —0.98 4.13-1073 1.65
1423852_at Shisa2 shisa homolog 2 (Xenopus laevis) 0.31 —0.73 1.31-10"2 1.43
1460439 _at Sik3 SIK family kinase 3 7.08-10"2  —0.71 2.11-1072  0.78
1426106_a_at  Syt6 synaptotagmin VI 6.89-10"%  —0.84 5.29.10"%  1.05
1426721 _s_at Tiparp TCDD-inducible poly(ADP-ribose) polymerase 1.29 . 1072 —1.06 0.91 0.25
1452160_at Tiparp TCDD-inducible poly(ADP-ribose) polymerase 0.15 —0.64 9.03-102 0.99
1424967 _x_at Tnnt2 troponin T2, cardiac 6.1-10"4 1.11 0.11 —1.47
1418726_a_at  Tnnt2 troponin T2, cardiac 2.09-107%  1.11 6.41-10"2  —1.58
1436094_at Vgf VGF nerve growth factor inducible 3.38-10"% —2.14 2.17-107° 1.65

Table 4.7: Genes with probe-sets changed > 2-fold (in any direction) upon dopamine
depletion in both D1 dSPNs and D2 iSPNs
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Figure 4.7: Expression changes in Dusp1, showing homeostatic responses to depletion
of dopamine and L-DOPA treatment. Left panel, Drd1a dSPNs; Right panel , Drd2 iSPNs

may reflect more extensive structural changes and synaptic remodelling occurring under

the high dose regimen.

Transcriptional regulators of the D1 dSPN response

To identify regulators of the dSPN response to chronic levodopa, we assembled data on
occurrence of conserved motifs in promoters [94], and used the hypergeometric test to
assess significance of overrepresentation of motifs among genes with altered expression.

Among genes that were up-regulated with chronic high-dose levodopa, the CREB,
AP-1 (eg. Fos and Jun), and ERK-dependent (eg. Elk) motifs were among the most over-
represented (Table ), in addition to several motifs that are known to be common in

neuronal-expressed genes, such as Sp1.
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Probeset Gene Symbol Gene Description P-value log2 FC

1421079_at Nrda3 nuclear receptor subfamily 4, group A, member 3 3.08 - 10710 5.8

1455034_at Nrda2 nuclear receptor subfamily 4, group A, member 2 2.24 .10 12 5.73
1438796_at Nrda3 nuclear receptor subfamily 4, group A, member 3 5.76 - 108 5.55
1450750_a_at Nrda2 nuclear receptor subfamily 4, group A, member 2 2.78 .10~ 10 5.37
1429475_at Ubash3b ubiquitin associated and SH3 domain containing, B 1.85.10"6 5.02
1423851_a_at Shisa2 shisa homolog 2 (Xenopus laevis) 6.58 . 10~ 12 4.87
1421080_at Nr4a3 nuclear receptor subfamily 4, group A, member 3 2.24 .10 12 4.72
1427682_a_at Egr2 early growth response 2 8.19-10~7 4.65
1441228_at Apold1 apolipoprotein L domain containing 1 7.34.107 11 4.46
1447863_s_at Nrda2 nuclear receptor subfamily 4, group A, member 2 6.58 - 10— 12 4.43
1423852_at Shisa2 shisa homolog 2 (Xenopus laevis) 6.69 - 109 4.4

1427683_at Egr2 early growth response 2 7.93-1076 4.36
1451163_at Tinf2 Terf1 (TRF1)-interacting nuclear factor 2 2471071 435
1422931 _at Fosl2 fos-like antigen 2 7.3.10712 4.21
1436805_at Ubash3b ubiquitin associated and SH3 domain containing, B 6.88 - 1010 4.2

1422053 _at Inhba inhibin beta-A 5.47 1079 4.13
1416700_at Rnd3 Rho family GTPase 3 2.07-109 4.11
1435703_at Ubash3b ubiquitin associated and SH3 domain containing, B 3.79.10~8 4.07
1437247 _at Fosl2 fos-like antigen 2 1.86-10"11  4.02
1417263_at Ptgs2 prostaglandin-endoperoxide synthase 2 9.25.109 3.92
1416701 _at Rnd3 Rho family GTPase 3 1.63-1078 3.88
1436387_at 4.83.1079 3.79
1425671 _at Homer1 homer homolog 1 (Drosophila) 4.38-10"9 3.77
1435872_at 1.2-1077 3.73
1422256_at Sstr2 somatostatin receptor 2 3.44-107 3.71
1420720_at Nptx2 neuronal pentraxin 2 2.4.1077 3.62
1433599 _at Bazla bromodomain adjacent to zinc finger domain 1A 6.69 - 109 3.62
1449188_at Midn midnolin 3.57-107 1 3.61
1434815_a_at Mapkapk3 mitogen-activated protein kinase-activated protein kinase 3 4.87-1076 3.6

1421396_at Pesk1 proprotein convertase subtilisin/kexin type 1 1.29-1078 3.59
1439764 _s_at Igf2bp2 insulin-like growth factor 2 mRNA binding protein 2 1.01-107° 3.58
1449960_at Nptx2 neuronal pentraxin 2 1.74-107° 3.55
1447930_at Bazla bromodomain adjacent to zinc finger domain 1A 2.5.107° 3.54
1418322_at Crem cAMP responsive element modulator 2.32.1010 3.5

1460275_at Gpr3 G-protein coupled receptor 3 2.24 .10 12 3.46
1431422_a_at Dusp14 dual specificity phosphatase 14 1.96 - 1079 3.43
1418687_at Arc activity regulated cytoskeletal-associated protein 2.24 .10 12 3.42
1459941 _at Clvs1 clavesin 1 1.59 - 1072 3.41
1434350_at Csrnp1 cysteine-serine-rich nuclear protein 1 9.18 - 109 3.4

1417695_a_at Soat1 sterol O-acyltransferase 1 7.31.10"% 3.38
1449037_at Crem cAMP responsive element modulator 1.4-10"8 3.31
1435458 _at Pim1 proviral integration site 1 1.88-1078 3.3

1417696_at Soat1 sterol O-acyltransferase 1 7.45.1078% 3.29
1428834 _at Dusp4 dual specificity phosphatase 4 1.08-1078 3.27
1422134 _at Fosb FBJ osteosarcoma oncogene B 1-10710 3.26
1436305_at Rnf217 ring finger protein 217 1.66 - 1011 3.26
1449405_at Tns1 tensin 1 1.87-107° 3.24
1419647 _a_at ler3 immediate early response 3 2.24 .10 12 3.23
1453590_at Arl5b ADP-ribosylation factor-like 5B 3.33-10° 3.22
1450971 _at Gadd45b growth arrest and DNA-damage-inducible 45 beta 1.23.1076 3.13

Table 4.8: Top 50 genes up-regulated upon dopamine depletion in D1 dSPNs after chronic
low-dose levodopa treatment
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Probeset Gene Symbol Gene Description P-value log2 FC

1422313_a_at Igfbp5 insulin-like growth factor binding protein 5 5.38 - 1073 —2.2
1424470_a_at Rapgef3 Rap guanine nucleotide exchange factor (GEF) 3 5.89 .10 3 —2.18
1415800_at Gja1 gap junction protein, alpha 1 3.66 - 107° —2.17
1437937 _at Ccbp2 chemokine binding protein 2 4.16-10"% —2.15
1455720_at Adamts2 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 mo- 2.22.1076 —2.09
tif, 2

1429514 _at Ppap2b phosphatidic acid phosphatase type 2B 1.76 - 107° —2.08
1449365_at S1pr5 sphingosine-1-phosphate receptor 5 3.11-107° —2.04
1452114_s_at Igfbp5 insulin-like growth factor binding protein 5 5.37-107° —2.02
1438852_x_at Mcmé minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe) (S. cerevisiae) 2.82-10"% —2
1455556_at Notch2 notch 2 4.73-107%  —1.98
1447223 _at 1.4-1074 -1.91
1443129 _at 8.01-1076 -1.9
1439293_at Fam214a family with sequence similarity 214, member A 1.54-107% —1.89
1433639_at Fam117a family with sequence similarity 117, member A 2.27.1073 —1.89
1452473 _at Prr15 proline rich 15 2.8-10"3 —1.87
1423284 _at Mansc1 MANSC domain containing 1 5.29.10"8 —1.79
1436600_at Tox3 TOX high mobility group box family member 3 1.79-107° —1.79
1429089_s_at 2900026A02Rik RIKEN cDNA 2900026A02 gene 2.26 - 106 —1.78
1451245_at Lrre3b leucine rich repeat containing 3B 1.49-107° —1.76
1434893_at Atpla2 ATPase, Na+/K+ transporting, alpha 2 polypeptide 1.55-1073 —-1.75
1456967_at Triméé tripartite motif-containing 66 1.55-107% —1.74
1428332_at Pik3ip1 phosphoinositide-3-kinase interacting protein 1 1.31-1078 —-1.73
1456603_at Fam101b family with sequence similarity 101, member B 8.35-10~6 —-1.73
1429764 _at Fam101b family with sequence similarity 101, member B 2.44.107° —-1.73
1421840_at Abcal ATP-binding cassette, sub-family A (ABC1), member 1 9.94.10° —1.72
1456047 _at 452-1076  —1.72
1455972_x_at Hadh hydroxyacyl-Coenzyme A dehydrogenase 1.09 - 1072 -1.7
1450799 _at Adcyap1r1 adenylate cyclase activating polypeptide 1 receptor 1 5.59 - 104 —1.69
1419063_at Ugt8a UDP galactosyltransferase 8A 6.84-10"% —1.69
1423367 _at Wnt7a wingless-related MMTV integration site 7A 3.61-107 —1.67
1442831_at 4.72-107%  -1.65
1435407 _at 2.35-1075  —1.64
1459838_s_at Btbd11 BTB (POZ) domain containing 11 1.81-10"2 —1.63
1428758_at Tmem86ba transmembrane protein 86A 5.78 - 10— % —1.63
1456005_a_at Bcl2111 BCL2-like 11 (apoptosis facilitator) 1.47 10732 —1.63
1435125_at 2.52.107° —1.62
1424468_s_at Phldb1 pleckstrin homology-like domain, family B, member 1 2.74.1073 —1.62
1422529 _s_at Casqg2 calsequestrin 2 8.2.10° —1.62
1439627 _at Zic1 zinc finger protein of the cerebellum 1 7.48 1073 —1.62
1448127 _at Rrm1 ribonucleotide reductase M1 1.75-1073 —1.61
1460136_at AW047481 expressed sequence AW047481 6.24-10"4 —1.61
1417520_at Nfe2l3 nuclear factor, erythroid derived 2, like 3 3.12-107° —1.61
1439715_at Osgepl1 O-sialoglycoprotein endopeptidase-like 1 1.53- 102 —1.61
1419064 _a_at Ugt8a UDP galactosyltransferase 8A 9.17-10"4 —-1.6
1438650_x_at Gja1 gap junction protein, alpha 1 2.08-103 —1.59
1433489_s_at Fgfr2 fibroblast growth factor receptor 2 1.17-107% —1.59
1443773 _at Ylpm1 YLP motif containing 1 1.84.107° —1.58
1442119 _at Al449212 expressed sequence Al449212 1.53-107% —1.58
1450712_at Kenj9 potassium inwardly-rectifying channel, subfamily J, member 9 1.13-107% —1.58
1455854 _a_at Ssh1 slingshot homolog 1 (Drosophila) 3.48 .10 3 —1.57
1460560_at Bahcc1 BAH domain and coiled-coil containing 1 2.99 .10 7 —1.57

Table 4.9: Top 50 genes down-regulated upon dopamine depletion in D1 dSPNs chronic
high-dose levodopa treatment
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Set Name Matches Size of Set p-value Bonf adj p-val b-h FDR adj p-val

mRNA processing 231 494 2.67-10"°  4.05-10"7 4.05-1077
EGFR1 Signaling Pathway 95 176 4.38-107%  6.65-10"6 3.33.1076
Splicing factor NOVA regulated synpatic proteins 29 42 3.95.1076 6.01-10% 2.107%

TCA Cycle 23 31 5.92.10°%  8.99.107% 2.25.1074
TGF-beta Receptor Signaling Pathway 78 155 2.16-107°  3.28-1073 6.56 - 104
IL-2 Signaling Pathway 44 7 2.79-107°  4.24-1073 7.07-10"%
Insulin Signaling 78 157 3.83-107° 5.83.1073 8.32.10—4
MAPK signaling pathway 78 160 8.67-107°  1.32-1072 1.65- 1073
T Cell Receptor Signaling Pathway 66 134 2.01-10"% 3.05-1072 3.39-1073
PluriNetWork 133 303 2.28-10"%  3.47.1072 3.47-1073
Signaling of Hepatocyte Growth Factor Receptor 22 34 2.57-10"% 3.91-1072 3.55-1073
B Cell Receptor Signaling Pathway 77 163 3.37-10"% 5.13-1072 4171073
IL-6 signaling Pathway 51 100 3.57-10"% 5.42.1072 4171073
IL-3 Signaling Pathway 51 102 6.5-10"% 9.88 - 1072 7.06 - 1073
TNF-alpha NF-kB Signaling Pathway 89 198 9.44 . 1074 0.14 9.57-1073
Electron Transport Chain 57 119 1.24-1073 0.19 1.18 - 1072
G13 Signaling Pathway 24 42 1.82-1073  0.28 1.63-1072
Diurnally regulated genes with circadian orthologs 29 55 3.37-1073 0.51 2.85-1072
Calcium Regulation in the Cardiac Cell 69 154 3.64-1073 0.55 2.91-1072
G Protein Signaling Pathways 47 99 3.95-1073 0.6 3.1072

Table 4.10: Wikipathways pathways over-represented among genes changed in D1 dSPNs
upon dopamine depletion and chronic low-dose levodopa treatment
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Probeset Gene Symbol Gene Description P-value log2 FC

1450750_a_at Nrda2 nuclear receptor subfamily 4, group A, member 2 1.02-10"17 7.29
1455034_at Nrda2 nuclear receptor subfamily 4, group A, member 2 1.03 .10~ 7.22
1421079_at Nrda3 nuclear receptor subfamily 4, group A, member 3 2.21-10° 6.31
1447863_s_at Nrda2 nuclear receptor subfamily 4, group A, member 2 4.64.10"13 5.98
1438796_at Nrda3 nuclear receptor subfamily 4, group A, member 3 2.71-10"8 5.89
1423851_a_at Shisa2 shisa homolog 2 (Xenopus laevis) 3.29.10 11 5.65
1417263_at Ptgs2 prostaglandin-endoperoxide synthase 2 1.46 - 10715 5.59
1451163_at Tinf2 Terf1 (TRF1)-interacting nuclear factor 2 6.4-1011 5.48
1429475_at Ubash3b ubiquitin associated and SH3 domain containing, B 5.82-10"7 5.41
1421134_at Areg amphiregulin 4.25.1013 5.21
1421080_at Nr4a3 nuclear receptor subfamily 4, group A, member 3 2.57 - 1071 5.1
1423852_at Shisa2 shisa homolog 2 (Xenopus laevis) 5.63-10 9 5.05
1441228_at Apold1 apolipoprotein L domain containing 1 5.19 - 10~ 4.91
1437166_at Tinf2 Terf1 (TRF1)-interacting nuclear factor 2 9.08 10710 4.88
1422256_at Sstr2 somatostatin receptor 2 3.44-10~8 4.74
1419082_at Serpinb2 serine (or cysteine) peptidase inhibitor, clade B, member 2 7.49 10710 4.74
1422931_at Fosl2 fos-like antigen 2 4991071 473
1427682_a_at Egr2 early growth response 2 6.18 - 107 4.66
1427455_x_at 3.1078 4.61
1417262 _at Ptgs2 prostaglandin-endoperoxide synthase 2 2.58 - 1079 4.59
1416700_at Rnd3 Rho family GTPase 3 1.99-1079 4.55
1449960_at Nptx2 neuronal pentraxin 2 5.18 - 1010 4.51
1434815_a_at Mapkapk3 mitogen-activated protein kinase-activated protein kinase 3 1.3.1076 4.51
1422053_at Inhba inhibin beta-A 5.55-10"9 4.49
1436805_at Ubash3b ubiquitin associated and SH3 domain containing, B 1.39-107° 4.48
1427660_x_at 3.06 - 108 4.39
1427683_at Egr2 early growth response 2 4.54.10~6 4.38
1435872_at 2.71-1078 4.38
1460275_at Gpr3 G-protein coupled receptor 3 9.95 .10 14 4.37
1435703_at Ubash3b ubiquitin associated and SH3 domain containing, B 1.85-1078 4.35
1419647 _a_at ler3 immediate early response 3 4.99 - 1015 4.35
1450188_s_at Lipg lipase, endothelial 1.11-1078 4.33
1420653_at Tofb1 transforming growth factor, beta 1 4.22.10712 4.32
1417696_at Soat1 sterol O-acyltransferase 1 5.44 .10 9 4.32
1421396_at Pesk1 proprotein convertase subtilisin/kexin type 1 3.32.1078 4.31
1437247 _at Fosl2 fos-like antigen 2 1.17-10710 431
1450749 _a_at Nrda2 nuclear receptor subfamily 4, group A, member 2 3.58 - 1013 4.31
1428834_at Dusp4 dual specificity phosphatase 4 3.37.10 10 4.3
1417695_a_at Soat1 sterol O-acyltransferase 1 2.91-10"8 4.28
1420720_at Nptx2 neuronal pentraxin 2 2.73.1078 4.26
1424246_a_at Tes testis derived transcript 5.18 - 10— 10 4.25
1447930_at Bazla bromodomain adjacent to zinc finger domain 1A 9.85. 1010 4.22
1452417_x_at 5.91-1077 4.21
1431057_a_at Prss23 protease, serine, 23 4.64-10"13 4.2
1416701 _at Rnd3 Rho family GTPase 3 4.89.1078 4.19
1452557 _a_at Igk immunoglobulin kappa chain complex 1.69-10~6 4.18
1418687_at Arc activity regulated cytoskeletal-associated protein 3.11-10 12 4.16
1433599_at Bazla bromodomain adjacent to zinc finger domain 1A 5.23-10"7 4.14
1418322_at Crem cAMP responsive element modulator 1.44 -1079 4.11
1436305_at Rnf217 ring finger protein 217 4.52.10" 14 4.06
1436387_at 2.58 - 1079 4.02
1416554_at Pdlim1 PDZ and LIM domain 1 (elfin) 1.29-10710 4

Table 4.11: Top 50 genes up-regulated upon dopamine depletion in D1 dSPNs after
chronic high-dose levodopa treatment
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Probeset Gene Symbol Gene Description P-value log2 FC
1456351_at Brd8 bromodomain containing 8 1.7-10°7 —2.9
1455556_at Notch2 notch 2 6.55-107° —2.78
1456967_at Trimé6 tripartite motif-containing 66 5.19 - 107 —2.74
1424470_a_at  Rapgef3 Rap guanine nucleotide exchange factor (GEF) 3 9.45.10% —2.73
1452114_s_at Igfbp5 insulin-like growth factor binding protein 5 3.94.1076 —2.67
1429089 _s_at 2900026A02Rik RIKEN cDNA 2900026A02 gene 2.33-.10"6 —2.64
1455720_at Adamts2 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 2.23.107 —2.61
motif, 2
1444139 _at Ddit4l DNA-damage-inducible transcript 4-like 2.1.1076 —2.55
1439332_at Ddit4l DNA-damage-inducible transcript 4-like 2.01-10"6 —2.43
1435407 _at 4.69-1077 —2.41
1423756_s_at Igfbp4 insulin-like growth factor binding protein 4 2.26 - 104 —2.4
1455972_x_at Hadh hydroxyacyl-Coenzyme A dehydrogenase 2.41-10"4 —2.4
1459838_s_at Btbd11 BTB (POZ) domain containing 11 2.17-10% —2.4
1422313_a_at Igfbp5 insulin-like growth factor binding protein 5 4.1073 —2.39
1433639_at Fam117a family with sequence similarity 117, member A 1.42-107% —2.35
1425096_a_at Ptcd1 pentatricopeptide repeat domain 1 3.71-109 —2.33
1437937 _at Ccbp2 chemokine binding protein 2 2.42-10"4 —2.32
1425092_at Cdh10 cadherin 10 7.11- 10710 2.28
1437405_a_at  Igfbp4 insulin-like growth factor binding protein 4 5.16 - 102 —2.28
1440202_at 6.61-1077 —2.26
1435125_at 5.41-1076 —2.25
1419200_at Fxyd7 FXYD domain-containing ion transport regulator 7 8.43.1078 —2.24
1434672_at Gpr22 G protein-coupled receptor 22 3.06-106 —2.22
1439715_at Osgepl1 O-sialoglycoprotein endopeptidase-like 1 7.12-107° —2.19
1451245_at Lrre3b leucine rich repeat containing 3B 6.68- 108 —2.18
1454973 _at Atf7ip activating transcription factor 7 interacting protein 3.24-107° —2.17
1455134 _at Tmem?245 transmembrane protein 245 5.09 - 1072 —2.14
1450511_at Musk muscle, skeletal, receptor tyrosine kinase 1.55-10"7 —2.11
1459703 _at 1.21-107° —2.1
1434131_at Rufy1 RUN and FYVE domain containing 1 6.35-10 0 —2.09
1436786_at Sec14I3 SEC14-like 3 (S. cerevisiae) 6.78 - 104 —2.09
1450712_at Kenj9 potassium inwardly-rectifying channel, subfamily J, member 9 5.69 - 100 —2.08
1436610_at Ankrd12 ankyrin repeat domain 12 1.08 106 —2.07
1453061_at Elac1 elaC homolog 1 (E. coli) 3.06 - 106 —2.07
1447223 _at 7.29-1074 —2.07
1420870_at MIlt10 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila); translo- 1.3.106 —2.06
cated to, 10
1425173_s_at Golph3l golgi phosphoprotein 3-like 1.79 - 1075 —2.06
1437406_x_at Igfbp4 insulin-like growth factor binding protein 4 3.81-10"° —2.06
1436005_at Sugp2 SURP and G patch domain containing 2 1.55-107° —2.05
1428332_at Pik3ip1 phosphoinositide-3-kinase interacting protein 1 3.97-10"6 —2.04
1456005_a_at Bcl2l11 BCL2-like 11 (apoptosis facilitator) 3.61-10"% —2.03
1456674_at 2.15-1074 —2.03
1451751_at Ddit4l DNA-damage-inducible transcript 4-like 3.05.10° —2.02
1437623 _x_at Xree3 X-ray repair complementing defective repair in Chinese hamster cells 3 8.99-106 —2.01
1436501_at Mtus1 mitochondrial tumor suppressor 1 5.36 - 10° —2
1426434 _at Tmem43 transmembrane protein 43 1.61-10"° -2
1439602_at Fign fidgetin 1.54-1072 —1.99
1439293_at Fam214a family with sequence similarity 214, member A 5.23.10°° —1.98
1424597 _at Wash WAS protein family homolog 5.75-107° —1.98
1442139 _at 5.79 -10—° —1.97
1453429 _at 9530057J20Rik RIKEN cDNA 9530057J20 gene 1.9-10°7 —1.97

Table 4.12: Top 50 genes down-regulated upon dopamine depletion in D1 dSPNs after
chronic high-dose levodopa treatment
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Set Name Matches Size of Set p-value Bonf adj p-val b-h FDR adj p-val

EGFR1 Signaling Pathway 115 176 2.72-1078  4.19.107¢ 4.19-1076
MAPK signaling pathway 103 160 4.24.1077  6.52-107° 2.94-107°
Insulin Signaling 101 157 5.73-10"7  8.83-107° 2.94-107°
mRNA processing 266 494 2.55-107°  3.93.1073 9.83.10~%
Splicing factor NOVA regulated synpatic proteins 32 42 3.38-107° 5.21-1073 1.04-1073
TGF-beta Receptor Signaling Pathway 93 155 9.27.107° 1.43-1072 2.34-1073
TNF-alpha NF-kB Signaling Pathway 115 198 1.06 -107%  1.64-1072 2.34-1073
Signaling of Hepatocyte Growth Factor Receptor 26 34 1.69-107% 2.61-102 3.26- 1073
TCA Cycle 24 31 2.18-10"%  3.36-102 3.74-1073
G Protein Signaling Pathways 62 99 2.55-10"%  3.93.1072 3.93.1073
IL-6 signaling Pathway 62 100 3.8-107% 5.85- 1072 5.32-1073
MicroRNAs in cardiomyocyte hypertrophy 53 85 8.09 - 104 0.12 1.04-1072
Regulation of Actin Cytoskeleton 86 149 9.69 - 104 0.15 1.15-1072
G13 Signaling Pathway 29 42 1.27-1073 0.2 1.38- 1072
PluriNetWork 162 303 1.34-107%  0.21 1.38 - 1072
T Cell Receptor Signaling Pathway 7 134 2.05-1073 0.32 1.97 1072
MAPK Cascade 21 29 2.39-107%  0.37 2.16 - 1072
Hypothetical Network for Drug Addiction 22 31 2.86-1073 0.44 2.29-1072
IL-2 Signaling Pathway 47 ks 2.92.1073 0.45 2.29-1072
G1to S cell cycle control 39 62 3.03-1073 0.47 2.29-1072

Table 4.13: Wikipathways pathways over-represented among genes changed in D1 dSPNs
upon dopamine depletion and chronic high-dose levodopa treatment
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Motif Name Overlap Total Genes in Group Total motif occurrences P-value bh FDR adj p-val

TFAP2A,C.p2 1,363 1,898 11,209 2.02-1078% 0

TFDP1.p2 1,274 1,898 10,211 1.16 -1078%0 0

SP1.p2 1,590 1,898 14,315 5.26-1078%0 0

TFAP2B.p2 1,142 1,898 8,716 9.03-10780 ¢
ATF5_CREB3.p2 467 1,898 2,370 47110773 o0

KLF4.p3 1,456 1,898 13,075 8.74-107%2 o0

MAZ.p2 1,485 1,898 13,533 1.51-107°%9 0o

PATZ1.p2 1,415 1,898 12,837 1.48-107°% 0o

PAX5.p2 975 1,898 7,682 1.74-107%% 0o

HIC1.p2 878 1,898 6,807 1.01-1074% 0o

JUN.p2 326 1,898 1,812 2.03-10740 ¢

MAFB.p2 702 1,898 5,292 6.24-10740 ¢

ELF1,2,4.p2 894 1,898 7,322 4.04-10739 0
ELK1,4_GABPA,B1.p3 723 1,898 5,564 3.27-107%8 0

ATF4.p2 228 1,898 1,130 1.54-1073% 0

EGR1..3.p2 679 1,898 5,213 1.61-1073% 0o

CREB1.p2 245 1,898 1,312 1.35-10732 0

MZF1.p2 1,203 1,898 11,270 4.49-10729 o0

ZFP161.p2 590 1,898 4,556 4.79-10729 o0

GTF2l.p2 1,026 1,898 9,237 1.2.10728 0

MTF1.p2 593 1,898 4,608 1.81-10728% ¢
AHR_ARNT_ARNT2.p2 410 1,898 2,993 9.91-1072* o0

PAX2.p2 310 1,898 2,127 9.52.10722 0

ATF6.p2 184 1,898 1,049 2.83.10721 o0

EHF.p2 440 1,898 3,550 4510717 0
NHLH1,2.p2 557 1,898 4,758 8.65-10"17 1.78.10" 14
SPI1.p2 831 1,898 7,746 4.29-10716  7.06-10"14
NRF1.p2 436 1,898 3,576 1.17-10"1  1.93.10713
EP300.p2 270 1,898 1,963 1.39.-1071%  2.27.10713
HES1.p2 274 1,898 2,079 1.58 .10~  2.47.107 11
ATF2.p2 138 1,898 858 4.04-10713  6.26.10"11
NFYA,B,C.p2 386 1,898 3,247 3.61-10712  5.56.1010
GFI1.p2 275 1,898 2,152 5.05-10712  7.72.10710
FEV.p2 605 1,898 5,575 1.28 .10 1.94.107°
SPIB.p2 628 1,898 5,868 5.46-10"11  g8.25.1079
TFCP2.p2 331 1,898 2,758 6.36-10"11  9.53.1079
SNAI1..3.p2 746 1,898 7,210 2.27-10710  3.38.10°8
ZNF148.p2 457 1,898 4,093 2.94-10710  4.35.10°8
YY1.p2 1,078 1,898 11,035 7.95.10710  1.17.1077
bHLH_family.p2 418 1,898 3,714 8.2.1010 1.2.1077
TCF4_dimer.p2 818 1,898 8,090 1.82 1079 2.63-107
ZBTB6.p2 221 1,898 1,789 1.59 - 108 2.29.10°6
RREB1.p2 676 1,898 6,598 1.99 - 108 2.85.106
FOXN1.p2 69 1,898 403 2.76 - 108 3.93.10~6
HIF1A.p2 152 1,898 1,139 3.03-10"8 4.27 106
MYFfamily.p2 545 1,898 5,225 1.05-10~7 1.48 - 1075
ZEB1.p2 391 1,898 3,590 1.64-10°7 2.28.107°
ARNT_ARNT2_BHLHB2_MAX_MYC_USF1.p2 205 1,898 1,691 2.3.1077 3.17-107°
SPZ1.p2 313 1,898 2,787 2.43 .10 7 3.34.107°
ETS1,2.p2 343 1,898 3,122 5.12-1077 6.96 - 1075
MYOD1.p2 270 1,898 2,407 2.12.10°6 2.87-10"%

Table 4.14: Motifs over-represented among genes up-regulated in D1 dSPNs upon
dopamine depletion and chronic high-dose levodopa treatment
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Overlap Motif Name Total Genes in Group P-value Total motif occurrences bh FDR adj p-val

2,196 SP1.p2 2,733 8.89-10"78 14,315 0

1,716 TFDP1.p2 2,733 1.88-1075 10,211 0

1,806 TFAP2A,C.p2 2,733 2.3.106° 11,209 0

1,236 HIC1.p2 2,733 1.92.10763 6,807 0

1,484 TFAP2B.p2 2,733 6.91-10762 8,716 0

1,947 PATZ1.p2 2,733 3.02-107°0 12,837 0

2,021 MAZ.p2 2,733 1.54-10"48 13,533 0

1,300 PAX5.p2 2,733 3.53.10"48 7,682 0

1,934 KLF4.p3 2,733 1.71-1073% 13,075 0

822 ZFP161.p2 2,733 1.46 - 10735 4,556 0

792 MTF1.p2 2,733 1.01-10726 4,608 0

869 EGR1..3.p2 2,733 2.86-1072% 5,213 0

873 MAFB.p2 2,733 6.91-1072%4 5,202 0

1,637 MZF1.p2 2,733 1.47 10722 11,270 0

1,375 GTF2l.p2 2,733 4.41-10721 9,237 0

530 AHR_ARNT_ARNT2.p2 2,733 1.09-10719 2993 0

611 NRF1.p2 2,733 3.43.10719 3,576 0

769 NHLH1,2.p2 2,733 4.97 10718 4,758 0

357 ZNF143.p2 2,733 7.35.10717 1,904 1.87 - 10714
598 bHLH_family.p2 2,733 27410713 3,714 4.58 - 10~ 11
846 ELK1,4_GABPA,B1.p3 2,733 5.31-10" '3 5,564 8.82.10 11
362 HES1.p2 2,733 2.5.1012 2,079 4.12 - 10710
643 ZNF148.p2 2,733 3.38.10712 4,093 5.54 - 1010
570 ZEB1.p2 2,733 1.53-10~11 3590 2.49 - 1079
1,050 SNAI1..3.p2 2,733 1.73-10~11 7210 2.81-109
1,064 ELF1,2,4.p2 2,733 1.97-10~11 7322 3.18 1079
1,157 TCF4_dimer.p2 2,733 9.27-107'1 8,090 1.48 - 108
257 SREBF1,2.p2 2,733 1.19-10719 1,420 1.9-108
389 SOX2.p2 2,733 1.05 - 1079 2,370 1.65-10~7
133 E2F1..5.p2 2,733 9.5.107° 662 1.49 106
501 NFYA,B,C.p2 2,733 2.39.10°8 3,247 3.74-10°6
284 ARNT_ARNT2_BHLHB2_MAX_MYC_USF1.p2 2,733 3.01-10~8 1,691 4.67-106
451 HBP1_HMGB_SSRP1_UBTF.p2 2,733 3.73.10~8 2,891 5.75.10~6
333 SOX17.p2 2,733 5.51-10"8 2,048 8.43 .10 6
204 ZBTB6.p2 2,733 1.37-1077 1,789 2.08-107°
454 LMO2.p2 2,733 2.47-107 2,958 3.73.107°
178 TFEB.p2 2,733 3.9.10°7 1,003 5.85.10°
427 SPZ1.p2 2,733 7.46 107 2,787 1.11-10"4
926 RREB1.p2 2,733 1.45-10°6 6,598 2.15-10"%
420 TFCP2.p2 2,733 1.8-10°6 2,758 2.65-10"%
246 SOX8,9,10.p2 2,733 2.15-10~6 1,503 3.14-10"%
195 SOX5.p2 2,733 3.17-10°6 1,153 4.6-10"4
192 HIF1A.p2 2,733 4.68 106 1,139 6.74 104
1,066 SPI1.p2 2,733 5.64 106 7,746 8.06 - 104
742 MYFfamily.p2 2,733 5.83.106 5,225 8.27 .10 %
521 EHF.p2 2,733 7.23.10°6 3,550 1.02-1073
177 ATF6.p2 2,733 1.04-1075 1,049 1.46 - 1073
126 FOXD1,D2.p2 2,733 4.58 1075 723 6.35- 1073
243 TFAP4.p2 2,733 6.33-107° 1,554 8.7-1073
323 GFI1.p2 2,733 1.03-10"4 2,152 1.41-10"2
186 HMX1.p2 2,733 1.24-10"4 1,160 1.67-10"2

Table 4.15: Motifs over-represented among genes downregulated in D1 dSPNs upon
dopamine depletion and chronic high-dose levodopa treatment
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Effects of levodopa treatment in D2 iSPNs

In contrast to the dramatic changes observed in D1 dSPNs, D2 iSPNs had relatively few
genes with significant expression changes upon dopamine depletion followed by chronic
levodopa treatment. Only 72 genes (84 probe sets) changed, 48 of which were upregu-
lated (Table ) and 24 of which were down-regulated (Table ).

With chronic high-dose levodopa treatment, 415 genes (533 probe sets) had altered
expression; 244 were up-regulated and 172 down-regulated. Of these, 198 (represented
by 252 probe sets) also changed significantly in dSPNs, and of these, only 62 moved
in opposing directions. Pathway analysis of genes altered in iSPNs by the high dose of

levodopa showed effects on Kit receptor signaling, IL-3 signaling, and ErbB signaling

(Table ).
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Probeset Gene Symbol Gene Description P-value log2 FC

1434815_a_at Mapkapk3 mitogen-activated protein kinase-activated protein kinase 3 0.099851262 2.847595061
1455034 _at Nrda2 nuclear receptor subfamily 4, group A, member 2 0.056702009 2.465317778
1455197 _at Rnd1 Rho family GTPase 1 0.092234273 2.392312708
1452318_a_at Hspalb heat shock protein 1B 0.035576689 2.38809829
1424638 _at Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) 0.027108534 2.261879119
1421679_a_at Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) 0.023167893 2.248976967
1425990_a_at Nfatc2 nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2 0.058814247 2.057795463
1426037_a_at Rgs16 regulator of G-protein signaling 16 0.085400331 1.989217558
1453590_at Arl5b ADP-ribosylation factor-like 5B 0.036932861 1.834816958
1416266_at Pdyn prodynorphin 0.085400331 1.774771097
1425671_at Homer1 homer homolog 1 (Drosophila) 0.023167893 1.711474986
1453851_a_at Gadd45g growth arrest and DNA-damage-inducible 45 gamma 0.014460931 1.697999076
1452484 _at Car?7 carbonic anhydrase 7 0.035576689 1.688634582
1436387_at 0.014460931 1.611295695
1435935_at 2410131K14Rik RIKEN cDNA 2410131K14 gene 0.080136817 1.565084094
1437884_at Arl5b ADP-ribosylation factor-like 5B 0.048348403 1.499866027
1434973 _at Car?7 carbonic anhydrase 7 0.035576689 1.43784128
1422053_at Inhba inhibin beta-A 0.086314323 1.381189726
1435458_at Pim1 proviral integration site 1 0.05237781 1.374734542
1439947_at Cyp11al cytochrome P450, family 11, subfamily a, polypeptide 1 0.080136817 1.285778927
1435071_at Zfyvel zinc finger, FYVE domain containing 1 0.070255481 1.257651434
1455166_at Arl5b ADP-ribosylation factor-like 5B 0.085400331 1.247261929
1428860_at Themé thioesterase superfamily member 6 0.078947348 1.237726912
1433657_at Fam78a family with sequence similarity 78, member A 0.075195168 1.233448861
1422134 _at Fosb FBJ osteosarcoma oncogene B 0.056702009 1.208101367
1428710_at Rit1 Ras-like without CAAX 1 0.097716313 1.167709426
1422697 _s_at Jarid2 jumoniji, AT rich interactive domain 2 0.080959089 1.150739467
1418300_a_at Mknk2 MAP kinase-interacting serine/threonine kinase 2 0.02991536 1.147490068
1427975_at Rasl10a RAS-like, family 10, member A 0.099851262 1.103679943
1454725_at Tra2a transformer 2 alpha homolog (Drosophila) 0.00671035 1.102548155
1450971 _at Gadd45b growth arrest and DNA-damage-inducible 45 beta 0.085400331 1.100850129
1441814_s_at Rpain RPA interacting protein 0.083323329 1.068681234
1455175_at Phf13 PHD finger protein 13 0.080136817 1.058879112
1451236_at Rerg RAS-like, estrogen-regulated, growth-inhibitor 0.058814247 0.99549417
1423747_a_at Pdk1 pyruvate dehydrogenase kinase, isoenzyme 1 0.058814247 0.938113321
1422705_at Pmepa1 prostate transmembrane protein, androgen induced 1 0.035576689  0.935846258
1427225_at Epn2 epsin 2 0.058814247 0.922234272
1456943_a_at Dbndd2 dysbindin (dystrobrevin binding protein 1) domain containing 2 0.061173154 0.897223989
1448663_s_at Mvd mevalonate (diphospho) decarboxylase 0.035576689 0.888308845
1435867_at Jhdm1d jumonji C domain-containing histone demethylase 1 homolog D (S. cerevisiae) 0.075195168 0.864124435
1416011_x_at Ehd1 EH-domain containing 1 0.075195168 0.83483475
1460645_at Chordc1 cysteine and histidine-rich domain (CHORD)-containing, zinc-binding protein 1 0.048348403 0.829426127
1452155_a_at Ddx17 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 0.045433445 0.81823156
1439968_x_at Dbndd2 dysbindin (dystrobrevin binding protein 1) domain containing 2 0.035576689 0.81503305
1415975_at Carhsp1 calcium regulated heat stable protein 1 0.014460931 0.80939916
1434343_at Zfp954 zinc finger protein 954 0.085400331 0.8086057
1423630_at Cygb cytoglobin 0.088261285 0.76513596
1439182_at D17Wsu92e DNA segment, Chr 17, Wayne State University 92, expressed 0.098528063 0.761631939
1451431_a_at Dbndd2 dysbindin (dystrobrevin binding protein 1) domain containing 2 0.00671035 0.743137776
1417001_a_at D4Wsu53e DNA segment, Chr 4, Wayne State University 53, expressed 0.082879924 0.730972123
1424883_s_at Srsf7 serine/arginine-rich splicing factor 7 0.033388958 0.728450219
1423795_at Sfpq splicing factor proline/glutamine rich (polypyrimidine tract binding protein associ- 0.058814247 0.704586102
ated)

1424033_at Srsf7 serine/arginine-rich splicing factor 7 0.03394856 0.684168197
1429373 _x_at  Crtc2 CREB regulated transcription coactivator 2 0.098528063  0.643749066
1429048_at Bloc1s2a biogenesis of lysosome-related organelles complex-1, subunit 2A 0.058814247 0.611227815
1428872_at Msl1 male-specific lethal 1 homolog (Drosophila) 0.035576689 0.607980756

Table 4.16: Genes up-regulated in D2 iSPNs with chronic low-dose levodopa treatment
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cProbeset Gene Symbol Gene Description P-value log2 FC

1416505_at Nrda1 nuclear receptor subfamily 4, group A, member 1 0.04177213 -1.324496405
1436094_at Vgf VGF nerve growth factor inducible 0.070255481 -1.27593533
1420444 _at Slc22a3 solute carrier family 22 (organic cation transporter), member 3 0.048348403 -1.270652074
1417110_at Man1a mannosidase 1, alpha 0.087356874 -1.240375708
1417111_at Man1a mannosidase 1, alpha 0.056702009 -1.232952356
1448746_at Nbn nibrin 0.062051282 -1.206035406
1428930_at Tmem29 transmembrane protein 29 0.087356874 -1.1690701
1455199 _at Al429214 expressed sequence Al429214 0.099851262 -1.165657993
1450757 _at Cdh11 cadherin 11 0.080136817 -1.156063482
1450417 _a_at Rps20 ribosomal protein S20 0.099472702 -1.105160689
1434819 _at Stégal2 beta galactoside alpha 2,6 sialyltransferase 2 0.085400331 -1.098995816
1453102_at FIrt3 fibronectin leucine rich transmembrane protein 3 0.080959089 -1.081171488
1455085_at 1700086L19Rik RIKEN cDNA 1700086L19 gene 0.045433445 -1.079688257
1433987_at Hpcal4 hippocalcin-like 4 0.014460931 -1.060800935
1430348_at 2900019E01Rik RIKEN cDNA 2900019E01 gene 0.088023725 -0.899192146
1428545_at Tmem?248 transmembrane protein 248 0.087356874 -0.88908774
1450708_at Scg2 secretogranin |l 0.099025401 -0.865774896
1436610_at Ankrd12 ankyrin repeat domain 12 0.035576689 -0.862325461
1450520_at Cacng3 calcium channel, voltage-dependent, gamma subunit 3 0.058814247 -0.86226335
1426865_a_at Ncam1 neural cell adhesion molecule 1 0.058814247 -0.857099277
1442905_at 0.056702009  -0.801688011
1436449_at Pcdh11x protocadherin 11 X-linked 0.029867334 -0.772491409
1423991_at Nop14 NOP14 nucleolar protein 0.097716313 -0.770120552
1438407_at Dsel dermatan sulfate epimerase-like 0.085400331 -0.743531852
1420514 _at Tmem47 transmembrane protein 47 0.085400331 -0.720390174
1419247 _at Rgs2 regulator of G-protein signaling 2 0.01541297 -0.662706361
1419248 _at Rgs2 regulator of G-protein signaling 2 0.061173154 -0.618142253
1436135_at 0.092234273 -0.587673133

Table 4.17: Genes down-regulated in D2 iSPNs with chronic low-dose levodopa treatment
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Probeset Gene Symbol Gene Description P-value log2 FC

1442754 _at C030013GO3Rik  RIKEN cDNA C030013G03 gene 2.61-102 —2.3

1438427 _at Fam120b family with sequence similarity 120, member B 6.19 - 102 —1.88
1435171_at 2810416G20Rik RIKEN cDNA 2810416G20 gene 7.86-1072 —1.82
1417782_at Cers4 ceramide synthase 4 5.31.10"2 —1.8

1434817_s_at Rprd2 regulation of nuclear pre-mRNA domain containing 2 1.83-1072 —1.79
1416888_at Fadd Fas (TNFRSF6)-associated via death domain 6.06 - 102 —1.78
1457347 _at Ryr1 ryanodine receptor 1, skeletal muscle 4.96 - 102 —1.71
1453309_at 9330179D12Rik RIKEN cDNA 9330179D12 gene 3.23-102 —1.69
AFFX-TransRecMur/X57349_5_at Tfrc transferrin receptor 8.3-10"2 —1.69
1426338_a_at Ntng1 netrin G1 6.26-10"2  —1.65
1416805_at Fam198b family with sequence similarity 198, member B 3.61-102 —1.64
1447513_at Kend3 potassium voltage-gated channel, Shal-related family, member 3 9.35-102 —1.63
1456096_at 6430573F11Rik RIKEN cDNA 6430573F11 gene 7.85-1072 —1.55
1451060_at Gpr146 G protein-coupled receptor 146 4.83.1072 —1.54
1460020_at Ankrd11 ankyrin repeat domain 11 7.17-1072 —1.54
1454581_at 5330425B07Rik RIKEN cDNA 5330425B07 gene 4.63-102 —1.52
1438562_a_at Ptpn2 protein tyrosine phosphatase, non-receptor type 2 5.22 1072 —1.48
1422811 _at Slc27a1 solute carrier family 27 (fatty acid transporter), member 1 8.76 - 102 —1.47
1416505_at Nrdal nuclear receptor subfamily 4, group A, member 1 1.67-1072 —1.44
1459897_a_at Sbsn suprabasin 2.97-102 —1.37
1429162_at 1500015A07Rik RIKEN cDNA 1500015A07 gene 8.59 - 102 —1.35
1429107 _at Ubr3 ubiquitin protein ligase E3 component n-recognin 3 1.64-1073 —1.34
1420418_at Syt2 synaptotagmin Il 3.82-1072 —1.33
1456397 _at Cdh4 cadherin 4 4.83-1072  —1.33
1452661_at Tfrc transferrin receptor 3.45-103 —1.31
1431110_at Plxdc2 plexin domain containing 2 1.44 -1072 —1.31
1439630_x_at Sbsn suprabasin 2.91-10"2 —1.29
1431102_at Cep350 centrosomal protein 350 9.13-1072 —-1.29
1423499 _at Sncaip synuclein, alpha interacting protein (synphilin) 1.51-1072 —1.27
1428010_at Timm9 translocase of inner mitochondrial membrane 9 9.13-102 —1.26
1454973_at Atf7ip activating transcription factor 7 interacting protein 3.51-102 —-1.25
1452145_at Hépd hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase) 8.44 .10~ 2 —1.24
1455854 _a_at Ssh1 slingshot homolog 1 (Drosophila) 9.55- 102 —1.23
1417018 _at Efemp2 epidermal growth factor-containing fibulin-like extracellular matrix 4.35-.102 —1.22

protein 2

1420444 _at Slc22a3 solute carrier family 22 (organic cation transporter), member 3 3.31-1072 —1.22
1443523 _at Fam135b family with sequence similarity 135, member B 2.24.1072 —1.21
1418817_at Chmp1b charged multivesicular body protein 1B 2.83.1072 —-1.2

1435396 _at Stxbp6 syntaxin binding protein 6 (amisyn) 1.69 - 10~ —-1.2

1434446_at Insr insulin receptor 3.87 - 10" —1.2

1435598 _at BB319198 expressed sequence BB319198 1.32- 102 —1.19
1456144 _at Nav3 neuron navigator 3 2.5.1072 —1.18
1416221 _at Fstl1 follistatin-like 1 6.7-1072 —-1.18
1431828_a_at Synj2 synaptojanin 2 5.3.102 —1.17
1433959 _at Zmat4 zinc finger, matrin type 4 9.72. 102 —-1.17
1448746_at Nbn nibrin 1.44-1072 -1.16
1442918_at Nav3 neuron navigator 3 5.78 - 102 —1.16
1449286_at Ntng1 netrin G1 6.49-1072  —1.16
1418265_s_at Irf2 interferon regulatory factor 2 6.21-102 —1.15
1428724 _at Pcf11 cleavage and polyadenylation factor subunit homolog (S. cerevisiae) 1.92 - 102 —1.15

Table 4.18: Top 50 genes down-regulated in D2 iSPNs with chronic high-dose levodopa
treatment
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Probeset Gene Symbol Gene Description P-value log2 FC

1455197_at Rnd1 Rho family GTPase 1 6.33-103 3.46
1417160_s_at Wifdc18 WAP four-disulfide core domain 18 1.03-10"2 3.42
1450750_a_at Nrda2 nuclear receptor subfamily 4, group A, member 2 6.33-103 3.4

1455034 _at Nrda2 nuclear receptor subfamily 4, group A, member 2 6.33-103 3.11
1447863_s_at Nrda2 nuclear receptor subfamily 4, group A, member 2 4.26 1073 2.52
1452318_a_at Hspalb heat shock protein 1B 1.07-1072 2.49
1421679_a_at Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) 1.64 - 1073 2.47
1434815_a_at Mapkapk3 mitogen-activated protein kinase-activated protein kinase 3 7.65-10"2 2.39
1438967_x_at Amhr2 anti-Mullerian hormone type 2 receptor 8.92 . 102 2.38
1434458 _at Fst follistatin 2.6-1072 2.38
1453590_at Arl5b ADP-ribosylation factor-like 5B 2.98 .10 4 2.38
1449226_at Hic1 hypermethylated in cancer 1 1.87-1072 2.34
1450344 _a_at Ptger3 prostaglandin E receptor 3 (subtype EP3) 2.63 102 2.22
1424638_at Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) 9.16 - 103 2.21
1426037_a_at Rgs16 regulator of G-protein signaling 16 1.41-1072 2.18
1449141 _at Fblim1 filamin binding LIM protein 1 2.97-102 2.16
1453851_a_at Gadd45g growth arrest and DNA-damage-inducible 45 gamma 7.55-10"% 2.14
1451452 _a_at Rgs16 regulator of G-protein signaling 16 1.17-1072 2.13
1460269 _at Pnmt phenylethanolamine-N-methyltransferase 6.67 - 102 2.1

1416266_at Pdyn prodynorphin 1.83-1072  2.09
1460275_at Gpr3 G-protein coupled receptor 3 1.47 1072 1.94
1437884 _at Arl5b ADP-ribosylation factor-like 5B 1.33-1073 1.94
1418569_at Fblim1 filamin binding LIM protein 1 5.98 - 102 1.89
1447930_at Bazla bromodomain adjacent to zinc finger domain 1A 2.4.1072 1.84
1426973_at Gpr153 G protein-coupled receptor 153 6.65- 103 1.84
1425671_at Homer1 homer homolog 1 (Drosophila) 1.42 .10 4 1.81
1436387 _at 1.04-107% 1.8

1431413_at Ramp1 receptor (calcitonin) activity modifying protein 1 7.67-1072 1.77
1458711_at 4.72-1072  1.76
1417263_at Ptgs2 prostaglandin-endoperoxide synthase 2 4.08 102 1.76
1452295_at Pmepal prostate transmembrane protein, androgen induced 1 1.32-1072 1.74
1438928_x_at Ninj1 ninjurin 1 8.77-102 1.72
1451642_at Kif1b kinesin family member 1B 6.75- 102 1.69
1455265_a_at Rgs16 regulator of G-protein signaling 16 2.26 - 102 1.61
1421365_at Fst follistatin 4.5-1072 1.58
1455166_at Arl5b ADP-ribosylation factor-like 5B 1.89 .10 2 1.58
1439947 _at Cyp11al cytochrome P450, family 11, subfamily a, polypeptide 1 1.07-1072 1.58
1424670_s_at Zfyve21 zinc finger, FYVE domain containing 21 4.83-102 1.56
1448694 _at Jun Jun oncogene 7.33.1072 1.55
1435999 _at Spink8 serine peptidase inhibitor, Kazal type 8 7.73-1072 1.55
1435872_at 8.48-1072  1.55
1422256_at Sstr2 somatostatin receptor 2 2.19-102 1.54
1435935_at 2410131K14Rik RIKEN cDNA 2410131K14 gene 2.77 - 102 1.54
1436018_at Mex3a mex3 homolog A (C. elegans) 6.06 - 10~ 2 1.54
1424581 _at Stac2 SH3 and cysteine rich domain 2 5.52 .10 2 1.5

1451463_at Prr5 proline rich 5 (renal) 8.28 102 1.49
1417262_at Ptgs2 prostaglandin-endoperoxide synthase 2 5.24 - 102 1.48
1416554_at Pdlim1 PDZ and LIM domain 1 (elfin) 1.46 - 10~ 2 1.46
1440001_at Rian RNA imprinted and accumulated in nucleus 8.77-102 1.46

Table 4.19: Top 50 genes up-regulated in D2 iSPNs with chronic high-dose levodopa
treatment
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Set Name Matches Size of Set p-value Bonf adj p-val b-h FDR adj p-val

Myometrial Relaxation and Contraction Pathways 22 164 4.79-1078 4981076 4.98-1076
Kit Receptor Signaling Pathway 10 68 1.02-107% 1.06 - 1072 5.28 - 1073
IL-3 Signaling Pathway 11 102 7.47-107%  7.77-1072 2.59 - 1072
Calcium Regulation in the Cardiac Cell 13 154 2.53-1073 0.26 6.58 - 102
ErbB signaling pathway 6 46 4.63-1073 0.48 9.64-1072
TGF-beta Receptor Signaling Pathway 12 155 7.23-1073 0.75 0.11
EGFR1 Signaling Pathway 13 176 7.79-1073  0.81 0.11
PluriNetWork 19 303 8.7-1073 0.9 0.11
Splicing factor NOVA regulated synpatic proteins 5 42 1.39-1072 1 0.16
T Cell Receptor Signaling Pathway 10 134 1.71-1072 1 0.18
Leptin Insulin Overlap 3 17 1.91-1072 1 0.18
Apoptosis 7 83 2.37-1072 1 0.21
Signaling of Hepatocyte Growth Factor Receptor 4 34 2.81-1072 1 0.21
Glycogen Metabolism 4 34 2.81-1072 1 0.21
TGF Beta Signaling Pathway 5 52 3.23.102 1 0.21
IL-5 Signaling Pathway 6 70 3.27-1072 1 0.21
Diurnally regulated genes with circadian orthologs 5 55 3.98 - 1072 1 0.24
Insulin Signaling 10 157 4.43.1072 1 0.26
Androgen Receptor Signaling Pathway 8 118 5.02-1072 1 0.26
mRNA processing 24 494 5.58 - 1072 1 0.26

Table 4.20: Wikipathways pathways over-represented among genes changed in D2 dSPNs
upon dopamine depletion and chronic high-dose levodopa treatment
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4.5.3 Levodopa dose-dependent genes

To prioritize genes most likely to be relevant to emergence of levodopa-induced dyskine-
sia, we applied two complementary procedures. First, we directly compared expression
between the high-dose group (which develop more severe dyskinesias) to the low-dose
group. In addition, we used the AIM scores that quantify dyskinesia phenotype of individ-
ual mice, and fit linear models relating probe-set expression, dose, and AIM score, and
compared those models to assess the signficance of the relationship between expression,
dose, and dyskinesia (Figure @).

In dSPNs, 298 genes (409 probe sets) had significant positive dose-responses and
were associated with more severe AlMs, whereas 192 genes (230 probe sets) were anti-
correlated with dose and AlMs. No genes had statistically significant excess correlation
with AlMs, after accounting for the effect of dose and multiple testing adjustments; the
variability of AIMs across animals was much smaller than the effect of dose. In iSPNs, no
genes had significant correlations with either dose or AlMs after multiple testing adjust-
ment.

The genes in dSPNs that had the most significant correlations between expression and
dose (Table and Figure @) were Gpr39, Fndx9, Cstb, Trh, Srxn1, ler3, Tinf2, Cdk11b,
Nr4a2 (Nurr), Itch, Scp, and Fos1 (Fra-1). Of these, only Trh had been previously linked
to levodopa-induced dyskinesia [[17]. Fosb has previously been implicated in dyskinesia
[Andersson1999], and Fosl may have a similar role. ler3 (positively correlated) encodes
an inhibitor of protein phosphatase 2A-dependent ERK dephosphorylation, and thus may
enhance ERK signaling. Itch, whose expression is anticorrelated to AlMs, is an E3 ubiquitin
ligase that regulates c-Jun (Jun) levels. Surprisingly, no genes linked to CREB signaling

were among those with the most significant correlation between expression and dose.
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Probeset Gene Symbol Gene Description D1 high vs low bh pval D1 high vs low FC

5

1432260_at Gpr39 G protein-coupled receptor 39 8.04-107° 0.83
1436484 _at Fndc9 fibronectin type Ill domain containing 9 1.95-10~% 0.79
1422507_at Cstb cystatin B 1.95-10~% 1.08
1418756_at Trh thyrotropin releasing hormone 3.49-10~% 1.92
1451680_at Srxn1 sulfiredoxin 1 homolog (S. cerevisiae) 3.49 - 104 0.67
1452418_at 3.55.107% 1.24
1419647 _a_at ler3 immediate early response 3 3.55.10"% 1.12
1437166_at Tinf2 Terf1 (TRF1)-interacting nuclear factor 2 3.71-10"% 1.78
1442887_at 5.82.107% 1.51
1418841_s_at Cdk11b cyclin-dependent kinase 11B 6.11-10"% 0.86
1450750_a_at Nr4a2 nuclear receptor subfamily 4, group A, member 2 6.88 104 1.92
1415769 _at Itch itchy, E3 ubiquitin protein ligase 6.88 - 104 —0.59
1447863 _s_at Nrda2 nuclear receptor subfamily 4, group A, member 2 6.88 104 1.55
1449686_s_at Scp2 sterol carrier protein 2, liver 6.88 104 —0.67
1417488_at Fosl1 fos-like antigen 1 6.88 104 1.08
1418350_at Hbegf heparin-binding EGF-like growth factor 6.94 104 0.79
1460373_a_at Setd4 SET domain containing 4 7.46 104 1.15
1422256_at Sstr2 somatostatin receptor 2 7.46 104 1.04
1456886_at Zfp839 zinc finger protein 839 7.46 - 104 1.3
1417262_at Ptgs2 prostaglandin-endoperoxide synthase 2 7.57-10"% 2.05
1452417_x_at 7.64-107% 3.08
1419069 _at Rabgef1 RAB guanine nucleotide exchange factor (GEF) 1 7.87-10"% 0.74
1451163_at Tinf2 Terf1 (TRF1)-interacting nuclear factor 2 8.43-10~4 1.13
1451039_at Nop9 NOP9 nucleolar protein 8.9.1074 0.85
1437111_at Zc3h12c zinc finger CCCH type containing 12C 8.9.1074 0.84
1456819_at Nrn1l neuritin 1-like 8.99 .10 % 1.12
1417947 _at Pcna proliferating cell nuclear antigen 9.46 - 104 0.73
1435625_at Entpd7 ectonucleoside triphosphate diphosphohydrolase 7 9.48 - 104 0.83
1450749 _a_at Nrda2 nuclear receptor subfamily 4, group A, member 2 9.48 - 10~ % 1.76
1453029_s_at Ubr3 ubiquitin protein ligase E3 component n-recognin 3 1.08 1073 —0.69
1417487 _at Fosl1 fos-like antigen 1 1.08 1073 1.82
1451534 _at Scgn secretagogin, EF-hand calcium binding protein 1.08 1073 0.94
1452463_x_at 1.08 1073 2.15
1428301_at 1.13-1073 1.27
1416271_at Perp PERP, TP53 apoptosis effector 1.13-1073 1.31
1420858_at Pkia protein kinase inhibitor, alpha 1.13-1073 —0.6
1455034 _at Nrda2 nuclear receptor subfamily 4, group A, member 2 1.13-1073 1.49
1460275_at Gpr3 G-protein coupled receptor 3 1.13-1073 0.91
1425661 _at Cdadc1 cytidine and dCMP deaminase domain containing 1 1.13-1073 —0.89
1415855_at Kitl kit ligand 1.41-1073 0.78
1427931_s_at Pdxk pyridoxal (pyridoxine, vitamin B6) kinase 1.55 1073 0.73
1426208 _x_at Plagl1 pleiomorphic adenoma gene-like 1 1.55-1073 0.69
1451714_a_at Map2k3 mitogen-activated protein kinase kinase 3 1.55 1073 0.93
1427660_x_at 1.63-1073 2.96
1428157 _at Gng2 guanine nucleotide binding protein (G protein), gamma 2 1.63-1073 —1.44
1427455_x_at 1.68 103 2.92
1418778_at Ccdc109b coiled-coil domain containing 1098 1.7-1073 1.2
1430029_a_at Tspan31 tetraspanin 31 1.7-1073 0.62
1419283_s_at Tnst tensin 1 1.78 1073 1.03
1460455_at Ubr3 ubiquitin protein ligase E3 component n-recognin 3 1.78 1073 —0.82
1441165_s_at Clstn2 calsyntenin 2 1.8-1073 0.63
1434496_at PIk3 polo-like kinase 3 1.8.1073 1.01

Table 4.21: Probesets with greatest dependence on levodopa dose in D1 dSPNs, sorted
by significance of difference betwen high- and low-dose groups.
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Figure 4.8: Representative examples of dose-dependent, AlM-correlated probe-sets with different patterns of responses to
dopamine depletion and levodopa treatments in Drd1a dSPNs. (Upper) Scatterplots of total AIM score vs. log2 gene ex-
pression. Each point represents the gene expression measurement and AIM score from a single mouse. Colors indicate
treatment groups (see key, Upper Left). (Lower) Box-plots summarizing gene expression across treatment groups. (A) Gpr39
(1432260_at): Expression decreases with dopamine depletion, increases significantly with chronic levodopa treatment, and
expression depends on levodopa dose. (B) Fosl1 (1417488_at): Expression is unchanged by dopamine depletion, increases
significantly with chronic levodopa, and expression depends on levodopa dose. (C) ler3 (1419647_a_at): Expression is un-
changed by dopamine depletion, increases dramatically with chronic levodopa treatment, and depends on levodopa dose.
(D) Itch (1415769_at): Expression is unchanged by dopamine depletion, decreases significantly with levodopa treatment, and
depends on levodopa dose



MAPK signaling was among the pathways most significantly enriched within the genes
with expression correlated with dose in dSPNs (Table ), while cell-cycle control, DNA
replication, and B-cell receptor signaling were over-represented within anti-correlated
genes (Table ). Motifs overrepresented in promoters of dose-correlated genes in-
cluded CREB, AP-1, and ERK-dependent motifs (Table ?? and ).
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Set Name Matches  Genes in Overlap Size of Set  p-value Bonf adj p-val b-h FDR adj p-val
MAPK signaling pathway 22 TGFB1, NGF, TGFB3, 160 1.52.107% 1.78.107% 1.78 - 1074
ACVR1C, RAP1B, IL1A, HSPAS,
GADD45A,  JUN, MAP3K4,
MAPK4, ~ DUSP5,  DUSP4,
DUSP1, SRF, NR4A1, JUND,
NFKB1, DUSP10, RPS6KA3,
PRKACA, ATF4
TGF-beta Receptor Signaling 18 XPO1, TGFB1, ACVRL1, SDC2, 155 1.29-10"% 1.51-1072 5.68 - 103
Pathway FOSB, STK11, JUN, JUND,
AP2B1, MAP2K3, FOXO1,
TFDP2, JUNB, FOXO4, SMAD7,
TGFB3, CDKN1A, CTNNB1
Hypertrophy Model 6 NR4A3, JUND, HBEGF, VEGFA, 20 1.46-10"% 1.7.-102 5.68 - 1073
DUSP14, IL1A
Senescence and Autophagy 10 TGFB1, FN1,  CDKN1B, 60 2.25-10"%  2.63-1072 6.57 - 103
CDKN1A, SH3GLB1,  IL6ST,
MAP2K3, MAP1LC3A, SER-
PINB2, ING1
Cholesterol Biosynthesis 5 IDI1, MVK, CYP51, PMVK, 16 4.33-107%  5.06-1072 1.01-1072
HMGCR
EGFR1 Signaling Pathway 17 ERRFI1,  RPS6KA3,  EPS8, 176 1.63-1073  0.19 3.17-1072
DUSP1, JUN, JUND, MAP3K4,
ARF4, KRT17, SPRY2, FOXO1,
JAK2, PRKAR1A,  ELK4,
MAP2K3, PITPNA, STXBP1
Diurnally regulated genes with 8 BTG1, PIGF, IDI1, ERC2, AZIN1, 55 2.34.107%  0.27 3.9.1072
circadian orthologs GSTM5, PER1, GFRA1
Integrin-mediated cell adhesion 11 ITGB4, ARHGEF7, RAP1B, 97 3.05-1073  0.36 4.46 - 1072
ITGA6, MAP2K3, VASP, ITGAV,
MAPK4, PAK6, TNS1, PAK3
Adipogenesis 13 TGFB1, KLF5, KLF6, GADD45A, 135 5.62-1072  0.66 7.3.1072
GADDA45B, NRIP1, PPARGC1A,
HIF1A, IL6ST, CTNNB1, MEF2B,
FOXO1, IRS2
Insulin Signaling 14 MAP2K3,  RPS6KA3, SRF, 157 8.1-1073 0.95 9.11-10~2
RPS6KA6, JUN, ARF6, SLC2AT,
STXBP1, FOXO1, MAP3K4,
MAPK4,  MAP4K5,  PTPNT,
RHEB
Dopminergic Neurogenesis 5 NR4A2, TGFB1, TH, RET, PITX3 30 8.56-1073 1 9.11-10"2
MicroRNAs in cardiomyocyte hy- 9 TGFB1, FZD2, IL6ST, CTNNB1, 85 1.09 - 1072 1 0.11
pertrophy MAP2K3, MAPK4, IKBKE,
NFKB1, CDK9
PluriNetWork 22 TGFB1, ACVRIC, CDKN1A, 303 1.23-1072 1 0.11
SMAD7, JARID2,  ERCCS,
HIF1A, IL6ST, CTNNB1, EP400,
SMARCAS, STK40, GADD45A,
CDK2AP1, KLF5, PERP, KDM6B,
NFKB1, PIM3, PIM1, PRKACA,
CTBP2
Alanine and aspartate 3 PCX, GAD1, GAD2 12 1.31-1072 1 0.11
metabolism
Circadian Exercise 7 BTG1, PIGF, IDI1, ERC2, AZIN1, 61 1.56 - 1072 1 0.12
PER1, GFRA1
G1 to S cell cycle control 7 PCNA, CDKN2C, CDKN1B, 62 1.7-10"2 1 0.12
CDKN1A, MCM6, GADDA45A,
TFDP2
Wnt Signaling Pathway NetPath 10 FzZD2, CSNK1AT1, FzD8, 109 1.93 .10 2 1 0.12
TBP, JUN, FRAT2, CTNNBI,
CSNK1D, BCLY, CTBP2
Biogenic Amine Synthesis 3 GAD2, GAD1, TH 14 2.04-10"2 1 0.12
FAS pathway and Stress induc- 5 IL1A, ARHGDIB, JUN, MAP- 37 2.05-10"2 1 0.12
tion of HSP regulation KAPK3, CFLAR
IL-1 Signaling Pathway 5 IL1A, SQSTM1, PELI, IRAK3, 37 2.05-1072 1 0.12

NFKB1

Table 4.22: Wikipathways pathways over-represented among dose-dependent positively
correlated genes in D1
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Set Name Overlap Genes in overlap Genes in group p-value bonferroni b-h fdr adj pval
Cell cycle 11 HDAC2, SMAD4, CCND2, 89 1.84-10"% 1.78-102 9.97.1073
ORC2, ORC3, GSK3B, MCM7,
ORC6, PTTG1, WEE1, CCNH
G1toS cell cycle control 9 ORC6, CCND2, ORC2, ORC3, 62 2.05-10~% 1.99-1072 9.97-10"3
RPA2, MCM7, CDK7, WEET,
CCNH
DNA Replication 7 ORC6, RFC1, ORC2, ORC3, 42 4.4-1074% 4.27-1072  1.42.1072
RPA2, MCM7, POLD3
B Cell Receptor Signaling Path- 14 PTK2,  PIPSK1C, CCND2, 163 1.18-1073  0.11 2.85-1072
way CREB1, GSK3B, IKBKB,
PDK2, PLEKHA1, PIK3R1,
CDK7, PPP3CA, WAS, RASA1,
PIP4K2C
Diurnally regulated genes with 6 ARNTL, CLOCK, SUMO3, CRY1, 55 9.85 .10 3 0.96 0.17
circadian orthologs VAPA, UGP2
Regulation of Actin Cytoskele- 11 PTK2, CYFIP2, PIP5K1C, NRAS, 149 1.16 - 10~2 1 0.17
ton MRAS, CHRM1,  MAPKS,
PIK3R1, FGF11, WAS, PIP4K2C
Cardiac Hypertrophy: miR-208 2 MED13, MYH7 6 1.53.1072 1 0.17
Circadian Exercise 6 ARNTL, CLOCK, SUMO3, CRY1, 61 1.6-1072 1 0.17
VAPA, UGP2
TNF-alpha NF-kB  Signaling 13 NR2C2, HDAC2,  TRAF3, 198 1.6-1072 1 0.17
Pathway MCM?7, GSK3B, IKBKB, PTK2,
KPNA3, SMARCE1, PML, CYLD,
CRADD, BCL7A
Toll Like Receptor signaling 4 IKBKB, NR2C2, TRAF3, RALBP1 33 2.35.102 1 0.21
Delta-Notch Signaling Pathway 7 HDAC2, ITCH, SMAD4, GSK3B, 85 2.36 - 102 1 0.21
SNW1, PIK3R1, HIVEP3
Circadian clock tuto- 1 CLOCK 1 3.34-1072 1 0.26
rial_CarlosBorroto
methylation 2 COMT, MAT2B 9 3.44-1072 1 0.26
Translation Factors 5 EIF4E, EEF1A1, EEF1D, EIF6, 57 4.14-10"2 1 0.29
EIF2S2
PluriNetWork 16 ZMYM2, GATAD2B, HDAC2, 303 4.89 1072 1 0.32
ETV5, LEO1, SMAD4, NR2F1,
CREB1, GSK3B, KDMA4C,
NEDDA4L, CTR9, PHF17, IPO9,
PML, CTCF
estrogen signalling 6 HDAC2, CREB1, IKBKB, 81 5.38 - 1072 1 0.33
POLR2G, CDK7, CCNH
EGFR1 Signaling Pathway 10 NCK2, RALBP1, ITCH, EEF1A1, 176 7.18 - 1072 1 0.39
NRAS, CREB1, PIK3R1,
SH3BGRL, RASA1, SH3GL2
Calcium Regulation in the Car- 9 RGS20, GNB4, CAMK2G, PKIA, 154 7.39 . 1072 1 0.39
diac Cell GNAZ, GNG2, CHRM1, RGS2,
GNA11
TGF-beta Receptor Signaling 9 SNW1, SMAD4, CAMK2G, 155 7.63-1072 1 0.39
Pathway NFYA, NFYC, MEF2A, PIK3R1,
ZEB1, CTCF
Alphab6-Beta4 Integrin Signaling 5 EIFAE, LAMB1, PTK2, EIF6, 69 8.07 - 1072 1 0.39
Pathway PIK3R1

Table 4.23: Wikipathways pathways over-represented among dose-dependent negatively
correlated genes in D1 dSPNs
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Overlap Motif Genes in group P-value Total motif occurrences BH adj p-val

75 ATF5_CREB3.p2 298 1.33-10712 2,370 2.31-10" 10
63 JUN.p2 298 2.54-10712 1,812 4.4-10710
246 SP1.p2 298 1.34-107% 14,315 2.3-1077
189 TFDP1.p2 298 2.08 109 10,211 3.55-1077
225 KLF4.p3 298 3.24 109 13,075 5.51-10"7
221 PATZ1.p2 298 7.31-10"° 12,837 1.24-1076
199 TFAP2A,C.p2 298 1.9.-1078 11,209 3.19-1076
56 EP300.p2 298 6.83-1078 1,963 1.14-107°
225 MAZ.p2 298 1.83.1077 13,533 3.03-107°
160 TFAP2B.p2 298 5.29 107 8,716 8.73 1072
37 ATF4.p2 298 6.52- 107 1,130 1.07-107%
131 HIC1.p2 298 1.32.10~° 6,807 2.15- 104
140 PAX5.p2 298 1.05-107° 7,682 1.69-1073
32 FOS_FOSB,L1_JUNB,D.p2 298 1.45-107° 1,042 2.33.1073
51 PAX2.p2 298 4.06-107° 2,127 6.48 - 103
27 ATF2.p2 298 4.62-107° 858 7.32-1073
142 TCF4_dimer.p2 298 7.08 102 8,090 1.11-10~2
101 MAFB.p2 298 7.36-107° 5,292 1.15-1072
35 CREB1.p2 298 1.02-107% 1,312 1.58 - 1072
136 SPI1.p2 298 1.19 - 10~4 7,746 1.83-1072
156 GTF2l.p2 298 1.81-10~4 9,237 2.75.1072
90 NHLH1,2.p2 298 3.1-1074 4,758 4.64-1072

Table 4.24: Motifs over-represented among dose-dependent up-regulated genes in
dSPNs

Overlap Motif Genes in group P-value Total motif occurrences BH adj p-val
90 ELF1,2,4.p2 192 6.01-10"° 7,322 9.93.1073
115 TFDP1.p2 192 1.13-107% 10,211 1.85-1072
90 PAX5.p2 192 3.99.10"% 7,682 6.34-102

Table 4.25: Motifs over-represented among dose-dependent down-regulated genes in
dSPNs
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Figure 4.9: Expression of Genes in Key Pathways involved in LID and MSN function. Path-

way cartoon was adapted from []
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Figure 4.9: continued
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Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Dataset 6

Dataset 7

Dataset 8

Dataset 9

Dataset 10

Dataset 11

Dataset 12
Dataset 13

Dataset 14
Dataset 15
Dataset 16
Dataset 17

Dataset 18

Dataset 19

Dataset 20

Probe-sets with significant changes (Benjamini-Hochberg adjusted P values <
0.10) of at least 1.5-fold up or down in dSPNs following dopamine depletion and
chronic saline treatment

Probesets for genes with significant differential expression upon dopamine de-
pletion in both dSPNs and iSPNs

Probe-sets with significant changes (Benjamini-Hochberg adjusted P values <
0.10) of at least 1.5-fold up or down in iSPNs following dopamine depletion and
chronic saline treatment

Enriched pathways from Wikipathways in dopamine-depleted dSPNs

Enriched pathways from Wikipathways in dopamine-depleted iSPNs

Probe-sets with significant (Benjamini-Hochberg adjust P value < 0.10) changes
of at least 1.5-fold up or down in dSPNs with low-dose chronic levodopa following
dopamine depletion

Enriched Wikipathways pathways among genes differentially expressed with low-
dose levodopa in dSPNs

Probe-sets with significant changes (Benjamini-Hochberg adjusted P value < 0.10)
of at least 1.5-fold up or down in dSPNs with high-dose chronic levodopa treat-
ment following dopamine depletion

Probe-sets with significant (Benjamini-Hochberg adjustd P value < 0.10) changes
of at least 1.5-fold up or down in dSPNs with high-dose levodopa that also had
any statistically significant changes with low-dose levodopa

Wikipathways pathways enriched among genes altered by high-dose levodopa in
dSPNs

Motifs enriched within promoter regions (as predicted by SwissRegulon) of genes
with altered expression in dSPNs upon chronic high-dose levodopa treatment
Differentially expressed probe-sets in iSPNs with low-dose chronic levodopa
Differentially expressed probe-sets (Benjamini-Hochberg adjusted P value < 0.10,
at least 1.5-fold up or down) in iSPNs with chronic high-dose Levodopa
Probe-sets significantly altered (= 1.5 fold-change up or down) by high-dose lev-
odopa in both dSPNs and iSPNs

Wikipathways pathways enriched in genes altered by high-dose levodopa in iSPNs
Probe-sets differentially expressed between high- and low-dose levodopa
Wikipathways pathways enriched among dose-dependent positively correlated
genes in dSPNs

Wikipathways pathways enriched among dose-dependent negatively correlated
genes in dSPNs

Motifs enriched within promoter regions of genes with significantly altered ex-
pression in dSPNs between chronic high-dose and chronic low-dose levodopa
treatment

Complete table of statistics for all probe-sets and comparisons performed

Table 4.26: List of data tables containing major results of PD LID analysis
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4.6 Discussion

4.6.1 Homeostatic regulation of signaling

Many of the expression changes observed can be interpreted as homeostatic changes in
response to activation of pathways previously known to be activated by the dopamine
receptors (see Figure @). Although there was no evidence of of direct modulation of
levels of the dopamine receptors themselves, several genes likely to directly regulate G-
protein signaling were up-regulated upon chronic L-DOPA treatment, including Rgs16 in
iSPNs and Rgsé in dSPNs. Rgsé has a GTPase-activating function towards G, .5 (the
principal G-protein coupled to Drd1a receptors in dSPNs) and so would be exerting a
homeostatic down-regulation of Drd1a signaling in dSPNs. Rgs16 has a GTPase-activating

function towards G;,, and therefore would negatively regulate Drd2 signaling.

i/qr

4.6.2 Changes to other receptors

Among the metabotrophic receptors, Sstr2 and Sstr4 were up-regulated in dSPNs. The
somatostatin receptors are G; coupled, and their signaling is likely antagonistic to the
increased Drd1a signaling in dSPNs. Since there are already somatostatin receptor lig-
ands in clincal use and development for other indications, these receptors may present

an attractive potential target for modulating SPN activities.

4.6.3 Genes most associated with dose and development of dyskinesias

Many of the genes with the greatest correlations to dose - Gpr39, Fndx9, Cstb, Trh, Srxn1,
ler3, Tinf2, Cdk11b, Nr4a2 (Nurr), Itch, Scp, and Fos1 (Fra-1) - had not been previously
connected to dyskinesia. Of these, Gpr39, being a GPCR in the grelin family, may be
a potential therapeutic target. Nr4a2 (Nurr1), an orphan nuclear receptor known to be
involved in development and maintenance of dopaminergic neurons [?6], has dramatic
expression changes in both cell types and may be regulating some of the transcriptional
changes observed. Because of its role in dopaminergic neuron development, Nr4a2 has
already been considered as a potential target in PD [28], and this role is reinforced by our

observations.
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Chapter 5

Background: Transcriptional Dysregulation in Huntington Disease

This chapter provides a brief review of the biology of Huntington Disease, and the mouse
models of HD that have been developed. We discuss the importance and potential mech-
anisms of transcriptional dysregulation in HD, and define the major questions to be inves-

tigated in chapters 6, 7, and 8.

5.1 Huntington Disease

5.1.1 Clinical description and incidence

Huntington Disease (HD) is an autosomal dominant inherited neurodegenerative disorder
that causes progressive motor, cognitive and psychiatric symptoms, and eventually leads
to death [11]. Symptoms typically only become clinically evident in middle age, which
makes HD particularly devastating and contributes to its transmission to successive gen-
erations. The prevalence of HD in Western populations may be as high as 1 in 7,300,

making it the most common monogenic neurological disease [[11]].

5.1.2 Genetics of Huntington’s Disease and Huntingtin

The genetic defect responsible for HD was mapped in 1993 [130], and found to be an
expansion in a CAG trinucleotide repeat in exon 1 of a gene, HTT, located at 4p16.3. HTT
encodes a large, 348kDA protein, Huntingtin, with pleiotropic and still poorly understood
function.

The CAG repeat in HTT codes for a polyglutamine tract near the N-terminus of the

protein. The length of this repeat varies, and only causes disease when longer than 35
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CAG repeats. The disease is incompletely penetrant for alleles with 36-39 repeats, but is
fully penetrant when repeat length exceeds 40.

Two genetic characteristics of Huntington disease are notable and should be accounted
for by potential explanations of the disease mechanisms [44]. First, the Huntington dis-
ease allele is dominant, its effects are independent of gene dose, and beyond the critical
CAG threshold of 40 repeats, it is fully penetrant. This implies that the pathophysiolog-
ical mechanism is a toxic gain of function. Second, the timing and severity of disease is
correlated with the number of CAG repeats. Soon after the discovery of the HTT gene, it
was recognized that the number of repeats is both highly variable and unstable through
parental transmission [33]. Alleles with more than 45 repeat units often cause a juvenile
form of HD, and age of onset is inversely correlated with repeat lengths extending to
~80 repeats, while the more common disease alleles with ~40 repeats lead to the classic

presention of HD symptoms in middle age.

5.1.3 Normal functions of Huntingtin

The Huntingtin gene is highly conserved over evolution. Loss of Huntingtin is lethal in
mice, and the human HTT gene can compensate for loss of the mouse gene to rescue the
embryonic lethal phenotype [54]. In addition to the polyglutamine tract, Huntingtin con-
tains several HEAT-repeat domains, which are thought to be involved in protein-protein
interactions. Huntingtin is found in many cellular compartments, and translocates be-
tween the cytoplasm and nucleus.

Huntingtin protein interactions and complexes have been studied systematically by
yeast two-hybrid screens and by immunoprecipitation and mass spectrometry [63, [111,
132]. Huntington seems to interact with hundreds of proteins having diverse functions,
including 14-3-3 signaling, presynaptic and post-synaptic organization, calcium signaling,
cytoskeletal organization, and mitochondrial function. Huntingtin also interacts with many
transcriptional regulators, including CBP [[121], TBP[57], SP1[31], REST[145], MeCP2 [87],
and the PRC2 complex subunits Ezh2 and Suz12 [109].
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5.1.4 Anatomical specificity and selective vulnerability in HD

HD patients exhibit atrophy of brain tissue by MRI and pathological examination, partic-
ularly of the caudate and putamen, years before the manifestation of motor symptoms.
Later in the course of disease, degeneration of the cortex and other brain regions is ap-
parent, but the striatum is most severely affected. Given the ubuiquitous expression of
the huntingtin protein, both in neurons and other cell types, the selective vulnerability of
striatal medium-spiny neurons (MSNs) to the effects of mutant huntingtin remains myste-

rious.

5.1.5 Other polyglutamine repeat diseases

In addition to HD, eight other dominant gain-of-function neurological disesases are caused
by expansions of polyglutamine repeats (listed in Table ). Each tends to selectively af-
fect specific brain structures and cell types [?3]. The existence of these diseases strongly
suggests some common pathophysiological mechanism involving the polyglutamine do-
main, and the diverse structures affected offer examples to motivate hypotheses about

mechanisms of cell-type specificity.

5.2 Huntington Pathophysiology and Polyglutamine Toxicity

Multiple molecular mechanisms contribute to Huntingtin pathogenicity. Labbadia and
Morimoto provide a recent review [70], in which they propose that Huntingtin contributes
to five major pathogenic processes: impaired protein degradation; altered protein fold-
ing; disrupted neuronal circuitry; mitochondrial dysfunction; and transcriptional dysregu-
lation.

Mutant Huntingtin protein tends to form insoluble aggregates and inclusions, which
can be found in both the cytoplasm and nucleus [101]]. The presence of these aggregates
might overwhelm normal cellular capacities for facilitating protein folding and degrada-
tion. Other proteins, such as transcription factors that interact with Huntingtin physio-
logically, may also be sequestered within aggregates and thus inhibited from performing

their normal functions.
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Disease

Protein

Symbol

Selectively
Vulnerable
Regions

Normal
Repeat
Length

Expanded
Repeat Len

HD

SCA1

SCA1

SCA3

SCA6

SCA7

SCA17

SBMA

DRPLA

Huntingtin

Ataxin1

Ataxin2

Ataxin3

CACNATA

Ataxin7

TATA-binding
protein

Androgen
Receptor

Atrophin-1

HTT

ATXN1

ATXN2

ATXN3

CACNATA

ATXN7

TBP

AR

ATN1

Caudate and
Putamen
(GABAergic
MSNs); Cere-
bral cortex
Cerebellum;
brain stem (inf.
olive)
Cerebellum;
brain stem (inf.
olive)
Cerebellum;
basal ganglia;
brain stem and
SC (but not inf.
olive)
Cerebellum;
brain stem (inf.
olive)
Cerebellum;
brain stem (inf.
olive); photore-
ceptors
Cerebellum;
brain stem (inf.
olive)

Anterior horn
cell, bulbar
neuron, dorsal
root gangliion
Cerebellum;
cortex; globus
pallidus; stria-
tum

6-34

6-44

15-24

13-36

4-19

4-35

25-42

9-36

7-34

36-121

39-82

32-200

61-84

10-33

37-306

47-63

38-62

49-88

Table 5.1: Human diseases caused by polyglutamine expansions

921



mHTT may interfere with mitochondrial function, both through direct interactions with
mitochondrial membrane proteins and effects on mitochondrial trafficking, leading to im-
paired energy metabolism and increases in oxidative stress [[70].

mHTT can potentially affect synaptic signaling, which is highly dependent on protein
trafficking and turnover, through indirect effects on energy metabolism, proteostatis, and
transcription. Large aggregates could also physically interfere with microtubule-mediated

transport of materials to the synapse.

5.3 Mouse Models of Huntington Disease

Since human brain tissue cannot be studied directly as Huntington disease progresses,
several transgenic mouse models have been developed [89]. Expression of HTT proteins
with expanded polyglutamine alleles generate behavioural and motor phenotypes in mice

which model key aspects of human HD.

5.3.1 R6/2 N-terminal mHTT model

The R6/2 model was the first transgenic mouse model of HD to be developed. Man-
giarini et al. found that expression of only Exon 1 of the human HD gene, containing
the expanded CAG repeat, was sufficient to produce a neurological phenotype [83] in
C57BL/6 mice. The model was generated by integration of a very small 1.9kb fragment
consisting of the endogenous human promoter and first exon of HTT. The number of CAG
repeats in these mice is much larger (>150) than that needed to cause human disease (40);
also, it was found that the number of repeats is unstable and increases over time as the
gene is propagated through the germline. The progression of disease is rapid, with onset
of phenotype in the original R6-2 line at 9-11 weeks, and death at 10-13 weeks. The brain
(and striatum) in R6-2 mice is smaller than in controls, although the progressive atrophy
and neurodegneration characteristic of human HD is not observed, perhaps because the

disease develops so quickly in the model.
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5.3.2 YAC128 full-length mHTT model

Slow and colleagues generated transgenic mice which integrated YAC constructs contain-
ing a full-length version of the human Htt gene with 128 CAG repeats[115] into the FVB/N
background strain. Earlier YAC-based full-length models constructed by the same group
with 46 or 72 repeats had a more variable and mild motor phenotype that developed too
slowly to be studied efficiently. Slow's YAC128 model develops a phenotype slower than
R6-2 but faster than YAC46 and YAC72, and is more consistent and easily measurable.
YAC128 mice, as originally described, have a hyperkinetic phenotype that emerges at 3
months, followed by a motor deficit measurable by rotarod assay by 12 months. Striatal
and cortial atrophy and quantitative loss in the number of striatal neurons can also also be
detected by 12 months. This combination of phenotypes recapitulates many of the key
features, including the progressive neurodegeneration, of human HD. Slow suggested
that the background strain used for the YAC128 model, FVB/N, may be more vulnerable
to excitotoxicity which may contribute to the progressive neuron loss seen in YAC128 that

was not detected in the R6/2 model.

5.3.3 Knock-in models of HD

In contrast to the transgenic models, in which an additional copy of the Human mHTT
gene (or exon 1) is inserted randomly into the mouse genome, knock-in models have an
expanded CAG tract inserted into one or both of the endogenous mouse huntingtin genes
[110, 138, 88]. Since the number of copies of the Htt gene remains normal, and the gene
is expressed under the control of its endogenous promoter, knock-ins should in principle
provide a more physiologically realistic model of Huntington’s. The first knock-in models,
however, with 50-80 CAG repeats, did not exhibit the severe motor phenotypes seen
in HD and some of the transgenic mouse models. Knock-ins with longer repeats, such
as Q90, Q111, and Q150, do develop rather slowly progressing motor deficits, as well as
neuropathological phenotypes including nuclear aggregates. Although less convenient to
study, the slow progression of disease in these knock-in models may better mimic the late

onset of clinical symptoms characteristic of adult-onset Huntington disease in humans.
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5.4 Transcriptonal profiling and dysregulation in HD

It has been well established that prior to cell loss and neurodegeneration in HD, there are
changes to neuronal function reflected in altered levels of neurotransmitters and neuro-
tranmitter receptors [20]. In situ hybridization of human brains from early stages of HD
showed changes in levels of D1 and D2 receptor mRNA and several other transcripts in-
volved in neuronal signaling. These initial observations motivated efforts to profile gene
expression systematically in cell-based systems, postmortem human brains and in the

transgenic mouse models of HD.

5.4.1 Human brains

Hodges and colleagues measured mRNA expression in the caudate nucleus, cerebellum,
prefrontal association area (BA9), and motor cortex (BA4), comparing 44 human brains at
early stages of disease (grades 0-2) to 36 unaffected controls [53]. As was expected based
on the selective regional vulnerability, a majority of expression changes (nearly 10,000
nominally significant genes) were seen in the caudate, and there were many fewer changes
in the cerebellum, which is less vulnerable to neurodegeneration. In the cortex, BA4 had
more changes than BA9. The very large numer of genes with changes in affected parts
of the HD brain makes functional interpretation difficult, but suggests that transcriptional

dysregulation is a central feature of the HD disease process.

5.4.2 Mouse Models

Using microarrays, Kuhn et. al [69] profiled striatal mMRNA expression in seven different
transgenic mouse models of HD, including the R6-2, YAC128, and knock-in models de-
scribed above. As in the human studies, thousands of genes have differential expres-
sion when compared to wild-type controls. The various models generally exhibit similar
changes, and there was not a clear distinction that could be made between the transcrip-
tional impacts of full-length vs. exon-1-only models. Kuhn also noted the statistically
significant concordance between these mouse models and expression changes in human

HD as reported by Hodges, especially, though not exclusively, among downregulated
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genes.

5.4.3 Cell-based Models

Several studies have looked at transcriptional changes caused by mHTT in cell-based
models. While cells are potentially less faithful to actual disease processes, they can be
much easier to manipulate and study. For example, Sipone et al. used an inducible system
to profile the effects of expressing mutant Huntingtin fragments of various CAG repeat
lengths in the ST14A rat striatal-derived cell line [114]. Expression changes to genes
involved in signaling, vesicle trafficking, RNA processing, and lipid metabolism were seen
within 12 hours of inducing expression of mutant huntingtin, well before the formation of

protein aggregates or cytotoxicity.

5.4.4 Challenges in interpreting HD transcriptional dysregulation

There has been meager progress in interpreting the many transcriptional changes seen
in the human HD brains or the mouse models in terms of mechanisms that explain either
the development or the consequences of Huntington disease. With relatively few time
points (especially from human data), it is difficult to distinguish changes directly caused
by mHTT and contributing to the disease process from homeostatic or adaptive changes
generated in response to the disease. There are also likely both HD-specific processes
and more general responses to cellular stress (eg. from aggregation of toxic proteins and
excitotoxicity) represented in any snapshot of transcription. Stresses on neurons may be
due either to intrinsic processes or to abnormal signaling from other affected neurons,
and this is also difficult to untangle. Finally, studies of transcription from whole tissue
measure mixtures of many different neuronal and non-neuronal cell types. Although the
studies described above have demonstrated that the number and magnitude of expres-
sion changes observed does tend to correlate with the selective regional vulnerability of
the striatum, it is likely that many relevant cell-type specific changes within the striatum

and other structures cannot be detected using measurements from homogenized tissue.
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5.5 Potential mechanisms of transcriptional dysregulation in HD

Nearly every known transcriptional regulatory mechanism has been proposed to be in-
volved in how mHTT leads to transcriptional changes. Moumne et al. [91]] provide a
recent review of transcriptional regulatory processes that have been associated with Hunt-

ington’s.

5.5.1 Interactions with transcription factors, co-activators, and repressors

Huntingtin interacts with several transcription factors essential to neuron development
and survival. Zuccato et al. found that Huntingtin interacts with REST [145], a repressive
factor critical to survival of neurons in old age [/9]. Soluble Htt also interacts with and
inhibits the function of Sp1 [31], and this interaction is polyglutamine-length dependent.
Sp1 is a widely expressed transcriptional activator involved in assembly of TFIID, one of
the general transcription factor complexes involved in initiation of RNA polymerase Il tran-
scription, with particular importance in neurons and a role in regulation of D2 dopamine

receptor and NGFR [76] transcription.

5.5.2 Effects on miRNA

After years of neglect, the functional and regulatory importance of non-coding RNA has
recently been recognized. One important class of such RNAs with important functions in
neural development are the miRNAs [[125]. Hoss et al. [56] quantified both miRNA and
mRNA expression using sequencing, in 12 human brains with HD and 9 control brains,
and found HD-specific changes to several miRNAs. Several of the most differentially ex-
pressed miRNAs were encoded within Hox gene clusters, which are canonical targets of
H3K27me3 deposition and regulation by the PRC2 complex [85]. Moreover, several ad-

jacent Hox genes were also upregulated.

5.5.3 Epigenetic mechanisms

With the emergence of ChiIP-seq and related technologies, there has been increasing

recognition of the epigenetic regulation of transcription, through DNA methylation and
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the many histone modifications that modulate chromatin structure and accessibility [[128].

A wide variety of epignetic changes have been observed in HD models.

DNA Methylation Using bisulfite sequencing, Ng and colleagues found that mHTT caused
significant changes to DNA methylation in a strial-derived cell line [92]. These changes
were locus specific, and associated with the presence of sequence motifs recognized by

the CREB, AP-1, SOX, and ETS families of TFs.

Histone acetylation Valor et al. observed significant hypoacetylation of H3K9,14, and
H4K12 in HD82Q knock-in mice, though only a small subset of these acetylation changes

were correlated with changes in gene expression [135].

Histone methylation The methylation states of lysine 4 and lysine 27 of Histone 3 are
thought to have a particularly important role in defining active vs. repressed loci over
development and differentiation [9Q].

Vashistha et al. observed changes in H3K4me3 marks in both R6/2 mice and hu-
man HD brains [[134]. H3K4me3 tends to be associated with a transcriptionally active
state, and promoters with reduced H3K4me3 were associated with decreased expres-
sion. Vashishtha also noted that a specific spatial distribution of the H3K4me3 signal, ex-
tending further into the coding region, was particularly prevalent among down-regulated
genes. Furthermore, the expression changes due to H3K4me3 dysregulation appeared
to be relevant to HD pathology. Knocking down Jarid1, the H3K4 demethylase, restored
the expression of genes such as Bdnf in cultured neurons from the BACHD mouse, and
was protective against degeneration of neurons in a Drosophila model.

A potential connection between Huntingtin and H3K27 methylation was first proposed
by Seong et al. [[109]. Huntingtin is essential for proper embryonic development, and
Seong observed that huntingtin-null mouse embryos had phenotypes similar to those
lacking Ezh2, Suz12, or Eed, constituents of the Polycomb Repressive Complex (PRC2)
responsible for trimethylation of H3K27. PRC2 function was also impaired in the absence
of Huntingtin, and the Huntingtin protein formed a complex with PRC2 and increased its

methyltransferase activity in vitro.
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Motivated by these observations, Biagioli et al. [[15] studied the effects of Huntingtin
knockout and expanded CAG repeats on histone modifications and mRNA expression in a
panel of isogenic mouse embryonic stem cell lines (ESC) and ES-derived neural progenitor
cells (NPC). They observed that changes in Htt (knockout or expanded CAG repeats) did
not generate obvious phenotypes in either the ES or NPC cells.

Htt knockout decreased the number of H3K27me3 enriched transcription start sites,
but but did not have a significant effect on the other histone marks assayed, H3K36me3
or H3K4me3. The majority of the H3K27me3 sites that were affected were the so-called
bivalent loci, sites marked by both H3K27me3 and H3K4me3 [?0]. Such sites in wild-type
ES cells lost their H3K27me3 marks and had only H3K4me3 (classified as ‘active’ loci) in
the Htt-null ESCs, while in NPCs, there was an overall increase in bivalent loci. However,
some loci switched from being bivalent to active in Htt-null NPC, and other loci that nor-
mally become active in WT NPCs retained the H3K27me3 mark and incorrectly remained
bivalent in the Htt-null NPCs. This suggested that Htt can affect both H3K27me3 depo-
sition and removal.

Given the importance of repeat-length dependence to HD pathogenesis, Biagioli also
investigated the effects of Htt with different numbers of CAG repeats, identifying loci with
changes in histone marks correlated with increasing CAG repeat length. Across both ESCs
and NPCs, several loci had such repeat-length correlated changes in both H3K27me3
and H3K4me4. The majority of affected loci were different to those changing in the Htt-
null condition, consistent with the prevailing genetic understanding of HD as a gain of
function. The affected loci appeared to be cell-type dependent, and defied any simple

interpretation as being a result of either facilitation or inhibition of PRC2 function by mHTT.

5.6 mHTT transcriptional dysregulation, toxicity, and selective vulnerabilty

It is useful to distinguish between several alternative hypotheses about the connection
between expression changes and neurodegeneration, as well as related hypotheses about
the mechanisms responsible for selective vulnerability in HD.

First, mHTT might cause transcriptional changes (in either direction) that are directly

toxic. The development of these changes may be conditional on the transcriptional-
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regulatory state, or the ensuing toxicity may depend on the the neurophysiology of vul-
nerable cell types.

An alternative hypothesis is that mHTT inhibits transcriptional changes normally re-
quired for survival over aging in the affected cell types. In Alzheimer’s disease, for ex-
ample, it has been suggested that activity of the REST transcription factor is essential to
protect against oxidative stress and amyloid 3-protein toxicity [79]. mHTT might have an
opposite effect, inhibiting normal transcriptional changes necessary for survival of neurons
that are subjected to stress as they age. If this were the case, genes whose expression
changes over time in affected cell types and that are also modulated by mHTT might be
of particular relevance.

A third hypothesis is that mHTT is toxic mainly through mechanisms other than direct
effects on transcription. In this scenario, expression changes are a symptom of cellular
dysfunction, but are not necessary for mHTT to be toxic to affected neurons.

Independent of expression, the selective vulnerability of HD could result from cell-
autonomous differences directly affecting the toxicity of mHTT, such as a nuclear or cyto-
plasmic environment in which mHTT forms toxic aggregates faster. Alternatively, specific
cell types may depend on some process or function, such as the activity of particular tran-
scription factors, specifically impaired by mutant Huntingtin. Vulnerability might be due
to neurophysiological differences, not directly connected to Huntingtin function, such as
increased sensitivity to glutamate excitotoxicity or a higher and more sustained level of
metabolic activity and oxidative stress. Such neurons could be vulnerable to defects in
homeostasis which might otherwise be tolerated by cells operating in a more relaxed

neurophysiological and metabolic regime.

5.7 Categorizing and explaining HD-dysregulated genes

Given the extensive gene expression changes observed in HD, it seems reasonable to
assume that at least a subset of such changes are relevant to HD pathophysiology. It is
therefore important to prioritize the most relevant genes, understand their pathological
effects, and explain how their dysregulation is a consequence of mutant Htt.

Several distinct approaches to classifying these genes may be useful. Expression
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changes can be organized in terms of biochemical processes that might affect neuronal
function and survival. Alternatively, one can classify expression changes by their depen-
dencies on factors such as cell type, tissue type, time, models, and repeat length. Finally,
such dependencies, along with prior knowledge about potential regulatory interactions,
may be used to generate hypotheses about the mechanisms and molecules causing the
observed expression changes, and about how those regulatory processes are related to

the proximal effects of mutant Huntingtin protein.

Functional activities and physiological consequences

The most obvious way to categorize gene expression changes is by neurophysiological
function or pathological effects. Affected genes can first be organized by the molecu-
lar function and biological processes in which they are involved, using the many stanard
databases and methods available for assigning function and assessing over-representation
of annotations. Such categorizations and functional abstractions can be further refined
by their predicted pathological impact. Affected genes might be contributing directly to
pathological mechanisms, might be compensatory, or might be completely irrelevant to

the course of disease and outcomes of interest.

Dependencies

A second approach to categorize expression changes is by their dependence on other

variables relevant to HD, which include:

Differential expression as a function of mHtt status

Anatomical and cell-type specificity of WT expression

Anatomical and cell-type specificity of mHtt dependent differential expression

e Time-course of expression in WT, vs. time-course of (differential) expression in the

presence of mHtt

CAG-repeat length
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|dentifying such dependencies depends on larger experiments to test the many pos-
sible conditions and their interactions, and such experiments have only recently become

technically and economically practical.

Inferred regulatory mechanisms

A third way to organize expression changes is by the mechanisms responsible for their reg-
ulation. Given a set of codrdinately regulated genes, one can predict potential transcrip-
tional regulatory processes and proteins based on the cis-regulatory motifs in promoter
regions, biochemical interactions between chromatin-binding proteins and the relevant

loci, and co-expression observed in other contexts.

5.8 Objectives

Given the enduring state of confusion about the context-dependent connections between
mHtt and gene expression, we sought to take a systematic, computational approach to
interpreting available expression data using the frameworks outlined above.

We hypothesized that given cell-type-specific TRAP data and time-resolved, tissue-
specific allelic series data that has been generated recently, combined with the large
amounts of prior data about gene regulatory mechanisms now available, we might now

be in a better position to consider three questions:

1. What are the most likely regulatory mechanisms contributing to transcriptional changes

downstream of mHTT?

2. Which expression changes are tissue- and cell-type specific, what mechanisms con-
tribute to that specificity, and how are specific expression changes related to the

selective vulnerability of different cell types?

3. Which expression changes are time-dependent, and how do such dependencies

inform hyptheses about possible regulatory and pathological mechanisms?

In chapter B, we re-analyze published expression data to predict possible regula-

tors of HD-dependent expression changes. In chapter [ﬂ we analyze a cell-type-specific
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dataset generated by Fenster and Heiman to also consider cell-type dependecies of HD-
associated expression changes, along with their potential regulatory mechanisms. Finally,
in chapter E we analyze data from a large experiment performed by the CHDI Foundation
[22], which used HD knock-in models to assess the dependence of expression changes on

time, CAG-repeat length, and additional diverse tissue types.
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Chapter 6

Over-representation of PRC2 targets among HD-dysregulated genes

6.1 Introduction

Technologies for expression profiling have been applied to characterize transcriptional
dysregulation in Huntington mouse models and human HD brains. Here, we review and
re-analyze several of these published HD expression profiling datasets to generate hy-
potheses about putative regulators of the transcriptional changes in Huntington's.

Hodges et al. [53] conducted one of the largest studies to date using Human HD brain
tissue (from caudate, cerebellum, and the BA4 and BA9 regions of the frontal cortex),
comparing gene expression in 44 HD brains to 36 controls using Affymetrix HG-U133A
and HG-U133B arrays. As expected based on HD pathology, the greatest number of
HD-associated expression changes were observed in the caudate (Table ).

Kuhn et al. [69] (which also incorporated data from Becanovic et al. [[12]) profiled ex-
pression in seven mouse models (R6/2, R6/1, CHL2, HdhQ92, Hdh4/80Q, HD46, YAC128)
using Affymetrix Mouse 430 2.0 microarrays. Transgenic models based on the short, exon-
1 only models (R6/2) develop phenotypes most quickly and have the greatest number
of expression changes, while knock-in and full-length models develop more slowly (Table
). Kuhn observed that there is statistically significant concordance among most of the
mouse models, and between the mouse and human data, particularly for down-regulated
genes.

Since these expression profiling experiments were first published, accumulated knowl-
edge of transcriptional regulators and their potential targets has grown. We hypothesized

that by comparing the sets of HD-dysregulated genes to the large number of ChIP-ChIP
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Number of probe sets
(at p < 0.001)

Sample down up
Caudate 4432 5331
Cerebellum 382 131
BA4 cortex 958 1482
BA9 cortex 5 6

(@) Numbers of up- and down-regulated probe
sets in human HD brain tissues in Grades 0-2 sam-
ples, from Table 2 of Hodges et al, 2006. [53]

nominal p-value threshold 0.01 0.05

log2 fold change threshold 0.00 0.58 0.00 0.58
direction down up down up down up down up
dataset

Becanovic YAC128 24mo 187 148 7 28 817 644 18 54
Kuhn GSE10202 CHL2 1314 1444 595 277 2527 3124 683 356
Kuhn GSE7958 HdhQ92/Q92 18 mo 172 152 37 23 895 923 17 127
Kuhn GSE7958 HdhQ92/Q92 3 mo 66 45 1 1 491 274 3 8
Kuhn GSE9303 R6/2 group 1 1176 1625 519 261 2690 3577 642 368
Kuhn GSE9304 R6/2 group 2 1244 1516 530 336 2972 3237 656 514

(b) Numbers of up- and down-regulated genes in Kuhn's mouse HD models at some representative
fold-change and nominal p-value thresholds, using Welch's t-test.

Table 6.1: Numbers of expression changes in Human HD samples and mouse models

and ChlIP-seq datasets now available, as well as with additional sources of regulatory in-
formation such as motif occurrences and epigenetic marks, we might implicate potential

regulatory mechanisms that had not been previously recognized.

6.2 Experimental Designs and Data

Kuhn Mouse Model Data

Processed, normalized expression data from the Kuhn and Becanovic studies was down-
loaded as GEO Series Matrix files from the NCBI Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo). We focused on data acquired using the Affymetrix 430 2.0 plat-
form to facilitate comparisons between datasets, as well as those from later time-points

at which the HD model phenotypes are most evident.
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GEO Accession Model Age

GSE10202 CHL2(HdhQ15) 22 months
GSE7958 HdhQ92 18 months
GSE9375 Hdh4Q80 12 months
GSE9803 Ré6/2 12 weeks (set 1)
GSE%804 R6/2 12 weeks (set 2)
GSE19677 YAC128 12 months
GSE19677 YAC128 24 months

Table 6.2: Datasets from Kuhn et al. used in analysis

Hodges Human HD Data

Differentially expressed genes and statistics from the Hodges et al. study were extracted

from table S1 of their supplementary material.

6.3 Methods

6.3.1 Differential expression testing

For the mouse model data, differential expression was tested using Welch'’s t-test, com-
paring each model to its wild-type control.

For the human data, differential expression was assessed using the p-values from mod-
erated t-tests reported in the supplementary table S1 of Hodges et al., which had been
calculated using limma [[116].

The relatively small number of samples limited power, particularly in the mouse studies,

and as in the initial reports we worked with mainly with nominal p-values.

6.3.2 Over-representation analyses

Over-representation was assessed using the hypergeometric test, assuming a null model
drawing from the set of all gene symbols. Given the small number of replicates available in
most of the experiments analyzed, it was not practical or beneficial to use non-parametric
methods that rely on sample permutation.

Regulatory motif occurrences were extracted from the SwissRegulon database [94].

These annotations are based on recognition of motifs compiled from the JASPAR and
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TRANSFAC databases. Since short motifs can occur frequently by chance, the observa-
tion of a high-scoring match is not sufficient to predict that a motif is functional. Swiss-
Regulon uses a Bayesian model to integrate information about the location of a motif in
the promoter relative to the transcription start site with information about conservation
in orthologous genes from human, mouse, macaque, dog, cow, horse, and opossum [5],
and assigns a probability for each motif that it predicts in promoter regions.

Targets of chromatin-binding regulatory proteins were obtained from the ChEA database
[71].

P-values from all tests were adjusted using the Benjamini-Hochberg procedure with
“multicomp.multipletests” in python statsmodels [108] to control false-discovery rate over

all probe-sets. Bonferroni-adjusted and nominal P values are also reported.

6.4 Results

6.4.1 Transcriptional regulators with altered expression in HD

Changes to the activities of transcriptional regulators offer one potential mechanism by
which the extensive transcriptional changes of HD might be produced. Although func-
tional activities can be (and often are) modulated independently from expression, as a
first step we decided to investigate the largest expression changes among transcriptional
regulators (incuding both transcription factors, their interactors, and epigenetic regula-
tors and modifiers). The set of such genes was defined based on having gene ontology
molecular function annotations containing any of the following terms: “"DNA binding”,

[/ /i

transcription factor”, “regulation of transcription”, “sequence-specific

|ll "
1

"transcriptiona
DNA binding”, "“chromatin modification”, “enhancer binding”, “nucleic acid binding”, or
"chromatin binding”.

We focused initially on the R6-2 model, which has the largest number of transcriptional
changes. Transcriptional regulators with the biggest decreases in expresssion are listed in
Table @ Among these are Egr2, a zinc-finger transcription factor in the immediate-early

genes (IEG) family. Decreased expression of immediate-early genes in the HD striatum is

well established [[119], and thought to be a possible consequence of decreased dopamine
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and adenosine receptor signaling. Expression of the similar Egr3 gene also decreased.

Npas4 is also classified as an IEG, and is thought to be important to plasticity and
learning [86]. Claspin is a DNA-binding protein involved in formation of replication forks
as well as DNA-damage responses and checkpoint regulation. Lmo2 is an adaptor protein
involved in assembly of transcription factor complexes, more famously known for its role
as an oncogene in T-cell leukemia. It is expressed throughout the brain, but its relevance
to neurons is not well understood. Among the many proteins with which Lmo2 interacts is
Kdmb5a (Jarid1a) [84], the lysine-specific demethylase responsible for removal of H3K4me3
marks. Tcf7 is a transcription factor activated by Wnt signaling, which is thought to protect
against neurodegeneration [7].

Transcriptional regulators whose expression increased included Nfxl1, a zinc-finger
transcription factor whose function is not well annotated. The function of Crebzf in the
brain is also not completely understood, but it may regulate the unfolded protein response
[142], and may also modulate BMP signaling by binding to SMADs [72]. Sox11, which is
upregulated in HD in both the R6-2 and YAC128 models, is a transcription factor thought

to promote neuronal survival and neurogenesis, possibly through induction of BDNF [105].

107



801

[["dataset”, "Be- [["dataset”, “Kuhn [["dataset”, “Kuhn [["dataset”, "Be- [["dataset”, “Kuhn [["dataset”, “Kuhn symbol gene_name

canovic YAC128 GSE9303 R6/2 GSE9304 R6/2 canovic YAC128 GSE9303 R6/2 GSE9304 Ré/2

24mo”], ["mc”, group 1], ["mc”, group 2"], ["mc”, 24mo”], ["st”, group 17, ["st”, group 2"], ["st”,

“nominal”],  ["st”, “nominal”],  ["st”, “nominal”],  ["st”, "fc_means”]] "fc_means”]] "fc_means”]]

“pval”], ["tt”, “pval”], ["tt”, “pval”], ["tt”,

"welch ttest”]] "welch ttest”]] "welch ttest”]]
1427683_at 0.49 0.00013 0.0014 -0.44 -2.3 -2.8 Egr2 early growth response 2
1459372_at 0.85 0.00044 0.00011 0.15 -2.1 -2.5 Npas4 neuronal PAS domain protein 4
1427682_a_at 0.58 0.00085 0.017 -0.34 -1.7 -2.3 Egr2 early growth response 2
1456280_at 0.41 0.00053 4.9e-05 -0.4 -1.5 -1.9 Clspn claspin
1421037_at 0.00088 1.2e-06 2e-05 -0.37 -1.2 -1.3 Npas2 neuronal PAS domain protein 2
1454086_a_at  0.34 4.8e-05 0.00015 -0.22 -1.1 -1.4 Lmo2 LIM domain only 2
1451280_at 0.64 0.00014 0.00037 -0.16 -1.1 -1.6 Arpp21 cyclic AMP-regulated phosphoprotein, 21
1433959 _at 0.14 0.0029 0.39 -0.13 -1 -0.14 Zmat4 zinc finger, matrin type 4
1419665_a_at 0.92 0.0012 0.12 0.028 -1 -0.74 Nupr1 nuclear protein transcription regulator 1
1429779_at 0.18 0.0026 0.001 -0.24 -0.98 -0.91 Ago4d argonaute RISC catalytic subunit 4
1433471 _at 0.89 0.0036 7.9e-05 -0.059 -0.89 -1.3 Tef7 transcription factor 7, T cell specific
1444152_at 0.83 0.0033 0.85 -0.072 -0.89 0.03 Celf2 CUGBBP, Elav-like family member 2
1424248 _at 0.26 7.1e-06 8.6e-06 -0.13 -0.88 -1.3 Arpp21 cyclic AMP-regulated phosphoprotein, 21
1453289 _at 0.19 0.003 0.00012 -0.25 -0.85 -1 Ago4d argonaute RISC catalytic subunit 4
1451046_at 0.098 0.00054 0.0085 -0.34 -0.85 -0.66 Zfpm1 zinc finger protein, multitype 1
1421175_at 0.92 1e-05 0.021 -0.018 -0.83 -0.44 Myt1l myelin transcription factor 1-like
1436329_at 0.064 0.0037 0.00095 -0.2 -0.82 -1 Egr3 early growth response 3
1418317_at 0.34 0.0025 0.034 -0.21 -0.8 -0.4 Lhx2 LIM homeobox protein 2
1423478_at 0.099 1e-05 0.00052 -0.15 -0.79 -0.78 Prkcb protein kinase C, beta
1453287_at 0.6 0.0025 0.74 -0.19 -0.78 -0.098 Ankrd33b ankyrin repeat domain 33B

Table 6.3: Transcriptional regulatory genes down-regulated in R6/2
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[["dataset”, "Be- [["dataset”, “Kuhn [["dataset”, “Kuhn [[“dataset”, "Be- [["dataset”, “Kuhn [[“dataset”, “Kuhn symbol gene_name

canovic  YAC128 GSE9303 R6/2 GSE9304 R6/2 canovic  YAC128 GSE9303 R6/2 GSE9304 Ré6/2

24mo"], ["mc”, group 1”], ["mc”, group 2"], ["mc”, 24mo"], ["st”, group 1"], ["st”, group 2"], ["st”,

“nominal”], ["st”, “nominal”], ["“st”, “nominal”], ["st”, "fc_means”]] "fc_means”]] "fc_means”]]

“pval”], ["tt”, "pval”], ["tt”, “pval”], ["tt”,

"welch ttest”]] "welch ttest”]] "welch ttest”]]
1418152_at 0.8 0.0055 1.8e-05 -0.045 0.58 0.54 Hmgn5 high-mobility group nucleosome binding domain 5
1434618_at 0.43 0.00061 0.0054 -0.21 0.59 0.75 Crebzf CREB/ATF bZIP transcription factor
1455634_at 0.41 0.0019 0.021 0.11 0.59 0.33 Son Son DNA binding protein
1460725_at 0.21 0.00045 0.027 0.24 0.6 0.21 Xpa xeroderma pigmentosum, complementation group A
1429170_a_at 0.83 0.0043 0.0085 0.06 0.6 0.28 Mtf1 metal response element binding transcription f...
1418046_at 0.7 0.00016 0.011 0.077 0.6 0.44 Nap1l2 nucleosome assembly protein 1-like 2
1454976_at 0.16 0.002 0.093 0.2 0.61 0.22 Sod2 superoxide dismutase 2, mitochondrial
1418640_at 0.72 0.0015 0.016 0.072 0.61 0.33 Sirt1 sirtuin 1 (silent mating type information regu...
1448733_at 0.31 0.0022 0.012 0.21 0.61 0.25 Bmi1 Bmi1 polycomb ring finger oncogene
1448454 _at 0.59 1.4e-05 0.00066 0.15 0.61 0.45 Srsfé serine/arginine-rich splicing factor 6
1436191 _at 0.13 0.0085 0.053 0.24 0.61 0.23 Aridda AT rich interactive domain 4A (RBP1-like)
1448497 _at 0.15 0.00074 6e-05 0.15 0.62 0.61 Ercc3 excision repair cross-complementing rodent rep...
1436241 _s_at 0.12 6.2e-06 0.015 -0.14 0.62 0.49 Hira histone cell cycle regulation defective homolo...
1449121_at 0.46 2.8e-05 0.0037 0.16 0.63 0.43 Srsf10 serine/arginine-rich splicing factor 10
1416433_at 0.076 0.0067 0.14 0.26 0.63 0.24 Rpa2 replication protein A2
1429051_s_at 0.19 0.00062 0.22 0.49 0.63 0.28 Sox11 SRY-box containing gene 11
1435302_at 0.64 0.0064 0.067 -0.064 0.63 0.29 Tafdb TAF4B RNA polymerase Il, TATA box binding prot...
1456651_a_at 0.58 0.0049 0.21 0.068 0.64 0.32 Tpr translocated promoter region
1422741 _a_at 0.77 0.0012 0.085 -0.063 0.64 0.27 Bbx bobby sox homolog (Drosophila)
1417145_at 0.42 0.0049 0.00014 0.09 0.64 0.72 NfxI1 nuclear transcription factor, X-box binding-li...

Table 6.4: Transcriptional regulatory genes up-regulated in R6/2



6.4.2 Over-representation analysis of targets of chromatin-binding factors

Examination of expression changes for individual transcription factors and related genes
hints at the diverse regulatory processes affected, but there are many more genes chang-
ing in HD models. These cannot be easily explained from changes in transcription factor
expression, especially since many regulatory targets remain unknown and expression reg-
ulation occurs by many mechanisms other than by changes in transcription factor expres-
sion levels. To more systematically search for potential common regulators of the genes
dysregulated in HD, we computed overlaps between the sets of genes changing in each
model (using a nominal p-value cut-off of 0.01, and a fold-change cut-off of 1.5-fold) and
sets of genes associated with chromatin binding factors from the ChEA database.

The top 10 over-represented sets for each HD model are shown in Tables @, @, @,
@, and , and summarized in Figure .

Among the regulators whose targets were most significantly over-represented in the
sets of HD-dysregulated genes are members of the PRC2 complex. The core proteins
of the PRC2 complex are Suz12, EED, and Ezh1/2 [61]]. Targets of both Suz12 and Ezh2
were significantly over-represented among down-regulated genes in the R6/2, CHL2, and
HghQ92 models. Also over-represented were targets of Jarid2, a regulator of the PRC2
complex; Mtf2, a transcription factor involved in recruiting the PRC2 complex to sites
marked with H3K36me3; and Rnf2, another Polycomb group protein that interacts with
PRC2 and which has also been reported to interact with Hip2, a Huntingtin-interacting
protein [[73].

Other highly-ranked potential regulators suggested by this analysis include Rcor3, a
transcriptional co-repressor thought to operate in a complex with Lsd1 and Kdm1a. Also
notable is Wt1, a zinc-finger transcription factor that is itself differentially expressed in
many HD models.

There are fewer genes up-regulated in the HD models, which limits power to detect
over-representation. However, among the top-ranked regulators is Kdm5b, the lysine-
specific demethylase responsible for demethylation of H3K4 sites. This observation is
interesting given the previously reported connection between H3K4me3 patterns and

transcriptional dysregulation in HD [[136].
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The YAC128 model, as previously discussed, develops its phenotype much more slowly,
and there are comparatively fewer expression changes observed at the same statistical
thresholds. Curiously, several PRC2 targets are over-represented among the up-regulated
genes at the late stages of disease in the YAC128 model, in contrast to the other models.

Finally, we performed the analagous analysis of genes differentially expressed in Hunt-
ington disease in the Hodges human caudate samples (Figure and Tables and
m ). Components of the PRC2 complex and related proteins - Suz12, Mtf2, Ezh2, Rnf2,
Eed, and Jarid2 - were again observed to have targets over-represented among genes

significantly down-regulated in the HD caudate.
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Overlap size of set hypergeom bonferroni b-hfdradj Fraction

p-val pval
set_name
Suz12 277 5042 1.4e-46 1.8e-44 1.8e-44 0.42
MTF2 201 2981 2.1e-43 2.8e-41 1.4e-41 0.31
EZH2 105 1300 3.6e-27 4.8e-25 1.6e-25 0.16
JARID2 118 1639 3.3e-26 4.3e-24 1.1e-24 0.18
RNF2 121 1975 7.6e-21 1e-18 2e-19 0.19
RCOR3 121 2851 2.5e-09 3.4e-07 5.6e-08 0.19
WT1 80 1663 1.3e-08 1.7e-06 2.5e-07 0.12
EED 46 830 5e-07 6.6e-05 8.3e-06 0.07
PHC1 49 922 7.1e-07 9.4e-05 1e-05 0.075
TET1 133 3596 1.3e-06 0.00018 1.8e-05 0.2
(a) R6/2 downregulated
Overlap size of set hypergeom bonferroni b-hfdradj Fraction
p-val pval
set_name
CREM 106 5776 6.9e-06 0.00091 0.00091 0.36
KDM5B 75 3724 1.4e-05 0.0019 0.00093 0.26
GATA4 41 2039 0.002 0.26 0.086 0.14
ZFP42 31 1480 0.004 0.53 0.11 0.1
SIN3A 26 1186 0.0046 0.61 0.11 0.088
STATS 26 1197 0.0052 0.69 0.11 0.088
ERG 38 1969 0.0057 0.76 0.11 0.13
PDX1 16 669 0.011 1 0.19 0.054
TCFCP2L1 36 1987 0.018 1 0.26 0.12
NKX2-5 28 1507 0.026 1 0.35 0.095

(b) R6/2 up regulated

Table 6.5: Over-representation of targets of chromatin-binding factors from ChEA among
genes dysregulated in R/2 model of HD (Group 1)
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Overlap size of set hypergeom bonferroni b-hfdradj Fraction

p-val pval
set_name
SUz12 270 5042 1.5e-40 2.1e-38 2.1e-38 0.37
MTF2 184 2981 2e-32 2.6e-30 1.3e-30 0.25
EZH2 91 1300 1.3e-18 1.7e-16 5.7e-17 0.13
JARID2 102 1639 2.8e-17 3.8e-15 9.4e-16 0.14
RNF2 109 1975 8.5e-15 1.1e-12 2.3e-13 0.15
WT1 77 1663 3e-07 4e-05 6.6e-06 0.11
NRF2 52 1055 5.4e-06 0.00072 9e-05 0.072
NFE2L2 52 1055 5.4e-06 0.00072 9e-05 0.072
BMI1 73 1682 6.6e-06 0.00087 9.7e-05 0.1
OLIG2 84 2040 9.2e-06 0.0012 0.00012 0.12
(a) R6/2 downregulated group 2
Overlap size of set hypergeom bonferroni b-hfdradj Fraction
p-val pval
set_name
KDM5B 80 3724 0.0045 0.59 0.18 0.21
SUz12 103 5042 0.0053 0.71 0.18 0.27
OLIG2 48 2040 0.006 0.8 0.18 0.13
MECOM 46 1951 0.0069 0.91 0.18 0.12
CREM 115 5776 0.0069 0.92 0.18 0.3
CEBPD 16 504 0.0089 1 0.2 0.042
YAP1 52 2329 0.011 1 0.22 0.14
TEAD4 50 2293 0.02 1 0.3 0.13
NR4A2 8 207 0.021 1 0.3 0.021
CRX 18 668 0.026 1 0.3 0.047

(b) R6/2 up regulated group 2

Table 6.6: Over-representation of targets of chromatin-binding factors from ChEA among
genes dysregulated in R/2 model of HD (Group 2
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Overlap size of set hypergeom bonferroni b-hfdradj Fraction

p-val pval

set_name

GFI1B 11 1871 0.0027 0.36 0.36 0.23
SALL4 9 1825 0.02 1 0.9 0.19
TEAD4 10 2293 0.031 1 0.9 0.21
YAP1 10 2329 0.034 1 0.9 0.21
TRIM28 12 3072 0.039 1 0.9 0.26
DMRT1 9 2144 0.05 1 0.9 0.19
NR3C1 5 918 0.057 1 0.9 0.11
CNOT3 7 1547 0.059 1 0.9 0.15
TCF3 13 3743 0.071 1 0.9 0.28
PAX6 5 1001 0.076 1 0.9 0.1

(a) YAC128 12mo downregulated
Overlap size of set hypergeom bonferroni b-hfdradj Fraction
p-val pval

set_name

DMRT1 5 2144 0.011 1 1 0.36
CHD1 3 843 0.018 1 1 0.21
TRIM28 5 3072 0.045 1 1 0.36
SOX2 5 4207 0.14 1 1 0.36
FOXP3 1 257 0.16 1 1 0.071
KLF1 2 1144 0.18 1 1 0.14
HCFC1 1 306 0.19 1 1 0.071
TEAD4 3 2293 0.2 1 1 0.21
RCOR1 3 2378 0.21 1 1 0.21
RARG 1 390 0.23 1 1 0.071

(b) YAC128 12mo up-regulated

Table 6.7: Over-representation of targets of chromatin-binding factors from ChEA among
genes dysregulated in YAC128 at 12 mo
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Overlap size of set hypergeom bonferroni b-hfdradj Fraction

p-val pval

set_name

TCFAP2C 4 2667 0.007 0.94 0.94 0.57
MEF2A 2 1048 0.046 1 1 0.29
PPARD 1 194 0.064 1 1 0.14
SUzZ12 4 5042 0.065 1 1 0.57
ETS2 1 215 0.071 1 1 0.14
TCF7 2 1529 0.09 1 1 0.29
HCFC1 1 306 0.099 1 1 0.14
NROB1 2 1691 0.1 1 1 0.29
SALL4 2 1825 0.12 1 1 0.29
TP53 3 3937 0.13 1 1 0.43

(a) YAC128 24mo downregulated
Overlap size of set hypergeom bonferroni b-hfdradj Fraction
p-val pval

set_name

MTF2 16 2981 1.9e-07 2.5e-05 2.5e-05 0.57
SUz12 18 5042 9.1e-06 0.0012 0.0006 0.64
JARID2 10 1639 3.4e-05 0.0045 0.0015 0.36
EZH2 8 1300 0.00024 0.032 0.0081 0.29
EED 6 830 0.00073 0.098 0.019 0.21
RNF2 9 1975 0.00085 0.1 0.019 0.32
WT1 6 1663 0.022 1 0.38 0.21
BMI1 6 1682 0.023 1 0.38 0.21
EOMES 6 1744 0.027 1 0.4 0.21
YAP1 7 2329 0.032 1 0.42 0.25

(b) YAC128 24mo up-regulated

Table 6.8: Over-representation of targets of chromatin-binding factors from ChEA among
genes dysregulated in YAC128 at 24 mo
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Overlap size of set hypergeom bonferroni b-hfdradj Fraction

p-val pval
set_name
MTF2 202 2981 5.4e-34 7.2e-32 7.2e-32 0.27
SUz12 278 5042 3.5e-33 4.7e-31 2.3e-31 0.37
JARID2 121 1639 2.2e-22 2.9e-20 9.8e-21 0.16
EZH2 98 1300 1.1e-18 1.5e-16 3.7e-17 0.13
RNF2 122 1975 2.6e-16 3.4e-14 6.8e-15 0.16
WT1 86 1663 7.6e-08 1e-05 1.7e-06 0.11
TP53 163 3937 3.5e-07 4.7e-05 6.7e-06 0.21
BMI1 78 1682 2e-05 0.0026 0.00033 0.1
YAP1 99 2329 4.7e-05 0.0062 0.00069 0.13
MYB 48 923 6.2e-05 0.0082 0.00076 0.063
(a) CHL2 downregulated
Overlap size of set hypergeom bonferroni b-hfdradj Fraction
p-val pval
set_name
KDM5B 70 3724 0.0016 0.21 0.14 0.22
SUz12 89 5042 0.0022 0.29 0.14 0.28
MTF2 57 2981 0.0033 0.44 0.15 0.18
CEBPD 13 504 0.019 1 0.57 0.041
ZFP42 29 1480 0.026 1 0.57 0.092
BMI1 32 1682 0.029 1 0.57 0.1
IRF8 21 1004 0.03 1 0.57 0.067
YAP1 40 2329 0.062 1 0.88 0.13
CHD1 17 843 0.063 1 0.88 0.054
PHC1 18 922 0.073 1 0.88 0.057

(b) CHL2 up-regulated

Table 6.9: Over-representation of targets of chromatin-binding factors from ChEA among
genes dysregulated in CHL2 model
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Overlap size of set hypergeom bonferroni b-hfdradj Fraction
p-val pval

set_name

MTF2 16 2981 2.2e-05 0.0029 0.0029 0.38
SuUz12 19 5042 0.00037 0.049 0.025 0.45
JARID2 9 1639 0.002 0.27 0.088 0.21
RNF2 9 1975 0.007 0.92 0.23 0.21
PPARD 2 194 0.047 1 0.99 0.048
TCF3 11 3743 0.059 1 0.99 0.26
THAP11 4 864 0.068 1 0.99 0.095
BMI1 6 1682 0.077 1 0.99 0.14
EZH2 5 1300 0.081 1 0.99 0.12
DMRT1 7 2144 0.084 1 0.99 0.17

(a) Hdh Q92 model at 18 months downregulated
Overlap size of set hypergeom bonferroni b-hfdradj Fraction
p-val pval

set_name

OLIG2 6 2040 0.021 1 1 0.25
TBP 4 1057 0.028 1 1 0.17
SFPI1 6 2369 0.041 1 1 0.25
KDM5B 8 3724 0.042 1 1 0.33
ERG 5 1969 0.062 1 1 0.21
CHD1 3 843 0.066 1 1 0.12
SMARCA4 7 3481 0.079 1 1 0.29
YY1 2 464 0.094 1 1 0.083
MYCN 5 2261 0.1 1 1 0.21
MEF2A 3 1048 0.11 1 1 0.12

(b) Hdh Q92 model at 18 months up-regulated

Table 6.10: Over-representation of targets of chromatin-binding factors from ChEA

among genes dysregulated in Hdh Q92 model at 18 months
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Overlap size of set hypergeom bonferroni b-h  fdr Fraction

p-val adj pval
set_name
SMAD?2 58 1936 3.6e-07 7.3e-05 7.3e-05 0.19
BACH1 38 1352 0.00018  0.037 0.014 0.12
SMAD3 73 3233 0.00024  0.048 0.014 0.23
FOXA2 68 2968 0.00027 0.055 0.014 0.22
EP300 64 2902 0.0012 0.24 0.047 0.2
CIITA 5 59 0.002 0.4 0.049 0.016
ATF3 50 2189 0.0021 0.43 0.049 0.16
WT1 43 1817 0.0023 0.47 0.049 0.14
RARG 14 390 0.0027 0.54 0.049 0.045
PPARD 79 3876 0.0027 0.55 0.049 0.25
PRDM14 45 1944 0.0028 0.57 0.049 0.14
NRF2 28 1055 0.003 0.61 0.049 0.089
PAX3-FKHR 28 1063 0.0033 0.67 0.049 0.089
CDX2 23 821 0.0037 0.74 0.049 0.073
HIF1A 12 321 0.0038 0.77 0.049 0.038

Table 6.11: Hodges Caudate Up Chea Overrepresentation
Overlap size of set hypergeom bonferroni b-h  fdr Fraction

p-val adj pval
set_name
SuUz12 224 5042 4.7e-17 9.6e-15 9.6e-15 0.4
MTF2 153 2981 3.8e-16 7.6e-14 3.8e-14 0.28
EZH2 79 1328 2.4e-11 4.8e-09 1.6e-09 0.14
RNF2 97 1975 3.8e-09 7.6e-07 1.9e-07 0.17
EED 49 830 2.5e-07 5e-05 1e-05 0.088
JARID2 76 1639 2.2e-06 0.00044 7.4e-05 0.14
BACH1 56 1352 0.00091 0.18 0.026 0.1
PHC1 41 922 0.0012 0.25 0.031 0.074
GBX2 17 286 0.0021 0.41 0.046 0.031
IKZF1 11 155 0.0033 0.66 0.065 0.02
WT1 68 1817 0.0035 0.71 0.065 0.12
ZFP281 80 2252 0.0061 1 0.096 0.14
RCOR3 98 2851 0.0062 1 0.096 0.18
YAP1 79 2329 0.019 1 0.27 0.14
PAX3-FKHR 40 1063 0.021 1 0.28 0.072

Table 6.12: Hodges Caudate Down Chea Overrepresentation
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Figure 6.1: Summary of ChEA ChIP groups with targets overrepresented among differentiallly expressed genes in at least one
of the models profiled in Kuhn et al.. [@], and in human Caudate profiled in Hodges et al. [53]



6.4.3 Over-representation analysis of regulatory motifs

We next considered whether any regulatory motifs were over-represented in the promot-
ers of HD-dysregulated genes. We used the pre-computed Swissregulon database of
motif occurrences [94], and for each motif extracted the set of genes for which that motif
occurred within 1kb of the transcription start with a score of 0.7 or greater. Only the the

R6/2 and CHL2 models had sufficient numbers of differentially expressed genes to yield

significantly over-represented motifs in this analysis (Tables .13, .14, 6.15).

Among up-regulated genes, several AP-2 family motifs were over-represented. Among
down-regulated genes, over-represented motifs included one recognized by Znf143, a
factor thought to be involved in recruitment of distal regulatory elements to promoters
[9]. A recent meta-analysis of expression data in neurodegeneration also identified Znf143
as a possible regulator of genes associated with neuropathology but not with normal ag-

ing [75].

6.4.4 A majority of genes changing in HD have striatal-specific expression

Our initial over-representation analysis of transcriptional regulators and potential regu-
latory motifs described above rely on the admittedly very naive null model in which dif-
ferentially expressed genes are drawn randomly. However, the genes expressed within
neurons, and in specific neural cell types such as medium-spiny neurons are obviously
not selected randomly. Some genes are never expressed in neurons, and will never ex-
hibit differential expression in either direction. Genes with high levels of expression are
more likely to be detected, regardless of their direction of change. Genes already ex-
pressed at maximal levels might not be able to show increased expression, and therefore
more of such selectively highly expressed genes may be observed to decline. Similarly,
down-regulation might not be detectable in genes with already very low levels of ex-
pression, while increases would be more apparent. Any of these situations could lead to
confounding the properties of selectively expressed genes with characteristics of genes
dysregulated by Huntington's.

It is already known that many genes with striatal-selective expression (including clas-

sic markers such as the dopamine receptors) are among the most severely dysregulated
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Overlap size of set hypergeom bonferroni b-hfdradj Fraction
p-val pval
set_name
TFAP2{A,C}.p2 304 7721 5.8e-18 1.1e-15 1.1e-15 0.45
TFAP2B.p2 241 5916 1.3e-14 2.5e-12 1.2e-12 0.36
TFDP1.p2 297 7949 7e-14 1.3e-11 4.3e-12 0.44
MTF1.p2 116 2283 4e-12 7.4e-10 1.9e-10 0.17
PATZ1.p2 343 9909 5.4e-12 1e-09 2e-10 0.51
MAZ.p2 353 10505 1.4e-10 2.6e-08 4.4e-09 0.52
EGR1..3.p2 147 3378 3.2e-10 5.9e-08 8.5e-09 0.22
ZFP161.p2 126 2757 4.6e-10 8.5e-08 1.1e-08 0.19
HIC1.p2 152 3582 8.7e-10 1.6e-07 1.8e-08 0.23
GTF2l.p2 222 5964 3.7e-09 6.8e-07 6.8e-08 0.33
(a) R6/2 group 1 down
Overlap  size of hypergeombonferroni b-h  fdr Fraction
set p-val adj pval
set_name
TFDP1.p2 291 7949 5.7e-11 1.1e-08 1.1e-08 0.48
ZNF143.p2 82 1470 3.5e-10  6.5e-08 3.3e-08 0.14
ELK1,4_GABP{A,B1}.p3 175 4314 4.6e-09  8.6e-07 2.9e-07 0.29
ATF5_CREB3.p2 88 1775 2.3e-08 4.3e-06 1.1e-06 0.14
NRF1.p2 123 2810 3.6e-08  6.6e-06 1.3e-06 0.2
SP1.p2 380 11760 8.3e-08  1.6e-05  2.6e-06 0.63
PAX5.p2 190 5129 7.9e-07  0.00015 2.1e-05 0.31
ELF1,2,4.p2 189 5143 1.5e-06  0.00028 3.5e-05  0.31
TFAP2{A,C}.p2 260 7721 7.4e-06  0.0014 0.00015 0.43
MYB.p2 34 608 6.4e-05  0.012 0.0012 0.056

(b) R6/2 group 1 up

Table 6.13: Over-representation of motifs in promoter regions in R6/2
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Overlap size of set  hypergeom bonferroni b-h fdr adj Fraction
p-val pval
set_name
TFDP1.p2 269 7949 5.4e-11 1e-08 1e-08 0.42
TFAP2{A,C}.p2 257 7721 1.7e-09 3.2e-07 1.6e-07 0.4
TFAP2B.p2 206 5916 9e-09 1.7e-06 5.5e-07 0.32
ZFP161.p2 113 2757 3.2e-08 5.9e-06 1.5e-06 0.17
PATZ1.p2 305 9909 7.4e-08 1.4e-05 2.8e-06 0.47
EGR1..3.p2 126 3378 8.7e-07 0.00016 2.7e-05 0.2
MAZ.p2 314 10505 1e-06 0.00019 2.7e-05 0.49
HIC1.p2 129 3582 4e-06 0.00074 9.2e-05 0.2
PAX5.p2 171 5129 7.1e-06 0.0013 0.00015 0.26
SP1.p2 339 11760 1e-05 0.0019 0.00019 0.52
(a) R6/2 group 2 down
Overlap  size of hypergeombonferroni b-h fdr Fraction
set p-val adj pval
set_name
NRF1.p2 134 2810 1.8e-10  3.3e-08 1.8e-08 0.21
TFDP1.p2 296 7949 1.9e-10  3.5e-08 1.8e-08 0.46
SP1.p2 395 11760 6.8e-09 1.3e-06 4.2e-07 0.62
PAX5.p2 199 5129 1e-07 1.9e-05 4.7e-06 0.31
TFAP2B.p2 220 5916 4.4e-07 8.1e-05 1.6e-05 0.34
MAZ.p2 350 10505 1.2e-06  0.00022 3.6e-05 0.55
TFAP2{A,C}.p2 268 7721 4.4e-06 0.00082 0.00012 0.42
ZNF143.p2 68 1470 2.9e-05  0.0054 0.00059 0.1
ELK1,4_GABP{A,B1}.p3 161 4314 3.1e-05 0.0058 0.00059 0.25
HIC1.p2 138 3582 3.2e-05  0.0059 0.00059  0.21

(b) R6/2 group 2 up

Table 6.14: Over-representation of motifs in promoter regions in R6/2
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Overlap size of set  hypergeom bonferroni b-h fdr adj Fraction
p-val pval
set_name
TFAP2B.p2 255 5916 9e-13 1.7e-10 1.7e-10 0.35
TFAP2{A,C}.p2 305 7721 5.8e-11 1.1e-08 5.4e-09 0.42
TFDP1.p2 311 7949 1e-10 1.9e-08 6.2e-09 0.43
HIC1.p2 164 3582 1.3e-09 2.5e-07 6.2e-08 0.23
ZFP161.p2 131 2757 1.2e-08 2.3e-06 4.5e-07 0.18
MAZ.p2 376 10505 2.5e-08 4.6e-06 7.6e-07 0.52
PAX5.p2 210 5129 3.9e-08 7.3e-06 1e-06 0.29
MTF1.p2 111 2283 6.5e-08 1.2e-05 1.5e-06 0.15
EGR1..3.p2 148 3378 2e-07 3.7e-05 4.1e-06 0.2
PATZ1.p2 351 9909 7.2e-07 0.00013 1.3e-05 0.48
(a) CHL2 down
Overlap  size of hypergeombonferroni b-h fdr Fraction
set p-val adj pval
set_name
SP1.p2 357 11760 1.4e-09  2.6e-07 2.6e-07 0.66
ELK1,4_GABP{A,B1}.p3 160 4314 1.8e-08  3.4e-06 1.7e-06 0.29
MAZ.p2 319 10505 9.9e-08 1.8e-05 6.1e-06 0.59
TFDP1.p2 252 7949 4.2e-07 7.8e-05 1.9e-05 0.46
KLF4.p3 314 10533 1.4e-06  0.00026 5.2e-05 0.58
PAX5.p2 174 5129 1.8e-06  0.00033 5.6e-05 0.32
PATZ1.p2 296 9909 4.4e-06  0.00082 0.00012 0.54
TFAP2{A,C}.p2 239 7721 9.2e-06  0.0017 0.00021 0.44
TFAP2B.p2 190 5916 1.8e-05  0.0034 0.00037 0.35
ELF1,2,4.p2 169 5143 2e-05 0.0037 0.00037  0.31
(b) CHL2 up

Table 6.15: Over-representation of motifs in promoter regions in CHL2
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log?2 fold difference vs. median: 1 2 3

Cell Type direction

D1 higher 2326 987 444
lower 5406 2253 864

D2 higher 2315 994 470

lower 5475 2365 949

Table 6.16: Numbers of genes with selective expression in D1- and D2- medium spiny
neurons based on Doyle data.

genes in HD and HD models [131]. We sought to examine whether this relationship
holds more generally, for the full set of striatal-selective genes and the full set of HD-
dysregulated genes. To assess this, we made use of two datasets describing wild-type
expression across the mouse brain. The Brainstars project [64] profiled expression in 51
anatomically distinct regions, while Doyle et al. [30] used the TRAP approach [49] to
measure cell-type expression in 20 cell types. Both studies measured expression using
Affymetrix Mouse 430 2.0 microarrays.

To quantify selective expression in the relevant regions and cell types, we employed
two metrics. The simplest approach was to compute the difference in expression to the
median expression level in all regions. Alternatively, to capture genes with truly selective,
rather than just relatively high expression, we computed the difference between each
region or cell-type of interest and the second- or third-nearest other cell type or region.
(The comparison was made to the second-nearest region to account for the presence of
the two striatal MSN cell types in the Doyle data, which are known to be quite similar, and
nearby anatomical regions of the striatum in Brainstars.)

Table provides an overview of the numbers of selectively expressed genes, based
on the distance-from-median metric in the Doyle data. Depending on the fold-difference
threshold chosen, there are between several hundred and several thousand genes that
might be considered to be selectively expressed.

Figures @ and @ show representative scatterplots comparing the difference-from-
median selectivity to fold-change in the R6-2 and YAC128 models (for probe-sets having
differential expression at a (nominal) alpha of 0.01). Among probesets that are differ-

entially expressed in HD models, those down-regulated in HD have a strong tendency to
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have have high relative expression in striatal cell types, and vice versa. Although this is not
particularly surprising, it confirms that previous observations about the changes to the top

striatal-specific marker genes in HD [131] apply across the entire striatal transcriptome.
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Figure 6.2: Scatterplots comparing selectivity of expression in D1 MSNs (Doyle et al.) to differential expression in HD models
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6.4.5 Over-representation analyses of genes with selective neuronal and striatal ex-

pression

Given the relationship between differential expression in HD and the background set
of genes with striatal-specific expression, we repeated our motif and regulator over-
representation analyses against the sets of MSN-selective genes on their own. Tables
and show the top potential regulators from the ChEA database over-represented
within the set of genes with striatal-selective expression (2-fold difference from median
cell type) in D1 and D2 MSNs, respectively. Most of the regulators with over-represented
targets are the same as those observed in the analysis of genes differentially expressed
in the HD models. In particular, targets of PRC2 components and associated proteins
(Suz12, Ezh2, Jarid2, Ezh2, Rnf2) are over-represented among the set of genes with high

expression in striatal cell-types.

6.5 Discussion

Dysregulated transcriptional regulators and motif over-representation

Our analysis of differentially expressed transcriptional regulators and over-represented
motifs among HD-dysregulated genes identified a smattering of potentially relevant genes
and transcription factors, but ultimately fails to explain much about the mechanisms or
specificity of mHTT-dependent transcriptional dysregulation. One limitation is that the
majority of significant expression changes were observed at a single time-point late in
disease, which makes it impossible to even speculate about ordering and causality of
changes. We will attempt to partially address this limitation using of time-resolved data
in the next two chapters. Second, it remains difficult to integrate motif information with
changes in transcription factor expression and activity. Many of the targets of transcrip-
tion factors remain unknown. It is also unclear which motif occurrences are relevant in the
cell-types and developmental stages of interest. This might eventually be improved with
better models that account for interactions between multiple motifs, transcription factors,
and effects on expression learned from systematic measurements across many cell types,

as well as by experimentally measuring chromatin accessibility and DNA footprints, to
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match_countsize of set hypergeom bonferroni b-hfdradj Fraction

p-val pval
set_name
SUz12 407 5042 4.6e-51 6.1e-49 6.1e-49 0.48
MTF2 278 2981 1.1e-42 1.4e-40 7e-41 0.33
JARID2 163 1639 1.2e-26 1.6e-24 5.4e-25 0.19
EZH2 131 1300 8.6e-22 1.1e-19 2.9e-20 0.15
RNF2 165 1975 5.8e-19 7.7e-17 1.5e-17 0.19
BMI1 126 1682 3.8e-11 5e-09 8.4e-10 0.15
WT1 121 1663 6e-10 8e-08 1.1e-08 0.14
YAP1 155 2329 1.1e-09 1.5e-07 1.8e-08 0.18
DMRT1 144 2144 2.7e-09 3.6e-07 4e-08 0.17
TP53 229 3937 1.2e-08 1.6e-06 1.6e-07 0.27
(a) ChEA over-representation in D1 selective (high-expression) genes
match_countize of set hypergeom bonferroni b-hfdradj Fraction
p-val pval
set_name
NRF2 166 1055 7e-08 9.3e-06 3.8e-06 0.076
NFE2L2 166 1055 7e-08 9.3e-06 3.8e-06 0.076
ASH2L 439 3336 1.1e-07 1.5e-05 3.8e-06 0.2
MYB 148 923 1.2e-07 1.5e-05 3.8e-06 0.068
E2F1 533 4172 1.8e-07 2.4e-05 4.5e-06 0.24
MTF2 396 2981 2e-07 2.7e-05 4.5e-06 0.18
SFPI1 315 2369 4.3e-06 0.00058 8.2e-05 0.14
PPARD 41 194 1.1e-05 0.0015 0.00018 0.019
TAL1 449 3578 1.6e-05 0.0022 0.00024 0.21
SMARCA4 435 3481 3.5e-05 0.0046 0.00042 0.2

(b) ChEA over-representation in D1 selective (low-expression) genes

Table 6.17: D1 ChEA
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match_countsize of set hypergeom bonferroni b-hfdradj Fraction

p-val pval
set_name
SUz12 423 5042 1.1e-53 1.4e-51 1.4e-51 0.48
MTF2 300 2981 2.4e-50 3.2e-48 1.6e-48 0.34
JARID2 174 1639 4.3e-30 5.7e-28 1.9e-28 0.2
EZH2 141 1300 4.2e-25 5.6e-23 1.4e-23 0.16
RNF2 172 1975 4.6e-20 6.1e-18 1.2e-18 0.19
BMI1 133 1682 2.6e-12 3.4e-10 5.7e-11 0.15
WT1 127 1663 8.9e-11 1.2e-08 1.7e-09 0.14
YAP1 163 2329 1.2e-10 1.5e-08 1.9e-09 0.18
DMRT1 152 2144 2.3e-10 3.1e-08 3.4e-09 0.17
EED 74 830 2e-09 2.7e-07 2.7e-08 0.084
(a) ChEA over-representation in D1 selective (high-expression) genes
match_countize of set hypergeom bonferroni b-hfdradj Fraction
p-val pval
set_name
MTF2 458 2981 3.8e-14 5.1e-12 5.1e-12 0.2
NRF2 185 1055 2.1e-10 2.8e-08 9.3e-09 0.08
NFE2L2 185 1055 2.1e-10 2.8e-08 9.3e-09 0.08
SUz12 687 5042 3.9e-10 5.2e-08 1.3e-08 0.3
MYB 158 923 2.5e-08 3.4e-06 6.7e-07 0.068
SMARCA4 479 3481 1.6e-07 2.1e-05 3.6e-06 0.21
JARID2 242 1639 2.5e-06 0.00033 4.7e-05 0.1
E2F1 550 4172 4.3e-06 0.00057 7.1e-05 0.24
DMRT1 303 2144 5.7e-06 0.00076 8.4e-05 0.13
MECOM 278 1951 7.7e-06 0.001 0.0001 0.12

(b) ChEA over-representation in D1 selective (low-expression) genes

Table 6.18: D2 ChEA
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identify accessible genomic loci and motifs actually bound by regulators within the cell

types of interest.

Targets of the PRC2 complex are over-represented among genes dysregulated in HD

models

As reviewed in Chapter 6, functional links between mHTT and the PRC2 complex and its
activity have previously been proposed [[109, [15]. These connections had been shown in
vitro, and in mouse embryos, embryonic stem cells and developing neural stem cells. The
analysis here provides additional evidence in support of the hypothesis that PRC2 activity
(and H3K27 methylation state) is relevant to mHTT-dependent expression changes in both
mouse models and human HD.

Our analysis has several limitations which will not be resolved with observational data
alone. First, striatal-specfic expression, HD-dependent expression changes, and over-
representation of PRC2 targets cannot be untangled. It remains possible that the ob-
served over-representation of PRC2 targets in HD-dysregulated genes is merely a statis-
tical artifact due to the high expression of these particular genes in the striatum. Alter-
natively, the common PRC2-target overrepresentation is compatible with the hypothesis
that PRC2-dependent regulation is particularly important to controlling selective expres-
sion of genes in striatal neurons, and that this PRC2 regulation of these genes is affected
by mHTT. This would help to explain both the why mHTT affects the genes that it does,
and why striatal neurons are selectively vulnerable.

A second caveat is that the collections of potential regulators against which genes
were compared are biased towards experimentally accessible systems and regulators that
have been of recent biological interest. A majority of the relevant ChIP datasets were per-
formed in mice and mouse cell lines, across a variety of developmental stages, primarily
in early development. It is very likely that many of the targets of these regulators will be
different in mature neurons. It is also questionable to assume that regulatory interactions
observed in the mouse will be conserved in human cells, though many probably are.

To address these limitations, experimentation will be needed to more definitively test

the involvement of PRC2 activity in the transcriptional dysregulation caused by mHTT. It
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would be informative to measure the epigenetic states (especially H3K27me3) in normal
and HD striatum, or in cultured cells with and without expression of mHTT. One of the
simplest hypotheses is that PRC2 activity is increased in the presence of mHTT, which
leads to increased H3K27 tri-methylation at PRC2 targets in MSNs, repressing their ex-
pression. Observing an increase in H3K27me3 marks at the loci of genes down-regulated
in HD in the relevant cells would provide much more convincing evidence for this hy-
pothesis. One could then attempt to further prove and dissect the functional connection
between mHTT and the changes in H3K27me3 state and expression by blocking the ac-
tivity of PRC2 catalytic components and other regulators, using small-molecule inhibitors

or genetic methods.
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Chapter 7

Re-analysis of Cell-Type Specific Expression in Mouse HD Models
(Fenster TRAP Study)

7.1 Introduction

Previous studies of transcriptional changes in mouse models of HD have relied on ho-
mogenized tissue, so potential cell-type specific transcriptional changes may have been
obscured, either by differences between neuronal subtypes or expression from glial and
other cell types. To address these limitations, Fenster, Heiman and colleagues conducted
an experiment using the TRAP methodology [49, 50] to measure cell-type specific transla-
tional profiles of the two major cell MSN types, Drd1a and Drd2, in two transgenic mouse
models of HD, R6-2 and YAC128 [37]. Translational changes (which we will also refer to as
expression changes) were measured both before and after motor symptoms developed,
so that potential early, pre-symptomatic changes could be compared to those emerging
after development of motor phenotypes and as disease progressed.

Here, we re-examine this data to search for potential cell-type and time-dependent
mechanisms of transcriptional dysregulation and to confirm some of the observations from

the previous chapter in an independent dataset.

7.2 Experimental Design and Data

An outline of the experimental design is shown in Figure . The numbers of replicates
are balanced for between the HD and control groups the same model and time-point,
but some time points have many more replicates than others. It should be noted that the

R6-2 and YAC128 models are in different background strains and have phenotypes that
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develop over very different time scales, so the most meaningful comparisons are between

the HD and the wild-type mice of the same model and TRAP cell type.

WT 3wk 8wk 12wk 14wk
/ (n=6) (n=4) (n=3) (n=11)
D1
T~ e 3wk 8wk 12wk 14wk
B (n=8) (n=4) (n=3) (n=10)
R6-2
(C57BI/6 background)
WT 3wk 8wk 12wk
Do _— (n=5) (n=4) (n=3)
T Re.o 3wk 8wk 12wk
(n=4) (n=4) (n=3)
WT 10mo 13mo 23mo
_— (n=6) (n=11) (n=4)
D1
T~ YAC 10mo 13mo 23mo
(n=6) (n=10) (n=4)
YAC128
(FVB/N background) WT 10mo 13mo 23mo
__— (n=6) (n=11) (n=3)
D2
\ YAC 10mo 13mo 23mo
(n=6) (n=12) (n=3)

Figure 7.1: Outline of organization and number of samples per group in Fenster HD TRAP
experiment.

7.3 Methods

The complete description of experimental methods, and a discussion of the motor phe-
notypes and the selection of the time points from which expression was assayed can be

found in Fenster, 2011 [37]].

7.3.1 Microarray Normalization and Quality Control

Gene expression was measured using Affymetrix Mouse 430 2.0 microarrays. Affymetrix
.CEL files were processed using the Bioconductor affy package [41] and RMA normaliza-
tion. Probe sets were mapped to gene symbols using the annotation in the Bioconductor

mouse4302.db annotation package, downloaded in July 2013.
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Since one objective of this experiment was to characterize expression changes across
time and to compare changes between different models and cell types, we initially pro-
cessed and normalized all samples together. This assumed that all samples (which are
from different but closely related cell types, and two different mouse background strains)
are similar enough that the majority of genes (unaffected by mHTT) are expressed at
equivalent levels.

However, in some cases we observed differences (generally an increase in the number
of reported significant changes) when the arrays from individual cell types and/or time-
points were processed on their own. This may reflect biological differences between cell
types that affect the RMA normalization procedures, or other batch effects. In addition,
probes with signals never observed above the 20th percentile in at least two samples
were excluded from analysis, so slightly fewer such genes were filtered when using the
combined samples.

For simplicity, and to facilitate comparisons across the entire dataset, we use the glob-
ally normalized version of the data for most of the analyses discussed in this chapter.

Figures and discussion using the single-context data will be indicated.

7.3.2 Differential expression testing

We tested expression changes in several ways. In the analysis using the normalization over
all samples, we first tested differential expression at individual time points using Welch’s
t-test. We also attempted to combine information over all time points using ANOVA,
modeling expression as a function of both HD genotype and time. Given the limited
number of replicates at some time points, and the observation that some probe sets have
modest changes that are consistent in direction over time, the multiple-testing adjusted
(Type 1) ANOVA provides a reasonable alternative way to summarize expression changes,
potentially capturing both global and time-specific differences. A probe-set was consid-
ered to be up- or down- regulated if either the HD genotype status main effect or the
genotype-time interaction was significant, and the direction was assigned based on the
sign of the largest change over the time points. In many cases, the ANOVA approach

improved power and permitted more stringent control of false discovery rate across all
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models and cell types.

For the analysis restricted to the individual time points and contexts, we used the the
moderated t-test implemented by limma [116], which produces a small improvement in
the apparent power and therefore more genes called significant at an FDR of 0.05.

Statistics were adjusted for multiple testing over probe sets using the Benjamini-Hochberg
method [[13]. Since we wished to control false discoveries within each experimental group,
rather than globally, and given that power was already limited by the modest numbers of

samples, no further adjustments were made for the multiplicity of time points and models.

7.3.3 Motif and Regulatory Overrepresentation Analyses

Over-representation of motifs (based on SwissRegulon) and associations with chromatin
binding proteins from the ChEA database [7 1] were assessed as described in Chapter 6.
We once again relied on the hypergeometric test since the small number of samples in

many of the contexts was not conducive to methods based on permutation testing.

7.4 Results

Table [7.1 summarizes the numbers of significant expression changes (at « = 0.05) in each
condition under each testing approach, both with and without Benjamini-Hochberg ad-
justment. Significant expression changes tend to develop in the same direction across
time (Fig 2A), and a majority of changes emerge at post-symptomatic time points. Al-
though one of our objectives was to compare changes across both models and time, this
is complicated by differences in power at different time points, largely due to unavoid-
able experimental limitations. For example, since few YAC128 mice survive to 23 months
of age, statistical power at that time point was limited, which accounts for the apparent
decrease in the number of significant changes between 13 months and the terminal 23

month point.
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9¢€l

Number of Significantly Changed Probesets and Genes, by HD Model and TRAP cell type

Welch t-tests, individual time points 2-way ANOVA; genotype or genotype-time interaction
# of mice Nominal p-value < 0.05 Adjusted p-value < 0.05 Nominal p-value < 0.05 Adjusted p-value < 0.05
(wt / HD) Down Up Down Up Down Up Down Up
Genes Probes Genes Probes Genes Probes Genes Probes Genes Probes Genes Probes Genes Probes Genes Probes
03 wk (6/8) 753 901 839 1021 0 0 0 0
D1 08 wk (4/4) 788 or2 613 756 0 0 0 0 3959 5423 3107 4022 170 225 104 124
12 wk (3/3) 982 1228 618 718 0 0 0 0
R6-2 14 wk (11/10) 1954 2646 1583 2055 117 153 77 92
03 wk (5/4) 719 864 753 929 0 0 0 0
D2 08 wk (4/4) 738 929 581 712 0 0 0 0 3234 4366 3036 3993 183 240 170 203
12 wk (3/3) 3033 4100 3918 5357 2 2
10 mo (6/6) 1071 1318 814 979 0 0 0 0
D1 13 mo (11/10) 1689 2286 2024 2576 114 146 189 229 3086 4188 3301 4250 297 385 329 400
YAC 23 mo (4/4) 1093 1421 988 1211 0 0 0 0
10 mo (6/6) 771 963 686 856 0 0 0 0
D2 13 mo (11/12) 1460 1865 1587 2020 13 17 18 20 3045 3959 2988 3780 56 65 57 71
23 mo (3/3) 663 852 590 713 0 0 0 0

Table 7.1: Summary of numbers of genes changing across the different conditions studied, with normalization over all samples
and timepoints, using either Welch'’s t-tests for individual contrasts or ANOVA.



Table @ summarizes the number of expression changes between the HD model and
corresponding wild-type control for each group using the context-specific analysis and
moderated t-tests. Numbers of up- and down-regulated genes and probe sets are shown
for o of 0.05 and 0.10, with and without Benjamini-Hochberg adjustments, and counts are
shown for both changes of any magnitude and change of at least 2-fold. All of the the
models and cell types studied exhibited changes at some time point, even after multiple-

testing adjustments.

7.4.1 Validation against previous mouse HD expression data

The expression changes in the TRAP experiment were compared to those from earlier
studies using homogenized tissue reported by Kuhn and colleagues, which were discussed
in Chapter 6. As expected, there was significant correlation between expression changes
in corresponding models, especially at the later time points, for both models and cell types
studied. These comparisons are summarized in the scatterplots of Figure @ The R6-2
data had slightly greater correlation, which probably reflects a difference in the extent
of disease progression at the time points sampled, rather than any biological difference

between the models.

7.4.2 Validation against expression changes in Human HD studies

Earlier studies have noted the considerable (though imperfect) agreement between ex-
pression changes in mouse HD models and changes in human HD striatum. Figure B
shows scatterplots comparing fold-changes between the mouse cells and human stria-
tum (from Hodges [53]), for orthologous genes with nominally significant changes (« =
0.01) at selected, late time points in both the mouse and in human striatum. For such
genes, there are two to three times as many genes changing in the same direction (num-
bers in black) in the human as there are genes changing in opposing directions (numbers

in red). Both D1 and D2 cells show this concordance to the human data.
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# of Genes # of Probes

down up down up

bh nominal bh nominal bh  nominal bh nominal

p-val model cell type min log2 FC: o 1 o 1 0o 1 0o 1 0o 1 0o 1 0o 1 0o 1
0.05 Ré6-2 D1 03 wk 0 0 809 77 0 0 698 87 0 0 932 85 0 0 838 98
08 wk 0 0 883164 0 0 634117 0 0 1032 183 0 0 728125

12 wk 0 01031 335 0 01031 495 0 0 1248 384 0 01181 551

14wk 159 111870 14 131 20 1663 39 227 17 2536 21 159 26 2136 51

D2 03 wk 0 0 789186 0 0 745201 0 0 918208 0 0 854219

08 wk 0 0 845244 0 0 669210 0 O 1008 280 1 1 768237

12 wk 3699 179 5712 179 4402 407 5416 408 5153 211 8302 211 6270 510 7970 511

YAC D1 10 mo 0 01131 33 0 0 848 36 0 0 1348 40 0 0 977 39
13mo 307 81628 8 524 82214 9 394 14 2247 14 638 92865 10

23 mo 3 31036 39 3 31142 141 5 5 1314 52 3 31385162

D2 10 mo 0 0 715 23 0 0 715 40 0 862 33 0 0 827 46

1mo 55 21786 4 75 11420 3 67 2366 8 91 11832 5

23 mo 0 729 106 0 0 818 157 848 122 0 0 931173

0.10 Ré6-2 D1 03 wk 0 1587 115 0 01473 118 1901 127 0 01817 132
08 wk 0 1767 225 0 01351 169 2146 254 0 01634 191

12 wk 0 2125 493 1 11855721 2638 566 1 12222 823

14wk 285 112991 15 269 27 2516 39 399 17 4122 22 309 34 3322 51

D2 03 wk 0 01591 283 0 01575295 0 1917 323 0 01909 341

08 wk 0 01622 361 0 01390 302 0
12 wk 5389 179 7261 179 5266 408 6102 408 7773 21

YAC D1 10 mo 1 12120 34 0 01571 38 2
13mo 457 82497 8 809 93135 9 592 1

23 mo 3 32019 50 4 41994 159 7

D2 10 mo 0 01408 26 0 01495 44 0

13mo 112 32919 4 145 12131 3 140

23 mo 0 01536 151 0 01606 203 0

1975 408 1 11674 347
10758 211 7706 511 9193 511
2598 41 0 01887 42
3531 14 986 104172 10
2640 64 4 42499 187
1736 36 0 01784 51
3994 8 170 12835 5
1855 172 0 01907 229

O 00 O N AN 2 O O N OO O O Ul O

Table 7.2: Summary of numbers of genes and probe sets changing across conditions stud-
ied, using data normalized for each context and time point independently. Differential
expression tested using limma moderated t-tests.
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log2 fold change Kuhn GSE9303 R6-2
log2 fold change Kuhn GSE9303 R6-2

r=0.6711 r=10.6108

“oval: 3.671e-212 " pval: 0,000e+00

log2 fold change TRAP R6-2 D1 14 wk “log2 fold change TRAP R6-2 D2 12 wk

(a) R6-2 D1 vs. Kuhn R6-2 (b) R6-2 D2 vs. Kuhn R6-2

r=0.5933 r=0.4834

log2 fold change Becanovic YAC128 24mo
log2 fold change Becanovic YAC128 24mo

pval: 1.181e-175 pval: 2.249¢-65

“log2 fold change TRAP YAC D1 13 mo “log2 fold change TRAP YAC D2 13 mo

(c) YAC D1 vs. Becanovic YAC (d) YAC D2 vs. Becanovic YAC

Figure 7.2: Scatterplots comparing cell-type specific TRAP (at late, representative time
points) to previously published homogenized tissue data from the same mouse models.
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log2 fold change in HD human caudate (Hodges 2006)
log2 fold change in HD human caudate (Hodges 2006)

212 - ] : 180

log2 fold change in TRAP R6-2 D2 12 wk

(a) R6-2 D1 (14 wk) vs. Hodges (human HD (b) R6-2 D2 (12 wk) vs. Hodges (human HD
striatum) striatum)

2 2

68 143 63 78

log2 fold change in TRAP R6-2 D1 14 wk

g
ey
G

log2 fold change in HD human caudate (Hodges 2006)
log2 fold change in HD human caudate (Hodges 2006)

141 T 121 66 78

log2 fold change in TRAP YAC D2 13 mo

(c) YAC D1 (13 mo) vs. Hodges (human HD (d) YAC D2 (13 mo) vs. Hodges (human HD
striatum) striatum)

log2 fold change in TRAP YAC D1 13 mo

Figure 7.3: Concordant and discordant expression of orthologs in human HD (striatum)
and mouse models. Scatterplots of log2 fold changes in from TRAP in HD vice vs. log2
fold change of orthologous gene in human HD samples, for differentially expressed genes
at a nominal p-value threshold of 0.01 for both groups. The number of genes falling
in each quadrant is indicated (black numbers are concordant expression changes; red
indicate discordant expression changes.
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R6-2 D1 (14 wk) vs. YAC D1 (13 mo) R6-2 D2 (12 wk) vs. YAC D2 (13 mo)
(adj. p-val < 0.05 by t test in either context) ,o__(adj. p-val < 0.05 by t test in either context)

R6-2 D2, 14 weeks
(mean log2 fold change of probeset)

I R TS “r =058
. p-val = 3.293e-52

e r.= 0.562
p-val = 4.728e-05

R6-2 D1, 14 weeks
(mean log2 fold change of probeset)

%20 15 10 15 20 220 15 10 15 20

YAC D1, 13 months YAC D2, 13 months
(mean log2 fold change of probeset) (mean log2 fold change of probeset)

(@) R6-2 D1 (14 wk) vs. YAC D1 (13 mo) (b) R6-2 D2 (12 wk) vs. YAC D2 (13 mo)

Figure 7.4: Scatterplot comparing significant changes between Ré-2 and YAC models in
corresponding cell-types

7.4.3 Differences between HD models

The earlier studies that compared different mouse models of HD [69] found substantial
concordance between full-length (YAC128) and Exon 1 (R6-2) models of the disease. This
is reinforced by analysis of the TRAP data. Figure @ shows that at the late timepoints,
the correlation of fold-changes between the models is highly significant (for probe-sets

that are differentially expressed in at least one of the conditions).

7.4.4 Many HD dysregulated genes have MSN-specific expression

We and others had previously observed that many of the genes dysregulated in HD mod-
els are those with striatal-specific expression. To verify this and ask whether there was a
difference in this selectivity between the cell types, we compared the post-symptomatic
expression changes to a metric of selectivity, the wild-type expression vs. mean expres-
sion of neurons studied in Doyle et al [30]. We found that in both cell types, genes that are
down-regulated in the HD condition tend to be those with relatively selective wild-type
expression, and vice versa. This suggests that one of the effects of mMHTT is a loss of MSN

identify, and not simply a generic toxic effect, and perhaps that there are transcriptional
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regulatory mechanisms essential to maintaining MSN identity that are disrupted by mHTT.

7.4.5 Expression changes in D1 vs D2 MSNs

An important question which can be addressed with cell-type specific data is whether
expression changes causes by mHTT differ between the distinct MSN cell types. Figure
@ shows scatterplots comparing changes observed in D1 vs D2 cells, for representative
(late, post-symptomatic) time points in each model. Overall, at these later time points,
there is substantial concordance between the changes observed by TRAP in D1 and D2
cells. At least at this global level, there is no evidence for opposing responses between
the two cell types, although there are some genes that change more in one cell type vs.

the other.

7.4.6 Expression changes over time and multiple contexts

Another question motivating this experiment was to identify expression changes occur-
ring both early and late in progression of the disease model, and assess how these may
differ between the two MSN cell types. To address this systematically, we classified probe
sets by their patterns of expression changes across the various experimental conditions.
While the small number of samples and modest changes at some timepoints limited sta-
tistical power, we reasoned that the most biologically interesting genes would be those
with changes corroborated across multiple contexts.

We examined the changes at a stringent level of nominal significance (p < 0.001, fold-
change > 1.2 fold) as well as changes that were consistent between two groups over
either cell types or time, at a more relaxed level of significance (p < 0.05, fold-change >
1.2 fold), and organized these by their patterns of change over the four contexts (Figure
@, panel A). These criteria defined 169 up-regulated genes (201 probe sets) and 166
down-regulated genes (189 probe sets) involved in diverse processes, and a number of
these changes appeared to be cell-type specific.

Genes with increased expression at early time-points in R6/2 include some involved
in signal transduction (Pde7a, Pdelc, Nek5, Tyk2, Ikbkg, Gna12), neurotrophins (Ntf3),
apoptosis signaling (Dapk1), and transcriptional regulation (eg. Zhx2, Zfp566, Zfp608,
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Figure 7.5: Genes dysregulated in HD models tend to have MSN-specific expression.
Expression changes in HD were compared to relative expression across the neuronal cell
types profiled in Doyle et al. [30]
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R6-2 D2 (12 wk) vs. R6-2 D1 (14 wk) YAC D2 vs. YAC D1 at 13 months
(adj. p-val < 0.05 by t test in either context) ,o__(adj. p-val < 0.05 by t test in either context)
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Figure 7.6: Scatterplots comparing significant changes D1 vs. D2 cells in corresponding
models and time-points

Poubf1, Zfp949). Among the most significant selectively up-regulated genes in D2 cells
(in both YAC and R6/2 models) was the Wnt receptor Ryk, which was recently reported
elsewhere to be up-regulated and to promote neuronal dysfunction at early stages of HD
pathogenesis [[133].

Down-regulated genes at early timepoints in R6/2 models included those involved
in signal transduction (eg. Pde10a), neurotransmitter receptors (Grm5), neurotransmis-
sion (Syt7), chromosome organization (Syce2), and regulation of the cytoskeleton (Tbce,
Slain2).

At the 10 month point in YAC128 model, many more significant expression changes
are evident, and this time-point likely represents a disease state that is further progressed
compared to the 3 week pre-symptomatic pointin R6/2. Among up-regulated genesin D1
cells are a number of genes involved in signal transduction (Rnd3, Nek?), apoptosis (Dlc1,
Rprm), cell cycle regulation (Cdk14), transcription factors (Zfp516), and a large number of
protocadherin genes (Pcdh18, Pcdh19, Pcdh20, Pcdhb16).

Comparing across models and cell types at the pre-symptomatic time points, there
were few common changes. At a threshold of 1.5 fold-change, Igfbp4, Gm8154, Ddit4l,

Oprk1, and Col6a4 were down-regulated in both D1 and D2 cells; no genes had common
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increases.

At the late, post-symptomatic timepoints, there were several thousand genes that
changed. Figure @B summarizes those with the most significant changes, based on the
ANOVA model, after multiple-testing adjustment. Roughly similar numbers of genes were
up- and down- regulated using these statistical thresholds, although a greater number
of down-regulated genes are among those with the most extreme fold-changes. Many
genes changed in the same direction in both striatonigral and striatopallidal MSNs, and
only a handful of genes (eg. Atp2b1, Gpméb, Ncam1, and Ttc3) had probe sets signifi-

cantly changed in opposite directions between cell types.

7.4.7 Pathway over-representation analyses

There are well-known limitations to biological inferences based on database annotations
of function [[112]. Nevertheless, to summarize the large number of expression changes
observed at the later time points, we also assessed over-representation of gene sets asso-
ciated with biological pathways from KEGG [65]. Figure @ shows a graphical summary of
the results. As might have been expected, many of the pathways with the most significant
over-representation among dysregulated genes are involved with neuronal signaling and

neurological disease, such as sets involved with “gap junction”, “glutamatergic synapse”,

“neurotrophin signaling”, the “dopaminergic synapse”, and “calcium signaling”.

7.4.8 Expression changes of transcriptional factors and regulators

To identify genes that might be regulating transcriptional dysregulation, we also looked
specifically at changes involving transcription factors and other genes with DNA or chromatin-
binding activity. Genes with these annotations and which had large (> 3-fold) and (nomi-
nally) significant changes in at least one experimental context are shown in Figure @
Among regulators with the largest or more consistent changes, Wt1, which is very
highly up-regulated especially in D1 cells, is a transcription factor better known for its role
in kidney development and Wilms tumor, an inherited form of kidney cancer. However,
W11 has also been previously implicated in neurodegeneration in Alzheimer’s disease [[78].

Among chromatin modifying genes, Kdméb (Jmjd3), a lysine demethylase that acts
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Figure 7.7: Heat map summarizing putative A) early and B) late expression changes in HD
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on H3K27me2/3, appears to be up-regulated, as may be Kdm2a, a H3K36 demethylase.
These might reflect homeostatic responses to increases in PRC2 activity, if indeed that is

a consequence of mHTT.

7.4.9 Motif and regulatory target overrepresentation analysis

We next assessed over-representation of regulatory motifs and chromatin-binding regula-
tors across the various models. Figure shows a summary of the over-represented mo-
tifs, and Figure shows over-represented regulators from the ChEA database, based
on the sets of genes differentially expressed in each group at an adjusted « of 0.05.

The analysis of over-representation of the targets of chromatin-binding regulators is
shown in Figure . Many of the most highly-ranked putative regulators in this analy-
sis were the same as those found using data from homogenized tissue discussed in the
previous chapter. Among the top potential regulators were components of the PRC2
complex: MTF2, SUZ12, JARID2, RNF2, and EZH2. The over-representation of targets of
these proteins was most apparent among the sets of down-regulated genes. Although
the test statistics tended to be more extreme in the D1 cell types, the differences in power
between groups (due both to sample size and potential differences in expression of the
TRAP constructs) makes it difficult to make strong claims about whether this difference is
statistically significant and biologically important.

Given the large expression changes in expression of the Wt1 gene itself, it is also
interesting to note that Wt1 targets are over-represented in many of the groups. While
the extreme changes in Wt1 has been observed in many earlier studies ([[12]), there is still

relatively little known about its role in neural gene expression networks.

7.5 Discussion

7.5.1 Considerations for design of future experiments

Unbalanced numbers of replicates across experimental groups makes rigorous compar-
isons between groups and cell-types difficult. Given the biological variability in HD mouse

models, it seems that having at least a dozen biological replicates is desirable, especially
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Figure 7.10: Graphical summary showing over-representation of individual cis- regulatory
motifs in promoter regions of HD-dysregulated genes over all experimental contexts.
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Figure 7.11: Graphical summary showing over-representation of mouse regulatory targets
from the ChEA database, over all experimental contexts.
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given the multiple-testing issues inherent in transcriptional profiling.

The microarray technology used to measure transcription in this study is well estab-
lished and cost-effective. However, the arrays here were not designed to detect splicing
variation. We observed many instances in which alternative probe sets for genes reported
inconsistent changes. It will be interesting to apply long-read mRNA-seq to more thor-
oughly characterize splicing in these models and to validate expression changes with an

independent method.

7.5.2 Cell-type specificity of HD transcriptional dysregulation

The expression changes observed across both cell types suggest that the underlying se-
lective vulnerability of the striatum to mHTT is not D1 or D2 specific, but likely a more

general characteristic of MSNs.

7.5.3 Potential Role of PRC2

The over-representation analyses in both cell types (Figure ) again suggests the in-
volvement of the PRC2 complex in transcriptional changes caused by mHTT. In the future,
profiling epigenetic states and binding in the specific cell types of interest, perhaps using
epitope-tagged chromatin regulators and transcription factors [14], may help to decon-

struct the regulatory networks that are affected by mHTT.
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Chapter 8

Analysis of Expression in the CHDI HD Allelic Series

8.1 Introduction

The age of onset of HD is dependent on CAG repeat length [33], and understanding the
mechanistic basis for this genetic observation remains an open question. One approach to
study CAG dependence has been the construction of a series of knock-in mice heterozy-
gous for mHTT alleles with varying repeat lengths [[139]. Recently, a consortium organized
by the CHDI Foundation (http://www.chdifoundatation.org) conducted a systematic
study to measure mRNA and miRNA expression in many tissues over this allelic series and
over time.

We performed some preliminary and non-exhaustive analysis of this expansive dataset
to investigate three focused questions, as well as to offer a vignette describing an appli-
cation of BOMBASTIC. First, we sought to verify whether our observations about the
potential role of PRC2 and H3K27me3 in transcriptional changes in HD (Chapter 6 and
7) could be replicated in this newer, bigger, and independent study. Second, using the
allelic series, we could evaluate which genes and potential dysregulatory mechanisms
might be dependent on mHTT repeat length. Finally, since the CHDI experiment mea-
sured expression across a wide range of tissues, including many of non-neuronal origin,
we could assess how patterns of differential expression and regulators vary over tissue
types and time, which could suggest additional hypotheses about the context-specificity
of mHTT effects. To explore some of the many different possible comparisons among the
different timepoints and tissues neeed to address these questions, we made use of the

BOMBASTIC methodology and software described in Chapter 3.
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8.2 Experimental Design and Data

mRNA-seq expression data, consisting of raw read counts and FPKM values for each sam-
ple, was obtained from the CHDI HDinHD.org Data Portal (http://www.hdinhd.org). This
data had been made openly available to the community under a Creative Commons At-
tribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/us/).
For three tissues — striatum, cortex, and liver — measurements were available over the full
allelic series, at 2, 6, and 10 months. For 11 additional tissues, data was available com-
paring the Q175 knock-in to the wild-type mice, at 6 months. For almost all comparisons,
there were 8 mice tested for each genotype at each time point.

The CHDI study also measured behavioral and motor phenotypes with a battery of
automated assays using sensor data and video tracking [[10, 100]. For the initial analysis

described in this chapter, we did not attempt to make use of this pheotypic data.

8.3 Methods

8.3.1 Differential expression analysis

DESeq 1.20 [2] was used to assess differential expression for each mHTT heterozygous
knock-in vs. WT contrast, independently, for each tissue and time point. DESeq operates
on transcript read counts, and performs a binomial test for differential expression after
estimating dispersions for each gene, adjusting for the library size of each experiment

and the expression level of the gene.

8.4 Results

Differential Expression across Tissues

We used BOMBASTIC to organize, cluster, and visualize differential expression across the
tissues using statistics computed with DESeq. Genes were clustered in blocks by tissue
type. We explored a variety of clustering approaches, but focus here on the quantized
contrasts clustering for its simplicity and ease of interpretation. Figure shows repre-

sentative block clusterings for striatum, cortex, and liver. In the version shown, differential
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expression is classified as up, down, or unchanged, at a nominal « of 0.05 and log2 fold-
change threshold of +/- 0.58. The three columns within each block represent the 2-month,
6-month, and 10-month time points, respectively.

Figure @ shows an alternative set of clusterings using more granular fold change
levels, as well as a more stringent statistical threshold (Benjamini-Hochberg adjusted p-
value < 0.10).

Expression differences begin to develop as early as 2 months in all three tissues. Many
of the genes with the biggest changes are familiar, such as Wt1. Very few differentially
expressed genes change direction over time.

As expected, there tend to be more differentially expressed genes in the striatum than
the cortex. We observed a relatively large number of genes that appear to be differen-
tially expressed in the liver, particularly at the 6 month time point (Figure and @), a
majority of which are up-regulated. That the number of genes changing in the liver might
be comparable or greater than the number changing in striatum is somewhat surprising,
although hepatic dysfunction and transcriptional dysregulation in liver has previously been
observed [24, 55].

We also examined the tissues sampled by CHDI at 6 months. Figure @ shows the
distibution of expression changes in each tissue, at two alternative signficance levels. At
the more stringent settings, we observe many more changes in the cerebellum than the
brainstem, and very few in the corpus callosum. In peripheral tissues, there appear to be
significant expression changes in skin and brown adipose tissue, and few or no changes

in white adipose or muscle.
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8.4.1 Comparisons between tissues using BOMBASTIC

We examined selected pairs of tissues and compared clusters of differentially expressed
genes using BOMBASTIC. Figure @ shows the the Striatum Q175 over time clustering
(of Figure @ (a)) vs. Cortex Q175 over time (Figure @ (b)). There are many intersections
between clusters that may be of potential interest and can be examined interactively, but
we briefly remark upon a few examples.

One of the few genes downregulated at all time points in both striatum and cortex is
Penk, pre-encephalin, whose dysregulation is a well known marker of striatal dysfunction in
HD (eg. [102]). From the 10 month time-point, however, a considerable number of genes
with well-known striatal changes are also dysregulated in the cortex, including Ddit4l,
PIk5, Dusp18, and Rgs4. The consistency in many such expression changes across multiple
neuron types suggests that at least some of the mechanisms through which mHTT affects

transcription are not MSN-specific.

8.4.2 \Verificiation and tissue-dependence of putative PRC2 regulation

We examined over-representation of the ChEA regulators (as described in previous chap-
ters) across the subsets of genes with various patterns of differential expression, focusing
on the Q175 groups which had the greatest number of significant expression changes. In
striatal samples, there was statistically significant over-representation of Suz12 and Eed
targets in the [0, -1, -1] cluster, which contained 1279 genes and the [-1, -1, -1] clus-
ter which had 53 genes (see Fig (a)). There was also (somewhat less extreme) over-
representation of Suz12 targets in the [0, 0, +1] group.

In the cortex, there was similar over-representation for Suz12 in the [0, -1, -1] group.
Interestingly, in liver, the most significant enrichment for Suz12 targets was seen among
up-regulated genes in the [0, +1, 0] cluster. While this preliminary result demands addi-
tional confirmation, it might suggest a common underlying mechanism leading to oppos-
ing effects due to differences in the transcriptional regulatory networks and epigenetic

states of neurons and hepatocytes.
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Figure 8.4: Striatum Q175 vs. Cortex Q175 clustering tree. Within each block, genes are
clustered by patterns of quantized contrasts. Numbers indicate count of genes at each
node having the combination of patterns indicated by each path.
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8.5 Discussion

8.5.1 Future work

Better statistical modeling and tests for time course data

The statistical methodology used in this initial analysis of the CHDI dataset was chosen to
be as simple as possible. Our analysis was built upon tests done using DESeq, performed
independently for each contrast. It would be prudent to verify our results using alternative
differential expression tests and software, such as DESeq2 [77] and limma [99].

Another opportunity for improvement is to use a methodology that integrates more
information over the time-points and tissues studied. Given that we expect that there are
common underlying mechanisms of regulation across at least some of the tissue types,
one might use a simple hierarchical bayesian model including both tissue-specific and
shared factors driving expression, which would allow information to be shared across the
contexts to capture the intuition that consistent patterns of dysregulation over multiple
tissues is evidence of bona fide biological changes. Having such a model is particularly
important because the number of replicates performed in these and similar studies is
frequently inadequate to provide sufficient power to compensate for multiple-testing ad-
justments required for genome-wide measurements. We have observed many instances
in which small changes at early timepoints or caused by milder mHTT genotypes are not
statistically significant, yet re-appear with stronger signals in other contexts. This greatly
complicates comparing across contexts to track disease progression and understand early

pathophysiological mechanisms.

Improvements to the BOMBASTIC software

In addition to the features proposed in Chapter 3, our experience applying BOMBASTIC
to a real data analysis scenario identified two critical areas in the software needing im-
provement. First, the the current BOMBASTIC interface is optimized for interactive use,
and lacks features for easily annotating visualizations and saving results to static figures.
Second, analyses of complex datasets such as the one described in this chapter require

many choices for methods and parameters, which can generate a combinatorial explo-

161



sion of alternative result data sets and their dependencies. For example, even before
the BOMBASTIC step of intersecting clusters, all of the analyses described can be per-
formed using different statistical thresholds, multiple-testing corrections, and levels for
quantization. It is critical to be able to vary and explore such parameters, but doing so
manually while properly labeling and accounting for all of the results can be challenging
and tedious. This is a not a problem about which we were unaware, but the present BOM-
BASTIC implementation lacks some essential abstractions needed to make managing this

dataflow as easy, verifiable, and efficient as it might be.
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