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THE ROLE OF RNA HELICASES IN NEUROMUSCULAR DEVELOPMENT 

AND DISEASES 

ALEXIS H. BENNETT 

ABSTRACT 

 RNA helicases are enzymes that bind or remodel RNA and RNA-protein 

complexes. They are involved in numerous cellular functions including RNA 

metabolism, transcription, translation, and mRNA decay. Defects in helicase function or 

disregulated expression, can cause diseases.  DEAD-box (DDX) RNA helicases are 

highly conserved and are known to be involved in muscle development and disease, by 

interacting with muscle specific transcription factors and genes in humans. The Gupta 

Lab is currently studying zebrafish (an established and reliable model to study muscle 

diseases) with a mutation in ddx27. These fish have impaired motility behavior, skeletal 

muscle hypotrophy, and extensive central nucleation. They also exhibit disorganization of 

skeletal muscle, abnormalities in the brain, eyes, and heart. These phenotypes mimic the 

abnormalities seen in human myotonic dystrophy. It is known that ddx27 is necessary for 

regulation of rRNA maturation.  Recent studies have pointed to it’s non-ribosomal roles 

of nucleolar genes. IGHMBP2, another RNA helicase, is known to result in spinal 

muscular atrophy (SMARD1) or Charcot-Marie Tooth disease when mutated. We used 

zebrafish and patient myoblast cells to determine the role of ddx27 in myogenesis and 

diseases. As a basis for future studies, the 43 known human DDX genes were outlined for 

their functions.  
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Immunofluorescence studies in ddx27 mutant zebrafish showed drastic skeletal 

muscle and nucleolar assembly defects with large numbers of cells with transcriptionally 

active euchromatin, suggesting altered gene regulation. In addition, IF with Pax7 (a 

marker for satellite cells) and MF20 (a marker for myosin heavy chain antibodies) 

showed a significant increase in the number of Pax7 positive cells that suggest perturbed 

satellite cell regulation. Nucleolar defects were also seen in cells isolated from myotonic 

dystrophy patients. While the cause of these defects is not known, the results lead us to 

believe that ddx27 may be involved in cell cycle regulation or apoptosis events. Finally, 

while this study also attempted to develop a zebrafish model of IGHMBP2 deficiency in 

order to study and develop therapies for SMARD1, a consistent phenotype was not 

observed and further work is required to characterize this model.   

 More than one million Americans suffer from neuromuscular disorders, however 

many of these conditions have no known treatments. By studying the molecular pathways 

involved we can attempt to develop therapies for these diseases.  
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INTRODUCTION 

Inherited Disorders of Muscle 

Inherited muscle disorders are classified as non-dystrophic myopathies or 

muscular dystrophies. Both myopathies and dystrophies present with clinical symptoms 

including weakness, motor delay, and respiratory and bulbar dysfunction. Myopathies are 

caused by genetic defects that result in changes in the contractile apparatus of the muscle 

without significant regenerative changes in skeletal muscle. They can be characterized by 

specific histochemical or ultrastructural changes detectable in a muscle biopsy. Muscular 

dystrophies are diseases of the muscle membrane or supporting proteins, and are 

distinctive in their pathological evidence of continuous cycles of muscle degeneration 

and regeneration (Cardamone, Darras, & Ryan, 2008). Genetic advances in recent years 

have identified over a hundred neuromuscular disease genes. Surprisingly however, 

despite the large number of known neuromuscular disease genes, specific therapies 

remain unavailable due to a lack of clear understanding of the biological functions and 

pathological pathways regulated by disease-causing genes. 

RNA Helicases 

RNA helicases are enzymes that utilize ATP to bind or remodel RNA and RNA-

protein complexes (ribonucleoprotein or RNP complexes). They are involved in many 

different aspects of RNA metabolism including transcription, translation, and mRNA 

decay. RNA helicases are classified into families and superfamilies based on their 

structure and function (Linder & Jankowsky, 2011). There are six superfamilies, and all 
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eukaryotic RNA helicases belong to superfamilies (SF) one and two making them 

relevant for human disease research (Jankowsky, 2011). SF1 and SF2 helicases have 

similarly structured catalytic cores. Unique enzymes within each of the superfamilies 

execute a wide array of distinct functions on different substrates. Many biological 

processes involving DNA or RNA use one or more helicases. Defects in helicase 

function, as well as disregulated expression of these helicases have been shown to lead to 

numerous diseases including cancers, developmental defects, and neurodegenerative 

diseases (Fairman-Williams, Guenther, & Jankowsky, 2010, p. 1). 

DEAD-box (Superfamily 2) RNA Helicases 

DEAD-box (DDX) proteins make up the largest superfamily (superfamily2) of 

RNA helicases.  There are 43 different DEAD-box RNA helicases in humans.  These are 

characterized by their Aspartic acid-Glutamic acid-Alanine-Aspartic acid (DEAD) motif. 

These proteins are often part of the spliceosome and are involved in eukaryotic 

translation initiation. They are involved in disassembly of RNPs (proteins associated with 

RNA involved in a wide array of processes), chaperoning during RNA folding, and 

stabilization of protein complexes on RNA. DEAD box proteins have a highly conserved 

core containing RNA and ATP binding sites.  They also contain variable domains that 

surround the conserved core, which may serve as an explanation for the wide variety of 

functions that each member of this family performs. Mutations in DEAD-box RNA 

helicases have been linked to a number of diseases (Linder & Jankowsky, 2011).  In 

skeletal muscles, several DDX proteins play an important role in muscle development 



!

3 

and disease by interacting with muscle specific transcription factors and disease causing 

genes (Caretti et al., 2006).   

Myotonic Dystrophy 

 Myotonic dystrophy is an autosomal dominantly inherited muscular dystrophy 

(Cardamone et al., 2008).  Myotonic dystrophy is the most common form of muscular 

dystrophy affecting 1 in 8,000 people worldwide. Myotonic dystrophy is classified as 

type 1 (DM1) or type 2 (DM2) on the basis of genetic mutations. In most populations, 

type 1 is the most common (“Myotonic dystrophy,” 2015). Currently there are no specific 

treatments or cures for this disease (“Learning About Myotonic Dystrophy,” n.d.). 

 DM1 has four clinical forms: congenital, early childhood, adult-onset, and 

oligosymptomatic late-onset. Adult-onset, or “classic DM1” is the most common 

presentation diagnosed patients. DM1 presents with myotonia (prolonged muscle 

contractions) and skeletal muscle weakness and wasting (“Myotonic dystrophy,” 2015). 

In addition to skeletal muscle, DM1 can also affect cardiac muscle, causing fibrosis in the 

conduction system and sinoatrial node, resulting in conduction defects and 

tachyarrythmia (Meola, Jones, Wei, & Timchenko, 2013). The congenital form presents 

with severe cognitive abnormalities and a delay in myogenesis (Jones et al., 2015). DM1 

also causes patients to develop cataracts. In MRI scans, patients tend to have diffuse 

white matter in the brain.  Additionally, DM1 affects endocrine functions, causing 

patients to suffer from insulin resistance, which leads to susceptibility to diabetes and 

hypothyroidism (Meola et al., 2013). The genetic defect in DM1 is caused by an 

amplified trinucleotide repeat to the dystrophia myotonica protein kinase gene (DMPK). 
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The expansion of the repeats is often related to the disease severity in affected patients. 

Normal individuals have between five and thirty-seven repeats, mildly affected 

individuals have 50-150 repeats, patients with classic DM1 have 100-1,000 repeats, and 

those with congenital onset have more than 2,000 repeats (“OMIM Entry - # 160900 - 

MYOTONIC DYSTROPHY 1; DM1,” n.d.). 

DM2 typically presents as a late-onset disease and does not include clinical 

subtypes. The clinical phenotype presented by DM2 is variable.  Patients can have 

disabilities beginning in their 40’s, ranging from early cardiac death to mild proximal 

weakness or slightly elevated creatine kinase levels (particularly in elderly patients). 

DM2 may present with muscle symptoms such as proximal or lower limb weakness or 

myalgic pain. Myotonia is not always present in this disease. DM2 may occasionally be 

associated with severe muscular atrophy and disability, and patients may have severe 

myalgic pain.  This pain is often the major cause of dysfunction and hindrance to daily 

activites (Meola et al., 2013). DM2 is caused by an abnormal expansion of repeats in 

intron 1 of the zinc finger protein-9 gene (ZNF9). Normal individuals have up to 30 

repeats, while affected individuals can have between 70 to 11,000 repeats (“OMIM Entry 

- # 602668 - MYOTONIC DYSTROPHY 2; DM2,” n.d.). 

 

Mechanism by which CTG/CCTG repeats cause DM1 and DM2 

DM1 is caused by mutations to the dystrophia myotonica protein kinase (DMPK) 

gene. The mutation is located in the 3’ untranslated region, and consists of an expansion 

of CTG triplet repeats. DM2 is caused by expanded CCTG repeats in intron 1 of the 
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cellular nucleic acid-binding protein (CNBP; also called ZNF9) (Jones et al., 2015). 

Previous studies showed that these mutations result in disease by RNA gain of function 

mechanisms (Jones et al., 2015). In myotonic dystrophy, the mutant RNA accumulates in 

cells and results in the disease pathology (Jones et al., 2015). Expanded transcripts form 

aggregates in the nucleus and cytoplasm of the cell. Expanded CTG repeats in these 

RNAs form a hairpin structure that interferes with the normal functions of RNA binding 

proteins, and therefore negatively impacts normal cellular function (Laurent et al., 2012). 

Studies have identified a number of RNA binding proteins that are sequestered or mis-

regulated in myotonic dystrophy such as CUG binding protein 1 (CUGBP1), 

muscleblind-like protein 1 (MBNL1) Stafuen1, and two members of the DEAD-box 

RNA helicase family; DDX5 and DDX6 (Jones et al., 2015).  

Effects of CTC Repeats on CUGBP1 and MBNL1 

CUBPG1 is involved in splicing, as well as a number of functions in the 

cytoplasm including regulation of RNA translation, RNA deadenylation and RNA 

stability. CUGBP1 functions as both an activator (act) and repressor (rep) of these 

processes. Whether CUGBP1 is an activator or repressor depends on phosphorylation at 

S302. The phosphorylated protein is an activator, while the unphosphorylated form is a 

repressor. CUGBP1act increases the translation of mRNAs important for skeletal muscle 

myogenesis, liver proliferation and differentiation, cancer development, and aging. These 

mRNAs are also important in DM1 and DM2 pathogenesis. In normal cells, the activator 

and repressor versions of these proteins are balanced, however in DM1 cells both forms 

are increased. This leads to a misbalance in protein synthesis.   
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Additionally, interactions of different RNA binding proteins with the mutant 

CUG RNA might change the normal functions, therefore altering RNA processing in the 

nucleus and cytoplasm of DM1 cells (Meola et al., 2013). 

MBNL1 is a splicing factor that binds RNA through its zinc-finger domains. 

MBNL1 is sequestered within the nuclear foci of expanded CUG repeats and this results 

in a loss of function of the protein resulting in mis-splicing of many target pre-mRNAs 

(Laurent et al., 2012) (Pettersson et al., 2014). 

P68/DDX5 

DDX5 is a member of the DEAD-box RNA helicase family is sequestered in the 

RNA foci expressing expanded CUG repeats in myotonic dystrophy patients. A previous 

study showed that DDX5 acts as a modifier by increasing the binding of MBNL onto 

CUG repeats (Laurent et al., 2012). 

DDX6 

DDX6 is a DEAD-box helicase mainly located in the cytoplasm. It is needed for 

many steps in regulated mRNA turnover and translation. In mammalian cells specifically 

it is needed for assembly of processing bodies. These processing bodies contain repressed 

mRNPs, mRNA decay factors, and proteins important for miRNA-machinery. In a study 

done by Pettersson et al., over expression of DDX6 was shown to partially rescue 

missplicing events specific to DM1. This study showed that DDX6 interacts with CUG 

repeats in DM1 patient fibroblasts and with CUG RNA in-vitro. Overexpression of 

DDX6 results in a decrease in the amount of nuclear DMPK messenger ribonucleoprotein 
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foci (DMPK-mRNA). Concordantly, knockdown of endogenous DDX6 results in a 

significant increase in the number of DMPK-mRNA foci in addition to increased 

sequestration of MBNL1 in the nucleus. Lastly, this study was able to show that DDX6 

can unwind CUG-repeat duplexes in vitro in an ATP dependent manner. This suggests 

that DDX6 might have the ability to release nuclear DMPK-mRNA foci, and reestablish 

normal splicing events (Pettersson et al., 2014). 

DDX27 

DDX27 is a member of the DEAD-box helicase family.  In a study done by Gupta 

et al., a forward genetics approach was taken using the zebrafish as a model organism.  

This study resulted in 13 unique zebrafish mutants with defective skeletal muscle. One of 

these mutants, named “osoi”, was found to have impaired motility behavior. They also 

exhibit skeletal muscle hypotrophy and extensive central nucleation. Genetic mapping of 

this fish led to the discovery of a novel mutation in DEAD-box protein encoding gene 

ddx27. In yeast, mutations of ddx27 orthologue rs1 result in 25s rRNA maturation defect 

and 60S ribosomal subunit deficiency. Preliminary data shows that zebrafish and 

mammalian DDX27 is necessary for regulating the maturation of rRNAs. This would 

complement data that shows muscle hypertrophy is accompanied by increased ribosomal 

biogenesis. However, more recent studies have pointed to non-ribosomal roles of 

nucleolar genes, and that impairment of these functions may lead to cell cycle defects 

(Tsai & Pederson, 2014).  
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Spinal Muscular Atrophy with Respiratory Distress Type I (SMARD1) 

 SMARD1 is a rare autosomal recessive disorder. It is generally characterized by 

respiratory failure due to diaphragmatic paralysis and presents within the first two months 

of life. Severe infantile axonal neuropathy is also characteristic of SMARD1. The disease 

is often life threatening in the first year of life, but it is possible for patients to live into 

adolescence and early adulthood with ventilator support. (Wagner et al., 2015) Currently, 

the only treatment involves managing symptoms. There is no specific cure available, 

making this disease a good candidate for drug screens (“Learning About Spinal Muscular 

Atrophy,” n.d.). 

Charcot-Marie Tooth Disease (CMT) 

 CMT is a common neuromuscular disorder with a prevalence of 1 in 2500.  

Progressive length-dependent weakness, muscle atrophy, sensory loss, and areflexia are 

characteristic of CMT. Until recently, mutations in IGHMBP2 have been associated 

exclusively with SMARD1, but a study by Cottenie et al. identified patients with clinical 

features of CMT without respiratory involvement had autosomal recessive mutations in 

IGHMBP2 (Wagner et al., 2015). Currently there is no cure for CMT, and treatment 

consists of physical and occupational therapy (“Charcot-Marie-Tooth Disease Fact 

Sheet,” n.d.). 

Ighmbp2 

IGHMPB2 is an immunoglobulin µ-binding protein and in humans, it is 

composed of 993 amino acids. It is classified as an SF1 RNA helicase, and contains an 
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RNA/DNA helicase domain, an R3H single-stranded nucleic acid-binding domain and a 

zinc finger domain. IGHMBP2 mRNA is ubiquitously expressed. In vitro studies have 

shown that IGHMBP2 is involved in transcriptional activation, immunoglobulin class 

switching and pre-mRNA splicing. The RNA helicase domain of IGHMBP2 suggests its 

involvement in RNA processing, regulation, or metabolism (Planell-Saguer, Schroeder, 

Rodicio, Cox, & Mourelatos, 2009). Additionally, IGHMBP2 has been shown to 

associate with ribosomes, tRNA, and it regulates ribosomal biogenesis. Mutations in the 

gene result in degeneration of anterior horn cell alpha-motor neurons (Wagner et al., 

2015). This results in respiratory distress caused by diaphragmatic palsy and distal motor 

weakness (Schottmann et al., 2015). Individuals with mutations in IGHMBP2 can present 

with spinal muscular atrophy with respiratory distress (SMARD1) or with Charcot-Marie 

Tooth disease (Wagner et al., 2015). 

Zebrafish as a Model Organism 

 The zebrafish, Danio rerio, is a small freshwater fish native to inland streams and 

rivers of India.  They are an average of 25 mm in length and have a number of properties 

that make them a good model organism for research (Markowski, n.d.). Zebrafish are 

small and robust, allowing them to be kept in a lab in large numbers at a low cost. The 

fish breed throughout the entire year, with females able to spawn every two to three days.  

A single clutch may have several hundred embryos. Generation time for zebrafish is on 

average three to four months, which is relatively short for a vertebrate animal. This 

makes it a good model for selection experiments. The embryos of zebrafish are also 

relatively large in comparison to other fish species.  When fertilized, the embryos are 0.7 
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mm in diameter. They are fertilized externally and are also optically transparent. This 

particular feature allows the embryos to be manipulated and monitored under a dissection 

microscope through all stages of development. The embryos develop quickly, with 

precursors to all major organs developing within 36 hours of fertilization (“Zebrafish - 

Danio rerio - Overview,” n.d.). Most importantly, orthologues of most of the human 

genes are present in zebrafish that share a high sequence homology, thus making them an 

ideal system to model human diseases.  

Zebrafish serve as a particularly good model for studying muscular dystrophy. 

Zebrafish and humans share a high degree of sequence homology. They contain many 

similar dystrophy associated proteins as humans. Mutations in these genes can cause 

phenotypes similar to those seen in human patients.  This suggests experimental findings 

from zebrafish studies will be transferable to mammals (Guyon et al., 2007). 

 

The Current Study 

Gupta lab had previously identified a zebrafish mutant (osoi) with hypotrophy and 

disorganization of skeletal muscle and phenotypic abnormalities in the brain, eyes and 

heart.  The “osoi” mutant fish has a 20 base pair deletion in exon 18 of the ddx27 gene. 

The phenotypes observed in this mutant are similar to the abnormalities seen in human 

myotonic dystrophy. It is evident that RNA helicases are critical for ribosomal biogenesis 

and muscle growth in human disease. With this knowledge, we hope to achieve a better 

understanding of the biological and molecular pathways regulated by RNA helicases and 

related RNA binding proteins in skeletal muscle development diseases. This insight may 
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allow us to develop an approach to identifying potential therapies for neuromuscular 

diseases.   
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SPECIFIC AIMS 

By understanding the molecular pathways that contribute to neuromuscular 

disorders, diagnosis and treatment of patients suffering from these disorders can be 

improved. The objective of this project is to understand the role of RNA helicases in 

neuromuscular development and diseases. Inherited disorders of muscle include both 

dystrophies and non-dystrophic myopathies. These conditions are characterized by 

muscle weakness and impaired movement, and they form a wide array of inherited 

disease affecting both adults and children. Studies of these diseases in humans are 

difficult due to the clinical and genetic heterogeneity, variable penetrance, and early 

mortality.  Therefore zebrafish, Danio rerio, will be used as an animal model for this 

study due to their high degree of sequence homology with humans, vertebrate skeletal 

muscle structure, and rapid ex vivo development. In a previous study performed in our 

lab, 13 unique zebrafish mutants were identified with defective skeletal muscles. One of 

these mutants, named osoi, was found to have a loss of function mutation in a novel RNA 

binding protein, DEAD-box helicase ddx27. This helicase is part of a highly conserved 

family of DEAD-box RNA helicases.  Within this family of DEAD-box proteins, there 

are currently 43 members that have been found in humans.  They are involved with a 

diverse array of functions related to RNA metabolism. Several studies have shown that 

ribosomal regulation is important for muscle growth. In several models of dystrophies, a 

decrease in ribosomal function is observed. Earlier studies in our lab suggest there is a 

defect in ribosomal biogenesis in the skeletal muscle of the ddx27 mutant fish and 

mammalian cells. More recent studies suggest non-ribosomal functions of these nucleolar 
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genes. Therefore, the proposed study is aimed at understanding the roles of ddx27 and 

related proteins in skeletal muscle development and neuromuscular diseases. DEAD box 

RNA helicases are involved in RNA metabolism and regulate biological processes that 

involve RNA function. The focus of this work is on regulation of protein translation 

processes in skeletal muscle development by DDX proteins. 

The specific aims of this study are: 

1. To determine the role of ddx27 in myogenesis and diseases  

2. To identify DDX genes that are expressed in mammalian muscle cells and regulate 

ribosomal biogenesis or translation initiation/elongation processes 

3. Develop a zebrafish model of ighmBp2 deficiency to study disease pathology and 

develop therapies for SMARD1 in zebrafish 

Through this study, we hope to better understand the molecular mechanisms of 

RNA binding DEAD-box helicase proteins and their functions in muscle development 

and disease pathology. Through a series of immunofluorescence studies using multiple 

markers, we will investigate the role of ddx27 in myogenesis and disease. We aim to 

understand the role of ddx27 in myotonic dystrophy through in-situ hybridization and 

immunofluorescence (IF) in patient and control muscle cells.  We want to identify 

additional DDX genes that are expressed in mammalian muscle cells and involved in 

ribosomal biogenesis or translation as a starting point for future studies. Finally we hope 

to characterize the phenotype and pathologies associated with IGHMBP2 mutations in 

zebrafish. Through increased understanding of the molecular mechanisms involved with 

skeletal muscle hypotrophy and disease, improved corrective therapies can be developed.
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METHODS  

DDX27 Zebrafish 

Prior to this study, the Gupta Lab performed ENU F2 mutagenesis screening to 

identify mutant zebrafish with skeletal abnormalities. This led to the discovery of a fish 

with highly impaired swimming behavior, eye defects, pericardial edema, and reduced 

birefringence indicative of structural muscle defects. These fish were found to have a 20 

base pair deletion in exon 18 of the ddx27 gene resulting in a frameshift mutation. 

Homozygous fish die at 6 or 7 dpf. The heterozygous fish are fully viable, fertile, and 

apparently unaffected. The phenotype and genetic mapping of this fish can be seen in 

Figure 1.  

Figure 1: Phenotype and genetic mapping of dd27 mutant fish. ddx27 mutant fish have leaner muscle and 
pericardial edema. They also show reduced birefringence in comparison to the wild-type (WT), indicative of 
disorganized myofiber structure. (WT, top; mutant, bottom). Sequencing shows a 20 base pair deletion in the 
ddx27 gene.  
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Zebrafish Myofiber Culture and Immunofluorescence 

Poly-L-lysine was plated in 8 well chamber slides and kept at 37˚C for 1 hour. 

Zebrafish embryos were collected at 4 days post fertilization (dpf). Approximately 40 

wild-type and 40 mutant embryos were placed in eppendorf tubes and the water was 

removed. 900 µl of CO2 independent media and 150 µl of collagenase type II (3.125 

mg/ml) were added.  The tubes were rotated on an orbital shaker for approximately 2 

hours and checked every 30 minutes to prevent over digestion. The tubes were then 

centrifuged at 1500 rpm for 5 minutes to pellet the cells. The supernatant was removed, 

and the cells were washed two times with CO2 independent media. 1 ml of fresh CO2 

independent media was added to resuspend the cells, and the suspension was passed 

through a 70 µm filter to remove debris. 200 µl of the suspension was added to each well 

of the poly-l-lysine coated slide, and the myofibers were allowed to settle on the slide for 

one hour at RT. The media was removed, and the myofibers were fixed in either PFA for 

20 minutes or PFA for 10 minutes followed by -20˚C methanol for 10 minutes depending 

on the antibody to be used. Following fixation, the myofibers were washed 3 times with 

1xPBS. Blocking solution (1xPBS, 2 mg/ml bovine serum albumin, 1% sheep serum and 

0.25% TritonX-100) was added for 1 hour. The blocking solution was removed, and 

primary antibody diluted in blocking solution was added and the slides were kept at 4˚C 

overnight. The following day, the primary antibody solution was removed and the 

myofibers were washed 3 times (5 minutes each wash) with 1xPBS. The secondary 

antibody diluted in 1xPBS was added for 1 hour at RT. DAPI was added to the secondary 

antibody solution (1:1000, D1306, Thermofisher Scientific). The secondary antibody was 
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then removed and the slides were washed 3 times (5 minutes each wash) at RT. Slides 

were visualized using a Perkin Elmer UltraVIEW VoX spinning disk confocal 

microscope. The antibodies used, dilutions, and fixation conditions can be seen in Table 

1.  

Table 1: Antibodies and the associated dilutions used for myofiber culture and IF.  

Primary 
Antibody 

Dilution Secondary Antibody Dilution Fixation Condition 

Actinin (Sigma-
Aldrich) 

1:100 Anti-Mouse 1:100 PFA 

RYR1 (Sigma-
Aldrich) 

1:100 Anti-Mouse 1:100 PFA 

Lamin A 
(Sigma-Aldrich) 

1:50 Anti-Mouse 1:100 PFA + Methanol 

Fibrillarin (Santa 
Cruz 
Biotechnology) 

1:50 Anti-Rabbit 1:100 PFA + Methanol 

B23 (Santa Cruz 
Biotechnology) 

1:50 Anti-Rabbit 1:100 PFA + Methanol 

UBF (Santa Cruz 
Biotechnology) 

1:50 Anti-Rabbit 1:100 PFA + Methanol 

 

Zebrafish Whole-Mount Immunofluorescence 

Mutant and wild-type embryos were fixed in methanol at 2 dpf. The methanol was 

removed and replaced with 50% methanol/50% PBS for 10 minutes. The embryos were 

washed two times (5 minutes each wash) in 1xPBS. The PBS was removed and PBS 1% 

TritonX-100 was added for 1 hour. The embryos were washed in 1xPBS for 5 minutes. 

Blocking solution (5% goat serum in PBST) was added for 1 hour. The antibodies were 

diluted in the blocking solution and the embryos were kept at 4˚C overnight. The 

following day the embryos were washed in PBST two times (15 minutes each wash). The 

secondary antibody was diluted in PBST and added for 1 hour at RT. DAPI was added to 
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the secondary antibody solution (1:1000, D1306, Thermofisher Scientific). The embryos 

were washed twice in PBST and mounted on slides. Slides were visualized using a Perkin 

Elmer UltraVIEW VoX spinning disk confocal microscope. The antibodies used and 

dilutions can be seen in Table 2.  

Table 2: Antibodies and the associated dilutions for whole-mount IF 

Primary Antibody Dilution Secondary Antibody Dilution 
Acetyl-H3 (abcam) 1:50 Anti-Rabbit 1:100 
Pax7 (DHSB) 1:50 Anti-Mouse 1:100 
MF20 (DHSB) 1:50 Anti-Mouse 1:100 
 

In-situ Hybridization and Immunofluorescence 

In-situ hybridization and IF experiments were conducted on control and DM1 

affected patient myoblasts. The cells were grown in culture and on a chamber slide in 

human skeletal muscle growth media. The media was removed and the cells were fixed in 

2% paraformaldahyde (PFA) for 10 minutes at 4˚C. The cells were then washed with 1x 

phosphate buffered saline (PBS) 5 times (two minutes each wash) at room temperature 

(RT). Following this step the cells were incubated in pre-chilled (-20˚C) methanol for ten 

minutes. The cells were then incubated in pre-hybridization buffer for ten minutes, 

followed by incubation in hybridization buffer containing 10 µl of 100/ng/µl stock of 

DM1 probe. The sequence for the DM1 probe is 5’ - /56-FAM/mCmAmG mCAmG 

CmAG mCAG CmAG mCAmG CAmG CmAmG CmAmG mCmAmG-3’.  The “m” in 

the sequence is a modification of 2’O-methyl RNA bases in order to prevent degradation 

of the probe. The cells were incubated in hybridization buffer for 3 hours at 37˚C. The 

hybridization buffer was replaced with post-hybridiation buffer and the cells were 
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incubated for 30 minutes at 45˚C. This was followed by a wash in 1 x Saline Sodium 

Citrate (SSC) buffer for 30 minutes at RT. The cells were washed with PBS buffer with 

0.1% Tween (PBST) 2 times (5 minutes each wash).  This was followed by blocking in 

5% goat serum in 1xPBS for 30 minutes. The cells were incubated overnight at 4˚C in the 

primary antibody diluted in the blocking solution.  The antibodies used were anti-DDX27 

(Santa Cruz Biotechnology), anti-Fibrillarin (abcam), anti-mouse, and DAPI. Antibody 

concentrations are provided in Table 3. The following day cells were washed with 

1xPBST 3 times (5 minutes each wash).  Secondary antibody was added for 1 hour at RT 

diluted in 1xPBST. The cells were washed with 1xPBST three times for five minutes 

each.  DAPI was added to the first wash (1:1000, D1306, Thermofisher Scientific). Slides 

were visualized using a Perkin Elmer UltraVIEW VoX spinning disk confocal 

microscope.  

Table 3: Antibodies and the associated dilutions used for in-situ hybridization and IF. All antibodies were 
diluted in 5% goat serum in 1xPBS. 

Primary Antibody Dilution Secondary 
Antibody 

Dilution 

Anti-DDX27 1:50 Anti-Mouse 1:100 
Anti-Fibrillarin 1:50 Anti-Mouse 1:100 
 

Study of DEAD box (DDX) polypeptides  

To identify DDX encoding genes in humans, the HGNC database of human genes 

was used. There are 43 genes contained within the family (“DEAD-box helicases (DDX) 

Gene Family | HUGO Gene Nomenclature Committee,” n.d.). This information was 

employed to create a list that included the approved gene name, previous gene symbols, 
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and gene function.  Gene function was obtained using Gene Cards: The human gene 

database (“GeneCards - Human Genes | Gene Database | Gene Search,” n.d.).  

Primer Design for DDX genes 

 To study the expression of DDX genes in skeletal muscle, RT-PCR primers were 

designed for DDX genes involved in rRNA processing, translation, or ribosomal 

biogenesis. Of the 43 DDX genes, 24 were involved in these processes.  Therefore, 

primers were designed for 24 DDX genes and ordered through Invitrogen Custom DNA 

Oligos. To design RT-PCR primers, the mRNA sequence for mouse DDX genes was 

identified in PubMed.  The coding region was identified and primers were designed 

outside this area in the 3’ or 5’ untranslated regions as many of the DDX genes share 

sequence similarities in the coding regions.  Using Primer 3 (“Primer3 Input (version 

0.4.0),” n.d.), a primer was designed using a 200 – 250 base pairs target sequence. The 

specificity of primers was checked in the mouse genome using BLAST (“Nucleotide 

BLAST: Search nucleotide databases using a nucleotide query,” n.d.). A list of primer 

sequences can be seen in Table 4. 

Table 4: DDX Primer Sequences 

DDX 
Gene 

Primer Sequence 

DDX 1 Forward: 5’-CTGTTCCGAACCTTCTGACG-3’ 
Reverse: 5’-ATAGTTGTCAAGTTTATTTTCATTGG-3’ 

EIF4A Forward: 5’- TCAAGGGTTATGATGTGATTGC -3’ 
Reverse: 5’- CAATGCAGGCATGACAAGAG-3’ 

EIF4A2 Forward: 5’-AACGGCGTTGACGTAATTTAG-3’ 
Reverse: 5’-CCTTCCTACAAAGTACCAGACAA-3’ 

DDX3X Forward: 5’-TTTACTGAACTTGGGCTAAAATCAA-3’ 
Reverse: 5’-TTGCCACATTAGAAACTAATTCCA-3’ 

DDX3Y Forward: 5’- TGAACTGCTCACTATATCCTGCAT-3’ 
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Reverse: 5’-CTTTATATCCCAAATTCTTCACCAA-3’ 

DDX5 Forward: 5’-AATGTTAAAACAAAATAGAATGTGCTG-
3’ 
Reverse: 5’-AAAAGGTCCACATTAAGACATTGA-3’ 

DDX6 Forward: 5’-GAGTTAAGTGTCCGAGGGTTG-3’ 
Reverse:!5’-CCCTCCCCAAGAACCACT-3’ 

DDX10 Forward: 5’-TTATTCCCCACCATTGGAAA-3’ 
Reverse: 5’-TGTCAGGGCTAGTCTATTATACTCTTT-
3’ 

DDX18 Forward: 5’-CACATCAGTAAGAAGCCAGCA-3’ 
Reverse: 5’-AACAGTGATAAAATTTGTTTTATGGAA-
3’ 

DDX21 Forward:!5’-CCCTATACATGTGTCCTACTCATCC-3’ 
Reverse:!5’-GCTAAGTCTGAAGCGGCTCT-3’ 

DDX24 Forward: 5’-GTAAAGGCTTCCCTCCTTGC-3’ 
Reverse: 5’-GGATGTCTCTGACTCCTACTTGG-3’ 

DDX25 Forward: 5’- GCAGCTATGGCGTCGTTACT-3’ 
Reverse: 5’-GGACTGACGGATTAGCTTGTTT-3’ 

DDX27 Forward: 5’-TGAAGAAGTTGGTGGGACAA-3’!
Reverse: 5’-GACCCATTAGAAGAGGGCATC-3’ 

DDX28 Forward: 5’-GGACCCTTTGCCTCAAAA-3’ 
Reverse: 5’-CAAAATCCACTTTATTTTCTGAACG-3’ 

DDX31 Forward: 5’-TGGGCTAATTGATTGACTTGTG-3’ 
Reverse: 5’-TGTAGTGTCCAAGTCTTACATTTATTG-
3’ 

DDX47 Forward: 5’-TGGGACAACTTTTACAGTGTTGA-3’ 
Reverse: 5’-GGCTGAGATAAGGTGGCGTA-3’ 

EIF4A3 Forward: 5’-ATCCGGATTCTCAGGGACAT-3’ 
Reverse: 5’-TGTAAAAGGTTAAGCATCGGATT-3’ 

DDX49 Forward: 5’-TGTGCAAAAACAGGAAGTGG-3’ 
Reverse: 5’-ACCATGTCCATTCCACCAAC-3’ 

DDX50 Forward: 5’-GGCCATAAACGGAATTTTGA-3’ 
Reverse: 5’-GCCAGATAAGTAGATTTGTTTAGAACC-
3’ 

DDX51 Forward: 5’-AAGTGCTTATACGTTAGCGTCTCC-3’ 
Reverse: 5’-ATATATTCAGGGAAGGACTCTCACA-3’ 

DDX52 Forward: 5’-AGTGACTGCCAGCAACTGAA-3’!
Reverse: 5’-TCAGTCTCATGTCTGTATTCTCAGC-3’ 

DDX54 Forward: 5’-AGAGAGCGGTTACGTTGAGC-3’ 
Reverse: 5’-GGGTGGGGAGAGGATGTACT-3’ 

DDX55 Forward: 5’-TGTAATTCCTATTCCTTTTAAGACAGA-
3’ 
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Reverse: 5’-ACAGTAGTGTAGCCCTATTACAATGA-3’ 

DDX56 Forward: 5’-TGATTCTGTCACTTTCCTTACCA-3’ 
Reverse: 5’-TTTATGGGGTATGGGAGCAC-3’ 

 

C2C12 Cell Growth 

 C2C12 cells are an immortal line of mouse skeletal myoblasts (“ENCBS124ENC 

– ENCODE,” n.d.). The cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 20% fetal bovine serum, 100 units/mL penicillin and 100 

µg/ml streptomycin. The cells were grown at 37˚C in a humidified incubator with 5% 

CO2. The cells were grown and split into ten 10 cm culture dishes, with approximately 

500,000 cells per dish. After day 0 collection, remaining six plates were changed to 

differentiation media. The differentiation media is made of DMEM supplemented with 

2% donor equine serum and 1 µM Penicillin-Streptomycin-Glutamine. Dishes of cells 

were collected and frozen at day -2, day 0, day 2, day 5, and day 6.   

RNA Extraction and cDNA Synthesis and PCR 

RNA was extracted from the C2C12 cells using the RNeasy Fibrous Tissue Mini 

Kit (QIAGEN, Valencia, CA) according to the manufacturer’s protocol.  The RNA 

concentrations were quantified using Nanodrop.  Equal concentrations of RNA from 

different samples were used to synthesize complementary DNA (1.87 µg/µL). The RNA 

was converted to complementary DNA (cDNA) using the SuperScript III First-Strand 

Synthesis System for RT-PCR (Life Technologies, Carlsbad, CA). The cDNA was 

created according to kit protocol using random hexamers. A polymerase chain reaction 

was set up for each DDX gene using cDNA template and the respective designed primer. 
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Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a constitutively expressed gene, 

was used as a control for normalization. (Stephens, Stephens, & Morrison, 2011) The 

samples were run on a 1% agarose gel to quantify the expression. 

 

IGHMBP2 Zebrafish 

IGHMBP2 mutant fish were created using the CRISPR technology by targeting 

exon 10. This resulted in two different mutations in exon 10. Mutation 1 is a 30 base pair 

deletion beginning at base the -3 position of exon 10. Mutation 2 is a two base pair 

deletion at base 21 of exon 10. Heterozygous fish with either of these mutations are fully 

viable, fertile, and apparently unaffected. To study mutant embryos, one male and one 

female heterozygous fish were placed in mating cages overnight. Embryos were collected 

the next morning and evaluated over time. To evaluate the resulting phenotypes, physical 

appearance was monitored in addition to swimming behavior and touch evoked response. 

As phenotypes were characterized, DNA was extracted from the embryos and Sanger 

sequencing was performed to confirm their genotype. Sequences were analyzed using the 

Sequencher program. (Sequencher, n.d.) 
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RESULTS 

Immunofluorescence of Cultured Zebrafish Myofibers 

To identify both skeletal muscle and nucleolar defects in the ddx27 mutant 

zebrafish, a number of different sarcomeric and nucleolar markers were used. Actinin, 

ryanodine receptor 1 (RYR1), and Lamin A antibodies were used to look at myofiber 

structure. The mutant myofibers showed disorganized sarcomeric structure in comparison 

to the wild-type myofibers (Figure 2). To investigate nucleolar defects, antibodies for 

UBF, Fibrillarin, and B23 were used. UBF labels the sites of RNA polymerase I 

transcription. Fibrillarin marks the dense fibrillar compartment of the nucleolus. B23 

associates with nucleolar ribonucleoprotein structures. All nucleolar markers showed 

changes in organization when comparing the mutant fish to the wild-type fish. The 

fibrillin antibody showed merged, larger and more condensed structures in comparison to 

the WT control fish. The distribution of B23 was altered in the nucleoplasm.  In the WT 

fish, B23 forms several small aggregates, while in the mutant fish B23 forms one large 

aggregate, colocalizaing almost entirely with the nucleus. Ubf in the mutant fish was also 

drastically different from the wild-type fish. The organization changes from small 

punctate foci to larger condensed areas.  
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Figure 2: Immunofluorescence of Cultured Zebrafish Myofibers: Control and mutant myofibers were cultured 
and analyzed using a number of markers to visualize the sarcomeric and nucleolar structures.  

 
 

Whole Mount Immunofluorescence with Acetyl-Histone H3 Antibody 

Previous studies have shown that chromatin attaches to the nucleolus at several 

points within the cell. This localization of chromatin acts to regulate gene expression as 

the genes present in the attachment sites are often repressed. To determine the effects of 

nucleolar changes on chromatin state, 4 dpf zebrafish embryos were stained with Acetyl-
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Histone H3 antibody and DAPI. DAPI is a marker for the cell nucleus, and acetyl-

Histone H3 is a marker for transcriptionally active euchromatin within the nucleolus. 

Immunofluorescence analysis showed (Figure3) an increase in the number of acetylated 

nuclei in the ddx27 mutant fish, suggesting an increase of activation of chromatin in 

mutants in comparison to the WT control.  

 
Figure 3: Wild-type and ddx27 mutant fish stained with DAPI and Acetyl-H3 antibody: The mutant fish have an 
increased number of nuclei expressing acetylated H3 in comparison to wild-type.  
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DDX27 deficiency results in an increase in muscle satellite cells 

In order to study myogenesis and the regenerative properties of ddx27 mutant 

fish, IF was done using Pax7, MF20, and DAPI. Pax7 is a marker for satellite cells 

(precursors to skeletal muscle), and is important for muscle regeneration. MF20 stains 

myosin heavy chain and is a sarcomeric marker. DAPI stains the cell nuclei. The results 

of this experiment can be seen in Figure 4. The results show an increase in the number of 

Pax7 positive cells in the ddx27 mutant fish.   

Figure 4: Whole Mount IF with Pax7, MF20 and DAPI in Wild-type and ddx27 mutant fish. Pax7 is in green, 
MF20 is red, and DAPI is blue. There is an increase in the number of Pax7 positive cells in the mutant fish.  

 
 

Role of DDX27 in disease pathology in Myotonic dystrophy  

Control and patient myoblasts stained using combined fluorescent in situ 

hybridization can be seen in Figures 5 and 6. In Figure 5, the cells were stained with a 
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DDX27 antibody. Our results from this study show that the DDX27 protein in DM1 cells 

from patient A and patient C formed large aggregates in the center of the nucleolus, 

differing from the small and distributed aggregates observed in the control cells. The 

staining in DM1 patient B has a very different pattern of staining from both patients A, C, 

and the control cells. This patient also has the most severe form of the disease. In Figure 

6, cells were stained with a Fibrillarin antibody. This is also a nucleolar protein known to 

associate with DDX proteins. The staining observed with this antibody corresponds to the 

DDX27 staining seen in Figure 5. These results lead us to believe that there may be a cell 

cycle or apoptotic defect present in these cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



!

28 

Figure 5: DDX27 forms abnormal protein aggregates in myoblasts of myotonic dystrophy patients: Combined 
fluorescent in situ hybridization (FISH) and immunofluorescence using FITC-labeled antisense oligonucleotide 
probe (green), DDX27 antibody (red) and DAPI (blue) show abnormal DDX27 protein aggregates in myoblasts 
from myotonic dystrophy patients. 
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Figure 6: Fibrillarin forms abnormal protein aggregates in myoblasts of myotonic dystrophy patients: 
Combined fluorescent in situ hybridization (FISH) and immunofluorescence using FITC-labeled antisense 
oligonucleotide probe (green), Fibrillarin antibody (red) and DAPI (blue) show abnormal Fibrillarin protein 
aggregates in myoblasts from myotonic dystrophy patients 
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DDX Expression in skeletal muscle cells 

To understand the biological functions of DDX genes in skeletal muscle 

development, expression of genes relevant to the protein translation process was analyzed 

in proliferating and differentiating muscle cells. The human genome contains 43 DDX 

genes and 24 of them are known to have a role in in rRNA processing, translation, or 

ribosomal biogenesis. Table 5 outlines these DDX genes and their specific roles.  

Table 5: DDX RNA Helicases involved in ribosomal biogenesis or 
translation/initiation processes 
Approved Symbol Synonym  Function 
DDX1 DBP-RB • DNA duplex unwinding 

• Double-strand break repair 
• Transcription, DNA templated 
• Translation initiation  
• Spliceosomal complex assembly 
• tRNA splicing 
• tRNA processing 
• mRNA processing 
• Response to virus 
• Gene expression 
• RNA unwinding 

EIF4A1 DDX2A, EIF-4A • Nuclear-transcribed mRNA catabolic 
process; deadenylation-dependent decay 

• Nuclear-transcribed mRNA poly(A) tail 
shortening   

• Translation 
• Translation initiation 
• Gene expression 
• RNA unwinding 
• Viral process 
• Cytokine-mediated signal pathway 
• Organ regeneration 
• Cellular protein metabolic process 

EIF4A2 DDX2B, EIF4A, 
BM-010 

• Nuclear-transcribed mRNA catabolic 
process, deadenylation-dependent decay 

•  Nuclear-transcribed mRNA poly(A) 
tail shortening   

• Translation initiation 
• Gene expression 
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• RNA unwinding 
• Viral process 
• Cytokine-mediated signaling pathway 
• Cellular protein metabolic process 
• Negative regulation of RNA-directed 

RNA polymerase activity 
• Helicase activity 

DDX3X DBX, HLP2, 
DDX14 

• Immune system process 
• Transcription 
• Translational initiation 
• Apoptotic process 
• Chromosome segregation 
• Response to virus 
• RNA unwinding 
• Positive regulation of gene expression 
• Regulation of cell growth 
• DNA duplex unwinding 
• Regulation of interferon-beta 

production 
• Stress granule assembly 
• Ribosome biogenesis 
• Mature ribosome assembly 
• Regulation of cysteine-type 

endopeptidase activity  
• Innate immune response 
•  Cellular response to arsenic-containing 

substance 
• Cellular response to osmotic stress 
• Regulation of chemokine ligand 5 

production 
• Regulation of G1/S transition of mitotic 

cell cycle 
DDX3Y  • Chromosome segregation  

• Regulation of gene expression 
• RNA unwinding 
• Translational initiation  

DDX5 P68 • Regulation of transcription from RNA 
polymerase II promoter 

• Regulation of alternative mRNA 
splicing via spliceosome 

• mRNA splicing 
• In utero embryonic development  
• Transcription 
• mRNA processing 
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• Circadian rhythm 
• RNA splicing 
• RNA unwinding 
• Cell growth 
• Regulation of intracellular estrogen 

receptor signaling pathway 
• Regulation of DNA damage response, 

signal transduction by p53 
• Regulation of osteoblast differentiation 
• Regulation of androgen receptor 

signaling pathway 
• Intrinsic apoptotic signaling pathway by 

p53 class mediator 
• Regulation of skeletal muscle cell 

differentiation 
• Ribosome biogenesis (yeast) 

DDX6 RCK • Cytoplasmic mRNA body assembly 
• Gene expression 
• Negative regulation of neuron 

differentiation 
• Nuclear-transcriped mRNA catabolic 

process; deadenylation-dependent decay 
• Regulation of translation 
• RNA unwinding 
• Stem cell maintenance 
• Viral RNA genome packaging 
• Exonucleolytics nuclear-transcribed 

mRNA catabolic process involved in 
deadenylation-dependent decay 

DDX10 HRH-J8 • RNA unwinding 
• Ribosome biogenesis (yeast) 

DDX18 MrDb • RNA unwinding 
• rRNA processing (yeast; HAS1) 
• Ribosome biogenesis (yeast; HAS1) 
• Ribosomal large subunit biogenesis 

(yeast; HAS1) 
• Ribosomal small subunit biogenesis 

(yeast; HAS1) 
DDX21 RH-II/GU, 

GURDB 
• Osteoblast differentiation  
• Response to exogenous dsRNA 
• Response to virus 
• RNA unwinding 
• rRNA processing 
• Transcription from RNA polymerase II 
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promoter 
DDX24  • RNA metabolic process 

• RNA unwinding 
• rRNA processing (Yeast; MAK5) 
• Ribosome biogenesis (Yeast; MAK5) 

DDX25 GRTH • mRNA export from nucleus 
• Multicellular organismal development  
• Regulation of translation 
• RNA unwinding 
• Spermatid development 

DDX27 dJ686N3.1, 
DRS1 

• RNA unwinding 
• Ribosome biogenesis (yeast; DRS1) 

DDX28 MDDX28, 
FLJ11282 

• RNA unwinding 
• Mitochondrial large ribosomal subunit 

assembly  
• Ribosome biogenesis  

DDX31 FLJ13633, 
FLJ23349, 
FLJ14578, 
PPP1R25 

• RNA unwinding 
• Ribosome biogenesis  
• Nucleotide binding 
• Nucleic acid binding 
• rRNA processing and ribosome 

biogenesis (yeast; DBP7) 
DDX47 DKFZp564O176, 

FLJ30012, 
HQ0256, RRP3 

• rRNA processing 
• mRNA processing 
• Apoptotic process 
• RNA splicing 
• Extrinsic apoptotic signaling pathway 

via death domain receptors 
• RNA unwinding 
• rRNA processing and ribosome 

biogenesis (yeast; RRP3) 
EIF4A3 DDX48, 

KIAA011, 
EIF4AIII 

• Nuclear-transcribed mRNA catabolic 
process; nonsense-mediated decay 

• Nuclear-transcribed mRNA poly(A)tail 
shortening 

• mRNA splicing via spliceosome 
• rRNA processing 
• mRNA processing 
• Regulation of translation 
• Transport 
• Gene expression 
• RNA unwinding 
• Cytokine-mediated signaling pathway 
• Embryonic cranial skeleton 
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morphogenesis 
• mRNA transport 

DDX49 FLJ10432 • RNA unwinding  
• rRNA processing and ribosome 

biogenesis (yeast; DBP8) 
DDX50 GU2, MGC31 • RNA unwinding 

• Nucleotide binding 
• Hydrolase activity  
• Ribosome biogenesis (review paper) 

DDX51  • rRNA processing 
• RNA unwinding 
• Ribosome biogenesis  
• rRNA processing and ribosome 

biogenesis (yeast; DBP6) 
DDX52  ROK1 • Metabolic processes 

• Nucleotide binding  
• Hydrolase activity  
• Helicase activity 
• rRNA processing and ribosome 

biogenesis (yeast; ROK1) 
DDX54  MGC2835, APR-

5, DP97 
• Transcription; DNA templated 
• RNA processing 
• RNA unwinding 
• Intracellular estrogen receptor signaling 

pathway 
• Negative regulation of nucleic acid-

templated transciption 
• rRNA processing and ribosome 

biogenesis (yeast; DBP10) 
DDX55 KIAA1595 • RNA unwinding 

• rRNA processing and ribosome 
biogenesis (yeast; SPB4) 

DDX56  

 

NOH61 • rRNA processing 
• RNA unwinding 
• Ribosome biogenesis 
• rRNA processing and ribosome 

biogenesis (yeast; DBP9) 
!

The expression of each of these genes was studied during proliferating as well as 

differentiation phases of skeletal muscle cells. The expression of each of these genes was 

determined through reverse transcription-polymerase chain reaction (RT-PCR) analysis 
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in C2C12 cells on day -2, 0, 2, 5, and 6. C2C23 cells are in proliferative stages during 

earlier stages (days -2 and 0). With the addition of differentiation media on day 0, the 

cells develop from myoblasts to differentiated myotubes. By collecting cells at different 

time points, expression of each DDX gene could be evaluated at different stages of 

development.  These different stages of myoblast differentiation are shown in Figure 7.  

Figure 7: C2C12 Cells at different developmental stages: Cells were collected at day -2, 0, 2, 5, and 6. The media 
was changed to differentiation media at day 0. Development of these cells can be seen from myoblasts (day -2) to 
multinucleated elongated myotubes.  

 
 

Five major patterns of expression of the DDX genes were evident through RT-

PCR amplification at each developmental stage. All expression was normalized with 

reference to GAPDH, a ubiquitously expressed protein, which served as a control. In 

group 1, high and consistent expression of DDX genes was seen at all stages of 

development. DDX21 and DDX24 showed this expression pattern. Group 2 genes 

showed lower to moderate expression that was consistent at all developmental stages. 
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Members in this group include DDX5, DDX10, and DDX28. Group 3 genes (DDX1, 

DDX6, DDX27) showed high expression during proliferation (days -2 and 0), with 

expression significantly decreasing during early differentiation on day 2, and increasing 

again during late differentiation on days 5 and 6. Group 4 genes showed a gradual 

increase in expression from proliferation to cell differentiation for DDX49 and DDX50. 

Finally, genes in Group 5, DDX3x, DDX25, and DDX31 genes showed no expression. 

These RT-PCR results are shown in Figure 8.  

Figure 8: Expression of DDX genes in C2C12 Cells at Different Stages of Differentiation: RT-PCR amplification 
of DDX genes involved with ribosomal biogenesis, rRNA, or translation and initiation processes in mammalian 
muscle cells.  
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IGHMBP2 

Figure 9: ighmBp2 Heterozygous Mutation 1: Genomic PCR and Sanger sequencing showed that these fish have 
a 30 base pair deletion in the ighmBp2 gene. Figure 4 shows the sequencing result from a heterozygous fish. 

 
Figure 10: ighmBp2 Homozygous Mutation 1: The homozygous 30 base pair deletion in ighmBp2 is shown here.  

 
Figure 11: ighmBp2 Heterozygous Mutation 2: Genomic PCR and Sanger sequencing showed that these fish 
have a 2 base pair deletion in the ighmBp2 gene. Figure 4 shows the sequencing result from a heterozygous fish. 

 
Figure 12: ighmBp2 Homozygous Mutation 2: The homozygous 2 base pair deletion in ighmBp2 is shown here.  
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Phenotype of ighmBp2 fish 

IGHMBP2 heterozygous pairs were set up for mating and expected to result in 

25% wild-type, 50% heterozygous, and 25% mutant embryos. Fish with both genetic 

backgrounds resulted in embryos that exhibited bent bodies, thin and pale colored 

embryos, and edema around the heart as seen in Figure 13 and Figure 14. Fish with 

obvious abnormalities also had difficulty swimming compared to the normal embryos. 

Sanger sequencing was confirmed on normal and abnormal looking embryos to have a 

genotype-phenotype and to confirm the genotype of mutant embryos as shown in Table 6.  

Figure 13: Phenotypes of ighmBp2 embryos observed on day 3 
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Figure 14: Phenotypes of ighmBp2 embryos observed on day 5 

 
 
Table 6: Predicted genotype versus actual genotype of embryos obtained from ighmBp2 Heterozygous matings. 
Fish were numbered 1 – 8, a phenotype was recorded for each fish and were then genotyped. 

Mutation 1 Predicted Mutation 1 Observed 
Mutant Wild-

type/Heterozygous 
Mutant Wild-

type/Heterozygous 
1, 2, 3, 4, 5 6, 7, 8 6, 7 1, 2, 3, 4, 5, 8 
Mutation 2 Predicted Mutation 2 Observed 
Mutant Wild-

type/Heterozygous 
Mutant Wild-

type/Heterozygous 
1, 2, 3, 4 5, 6, 7, 8 1, 4, 8 2, 3, 5, 6, 7 
 

A consistent and accurate phenotype for mutant embryos versus wild-type or 

heterozygous embryos was not seen by Sanger Sequencing. As these fish were created by 

CRISPR technology, we predict that a second gene/genes may be affected by non-

specific targeting. To address these issues, we have outcrossed IGHMBP2 heterozygous 

fish with wild-type fish. This may result in segregation of non-specific targeted genes in 
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the resulting generation. By genotyping the next generation we expect to identify 

IGHMBP2 fish without any background mutations. 
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DISCUSSION 

The purpose of this study was to better understand the molecular pathways that 

contribute to neuromuscular disorders. This project aimed specifically to understand the 

role of RNA helicases in neuromuscular development and disease pathology in muscular 

disease. Previous work done in this lab identified a zebrafish model with a mutation in 

the gene for RNA helicase ddx27, with the resulting phenotype similar to that of human 

patients with myotonic dystrophy.  Previous studies suggest that mutations in ddx27 lead 

to defects in ribosomal biogenesis, with more recent studies alluding to additional non-

ribosomal functions of nucleolar genes. With this knowledge, an aim of this study was to 

further understand the role of ddx27 in myogenesis and diseases. Additionally, this study 

hoped to identify other DDX genes that are expressed in mammalian muscle cells that 

regulate muscle protein translation by ribosomal biogenesis or translation initiation 

processes. Finally, we wanted to begin to understand the significance of IGHMBP2 in 

muscular development and disease pathology in zebrafish.  

The immunofluorescence studies conducted on zebrafish myofiber culture 

allowed for visualization of both sarcomeric and nucleolar defects present in the ddx27 

mutant fish. The structural markers (actinin, RYR1, and Lamin A) showed sarcomeric 

disorganization in the mutant fish. Changes in nucleolar architecture were also present, 

and marked by UBF, Fibrillarin, and B23 antiboides. These markers were chosen in order 

to visualize the three morphologically distinct regions of the cell nucleolus:  the fibrillar 

center, the dense fibrillar component, and the granular component. These three regions 

are believed to represent the sites of rRNA transcription, processing, and ribosomal 
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assembly. As mentioned previously, UBF labels the sites of RNA polymerase I 

transcription. Fibrillarin is a marker for the dense fibrillar component, which contains 

pre-rRNA. B23 marks the nucleolar matrix or the granular component of the nucleolus. 

These three markers represent distinct aspects of nucleolar activities from pre-rRNA 

transcription through late events of rRNA processing. (Cooper, 2000) Loss of ddx27 

resulted in a change in the organization of Ubf from small punctate foci to larger more 

condensed areas. This suggests there may be a defect in active transcription sites in the 

nucleolus. Fibrillin, associated with early rRNA processing regions, was also disrupted 

and merged forming larger, more condensed structures. The distribution of B23 was 

drastically altered in the nucleoplasm of cells lacking ddx27. This suggests that a 

deficiency in ddx27 disrupts both early phases of nucleolus assembly and late steps in 

processing pathways (Németh et al., 2010).  

The whole mount IF studies with acetyl-histone H3 allowed for visualization of 

transcriptionally active euchromatin within the nucleolus. The results of this study 

showed a significant increase in the number of nuclei staining positively for acetyl-

histone H3 antibody in the ddx27 mutant fish. This shows the chromatin is in an activated 

state in the mutant fish, and further suggests that gene regulation may be altered. Over-

activation of chromatin may be negatively impacting the mutant fish.  

The implications of ddx27 deficiency in myogenesis were investigated. Whole 

mount IF with Pax7 and MF20 antibodies showed an increase in the number of Pax7 

positive cells in ddx27 fish. Pax7 is a marker for satellite cells, while MF20 is a 

sarcomeric marker for myosin heavy chain. This result suggests that the regulation of 
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stem cells is perturbed in the mutant fish. Previous studies have shown that up regulation 

of Pax7 results in muscular atrophy. (He et al., 2013)Future studies using 

immunoprecipitation techniques may provide insight as to how ddx27 is involved in the 

regulation Pax7.  

Through the in-situ hybridization and IF studies, it was apparent that there is a 

clear nucleolar defect in the DM1 patient cells compared to the control cells. While we 

don’t currently have an explanation for exactly what is causing this defect, it leads us to 

believe that ddx27 may play a role in cell cycle regulation or apoptosis. It is already 

known from studies previously conducted in this lab that ddx27 is a nucleolar protein 

involved with rRNA maturation and ribosomal biogenesis, that it is strongly expressed in 

muscle cells and that lack of this protein causes severe muscular defects in zebrafish. It is 

also known, as mentioned previously, that DEAD-box RNA helicases are involved in a 

wide variety of cellular functions including ribosome biogenesis, transcription, pre-

mRNA splicing, microRNA processing, nonsense mediated decay and protein translation. 

(Linder & Jankowsky, 2011) In a study by Tsukamoto et. al., it was found that ddx27 

expression in gastric cancer cells was associated venous invasion and liver metastasis, 

and ultimately poor prognosis. In order to have metastasis occur, colony formation of 

cells is required. This study found that knockdown of ddx27 inhibited colony formation 

of cells. Through the use of fluorescence-activated cell sorting, it was discovered that the 

suppression of colony formation occurred due to inhibition in the cell cycle independent 

of apoptosis. In the two gastric cancer cell lines studied, it was observed that lack of 

ddx27 caused either a G1 or G2 arrest in the cell cycle (Tsukamoto et al., 2015). Going 
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forward, it would be interesting to determine whether the levels of ddx27 protein in 

control and DM1 cells differs, and whether ddx27 might be involved in cell cycle 

regulation in myoblasts. 

Through the expression studies of different DDX genes in mammalian muscle 

cells, it was evident that 18 of the 24 tested DDX genes showed moderate or high 

expression throughout progressive stages of differentiation. These DDX genes function 

similarly to ddx27 in that they all regulate protein translation by ribosomal biogenesis or 

translation initiation/elongation processes. All of these ddx genes could potentially play a 

role in neuromuscular development, and this preliminary expression data provides a good 

starting point for future research. It has been shown in a study by Laurent et al., 2012 that 

DDX5 is involved in myotonic dystrophy. This would be a particularly good gene to 

study. Future research of this gene could involve CRISPR knockout cells and zebrafish 

models to characterize the neuromuscular defects. Additionally, studies could be done to 

identify defects in protein translation due to issues with rRNA and ribosomal biogenesis.  

Preliminary studies attempting to characterize a phenotype associated with a 

mutation in the RNA helicase IGHMBP2 were conducted. The embryos from many 

matings were analyzed and genotyped, but no one consistent phenotype was evident. 

Additionally, when predicting which embryos appeared to be mutant and which embryos 

appeared to be normal, our predictions were frequently incorrect as seen in Table 6. This 

leads us to believe that there may be another conflicting mutation that occurred when 

creating these lines of zebrafish. Moving forward, IGHMBP2 heterozygous fish will be 

outcrossed with wild-type fish. As previously mentioned, this may result in segregation 
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of non-specific targeted genes in the resulting generation. By genotyping the next 

generation we expect to identify IGHMBP2 fish without any background mutations. 

More than one million Americans suffer from neuromuscular disorders, and 

approximately 40% of those individuals are under the age of 18 (“ALS & Neuromuscular 

Center | UC Irvine Health | Orange County, CA,” n.d.). Many of these conditions 

currently have no known treatments or therapies. By studying and understanding the 

molecular pathways involved in these disorders, particularly RNA helicases and 

associated RBPs, we can attempt to develop therapies or an approach to finding small 

molecule therapies for neuromuscular diseases.  
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