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ASSESSING CLONAL DIVERSITY IN ACUTE MYELOID LEUKEMIA 

WESTON CHRISTENSEN 

ABSTRACT 

Clonal diversity in cancer has been proposed as a mechanism underlying patient-

to-patient variability in therapeutic response, as well as the variability in the likelihood of 

relapse and the time to relapse of acute myeloid leukemia (AML) as well as other 

cancers. As a neoplasm develops it often continues to mutate, diversifying into differing 

clonal populations. Darwinian evolutionary pressures such as inherent fitness imbalances, 

immune system interactions, and chemotherapy treatments target sensitive clones and 

drive competition between the clonal populations; selecting for dynamic and resistant cell 

lines. In this way clonal diversity is conceivable as an impediment to a complete 

remission with more populations offering more opportunities for therapy resistance. Bulk 

next generation sequencing (NGS) is currently used to assess clonal composition in 

leukemia but requires several broad assumptions be made, which can result in incorrect 

assessments of diversity. Factors such as differences in zygosity of mutations, convergent 

evolution, or contamination with wild-type/non-cancerous cells can artificially raise or 

lower reported variable allele frequencies (VAF), leading to errors in clonal assessments. 

To examine discrepancies between the actual clonal structure and the clonal structures 

determined through bulk sequencing we developed a novel method of sampling the cell 

population to identify concurrent mutations. We first created an in silico model which 

randomly draws cell samples from a simulated tumor multiple times and calculates the 

VAF for each mutant allele in each sample. By tracking the correlation of mutations 
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between sample replicates, a clonal composition that is not observable from the bulk 

NGS VAF becomes apparent. We then created in vitro model tumors from AML cell 

lines, isolated low cell number samples via flow cytometry, and applied a 

multiplex/nested PCR protocol with pyrosequencing to quantify VAFs in each sample. 

Again, by calculating the correlation of mutant alleles between replicates, previously 

unseen with NGS characteristics of the clonal structure becomes evident. Population 

sampling analysis may potentially offer a solution for clarifying how we can interpret 

NGS clonal analyses.   
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INTRODUCTION 

Acute Myeloid Leukemia 

One of the most feared outcomes of any cancer treatment is relapse with a more 

aggressive and unmanageable cancer emerging from the post-treatment remission of the 

original. About one in five of all cancer survivors will experience a relapse within five 

years (Baker, Denniston, Smith, & West, 2005). Patients with acute myeloid leukemia 

(AML) face an even worse prognosis with much higher relapse and mortality rates (Szer, 

2012).  

In the United States the incidence of AML is 3.6 people per 100,000 per year, 

with over 11,000 new cases every year (Szer, 2012). While 20% of these cases are 

intractable to initial chemotherapy, the remainder will respond favorably and enter 

remission. Unfortunately most patients in remission will relapse, with an estimated 

incidence of relapse for patients that achieved a complete remission between 67% and 

92% (Byrd et al., 2002). The basis of this relapse has been proposed to be related to 

clonal evolution, i.e. the continuous development of diseased cells with novel mutations 

generating new daughter colonies, increasing the range of targets that a regimen of 

chemotherapy must hit (Ding et al., 2012). Due to the role of clonal diversity in relapse 

assessment the clonal populations present in AML, and the relationship between clones 

present in neoplasms pre-treatment and post-treatment has become of interest to the 

scientific community. The high relapse rate of AML specifically makes it an excellent 

model for investigating clonality. Furthermore, successes in identifying impediments to 

full remissions would not only aide treatment of leukemia, but many cancers.  
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Clonality of Cancer 

As modern cancer research has been evolving since its inception in the mid-1900s 

the direction of treatment has been shifting away from “cure-alls” and “wonder-drugs” to 

more precise and personalized therapies. This is due to both the understanding of the 

large variability that may be present in the genotypes of phenotypically identical cancers 

and the investigation into the potential clonal heterogeneity of individual cancers 

(Fernald, Capriotti, Daneshjou, Karczewski, & Altman, 2011; Paguirigan et al., 2015; 

Slamon et al., 2001). Previous models of clonality predicted a linear cancer model, 

beginning with an initial series of mutations that incrementally increase the fitness of a 

single clone which then expands to occupy the entire homogenous cancer population 

(Fearon, Hamilton, & Vogelstein, 1987). This has been shown to not be the whole 

situation. With the recent methodological advances in gene mutation detection, we can 

detect a surprising degree of heterogeneity between and within tumors (Navin et al., 

2011). Distinct clonal differences can be observed inter-tumoral between primary tumors 

and subset metastasis in metastatic medulloblastoma as well as intra-tumoral in 

pancreatic and renal carcinomas (Gerlinger et al., 2012; Wu et al., 2012; Yachida et al., 

2010). A complex network of evolutionary pressures creates genotypic “trees” for 

neoplasms with clonal populations experiencing competition within a tumor.  

External and internal pressures from chemotherapy treatments, cell resilience, 

resource availability, and growth potential all play a role in the neoplasm’s development, 

driving the success or failure of differing cell populations, or clonal populations, within a 

seemingly contiguous malignancy (Figure 1)(Greaves & Maley, 2012). In previous 
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cancer models relapse was explained by a failure of the intensity of the treatment to 

impact all effectively identical clones, driving physicians to extended and more rigorous 

treatment regimens. The new clonal model suggests that relapse is instead partially due to 

the medicinally based selection for therapy-resistant sub-clones (Turner & Reis-Filho, 

2012). This has a particular relevance to leukemia; 30% of AML patients at initial 

diagnosis will contain some detectable allele load of the prognostically unfavorable FMS-

like tyrosine kinase 3 (FLT3) mutations, such as internal tandem duplications (FLT3-

ITD) or the rarer substitution mutations such as D835. Both of these mutations impart 

resistance to the typical first-round AML treatment, of tyrosine kinase inhibitors (TKIs) 

(Levis, 2013). Patients with FLT3 mutations who are treated with TKIs share similar 

remission rates of other AML subtypes; however, relapse is far more common and often -

-although not always-- associated with a higher FLT3-ITD associated mutation allele 

burden (Jan & Majeti, 2013). This pattern suggests that in these patients prior to 

treatment there existed a relatively small clonal population that contained a mutation on 

the FLT3 allele and was selected for by therapeutics which eradicated its competing 

colonies. With no other competition and a resistance to the therapeutics the clone could 

proliferate, thus increasing the number of cells that contain a mutation --and the FLT3-

ITD variant allele frequency (VAF) -- until the patient was in full relapse with a now 

therapeutically resistant cancer. In this way, an increase in a neoplasms genetic clonal 

diversity can play a role in the deterioration of a patient’s prognosis. Increasing clonal 

diversity has been revealed to predict malignancy in Barrett’s esophagus and AML (Ding 

et al., 2012; Maley et al., 2006). By learning more about the impact of clonal diversity 
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and the relevance of specific recurrent mutations, physicians gain a powerful tool in 

designing treatments; primarily targeting aggressive cell populations, predicting 

imminent evolutions, and planning therapeutic regimens around probable remissions. 

 

Figure 1. Clonal evolution and diversity.  Initial regimens of chemotherapy, while 

often effective, may not eradicate every possible evolutionary product of a neoplasm. 

One or more surviving clones can grow to establish novel colonies and bring about a 

relapse. Enduring colonies also have the potential to further diversify with all subsequent 

colonies now at least partially resistant to therapy.  

 

 

With an almost limitless permutation of potential clones that are possible and 

identifiable it becomes necessary to classify them by their unique mutations that lead to 

recognizable features, both phenotypic and genotypic. These mutations are often labeled 

either as founder, driver, or passenger mutations. Founder mutations are the least 

common and are responsible, in part, for the founding of a neoplasm colony. Generally at 

least two founder mutations are needed for tumor’s development from benign to 

malignant; one in a tumor suppressor gene which permits the cell to embark in rampant 

growth/expansion without self-destruction and one in a growth regulation gene which 

provides the stimulus for the proliferation of the cell (Harada & Harada, 2015). Driver 

mutations are the activating oncogenic changes that push a colony already containing a 
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founding clone toward ever more aggressive and resilient expansions. Passenger 

mutations are relatively common background mutations and not constrained to cancerous 

cells; most long-lived cells, specifically hematopoietic stem/progenitor cells (HSPC), will 

collect passenger mutations throughout their life with little to no detriment, although 

combinations can create effects similar to driver mutations (Corces-Zimmerman & 

Majeti, 2014). When appropriate founder and driver mutations occur in a cell that 

suitably increases its fitness, the colony expands and any passenger mutations present are 

“captured” to be carried forward with the expanding clone (Figure 2). Subsequent driver 

mutations that further increase the competitiveness of the host cell will “capture” the new 

passenger mutations resulting in new and categorically distinct clonal populations (Welch 

et al., 2012). Developing and diverging colonies with differing mutations can create a 

challenging scenario for treatment in which a single clonal subpopulation with a 

therapeutic-resistance granting mutation survives treatment and leads to relapse.  
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Figure 2. Driver and passenger mutations in clonal diversity. A) Healthy progenitor 

cells collect benign background mutations throughout their life (P0). B) An initiating 

driver mutation (Da) and C) clonal expansion “captures” the preexisting mutations and 

increases their frequency due to the colony’s increased fitness with different passenger 

mutations continuing to accrue (x and y). D) Subsequent new driving mutations (b and c) 

“capture” new passenger mutations and clonal expansion occurs. 

 

Sampling the Bulk Sample and Next Generation Sequencing 

The current approach to genomic based cancer treatment has been the sequencing 

of the cancer genome to detect which mutations are present. This is an expensive and 

underpowered process. However, the difficulty and expense of next generation 

sequencing (NGS) has steadily been on the decline, prompting the emergence of new 

diagnostic genomic tests. Standard NGS testing methods often involve “bulk” input, 

where large amounts of neoplasm sample are processed as one homogenous set. 

Unfortunately this method requires the introduction of the following assumptions into the 
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model: 1) All mutations that occur are heterozygous and the VAF of a mutation is one 

half of the cellular clonal population. 2) All mutations that occur are singular.  In other 

words, mutations in a given gene never arise separately in different clonal populations 

and mutations with higher allele frequencies come from “older” clones that are higher on 

the evolutionary tree and thus contain the same specific mutations. 3) Mutations with 

similar VAF are from the same clonal population of cells (e.g. if FLT3-D835 and NRAS-

Q61 both have a frequency of 25% then they are present only in the same clones). 4) All 

cells of the sample are malignant and no healthy cells were processed. This last 

supposition can artificially lower mutant allele VAF via allele dilution. Such assumptions 

vastly simplify the process of modeling a tumor’s development. By acknowledging that 

mutations can be either homozygous or wild-type, not only heterozygous, the range of 

possible clonal distributions significantly increases. Taken together these assumptions 

commonly lead to an underestimation of clonal complexity (Paguirigan et al., 2015) 

(Figure 3).  

To completely avoid the myriad problems put forth by bulk sequencing and obtain 

a total view of the clonal diversity present in a patient case it would be necessary to take 

nigh-infinite single-cell samples, sequence them individually, and plot VAFs for every 

gene. Such a project would take such an excess of time and resources as to render it 

infeasible.  
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Figure 3. Allele frequency determinations through bulk sequencing coupled with 

bulk sequencing assumptions can obscure underlying clonal diversity. A) Allele 

frequencies (AF) determined through bulk sequencing for genes X and Y. The clonal 

population is assumed to be twice the mutant AF, providing that the mutation is 

heterozygous. B) For any given AF multiple clonal populations are possible when solely 

considering the potential effects of zygosity on a sample. If the standard assumption that 

all mutations are heterozygous unless the AF exceeds 50% then population 1 would be 

assumed, however an infinite potential of population distributions are possible if 

homozygous mutations are considered. C) For any sample with non-zero AF for 

mutations in X and Y any individual cell may have one of nine mutational states, any or 

all of which may be a unique clonal populations. These figures are all representative of a 

simple 2 mutation system; increases in the number of mutations or the presence of 

replicated genes can complicate the model significantly.  
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Sampling the Clonal Structure 

To address bulk and single cell assay limitations, we devised an in vitro method 

which quantitates the allele frequencies of some of AML’s “high-profile” gene targets 

from low cell count, or low-cellular-throughput, samples. By tracking relative allele 

frequencies between multiple samples and comparing the correlation between mutant 

alleles one can hypothetically get an accurate representation of the clonal population. To 

prove the efficacy of this clonality assay’s multi-sample/low-throughput approach we 

show that 1) it is feasible and 2) more representative of the real clonal populations than 

bulk sequencing. Simulating a bulk sample we mixed several established AML cell lines 

at known ratios and, using a multiplex polymerase chain reaction (PCR) design coupled 

with pyrosequencing, determined the VAF of specific targets in replicated low-input 

samples. Through tracking the VAF of the targets through the multiple samples it is 

possible to determine which mutations are linked together and assess, in part, the clonal 

populations (Figure 4). 
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Figure 4. Determination of VAF in multiple low-throughput replicated samples can 

allow the determination of composition in a hypothetical cellular population. A) 
Multiple samples with approximately the same cell number are drawn from the bulk. B) 

Each sample will have slightly different proportions of cell lines, or clonal populations. 

C) Differing target allele frequencies of each cell line result in differing variable allele 

frequencies for each sample. D) Plotting variable allele frequencies for every replication 

against each other yields a correlation between each gene. E) The true allele frequencies 

of the hypothetical cell lines for comparison against the analytically derived clonality 

structure. F) Analysis of correlations reveals 3 different clonal populations, matching the 

hypothetical bulk. Increasing replications increases the accuracy of clonal population 

determination by adding more data points while increasing the number of cellular 

populations will decrease it. 
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Computer Modeling 

As a proof-of-concept and a potential future tool we developed an in silico 

computer model which simulates a multi-sample/low-throughput cell draw from a bulk 

sample. The program, named Cell Sampling, was used analyze the successfulness of the 

low-throughput clonality assay by comparing the VAF correlation results of the assay to 

the results seen in the program (Figure 5).  

Figure 5. Flow chart of experimental design and implementation.  Determination of 

allele frequencies in the individual cell lines provides a basis for creating heterogeneous 

tumor models with predictable VAFs. Computer modeling of the customized tumors 

allow for the optimization of the experimental parameters such as cell line proportions, 

sample size and replication number. After testing the computer model and the in vitro 

assay against the clonal populations and mutant allele frequencies known to be present 

the efficacy of both the assay and program in correctly predicting clonal populations and 

diversity can be evaluated. 

 

PCR Techniques 

Multiplex PCR is a useful method to create numerous amplicons simultaneously 

from one source, allowing the selection of several target genes to be amplified for a 
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relative VAF (Henegariu, Heerema, Dlouhy, Vance, & Vogt, 1997) (Figure 6). It ensures 

that all amplicons are coming from one homogenous source and the VAF will be 

consistent from sample to sample rather than several separate PCR reactions where the 

VAF is dependent on the potential random composition differences.  

 

Figure 6. Multiplex/nested/pyrosequencing protocol.  A) Whole cellular DNA with 

distinct six targets is placed into the multiplex to amplify all targets simultaneously. B) 

1st round product is separated into 6 different reactions with biotinylated primers for the 

nested product. C) Nested product with biotin beads are submitted for pyrosequencing. 

 

 

Nested PCR is a two-step process that can be used to amplify picogram amounts 

of DNA; the first-round amplifies multiple large outer targets which are then put into the 

second round reaction that individually amplifies smaller inner targets, the compounding 

amplification creates sufficient amounts of specific DNA product for genomic analysis. 
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Through the coupling of multiplex PCR with nested PCR we can separate several targets 

from low input concentrations of DNA and amplify the inner targets to sufficient levels 

for sequencing. The nested protocol also offers a source for error as well though; 

irregular interactions between multiplex amplicons can result in unbalanced target 

amplification and non-proportional VAF determination. 

Pyrosequencing 

Once the nested amplicon products of the target alleles have been produced with 

the hybrid multiplex/nested PCR, the sequence can be quantitatively analyzed with 

pyrosequencing (Md Fakruddin, 2012). Biotin labels on the inner amplification primers 

enable immobilization of the amplicons on sepharose beads that are subsequently 

incubated with sequencing primers and a preset sequential series of dNTPs. Nucleotides 

which are complementary to the template strand are incorporated to the sequencing strand 

in a 5’ to 3’ direction via Taq polymerase, releasing inorganic pyrophosphate (PPi) from 

dNTP. Enzymes present in solution (ATP sulfurylase, luciferase, and apyrase) along with 

substrates adenosine 5´ phosphosulfate (APS) and luciferin, generate visible light 

proportional to the amount of nucleotides incorporated. Any dNTPs not incorporated are 

rapidly degraded by apyrase (Figure 7). The proportional nature of the signal observed 

allows the calculation of VAF of specific mutations in the target sequence for each 

sample.  
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Figure 7. Pyrosequencing.  A) Nested PCR product binds immobilizing sepharose beads 

and sequencing strands bind to the product. B) Solution is sequentially incubated with a 

single dNTP types and Taq polymerase; Taq releases PPi with the addition of the 

nucleotide. C) ATP sulfurylase incorporates PPi into 5’ phosphosulfate to create ATP. D) 

ATP in vitro allows Luciferase to turn Luciferin into Oxyluciferin and light which is 

observed. E) dNTPs that do not match the template strand are not incorporated, degraded 

by an Apyrase enzyme, and no signal is observed. 

 

Targeted Alleles 

The AML cell lines KG1α, OCI-AML3, and MOLM14-L1 were used for this 

experiment. Circulating, non-adherent AML neoplasm cells provide an easy sampling 

model system for proof-of-concept research and the immortalized cell lines are generally 

robust. The selected targets for this clonality from these cell lines were the genes/codons 

DNMT3α-R882, EZH2-G628, FLT3-D835, FLT3-ITD, NRAS-Q61, STAG2-L526, and 

TET2-V218. The VAF for all targets with the exception of FLT3-ITD was determined 

through the multiplex/nested reaction coupled with pyrosequencing. FLT3-ITD was 

unique among these targets--it is a duplication mutation instead of a single nucleotide 

polymorphism.  Tandem duplications of a FLT3 codon increase the length of the 
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amplicon produced in the PCR. Quantitative determination of the ITD VAF was 

calculated by comparing the proportion of tandem duplication FLT3 to wild-type FLT3. 

Summary 

Bulk analysis is currently one of the most used methods of genetic analysis in 

AML treatment and oncology today. And while next generation sequencing of the bulk 

sampling may underestimate clonal complexity, strictly single cell analysis raises several 

concerns that must be addressed prior to widespread clinical use (such as time, resources 

and efficacy). We hypothesize that our strategy of low cell count input, DNA 

amplification, and analysis of the variable allele frequency will be capable of detecting 

clonal structure, which cannot be determined from bulk analysis of a simulated AML 

patient. If successful, this strategy would not only support caution in the evaluation bulk 

analysis results, but also potentially offer a third option of clonality analysis for future 

clinicians. 
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METHODS  

Cell Lines 

Three AML myeloblast cell lines were selected to simulate a bulk sample; KG1α, 

MOLM14-L1, and OCI-AML3. KG1α is a bone marrow myeloblast of a patient with 

AML, MOLM14 was derived from the peripheral blood of a patient who initially had 

myelodysplastic syndrome and the relapsed with full AML, and OCI-AML3 is a 

derivative from peripheral blood in an AML patient. The cells were separately cultured in 

Roswell Park Memorial Institute medium (RPMI) with 20% fetal bovine serum (FBS).  

Primer Design 

Sequences for the outer primers were found with the NCBI’s Primer-BLAST (Ye 

et al., 2012) and optimized for consistent and ideal annealing temperatures using 

OligoCalc (Kibbe, 2007). The resulting primers were run in NCBI’s nucleotide BLAST 

program to verify that the primers targeted the specified genes (Altschul, Gish, Miller, 

Myers, & Lipman, 1990). Finally all seven primer pairs were put through simultaneous in 

silico PCR with MFE-Primer 2.0 to ensure no cross amplification or dimer formation (Qu 

et al., 2012). The primers were was then ordered through Integrated DNA Technologies 

(IDT) (Appendix 1). Inner biotinylated primer and pyrosequencing primer designs were 

generated seperatelywith Pyromark by Qiagen and also ordered through IDT 

(Appendices 2 and 3).  
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Flow Cytometry 

Cell lines were previously analyzed using multiparameter flow cytometry to 

identify distinguishing cell surface markers.  We identified that KG1α is CD34+/CD14-, 

MOLM14-L1 is CD34-/CD14- and OCI-AML3 is CD34-/CD14+.  Cell lines were 

counted with a hemacytometer and pooled at an estimated fraction of 1/3 of each cell line 

with a total population of 3 million cells.  The mixture was spun down at 200rcf for 5 

minutes and the supernatant replaced with 1x PBS+0.1% BSA and incubated with 

antibodies from BD Biosciences (10uL/million cells) for CD14 and CD34 for 15 minutes 

at room temperature (Table 4). The cells were then washed with 1x PBS from Life 

Technologies with 0.1% bovine serum albumin (BSA) from Life Technologies, pelleted 

at 300rcf and resuspended in 1x PBS + 0.1% BSA along with calcein violet (1ul/1ml 

PBS) and incubated for 20 minutes. Viable cells were sorted into 384 well plates at 120 

cells per well, and the true population frequency of the three cell lines was quantified via 

the cell surface marker gating and the plates were frozen at -20°C.  

Multiplex PCR   

First-round outer product was generated with 1x Platinum Taq and Platinum Taq 

PCR Buffer from Invitrogen, 2.5mM MgCl2, 400nM dNTP, and 50nM of each individual 

primer. PCR conditions were 95°C for 5 minutes followed by 30 cycles of 95°C for 20s, 

57°C for 45s and 72°C for 45s followed by a termination extension of 72°C for 5 

minutes. The presence of bands was initially confirmed with ethidium bromide (EtBr) on 

a 2% agarose gel at 45 cycles before lowering the number of cycles to 30 for the two-step 

nested procedure.  
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Nested PCR 

Inner round product was created with either biotinylated forward or reverse 

primers and a non-labeled complement. 2μL of first round product was added to each 

separated inner target reaction which consisted of 1x Platinum Taq and Platinum Taq 

PCR buffer, 1.5mM MgCl2, 200nm dNTP, and 200nM of the labeled primer pair. Inner 

product  PCR conditions were 95°C for 5 minutes followed by 35 cycles of 95°C at 15s, 

57°C for 30s and 72°C for 30s. The presence of bands was again confirmed on a 2% 

agarose gel and EtBr.  

Pyrosequencing 

Product of the nested PCR reaction was submitted to in-house pyrosequencing on 

a PyroMark Q96 instrument from Qiagen present at the Fred Hutchinson Cancer 

Research Center along with 10mM aliquots of the pyrosequencing primers. 

Pyrosequencing results were analyzed using a tailored R-Script program related to the 

Cell Sampling program. 

Whole-Cell Input 

Whole cell PCR was tested prior to the pooling of the cell lines to ensure 

effectiveness of the primers in a whole cell setting. MOLM14-L1 cell lines were grown 

in FBS and diluted with PBS to form stocks of 500, 50, and 5 cells per microliter. 2μL of 

the cell stocks were then added to 13μL molecular biology grade H2O (Mediatech), 

frozen at -80° C,  heated to 95°C for 5 min, and then put on ice immediately prior to 

PCR.  10μL of Master Mix (1x PCR buffer, 2.5mM MgCl2, 400nM dNTP, 0.05μM 
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multiplex primers, and 1x Platinum Taq) was added to the lysate. First-step multiplex 

PCR was done at 95°C for 5 min, 40 cycles of 95°C for 30s, 57°C for 45s, 72°C for 45s 

and a final extension at 72°C for 5min. The product was run on a 2% agarose gel with 

EtBr. 

Sanger Sequencing 

Samples of the inner targets were prepared for Sanger sequencing with PCR 

amplification from each cell line and purified using the ExoSAP protocol by 

ThermoFisher Scientific. The product was submitted to be sequenced in-house on an 

Applied Biosystems (ABI) 3730xl DNA Analyzer at the Fred Hutchinson Cancer 

Research Center. The results were viewed using FinchTV by Geospiza. 

Fragment Analysis  

To analyze the relative level of FLT3-ITD in each replication a sample of each 

replication was analyzed with DNA fragment analysis by capillary electrophoresis. 

Samples from individual replications were input into a PCR reaction (1x Platinum Taq 

and Platinum Taq Master mix, 50mM MgCl2, and 10mM dNTP) with 10μM FLT3 

reverse primer and 10μM FLT3 forward primer labeled with a FAM fluorescent tag 

which absorbs at 492 nm and emits at 517 nm. The PCR product was diluted 1:10,000 

and submitted to in-house genomics analysis via ABI 3730xl DNA Analyzers. 

Cell Line DNA Titrations 

Titrations of cell line DNA were produced by diluting that DNA (KG1α, 

MOLM14, or OCI-AML3) in a differing cell line DNA (KG1α, MOLM14, or OCI-
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AML3) which did not contain a specific mutation while maintaining a constant DNA 

input of 40ng.  

Data Analysis 

The program Cell Sampling was created in R-script for this project and utilizes 

the user-defined cell line parameters along with the number of replication of cell draws 

designated to simulate both bulk allele frequency and allele frequency correlation 

coefficients, identifying mutations which track together (Appendix 4). The program first 

creates a bulk cell count that simulates a whole tumor, randomly selects a set number of 

cells, categorizes the cell types, uses the known VAF for each cell line to calculate the 

total number of each mutant allele, and finally divides it by the total number of alleles 

(Figure 8). The VAF of every target mutation is then plotted against every other 

mutation for each individual replication. The correlation between each two mutations 

across replications is analyzed with the Pearson Pairwise method to determine the level 

of association between mutant alleles. The cell sampling program also repeats the 

experiment for a range of cell inputs to identify the ideal cell count that minimizes the 

mean correlation between unlinked loci in order to maximize observable correlations 

between linked loci. Finally Cell Sampling also sums all replicates’ VAFs to determine 

the bulk VAF for comparison (Appendices 5 and 6). 

 Due to the conflicting considerations of the restricted capacity of the PyroMark 

pyrosequencing instrument and the objective of maximizing correlation trends a median 

of twenty replicates were performed. Cellular populations were approximately 33.3% of 

each cell line (34.3% KG1α, 38.4% MOLM14-L1 and 27.3% OCI-AML3, reflecting true 
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proportions as counted by flow cytometry). A total population of 3 million cells was used 

and the VAFs were set equivalent to values found with Illumia’s TruSight (Table 4).  

Figure 8. Diagram of program function-Cell Sampling. n cells are drawn from a 

simulated tumor and counted. A VAF for each target is determined from the number of 

each cell line for that sample. Replicate samples are pulled from the bulk and VAFs are 

determined for each sample. Cell Sampling then plots the allele frequencies against each 

other for every replicate and calculates the correlation between every pair. 
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RESULTS 

Establishment of VAF in Cell Lines 

Mutant allele frequencies of each cell line (or shared in two) were previously 

established through next generation sequencing via Illumina’s TruSight Myeloid 

Sequencing (Table 1) (“TruSight Myeloid Sequencing Panel,” 2015). The sequencing 

revealed that the KG1α line contains the mutation TET2-V218M (GTG>ATG) at 50% 

VAF, EZH2-G628 (GGC>AGC) at 100% VAF. MOLM-14-L1 cells contain TET2-

V218M (GTG>ATG) at 50% VAF, the FLT3-D835 mutation at 50%VAF as well as a 

21bp long FLT3-ITD. Finally, OCI-AML3 contains the DNMT3α-R882 mutation at 50% 

VAF, the NRAS-Q61 mutation (CAA>CTA) at 100% VAF and STAG2-L526F 

(CTT>TTT) at 25% VAF.  

Table 1. Variant allele frequencies of seven targets present in our three cell lines and 

the antibody markers used for identification. VAFs were found through next gen 

sequencing (Illumina). 

Cell Line DNMT3α EZH2 
FLT3-

D835 

FLT3-

ITD 
NRAS-Q61 STAG2 TET2 Marker Tags 

KG1α 0% 100% 0% 0% 0% 0% 50% CD34+/CD14- 

MOLM14 0% 0% 50% 50% 0% 0% 50% CD34-/CD14- 

OCI-AML3 50% 0% 0% 0% 100% 25% 0% CD34-/CD14+ 

 

Optimization of Multiplex PCR 

We first designed and tested assays which would selectively amplify target genetic 

products and exhibit no unintended products. Multiplex primers designed with 

PrimerBLAST were then analyzed in silico for their specificity in a multiplex setting 

using MFEprimer-2.0; no extraneous amplicons were observed and bands were seen to be 



 

23 

discrete enough to proceed to testing (Figure 9). The primers were validated in 

singleplex PCR to generate a single, specific band (Figure 10), and the multiplex 

displayed all seven target amplicon bands for both DNA input and whole cell input 

(Figure 11 and Figure 12).   

Figure 9. In silico PCR of multiplex PCR reaction, generated with MFE-Primer 2.0.  
Primer sequences from Appendix 1 were input into the internet-based application with 

PCR conditions identical to the in vitro multiplex reaction. 
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Figure 10. Nested product from second reaction produces anticipated bands.  All 

primer sets were sufficiently specific, except for the DNMT3α primer pair, which 

exhibited large amounts non-specific amplification along with the expected.    
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Figure 11. Multiplex of all three cell lines each produce seven target amplicons in 

vitro, matching in silico prediction.  MOLM14 has more ITD duplications than KG1a 

or OCI-AML3 which increases its product size. NRAS-Q61 displays an evident but faint 

band. 

 

Figure 12. Whole cell input to multiplex PCR yields amplicons identical to DNA 

input.   
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Validation of Nested Primers and Targets 

We next confirmed that the inner/nested primer pairs amplified the correctly sized 

product for both DNA-only and first-round reaction input for all targets in all three cell 

lines (Figure 13). Nested reactions with first-round input did yield a product that 

contained slightly more undesired amplicons, namely DNMT3α which showed distinct 

signs of cross amplification between unused first-round primers and second-round inner 

primers, but this was expected with nested reactions and minimized by decreasing the 

first-round cycle number and diluting the product transferred from first to second rounds. 

 

Figure 13. Non-biotinylated pyrosequencing primers produce anticipated bands 

with whole DNA input. 

 

Product from the direct DNA nested primer validation was submitted for in-house 

pyrosequencing and displayed anticipated cell line specific allele frequencies with the 

exception of EZH2 and STAG2 which displayed no mutations at all. To verify the 

mutational status of all seven genes in the cell lines the targets were sent in for Sanger 

sequencing (Figure 14). All anticipated mutations were present in expected cell lines but 
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again with the exception of EZH2 and STAG2, which were subsequently dropped from 

the multiplex and continuing experiments. 

Figure 14. Sequences of target codons for the three model cell lines found through 

Sanger sequencing.  The outlined nucleotide in each sequence represents individual 

target mutations. Bolded boxes represent mutant alleles. All possible mutations in each 

allele are not indicated, just mutations present through previous NGS. 
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Cell Sampling 

R studio program Cell Sampling returned an optimum cell draw number of about 

120 cells (Figure 15). A mean correlation between VAFs of unlinked loci over 20 reps 

was -0.36 when 120 cells were then drawn randomly from the bulk in silico, the allele 

frequencies for each allele in each cell line were set, and the VAF for each locus was 

determined for each replicate (Figure 16, Appendix 4).  

Figure 15. Determination of the optimum cell draw number via in silico cell draws.  
Mean correlation between unlinked loci was calculated with incremental numbers of cell 

drawn from the bulk to determine the cell number with the lowest correlation --and 

conversely the highest correlation between linked loci--.  
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Figure 16. VAFs plotted in silico against each other for every replication with a 

calculated correlation.  “Perfectly” linked or unlinked loci have a theoretical correlation 

of ±1 while partially linked or unlinked loci will have a partial correlation of less than |1|. 

The VAFs were determined from sampling a simulated cell population of three million 

cells with approximately one million cells from each of the three cell lines. 

 

Fragment Analysis 

A VAF for FLT3-ITD was determined by dividing the relative fluorescent 

intensity of the FLT3 peak with the ITD mutation (present at 351bp) by the intensity of 

the total FLT3 peaks (peaks at 330 bp and 351 bp) (Figure 17) (Table S4). 
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Figure 17. Example of VAF determination for FLT3-ITD.The FLT3-ITD mutation 

incorporates a seven times codon duplication, lengthening the allele by 21 base pairs, or 

from 330 bp to 351bp.  

 

Pyrosequencing 

To verify that the pyrosequencing assays are quantitative, mixtures of DNA from 

cell lines were sequenced for specific mutations. DNMT3α and NRAS-Q61 were verified 

by decreasing OCI-AML3 and increasing MOLM14-L1, FLT3-D835 was tested through 

increasing MOLM14 while decreasing KG1α and TET2 was verified through increasing 

KG1α while decreasing OCI-AML3 (Figure 18). 
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 Figure 18. Quantifiable nature of pyrosequencing. Increasing the proportion of input 

DNA which contains designated mutations correspondingly increases the detected 

variable allele frequency. NRAS-Q61, a homologous mutation, approaches a 100% VAF 

while DNMT3α, FLT3-D835, and TET2 are heterozygous and approach 50% VAF. A 

constant DNA input of 40ng into each 2
nd

 round (inner) reaction was used with titrations 

of increasing cell line DNA (OCI-AML3 for DNMT3α and NRAS-Q61, MOLM14 for 

FLT3-D835 and KG1α for TET2 all of which were diluted with differing cell line DNA 

which did not contain the mutation.  

 

The simulated tumor population generated through cell line mixing was analyzed 

for the target allele frequencies. The twenty replications of the cell line pool were 

partitioned through flow sorting and the cell line proportions were determined to be 

34.2% KG1α, 38.4% MOLM14-L1, and 27.3% OCI-AML3, the percentages were used to 

update the program Cell Sampling for more accurate predictions in silico. Five of 

replications failed pyrosequencing due to signal errors but the remaining 15 passed 

(Figure 19 and Appendix 7). The aggregate allele frequencies in the pooled cell lines - 
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similar to what would be seen in a bulk sample- can be estimated in silico based on the 

established VAFs and the proportions of the cellular populations.  

Figure 19. FLT3-D835 Pyrographs of replicates 1-4 out of 20 total.  VAFs determined 

through pyrosequencing, in these examples guanine addition to the pyrosequencing 

primer denotes wild type alleles while thymine additions implies mutant alleles. The 

percentage denoted at Position 1 represents the VAF for a specific allele in a sample. 

Replicate 4 failed due to signal error. 



 

33 

Correlation Analysis 

The VAFs determined from the successful pyrosequencing were then plotted 

against each other for each replicate and the correlations between each allele were 

determined using the Pearson-Pairwise method (Figure 20). 

Figure 20. Experimentally derived mutant allele frequencies across replications.  
Correlation values between replicates were determined through the Pearson-Pairwise 

method.  
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DISCUSSION 

 

While clonal diversity appears to be a prospective measurement of the 

malignancy of cancer, its evaluation presents difficulties in clinical implementation. Time 

and effort factors support high-throughput bulk sequencing but, while the assumptions 

are often superficially accurate and useful for a cursory evaluation, it ultimately mis-

defines clonal diversity and the sub-clonal populations (Hughes et al., 2014). The goal of 

our project is to primarily illustrate the possible information that is overlooked by bulk 

NGS and secondarily to propose, through in silico and in vitro proof-of-concept models, 

a possible method of assessing the clonal diversity. 

Next Generation Sequencing Anomalies  

The seven mutant allele targets chosen for this low-throughput clonality assay 

were found with Illumina’s TruSight Myeloid Sequencing Panel performed on each 

individual cell line. Subsequent Sanger and pyrosequencing revealed, however, that the 

mutations EZH2 and STAG2 were not present in the leukemia cell lines we used and thus 

were not appropriate markers for tracking cellular populations. The allele targets with 

their sequencing and amplifications primers were dropped from further experiments. 

Sequencing panels are useful for genetic analysis of a broad range of targets but Sanger 

sequencing offers a much more robust and target specific method of specific codon 

evaluation. With only five targets remaining in the low-throughput clonality assay, 

specificity, and the ability to pick out clonal populations, was decreased. This outcome 
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demonstrates that next generation sequencing data, even when it meets quality control 

criteria, may need to be viewed as preliminary and separately verified. 

Bulk Variant Allele Frequency Evaluation 

 The “bulk” approach is to use the total allele frequencies of a sample to make 

statements on the clonal populations. However, these clonal assertions based on NGS 

data are one dimensional guesses and offer little opportunity for extrapolation. Seemingly 

identical frequencies which may imply common allele mutations within a clone may in 

fact just be happenstance. This effect can be seen in the approximated bulk VAFs, 

connections between various alleles can be guessed at but have no supporting evidence 

(Appendix 6). Trying to establish clonal populations through in vivo bulk NGS would 

complicate the task by likely adding more clones and incorporating experimental error. 

Multisampling adds another dimension to allele frequency analysis permitting that more 

reliable assertions of clonal structure be made. 

Computational Simulation 

To test the potential efficacy of multisampling we wrote an R-script program 

named Cell Sampling, which was successful as a preliminary proof-of-concept. Although 

this approach requires previously establishing and verifying the VAFs of the mutant 

alleles in the separate cell lines it proved an excellent starting model for predicting 

correlations and clones. By pulling replicated low-throughput count draws from a 

simulated bulk sample the program was able to correctly determine the correlations 

between every mutant allele that were known to occur in the same cell line. With simple 
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alterations the program could be used to predict correlations between different allele 

targets and cell lines. In time, the program could develop into a powerful model for future 

clinical low-throughput clonality assays where it could be used to determine which alleles 

to target in a patient to get the most definitive in vivo clonality evaluation. The program 

can also be “reverse engineered” into a new, separate program which takes correlations 

between target alleles and predicts the present clones. Much more work would be 

required to reach these stages but the Cell Sampling program, and in silico modeling with 

R-script, was an extremely useful and cost saving means to model an experiment and test 

the hypothesis. 

Data Management 

One of the goals of this project was to see what kind reliability was attainable 

from the pyrosequencing results and how the in vitro results compare to the in silico. 

What level of correlation is a true association and what is random background noise? By 

establishing the mixture of clonal populations ourselves, with the known mutational allele 

frequencies established though sequencing panels and Sanger sequencing, it is possible to 

know what correspondences are expected from the pyrosequencing results and interpret 

the correlations accordingly. With that knowledge we were able to determine that in our 

data set correlation values which were between 0.33 and -0.33 were the product of 

random association and equivalent with no allele linking. Conversely, mutant alleles with 

correlation values greater than 0.34 or less than -0.34 appear to be representative of either 

positive or negative correlation respectively. For this preliminary experiment it was 

necessary to know the actual clonal populations and set the correlation limits to prevent 
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false positives or false negative correlations. With more work increased specificity 

leading to limits closer to zero and correlation coefficients of linked genes closer to 1 or -

1 might be attained, allowing for more accurate clonal discrimination and eventually the 

ability to determine the clonal structure without prior knowledge of its composition. 

Several replications were removed from final correlation analysis. Replicates 4, 5, 

12, 13 and 20 were reported to have as saturated signal errors by the pyrosequencing 

instrument for one or more of the targets and so the entire replicate was removed from 

correlation analysis and clonal extrapolation. Additionally, the presence of univariate 

outliers between the inter-replicate VAFs were identified through interquartile range 

(IQR) statistical analysis (Rousseeuw & Hubert, 2011). Replicates which contained a 

VAF value below or above the first and third quartile respectively by more than 1.5 times 

the IQR for that VAF were also removed from correlation analysis (replications 1 and 

14). The reason for the presence of the outliers is suspected, but not proven, to be due to 

exponential error propagation originating from the nested PCR step (Appendix 7). While 

the proportional amount of data points removed from this study, seven out of twenty in 

total, is unfortunate, the reasons for the removals are explicit and seen to be valid. 

Increased expertise and practice with the low-throughput clonality assay should lower the 

amount of removals in the future. 

Low-Throughput Clonality Assay  

The correlation between any two alleles in a population may be in one of three 

states depending on common mutations between the clones: 1) Uncorrelated, where 
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alleles are not wholly shared between clones, or for which experimental variation 

significantly impacts correlations determined, 2) Positive correlation, where alleles are 

wholly shared between clones, 3) Negative correlation, where mutations are mutually 

exclusive i.e. if a clone does not contain mutation A then it must contain mutation B.  

When limiting the scope of the evaluation of the pyrosequencing results to solely 

DNMT3α associations it can been seen that the DNMT3α mutation has a positive 

correlation to the NRAS-Q61 mutation that is also present in OCI-AML3 cells, a negative 

correlation to the TET2 mutation which is not present in OCI-AML3 but present KG1α 

and MOLM-14, and no correlation to the FLT3-D835 or FLT3-ITD mutations (Figure 

21). Thus, while the DNMT3a mutation and the FLT3-D835 mutation occur at 

approximately the same VAF in the bulk, via cell sampling, we can determine that they 

are not actually present in the same clone. By identifying which variants do or do not 

correlate with each other we can refine our proposed clonal structure identified via the 

bulk data.   
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Figure 21. Correlations between DNMT3α and other target mutant alleles.  Three 

possible correlation states are possible between any two alleles; uncorrelated, positively 

correlated or negatively correlated.  

 

 

By expanding the scope of focus to include all five targets and their correlations 

to each other the clonal model can be further refined (Figure 20). The NRAS-Q61 

mutation also negatively correlates with the TET2 mutation, supporting the previous 

assertion that the clones with the NRAS-Q61 and DNMT3α mutations form an opposing 

group of clones from those with the TET2 mutation. The FLT3 mutations are positively 

correlated, indicating that they are in the same clone, but are uncorrelated with anything 

else, suggesting that they comprise a subpopulation within either of groupings. In all, the 
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in vitro low-throughput clonality assay was able to correctly determine the minimum 

number of clones, the presence of the two groupings of clones and the positive 

correlations between uniquely shared mutations (DNMT3α with NRAS-Q61 and FLT3-

ITD with FLT3-D835). 

Despite what the low-throughput clonality assay was able to determine, several 

clonal characteristics known to be true were not seen in the results. The FLT3 mutations 

are known to inhabit a sub clonal population with the TET2 mutation but a positive 

correlation between the two was not observed (Figure 22). In fact, the FLT3 mutations--

which were not whole shared with any other mutation besides each other--were not seen 

to correlate positively or negatively with any other mutant alleles and were responsible 

for all of the uncertainty in the assay. This implies that a mutation that is shared across 

two clones does not appear to correlate with a mutation that is in one of said clones in a 

way that is currently detectable with this system. This may occur because as cells are 

randomly sorted into replicates the VAF of the unshared mutation may fluctuate wildly as 

individual cell proportions change but the VAF of the shared mutation stays relatively 

constant as the overall cell proportions are constant. Increases in sensitivity through 

expertise and practice should lower the random correlations (i.e. noise) and permit 

detection of partially linked mutations. However, this factor represents a potential flaw in 

the multi-sampling model and requires further testing and modeling. Also unseen in this 

assay is the homozygous nature of the NRAS-Q61 mutation in the OCI-AML3 cells. By 

examining the mean VAF from all replicates it can be seen that the average VAF of 
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NRAS-Q61 is twice that of DNMT3α and so may be estimated to be homozygous but 

also may simply be allele bias. 

Figure 22. Predicted vs. experimental results. Lower Left: red lines indicate the 

experimentally derived correlations between VAFs and green lines indicate in silico 

correlation predictions. Upper Right: whether the correlations between the two mutant 

alleles that were predicted in silico was observed in vitro.  

 

The low-throughput/multi-sampling clonality assay offers a more accurate picture 

on the clonal populations and diversity present in a sample than simple bulk analysis. It 

verified in part, the in silico modeling by Cell Sampling and supported the multisampling 

practice. More time invested in the assay to increase proficiency should increase 
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specificity and more results may make any shortcomings or possible improvements of the 

model more evident. This data could then be implemented back into Cell Sampling to 

improve its prediction accuracy.  

The low throughput clonality assay does entail several drawbacks. High-

throughput bulk analysis may overlook rare sub-clones due to high allele frequency 

background noise, but low-throughput may miss rare sub-clones simply because fewer 

cells are targeted and the chosen target mutations must necessarily be common to many 

diverging cell lines. The low-throughput clonality assay protocol entails that for each 

unique set series of allele targets are appraised the multiplex primer mixture must be re-

designed. The nested PCR portion of experimental method is sensitive to contamination 

and can result in exponential error propagation. Finally the assay has difficulty in 

determining the correlations between alleles where one allele is shared across multiple 

clones. Overall the assay did an excellent job of demonstrating the limitations of NGS 

bulk samples, supporting the in silico model and offer a potential alternative to bulk 

sampling. 

With improvements the assay may also offer some clinical applicability as it has 

several benefits over bulk sequencing: 1) A majority of the equipment used, with the 

possible exception of the PyroMark Q96 instrument, is commonly found in research labs 

2) Non-cancerous HSPC or other cell populations in the samples will not skew the 

correlations between two mutant alleles in the way that is found in bulk sequencing. 3) 

The assay makes no assumptions of zygosity in its population determination and is thus 
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less likely to overestimate a clone’s population size.  4) Extremely small samples may be 

used –our experiment only used ~ 2400 cells in total--. The low-throughput clonality 

assay, with more work, may be a clinically viable option for assessing clonal diversity 

and populations. 

Future Work 

The program Cell Sampling and the low-throughput clonality assay both function 

well as proof-of-concepts but also leave room for development. Optimization of the PCR 

reaction’s conditions (i.e. salt concentrations, stage times, or nucleotide concentrations) 

and the multiplex primers may increase sensitivity and should be verified. Testing more 

variations in cellular proportions and sample sizes would increase the number of data 

points for analysis, allowing for more accurate determination of correlations between 

linked and unlinked mutant alleles, theoretically approaching the values determined in 

Cell Sampling. Increasing the number of targets would also increase the number of data 

points and allow the differentiation of similar clones, with more targets increasing 

specificity. By incorporating distorting factors such as primer biases and potential 

amplicon interactions into the Cell Sampling computer model the program could more 

accurately predict pyrosequencing results, speeding development through in silico 

experimentation. Finally, a reverse direction computational program which distinguishes 

unique and unknown clones from a multi-sample’s pyrosequencing results would be a 

large step toward clinical applicability for the multiplex/nested/pyrosequencing protocol. 
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APPENDIX 

Appendix 1. Multiplex primers for the first-round product found through 

PrimerBLAST and verified in silico with MFEPrimer 2.0. 

Gene/Primer-Name 
Product 

(bp) 
Direction Sequence (5’ to 3’) 

DNMT3α-SP-F/R 237bp 
F GTGTGGTTAGACGGCTTCCGG 

R CTCAGTTTGCCCCCATGTCCCTT 

EZH2-SP-F/R 571bp 
F CTCGAGGAAATCAAGGGCTGAAGAT 

R CATGCAGAAGTCCAGGCTGAAAAG 

FLT3-ITD-SP-F/R 453bp 
F CTTTCCTCTATCTGCAGAACTGCCT 

R GCATGGGTGGGAAACTGTGCCT 

FLT3-D835-SP-F/R 522bp 
F CTCACGGCACAGCCCAGTAAAGA 

R TTGCACTCAAAGGCCCCTAACTGAT 

NRAS–Q61-SP-F/R 342bp 
F GGCAATAGCATTGCATTCCCTGTGGT 

R CCTAGTGTGGTAACCTCATTTCCCCATA 

STAG2-SP-F/R 400bp 
F GTGGCATATAGGGAGAAGAAATAAGCTAA 

R CATGAAGGCAGGGACTGTCAATCA 

TET2-SP-F/R 313bp 
F CACATAACTGCAGTGGGCCTGAAA 

R CCTGAGGTATGCGATGGGTGAGT 

 

Appendix 2. Inner primers for nested reaction, found through Qiagen Pyromark 

software. One of each paired primers were biotin tagged for pyrosequencing except for 

FLT3-ITD which was has a fluorescing FAM marker for fragment analysis. 

Gene/Primer Name 
Product 

(bp) 
Direction Sequence/Biotin (5’ to 3’) 

 DNMT3α-Pyro-F/R 65bp 
F  CCCAGTCCACTATACTGACGTCTC-Biotin 

R  ACCGGCCCAGCAGTCTCT 

 EZH2-Pyro-F/R 69bp 
F  CATCTATTGCTGGCACCATC-Biotin 

R  CATTTTTCTGCACAGGATCTTTG 

 FLT3-D835-Pyro-F/R 96bp 
F  AGGAACGTGCTTGTCACCC 

R  GCCCCTGACAACATAGTTGGA-Biotin 

 NRAS-Q61-Pyro-F/R 85bp 
F  CCTGTTTGTTGGACATACTGGATACAGC-Biotin 

R  AAGCCTTCGCCTGTCCTCATGTA 

 STAG2-Pyro-F/R 82bp 
F  ACTAACAGATAGGCAAGAGAGT-Biotin 

R  CACGGGAGGATGACATTC 

 TET2-Pyro-F/R 120bp 
F  GCTAATGCCTAATGGTGCTACA 

R  GTTTTCTGCACCGCAATGGAA-Biotin 

 FLT3-ITD 330bp 
F  AGCAATTTAGGTATGAAAGCCAGC-FAM 

R  CTTTCAGCATTTTGACGGCAACC 
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Appendix 3. Sequencing primers for pyrosequencing, found with Qiagen Pyromark 

software.  

 Gene/Name Direction Sequence (5’ to 3’) 

DNMT3α-seq R AGTCTCTGCCTCGCC 

EZH2-seq R TGATAAAAATCCCCCA 

FLT3-D835-seq F GATATGTGACTTTGGATTG 

NRAS-Q61-seq R CATGGCACTGTACTCTTCT 

STAG2-seq R GCTTGTCTAATGGTACAAA 

TET2-seq F GCTACAGTTTCTGCCTCT 
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Appendix 4. Cell sampling program R-script program written to simulate an AML 

patient and calculate the correlations between mutant alleles with the goal of evaluating 

the clonal structure.  

 

 

Weston Christensen 

October 20, 2015 

Initialization parameters 

#install.packages("knitr", "ggplot2", "polynom") 

library('knitr') 

library('ggplot2') 

library('polynom') 

 

#cells<-120          #Cells drawn per rep (NULL when cell# is determined by correlation) 

reps<-20             #Number of draws from bulk 

totalcells<-300000   #Total cell count in bulk 

KG1a<-0.343              

MOLM14<-0.384        #Cell percentages 

OCIAML3<-0.273 

set.seed(0) 

 

#Cell-line Matrix Generator 

celllines<-matrix(c(0,0,0,0,.5,0,.5,.5,0,.5,.5,0,0,1,0), ncol =5, byrow = T) 

colnames(celllines)<-c("DNMT3a","FLT3-D835","FLT3-ITD", "NRAS-Q61", "TET2") 

rownames(celllines)<-c("KG1a","MOLM14", "OCI-AML3") 

kable(celllines, caption = "Variable Allele Frequencies for 3 AML cell lines") 

 

Variable Allele Frequencies for 3 AML cell lines (fraction). 

Cell Lines DNMT3α FLT3-D835 FLT3-ITD NRAS-Q61 TET2 

KG1a 0.00 0.00 0.00 0.00 0.50 

MOLM14 0.00 0.50 0.50 0.00 0.50 

OCI-AML3 0.50 0.00 0.00 1.00 0.00 

 

Sampling Function 

#initiates Sampling function 

Sampling<-function(cellsf, repsf, KG1af, MOLM14f, OCIAML3f, celllinesf, totalcellsf) 

  { 

   

#Creates and fills VAFtable (VAFt) with titles 

VAFt<-matrix(data=NA, nrow=repsf, ncol=5) 

colnames(VAFt)<-c("DNMT3a","FLT3-D835","FLT3-ITD", "NRAS-Q61", "TET2")  

rownames(VAFt)<-c(paste("Rep",1:repsf))         

 

#creates vector "bulk" and fills it with the total cell number(Sum of percentage*total) 

bulk<-c(rep("KG1a", (KG1af*totalcellsf)), rep("MOLM14",(MOLM14f*totalcellsf)), rep("OCI-AML3", (

OCIAML3f*totalcellsf))) 
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#builds table "samples" and fills it with cell# of 

rownames(samples)<-c(paste("Cell -",1:cellsf)) 

 

#For loop that fills VAFt from each rep 

i<-0 

for (i in 1:repsf)  

  { 

   

#Counts cell numbers in each rep and fills it into vector count 

count<-c((sum(samples[,i] == "KG1a")),(sum(samples[,i] == "MOLM14")), (sum(samples[,i] == "OCI-A

ML3")))     

 

#multiplies count of each cell type times 2 alleles, multiplied by VAF and sums, then divides by total allele

s 

DNMT3a<-(sum(2*count[1]*celllinesf[1,1],2*count[2]*celllinesf[2,1], 2*count[3]*celllinesf[3,1])/(2*cells

f)) 

D835<-(sum(2*count[1]*celllinesf[1,2],2*count[2]*celllinesf[2,2],  2*count[3]*celllines[3,2])/(2*cellsf)) 

ITD<-(sum(2*count[1]*celllinesf[1,3],2*count[2]*celllinesf[2,3], 2*count[3]*celllinesf[3,3])/(2*cellsf)) 

NRAS<-(sum(2*count[1]*celllinesf[1,4],2*count[2]*celllinesf[2,4], 2*count[3]*celllinesf[3,4])/(2*cellsf)) 

TET2<-(sum(2*count[1]*celllinesf[1,5],2*count[2]*celllinesf[2,5], 2*count[3]*celllinesf[3,5])/(2*cellsf)) 

 

#fills VAF table with vectored VAF for each rep 

VAFt[i,]<-c(DNMT3a,D835,ITD,NRAS,TET2)    

} 

 

#data frames VAFt into dat 

dat.VAF<-data.frame(VAFt) 

 

return(dat.VAF) 

} 

 

Calculates mean correlation for un-linked loci for based on cell number 

#for loop establishing parameters, min/max cell number 

min<-75 

max<-150 

b<-min 

 

#Creates Correlation table "cor.table"  

cor.table<-matrix(data=NA, ncol=2, nrow=max) 

 

#for loop incrementing cells or reps 

for (b in  min:max) 

  { 

   

#Number of cells drawn from bulk per rep, changing to reps will produce similar results but for reps instead 

cells <- b 

 

#calls sampling function 

dat.VAF<-Sampling(cellsf=cells, repsf=reps, KG1af=KG1a, MOLM14f=MOLM14, OCIAML3f=OCIAM

L3, celllinesf=celllines, totalcellsf=totalcells) 
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#averages the correlations for the un-linked locci 

cor.vect<-mean(c( 

  cor(dat.VAF$FLT3.D835, dat.VAF$DNMT3a), 

  cor(dat.VAF$FLT3.D835, dat.VAF$NRAS.Q61), 

  cor(dat.VAF$FLT3.D835, dat.VAF$TET2), 

  cor(dat.VAF$FLT3.ITD, dat.VAF$DNMT3a), 

  cor(dat.VAF$FLT3.ITD, dat.VAF$NRAS.Q61), 

  cor(dat.VAF$FLT3.ITD, dat.VAF$TET2), 

  cor(dat.VAF$TET2, dat.VAF$NRAS.Q61), 

  cor(dat.VAF$TET2, dat.VAF$DNMT3a) 

  )) 

   

#Fills CoVar table with mean CoVar for each cell count 

cor.table[b,]<-c(b,cor.vect) 

} 

 

#dataframe fixes cor.table and names 

dat.cor<-na.omit(data.frame(cor.table)) 

colnames(dat.cor)<-c("Cell Number","Mean Correlation") 

 

#plots cor.tablr with CI 

g<-ggplot(data=dat.cor, aes(`Cell Number`,`Mean Correlation`))+ geom_point()+stat_smooth(method = "l

m", formula = y ~ poly(x, 2), size = 1)+ylim(-.55,-.15)+scale_x_continuous(breaks=c(75,100,125,150), exp

and = c(0.01, 0.01)) 

 

#Extracts Coefficients and solves for min Covariance (as long as there are zeros) 

Coeff<-coef(lm(formula = dat.cor$'Mean Correlation' ~ dat.cor$'Cell Number' + I(dat.cor$'Cell Number'^2

))) 

p<-polynomial(Coeff) 

p<-solve(p) 

OptCellDraw<-mean(p) 

print(c("Optimum Cell Draw Count =",OptCellDraw)) 

## [1] "Optimum Cell Draw Count =" "118.043096549912" 

g<-g+annotate("text", x =120, y = -.175, label = "Optimum Cell Draw =") 

g<-g+annotate("text", x=135.2, y= -.175, label = round(OptCellDraw,0)) 

g 
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Determination of the optimum cell draw number via in silico cell draws.  
 

Creates VAF figure Using Sampling Function and cell number from previous function 

#cells<-ceiling(OptCellDraw) 

cells<-OptCellDraw 

 

#calls Sampling function to fill dat.VAF 

dat.VAF<-Sampling(cellsf=cells, repsf=reps, KG1af=KG1a, MOLM14f=MOLM14, OCIAML3f=OCIAM

L3, celllinesf=celllines, totalcellsf=totalcells) 

 

#Table of VAF means 

mean.table<-matrix(round(c(mean(dat.VAF$DNMT3a),mean(dat.VAF$FLT3.D835),mean(dat.VAF$FLT3

.ITD),mean(dat.VAF$NRAS.Q61),mean(dat.VAF$TET2)),3),byrow=T) 

  rownames(mean.table)<-c("DNMT3a","FLT3-D835","FLT3-ITD", "NRAS-Q61", "TET2") 

  colnames(mean.table)<-"Mean VAF" 

  kable(mean.table, caption="Mean Target VAFs, Representative of the Bulk data") 

 

Mean Target VAFs, Representative of the Bulk data 

Target Mean VAF 

DNMT3α 0.131 

FLT3-D835 0.198 

FLT3-ITD 0.198 

NRAS-Q61 0.263 

TET2 0.369 
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#graphs dat.VAF with best fits and correlations 

pairs(dat.VAF, diag.panel = NULL, upper.panel=NULL, lab=c("DNMT3a","FLT3-D835","FLT3-ITD","N

RAS-Q61", "TET2"), xaxs="r",  xaxp=c(.25,.75,2), xlim=c(0,1), ylim=c(0,1), yaxs="r", yaxp=c(.25,.75,2), 

gap=.25, cex.labels=1.1, panel=function(x, y, digits=2, prefix="",cex.cor,... ){        #function creates best fit

 lines for scatterplots 

    points(x,y, col='azure4')            

    abline(lm(y~x), col='red') 

     

  #Adds Pearson Correlation     

    usr <- par("usr"); on.exit(par(usr)) 

       par(usr = c(0, 1, 0, 1), font=2) 

       r  <- cor(x, y,use="pairwise", method="pearson") 

       txt <- format(c(round(r,digits), 

       0.123456789), digits=digits)[1] 

       txt <- paste(prefix, txt, sep="") 

       text(0.75, .92, txt,cex=1) 

}) 

 

#averages the correlations of the unlinked locci 

cor.vect<-mean(c( 

  cor(dat.VAF$FLT3.D835, dat.VAF$DNMT3a), 

  cor(dat.VAF$FLT3.D835, dat.VAF$NRAS.Q61), 

  cor(dat.VAF$FLT3.D835, dat.VAF$TET2), 

  cor(dat.VAF$FLT3.ITD, dat.VAF$DNMT3a), 

  cor(dat.VAF$FLT3.ITD, dat.VAF$NRAS.Q61), 

  cor(dat.VAF$FLT3.ITD, dat.VAF$TET2), 

  cor(dat.VAF$TET2, dat.VAF$NRAS.Q61), 

  cor(dat.VAF$TET2, dat.VAF$DNMT3a) 

  )) 

 

 

mtext("Mean VAF correlation",adj=.8,padj=5)  

mtext(round(cor.vect,4), adj=.8,padj=7) 

mtext("Cell Draw Number", adj=.76, padj=9) 

mtext(round(cells,0), adj=.77, padj=11) 
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VAFs plotted in silico against each other for every rep with a calculated correlation. 
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Appendix 5. VAFs determined through in silico cell sampling of the simulated bulk 

and extrapolation of VAFs. Bulk contains all three cell lines and proportions are 

reflective of the true proportions determined through flow cytometry. 

Rep DNMT3α FLT3-D835 FLT3-ITD NRAS-Q61 TET2 

Rep 1 0.12 0.23 0.23 0.24 0.38 

Rep 2 0.09 0.19 0.19 0.18 0.41 

Rep 3 0.14 0.16 0.16 0.29 0.36 

Rep 4 0.12 0.20 0.20 0.25 0.38 

Rep 5 0.13 0.17 0.17 0.25 0.37 

Rep 6 0.14 0.19 0.19 0.28 0.36 

Rep 7 0.11 0.20 0.20 0.23 0.39 

Rep 8 0.16 0.18 0.18 0.31 0.34 

Rep 9 0.17 0.16 0.16 0.33 0.33 

Rep 10 0.13 0.21 0.21 0.25 0.37 

Rep 11 0.13 0.21 0.21 0.25 0.37 

Rep 12 0.14 0.23 0.23 0.28 0.36 

Rep 13 0.13 0.19 0.19 0.25 0.37 

Rep 14 0.13 0.19 0.19 0.26 0.37 

Rep 15 0.13 0.20 0.20 0.25 0.37 

Rep 16 0.13 0.20 0.20 0.25 0.37 

Rep 17 0.11 0.23 0.23 0.21 0.39 

Rep 18 0.13 0.23 0.23 0.26 0.37 

Rep 19 0.15 0.18 0.18 0.30 0.35 

Rep 20 0.16 0.20 0.20 0.31 0.34 

Mean 0.13 0.20 0.20 0.26 0.37 

STD Dev 0.02 0.02 0.02 0.04 0.02 
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Appendix 6. Allele frequencies calculated from actual population proportions. With 

the mutated allele frequencies for each cell line determined through sequencing and the 

composition of the cell line mixture determined though flow cytometry the total allele 

frequency for each target can be determined, simulating a bulk analysis. Identical 

frequencies between FLT3-ITD and FLT3-D835 indicate being in a similar clone. 

DNMT3α frequency is half of that NRAS-Q61 indicating either that they are in the same 

clones at a different zygosity or that a subpopulation division occurred. TET2 and 

DNMT3α have a combined allele frequency of exactly 50% indicating that the whole 

population shares either or the other mutated allele. It should be noted that increasing 

targets and cell populations will dramatically complicate the picture and lineages would 

be much harder to pick apart. 

Target Allele Frequency 

DNMT3α 13.65% 

FLT3-D835 19.2% 

FLT3-ITD 19.2% 

NRAS-Q61 27.3% 

TET2 36.35% 
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Appendix 7. Pyrosequencing and fragment analysis allele VAF results in percentage 

from the low-throughput clonality analysis on cell line mixture.  Rows highlighted in 

light red were removed from correlation calculations due to either pyrosequencing failure 

or the presence of outliers which were detected using the interquartile range [1.5IQR 

below first quartile or above 3
rd

 quartile] highlighted in dark red. Mean values differ from 

the in silico simulation however, as long as the correlation between VAFs is constant the 

actual value may fluctuate.  

Replication DNMT3a FLT3-D835 FLT3-ITD NRAS-Q61 TET2 

Rep 1 27.6 17.1 24.6 89.7 26.4 

Rep 2 27.1 24.5 28.9 86.9 43.8 

Rep 3 31.1 26.9 38.0 80.2 41.5 

Rep 4 26.3 FAIL 34.0 FAIL 39.7 

Rep 5 36.6 23.7 20.2 FAIL 29.9 

Rep 6 40.2 26.3 33.3 87.9 40.2 

Rep 7 36.0 12.3 35.4 81.8 40.7 

Rep 8 39.4 17.4 35.7 92.1 29.5 

Rep 9 37.3 19.0 26.7 84.8 33.9 

Rep 10 22.7 20.6 32.3 78.5 47.0 

Rep 11 27.6 17.4 37.4 80.0 39.9 

Rep 12 30.8 14.1 30.3 FAIL 45.3 

Rep 13 25.3 FAIL 33.1 93.0 57.6 

Rep 14 38.5 19.2 36.6 65.3 43.4 

Rep 15 34.9 21.3 35.3 83.4 45.2 

Rep 16 22.5 33.1 31.0 83.5 39.3 

Rep 17 36.5 26.3 34.6 90.1 43.4 

Rep 18 32.4 29.0 39.1 91.4 35.4 

Rep 19 41.6 33.1 48.0 81.8 37.3 

Rep 20 FAIL 40.3 49.9 93.2 38.7 

Mean 33.0 23.6 32.0 84.8 39.8 

STD Dev 6.4 6.3 5.3 4.5 4.8 

1st Quartile 26.30 17.40 30.35 80.05 39.30 

3rd Quartile 37.30 25.40 35.71 87.65 45.20 

IQR 11.00 8.00 5.36 7.60 5.90 
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