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FABRICATION OF A TISSUE- ENGINEERED PERFUSABLE SKIN FLAP 

ROSS H. WEINREB 
 

ABSTRACT 
 

To date, the reconstructive approach addressing chronic non-healing wounds, 

deep tissue damage, and severe wound defects relies upon avascular dermal grafts and 

autologous flap techniques. Such flaps are limited by donor site availability and 

morbidity, while current dermal grafts rely upon host cellular invasion for 

neovascularization and incorporation. These products fail to include an inherent 

vascular network and the supporting cells necessary to ensure adequate incorporation 

and graft survival beyond the most optimal wound beds. Herein, we fabricate a pre-

vascularized full-thickness cellularized skin equivalent containing a three-dimensional 

vascularized network of interconnected macro and microchannels lined with vascular 

cells, within a collagen neodermis populated with fibroblasts, and an epidermis 

comprised of human keratinocytes capable of providing whole tissue perfusion. 

Previously, our lab has employed a sacrificial microfiber technique to develop 

tissue-engineered scaffolds with an inherent hierarchical network of microvessels, 

which recapitulates the organization of an arteriole, venule, and capillary bed. Utilizing 

a type-I collagen hydrogel matrix, vascular cells were seeded within pre-fabricated 

channels and allowed to proliferate to generate an endothelialized microvasculature. 

These collagen scaffolds were subsequently anastomosed into rat models to demonstrate 

the clinical feasibility of such approach. The present study aims to more closely 

recapitulate the in vivo structure of human skin via the incorporation of vital epidermal 
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and dermal components of native skin into a biocompatible construct containing a 

complex hierarchical vasculature, which may be anastomosed using standard 

microsurgical techniques and immediately perfused. 

Pluronic F127 was used as the sacrificial material: 1.5 mm diameter “U” shaped 

macrofibers and 100-500 µm-interwoven microfibers were heat extruded and then 

embedded within type-I collagen into which Cyan Fluorescent Protein (CFP)-tagged 

human placental pericytes and human foreskin fibroblasts (HFF1) had been 

encapsulated. Following pluronic sacrifice, resultant channels were intraluminally 

seeded with Red Fluorescent Protein (RFP)-tagged human aortic smooth muscle cells, 

Green Fluorescent Protein (GFP)-tagged human umbilical vein endothelial cells, and 

topically seeded with human epidermal keratinocytes (HEK). Construct microstructure 

was analyzed using multiphoton microscopy (MPM) after 7, 14 and 28 days of culture. 

Additionally, after 14 and 28 days of culture, endothelial cells were extracted from the 

construct using collagenase digestion and Real Time (RT)-qPCR performed to analyze 

expression of markers of angiogenesis and maturation of the vascular network. 

MPM demonstrated a hierarchical vascular network containing macro and 

microvessels lined by endothelial and smooth muscle cells, supported by perivascular 

pericytes, all in appropriate microanatomic arrangement. Neodermal HFF1 proliferated 

throughout the observation period and the HEK neoepidermis developed into a stratified 

epidermis along the superior aspect of the construct. Angiogenic sprouting from the 

nascent vascular network into neovessel like structures was noted. RT- qPCR revealed 

relative expression of Jagged1, Dll4, Ve-Cadherin, and CD31. We have successfully 
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fabricated a novel tissue-engineered pre-vascularized full thickness skin flap, which 

recapitulates the inherent hierarchical vasculature found within human skin and is 

suitable for in vivo perfusion. We provide the platform for an on- demand, geometrically 

tunable tissue engineered skin equivalent with an anastomosable vascular network. This 

tissue-engineered skin flap holds the potential to transform reconstructive surgical 

practice by eliminating the consequences of donor site morbidity, and enabling 

rationally designed, patient-specific flaps for each unique wound environment and 

anatomic location. 
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INTRODUCTION 
 
 
 

Overall, tissue loss resulting from traumatic injury or surgical resection is one of 

the foremost problems facing health care today, accounting for about one half of the total 

annual expenditures in health care in the US (Devices, 2000). More specifically, open deep 

tissue wounds resulting from chronic non-healing wounds, severe soft tissue infections and 

large defects following oncologic resection or traumatic injury is estimated to affect nearly 

65 million Americans at an annual cost of $25 billion dollars (Sen et al., 2009). The impact 

of wounds is seen both economically and psychologically, as patients living with both acute 

and chronic wounds experience anxiety, depression, pain and embarrassment (Patterson et 

al., 1993; “The economic cost of wound care | Smith & Nephew,” n.d.). 

While treatment requires a multidisciplinary approach, it is frequently the role of 

the plastic and reconstructive surgeon to address these types of complex wounds and 

injuries. Derived from the Greek word “plastikos,” plastic surgery represents the field of 

medicine which deals with correcting and reconstructing body parts secondary to injury, 

birth or cosmetic defects with the overarching goal of restoring form and function 

(Pećanac, 2015). Plastic surgeons rely upon the “reconstructive ladder” (Figure 1) to 

address the management of these increasingly complex wounds, which is a systematic 

approach that allows the plastic surgeon to proceed through a cognitive, step-wise 

progression of reconstructive options to select the most suitable reconstructive technique 

to various wounds— the more complex and problematic the wound, the higher up the 

ladder the surgeon usually must climb (Boyce & Shokrollahi, 2006). 
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Wounds may be left alone to close by themselves, which describes secondary 

intention or they will be closed by primary intention, which includes basic suturing. 

However, when wounds fail to heal by primary or secondary intention, the surgeon will 

consider the use of a skin graft or flap. Typically used for wounds with optimal wound 

beds, a skin graft is harvested from a donor site and then transferred to the recipient site 

without carrying its inherent blood supply. Therefore, a graft, which is avascular, relies 

upon host cellular invasion for neovascularization and incorporation (“Chapter 2 grafts and 

flaps,” n.d.). Skin flaps, which are used in sub optimal wound beds, are slabs of tissue 

Figure 1. The Reconstructive Ladder: Step-wise reconstructive 
approach utilized by plastic and reconstructive surgeons to address 
various types of soft tissue defects encountered in clinical practice. 
Original image from: Boyce & Shokrollahi, 2006. Reconstructive 
Surgery. 
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that maintain their own blood supply by either remaining attached to the donor site 

vasculature (pedicled flap) or moved to a new site where the blood vessel is surgically 

reconnected. The latter details a more complex approach known as an autologous free 

tissue transfer, which is used for intricate wounds with complex wound beds unable to 

support a skin graft (Boyce & Shokrollahi, 2006; Kannan et al., 2005).  

Expert microvascular surgery enables the transfer of these thick autologous tissue 

flaps via the vascular dissection and detachment of an isolated and specific region of the 

body (eg, skin, fat, muscle, bone) and transfer of said tissue to another region of the body, 

with anastomosis of the divided artery and vein to a separate recipient artery and vein 

located at the site of the defect (Adams & Ramsey, 2005; Andreassi et al., 2005; “Free 

Tissue Transfer Flaps: Definition, Indications, Preoperative Considerations,” n.d.) 

(Figure 2). Clinically vascularized tissue flap transfers incorporate surgically 

anastomosable (>1 mm) feeder vessels with their downstream branched network intact 

within the tissue bulk (Lokmic et al., 2007). This configuration ensures whole tissue 

perfusion upon vascular anastomosis, however serious donor site morbidities, which 

include ischemia, deep vein thrombosis, sensory nerve loss/damage and or delayed 

healing can diminish the utility of this procedure (Fimiani et al., 2005) (Figure 3).  
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Figure 2. Ulnar Forearm Free Flap: Design, incision, elevation and dissection of 
ulnar forearm free flap. Original image from: Hekner et al., 2013. Plastic and 
Reconstructive Surgery. 

Figure 3. Donor Site Morbidity: Following a radial forearm flap healing is 
unfavorable and considerate aesthetic deformation exists. Original image from: 
Hekner et al., 2013. Plastic and Reconstructive Surgery. 
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There is therefore an increased need for biocompatible, tissue-engineered skin substitutes 

to address complex reconstructive challenges resulting from organ failure, chronic non-

healing wounds, severe soft tissue infections and large defects following oncologic 

resection or traumatic injury. 

The field of tissue engineering and regenerative medicine combines the fields of 

biology, engineering and polymer chemistry to develop functional tissues that restore, 

maintain, and improve damaged tissues or whole organs. This field is emerging as a 

potential alternative or even a complementary solution to address the aforementioned 

failures whereby fully functional natural, synthetic, or semisynthetic tissue equivalents 

are implanted to restore the native tissues functionality (Devices, 2000). Focused on the 

development of tissue engineered skin grafts, the current commercially available products 

are avascular and lack the patent, fully perfusing vascular supply of native tissue, which 

is critical to the engraftment and survival of replacement bulk tissue (Kojima et al., 2002; 

Novosel, Kleinhans, & Kluger, 2011). 

As leaders in the field of tissue engineered skin, Rheinwald and Green were one of 

the first to demonstrate the ability to isolate, cultivate, and expand human epidermal 

keratinocytes from a small skin biopsy to grow skin epidermis. This breakthrough led to 

the development of the first-cell based tissue engineered product, Epicel™, which 

consists of sheets of autologous keratinocytes that are used to cover large areas of the 

skin of patients suffering from catastrophic injuries who do not have enough viable skin 

remaining to be treated with traditional autografting techniques. However, this product is 

not only expensive but extremely fragile, only a few cells thick and does not contain a 
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dermis and therefore rarely used (Berthiaume, Maguire, & Yarmush, 2011). 

Yannas and Burke later developed a novel product consisting of type-I bovine 

collagen and shark chondroitin. This mixture, later cross-linked into a porous matrix 

contains a silicone sheet attached on one side to function as a temporary epidermis-like 

barrier. The matrix is biocompatible and biodegradable and eventually disappears as the 

host cells invade and deposit their own extracellular matrix (ECM) creating a neodermis 

made of the patient’s own cells. Subsequently, the silicone sheet is removed and the wound 

is covered with a skin graft.  This product, know as Integra™, is used to cover severe 

wounds where the damage extends deep into the dermis.  Integra™ contains no living 

cells and no inherent vascular network therefore limiting its use only to optimal wound 

beds. As a result   of   product   avascularity, Integra™   relies   upon   host cellular 

invasion for neovascularization and incorporation, which is a lengthy process and 

exposes the patient to a number of complications that may lead to infection and graft loss  

(Berthiaume, Maguire, & Yarmush, 2011) (Figure 4). 

Apligraf™, developed by Eugene Bell is a composite skin graft containing both 

dermal and epidermal elements. Initially, a collagen gel is seeded with dermal fibroblasts 

to develop into a neodermis after which keratinocytes are seeded topically      to form a 

keratinized neoepidermal layer. This product utilizes allogeneic cells isolated from 

neonatal  human  foreskin,  which  provides  the  potential  for  off-the-shelf availability. 

However, the allogeneic skin substitute can provide only temporary coverage, as the 

patient will eventually reject it (Berthiaume, Maguire, & Yarmush, 2011). 

The commercially available artificial tissue grafts are thin (<2 mm), acellular, and 
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are poorly if at all revascularized by chronically ill or radiated patients, resulting in limited 

use beyond skin replacement in the most optimal wound beds (Callcut et al., 2006; Reiffel 

et al., 2012; Zhong, Zhang, & Lim, 2010). As cells must lie within 200-300 µm of 

the nearest capillary in order to receive both the oxygen and nutrients necessary for 

survival tissues also require an intact microvascular network to ensure adequate transfer of 

nutrients and oxygen for survival (Greene, 1941). Therefore, several approaches have 

been employed that take advantage of vasculogenesis to bioengineer vascular networks 

within biocompatible scaffolds by encapsulating vascular cells within to allow for self-

assembly into perfusable microvascular networks (Hoying, Utzinger, & Weiss, 2014; Wu 

et al., 2004). However, this spontaneous vascular self-assembly through 

endothelial/mural cell polycultures within biocompatible matrices create 

hemodynamically inefficient capillary beds with uniformly small diameters that at best 

can inosculate with host capillaries and thus only be applied as would a skin graft 

(Chen et al., 2012; Gauvin et al., 2010). Furthermore, the functionality of a clinically 

translatable tissue engineered skin flap relies upon the necessary architecture to be 

surgically anastomosed to the host vasculature, which these approaches fail to recognize. 
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Current tissue engineering vascularized tissue fabrication strategies focus on 

incomplete and extreme scales, and are divided into three regimes: single straight small 

diameter sized vessels (2-5 mm), self-directed vasculogenesis within hydrogels, and 

microfabricated vascular networks (Baek et al., 2013; Blinder, Mooney, & Levenberg, 

2014; Golden & Tien, 2007; Hasan et al., 2014; Jiang & Luo, 2013; Lee et al., 2014; Lin 

et al., 2013). The methodologies utilized to achieve these fail to produce 1) macro-scale 

(0.5-2.0 mm) vascular networks and 2) the primary branch order networks, both of which 

are essential for perfusing whole large tissue volumes with minimal vascular resistance 

(Kim et al., 2014). Moreover, approaches that generate vascularized microscale tissue 

elements (<1 cm3 and ~1 mm thick) that result in capillary microvasculature of uniform 

diameter with very high vascular resistance are useful for in vitro mechanistic study and 

drug screening, but they are not clinically translatable because their size is restricted, 

Figure 4. Graft Rejection: Depicted here is the progression of graft 
failure when Integra was used in a sub-optimal wound bed. Original 
image obtained from Jason A. Spector, MD, FACS. 
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require a non-biocompatible support frame, and cannot be surgically anastomosed (Ehsan 

et al., 2014; Kolesky et al., 2014; Miller et al., 2012; Tremblay et al., 2005). These current 

strategies fail to recognize the clinically translatability when developing thick tissue 

replacements (>1 mm) as such engineered constructs would not be able to be immediately 

perfused by microsurgical anastomosis, and thus would be bound by the same constraints 

as all grafted tissue. 

The availability of an on-demand, geometrically tunable tissue engineered 

equivalent with an anastomosable inherent vascular network would transform 

reconstructive surgical practice by eliminating the consequences of donor site   morbidity 

and enabling rationally designed, patient specific flaps for each unique wound environment 

and anatomic location. 
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SPECIFIC AIMS 

 
 

Our lab has previously employed a sacrificial microfiber technique to develop a 

tissue-engineered scaffold with an inherent hierarchical network of microvessels, which 

recapitulates the organization of an arteriole, venule, and capillary bed. Utilizing a type-I 

collagen hydrogel matrix, vascular cells were seeded within pre-fabricated channels and 

allowed to proliferate to generate pre-vascularized microvessels. These vascularized 

collagen scaffolds were subsequently anastomosed into rat models to demonstrate the 

potential clinical translation of such an approach (Hooper et al., 2014). Herein, we 

endeavor to fabricate a clinically translatable tissue-engineered skin flap comprised of a 

collagen neodermis containing a pre-fabricated hierarchical network of vascularized 

vessels and vital epidermal and dermal components of the native skin. 

 
 

Towards this end we will: 

 
1. Fabricate a pre-vascularized three-dimensional skin equivalent 

containing a hierarchical network of vascularized microvessels 

seeded with human vascular cells encapsulated within a type-I 

collagen bulk containing fibroblasts, perivascular pericytes and an 

epidermis comprised of human keratinocytes. 
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2. Utilize Multiphoton Microscopy to determine the hierarchal 

organization of the vascular network within our tissue engineered 

skin flap. 

3. Within our tissue-engineered constructs evaluate endothelial cell 

expression of genes associated with angiogenesis and vessel 

maturation. 

 

This approach carefully considers the impact that such a tissue engineered skin flap 

will have throughout the field of plastic and reconstructive surgery. We hope that 

this research will impact the field of reconstructive surgery by offering an available de 

novo designable vascularized tissue that obviates the need for autologous tissue harvest. 

 



	

12 	

METHODS 
 
 
 

Collagen Extraction: 
 

Tendons were harvested from frozen rat tails (Pel- Freeze® Biologics, Rogers, AK) 

and suspended in 0.1% acetic acid to create a concentration of 75 mL/g of tendon. After 72 

hours at 4°C, the solution was centrifuged for 90 min at 8800xg. The supernatant was 

collected, frozen and lyophilized. The lyophilized collagen was further suspended in 0.1% 

acetic acid to create a 15 mg/mL type-I collagen stock solution and stored at 4°C. 

 
 

Cell Culture: 
 

Angiocrine Bioscience from Weill Cornell Medical College graciously provided 

Red Fluorescent Protein-tagged human aortic smooth muscle cells (HASMC-RFP) and 

Green Fluorescent Protein -tagged human umbilical vein endothelial cells (HUVEC-GFP). 

HUVEC-GFP were cultured using endothelial cell basal media supplemented with 

endothelial mitogen (Promocell, Heidelberg, Germany), and penicillin/streptomycin (P/S), 

while HASMC-RFP were cultured in smooth muscle cell basal media supplemented with 

smooth muscle cell mitogen (Promocell, Heidelberg, Germany) and P/S. Human foreskin 

fibroblasts (HFF1) (Promocell, Heidelberg, Germany) were cultured in Media 199x 

supplemented with fetal bovine serum (FBS, Hyclone©, Thermo Scientific, Logan, UT) 

and P/S. Human placental pericytes (HPLP) (Promocell, Heidelberg, Germany) were 

cultured using pericyte cell basal media supplemented with pericyte mitogen (Promocell, 

Heidelberg, Germany), and P/S. HPLP were transfected using a pre-made purified  eCyan 
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Fluorescent Protein (eCFP) lentivirus (eCFP Lentifect™, Genecopoeia, Rockville, MD) 

prior to use. Human epidermal keratinocytes (Promocell, Heidelberg, Germany), were 

cultured using keratinocyte cell basal media supplemented with keratinocyte mitogen, 

CaCl2 (Promocell, Heidelberg, Germany), and P/S. All cell lines were maintained under 

standard cell culture conditions with media changes every other day. 

 
 

Sacrificial Macrofiber and Microfiber Fabrication: 
 

A negative 1.5 mm “U” shaped pattern was created within a Polydimethylsiloxane 

(PDMS) mold (Figure 5a). A sacrificial polymer, Pluronic® F127 (Sigma Aldrich®, St. 

Louis, MO) was heated to 70°C and poured into the pre-patterned PDMS mold. After 

solidification at 4°C for 10 minutes, the macrofibers were demolded (Figure 5b). Pluronic® 

F127 was manual extruded to create the dense three-dimensional interconnected 

microfiber matrices with channel sizes ranging from 100-500 µm (Figure 5c). The three-

dimensional Pluronic® F127 microfiber network was melt fused to the Pluronic® F127 

macrofibers to recapitulate the hierarchical organization of an in vivo arteriole, capillary 

bed, and venule (Figure 5d).  
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Scaffold Preparation: 
 

A PDMS mold was used to create adjacent 15 mm x 15 mm x 5 mm reservoirs, 

which were connected by inlet and outlet channels. Fourteen-gauge catheters were placed 

into both channels to suspend the sacrificial network above the reservoir (Figure 5e). The 

catheters provide an adequate and efficient attachment site for in vivo surgical anastomosis. 

The PDMS mold and Pluronic® F127 network was sterilized under ultra-violet light for 

24 hours prior to use. Under sterile conditions, the aforementioned type-I collagen was 

neutralized on ice using Medium 199 (Gibco®, Life technologies, Grand Island, NY) and 

NaOH to a final concentration of 0.9 mg/mL and pH 7.4. Concurrently, HFF1 and HPLP- 

CFP were split using Accutase® (BioLegend, San Diego, CA) and counted using a 

standard hemocytometer. Cellular encapsulated collagen was prepared with the addition of 

1x106 HFF1 and 1x106 HPLP-CFP for every 1 mL of neutralized collagen prior to thermal 

gelation. The HFF1/HPLP-CFP collagen mixture was manually extruded over the 

sacrificial microfiber network and allowed to undergo thermal gelation at 37°C for 45 

minutes. After which, a 1:1 ratio of fibroblast to pericyte media was added to allow for 

overnight Pluronic® F127 network sacrifice. 



	

15 	

 

Figure 5a/b. Scaffold and Network 
Prepartion: Polydimethylsiloxane 
(PDMS) molds for fabrication of “U” 
shaped Pluronic® F127 macrochannel 
(red arrow). 5b) De- molded “U” shaped 
Pluronic® F127 macrochannel (green 
arrow).	

Figure 5c: Manually extruded 
Pluronic® F127 will be sacrificed in 
type-I collagen to create the 
microchannels. 

Figure 5d): Pluronic® F12 “U” 
shaped macrochannel melt fused to 
manually extruded Pluronic® F127 to 
form the macro and microchannel 
network. 

Figure 5e: PDMS molds used to 
house the collagen hydrogel. 14-
gauge catheters are used for inlet and 
outlet ports. 
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Scaffold Seeding: 
 

Following overnight sacrifice, the scaffolds were prepared for intraluminal 

seeding. 150 µl of 5x105 HASMC-RFP were slowly injected into the scaffolds inlet 

channel, and twenty-four hours thereafter 150 µl of 5x105 HUVEC-GFP were slowly 

injected into the same channel. Finally, 100 µl of 1x106 cells HEK were topically seeded 

onto the construct. Forty-eight hours later, collagen skin hydrogels were individually 

transferred to 30 mL freestanding centrifuge tubes (Evergreen Scientific, Los Angeles, CA) 

and incubated at 37°C. Samples were cultured in a 1:1 ratio of HUVEC to pericyte media 

for 7, 14, and 28 days with daily media changes. A total of 20 hydrogels were prepared and 

seeded. 

 
 

Multiphoton Microscopy: 
 

An upright Olympus FluoView FV1000MPE multiphoton microscope was used to 

image each skin construct containing live cells. Prior to imaging, HBSS was injected into 

the channel network of each hydrogel to keep the channels patent. All specimens remained 

within their PDMS mold and a drop of phosphate buffered solution was added topically to 

achieve water immersion of the microscope objective. A tunable mode-locked 

femtosecond pulsed Ti-Sapphire laser (Mai Tai DeepSee, Spectra-Physics, Newport 

Corporation, Santa Clara, CA) was used to excite the samples at 810 nm. An area of 1.27 

mm x 1.27 mm of the sample was imaged up to a maximum depth of ~1 mm from the 

surface in 5-20 µm steps. All images were acquired using a 10X/0.6 NA water immersion 

objective, which is corrected for transmittance of a broad range of wavelengths from UV 
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to near-IR. Images were collected using three multialkali photomultiplier tubes (PMTs), 

each of which collected one of the signals of interest. Specifically, the CFP signal was 

collected at 420-460 nm, GFP at 495-540 nm, and RFP at 575-630 nm. Unseeded 

constructs with sacrificed networks were filled with 5µm green fluorescent microspheres 

(Sigma Aldrich, St. Louis, MO). 

 
 

Multiphoton Image Analysis: 
 

All multiphoton images acquired were analyzed either with Imaris™ (Bitplane 

USA, Concord, MA) or Metamorph™ (Molecular Devices, Sunnyvale, CA). 

Specifically, Metamorph™ was used for all image analysis and quantification of    

channel dimensions, whereas Imaris™ was used for the visualization of the 3D image 

volume. 

 
 

Collagenase Digestion and Cell Sorting: 
 

A collagenase solution of Collagenase A, Dispase II, and DNase was prepared in a 

buffered solution of NaCl (140mM), KCl (5mM), Phosphate Buffer (2.5mM), Hepes 

(10mM), CacCl2 (2.0mM) and MgCl2 (1.3mM). Using single edged industrial razor blades 

(VWR, West Chester, PA), 14 day and 28 day skin hydrogels were minced into smaller 

pieces. The minced hydrogels were added into a mixed solution of 2 mL collagenase and 

6 mL Medium 199 (1:3 ratio of collagenase to M199). This mixture was placed in a 37°C 

rotational incubator for approximately 45-60 minutes. After which, the solution was 

filtered through a 100 µm EASYstrainer™ (Greiner Bio-One, Monroe, NC) and 



	

18 	

subsequently centrifuged at 1000 RPM for 5 min. The remaining cell pellet was re- 

suspended in 50 µl Magnetic-Activated Cell Sorting (MACS) buffer to prepare the sample 

for cell sorting, and CD31-FITC antibodies (eBioscience, San Diego, CA) were added to 

the mixture as recommended by manufacture. The sample was sorted based on CD31+ 

labeled endothelial cells using a FACSJazz cell sorter (BD Biosciences, San Jose, CA). 

 
 

RNA Extraction cDNA Synthesis: 
 

Total RNA was extracted from endothelial cells from 14 day, and 28 day skin 

hydrogels using RNAeasy Microkit® (Qiagen, Hilden Germany) following the 

manufacturer’s instructions. The concentration of total RNA extracted was determined 

using UV absorption with a NanoDrop1000 spectrophotometer (Thermo Scientific, 

Waltham, MA). A two-step qRT-PCR assay was performed where cDNA was 

synthesized from the total RNA sample using qScript™ cDNA SuperMix (Quanta 

Bioscience, Gaithersburg, MD) as per the manufactures instructions, after which RT-

qPCR was performed. 

 
 

Primers and Quantitative PCR: 
 

Endothelial expression of Jagged1, Dll4, CD31, VE-Cadherin, α-SMA, and 18S 

rRNA were analyzed from 14 day, and 28 day skin samples, and normalized to the 18S 

rRNA reference gene. All primers were graciously provided by Dr. Shahin Rafii of Weill 

Cornell Medical College (Table 1). Quantitative RT-PCR for the relative expression 

analysis of selected genes was carried out using the KAPA SYBR® fast master mix (Kapa 
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Biosystems, Wilmington, MA). A master mix was prepared for each target gene 

comprising 2X SYBR Green master mix, each forward and reverse primer (2.5µM 

working concentration) and cDNA, up to a total reaction volume of 15 µl. PCR cycling 

parameters were as follows; denaturation at 95°C for 3min followed by 40 cycles of 95°C 

for 3s and 60°C for 20s. Product specificity was evaluated by melting curves. Each total 

RNA sample was amplified in duplicates and the mean values were used for further 

analysis. 

 
 

Table 1: Human primers for RT-qPCR 

Primer Sequence 
Jagged1 F: 5’-TGACCAGAATGGCAACAAAA-3’ 

	 R: 5’-GGGTGTGGGATGCACTTATC-3’ 
Dll4 F: 5’-GCGAGAAGAAAGTGGACAGC-3’ 

	 R: 5’-ATTCTCCAGGTCATGGCAAG-3’ 
VE- Cadherin F: 5’-TTGGAACCAGATGCACATTGAT-3’ 

	 R: 5’-TCTTGCGACTCACGCTTGAC-3’ 
CD31 F: 5’-ACCGTGACGGAATCCTTCTCT-3’ 

	 R: 5’-GCTGGACTCCACTTTGCAC-3’ 
α-SMA F: 5’-AAAAGCAAGTCCTCCAGCGTT-3’ 

	 R: 5’-GAGCCATTGTCACACACCAAG-3’ 
18S rRNA F: 5’-AGTCCCTGCCCTTTGTACACA-3’ 

	 R: 5’-CCGAGGGCCTCACTAAAC-3’ 
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RESULTS 
 
 
 

The three-dimensional Pluronic F127® network of interconnected microfibers 

consistently sacrificed to form a dense array of continuous and patent microchannels within 

our collagen hydrogels. Both media perfusion prior to intraluminal cell seeding and MPM 

imaging of seeded and unseeded skin constructs confirmed intact bridging connections 

between the microchannel network and the inlet and outlet macrochannels (Figure 6). 

Multiphoton microscopy was used to identify the three-dimensional hierarchical 

organization of the interconnected microvessels in both seeded and unseeded constructs. 

The images reveal microvessels of varying diameters each with a patent and continuous 

lumen connecting microchannel to adjacent microchannel (Figure 7). Microchannel 

diameters were manually measured, documented, and exported to Microsoft Excel™. The 

data set of channel diameters is plotted as a frequency distribution for all samples used 

within this study (Figure 8). The microchannels range in size from 30 µm   to 500 µm, 

with an average channel size of 184 µm. 
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Figure 6. MPM imaging of Unseeded Microchannel: 10x/0.6NA water immersion 
objective MPM imaging of unseeded sacrificed microchannel, perfused with green 
fluorospheres, connecting the larger macrochannel Collagen bulk fluorescing red to 
provides contrast. 
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Figure 7. MPM imaging of Unseeded Interconnected Microchannels: 10x/0.6NA 
water immersion objective MPM imaging of unseeded sacrificed microchannels 
perfused with green fluorospheres. 
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Figure 8. Histogram of Microchannel Measurements: 
Frequency distribution for the diameters of Pluronic® F127 
microchannels. measured.	
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We analyzed the coverage of the endothelial-lined microvessels by mural cells, 

namely vascular smooth muscle cells (vSMCs) and pericytes following 7, 14 and 28 days 

of culture. MPM imaging confirmed the presence of single layer thick endothelial lining 

along the microchannel luminal surface with a carpet of smooth muscle cells sub adjacent 

to the luminal surface. This spontaneous organization of cells into the appropriate 

anatomical arrangement was more evident at 14 and 28 days (Figure 9). MPM imaging of 

these samples reveal a three-dimensional network of interconnected microchannels lined 

with cells anatomically arranged to form an identifiable neointima of HUVEC-GFP and 

neomedia of HASMC-RFP with perivascular supporting HPLP-CFP (Figure 10a-c). 

Pericyte proliferation is seen to increase from day 7 through day 14 evident by the 

spatial arrangement of perivascular supporting cells surrounding the endothelial-lined 

microchannel. Following 14 days of culture, sprouting morphogenesis was visualized using 

MPM imaging (Figure 11). Notably, imaging after 28 days of culture revealed endothelial 

neovessels from our pre-fabricated microvascular connections. Furthermore, GFP- 

HUVEC lined neovessels were identified in areas of the hydrogel void of any pre- 

fabricated microvasculature indicating spontaneous endothelial cell tube formation within 

our pre-vascularized skin flap (Figure 12). The neovessels were predominantly composed 

of endothelial cells and supported by smooth muscle cells and perivascular pericytes in 

anatomically appropriate position (Figure 13a-b). 
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Figure 9: Pre-Vascularized Microvessels at 14 Days of Culture. 
a) 10x/0.6NA water immersion objective MPM imaging of microchannel lined with 
HUVEC-GFP and HASMC-RFP. b) 10x/0.6NA water immersion objective MPM 
imaging of two adjacent microchannels lined with HUVEC-GFP and HASMC-RFP 
with supporting HPLP- CFP. c) 10x/0.6NA water immersion objective with an optical 
zoom of 3 MPM imaging of same microchannel in image A. d) 10x/0.6NA water 
immersion objective with an optical zoom of 3 MPM imaging of same microchannel in 
image C demonstrating the formation of a HUVEC-GFP neointima and HASMC-RFP 
neomedia. 
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Figure 10b. Pre-vascularized Microvessel 
(single wall): 10x/0.6NA water immersion 
objective with an optical zoom of 3 MPM 
image of figure 10a. Notice the close 
interaction between the HUVEC-GFP and 
supporting HASMC-RFP and HPLP-CFP. 

Figure 10c. Pre-vascularized 
Microvessel (single wall): 
10x/0.6NA water immersion 
objective with an optical zoom 
of 6 MPM image of figure 10b. 

Figure 10a. Pre-Vascularized 
Microvessel at 14 Days of Culture 
(Full View): 10x/0.6NA water 
immersion objective MPM image of a 
two-walled microchannel lined with 
HUVEC-GFP and with supporting 
HASMC-RFP and HPLP-CFP. 
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Figure 11. Sprouting 
Morphogenesis: 10X 0.6/NA 
water immersion MPM imaging 
of sprouting morphogenesis 
within the pre-vascularized skin 
flap following 14 days of culture. 
Notice HUVEC-GFP cells and 
supporting HASMC-RFP cells. 

 
 
 

Figure 12. Neovessel Lumen at 
28 Days of Culture: 10x/0.6NA 
water immersion objective with 
an optical zoom of 3 of MPM 
imaging of HUVEC-GFP 
neovessel  
(Diameter = 41.79 µm). 
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Following purification by sorting of HUVECs from the polyculture environment 

found within the original collagen hydrogel sample, qPCR was performed to determine the 

relative RNA expression of markers for endothelial sprouting, angiogenesis and 

vasculogenesis at 14 and 28 days. Jagged1, Dll4, VE-Cadherin, CD31 and alpha-SMA 

were compared and normalized to the 18S rRNA reference gene. Expression of CD31 

and VE-Cadherin accompanied by a lack of a-SMA expression confirmed the presence of 

HUVECs in the purified samples at 14 and 28 days. Additionally, qPCR results suggest 

that two Notch ligands, Jagged1 and Dll4, may have opposing roles during tube 

formation: at the 14 day time point, Jagged1expression is up relative to Dll4 expression; 

a 

b 

Figure 13. Neovessel Formation at 28 Days of Culture: a) 10x/0.6NA water 
immersion objective with an optical zoom of 3 of MPM imaging of a neovessel lined 
with HUVEC-GFP and supporting HASMC-RFP and HPLP-CFP following 28 days of 
culture. b) 10x/0.6NA water immersion objective with an optical zoom of 6 for the 
same neovessel. 
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at the 28 day time point, Jagged 1 expression is down relative to Dll4 (Figure 14a-b), a 

phenomenon which has been reported elsewhere (Benedito et al., 2009). Our results 

shown here suggest this interplay between the various Notch ligands may help regulate 

the progression of vasculogenesis in a 3-D like environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

a
) 

b) 

Figure 14. RT-qPCR Analysis for Endothelial Gene Expression: a) Relative gene 
expression (AU) of CD31, VE-Cadherin and a-SMA of ECs purified from 
cellularized collagen skin hydrogels at day 14 and 28. Expression levels normalized 
to 18S rRNA. b) Relative gene expression (AU) of Dll4 and Jagged 1 of ECs purified 
from cellularized collagen skin hydrogels at day 14 and 28.  Expression levels 
normalized to 18S rRNA. 
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DISCUSSION 
 
 
 

The present research was intended to fabricate a tissue engineered pre-vascularized 

skin flap with an inherent network of interconnecting branching vessels capable of 

providing whole tissue perfusion for immediate clinical applicability. To do so, we utilized 

our novel technique, which relies on sacrificial polymers to fabricate the intricate 

network of branching vessels within a biocompatible cellularized collagen matrix. These 

pre- fabricated channels were then seeded with endothelial and smooth muscle cells re-

creating the non-thrombogenic lining of the microvasculature. The surrounding collagen 

matrix, encapsulated with pericytes and fibroblasts and topically seeded with 

keratinocytes, simulated the unique cellular environment of in vivo skin providing key 

spatial information for cell localization, proliferation, angiogenesis and vasculogenesis. 

As a plastic surgeon’s approach to autologous tissue transfer is limited by the 

availability of autologous tissue and patient donor site morbidity, there remains an urgent 

need for the development of a tissue engineered full thickness skin flap containing an 

inherent vascular supply capable of providing immediate whole tissue perfusion (Saint-

Cyr et al. 2012). Our proposed tissue engineered pre-vascularized full thickness skin 

equivalent serves as a novel approach aimed at addressing the limitations currently 

experienced in the field of plastic and reconstructive surgery. 

As cells can only survive within an area approximately 200-300µm away from a 

nutrient or oxygen source, the fabrication of thicker tissue engineered skin substitutes with 

an intricate vascular bed of branching vessels that recapitulates the complex   hierarchical 
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organization of human skin continues to pose a major obstacle (Baptista et al., 2011; 

Folkman & Hochberg, 1973; Green, 1941). There has been significant research focused on 

recapitulating the unique microenvironmental conditions within biocompatible matrices to 

provide cells the necessary stimulus to spontaneously assemble into intricate networks of 

branching microvessels (Koh et al., 2008; Sacharidou, Stratman, & Davis, 2012; Zheng et 

al., 2012). However, while such research is successful at developing de novo 

microvessels within biocompatible scaffolds, these approaches fails to employ methods 

that consider the architecture necessary for microsurgical anastomosis to recipient 

vasculature, minimizing their clinical translatability. 

Furthermore, research focused on pre-fabricating microvessels within 

biocompatible scaffolds utilizes mandrel molds or soft lithography stamps. This 

approach, while successful at fabricating small microvessels lined with vascular and 

mural cells are inefficient at producing larger vessels, which are essential for perfusing 

large tissue volumes with minimal vascular resistance (Huang et al., 2012; Liu et al., 2012; 

Rayatpisheh et al., 2014; Wang et al., 2013; Yu & Zhou, 2013). Herein, we combine 

multiple approaches to create a complex collagen bulk microenvironment, which 

stimulates spontaneous vascular self-assembly through endothelial/mural polycultures 

and contains inherent pre- fabricated vessels of scalable size with the appropriate 

architecture necessary for microsurgical anastomosis to provide large tissue perfusion. 

We first reported our approach utilizing sucrose and silicone as the sacrificial 

and bulk materials, respectively, to generate perfusable microchannels (Bellan et al., 

2009). This   technique   while   efficient   at   fabricating   an   intricate   network   of 
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branching microvessels, was not directly translatable because of a lack of scaffold 

biocompatibility. Additionally, we explored the use of Kerria Lacca Resin (Shellac) as 

our sacrificial material due to its ability to enable fabrication of a denser tangle of 

smaller microchannels representative of native in vivo capillary networks (Jacoby, in 

press). However, the method used to sacrifice the shellac is toxic to cells within the 

collagen bulk therefore restricting its use. We have since focused our efforts on scaffold 

material chemistry to employ the use of Pluronic® F127, our sacrificial microfiber. FDA 

approved and commonly found in cosmetics, Pluronic® F127 is a tri-block copolymer 

containing a central hydrophobic core of polypropylene glycol flanked by hydrophilic 

polyethylene glycol, and here it is used to form the microchannels within our matrix 

(Kabanov et al., 2002). To encourage cellular survival and subsequent scaffold 

integration within the host, type-I collagen was replaced as the ideal bulk material as it 

its an integral component of the natural ECM, has low antigenicity, is biodegradable, 

biocompatible, and facilitates cellular adhesion and growth (Cross et al., 2010; Hooper 

et al., 2014). 

Mediated by the notch pathway, sprouting angiogenesis is a tightly regulated 

process that requires a coordinated balance between notch ligands Dll4 and Jagged 1 

(Benedito et al., 2009). Endothelial tip cells lead the outgrowth of blood vessel sprouts 

by sensing and responding to environmental cues such as vascular endothelial growth 

factor- A (VEGF-A), while stalk cells are located more distally from the gradient. The 

endothelial expression patterns of tip cell expressing Dll4 and stalk cell expressing Jagged 

1 experience a mosaic pattern of expression (Hellström et al., 2007; High et al., 2008). 



	

33 	

Adams et al., previously demonstrated that the equilibrium between the two ligands can 

be controlled by Dll4 expression in endothelial tip cells, which activates Notch signaling 

and thereby suppresses sprouting in adjacent endothelial cells. In turn, stalk cells 

expressing Jagged 1 antagonize tip cells expressing Dll4 promoting sprouting 

angiogenesis. It is the suppression of the tip cell phenotype, which may in turn promote 

tubulogenesis (Roca & Adams, 2007). This evidence parallels Harrington et al., 

findings, which suggest that HUVEC expressing Dll4 inhibits sprouting formation 

bringing an end to the initial proliferative phase of angiogenesis triggering a maturation 

phase to refine and stabilize new vessel vascular function. Our results herein, indicate a 

mosaic like environment of Dll4 and Jagged 1 expression at 14 and 28 days furthering 

the possibility of earlier periods of sprouting angiogenesis followed by a period of 

vessel maturation. While the relationship between endothelial expression of Jagged 1 

and Dll4 is not fully elucidated as of yet in a three-dimensional model, our proposed 

tissue- engineered skin flap holds promise for future studies delineating this relationship 

under physiological conditions recapitulating an in vivo environment. 

Close communication with the underlying mural cells are required to ensure 

stability and viability of endothelial capillary networks, as we and others have shown 

that co-seeding endothelial with smooth muscle cells supports sprouting, vessel stability 

and maturation (Hooper et al., 2014; Lilly, 2014; Liu et al., 2012). Sefton et al. indicate 

that the presence of smooth muscle cells induce endothelial expression of Ve-Cadherin, 

which is crucial to the to development of cell-cell adherent junctions, the formation of a 

stable confluent functional lining and a non-thrombogenic endothelial surface (Chiu et 
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al., 2009; Matter & Balda, 2003). Following 14 days and 28 days of culture, real-time 

qPCR confirmed relative expression of Ve-Cadherin from isolated endothelial cells 

indicating the development and maintenance of a functional non-thrombogenic 

endothelium within our pre-fabricated microvessels. 

The presence of pericytes are a crucial component of the endothelial vasculature 

as their recruitment during vasculogenesis and angiogenesis stabilizes and supports the 

function of blood flow in early developing capillaries (Franco et al., 2011; Stratman & 

Davis, 2012). Utilizing cyan fluorescent protein, we tagged the pericytes used in our 

study to clearly and unmistakably identify their location within the vasculature. MPM 

imaging revealed that in smaller microvessels, pericytes were located sub adjacent to the 

tunica media smooth muscle layer while remaining in close contact with the tunica 

intima endothelial layer. These findings are indicative of endothelial driven pericyte 

recruitment, and of the supportive role pericytes play in the development of a 

vascularized endothelium (Gerhardt et al., 2003; Song et al., 2005; Stratman & Davis, 

2012). Building upon our previous work where we combine the fields of biology, 

polymer chemistry, and engineering, we sought to fabricate a three-dimensional tissue 

engineered full thickness skin equivalent containing an inherent network of patent and 

vascularized interconnecting vessels capable of microsurgical anastomosis to recipient 

vasculature. We employ methods that take advantage of the unique elements of human 

skin to ensure proper signaling within our bio-scaffold environment to promote a healthy, 

proliferative and stable vasculature. While current approaches to tissue-engineered skin 

equivalents face the challenge of producing macro-scale vascular networks and the 
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primary branch order networks, both of which are essential for perfusing whole large 

tissue volumes with minimal vascular resistance, our approach represents a significant 

advancement in the fabrication of surgically-relevant replacement tissues. Because of its 

internal microvasculature and readily available anastomosis architecture, our constructs 

are able to provide whole tissue perfusion and therefore present as an alternate approach 

to currently available tissue engineered skin equivalents that rely upon scaffold 

engraftment via the host wound bed. 

Future work will require that we perform anastomosis of our proposed tissue 

engineered skin flaps on animal models to provide conclusive evidence of its clinical 

feasibility. Alternatively, as our tissue engineered constructs closely mimic the in vivo 

architecture and environment of human skin they have the ability to serve as a unique 

platform to study mechanistic actions of certain cancers and tumors. Our results 

demonstrate a foreseeable translation to the clinic with the hope of offering the first ever 

de novo designable vascularized tissue that eliminates the need for autologous harvest. 
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