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ABSTRACT 

 Control of retrotransposon expression in the mammalian germline is 

regulated by Argonaute family PIWI proteins and their associated small non-

coding RNAs known as PIWI-interacting RNAs (piRNAs). To date, no study has 

demonstrated clear PIWI protein expression nor identified a cellular function(s) 

for PIWI proteins in the mammalian soma. In contrast to the germline-restricted 

expression of piRNA associated proteins, we observed that Miwi2 mRNA was 

induced specifically in epithelial cells during pneumococcal pneumonia. Further 

investigation showed that similar to its mRNA, MIWI2 protein was indeed 

expressed outside of the mammalian germline, and was localized to the 

cytoplasm of a discrete population of multiciliated lung epithelial cells. 

Immunoprecipitation of MIWI2 from whole lung lysates indicated that it was 

bound to a small RNA that was longer than a traditional piRNA. Microarray 

analysis revealed that depletion of MIWI2 in a murine epithelial cell line or in a 

whole animal model had no effect on retrotransposon expression, further 

suggesting that lung MIWI2 is independent of nuclear piRNA silencing pathways. 

Under basal conditions, MIWI2 was required for the normal maintenance of 
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airway epithelial cell fate. In fact, Miwi2 deficiency resulted in an increase in club 

cells and decrease in ciliated cells indicating that MIWI2 could play a primary role 

in mucociliary homeostasis or clearance.  Similarly, as MIWI2 is induced during 

lung infection we sought to determine if it participated in host innate immune 

responses to bacterial infection. Using a clinically relevant model of community 

acquired pneumonia, Miwi2 deficient mice exhibited an increased expression of 

inflammatory mediators and immune cell recruitment thus leading to enhanced 

bacterial clearance. Taken together, these data support the notion that MIWI2 

exerts piRNA-independent functions outside of the germline in the ciliated lung 

epithelium to regulate innate immunity during pneumonia. More broadly, these 

studies shed light on new areas in PIWI protein and lung ciliated cell biology, and 

may have implications for multiple diseases including cancer, inflammatory 

disorders, and infectious diseases.   

 

 

  



 

 xi 

TABLE OF CONTENTS 

 

DEDICATION ......................................................................................................... v	

ACKNOWLEDGMENTS ....................................................................................... vi	

ABSTRACT ........................................................................................................... ix	

TABLE OF CONTENTS ........................................................................................ xi	

LIST OF TABLES ............................................................................................... xvi	

LIST OF FIGURES ............................................................................................. xvii	

LIST OF ABBREVIATIONS ................................................................................ xix	

CHAPTER ONE: INTRODUCTION ....................................................................... 1	

The Lung ............................................................................................................ 1	

Preface ........................................................................................................... 1	

Embryology .................................................................................................... 2	

Homeostasis and Host Defense ..................................................................... 4	

Pneumonia ......................................................................................................... 6	

Clinical significance, Incidence and Epidemiology ......................................... 6	

Clinical Presentation and Microbiology .......................................................... 7	

Pathology and Immune Response ............................................................... 10	

Small RNA silencing......................................................................................... 12	

Argonaute proteins ....................................................................................... 13	



 

 xii 

Transposable elements ................................................................................ 14	

piRNA silencing pathway .............................................................................. 17	

Evidence for a somatic cell role of the piRNA pathway ................................ 19	

RATIONALE ........................................................................................................ 22	

CHAPTER TWO: MATERIALS AND METHODS ................................................ 24	

Common Buffers and Reagents ....................................................................... 24	

Phosphate- buffered saline (PBS): ............................................................... 24	

Dulbecco’s modification of phosphate-buffered saline (DPBS): ................... 24	

Tris-buffered saline- Tween-20 (TBS-T): ...................................................... 24	

Hank’s balanced salt solution (HBSS): ......................................................... 24	

Tris acetate- EDTA buffer (TAE): ................................................................. 24	

NuPAGE® MOPS SDS running buffer: ........................................................ 24	

NuPAGE® Transfer buffer: ........................................................................... 25	

FACS buffer: ................................................................................................. 25	

FACS sorting buffer: ..................................................................................... 25	

Immunoblot blocking buffer: ......................................................................... 25	

IP lysis buffer: ............................................................................................... 25	

IP wash buffer:.............................................................................................. 25	

Proteinase K buffer: 10 mM Tris, pH 7.5, 0.5% SDS, 5 mM EDTA .............. 25	

Mouse Models .................................................................................................. 25	

C57BL/6........................................................................................................ 26	

Miwi2 deficient mice ..................................................................................... 26	



 

 xiii 

Epitope-tagged Miwi2 mice .......................................................................... 26	

Epithelial specific RelA deficient mice .......................................................... 27	

Miwi2 tomato knock-in mice ......................................................................... 27	

Cell Lines ......................................................................................................... 27	

General Information ...................................................................................... 27	

Generation of stable shRNA cell lines .......................................................... 28	

Cell fixation for immunofluorescence ........................................................... 28	

Bacterial Procedures ........................................................................................ 29	

Generation of bacterial stocks ...................................................................... 29	

Preparation of bacteria for in vivo experiments ............................................ 29	

Experimental infections .................................................................................... 30	

Bronchoalveolar lavage ................................................................................... 30	

Bacterial burden measurements ...................................................................... 31	

Lung Digestion ................................................................................................. 31	

Flow Cytometry ................................................................................................ 33	

RNA Isolation, and Quantitative Reverse Transcriptase-PCR ......................... 34	

Total Lung RNA Isolation ............................................................................. 34	

Cell line RNA isolation .................................................................................. 34	

qRT-PCR ...................................................................................................... 35	

Microarray analysis .......................................................................................... 35	

Tissue fixation, immunohistochemistry and immunofluorescence ................... 36	

Protein Measurements ..................................................................................... 39	



 

 xiv 

Enzyme-Linked Immunosorbent Assays (ELISAs) ....................................... 39	

Multi-Plex Bead Array ................................................................................... 39	

Bicinchoninic Acid (BCA) Assay ................................................................... 39	

Immunoblot analysis ........................................................................................ 39	

Isolation of Miwi2 bound RNA .......................................................................... 40	

Statistical Analysis ........................................................................................... 41	

CHAPTER THREE: RESULTS ............................................................................ 43	

3.1 Miwi2, a piRNA binding protein is induced in the lungs during 

pneumococcal pneumonia ........................................................................... 43	

3.2 Miwi2 induction is specific to epithelial cells ........................................... 49	

3.3 Miwi2 RNA is induced by various inflammatory stimuli .......................... 53	

3.4 Miwi2 protein is expressed outside of the germline in lung epithelium ... 56	

3.5 Miwi2 is expressed exclusively in the airway lumen ............................... 62	

3.6 Miwi2 is expressed exclusively in a subset of ciliated cells .................... 65	

3.7 MIWI2 expression precedes the ciliated cell program ............................ 73	

3.8 Lung MIWI2 function is independent of the piRNA silencing pathway ... 76	

3.9 Miwi2 deficiency impacts airway cell composition .................................. 88	

3.10 Miwi2 deficiency results in enhanced host defense to pneumonia ..... 102	

CHAPTER FOUR: DISCUSSION ...................................................................... 113	

4.1 Summary of Results ............................................................................. 113	

4.2 The demonstration that MIWI2 protein is expressed in the mammalian 

soma is novel ............................................................................................. 114	



 

 xv 

4.3 The demonstration that lung MIWI2 is not expressed in a stem cell 

population is contrary to available evidence ............................................... 116	

4.4 The Identification of a subset of ciliated cells is novel .......................... 118	

4.5 Lung MIWI2 function is independent of the piRNA pathway ................ 120	

4.6 Implications and Future Directions ....................................................... 123	

BIBLIOGRAPHY ................................................................................................ 127	

CURRICULUM VITAE ....................................................................................... 145	

 
  



 

 xvi 

LIST OF TABLES 

Table 1: Antibodies used for flow cytometry (FACS) ........................................... 34	

Table 2: Paraffin embedding protocol .................................................................. 38	

Table 3: Antibodies used for IF ............................................................................ 38	

 
 
  



 

 xvii 

LIST OF FIGURES 

Figure 1: Identification of epithelial induced genes during pneumococcal 

pneumonia .................................................................................................... 46	

Figure 2: The piRNA binding protein MIWI2 is induced during pneumococcal 

pneumonia .................................................................................................... 48	

Figure 3: Miwi2 mRNA is specifically induced in lung epithelium during 

pneumococcal pneumonia ........................................................................... 52	

Figure 4: Miwi2 mRNA is induced by inflammatory stimuli .................................. 55	

Figure 5: MIWI2 protein is expressed in the lung ................................................ 59	

Figure 6: MIWI2 protein expression is induced during pneumococcal pneumonia

 ...................................................................................................................... 61	

Figure 7: MIWI2 is expressed in airway luminal cells in the adult lung ................ 64	

Figure 8: MIWI2 is expressed exclusively in a subset of ciliated epithelial cells in 

uninfected mice ............................................................................................ 68	

Figure 9: MIWI2 is expressed exclusively in a subset of ciliated epithelial cells in 

intrapulmonary and trachea of mice infected with pneumococcus ............... 70	

Figure 10: MIWI2+ ciliated cells express multicilia ............................................... 72	

Figure 11: MIWI2 expression precedes the expression of FOXJ1 ...................... 75	

Figure 12: Lung MIWI2 is full length and bound to an RNA ................................ 79	

Figure 13: Lung MIWI2 does not regulate retrotransposon expression, in vitro .. 83	

Figure 14: Lung MIWI2 does not regulate retroelement expression in vivo ........ 87	

Figure 15: MIWI2::tdTomato is expressed in airway epithelium .......................... 91	



 

 xviii 

Figure 16: Miwi2 mRNA is induced by multiple inflammatory stimuli .................. 93	

Figure 17: EpCAM+ CD24Hi cells are multiciliated ................................................ 97	

Figure 18: MIWI2::tdTomato knockout mice produce multicilia ........................... 99	

Figure 19: MIWI2 deficient mice have a decrease in ciliated cells and an increase 

in club cells ................................................................................................. 101	

Figure 20: MIWI2 deficient mice have an enhanced early response to 

pneumococcal pneumonia ......................................................................... 105	

Figure 21: Recruited cells are unchanged 24 hours after pneumococcal 

pneumonia in MIWI2 deficient mice ........................................................... 108	

Figure 22: Dysregulated cytokine expression 24 hours post pneumococcal 

pneumonia in MIWI2 deficient mice ........................................................... 110	

Figure 23: MIWI2 depletion results in enhanced host defense to pneumococcus

 .................................................................................................................... 112	

 
 
  



 

 xix 

LIST OF ABBREVIATIONS 

7-AAD ..................................................... Live/Dead Stain (7-Aminoactinomycin D) 

AAT .................................................................................... acetylated alpha tubulin 

ALI ................................................................................................. acute lung injury 

AM ......................................................................................... alveolar macrophage 

ANOVA ................................................................................... Analysis of Variance 

APC ............................................................................................... allophycocyanin 

ARDS ........................................................... Acute Respiratory Distress Syndrome 

BAL ..................................................................................... bronchoalveolar lavage 

BALF ......................................................................................................... BAL fluid 

BSA ....................................................................................... bovine serum albumin 

CD ..................................................................................... Cluster of Differentiation 

CMRL .................................................. Connaught Medical Research Laboratories 

Cy ......................................................................................................... cyanine dye 

CRISPR ....................... Clustered regularly-interspaced short palindromic repeats 

DAB ...................................................................................... 3,3′-diaminobenzidine 

DALY ................................................................ Disability-Adjusted Life Years Lost 

DNA ...................................................................................... deoxyribonucleic acid 

DPBS .................................. Dulbecco’s modification of Phosphate-buffered saline 

ECL ......................................................................... enhanced chemiluminescence 

EDTA .................................................................... ethylenediaminetetraacetic acid 

ELISA ......................................................... Enzyme-Linked Immunosorbent Assay 



 

 xx 

FBS ............................................................................................ fetal bovine serum 

FITC ............................................................................... fluorescein isothiocyanate 

g ......................................................................................... relative centrifugal force 

GFP ................................................................................. green fluorescent protein   

h ...................................................................................................................... hours 

H & E .................................................................................. Hematoxylin and Eosin 

HBSS ........................................................................ Hank’s balanced salt solution 

HEPES .............................. 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic Acid 

HRP ................................................................................... horseradish peroxidase 

i.t. ......................................................................................................... intratracheal 

i.v. ......................................................................................................... intravenous 

ICU ............................................................................................ Intensive Care Unit 

Ig ..................................................................................................... immunoglobulin 

kg ............................................................................................................... kilogram 

LDS ...................................................................................... lithium dodecyl sulfate 

LIF ................................................................................. Leukemia Inhibitory Factor 

LINE ............................................................ Long Interspersed Nucleotide Element 

LPS ............................................................................................ lipopolysaccharide 

mg ............................................................................................................. milligram 

MID ............................................................................................................... middle 

min .............................................................................................................. minutes 

mL ................................................................................................................ milliliter 



 

 xxi 

mM ............................................................................................................ millimolar 

MOPS .................................................................................... 3-propansulfonic acid 

mRNA ........................................................................................... messenger RNA 

NET ............................................................................ Neutrophil Extracellular Trap 

NF-κB .............. Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells 

NP-40 ...... Nonylphenyl-polyethylenglycol, Octylphenoxy poly(ethyleneoxy)ethanol 

nt ............................................................................................................. nucelotide 

OSM ................................................................................................... Oncostatin-M 

P-value........................................................................................... probability value 

PAMP ......................................................... pathogen-associated molecular pattern 

PAZ ...................................................................................... PIWI Argonaute Zwille 

PBS ................................................................................ phosphate buffered saline 

PCR ............................................................................ Polymerase Chain Reaction 

PCV .................................................................. Pneumococcal Conjugate Vaccine 

PE ...................................................................................................... phycoerythrin 

Pen-Strep............................................................................. penicillin-streptomycin 

PFA ............................................................................................. paraformaldehyde 

pg ............................................................................................................. pictogram 

PIWI ...................................................................... P element induced wimpy testis 

PPSV ........................................................ Pneumococcal Polysaccharide Vaccine 

PVDF ................................................................................... polyvinylidene fluoride 

qRT-PCR ................................................ Quantitative Reverse Transcriptase PCR 



 

 xxii 

RBC ................................................................................................... red blood cell 

RCF ................................................................................... relative centrifugal force 

RFP ...................................................................................... red fluorescent protein 

RNA ................................................................................................ ribonucleic acid 

ROS .................................................................................. reactive oxygen species 

RPM ..................................................................................... revolutions per minute 

RPMI ..................................................................... Roswell Park Memorial Institute 

RSV .............................................................................. Respiratory Syncytial Virus 

RT .......................................................................................... reverse transcriptase 

SBA ...................... trypticase soy agar plate supplemented with 5% sheep’s blood 

SDS-PAGE .............. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SINE .......................................................... Short Interspersed Nucleotide Element 

STAT ........................................... Signal Transducer and Activator of Transcription 

TE ......................................................................................... transposable element 

TBS-T ................................................................... Tris- buffered saline plus Tween 

TLR ............................................................................................... Toll-like receptor 

TNFα ............................................................................... Tumor Necrosis Factor-α 

TSA ............................................................................................ trypticase soy agar 

TSB ........................................................................................... trypticase soy broth 

TWEEN .................................................. Polyethylene glycol sorbitan monolaurate 

U ...................................................................................................................... units 

V ...................................................................................................................... volts 



 

 xxiii 

WHO .............................................................................. World Health Organization 

WT ............................................................................................................. Wildtype 

µg ............................................................................................................ microgram 

µL .............................................................................................................. microliter 

 

 



 

 

1 

CHAPTER ONE: INTRODUCTION 

 
The Lung 

Preface 

The respiratory system is indispensable for mammalian physiology as its 

primary function is to facilitate organismal gas exchange and oxygenation. The 

lungs represent the largest surface area exposed to the outside world, even more 

so than the epidermis. In addition to barrier functions, the lungs also play a 

physiologic role in circulatory acid base equilibrium, in the creation of sound and 

oral communication. Fascination with the function of the lung has persisted 

throughout time, a frequent subject in the work of Aristotle where he declared 

that life is dependent on breathing (Aristotle, 2014). Centuries later, in an account 

of his comprehensive work originally compiled in 1653, Lectures on the Whole of 

Anatomy: An Annotated Translation of Prelectiones anatomiae universalis, 

William Harvey, the preeminent English physician and researcher proclaimed 

“Life and respiration are complementary. There is nothing living which does not 

breathe nor anything which breathing which does not live.” His conclusions, 

based on numerous years of experiments, and logical reasoning declared the 

lungs were the most important organs in the body. Despite centuries of research 

and determination, we still search for an understanding of the awesome power of 

the lung to facilitate life, while exhibiting exquisite homeostatic mechanisms. 

These mechanisms are tremendously complex given the massive amount of lung 



 

 

2 

surface area that is constantly exposed and thus susceptible to an ever-

changing, inhaled environment.  The broad goal of this dissertation is to delve 

conceptually and experimentally into these mechanisms and provide some 

insight into how such a large and vulnerable surface is capable of protecting 

itself. 

 

Embryology 

Gastrulation of the developing embryo results in the formation of three 

germ layers— ectoderm, mesoderm, and endoderm, which serve as precursor 

cell populations for organ development (Rock and Hogan, 2011a; Burri, 1984; 

Pinkerton and Plopper, 2004). The mature lung, capable of normal physiologic 

function, is comprised of cells derived from all three germ layers. Lung 

development can be separated into five phases, which were originally defined by 

structural morphology of the developing organ (Hogan et al., 2014). During the 

embryonic stage (approximately week 3 in humans and embryonic day 9 in 

mice), the primordial lung marked by the transcription factor Nkx2-1 is bud from 

the anterior foregut endoderm (Herriges and Morrisey, 2014). During the 

pseudoglandular stage, the bronchial tree is generated through a series of 

budding and elongation events in a process known as branching morphogenesis 

(Plopper and Fanucchi, 2004). The generation of airways is highly dependent on 

the interaction between the endoderm and the mesoderm where both secreted 

and cell bound signaling molecules instruct critical cell fate decisions (Cardoso, 
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2004). At the completion of the pseudoglandular stage (approximately week 17 in 

humans and embryonic day 15 in mice) nearly all the bronchial airways are 

formed, and the emergence of specialized airways cell types, such as ciliated 

cells marked by the transcription factor Foxj1, and early club cells, marked by 

expression of the secretoglobin Scgb1a1, arise in a proximal to distal fashion 

(Cardoso, 2004; Rock and Hogan, 2011a; Hogan et al., 2014). The canalicular 

and alveolar stage begin the process of building the alveoli, or terminal units of 

the airway where gas exchange takes place. The emergence and differentiation 

of type I pneumocytes, the major structural cells of the alveoli and type II 

pneumocytes, the major producers of surfactant can be seen by week 26 in 

humans and embryonic day 17 in mice. Surfactant, a mixture of phospholipids 

and specialized hydrophobic proteins is stored in type II pneumocytes and is 

secreted to coat the alveolar surface and functions to reduce surface tension, 

and prevent alveolar collapse on exhalation (Nogee et al., 1993). The critical role 

of surfactant in facilitating lung function is illustrated in patients who carry 

mutations in surfactant genes, and suffer fatal respiratory failure in 

infancy(Nogee et al., 1993). The final stage of lung development, the alveolar 

stage, extends into the post natal period. Primitive alveoli continue to undergo 

septation, and there is continued innervation of pulmonary capillaries. When the 

process is complete, nearly 480 million alveoli are generated with over 70 m2 of 

surface area available for gas exchange (Green et al., 1977; Levitzky, 2013).   
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Homeostasis and Host Defense 

An average adult human inhales approximately 11,000 liters of air per day 

which may contain numerous particulates such as pollen, dust, bacteria, viruses 

and fungi (Levitzky, 2013). Given the high rate of exposure to potentially toxic 

material, and the need to preserve physiologic function, the lung must possess 

exquisite mechanisms for maintaining homeostasis (Mizgerd, 2012; 2008). 

Pulmonary host defense is a multi-tiered protection system that employs 

anatomical, mechanical and immune cell mechanisms that prevent, identify and 

respond to pathogens and particulates (Holt et al., 2008; Mizgerd, 2008; Levitzky, 

2013). Each of these mechanisms cooperate to ultimately preserve the integrity 

of the alveoli-capillary barrier to facilitate gas exchange.  

The anatomy of the airways represents the initial layer of host defense in 

the adult lung. Progressively branched airways function to reduce air velocity, 

prolonging contact of air with the epithelium, and allowing gravity to sediment 

particulates (Tellier, 2006; Levitzky, 2013; Rackley and Stripp, 2012). By 

humidifying air on inspiration, hygroscopic particles will increase in size and will 

be cleared by expectoration or coughing. Sedimented particles are forced onto, 

and captured by the mucus layer, which coats the airways. Lung ciliated cells 

drive mucus from the lower airways toward the pharynx where it is eliminated by 

swallowing in a process known as mucociliary escalator. Generally, particles 

larger than 2 µM are affected by gravity and cleared via the mucus layer, 

whereas particles less than 0.5 µM will remain aerosols and be removed by 
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exhalation (Rackley and Stripp, 2012). Defects in mucociliary escalator either 

through genetic mutations such as in cystic fibrosis (CF) and primary cilia 

dyskinesia (PCD), or acquired defects such as cigarette smoking, predispose 

patients to acute lower respiratory tract infections (Tilley et al., 2015; Leopold et 

al., 2009).  

In healthy individuals the lower airways are considered to be sterile, 

however the upper airways are colonized with a multitude of microorganisms 

(Beck et al., 2012). Despite the mechanical and anatomical layers of defense, 

bacteria are within the size range where these mechanisms are insufficient. 

Additional layers of antimicrobial defense are produced to limit microbes, from 

accessing the lower airways. Conducting airway epithelial cells express small 

molecules with direct or indirect microbial killing activity such as defensins, 

sufactants, and cathelicidins (Prince, 2013; Parker and Prince, 2011; Whitsett 

and Alenghat, 2014; Green et al., 1977). B cells secrete Immunoglobulin A (IgA) 

into the bronchial lining fluid to neutralize bacteria, viruses and immunogenic 

material. Additionally, immunoglobulin G (IgG) is also found in in the lower 

respiratory tract, and likely participates in resistance to microbes for which the 

host has been previously exposed (Green et al., 1977). When bacteria fail to be 

eliminated by alternative methods, they are encountered by sentinel cells, the 

alveolar macrophages. Derived from yolk sac progenitors, alveolar macrophages 

(AMs) represent the first line of cellular defense to microbial insult in the distal 

lungs. Alveolar macrophages patrol the surface area of the airway, and were 
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previously known as dust cells, for their ability to remove particles, inert materials 

and low virulence microbes from the airspaces. AMs play an important role in 

airway homeostasis, responsible for clearing apoptotic, or necroptotic cells, 

cellular debris, and inactivated surfactant from the airways (Mizgerd, 2008; 

Dockrell et al., 2013; Hussell and Bell, 2014). The coordinated mechanisms of 

pulmonary host defense are numerous, and comprehensive, however, are 

susceptible to failure. While alveolar macrophages are capable of clearing a 

relatively minor dose of bacteria in the lower airways, deposition of a high 

inoculum, or high virulence organism requires a more substantial immune 

response. The recruitment of additional immune cells into the airways and the 

ensuing inflammation is known clinically as pneumonia.  

 

Pneumonia 

Clinical significance, Incidence and Epidemiology 

Traceable throughout history to ancient Roman, Greek, and Arabic texts, 

pneumonia is one of the oldest recognized diseases of mankind and remains 

centuries later as a major public health burden (Blasi et al., 2007). In 2013, the 

Global Burden of Disease study reported that pneumonia is the second leading 

cause of death overall, and the leading infectious cause of death among adults in 

the United States (GBD 2013 Mortality and Causes of Death Collaborators, 2015; 

Mizgerd, 2006; Armstrong et al., 1999). The incidence is reported to be between 

1.5 and 14 cases per 1000 person years, and disproportionally effects children 
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under 5 years of age and adults older than 65 years of age (File and Marrie, 

2010; Griffin et al., 2013; Jain et al., 2015). During the early part of the 20th 

century substantial progress was achieved in reducing the death rate due to 

pneumonia. The implementation of basic sanitation practices, improved nutrition, 

and numerous other public health interventions reduced the death rate from 

approximately 200 deaths per 100,000 people in 1900 to 100 deaths per 100,000 

in 1930. Indeed, this progress was temporarily halted during the 1918 influenza 

outbreak where the death rate increased to nearly 600 deaths per 100,000 

people per year, many the result of bacterial superinfection (Mizgerd, 2012). The 

sharpest decline, from approximately 100 deaths per 100,000 to 40 deaths per 

100,000 people, occurred in the 1950’s and was a direct effect of the 

development and implementation of antibiotics as routine treatment of 

pneumonia. Surprisingly, despite the colossal advances in medicine during the 

later part of the 20th century, mortality due to pneumonia has remained constant 

(Blasi et al., 2007). The severity of pneumonia can range from mild disease that 

is self limiting, to more severe presentation requiring hospitalization. Hence the 

case mortality due to pneumonia is also varied. In patients who do not require 

hospitalization the mortality rate is less than one percent, however in hospitalized 

patients, mortality may be as high as 50% (Jain et al., 2015; Griffin et al., 2013).  

Clinical Presentation and Microbiology 

Pneumonia is clinically defined as an infection involving the alveoli and 

airways. Patients who present with pneumonia exhibit a number of symptoms 
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including cough, fever, chills and pleuritic chest pain, which often arise quickly 

(Metlay et al., 1997). Auscultation of the lung usually reveals crackles or rales in 

distinct locations, as fluid accumulation presents in a consolidated fashion. The 

diagnosis of pneumonia is often confirmed with a chest radiograph, in 

combination with supportive microbiological and hematological assays (Baron et 

al., 2013; Mandell et al., 2007).   

Pneumonia is caused by a large cadre of microbes including, bacteria, 

viruses and to a lesser degree, fungi (Prina et al., 2015). Several factors 

influence pneumonia etiology including, age, co-morbidities, geographic location, 

genetic susceptibilities and vaccine trends. Overall, the predominant pathogen 

worldwide is the Gram-positive bacteria, Streptococcus pneumoniae (Welte et 

al., 2012; Jain et al., 2015; Howard et al., 2005; Drijkoningen and Rohde, 2014; 

File and Marrie, 2010). Prior to the routine use of antibiotics, pneumococcus 

caused greater than 95% of all cases of pneumonia (Austrian, 1981). More 

recently it has been reported to cause between 5-15% of cases in the U.S. and 

up to 35% of cases in Europe  (Welte et al., 2012; Jain et al., 2015; Howard et 

al., 2005; Drijkoningen and Rohde, 2014; File and Marrie, 2010). Various factors 

increase the risk of pneumococcal infection. Antecedent influenza infection 

(McCullers, 2006), current or former alcohol abuse (de Roux et al., 2006), COPD 

and asthma (Lee et al., 2007), previous splenectomy (Wara, 1981), genetic 

mutations, and environmental factors all greatly predispose patients to 

pneumococcal pneumonia. Strikingly, there is a 50 to 100-fold increase in 
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pneumococcal disease in patients infected with HIV (Schuchat et al., 1991). The 

clinical setting of the patient, namely immunocompetency and previous or current 

hospitalization correlates with different causative pathogens. Other bacterial 

pathogens including Mycoplasma pneumoniae, Legionella spp., Staphylococcus 

aureus, Enterobacteriaceae species including Klebsiella and Escherichia, and 

Pseudomonas aeruginosa are common in particular cohorts of patients (Peleg 

and Hooper, 2010; Jain et al., 2015; Prina et al., 2015). Recent advances in 

molecular diagnostics have also increased the identification of respiratory viruses 

as major causes of community and hospital acquired pneumonia. In fact, a recent 

study surveyed the likely causative pathogen in radiographic confirmed cases of 

community acquired pneumonia requiring hospitalization, and found the 

predominant pathogen recovered were rhinovirus, followed by influenza (Jain et 

al., 2015). Other viruses identified in the study included human 

metapneumovirus, and respiratory syncytial virus, however, it should be noted 

that a pathogen was not identified in 62% of cases of patients with confirmed 

pneumonia. For these cases, it has been proposed that the etiology is likely the 

result of S. pneumoniae. Even in patients with confirmed S. pneumoniae 

bacteremia, only approximately 50 percent of patients had positive sputum 

cultures indicating that standard sampling techniques may not be sufficiently 

sensitive to detect pneumococcus in all cases (Barrett-Connor, 1971; Bartlett and 

Mundy, 1995). The high prevalence, and sustained mortality in patients with 
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pneumococcal pneumonia underscores the importance of continued investigation 

and the development of alternative treatment modalities.   

Pathology and Immune Response 

Many bacterial species which cause pneumonia are carried, at least 

transiently in the nasopharynx (Kadioglu et al., 2008; Musher and Thorner, 2014; 

Bartlett, 2011). When the inoculum size or virulence of the microbe evade or 

escape the host defenses of the lungs, they are deposited in the alveoli where 

they are detected by alveolar macrophages. Given their limited direct microbial 

killing activity, the primary role of AMs is pathogen surveillance and recruitment 

of neutrophils through chemokine production and epithelial cell communication 

(Hussell and Bell, 2014). Pattern recognition receptors, particularly Toll-like 

receptors on the macrophage surface facilitate the detection of bacterial products 

upon microbial entry to the alveoli, and stimulate the production cytokines and 

chemokine (Mizgerd, 2008). In the case of pneumococcus, the bacterial cell wall 

component, lipotechoic acid signals through TLR2 to initiate macrophage 

production of cytokines and chemokines, many through the activation of NF-kB 

signaling (Xu et al., 2008). Our group has demonstrated that production of TNF-α 

and IL-1β by macrophages is critical for defense against pneumococcus (Pittet et 

al., 2011; Quinton et al., 2007).  These cytokines signal in both an autocrine and 

paracrine fashion, affecting inflammatory gene expression in epithelial cells 

which cooperate in the recruitment of neutrophils to the airspaces (Yamamoto et 

al., 2013; 2012; Whitsett and Alenghat, 2014; Bals and Hiemstra, 2004). Once in 
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the airspace, neutrophils clear bacteria by phagocytosis, produce anti-bacterial 

reactive oxygen species, express pro-inflammatory cytokines which instruct 

lymphocytes, and release neutrophil extracellular traps (NETS) to control 

bacterial spread and proliferation (Mizgerd, 2008; Brinkmann et al., 2004).  

While this inflammation is necessary for the control of bacterial growth and 

dissemination, it can result in extensive damage to the lung tissue and the 

formation of the often fatal Acute Respiratory Distress Syndrome (ARDS) (Ware 

and Matthay, 2000). Some of the products of neutrophils that kill microbes, such 

as proteases and reactive oxygen species also cause lung cell death (Fink, 2002; 

Ricciardolo et al., 2006). Over exuberant immune responses cause disruption of 

the epithelial barrier and result in an increased vascular permeability (Matthay 

and Zimmerman, 2005; Matthay et al., 2012; Ware and Matthay, 2000). The 

influx of plasma components and proteinaceous edema fluid in the alveolar 

space is visible on chest radiograph and a defining feature of acute lung injury. 

Fluid accumulation in the airspace has a number of consequences including 

inactivation of surfactant causing collapse of the airspace, impaired gas 

exchange, decreased lung compliance, and increased pulmonary arterial 

pressure. Patients with ARDS have a mortality rate between 26 and 58% (Wang 

et al., 2014; MacCallum and Evans, 2005) and survivors of ARDS suffer long 

term sequelae including increased incidence of cognitive dysfunction, psychiatric 

illness, and enduring physical limitations (Mikkelsen et al., 2012; Orme et al., 

2003).  
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Given the high rate of mortality in patients with pneumonia and acute lung 

injury it is clear that further insight is needed into the pathways that regulate both 

the immune response and the resolution of acute infection. Our laboratory has 

focused on broad post-transcriptional gene regulation mechanisms, such as 

small RNA silencing pathways to gain insight into the control of inflammation in 

the inflamed lung.   

 

Small RNA silencing  

The central dogma of biology posits that RNA serves as the intermediate 

template for which protein polypeptides are built. Over the last several decades 

however, the expanded role and importance of RNA in the cell has been 

revealed. In their Nobel Prize winning work in 1998, Fire and Mello discovered 

that dsRNA was capable of ablating the expression of particular mRNAs through 

their degradation(Fire et al., 1998). This process, which they termed RNAi or 

RNA interference was then identified in diverse and distant forms of life from 

prokaryotes, to plants to humans. Numerous classes of small RNAs have been 

identified, and they participate in numerous processes and pathways in the cell 

(Ghildiyal and Zamore, 2009). Given the genome encodes for thousands of 

genes which must be expressed with great fidelity, their regulation must be 

precisely controlled to maintain homeostasis. Indeed, protein transcription factors 

are the main drivers of gene production, however small RNAs are a major 

constituent of post- transcriptional gene regulation (Bartel, 2004; 2009; Ghildiyal 
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and Zamore, 2009). Three predominant small RNA classes exist in metazoan 

including small interfering RNAs (siRNA), micro RNAs (miRNA), and piwi-

interacting RNAs (piRNA) (Siomi et al., 2011). Each of these classes differ in 

their length, biogenesis, tissue expression pattern, and molecular targets, 

however common to each of these pathways is their association and formation of 

an RNA Induced Silencing Complex (RISC)(Hutvagner and Simard, 2008). 

Central to this complex is a highly specialized family of proteins known as 

Argonaute proteins that coordinate, in association with additional factors, the 

execution of gene silencing activity.  

Argonaute proteins 

Originally discovered in 1998, Argonaute (ago1) was identified as a gene 

necessary for proper leaf development in the plant species Arabidopsis thaliana 

(Bohmert et al., 1998). The authors chose the name “Argonaute” as the mutant 

leafs closely resemble the tentacle structure of the octopus Argonauta argo 

(Bohmert et al., 1998; Swarts et al., 2014). Subsequent studies have revealed 

that in addition to eukaryotes, Argonaute proteins exist in prokaryotes and 

archaea, strongly emphasizing their important biological function (Hutvagner and 

Simard, 2008). Interestingly, Argonautes have undergone substantial gene 

duplication and sequence diversification, particularly in metazoan. Several high 

resolution crystal structures from both prokaryotes and eukaryotes reveal a 

conserved domain structure including a disordered N terminal domain, PAZ, MID 

and PIWI domains (Nakanishi et al., 2012; Schirle and MacRae, 2012; Elkayam 
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et al., 2012). The PAZ domain is found in other RNA binding proteins, and is 

capable of binding single stranded RNAs with low affinity, whereas the PIWI 

domain contains an RNAse H fold, which is capable in some species of RNA 

cleavage (Hutvagner and Simard, 2008). Phylogenetic analysis separates the 

Argonaute family into two clades, the AGO clade which is most homologous to 

Arabidopsis AGO and the PIWI clade proteins most homologous to the 

Drosophila PIWI proteins (Swarts et al., 2014; Carmell et al., 2002). While the 

AGO clade proteins are expressed ubiquitously in mammals and are known to 

bind miRNAs, PIWI clade proteins are largely restricted to the germline where 

they bind piRNAs and protect the genome from the deleterious effects of 

exuberant transposable element expression (Aravin et al., 2008).  

Transposable elements 

Beginning with Barbara McClintok’s Nobel Prize winning discovery of 

“jumping genes” in the 1940’s (McClintock, 1956), and propelled by recent 

advances in genome sequencing technology, the sizable proportion of vertebrate 

genomes that are comprised of transposable elements (TEs) has been revealed. 

These mobile genetic elements, or so-called “parasitic DNA” can be found in 

nearly all vertebrate genomes. TEs comprise 37.5 and 45 percent of the mouse 

and human genomes, respectively (Mouse Genome Sequencing Consortium et 

al., 2002; Lander et al., 2001). This figure is striking considering that protein 

coding genes account for less than two percent. Two major classes of 

transposable elements have been distinguished based on their mechanism of 
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replication and evolutionary history. Class II elements, or DNA transposons serve 

as a DNA template and insert into the host DNA genome by an excision-insertion 

mechanism known as “cut and paste” replication (Finnegan, 1997; Belancio et 

al., 2008; Wicker et al., 2007). These elements are largely fixed in the human 

genome, and are no longer mobile. Class I elements, also known as 

retrotransposons, utilize a reverse transcriptase to copy an RNA template 

genome before integration in the host DNA. Two subtypes of retroelements have 

been identified based on the presence or absence of a long-terminal repeat 

(LTR) (Wicker et al., 2007). Derived from ancient retroviruses, LTR containing 

transposons integrated into the mammalian genome and acquired mutations 

ablating their ability to replicate autonomously (Finnegan, 1997). These 

sequences encode genes recognizable as Gag and Pol genes of known 

retroviruses, but notably lack envelope genes, eliminating the possibility of cell to 

cell transfer (Goodier and Kazazian, 2008). The second subtype of retroelements 

are non-LTR transposons, which are the predominant retrotransposon family in 

mammals (Wicker et al., 2007). Non LTR elements consist of two subtypes, SINE 

elements (short interspersed nucleotide elements) and the predominant 

mammalian TE, LINE elements (long interspersed nucleotide elements). LINE 

elements contain a 5’ untranslated region (UTR) and two open reading frames 

encoding proteins necessary for reverse transcription and integration (Slotkin and 

Martienssen, 2007; Goodier and Kazazian, 2008). Replication relies on an 

elucidated mechanism known as target-site primed reverse transcription, where 
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RNA is reverse transcribed at the site of integration into the host genome. 

Approximately 500,000 copies of LINE elements are contained in the mouse and 

human genomes accounting for nearly 20 percent of the total genomic sequence 

(Xing et al., 2007; Lander et al., 2001; Mouse Genome Sequencing Consortium 

et al., 2002). While many LINE elements are fixed, approximately 100 elements 

are still capable of retrotransposon in humans and several thousand in mice 

(Goodier and Kazazian, 2008). Over the course of evolution, retroelement 

transposition has played an important role in shaping the expression and 

structure of the genome. Firstly, large scale recombination, addition and deletion 

events are facilitated by direct repeat structures, and homologous sequences 

spread across the genome. TEs influence gene expression by generating new 

promoters and introducing new sites for epigenetic regulation. In addition, it is 

estimated that at least 47 human genes have evolved directly from transposon 

sequences (Cordaux and Batzer, 2009; Xing et al., 2007; Lander et al., 2001). 

Finally, TEs are capable of gene inactivation by insertional mutagenesis, which 

leads to loss of function mutations (Levin and Moran, 2011; Sedivy et al., 2013). 

The impact of these mutations can result in a number of different cancers, 

presenting a major evolutionary conundrum. Hence, while it appears that TEs 

provide a long-term evolutionary tool, their short term transcription and activity 

must be controlled to prevent transmission of deleterious mutations. This is 

particularly important in the mammalian germline, where retroelement 

transcription is high and risk of vertical inheritance is highly probable. To 
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minimize the deleterious effects of retroelement expression and protect the 

integrity of the genome many organisms have evolved specialized restriction 

systems within the germline to combat TE activity.   

piRNA silencing pathway 

Studies of Drosophila development revealed the diverse set of RNAs 

derived from repetitive sequences (Aravin et al., 2001; 2003). However, the first 

clue that transposon sequences were silenced by small RNAs came with the 

discovery of the protein Piwi (P-element induced wimpy testis) during a forward 

genetic screen for regulators of stem cell division in Drosophila melanogaster 

(Cox et al., 2000). Subsequent work demonstrated that Piwi deficiency led to 

sterility, and the overexpression of transposon sequences in the germline (Cox et 

al., 2000). It was well appreciated that Piwi homologues exist throughout 

evolution, including in mammals, and were closely related to the Argonaute 

family of proteins which bind small RNAs (Carmell et al., 2002). The mechanism 

of transposon repression remained elusive until several groups, working in flies 

and mice, identified that Piwi and Piwi homologues associate with a class of 

small RNAs now known as Piwi-interacting RNAs (piRNAs) (Deng and Lin, 2002; 

Kuramochi-Miyagawa, 2004; Vagin et al., 2006; Girard et al., 2006; Saito et al., 

2006).  

Despite their identification nearly ten years ago, a complete understanding 

of the biogenesis, and function of piRNAs has yet to be fully elucidated. There 

are hundreds of thousands of distinct piRNA sequences within a species and 



 

 

18 

these sequences differ greatly between species (Aravin et al., 2003). In the 

mammalian germline, two major waves of piRNAs are produced during 

developmentally distinct periods in spermatogenesis, pre-pachytene and 

pachytene. Pre-pachytene piRNAs are derived mainly from transposable 

elements, while pachytene piRNAs are generated from unannotated non-repeat 

intergenic regions known as piRNA clusters (Fu and Wang, 2014).   During pre-

pachytene and pachytene, piRNAs are generated through a primary biogenesis 

pathway, however during pre-pachytene, piRNAs are also generated by an 

amplification loop, termed the ping-pong cycle (Aravin et al., 2007). RNA 

polymerase II and the transcription factor A-MYB generate 5’ capped and 3’ 

polyadenylated piRNA precursurs (Li et al., 2013; Fu and Wang, 2014) which are 

cleaved into shorter so-called piRNA intermediates. This cleavage is independent 

of the miRNA biogenesis factor Dicer (Vagin et al., 2006; Bernstein et al., 2003), 

and is likely carried out by the enzyme MitoPLD (also known as Zucchini) 

(Watanabe et al., 2011; Ipsaro et al., 2012) however, other enzymes are likely 

involved as MitoPLD deficient mice still have piRNAs (Watanabe et al., 2011). 

The piRNA is then trimmed by a hypothetical 3’-5’ endonuclease known as 

Trimmer (Saxe et al., 2013), 2’-O-methylated by the enzyme HEN1 and loaded 

into the Piwi-clade Argonaute protein MILI (during pre-pachytene), or MILI/MIWI 

(during pachytene) (Ohara et al., 2007; Horwich et al., 2007). piRNA- loaded MILI 

is recruited to complementary TE RNAs by base pairing, where it slices the target 

RNA through endogenous cleavage activity, that is in turn trimmed and loaded 
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into MILI or a third Piwi-clade protein, MIWI2 . While MILI and MIWI are capable 

of slicing and silencing complementary RNAs in the cytoplasm, MIWI2 when 

loaded with secondary piRNAs is transported to the nucleus where it binds 

nascent RNA transcripts of transposable elements and orchestrates 

transcriptional silencing of TE RNA by reinforcing DNA methylation (Carmell et 

al., 2007; De Fazio et al., 2011). Unlike miRNA biogenesis and silencing, which 

is well characterized, the complexity of piRNA silencing is still being elucidated. 

Several factors have been identified in flies and mice which associate with piRNA 

complexes (nicely reviewed in ((Iwasaki et al., 2014)). An emerging theme in 

mammals indicates that piRNA silencing is essential in the male germline, and 

dispensable for maintenance of female germ cells. Ablation of any of the three 

piRNA binding proteins in mice, MILI, MIWI, or MIWI2 result in retrotransposon 

overexpression in spermatogenic precursors, however homozygous deficient 

females remain fertile (Carmell et al., 2007; Deng and Lin, 2002; Kuramochi-

Miyagawa, 2004). This is likely the result of the continued mitotic and meiotic 

activity specific to the male gametes.  

Evidence for a somatic cell role of the piRNA pathway 

 Despite the focus on the role of the piRNA pathway in the mammalian 

germline, multiple lines of evidence point to potential somatic cell functions in 

mammals. Indeed, an active piRNA pathway has been well described in the 

somatic cells of the Drosophila ovary (Ross et al., 2014), but no definitive study 

to date has been able to elucidate a function for piRNA components in the 
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vertebrate soma. In Drosophila, the piRNA binding protein Piwi is critical for stem 

cell renewal and maintenance (Cox et al., 2000). Given the known role of Piwi 

proteins as regulators of stem cell activity in Drosophila, much of the available 

data in the soma has focused on the role of piRNA binding proteins in the 

development of differentiated cells and tissue lineages.  

In mammals, there are 3 Piwi-clade proteins in mice, Piwil1/MIWI, 

Piwil2/MILI, and Piwil4/MIWI2, and 4 in humans, Piwil1/HIWI, Piwil2/HILI, 

Piwil3/HIWI3 and Piwil4/HIWI2 (Fu and Wang, 2014). A survey of of normal 

human tissues indicate that Piwil4 is highly expressed in almost all tissues, while 

Piwil1,2 and 3 are restricted to the testis (Sasaki et al., 2003). Piwil1 and Piwil4 

are expressed in hematopoietic progenitors in humans and mice, respectively 

(Sharma et al., 2001; Nolde et al., 2013; Jacobs et al., 2013). Genetic ablation in 

mice of Piwil4, or Piwil1,2 and 4 however, have no direct effect on hematopoietic 

development indicating that these proteins are dispensable for terminal 

differentiation of the myeloid and lymphoid lineages (Nolde et al., 2013; Jacobs 

et al., 2013). Piwil1 and Piwil4 are also highly expressed in mouse and human 

embryonic stem cells, but are not detectable in mouse embryonic fibroblasts 

(MEFs) or human foreskin fibroblasts (Cheng et al., 2014). Deletion of these 

proteins had no effect on the ability to reprogram these cells into induced 

pluripotent stem cells. In addition, embryonic stem cells from Piwil1,2,4, triple 

knockout mice were able to form all three germ layers (Cheng et al., 2014). 

Collectively these data indicate that piRNA binding proteins have a negligible 
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effect on the development of somatic tissues under basal conditions. It should be 

noted however, that in each of these studies, Piwi clade protein expression was 

not demonstrated. 

Finally, a growing body of evidence hints at a potential role for piRNA 

binding Piwi proteins in cancer (Suzuki et al., 2012). In recent years several 

observational and correlative studies have detected dysregulated Piwi protein 

expression in various human cancers, including breast, cervical, colon, 

endometrial, esophageal, gastric, Glioma, liver, pancreatic, and seminoma. 

Several in vitro studies have shown an effect of Piwi protein overexpression or 

deficiency on the proliferation of transformed cells, hinting at a role in cancer 

metastisis or drug resistance (Tan et al., 2015; Greither et al., 2012; Su et al., 

2012; Wang et al., 2012). The lack of a consensus expression pattern in cancer, 

where one or multiple Piwi proteins are either increased or decreased in 

expression relative to normal tissue, emphasizes the need for more rigorous 

testing of the somatic cell function of Piwi proteins. 
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RATIONALE 

Large-scale genome sequencing has revealed the large proportion of the 

mammalian genome derived from ancient retroviral elements and transposons, 

collectively known as retroelements.  Control of retroelement expression in 

mammals is critical, as activation and reinsertion of retroelements into the 

genome are detrimental to host genome integrity. Retroelements are most highly 

expressed in the male germline in mammals, however recent evidence suggests 

that they are also induced in many somatic tissues, particularly during 

inflammation and infection. This expression is driven by inflammatory 

transcription factor binding sites encoded on the retroelement promoters (Young 

et al., 2012; Chambers, 2014). In the mammalian germline, defense against 

retroelement expression is executed by the piRNA silencing pathway. piRNAs 

are a family of short, 23-36 nucleotide RNAs generated from distinct genomic 

clusters (Thomson and Lin, 2009). piRNAs associate with a subtype of 

Argonaute proteins known as PIWI proteins, which facilitate both transcriptional 

and post-transcription gene silencing (Hutvagner and Simard, 2008; Deng and 

Lin, 2002; Kuramochi-Miyagawa, 2004; Carmell et al., 2007).  Mice deficient in 

one or all of the Piwi–clade proteins are viable, however they universally exhibit 

abnormalities in germ cell function, primarily spermatogenesis, resulting from 

aberrant retrotransposon expression and causing meiotic arrest. While study of 

piRNAs and PIWI proteins have mainly focused on the role in the germline, 

strong evidence exists, at least in Drosophila, for a somatic cell function of 
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piRNAs or piRNA binding proteins. However, exhaustive efforts have been yet 

unsuccessful in identifying a clear role for piRNA silencing machinery in 

mammalian somatic cells. Given the role of piRNAs as an immune defense 

strategy against ancient retroviral elements in germ cells, and the potential that 

retroelements are induced during inflammation, we sought to determine if the 

piRNA silencing pathway was active in somatic cells during the innate immune 

response to bacterial infection.  
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CHAPTER TWO: MATERIALS AND METHODS 

 
Common Buffers and Reagents 

Phosphate- buffered saline (PBS): 1.05 mM KH2PO4, 155.17 mM NaCl, 2.97 

Na2HPO4-7H2O, pH 7.4 (Gibco, Life Technologies) 

 

Dulbecco’s modification of phosphate-buffered saline (DPBS): 2.67 KCl, 1.47 mM 

KH2PO4, 137.93 mM NaCl, 8.06 Na2HPO4-7H2O, pH 7.0 (Gibco, Life 

Technologies) 

 

Tris-buffered saline- Tween-20 (TBS-T):  25 mM Tris, 125 mM NaCl, 0.1% 

Tween-20 

 

Hank’s balanced salt solution (HBSS): 5.33 mM KCl, 0.44 mM KH2PO4, 4.167 

mM NaHCO3, 137.93 mM NaCl, 0.33 mM Na2HPO4, 5.56 mM D-Glucose (Gibco, 

Life Technologies) 

 

Tris acetate- EDTA buffer (TAE): 40 mM Tris, 20 mM acetic acid, 1 mM EDTA 

 

NuPAGE® MOPS SDS running buffer: 50 mM MOPS, 50mM Tris base, 0.1% 

SDS, 1 mM EDTA, pH 7.7 (Life Technologies) 
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NuPAGE® Transfer buffer: 25 mM Bicine, 25mM Bis-Tris, 1 mM EDTA, 50% 

methanol, pH 7.2 (Life Technologies) 

 

FACS buffer: 0.5% HI-FBS (Gibco, Life Technologies), 2 mM EDTA in PBS 

 

FACS sorting buffer: 1% BSA (Sigma Aldrich) in PBS 

 

Immunoblot blocking buffer: 5% non-fat milk in TBS-T 

 

IP lysis buffer: 50 mM Tris–HCl pH 7.4, 150 mM NaCl, 5 mM MgCl2, 15% 

glycerol, 1 mM DTT, 0.5% sodium deoxycholate, 0.5% Triton X-100, 1x protease 

inhibitor cocktail 

 

IP wash buffer: 10 mM Tris, pH 8, 150 mM NaCl, 1 mM MgCl2, 0.1% NP-40  

Proteinase K buffer: 10 mM Tris, pH 7.5, 0.5% SDS, 5 mM EDTA 

 
Mouse Models 

Mouse experiments were performed in accordance with US Federal Law 

and approved by the Boston University School of Medicine Institutional Animal 

Care and Use Committee (IACUC) (Permit # 14859). Experiments were 

performed under approved anesthesia as described below, and all efforts were 

made to minimize suffering. Mice were housed in a specific pathogen free facility 
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at Boston University School of Medicine with access to food and water ad libitum 

on a twelve-hour light/dark cycle. Experiments were carried out on 6-12 week old 

mice unless otherwise indicated.  

C57BL/6 

C57BL/6 mice were purchased and used directly from the Jackson 

Laboratory, or from a colony maintained by our laboratory. 

Miwi2 deficient mice 

Miwi2-/- mice were obtained from Dr. Gregory Hannon at Cold Spring 

Harbor Laboratory/Howard Hughes Medical Institute and rederived at Boston 

University. This mouse was generated by insertional mutagenesis that created a 

duplication of the genomic region containing exons 9-12 of Miwi2, resulting in 

multiple stop codons and the subsequent nonsense-mediated decay of the 

mutant Miwi2 transcript (Carmell et al., 2007). These mice were maintained on a 

C57BL/6 background, and bred as heterozygous x heterozygous crosses, hence 

generating wildtype littermate controls. 

Epitope-tagged Miwi2 mice 

Miwi2HA/+ mice were generated by and obtained from Dr. Dónal O’Caroll at 

EMBL Monterontondo. These mice were engineered by CRISPR/CAS9 targeting 

to contain the HA (hemagglutinin) epitope derived from the influenza virus HA 

protein inserted immediately following the Miwi2 start codon resulting in an HA-

MIWI2 N-terminal fusion. These mice were maintained on a C57BL/6 
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background, and bred as Miwi2HA/+ x C57BL/6 crosses, hence generating 

wildtype littermate controls. A full description and targeting strategy will be 

provided in a forthcoming report by Dr. O’Caroll.  

Epithelial specific RelA deficient mice 

Mice lacking RelA in lung epithelial cells were generated by crossing Nkx2-1-Cre 

mice with RelAloxP/loxP mice (Yamamoto et al., 2013) to generate a colony of 

Nkx2-1tg+ RelAloxP/loxP (Ep. RelAΔ/Δ) and of Nkx2-1tg- RelAloxP/loxP (WT) littermates.  

Miwi2 tomato knock-in mice 

To generate Miwi2 reporter mice, tdTomato, along with a polyadenylation 

sequence was engineered into the first exon of the native Miwi2 locus by 

CRISPR/Cas targeting by Dr. Dónal O’Caroll (MRC). The full targeting scheme 

will be described in a later report.   

 

Cell Lines 

General Information 

E10 cells are a murine lung epithelial cell line and were obtained from the 

BU Pulmonary Center cell bank and originally a gift of Dr. A. Malkinson 

(University of Colorado) (Kathuria, 2004). Cells were maintained in CMRL 1066 

medium  supplemented with 10% FBS, 0.5 mM L-glutamine, 100 units/mL 

penicillin G, and 100 µg/mL streptomycin sulfate (all from Life Technologies) and 
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grown at 37 °C 5% CO2 in a humidified incubator. When necessary, media was 

supplemented with 2 µg/mL of puromycin.  

Generation of stable shRNA cell lines 

Replication incompetent lentiviruses used to generate stably expressing shRNA 

cells were generated as previously described. Miwi2 shRNA vectors or control 

shRNA were acquired from Dharmacon. Briefly, 293T cells were transfected with 

the shRNA containing backbone vector together with 2 expression vectors 

encoding the packaging proteins Gag-Pol, Rev, Tat, and the G protein of the 

vesicular stomatitis virus (VSV-G) using TransIT transfection reagent. Cell 

supernatants were collected for 3 days post transfection, filtered and 

ultracentrifugated at 48,960 x g for 30 minutes at 4 °C. To generate a stably 

transduced E10 cell line, cells were seeded into 6 well tissue culture plates and 

grown at 37 °C 5% CO2 in a humidified incubator overnight. The next day, 20 µL 

of Miwi2 targeting or control lentivirus was added along with 5 µg/mL polybrene 

(Santa Cruz Biotechnology). 24 hours post infection, CMRL complete media 

supplemented with 2ug/mL puromycin was added.   

Cell fixation for immunofluorescence 

 Stable shRNA expressing E10 cells were grown on a 35mm glass bottom 

culture dish (Mat Tek) at 37 °C 5% CO2 in a humidified incubator overnight. The 

next day, media was replaced with complete CMRL supplemented with 10 ng/mL 

TNFa or vehicle for 6 hours. Glass slides were fixed in 2% (vol/vol) 
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paraformaldehyde for 10 minutes at room temperature before staining. Staining 

was performed as described below, using a Miwi2 antibody provided by Dr. 

Ramesh Pillai (EMBL Grenoble).    

 

Bacterial Procedures 

Generation of bacterial stocks 

To generate frozen stocks, Streptococcus pneumoniae serotype 19F 

(Sp19, strain EF3030 provided by Dr. M. Lipsitch, Harvard School of Public 

Health, Boston, MA) was grown on trypticase soy agar supplemented with 5% 

sheep blood and incubated at 37 °C 5% CO2 until mid-logarithmic growth. A 

bacterial suspension was made in Brain Heart Infusion broth containing 16% 

sterile glycerol and snap frozen in a dry ice-ethanol bath in single use aliquots 

and stored at -80 °C.  

Preparation of bacteria for in vivo experiments 

For intratracheal infection experiments, bacteria were streaked on trypticase soy 

agar supplemented with 5% sheep blood and incubated at 37 °C 5% CO2 

overnight. Four hours prior to infection, bacteria were restreaked on trypticase 

soy agar supplemented with 5% sheep blood and incubated at 37 °C 5% CO2. 

Target instillation was estimated by optical density and confirmed by serial 

dilution on agar plates.  
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Experimental infections 

For intratracheal instillations mice were anesthetized by an intraperitoneal 

(i.p.) injection of ketamine (50 mg/kg) and xylazine (5mg/kg) diluted in sterile 

saline. The tracheas were surgically exposed and cannulated using a 24 gauge 

angiocatheter that was directed to the left bronchus. A 50 µL bolus of bacteria 

suspended in sterile saline was instilled using a micropipetter. Mice were placed 

in the right lateral decubitus position until they were sternally recumbent.  A 

target instillation of 5x106  CFU of bacteria was estimated by optical density and 

verified by quantifying serial dilutions grown on trypticase soy agar supplemented 

with 5% sheep blood agar plates (SBA) at 37 °C overnight.  

 

Bronchoalveolar lavage 

Mice were sacrificed by overdose of isoflourane. After skin 

decontamination with 70% isopropanol, the mouse was placed supine and a 

midline abdominal incision was made and extended from the level of the bladder 

cephalad into a midline sternotomy. Exsangunation was performed by ligating the 

inferior vena cava. The trachea was identified and marked with silk suture and 

the cardiopulmonary trunk was removed en bloc. The trachea was cannulated 

with a 20-gauge blunted stainless steel catheter and secured with silk suture. 

Serial 1 mL lavage samples were taken with ice-cold PBS. The lavage fluid was 

centrifuged at 300 x g for 5 minutes at 4°C, and cell pellets were utilized for 

differential counts. BAL cell counts were performed as previously described 
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(Hyatt et al., 2014), with cytocentrifuged slides stained with the Diff-Quick 

staining kit (Dade Behring) after counting suspended cells using a 

hemocytometer.  For BAL cytokine measurement, the supernatant of the first 1 

mL lavage sample was saved separately at -80 °C for protein analysis. 

 

Bacterial burden measurements 

At the indicated time points, mice were sacrificed by overdose of 

isoflourane. After skin decontamination with 70% isopropanol, the mice were 

placed supine and a midline abdominal incision was made and extended from 

the level of the bladder cephalad into a midline sternotomy. Exsangunation was 

performed by ligating the inferior vena cava. The lung lobes were removed 

individually and placed into 5 mL capacity tubes containing sterile 3.2-mm 

diameter stainless steel beads (Next Advance) and 300 µL of sterile water 

supplemented with 1x protease inhibitor (Roche).  Once homogenized using the 

Bullet Blender (Next Advance), lung homogenates were brought up to 5 mL with 

PBS containing 1x protease inhibitor (Roche).  Homogenates were serially 

diluted in PBS and plated on sheep blood agar plates.  After an overnight 

incubation at 37 °C, colonies were enumerated and expressed as total CFU per 

lung. 

Lung Digestion 

Mice were sacrificed by overdose of isoflourane. After skin 

decontamination with 70% isopropanol, the mouse was placed supine and a 
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midline abdominal incision was made and extended from the level of the bladder 

cephalad into a midline sternotomy. Exsangunation was performed by ligating the 

inferior vena cava. A 24 gauge angiocatheter was inserted into the right ventricle 

and the lungs perfused via the pulmonary artery with 10 mL of HBSS to remove 

red blood cells. A silk tie was placed around the heart to maintain pulmonary 

pressure. The trachea was identified, marked with silk suture and the 

cardiopulmonary trunk was removed en bloc. The trachea was cannulated with a 

20-gauge blunted stainless steel catheter and secured with silk suture. Lavage 

samples, a total of 10 mL, in 1 mL increments were taken with ice-cold DPBS 

containing 5 mM of EDTA. Lungs were then serially lavaged with 1 mL of 

RPMI1640 with 100 U/mL DNAse I (Qiagen), followed by 1 mL of porcine 

elastase (4.5 U/mL; Roche Diagnostics) dissolved in RPMI1640 medium.  An 

additional 1 mL of elastase solution was instilled followed by 0.5 mL low melting 

agarose solution warmed to 55 °C. Lungs were immediately covered with ice for 

2 min to polymerize the agarose and then incubated in 2 mL elastase solution for 

45 min at 37 °C. After this incubation, lung lobes were gently separated from the 

trachea and cardiac tissue and minced in RPMI1640 medium containing 50% 

FBS and 100 U/mL DNase I using a sterile razor blade. Cells were separated by 

serial filtration through 100, 70, and 40 µM filters, and collected by centrifugation 

at 300 x g for 10 minutes. Lung single-cell suspensions were subjected to FACS.  
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Flow Cytometry 

Cells isolated from lung digests were pelleted by centrifugation for 5 

minutes at 300 x g at 4°C, and resuspended in 100 µL of FACS buffer for 

staining.  Surface antigens were stained by adding 20 µL of diluted antibody and 

Fc Block (BD Biosciences), and incubating on ice in the dark for 30 minutes. 

Cells were washed by adding 4 mL of PBS to each tube, followed by pelleting by 

centrifugation. Cells were then resuspended in 300 µL FACS buffer. Single 

stained bead controls were utilized for gating and compensation. Antibodies and 

stains are available in Table 1. Cells were sorted using the BD FACS AriaII and 

collected in PBS containing 1% BSA, centrifuged at 300 x g for 5 minutes at 4 °C 

and then resuspended in 1 mL of Trizol.  RNA was isolated following the 

manufacturer’s protocol. 
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Table 1: Antibodies used for flow cytometry (FACS) 

 

 

RNA Isolation, and Quantitative Reverse Transcriptase-PCR 

Total Lung RNA Isolation 

Lung lobes were isolated, snap frozen in liquid nitrogen and stored at -80 °C until 

RNA preparation. Tissue was placed into 5 mL capacity tubes containing sterile 

3.2-mm diameter stainless steel beads (Next Advance) and homogenized in 

buffer RLT (from Qiagen RNeasy kit) and RNA was isolated using the Qiagen 

RNeasy kit following the manufacturers instructions.  

Cell line RNA isolation 

Cells were collected via trypsin dissociation, washed in PBS and 

centrifuged at 300 x g for 5 minutes at 4 °C.  Cells were lysed in RLT (from 

Qiagen RNeasy kit) and RNA was isolated using the Qiagen RNeasy kit following 

the manufacturers instructions.  
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qRT-PCR 

Quantitative real time PCR (qRT-PCR) was performed on 100 ng of 

extracted RNA using a CFX96 Real-Time System (Bio-Rad) and TaqMan RNA-

to-CT 1-step kit (Applied Biosystems).  Primer and probes for Miwi2 

(Mm01144775) and 18s (Mm03928990) rRNA were obtained from Life 

Technologies. Fold induction was calculated using the 2ΔΔCt method (Livak and 

Schmittgen, 2001).  

 

Microarray analysis 

Microarray analysis was performed by the Boston University Medical 

Campus Microarray Core. Affymetrix GeneChip Mouse Gene 2.0 CEL files were 

normalized to produce gene-level expression values using the implementation of 

the Robust Multiarray Average (RMA) (Irizarry et al., 2003) in the affy package 

(version 1.36.1) (Gautier et al., 2004) included in the Bioconductor software suite 

(version 2.12) (Gentleman et al., 2004) and an Entrez Gene-specific probeset 

mapping (17.0.0) from the Molecular and Behavioral Neuroscience Institute 

(Brainarray) at the University of Michigan (Dai et al., 2005). Array quality was 

assessed by computing Relative Log Expression (RLE) and Normalized 

Unscaled Standard Error (NUSE) using the affyPLM package (version 1.34.0) 

(Brettschneider et al., 2008). Principal Component Analysis (PCA) was 

performed using the prcomp R function with expression values that had been 

normalized across all samples to a mean of zero and a standard deviation of 
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one. Re-normalization of the array to interrogate probesets unique to 

endogenous retroelements was performed using a custom mapping (Young et 

al., 2014). Differential expression was assessed using the moderated (empirical 

Bayesian) and t test implemented in the limma package (version 3.14.4) (i.e., 

creating simple linear models with lmFit, followed by empirical Bayesian 

adjustment with eBayes). Correction for multiple hypothesis testing was 

accomplished using the Benjamini-Hochberg false discovery rate (FDR) 

(Benjamini and Hochberg, 1995). Human homologs of mouse genes were 

identified using HomoloGene (version 68) (NCBI Resource Coordinators, 2016). 

All microarray analyses were performed using the R environment for statistical 

computing (version 2.15.1). Heatmaps were generated using a method 

previously described (Pavlidis and Noble, 2003).   

 

Tissue fixation, immunohistochemistry and immunofluorescence 

For immunohistochemistry, mice were sacrificed by overdose of 

isoflourane. After skin decontamination with 70% isopropanol, the mouse was 

placed supine and a midline abdominal incision was made and extended from 

the level of the bladder cephalad into a midline sternotomy. Exsangunation was 

performed by ligating the inferior vena cava. A silk tie was placed around the 

heart. The trachea was identified, marked with silk suture and the 

cardiopulmonary trunk was removed en bloc. The trachea was cannulated with 

an 18-gauge angiocatheter and secured with silk suture. Freshly prepared 4% 
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(vol/vol) paraformaldehyde (PFA) diluted in PBS was instilled at 20 cm H2O 

pressure. PFA inflated lungs were fixed, submerged in 10 mL of 4% 

paraformaldehyde at 4 °C overnight. The following day, samples were embedded 

in paraffin using the protocol described in Table 2. 5 µM sections were prepared 

with a microtome, and the slides cured on a heating block at 55 °C for 12 hours, 

before storage at 4 °C. Slides were deparaffinized by standard treatment in 

xylenes and ethanol and quenched with 3% (vol/vol) hydrogen peroxide in 

methanol for 30 min. Sections were blocked with 5% normal donkey serum in 

PBS and incubated with primary antibody overnight at 4 °C. Secondary antibody, 

diluted in PBS was added for 1 hour at 23 °C. Bound antibody was detected 

using the Vectastain ABC peroxidase kit (Vector Laboratories) and visualized 

using 3,3′-diaminobenzidine (DAB). Slides were counterstained with hematoxylin, 

sealed with Cytoseal XYL (Thermo Fisher) and imaged using a Zeiss Axioskop 

microscope. For immunofluorescence, sections were prepared as above except 

with the following modification. A 22 gauge angiocatheter was inserted into the 

right ventricle and the lungs perfused via the pulmonary artery with 10 mL HBSS 

to remove red blood cells before placing a tie around the heart to maintain 

pulmonary pressure during inflation. Images were acquired using a Zeiss LSM-

700 confocal microscope, and ZEN software. Primary and secondary antibodies 

used are available in Table 3. 
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Table 2: Paraffin embedding protocol 

 

Table 3: Antibodies used for IF 
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Protein Measurements 

Enzyme-Linked Immunosorbent Assays (ELISAs) 

IL-6, CXCL1, CXCL2, and CXCL5 DuoSet kits were purchased from R&D 

Systems and were performed according to the manufacturer’s instructions.   

Multi-Plex Bead Array 

BALF cytokine concentrations were quantified using a Bio-plex cytokine 

bead array and analyzed on a Bioplex 200 workstation (Bio-Rad) according to 

the manufacturer’s protocol. 

Bicinchoninic Acid (BCA) Assay  

 Total protein concentrations were determined using the BCA assay 

(Sigma-Aldrich).  BSA was used as the protein standard at four different 

concentrations, 0, 0.2, 0.6, and 0.9 mg/ml, and protein concentration calculated 

by generating a standard curve.  

 
Immunoblot analysis 

Total protein concentrations were measured by BCA assay (Sigma 

Aldrich) using the manufacturers suggested protocol. 40 µg of protein, or a 

predefined proportion of immunoprecipitate was suspended in 1x LDS sample 

loading buffer plus reducing agent (Life Technologies) and heated for 10 minutes 

at 70 °C before loading onto a 4-12% Bis-Tris gel, along with 10 µL of the Novex 

Sharp pre-stained protein ladder. 1x MOPS SDS running buffer was added and 
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the gel was resolved for 50 min at 200V.  Protein was then transferred onto an 

Immobilon-P polyvinylidene fluoride (PVDF) membrane (Millipore) in 1X NuPage 

transfer buffer (Life Technologies) with 10% methanol at 30 V for 1 hour using 

the X-Cell Blot II system.  Following transfer, membranes were blocked in 5% 

non-fat milk in TBS-T with agitation at room temperature.  Primary antibody 

(rabbit anti-HA epitope, Cell Signaling Clone: C29F4) was diluted in 5% non-fat 

milk in TBS-T and incubated at room temperature for 2 hours with agitation.  The 

membrane was washed 3 times in TBS-T and incubated with secondary antibody 

(anti-rabbit IgG-HRP, Cell Signaling) diluted in 5% non-fat milk in TBS-T at room 

temperature for 1 hour with agitation. Membranes were washed 3 times in TBS-T 

and treated with ECLPlus for 3 minutes (GE Healthcare) before exposure 

exposure to film (GE Healthcare). 

 

Isolation of Miwi2 bound RNA 

Lungs from uninfected or infected Miwi2+/+ or Miwi2HA/+ mice were 

harvested as above and homogenized in 20 mM Tris–HCl pH 7.4, 100 mM NaCl, 

2.5 mM MgCl2, 0.1% NP-40 with a protease inhibitor cocktail (Sigma) and 

RNaseOUT(Life Technologies) using a polytron homogenizer. The homogenate 

was centrifuged at 15,000 x g for 10 min at 4 °C, and total protein concentration 

measured by BCA (Sigma Aldrich). 10 mg of supernatant was pre-incubated with 

100 µL of protein G coupled magnetic beads (Invitrogen), and 

immunoprecipitation was carried out with 100 µL of magnetic beads coupled to 
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12 µg α−HA antibody (Thermo Fisher #26183). Beads were washed 3 times with 

IP wash buffer and an aliquot saved for western blot analysis. The remaining 

beads were resuspended in protease K buffer, treated with proteinase K and 

RNA prepared from the supernatants using Trizol LS according to the 

manufactures recommendations. Isolated RNA was dephosphorylated using 

thermosensitive alkaline phosphatase (TSAP, Promega) for 30 min at 37 °C. To 

inactivate TSAP, the reaction was incubated at 74 °C for 15 min. 5′ labeling was 

performed with [γ-32P]ATP (8,000 Ci mmol−1) and T4 PNK. Reactions were 

mixed with an equal volume of 2× urea loading buffer, and products were 

resolved on a 15% TBE-Urea gel.  

 

Statistical Analysis 

All statistical analyses were performed using GraphPad Prism 6.0 

(GraphPad).  Data are displayed as either arithmetic means ± standard error of 

the mean (SEM), or medians as indicated in the figure legends.  Two groups 

were compared using either a student’s t test (parametric) or a Mann-Whitney 

test (non-parametric), while multiple group comparisons were conducted using 

either a one- or two-way analysis of variance (ANOVA), followed by specific post 

hoc tests as indicated in the figure legend. Values were log-transformed prior to 

analysis if they did not pass the F test for equal variance. Data were considered 

significant if P ≤ 0.05 for all experiments. For microarray data, statistical 
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significance was determined by false discovery rate (q) to correct for multiple 

comparisons.  
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CHAPTER THREE: RESULTS 

3.1 Miwi2, a piRNA binding protein is induced in the lungs during pneumococcal 

pneumonia 

Our laboratory group has previously reported a novel digestion and sorting 

strategy to isolate single cell suspensions from the mouse lung on the basis of 

relative expression of CD45 and CD326, also known as epithelial cell adhesion 

molecule (EpCAM). Epithelial cells are identified as CD45- EpCAM+, leukocytes 

as CD45+ EpCAM-, and other cell-types being CD45- EpCAM- (Yamamoto et al., 

2013). In a report by Kamata and colleagues currently in revision, we expand our 

understanding of epithelial-specific gene expression during Streptococcus 

pneumoniae pneumonia. Epithelial and non-epithelial cells were transcriptionally 

profiled using microarray to identify genes induced by pneumonia selectively in 

epithelial cells. Mice were instilled with pneumococcus or vehicle and left lungs 

were collected 15 hours after infection. Single cell suspensions were generated 

and sorted into 2 separate populations, epithelial cells (CD45- EpCAM+) and 

others (all non-epithelial cells) (Figure 1A). Genome-wide expression profiling 

revealed 196 genes specific to the epithelium, significantly induced greater than 

two fold in epithelial cells from pneumonic mice as compared to vehicle treated 

mice(Figure 1B). Among the mRNAs significantly induced during lung infection, 

we were surprised to observe that the transcript encoding for Miwi2, a piRNA 

binding protein, was induced approximately 3 fold (Log2) (Figure 2A). The 

transcriptomic dataset was subsequently queried to determine if other proteins 
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known to be involved in piRNA biogenesis or silencing were induced during 

bacterial infection in lung epithelial cells. Using an FDR cutoff of q <0.05, we 

observed that none of the proteins involved in primary biogenesis including, 

MIWI, MILI, MOV10L1, TDRD1, TDRKH, PLD6, GASZ, GPAT2, or MAEL were 

significantly induced (Fu and Wang, 2014; Iwasaki et al., 2014). Nor were any of 

the piRNA proteins involved in secondary piRNA biogenesis (MILI, MVH, 

TDRD9, TDRD12, MAEL, FKBP6) differentially expressed (Figure 2A). Similar to 

the majority of the components of the piRNA silencing machinery, expression of 

the miRNA binding family of Argonautes remained unchanged during infection. 

We next confirmed the induction of Miwi2 RNA using quantitative reverse 

transcriptase polymerase chain reaction (qRT-PCR) on the original RNA samples 

used in the microarray analysis (Figure 2B). Results indicate that Miwi2 mRNA 

was significantly induced approximately 4 fold in CD45- EpCAM+ epithelial cells 

15 hours after infection with pneumococcus.  
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Figure 1: Identification of epithelial induced genes during pneumococcal 
pneumonia 

C57BL/6 mice were infected with 2x106 CFU of Streptococcus pneumoniae, 

intratracheally for 15 hours. Lungs were harvested and digested with elastase to 

generate single cell suspensions. (A) Representative flow cytometry plot pre- 

selected for live cells. Delineation of sorted populations indicated by colored 

shading, green=epithelial, orange= non-epithelial (B) Expression heatmap of 

filtered genes induced greater than 2 fold with respect to pneumonia and 

enrichment in epithelial cells. FDR< 0.05.  
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Figure 2: The piRNA binding protein MIWI2 is induced during 
pneumococcal pneumonia 

C57BL/6 mice were infected with 2x106 CFU of Streptococcus pneumoniae, 

intratracheally for 15 hours. Lungs were harvested and digested with elastase to 

generate single cell suspensions sorted by FACS. (A) Microarray expression 

results for selected piRNA silencing pathway components and Argonaute family 

proteins. Classification was based off of (Fu and Wang, 2014) (B) qRT-PCR of 

RNA from sorted Live CD45- EpCAM+ epithelial cells from mice treated with 

vehicle or S. pneumoniae serotype 19F. Results indicate fold change relative to 

vehicle treated mice (n= 4 mice per group, means ± s.e.m. P<  0.05 as 

determined by unpaired t-test).  
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3.2 Miwi2 induction is specific to epithelial cells  

Several previous studies have detected piRNA binding protein mRNAs in 

various tissues and cell types (Jacobs et al., 2013; Sharma et al., 2001; Sasaki et 

al., 2003). To determine if lung epithelial cells are the predominant source of 

Miwi2 in lungs during pneumococcal pneumonia, major cell populations were 

isolated from lung digests and bronchoalveolar lavage by FACS from mice 

infected for 24 hours with 5x106 CFU of S. pneumoniae serotype 19. RNA was 

prepared from total epithelial cells (CD45- EpCAM+), leukocytes (CD45+ EpCAM-), 

other cells (including endothelial, lymphatic, and smooth muscle cells) (CD45- 

EpCAM-) airspace macrophages (CD45+ EpCAM- Ly6G- F4/80+) and airspace 

neutrophils (CD45+ EpCAM- Ly6G+ F4/80-) and qRT-PCR was used to quantitate 

relative abundance (Figure 3A,B). Miwi2 expression was enriched 40 fold in the 

EpCAM+ CD45- population, indicating that epithelial cells are the major producers 

of Miwi2 mRNA in the lung (Figure 3C).  

Multiple cytokine signals produced during pneumonia activate lung 

epithelial gene programs, which are necessary for competent host defense to 

pneumococcus (Yamamoto et al., 2013; 2012; Whitsett and Alenghat, 2014). 

Previous studies from our lab and others have demonstrated the important role of 

epithelial RelA signaling in the elaboration of lung epithelial gene expression 

during pneumococcal pneumonia (Yamamoto et al., 2013). In order to determine 

if Miwi2 was induced in lung epithelial cells in a RelA dependent manner, we 

utilized a previously described mouse model where a critical exon of RelA is 
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flanked by loxP sites and can be deleted specifically in the lung epithelium via 

Cre recombinase expression driven the transcription factor Nkx2-1. Wildtype or 

Epithelial RelAΔ/Δ mice were infected with pneumococcus intratracheally, and 

epithelial cells were collected by FACS 15 hours post infection. qRT-PCR 

revealed that Miwi2 RNA was induced in epithelial cells in the absence of 

functional RelA indicating that Miwi2 induction is independent of RelA activation 

during pneumococcal pneumonia in vivo (Figure 3D). 
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Figure 3: Miwi2 mRNA is specifically induced in lung epithelium during 
pneumococcal pneumonia 

C57BL/6 mice were infected with 2x106 CFU of Streptococcus pneumoniae, 

intratracheally for 24 hours. Lungs were lavaged and then harvested and 

digested with elastase to generate single cell suspensions. (A) Representative 

flow cytometry plot indicating sorted populations from lung digest, Live CD45- 

EpCAM+ (Epithelial cells-green gate) Live CD45+ EpCAM- (white blood cells-red 

gate) and Live CD45- EpCAM- (other cells-orange gate) (B) Representative flow 

cytometry plot from BAL, Plot already selected for Live CD45+ cells. Sorted 

populations include Ly6G+F4/80- (PMN,neutrophils-blue gate) and Ly6G-F4/80+ 

(macrophages-black gate) (n= 3 mice per group) (C) qRT-PCR of RNA from 

sorted populations. Results indicate fold change relative to cells collected from 

WBC gate (n= 3 mice per group, means ± s.e.m) (D) qRT-PCR of RNA from 

sorted Live CD45- EpCAM+ epithelial cells from Nkx2-1tg+ RelAloxP/loxP (Ep. 

RelAΔ/Δ) and of Nkx2-1tg- RelAloxP/loxP (WT) mice treated with vehicle or S. 

pneumoniae serotype 19F. Results indicate fold change relative to vehicle 

treated mice (n= 3 mice per group, means ± s.e.m. *P< 0.05 as determined by 

unpaired t-test). 
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3.3 Miwi2 RNA is induced by various inflammatory stimuli 

We next sought to determine the inflammatory stimuli that drove Miwi2 

induction. E10 murine alveolar epithelial cells were stimulated with TNF-α, LPS, 

IFN-β, or live bacteria. Total cellular RNA was collected and qRT-PCR used to 

evaluate Miwi2 induction. Miwi2 mRNA was not significantly induced by direct 

stimulation with S. pneumoniae, K. pneumoniae, or E. coli (Figure 4B), nor by 

the toll like receptor agonists LPS, or Pam3CSK4 (Figure 4C,D). However Miwi2 

mRNA was significantly induced following stimulation with recombinant TNFα, 

and IFN-β, both cytokines produced during pneumococcal pneumonia, and 

known to affect epithelial gene expression (Figure4D, E). Collectively these 

results indicate that Miwi2 responds to multiple upstream inflammatory activators 

in epithelial cells. More broadly, our data show that lung epithelial cells respond 

to inflammation or infection by inducing the expression of Miwi2 mRNA both in 

vitro and in vivo.  
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Figure 4: Miwi2 mRNA is induced by inflammatory stimuli 

qRT-PCR analysis of RNA prepared from Murine alveolar epithelial E10 cells 

stimulated with (A) live bacteria (B) 100 ng/mL of recombinant PAM3CSK4 (C) 

10 ng/mL recombinant TNF-α or 100 ng/mL LPS for 6 hours (D) 1000U 

recombinant IFN-b for 6 hours. Results indicate fold change relative to E. coli 

stimulated, or vehicle treated (n= 3 independent experiments, means ± s.e.m, 

*P<0.05 as determined by unpaired t-test). 
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3.4 Miwi2 protein is expressed outside of the germline in lung epithelium 

To our knowledge there is no report providing evidence for Miwi2 protein 

expression in somatic cells. Despite detection of the mRNA encoding Miwi2 in 

the lung, it was unclear whether the protein was also produced. We thus 

collaborated with Dr. Dónal O’Caroll of the Medical Research Council, Centre for 

Regenerative Medicine who used CRISPR/Cas9 genome editing technology to 

engineer a novel mouse model through recombination at the endogenous Miwi2 

locus to insert an in-frame influenza virus hemagglutinin (HA) epitope tag 

immediately downstream of the Miwi2 start codon. The resulting HA-MIWI2 

fusion protein is expressed at normal levels and does not disrupt normal MIWI2 

function as evidenced by fertile homozygous Miwi2HA/HA male mice. Given our 

mRNA expression data, we hypothesized that Miwi2 protein would be present in 

lung epithelial cells. To test this, we performed immunohistochemical analysis of 

lung sections from uninfected Miwi2+/+ and Miwi2HA/+ mice. Results indicate that 

MIWI2 expression was exclusively localized to large and intrapulmonary airways 

(Figure 5, top panel). Expression was not ubiquitous, with immunoreactivity 

limited to only several cells per airway, and only some airways contained positive 

cells. Staining was notably enhanced at airway-airway branch points (Figure 5, 

bottom panel), and absent from alveoli.  

Given the increase in Miwi2 RNA in total epithelial cells, we next 

determined if Miwi2 protein expression was induced during infection. 

Immunohistochemistry was performed on lung sections from Miwi2+/+ and 
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Miwi2HA/+ mice were infected with 5x106 CFU of S. pneumoniae serotype 19 

intratracheally for 24 hours. In infected mice, MIWI2 positive cells were again 

apparent in the intrapulmonary and large airways. The staining pattern within 

airways was consistent with uninfected mice, where an interrupted pattern was 

appreciated (Figure 6A). Noticeably, more airways contained immunopositive 

cells 24 hours post infection. This was quantified by identifying the number of 

intrapulmonary airways that contained at least 1 positive cell, demonstrating a 

statistically significant increase in MIWI2 expression after infection with 

pneumococcus (Figure 6B). These results compliment our previous expression 

data that both Miwi2 RNA and protein are induced during inflammation. 
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Figure 5: MIWI2 protein is expressed in the lung 

Immunohistochemical analysis of lung sections from uninfected Miwi2+/+ or 

Miwi2HA/+ mice stained with a monoclonal antibody against the HA epitope. 

Representative results are shown from staining performed on at least 5 sections 

from 3 mice of each genotype. Top panel, 5x objective Bottom panel 40x 

objective. Arrows emphasize some but not all positive cells.    
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Figure 6: MIWI2 protein expression is induced during pneumococcal 
pneumonia 

 (A) Immunohistochemical analysis of lung sections from Miwi2+/+ or Miwi2HA/+ 

mice infected intratracheally with 5x106 CFU of Sp19 for 24 hours.  Sections were 

stained with a monoclonal antibody against the HA epitope. Representative 

results are shown from staining performed on at 2 least sections from 3 mice of 

each genotype. Arrows emphasize some but not all positive cells. Scale bars, 10 

µm. (B) Morphometric quantitation of IHC was performed by counting the number 

of airways which express at least 1 MIWI2+ cell, normalized to the total number of 

airways counted (n= 3 mice per group, means ± s.e.m., *P<0.05 as determined 

by unpaired t-test). 
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3.5 Miwi2 is expressed exclusively in the airway lumen  

The pseudostratified epithelium of the airway in mice and humans is 

comprised of several different cell types with specific functions (Rock and Hogan, 

2011a; Rackley and Stripp, 2012). In both humans and in mice a specialized 

subset of cells resides in the basal lamina and are not in direct contact with the 

airway lumen. Numerous studies have identified that this population of basal cells 

are crucial in the maintenance of the luminal epithelium and participate in injury 

repair. Characteristically, basal cells express the cytokeratin protein KRT5, 

whereas luminal epithelial cells express the cytokeratin protein KRT8 (Rock and 

Hogan, 2011b; Hogan et al., 2014; Wansleeben et al., 2012). Our 

immunohistochemical analysis suggested that MIWI2 was expressed in cells in 

the lumen, hence in order to determine which epithelial cell type(s) express 

MIWI2, we stained lung sections from uninfected and Sp19 infected Miwi2+/+ and 

Miwi2HA/+ mice for various markers of lung differentiation. In both uninfected and 

infected mice, MIWI2 co-stained cells also expressing the cytokeratin KRT8 and 

not KRT5 thus indicating that Miwi2 is expressed in differentiated airway luminal 

cells and not basal cells (Figure 7A,B).  
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Figure 7: MIWI2 is expressed in airway luminal cells in the adult lung 

Immunostaining for Krt8 (red) HA epitope (white) or Hoechst (blue) on paraffin 

lung sections from Miwi2+/+ or Miwi2HA/+ mice infected with (A) vehicle or (B) 

5x106 CFU of Sp19 for 24 hours. Representative results are shown from staining 

performed on at least 2 sections from 3 mice of each genotype. Scale bars, 10 

µm. 
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3.6 Miwi2 is expressed exclusively in a subset of ciliated cells  

The cell types that comprise the airway lumen include club cells (CC10+), 

ciliated cells (Foxj1+) and pulmonary neuroendocrine cells (PNECs, CGRP+) that 

cluster together to form neuroendocrine bodies (Johnson and Georgieff, 1989). In 

order to determine if MIWI2 was expressed in a single lung epithelial lineage, we 

staining lung sections from uninfected Miwi2+/+ and Miwi2HA/+ mice with antibodies 

to known lineage markers. Immunostaining revealed that MIWI2 expression was 

restricted to cells also expressing the major ciliated cell transcription factor 

FOXJ1 (Figure 8A). Moreover, MIWI2 was only expressed in a subset of FOXJ1+ 

cells (Figure 8B) as determined from morphometric quantification. No MIWI2+ 

cells were identified in any adult airways that were expressed outside of the 

ciliated lineage. Given these results, we next sought to determine if during 

infection, MIWI2 protein was induced in additional lung epithelial lineages. We 

stained lung sections from Miwi2+/+ and Miwi2HA/+ mice infected for 24 hours with 

Sp19. Results confirmed that MIWI2 expression is indeed still restricted to 

ciliated cells. In addition, under these conditions MIWI2 expression remained in 

only a subset of the total FOXJ1+ cells (Figure 9A).  

It is well described that the specification of airway epithelial cells develops 

in a proximal to distal pattern, and there are several differences in the cell type 

and functioning between proximal and distal airway cells. To determine if MIWI2 

expression is restricted to distal airways, we stained tracheal sections from 
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Miwi2+/+ and Miwi2HA/+ mice.  We detected an identical staining pattern (Figure 

9B) in tracheal sections when compared to distal airways.  

To this point, we have based our conclusions that MIWI2 is expressed in 

ciliated cells using a the well defined marker, FOXJ1. However, Foxj1 is the 

master transcription factor that drives the ciliated cell fate, yet its expression 

precedes the formation of mature cilia. To test if Miwi2+ cells also express cilia, 

we stained lung and trachea sections from infected Miwi2+/+ and Miwi2HA/+ mice 

for acetylated alpha tubulin. Without exception, all MIWI2+ cells in both proximal 

and distal airways express cilia (Figure 10) indicating that MIWI2 does not mark 

an immature population of ciliated cells.   
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Figure 8: MIWI2 is expressed exclusively in a subset of ciliated epithelial 
cells in uninfected mice 

(A) Immunostaining for CC10 (red) HA epitope (white) FOXJ1 (green) or Hoechst 

(blue) on paraffin lung sections from vehicle treated Miwi2+/+ or Miwi2HA/+ mice 

Representative results are shown from staining performed on at least 2 sections 

from 3 mice of each genotype. Scale bars, 10 µm. (B) Morphometric quantitation 

of IF was performed by counting the number of FOXJ1+, CC10+ and HA+ cells 

normalized to the total number of nuclei in the airway (n= 3 mice, means ± 

s.e.m).  
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Figure 9: MIWI2 is expressed exclusively in a subset of ciliated epithelial 
cells in intrapulmonary and trachea of mice infected with pneumococcus  

(A) Immunostaining for CC10 (red) HA epitope (white) FOXJ1 (green) or Hoechst 

(blue) on paraffin lung sections from Miwi2+/+ or Miwi2HA/+ mice infected 

intratracheally with 5x106 CFU of Sp19 for 24 hours. Representative results are 

shown from staining performed on at least 2 sections from 3 mice of each 

genotype. Scale bars, 10 µm. (B) Immunostaining for HA epitope (white) FOXJ1 

(green) or Hoechst (blue) on paraffin embedded tracheal sections from Miwi2+/+ 

or Miwi2HA/+ mice infected intratracheally with 5x106 CFU of Sp19 for 24 hours. 

Representative results are shown from staining performed on at least 2 sections 

from 2 mice of each genotype. Lu, indicated airway lumen. Scale bars, 10 µm.   
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Figure 10: MIWI2+ ciliated cells express multicilia 

Immunostaining for HA epitope (white) acetylated alpha-tubulin (green) or 

Hoechst (blue) on paraffin embedded (A) lung sections or (B) trachea from 

Miwi2+/+ or Miwi2HA/+ mice infected intratracheally with 5x106 CFU of Sp19 for 24 

hours. Representative results are shown from staining performed on at least 2 

sections from 3 mice of each genotype. Lu, indicated airway lumen. Scale bars, 

10 µm. 
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3.7 MIWI2 expression precedes the ciliated cell program  

The specification of FOXJ1+ ciliated cells from NKX2-1+ progenitor cells 

occurs in a proximal to distal patterning beginning around E14.5 in mice, and 

continues postnatally (Rawlins and Hogan, 2008). We next sought to determine 

whether MIWI2 is expressed at earlier time points in epithelial development, 

perhaps providing insight into its origin or function. Additionally, was the cell type 

or number of MIWI2 expressing cells dynamic with respect to lung development? 

We collected Miwi2+/+ and Miwi2HA/+ embryonic lungs between E15.5 and E17.5 

and stained for MIWI2 and FOXJ1 expression. At this time point, few to no club 

cells have developed, and patterning of the ciliated cells is not complete. In 

embryonic lungs, FOXJ1 expression was noted in trachea and large airways, 

however no expression was seen in distal lung saccules. MIWI2 was again 

expressed in a sporadic pattern, with MIWI2+ FOXJ1+ cells identified in large 

airways and trachea (Figure 11A, top panel). Interestingly, MIWI2+ FOXJ1- cells 

were identified in distal lung (Figure 11A, bottom panel), indicating that MIWI2 

expression is not dependent on the ciliated cell transcription program. Staining of 

lungs collected from post natal day 7 mice mirror the expression pattern of adult 

lung, where all MIWI2+ cells are also Foxj1+(Figure 11B).  
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Figure 11: MIWI2 expression precedes the expression of FOXJ1 

(A) Immunostaining for CC10 (red) HA epitope (white) FOXJ1 (green) or Hoechst 

(blue) on paraffin embryonic lung sections from Miwi2HA/+ mice. Representative 

results are shown from staining performed on at least 3 sections from 2 mice of 

each genotype. Scale bars, 10 µm.  (B) Immunostaining for CC10 (red) HA 

epitope (white) FOXJ1 (green) or Hoechst (blue) on paraffin lung sections from 

post natal day 7 Miwi2+/+ or Miwi2HA/+ mice. Representative results are shown 

from staining performed on at least 3 sections from 2 mice of each genotype. 

Scale bars, 10 µm.  
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3.8 Lung MIWI2 function is independent of the piRNA silencing pathway 

The function of the piRNA silencing system is well described in germ cells, 

however expression of piRNAs, or piRNA binding proteins in somatic cells in 

mammals is controversial. Several deep sequencing studies have identified small 

RNAs homologous to murine piRNAs found in testis, however these studies had 

several limitations (Ross et al., 2014; Yan et al., 2011). In addition, the defining 

characteristic of a piRNA is the association of the RNA with any of the three 

piRNA binding proteins, MILI, MIWI, or MIWI2, and no study to date has 

identified a somatic piRNA meeting this standard. In the germline, MIWI2 acts as 

the effector of the piRNA silencing pathway by recruiting methylation machinery 

to piRNA promoters. Specificity for this activity is derived through complementary 

base pairing between the retroelement derived piRNA bound to MIWI2 loaded in 

the cytoplasm and the retroelement nascent mRNA transcript in the nucleus. The 

current model in germ cells proposes that MIWI2, when unbound by piRNAs is 

located in distinct peri-nuclear granules termed piP bodies (Aravin et al., 2008). 

When associated with a piRNA, a nuclear localization signal is exposed and 

MIWI2 relocalizes to the nucleus (Aravin et al., 2008). Our immunofluorescence 

data strongly demonstrates MIWI2 expression in a somatic cell. The cellular 

localization, however, is in staunch contrast to that in the male germline. Hence, 

we sought to determine if somatic cell MIWI2 is bound to a small RNA species in 

lung epithelium. We infected Miwi2+/+ and Miwi2HA/+ mice with Sp19 for 24 hours 

and prepared total lung lysates. Immunoprecipitation of the HA epitope followed 
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by immunoblotting revealed a protein of the predicted size of Miwi2 (~98 kDa) 

(Figure 12A). To identify MIWI2 bound RNAs, immunoprecipitates were treated 

with proteinase K followed by dephosphorylation and labeling with [γ]32P-ATP, 

before resolution on a 15% TBE Urea gel and exposure to film. The data 

demonstrate that somatic MIWI2 is not bound to a 25-31nt RNA as would be 

expected in testis but rather a 50nt RNA species (Figure 12B). Numerous 

attempts were made to clone MIWI2 associated RNAs, however library 

preparation was unsuccessful. This could be for several reasons, however the 

most likely explanation is that MIWI2 associated RNA is modified, preventing 

RNA adapter ligation. The origin of this RNA aside, collectively these data 

indicate that full length MIWI2 protein is expressed in somatic cells, and is bound 

to a non-classical piRNA species.  
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Figure 12: Lung MIWI2 is full length and bound to an RNA 

Lung lysates were prepared from Miwi2+/+ or Miwi2HA/+ mice infected with 5x106 

CFU of Streptococcus pneumoniae intratracheally for 24 hours. (A) Immunoblot 

analysis of HA immunoprecipitation or total lung lysates. IP: Thermo HA 

antibody, IB: Cell Signaling HA antibody. Results are representative of 

experiments performed on n= 6 mice per group. Protein expected sizes, MIWI2: 

~98 kDa, IgG heavy chain: ~55 kDa, IgG light chain: ~25 kDa, a nonspecific band 

is recognized by IB at ~110 kDa (B) Autoradiograph of RNA isolated from IP in 

(A) after proteinase K digestion and radioactive labeling with 32P-ATP and 

resolution on a 15% TBE-Urea gel. Results are representative of experiments 

performed on n= 3 mice per group.  
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Expression of retroelement RNA in somatic cells under various conditions 

has been extensively described in recent reports (Chambers, 2014). To 

determine if lung MIWI2 regulates retroelement RNA during inflammation, we 

utilized both an in vitro and in vivo approach to deplete cells of MIWI2 and 

assess retreoelement expression. We have demonstrated that Miwi2 mRNA is 

induced in E10 cells, a murine epithelial cell line in response to inflammatory 

stimuli. We transduced E10 cells with lentivirus expressing either non-targeting or 

Miwi2 specific shRNA and verified Miwi2 mRNA expression by qRT-PCR, and 

MIWI2 protein expression by immunofluorescence using an antibody kindly 

provided by Dr. Ramesh Pillai at the European Molecular Biology Laboratory in 

Grenoble, France. Results indicate a statistically significant decrease in Miwi2 

mRNA expression in cells expressing a Miwi2 specific shRNA versus a control 

shRNA, when treated with recombinant TNFα (Figure 13A). 

Immunofluorescence imaging confirms expression of MIWI2 in E10 cells, 

however we achieved an incomplete reduction in MIWI2 protein expression 

(Figure 13B, C). Total RNA was prepared from stable shRNA E10 cells treated 

with vehicle or recombinant TNFα for 6 hours and gene expression was 

measured by Affymetrix Gene 2.0 ST microarray. Sensitivity of the array to 

determine true differential gene expression was determined by examining mRNA 

expression of sex linked genes. E10 cells are derived from female mice 

(Kathuria, 2004), and this is demonstrated by higher log2 expression values of 

the female specific gene Xist, and the lack of expression of the male specific 
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gene Eif2s3y (Kay et al., 1994; Kobayashi et al., 2006). Miwi2 (Piwil4) expression 

was at the level of detection for the array, and the effect of shRNA was non-

significant (Figure 13D). Profiling of retroelements was carried out using a 

method described by Young and colleagues (Young et al., 2014). Individual 

probes on the Gene 2.0 ST array mapping to retroelements were identified by 

RepeatMasker and RepBase using a published R script (Young et al., 2014). 

While many probes may potentially map to highly repetitive regions, the vast 

majority of retroelement-mapping probes match uniquely to the genome and 

hence are fairly sensitive measure of retroelement expression, in contrast to PCR 

based methods which have dominated the literature. 1025 probesets each 

recognizing a separate retroelement, containing between 1 and 11 individual 

probes in each set were identified. No statistically significant differences in 

expression of any of the retroelements were discovered. Specifically, the major 

target of MIWI2 repression in the germline, LINE1 retroelements, were expressed 

in these cells (Figure 13E, left panel), however no genotypic differences were 

noted (Figure 13E, right panel). Other classes of retroelements were analyzed 

and there was no genotypic effect on RE expression. From these results, we 

conclude that depletion of MIWI2 has no effect on retroelement expression in 

vitro.  
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Figure 13: Lung MIWI2 does not regulate retrotransposon expression, in 
vitro 

(A) qRT-PCR analysis of RNA prepared from Murine alveolar epithelial E10 cells 

stably expressing non-targeting or Miwi2 targeting shRNA stimulated with 10 

ng/mL recombinant TNFα for 6 hours. Results indicate fold change relative to 

vehicle treated, non-targeting shRNA. (n= 3 independent experiments, data 

displayed as means ± s.e.m, *P<0.05 as determined by unpaired t-test) (B) 

Immunostaining for MIWI2 (green) or Hoechst (blue) of E10 cells stably 

expressing non-targeting or Miwi2 targeting shRNA stimulated with 10 ng/mL 

recombinant TNFα for 6 hours (C) Quantification of (B) using the method 

described in (Gavet and Pines, 2010; Burgess et al., 2010). (n= 3 independent 

experiments, data displayed as means ± s.e.m, *P<0.05 as determined by two-

way ANOVA, followed by Sidak’s multiple comparisions test) (D) Log2 expression 

values as determined by microarray for control mRNAs and Miwi2 (Piwil4) mRNA 

in RNA prepared from E10 cells stably expressing non-targeting or Miwi2 

targeting shRNA stimulated with 10 ng/mL recombinant TNFα for 6 hours. 

Columns represent data collected from n=3 biological replicates per group (E) 

LINE1 element expression is displayed as raw log2 expression (left) as 

determined by the microarray, or as relative expression within a row by 

establishing a row mean of 0 and a variance of 1 (right) from RNA prepared in 

(D). Columns represent data collected from n=3 biological replicates per group. 
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Murine E10 cells were generated from lung culture explants, are likely derived 

from type II pneumocytes, and express markers of type I pneumocytes.  

However, our data clearly demonstrate that MIWI2 is expressed in a subset of 

ciliated cells in vivo, and hence we wanted to determine if MIWI2 regulated 

retroelement expression in murine lungs. We acquired Miwi2-/- mice from Dr. 

Gregory Hannon of the Cold Spring Harbor Laboratory and rederived these mice 

in our specific pathogen free facility at Boston University. After rederivaton, these 

mice demonstrated the previously reported hypomorphic testis phenotype 

(Figure 14A). To evaluate retroelement expression, we infected Miwi2+/+ and 

Miwi2-/- mice with 5x106 CFU of S. pneumoniae for 24 hours and prepared total 

left lobe RNA. qRT-PCR revealed that genetic disruption of Miwi2 severely 

reduced Miwi mRNA expression in lungs (Figure 14B). Genome wide RNA 

profiling was carried out as above, using the method described by Young and 

colleagues on an Affymetrix Gene 2.0 ST array. Sensitivity of the array to 

decipher true differential expression was assessed by analyzing sex linked 

genes, as also described above. As expected the array accurately demonstrated 

the expression of Xist in female mice, and Eif2s3y in male mice. The expression 

of Miwi2(Piwil4) was again near the detection limit of the array but was 

decreased 1.6 fold in Miwi2-/- versus Miwi2+/+ mice (Figure 14C). Several LINE1 

elements were highly expressed in lungs of infected Miwi2-/- and Miwi2+/+ mice 

(Figure 14D, left panel), however no LINE1 or other retroelements were 

significantly differentially expressed (Figure 14D, right panel). From this, we 
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conclude that MIWI2 deficiency does not regulate retroelement expression in 

vivo. Given the findings that MIWI2 is expressed exclusively in the cytoplasm, is 

bound to an RNA species much longer than a traditional piRNA, and does not 

regulate the expression of retroelements in vitro, or in vivo, we conclude that lung 

somatic cell MIWI2 is independent of the piRNA silencing system.  
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Figure 14: Lung MIWI2 does not regulate retroelement expression in vivo  

(A) Testis weights from wildtype, functional heterozygotes, or homozygous 

deficient mice. (n=5,8,6 mice per group, data are displayed as medians ± 

interquartile range, **P<0.01 as determined by one-way ANOVA followed by 

Tukey’s multiple compassion test) (B) qRT-PCR analysis of whole lung RNA 

collected from Miwi2+/+ and Miwi2-/- mice infected intratracheally with 5x106 CFU 

of Sp19 for 24 hours. Results indicate fold change relative to wildtype mice. (n= 

4,4 mice per group, means ± s.e.m., **P<0.01 as determined by unpaired t-test). 

(C) Raw log2 expression of control mRNA and Miwi2(Piwil4) mRNA from 

microarray analysis of samples generated in (B) Columns represent data 

collected from n=3 mice per group, where each column is a single mouse (D) 

LINE1 element expression is displayed as raw log2 expression (left) as 

determined by the microarray, or as relative expression within a row by 

establishing a row mean of 0 and a variance of 1 (right) from RNA prepared in 

(B). Columns represent data collected from n=3 mice per group, where each 

column is a single mouse.   
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3.9 Miwi2 deficiency impacts airway cell composition 

Our data clearly demonstrate that MIWI2 is expressed in a subtype of 

ciliated cells in adult airways and is induced during bacterial pneumonia. The link 

between ciliated cell function and bacterial resistance has been well established 

(Tilley et al., 2015), as ciliated cells are critical to the function of the mucociliary 

escalator. In order to determine if MIWI2 regulated ciliogenesis we obtained a 

novel mouse model from our collaborator, Dr. Dónal O’Caroll, in which he used 

CRISPR/Cas9 genome editing to introduce a loss-of-function tdTomato allele into 

the native locus for Miwi2. Hence, Miwi2+/tdTomato mice are functional 

heterozygotes, and Miwi2tdTomato/tdTomato mice are functionally MIWI2 deficient. In 

each genotype however, tdTomato expression should be a reporter of Miwi2 

mRNA expression, thus allowing us to simultaneously monitor MIWI2 expression 

and functionality in the specific subset of ciliated cells. Expression of the reporter 

was confirmed using immunohistochemistry on paraffin section prepared from 

uninfected Miwi2+/tdTomato and Miwi2tdTomato/tdTomato mice. Results confirm a similar 

expression pattern to that of Miwi2HA/+ mice, with immunoreactive Tomato+ cells 

localized to large and intrapulmonary airways in both genotypes (Figure 15A, B). 

To confirm that tdTomato+ cells are indeed staining ciliated cells in this model, we 

co-stained sections with several markers of lung cell type. In agreement with data 

from wildtype mice, tdTomato expression is restricted to a subset of FOXJ1 

expressing cells in both Miwi2+/tdTomato and Miwi2tdTomato/tdTomato mice. These data 
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validate that the Tomato knock-in allele is a faithful reporter for MIWI2 activity 

(Figure 16). 
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Figure 15: MIWI2::tdTomato is expressed in airway epithelium 

A loss of function tdTomato allele was engineered into the native locus for Miwi2. 

Schematic and immunohistochemical analysis of paraffin lung sections from (A) 

Miwi2+/tdTomato and (B) Miwi2tdTomato/tdTomato stained with an antibody against 

tdTomato. Representative results are shown from staining performed on at least 

2 sections from 1 mouse of each genotype.  
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Figure 16: Miwi2 mRNA is induced by multiple inflammatory stimuli 

Immunostaining for CC10 (red) tdTomato (white) FOXJ1 (green) or Hoechst 

(blue) on paraffin lung sections from uninfected Miwi2+/tdTomato or Miwi2 tdTomato / 

tdTomato mice. Grey box indicates area enlarged in bottom panel. Representative 

results are shown from staining performed on at least 2 sections from 3 mice of 

each genotype. Scale bars, 10 µm.   
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 In order to begin probing ciliated cell function we first designed a cell 

sorting strategy to isolate ciliated cells from distal airways by adapting a 

previously reported method (Pardo-Saganta et al., 2015). We performed lung 

digests on C57BL/6 mice on isolated potential ciliated cells by FACS based on 

relative expression of CD45, EpCAM, and the cell adhesion molecule CD24, 

which is expressed on a variety of different cell types (King et al., 2012; 

Overdevest et al., 2012; Naumov et al., 2014; Zhang et al., 2012; Thaxton et al., 

2014; Ayre et al., 2015). After gating on live CD45- EpCAM+ cells (total epithelial 

cells), 3 expression patterns of CD24 were identified. We sorted low, mid, and 

high expressing populations and performed cytospins followed by staining for 

mature cilia using immunofluorescence (Figure 17A). Cells from the ‘High’ 

population were significantly enriched for cells expressing mature cilia whereas 

few to no ciliated cells were identified in the ‘low’ and ‘mid’ groups confirming the 

utility of CD24Hi as a reliable marker of the ciliated cell population (Figure 

17B,C).  

 The expression of FOXJ1, the master transcription factor for ciliated cells 

does not indicate the production of mature cilia, as several important factors are 

necessary for ciliagenesis (You et al., 2004). To determine if the MIWI2+ ciliated 

cell subset produce mature cilia in the absence of MIWI2, we performed lung 

digests on uninfected Miwi2+/tdTomato and Miwi2tdTomato/tdTomato mice and sorted the 

ciliated cell population as described above. We stained cytospins prepared from 

these mice and analyzed for expression of tdTomato and acetylated alpha 
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tubulin, the major protein constituent of cilia. Indeed, we were able to identify 

numerous tdTomato expressing cells in both genotypes, all of which expressed 

mature cilia (Figure 18). From this, we conclude that MIWI2 is not required for 

the production of mature cilia.  

 Finally, given that no difference was seen in the production of MIWI2+ cell 

autonomous cilia, we sought to determine if MIWI2 deficient mice have defects in 

total ciliated cells. To test this, we produced lung sections for Miwi2+/+ or Miwi2-/- 

mice and stained for markers of lung cell populations. These sections were then 

quantitated to determine if cellular composition of the airways were consistent. 

Surprisingly, we found that MIWI2 deficient mice had a statistically significant, 

25% decrease in ciliated cells in the intrapulmonary airways as compared to 

MIWI2 competent mice (Figure 19A). This decrease in ciliated cells was 

accompanied by an increase in CC10 expressing club cells (Figure 19B) This is 

despite no change in the total number of airway cells counted (Figure 19C). 

These data lead us to conclude that MIWI2 plays a role in regulating the normal 

development of cell fate and identity in the murine airways.   
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Figure 17: EpCAM+ CD24Hi cells are multiciliated 

C57BL/6 lungs were harvested and digested to single cells by elastase. (A) 

Representative flow cytometry plot indicated sorting gates based on relative 

selection of CD24 and EpCAM. Plot already selected on Live CD45+ cells. (B) 

Sorted cells were cytocentrifugated and immunostained for acetylated alpha 

tubulin (AAT)(green) and DAPI (blue). (B) Quantification of all acetylated alpha 

tubulin positive cells on the cytospin (n= 3 mice per group, means ± s.e.m). 
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Figure 18: MIWI2::tdTomato knockout mice produce multicilia 

Lungs were harvested from Miwi2+/tdTomato and Miwi2tdTomato/tdTomato mice and 

digested to single cells by elastase. Live CD45- EpCAM+ CD24HI cells were 

sorted cytocentrifugated and immunostained for acetylated alpha tubulin 

(AAT)(green) tdTomato (red) and DAPI (blue). 
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Figure 19: MIWI2 deficient mice have a decrease in ciliated cells and an 
increase in club cells 

Lungs sections from uninfected Miwi2+/+ and Miwi2-/- mice were immunostained 

for CC10, FOXJ1, and DAPI and the total numbers of (A) Ciliated cells (B) Club 

Cells and (C) total airway cells were quantified (n= 4,3 mice per group, means ± 

s.e.m, P<0.05 as determined by unpaired t-test). 
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3.10 Miwi2 deficiency results in enhanced host defense to pneumonia 

Previous studies aimed at identifying a somatic cell function of Miwi2 have 

focused on hematopoietic development (Nolde et al., 2013; Jacobs et al., 2013) 

and pluripotency (Cheng et al., 2014) but were unable to define a clear role. In 

addition, the function of piRNA binding proteins under cellular stress has yet to 

be elucidated. MIWI2 is induced during bacterial infection and is expressed in a 

cell type critical to pulmonary host defense. We also demonstrate that MIWI2 

deficiency has an effect on the cellular composition of the airway, resulting in an 

increase in secretory cells.  Hence, we sought to test if MIWI2 plays a role in the 

integrated host response to bacterial pneumonia. We infected Miwi2+/+ and Miwi2-

/- mice with a non-lethal strain of pneumococcus and assayed immune cell 

emigration by bronchoalveolar lavage. 4 hours post infection, Miwi2-/- mice 

demonstrated a statistically significant increase in BAL total cells (Figure 20A). 

Cytospin and staining followed by quantification revealed an increase in both 

emigrated neutrophils and macrophages (Figure 20B,C). To determine if the 

increase in cellularity is the cause of a basal increase in airspace cells, we 

performed BALs and cytospins on uninfected Miwi2+/+ and Miwi2-/- mice. No 

difference was noted in the cell number, or cell type (>99% macrophages) in 

uninfected mice (Figure 20D). Neutrophil recruitment during pneumococcal 

pneumonia is primarily mediated by neutrophil chemotactic factors. The 

chemokines KC (CXCL1), MIP2 (CXCL2), and LIX(CXCL5) were measured by 
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ELISA in BAL fluid. We detected a trending increase in CXCL1 expression, and a 

statistically significant increase in CXCL2 expression (Figure 20E, F).  
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Figure 20: MIWI2 deficient mice have an enhanced early response to 
pneumococcal pneumonia 

Miwi2+/+ and Miwi2-/- mice were infected intratracheally with 5x106 CFU of Sp19 

for 4 hours and (A) total BAL cells (B) recruited neutrophils and (C) airspace 

macrophages were enumerated. (D) Total BAL cells in uninfected Miwi2+/+ and 

Miwi2-/- (n= 3 mice per group, means ± s.e.m., NS by unpaired t-test). (E) CXCL1 

and (F) CXCL2 cytokine expression as measured by ELISA in Miwi2+/+ and 

Miwi2-/- mice infected as in (A). (n=6,7 mice per group, means ± s.e.m., *P<0.05 

**P<0.01 by unpaired t-test).  
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To determine the effect of increased early cell recruitment on the global 

host response, we infected Miwi2+/+ and Miwi2-/- mice with the same strain of 

pneumococcus and performed BALs 24 hours post infection. Total BAL cells 

were unchanged, as were differential cell counts as analyzed by cytospin (Figure 

21A,B,C) Several cytokines were measured by ELISA, with a statistical decrease 

in IL-6, CXCL1, and CXCL2, all necessary for efficient defense against 

pneumococcus (Figure 22)(Cai et al., 2010; Greenberger et al., 1996; Jones et 

al., 2006). Several other cytokines tested had no significant difference. Given the 

statistically significant dysregulation of cytokine expression in MIWI2 depleted 

animals, we tested the hypothesis that early neutrophil recruitment would 

enhance bacterial clearance. We infected Miwi2+/+ and Miwi2-/- mice with 

pneumococcus and harvested lung tissue 24 and 30 hours after instillation with 

Sp19 and enumerated bacterial counts. Miwi2 deficient mice show no difference 

in CFU at 24 hours post infection (Figure 23A), however at 30 hours post 

infection they demonstrate a marked, statistically significant reduction in bacterial 

load (Figure 23B) indicating more efficient bacterial clearance.  Collectively, 

these data suggest that MIWI2 is responsible for controlling exuberant 

inflammation. These data are the first to demonstrate a clear role for MIWI2 

function in lung epithelial cells during pneumonia, and to our knowledge the first 

extra gonadal function of MIWI2 in mammals.  
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Figure 21: Recruited cells are unchanged 24 hours after pneumococcal 
pneumonia in MIWI2 deficient mice 

Miwi2+/+ and Miwi2-/- mice were infected intratracheally with 5x106 CFU of Sp19 

for 24 hours and (A) total BAL cells (B) recruited neutrophils and (C) airspace 

macrophages were enumerated. (n= 3 mice per group, means ± s.e.m, NS by 

unpaired t-test).   
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Figure 22: Dysregulated cytokine expression 24 hours post pneumococcal 
pneumonia in MIWI2 deficient mice  

(A)-(J) Miwi2+/+ and Miwi2-/- mice were infected intratracheally with 5x106 CFU of 

Sp19 for 24 hours and BAL cytokine expression measured by multiplex bead 

array. (n= 3,6 mice per group, means ± s.e.m, *P<0.05 as determined by 

unpaired t-test). 
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Figure 23: MIWI2 depletion results in enhanced host defense to 
pneumococcus 

Miwi2+/+ and Miwi2-/- mice were infected intratracheally with Sp19 for (A) 24 

hours or (B) 30 hours and lungs harvested for CFU quantification. (n= 7,5 and 

6,9 mice per group, means ± s.e.m., *P<0.05 as determined by unpaired t-test). 

Dotted line indicates input CFU.  
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CHAPTER FOUR: DISCUSSION 

4.1 Summary of Results 

The results of this study provide to our knowledge, the first in vivo 

evidence for expression of the piRNA binding protein MIWI2 outside of the 

germline in mammals. It is also the first identification of a somatic cell function for 

MIWI2 that is independent of its role in retroelement silencing.  We demonstrate 

that Miwi2 mRNA is induced specifically in epithelial cells both in vitro in 

response to a variety of different inflammatory stimuli, as well as in vivo in 

response to Streptococcus pneumoniae infection. MIWI2 protein expression is 

restricted to the cytoplasm of only a subset of respiratory ciliated cells after post 

natal day 7, however its expression in airways precedes expression of the master 

transcription factor for ciliogenesis, Foxj1. Immunoprecipitation of MIWI2 

indicates that full length MIWI2 is expressed outside of the germline, and is 

bound to an RNA species larger than a traditional piRNA. Using both an in vitro 

approach as well as an integrated genetic model of Miwi2 deficiency, we 

identified that retroelement repression was not affected by loss of MIWI2 

expression in somatic cells, collectively indicating that lung MIWI2 is independent 

of the piRNA silencing pathway. The localization in ciliated cells led us to test if 

MIWI2 function was required for cilia cell formation or function of the mucociliary 

escalator. We found that MIWI2 function was dispensible for the formation of 

multicilia, as we detected Miwi2tdTomato/tdTomato mice with normal cilia. Surprisingly, 

however we detected that loss of MIWI2 expression results in a decrease in total 
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ciliated cell number, and a concomitant increase in club cells in the 

intrapulmonary airways. This change was not due to the loss of the MIWI2+ 

expressing cells, as tomato expression was detected in FOXJ1 cells in 

Miwi2tdTomato/tdTomato mice. Given the alteration of airway cell type, we tested the 

hypothesis that MIWI2 mice would have an altered immune response to bacterial 

infection. Using a clinically relevant model of community acquired pneumonia, we 

demonstrate that MIWI2 deficiency results in enhanced host defense due to more 

rapid chemokine expression and neutrophil accumulation in the airspace  

4.2 The demonstration that MIWI2 protein is expressed in the mammalian soma 

is novel 

Despite the primary focus in the germline, substantial evidence prior to 

these studies suggested that Piwi-clade proteins may be expressed in somatic 

cells. Not long after the first identification of Piwi as a critical factor for stem cell 

renewal in germline stem cells, it was identified that it was also expressed in the 

supporting somatic cells of the Drosophila ovary (Ma et al., 2014), and in the 

testicular somatic cells (Gonzalez et al., 2015). Reports of Piwi-clade protein 

mRNA expression in mammals, however has been focused on stem cell and 

cancer populations, yet a clear functional role has not been identified, nor has 

definitive proof of protein expression been demonstrated.  HIWI, the human 

homologue of Drosophila Piwi and mouse Miwi, is expressed in a CD34+ 

hematopoietic progenitor cells and is downregulated upon differentiation to 

mature myeloid cells (Sharma et al., 2001). This presented the hypothesis that 
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Piwi proteins may play a role in maintaining stem cell properties in somatic cells 

in mammals, similar to their role in the Drosophila ovary. However, work from 

several groups indicate that Miwi2 is highly expressed in undifferentiated 

hematopoietic cells yet mice deficient in all three Piwi-clade proteins Miwi, Mili, 

and Miwi2 have no differences in the generation of mature myeloid lineages, or 

dysregulation of progenitor cell gene expression (Nolde et al., 2013; Jacobs et 

al., 2013). Work from the same group has also demonstrated that iPS cells 

generated from Miwi/Mili/Miwi2 triple knockout mice are able to differentiate into 

all three germ layers indicating that Miwi, Mili, and Miwi2 are collectively 

dispensable for stem cell differentiation and maintenance in mice (Cheng et al., 

2014). It should be stressed that even though Miwi2 mRNA was detected in 

these cells, they did not evaluate protein expression (Nolde et al., 2013; Jacobs 

et al., 2013; Cheng et al., 2014).   

Several studies to date have demonstrated that mRNA expression of 

HIWI2, the human homologue of Miwi2, is expressed in cancer cell lines, and 

surgical biopsies (Su et al., 2012; Keam et al., 2014; Tan et al., 2015; Suzuki et 

al., 2012) and may be a potential biomarker for disease progression (Wang et al., 

2012). HIWI2 has been proposed as a potential “cancer testis antigen”, a group 

of proteins that are normally expressed only in the germline and are re-

expressed in tumor cells, making them attractive treatment targets (Tan et al., 

2015).  The potential role of HIWI2 in cancer has yet to be identified, but several 

possible functions have been proposed including promoting cell proliferation (Su 
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et al., 2012) facilitating migration and invasion, and resisting apoptosis (Sugimoto 

et al., 2007) all of which have been attributed to epigenetic function that take 

place in the nucleus, and contributes to their stem cell properties.  

4.3 The demonstration that lung MIWI2 is not expressed in a stem cell population 

is contrary to available evidence 

Given the available evidence in mice and humans, that Piwi-clade proteins 

are expressed primarily in stem cell populations or cancer cells, which are known 

to express germline antigens, our finding that MIWI2 is expressed in the 

terminally differentiated ciliated cells of the lung is of great interest and contrary 

to the hypothesis that MIWI2 is necessary for maintaining multipotency in 

somatic cells. The lung is remarkably resistant organ to tissue injury, with robust 

mechanisms for repair and maintenance of the airway epithelium. The airways in 

human and in mice are comprised of several specialized cell types including 

basal cells, club cells, goblet cells, ciliated cells, neuroendocrine cells and 

alveolar epithelial cells, many of which are capable of differentiation into other 

mature epithelial lineages (Rock and Hogan, 2011a; Hogan et al., 2014). Multiple 

injury models such as toxic gas inhalation (SO2) which kills all luminal cells, 

naphthalene administration which ablates club cells, or influenza infection have 

been used in conjunction with lineage tracing mice utilizing various Cre drivers to 

determine the origin and differentiation capacity of many of the mature airway 

epithelial cells. The consensus from these studies is that basal cells, which 

characteristically express cytokeratin 5 (Krt5) are the main stem cell population of 
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the lung, capable of differentiation into secretory and ciliated cells (Wansleeben 

et al., 2012). Additional studies have identified that in the distal airways, club 

cells differentiate into ciliated cells and type II pneumocytes which collectively 

contributes to tissue homeostasis after injury. Interesting, ciliated cells appear to 

be one of the only airway cells that are non- proliferating and terminally 

differentiated cells, and do not contribute to the repair of the epithelium after 

damage (Rock and Hogan, 2011a; Hogan et al., 2014; Rawlins et al., 2007). 

Evidence for this was generated using lineage tracing mice where Cre 

expression is driven by the major ciliated cell transcription factor Foxj1, and 

exposed to either sulfur dioxide or naphthalene. The authors found no evidence 

of labeled cells expressing non-ciliated cell lineage markers in either model 

(Rawlins et al., 2007). In addition, they could not identify any lineage labeled 

ciliated cells that incorporated BrdU, a marker of proliferation, in either injury 

model. This is in agreement with our data that ciliated cells of the airways are 

non-proliferating, and do not express the proliferation marker Ki67. These data 

have also been confirmed in additional models including ovalbumin exposure 

which leads to an asthma-like phenotype, as well as influenza infection (Pardo-

Saganta et al., 2013). Collectively, our demonstration of MIWI2 expression in the 

terminally differentiated ciliated cells in the lungs, rather than in a stem cell 

population suggest perhaps an alternative function to those proposed for cancer 

cells. One of the many questions that arise from these data is what is the 

significance of MIWI2 expression in only a subset of the ciliated population.  
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4.4 The Identification of a subset of ciliated cells is novel  

Several lung epithelial cells are heterogeneous in their gene expression 

profiles. In some cases, differences may reflect a transition state (Treutlein et al., 

2014), but in other cases, heterogeneity is the result of phenotypic differences 

and distinct functions. One example is illustrated by the apparent resistance of a 

subset of club cells adjacent to neuroepithelial bodies (NEBs) to survive 

naphthalene administration. These so-called variant club cells, act as a 

progenitor population for club and ciliated cells after injury (Guha et al., 2012). An 

alternative example is the discovery of an α6β4+ integrin expressing alveolar 

epithelial progenitor cell which serves as a multipotent progenitor cell during 

injury repair (Chapman et al., 2011). In contrast to club cells and type II cells, 

variations of ciliated cells have not been identified. Our data suggest that 

approximately 30 percent of ciliated cells express MIWI2, however this is 

dynamic as the number of positive cells is increased during infection with 

pneumococcus. Staining in post natal day 7 and adult mice indicate that all 

MIWI2 positive cells are ciliated cells, however in embryonic lungs we were able 

to detect MIWI2 positive cells that were not expressing FOXJ1, indicating that 

they may be a discrete cell lineage. Assuming that the cells expressing MIWI2 in 

the embryos become the same MIWI2+ ciliated cells seen during later time 

points, the questions that arise including whether MIWI2 functionality is 

necessary for the generation of this discrete lineage of cells? While additional 

tools are needed to comprehensively test the origin and fate of MIWI2+ ciliated 
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cells both during embryogenesis and during injury and repair, we were able to 

gain insight using a novel mouse model engineered by our collaborator where 

expression of a loss-of-function tdTomato reporter allele was detectable in both 

heterozygous animals and homozygous animals, and was expressed in FOXJ1+ 

cells. Thus indicating that at least Miwi2 promoter activity is restricted to a subset 

of ciliated cells in adult mice, even in the absence of functional MIWI2. Co-

staining for tdTomato and acetylated alpha tubulin revealed that cells which are 

deficient in functional MIWI2 also contain cilia, indicating that MIWI2 functionality 

is not required for cilia formation. Importantly, it should not be concluded that 

MIWI2 deficient cells have normal ciliary function as this was not directly tested. 

In fact, complementary studies using Miwi2 deficient mice revealed fewer ciliated 

cells, and an increase in mucus secreting club cells in the intrapulmonary 

airways. Interestingly, ciliated cells are reduced 25% in mice lacking Miwi2, which 

is the same fraction of ciliated cells that are MIWI2+. Results generated from 

Miwi2tdTomato/tdTomato mice suggest that is it not the MIWI2+ lineage that is ablated, 

as RFP positive cells are present in the absence of functional MIWI2. This 

decrease in ciliated cells does not however alter the total number of cells in the 

airways but rather we detect an increase in the number of club cells in Miwi2 

deficient animals. Notch signaling is major regulator of airway cell identity in the 

human and murine lung (Lafkas et al., 2015). Overexpression of Notch drives 

secretory cell metaplasia and a loss of ciliated cells (Rock et al., 2011). We 

consider the possibility that MIWI2 regulates Notch in embryonic lungs which in 
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turn influences cell fate decisions in the developing airways. Soluble factors, 

such as IL-13, which is induced in human asthma, could also influence ciliated 

cell number through downregulation of the ciliated transcription factor Foxj1. 

While we have not tested if mucus production per se is altered in MIwi2 deficient 

mice, the increase in clara cells would be consistent with an enhanced bacterial 

clearance and elaborated cytokine production. In one study, transgenic mice 

which are engineered to overexpress the mucin gene Muc5b in club cells, have 

an increase in inflammation and immune cell recruitment when infected with a 

gram-positive pathogen (Roy et al., 2013).   

4.5 Lung MIWI2 function is independent of the piRNA pathway 

MIWI2 protein expression in the male germline is dogmatically expressed 

during pre-pachytene, beginning at embryonic day 15.5 and absent at postnatal 

day 3. Aravin and colleagues, using an ectopically expressed transgenic GFP-

MIWI2 fusion demonstrated that MIW2 expression in testis are primary localized 

in the nucleus, with some perinuclear staining evident (Aravin et al., 2008; 2009). 

The translocation to the nucleus was dependent on coexpression of MILI, 

another piRNA binding protein that has been shown to be necessary for piRNA 

generation. Together with work from additional investigators, the model that has 

emerged postulates that piRNAs are generated by several factors, including MILI 

in the cytoplasm, where they are loaded into MIWI2 which then translocates to 

the nucleus to execute transcriptional silencing of retroelement expression 

(Aravin et al., 2008). Our data indicate that in contrast to expression in the testis, 
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lung MIWI2 is expressed throughout the lifetime of the organism, detectable in 

embryonic lungs at E16.5 through at least week 30. In addition, lung MIWI2 is 

predominantly, if not exclusively restricted to the cytoplasm. We would thus 

hypothesize that based on the germ cell model, lung MIWI2 is not bound to an 

RNA species, however our data clearly refute this prediction. Lung MIWI2 is 

bound to an RNA species, larger than the 30 nt traditional piRNA (Fu and Wang, 

2014). What is the identity of this RNA? The existence of somatic cell piRNAs in 

mammals is controversial. One recent study used high throughput RNA 

sequencing of RNA collected from various organs in Rhesus macaque, and mice 

and found that piRNA like RNAs were expressed (Yan et al., 2011). These 

studies however, did not show direct association with known piRNA binding 

proteins, a hallmark and defining feature of piRNAs. Additionally, as others have 

commented, the library size and lack of negative controls makes interpretation of 

these results difficult (Ross et al., 2014). One study, transduced a breast cancer 

cell line with a vector expressing an epitope tagged copy of HIWI2, the human 

variant of MIWI2, and found that localization was restricted to the cytoplasm 

(Keam et al., 2014). The authors also found that FLAG-HIWI2 was bound to 

fragments of tRNAs and the complex was associated with polysomes and 

translation machinery. As all Argonaute proteins will bind RNA with a 5’ 

phosphate group, it is unclear whether overexpression of MIWI2, which has RNA 

slicing capability, alters the associated RNA substrate, and whether this 

overexpression also influences the protein binding partners. However the 



 

 

122 

restriction to the cytoplasm and association with translational machinery is more 

consistent with described characteristics of AGO clade Argonaute proteins, which 

associate with miRNAs and siRNAs. While 50 nt would also be substantially 

longer than a traditional piRNA, it is plausible that MIWI2 would bind RNA 

degradation products, derived from mRNA, pre-miRNA, or long non-coding 

RNAs.  

Substantial evidence supports that retroelement expression is not 

restricted to the mammalian germline. In murine B cells for example, cross linking 

of the B cell receptor by T cell independent type II antigens, such as Pneumovax, 

the major vaccine against Streptococcus pneumoniae induces retroelement 

expression and influences the formation of plasma cells (Zeng et al., 2014). 

Given the known role of MIWI2 in the testis as a repressor of retroelement 

expression, we used a whole genome approach to identify if MIWI2 in lung cells 

participates in retroelement restriction. Our data, using whole genome microarray 

technology both in vitro and in vivo suggest that deficiency of MIWI2 does not 

result in alterations of retroelement expression. Limitations of our approach 

include the use of whole lung RNA rather than a pure MIWI2 expressing 

population, however our method was able to identify true gene expression 

differences. The fact that MIWI2 is not bound to piRNAs, coupled with its 

exclusion from the nucleus complement the retroelement expression data and 

suggest that lung MIWI2 is independent of the piRNA system. It has been 
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suggested that the restriction of retroelements in the soma may be carried out by 

various other mechanisms (Chambers, 2014).  

4.6 Implications and Future Directions 

Mortality from bacterial pneumonia and specifically, acute lung injury 

remains unacceptably high despite numerous advances in modern medicine. In 

this study we sought to identify and characterize novel mechanism that regulate 

lung inflammation with the hope that these pathways may serve as a foundation 

for future diagnostics or therapeutics. Our studies report the surprising finding 

that MIWI2, a piRNA binding protein and PIWI-clade Argonaute protein is 

expressed and induced in lung epithelial cells and regulates inflammation during 

bacterial pneumonia. A clear molecular link between MIWI2 and the 

enhancement of immunity and regulation of cell fate remains elusive.  

One of the most pressing questions that remains is the identity of the RNA 

bound to MIWI2 in lung epithelial cells. Our results suggest that the associated 

RNA is larger than a traditional piRNA, however numerous attempts to prepare a 

library have failed. It is likely that the RNA is either not phosphorylated at the 5’ 

end or contains additional modifications that prevent library preparation. Future 

experiments should include alternative methods of library preparation such as the 

one described recently (Jaskiewicz et al., 2012). Additionally, our RNA labeling 

experiments, while repeated several times, could be conducted with a more 

appropriate control, namely embryonic testis from an HA-MIWI2 mouse where 

piRNAs could be isolated, ensuring that our IP protocol does not interfere with 
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the preparation of a library. Immediate experiments should be focused on 

elucidating the associated RNA as this will provide necessary insight into 

potential molecular targets of regulation.   

 Our demonstration that MIWI2 is a marker of a discrete population of 

ciliated cells is of great interest. Ciliated cells play an important role in pulmonary 

host defense, and to date, no subsets with differing function have been identified. 

In order to gain insight into the complexity of the MIWI2+ lineage, a key 

experiment will be sorting and transcriptomic comparison of the MIWI2+ and 

MIWI2- ciliated cells from infected and uninfected mice. This can be performed 

using the Miwi2+/tdTomato mice coupled with our identification of CD24 as a reliable 

marker of lung ciliated cells. Sorting of Miwi2tdTomato/tdTomato cells can also be 

included and compared to tdTomato+ cells from functional heterozygotes to 

reveal genes regulated by MIWI2. Results from these experiments will shed 

important light on the heterogeneity of ciliated cells and perhaps provide insight 

into how MIWI2 regulates airway cell fate and gene expression. 

 The regulation of airway cell fate was a surprising finding in MIWI2 

deficient animals. Similarly, the expression of MIWI2 in embryonic lungs 

antecedent to the expression of mature lung lineage markers is puzzling, given 

that all adult MIWI2+ cells are committed to a single (ciliated) fate. A critical tool 

that is needed to expand on these findings is the generation of a Miwi2 lineage 

tracing mouse. The ideal construct would be a Tamoxifen inducible 

CreERT2::GFP allele knocked in to the native Miwi2 locus. This mouse could 
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then be crossed to a mouse containing a CRE inducible expression allele (loxP-

STOP-loxP:: tdTomato) at the Rosa locus. With this mouse, GFP would serve as 

a current reporter of Miwi2 transcription, while tdTomato expression could be 

used to identify the fate of MIWI2 cells during development or injury. The knock-

in strategy here will also allow for the tracing of cell fate in cells which are 

functionally MIWI2 deficient.  

 We initially discovered MIWI2 using a clinically relevant model of bacterial 

pneumonia, however given the cell type of expression there may be additional 

models where MIWI2 function may be implicated. Ciliated cells directly, or 

defects in ciliated cell function contribute to the pathology of asthma, COPD, and 

cystic fibrosis. Elucidating possible MIWI2 functions in these diseases may open 

new areas of investigation. Similarly, we identified that Miwi2 mRNA is highly 

responsive to type I interferon, and hence exploration of function in a lung viral 

infection such as influenza may be enlightening.  

 Our model, implies that MIWI2 regulates, through a currently not 

understood mechanism, the cell identity of the adult airway. Loss of MIWI2 

expression results in an increase in club cells, and increased production of 

mucus, which enhances neutrophil emigration and inflammation. One question 

that arises is why then do MIWI2 deficient animals not show signs of chronic 

inflammation such as recurrent or spontaneous infection or basal differences in 

cell recruitment? One explanation is that our mice are housed in a specific 

pathogen free clean facility that is carefully monitored for pathogens. Future 
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studies may include housing of mice in a facility where opportunistic infections 

are more common. Additionally, in contrast to our model strain, studies with a 

strain of bacteria that is not easily cleared in wildtype mice may exacerbate 

differences in tissue injury.  

 A severe limitation to continued progress in the study of MIWI2 regulation 

is the restriction to a whole animal model. Establishing a cell system that can be 

used to study MIWI2 function is critical. We have attempted to use pre-

established air-liquid interface cultures, however no MIWI2+ cells were identified, 

likely indicating they do not arise from basal cells. Over the past several years, 

substantial progress has been made in the application of iPS cells for the study 

of lung developmental biology. Much of this work has been performed here at 

Boston University and in the Pulmonary Center. While it is not currently possible 

to generate in large quantity ciliated cells from induced lung progenitors, the role 

of MIWI2 in early cell differentiation could be assessed. This would also be an 

attractive model to determine the function of MIWI2 in human lung epithelium.  

 Collectively, this dissertation has expanded our current understanding of 

PIWI proteins, and their role in somatic cells. While many questions still remain 

unanswered, the work will serve as a foundation for future investigation and 

hypothesis generation about the functions of Piwi proteins, and ciliated cell 

biology.  
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