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SAFETY EVALUATION OF LOW LEVEL LIGHT THERAPY 

ON CANCER CELLS 

ANDREW S. JEONG 

ABSTRACT 

Objective: Low level light therapy (LLLT) is being widely used in wound healing and 

pain relief, and its use is expected to be expanded rapidly to treatment of other disorders 

as well in a foreseeable future. However, before its expansion, the fear that LLLT could 

initiate or promote metastasis must be addressed thoroughly. As an initial effort towards 

this end, the current study evaluates the safety of LLLT in vitro using two different 

human cancer cell lines (Michigan Cancer Foundation-7 (MCF-7) and Jurkat E6-1) by 

determining the viability of cells after low level light (LLL) application while treatment 

under anti-cancer chemotherapeutic drugs (5-fluorouracil (5-FU) and cisplatin) separately 

on each cell line. 

Methods: Two human cancer cell lines (MCF-7 and Jurkat E6-1) were cultured 

throughout the experiments. Two different anti-cancer chemotherapeutic drugs (5-FU and 

cisplatin) were used to treat both cell lines. The half maximal inhibitory concentration 

(IC50) of each drug on each cell line was determined by treating each cell line with 

varying concentrations of each drug. A total of 3 or 4 trials were done for each cell line 

with each drug, and the range of concentration was narrowed closer to the IC50 value at 

each successive trial. Once the IC50 concentrations were determined, each cell line was 

treated with 808 nm LLL at varying energy densities in a single dose using a light 

emitting diode (LED) source both in the absence and the presence of each drug at one 
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IC50. A total of 3 or 5 trials were done for each cell line with each drug, and for each trial, 

six different energy densities ranging from 0 J/cm2 (control) to 10 J/cm2 were applied. 

The energy densities were varied for each trial with control always being used. After 

application of LLL, the viability of cells was determined, and three different 1-way 

ANOVA (Analysis of Variance) analyses were done to compare the viability of cells at 

each energy density to that of control. 

Results: The IC50 of 5-FU in MCF-7 and Jurkat E6-1 cells was determined as 70 µM and 

20 µM respectively. The IC50 of cisplatin in MCF-7 and Jurkat E6-1 cells was determined 

as 17 µM and 7 µM respectively. No significant difference (P > 0.05) in the viability of 

MCF-7 cells was observed between each group treated with different energy density of 

LLL and control group (0 J/cm2) both in the absence and the presence of 5-FU at IC50 (70 

µM). No significant difference (P > 0.05) in the viability of MCF-7 cells was observed 

between each group treated with different energy density of LLL and control group (0 

J/cm2) both in the absence and the presence of cisplatin at IC50 (17 µM). No significant 

difference (P > 0.05) in the viability of Jurkat E6-1 cells was observed between each 

group treated with different energy density of LLL and control group (0 J/cm2) both in 

the absence and the presence of 5-FU at IC50 (20 µM). However, a significant increase 

(0.01 < P < 0.05) in the viability of cells was observed when treating Jurkat E6-1 cells 

with 10 J/cm2 of LLL in the presence of cisplatin at IC50 (7 µM) compared to control 

group (0 J/cm2). Except for the comparison mentioned previously, no significant 

difference in the viability of Jurkat E6-1 cells was observed between each group treated 

with different energy density of LLL and control group (0 J/cm2) both in the absence and 
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the presence of cisplatin at IC50 (7 µM). No definite trend in the viability of cells was 

observed with increasing energy density of LLL for each cell line either in the absence of 

the presence of each drug at IC50. 

Conclusions: The application of LLL at 808 nm with energy densities ranging from 0.1 

J/cm2 to 10 J/cm2 under an LED source did not induce cell proliferation or death 

compared to control (0 J/cm2) for each cell line in the absence or the presence of each 

drug, and no definite trend was observed with increasing energy density. The study 

suggests that LLLT at these parameters may be safe to use on cancer patients, but further 

studies on different cancer cell lines and animal models with different parameters 

(wavelength, energy density, dosage) of LLL are warranted. 
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INTRODUCTION 

 

 LLLT also known as low level laser therapy is being used increasingly for the 

treatment of multitude of conditions in medicine. At first, it has been used mainly for 

wound healing and relief of pain and inflammation, but in recent years, its use in 

treatment has become broadened to a variety of conditions such as stroke, myocardial 

infarction, arthritis, musculoskeletal disorders, degenerative brain disorders, dental 

pathologies, and skin diseases etc. LLLT commonly uses red and near infra-red light 

which are produced by laser and LEDs (Myakishev-Rempel, et al., 2012). As illustrated 

in Figure 1, laser is a coherent light source in which the light waves are in-phase and 

monochromatic. Unlike sun light which consists of multiple wavelengths with rays 

scattering in all directions, laser light consists of a single wavelength, with its rays 

stacked to each other side by side, focusing in a narrow beam. LED is non-coherent light 

sources consisting of filtered lamps. Although monochromatic, the waves are out-of-

phase. LED devices produce light with wavelengths similar to those of lasers, but they 

are less monochromatic in that they have broader output peaks, and lack the coherence 

that laser has.  
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Figure 1. The difference between sunlight, LED light and laser light. Abbreviation: LED: 

Light-Emitting Diode (multichromatic, sunlight, monochromatic and coherent light, 

2011). 

 

 LLLT utilizes either laser or LEDs or a combination of both (What is LLLT? - 

THOR Laser, 2015). It is considered “low level” or “low power” since the energy or 

power densities used are low compared to other forms of laser that are used for ablation, 

cutting, and thermally coagulating tissue (Hamblin, 2008). Its wavelength typically 

ranges from 600 nm to 1000 nm, and light emitting devices typically deliver from 10 mW 

to 500 mW, and the power density typically ranges from 0.005 W/cm2 to 5 W/cm2 (What 

is LLLT? - THOR Laser, 2015). The medical applications of LLLT has been 

progressively broadened, however, the biochemical mechanisms by which tissues 

respond to LLL, and the underlying positive effects are incompletely understood. Also, 
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the complexity of rationally choosing amongst a large number of parameters such as 

energy density, wavelength, fluence, exposure time, and pulse structure has led to the 

publication of numerous studies revealing conflicting outcomes regarding its safety and 

effectiveness. In particular, a biphasic dose response has been frequently reported where 

low levels of light have a much better effect than higher levels (Hamblin, 2008). This 

demonstrates a clear need to elucidate the proper usage of parameters in terms of its 

safety and effectiveness, and this study aims to evaluate the safety of LLLT on two 

different cancer cell lines in vitro. 

History of Light Therapy 

 Light therapy is one of the oldest therapeutic methods used by humans historically 

as solar therapy by Egyptians and later as ultra violet (UV) therapy for which Nils Finsen 

won the Nobel prize in 1904. In 1967, Endre Mester in Semmelweis University, Budapest, 

Hungary, tested if laser radiation might cause cancer in mice. He shaved the dorsal hair 

and divided them into two groups, then applied laser with a low powered ruby laser (694 

nm) to one group. The mice from the laser-treated group did not get cancer, and 

surprisingly, the hair on the laser-treated group grew back more quickly than the 

untreated group. This was the first demonstration of “laser biostimulation.” Since then, 

medical treatment with coherent light sources such as lasers or non-coherent light sources 

such as LEDs became more prevalent, and currently, LLLT is practiced in variety of 

medical fields in treating many different conditions. The question is no longer whether or 

not light has biological effects, but rather how energy from lasers and LEDs work at the 
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cellular level and in the organism as a whole, and what are the optimal light parameters 

for different uses of these light sources (Hamblin, 2008).  

Biphasic Dose Response 

 Through clinical studies and studies involving cell culture and animal models, it 

has been found that there exists an optimal dose of light for any particular application, 

and doses lower than this optimal value, or more significantly, higher than the optimal 

value would decrease the therapeutic outcome. In fact, for higher doses of light, a 

negative outcome may even result. Evidence suggests that energy density is a key 

biological parameter for the safety and the effectiveness of LLLT, and it may operate 

with thresholds in which there exists a point where LLLT is too weak to have any effect 

or so strong to cause over-stimulation (Hamblin, 2008). 

Biochemical Mechanisms 

 The quantum mechanical theory states that light energy is composed of photons or 

discrete packets of electromagnetic energy. The energy of an individual photon depends 

only on the wavelength. Therefore, the energy of a dose of light depends only on the 

number of photons and on their wavelength. Photons that are delivered into tissue can be 

either absorbed or scattered. Scattered photons will eventually be absorbed or will 

diffusely reflect off from the tissue. The photons that are absorbed interact with an 

organic molecule or chromophore within the tissue. According to the first law of 

thermodynamics, the energy delivered to the tissue must be conserved, and three possible 

pathways exist to account for what happens to the delivered light energy within the tissue. 

The pathways are internal conversion, fluorescence, and a number of processes broadly 
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grouped under photochemistry including energy transfer, electron transfer, and 

dissociation of a non-covalently bound ligand from a binding site on a metal-containing 

cofactor in an enzyme. These proposed pathways could be the mechanisms of how LLLT 

induces changes in treating conditions that are part of three main areas of medicine where 

LLLT has been broadly used as demonstrated in Figure 2. These are wound healing, 

tissue repair, and prevention of tissue death; relief of inflammation in chronic diseases 

and injuries with its associated pain and edema; relief of neurogenic pain and 

neurological problems (Hamblin, 2008). Also, in vitro, animal, and clinical studies 

revealed that LLLT can prevent cell apoptosis, and enhance cell proliferation, migration, 

and adhesion as demonstrated in Figure 3. 

 

Figure 2. Schematic representation of the main applications of LLLT. hv: light energy 

where h = Planck’s constant (~6.626 x 10-34 m2kg/s) and v = frequency. Abbreviation: 

LLLT: Low Level Light Therapy (Huang, Hamblin, & Chen, 2009). 
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Figure 3. Cellular effects of LLLT. Abbreviation: LLLT: Low Level Light Therapy 

(Huang, Hamblin, & Chen, 2009). 

  

 The suggested mechanism of LLLT at the cellular level was based on the 

absorption of monochromatic visible and near-infra red (NIR) radiation by components 

of the cellular respiratory chain. It was proposed that cytochrome c oxidase which 

contains two iron centers (haem a and haem a3), and two copper centers (CuA and CuB), 

is the primary photoacceptor for the red-NIR range in mammalian cells (Hamblin, 2008). 

When the effect of He-Ne laser illumination (632.8 nm) on the purified cytochrome c 



7 

oxidase was examined, there was an increased oxidation of cytochrome c and increased 

electron transfer (Pastore, Greco, & Passarella, 2000). Also, increased activity of catalase 

was observed after He-Ne laser illumination (Artyukhov, Basharina, Pantak, & Sveklo, 

2000). The absorption of photons by molecules leads to electronically excited states, and 

consequently may lead to an acceleration of electron transfer reactions. Increase in 

electron transport leads to an increase in the production of adenosine triphosphate (ATP), 

which in turn leads to an increase in proton gradient. The increased proton gradient leads 

to an increase in activity of Na+/H+ and Ca2+/Na+ antiporters, and of all the ATP-driven 

carriers for ions including Na+/K+ ATPase and Ca2+ pumps (Hamblin, 2008).  

 Ability of light to influence the localized production or release of nitric oxide (NO) 

was demonstrated by many studies including Guzzardella et al and Tuby et al 

(Guzzardella, Fini, Torricelli, Giavaresi, & Giardino, 2002), (Tuby, Maltz, & Oron, 2006). 

This signifies that properly designed illumination devices may be effective therapeutic 

agents for patients who would benefit from increased localized NO availability. The 

activity of cytochrome c oxidase is inhibited by NO, and this inhibition of mitochondrial 

respiration by NO can be explained by a direct competition between NO and O2 for the 

reduced binuclear center CuB/a3 of cytochrome c oxidase, and is reversible. It was 

proposed that laser irradiation could reverse the inhibition of cytochrome c oxidase by 

NO by photodissociating NO from its binding sites, both in isolated mitochondria and in 

whole cells. The dissociation of NO from cytochrome c oxidase will thus increase the 

respiration rate and the production of ATP. The other proposed mechanism was the 

“redox properties alteration hypothesis,” which states that the alteration of mitochondrial 
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metabolism and the activation of the respiratory chain by illumination would also 

increase the production of superoxide anions (Hamblin, 2008). 

 Changes in cellular redox state induce the activation of numerous intracellular 

signaling pathways, and these cytosolic responses in turn induce transcriptional changes. 

Several transcription factors are regulated by these changes, and they are redox factor-1 

(Ref-1)-dependent activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer 

of activated B cells protein (NF-kB), p53, activating transcription factor/cyclic adenosine 

monophosphate (cAMP)-response element-binding protein (ATF/CREB), hypoxia-

inducible factor-1α (HIF-1α), and hypoxia-inducible factor (HIF)-like factor etc. Figure 3 

illustrates the effect of redox-sensitive transcription factors activated after application of 

NIR in causing the transcription of gene products that eventually lead to cell proliferation, 

growth factors production, extracellular matrix deposition, and cell motility etc. As a rule, 

the oxidized form of redox-dependent transcription factors have low deoxyribonucleic 

acid (DNA)-binding activity. Ref-1 is an important factor for the specific reduction of 

these transcription factors. However, it was also shown that low levels of oxidants appear 

to stimulate proliferation and differentiation of some type of cells. It was proposed that 

LLLT produces a shift in overall cell redox potential in the direction of greater oxidation. 

Different cells at a range of growth conditions have distinct redox states. Therefore, the 

effects of LLLT can vary considerably. Cells being initially at a more reduced state like 

primary cells have high potential to respond to LLLT, while cells at the optimal redox 

state like cancer cells respond weakly or do not respond to treatment with light (Hamblin, 

2008). 
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Figure 4. Cell signaling mechanisms induced by NIR. Abbreviations: ATP: Adenosine 

Triphosphate, cAMP: cyclic Adenosine Monophosphate, NIR: Near-infra Red, NO: 

Nitric Oxide, ROS: Reactive Oxygen Species (Huang, Hamblin, & Chen, 2009). 

 

Cellular Responses Observed in vitro after LLLT 

 The cellular responses observed in vitro after LLLT can be broadly classed under 

increases in metabolism, migration, proliferation, and increases in synthesis and secretion 

of various proteins. A study by Zhang et al. exposed normal human fibroblasts for 3 days 

to 0.88 J/cm2 of 628 nm light from a light emitting diode. Gene expression profiles upon 

irradiation were examined using a complementary deoxyribonucleic acid (cDNA) 

microarray containing 9982 human genes, and 111 genes were found to be affected by 

light. All genes from the antioxidant related category and genes related to energy 
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metabolism and respiratory chain were upregulated. Most of the genes related to cell 

proliferation were upregulated as well. Amongst genes related to apoptosis and stress 

response, some genes such as Janus family of protein tyrosine kinase (JAK) binding 

protein were upregulated, and others such as caspase 6 and stress-induced phosphoprotein 

were downregulated. It was suggested that LLLT stimulated cell growth directly by 

regulating the expression of specific genes, as well as indirectly by regulating the 

expression of the genes related to DNA synthesis and repair, and cell metabolism (Zhang, 

et al., 2003).  

 The effects of LLLT on cell proliferation are debatable because studies have 

found both an increase and a decrease in proliferation of cells. Cell culture is an excellent 

method to assess both effects with varying doses of treatments. Red light is known to 

have a mitogenic effect based on its ability to activate cell division at certain spectral and 

dose ranges in vitro. A study by Pinheiro et al. assessed the effect of 635 nm and 670 nm 

laser irradiation of human epithelial type 2 (H.Ep.2) cells in vitro using microculture 

tetrazolium (MTT) assay. The cells were obtained from squamous cell carcinoma of the 

larynx and were routinely processed from defrost to the experimental condition. Twenty-

four hours after transplantation the cells were irradiated with LLL with 635 nm or 670 

nm doses ranging from 0.04 J/cm2 to 0.48 J/cm2 for seven consecutive days. The results 

showed that 635 nm laser light did not significantly stimulate the proliferation of H.Ep.2 

cells at doses of 0.04 J/cm2 to 0.48J/cm2, however, 670 nm laser irradiation led to an 

increased cell proliferation when compared to both control and 635 nm irradiated cells. 

The best cell proliferation was found with 670 nm laser irradiated cultures exposed to 
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doses of 0.04 J/cm2 to 0.48 J/cm2. Based on these results, both dose and wavelength are 

factors that may affect cell proliferation of H.Ep.2 cells (Pinheiro, et al., 2002). 

 There exist contradictory reports about low-intensity laser light-stimulated cell 

proliferation. A study by Moore et al. measured the proliferation of primary cell cultures 

after irradiation with varying laser wavelengths to determine the effect of wavelength on 

proliferation of cultured murine cells. Fibroblasts proliferated faster than endothelial cells 

in response to laser irradiation. Maximum cell proliferation occurred with 665 nm and 

675 nm light, whereas 810 nm light was inhibitory to fibroblasts. These outcomes suggest 

that both wavelength and cell type influence the cell proliferation in response to low-

intensity laser irradiation (Moore, Ridgway, Higbee, Howard, & Lucroy, 2005).  

 A study by El Batanouny investigated the mitogenic and genotoxic effects of 

He:Ne laser irradiation (632.8 nm) on human peripheral lymphocytes in vitro. In this 

study, buffy coat leukocytes were exposed to 10 mW He:Ne laser at energy densities of 1, 

2, 3 and 5 J/cm2. Cells were then cultured in media 199 without any supplementation for 

24, 48, 72 and 96 hours adding cytochalasin B 24 hours before harvesting of cells. The 

results revealed that laser-induced lymphocytes proliferate throughout the four 

consecutive days post-laser irradiation. The difference in the frequency of micronuclei 

between pre- and post-laser irradiation indicates that a He:Ne laser at such energy 

densities 1, 2, 3 and 5 J/cm2 does not induce micronucleus formation. These results shed 

some light on the mechanism encountered by lymphocytes in the process of He:Ne laser-

induced biostimulation (El Batanouny, Korraa, & Fekry, 2002). 
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Safety of LLLT on Tissues Harboring Cancer 

 The use of LLLT in cancer patients, including the treatment of lymphedema or 

various unrelated comorbidities, has been withheld by practitioners because of the fear 

that LLLT might result in initiation or promotion of metastatic lesions or new primary 

tumors. Although it is unlikely that LLLT would directly induce de novo cancer 

development as there has been no scientific evidence that LLLT triggers DNA damage, 

its effects on cellular proliferation have been the empiric basis for withholding treatment 

in cancer patients. A study by Myakishev-Rempel et al. investigated whether LLLT 

would promote tumor growth when pre-existing malignancy is present. In this study, a 

standard SKH mouse nonmelanoma UV-induced skin cancer model was used after 

visible squamous cell carcinomas were present. The red light group received automated 

full body 670 nm LLLT delivered twice a day at 5 J/cm2 using an LED source. The 

control group was handled similarly, but did not receive LLLT. Measurements on 330 

tumors were conducted for 37 consecutive days, while the animals received daily LLLT. 

Daily tumor measurements demonstrated no measurable effect of LLLT on tumor growth, 

and the results suggest that LLLT at these parameters may be safe even when malignant 

lesions are present (Myakishev-Rempel, et al., 2012). 

 Conflicting outcomes were shown in other studies. One study demonstrated the 

acceleration of tumor growth by 633 nm laser irradiation at 3.5 J/cm2 three times per 

week for 2 weeks in a model of human gastric adenocarcinoma transplanted into 

immunodeficient athymic nude mice. This suggests that LLLT is indeed capable of 

activating tumor growth under conditions that exclude immune resistance (Myakishev-
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Rempel, et al., 2012). In another study, the irradiation of squamous cell carcinomas in the 

hamster cheek pouch with 660 nm light at 56 J/cm2, a very high energy density and a 3 

mm spot caused significant progression of the severity of squamous cell carcinomas as 

judged by histology (de C. Monteiro, et al., 2011). 

Application of LLLT in Mucosal Healing and Skin 

 The effects of LLLT in mucosal healing in an acute colitis model in mice was 

demonstrated by a study by Zigmond et al., in which colitis was induced by dextran 

sodium sulfate in four blinded controlled studies. LLLT was applied to the colon utilizing 

a small diameter endoscope with an LED-based light source in several wavelengths 

including 440, 660, and 850 nm at 1 J/cm2 and then 850 nm at several doses including 1, 

0.5, 0.25, and 0.1 J/cm2. LLLT was initiated 1 day prior to induction of colitis and went 

on for the 6 day induction period as well as for the following 3–10 days. Disease activity 

was scored endoscopically and histopathologically. The results showed statistically 

significant improvement in disease severity in the treatment groups compared to those of 

control groups. The three wavelengths used demonstrated efficacy, and a clear dose-

response curve was observed for 850 nm. On day 11, colonoscopic scoring in the sham-

treated mice increased, while activity in all treated groups remained stable. From these 

observations, photobiostimulation with LLLT has a significant positive effect on disease 

progression in mice with dextran sodium sulfate induced-colitis (Zigmond, Varol, Kaplan, 

Shapira, & Melzer, 2014). 

 LLLT has been widely used in the field of dermatology, and a study by Avci et al. 

broadly investigated the use of LLLT in skin pathologies and the underlying mechanisms 
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in skin rejuvenation. Although skin is naturally exposed to light more than any other 

organ, it still responds well to red and near-infrared wavelengths. The photons are 

absorbed by mitochondrial chromophores in skin cells. Consequently, electron transport, 

release of ATP and NO, blood flow, and ROS all increase, and varying signaling 

pathways are activated. Stem cells can be activated as well, allowing increased tissue 

repair and healing. LLLT is also known to have beneficial effects on wrinkles, acne scars, 

and hypertrophic scars, and it has been used in healing of burns, and reducing UV 

damage both as a treatment and as a prophylactic measure. In pigmentary disorders such 

as vitiligo, LLLT can increase pigmentation by stimulating melanocyte proliferation, and 

reduce depigmentation by inhibiting autoimmunity. Inflammatory diseases such as 

psoriasis and acne can also be managed through LLLT (Avci, et al., 2013). 

 Tissue penetration depth of LLL varies on the wavelength as illustrated in Figure 

5. LLLT uses light with wavelengths between 390 and 1100 nm and can be continuous 

wave or pulsed. Wavelengths in the range of 390–600 nm are used to treat superficial 

tissue, and longer wavelengths in the range of 600–1100 nm, which penetrate further, are 

used to treat deeper-seated tissues. Wavelengths in the range of 700–750 nm have been 

found to have limited biochemical activity and are therefore not often used (Avci, et al., 

2013). Tissue penetration depth of LLL also varies with energy density. High energy 

densities are used on superficial tissues, and low energy densities are used on deep tissues. 

3 J/cm2 is the most commonly used dose in clinical scenarios. 
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Figure 5. Tissue penetration depths of various wavelengths. Abbreviations: UV: Ultra-

Violet, NIR: Near-Infra Red (Avci, et al., 2013). 

  

 A number of studies investigated the mechanisms of skin rejuvenation under 

LLLT. Studies by Abergel et al. and Yu et al. reported an increase in production of pro-

collagen, collagen, basic fibroblast growth factor (bFGF) and proliferation of fibroblasts 

after exposure to low-energy laser irradiation in vitro and in vivo animal models (Abergel, 

Lyons, Castel, Dwyer, & Uitto, 1987), (Yu, Naim, & Lanzafame, 1994). Furthermore, it 

was observed that LLLT increased microcirculation and vascular perfusion in the skin, 

and altered the amount of platelet derived growth factor (PDGF) and transforming growth 

factor-β1 (TGF-β1), and inhibited apoptosis (Chung, et al., 2012), (Schindl, Heinze, 

Schindl, Pernerstorfer-Schon, & Schindl, 2002), (Ben-Dov, et al., 1999). A study by 

Barolet et al. used a 3-dimensional model of tissue-engineered human reconstructed skin 
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to investigate the potential of 660 nm, 4 J/cm2 LED in modulating collagen and matrix 

metalloproteinase-1 (MMP-1), and the results showed upregulation of collagen and 

downregulation MMP-1 in vitro. An increase in the amount of tissue inhibitor of 

metalloproteinase (TIMP) may have prevented the proteolytic degradation of collagen by 

decreasing the amount of MMP-1 (Barolet, Roberge, Auger, Boucher, & Germain, 2009). 

From the studies mentioned above, it can be concluded that the underlying molecular 

changes in response to LLLT aid skin rejuvenation through increasing collagen 

production and decreasing collagen degradation as illustrated in Figure 6. 

 

Figure 6. Possible mechanism of actions of skin rejuvenation under LLLT. 

Abbreviations: bFGF: basic Fibroblast Growth Factor, IL-6: Interleukin-6, LLLT: Low 

Level Light Therapy, MMP: Matrix Metalloproteinase, PDGF: Platelet-derived Growth 

Factor, TGF-β: Transforming Growth Factor-β, TIMP: Tissue Inhibitor of 

Metalloproteinase (Avci, et al., 2013). 
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 The safety, effectiveness, and biochemical mechanisms of LLLT have been 

broadly studied both in vitro and in vivo, but there has been no clear consensus in the 

validity of its use, and in choosing the ideal parameters (wavelength, energy density, and 

duration of exposure etc). In fact, it has been withheld by practitioners with a fear that 

LLL could potentially cause cell proliferation and promote the growth of cancer. 

Moreover, there has been little scientific study of oncologic outcomes after use of LLLT 

in cancer patients. From this standpoint, there is clearly a need for further studies of any 

potential oncogenesis of LLL in the presence or the absence of a given chemotherapeutic 

drug. 

Specific Aims 

 To evaluate the safety of LLLT on cancer cells in the presence or the absence of a 

chemotherapeutic drug, we will 

1) Determine the IC50 concentrations of two different anti-cancer chemotherapeutic 

drugs (5-FU and cisplatin) in two human cancer cells (MCF-7 and Jurkat E6-1). 

2) Determine the viability of both cells after treating each with LLL (808 nm, 

varying energy densities) both in the absence and the presence of each anti-cancer 

chemotherapeutic drug at a final concentration of one IC50. 

3) Perform statistical analyses to determine if there is a significant difference in the 

viability of cells between control (0 J/cm2) and each energy density (range from 

0.1 J/cm2 to 10 J/cm2) for both cell lines with each anti-cancer chemotherapeutic 

drug using three different 1-way ANOVA tests including Bennett, Bonferroni, 

and Sidak. 
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 We anticipate no significant difference in cell proliferation in both cell lines after 

LLL application with different energy densities either in the absence or the presence of a 

specific anti-cancer chemotherapeutic drug. We also don’t expect to see any significant 

difference in the viability of cells between control (0 J/cm2) and each energy density 

(range from 0.1 J/cm2 to 10 J/cm2) for both cell lines treated with a specific anti-cancer 

chemotherapeutic drug. 
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METHODS 

 

Materials 

Cell lines 

- MCF-7 cell line (American Type Culture Collection (ATCC)), a human breast 

adenocarcinoma cell line derived from mammary gland. 

- Jurkat, Clone E6-1 cell line (ATCC), a human T lymphocytic cell line derived from 

peripheral blood. 

Anti-cancer chemotherapeutic drugs 

- 5-FU (Sigma-Aldrich), a potent antitumor agent that inhibits pyrimidine synthesis by 

inhibiting thymidylate synthetase, thereby, depleting intracellular deoxythymidine 

triphosphate (dTTP) pools (Sigma-Aldrich). 

- Cisplatin (Sigma-Aldrich), a potent platinum-based antitumor agent that forms 

cytotoxic adducts with the DNA, primarily intrastrand crosslink adducts, which activate 

several signal transduction pathways, and culminate in the activation of apoptosis (Siddik, 

2003).  

LLL sources 

 LED device (Photo therapeutics, Inc.) was used to apply LLL on each cell line 

with a non-coherent light of 808 nm and power density of 0.014 W/cm2. The energy 

density was calculated by the following formula:  

Power density (0.014 W/cm2) x Time (s) = Energy Density (J/cm2) 
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The application of each energy density of LLL required the use of different exposure time 

for each. 

Table 1. An example of a range of varying energy densities applied during an actual 

procedure 

 

Energy Density (J/cm2) 0 0.1 0.5 1 3 10 

Time (seconds) ~ 0 ~ 7 ~ 36 ~ 71 ~ 214 ~ 714 

 

Cell Counting Kit-8 (CCK-8) solution (Dojindo) used for the detection of viable cells 

 CCK-8 allows sensitive colorimetric assays for the determination of the number 

of viable cells in cell proliferation and cytotoxicity assays by utilizing Dojindo’s highly 

water soluble tetrazolium-8 (WST-8) salt. This monosodium salt is reduced by 

dehydrogenases in cells in the presence of an electron mediator to yield formazan which 

is an orange colored product that is soluble in culture medium. The amount of the 

formazan dye generated by dehydrogenases in cells is directly proportional to the number 

of living cells (Dojindo Molecular Technologies, Inc., 2013). 

Flow chart of the experimental procedures 

1. Recovery of each cell line 

2. Determination of IC50 values of 5-FU and cisplatin separately on each cell line 

 MCF-7 cell line 

1) Seeding MCF-7 cells into 96-well plate 

 

2) Treatment of cells with varying concentrations of 5-FU and cisplatin separately 

 

~ 24-hour incubation 

~ 48-hour incubation 
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3) Treatment of cells with CCK-8 solution 

 

4) Detection of viable cells 

* A total of 3 trials and 4 trials were done for the determination of IC50 value of 

cisplatin and 5-FU, respectively. 

 Jurkat E6-1 cell line 

1) Seeding Jurkat E6-1 cells with varying concentrations of 5-FU and cisplatin 

separately into 96-well plate 

 

2) Addition of CCK-8 solution 

 

3) Detection of viable cells 

 * A total of 4 trials were done for the IC50 determinations of both 5-FU and 

 cisplatin 

3. LLLT on each cell line in the presence and the absence of 5-FU and cisplatin using 

IC50 value of each 

 MCF-7 cell line 

1) Seeding MCF-7 cells into 96-well plate 

 

2) Treatment of cells with and without 5-FU (70 µM) and cisplatin (17 µM) 

separately followed by the application of LLL with different dose densities 

 

~ 2-hour incubation 

~ 48-hour incubation 

~ 2-hour incubation 

~ 24-hour incubation 

~ 48-hour incubation 
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3) Treatment of cells with CCK-8 solution 

 

4) Detection of viable cells 

 * A total of 5 trials were done for both 5-FU and cisplatin treatments 

 Jurkat E6-1 cell line 

1) Seeding Jurkat E6-1 cells with and without 5-FU (20 µM) and cisplatin (7 µM) 

separately followed by the application of LLL with different dose densities 

 

2) Addition of CCK-8 solution 

 

3) Detection of viable cells 

 * A total of 3 trials were done for both 5-FU and cisplatin treatments 

Figure 7. Flow chart of the procedure taken for LLLT on each cell line under the 

treatment of 5-FU and cisplatin separately. Abbreviations: CCK-8: Cell Counting Kit-8, 

IC50: the half maximal inhibitory concentration, LLL: Low Level Light, LLLT: Low 

Level Light Therapy, MCF-7: Michigan Cancer Foundation-7, 5-FU: 5-Fluorouracil. 

 

Notes 

- All solutions and equipments used were sterile, and the procedures were performed 

using aseptic techniques to prevent contamination. 

- All culture incubations were performed in a humidified 37°C, 5% CO2 incubator. 

- When using CCK-8 solution, light was turned off since CCK-8 solution is light 

sensitive. 

~ 2-hour incubation 

~ 48-hour incubation 

~ 2-hour incubation 
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- To keep MCF-7 cells mitogenic, 4 mg/ml insulin solution (Novolin) was added to 

MCF-7 cell solution. For a 5 ml MCF-7 solution, 12 µl of insulin solution was added. 

- To make full medium, Roswell Park Memorial Institute-1640 (RPMI-1640) base 

medium (Lonza), Fetal Bovine Serum (Atlanta Biologicals), 0.5M 

Penicillin/Streptomycin solution (Gibco), and 100% 200 mM L-glutamine solution 

(Gibco) were mixed in 88%, 10%, 1%, and 1% in volume proportion respectively. 

- 1 mM 5-FU stock solution, 1.7 mM cisplatin stock solution, and insulin solution were 

vortexed before being used. 

- For MCF-7 cells, cells that were small and round whether attached or detached were 

considered dead. 

Detailed procedures 

Recovery of MCF-7 cell line 

1. A screw-cap vial containing MCF-7 cell line was collected from liquid nitrogen 

storage, and placed in a 37°C water bath along with 10 ml of serum-free medium. 

2. The frozen cells were allowed to thaw inside the water bath for 2–3 minutes with 

constant agitation to quickly thaw the cells. 

3. 1 ml of thawed cells was transferred to 10 ml of serum-free medium, and mixed 

thoroughly. 

4. The mixture was centrifuged at 900 rpm for 5 minutes, and the supernatant was 

discarded. 

5. 5 ml of full medium was added to the cells (pellet), and mixed thoroughly. Then, the 

cell suspension was transferred into a culture flask. 
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6. 12 µl of insulin solution was added to the cell suspension, and the cell suspension was 

visualized to confirm the viability of the cells. Then, the flask was placed inside the 

incubator. 

Subculture of MCF-7 cell line and medium renewal 

 MCF-7 cell line was sub-cultured once confluent (above 80% coverage), and 

medium was renewed 2 or 3 times a week. 

1. The full medium was discarded, and the cell monolayer was washed with 5 ml of 

phosphate-buffered saline (PBS) solution (Lonza). 

2. 500 µl of 0.25% trypsin solution (Gibco) was added to wash cell monolayer making 

sure the solution covers the entire monolayer. Then, the solution was discarded.  

3. The cells were incubated for 1–2 minutes or additional minutes (not exceeding 5 

minutes) to make sure the cells are detached.  

4. The cells were resuspended with 5 ml full medium, and transferred into a new flask 

with new full medium in either 1:3 or 1:4 ratio depending on the confluence. 

5. 12 µl of insulin solution was added to the flask, and the cell suspension was visualized 

to confirm the viability of the cells. Then, the flask was placed inside the incubator. 

Seeding MCF-7 cells into 96-well plate 

1. The cells were washed and detached by following the procedure described in the 

section “Subculture of MCF-7 cell line and medium renewal” from 1 to 3. 

2. 5 ml of full medium was placed into the flask, and mixed thoroughly. 
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3. 15 µl of 0.4% trypan blue solution (Gibco) and 15 µl of MCF-7 cell solution were 

combined, and they were mixed thoroughly. Then, 15 µl of the mixture was placed into a 

counting slide (Biorad). 

4. The number of cells was counted with a tissue culture (TC) 10TM automated cell 

counter (Biorad). 

5. Based on the number of cells, the amounts of cell suspension, full medium, and insulin 

solution needed were calculated such that 100 µl containing approximately 5000 cells are 

placed into each well. 

6. The calculated amounts of cell suspension, full medium, and insulin solution were 

combined, and mixed thoroughly. 

7. 100 µl (~5000 cells) of mixture was placed into each well in triplicate or quintuplicate 

per column.  

8. The cells were incubated for approximately 24 hours. 

Treatment of MCF-7 cells with varying concentrations of 5-FU and cisplatin separately 

1. Varying concentrations of 5-FU or cisplatin solutions were made by combining 

calculated amounts of 5-FU or cisplatin stock solution, full medium, and 1.44 µl of 

insulin solution (quintuplicate) or 0.96 µl of insulin solution (triplicate) for each 

concentration. Then, the mixtures were vortexed. 

2. The full medium was drawn out from each well using a vacuum. 

3. Each column was treated with 100 µl of each different concentration of 5-FU or 

cisplatin solution  

4. The 96-well plate was placed inside the incubator for approximately 48 hours. 
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Treatment of MCF-7 cells with CCK-8 solution 

1. The amounts of full medium and CCK-8 solution needed were calculated based on the 

fact that 100 µl of full medium and 10 µl of CCK-8 solution were needed for each well. 

2. The calculated amounts of full medium and CCK-8 solution were combined, and 

mixed thoroughly. 

3. Full medium was drawn out from each well using a vacuum. 

4. 110 µl of the mixture was dispensed into each well making sure that bubbles are not 

formed. If the bubbles were formed, they were eliminated by gently tipping it with 10 µl 

pipette tip. 

5. The 96-well plate was placed inside the incubator for approximately two hours. 

Detection of viable cells 

1. The 96-well plate was inserted into a microplate reader (Molecular Devices), and the 

absorbance values were measured at 450 nm using Softmax Pro 6.4 (Molecular Devices). 

Treatment of MCF-7 cells with and without 5-FU (70 µM) and cisplatin (17 µM) 

separately followed by application of LLL using different dose densities 

1. The calculated amounts of full medium and insulin solution were combined, and mixed 

thoroughly. The calculated amounts of full medium, 5-FU stock solution or cisplatin 

stock solution, and insulin solution were combined, and mixed thoroughly. 

2. Full medium was drawn out from each well using a vacuum. 

3. Cells on one half (first 6 columns) of the 96-well plate were not treated with 5-FU or 

cisplatin. Each well was treated with 100 µl of mixture containing full medium and 

insulin solution. Cells on the other half (last 6 columns) were treated with 70 µM solution 
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of 5-FU or 17 µM solution of cisplatin. On this half, 100 µl of the mixture containing full 

medium, 5-FU stock solution or cisplatin stock solution, and insulin solution was placed 

into each well. 

4. The 96-well plate was covered with its lid, and aluminum foil was wrapped around the 

lid while exposing each column one at a time from left to right when applying LLL. Each 

column was treated with LLL by an LED device for different duration of time, thus 

varying dose densities ranging from 0 to 10 J/cm2 were applied to each column. The same 

set of dose densities were applied for both halves. 

5. The 96-well plate was placed inside the incubator for approximately 48 hours. 

Recovery of Jurkat E6-1 cell line 

 The same procedure was taken as the section “Recovery of MCF-7 cell line” 

except insulin solution was not added to the cell suspension. 

Subculture of Jurkat E6-1 cell line and medium renewal 

 The cells were passaged about twice a week to maintain the cell density at a 

concentration between 1 x 105 cells/ml and 1 x 106 cells/ml, making sure that the 

concentration does not exceed 3 x 106 cells/ml. Medium was renewed every 2–3 days 

depending on cell density. 

1. 100 µl cell suspension and 300 µl of full medium were combined, and mixed 

thoroughly. 

2. 10 µl of the mixture was mixed thoroughly with 10 µl trypan blue solution.  

3. 10 µl of the mixture from above was transferred to edge of hemocytometer counting 

chamber (Haussen Scientific), and a cover slip was placed on top of the mixture.  
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4. The counting chamber was viewed under the microscope, and out of 9 squares, the 

central square was positioned to the center, and viewed with 10x power. The number of 

cells in the four corners (four squares) was counted. For the cells that were positioned in 

the lines of each square, only the ones that were positioned in the top and the left side of 

each square were counted.  

* Cells that appeared blue were considered dead, and they were not counted. 

5. The cell density was calculated as below. 

Cells/ml = Average count per square x dilution factor x 104 = Total # of cells in the four 

corners/4 x 8 x 104 

6. The cell suspension was centrifuged at 1000 rpm for 5 minutes. 

7. The supernatant was discarded, and 5 ml full medium was added to suspend the cells. 

8. The split ratio of cell suspension and full medium was determined based on the cell 

density, and the amounts needed for the cell suspension and full medium were 

determined. 

9. The calculated amounts of mentioned above were combined into a new flask before 

incubation. 

Seeding Jurkat E6-1 cells with varying concentrations of 5-FU and cisplatin separately 

into 96-well plate 

1. The cell density was determined following the procedure described in the section 

“Subculture of Jurkat E6-1 cell line and medium renewal” from step 1 to 5. 
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2. For each concentration of 5-FU or cisplatin solution, the amounts needed for cell 

suspension, 5-FU or cisplatin stock solution, and full medium were calculated based on 

the cell density and the concentration of the solution to be made. 

3. The calculated amounts mentioned above were combined, and the combined mixtures 

were vortexed. 

4. Each column was treated with 100 µl of each mixture in quintuplicate. 

5. The 96-well plate was placed inside the incubator for approximately 48 hours. 

Addition of CCK-8 solution into Jurkat E6-1 cells 

1. 10 µl of CCK-8 solution was dispensed into each well. If bubbles were formed, they 

were eliminated by gently tipping it with 10 µl pipette tip.   

2. The 96-well plate was placed inside the incubator for approximately two hours. 

Seeding Jurkat E6-1 cells with and without 5-FU (20 µM) and cisplatin (7 µM) separately 

followed by application of LLL using different dose densities 

1. The cell density of the cell suspension was determined following the procedure 

described in section “Subculture of Jurkat E6-1 cell line and medium renewal” from step 

1 to 5. 

2. Based on the cell density, the amounts needed for cell suspension and full medium 

were calculated for the wells that were not going to be treated with 5-FU or cisplatin. 

Also, the amounts of cell suspension, full medium, 5-FU stock solution or cisplatin stock 

solution were calculated for the wells that were going to be treated with 20 µM solution 

of 5-FU or 7 µM solution of cisplatin. 
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3. The calculated amounts mentioned above were combined, and mixed thoroughly for 

each. 

4. Cells on one half (the first 6 columns) of the 96-well plate were not treated with 5-FU 

or cisplatin. Each well on this half was treated with 100 µl of the mixture containing cell 

suspension and full medium. Cells on the other half (the next 6 columns) were treated 

with 20 µM solution of 5-FU or 7 µM solution of cisplatin. On this half, 100 µl of the 

mixture containing cell suspension, full medium, and 5-FU stock solution or cisplatin 

stock solution was placed into each well. 

5. Step 4 to 5 in section “Treatment of MCF-7 cells with and without 5-FU (70 µM) and 

cisplatin (17 µM) separately followed by application of LLL using different dose 

densities” was repeated. 
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RESULTS 

 

Determination of IC50 values of 5-FU and cisplatin on MCF-7 and Jurkat E6-1 cell 

lines 

 To determine the IC50 of each drug, each cell line was treated with different 

concentrations of each drug for 48 hours, and then the cell viability was measured. IC50 

was determined as the concentration of each drug required for 50% inhibition of the cell 

viability.  

 Multiple trials were done as depicted in Figure 7 to determine the IC50 values of 

5-FU and cisplatin on each cell line. The range of concentration was varied, and the 

number of concentrations used was varied throughout the trials depending on the 

outcomes for each trial. From each trial, simple linear regression was performed, and the 

IC50 value was determined from the regression line. Out of multiple IC50 values 

determined, the value that had the best fit along the points with a high R2 value was 

chosen. The IC50 values of 5-FU and cisplatin on MCF-7 and Jurkat E6-1 cell lines were 

determined as Table 2.  

Table 2. IC50 values of 5-FU and cisplatin on MCF-7 and Jurkat E6-1 cell lines 

                               Cell lines 

 

Anti-cancer  

chemotherapeutic drugs 

MCF-7 Jurkat E6-1 

5-FU 70 µM 20 µM 

Cisplatin 17 µM 7 µM 

 

Abbreviations: IC50: the half maximal inhibitory concentration, MCF-7: Michigan Cancer 

Foundation-7, 5-FU: 5-Fluorouracil. 
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 The four graphs in the Figure 8 show the simple linear regression lines for each 

anti-cancer chemotherapeutic drug on each cell line. Each simple linear regression line 

represents the line that displayed the best fit along the points out of multiple simple linear 

regression lines obtained from all trials for each anti-cancer chemotherapeutic drug on 

each cell line. 
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Figure 8. Simple linear regression lines for the determination of IC50 values of 5-FU and 

cisplatin in MCF-7 and Jurkat E6-1 cell lines. (A) 5-FU in MCF-7 cell line, [5-FU] (µM) 

= [0, 50, 60, 70, 80, 90, 100, 125, 150] (µM) (B) Cisplatin in MCF-7 cell line, [cisplatin] 

(µM) = [0, 1, 10, 20, 30] (µM) (C) 5-FU in Jurkat E6-1 cell line, [5-FU] (µM) = [0, 0.1, 1, 

10, 25] (µM) (D) Cisplatin in Jurkat E6-1 cell line, [cisplatin] (µM) = [0, 0.1, 1, 10] (µM). 

Abbreviations: IC50: the half maximal inhibitory concentration, MCF-7: Michigan Cancer 

Foundation-7, 5-FU: 5-Fluorouracil. 

 

Application of LLL on MCF-7 and Jurkat E6-1 cell lines under the treatment of 5-

FU and cisplatin 

 To determine the effect of LLL on the viability of both cell lines, cell viability of 

drug-treated and non-treated group was measured after applying LLL with different 

energy densities. The viability of cells that were treated with different energy densities of 

LLL was compared to that of control (0 J/cm2). The statistic analysis was performed by 

GraphPad software, and three different types of 1-way ANOVA multiple comparisons 

tests including Bennett, Bonferroni, and Sidak were done for each comparison. For each 

y = -6.6874x + 95.405

R² = 0.9602

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10

(D) Cisplatin in Jurkat E6-1 cell line

[Cisplatin] (µM)

V
ia

b
le

 C
e

lls
  (

%
o

f 
C

o
n

tr
o

l)



35 

group, the mean value of each energy density was compared with the mean value of the 

control (0 J/cm2). The results of significance tests in the viability of cells between 

different energy densities and the control (0 J/cm2) for both groups for each anti-cancer 

chemotherapeutic drug on each cell line are indicated in Tables 3–6. Also graphs were 

made as in the Figure 9 showing the number of viable cells (% to control) for each energy 

density of LLL for both the non-treated group and the drug-treated group for each cell 

line.  

Significance in the number of viable cells for each energy density compared to the 

control (0 J/cm2) of each group 

 When LLL was applied on MCF-7 cells, there was no significant difference in the 

number of viable cells between each energy density and the control (0 J/cm2) in the 

absence or the presence of 5-FU at IC50 (70 µM). However, a slight increasing trend 

among the number of viable cells was observed with increasing energy density in the 

absence of 5-FU, whereas no specific trend among the number of viable cells was 

observed with increasing energy density in the presence of 5-FU at IC50 (70 µM). 

 There was no significant difference in the number of viable cells between each 

energy density and the control (0 J/cm2) in the absence or the presence of cisplatin at IC50 

(17 µM). No specific trend among the number of viable cells was observed with 

increasing energy density in the absence or the presence of cisplatin at IC50 (17 µM). 

 When LLL was applied on Jurkat E6-1 cells, there was no significant difference 

in the number of viable cells between each energy density and the control (0 J/cm2) in the 

absence or the presence of 5-FU at IC50 (20 µM). No specific trend in the number of 
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viable cells was observed with increasing energy density in the absence or the presence of 

5-FU at IC50 (20 µM).  

 There was no significant difference in the number of viable cells between each 

energy density and the control in the absence of cisplatin. However, a significant increase 

(0.01 < P < 0.05) in the number of viable cells was confirmed between control group (0 

J/cm2) and 10 J/cm2 of LLL-treated group in the presence of cisplatin at IC50 (7 µM). All 

three tests including Bennett, Bonferonni, and Sidak tests confirmed its significance. No 

significant difference in the number of viable cells was found among the remaining 

comparisons for the cisplatin-treated group. No specific trend in the number of viable 

cells was observed with increasing energy density in the absence or the presence of 

cisplatin at IC50 (7 µM). 

Table 3. Significance tests results for LLLT on MCF-7 cell line in the absence and 

the presence of 5-FU 

 

Groups and                     

Comparisons 

(J/cm2) 

 

Tests 

Non-treatment group (without 

5-FU) 

Treatment group (with 5-FU at 

70 µM) 

0 vs. 

0.1 

0 vs. 

0.5 

0 

vs. 

1 

0 

vs. 

3 

0 

vs. 

10 

0 vs. 

0.1 

0 vs. 

0.5 

0 

vs. 

1 

0 

vs. 

3 

0 

vs. 

10 

Bennett NS NS NS NS NS NS NS NS NS NS 

Bonferroni NS NS NS NS NS NS NS NS NS NS 

Sidak NS NS NS NS NS NS NS NS NS NS 

 

Abbreviations: LLLT: Low Level Light Therapy, MCF-7: Michigan Cancer Foundation-

7, NS: No Significance (P > 0.05), 5-FU: 5-Fluorouracil. 
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Table 4. Significance tests results for LLLT on MCF-7 cell line in the absence and 

the presence of cisplatin 
 

Groups and                     

Comparisons 

                      (J/cm2) 

 

Tests 

Non-treatment group (without 

cisplatin) 

Treatment group (with 

cisplatin at 17 µM) 

0 vs. 

0.1 

0 vs. 

0.5 

0 vs. 

1 

0 vs. 

3 

0 vs. 

10 

0 vs. 

0.1 

0 vs. 

0.5 

0 vs. 

1 

0 vs. 

3 

0 vs. 

10 

Bennett NS NS NS NS NS NS NS NS NS NS 

Bonferroni NS NS NS NS NS NS NS NS NS NS 

Sidak NS NS NS NS NS NS NS NS NS NS 
 

Abbreviations: LLLT: Low Level Light Therapy, MCF-7: Michigan Cancer Foundation-

7, NS: No Significance (P > 0.05). 

 

Table 5. Significance tests results for LLLT on Jurkat E6-1 cell line in the absence 

and the presence of 5-FU 
 

Groups and                     

Comparisons 

                      (J/cm2) 

 

Tests 

Non-treatment group (without 

5-FU) 

Treatment group (with 5-FU 

at 20 µM) 

0 vs. 

0.1 

0 vs. 

0.5 

0 vs. 

1 

0 vs. 

3 

0 vs. 

10 

0 vs. 

0.1 

0 vs. 

0.5 

0 vs. 

1 

0 vs. 

3 

0 vs. 

10 

Bennett NS NS NS NS NS NS NS NS NS NS 

Bonferroni NS NS NS NS NS NS NS NS NS NS 

Sidak NS NS NS NS NS NS NS NS NS NS 
 

Abbreviations: LLLT: Low Level Light Therapy, NS: No Significance (P > 0.05), 5-FU: 

5-Fluorouracil. 

 

Table 6. Significance tests results for LLLT on Jurkat E6-1 cell line in the absence 

and the presence of cisplatin 
 

Groups and                     

Comparisons 

                      (J/cm2) 

 

Tests 

Non-treatment group (without 

cisplatin) 

Treatment group (with 

cisplatin at 7 µM) 

0 vs. 

0.1 

0 vs. 

0.5 

0 vs. 

1 

0 vs. 

3 

0 vs. 

10 

0 vs. 

0.1 

0 vs. 

0.5 

0 vs. 

1 

0 vs. 

3 

0 vs. 

10 

Bennett NS NS NS NS NS NS NS NS NS * 

Bonferroni NS NS NS NS NS NS NS NS NS * 

Sidak NS NS NS NS NS NS NS NS NS * 
 

*: Significance (0.01 < P < 0.05). Abbreviations: LLLT: Low Level Light Therapy, NS: 

No Significance (P > 0.05). 
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Figure 9. Viability of cells after LLLT with varying energy densities in the absence and 

the presence of 5-FU or cisplatin. The interleaved bars represent mean values with its 

standard error of mean. (A) LLLT on MCF-7 cells without and with 5-FU at IC50 (70 µM) 

(B) LLLT on MCF-7 cells without and with cisplatin at IC50 (17 µM) (C) LLLT on Jurkat 

E6-1 cells without and with 5-FU at IC50 (20 µM) (D) LLLT on Jurkat E6-1 cells without 

and with cisplatin at IC50 (7 µM). NS: Not significant (P > 0.05) compared to the control 
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(0 J/cm2), *: Significant (0.01 < P < 0.05) compared to the control (0 J/cm2). 

Abbreviations: IC50: the half maximal inhibitory concentration, LLLT: Low Level Light 

Therapy, MCF-7: Michigan Cancer Foundation-7, NS: No Significance, 5-FU: 5-

Fluorouracil. 
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DISCUSSIONS 

 

Interpretation of results  

 The treatment of LLL at 808 nm with varying energy densities ranging from 0 

J/cm2 to 10 J/cm2 under an LED source on MCF-7 and Jurkat E6-1 cells did not induce 

cell proliferation in vitro either in the absence or the presence of 5-FU or cisplatin at one 

IC50. Only a single significant difference was observed out of all comparisons as 

indicated in Tables 3–6. Even the comparison with a significance difference, the 

difference is imperceptible when looking at the cell viabilities of both groups (control and 

10 J/cm2) in the cisplatin-treated group of Jurkat E6-1 cell line indicated in Figure 9. No 

definite increase or decrease in trend in the viability of cells was observed with increasing 

energy density of LLL for all. Although a slight increase in trend in the viability of cells 

was observed with increasing energy density of LLL when treating LLL on MCF-7 cell 

in the absence of 5-FU, the trend was not definite. The number of viable cells 

progressively increased from 0 J/cm2 to 1 J/cm2, however, the number of viable cells 

decreased from 1 J/cm2 to 3 J/cm2. In fact, the number of viable cells for 3 J/cm2 was 

lower than the number of viable cells for control (0 J/cm2). The number of viable cells 

increased from 3 J/cm2 to 10 J/cm2. In essence, the number of viable cells was not 

progressively increasing with each successive increase in energy density, and no definite 

trend can be concluded from this observation. 
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Application to cancer patients 

 The treatment of anti-cancer chemotherapeutic drugs (5-FU and cisplatin) on 

cancer cell lines (MCF-7 and Jurkat E6-1) could be applicable to clinical situation where 

chemotherapeutic drugs are treated on cancer patients. LLLT has been used in cancer 

patients for the treatment of wound healing, relief of pain and inflammation, and other 

conditions while on chemotherapy. In vitro studies have to be done continuously treating 

different sources of LLL on different cancer cell lines. Different wavelengths, energy 

densities, and dosages etc should be tested with different cell lines. The study could be 

expanded to in vivo studies using animal models. 

MCF-7 cell line vs. Jurkat E6-1 cell line  

 When analyzing results, the results of Jurkat E6-1 cell line were more consistent 

than those of MCF-7 cell line. Multiple trials of LLLT on each cell line with each drug 

were done using different energy densities on each trial. Figure 9 shows the results of 

only one trial for each cell line with each drug. When treating LLL on MCF-7 cells in the 

absence or the presence of 5-FU or cisplatin, 5 different trials were done for both drugs, 

and the energy densities applied for each trial were as following: [0, 0.1, 0.5, 1, 3, 10] 

J/cm2, [0, 0.1, 1, 2, 5, 10] J/cm2, [0, 0.5, 1, 2.5, 5, 10] J/cm2, [0, 0.5, 1, 2, 4, 8] J/cm2, and 

[0, 2, 4, 6, 8, 10] J/cm2. When treating LLL on Jurkat E6-1 cells in the absence or the 

presence of 5-FU or cisplatin, 3 different trials were done for both drugs, and the energy 

densities applied for each trial were as following: [0, 0.1, 0.5, 1, 3, 10] J/cm2, [0, 0.5, 1, 

2.5, 5, 10] J/cm2, and [0, 0.5, 1, 2, 4, 8] J/cm2. After performing 1-way ANOVA 

significance tests and observing the trend of cell viability for all the trials for each cell 



43 

line with each drug, the one that matched the most with the majority of the results was 

chosen. For all 4 cases, the trial that applied energy densities [0, 0.1, 0.5, 1, 3, 10] J/cm2 

were chosen, and this happened out of coincidence. For each case, the trial that applied [0, 

0.1, 0.5, 1, 3, 10] J/cm2 was the one that matched the closest to the majority of the results 

for each. The results of Jurkat E6-1 cell line were precise, however, the results of MCF-7 

cell line were not as precise as those of Jurkat E6-1 cell line. In fact, some results were 

far off from each other with large margin of error. This difference in the preciseness 

could be due to the difference in the growth property of each cell line. MCF-7 cells are 

adherent cells in which the cells adhere to the surface of the medium where it grows. 

When MCF-7 cells were seeded on 96-well plate, and allowed to incubate for 24 hours, 

the cells adhered to the bottom surface of the well, and stayed attached to it. Jurkat E6-1 

cells grow as a single cell suspension with occasional clumping when it’s cultured. By 

being able to float around freely as a single cell, the cells may have been exposed more to 

the drugs and LLL compare to adherent cells, and this could have been a determining 

factor for giving consistent results.  

Potential sources of error 

 When counting MCF-7 cells, the cell counter indicated the total number of cells 

(# of cells/ml) and the total number of live cells (# of cells/ml). The total number of live 

cells should have been used for calculations, but quite often, the machine indicated much 

lower total number of live cells compared to the total number of cells even though the 

cells appeared to be alive. Sometimes, the machine indicated 10–20% yield with the total 

number of live cells only being 10–20% of the total number of cells. This error may have 
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been caused by inaccurate differentiation between the live cells and the dead cells by the 

machine. For these cases, the total number of cells was used for calculations. When 

seeding MCF-7 cells into 96-well plate, approximately 5000 cells/100 µl of cell 

suspension had to be used, and calculations were done based on this ratio. However, the 

total number of live cells may have been over-estimated since the total number of cells 

was used for some calculations, which may have led to seeding inaccurate number of 

cells. Out of the all the cells read by the machine, not all cells should have been alive, and 

by using the total number of cells instead of the total number of live cells, dead cells 

should have been counted, and this may have contributed to over-estimation. The 

inaccurate measurement counting the total number of live cells may have been over-

ridden by the fact that the total number of viable cells was counted in a relative scale 

within each well when the viable cells were “read” by the microplate reader to yield 

absorbance values. However, since there could have been more or fewer than 5000 

cells/100 µl within a single well, this may have contributed to inaccurate absorbance 

values. 

 When applying LLL on cells, LLL was being emitted from a rectangular area of 

LED device, and this area was faced down directly into the lid of the 96-well plate into 

the area of wells of column where LLL was being applied on. During this procedure, 

there is a possibility that the rectangular area was not properly positioned into the column, 

and some wells may have not been treated with LLL due to this improper positioning. If 

this was the case, the cells in the wells that were not applied with LLL would have been 

the same condition as the cells in control (0 J/cm2). The possibility of this error is very 
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low, but there was no guarantee that the rectangular area of the LED device was properly 

positioned every single time when LLL was applied. 

Conclusions 

 The application of LLL at 808 nm with energy densities ranging from 0.1 J/cm2 to 

10 J/cm2 under an LED source did not promote cell proliferation or death compared to 

control (0 J/cm2) for each cell line in the absence or the presence of each drug, and no 

definite trend was observed with increasing energy density. The study suggests that 

LLLT at these parameters may be safe to use on cancer patients, but further studies on 

different cancer cell lines and animal models are warranted. Moreover, the parameters 

(wavelength, energy density, dosage) of LLL must be tested further with different cancer 

lines and animal models. 
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APPENDIX 1 

 

Raw Data of Figure 8 

(A) 5-FU in MCF-7 cell line 

 

(B) Cisplatin in MCF-7 cell line 

 

(C) 5-FU in Jurkat E6-1 cell line 

 

 

 

 

 

[5-FU] (µM) 0 50 60 70 80 90 100 125 150

Absorbance Values 2.2833 1.2177 1.1346 1.0458 0.7521 0.8148 0.5927 0.8272 0.5151

0.1587 0.9573 1.1249 1.112 1.0274 0.932 0.8458 0.7456 0.4748

2.5204 1.3452 1.1142 1.0866 0.9356 1.0452 0.8842 0.5907 0.3682

2.3277 1.3732 1.1072 1.0481 0.9316 0.9795 0.9135 0.6052 0.4884

2.4614 1.243 1.0708 0.9935 1.1465 0.9758 0.8738 0.725 0.3991

Average Absorbance Values 2.3982 1.294775 1.11034 1.0572 1.010275 0.983125 0.879325 0.765933 0.44912

% of control (0 µM) 100 53.98945 46.29889 44.08306 42.12639 40.99429 36.66604 31.93784 18.72738

[Cisplatin] (µM) 0 1 10 20 30

Absorbance Values 2.4671 2.2412 1.5915 0.7507 0.54

2.4476 1.9188 1.9291 0.7938 0.5771

2.5314 2.2297 1.5317 0.9581 0.5151

2.2512 2.348 1.7405 0.8398 0.3397

2.4689 2.426 1.6208 1.024 0.376

Average Absorbance Values 2.43324 2.311225 1.621125 0.87328 0.46958

% of control (0 µM) 100 94.98549 66.624131 35.8895958 19.298548

[5-FU] (µM) 0 0.1 1 10 25

Absorbance Values 0.5271 0.5505 0.4498 0.3844 0.2365

0.5841 0.567 0.4363 0.3614 0.227

0.5488 0.4966 0.0899 0.3156 0.2746

0.5397 0.5314 0.4016 0.3114 0.2179

0.5129 0.5372 0.5533 0.3421 0.228

Average Absorbance Values 0.54252 0.53654 0.46025 0.34298 0.2368

% of control (0 µM) 100 98.89774 84.83558 63.21979 43.64816
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(D) Cisplatin in Jurkat E6-1 cell line 

 

 

[Cisplatin] (µM) 0 0.1 1 10

Absorbance Values 0.4514 0.4721 0.332 0.1315

0.4715 0.4461 0.3553 0.1309

0.4812 0.4392 0.3548 0.1399

0.442 0.4601 0.4001 0.1328

0.4335 0.4347 0.362 0.1362

Average Absorbance Values 0.45592 0.45044 0.36084 0.13426

% of control (0 µM) 100 98.79803 79.14546 29.44815
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APPENDIX 2 

 

Raw Data of Figure 9 

(A) LLLT on MCF-7 cells without and with 5-FU at IC50 (70 µM) 

 

(B) LLLT on MCF-7 cells without and with cisplatin at IC50 (17 µM) 

 

 

 

without 5-FU with 5-FU (70 uM)

Energy Density (J/cm 2̂) 0 0.1 0.5 1 3 10 0 0.1 0.5 1 3 10

Absorbance Values 1.7512 1.2703 1.5721 1.5449 1.4264 1.4619 0.4354 0.385 0.4047 0.4626 0.5618 0.391

1.3569 1.5152 1.6649 1.8106 1.4227 1.5137 0.5071 0.507 0.6548 0.6156 0.5387 0.5323

1.3418 1.5823 1.5072 1.5856 1.2951 1.5251 0.5026 0.567 0.5725 0.6471 0.5618 0.7162

1.4258 1.6402 1.5314 1.5298 1.3893 1.5084 0.3798 0.5477 0.5139 0.4785 0.5312 0.5683

1.5727 1.6442 1.5837 1.4779 1.4046 2.0132 0.6407 0.7297 0.7993 0.6673 0.7725 0.7409

Average Absorbance Values 1.48968 1.53044 1.57186 1.58976 1.38762 1.60446 0.49312 0.54728 0.58904 0.57422 0.5932 0.58974

% of control (0 J/cm 2̂) 100 102.7362 105.5166 106.7182 93.14886 107.705 33.10241 36.73809 39.54138 38.54653 39.82063 39.58837

without Cisplatin with Cisplatin (17 uM)

Energy Density (J/cm^2) 0 0.1 0.5 1 3 10 0 0.1 0.5 1 3 10

Absorbance Values 1.7344 1.7506 1.7545 1.8128 1.7313 1.9252 0.7309 0.7829 0.6893 0.7623 0.9782 0.8637

1.764 1.7166 1.8857 1.781 1.8819 1.8757 0.826 0.7651 0.7559 0.7973 0.8764 0.9484

1.8487 1.7609 1.7256 1.7728 1.8358 1.6401 0.7381 0.8123 0.7952 0.8649 0.8487 0.8067

1.8386 1.8121 1.8044 1.8508 1.7713 1.7087 0.928 0.9581 0.8894 0.8489 0.9719 0.8513

1.9591 1.9077 1.8369 1.7743 1.759 1.819 0.8607 0.7764 0.8841 1.0374 0.8216 0.9219

Average Absorbance Values 1.82896 1.78958 1.80142 1.79834 1.79586 1.79374 0.81674 0.81896 0.80278 0.86216 0.89936 0.8784

% of control (0 J/cm^2) 100 97.84686 98.49423 98.32582 98.19023 98.07432 44.65597935 44.77736 43.8927 47.13936 49.1733 48.02729
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(C) LLLT on Jurkat E6-1 cells without and with 5-FU at IC50 (20 µM) 

 

(D) LLLT on Jurkat E6-1 cells without and with cisplatin at IC50 (7 µM) 

 

without 5-FU with 5-FU (20 uM)

Energy Density (J/cm^2) 0 0.1 0.5 1 3 10 0 0.1 0.5 1 3 10

Absorbance Values 0.4169 0.4507 0.3981 0.397 0.4042 0.4222 0.2049 0.2224 0.2082 0.2071 0.2084 0.2005

0.4234 0.4371 0.4389 0.4323 0.4232 0.4518 0.209 0.219 0.2217 0.2079 0.2159 0.2116

0.415 0.444 0.4206 0.4198 0.4727 0.4563 0.2303 0.2326 0.2272 0.2232 0.2235 0.2092

0.434 0.4193 0.4426 0.3972 0.4278 0.4418 0.2208 0.2165 0.2266 0.2137 0.201 0.2106

Average Absorbance Values 0.422325 0.437775 0.42505 0.411575 0.431975 0.443025 0.21625 0.222625 0.220925 0.212975 0.2122 0.207975

% of control (0 J/cm^2) 100 103.6583 100.6452 97.45457 102.285 104.9014 51.20464098 52.71414 52.31161 50.42917 50.24566 49.24525

without cisplatin with cisplatin (7 uM)

Energy Density (J/cm 2̂) 0 0.1 0.5 1 3 10 0 0.1 0.5 1 3 10

Absorbance Values 0.4016 0.4262 0.3998 0.4067 0.3911 0.4465 0.1368 0.1411 0.1467 0.1392 0.1425 0.1431

0.3825 0.4097 0.4197 0.3837 0.4054 0.4064 0.1316 0.1415 0.1369 0.1457 0.1382 0.1446

0.4106 0.3885 0.4129 0.3912 0.4059 0.3935 0.1388 0.1418 0.1413 0.1461 0.1433 0.146

0.4098 0.3993 0.3951 0.4296 0.4244 0.4475 0.1441 0.1414 0.1428 0.1474 0.1483 0.1533

Average Absorbance Values 0.401125 0.405925 0.406875 0.4028 0.4067 0.423475 0.137825 0.14145 0.141925 0.1446 0.143075 0.14675

% of control (0 J/cm 2̂) 100 101.1966 101.4335 100.4176 101.3898 105.5718 34.35961359 35.26332 35.38174 36.04861 35.66843 36.58461
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Pediatric department of Sinai Hospital, Baltimore, MD, Jun 2010 

• Observed pediatric care in anesthesia, MRI, blood work, and dental treatment 

 

Volunteer/Shadower 

Wilmer Eye Clinic at Wyman Park of Johns Hopkins Hospital, Baltimore, MD, Summer 

of 2008 

• Assisted in patient flow 

• Observed eye exams and patient care relevant to eye conditions provided by an 

optometrist 

 

Professional Memberships and Honors 

The American Chemical Society, 2010 

Dean’s List, 2008 

Carl A. Knierim Scholar, 2008 

 

Poster 

R. Gulati, M. Roser, S. Torr-Brown, A. Jeong, G. Dagnelie; A Comparison Study of the 

Visual & Memory Stimulating (VMS) Grid and the Amsler grid as Self-monitoring tools 

for Age-related Macular Degeneration, 2009 

 

Conference 

The Association for Research in Vision and Ophthalmology (ARVO) 2009 Annual 

Conference, Fort Lauderdale, FL, May 3–7, 2009 

 

Foreign Language 

Fluent in Korean 


