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ABSTRACT 

 

Individuals with Parkinson’s disease (PD) present with motor and non-motor 

symptoms, including in the visuospatial domain. Correction of walking abnormalities 

through application of visual cues in the environment has been reported in PD, but the 

mechanisms of action are poorly understood. The present project examined competing 

explanations of the effects of visual guidance on multiple aspects of gait in PD.  

Comfortable over-ground walking was performed by 9 participants with left-side motor 

onset (LPD), 11 with right-side motor onset (RPD), and 13 age-matched normal control 

participants (NC).  Study 1 examined whether veering in PD is predominantly induced by 

asymmetrical perception of the visual environment or by motor asymmetry between 

relatively affected and relatively non-affected body side. Walking conditions were eyes-

open, vision-occluded, and egocentric reference point (walk toward the perceived center 

of a distant target). The visual hypothesis predicted that LPD, with a known tendency 

toward left spatial hemineglect, would veer rightward, whereas RPD would veer leftward. 

The motor hypothesis predicted the opposite pattern of results because the more affected 

body side has shorter step length. The results supported the visual hypothesis.  
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In Study 2, visually-cued gait was examined to establish whether the key variable 

to improvement is attention to pattern rhythmicity, or instead if improvement may arise 

from perception of dynamic flow.  Floor patterns included transverse lines (attention; 3 

frequencies) and randomly-placed squares (dynamic; 3 densities). Relative to baseline, 

both transverse lines and random squares, especially at higher frequency/density, resulted 

in gait improvements and induced more stable interlimb coordination, especially for 

LPD, the subgroup known to have greater visual dependence. Effects lasted after the cues 

were removed. The success of the random-squares cuing indicates that the mechanism of 

improvement may be dynamic flow of visual texture rather than attention, and further 

suggests that vision-based interventions need not be restricted to transverse lines. 

Taken together, the studies lay the foundation for the development of treatments 

for walking disturbances in PD by addressing critical issues that could influence the 

outcomes of therapeutic interventions, including the role of visual input and the 

differential effects on PD subgroups.  
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GENERAL INTRODUCTION 

This introduction lays out the rationale leading to the two main purposes of the 

dissertation project. One was to achieve insights into the factors that contribute to the 

difficulty in navigation experienced by individuals with Parkinson’s disease (PD) that 

may arise primarily from motor deficits, visuospatial and perceptual deficits, or both. 

First, I hypothesized that we would find distinct profiles of navigational veering between 

people with PD who had motor symptom onset on the left body side (LPD) and those 

whose motor onset was on the right body side (RPD). I further hypothesized that veering 

under visual guidance would be in the direction predicted by visuospatial deficits rather 

than by the motoric asymmetry between the relatively affected and relatively non-

affected body side. The second main aim of the project was to examine the effects of 

visual cues on regulating gait and coordination patterns during over-ground walking in 

people with PD. Two types of external visual cues were employed in order to assess 

competing theories in the literature on the mechanism underlying visually-controlled 

locomotion: attentional strategy on foot stepping over each provided spatially rhythmic 

cue vs. visual flow generated by self-motion. The visual cues on the walkway were 

equally-spaced transverse lines (spatially rhythmic) and randomly placed small squares. 

The random squares condition was used to highlight the role of dynamic visual cues in 

altering locomotive behavior by minimizing the attention drawn to foot placement and 

eliminating the rhythmic pattern of the cues. For both conditions, I hypothesized that the 

gait patterns of PD would be regulated at a level comparable to that of a healthy age-

matched control group, and LPD and RPD groups would differ in their response to the 
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visual cues.  

PD was documented in 1817 by James Parkinson (Parkinson 2002) with an 

emphasis on its evident motor symptoms. With increasing recognition and understanding 

of its negative impact on people’s daily living, it has become a target of much 

neurological research. The etiology of the disease is still not clear but one of the well-

known identifiers is the deficiency of the dopamine amacrine cells in the substantia nigra 

pars compacta in the midbrain (Kempster et al., 1989). Dopamine has important roles at 

several anatomical sites, and any interference with this neurotransmitter could result in 

abnormal function in multiple domains. For example, typical motor symptoms of the 

disease include resting tremor, bradykinesia, postural instability, gait freezing, shuffling 

gait pattern, rigidity in the trunk and limbs, reduced pelvis rotation and lack of arm 

swing, all of which put people with PD at a high risk of falling (Wood, Bliclough et al. 

2002; Schaafsma, Balash et al. 2003; Schaafsma, Giladi et al. 2003). The symptoms 

almost always first emerge on one side of the body and then progress to bilateral 

involvement. 

This asymmetry of motor symptoms in PD affects locomotive dynamics. Shorter 

stride length on the more affected side compared to the less affected side, and 

asymmetrical interlimb coordination, exist commonly among people with PD and these 

motor characteristics are strongly associated with impairments in postural stability, 

turning behavior and continuity of gait (Plotnik, Giladi et al. 2005; Yogev, Plotnik et al. 

2007; Boonstra, van der Kooij et al. 2008; Nanhoe-Mahabier, Snijders et al. 2011; 

Frazzitta, Pezzoli et al. 2013; Lin, Wagenaar et al. 2014).  
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Reduced dopamine may not only be responsible for motor symptoms of PD but 

for non-motor perceptual impairments in contrast perception, motion discrimination, 

color discrimination and visuospatial perception (Bodis-Wollner et al., 1987; Bodis-

Wollner 1990; Harris et al., 1990; Brandies, & Yehuda 2008). Higher-order visual 

processing and cognition may also be affected after the PD pathology develops further 

into central cortex (Berger et al. 1991; Davidsdottir et al., 2008). One role of vision in 

spatial navigation is perceiving the layout of the world, but a second that is equally 

important is controlling one’s movement. Absence of proper visual input has been 

acknowledged as a critical risk factor for incidence of falls especially for people with 

visual impairment due to neurological disorders or ageing (Perrin, Jeandel et al. 1997; 

Hafström, Frasson et al. 2002; Lee and Scudds 2004.). Little is known about how visual 

impairments may affect movement in people with PD, however, because the disease was 

traditionally characterized as a motor disorder rather exclusively, and rehabilitation 

research has accordingly been directed mainly at interventions targeting the motor 

symptoms.  

One aspect of spatial navigation is veering (lateral deviation along the medio-

lateral axis). Veering abnormalities have been commonly reported among people with 

PD. Those who are more affected on the left side of body (LPD; initial right hemisphere 

pathology) tend to bump into objects more on the left side, whereas PD patients with 

right body-side onset (RPD; left hemisphere predominant pathology) show no particular 

bias (Davidsdottir, Cronin-Golomb et al. 2005). Hemi-specific errors in LPD and RPD 

have also been found on visuospatial testing, such as on horizontal line bisection (Lee, 
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Harris et al. 2001; Davidsdottir, Wagenaar et al. 2008; Laudate, Neargarder et al. 2013), 

copying and drawing tasks (Shelton, Bowers et al. 1990; Vallar 1998), self-report of daily 

visual function (Davidsdottir, Cronin-Golomb et al. 2005), reaching and grasping tasks 

(Rossit, McIntosh et al. 2012), body-scaled aperture estimation (Lee, Harris et al. 2001), 

and size perception comparison in two hemi-spaces (Milner and Harvey 1995; Harris, 

Atkinson et al. 2003). In general, LPD perceive stimuli in the left and upper quadrants of 

egocentric space as shorter or smaller than in the right and lower quadrants resulting in a 

rightward spatial bias, whereas RPD perceive visual stimuli more like healthy control 

adults. It has been suggested that damage to the right hemisphere contributes to more 

severe visuospatial impairments than damage to the left hemisphere, presumably because 

the right hemisphere mediates more visuospatial processing than the left (Cronin-Golomb 

2010).  

Whether veering in PD is more attributed to errors in visuospatial perception or to 

motoric asymmetry has not been addressed directly. Two potential mechanisms predict 

contradictory veering directions. The first goal of this dissertation research was to assess 

veering in individuals with LPD and RPD under conditions of visual guidance and vision 

occluded, and examine whether visuospatial bias or motor bias better account for lateral 

drift.  

The second aim of this dissertation was to address the current debate over the 

mechanism underlying the effects of visual cues on gait regulation in PD, namely the 

attentional strategy hypothesis vs. the dynamic visual flow hypothesis. Because some 

pharmacological or surgical treatments of motor symptoms have been shown to evoke 
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unpredicted adverse effects (Appleby et al. 2007), the need for alternative therapeutic 

approaches that are effective and less harmful is imperative. One such approach is 

modification of the visual environment. Studies have shown that normal gait dynamics 

can be elicited in PD using external visual cues. The most commonly used is placing 

transverse lines along a walking pathway. Positive effects have been reported consistently 

in promoting more stable gait kinematics with better step length and increased walking 

speed (Jiang, Norman 2006; Azulay et al. 1996; Azulay et al. 1999; Azulay et al. 2006; 

Morris et al. 1996; Vitorio et al. 2014; Lewis et al. 2000; Almeida, Bhatt 2012; Sidaway 

et al. 2006; Suteerawattananon et al. 2004; Rubinstein et al. 2002; Wegen et al. 2006). 

Some investigators have suggested that the spatially rhythmic visual cues caused the 

walkers to focus their attention on stepping over each of the sequential transverse lines on 

the floor (Lewis et al. 2000; Lebold and Almeida 2011), whereas others believe it is the 

dynamic flow information that is important in movement control. This latter view was 

first raised by Azulay et al. (1999), and is consistent with the Gibsonian view (Gibson 

1966) that visual information in the environment provides direct guidance for action. If 

dynamic visual flow is impeded experimentally, no improvement of gait is obtained 

(Azulay et al. 1999; Lebold and Almeida 2011). Recently, the attentional focus on foot 

positioning over each cue was challenged by the finding that increase of stride length and 

walking speed was still achieved even if information from lower extremities was not 

available (Vitorio et al. 2014). The assertion of the important role of embedded specific 

patterns of visual cues in gait regulation accords with Gibson’s theory about visually 

controlled locomotion (Gibson 1966), which inspired some researchers to re-examine the 
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role of attention and start to investigate the effect of dynamic visual cues on walking 

pattern regulation in PD (Schubert et al. 2005; Young et al. 2010; Lin et al. 2014), though 

the number of related studies is still quite limited. Further, most of the studies were not 

conducted during over-ground walking but rather treadmill walking, which may affect the 

outcomes of kinematic measures of gait (Pearce et al. 1983; Stolze et al. 1997; Bello et al. 

2010; Almeida, Bhatt 2012).  

In order to address the aims of the second study, two types of visual cues were 

employed and systematically manipulated: the distance between lines and texture density 

of random squares. The latter was used based on the assumption that it is less likely to 

draw the walker’s attention to foot placement compared to the equally spaced transverse 

lines. Therefore, changes in locomotive patterns that occur in the random squares 

condition would support the hypothesis that gait improvement in PD is attributable to the 

dynamic flow properties of the visual patterns, rather than use of an attentional strategy.  

  



 

 7

STUDY 1: Veering in Hemi-Parkinson’s Disease: Primacy of Visual over Motor 

Contributions 

ABSTRACT  

The inability to maintain a straight trajectory while walking is often reported in 

individuals with Parkinson’s disease (PD). It is as yet unclear as to whether the 

mechanism underlying veering, or lateral drift, is predominantly vision-based 

(asymmetrical perception of the visual environment) or motoric (asymmetry between 

relatively affected body side and relatively non-affected body side). We examined the 

competing visual and motor hypotheses by assessing veering in 20 non-demented 

individuals with PD and 13 matched normal control participants (NC). The PD group 

included 9 with initial/current predominant left-side onset of motor symptoms (LPD) and 

11 with right-side onset (RPD). Participants walked in a corridor under three conditions: 

eyes-open, vision-occluded, and Egocentric Reference Point (ECRP; walk toward a 

subjectively perceived center of a target at the end of the corridor). Kinematic data were 

collected. The visual hypothesis predicted that LPD, with a known tendency toward mild 

left spatial hemineglect, would veer rightward, in line with their perception of the visual 

target as right of center, whereas RPD would show leftward veering. The motor 

hypothesis predicted the opposite pattern of results:  LPD would veer leftward because 

their left (more affected) body side had shorter step length than the right (less affected) 

body side, and RPD, for the same reason, would veer rightward. Results supported the 

visual hypothesis. On both the eyes-open and ECRP conditions, RPD lateral drift 

significantly differed from NC, with RPD veering leftward despite a shorter stride length 
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on the right body side and LPD veering rightward despite a shorter stride length on the 

left body side, though the LPD-NC difference was not significant. The results also 

revealed significantly reduced rightward veering and stride length asymmetry in LPD 

when they walked in ECRP condition than in eyes-open condition. The findings suggest 

that interventions to correct walking abnormalities such as veering in PD should 

incorporate vision-based strategies rather than solely addressing motor asymmetries, and 

should be tailored to the distinctive navigational profiles of LPD and RPD. 
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INTRODUCTION  

Parkinson’s disease (PD) is a neurodegenerative disorder first described in 1817 

by James Parkinson (Parkinson 2002). Typical motor symptoms of the disease include 

resting tremor, bradykinesia, postural instability, freezing of gait, shuffling gait pattern, 

rigidity in the trunk and limbs, reduced pelvis rotation and lack of arm swing, all of 

which put people with PD at a high risk of falling (Bloem, Boers et al. 2001; Wood, 

Bilclough et al. 2002; Schaafsma, Balash et al. 2003; Schaafsma, Giladi et al. 2003). 

Non-motor features of the disease have also been identified. In the visual domain, these 

include changes in basic visual functions such as contrast sensitivity, motion perception, 

color discrimination and visuospatial perception (Bodis-Wollner, Marx et al. 1987; 

Bodis-Wollner 1990; Harris, Calvert et al. 1990; Davidsdottir, Cronin-Golomb et al. 

2005; Uc, Rizzo et al. 2005; Brandies and Yehuda 2008; Archibald, Clarke et al. 2011). 

A current view is that the role of vision in spatial navigation includes not only 

perceiving the layout of the world, but also, importantly, controlling one’s movement. 

Absence of proper visual inputs has been acknowledged as a critical risk factor for falls 

especially for people with visual impairment due to neurological disorders or normal 

aging (Perrin, Jeandel et al. 1997; Hafström, Fransson et al. 2002 ; Lee and Scudds 2003). 

This proposition has not typically been applied to PD, because the disease was 

traditionally characterized as a motor disorder rather exclusively, with the focus of 

rehabilitation research directed at interventions targeting the motor symptoms. 

Davidsdottir and colleagues reported that visual and visuospatial impairments were 

prevalent in a sample of 81 individuals with PD, with visual hallucinations, double vision 
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and contrast sensitivity deficits being strongly associated with freezing of gait 

(Davidsdottir, Cronin-Golomb et al. 2005). Although visual processing is impaired, there 

is increased dependence on vision in PD for postural control (Azulay, Mesure et al. 2002) 

and gait regulation while walking (Morris, Iansek et al. 2005). Therefore, advancing our 

understanding of the non-motor symptoms of PD such as deficits in visuospatial 

processing, as well as their potential contribution to locomotive disability, is a pressing 

need in the field.  

PD almost always has unilateral onset due to the underlying hemispheric 

dopamine asymmetry, and this laterality is reflected in the difficulties that people with 

PD commonly endorse in regard to navigating in space (Davidsdottir, Cronin-Golomb et 

al. 2005). PD patients with an initial left body-side onset of motor symptoms (LPD; right 

hemisphere predominant pathology) tend to bump into objects more on the left than right 

side, whereas PD patients with a right body-side onset (RPD; left hemisphere 

predominant pathology) show no particular bias. A mild visual neglect or disturbed 

object detection for the hemispace on the side of motor onset has been suggested to 

account for these phenomena. During spatial navigation tasks, veering (lateral deviation 

from a straight or intended path) in PD has been measured quantitatively; persons with 

LPD veered rightward in the presence of visual input, whereas persons with RPD veered 

leftward (Davidsdottir, Wagenaar et al. 2008; Young, Wagenaar et al. 2010). This finding 

echoes the different profiles that LPD and RPD display on visual perception tasks, 

including horizontal line bisection (Lee, Harris et al. 2001; Davidsdottir, Wagenaar et al. 

2008; Laudate, Neargarder et al. 2013), copying and drawing tasks (Shelton, Bowers et 
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al. 1990; Vallar 1998), self-report of daily visual function (Davidsdottir, Cronin-Golomb 

et al. 2005), reaching and grasping tasks (Rossit, McIntosh et al. 2012), body-scaled 

aperture estimation (Lee, Harris et al. 2001), and size perception comparison in two 

hemi-spaces (Milner and Harvey 1995; Harris, Atkinson et al. 2003). Overall, individuals 

with LPD exhibit a rightward spatial bias, perceiving stimuli as shorter or smaller on the 

left than the right, whereas individuals with RPD perceive visual stimuli more like 

healthy control adults—for example, bisecting lines slightly to the left (“pseudoneglect”) 

(Jewell and McCourt 2000). It appears that the consequences of right hemisphere damage 

(LPD) contribute to more severe visuospatial impairments than damage to the left 

hemisphere (RPD), as the right hemisphere mediates more visuospatial processing than 

the left in the general population and also in PD (Cronin-Golomb 2010).  

Asymmetry of symptoms also influences the dynamics of sensorimotor 

coordination, which significantly influences postural stability, turning behavior, and 

continuity of gait. (Plotnik, Giladi et al. 2005; Yogev, Plotnik et al. 2007; Boonstra, van 

der Kooij et al. 2008; Nanhoe-Mahabier, Snijders et al. 2011; Frazzitta, Pezzoli et al. 

2013; Lin, Wagenaar et al. 2014). Individuals with PD typically have less stable and 

more asymmetric inter-limb coordination patterns during locomotion, e.g., shorter stride 

length on the initially affected body side than on the secondarily affected body side 

(Plotnik, Giladi et al. 2005; Young, Wagenaar et al. 2010; Lin, Wagenaar et al. 2014). 

Although no conclusive association has been drawn between motor asymmetry and 

veering, the difference in stride length between body sides has been offered as an 

explanation (Guth and Laduke 1994). Moreover, there were consistent trends shown in 
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previous veering studies that LPD persons veered rightward, whereas RPD persons 

veered leftward during normal walking, corresponding to the hemisphere with presumed 

lower dopamine levels (Davidsdottir, Wagenaar et al. 2008; Young, Wagenaar et al. 

2010). 

Whether the source of veering in PD is more attributed to errors in visuospatial 

perception or to asymmetry of motor features has not been addressed directly. These two 

potential mechanisms provide contradictory predictions for veering direction. If veering 

is primarily driven by asymmetrical walking patterns expected in PD between the 

relatively affected and relatively non-affected body side, a tendency to veer towards the 

side of body that has relatively shorter step length would be observed regardless of 

whether they walked with eyes open or vision occluded, i.e., LPD would veer leftward, 

whereas RPD would veer rightward. On the other hand, if veering is driven by 

visuospatial bias (as seen in mild hemineglect), veering should be shifted in the opposite 

direction, with LPD veering rightward and RPD veering leftward. The visuospatial bias 

might be observed especially when participants were asked to walk towards the self-

perceived center of a horizontal line placed at the end of the corridor. The resulting 

visuospatial shift of the egocentric midline in PD would come into play: LPD would 

generate rightward error on perceiving the center of the bar, resulting in a rightward 

veering trajectory, and a similar (but leftward) effect would be expected in RPD, 

although the size of the bias would be expected to be smaller because the influence of 

right hemisphere dysfunction on visuospatial perception is greater than that of the left. 
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Our goal was to assess directly whether visuospatial bias or motor bias accounts better for 

lateral drift in individuals with LPD and RPD.  

 

METHODS  

Participants  

The study included 20 non-demented individuals who had been diagnosed with 

idiopathic PD (11 men, 9 women) and 13 normal control adults (NC; 4 men, 9 women) 

(Table 1). The distribution of men and women did not differ between the PD and NC 

groups (χ2 = 1.87, p = 0.17). The PD participants were recruited from the Parkinson’s 

Disease Clinic at the Boston Medical Center and from the Michael J. Fox Foundation 

Trial Finder. The NC group was recruited from the Fox Trial Finder and the local 

community. All participants underwent health history screening prior to taking part in the 

study. Exclusion criteria included the inability to ambulate independently or history of 

musculoskeletal impairments or pain condition; lower extremity impairments that 

prevented the individual from moving freely; use of walking assistive devices; 

coexistence of serious chronic medical illness; history of traumatic brain injury or stroke; 

psychiatric or neurological diagnoses (besides PD, in the PD group); surgery affecting the 

thalamus, basal ganglia, or other brain regions; history of alcoholism or other drug abuse; 

use of psychoactive medication except antidepressants or anxiolytics in the PD group; use 

of any psychoactive medication in the control group; presence of clinically significant 

eye disease, or corrected binocular acuity poorer than 20/40. Participants were screened 
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for acuity binocularly at a distance of 10 feet using a Snellen chart; Snellen scores were 

converted to logMAR scores for the analysis. Mean acuity was -0.01 (20/16 Snellen) (SD 

= 0.07) for the PD group, and -0.09 (20/16 Snellen) (SD = 0.03) for the NC group. There 

was a significant group difference with NC showing better acuity (t[26.1] = 4.21, p = 

0.001, ŋ2 = 0.29) but is probably not of clinical significance, as both groups’ acuity was 

very good. Although we considered including acuity as a covariate, because the results 

showed no effect of acuity on veering, it was not considered in further analyses. 

All participants were right handed except three of the PD group and one of the 

NC group, all of whom were left handed. We conducted separate veering analyses with 

and without individuals who were left handed and found that the results were not 

affected; therefore handedness was not considered further in the analyses. All 

participants were native English speakers.  All were non-demented as indexed by their 

scores on the modified Mini-Mental State Exam (mMMSE; Stern, Sano, Paulson & 

Mayeux, 1987), each obtaining 26.45 or better on conversion to standard MMSE scoring. 

The PD group reflected mild to moderate stages of the disorder (stages 1-3 on the 

Hoehn and Yahr scale) (Hoehn and Yahr, 1967) (Table 1). Disease severity was 

determined with the use of the Unified Parkinson’s Disease Rating Scale (UPDRS; Fahn 

& Elton, 1987). The PD group had a mean UPDRS total of 35.5 (SD = 14.5) denoting 

mild-moderate disease severity. The LPD group had a mean UPDRS total of 36.7 (SD = 

12.5), and the RPD group had a mean UPDRS total of 34.5 (SD = 16.5). There was no 

significant difference between the LPD and RPD groups (t[18] = 0.33, p = 0.75). All 

participants were taking medication for their parkinsonian symptoms and at the time of 
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testing were in their “on” period.  Levodopa equivalent dosage (LED) mean was 457.7 

(SD = 335.5) mg/day for LPD, 486.4 (SD = 318.4) mg/day for RPD. There was no 

significant difference in LED between these groups (t[18] = 0.20, p = 0.85). 

The PD group was further characterized by side of motor symptom onset: nine 

with LPD (6 men and 3 women) and 11 with RPD (5 men and 6 women) (Table 1). The 

distribution of men and women did not differ between the two groups (χ2 = 0.9, p = 0.34). 

The LPD group included one in stage 1.5, five in stage 2, two in stage 2.5 and one in 

stage 3 (median 2, range 1.5 – 3). The RPD group included one in stage 1, six in stage 2, 

one in stage 2.5 and three in stage 3 (median 2, range 1 – 3). The distribution across 

stages did not differ between the two groups (χ2 = 3.26, p = 0.52). The initial side of 

onset was identified using self-report and through review of neurology records. The 

current side and extent of motor severity were assessed using the UPDRS.  The extent of 

motor asymmetry was calculated based on the UPDRS motor severity score of left body 

side and of right body side, �����ℎ� 	
�� − ��� 	
���/����ℎ� 	
�� +

��� 	
����. This asymmetry index ranges from -1 to 1, where scores closer to 1 

indicate more extensive and severe symptoms on the right side of the body and scores 

closer to -1 indicate more extensive and severe symptoms on the left side of the body. 

The group means for LPD and RPD were -0.3 (SD = 0.3) and 0.3 (SD = 0.4), 

respectively. The difference was significant (t[18] = 3.25, p = 0.004, ŋ2 = 0.37). Although 

most individuals did not display strong and obvious motor asymmetry at the time of the 

study, there is evidence that the hemispheric asymmetry of brain lesions in PD remains 

well after motor symptoms have progressed from unilateral to bilateral (Rinne, Laihinen 



 

 16

et al. 1993). Hence, we would expect the impact of the hemispheric asymmetry on 

veering to be maintained in our sample. 

We compared the LPD, RPD, and NC groups on demographic and other 

characteristics potentially pertinent to the study. Mean age, number of years of education, 

and MMSE score for each group were as follows: LPD age 67.3 years (SD = 7.6), 

education 17.0 years (SD = 2.4), MMSE 28.2 (SD = 1.1); RPD age 66.9 (SD = 5.8), 

education 17.9 (SD = 1.5), MMSE 28.9 (SD = 1.0); NC age 62.3 (SD = 5.5), education 

17.8 (SD = 2.3), MMSE 29.0 (SD = 0.9).  There was no significant difference between 

groups in age, F(2,30) = 2.34, p = 0.11, education, F(2,30) = 0.53, p = 0.60, or MMSE 

F(2,30) = 1.65, p = 0.21. Mood was assessed for all participants using the Beck 

Depression Inventory II (BDI-II) and Beck Anxiety Inventory (BAI) (Beck & Steer, 

1993; Beck, Steer, & Brown, 1996). There were no group differences on the BDI-II (F[2, 

30] = 1.10, p = 0.35). There was a significant effect of group on the BAI (F[2, 30] = 5.24, 

p = 0.01, ŋ2 = 0.26). Specifically, the RPD group had a significantly higher mean BAI 

than did the NC group (p = 0.01). There was no significant difference on BAI between 

the RPD and LPD groups (p = 0.69) or between the LPD and NC groups (p = 0.11). We 

used BAI as a covariate in the veering analyses and found that it did not affect any of the 

results; therefore it was not considered further in the analyses.     

(Table 1 about here) 

Apparatus  

The over-ground walking assessment was implemented in a corridor (3.7m wide, 

2.6m high, 10.4m long) constructed in the laboratory using black curtains on both sides. 
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The room was well lit and the sounds from surroundings were strictly controlled. 

Participants were allowed to take a break between walks along the corridor as needed. An 

experimenter was immediately behind the participant at all times to ensure safety. 

Three-dimensional kinematics 

Three-dimensional kinematic data were collected using an Optotrak 3020 System 

(Northern Digital Inc., Waterloo, ON, Canada), with a spatial resolution of 0.1 mm. 

Three position sensors were placed at the end of the walkway in left, right and middle 

positions facing the participant’s direction of walking. The placement allows for an 

environmental reference plane to capture bilateral locomotor movements for at least four 

strides. The sensors were calibrated and the mean error was accepted when the value was 

0.7 mm or less. Infrared light-emitting diodes (IREDs) were applied as position markers 

on the participant’s chin (lower mandible) and bilaterally on the ankle (lateral calcaneus), 

knee (patella), hip (anterior superior iliac spine), wrist (radiocarpal joint), shoulder 

(humeral head), cheek (2 cm below zygomatic arch). The instantaneous position of each 

IRED was sampled during walking trials at a rate of 100 Hz and stored to disk for further 

analysis. 

Procedure  

Participants started each trial by aligning each foot with a marker placed at the 

center of, and perpendicular to the edge of the corridor's start line. A practice session was 

provided to each of the participants to enable them to become acclimated to the walking 

environment and choose their preferred walking speed. After the practice session, the 
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actual data collection began. No feedback on walking speed was provided. Participants 

were first asked to walk a straight line down the middle of the walkway with eyes open, 

at a comfortable speed, until they reached the end (eyes-open condition) (3 trials). Then 

they were instructed to repeat the task wearing a blindfold, which was similar to a 

sleeping mask with an elastic band (3 trials). The experimenter told them to stop either 

when they reached the end or were about to bump into the side of the walkway. The 

lights in the room were turned off during this condition, then put back on for the rest of 

the session. In the third condition, which assessed veering behavior in relation to 

visuospatial bias, a 0.05m wide and 1.53m long rectangle (“line”) colored in bright 

yellow was placed horizontally at eye level on the wall at the end of the walkway. The 

examiner stood next to the line and moved a crossbar along it slowly from one end to the 

other (randomized direction across participants). The participants were instructed to stand 

straight facing forward and stated when the crossbar fell in the perceived center of the 

horizontal line. Lateral deviation of the judgment of the center of the horizontal line was 

recorded and the crossbar was removed afterwards. This test is similar to the Landmark 

test of line bisection, which has been used to detect lateral biases in allocentric spatial 

perception in PD (Lee, Harris et al. 2001; Davidsdottir, Wagenaar et al. 2008; Laudate, 

Neargarder et al. 2013), but at a longer viewing distance. The participants were then 

instructed to walk towards their self-perceived center of the horizontal line (egocentric 

reference point condition, ECRP) (3 trials). The line was not used in the other conditions. 

We expected that if there were a visuospatial bias, PD participants would perceive the 
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center of the line as off true center, compared to NC, and consequentially would engage 

in veering in the direction dictated by the bias.  

 

Data Reduction 

The kinematic data were filtered using a zero-lag, fourth order Butterworth low-

pass filter with a cut-off frequency of 5 Hz. Angular positions of the arms and legs in the 

sagittal plane were defined by the orientations of vectors from shoulder to wrist markers 

and from hip to ankle markers, respectively, measured relative to laboratory vertical (i.e., 

to the gravity axis). Positive angle values indicate forward wrist or ankle positions. Stride 

cycles for each leg were identified by two consecutive maxima from the angular position 

data of the corresponding leg. All the gait variables were computed using MatLab 

(MathWorks, Inc., Natick, MA) employing only the middle strides (approximately six 

strides excluding the first and last strides in the approximately viewing volume of eight 

strides) in order to avoid acceleration and deceleration variations at the beginning and at 

the end of the distance walked.  

Dependent Variables 

Veering  

The midpoint between left and right hip position data was calculated, and veering 

was defined for each trial as the difference in medio-lateral position of this midpoint 

between the beginning and the end of the middle strides during walking. Positive drift 

values indicate rightward veering and negative values indicate leftward veering. Since, as 
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noted in the literature, veering could be accounted for by undetected body orientation 

errors at the starting point (Guth and Laduke 1994; Kallie, Schrater et al. 2007), we 

calculated the hip angle relative to the starting line using left and right hip positional data 

in the anteroposterior and mediolateral direction, tan������� − ����|���� − ���� , then 

tested whether there was any misalignment before initiating walking and its relation with 

veering. Analysis of variance (ANOVA) showed that there were no significant 

differences in hip angle by group or condition (all p>.16), meaning that initial body 

orientation would not account for any group differences in veering.  

Stride Parameters  

Participants walked a total of 10.4 meters. Data from only the middle strides were 

analyzed for each leg, as the first stride reflected reaching a comfortable walking pattern, 

and the last stride slowing down and stopping at the end of the corridor. In this study, the 

number of consecutive strides of the left and right legs that were covered ranged from 

four to six. The following stride parameters were computed for each of the middle strides 

and then averaged across strides: walking speed, stride length, and stride asymmetry 

(calculated as the difference in the average stride lengths between the left and right legs), 

all of which may impact veering behavior (Guth and Laduke 1994). For example, higher 

walking speeds have been associated with smaller amounts of veering (Cicinelli 1989; 

Klatzky, Loomis et al. 1990). Additionally, if veering in PD is driven only by the motoric 

factor of stride length asymmetry (one of our hypotheses to be tested), the direction of 

veering should be toward the body side with the shorter stride length.  
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Average walking speed (m/s) was determined by dividing the linear displacement 

of the chin marker (between the times of left heel strike that began the first stride and 

ended the last stride) by the time elapsed between these heel strike events. The chin 

marker displacement was calculated according to: 

 

DT
! = DAP

! + DML
!                      

 

where DT represents the total linear displacement (Euclidean distance) of the chin marker, 

and DAP and DML are its displacements in the anteroposterior and mediolateral directions, 

respectively. Stride lengths (in meters) of the left and right legs were calculated for each 

trial by the anteroposterior displacements over the middle strides by the left and right 

ankle markers, respectively, divided by the number of the middle strides. Considering 

that variation in leg lengths among participants might have an impact on the results, we 

normalized stride lengths of each leg by dividing them by the individual's leg length, 

measured as the distance between hip and ankle markers on the side of the respective leg.  

These normalized stride lengths were used in the data analysis.  

Data Analysis 

Statistical analyses were performed using SPSS 18.0 (SPSS, Inc., Chicago, IL). 

An analysis of variance (ANOVA) was conducted to examine whether the three groups 

(LPD, RPD, and NC) differed in walking speed across conditions, as this could impact 

veering behavior. Results revealed significant group differences in walking speed (F[2, 

30] = 6.23, p = 0.005, ŋ2 = 0.29), with the LPD and RPD groups each walking 

significantly more slowly than the NC group based on Tukey’s post hoc test (LPD vs. 
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NC: p = 0.021; RPD vs. NC: p = 0.011). Walking speed did not significantly affect the 

results on veering, however, so it was not considered further. Separate mixed design 

ANOVAs were performed to examine the effects of group (LPD, RPD and NC) and 

condition (eyes-open, vision-occluded and egocentric reference point [ECRP]) on veering 

and the stride parameters of normalized stride length and stride asymmetry. The analyses 

for all of the parameters were based on the average of three trials per condition. We used 

age as a covariate in the stride length analyses because even though the three groups did 

not significantly differ in age, previous literature suggests that there are age-related 

changes in gait for stride length (Himann, Cunningham et al. 1988; Prince, Corriveau et 

al. 1997). 

A series of a priori between groups t-tests (or ANOVAs if a covariate was 

included), were performed to examine the differences between LPD and RPD, LPD and 

NC, and RPD and NC under each vision condition. A priori within groups t-tests were 

used to examine differences on the eyes-open and vision-occluded conditions, eyes-open 

and ECRP conditions, and vision-occluded and ECRP conditions within each group. In 

addition, we used Spearman correlations to examine the relation between veering 

(direction and extent) and stride asymmetry during walking in each condition for each 

group. We predicted that those individuals in each group with higher stride asymmetry 

scores would demonstrate more veering. We used one-tailed tests to examine these 

directional hypotheses. 
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RESULTS  

Veering 

A mixed design ANOVA on veering showed no significant effects of group 

(F[2,30] = 1.16, p = 0.33), condition (F[1.1,33.3] = 0.53, p = 0.49), or interaction 

between group and condition (F[2.2,33.3] = 1.26, p = 0.30).  

Between-groups comparisons 

A series of a priori between groups t-tests revealed a significant group difference 

between RPD (leftward veering) and NC (rightward veering) in the eyes-open condition 

(t[22] = 3.67, p = 0.001, ŋ2 = 0.38) and in the ECRP condition (t[22] = 2.66, p = 0.014, ŋ2 

= 0.24) (Fig. 1). These two groups did not differ in veering in the vision-occluded 

condition (t[22] = 0.11, p = 0.88). There was no significant difference between the LPD 

group and either the RPD or NC group in any of the conditions (all p’s > 0.12).  

Within-groups comparisons 

A series of a priori within group t-tests revealed that for the LPD group, there was 

significantly less veering in the ECRP condition than in the eyes-open condition, with 

rightward veering in both conditions, t(8) = 2.32, p = 0.049, ŋ2 = 0.40 (Fig. 1). With 

vision occluded, mean veering was leftward but the difference between veering under this 

condition and under either the eyes-open condition or the ECRP condition was not 

significant (all p’s > 0.26). The NC group on average showed rightward veering in all 

walking conditions. Like the LPD group, the NC group showed significantly less veering 

in the ECRP condition than in the eyes-open condition t(12) = 2.19, p = 0.049, ŋ2 = 0.29; 

no other conditions significantly differed (all p’s > 0.37). For the RPD group, on average 
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veering was leftward in both the eyes-open and ECRP conditions and rightward in the 

vision-occluded condition, but the differences between conditions were not significant 

(all p’s> 0.24).  

 (Figure 1 about here) 

Normalized stride length  

A preliminary ANOVA was conducted and showed no differences between the 

normalized stride length computed based on the left leg time series and that computed 

based on the right leg time series (F[1,30] = 0.06, p = 0.80); therefore the normalized 

stride length based on the left leg time series was utilized in further analyses. An 

ANOVA with age included as a covariate revealed a trend for the main effect of group 

(F[2,29] = 3.03, p = 0.06, ŋ2 = 0.17), a significant main effect of condition (F[1.3,40.0] = 

109.33, p = 0.001, ŋ2 = 0.79), and no interaction between group and condition 

(F[2.7,40.0] = 1.76, p = 0.18). Age was a significant covariate (F[1,30]= 8.10, p = 0.008, 

ŋ2 = 0.21) in the analysis. 

Between-groups comparison 

A series of a priori t-tests and/or univariate ANOVAs (when age was a significant 

covariate) demonstrated that compared to the NC group, the LPD group exhibited 

significantly shorter stride length in the eyes-open condition (t[20] = 2.70, p = 0.014, ŋ2 = 

0.27) and in the vision-occluded condition (F[1,19] = 8.42, p = 0.009, ŋ2 = 0.31). In the 

latter,  age was a significant covariate (F[1,19] = 5.62, p = 0.029, ŋ2 = 0.23) (Fig. 2). The 

difference between these two groups was not significant but had a trend in the ECRP 

condition (t[20] = 1.78, p = 0.09, ŋ2 = 0.14). RPD had significantly shorter stride length 
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than NC in the vision-occluded condition (t[13.5] = 2.96, p = 0.011, ŋ2 = 0.31); however, 

groups did not differ in the eyes-open condition (F[1,21] = 1.00, p = 0.33) or the ECRP 

condition (F[1,21] = 2.21, p = 0.15). Age was a significant covariate in the two latter 

comparisons (F[1,21] = 5.46, p = 0.029, ŋ2 = 0.21 and F[1,21] = 4.38, p = 0.049, ŋ2 = 

0.17, respectively). There were no significant differences between the LPD and RPD 

groups in any of the conditions (all p’s > 0.38), with age as a significant covariate (all p’s 

< 0.036).  

Within-groups comparison 

A series of a priori within group t-tests showed that stride length was 

significantly shorter for all groups when walking with vision occluded than either with 

eyes open or in the ECRP condition (Fig. 2). For LPD, eyes-open vs. vision-occluded: 

t(8) = 6.55, p = 0.001, ŋ2 = 0.84; vision-occluded vs. ECRP: t(8) = 5.71, p = 0.001, ŋ2 = 

0.80. For RPD, eyes-open vs. vision-occluded: t(10) = 7.10, p = 0.001, ŋ2 = 0.83; vision-

occluded vs. ECRP: t(10) = 6.79, p = 0.001, ŋ2 = 0.82. For NC, eyes-open vs. vision-

occluded: t(12) = 6.12, p = 0.001, ŋ2 = 0.76; vision-occluded vs. ECRP: t(12) = 5.39, p = 

0.001, ŋ2 = 0.71). There was a trend for stride length to be longer in the ECRP condition 

than in eyes-open condition for LPD (t[8] = 1.95, p = 0.087, ŋ2 = 0.32), and for RPD 

(t[10] = 2.08, p = 0.064, ŋ2 = 0.30), but not for NC (t[12] = 0.49, p = 0.64).  

 

Stride Asymmetry 

In regard to stride asymmetry, calculated as the difference in stride lengths 

between the left and right legs, an ANOVA revealed no significant main effects of group, 
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F(2,30) = 0.20, p = 0.82, or condition, F(2,60) = 0.61, p = 0.55, or interaction between 

group and condition, F(4,60) = 0.58, p = 0.68.  

 

Between-groups comparison 

A series of a priori between group t-tests showed that there was a significant 

group difference, as expected, between LPD and RPD in the eyes-open condition, t(18) = 

3.37, p = 0.003, ŋ2 = 0.39, with LPD showing shorter stride length on the left body side 

and RPD showing shorter stride length on the right body side (see Fig. 3). The two 

groups did not differ in the other two conditions (all p’s > 0.14). Neither the LPD nor 

RPD group’s stride asymmetry was significantly different from that of NC in any of the 

conditions (all p’s > 0.45). 

Within-groups comparison 

Stride asymmetry in the LPD group was significantly less in the ECRP condition, 

in which participants walked towards a self-perceived center of the horizontal line in 

front of them, than in the baseline eyes-open condition (t[8] = 2.34, p = 0.048, ŋ2 = 0.41). 

There was also a trend for stride asymmetry to be less in the vision-occluded condition 

than in the eyes-open condition (t[8] = 1.94, p = 0.089, ŋ2 = 0.32) (see Fig. 3), and there 

was no difference between the vision-occluded and ECRP conditions (t[8] = 1.34, p = 

0.22). For neither RPD nor NC were any significant differences observed between any 

two of the conditions (all p’s > 0.17). 

 

(Figures 2 and 3 about here) 
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Correlations 

We examined correlations between veering (direction and extent) and stride 

length asymmetry.  A negative veering value indicates leftward drift (positive indicating 

rightward) and a negative value of stride asymmetry indicates shorter strides with the left 

leg (positive indicating shorter right-leg strides).  

A significant correlation between less leftward veering and less stride length 

asymmetry (shorter strides with left leg) was found for the LPD group in the ECRP 

condition, $  = 0.61, p = 0.04, and a trend in the same direction was found for the vision-

occluded condition, ρ = -0.54, p = 0.07. There was no correlation for the eyes-open 

condition, $ = 0.47, p = 0.10. For the RPD group, the correlation between veering and 

stride length asymmetry was not significant for any of the conditions (all $′	 < 0.07,  p’s  

> 0.42). For the NC group, there was a trend for a correlation between veering and stride 

asymmetry for the eyes-open condition ($ = 0.40, p = 0.09). There were no significant 

correlations for the NC group for either the vision-occluded condition or the ECRP 

condition (all $′	 < 0.12, p’s  > 0.35). 

    

 

DISCUSSION   

The results of the present study support the hypothesis that visual dysfunction, 

rather than motor dysfunction, is the predominant driver of veering in PD. This study also 

provides quantitative evidence for the existence of distinct patterns of veering and stride 

asymmetry that are specific to side of motor symptom onset in PD, under conditions with 
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visual input.  

LPD have been reported to have a tendency toward mild left spatial hemineglect 

that produces a rightward shift of egocentric midline, whereas RPD tend to have (if any 

bias) a slight right spatial hemineglect that produces a leftward shift of egocentric midline 

(Lee, Harris et al. 2001; Lee, Harris et al. 2002; Harris, Atkinson et al. 2003; 

Davidsdottir, Cronin-Golomb et al. 2005). Based on the findings of previous visuospatial 

studies (Davidsdottir et al., 2008; Young et al., 2010), one would expect people with PD 

to veer in the direction of the lateral shift of the egocentric midline. By contrast, from a 

biomechanics point of view, PD veering should be influenced by motoric asymmetry 

between the relatively more affected body side and the relatively less affected body side. 

This would predict results opposite to those based on the visuospatial hypothesis: 

individuals with PD should veer towards the side with a shorter stride length. 

Our findings mainly support the former visuospatial prediction under conditions 

of visual guidance. When participants were instructed to walk straight ahead in the eyes-

open condition, LPD veered rightward and RPD veered leftward, consistent with our 

earlier studies on veering (Davidsdottir, Wagenaar et al. 2008; Young, Wagenaar et al. 

2010), despite shorter stride length on the more affected body side (i.e., on the left side 

for LPD and on the right side for RPD). In the ECRP condition, when participants were 

asked to walk toward a subjectively perceived center of a target at the end of the corridor 

(reflecting their egocentric reference point), they veered in the same direction as seen in 

baseline eyes-open condition. When the task was performed with vision occluded, group 

differences were not significant, though it should be noted that the direction was in fact 
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opposite that seen under visual guidance; that is, the direction predicted by biomechanics 

alone: LPD veered to the left, corresponding to the body side with shorter stride length, 

and RPD veered to the right, likewise corresponding to the body side with shorter stride 

length. We conclude that under conditions of visual guidance that mirror everyday life, 

the mechanism underlying veering is predominantly vision-based instead of motoric. 

Comparing our results to those of other studies reveals some inconsistencies in 

regard to the vision-occluded condition. As noted above, we found that RPD and NC 

veered to the body side that had shorter stride length, which was the right side; for the 

same reason, LPD veered to the left. In the study by Young and colleagues (Young, 

Wagenaar et al. 2010), the expected stride asymmetry was found between the initially-

affected side and secondarily-affected side for PD, with LPD having a shorter stride 

length on the left and RPD on the right; NC had shorter stride length on the left than 

right. Despite the different directions of stride asymmetry between groups, all 

participants showed leftward veering in the vision-occluded condition. A possible 

explanation for the difference across studies was in regard to body orientation upon onset 

of walking.  As the initial orientation of the body could be responsible for the trajectory 

of veering (Guth and Laduke 1994; Kallie, Schrater et al. 2007), it is important to 

guarantee that the alignment of the body axis relative to the true midline of the walkway 

is consistent across groups throughout the experiment. In the present study we tested 

body alignment using the angle between left and right hip markers before walking was 

initiated and showed that there were no significant differences in hip angle across all 

groups and conditions. Hence, we were able to rule out the possibility that initial body 
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orientation could account for group differences in the direction of veering. This 

information was not provided in the previous studies, leaving open this possibility in 

accounting for the different results reported. 

 Our findings underscore the dominant role of vision in controlling the direction 

of veering, but we also found evidence for the influence of certain motor characteristics 

of PD. There was a significant correlation of veering with stride asymmetry for LPD, 

under the ECRP condition. Although LPD veering and stride asymmetry were minimal in 

the ECRP condition, the correlation between the two variables was significant in a 

positive direction, meaning that the less the asymmetry in stride length (caused by shorter 

strides on the left than the right body side), the less leftward veering. We expect that the 

asymmetry of motor symptoms may have some impact on veering in PD, though it may 

not be powerful enough to overrule the effect of vision.  Further study with larger 

samples and a wider range of disease severity will be required to examine this possibility. 

It is noteworthy that age seemed to have no impact on the observed group 

differences in veering and stride asymmetry, in contrast to age being a significant 

covariate for group differences in stride length. As aging has been associated with 

reduced stride length (Prince, Corriveau et al. 1997), examining a range of age groups to 

further examine the effect of age on veering and stride asymmetry would be of interest as 

a future research direction.      

It is well accepted that visual cues are critical for gait improvement for people 

with PD (Morris, Iansek et al. 1994; Azulay, Mesure et al. 1999; Lewis, Byblow et al. 

2000; Lebold and Almeida 2011; Spaulding, Barber et al. 2013; Vitorio, Lirani-Silva et 
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al. 2014). These studies used traditional cueing methods such as stripes placed on the 

ground. Recently, Vitorio and colleagues reported that participants with PD could 

regulate stride length regardless of whether or not they were looking at their lower limbs 

while walking—that is, exproprioceptive information (from the lower limbs) is not 

crucial for gait improvements generated by visual cues (Vitorio, Lirani-Silva et al. 2014). 

The ECRP condition in the present study is similar in that participants gazed at the self-

perceived center of the horizontal line at eye level, and accordingly did not focus on their 

lower limbs' movement during walking. Longer stride length was observed in the ECRP 

condition than in the baseline eyes-open condition, which was consistent with the 

findings of longer stride lengths achieved with visual cues reported by Vitorio et al. We 

also found less veering and decreased stride asymmetry under the ECRP condition 

compared to the eyes-open condition. LPD benefited more than RPD from cuing; the 

effects of the visual cue were significant for LPD but not for RPD. We have reported that 

individuals with LPD appear to be more visually dependent than those with RPD 

(Davidsdottir et al., 2008), which may explain the greater ability of LPD to benefit from 

conditions that provide visual cuing. These findings point to a potential role of explicit 

visual landmarks to guide locomotion in PD. It would be interesting for future research to 

examine other gait characteristics, such as stride-to-stride adjustments/corrections in body 

orientation angles that might be associated with veering during walking with a target 

present in front.       

Our results suggest that individuals with LPD, with presumed predominant right 

hemisphere pathology, demonstrated patterns of gait disturbances that were visually 
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influenced, as shown by differences in the extent of veering between the eyes-open and 

ECRP conditions. Within this subgroup, common parkinsonian gait disturbances such as 

veering, stride asymmetry, and to some extent stride length were amenable to 

amelioration by visual guidance, mainly focusing on self-perceived center (ECRP 

condition). The effect of directing attention to perceived center at eye-level had 

significant effects on navigating the environment, raising the possibility of attentional or 

environmental strategies for intervention. Targeting visual attention and related aspects of 

cognition presents a potential but to date underexamined avenue of treatment (Sinforiani, 

Banchieri et al. 2004; Paris, Saleta et al. 2011; Doruk, Gray et al. 2014). These 

interventions hold promise particularly when combined with action observation-based 

(internal) strategies for intervention that have been shown to improve gait and walking in 

PD (Pelosin, Avanzino et al. 2010; Pelosin, Bove et al. 2013). Interventions to improve 

visual attention may prove to be a reasonable strategy to improve locomotion in PD, 

especially for individuals with left-side onset of symptoms. A further possibility 

suggested by the almost complete lack of veering in the ECRP condition is that distortion 

of visuospatial processing in hemiPD may be corrected by the use of objective 

environmentally-anchored landmarks, which may serve as targets to provide appropriate 

locomotion paths and guide locomotor trajectories. 

In conclusion, the existence of the distinct directions of veering for LPD and RPD 

observed in this study supports the primacy of the visual control of navigation over the 

role of motor function as measured by kinematic data. This finding suggests that 

information on veering may be of importance in the management of PD.  In particular, 
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interventions for gait disorders in PD should emphasize vision, visual attention, and 

environmental modification as means to rehabilitate veering problems, as this strategy 

may be more effective than focusing solely on motor symptoms as targets for treatment.   
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Table 1. Participant Characteristics 

Measure LPD RPD NC Significance 

Sample size 9 11 13 NS 

Age (years) 67.3 (7.6) 66.9 (5.8) 62.3 (5.5) NS 

Education (years) 17.0 (2.4) 17.9 (1.5) 17.8 (2.3) NS 

Gender (M:F) 6:3 5:6 4:9 NS 

UPDRS motor asymmetry score -0.3 (0.3) 0.3 (0.4) NA p = 0.004 

UPDRS total score 36.7 (12.5) 34.5 (16.5) NA NS 

BDI-II 4.6 (2.4) 6.1 (4.7) 3.5 (4.7) NS 

BAI 4.8 (3.5) 6.3 (6.0) 1.2 (1.5) p = 0.01 

H & Y 2 (1.5-3) 2 (1-3) NA NS 

LED 457.7 (335.5) 486.4 (318.4) NA NS 

 

Note. Univariate Analysis of Variance tests were conducted comparing LPD (left-onset 

Parkinson’s disease), RPD (right-onset Parkinson’s disease) and NC groups (normal control). 

UPDRS = Unified Parkinson’s Disease Rating Scale; H & Y = Hoehn & Yahr stage; BDI-II = 

Beck Depression Inventory – II; BAI = Beck Anxiety Inventory; LED = levodopa equivalent 

dosage. Values presented are means (standard deviations) except for Hoehn and Yahr, which is 

median and range. p value reflects results including the four participants who had less consistent 

laterality.  
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Figure Legends 

 

Fig. 1. Veering (in mm) during walking under three conditions: eyes-open, vision-

occluded and ECRP. 9 LPD, 11 RPD and 13 NC. Negative values represent veering 

toward the left whereas positive values represent veering toward the right. Horizontal 

lines represent standard error of the mean.   

 

Fig. 2. Normalized stride length (SL) on the left leg under three walking conditions: eyes-

open, vision-occluded and ECRP. 9 LPD, 11 RPD and 13 NC. Vertical lines represent 

standard error of the mean. The unit is in percentage as the values are the stride length 

after normalization by individual’s leg length. 

 

Fig. 3. Difference in stride length between left and right body side (SL_diff) under three 

walking conditions: eyes-open, vision-occluded and ECRP. 9 LPD, 11 RPD and 13 NC. 

Negative values represent shorter stride length on the left body side whereas positive 

values represent shorter stride length on the right body side. Vertical lines represent 

standard error of the mean. The unit is in percentage as the values are the stride length 

after normalization by individual’s leg length. 
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STUDY 2: Effects of Visual Cues on Regulation of Gait and Interlimb Coordination 

during Walking in Parkinson's disease 

ABSTRACT  

 

Impairments in gait and the inability to maintain stable interlimb coordination 

while walking are often observed in individuals with Parkinson’s disease (PD). Providing 

external visual cues with a spatially rhythmic pattern has shown positive rehabilitative 

effects, but it is unknown if the key variable is pattern rhythmicity, suggesting that 

attention to the placement of the foot in relation to the cue underlies improvement, or 

instead if it may be density or mere presence of pattern elements, suggesting that the 

mechanism of improvement may be perception of dynamic flow. A second potential 

variable to consider is side of disease onset, as individuals with left-side onset of motor 

symptoms (LPD) tend to have more visuospatial dysfunction and visual dependence than 

those with right-side onset of motor symptoms (RPD). We assessed 20 non-demented 

individuals with PD (9 LPD, 11 RPD) and 14 matched normal control participants (NC). 

Participants walked along a corridor under the following conditions: plain surface 

(baseline), surface with random squares of three densities, surface with transverse lines of 

three spatial frequencies, and plain surface again (post-intervention). Kinematic data were 

collected. With visual cues, especially of higher density/frequency but regardless of 

whether they were transverse lines or random squares, there was an overall improvement 

in walking speed with longer stride length and more stable interlimb coordination in PD 

and NC. The effects of the visual cues were stronger for LPD than RPD. The findings 

indicate that visual cues need not be restricted to traditional transverse lines but rather 
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could comprise random patterns in order to serve as interventions to correct walking 

abnormalities in PD, suggesting that the mechanism of improvement is based on dynamic 

flow of visual texture rather than on attention.  
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INTRODUCTION 

Parkinson’s disease (PD) is characterized by a variety of motor symptoms 

including resting tremor, postural instability, disturbed gait pattern, and rigidity of the 

trunk and limbs with lack of arm swing (Blin et al., 1990; Bowes et al., 1992; Morris et 

al., 2001; Hausdorff 2009; Garcia-Ruiz 2011), all of which may lead to serious 

consequences such as falling (Wood et al., 2002; Schaafsma et al., 2003). Besides the 

motor symptoms, non-motor symptoms such as disturbances of basic vision and higher-

order visuospatial perception and cognition are also common in this disorder (Bodis-

Wollner, Marx et al. 1987; Bodis-Wollner 1990; Harris, Calvert et al. 1990; Davidsdottir, 

Cronin-Golomb et al. 2005; Uc, Rizzo et al. 2005; Brandies and Yehuda 2008; Archibald, 

Clarke et al. 2011). Vision is important not only for perceiving the layout of the world, 

but also for controlling one’s movement. In PD there is a history of applying 

interventions that target deficits in visual perception in order to rehabilitate locomotive 

abnormalities, mainly slow walking speed and short stride length. Approaches have 

focused on improving gait kinematics to promote symmetry as well as increased step 

length and walking speed (Azulay et al. 1996; Morris et al. 1996; Azulay et al. 1999; 

Lewis et al. 2000; Rubinstein et al. 2002; Suteerawattananon et al. 2004; Azulay et al. 

2006; Jiang, Norman 2006; Wegen et al. 2006; Sidaway et al. 2006; Almeida, Bhatt 

2012; Vitorio et al. 2014).  

The mechanism underlying visually-controlled gait dynamics has been debated, 

with some investigators attributing improvement to the enhancement of attentional 

strategies.  For example, rhythmic visual cues, such as transverse lines on the floor, may 
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help walkers to focus their attention on stepping over each of the sequential lines, which 

results in better regulation of step length (Lewis et al. 2000; Lebold and Almeida 2011). 

Alternatively, improvement may be afforded by the presence of dynamic flow 

information produced by self-motion during walking (Azulay et al. 1999). Consistent 

with this Gibsonian view (Gibson 1966) is that visual information in the environment 

provides direct opportunity for action. If dynamic visual flow is impeded experimentally, 

no improvement of gait is obtained (Azulay et al. 1999; Lebold and Almeida 2011). 

Recently, the focus of attention on stepping over rhythmic visual line cues has been 

shown not to be critical for individuals with PD to achieve improvement in gait (Vitorio 

et al. 2014). The number of relevant studies supporting either view is limited, and most of 

the studies were not conducted during over-ground walking but rather with treadmill 

walking, which may affect the outcomes of kinematic measures of gait (Pearce et al. 

1983; Stolze et al. 1997; Bello et al. 2010; Almeida, Bhatt 2012). Moreover, most of the 

studies used only lines, without consideration of the potential of other patterns to improve 

gait.  

In the present study, we directly compared the attentional strategy and dynamic 

visual flow hypotheses as competing explanations for improvement of gait in PD 

following from vision-based interventions.  We carried out systematic manipulations of 

the distance between lines and also provided conditions using random-squares pattern of 

various densities. The random-squares patterns were assumed to be less likely than 

evenly-spaced transverse lines to draw the individual’s attention to foot placement. Gait 

improvement under the random-squares condition would support the hypothesis that the 



 

 43

dynamic pattern of the visual cues, rather than or in addition to attentional strategy, is a 

main contributor to gait regulation in individuals with PD.  To provide a more detailed 

picture of walking improvement, we did not limit our investigation to the examination of 

standard gait parameters such as walking speed, stride length, and stride frequency, but 

also included the measurement of interlimb coordination.  

Upper and lower limb coordination was quantified by the relative power index 

(RPI; indicating frequency inter-relations) and relative phase (indicating phase inter-

relations) between the arms and legs. From the biomechanics point of view, individuals 

with PD are able to adjust their interlimb coordination pattern corresponding to changes 

in walking speed (van Emmerik et al. 1996; Wagenaar, van Emmerik 2000; Donker et al. 

2001). A reduced standard deviation (or variability from one stride cycle to another) of 

the relative phase between upper and lower limbs would emerge at a high walking speed 

representing a more stable coordination pattern. Therefore, if visual cues directly lead to 

changes in gait in PD, modulations in coordination patterns would be expected to occur 

simultaneously. There has been evidence of changes in walking speed as well as in RPI 

with manipulation of optic flow speed in a virtual hallway in younger and older healthy 

adults (Chou et al. 2009). In a study conducted with people with PD and age-matched 

healthy control adults, an association was found between a decrease in the density of 

random dots embedded in a virtual hallway and a decrease in walking speed, but there 

was no such relation between dot density and either relative phase or RPI (Lin et al. 

2014). The participants in the study by Lin and colleagues were asked to walk at a 

specific speed and not at their preferred walking speed, which does not reflect a real-life 
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situation. In the present study, we assessed the effects of optic flow, as provided by a 

pattern of floor visual cues, on gait and interlimb coordination, eliminating any 

constraints on walking speed by letting participants walk over-ground at their preferred 

comfortable speed.  

A final variable examined in the current study was side of PD onset. The initial 

motor symptoms of PD usually are unilateral, reflecting asymmetrical depletion of 

dopamine in the substantia nigra (Kempster et al., 1989) that appears to be maintained 

well after the disease has progressed from unilateral to bilateral (Antonini et al. 1995; 

Booij et al. 1997). Left-side motor onset (LPD) and right-side motor onset (RPD) have 

been associated with distinct functional profiles, including more visuospatial dysfunction 

and visual dependence in LPD than RPD (Davidsdottir et al., 2008; Cronin-Golomb 

2010). On this basis, we hypothesized that individuals with LPD would be more sensitive 

to visual manipulations than RPD, operationalized as showing stronger improvement in 

walking upon application of the vision-based interventions. 

 

METHODS  

Participants  

The study included 20 non-demented individuals diagnosed with idiopathic PD 

(11 men, 9 women) and 14 normal control adults (NC; 5 men, 9 women) (Table 2). The 

distribution of men and women did not differ between the PD and NC groups (χ2 = 1.23, 

p = 0.27). The PD participants were recruited from the Parkinson’s Disease Clinic at the 
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Boston Medical Center and from the Michael J. Fox Foundation Trial Finder. The NC 

participants were recruited from the Fox Trial Finder and the local community. All 

participants underwent health history screening prior to taking part in the study. 

Exclusion criteria included the inability to ambulate independently or history of 

musculoskeletal impairments or pain conditions; lower extremity impairments that 

prevented the individual from moving freely; use of walking assistive devices; 

coexistence of serious chronic medical illness; history of traumatic brain injury or stroke; 

psychiatric or neurological diagnoses (besides PD, in the PD group); surgery affecting the 

thalamus, basal ganglia, or other brain regions; history of alcoholism or other drug abuse; 

use of psychoactive medication except antidepressants or anxiolytics in the PD group; use 

of any psychoactive medication in the control group; presence of clinically significant 

eye disease, or corrected binocular acuity poorer than 20/40. Participants were screened 

for acuity binocularly at a distance of 10 feet using a Snellen chart; Snellen scores were 

converted to logMAR scores for the analysis. Mean acuity was -0.02 (20/20 Snellen; SD 

= 0.07) for the PD group, and -0.09 (20/16 Snellen; SD = 0.03) for the NC group. There 

was a significant group difference with NC showing better acuity (t[25.4] = 4.30, p = 

0.001, ŋ2 = 0.30)  and accordingly acuity was included as a covariate in the statistical 

analyses, but the difference was presumably not of clinical significance, as both groups 

had good vision. All participants were right handed except three of the PD group and one 

of the NC group, all of whom were left handed. All participants were native English 

speakers. All were non-demented as indexed by their scores on the modified Mini-Mental 
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State Exam (mMMSE; Stern, Sano, Paulson & Mayeux, 1987), each obtaining an average 

value of 28.6 or better on conversion to standard MMSE scoring. 

The PD group reflected mild to moderate stages of the disorder (stages 1-3 on the 

Hoehn and Yahr scale; Hoehn and Yahr, 1967) (Table 2). Disease severity was 

determined with the use of the Unified Parkinson’s Disease Rating Scale (UPDRS; Fahn 

& Elton, 1987). The PD group had a mean UPDRS total of 35.5 (SD = 14.5) denoting 

mild-moderate disease severity. The LPD group had a mean UPDRS total of 36.7 (SD = 

12.5), and the RPD group had a mean UPDRS total of 34.5 (SD = 16.5). There was no 

significant difference between the LPD and RPD groups (t[18] = 0.33, p = 0.75). All 

participants were taking medication for their parkinsonian symptoms and at the time of 

testing were in their “on” period. Levodopa equivalent dosage (LED) mean was 457.7 

(SD = 335.5) mg/day for LPD, 486.4 (SD = 318.4) mg/day for RPD. There was no 

significant difference in LED between these groups (t[18] = 0.20, p = 0.85). 

The PD group was further characterized by side of motor symptom onset: nine 

with LPD (6 men and 3 women) and 11 with RPD (5 men and 6 women) (Table 2). The 

distribution of men and women did not differ between the two groups (χ2 = 0.9, p = 0.34). 

The LPD group included one in stage 1.5, five in stage 2, two in stage 2.5 and one in 

stage 3 (median 2, range 1.5 – 3). The RPD group included one in stage 1, six in stage 2, 

one in stage 2.5 and three in stage 3 (median 2, range 1 – 3). The distribution across 

stages did not differ between the two groups (χ2 = 3.26, p = 0.52). The initial side of 

onset was identified using self-report. Although most individuals did not display strong 

and obvious motor asymmetry at the time of the study, there is evidence that the 
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hemispheric asymmetry of brain lesions in PD remains well after motor symptoms have 

progressed from unilateral to bilateral (Rinne, Laihinen et al. 1993). Hence, the impact of 

the hemispheric asymmetry might be maintained in our sample.  

We compared the LPD, RPD, and NC groups on demographic and other 

characteristics potentially pertinent to the study. Mean age, number of years of education, 

and MMSE score for each group were as follows: LPD age 67.3 years (SD = 7.6), 

education 17.0 years (SD = 2.4), MMSE 28.2 (SD = 1.1); RPD age 66.9 (SD = 5.8), 

education 17.9 (SD = 1.5), MMSE 28.9 (SD = 1.0); NC age 62.1 (SD = 5.3), education 

17.5 (SD = 2.4), MMSE 29.0 (SD = 0.9). There was no significant difference between 

groups in age, F(2,31) = 2.69, p = 0.08, education, F(2,31) = 0.43, p = 0.65, or MMSE 

F(2,31) = 1.67, p = 0.20. Mood was assessed for all participants using the Beck 

Depression Inventory II (BDI-II) and Beck Anxiety Inventory (BAI) (Beck & Steer, 

1993; Beck, Steer, & Brown, 1996). There were no group differences on the BDI-II (F[2, 

31] = 1.38, p = 0.27). There was a significant effect of group on the BAI (F[2, 31] = 5.83, 

p = 0.01, ŋ2 = 0.27). Specifically, the RPD group had a significantly higher mean BAI 

than did the NC group (p = 0.01). There was no significant difference on BAI between 

the RPD and LPD groups (p = 0.68) or between the LPD and NC groups (p = 0.09). We 

used BAI as a covariate in all the statistical analyses.     

 

(Table 2 about here) 
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Apparatus 

The over-ground walking assessment was implemented in a corridor (3.7m wide, 

2.6m high, 10.4m long) constructed in a laboratory using curtains in black on two sides. 

The lab was well lit and the sounds from surroundings were strictly controlled. 

Participants were allowed to take a break any time as needed during the experiment. An 

experimenter was immediately behind the participant at all times to ensure their safety. 

Textured surface with transverse lines and random squares 

Participants walked on a 3.7m by 10.4m carpeted surface of dark green color 

throughout the experiment. There was one plain surface used to serve as the baseline 

assessment, and six that were textured by the external cues in various conditions. There 

were two types of external cues: random squares followed by transverse lines. The lines 

(5cm×250cm) and the squares (5cm×5cm) were constructed of laminated white tape 

(InSite Solutions, LLC., Wake Forest, NC, USA) that was securely adhered to the 

walking surface to prevent tripping. The space between transverse lines was manipulated 

such that three different spatial frequencies were presented to participants: 65cm, 45cm, 

and 25cm (line1, line2, and line3). The density of the random squares was manipulated to 

produce densities of 1.3, 4.8, and 16.4 squares/ m2 (random1, random2, and random3). 

The order of the conditions within each type of the visual cues was randomized. One 

carpeted surface was presented at a time (that is, unrolled and placed in position at the 

beginning of each condition; removed when the condition was finished). 
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Three-dimensional kinematics 

Three-dimensional kinematic data were collected using an Optotrak 3020 System 

(Northern Digital Inc., Waterloo, ON, Canada), with a spatial resolution of 0.1 mm. 

Three position sensors were placed at the end of the walkway in left, right and middle 

positions facing the participant’s direction of walking. The placement allows for an 

environmental reference plane to capture bilateral locomotor movements for at least four 

strides. The sensors were calibrated and the mean error was accepted when the value was 

0.7 mm or less. Infrared light-emitting diodes (IREDs) were applied as position markers 

on the participant’s chin (lower mandible) and bilaterally on the ankle (lateral calcaneus), 

knee (patella), hip (anterior superior iliac spine), wrist (radiocarpal joint), shoulder 

(humeral head), cheek (2 cm below zygomatic arch). The instantaneous position of each 

IRED was sampled during walking trials at a rate of 100 Hz and stored to disk for further 

analysis. 

 

Procedure  

A practice set of trials was provided to all participants to enable them to become 

acclimated to the walking environment before starting the experimental portion of the 

study. In the first experimental condition, participants were first asked to choose their 

preferred comfortable walking speed and to proceed down the middle of the walkway on 

the plain, carpeted surface three times (baseline condition). They then were instructed to 

walk straight ahead on the surfaces textured with random squares three times for each 

density condition, followed by the same procedure for transverse lines three times for 
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each frequency condition. The order of the condition (frequency of lines or density of 

squares) within each visual-cue type was randomly assigned. To examine whether the 

effects of cues would persist when they were absent, at the end of the experiment (post-

intervention condition), the participants walked on the plain surface as in the baseline 

condition. Participants were instructed to face forward and walk at their preferred 

walking velocity for the duration of the experimental session. No feedback on walking 

speed was provided.  

 

Data Reduction 

The kinematic data were filtered using a zero-lag, fourth order Butterworth low-

pass filter with a cut-off frequency of 5 Hz. Angular positions of the arms and legs in the 

sagittal plane were defined by the orientations of vectors from shoulder to wrist markers 

and from hip to ankle markers, respectively, measured relative to laboratory vertical (i.e., 

to the gravity axis). Positive angle values indicate forward wrist or ankle positions. Stride 

cycles for each leg were identified by two consecutive maxima from the angular position 

data of the corresponding leg. All the gait variables were computed using MatLab 

(MathWorks, Inc., Natick, MA) employing only the middle strides (excluding the first 

and last strides) to avoid acceleration and deceleration variations at the beginning and at 

the end of the distance walked.  
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Dependent Variables 

Stride Parameters  

The stride parameters examined in the study included walking speed, normalized 

stride length and stride frequency. In the experiment, participants walked a total of 10 

meters for each trial. Data from only the middle strides were analyzed, as the first strides 

reflected reaching a comfortable walking pattern, and the last strides reflected slowing 

down and stopping at the end of the corridor. The number of consecutive strides of the 

left and right legs ranged from four to six. Average walking speed (m/s) was determined 

by dividing the linear displacement of the chin marker (between the times of left heel 

strike that began the first stride and ended the last stride) by the time elapsed between 

these heel strike events. The linear displacement of the chin marker was calculated 

according to: 

 

DT
! = DAP

! + DML
!                         (1) 

 

where DT represents the total linear displacement (Euclidean distance) of the chin marker, 

and DAP and DML are its displacements in the anteroposterior and mediolateral directions, 

respectively. Stride lengths of the left and right legs were calculated for each trial by the 

anteroposterior displacements over the middle strides by the left and right ankle markers, 

respectively, divided by the number of the middle strides. Considering that variation in 

leg lengths among participants might have an impact on the results, we normalized the 

stride length by dividing it by the individual's leg length, measured as the distance 
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between hip and ankle markers on the side of the respective leg. This normalized stride 

length was used in the data analysis.  

Relative Power Index 

The frequency relations between ipsilateral arm and leg movements were 

represented by the relative power index (RPI) and derived from the angular 

displacements of the arm and leg. We used the same methods described by Lin and 

colleagues (Lin et al. 2014). Specific movement frequencies and corresponding power for 

the leg and arm movements were obtained by processing the respective time series via a 

power spectral density (PSD) function (Fast Fourier transform algorithm using the Welch 

method for power estimation and a Hanning window for smoothing) (Wagenaar & van 

Emmerik, 2000). The power of the arm movement at the stride and step frequencies (as 

twice the stride frequency) was identified using these two frequencies obtained from the 

PSD of the leg movements. 

Inter-limb coordination represented by RPI was quantified by means of 

computing the frequency interrelationship between arm and leg as follows:                                              

�&' =  &� − &!
&� + &!

(                        �2� 

where P1 is the power of the stride frequency in the arm swing time-series and P2 is the 

power of the step frequency in the arm swing time-series. Both P1 and P2 are greater than 

or equal to zero and RPI values range from -1 to 1. If RPI equals 1, it reveals a 1:1 

frequency coupling between arm and leg.  If RPI equals –1, it indicates a 2:1 coordination 

pattern between arm and leg.  
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 Relative Phase  

The relative phase (RP) equations used in this experiment were the same as those 

suggested by Sternad and colleagues (Sternad, Turvey, & Saltzman, 1999). We examined 

RPI and judged all frequency ratios to fall into the 1:1 pattern (Fig. 4); therefore, 

“ordinary” relative phase (i.e., 1*phase_1 – 1*phase_2) was used in all analyses. 

Generalized relative phase would have been calculated only in those cases where 1:2 

frequency coupling was detected (Young et al. 2010). The angular position of the arm 

and leg data was used to calculate the relative phase between the following limb pairs: 1) 

left arm versus right arm (LARA), 2) left leg versus right leg (LLRL), 3) left leg versus 

left arm (LLLA), and 4) right leg versus right arm (RLRA). Values of RP range from 0° 

to 360°, with deviation of RP from 180° indicating detuning from a “perfect” out-of-

phase interlimb coordination. In addition, a RP value between 0° and 180° denotes 

advance in RP relative to the reference limb, and between 180° and 360° denotes phase 

delay (Saltzman, Lofqvist, Kay, Kinsella-Shaw, & Rubin, 1998). The RP was calculated 

for each stride cycle identified by two consecutive maxima from the angular position data 

of the left and the right leg. Both mean and standard deviation (SD; variability) of RP of 

each trial were calculated by circular statistics, with the latter representing the stability of 

coordination patterns. The smaller the SD of RP indicates the more stable coordination 

pattern during walking.  

Data Analysis 

Statistical analyses were performed using SPSS 18.0 (SPSS, Inc., Chicago, IL). 

The analyses for each parameter were based on the average of three trials per condition. 
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A series of mixed design analyses of variance (ANOVAs) were carried out to examine 

the effects of group (LPD, RPD and NC), and either the effect of condition (baseline and 

post-intervention), levels of frequency of the lines (0 [baseline], 65 [line1], 45[line2], and 

25 [line3] cm), or density of the random squares (0 [baseline], 1.3 [random1], 4.8 

[random2], and 16.4 [random3] squares/m2) on walking speed, normalized stride length, 

stride frequency, relative power index, and mean and variability of RP. Walking speed, 

normalized stride length and stride frequency were computed based on the left leg time 

series. We considered BAI, logMAR_acuity and age as covariates in each ANOVA 

because of noted differences between the three groups. We reported the results of these 

covariates only when they were significant. Follow-up analyses of significant interactions 

of interest were conducted using a series of within a priori t-tests and between a priori t-

tests (or ANOVAs if a covariate was included) in order to examine the following: (1) 

differences between performance on a pair of conditions (i.e., baseline and line1, baseline 

and line2, baseline and line3, line1 and line2, line1 and line3, line2 and line3) within each 

group; (2) differences between LPD and RPD, LPD and NC, and RPD and NC under 

each condition. We used a Bonferroni correction of .017 for the between group 

comparisons (.05/3 levels of lines and/or squares) and .008 for the within group 

comparisons (.05/6 comparisons per group for lines and/or squares) to reduce the risk of 

making Type I errors. Two sets of comparisons between transverse lines and random 

squares were also performed, one comparing the least number of cues on the walkway 

(level one for both) and one comparing the most (level 3 for both). 
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RESULTS 

 

Baseline and post-intervention 

Results of the main ANOVAs are provided below for each dependent variable. 

All a priori comparisons are shown in Table 3 (between group comparisons) and Table 4 

(within group comparisons).  

Walking speed. Results of the mixed design ANOVA showed significant main 

effects of condition (F[1,31] = 13.73, p = 0.001, η2 = 0.31), group (F[2,31] = 4.68, p = 

0.017, η2 = 0.23), and interaction between condition and group (F[2,31] = 3.59, p = 0.04, 

η2 = 0.19) (Fig. 5). Within-group t tests demonstrated that walking speed of the LPD and 

NC groups increased after the intervention (t[8] = 2.70, p = 0.027, η2 = 0.48 for the LPD 

group, t[13] = 3.58, p = 0.003, η2 = 0.50 for the NC group), though no such increase was 

seen for the RPD group (t[10] = 0.034, p = 0.97). 

Normalized stride length. There was no significant main effect of group (F[2,29] 

= 0.63, p = 0.54), or effect of condition (F[1,31] = 1.89, p = 0.18), showing that groups 

did not differ in stride length across conditions. There was a trend for an interaction 

(F[2,31] = 3.03, p = 0.063, η2 = 0.16) (Fig. 6), indicating a potential difference in the 

extent to which stride length was impacted by the intervention across groups. This is 

further demonstrated in the follow-up within-group t tests showing that only the LPD 

group had a significantly longer stride length at post-intervention compared to baseline 

(t[8] = 2.03, p = 0.077, η2 = 0.34). Age and logMAR_acuity were significant covariates 

(age: F[1,30] = 7.12, p = 0.012, η2 = 0.19 and logMAR_acuity: F[1,30] = 8.40, p = 0.007, 

η2 = 0.22).  
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Stride frequency. There was a significant main effect of condition in the overall 

ANOVA (F[1,31] = 5.22, p = 0.029, η2 = 0.12), but neither the main effect of group 

(F[2,30] = 1.30, p = 0.29) nor the interaction F[2,31] = 2.07, p = 0.14) was significant. 

The results indicated that there was an overall increase in stride frequency before and 

after intervention but there was no difference between groups.   

Relative Power Index. No main effect of condition (F[1,31] = 1.71, p = 0.20), or 

effect of group (F[2,31] = 0.13, p = 0.88), or interaction (F[2,31] = 0.04, p = 0.96) were 

found in the ANOVA for relative power index. The mean RPIs in both baseline and post-

intervention conditions were above 0.86, indicating the overall distribution of RPI was 

confined to 1:1 frequency ratio of arm swing and leg swing.  

Relative Phase. There was no significant main effect of condition or group × 

condition interaction for any of the RP parameters (all p’s > 0.10). There was significant 

main effect of group for LLRL_mean (F[2,30] = 8.85, p = 0.001, η2 = 0.37), with BAI 

showing as a significant covariate (F[1,30] = 5.82, p = 0.022, η2 = 0.16), and a trend for 

LLRL_SD (F[2,31] = 2.63, p = 0.088, η2 = 0.15) and RLRA_mean (F[2,31] = 3.00, p = 

0.06, η2 = 0.16). A priori t-tests showed that with BAI as a covariate, the RPD group had 

significantly larger mean relative phase between left leg and right leg than the LPD and 

NC groups, in both the baseline condition (LPD vs. RPD: F[1,17] = 10.77, p = 0.004, η2 

= 0.39; RPD vs. NC: F[1,22] = 11.85, p = 0.002, η2 = 0.35) and the post-intervention 

condition (LPD vs. RPD: F[1,17] = 6.84, p = 0.018, η2 = 0.29; RPD vs. NC: F[1,22] = 

10.79, p = 0.003, η2 = 0.33). No difference between the LPD and the NC groups was 

found in either condition (p > 0.42). For LLRL_std, the NC group showed less variability 
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of relative phase between left and right legs than the LPD group (t[21] = 3.05, p = 0.006, 

η2 = 0.31) and the RPD group (t[13.6] = 1.90, p = 0.079, η2 = 0.16) in the baseline 

condition, but not in the post-intervention condition (p > 0.23). There was no difference 

between LPD and RPD for either condition (p > 0.69). For RLRA_mean, the RPD group 

had significantly less relative phase between right leg and right arm than the NC group at 

the end of the experiment (t[13] = 2.40, p = 0.032, η2 = 0.23), which indicated that the 

RPD group did not benefit from the visual cues intervention in regard to interlimb 

coordination on the right body side (side of initial motor onset). 

 

Transverse lines and random squares manipulations 

Results of the main ANOVAs are provided below for each dependent variable. 

All a priori comparisons are shown in Table 3 (between group comparisons) and Table 4 

(within group comparisons).  

Walking speed. For transverse lines, there was a significant main effect of spatial 

frequency (F[1.6, 49.9] = 4.31, p = 0.026, η2 = 0.12), a main effect of group (F[2,31] = 

4.48, p = 0.02, η2 = 0.22) and an interaction between frequency and group (F[3.2, 49.9] = 

4.08, p = 0.01, η2 = 0.21). For random squares, there was a significant main effect of 

density (F[2.1,65.1] = 8.18, p = 0.001, η2 = 0.21), a main effect of group (F[2,31] = 3.98, 

p = 0.029, η2 = 0.20), and an interaction (F[4.2,65.1] = 2.79, p = 0.031, η2 = 0.15) (Fig. 

5). The results indicated that the manipulations on both transverse lines and random 

squares had significant overall effects on walking speed across groups and that the effects 

differed between groups. Specifically, the RPD group walked significantly more slowly 
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than the NC group in each of the three line conditions (all p’s < 0.011) and the three 

random squares conditions (all p’s < 0.019). This was not found either between LPD and 

RPD or LPD and NC. There was a trend for an increased walking speed in the line2 

condition relative to the line3 condition for RPD (t[10] = 2.42, p = 0.036, η2 = 0.37) and 

in each of the line conditions relative to the baseline condition for NC (all p’s < 0.033). 

Compared to baseline, there was a trend for LPD to have an increased walking speed in 

the random3 condition (t[8] = 3.14, p = 0.014, η2 = 0.56) and for NC in each of the 

random squares conditions (all p’s < 0.022). 

 Normalized stride length. For transverse lines, there was no main effect of 

frequency (F[2.1,64.6] = 0.27, p = 0.78) or effect of group (F[2,29] = 1.30, p = 0.29) but 

there was a significant interaction (F[4.2,64.6] = 3.65, p = 0.009, η2 = 0.19). Age (F[1,30] 

= 6.81, p = 0.014, η2 = 0.19) and logMAR_acuity (F[1,30] = 7.62, p = 0.01, η2 = 0.20) 

were significant covariates. For random squares, there were no main effects of density 

(F[2.7,82.3] = 0.70, p = 0.54) or group (F[2,29] = 1.03, p = 0.37) but there was a 

significant interaction between density and group (F[5.3,82.3] = 2.47, p = 0.036, η2 = 

0.14) (Fig. 6). The results showed that there was a trend for LPD having an increased 

stride length in the random3 condition relative to the baseline condition (t[8] = 2.56, p = 

0.03, η2 = 0.45) whereas no effects were found in the other two groups. Age (F[1,30] = 

5.88, p = 0.022, η2 = 0.16) and logMAR_acuity (F[1,30] = 6.01, p = 0.02, η2 = 0.17) were 

significant covariates. The findings demonstrated that although neither the transverse 

lines nor random squares manipulations had overall effects in regard to frequency/density 
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or group, there was a significant difference with respect to the extent to which stride 

length was impacted by both types of visual cues across groups.  

Stride frequency. For transverse lines, there was no significant main effect of 

group (F[2,31] = 0.75, p = 0.48) or a significant interaction (F[2.2,34.8] = 2.11, p = 0.14), 

but there was a trend for a main effect of spatial frequency (F[1.1,34.8] = 3.46, p = 0.067, 

η2 = 0.10). For random squares, there was a significant effect of density (F[1.1,34.6] = 

4.06, p = 0.047, η2 = 0.12), but no significant effect of group (F[2,30] = 2.55, p = 0.095, 

η2 = 0.15), where logMAR_acuity showed as a significant covariate (F[1,30] = 4.56, p = 

0.04, η2 = 0.13), or interaction (F[2.2.34.6] = 1.70, p = 0.20, η2 = 0.10). Overall, 

manipulations of both transverse lines and random squares had marked impact on stride 

frequency across the groups.  

Relative Power Index. For transverse lines, there was no main effect of frequency 

(F[2.2,67.7] = 0.17, p = 0.86), main effect of group (F[2,31] = 0.64, p = 0.54) or 

interaction (F[4.4,67.7] = 0.57, p = 0.57). For random squares, results showed no main 

effect of density (F[2.4,75.6] = 0.23, p = 0.83), effect of group (F[2,30] = 1.09, p = 0.35) 

or interaction (F[4.9,75.6] = 0.43, p = 0.82). Age was a significant covariate (F[1,30] = 

4.65, p = 0.039, η2 = 0.13). The mean RPIs in all cue conditions were positive (above 

0.85), indicating that the overall distribution was primarily close to 1:1 frequency ratio.  

Relative Phase. For transverse lines, based on separate mixed design ANOVAs, 

significant main effects of group were found for the LLRL_mean (F[2,31] = 4.16, p = 

0.025, η2 = 0.21) and for the RLRA_mean (F[2,31] = 4.98, p = 0.013, η2 = 0.24); a 

significant main effect of spatial frequency for the RLRA_mean (F[2.0,61.5] = 5.60, p = 
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0.006, η2 = 0.15); and a significant interaction for the LLLA_SD (F[6,93] = 3.83, p = 

0.01, η2 = 0.16), where age was a significant covariate (F[1,30] = 5.01, p = 0.03, η2 = 

0.14). For random squares, separate mixed design ANOVAs showed a significant main 

effect of density for the RLRA_mean (F[2.3,72.6] = 3.15, p = 0.04, η2 = 0.09); significant 

main effects of group for the RLRA_mean (F[2,31] = 8.80, p = 0.001, η2 = 0.36) and the 

LLRL_mean (F[2,31] = 4.65, p = 0.039, η2 = 0.13); and a trend for the effect of group for 

the LLRL_SD (F[2,31] = 2.92, p = 0.069, η2 = 0.16). No interaction was found for any of 

the RP parameters (all p’s > 0.10). The findings indicated overall group differences and 

impact of the manipulations of both transverse lines and random squares on interlimb 

coordination pattern on the right body side (RLRA_mean) (Fig. 7). Specifically, the RPD 

group had smaller RLRA_mean in the line1, line3, and random3 conditions relative to the 

LPD group (line1: t[18] = 2.52, p = 0.022, η2 = 0.26; line3: t[18] = 2.54, p = 0.02, η2 = 

0.26;  t[12.2] = 2.15, p = 0.05, η2 = 0.18). Only the LPD group showed a within-group 

difference in RLRA_mean, with a greater amplitude in the line2 condition (t[8] = 2.73, p 

= 0.026, η2 = 0.48) and in the line3 condition (t[8] = 2.58, p = 0.033, η2 = 0.45) relative to 

baseline; in the line1 condition relative to the line3 condition (t[8] = 3.83, p = 0.001, η2 = 

0.65); in the random3 condition relative to baseline(t[8] = 2.64, p = 0.03, η2 = 0.47) and 

relative to the random2 condition (t[8] = 2.43, p = 0.041, η2 = 0.43).  

   

Transverse lines vs. Random squares  

Two sets of comparisons between transverse lines and random squares were also 

performed for each dependent variable: when there were the least number of cues on the 



 

 61

walkway (line1 and random1; comparison1), and when there were the most number of 

the cues (line3 and random3; comparison2). The overall ANOVA for comparison1 

showed a significant main effect of type of cue (F[1,31] = 4.58, p = 0.04, η2 = 0.13) and 

interaction between type and group (F[2,31] = 6.82, p = 0.004, η2 = 0.31) only for the 

LLLA_mean For comparison2, there was a significant effect of type of cue on the 

RLRA_mean (F[1,31] = 4.68, p = 0.038, η2 = 0.13). No significant main effect of type of 

cue or interaction between type and group was found for any other dependent variables 

(all p’s > 0.06). See Table 5 for results of the follow-up t-tests.  

 

(Insert Tables 3, 4, 5 about here) 

 

In summary, as illustrated in Table 3, group differences were found mainly on 

walking speed, stride length, RP between legs, and RP between ipsilateral arm and leg. 

The differences between RPD and LPD were similar to those between RPD and NC in all 

conditions, except that RPD and LPD did not differ in walking speed in any of the 

conditions. Generally, RPD showed slower walking speed with shorter stride length, 

larger mean and variability of RP between legs, larger variability of RP between arm and 

leg on the left body side and smaller mean of RP between arm and leg on the right body 

side than the other two groups. LPD appeared to have slower walking speed with shorter 

stride length and larger variability of RP between legs at baseline than NC, but the 

differences disappeared in all cueing conditions and the post-intervention condition. The 

results of within group comparisons revealed how the basic gait parameters and 
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coordination patterns were affected across different conditions for each group. While the 

NC group’s walking speed and stride length were affected by both transverse lines and 

random squares cues, the RPD group seemed to be affected solely by the transverse lines 

whereas the LPD group seemed to be affected by the random squares. Walking speed and 

stride length increased when the distance between lines increased (namely frequency 

decreased) for RPD and when the density of the random squares increased for LPD. The 

different trends in changes between LPD and RPD were also found in variability of RP 

between left leg and left arm during line conditions. When the distance of lines reached 

its maximum (lowest spatial frequency), RPD tended to have smaller variability whereas 

LPD tended to have larger variability than in the conditions with shorter distances of lines 

(higher frequencies). A further comparison between the transverse lines condition and the 

random squares condition was demonstrated in Table 5. No difference between these two 

types of visual cues was found on any of the gait variables for LPD and NC whereas RPD 

showed a more cautious walking dynamics with slower walking speed, shorter stride 

length and lower stride frequency in line3 condition compared to random3 condition.         

 

DISCUSSION 

The main goal of the study was to examine the effects of transverse line frequency 

and randomly displayed square density as external cues manipulated in random orders on 

temporal gait regulation and interlimb coordination patterns during comfortable speed 

walking in people with PD. The results of this study confirm the role of vision in 

controlling locomotor behavior of people with PD and age-matched healthy adults, with 
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the effects lasting after the external cues were removed. This study also provides 

evidence of distinct profiles between PD with left motor onset and those with right motor 

onset in response to the vision manipulations. 

We confirmed the long-standing positive effect of external visual cues on gait 

regulation previously reported in people with PD (Martin 1967; Azulay et al. 1996; 

Morris et al. 1996; Azulay et al. 1999; Lewis et al. 2000; Rubinstein et al. 2002; 

Suteerawattananon et al. 2004; Azulay et al. 2006; Sidaway et al. 2006; Jiang, Norman 

2006; Wegen et al. 2006; Chou et al. 2009; Almeida, Bhatt 2012; Lin et al. 2014; Vitorio 

et al. 2014). Recently, Vitorio and colleagues asked participants with PD to walk on a 

lined walkway with the exproprioceptive information from the lower limbs occluded, and 

reported that they could still regulate stride length; that is, looking at their lower limbs 

while walking was not crucial for gait improvements generated by visual cues (Vitorio et 

al. 2014). In the current study, we investigated dynamic flow through external cueing 

with random squares on the walkway, in an attempt to eliminate the spatial rhythmicity of 

the cueing pattern. To our knowledge, this is the first study that has used random 

patterned cues on the floor while participants walked over-ground at their preferred 

comfortable speed. We found that significant alterations in gait characteristics and in 

interlimb coordination were obtained even in the absence of spatial rhythmic cuing. 

Similar to the NC group, participants with LPD experienced a considerable increase in 

walking speed along with stride length compared to baseline when the density of the 

random squares was highest. The mean of RP between leg and arm on the right body side 

became larger in the traverse-lines conditions, as expected, but also became larger with 
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increasing density of the random squares in the LPD group, which has not been reported 

in the literature. 

When we compared the transverse lines condition to the random squares 

condition at either their lowest spatial frequency/density or at their highest spatial 

frequency/density, for the LPD group, no significant difference between these two 

conditions was found except in the following two respects: First, when the 

frequency/density was highest, individuals with LPD had a greater LLLA_SD (indicating 

a less stable coordination pattern between arm and leg on the left body side) while 

walking in the line condition than in the random square condition. Second, LPD had 

greater RLRA_means while walking in the line condition than in the random square 

condition at the lowest frequency/density, indicating a smaller detuning from the 

“perfect” out-of-phase coordination pattern between arm and leg on the right body side. 

For RPD, the gait dynamics seemed to be better while walking in the random square 

condition than in the line condition at the highest frequency/density, which was indicated 

by faster walking speed, longer stride length, higher stride frequency, greater 

LLLA_mean, smaller LLLA_SD and smaller RLRA_SD. The NC group was not affected 

by the type of cues, showing only smaller LLLA_mean in the line condition than in the 

random square condition at the highest frequency/density. The mechanism behind the 

changes is not clear. It seems that a restriction was brought about to interlimb phase 

relation on the left body side while walking in the random square condition at the highest 

density, and to interlimb phase relation on the right body side at the lowest density. As 

the majority of the dependent variables were not affected by the type of cues, our 
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conclusion is that in general, the cues in the random pattern were as effective as the cues 

in the transverse lines in regulating locomotion. Visual cues presented in the form of a 

random pattern on the floor precluded watching foot placement such as may be done 

when walking over equally-spaced lines. Despite this lack of information for regulating 

foot position, participants with PD as well as NC responded to the external visual cues 

and adjusted their walking pattern flexibly and to a comparable level. This finding is 

consistent with the study by Vitorio and colleagues that showed an increase of stride 

length and walking speed in people with PD in the condition without the provision of 

visual information from lower extremities (Vitorio et al. 2014). 

Most of the significant effects of the interventions described here were obtained 

by individuals with LPD. One important finding in this study is the observed interactions 

between condition and group in the main comparisons on walking speed and stride 

length. This is an indication of distinctive locomotor adjustments in LPD and RPD in 

response to vision manipulations. Both PD subgroups had significantly slower walking 

speed than the NC group at baseline. After the intervention session, the LPD group, but 

not the RPD group, had increased its mean walking speed accompanied by longer stride 

length so that it was the same as the NC group for these aspects of gait. In regard to RPD, 

during the manipulations of transverse lines, there was a trend for this group, but not the 

LPD group, to increase its walking speed and have longer stride length when the distance 

between lines was greater (lower spatial frequency). Different LPD-RPD patterns were 

also found on one of the coordination parameters - the variability of RP between left leg 

and left arm (LLLA_SD). We found that the LPD group’s LLLA_SD decreased at the 
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smallest line distance condition (line3) (highest spatial frequency) compared to baseline 

but increased when the line distance was larger (lower spatial frequency) (as shown in 

Fig. 8). By contrast, the RPD group’s LLLA_SD continuously decreased with increasing 

line distance indicating greater stability of coordination pattern. During the random 

squares manipulations, the LPD group, like the NC group, improved in walking speed 

and stride length especially when the density of the random squares was highest (16.4 

squares/m2), whereas the RPD group showed no difference across conditions. In 

summary, the effects of the visual cues on gait regulation seemed to be more general for 

the LPD group, whereas for the RPD group there was a relatively specific effect of 

frequency for the transverse-lines condition.  

 The subgroup results of the effects of visual cues on gait accord with reported 

distinct profiles in the visuospatial processing domain, such as greater visual dependence 

in LPD than RPD (Davidsdottir et al. 2008), which may imply divergent capacities 

between LPD and RPD to use external visual cues in regulating locomotion.  In light of 

these findings, although more investigations are required in order to gain a richer 

understanding of the mechanism, it is critical to distinguish LPD and RPD in research 

design and provide interventions taking their distinctive profiles of behavioral 

performances into consideration, which may foster better rehabilitative outcomes than 

would occur if collapsing them into a single PD group. 

We did not find effects of visual cues either in transverse lines condition or 

random squares condition on the frequency relation of interlimb coordination (RPI) in 

any of the groups. We attributed this finding to the overall high walking speed among 
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participants, which may have limited the potential for improvement. There is evidence of 

changes in RPI in relation to direct manipulations of walking speed on a treadmill 

(Wagenaar and van Emmerik 2000) and manipulations of optic flow speed in a virtual 

hallway (Chou et al. 2009) in younger and older healthy adults. It has been suggested that 

a transition from one frequency state of interlimb coordination to another would emerge 

at a walking speed of about 0.8 m/s (Wagenaar and van Emmerik 2000), which is 

substantially slower than the mean walking speeds of our sample which was about 1.5 

m/s.  

The finding that visual cues are able to foster improved gait mechanics without 

the need for rhythmicity in the pattern has important clinical implications. First, unlike 

random-patterned cues, rhythmic visual cues (i.e. transverse lines) requires attention to 

stepping in spatial relation to the cues.  That is, spatially random cues may induce less 

cognitive load than spatially rhythmic cues. This advantage of random patterned cues 

may especially helpful for those people with PD who show signs of compromised 

attentional resources. Second, random patterned cues might be a better rehabilitation 

approach than rhythmic visual cues in regard to ecological validity. The environment that 

we live in on a daily basis rarely provides rhythmic patterned texture but rather is 

characterized by randomly clustered patterns or objects. Therefore, random patterned 

cues may provide broader practical applications in daily living either at home, outside or 

at a clinic. Most previous research on the effects of visual cues on gait regulation has 

used only transverse lines on the floor that are equally spaced specific to individual stride 

length. This traditional approach did show positive effects in the lab, yet lacks 
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generalization to the overall parkinsonian population in natural settings. Future 

investigations are needed to look at how manipulating some of random cues components, 

for example contrast of the pattern texture against the floor surface or shape of the cues 

might affect gait regulation in people with PD.  A further possibility is to apply random 

visual cues into wearable device technology in real time. 

In summary, our findings point to the important role of explicit visual cues, which 

do not have to be presented in a spatially regular pattern, to guide locomotion in people 

with PD. Different patterns of performance for individuals with LPD and those with RPD 

in locomotive behavior emerged with the provision of visual cues. It would be valuable to 

conduct investigations of those with PD at a more advanced disease stage than described 

in the present study, in order to assess the generalizability of our findings. In our sample 

of individuals with mild to moderate motor severity, the ability to adjust walking patterns 

even when the cues on the floor were randomly arranged supported the role of the 

dynamic visual flow in gait alteration, instead of or in addition to an attentional strategy 

to adjust gait. This last finding may be encouraging for individuals with PD and their 

caregivers who are seeking therapeutic approaches that are effective and less invasive 

than some of the available pharmacological or surgical treatments for locomotor 

impairments (Appleby et al. 2007). Random patterned cues may prove useful as a means 

of rehabilitation, especially for those who are unable to make use of auditory cues or 

those with compromised attentional resources. 
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Table Legends 

 

Table. 2. Participant Characteristics   

Table. 3. Follow-up t-tests results of between group comparisons for each dependent 

variable. 

Table. 4. Follow-up t-tests results of within group comparisons for each dependent 

variable.   

Table. 5. Follow-up t-tests results of two sets of comparisons between transverse lines 

and random squares for each dependent variable at the least number of cues on the 

walkway (line1 and random1; comparison1), and at the most number of the cues (line3 

and random3; comparison2).  
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Table 2. Participant Characteristics 

Measure LPD RPD NC Significance 

Sample size 9 11 14  

Age (years) 67.3 (7.6) 66.9 (5.8) 62.1 (5.3) NS 

Education (years) 17.0 (2.4) 17.9 (1.5) 17.5 (2.4) NS 

Gender (M:F) 6:3 5:6 5:9 NS 

UPDRS motor asymmetry score -0.3 (0.3) 0.3 (0.4) NA p = 0.004 

UPDRS total score 36.7 (12.5) 34.5 (16.5) NA NS 

BDI-II 4.6 (2.4) 6.1 (4.7) 3.3 (4.6) NS 

BAI 4.8 (3.5) 6.3 (6.0) 1.1 (1.5) p = 0.01 

H & Y 2 (1.5-3) 2 (1-3) NA NS 

LED 457.7 (335.5) 486.4 (318.4) NA NS 

 

Note. Univariate analyses of variance were conducted comparing LPD (left-onset Parkinson’s 

disease), RPD (right-onset Parkinson’s disease) and NC groups (normal control). UPDRS = 

Unified Parkinson’s Disease Rating Scale; H & Y = Hoehn & Yahr stage; BDI-II = Beck 

Depression Inventory – II; BAI = Beck Anxiety Inventory; LED = levodopa equivalent dosage. 

Values presented are means (standard deviations) except for Hoehn and Yahr, which is median 

and range.  
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Table 3. Follow-up t-tests results of between group comparisons for each dependent variable 

 
walking speed 

(m/s) 

normalized 

stride length 

(%) 

relative phase (degrees) 

 
LLRL_M    LLRL_SD    LLLA_SD   LLRA_M     

LPD vs. RPD       

baseline   
LPD 

smaller*, b    

post-intervention   
LPD 

smaller* 
   

lines 1  
RPD 

shortert, a, l 
   

RPD 

smallert 

 2 
 

 
     

 3  
RPD 

shortert, a, l 
  

RPD 

larger* 

RPD 

smallert 

random 1 
 

 
 

LPD 

smaller t 

RPD 

largert 
  

 2 
 

 
 

LPD 

smaller* 
   

 3 
 

 
 

LPD 

smaller t 
  

RPD 

smallert 

LPD vs. NC       

baseline LPD slower* LPD shorter*  
LPD 

larger* 
  

RPD vs. NC       

baseline RPD slowert RPD shorter* 
NC 

smaller* 

RPD 

largert 
  

post-intervention RPD slower* RPD shorter* 
NC 

smaller*,b   
RPD 

smallert 

lines 1 
RPD 

slower* 
    

RPD 

smallert 

 2 
RPD 

slower* 
    

RPD 

smallert 

 3 
RPD 

slower* 
 

NC 

smaller* 
 

RPD 

largert, a 

RPD 

smaller* 

random 1 
RPD 

slower* 

RPD 

shortert 

NC 

smaller* 
   

 2 
RPD 

slower* 
 

NC 

smaller* 
  

RPD 

smallert 

 3 
RPD 

slowert 
 

NC 

smaller* 

RPD 

larger* 
  

Note. * p  ≤ .017; t = trend p > .017 and < .05; a = age covariate used in analysis; l = logMAR 

acuity covariate used in analysis; b = total BAI acuity covariate used in analysis. There were no 

findings from the between group comparisons for stride frequency, relative power index, 

LLLA_mean, RLRA_SD, LARA_mean or LARA_SD. There were no differences between the 

LPD and NC groups in any of the conditions except for baseline. Slower walking speed, shorter 

stride length, and larger RP SD indicate poorer performance.  
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Table 4. Follow-up t-tests results of within group comparisons for each dependent variable 

 walking speed 

(m/s) 

normalized 

stride length 

(%) 

stride 

frequen-

cy (Hz) 

relative phase 

(degrees) 

LLLA_SD  RLRA_M     

RPD      

baseline vs. post-intervention      

lines b vs. 1  1 shortert    

 b vs. 2      

 b vs. 3      

 1 vs. 2    2 largert  

 1 vs. 3    3 largert  

 2 vs. 3 3 slowert     

random b vs. 1      

 b vs. 2      

 b vs. 3      

 1 vs. 2      

 1 vs. 3      

 2 vs. 3      

LPD      

baseline vs. post-intervention baseline slower* baseline shortert    

lines b vs. 1     b smallert 

 b vs. 2     b smallert 

 b vs. 3    b largert  

 1 vs. 2   1 lowert   

 1 vs. 3    1 largert 3 smaller* 

 2 vs. 3      

random b vs. 1      

 b vs. 2      

 b vs. 3 b slowert b shortert   b smallert 

 1 vs. 2      

 1 vs. 3      

 2 vs. 3     2 smallert 

NC      

baseline vs. post-intervention baseline slower*  baseline 

lowert 

  

lines b vs. 1 b slowert b shorter t b lowert  b smallert 

 b vs. 2 b slowert  b lowert   

 b vs. 3 b slowert  b lowert   

 1 vs. 2  2 shorter*    

 1 vs. 3      

 2 vs. 3      

random b vs. 1 b slowert  b lowert   

 b vs. 2 b slowert  b lower*   

 b vs. 3 b slowert  b lower*   

 1 vs. 2      

 1 vs. 3      
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Note. * p  ≤ .008; t = trend p > .008 and < .05. There were no findings from the within group 

comparisons for relative power index, LLRL_mean, LLRL_SD, LLLA_mean, RLRA_SD, 

LARA_mean or LARA_SD. There were no differences between the LPD and NC groups in any 

of the conditions except for baseline. Slower walking speed, shorter stride length, lower stride 

frequency, and larger RP SD indicate poorer performance. 
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Table 5. Follow-up t-tests results of two sets of comparisons between transverse lines and random squares for each dependent 

variable at the least number of cues on the walkway (line1 and random1; comparison1), and at the most number of the cues 

(line3 and random3; comparison2) 

 walking speed 

(m/s) 

normalized 

stride length (%) 

stride 

frequency (Hz) 

relative phase (degrees) 

 

  LLLA_M      LLLA_SD     RLRA M   RLRA_SD   LLRL_M 

RPD         

line1 vs. random1 

(the least dense) 

       1ine1 

smallert 

line3 vs. random3 

(the most dense) 
line3 slower* line3 shortert line3 lower* line3 

smaller* 

line3 

larger* 
 line3 

larger* 
 

LPD         

line1 vs. random1 

(the least dense) 
    random1 

largert 

random1 

smaller* 
  

line3 vs. random3 

(the most dense) 

    line3 

larger* 

   

NC         

line1 vs. random1 

(the least dense) 

        

line3 vs. random3 

(the most dense) 

   line3 

smaller* 

    

Note. * p  ≤ .05; t = trend p > .05 and < .10. There were no findings for relative power index, LLRL_SD, LARA_mean or LARA_SD. 

Slower walking speed, shorter stride length, lower stride frequency, and larger RP SD indicate poorer performance. 
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Figure Legends 

Fig. 4. Histogram of relative power index under baseline, transverse lines (3 frequencies), 

and random squares (3 densities) conditions. All values were well above zero (positive) 

which indicated 1:1 interlimb frequency coupling.  

Fig. 5. Walking speed (in m/s) during walking under baseline, transverse lines (3 

frequencies), random squares (3 densities) and post-intervention conditions. 9 LPD, 11 

RPD and 14 NC. Vertical lines represent standard error of the mean. RPD walked more 

slowly than NC in all conditions (all p’s < 0.06), whereas LPD walked more slowly than 

NC only at baseline (p = 0.012).  

Fig. 6. Normalized stride length (SL; the individual’s stride length divided by his/her leg 

length) on the left leg under all conditions: baseline, transverse lines (3 frequencies), 

random squares (3 densities) and post-intervention. 9 LPD, 11 RPD and 14 NC. Vertical 

lines represent standard error of the mean. The unit is in percentage as the values are the 

stride length after normalization by individual’s leg length. RPD had shorter stride length 

than NC in both baseline and post-intervention conditions (p < 0.04), whereas LPD had 

shorter stride length than NC only at baseline (p = 0.004). 

Fig. 7. Relative phase between right leg and right arm (RLRA_mean; degrees) during 

walking under all conditions: baseline, transverse lines (3 frequencies), random squares 

(3 densities) and post-intervention. 9 LPD, 11 RPD and 14 NC. Vertical lines represent 

standard error of the mean. There was an overall group difference and impact of the 

manipulations for both transverse lines and random squares.  
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Fig. 8. Standard deviation of relative phase between left leg and left arm (LLLA_SD; 

degrees) during walking under transverse lines (3 frequencies) conditions. 9 LPD, 11 

RPD and 14 NC. Vertical lines represent standard error of the mean. Different trends in 

changes between LPD and RPD were found during line conditions. When the distance of 

lines at its maximum (line1; lowest frequency), RPD tended to have smaller variability 

whereas LPD tended to have larger variability than the conditions with smaller distances 

of lines (higher frequencies) (LPD: line1 vs. line3, p = 0.019. RPD: line1 vs. line3, p = 

0.016; line2 vs. line3, p = 0.05). 
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GENERAL DISCUSSION 

The results of the first study indicated that visual dysfunction is the predominant 

driver of veering in people with PD, rather than the motor dysfunction of the disease. 

Study 1 laid a foundation for Study 2, which assessed the effectiveness of visual cues in 

gait improvement in people with PD. For the first time, floor visual cues in random 

patterns were employed while the participants were asked to walk over-ground at their 

preferred comfortable speed. The positive effects observed during random cues trials as 

well as during the transverse lines condition suggested that rhythmic visual cueing is not 

the only or the necessary contributor to improved gait, but rather overall dynamic flow 

information produced by self-motion during walking is of significant importance. 

Moreover, the benefits obtained from the use of visual cues seemed to last after the cues 

were taken away. The two studies also provided quantitative evidence for the existence of 

distinct patterns of veering and stride asymmetry as well as of the changes in basic gait 

and interlimb coordination patterns in response to the visual cues that are specific to the 

initial side of the brain lesions in PD.  

First, in Study 1, individuals with LPD veered rightward and those with RPD 

veered leftward when they walked in a corridor with eyes open, despite shorter stride 

length on the more affected body side (i.e., on the left side for LPD and on the right side 

for RPD). They veered in the same direction in the egocentric reference point (ECRP) 

condition when asked to walk toward a subjectively perceived center of a target at the 

end of the corridor. When vision was occluded, group differences were not significant, 

though it should be noted that the direction was in fact opposite that seen with visual 
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inputs, meaning in the direction predicted by motoric asymmetry alone: the LPD group 

veered to the left, corresponding to the body side with shorter stride length, and the RPD 

group veered to the right, corresponding to the body side with shorter stride length. These 

findings suggested that under conditions of visual inputs, the mechanism underlying 

veering is predominantly vision-based instead of motoric-based and the common 

parkinsonian gait disturbances such as veering, stride asymmetry, and to some extent 

stride length were amenable to amelioration by visual guidance, mainly focusing on self-

perceived center (ECRP condition). No objective experimental evidence had been 

provided before this study in regard to whether known visuospatial deficits that produce a 

shift of egocentric midline in one direction, relative to motor impairments, had any 

association with veering in PD.  

The findings from Study 2 provided better understanding of the mechanism 

underlying the positive rehabilitative results arising from the use of the explicit visual 

cues, which could further benefit people with PD practically in real life. Instead of or in 

addition to an attentional strategy, dynamic visual information also appears to play a 

strong role in gait adjustment. It is well known that people with PD rely heavily on 

attentional processes to modulate their stride length (Morris et al. 1996) and bilateral 

coordination of gait (Yogev et al. 2007). Gait asymmetry and regulation of gait 

variability and rhythmicity tend to get significantly worse when a concurrent task is 

introduced (Yogev et al. 2005). Hence, the method of transverse lines, dependent on 

rhythmicity, may fall short with cognitive or motor (dual-task) distraction. Further, in 

real-world environments, it is less likely to find walking surfaces with rhythmic than with 
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random patterns. The ability to adjust walking patterns observed in our sample even when 

the cues on the floor were randomly arranged may be an encouraging finding for 

individuals with PD and their caregivers who are seeking feasible therapeutic approaches 

that are effective as well as less potentially harmful than some of the available 

pharmacological or surgical treatments. This may be especially true for those with visual 

impairment that is significant enough to prevent them from perceiving rhythmic visual 

cues or those who have compromised attentional resources. 

In contrast to previous investigations, in the present studies individuals’ body 

alignment was tested before walking was initiated. As the initial orientation of the body 

could be responsible for the trajectory of veering (Guth and Laduke 1994; Kallie, 

Schrater et al. 2007), it is important to guarantee that the alignment of the body axis 

relative to the true midline of the walkway is consistent across groups throughout the 

experiment. We were able to rule out the possibility that initial body orientation could 

account for group differences in the direction of veering. Other factors that might affect 

study outcomes were also taken into account, such as age, anxiety levels, and visual 

acuity. For example, a finding of interest was the role of age in the group differences in 

normalized stride length in Study 2. Age was a significant covariate affecting the main 

effect of group in the main ANOVAs, even though the groups were age-matched.  

A generally better result was observed in the LPD than the RPD group in the 

ECRP condition in Study 1 and during walking on a textured surface in Study 2. These 

findings suggest that the LPD group was better than RPD at using the objective 

environmentally-anchored landmark directly in front of them or on the floor surface in 
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order to adopt a more appropriate locomotion path and produce better locomotive 

patterns. Previous studies have shown a difference between LPD and RPD in visual 

dependence, which is the reduced ability to disregard visual environmental information 

(Cronin-Golomb, 2010). Greater visual dependence of LPD than RPD might translate to a 

greater ability of LPD to benefit from conditions that provide visual cuing. 

Two limitations of the present studies should be acknowledged. First, the sample 

was not large, though it was similar to those seem in other studies of navigation in PD 

(e.g., Young et al., 2010; Lin et al., 2014). Second, because we examined only 

participants with mild to moderate PD, conclusions cannot be drawn about those with 

greater disease severity.  

The findings from Study 2 provided better understanding of the mechanism 

underlying the positive rehabilitative results arising from the use of the explicit visual 

cues, which could further benefit people with PD practically in real life. Instead of or in 

addition to an attentional strategy, dynamic visual information also appears to play a 

strong role in gait adjustment. It is well known that people with PD rely heavily on 

attentional processes to modulate their stride length (Morris et al. 1996) and bilateral 

coordination of gait (Yogev et al. 2007). Gait asymmetry and regulation of gait 

variability and rhythmicity tend to get significantly worse when a concurrent task is 

introduced (Yogev et al. 2005). Hence, the use of transverse lines, dependent on attention 

to rhythmicity, may become less beneficial with cognitive or motor (dual-task) 

distraction. Further, in real-world environments, one is less likely to find walking 

surfaces with rhythmic than with random patterns. The ability to adjust walking patterns 
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that was observed in our sample even when the cues on the floor were randomly arranged 

may be an encouraging finding for individuals with PD and their caregivers who are 

seeking feasible therapeutic approaches that are effective as well as less potentially 

harmful than some of the available pharmacological or surgical treatments. This may be 

especially true for those with visual impairment that is significant enough to prevent them 

from perceiving rhythmic visual cues or those who have compromised attentional 

resources. 

The observed improvements in veering as well as locomotive patterns induced by 

the presence of visual cues highlighted the primacy of the visual control of locomotion 

over motoric features and of dynamic visual flow over (or in additional to) attentional 

strategy. These findings provide insights that may be valuable for the development of 

interventions for gait disorders in PD that emphasize vision and environmental 

modification, rather than targeting solely motor symptoms. The existence of distinctive 

patterns of veering and gait regulation while using visual cues in people with LPD and 

RPD, observed in both studies, implies the potential importance of tailoring interventions 

to PD subgroups.  

 

 

 



 

 87

BIBLIOGRAPHY 

Almeida, Q. J. and H. Bhatt (2012). “A manipulation of visual feedback during gait 

training in Parkinson’s disease.” Parkinson’s Disease 2012: 1–7.  

Amick, M. M., & J. Grace (2006). “Deep brain stimulation surgery for Parkinson's 

disease: the role of neuropsychological assessment.” Medicine and Health, Rhode 

Island 89(4): 130–3. 

Antonini, A., P. Vontobel, et al. (1995). “Complementary positron emission tomographic 

studies of the striatal dopaminergic system in Parkinson’s disease.” Archives of 

Neurology 52(12): 1183–90. 

Appleby, B. S., P. S. Duggan, A. Regenberg, P. V. Rabins (2007). “Psychiatric and 

neuropsychiatric adverse events associated with deep brain stimulation: A meta-

analysis of ten years' experience.” Movement Disorders 22(12): 1722–8. 

Archibald, N. K., M. P. Clarke, et al. (2011). "Visual symptoms in Parkinson's disease 

and Parkinson's disease dementia." Movement Disorders 26(13): 2387–2395. 

Azulay, J. P., S. Mesure, et al. (1999). "Visual control of locomotion in Parkinson's 

disease." Brain 122 ( Pt 1): 111–120. 

Azulay, J. P., S. Mesure, et al. (2002). "Increased visual dependence in Parkinson's 

disease." Perceptual and Motor Skills 95(3 Pt 2): 1106–1114. 

Azulay, J. P., S. Mesure, & O. Blin (2006). “Influence of visual cues on gait in 

Parkinson's disease: contribution to attention or sensory dependence?” Journal of 

the Neurological Sciences 248(1–2): 192–5. 

 

Azulay, J. P., C. Van Den Brand, et al. (1996). “Automatic motion analysis of gait in 

patients with Parkinson disease: effects of levodopa and visual stimulations.” 

Revue Neurologique (Paris) 152(2): 128–34. 

Beck, A. T., R. A. Steer, et al. (1996). Manual for the Beck Depression Inventory-II. 

Psychological Corporation, San Antonio, TX. 

Bello, O., G. Marquez, et al. (2010). “Mechanisms involved in treadmill walking 

improvements in Parkinson’s disease.” Gait & Posture 32(1): 118–23. 

 

Berger, B., P. Gaspar, & C. Verney (1991). “Dopaminergic innervation of the cerebral 

cortex: unexpected differences between rodents and primates.” Trends in 

Neurosciences 14(1): 21–7. 



 

 88

Blin, O., A. M. Ferrandez, G. Serratrice. (1990). “Quantitative analsysis of gait in 

Parkinson patients: increaased variability of stride length.” Journal of the 

Neurological Sciences 98: 91–7. 

Bloem, B. R., I. Boers, et al. (2001). "Falls in the elderly. I. Identification of risk factors." 

Wiener Klinische Wochenschrift 113(10): 352–362. 

Bodis-Wollner, I. (1990). "Visual deficits related to dopamine deficiency in experimental 

animals and Parkinson's disease patients." Trends in Neurosciences 13(7): 296–

302. 

Bodis-Wollner, I., M. S. Marx, et al. (1987). "Visual dysfunction in Parkinson's disease. 

Loss in spatiotemporal contrast sensitivity." Brain 110 ( Pt 6): 1675–1698. 

Booij, J., G. Tissingh, et al. (1997). “[123I]FP-CIT SPECT shows a pronounced decline 

of striatal dopamine transporter labelling in early and advanced Parkinson’s 

disease.” Journal of Neurology, Neurosurgery and Psychiatry 62(2): 133–140. 

Boonstra, T. A., H. van der Kooij, et al. (2008). "Gait disorders and balance disturbances 

in Parkinson's disease: clinical update and pathophysiology." Current Opinion in 

Neurology 21(4): 461–471. 

Bowes, S. G., A. Charlett, et al. (1992). “Gait in relation to ageing and idiopathic 

parkinsonism.” Scandinavian Journal of Rehabilitation Medicine 24(4): 181–6. 

Brandies, R. and S. Yehuda (2008). "The possible role of retinal dopaminergic system in 

visual performance." Neuroscience and Biobehavioral Reviews 32(4): 611–656. 

Bronstein, J. M., M. Tagliati, R. L. Alterman, et al. (2011). “Deep brain stimulation for 

Parkinson disease: an expert consensus and review of key issues.” Archives of 

Neurology 68(2): 165. 

 

Chou, Y. H., R. C. Wagenaar, et al. (2009). “Effects of optic flow speed and lateral flow 

asymmetry on locomotion in younger and older adults: a virtual reality study.” 

Journals of Gerontology. Series B, Psychological Sciences and Social Sciences 

64(2): 222–31. 

Cicinelli, J. (1989). Veer as a function of preview and walking speed. Unpublished M.A. 

thesis, University of California at Santa Barbara. 

Cronin-Golomb, A. (2010). "Parkinson's disease as a disconnection syndrome." 

Neuropsychology Review 20(2): 191–208. 

Davidsdottir, S., A. Cronin-Golomb, et al. (2005). "Visual and spatial symptoms in 

Parkinson's disease." Vision Research 45(10): 1285–1296. 



 

 89

Davidsdottir, S., R. Wagenaar, et al. (2008). "Impact of optic flow perception and 

egocentric coordinates on veering in Parkinson's disease." Brain 131(Pt 11): 

2882–2893. 

Diaz-Santos, M., B. Cao, et al. (2015). “Effect of visual cues on the resolution of 

perceptual ambiguity in Parkinson’s disease and normal aging.” Journal of the 

International Neuropsychological Society Mar 13: 1–10. 

Donker, S. F., P. J. Beek, R. C. Wagenaar, T. Mulder (2001). “Coordination between arm 

and leg movements during locomotion.” Journal of Motor Behavior 33(1):86–

102. 

Duruk, D., Z. Gray, et al. (2014). "Effects of tDCS on executive function in Parkinson's 

disease." Neuroscience Letters 582: 27–31. 

Fahn, S., R. L. Elton, UPDRS Development Committee (1987). "Unified Parkinson's 

disease rating scale. In: Fahn S., Marsden C. D., Goldstein M., Calne D. B., 

editors. Rencent developments in Parkinson's disease. Florham Park, N.J.: 

Macmillan Healthcare Information. 2: 153–163, 293–304. 

Follett, K. A., F. M. Weaver, M. Stern, et al. (2010). “Pallidal versus subthalamic deep-

brain stimulation for Parkinson's disease.” The New England Journal of Medicine 

362(22): 2077–91. 

Frazzitta, G., G. Pezzoli, et al. (2013). "Asymmetry and freezing of gait in parkinsonian 

patients." Journal of Neurology 260(1): 71–76. 

Garcia Ruiz, P. J., M. J. Catalan, J. M. Fernandez Carril (2011). “Initial motor symptoms 

of Parkinson disease.” Neurologist 17(6 Suppl 1): S18–20. 

Gibson, J. J. (1966). “The senses considered as percptual systems.” Houghton Mifflin, 

Boston. 

Guth, D. and R. Laduke (1994). "The Veering Tendency of Blind Pedestrians - an 

Analysis of the Problem and Literature-Review." Journal of Visual Impairment & 

Blindness 88(5): 391–400. 

Hafström, A., P. A. Fransson, et al. (2002 ). "Visual influence on postural control, with 

and without visual motion feedback." Acta Oto-laryngologica 122(4): 392–397. 

Halpern, C. H., J. H. Rick, S. F. Danish, M. Grossman, & G. H. Baltuch. (2009). 

“Cognition following bilateral deep brain stimulation surgery of the subthalamic 

nucleus for Parkinson's disease.” International Journal of Geriatric Psychiatry 

24(5): 443–51. 



 

 90

Harris, J. P., E. A. Atkinson, et al. (2003). "Hemispace differences in the visual 

perception of size in left hemiParkinson's disease." Neuropsychologia 41(7): 795–

807. 

Harris, J. P., J. E. Calvert, et al. (1990). "The influence of dopamine on spatial vision." 

Eye (London, England) 4 ( Pt 6): 806–812. 

Hausdorff, J. M. (2009). “Gait dynamics in Parkinson’s disease: common and distinct 

behavior among stride length, gait variability, and fractal-like scaling.” Chaos 

19(026113): 1–14. 

Himann, J. E., D. A. Cunningham, et al. (1988). "Age-related changes in speed of 

walking." Medicine and science in sports and exercise 20(2): 161–166. 

Hoehn, M. M. and M. D. Yahr (1967). "Parkinsonism: onset, progression and mortality." 

Neurology 17(5): 427–442. 

Jewell, G. and M. E. McCourt (2000). "Pseudoneglect: a review and meta-analysis of 

performance factors in line bisection tasks." Neuropsychologia 38(1): 93–110. 

Jiang, Y. and E. Norman. (2006). “Effects of visual and auditory cues on gait initiation in 

people with Parkinson's disease.” Clinical Rehabilitation 20(1): 36–45. 

Kallie, C. S., P. R. Schrater, et al. (2007). "Variability in stepping direction explains the 

veering behavior of blind walkers." Journal of Experimental Psychology-Human 

Perception and Performance 33(1): 183–200. 

Kempster, P. A., W. R. Gibb, G. M. Stern, & A. J. Lees (1989). “Asymmetry of 

substantia nigra neuronal loss in Parkinson’s disease and its relevance to the 

mechanism of levodopa related motor fluctuations.” Journal of Neurology, 

Neurosurgery and Psychiatry 52(1): 72–76. 

Klatzky, R. L., J. M. Loomis, et al. (1990). "Acquisition of route and survey knowledge 

in the absence of vision." Journal of Motor Behavior 22(1): 19–43. 

Kleiner-Fisman, G., J. Herzog, D. N. Fisman, Tamma F, Lyons KE, Pahwa R, et al. 

(2006). “Subthalamic nucleus deep brain stimulation: summary and meta-analysis 

of outcomes.” Movement Disorders 21(Suppl 14): S290–304. 

Laudate, T. M., S. Neargarder, et al. (2013). "Line bisection in Parkinson's disease: 

investigation of contributions of visual field, retinal vision, and scanning patterns 

to visuospatial function." Behavioral Neuroscience 127(2): 151–163. 



 

 91

Lebold, C. A. and Q. J. Almeida (2011). "An evaluation of mechanisms underlying the 

influence of step cues on gait in Parkinson's disease." Journal of Clinical 

Neuroscience 18(6): 798–802. 

Lee, A. C., J. P. Harris, et al. (2001). "Disruption of estimation of body-scaled aperture 

width in Hemiparkinson's disease." Neuropsychologia 39(10): 1097–1104. 

Lee, A. C., J. P. Harris, et al. (2001). "Evidence from a line bisection task for visuospatial 

neglect in left hemiparkinson's disease." Vision Research 41(20): 2677–2686. 

Lee, A. C., J. P. Harris, et al. (2002). "Dopamine and the representation of the upper 

visual field: evidence from vertical bisection errors in unilateral Parkinson's 

disease." Neuropsychologia 40(12): 2023–2029. 

Lee, H. K. M. and R. J. Scudds (2003). "Comparison of balance in older people with and 

without visual impairment." Age and Ageing 32(6): 643–649. 

Lewis, G. N., W. D. Byblow, et al. (2000). "Stride length regulation in Parkinson's 

disease: the use of extrinsic, visual cues." Brain 123 ( Pt 10): 2077–2090. 

Lin, C. C., R. C. Wagenaar, et al. (2014). "Effects of Parkinson's disease on optic flow 

perception for heading direction during navigation." Experimental Brain Research 

232(4): 1343–1355. 

Martin, J. P. (1967). “The Basal Ganglia and Posture.” London, United Kingdom: Pitman 

Medical: 20–35. 

Milner, A. D. and M. Harvey (1995). "Distortion of size perception in visuospatial 

neglect." Current Biology 5(1): 85–89. 

Morris, M. E., F. Huxham (2001). “The biomechanics and motor control of gait in 

Parkinson disease.” Clinical Biomechanics (Bristol, Avon) 16(6): 459–70. 

Morris, M., R. Iansek, et al. (2005). "Three-dimensional gait biomechanics in Parkinson's 

disease: evidence for a centrally mediated amplitude regulation disorder." 

Movement Disorders 20(1): 40–50. 

Morris, M. E., R. Iansek, et al. (1994). "Ability to modulate walking cadence remains 

intact in Parkinson's disease." Journal of Neurology, Neurosurgery, and 

Psychiatry 57(12): 1532–1534. 

Morris, M. E., R. Iansek, T. A. Matyas, J. J. Summers (1996). “Stride length regulation in 

Parkinson's disease. Normalization strategies and underlying mechanisms.” Brain 

119 ( Pt 2): 551–68. 



 

 92

Nanhoe-Mahabier, W., A. H. Snijders, et al. (2011). "Walking patterns in Parkinson's 

disease with and without freezing of gait." Neuroscience 182: 217–224. 

Parkinson, J. (2002). "An essay on the shaking palsy. 1817." The Journal of 

Neuropsychiatry and Clinical Neurosciences 14(2): 223–236; discussion 222. 

Paris, A. P., H. G. Saleta, et al. (2011). "Blind randomized controlled study of the 

efficacy of cognitive training in Parkinson's disease." Movement Disorders 26(7): 

1251–1258. 

Patla, A. E., A. Adkin, C. Martin, R. Holden, & S. Prentice (1996). “Characteristics of 

voluntary visual sampling of the environment for safe locomotion over different 

terrains.” Experimental Brain Research 112(3): 513–22. 

Pearce, M. E., D. A. Cunningham,et al. (1983). “Energy cost of treadmill and floor 

walking at self-selected paces.” European Journal of Applied Physiology and 

Occupational Physiology 52(1): 115–9. 

Pelosin, E., Avanzino, L., Bove, M., Stramesi, P., Nieuwboer, A., & Abbruzzese, G. 

(2010). "Action observation improves freezing of gait in patients with Parkinson’s 

disease." Neurorehabilitation and Neural Repair 24(8): 746–752. 

Pelosin, E., Bove, M., Ruggeri, P., Avanzino, L., & Abbruzzese, G. (2013). "Reduction 

of bradykinesia of finger movements by a single session of action observation in 

Parkinson disease." Neurorehabilitation and Neural Repair 27(6): 552–560. 

Perrin, P., C. Jeandel, et al. (1997). "Influence of visual control, conduction, and central 

integration on static and dynamic balance in healthy older adults." Gerontology 

43(4): 223–231. 

Plotnik, M., N. Giladi, et al. (2005). "Is freezing of gait in Parkinson's disease related to 

asymmetric motor function?" Annals of Neurology 57(5): 656–663. 

Prince, F., H. Corriveau, et al. (1997). "Gait in the elderly." Gait & Posture 5(2): 128–

135. 

Rinne, J. O., A. Laihinen, et al. (1993). "PET study on striatal dopamine D2 receptor 

changes during the progression of early Parkinson's disease." Movement 

Disorders 8(2): 134–138. 

Rossit, S., R. D. McIntosh, et al. (2012). "Attention in action: evidence from on-line 

corrections in left visual neglect." Neuropsychologia 50(6): 1124–1135. 



 

 93

Rubinstein, T. C., N. Giladi, & J. M. Hausdorff (2002). “The power of cueing to 

circumvent dopamine deficits: a review of physical therapy treatment of gait 

disturbances in Parkinson’s disease.” Movement Disorders 17(6): 1148–60. 

Saltzman, E., A. Löfqvist, et al. (1998). "Dynamics of intergestural timing: a perturbation 

study of lip-larynx coordination." Experimental Brain Research 123(4): 412-424. 

Schaafsma, J. D., Y. Balash, et al. (2003). "Characterization of freezing of gait subtypes 

and the response of each to levodopa in Parkinson's disease." European 

Neurological Journal 10(4): 391–398. 

Schaafsma, J. D., N. Giladi, et al. (2003). "Gait dynamics in Parkinson's disease: 

relationship to Parkinsonian features, falls and response to levodopa." Journal of 

the Neurological Sciences 212(1–2): 47–53. 

Schubert, M., T. Prokop, F. Brocke, W. Berger (2005). “Visual kinesthesia and 

locomotion in Parkinson's disease.” Movement Disorders 20(2): 141–50. 

Shelton, P. A., D. Bowers, et al. (1990). "Peripersonal and vertical neglect." Brain 113 ( 

Pt 1): 191–205. 

Sidaway, B., J. Anderson, et al, (2006). “Effects of long-term gait training using visual 

cues in an individual with Parkinson’s disease.” Physical Therapy 86(2): 186–94. 

Sinforiani, E., L. Banchieri, et al. (2004). "Cognitive rehabilitation in Parkinson's 

disease." Archives of Gerontology and Geriatrics 38 Suppl(0): 387–391. 

Spaulding, S. J., B. Barber, et al. (2013). "Cueing and gait improvement among people 

with Parkinson's disease: a meta-analysis." Archives of Physical Medicine and 

Rehabilitation 94(3): 562–570. 

Stern, Y., M. Sano, J. Paulson, & R. Mayeux. (1987). "Modified Mini-Mental State 

Examination: Validity and reliability." [abstract] Neurology 37(Suppl 1): 179.  

Stolze, H., J. P. Kuhtz-Buschbeck, et al. (1997). “Gait analysis during treadmill and 

overground locomotion in children and adults.” Electroencephalography and 

Clinical Neurophysiology 105(6): 490–7. 

Suteerawattananon, M., G. S. Morris, et al. (2004). “Effects of visual and auditory cues 

on gait in individuals with Parkinson’s disease.” Journal of the Neurological 

Sciences 219: 63–69. 

Uc, E. Y., M. Rizzo, et al. (2005). "Visual dysfunction in Parkinson disease without 

dementia." Neurology 65(12): 1907–1913. 



 

 94

Vallar, G. (1998). "Spatial hemineglect in humans." Trends in Cognitive Sciences 2(3): 

87–97. 

van Emmerik, R. E. and R. C. Wagenaar (1996). “Effects of walking velocity on relative 

phase dynamics in the trunk in human walking.” Journal of Biomechanics 29(9): 

1175–84. 

van Wegen, E., I. Lim, et al. (2006). “The effects of visual rhythms and optic flow on 

stride patterns of patients with Parkinson’s disease.” Parkinsonism and Related 

Disorders 12: 21–27. 

Vitorio, R., E. Lirani-Silva, et al. (2014). "Visual cues and gait improvement in 

Parkinson's disease: which piece of information is really important?" 

Neuroscience 277: 273–280. 

Wagenaar, R. C. and R. E. van Emmerik (2000). “Resonant frequencies of arms and legs 

identify different walking patterns.” Journal of Biomechanics 33(7): 853–61. 

Weaver, F. M., K. Follett, M. Stern, K. Hur, C. Harris, et al. (2009). “Bilateral deep brain 

stimulation vs best medical therapy for patients with advanced Parkinson disease: 

a randomized controlled trial.” JAMA: The Journal of the American Medical 

Association 301(1): 63–73. 

Wood, B. H., J. A. Bilclough, et al. (2002). "Incidence and prediction of falls in 

Parkinson's disease: a prospective multidisciplinary study." J Neurol Neurosurg 

Psychiatry 72(6): 721–725. 

Yogev, G., N. Giladi, C. Peretz, S. Springer, E. S. Simon, J. M. Hausdorff (2005). “Dual 

tasking, gait rhythmicity, and Parkinson's disease: which aspects of gait are 

attention demanding?” The European Journal of Neuroscience 22(5): 1248–56. 

Yogev, G., M. Plotnik, et al. (2007). "Gait asymmetry in patients with Parkinson's disease 

and elderly fallers: when does the bilateral coordination of gait require attention?" 

Experimental Brain Research 177(3): 336–346. 

Young, D. E., R. C. Wagenaar, et al. (2010). "Visuospatial perception and navigation in 

Parkinson's disease." Vision Research 50(23): 2495–2504. 

 

  



 

 95

CURRICULUM VITAE 

Personal contact information 

Xiaolin Ren 

Email: xren@bu.edu 

 

Education  

2003–2007 B.S. in Biomedical Engineering, Capital Medical University, Beijing, China 

2007–2009 M.S. in Biomedical Engineering, University of Vermont, VT, USA 

2010–2015 Ph.D. in Rehabilitation Science, Boston University, MA, USA 

 

Professional Employment 

2006–2012 Research Assistant, Vision & Cognition Laboratory, Boston University 

 

Honors and Awards 

Dudley Allen Sargent Research Fund, 2013, Sargent College, Boston University 

 

Publications 

Ren X, Salazar R, Neargarder S, Roy S, Ellis T, Saltzman E, Cronin-Golomb A (under 

review). Veering in hemi-Parkinson’s disease: Primacy of visual over motor 

contributions. 

 

Lin CC, Wagenaar RC, Young DE, Saltzman EL, Ren X, Neargarder S, Cronin-Golomb 

A (2014). Effects of Parkinson’s disease on optic flow perception for heading direction 

during navigation. Exp Brain Res. 232(4):1343–55. 

 

Wu G, Keyes L, Callas P, Ren X, Bookchin B (2010). Comparison of tele, community 

and home based Tai Chi exercise on compliance and effectiveness in elders at risk for 

falls. Arch of Phys Med Rehabil. 91(6):849–56. 

 



 

 96

Wu G, Ren X (2009). Effect of speed of Tai Chi Chuan movement on leg muscle actions 

in the young and elderly. Clin Biomech. 24(5):415–21. 

 

Conference Presentations 

Ren X, Salazar R et al. (2015). Veering in hemi-Parkinson’s disease: Primacy of visual 

over motor contributions. 19th International Congress of Parkinson’s Disease and 

Movement Disorders, 2015, San Diego, CA. 

 

Ren X, Wagenaar RC et al. (2013). The role of optic flow on locomotion in young adults 

during over-ground walking. 3rd World Parkinson Congress, 2013, Montréal, Québec, 

Canada  

 

Wu G, Keyes L, Ren X, Callas P. (2009). The effect of interactive tele-exercise program 

for retaining elders in exercise participation. American Telemedicine Association ATA’s 

2009 Annual Meeting, Las Vegas, Nevada. 

 

Ren X, Wu G. (2008). Characteristics of muscle activities in young and elderly groups 

during Tai Chi movement. 17th Congress of the International Society of 

Electrophysiology and Kinesiology, ISEK 2008, Niagara Falls, Ontario, Canada. 

 


