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DRIVING EFFICIENCY IN DESIGN FOR RARE EVENTS USING

METAMODELING AND OPTIMIZATION

PAUL MORRISON

ABSTRACT

Rare events have very low probability of occurrence but can have significant impact.

Earthquakes, volcanoes, and stock market crashes can have devastating impact on those

affected. In industry, engineers evaluate rare events to design better high-reliability sys-

tems. The objective of this work is to increase efficiency in design optimization for rare

events using metamodeling and variance reduction techniques. Opportunity exists to in-

crease deterministic optimization efficiency by leveraging Design of Experiments to build

an accurate metamodel of the system which is less resource intensive to evaluate than the

real system. For computationally expensive models, running many trials will impede fast

design iteration. Accurate metamodels can be used in place of these expensive models to

probabilistically optimize the system for efficient quantification of rare event risk. Monte

Carlo is traditionally used for this risk quantification but variance reduction techniques

such as importance sampling allow accurate quantification with fewer model evaluations.

Metamodel techniques are the thread that tie together deterministic optimization using

Design of Experiments and probabilistic optimization using Monte Carlo and variance re-

duction. This work will explore metamodeling theory and implementation, and outline

a framework for efficient deterministic and probabilistic system optimization. The over-

all conclusion is that deterministic and probabilistic simulation can be combined through

metamodeling and used to drive efficiency in design optimization.

Applications are demonstrated on a gas turbine combustion autoignition application

where user controllable independent variables are optimized in mean and variance to max-

imize system performance while observing a constraint on allowable probability of a rare

autoignition event.
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Chapter 1

Introduction

1.1 Experiment and Optimization in the Design Process

Industrial trends have shifted the system level optimization of hardware to earlier in the

design process. This is enabled by better computational tools which more accurately model

physical hardware behavior (i.e. computational fluid dynamics, finite element analysis).

The objective of this trend is to minimize time and cost of physical experiments by exploring

a wider design space (and finding what doesn’t work) with minimal impact to overall

program schedule and cost. The objective is not to design during system level experiments

but to validate an optimal part or process. The optimal design will have an acceptably

small and known level of uncertainty. Table 1.1 describes typical design methods and a

qualitative assessment of cost and time required to run.

Computational importance is becoming on par with experiment and theory because ac-

curacy in reproducing physical system behavior has increased. In some cases, computation

is replacing experiment because computational fidelity meets or exceeds the objectives of

Cost Time Purpose Methods

0 minutes establish physics analytical textbook equations

$ hours explore design space multi fidelity computer modeling

$$ days optimize design / screen individual component testing

$$$ weeks verify performance multi component rig testing

$$$$+ months validate system interactions full assembly system level test

Table 1.1: Qualitative Cost & Time for Each Step in the Design Process
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the experiment. Both physical experiments and high fidelity computer experiments can

be time consuming and resource intensive as shown in Table 1.1 so there is a desire to

minimize cost, maximize benefit, and quantify uncertainty. This can be achieved using a

simplified mathematical model of the system or process being optimized. The purpose is

to numerically represent the physical behavior of a process or system in a manner that can

be executed quickly while maintaining a reasonable accuracy of the response.

1.2 Metamodeling in the Design Process

These simplified numerical models are formally referred to as metamodels when the basis

of the model is a complex computer simulation. For this work, the definition is expanded

to include physical experiment data as a complementary basis for the metamodel. This is

significant from a stochastic standpoint because complex computer models are deterministic

but physical experiment always includes some aspect of bias and error (measurement,

setup, etc.). Compared to high fidelity computer models and physical experiment data,

metamodels are [25]:

• easier to connect proprietary and expensive simulation codes

• simpler to parallelize

• better able to filter noise

• cover the entire design space

• faster error detection

These characteristics make metamodeling an attractive tool in the design process. They

enable rapid exploration of a design space and provide information about a system in

locations that have not been tested in a physical experiment or computer simulation. The

uncertainty of the information in this unexplored design region can be quantified.

Metamodels can predict unobserved system behavior in two basic ways: interpolating

and smoothing. Interpolating refers to the exact reproduction of the response at known

data points whereas smoothing refers to the regression based fit of multiple data points

without necessarily reproducing the observed result. The smoothing characteristics of
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metamodels are attractive for systems which exhibit noisy behavior because the regression

acts to smooth out the response and lessening the sensitivity to random noise variation.

Response surface methodology falls into the latter smoothing category because the response

surface form is polynomial with coefficients determined by least squares regression [26]. On

the other end of the interpolation spectrum is the Radial Basis Function metamodel that

uses linear combinations of a radially symmetric distance function to exactly reproduce the

input data points [26]. Finally, Gaussian Process metamodeling (also known as “kriging”)

can both exactly interpolate or smooth the dataset based on a covariance function which

the designer can control [19]. The engineer must choose the appropriate metamodeling

method for their application based on prior knowledge of the system to be modeled. Wang

et al. [26] and Simpson et al. [19] provide thorough summaries and suggested applications

of many metamodeling techniques.

1.3 Rare Event Simulation Challenges

A rare event is formally defined by Rubino and Tuffin as “an event occurring with a very

small probability but important enough to justify their study”[18]. The probability and

importance thresholds for rare events vary across domains such as insurance, telecommu-

nications, and transportation.

This work will explore rare event analysis in the context of autoignition. Autoignition is

the unintended phenomenon when a fuel air mixture combusts prematurely. An occurrence

of autoignition must have a significantly small probability because the consequences of a

hardware failure driven by autoignition are very large. For aircraft engine gas turbines, an

autoignition event sustained for a certain amount of time may cause hardware damage and

subsequent failure of downstream rotating turbomachinery. A representative probability of

failure for civil aircraft during a typical flight is one in a billion, or 10−9 [18]. For the sake of

simplicity in demonstration, this work assumes a maximum probability of an autoignition

event to be the same 10−9. Quantifying this probability with physical experiment or

high fidelity computational experiment (CFD) requires a prohibitively high number of
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evaluations. A an accurate metamodel, coupled with rare event stochastic techniques, is

best suited to quantify this risk.

Metamodels are best suited for rare event analysis because they’re computationally

inexpensive to evaluate while accurately representing system behavior. Metamodels can

be evaluated cheaply because they involve simple quadratic equations (in RSM) or matrix

inversion (in Gaussian Processes), both being far easier to evaluate than solving complex

(flow or mechanical) physics equations for many nodes simultaneously. Rare event anal-

ysis requires orders of magnitude more evaluations than traditional Monte Carlo based

stochastic analysis which is orders of magnitude more than deterministic optimization. An

accurate metamodel is the best vehicle to link these design tools. Figure 1.1 provides an

overview of where metamodels and optimization fit in the design process.

Figure 1.1: Process Framework for Metamodel Enabled Design Optimization

The new contribution of this work is centered on linking deterministic and stochastic

optimization for rare events using metamodeling. This unification of metamodeling and
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rare event analysis through importance sampling is unique and applicable to efficient design

iteration in industry.

1.4 Literature Review and Techniques

The benefits of creating a mathematical surrogate that describes the behavior of a product

or process are well established. Many authors have presented methods of building and

validating this metamodel surrogate and this work will focus on a subset of those methods

useful to an industry practitioner. Meyers and Montgomery [14] present a thorough start-

to-finish analysis of Response Surface Methodology (RSM). The framework outlined guides

the practitioner through identifying the proper model, fitting the response surface, and

basic optimization of the inputs to achieve the desired output of the physical system.

Much of the analysis is limited to first and second order parametric models which may not

be ideal for all applications.

Guinta [5] provides an application and extension of the RSM framework in his dis-

sertation on high-speed civil transport aircraft design optimization. The work addresses

shortfalls of RSM in regards to poor optimization in the presence of numerical noise using a

sequential approach. This approach is referred to as Variable Complexity Response Surface

Modeling (VCSM) in which the main objective is to narrow the design space with higher

fidelity modeling. This allows for a reduction in sampling points and increase in model

accuracy because only essential regions of the design space are explored using high fidelity

tools.

The stochastic aspects of the RSM framework are outlined by Mavris [10, 11] as Robust

Design Simulation (RDS). The method is summarized [10] by :

RDS combines the response surface model with a Monte Carlo simulation

to construct cumulative distribution functions (CDF) and probability density

functions (PDF) for the objective and constraints.

RDS differs from deterministic optimization because, instead of absolute maximization

of system performance, RDS maximizes performance and minimizes the variance of that
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maximum performance [11]. The analysis by Mavris et al. [10] is unique in that, in addition

to absolute system performance, emphasis is placed on system cost and design risk. Cost

and risk can be modeled in the RDS framework (and others) as constraints or additional

optimization objectives. This approach is of great interest to the industrial practitioner

who must include cost and risk in the business case for a design study.

Wang et al. [26] expand beyond polynomial based RSM into nonparametric models

and provide a comprehensive comparison of five metamodeling methods each benchmarked

against twenty problems taken from industry or literature. The models are compared for

accuracy, flexibility, efficiency, transparency, robustness, and ease of implementation while

considering deterministic and probabilistic applications. The authors recommend Radial

Basis Functions based on optimal satisfaction of the comparison criteria.

Wang and Shan [25] provide a higher level design process overview of where meta-

modeling fits in the engineering design process, referred to as metamodel-based design

optimization (MBDO). The authors present guidelines on experiment design (sampling)

techniques for both physical experiments and stochastic computer analyses. Metamodel-

ing techniques, with emphasis on probabilistic metamodels, and validation strategies of

those metamodels are then presented followed by a section on design optimization using

the validated metamodel. The optimization strategies are broken into four sections: global,

multiobjective, probabilistic, and multidisciplinary. Of particular interest to this work is

the probabilistic design optimization strategies. The author concludes that metamodels are

best used as surrogates for computationally intense and financially expensive experiments

during the design optimization process.

Simpson et al. [19] works through a similar process overview but highlights software

applications of metamodeling and design optimization methods in industry. In addition,

and most importantly, Simpson et al. uncover common pitfalls when applying statistical

regression techniques to deterministic computer simulations, specifically the authors em-

phasize the difference between bias error due to model fitting and random error inherent

in the product or process being modeled. Finally, the authors recommend model choice
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based on the characteristics of the product or process the model is intended to represent.

Meckesheimer et al. [12] detail metamodel validation strategies with a specific focus on

computational expense. The uncertainty introduced by model bias or random error must

be quantified to be managed and the authors present the “leave-k -out” cross validation

strategy. Recommendations are made on the value of k for various metamodel types. The

authors conclude that the “leave-k -out” cross validation technique provides an adequate

balance of model uncertainty quantification with computational expense to determine that

uncertainty.

Another approach to quantifying model uncertainty is presented by Donato and Pitchu-

mani [4] entitled QUICKER: Quantifying Uncertainty In Computational Knowledge En-

gineering Rapidly. The QUICKER method is advantageous because it does not rely on a

metamodel but uses a reduced sampling of the full scale simulation to estimate the output

distribution of the response. The authors demonstrate a 95% reduction in samples while

maintaining accuracy compared to traditional Monte Carlo or Latin Hypercube direct

sampling methods.



Chapter 2

Metamodel Theory

2.1 Introduction

At the highest level, a system or process is an observed output characterized by a function

of its inputs.

y = f(x) (2.1)

where x = (x1, x2, x3, . . . , xn)> is the vector of user controllable input variables to the

system and y is the observed response. Most real systems or processes also have factors

that are uncontrollable by the user yet influence the observed response.

x1
x2
xn
xu1
xun

Input

Controllable

Uncontrollable

Output

ySystem

Figure 2.1: Black Box Approach

The first objective of modeling is to understand and characterize the behavior of a

system. For some simple ideal systems with a few inputs, a pure analytic form of the

response is known. However, complex real systems do not have an exact formula for the

response as a function of its inputs.

To build a model of a system, the designer must gather data. This can be thought of as

a function evaluation at a number of inputs. This function evaluation can be the result of

a physical experiment or a computational simulation. The input settings should be chosen
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to balance adequate exploration of the design space with cost associated with each function

evaluation. For complex systems, each function evaluation can be very expensive. This

leads to two critical questions:

1. Where in the design space should the function be evaluated (conduct an experiment,

run a simulation)?

2. Given the response at a set of known inputs, how can the response at a different,

untested set of inputs be predicted?

x1 x2

Figure 2.2: Design Space Function Evaluations

Question 1 is answered primarily by Design of Experiment (DoE) theory while Question

2 is answered primarily by metamodeling. Yet there are strong interactions between DoE

and metamodeling driving an iteration loop.

For this work, physical experiment and high fidelity computer simulation (CFD, FEA,

etc.) both provide the same functional evaluation information upon which the metamodel

is built. It is accurate to blur the distinction between physical and computer experiment be-

cause both can be quite resource intensive to build and run. Whereas running a metamodel

requires little computational expense. This blurred distinction is also supported by the ef-

fort involved with building the experiment. Creating and assembling physical hardware

along with meshing and pre-/post- processing are orders of magnitude more resource inten-

sive than fitting metamodel parameters. Computer simulation is even replacing physical
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experiment because simulation accuracy has improved and a more thorough understanding

of the system can be obtained using modern computational tools. The philosophy of most

high fidelity computer simulation is to duplicate the physical system whereas the philoso-

phy of metamodeling is to accurately predict a single response to a number of known inputs.

In addition, high fidelity computer simulation does not scale well. For example, a designer

may create a very accurate computer model of a single turbine blade but the engine level

sensitivity does not warrant the high computational expense involved in simulating a single

turbine blade. Lastly, the low computational expense of a metamodel enables stochastic

evaluation and iterative optimization that are prohibitive if run in a physical experiment

or high-fidelity simulation.

The second objective of modeling is to find the best values of the user controllable inputs

such that the observed response is optimal. Uncontrollable inputs certainly influence the

response and the entire field of Robust Design is dedicated to optimizing the controlled

inputs to minimize system sensitivity to the uncontrolled inputs.

Uncontrollable inputs may also contribute to system error which is a difference in the

observed response from the predicted response. This error is accounted for in metamodeling

according to Equation 2.2 [19]:

ŷ = g(x) + ε (2.2)

where ε represents bias and observation error. There is an important distinction between

f(x), the underlying physics that govern the system, and g(x) which is the empirical form

assumed in metamodeling. There is also an important distinction between y, the true

observed response of the system, and ŷ, the metamodel predicted response of the system.

The difference between y and ŷ is used to quantify the overall prediction uncertainty of the

metamodel. The following sections will outline different empirical forms (g(x)) for selected

metamodeling strategies.
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2.2 Response Surface Methodology (RSM) Theory

This section will focus on a modeling framework called Response Surface Methodology

(RSM) which describes the overall process of optimally generating experimental data (his-

torically focused on physical experiment but also adapted to computer experiments), fitting

a regression model to that data, and optimizing the inputs to achieve the desired response

[14]. This section will focus on the regression model piece of RSM.

The RSM regression model is parametric, meaning there is a known form of the model,

and is typically a low order polynomial (first and second order).

ŷ = β0 + β1x1 + β2x2 + ε (2.3)

ŷ = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + ε (2.4)

In addition to the isolated input terms, response surface models often include an interaction

term to capture response behavior not attributed to a single input alone.

ŷ = β0 + β1x1 + β2x2 + β12x1x2 + ε (2.5)

ŷ = β0 + β1x1 + β2x2 + β12x1x2 + β11x
2
1 + β22x

2
2 + ε (2.6)

Response surfaces are best visualized in three dimensions with the response plotted

on the z axis and two input variables plotted on the x and y axis respectively. Response

surface models, however, are not limited to two dimensions but can be applied up to N

dimensions.

2.2.1 Taylor Series

The motivation for low order polynomials is first and foremost simplicity in understanding

and application. In addition, for a sufficiently narrow region around an observed response,

the true function of unknown form can be approximated by a Taylor Series expansion about
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2.3.1: Linear without interaction term 2.3.2: Linear with interaction term

2.3.3: Quadratic without interaction term 2.3.4: Quadratic with interaction term

Figure 2.3: Response surfaces

a point a.

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + ... (2.7)

This can be expanded into multiple dimensions where x1, x2, . . . , xn represents up to n

dimensions.

f(x1, . . . , xn) = f(a1, . . . , an)+

f ′(a1)(x1 − a1) + . . .+ f ′(an)(xn − an)+
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f ′′(a1)

2!
(x1 − a1)2 + . . .+

f ′′(an)

2!
(xn − an)2+

f ′′′(a1)

3!
(x1 − a1)3 + . . .+

f ′′′(an)

3!
(xn − an)3 + . . . (2.8)

The Taylor series can be generalized to

f(x1, . . . , xn) = f(a1, . . . , an) +

n∑
j=1

∞∑
k=1

fk(aj)

k!
(xj − aj)k (2.9)

where n is the dimensionality of the surface and k is the Taylor series order. If the arbitrary

system coordinates are shifted such that a = 0, the Taylor series reduces to

f(x1, . . . , xn) = f(0) +
n∑
j=1

∞∑
k=1

fk(0)

k!
(xj)

k (2.10)

If the Taylor series is truncated after the second order term

f(x1, . . . , xn) = f(0) +
n∑
j=1

f ′(0)xj +
n∑
j=1

f ′′(0)

2!
x2j (2.11)

If the Taylor coefficients are set equal to the unknown polynomial model coefficients,

then the first order polynomial model represents a first-order Taylor series expansion and

likewise for second order[14]. Higher accuracy in representing the true response surface can

be obtained by introducing higher order polynomial models consistent with carrying more

terms in the Taylor series. The engineer is advised against the typical pitfalls associated

with increasing order polynomials and over-fitting. The minimum order should be used.

ŷ = β0 +
n∑
i=1

βixi + εi (2.12)

ŷ = β0 +
n∑
i=1

βixi +
n∑
i=1

βiix
2
i (2.13)

(2.14)

Because the beta coefficients will be fit based on regression, the engineer can use re-
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duction of order techniques to simplify the model form. Using reduction of order, an n

dimensional problem can be reduced to a first order polynomial. Myers and Montgomery

[14] illustrate reduction of oder with the following example. In the two dimensional second

order polynomial in Equation 2.4, let x3 = x21, x4 = x22, β3 = β11, β4 = β22, then Equation

2.4 becomes

ŷ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε (2.15)

2.2.2 Regression Theory

The models built in RSM make use of regression analysis to link observed inputs to pre-

dicted outputs. Regression analysis is the act of determining the β coefficients in the above

polynomials. Least squares is a common regression method focused on minimizing the sum

of the squares of the residual error ε between the observed and predicted data. The least

squares measure is [14]:

E =

n∑
i=1

ε2i =

n∑
i=1

yi − β0 − n∑
j=1

βjxj

2

i

(2.16)

It is important to point out the difference between the observed output (y) versus the

predicted output (ŷ). Least squares uses the known values y = f(x) to fit a prediction

model ŷ = g(x) + ε. For least squares regression, there exists an n × 1 column vector of

known observations y for an n× p matrix of inputs X where each row denotes the known

inputs for one observation.



y1

y2
...

yn


= f





x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...

xn1 xn2 . . . xnp




+



ε1

ε2
...

εn


(2.17)



15

This can be rewritten in regression model form as [14]:



y1

y2
...

yn


=



1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
...

. . .
...

1 xn1 xn2 . . . xnp





β0

β1
...

βp


+



ε1

ε2
...

εn


(2.18)

and in matrix form as:

y = Xβ + ε (2.19)

From Equation 2.16, the sum of the squared error can be rewritten in matrix notation [14]:

E =

n∑
i=1

ε2i = ε′ε = (y−Xβ)′ (y−Xβ) (2.20)

= y′y−X′β′y− yXβ + X′β′Xβ (2.21)

= y′y− 2X′β′y + X′β′Xβ (2.22)

To minimize the error, its first derivative of E with respect to β must be zero. The solution

to this zero first derivative equality provides the β vector. [14]

2X′y + 2X′Xβ = 0 (2.23)

β =
(
X′X

)−1
X′y (2.24)

2.2.3 VCRSM (Variable Complexity RSM)

Giunta [5] emphasizes the sequential nature of response surface techniques and outlines

a design methodology called Variable Complexity Response Surface Methodology. In this

technique a response surfaces model is created at a low fidelity and continually refined

at increasing levels of fidelity while narrowing the design space until an optimal design is

achieved. The response surface model is used primarily as a screening tool to establish

minimum performance criteria. The response surface model is also used as an optimization
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tool. For a sufficiently narrow design space, the RS is refined based on a few high fidelity

experiments at selected points in this narrow design space. This allows optimization meth-

ods to have high fidelity knowledge but without the computational expense of repeated

high fidelity model evaluation [5]. In addition to the optimization benefits, RS models

naturally tend to filter out experimental noise because of the regression fitting procedure.

This noise filtering property then lends itself to gradient based optimization techniques

which are computationally efficient when operating on a response surface.

Giunta outlines the following steps of the VCRSM Method:

1. Determine the initial design configuration using nominal values from previous expe-

rience or intuition.

2. Establish design space boundaries through a lower and upper limit on each indepen-

dent variable while keeping in mind the physical limitations of the system.

3. Using Design of Experiment theory, establish initial points in the design space to be

explored.

4. Conduct a low fidelity analysis at the previously identified points.

5. Reduce the design space by eliminating regions of the design space where constraints

are violated.

6. Determine additional points in the reduced design space that meet the D-optimality

criterion in DoE theory.

7. Conduct a medium fidelity analysis where the designer evaluates the D-optimal de-

signs chosen in the previous step.

8. Create a metamodel of the system.

9. Optimize the design based on the metamodel. There is significantly reduced compu-

tational time to optimize on the metamodel versus medium fidelity model.

10. Analyze the optimal configuration for robustness and validation of optimal design.

11. If design is not deemed optimal, define a new design space, select new boundaries

and repeat the previous steps.
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Giunta outlines minor variations on the VCRSM method mostly involving determina-

tion of design space boundaries.

2.3 Radial Basis Function Theory

The VCRSM method does not restrict the designer to polynomial based response surface

metamodels. DACE models (Design and Analysis of Computer Experiments) are another

non-parametric class of metamodels which provide flexibility and accuracy advantages at

the cost of complexity. Radial Basis Function metamodeling is used when strict interpo-

lation and exact reproduction of known data points is needed. This makes the technique

highly desirably for smooth systems that exhibit non-noisy behavior and undesirable for

noisy systems. For non-noisy systems, Wang et al. [26] determined that RBF is the most

accurate metamodeling technique. Wang et al. also determined that RBF is the most

robust technique due to its relative insensitivity to inaccuracy in internal model parame-

ters. At its core, the RBF technique states that points close together in the design space

should exhibit similar behavior. This leads to a predictor based on distance between known

points. This is best visualized in three dimensions with each point surrounded by a sphere.

The sphere surface is the predictor φ(r) and is only a function of radial distance from the

known point r = |x− xj | [15]. The response prediction is made using linear combinations

of the distance from the requested input point to the known response points.

y(x) =
n∑
i=1

wiφ(|x− xi|) (2.25)

The still unknown weighting vector (w) is determined using the observed responses to

known inputs. This imposes the characteristic of RBF that it exactly reproduce the input

training set. The procedure for determining w is then reduced to solving a system of n

equations for n unknowns [15]. The i subscript below represents unknown quantities and

the j subscript represents known quantities.
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Name Form

Multiquadratic φ(r) =
√
r2 + c2

Inverse Multiquadratic φ(r) =
1√

r2 + c2

Thin-plate spline φ(r) = r2 log
(r
c

)
Gaussian φ(r) = exp

(
−1

2

r2

c2

)

Table 2.1: Alternative Radial Basis Functions [15]

yj =
n∑
i=1

wiφ(|xj − xi|) (2.26)

Well known linear algebra techniques such as LU decomposition are computationally

efficient means to determine the weighting vector.

The radial distance typically assumes the form of a Euclidean norm [26]

r = |x− xj | =
√

(x− xj)T (x− xj) (2.27)

which can be expanded into n dimensions as

r = |x− xj | =

√√√√ n∑
i=1

(xi − xij)2 (2.28)

The basis function φ(r) itself has several forms, the most common being the multi-

quadratic function [26]

φ(r) =
√
r2 + c2 (2.29)

where c is on the order of r and is iteratively determined to minimize prediction error

using a “leave-one-out” technique. Other explored functions are summarized in Table 2.1.
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Radial Basis Functions are attractive for computational efficiency because the weight-

ing factors and constant must be determined only once allowing subsequent metamodel

evaluations (i.e. operating in an optimizer) are very inexpensive.

2.4 Kriging Theory

Modeling a response for uncertain inputs is best handled by the kriging method. Instead

of single valued, the inputs are assumed to follow a Gaussian distribution with a known

mean and variance. This system of Gaussian inputs is called a Gaussian Process. Kriging

is simply another name for Gaussian Process metamodeling after its namesake, D.G. Krige,

who applied the method to mining engineering [15].

Kriging has advantages over RS and RBF models because it can interpolate (ie exactly

reproduce the input data set) or smooth based on a parameter chosen by the designer.

This is because kriging models allow for influence of noise in the observed data. This noise

is assumed to be a Gaussian Process (normally distributed) with mean zero and variance

σ2. In matrix notation, the set of observed responses y is described by some function of

the known inputs x (recall from Section 2.1 x = (x1, x2, x3, . . . , xn)>), plus a noise term ε.

y = f(x) + ε (2.30)

f(x) ∼ N (µ,K) (2.31)

ε ∼ N (0, σ2) (2.32)

The GP metamodeling process makes the assumption that the underlying function f(x)

can be modeled as a Gaussian Process with mean µ(x) and covariance K(x,x′) where x

is the 1 × n vector of n inputs and K is the n × n covariance matrix. From properties of

Gaussian addition, the output y (single observed result plus mean-zero noise, 1 × 1) can

be combined to
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y = N (µ (x) ,K
(
x,x′

)
+ Iσ2) (2.33)

where µ is the observed mean vector, I is the identity matrix (since the noise is assumed

to be independent), and K + Iσ2 is the observed covariance matrix (including noise).

The most often used covariance function K in GP regression is the squared exponential

function [16]:

cov
(
f(x), f(x′)

)
= K(x,x′) = exp

(
− 1

2
√
`
|x− x′|2

)
(2.34)

Rasmussen and Williams recommend that the |x − x′| term above be normalized by

a characteristic length term ` that the designer may choose to best fit the observed data.

This characteristic length and other terms that the designer has control over are called

“hyperparameters”. These hyperparameters are iteratively determined to minimize the

prediction error of the fit by making use of model validation strategies outlined in Section

2.5. The covariance function is referred to in literature as the “kernel” and may take

other forms besides the squared exponential function. See Rasmussen and Williams [16]

for additional common functions.

To predict the response at a set of unknown values, say yp+1 . . . yq, the known input

matrix must be identified.


yp+1

...

yq

 = f



x(p+1)1 x(p+1)2 . . . x(p+1)n

...
...

. . .
...

xq1 xq2 . . . xqn


+


εp+1

...

εq

 (2.35)

For the sake of nomenclature, let X? denote the above (q − p)× n matrix of inputs for

which the unknown, predicted observations are y? = (yp+1 . . . yq)
>. The whole objective

of kriging is to find y?.

y? = f (X?) + ε (2.36)
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Finally, for the unknown responses, the covariance matrix of the known inputs in matrix

notation is K
(
X?,X? + σ2I

)
.

Since the system was assumed to be a Gaussian process, there exists a joint Gaussian

observation distribution [16]:

 y

y?

 ∼ N

 µ
µ?

 ,
K(X,X) + σ2I K (X,X?)

K (X?, X) K (X?, X?) + σ2I


 (2.37)

where K is the matrix of covariances for the inputs with either observed (X) or un-

observed (X?) output. It is a GP best practice to transform the input data such that the

mean µ is zero to produce an unbiased estimator of the response. To ease the nomenclature

for the next section, Equation A.5 can be rewritten as:

 y

y?

 ∼ N

 µ
µ?

 ,
A C>

C B


 (2.38)

Finally, the conditioning properties of a joint Gaussian distribution allow the distribu-

tion of y? to be directly computed[16].

y?| (y,X,X?) ∼ N (M,V) (2.39)

where

M = µ? + CA−1 (y − µ) (2.40)

= µ? +K (X?, X)K (X,X)−1 (y − µ) (2.41)

V = B − CA−1C> (2.42)

=
[
K (X?, X?) + σ2I

]
−K (X?, X)

[
K (X,X) + σ2I

]−1
K (X,X?) (2.43)

To observe the GP zero mean best practice, the data should be transformed such that

µ = 0. This enables an unbiased estimator of y? such that µ? = 0 as well. Finally,
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y?| (y,X,X?) ∼ N
(
K (X?, X)K (X,X)−1 y,[

K (X?, X?) + σ2I
]
−K (X?, X)

[
K (X,X) + σ2I

]−1
K (X,X?)

)
(2.44)

2.5 Model Validation

The most common model validation strategy is called “leave-k-out” cross validation. The

strategy involves leaving a subset (of dimension k) of the full data set (of dimension n) out

of the metamodel fitting process and then using this fit to predict the subset of data which

was left out.

y


 N

N − k


 = f


 N

N − k


+ ε (k) (2.45)

The difference between the predicted and observed values provides an error quantifica-

tion of the model. This process can be repeated iteratively over the entire set of observed

data. This process is computationally efficient to quantify metamodel accuracy because

no new (expensive) computer simulations or physical experiments are required. The full

dataset used to fit the metamodel is also used to validate the metamodel [12] driving up the

amount of information extracted from a single experiment (experimental efficiency). In ad-

dition, “leave-k-out” is a conceptually simple validation strategy which make it attractive

for industry practitioners.

Meckesheimer [12] offers strategies for choosing the value of k for several different

metamodel types. For low-order polynomials and radial basis functions, a k value of one

is recommended. This gives the best error estimate because all of the observed datapoints

are being removed one at a time. Leave-one-out is enabled by the ease of which low order

polynomials and radial basis functions are re-fit, which must occur n times. According

to Meckesheimer, the best choice of k for Gaussian Process (kriging) metamodeling is
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k = 0.1N . This is due to the optimization loop on the user defined hyperparameters for

each validation iteration. For well behaved models, it is a reasonable assumption to hold

these parameters constant to avoid this loop and increase efficiency [12].



Chapter 3

Metamodel Test Problems

3.1 One Dimensional Sample Problem

To demonstrate the strengths and weaknesses of the aforementioned metamodeling meth-

ods, a simple predictive model of the form

y = x2 (3.1)

will be fit for the RSM, RBF, and Kriging techniques. An extension can be made by adding

in an artificial error term ε to the observed value to become

y = x2 + ε (3.2)

Observing the comparisons in Figure 3.1, the 2nd Order Response Surface Model ap-

pears to have the best fit. However, this is misleading because the underlying form of the

observed values is also second order. For the practitioner, this underlying form is rarely

known and rarer still does it exactly match the assumed form of the metamodel.

To demonstrate a more realistic (but still simple and one dimensional) problem, the

following is used to demonstrate again the various metamodeling approaches. This function

is non-monotonic.

y = 2
√
x+ cos(x) + ε (3.3)

Again, observing the comparisons in Figure A.3, the true function is much better pre-
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3.1.2: Second Order RSM

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

x

z

 

 

RBF prediction
noisy observation
true function

3.1.3: RBF
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3.1.4: Kriging

Figure 3.1: Noisy Metamodeling for y = x2 + ε

dicted by the Radial Basis Function and kriging methods. Recall, the major difference is

that RBF is exactly interpolative, meaning the predicted model will exactly pass through

all of the observed datapoints. Whereas, the kriging approach will attempt to accommo-

date the error in the observation. The other distinct advantage of kriging is that it also

provides a variance on the prediction which is very important for unexplored regions of the

design space.

3.2 Two Dimensional Sample Problem

To further expand the realism of these examples, the non-monotonic one-dimensional ex-

ample is expanded into a second input dimension.
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3.2.4: Kriging

Figure 3.2: Noisy Metamodeling for y = 2
√
x+ cos(x) + ε

Again, observing the comparisons in Figure 3.3, Kriging has the best visual represen-

tation of the underlying data.

3.3 Error Analysis

For the sample problems in the previous section, visually inspecting the model for best fit

isn’t adequate. The degree to which the model fits the data must be quantified. A widely

accepted measure of model fit is the coefficient of determination or R2. This coefficient is

defined in terms of the sum squared error due to model fitting (residuals) versus the total

sum of squares.

R2 = 1− SSE
SST

(3.4)
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3.3.3: RBF
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Figure 3.3: Noisy Metamodeling for y =
√
x1 +

√
x2 + cos(x1) + cos(x2) + ε

where

SSE =

n∑
i=1

y2obs,i −
n∑
i=1

y2pred,i (3.5)

SST =

n∑
i=1

y2obs,i −
(
∑n

i=1 yobs,i)
2

n
(3.6)

R2 may be skewed by overfitting since the value will always increase as more terms are

added to the model [14]. Meyers and Montgomery suggest using an adjusted R2 which will
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actually decrease when non-essential terms are added to the model.

R2
adj = 1− n− 1

n− p
(
1−R2

)
(3.7)

Another measure by which models are assessed is the normality of residuals. The best

model will have residuals normally distributed with mean zero and minimal variance σ2res.

Table 3.1 summarizes the fit statistics for the above sample problems. The residual mean

for all of the cases was very near zero. The residual normality plots can be found in

Appendix B.1.

The metamodel with the least predictive error is usually Kriging (based on the residual

variance). The exception is for the 1D case of y = x2 where the second order response

surface had a marginally lower variance. This is unlikely to propagate to practical appli-

cations since the underlying form of the noisy function exactly matches the guessed form

of the response surface. Radial basis functions exactly replicate the input data which is

undesirable for cases with known noise.

Model R2 R2
adj σ2res

1D
Linear RSM 0.9144 0.9126 0.0087
Second Order RSM 0.9716 0.9704 0.0029

x2
RBF 1.0 - -
Kriging 0.9436 - 0.0030

1D
Linear RSM 0.7845 0.7800 0.4250
Second Order RSM 0.8482 0.8418 0.2993

2
√
x+ cosx

RBF 1.0 - -
Kriging 0.8123 - 0.0131

2D

Linear RSM 0.1264 -0.1232 0.4353
Second Order RSM 0.8263 0.6092 0.0865
RBF 1.0 - -
Kriging 0.6928 - 0.0110

Table 3.1: Fit Statistics for Sample Metamodel Problems
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3.4.1: Linear RSM
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3.4.2: Second Order RSM
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3.4.3: RBF
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3.4.4: Kriging

Figure 3.4: Residual Plots for y = x2 + ε
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3.5.2: Second Order RSM
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3.5.4: Kriging

Figure 3.5: Residual Plots for y = 2
√
x+ cos(x) + ε
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3.6.2: Second Order RSM

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Observation

Re
sid

ua
l

3.6.3: RBF

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Observation

Re
sid

ua
l

3.6.4: Kriging

Figure 3.6: Residual Plots for y =
√
x1 +

√
x2 + cos(x1) + cos(x2) + ε

3.4 Kriging Hyperparameter Strategy

Kriging is unique in that there are undetermined parameters that affect the fit of the

metamodel that the user can choose. This can be viewed as a weakness of the kriging

process because RBF/RSM are truly determined by the data. It is a best practice to

choose these hyperparameters in a way that minimizes the error between the predicted

mean value and the observed mean value. This can be accomplished using an iterative cross-

validation method letting the hyperparameters float until the minimum error is achieved.

However, this adds a one-time fitting penalty to the kriging process. Subsequent metamodel

evaluations do not require re-optimizing the hyperparameters for the same set of observed

data.



Chapter 4

Combustion and Autoignition

4.1 Introduction

Combustion is perhaps the most prevalent form of energy conversion in the world today.

Combustion releases energy stored in fuel in the form of heat which is then used in a ther-

modynamic cycle to do work. This work can turn a generator for electricity or a crankshaft

in a car. Combustion typically requires three elements to be present for the exothermic

reaction to occur: fuel, oxidizer, and a source of ignition. For example, in an Otto cycle

automotive engine, the fuel is gasoline (a hydrocarbon), the oxidizer is air, and the ignition

source is the spark plug. Under certain conditions, the fuel and oxidizer may combine and

spontaneously ignite in a phenomenon called autoignition. In Otto cycle (constant vol-

ume combustion) automotive engines, this is referred to as “knock” [2] and is avoided due

to the adverse mechanical consequences of such a rapid, unintended pressure rise. Diesel

cycle engines (constant pressure combustion), however, use autoignition as the method to

initiate the combustion process and drive the power stroke of the cylinder. Furthermore,

the Brayton cycle (applied to gas turbines for power generation and propulsion) is also

constant pressure combustion but the process is open, meaning mass (fuel plus air) is not

conserved but mass flow rate is conserved. Brayton cycle combustion is initiated by a spark

but sustained by the existing combustion flame with the fuel and oxidizer being constantly

replenished and a stationary flame front. Autoignition in the Brayton cycle can be defined

as a rapid heat release without a source such as a spark or existing flame front[6]. This

negatively impacts combustor hardware and emissions.

Autoignition phenomena in through flow combustion systems, such as those found in
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gas turbines, is described through a chemical delay time of the fuel and oxidizer mixture.

This delay time is modeled using single step reaction theory from the field of chemical

kinetics [7]. This simplification of the complex chemical processes that govern combustion

is practical but is not accurate enough for finding and quantifying a true autoignition

boundary for a particular hardware design. Commercial simulation software (CHEMKIN,

etc) exist to model these types of chemical reactions but certain simplifying assumptions

must be made regarding the hardware configuration to integrate into the software. Lastly,

experimental autoignition ignition delay time investigations involve the use of idealized

shock tube hardware with surrogate fuel and oxidizer properties (pressure, temperature,

etc) that are not necessarily reflective of a Brayton cycle combustion system [24].

The combination of the above factors (simple, physics based equations, higher fidelity

computer model, and physical experiment data) make autoignition phenomena an ideal

candidate for system level optimization. Additionally, the combination of chemical kinet-

ics and physical flow properties also make autoignition an excellent candidate for meta-

modeling since there is no single unified software package to calculate chemical kinetics

and fluid flow properties. Deterministic optimization methods can produce an ideal design

that minimizes autoignition risk. But, due to the rarity of this event in a production level

hardware design and severe safety consequences of an event (if applied to aircraft engine

gas turbines), stochastic methods should be used to quantify the risk of occurrence and

feedback to the hardware design cycle ways to minimize this risk. Furthermore, todays

manufacturing capability cannot economically produce the ideal hardware design intent

for every single part coming off of the production line. There exists inherent variability

due to manufacturing tolerances that influence a system’s risk of autoignition.

The focus of this work is developing the deterministic and stochastic methods to opti-

mize a design for autoignition risk. To maintain scope, a simplified hardware model is used

to demonstrate model building and optimization techniques. In practical application, the

high fidelity computer simulations and experimental data can be generated with complex

(and often proprietary) hardware found in a modern combustion system.
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4.2 Physics of Autoignition

In a continuous flow combustion system, fuel is injected into an air stream ahead of the

flame front. This allows the fuel and air to mix adequately before ignition due to the

existing flame. During this mixing process, complex chemical reactions are occurring.

Those reactions and the rate at which they occur fall under the broad scope of chemical

kinetics which is outside the scope of this work. A simplifying assumption can be made

that allows the complex mixing/igniton/combustion process to be described with a single

step global reaction mechanism. Higher fidelity analysis with specialized software (ie.

CHEMKIN) can capture multistep reaction detail. The formation of combustion products

from fuel and air in a single step is described by Equation 4.1 [21]:

F +Ox→ Prod (4.1)

The reaction proceeds at the rate:

d [F ]

dt
= −k [F ] [Ox] (4.2)

where k is called the rate coefficient[21]. The rate coefficient can be derived through

molecular collision theory and can be summarized in the Arrhenius form:

k = A exp

(
−Ea
RuT

)
(4.3)

where A is called the pre-exponential factor, Ea is the activation energy of the fuel, Ru is

the universal gas constant, and T is the temperature of the fuel-air mixture[21]. Because

of the empirical nature of the pre-exponential factor, it can contain a units conversion to

allow the rate coefficient to have units of time. This is described as the chemical ignition

delay time (tchem) [6]. The pre-exponential factor also has a strong dependency on pressure
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and fuel stoichiometry (φ) so the ignition delay can be broken down into:

tchem = APmφn exp

(
Ea
RuT

)
(4.4)

Now, A, m, and n must be determined experimentally [6]. This form is commonly used

in experiment setups plotted against 1/T [7, 8, 24, 20]. In the absence of an external

ignition source, the fuel-air mixture with activation energy Ea, empirical coefficients A,

m, and n, and at pressure P and temperature T will spontaneously ignite after time

tchem. For simplicity in demonstration, empirical factors and activation energy are used as

recommended by Lefebvre [7] and summarized in Table 4.1.

Parameter Value Description

Ea 1.236× 10−3 Activation Energy

A 60× 10−3 Pre-exponential Factor

Ru 1.986 Universal Gas Constant

m 0.98 Pressure Exponent

n 0.37 Stoichiometry Exponent

Table 4.1: Assumed Autoignition Empirical Parameters (based on Lefebvre [7])

To avoid autoignition, the fuel-air mixture must meet a source of ignition before the

ignition delay time tchem. The time that the unburnt fuel-air mixture spends residing in the

combustion apparatus can be calculated using CFD or with some simplifying assumptions

on the hardware. At the lowest fidelity, the flow residence time is a length over a velocity,

tres =
LphyscL
V

(4.5)

where the length is the distance traveled by the unburnt fuel-air mixture between fuel intro-

duction and burning. There is some abstraction to this length because fuel atomization and

droplet evaporation effects distort the true, physical length between the fuel introduction

plane and the flame front. For complex combustion geometry, the true length is corrected
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Figure 4.1: Simplified Reactor Geometry

by a factor derived from CFD or other experiment to accommodate non-cylindrical features.

For the sake of simplicity, this work assumes an uncorrected cylindrical length (cL = 1)

and assumes the flame is stable on the trailing edge of the device. The velocity in Equation

4.5 is the average velocity of a particle of the fuel-air mixture across the length.

In the absence of production level combustor hardware, a simplified mixing chamber

model will be used to demonstrate the flow time principles. The simplified hardware is

shown in Figure 4.1. The designer has control over Lphys, RA, and RB. To enhance

mixing, the designer may opt to control the inlet flow so as to swirl it through the reactor.

The designer may also choose to contour the outer wall as shown in Figure 4.2. Due to

manufacturing tolerances, this wall contouring may exist in a production part without

design intent. Swirl and wall contouring may be accommodated by adjusting the length

coefficient. The production part may also show elliptical deformation as shown in Figure

4.3. In addition, there are inevitable manufacturing tolerances on the radii and length of

the reactor. This variation is input into a Monte Carlo analysis to quantify its impact. It

is the intent of robust design to optimize these hardware tuning knobs (length, radius) to

minimize risk of autoignition.

The final element in the chemical time (tchem) is related to fuel stoichiometry, or fuel-air
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Figure 4.2: Simplified Reactor Contoured Wall

Figure 4.3: Simplified Reactor Elliptical Deformation (exaggerated)
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Figure 4.4: Fuel Stoichiometry Variation

ratio. The ratio of true fuel-air ratio to the stoichiometric fuel-air ratio is φ. For φ < 1

the mixture is lean meaning excess air is available for combustion. Conversely, φ > 1

classifies a rich mixture. This analysis assumes φ = 0.4 as recommended by Lefebvre [6] as

a representative value for modern lean burn gas turbine combustors. An extension of this

work can analyze local three dimensional variation in φ around the fuel injection locations.

This is left for future work because of the low chemical time dependency on φ (exponent

n = 0.38). Local φ variation is depicted graphically in Figure 4.4.

Finally, the flow time and ignition delay time can be related through the simple ratio

Da =
tres
tchem

(4.6)

where Da is known as the Damkohler Number [21]. It follows that for Da ≥ 1, autoigni-

tion will occur within the effective flow length established above. Conversely, if Da < 1,

autoignition will not occur.



Chapter 5

Autoignition Metamodeling

5.1 Physics based functional form

From the previous chapter, the functional form of the Damkohler autoignition predictor is

Da =
tres
tchem

=
L/V

APmφn exp

(
Ea
RuT

) (5.1)

where bulk flow velocity (V ) is inversely proportional to flow area

V =
Win

ρ ·Area
(5.2)

and area (A) is the cylindrical cross section.

Area = πRadius2 (5.3)

Departures from cylindricity such as coning, wall contouring, or elliptical deformation

can be handled by the length coefficient (cL) adjustment derived from CFD or other higher

fidelity analysis. For simplicity, this work assumes perfect cylindricity with variation on

radius.

In practical combustion design problems, the incoming flow properties (Pin, Tin, Win, φ)

are typically set by higher level system requirements such as gas turbine cycle performance.

The chemical constants (A, m, n, Ea) and physical flow properties (Ru, ρ) are known or

assumed based on previous work or literature. This leaves the designer influence over

combustion hardware (radius, length). For simplicity, a design space consisting only of
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device radius and length are considered. Explorations of plus and minus 25 percent around

an assumed nominal length and plus and minus 20 percent around an assumed nominal

radius is assumed to be adequate. See Figure 6.4 for a graphical representation of the

assumed design space and current hardware variation limits.

As shown in Figure 5.1.1, Damkohler number and thus autoignition risk minimize in

the lower left quadrant. This corresponds to a −25% radius and a −20% mixing length.

However, in real combustion systems, autoignition is never the only critical parameter.

The overall system must be balanced in terms of combustion efficiency and autoignition

(among others).

5.2 Multiobjective Desirability Function

Combustion efficiency is a measure of how much energy (heat) is released compared to

how much energy is available in the fuel. This heat release is a function of chemical

kinetics, flame velocity, air-fuel mixing, and fuel evaporation. Calculation of an absolute

level of combustion efficiency requires detailed analysis of each of these elements and is

out of the scope of this work. However, relative combustion efficiency is often correlated

as a function of combustion operating conditions such as pressure, temperature, mass flow

rate, and combustor dimensions [6]. For an optimization effort on an existing design,

relative efficiency is most important to the designer in determining if one combination of

independent variables is better/worse than another. This relative combustion efficiency is

the maximization objective for this simplified autoignition study and is modeled according

to Lefebvre’s recommendation [6] :

ηcomb ∝ f (Win)−1
(

1

tres (Pin, Tin, Len,Radius)
+

1

tchem (Pin, Tin)

)−1
(5.4)

As shown in Figure 5.1, efficiency maximizes in the upper right quadrant and Damkohler

minimizes in the lower left quadrant. To optimize this system for these responses, a de-

sirability function approach is used as outlined in Meyers and Montgomery inspired by

Derringer and Suich [14]. The desirability function is
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5.1.1: Contours of Damkohler number
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5.1.2: Contours proportional to efficiency

Figure 5.1: Damkohler and Efficiency for the assumed design space

D = (d1d2 . . . dm)
1
m (5.5)

where each component varies between zero and one according to some simple rules. If

the target T is a maxima of the response y and L is a lower bound,

d =



0 when y < L(
y − L
T − L

)r
when L ≤ y ≤ T

1 when y > T

(5.6)

If the target T is a minima of the response y and U is an upper bound,

d =



0 when y < T(
U − y
U − T

)r
when T ≤ y ≤ U

1 when y > U

(5.7)

Generally, if the target T is located between an upper and lower bound,
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d =



0 when y < L(
y − L
T − L

)r1
when L ≤ y ≤ T(

U − y
U − T

)r2
when T ≤ y ≤ U

0 when y > U

(5.8)

where the r factors are weights determined by the user. For this deterministic opti-

mization example, the r values are unity giving autoignition and efficiency equal weight.

This overall desirability method is simple and effective in turning a complex multiobjec-

tive optimization problem into a single objective function that can be operated on for any

optimization algorithm. This approach is expandable to any number of objectives which

is critical for system level design optimization.

Figure 5.2 shows the desirability contour for the multiobjective design optimization

problem to maximize combustion efficiency and minimize tendency to autoignite. The

result shows a locus of maximum desirability from the top left quadrant to the lower right

quadrant.
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Figure 5.2: Contours of desirability for a ±10% design space
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5.3 Design of Experiments and Metamodeling

Now that the physics of the system are established and the optimization objectives of

autoignition and efficiency are defined, the design and experimentation process can be

emulated with an assumed level of observation noise or process variability. Accounting

for noise in this first step is essential to tracking variance of the critical system output

characteristics (efficiency, autoignition) and establishes the foundations for a robust design.

For metamodel fitting of observed data, the designer must deal with variance in depen-

dent parameters (in the form of observation uncertainty) in addition to allowed tolerance

variation in independent parameters. This variance is quantified by repeating an experi-

ment for the exact same settings of independent parameters and observing the output. In

practical design problems, the engineer is given an experiment budget and must obtain the

most information about a system without exceeding the budget. Part of this budget is also

dedicated to validating the optimal independent parameters and quantifying the expected

variability during production. Validation experiments may also be used to prove adequate

margin to a design requirement. This is especially relevant to the combustion autoignition

problem since the system must comply with an appropriately low instance of occurrence

during operation.

For this level of analysis of the combustion autoignition problem, the observable time

characteristics (tchem, tres) and geometric features (length, radius) for the above physics

are assumed to have a two sigma variance of ±10%. This assumption can be further

refined as data is gathered on the process. Future work can increase fidelity on sensitivity

by removing the assumed bulk time variation and including variation specific to physics

based parameters such as fuel properties (activation energy Ea, pre-exponential factor A,

pressure and stoichiometry exponents m,n) and geometric properties (wall contouring, flow

swirl).
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5.3.1 Traditional DoE

Traditional Design of Experiment theory is geared toward first or second order deterministic

response surface metamodeling. Identifying a direction of improvement is the major result

(as opposed to finding the global optima in the design space) in traditional DoE theory.

First Order RSM

From 2.2.2, a first order response surface model is built using regression coefficients to

minimize the error in the linear model predicted value from the observed value. The

variance of these regression coefficients are minimized by the unique class of orthogonal

first-order experiment designs [13]. The most common of this class is the 2k series of designs.

This series is made up of two levels for each of k independent variables. A schematic of

a 22 and 23 designs are in Figure 5.5. The main drawback of the 2k series of designs is

that no estimate of experiment variance can be made without replication of design points.

Since 2k designs are sufficient for linear models, the applicability to complex non-linear

problems is very limited.

x1

x2

(H,H)

(L,H) (H,L)

(L,H)

5.3.1: 22 Design Schematic

x1 x2

x3

(H,H,H)

(L,L,L)
5.3.2: 23 Design Schematic (some labels
omitted for clarity)

Figure 5.3: General 2k Traditional DoE Experiment Designs

To set up a real-world design scenario, whose objective is to optimize the combustion



44

system, using a 2k experiment design, the user must designate a “low” and “high” level of

the independent variables. Using the physics-based desirability function plotted in Figure

5.2, the low-high value pair will be ±6% for the length and radius independent variables.

As a surrogate for physical experiment data, noise will be added to the physics-based

model for use as “observed” data points. Recall, the true underlying desirability contour

is unknown to the designer at this point. The objective is to re-target the system on the

locus of maximum desirability.
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5.4.2: Resulting Linear RSM for 22 design

Figure 5.4: Combustion Optimization 22 DoE

The linear surface through the (simulated) noisy desirability observations is plotted in

Figure 5.4.2 using the linear RSM procedure outlined in Section 2.2.2. The direction of

improvement is identified but overshoots the locus of maximum desirability. A higher order

response surface model may be more appropriate.

Second Order RSM

According to Meyers and Montgomery [14], a second order response surface metamodel

requires the following minimum conditions:

1. More than three levels of each design variable.

2. More than 1 + 2k + k(k − 1)/2 distinct design points where k is the number of

independent parameters.
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A Central Composite Design (CCD) is the most popular design for fitting second order

RS models [13]. The CCD is composed of additional axial experiments on top of the

general 2k design and a central experiment at the nominal value. The center point is

often repeated to determine variance. According to Box and Hunter [1], rotability is an

important characteristic in second order RS experiment designs. Rotable designs provide

information at symmetrical distances around the nominal, that is, circles or spheres around

the nominal. CCD experiments satisfy this recommendation.
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x2

(H,H)

(L,H) (H,L)

(L,H)

5.5.1: 2 Factor Schematic

x1 x2

x3

(H,H,H)

(L,L,L)
5.5.2: 3 Factor Schematic

Figure 5.5: Cetral Composite Designs
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Figure 5.6: Combustion Optimization CCD DoE
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The second order desirability response surface is plotted in Figure 5.6.2 based on the

simulated noisy experiment observations at locations identified in Figure 5.6.1 following a

Central Composite Design.

Traditional DoE methods such as 2k for linear RSM or CCD for higher order RSMs

are ineffective if used singly since only direction of improvement (linear RSM) or curvature

(higher order RSM) information can be obtained through traditional experiment designs.

An efficient design process uses linear models to screen the design space and approach

the optimal design iteratively using sequential experimentation and model fitting with

increasing levels of fidelity. Another efficient method to find the global optima of a system

is the use of modern DoE methods to build a non-RS metamodel of the system.

5.3.2 Modern DoE

Where traditional DoE methods mainly serve to improve an existing design, modern DoE

methods aim to explore a wide design space. These modern designs are especially useful for

computer experiments (CFD) because they evenly distribute sampling points throughout

design space [14]. These space filling designs typically do not contain repeated experiments

since variance can be estimated from the whole sampled population. Examples of space-

filling designs are Latin hypercube, sphere packing, uniform, and maximum entropy.
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Figure 5.7: Modern DoE Sampling Methods
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Modern DoE methods are more suitable to advanced metamodeling techniques like

kriging and provide more information about the response for a more robust metamodel.

Modern DoE techniques assume that metamodels accurately predict the response within

a known uncertainty. This approach allows the designer to take a broad view of the

entire design space and sequentially “zoom in” on an optimal region. This ensures the

designer doesn’t erroneously choose a local optima because of a poor choice in step size

during sequential experiment rounds. The zooming is best described as experimenting at

a very coarse resolution but covering the entire design space then iteratively narrowing the

design space centered on the optima of the previous round and increasing the experiment

resolution. The most efficient experiment plan will leverage a combination of the above

traditional and modern DoE techniques.



Chapter 6

Autoignition Stochastic Considerations

Probability is the likelihood of occurrence of an event with random variation. These occur-

rences can be distributed many different ways, the simplest of which is where all outcomes

have an equal chance of occurrence. These events are characterized as uniformly dis-

tributed. In industry, many manufacturing processes produce parts that are most likely to

occur in the middle or mean of their drawing limits with some acceptable band to accommo-

date inherent variation. This is a common example of the Gaussian or Normal distribution.

This work focuses primarily on the extrema of a probability distribution where events are

least likely to occur, also known as rare events.

Autoignition by nature is a rare event. Difficulties in observing autoignition create

challenges for assessing risk and guiding design. Furthermore, the probability of an au-

toignition event may be constrained to fall below a minimum acceptable probability. Since

autoignition may be viewed as a safety hazard in some applications, this acceptable event

probability is vanishingly small (10−9 as noted previously). The probability of autoigni-

tion, P (A), can be described as the expected value of an indicator variable, h(x). It is

established that Damkohler number is the proper variable where a value greater than one

is an indicator of autoignition. Autoignition will not occur for Damkohler less than one.

P (A) = E [h(x)] =

∫ ∞
−∞

h(x)f(x)dx (6.1)

where f(x) is the probability density function of the input variables x and h(x) is the

indicator function.
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h(x) =


0 when Da < 1

1 when Da ≥ 1

(6.2)

The traditional way to calculate the expectation of the indicator is to simply take its

mean.

E [h(x)] = µh =
1

n

n∑
i=1

h(xi) (6.3)

The 95% confidence around this expectation is given by

CI0.95 = µh ± 1.96
σh√
n

(6.4)

where σ is the standard deviation of the indicator variable and n is the number of

samples.

6.1 Statistical Environment Profile

Until now, the problem has been formulated with only two independent variables (length

and radius). However, in revisiting the autoignition physics equations in Section 5.1, it is

apparent that operating conditions (pressure and temperature) play a significant role in

the predictor of autoignition. These variables are considered uncontrollable from a hard-

ware designer’s perspective because, in gas turbine applications, the operating conditions

are governed by the overall needs of the thermodynamic cycle. In extreme situations, the

hardware designers must iterate with the cycle designers to impose cycle limits where the

risk of autoignition is unacceptable. For the deterministic optimization problem, these

uncontrollable cycle values were assumed to be fixed at a level that seeded the problem

heavily toward autoignition. In normal operation, the combustion system rarely experi-

ences these severe conditions so the true autoignition tendency measured over the entire

operating regime is less than that which was represented during deterministic optimiza-

tion. This method of purposely selecting low-occurrence independent variables to increase
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the severity of the system is a form of indirect importance sampling. In fact, this sort

of indirect importance sampling is common in industrial reliability testing in the form of

accelerated life consumption methods. During these tests, in a very short time, the system

is exposed to extreme conditions that rarely occur during normal operation. Successful

completion of accelerated life testing at the factory is often a product requirement before

it can be released to the field and customers.

To understand the variation in operating conditions, a representative commercial air-

craft mission is presented in Figure 6.1.
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Figure 6.1: Representative Mission

Pressure and temperature data for points in the above mission were generated using

the Elements of Propulsion PERF program by Mattingly [9] assuming a simplified single

spool turbojet model. Generated design data is found in Table 6.1. These combustion

environment conditions are plotted for the entire mission in Figure 6.2. Mass flow is

heavily correlated with pressure and temperature and does not contribute significantly to

system variation as an independent parameter. For simplification, mass flow is considered

a pure function of pressure and temperature, leaving these as the two selected stochastic
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% Takeoff Altitude Mach P T Wtot
Thrust [ft] No. [atm] [K] [kg/s]

Taxi 10 0 0 5.78 512.7 29.0

Takeoff 100 0 0.2 27.70 832.2 91.6

Climb 90 10000 0.5 20.62 791.6 70.3

Cruise 80 35000 0.8 8.30 675.0 30.8

Descent 50 10000 0.5 13.34 692.7 50.3

Landing 20 1000 0.2 8.71 585.5 38.6

Taxi 10 0 0 5.78 512.7 29.0

Table 6.1: Combustion Environment Conditions throughout Representative Mission

independent variables.

10

15

20

25

30

35

P
re

ss
u
re

 [
a
tm

]

0 50 100 150 200 250
Time[min]

500

600

700

800

900

1000

T
e
m

p
e
ra

tu
re

 [
K

]

Takeoff

Clim
b

Cruise

D
es

ce
nt

Landing

Representative Mission Profile

Temperature [K]
Pressure [atm]

Figure 6.2: Pressure and Temperature Profile for the Representative Mission

The mission can be discretized into autoignition “opportunities” for probabilistic eval-

uation. For simplicity, the discretization will occur in 0.1 sec increments. This is a good as-

sumption since 0.1 sec is on the order of 500x the combustion chemical time scale (∼ 0.2ms).

After discretization, the pressure and temperature opportunities can be fit to a multivariate
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Mean Covariance

Temperature 683.2 K 2290.6 171.8

Pressure 15.27 atm 171.8 18.5

Table 6.2: Resulting Fit Parameters for Discretized Mission Data

normal distribution (Table 6.2 and Figure 6.3). This discretization process also enables an

uncertainty quantification on the autoignition predictor (Damkohler number) for a fixed

hardware design (length and radius are known and constant).
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Figure 6.3: Pressure and Temperature Density for Representative Mission

6.2 Monte Carlo Analysis

For practical systems, the optimal target setting for an independent parameter will not be

produced for every single part. A balance must always be struck between manufacturability

and performance. There is a strong correlation between manufacturing cost and geometric

tolerance (lower cost implies larger tolerance) so by driving cost down, product variability

will increase. In designing a new part, the engineer must choose an appropriate tolerance to

balance performance and cost. Monte Carlo methods are traditionally used to evaluate the
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performance and variability of a system due to manufacturing tolerances. The tolerances

on radius and length are modeled as independent truncated normal distributions with an

assumed two sigma variance of ±10%.

0.030 0.035 0.040 0.045
Length [m]

0.040

0.045

0.050

0.055

R
a
d
iu

s 
[m

]
Length & Radius Density

Current Limits

Design Space

Figure 6.4: Assumed Length And Radius Density Distribution

Now that the distributions are known for the controlled (length, radius) and un-

controlled (pressure, temperature) independent variables, Response Surface Methodol-

ogy can be applied with stochastic adaptations to address model uncertainty. This non-

deterministic branch is formally known as Robust Design Simulation (RDS) [10, 11] and

takes into account mean and variance of a response during optimization. To facilitate vari-

ability accommodation in the design process, Mavris’ [10] RDS methodology uses Monte

Carlo methods to quantify the distribution on the output of the response surface model.

This response surface model is generated using traditional DoE techniques. Mavris shows

that Monte Carlo analysis is an effective tool to extract probabilistic information from a

deterministic model.

For this application, the RDS methodology would be implemented using metamodels

developed in Section 5.3.1. These metamodels would be evaluated efficiently using Monte
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Carlo sampling on the independent parameters (length, radius, pressure, and temperature)

to build a distribution on the response (system desirability function). The goal of RDS

is to influence the mean and variance of controllable independent parameters (such as a

drawing tolerance) to minimize sensitivity to variation in the response. Another outcome

of this Monte Carlo RDS approach is a probability assessment of autoignition risk for a

given setting on controllable independent parameters and a given mission. This risk is

evaluated using the Damkohler metamodel and must be below a certain threshold to be

considered safe. For this analysis, probability of autoignition occurrence less than 10−9 is

acceptable. Recall, an autoignition occurrence is defined as a Damkohler number greater

than one. Autoignition is characterized as a rare event.

6.2.1 Importance Sampling Theory

For the engineer using traditional Monte Carlo methods to simply observe one rare event

with a 10−9 probability, 999,999,999 successful observations must also be made. This can

get prohibitively expensive to evaluate, even with a metamodel. In addition, to extract

any variance estimate for this rare event, many more simulations must be run. To achieve

95% confidence in estimating a 10−9 event, the simulation sample size must be larger

than 3.84 × 1011 [18]. (See Appendix B.2 for derivation.) To reduce this requirement for

such a huge sample population (many samples of which are irrelevant to the rare event),

importance sampling is used as a method to increase observances of the rare event by

sampling only at relevant locations.

Importance sampling is a statistical technique to artificially increase the likelihood of

encountering a rare event by sampling from an alternative density function represented

here as g(x).

P (A) =

∫ ∞
−∞

h(x)
f(x)

g(x)
g(x)dx = Eg

[
h(x)f(x)

g(x)

]
(6.5)

This alternative density function is chosen by the user as a region where the rare

behavior is very likely to occur. For the autoignition problem, an increase in pressure

and a decrease in temperature will drive autoignition tendency higher. This mean shifted
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density function is shown in Figure 6.5.

Figure 6.5: Mean Shifted versus Original Distributions on Pressure and Temperature

The probability of autoignition is now the expectation of the indicator variable (h(x))

multiplied by the ratio of the original (f(x)) and modified (g(x)) density functions. This

ratio is called the likelihood ratio.

The distributions on environment conditions (pressure, temperature) lend themselves

toward importance sampling since extreme conditions that favor autoignition occur rarely

during the operational life of a combustion system. The pressure and temperature expected

during normal operation were characterized by a bivariate normal probability density (Ta-

ble 6.2 and Figure 6.3). The bivariate normal probability density function is given by

[17]:

f(x, y) =
1

2πσxσy
√

1− ρ2
e
− 1

2(1−ρ2)

[(
x−µxf
σx

)2
+
(
y−µyf
σy

)2
− −2ρ
σxσy

(x−µxf )(y−µyf )
]

(6.6)

where (x, y) is the point at which the sample is taken, µxf is the mean value of x, µyf is the

mean value of y, σx and σy are the standard deviations of the x and y random variables,

and ρ is the correlation coefficient found in the off-diagonal of the covariance matrix. The
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Original Shifted
f g Delta

µx 683.2 983.2 300

µy 58.3 83.3 25

σx
√

2290.6
√

2290.6

σy
√

18.5
√

18.5

ρ
171.8

σxσy

171.8

σxσy

Table 6.3: Multivariate Normal Distribution Parameters

f subscript indicates the original density.

To find the likelihood ratio (LR) for this importance sampling problem, the original

multivariate probability density function will be compared to a mean-shifted probability

density function (subscript g) with the same covariance matrix [23].

g(x, y) =
1

2πσxσy
√

1− ρ2
e
− 1

2(1−ρ2)

[(
x−µxg
σx

)2
+
(
y−µyg
σy

)2
− −2ρ
σxσy

(x−µxg)(y−µyg)
]

(6.7)

LR(x, y) =
f(x, y)

g(x, y)
= eA1+A2+A3 (6.8)

where

A1 =
(µxg − µxf )(2x− (µxf + µxg))

2(1− ρ2)σ2x
(6.9)

A2 =
(µyg − µyf )(2y − (µyf + µyg))

2(1− ρ2)σ2y
(6.10)

A3 =
−ρ

(1− ρ2)σxσy
[x(µyg − µyf ) + y(µxg − µxf ) + µxfµyf − µxgµyg] (6.11)

Equation 6.5 can now be evaluated numerically by sampling from the shifted distribu-

tion, calculating the Damkohler number for each sample (Figure 6.6), then the indicator

function, and finally multiplying by the likelihood ratio to determine the true probabil-
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ity of autoignition for the un-shifted, original distribution (Equation 6.12). It is a good

sanity check to confirm that the resulting probability is independent of the magnitude of

the mean shift. Figure 6.6 shows exposure to Damkohler numbers near one (indicating

autoignition) are low for the original, un-shifted independent variables and crossing one for

the mean-shifted independent variables.

One caveat of this importance sampling approach is that the metamodel used to gen-

erate Damkohler number for each sample must be valid for the mean-shifted inputs. This

simplified example assumes validity for the alternate pressure and temperature distribution.

Other IS strategies like variance modification and shifting other independents like length

and radius can also serve the purpose of increasing the calculated Damkohler number to

quantify autoignition risk. It is ultimately the responsibility of the designer to choose the

proper alternative distribution for likelihood ratio calculation.
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Figure 6.6: Damkohler Number Exposure for Representative Mission

P (A) = Eg

[
h(x)f(x)

g(x)

]
=

1

n

n∑
i=1

h(xi)
f(xi)

g(xi)
(6.12)

For the pressure and temperature distributions outlined in Figure 6.3 and the length
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Mean Radius Mean Length Relative P(A)
[m] [m] Efficiency

0.05 0.04 1.0 1.3× 10−13

Table 6.4: Autoignition Risk for Nominally Distributed Radius & Length

and radius distributions outlined in Figure 6.4, the probability of a Damkohler greater

than one autoignition event is 4.3× 10−13 which satisfies the requirement of < 10−9. This

result suggests there is margin to further increase efficiency by modifying the controlled

length and radius parameters and still maintain an autoignition probability lower than

the threshold. Table 6.4 summarizes autoignition probability for various settings of mean

radius and length.



Chapter 7

Conclusions and Future Work

7.1 Results

As a result of this deterministic and stochastic analysis, additional capability has been

found in the example combustion device. To maximize desirability while maintaining

acceptable autoignition risk levels, the device length and radius should be retargeted to the

joint distribution shown in Figure 7.1. This modified distribution is nominally 10% higher

in relative efficiency while observing the autoignition risk threshold. The probability of

autoignition for this distribution and these mission assumptions is 2.3× 10−13, still below

the 10−9 limit but above the 1.3× 10−13 nominal risk level.
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Figure 7.1: Optimal Length and Radius Target Distribution

This distribution is modified from the standard min/max tolerancing to follow the locus



60

0.030 0.035 0.040 0.045
Length [m]

0.040

0.045

0.050

0.055

R
a
d
iu

s 
[m

]

Contour of Desirability

Current
Optimal

Current Limits

Suggested Limits

Design Space

Figure 7.2: Optimal Length and Radius Desirability Contour

of maximum desirability (Figure 7.2). The manufacturing feasibility of this distribution

is unknown but may be achieved with a proper hardware inspection plan. The absolute

tolerances on both length and radius are larger with areas of rejection in low desirability

regions. Further study of manufacturing procedures is recommended.

7.2 Procedure Summary

This work provides new contribution in the linking of importance sampling with meta-

modeling to provide a toolbox for deterministic and stochastic system optimization with

a rare event constraint. This toolbox is outlined at a high level in the initial framework

(Figure 1.1: Process Framework for Metamodel Enabled Design Optimization). The fol-

lowing steps are recommended in the stochastic assessment and optimization process and

autoignition specific steps and assumptions are highlighted below.

1. Determine dimensional variability in the controlled independent parameters.

Length and radius in the autoignition device are controllable and assumed inde-

pendently and normally distributed with 2σ variance of ±10%.

2. Determine variability in the uncontrolled dependent parameters.
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Combustion device pressure and temperature are uncontrollable dependents rel-

evant to autoignition. These are strongly correlated based on Brayton cycle thermo-

dynamics and are modeled after a discretized commercial aircraft mission.

3. Use appropriate Design of Experiment methods to conduct experiments.

Combustion analysis was demonstrated with 22 and 23 traditional designs. Se-

quential Latin hypercube was presented as an alternative. Experiment noise was

simulated as a normally distributed random adder on the desirability function.

4. Fit a metamodel to the system response.

Consistent with 22 and 23 traditional designs, first and second order response sur-

faces were fit to the combustion desirability characteristic which is obtained through

separate metamodels of Damkohler and combustion efficiency characteristics.

5. Evaluate the metamodel using standard optimization techniques to find the most de-

sirable nominal setting for the controllable independent parameters.

The first and second order desirability function response surfaces were evaluated

using standard optimization methodology to determine the maximum combustion

desirability. An example is provided in Appendix A.

6. In parallel, evaluate the metamodel stochastically to ensure rare event constraints are

met.

Importance sampling techniques were used with a mean shift on the independent

parameters of pressure and temperature to evaluate the Damkohler metamodel for

autoignition probability.

7. Iteratively refine the design space and repeat the metamodel fitting process with newly

obtained observations.

This study began with first order response surfaces and progressed to second

order to obtain the final deterministic optimal condition on length and radius.

8. Propose final distribution on controllable independent parameters when design is op-

timized and constraints are met.

The bounds on length and radius were chosen to maximize the producibility of
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the part, that is have the widest acceptable limits. These limits lead to a correlated

distribution on length and radius which was finally evaluated via importance sampling

to verify the rare event constraint is satisfied. This second round of importance

sampling used the same mean shift in pressure and temperature as the first round.

Metamodeling is the tool to tie all of these pieces together. Proper Design of Exper-

iment feeds into metamodeling and deterministic optimization and importance sampling

then evaluate the metamodel. Without a metamodel, these optimization and stochastic

evaluations would be prohibitively expensive. Metamodels enable this entire process to be

iterative and progress through these iterations faster. As iterations progress, metamodel

fidelity increases further guiding the next round of experiments. These steps efficiently

combine Design of Experiments, metamodeling, and stochastic simulation to reduce the

number of design iterations without losing accuracy. The above steps show the unification

of metamodeling and rare event analysis and capture the new contributions of this work.

7.3 Recommendations

There is also residual value in the now high accuracy and fast executing metamodel. This

metamodel can be applied beyond the design process in service use applications such as

on-board diagnostics. The metamodel can be used as the foundation for a self-improving

algorithm that observes the system in the background while gathering data on normal

operating characteristics. The algorithm may then alert the operator when abnormal

characteristics are observed or take independent action to correct the error or safely shut

down the system to prevent catastrophic damage. The emerging industry trends toward

“big data” and analytics emphasize the importance of accurate and fast metamodels.

Several extensions of this work specific to the autoignition application have been iden-

tified. Higher fidelity in chemical time stochastic assessment can be obtained by including

local fuel stoichiometry variation though its influence on tchem is low. A more accurate

hardware representation will benefit both the deterministic and stochastic assessment. This

accuracy can be gained using CFD to simulate actual operating conditions with actual
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hardware to observe the effects of swirling flow, device wall contouring, and elliptical de-

formation on calculated residence time of a particle from injection to exit. Finally, chemical

reaction simulation software can examine in detail the complex, multi-step mechanisms in

combustion of hydrocarbons. This software can accurately predict the pressure rise signa-

ture of autoignition [3]. The drawbacks of this software include significant calculation time

and limited hardware modeling options. Metamodeling is an ideal technique to link these

complex software packages.

In summary, this work outlined an iterative approach to assess a current design (control-

lable independents) in its current environment (uncontrollable independents) against a rare

event requirement while maximizing system desirability. Metamodeling is the enabling link

between DoE, deterministic optimization, and stochastic analysis for rare events. Weak-

nesses of metamodeling, such as extrapolation, must be understood and respected. Wider

use of appropriate metamodeling in all stages of the design process will drive efficiency in

experiment and result in higher performing products. Use of metamodeling outside of the

design process carries benefits many are just beginning to realize.



Appendix A

Optimization Example Problem

A.1 Problem Description

To test the validity of various optimization approaches, a very simple two dimensional

problem is used to show several ways to determine the optimal system inputs to achieve

the desired system output. From Vakili [22], the simple function is of the form:

J(x) = (x− a)TQ(x− a) + c (A.1)

where x is the column vector of inputs, a is a given column vector, Q is a positive

definite matrix and c is a scalar.

a =

3

8

 Q =

2 1

1 2

 c = 3 (A.2)

The objective is to minimize the response J(x) with a unique optimal response at a as

shown in Figure A.1 [22].

In practical design applications, the form of the response is rarely known and is often

accompanied by some error in the observed value from the true response. To model this

simply, a normally distributed noise term will be added.

Y (x) = Y (x) + ε(x) (A.3)

Where the noise term has mean zero and variance four. The noise is assumed to be

independent of the function.
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Figure A.1: Contour of response J(x)

ε(x) ∼ N (µ, σ2) ∼ N (0, 4) (A.4)

Since the functional form of the system is not known to the designer, the design op-

timization process must be conducted through experiment and observation. To replicate

realistic constraints, an experiment budget is set of 50 (then 100) sampling points. These

points can be unique or replicates but the total number of observations must not exceed

the allotted budget. A comparison is made between several techniques to determine the

best approach for optimizing a noisy system within the experiment budget.

A.2 Sequential Design of Experiment Optimization

The first approach to determining the optimal response is to begin at a point in the design

space and experiment around it using traditional design of experiment theory. For this

problem, there are two controllable variables and they are set at two levels. From the

origin, the experiment is conducted at a positive x1 step, a negative x1 step, a positive x2

step, and a negative x2 step. From this observed (noisy) data, a linear regression model
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is fit and the direction of steepest descent is obtained. The center of the next round of

experimentation is proportional to the regression coefficients from the first round as shown

in Figure A.2 [13]. This procedure is repeated with each round using four experiments

from the budget until the budget is exhausted or a sufficient optimal point is found.
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Figure A.2: Experiment locations for round 1 and round 2.

The results in Figure A.3.1 show that sequential steepest descent optimization using a

linear regression model at each round is sufficient to determine the optimal system input

for the noise-free case.

Noise complicates the optimization process because noise influences the four experi-

ments per round and may drive the calculated path of steepest descent far away from the

true path of steepest descent as shown in Figure A.3.2. For a budget of 50 experiments, the

end point is far away from the optimal point. As the budget of experiments is increased

(Figure A.3.3 and Figure A.3.4), the behavior is still erratic but approximately averages

out to the optimal point.

It is important to note that the noise assumption for this sample problem is a nor-

mally distributed adder with mean zero and variance equal to 4. This noise is assumed
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A.3.1: 50 experiments with no noise, x1 = 3, x2 = 8
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A.3.2: 50 experiments with noise, x1 = 2.7, x2 = 7.1
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A.3.3: 100 experiments with noise, x1 = 2.1, x2 =
8.4
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A.3.4: 1000 experiments with noise, x1 = 2.9, x2 =
7.9

Figure A.3: Experiment locations in the design space.

independent of the control variables and system output. This is significant because near

the optimal location, the magnitude of the response is nearly the same as the variance.

This means that for a given sampling round of four experiments, the closer to the optimal,

the harder it is to discern noise from true function. If the noise were proportional to the

response, this sequential steepest descent method may find a optimal point faster. Another

technique to reduce the influence of noise is to replicate experiments within the current

round. This uses the experiment budget faster but may also lead to faster and more robust

convergence on the optimal.
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A.3 Metamodel Driven Optimization

A second approach is enabled by metamodeling techniques to create a mathematical rep-

resentation of the design space based on a limited number of observations and optimize on

the metamodel instead of the system. For the first, simplest example, a Gaussian Process

(Kriging) based metamodel is fit to 25 noisy observations from the response described in

A.1. The 25 experiments are conducted at an evenly spaced grid of points in the design

space. The metamodel is then sampled at a very fine resolution in the same design space

and the minimum is taken as the optimal point for the original system.
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Figure A.4: 25 experiment locations with metamodel samples, optimal x1 = 2.5,x2 = 7.5.

The optimal point is determined solely by the resolution of the metamodel sampling

grid. This sampling can be done sequentially with little computational penalty. The

sampling grid resolution is determined by optimal sufficiency or how close is close enough.

In addition to sequential metamodel sampling, the designer can experiment sequentially

until the budget is exhausted. The first round of 25 experiments serves as a screening round

to narrow the design space in which a second experiment round can be conducted. The

metamodel fitting after the second round should also include the observations from the first
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Figure A.5: 25 experiments with sequential metamodel samples, optimal x1 = 3.0,x2 = 7.9.

round to build the most robust metamodel. This second metamodel can then be sampled

at high resolution and sequentially (Figure A.7) until the desired accuracy in the optimum

is achieved. This whole process can go on ad infinitum unless otherwise constrained by

budget or desired accuracy.

Experiment efficiency can also be increased using randomized experiment and meta-

model sampling techniques such as Latin hypercube.

The kriging method to generate the above metamodel uses the properties of joint normal

distributions between the observed response (y) and predicted response (y?).

 y

y?

 ∼ N

 µ
µ?

 ,
K(X,X) + σ2I K (X,X?)

K (X?, X) K (X?, X?) + σ2I


 (A.5)

where (X) is the vector of independents for the known responses, (X?) is the vector

of independents for the unknown responses and K() is the kernel function that relates the

covariance between the known and unknown independents. The characteristic length term

(`) is chosen by the user for best model fit. This can be determined iteratively using the
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Figure A.6: 50 experiments in two sequential sets of 25 (2x25), optimal x1 = 3.3,x2 = 7.8.

leave-k-out metamodel validation technique. For this simplified study, ` = 1.2.

cov
(
f(x), f(x′)

)
= K(x,x′) = exp

(
− 1

2
√
`
|x− x′|2

)
(A.6)

Finally, the mean and variance of the unknown response can be written as

M = µ? + CA−1 (y − µ) (A.7)

= µ? +K (X?, X)K (X,X)−1 (y − µ) (A.8)

V = B − CA−1C> (A.9)

=
[
K (X?, X?) + σ2I

]
−K (X?, X)

[
K (X,X) + σ2I

]−1
K (X,X?) (A.10)

where µ = µ? = 0 as a kriging best practice.
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Figure A.7: 50 (2x25) experiments with sequential metamodel samples, optimal x1 =
3.0,x2 = 7.9.



Appendix B

Select Statistical Techniques

B.1 Metamodel Samples Residual Normality Plots
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Figure B.1: Residual Normality Plots for y = x2 + ε
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Figure B.2: Residual Normality Plots for y = 2
√
x+ cos(x) + ε

B.2 Rare Event Sample Size

If the true probability of a rare event is p = 10−9, the central limit theorem allows an

estimate of that probability (p̂) to be written as a normally distributed random variable

since the number of samples is very large (n � 1). [18]. A 95% confidence interval can

then be established around the estimate using a standard normal z-value of 1.96.

p = p̂± 1.96σ√
n

(B.1)
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B.3.4: Kriging

Figure B.3: Residual Normality Plots for y =
√
x1 +

√
x2 + cos(x1) + cos(x2) + ε

Since the true variance (σ2) of the probability is not known, it is estimated (without bias)

with

σ̂2 =
np̂ (1− p̂)

(n− 1)
(B.2)

p = p̂± 1.96√
n

√
np̂ (1− p̂)

(n− 1)
(B.3)

p = p̂± 1.96√
n− 1

√
p̂ (1− p̂) (B.4)
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For very small values of probability, the absolute error (p − p̂) isn’t as meaningful as the

relative error [18].

RE =
(p− p̂)
p

(B.5)

A meaningful relative error is based on the confidence interval α

RE = 2 (1− α) = 0.1 = 10% (B.6)

Rewriting Equation B.4 in terms of relative error

RE = 0.1 ≥ (p− p̂)
p

=
1.96√
n− 1

√
p̂ (1− p̂)
p

(B.7)

Since p̂ is very close to zero, (1− p̂) ≈ 1

0.1 ≥ 1.96√
n− 1

√
p̂

p
(B.8)

0.1 ≥ 1.96√
(n− 1)

√
p

(B.9)

Rearranging for n √
(n− 1) ≥ 1.96

0.1
√
p

(B.10)

n ≥ 1.962

0.12p
+ 1 (B.11)

To satisfy a minimum failure criteria of one event in 109 opportunities with 95% confidence,

the number of samples must be greater than 3.84× 1011 or 384 billion samples.

n ≥ 384, 160, 000, 001 (B.12)
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