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DRIVING EFFICIENCY IN DESIGN FOR RARE EVENTS USING
METAMODELING AND OPTIMIZATION
PAUL MORRISON
ABSTRACT

Rare events have very low probability of occurrence but can have significant impact.
Earthquakes, volcanoes, and stock market crashes can have devastating impact on those
affected. In industry, engineers evaluate rare events to design better high-reliability sys-
tems. The objective of this work is to increase efficiency in design optimization for rare
events using metamodeling and variance reduction techniques. Opportunity exists to in-
crease deterministic optimization efficiency by leveraging Design of Experiments to build
an accurate metamodel of the system which is less resource intensive to evaluate than the
real system. For computationally expensive models, running many trials will impede fast
design iteration. Accurate metamodels can be used in place of these expensive models to
probabilistically optimize the system for efficient quantification of rare event risk. Monte
Carlo is traditionally used for this risk quantification but variance reduction techniques
such as importance sampling allow accurate quantification with fewer model evaluations.
Metamodel techniques are the thread that tie together deterministic optimization using
Design of Experiments and probabilistic optimization using Monte Carlo and variance re-
duction. This work will explore metamodeling theory and implementation, and outline
a framework for efficient deterministic and probabilistic system optimization. The over-
all conclusion is that deterministic and probabilistic simulation can be combined through
metamodeling and used to drive efficiency in design optimization.

Applications are demonstrated on a gas turbine combustion autoignition application
where user controllable independent variables are optimized in mean and variance to max-
imize system performance while observing a constraint on allowable probability of a rare

autoignition event.
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Chapter 1

Introduction

1.1 Experiment and Optimization in the Design Process

Industrial trends have shifted the system level optimization of hardware to earlier in the
design process. This is enabled by better computational tools which more accurately model
physical hardware behavior (i.e. computational fluid dynamics, finite element analysis).
The objective of this trend is to minimize time and cost of physical experiments by exploring
a wider design space (and finding what doesn’t work) with minimal impact to overall
program schedule and cost. The objective is not to design during system level experiments
but to wvalidate an optimal part or process. The optimal design will have an acceptably
small and known level of uncertainty. Table describes typical design methods and a
qualitative assessment of cost and time required to run.

Computational importance is becoming on par with experiment and theory because ac-
curacy in reproducing physical system behavior has increased. In some cases, computation

is replacing experiment because computational fidelity meets or exceeds the objectives of

Cost Time Purpose Methods

0 minutes establish physics analytical textbook equations

$ hours explore design space multi fidelity computer modeling
$% days optimize design / screen individual component testing
$5% weeks verify performance multi component rig testing

$$$%+ months validate system interactions full assembly system level test

Table 1.1: Qualitative Cost & Time for Each Step in the Design Process



the experiment. Both physical experiments and high fidelity computer experiments can
be time consuming and resource intensive as shown in Table so there is a desire to
minimize cost, maximize benefit, and quantify uncertainty. This can be achieved using a
simplified mathematical model of the system or process being optimized. The purpose is
to numerically represent the physical behavior of a process or system in a manner that can

be executed quickly while maintaining a reasonable accuracy of the response.
1.2 Metamodeling in the Design Process

These simplified numerical models are formally referred to as metamodels when the basis
of the model is a complex computer simulation. For this work, the definition is expanded
to include physical experiment data as a complementary basis for the metamodel. This is
significant from a stochastic standpoint because complex computer models are deterministic
but physical experiment always includes some aspect of bias and error (measurement,
setup, etc.). Compared to high fidelity computer models and physical experiment data,

metamodels are [25]:

e casier to connect proprietary and expensive simulation codes
e simpler to parallelize

better able to filter noise

cover the entire design space

faster error detection

These characteristics make metamodeling an attractive tool in the design process. They
enable rapid exploration of a design space and provide information about a system in
locations that have not been tested in a physical experiment or computer simulation. The
uncertainty of the information in this unexplored design region can be quantified.
Metamodels can predict unobserved system behavior in two basic ways: interpolating
and smoothing. Interpolating refers to the exact reproduction of the response at known
data points whereas smoothing refers to the regression based fit of multiple data points

without necessarily reproducing the observed result. The smoothing characteristics of



metamodels are attractive for systems which exhibit noisy behavior because the regression
acts to smooth out the response and lessening the sensitivity to random noise variation.
Response surface methodology falls into the latter smoothing category because the response
surface form is polynomial with coefficients determined by least squares regression [26]. On
the other end of the interpolation spectrum is the Radial Basis Function metamodel that
uses linear combinations of a radially symmetric distance function to exactly reproduce the
input data points [26]. Finally, Gaussian Process metamodeling (also known as “kriging”)
can both exactly interpolate or smooth the dataset based on a covariance function which
the designer can control [19]. The engineer must choose the appropriate metamodeling
method for their application based on prior knowledge of the system to be modeled. Wang
et al. [260] and Simpson et al. [19] provide thorough summaries and suggested applications

of many metamodeling techniques.
1.3 Rare Event Simulation Challenges

A rare event is formally defined by Rubino and Tuffin as “an event occurring with a very
small probability but important enough to justify their study”[18]. The probability and
importance thresholds for rare events vary across domains such as insurance, telecommu-
nications, and transportation.

This work will explore rare event analysis in the context of autoignition. Autoignition is
the unintended phenomenon when a fuel air mixture combusts prematurely. An occurrence
of autoignition must have a significantly small probability because the consequences of a
hardware failure driven by autoignition are very large. For aircraft engine gas turbines, an
autoignition event sustained for a certain amount of time may cause hardware damage and
subsequent failure of downstream rotating turbomachinery. A representative probability of
failure for civil aircraft during a typical flight is one in a billion, or 10~° [I8]. For the sake of
simplicity in demonstration, this work assumes a maximum probability of an autoignition
event to be the same 107°. Quantifying this probability with physical experiment or

high fidelity computational experiment (CFD) requires a prohibitively high number of



evaluations. A an accurate metamodel, coupled with rare event stochastic techniques, is
best suited to quantify this risk.

Metamodels are best suited for rare event analysis because they’re computationally
inexpensive to evaluate while accurately representing system behavior. Metamodels can
be evaluated cheaply because they involve simple quadratic equations (in RSM) or matrix
inversion (in Gaussian Processes), both being far easier to evaluate than solving complex
(flow or mechanical) physics equations for many nodes simultaneously. Rare event anal-
ysis requires orders of magnitude more evaluations than traditional Monte Carlo based
stochastic analysis which is orders of magnitude more than deterministic optimization. An
accurate metamodel is the best vehicle to link these design tools. Figure provides an

overview of where metamodels and optimization fit in the design process.

r

Define independents,
dependents, objective,
and constraints

4

Design of Experiments

!

Conduct Experiments
(physical, computational)

!

Refine Target
and/or
Tolerance

Refine Target

Fit Metamodel
(RSM, GP, etc.)

Deterministic
Optimization

Stochastic
Optimization

Objective &
Constraints
Met?

Figure 1.1: Process Framework for Metamodel Enabled Design Optimization

The new contribution of this work is centered on linking deterministic and stochastic

optimization for rare events using metamodeling. This unification of metamodeling and



rare event analysis through importance sampling is unique and applicable to efficient design

iteration in industry.
1.4 Literature Review and Techniques

The benefits of creating a mathematical surrogate that describes the behavior of a product
or process are well established. Many authors have presented methods of building and
validating this metamodel surrogate and this work will focus on a subset of those methods
useful to an industry practitioner. Meyers and Montgomery [14] present a thorough start-
to-finish analysis of Response Surface Methodology (RSM). The framework outlined guides
the practitioner through identifying the proper model, fitting the response surface, and
basic optimization of the inputs to achieve the desired output of the physical system.
Much of the analysis is limited to first and second order parametric models which may not
be ideal for all applications.

Guinta [5] provides an application and extension of the RSM framework in his dis-
sertation on high-speed civil transport aircraft design optimization. The work addresses
shortfalls of RSM in regards to poor optimization in the presence of numerical noise using a
sequential approach. This approach is referred to as Variable Complexity Response Surface
Modeling (VCSM) in which the main objective is to narrow the design space with higher
fidelity modeling. This allows for a reduction in sampling points and increase in model
accuracy because only essential regions of the design space are explored using high fidelity
tools.

The stochastic aspects of the RSM framework are outlined by Mavris [10, 11] as Robust

Design Simulation (RDS). The method is summarized [10] by :

RDS combines the response surface model with a Monte Carlo simulation
to construct cumulative distribution functions (CDF) and probability density

functions (PDF) for the objective and constraints.

RDS differs from deterministic optimization because, instead of absolute maximization

of system performance, RDS maximizes performance and minimizes the variance of that



maximum performance [I1]. The analysis by Mavris et al. [10] is unique in that, in addition
to absolute system performance, emphasis is placed on system cost and design risk. Cost
and risk can be modeled in the RDS framework (and others) as constraints or additional
optimization objectives. This approach is of great interest to the industrial practitioner
who must include cost and risk in the business case for a design study.

Wang et al. [26] expand beyond polynomial based RSM into nonparametric models
and provide a comprehensive comparison of five metamodeling methods each benchmarked
against twenty problems taken from industry or literature. The models are compared for
accuracy, flexibility, efficiency, transparency, robustness, and ease of implementation while
considering deterministic and probabilistic applications. The authors recommend Radial
Basis Functions based on optimal satisfaction of the comparison criteria.

Wang and Shan [25] provide a higher level design process overview of where meta-
modeling fits in the engineering design process, referred to as metamodel-based design
optimization (MBDO). The authors present guidelines on experiment design (sampling)
techniques for both physical experiments and stochastic computer analyses. Metamodel-
ing techniques, with emphasis on probabilistic metamodels, and validation strategies of
those metamodels are then presented followed by a section on design optimization using
the validated metamodel. The optimization strategies are broken into four sections: global,
multiobjective, probabilistic, and multidisciplinary. Of particular interest to this work is
the probabilistic design optimization strategies. The author concludes that metamodels are
best used as surrogates for computationally intense and financially expensive experiments
during the design optimization process.

Simpson et al. [19] works through a similar process overview but highlights software
applications of metamodeling and design optimization methods in industry. In addition,
and most importantly, Simpson et al. uncover common pitfalls when applying statistical
regression techniques to deterministic computer simulations, specifically the authors em-
phasize the difference between bias error due to model fitting and random error inherent

in the product or process being modeled. Finally, the authors recommend model choice



based on the characteristics of the product or process the model is intended to represent.

Meckesheimer et al. [I2] detail metamodel validation strategies with a specific focus on
computational expense. The uncertainty introduced by model bias or random error must
be quantified to be managed and the authors present the “leave-k-out” cross validation
strategy. Recommendations are made on the value of k for various metamodel types. The
authors conclude that the “leave-k-out” cross validation technique provides an adequate
balance of model uncertainty quantification with computational expense to determine that
uncertainty.

Another approach to quantifying model uncertainty is presented by Donato and Pitchu-
mani [4] entitled QUICKER: Quantifying Uncertainty In Computational Knowledge En-
gineering Rapidly. The QUICKER method is advantageous because it does not rely on a
metamodel but uses a reduced sampling of the full scale simulation to estimate the output
distribution of the response. The authors demonstrate a 95% reduction in samples while
maintaining accuracy compared to traditional Monte Carlo or Latin Hypercube direct

sampling methods.



Chapter 2

Metamodel Theory

2.1 Introduction

At the highest level, a system or process is an observed output characterized by a function

of its inputs.

y=f(x) (2.1)

where x = (x1, 29,23, ... ,xn)T is the vector of user controllable input variables to the
system and y is the observed response. Most real systems or processes also have factors

that are uncontrollable by the user yet influence the observed response.

Input Output

r —P
Controllable Ty —Fp
Ty —P System —>» Y

Uncontrollable { t >
T

——
Figure 2.1: Black Box Approach

3e —e

The first objective of modeling is to understand and characterize the behavior of a
system. For some simple ideal systems with a few inputs, a pure analytic form of the
response is known. However, complex real systems do not have an exact formula for the
response as a function of its inputs.

To build a model of a system, the designer must gather data. This can be thought of as
a function evaluation at a number of inputs. This function evaluation can be the result of

a physical experiment or a computational simulation. The input settings should be chosen



to balance adequate exploration of the design space with cost associated with each function
evaluation. For complex systems, each function evaluation can be very expensive. This

leads to two critical questions:

1. Where in the design space should the function be evaluated (conduct an experiment,
run a simulation)?
2. Given the response at a set of known inputs, how can the response at a different,

untested set of inputs be predicted?

T T2

Figure 2.2: Design Space Function Fvaluations

Question 1 is answered primarily by Design of Experiment (DoE) theory while Question
2 is answered primarily by metamodeling. Yet there are strong interactions between DoE
and metamodeling driving an iteration loop.

For this work, physical experiment and high fidelity computer simulation (CFD, FEA,
etc.) both provide the same functional evaluation information upon which the metamodel
is built. It is accurate to blur the distinction between physical and computer experiment be-
cause both can be quite resource intensive to build and run. Whereas running a metamodel
requires little computational expense. This blurred distinction is also supported by the ef-
fort involved with building the experiment. Creating and assembling physical hardware
along with meshing and pre-/post- processing are orders of magnitude more resource inten-

sive than fitting metamodel parameters. Computer simulation is even replacing physical
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experiment because simulation accuracy has improved and a more thorough understanding
of the system can be obtained using modern computational tools. The philosophy of most
high fidelity computer simulation is to duplicate the physical system whereas the philoso-
phy of metamodeling is to accurately predict a single response to a number of known inputs.
In addition, high fidelity computer simulation does not scale well. For example, a designer
may create a very accurate computer model of a single turbine blade but the engine level
sensitivity does not warrant the high computational expense involved in simulating a single
turbine blade. Lastly, the low computational expense of a metamodel enables stochastic
evaluation and iterative optimization that are prohibitive if run in a physical experiment
or high-fidelity simulation.

The second objective of modeling is to find the best values of the user controllable inputs
such that the observed response is optimal. Uncontrollable inputs certainly influence the
response and the entire field of Robust Design is dedicated to optimizing the controlled
inputs to minimize system sensitivity to the uncontrolled inputs.

Uncontrollable inputs may also contribute to system error which is a difference in the
observed response from the predicted response. This error is accounted for in metamodeling
according to Equation [19):

§=g(x)+e (2.2)

where € represents bias and observation error. There is an important distinction between
f(x), the underlying physics that govern the system, and g(z) which is the empirical form
assumed in metamodeling. There is also an important distinction between y, the true
observed response of the system, and ¢, the metamodel predicted response of the system.
The difference between y and 3 is used to quantify the overall prediction uncertainty of the
metamodel. The following sections will outline different empirical forms (g(x)) for selected

metamodeling strategies.
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2.2 Response Surface Methodology (RSM) Theory

This section will focus on a modeling framework called Response Surface Methodology
(RSM) which describes the overall process of optimally generating experimental data (his-
torically focused on physical experiment but also adapted to computer experiments), fitting
a regression model to that data, and optimizing the inputs to achieve the desired response
[14]. This section will focus on the regression model piece of RSM.

The RSM regression model is parametric, meaning there is a known form of the model,

and is typically a low order polynomial (first and second order).

g = Bo+Brx1+ Bows + € (2.3)

<
|

Bo + Br1 + Bazo + F1123 + PBaows + € (2.4)

In addition to the isolated input terms, response surface models often include an interaction

term to capture response behavior not attributed to a single input alone.

g = Bo+ Brx1+ Bowos + Prax172 + € (2.5)

§ = o+ Bix1 + Poxo + Prawire + Br1a? + Proxs 4 € (2.6)

Response surfaces are best visualized in three dimensions with the response plotted
on the z axis and two input variables plotted on the x and y axis respectively. Response
surface models, however, are not limited to two dimensions but can be applied up to N

dimensions.
2.2.1 Taylor Series

The motivation for low order polynomials is first and foremost simplicity in understanding
and application. In addition, for a sufficiently narrow region around an observed response,

the true function of unknown form can be approximated by a Taylor Series expansion about
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2.3.1: Linear without interaction term 2.3.2: Linear with interaction term

.
IR
¥ St
"\\\“&&x‘\\‘\\“\\\\
IR RRRRA S
R

o B
e

2 2 M

2.3.3: Quadratic without interaction term 2.3.4: Quadratic with interaction term

Figure 2.3: Response surfaces

a point a.
f// a f/l/ a
f(x) = f(a)+ f'(a)(x —a) + #(m‘ —a)’ + %(1‘ —a)®+ ... (2.7)
This can be expanded into multiple dimensions where 1, x9,...,x, represents up to n
dimensions.

flze,...;zn) = fla,...,an)+
flla)) (1 —ar) + ...+ flan)(zn — an)+
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1 a " a/n
;! Yo —a)?+.. . + ! ;! )(xn — an)*+

" a " an

f?fll)(xl—al)?’—k...—i—fé! )(:Bn—an)B—i-... (2.8)
The Taylor series can be generalized to
n 00 ek
flz1,...,xn) = flat,...,an) + / ]E:?J) (:cj—aj)k (2.9)
j=1 k=1 )

where n is the dimensionality of the surface and k is the Taylor series order. If the arbitrary

system coordinates are shifted such that a = 0, the Taylor series reduces to

n o0 k
fn ) = 0+ 3 L (2.10)

j=1k=1

If the Taylor series is truncated after the second order term

17(0) 2 (2.11)

s oma) = FO) + 3 F O+ >
j=1 =t

If the Taylor coefficients are set equal to the unknown polynomial model coefficients,
then the first order polynomial model represents a first-order Taylor series expansion and
likewise for second order[14]. Higher accuracy in representing the true response surface can
be obtained by introducing higher order polynomial models consistent with carrying more
terms in the Taylor series. The engineer is advised against the typical pitfalls associated

with increasing order polynomials and over-fitting. The minimum order should be used.

§ = Bo+ > Bimite (2.12)
i=1
y = bBo+ Z Bixi + Z Biix} (2.13)
i=1 i=1
(2.14)

Because the beta coefficients will be fit based on regression, the engineer can use re-
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duction of order techniques to simplify the model form. Using reduction of order, an n
dimensional problem can be reduced to a first order polynomial. Myers and Montgomery
[14] illustrate reduction of oder with the following example. In the two dimensional second
order polynomial in Equation let 73 = 2%, 24 = 23, B3 = B11, B4 = P22, then Equation
2.4 becomes

9= Po+ Brx1 + Paxe + Baxs + Paws + € (2.15)

2.2.2 Regression Theory

The models built in RSM make use of regression analysis to link observed inputs to pre-
dicted outputs. Regression analysis is the act of determining the [ coefficients in the above
polynomials. Least squares is a common regression method focused on minimizing the sum
of the squares of the residual error € between the observed and predicted data. The least

squares measure is [14]:

2
n n n

E=Yea=> |ui-8-) Bz (2.16)

i=1 i=1 j=1 ;
It is important to point out the difference between the observed output (y) versus the
predicted output (y). Least squares uses the known values y = f(x) to fit a prediction
model § = g(x) + €. For least squares regression, there exists an n x 1 column vector of
known observations y for an n X p matrix of inputs X where each row denotes the known

inputs for one observation.

y ri1 T12 ... ZTip €1

Y2 To1 X22 ... X2 €2
—f S HEERE (2.17)

Yn Tnl Tp2 ... Tnp €n
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This can be rewritten in regression model form as [14]:

Y1 1 z11 z12 ... z1p| |Bo €1
Yo 1 x91 mo ... T2 B €2

= NEES (2.18)
| Yn | _1 Tnl Tn2 .. Tpp| _Bp_ | €n |

and in matrix form as:

y=XB+e (2.19)

From Equation the sum of the squared error can be rewritten in matrix notation [14]:

n

E = ) ¢=ée=(y—XB) (y - XB) (2.20)
=1

= yy-Xpy-yXB+X3Xp3 (2.21)

= yy-2X'By +X'3X3 (2.22)

To minimize the error, its first derivative of E with respect to 3 must be zero. The solution

to this zero first derivative equality provides the 3 vector. [14]
29Xy + 2X'X3 = 0 (2.23)

B=(X'X) "Xy (2.24)
2.2.3 VCRSM (Variable Complexity RSM)

Giunta [5] emphasizes the sequential nature of response surface techniques and outlines
a design methodology called Variable Complexity Response Surface Methodology. In this
technique a response surfaces model is created at a low fidelity and continually refined
at increasing levels of fidelity while narrowing the design space until an optimal design is
achieved. The response surface model is used primarily as a screening tool to establish

minimum performance criteria. The response surface model is also used as an optimization



tool.

16

For a sufficiently narrow design space, the RS is refined based on a few high fidelity

experiments at selected points in this narrow design space. This allows optimization meth-

ods to have high fidelity knowledge but without the computational expense of repeated

high fidelity model evaluation [5]. In addition to the optimization benefits, RS models

naturally tend to filter out experimental noise because of the regression fitting procedure.

This noise filtering property then lends itself to gradient based optimization techniques

which are computationally efficient when operating on a response surface.

Giunta outlines the following steps of the VCRSM Method:

10.
11.

. Determine the initial design configuration using nominal values from previous expe-

rience or intuition.

. Establish design space boundaries through a lower and upper limit on each indepen-

dent variable while keeping in mind the physical limitations of the system.

. Using Design of Experiment theory, establish initial points in the design space to be

explored.

. Conduct a low fidelity analysis at the previously identified points.

. Reduce the design space by eliminating regions of the design space where constraints

are violated.

. Determine additional points in the reduced design space that meet the D-optimality

criterion in DoE theory.
Conduct a medium fidelity analysis where the designer evaluates the D-optimal de-

signs chosen in the previous step.

. Create a metamodel of the system.

. Optimize the design based on the metamodel. There is significantly reduced compu-

tational time to optimize on the metamodel versus medium fidelity model.
Analyze the optimal configuration for robustness and validation of optimal design.
If design is not deemed optimal, define a new design space, select new boundaries

and repeat the previous steps.
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Giunta outlines minor variations on the VCRSM method mostly involving determina-

tion of design space boundaries.
2.3 Radial Basis Function Theory

The VCRSM method does not restrict the designer to polynomial based response surface
metamodels. DACE models (Design and Analysis of Computer Experiments) are another
non-parametric class of metamodels which provide flexibility and accuracy advantages at
the cost of complexity. Radial Basis Function metamodeling is used when strict interpo-
lation and exact reproduction of known data points is needed. This makes the technique
highly desirably for smooth systems that exhibit non-noisy behavior and undesirable for
noisy systems. For non-noisy systems, Wang et al. [26] determined that RBF is the most
accurate metamodeling technique. Wang et al. also determined that RBF is the most
robust technique due to its relative insensitivity to inaccuracy in internal model parame-
ters. At its core, the RBF technique states that points close together in the design space
should exhibit similar behavior. This leads to a predictor based on distance between known
points. This is best visualized in three dimensions with each point surrounded by a sphere.
The sphere surface is the predictor ¢(r) and is only a function of radial distance from the
known point r = |z — z;| [I5]. The response prediction is made using linear combinations

of the distance from the requested input point to the known response points.

y(z) = Z wip(|z — i) (2.25)

The still unknown weighting vector (w) is determined using the observed responses to
known inputs. This imposes the characteristic of RBF that it exactly reproduce the input
training set. The procedure for determining w is then reduced to solving a system of n
equations for n unknowns [I5]. The i subscript below represents unknown quantities and

the j subscript represents known quantities.
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Name Form
Multiquadratic o(r) =Vr2 +c2
Inverse Multiquadratic ¢(r) = L
N
Thin-plate spline o(r) = r?log (g)
2
Gaussian o(r) = exp <—;z2>

Table 2.1: Alternative Radial Basis Functions [15]

yi = > wid(|x; — xil) (2.26)
i=1

Well known linear algebra techniques such as LU decomposition are computationally
efficient means to determine the weighting vector.

The radial distance typically assumes the form of a Euclidean norm [20]

r=lr—z|= \/($—:1:j)T (x —xy) (2.27)

which can be expanded into n dimensions as

Z (ZL‘l — $ij)2 (2.28)

=1

r=lr—x;|=

The basis function ¢(r) itself has several forms, the most common being the multi-

quadratic function [26]

o(r) =Vr2+c? (2.29)

where c is on the order of r and is iteratively determined to minimize prediction error

using a “leave-one-out” technique. Other explored functions are summarized in Table
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Radial Basis Functions are attractive for computational efficiency because the weight-
ing factors and constant must be determined only once allowing subsequent metamodel

evaluations (i.e. operating in an optimizer) are very inexpensive.
2.4 Kriging Theory

Modeling a response for uncertain inputs is best handled by the kriging method. Instead
of single valued, the inputs are assumed to follow a Gaussian distribution with a known
mean and variance. This system of Gaussian inputs is called a Gaussian Process. Kriging
is simply another name for Gaussian Process metamodeling after its namesake, D.G. Krige,
who applied the method to mining engineering [15].

Kriging has advantages over RS and RBF models because it can interpolate (ie exactly
reproduce the input data set) or smooth based on a parameter chosen by the designer.
This is because kriging models allow for influence of noise in the observed data. This noise
is assumed to be a Gaussian Process (normally distributed) with mean zero and variance

o2. In matrix notation, the set of observed responses y is described by some function of

the known inputs x (recall from Section x = (x1,x9,%3,. .. ,azn)T), plus a noise term e.
y=f(x)+e (2.30)

f(x) ~ N(u, K) (2.31)

e~ N(0,0?) (2.32)

The GP metamodeling process makes the assumption that the underlying function f(x)
can be modeled as a Gaussian Process with mean p(x) and covariance K (x,x’) where x
is the 1 x n vector of n inputs and K is the n x n covariance matrix. From properties of
Gaussian addition, the output y (single observed result plus mean-zero noise, 1 x 1) can

be combined to
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y=N(u(x),K (x,x) + Io?) (2.33)

where 1 is the observed mean vector, I is the identity matrix (since the noise is assumed
to be independent), and K + Io? is the observed covariance matrix (including noise).
The most often used covariance function K in GP regression is the squared exponential

function [16]:

cov (f(x), f(x)) = K (x,x) = exp <—2\1/Z|x - x’|2> (2.34)

Rasmussen and Williams recommend that the |x — x’| term above be normalized by
a characteristic length term ¢ that the designer may choose to best fit the observed data.
This characteristic length and other terms that the designer has control over are called
“hyperparameters”. These hyperparameters are iteratively determined to minimize the
prediction error of the fit by making use of model validation strategies outlined in Section
The covariance function is referred to in literature as the “kernel” and may take
other forms besides the squared exponential function. See Rasmussen and Williams [16]
for additional common functions.

To predict the response at a set of unknown values, say yp+1...¥q, the known input

matrix must be identified.

Yp+1 T+l T(p+1)2 -+ L(p+)n €p+1
=f : : : + | (2.35)

yq qu .’L'qg e :L'qn €q
For the sake of nomenclature, let X, denote the above (¢ — p) x n matrix of inputs for

which the unknown, predicted observations are y, = (yp41 - .- yq)T. The whole objective

of kriging is to find y.

ye=f(Xs) te (2.36)
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Finally, for the unknown responses, the covariance matrix of the known inputs in matrix
notation is K (X*, X, + 0'2[).
Since the system was assumed to be a Gaussian process, there exists a joint Gaussian

observation distribution [16]:

y K(X,X)+o%I K(X, X
IR (X, X,) 2,57
Vi L K (X,,X) K (X,,X,)+ 0%l

where K is the matrix of covariances for the inputs with either observed (X) or un-
observed (X,) output. It is a GP best practice to transform the input data such that the
mean p is zero to produce an unbiased estimator of the response. To ease the nomenclature

for the next section, Equation can be rewritten as:

A CT
Y ~N : , (2.38)

Y« Mok ¢ B

Finally, the conditioning properties of a joint Gaussian distribution allow the distribu-

tion of y, to be directly computed[16].

vl (v, X, X)) ~ N (M, V) (2.39)

where
M =, + CA™ (y — p) (2.40)
= e+ K (X0, X) K (X, X) " (y — ) (2.41)
V=B-CA'CT (2.42)
= [K (X,, X)) + 021] — K (X, X) [K (X, X) +021] " K (X, X,,) (2.43)

To observe the GP zero mean best practice, the data should be transformed such that

= 0. This enables an unbiased estimator of y, such that u, = 0 as well. Finally,
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yol (v, X X0) ~ N (K (X0, X) K (X,X) Yy,

(K (X, X)) + 02I] — K (X, X) [K (X, X) + 021 " K (X, X*)> (2.44)

2.5 Model Validation

The most common model validation strategy is called “leave-k-out” cross validation. The
strategy involves leaving a subset (of dimension k) of the full data set (of dimension n) out
of the metamodel fitting process and then using this fit to predict the subset of data which

was left out.

N N
y = f + e (k) (2.45)
Nk N—k

The difference between the predicted and observed values provides an error qua