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ABSTRACT

The focus of this thesis is on using mechanical strain to tailor the electronic prop-

erties of graphene. The first half covers the electro-mechanical coupling for graphene

in different configurations, namely a hexagonal Y-junction, various shaped bubbles on

different substrates, and with kirigami cuts. For all of these cases, a novel combination

of tight-binding electronic structure calculations and molecular dynamics is utilized

to demonstrate how mechanical loading and deformation impacts the resulting elec-

tronic structure and transport. For the Y-junction, a quasi-uniform pseudo magnetic

field induced by strain restricts transport to Landau-level and edge-state-assisted res-

onant tunneling. For the bubbles, the shape and the nature of the substrate emerge

as decisive factors determining the effectiveness of the nanoscale pseudo magnetic

field tailoring in graphene. Finally, for the kirigami, it is shown that the yield and

fracture strains of graphene, a well-known brittle material, can be enhanced by a fac-

tor of more than three using the kirigami structure, while also leading to significant

enhancements in the localized pseudo magnetic fields.
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The second part of the thesis focuses on dissipation mechanisms in graphene

nanomechanical resonators. Thermalization in nonlinear systems is a central concept

in statistical mechanics and has been extensively studied theoretically since the semi-

nal work of Fermi, Pasta, and Ulam (FPU). Using molecular dynamics and continuum

modeling of a ring-down setup, it is shown that thermalization due to nonlinear mode

coupling intrinsically limits the quality factor of nanomechanical graphene drums and

turns them into potential test beds for FPU physics. The relationship between ther-

malization rate, radius, temperature and prestrain is explored and investigated.
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Chapter 1

Introduction

1.1 Graphene electromechanical coupling

The discovery of new materials is a significant driving force for technological innova-

tion. Therefore, the discovery of Graphene in 2004 (Novoselov et al., 2004), a novel

two dimensional (2D) material, initiated a huge wave of both fundamental scientific

and technological efforts around the world (Geim, 2009). Graphene is a 2D allotrope

of carbon with a honeycomb lattice structure(Fig. 1·1), first studied in 1947 (Wal-

lace, 1947). However, the pure 2D structure was not believed to be possible until

graphene was experimentally obtained by the famous Scotch Tape method (Novoselov

et al., 2004). Afterwards, researchers soon found a variety of unique properties of

graphene by theory, simulation and experiment: massless Dirac fermions at low en-

ergy (Novoselov et al., 2005; Castro Neto et al., 2009), Quantum Hall Effect (Zhang

et al., 2005; Castro Neto et al., 2009), record high Young’s modulus (∼1TPa) (Lee

et al., 2008), extremely high electron mobility (15,000cm2 · V −1 · s−1) at room tem-

perature (Geim and Novoselov, 2007; Bolotin et al., 2008), high opacity (Nair et al.,

2008) and excellent thermal conductivity (5,000W ·m−1 ·K−1) (Balandin et al., 2008),

to name just a few. Among all those interesting and fantastic properties, this work

focuses on the mechanical and electronic properties and in particular the mechanical-

electronic coupling of graphene.

Graphene has attracted intense attention not only for its unusual physical proper-

ties (Geim and Novoselov, 2007; Castro Neto et al., 2009; Han et al., 2007; Seol et al.,
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Figure 1·1: Graphene is a 2D building block for 0D buckyballs (left),
1D nanotubes (middle) and 3D graphite (right). Figure from Geim and
Novoselov (Geim and Novoselov, 2007).

2010), but also for its potential as the basic building block for a wealth of device ap-

plications. However, there exist key limitations that appear to restrict the application

of graphene for all-carbon electronic circuits: one such limitation is that graphene, in

its pristine form, is well known to be a semi-metal with no band gap (Castro Neto

et al., 2009). A highly active field of study has recently emerged based on the idea of

applying mechanical strain to modify the intrinsic response of electrons to external

fields in graphene (Guinea et al., 2010b; Qi et al., 2013; Tomori et al., 2011). This

includes the strain-induced generation of spectral (band) gaps and transport gaps,

which suppress conduction at small densities. Endowed with the strongest covalent

bonding in nature, graphene exhibits the largest Young’s modulus ever registered

(E � 1TPa), and a record range of elastic deformation for a crystal, which can be as

high as 15-20% (Lee et al., 2008; Cadelano et al., 2009). Such outstanding mechanical

characteristics are complemented by an unusual coupling of lattice deformations to

the electronic motion, that can be captured by the concept of a pseudomagnetic field
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(PMF) arising as a result of non-uniform local changes in the electronic hopping am-

plitudes (Kane and Mele, 1997; Suzuura and Ando, 2002; Castro Neto et al., 2009).

In this context, several groups (Guinea et al., 2010a; Pereira and Castro Neto, 2009;

Guinea and Low, 2010; Guinea et al., 2008; Abedpour et al., 2011; Guinea et al.,

2010b; Kim et al., 2011; Yeh et al., 2011; Yang, 2011; Kitt et al., 2012; Kitt et al.,

2013b; Yue et al., 2012) have employed continuum mechanics coupled with effective

models of the electronic dynamics to study the generation of pseudomagnetic fields

(PMFs) in different graphene geometries and subject to different deformations. The

potential impact of strain engineering beyond the generation of bandgaps has also

attracted tremendous interest (Pereira and Castro Neto, 2009; Pereira et al., 2010a;

Abanin and Pesin, 2012; Wang et al., 2011).

However, a previous study (Pereira et al., 2009) showed that a band gap will not

emerge under simple uniaxial strain unless the strain is larger than roughly 20%.

This theoretical prediction, based on an effective tight-binding (TB) model for the

electronic structure, has been subsequently confirmed by various more elaborate ab-

initio calculations (Ni et al., 2009; Farjam and Rafii-Tabar, 2009; Choi et al., 2010).

The robustness of the gapless state arises because simple deformations of the lattice

lead only to local changes of the position of the Dirac point with respect to the

undeformed lattice configuration (Kane and Mele, 1997; Suzuura and Ando, 2002)

and to anisotropies in the Fermi surface and Fermi velocity (Pereira et al., 2010b).

The shift in the position of the Dirac point is captured, in the low-energy, two-valley,

Dirac approximation, by a so-called pseudomagnetic vector potential and resulting

pseudomagnetic field (PMF) that arises from the strain-induced perturbation of the

tight-binding hoppings (Suzuura and Ando, 2002). As a result, electrons react to

mechanical deformations in a way that is analogous to their behavior under a real

external magnetic field, except that overall time-reversal symmetry is preserved, since
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the PMF has opposite signs in the two time-reversal related valleys (Castro Neto et al.,

2009). Consequently, the ability to manipulate the strain distribution in graphene

opens the enticing prospect of strain-engineering its electronic and optical properties,

as well as of enhancing interaction and correlation effects (Guinea et al., 2010b; Pereira

and Castro Neto, 2009; Pereira et al., 2010b; Pellegrino et al., 2010; Abanin and Pesin,

2012; Sharma et al., 2013).

The recent experimental confirmation that PMFs in excess of 300T are possible

with modest deformations in structures spanning only a few nm (Levy et al., 2010; Lu

et al., 2012) brings this prospect of strongly impacting graphene’s electronic properties

by strain closer to fruition. Furthermore, a previous study (Guinea et al., 2010b)

also found that nearly homogeneous PMFs could be generated in graphene through

triaxial stretching, but the resulting fields were found to be moderate, unless relatively

large (i.e., >10%) tensile strains could be applied. The ability to produce very large

and fairly homogeneous PMFs within a few nm suggests the possibility of creating

pseudomagnetic quantum dots, where confinement is driven by the PMF.

As a result, one of the objectives of this thesis is to undertake a theoretical study to

probe the electronic and quantum transport properties of a representative graphene-

based strained y-junction particularly suited to the generation of quasi-uniform PMFs

(Guinea et al., 2010b). Despite this recent experimental evidence for strong PMF-

induced Landau quantization, to the best of our knowledge, no measurements or

calculations have been performed to assess the transport characteristics of such nano-

structures. In this thesis, the quantum transport characteristics of such structures

are assessed, revealing the Landau level- (LL) assisted character of the tunneling

mechanism, as well as the interplay with an external field that breaks the valley

degeneracy.

Though triaxial tension can generate quasi-uniform PMF in graphene, unfortu-
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nately, such large planar tensile strains have not been experimentally realized in

graphene to date. This is likely due to the record-high tensile modulus of graphene

and the unavoidable difficulty in effectively transferring the required stresses from

substrates to this monolayer crystal (Gong et al., 2010). It is thus remarkable that

recent experiments report the detection of non-uniform strain distributions in bubble-

like corrugations that generate PMFs locally homogeneous enough to allow the obser-

vation of Landau quantization by local tunneling spectroscopy. The magnitude of the

PMFs reported from the measured Landau level spectrum reaches hundreds (300 to

600) of Teslas (Levy et al., 2010; Lu et al., 2012), providing a striking glimpse of the

impact that local strain can potentially have on the electronic properties. A difficulty

with these experiments is that, up to now, such structures have been seen and/or

generated only in contact with the metallic substrates that are used in the synthesis

of the sample. This is an obstacle, for example, to transport measurements, since

this would require the transfer of the graphene sheet to another substrate, thereby

destroying the favorable local strain distribution. In addition, a systematic study

of different graphene bubble geometries and substrate types, which could reveal the

subtleties that different geometries bring to the related strain-induced PMFs has not

been reported. Furthermore, most previous studies of the interplay between strain

and electronic structure in graphene have addressed the deformation problem from

an analytic continuum mechanics point of view, with the exception of a few recent

computational studies (Neek-Amal and Peeters, 2012b; Neek-Amal et al., 2012).

In this context, classical molecular dynamics (MD) simulations of strained graphene

nanobubbles induced by gas pressure were conducted. The MD simulations are used

to complement and compare continuum mechanics approaches to calculating strain,

in order to examine the pressure-induced PMFs in ultra-small graphene nanobub-

bles of diameters on the order of 5 nm. Controlled synthesis of such small strained
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nanobubbles has gained impetus following the recent experiments by Lu et al. (Lu

et al., 2012). The aim is to use an unbiased calculation for the mechanical response of

graphene at the atomistic level, on the basis of which one can (i) extract the relaxed

lattice configurations without any assumptions; (ii) calculate the PMF distribution

associated with different nanobubble geometries; (iii) discuss the influence of sub-

strate and aperture shape on PMF distribution; (iv) identify conditions under which

explicit consideration of the curvature is needed for a proper account of the PMFs.

In this thesis, the simulation methodology that was employed to determine the

atomic displacements from which the strain tensor, modified electronic hopping am-

plitudes, and PMFs can be obtained is described. This is followed by numerical

results of the strain-induced PMFs for different graphene nanobubble geometries in

a simply clamped scenario. The considerable importance of the substrate interaction

is discussed next and, then, the relative contributions of orbital bending and bond

stretching to the total PMF is analyzed.

Recent experiments have shown that graphene nanobubbles smaller than 10 nm

can be prepared on metallic substrates, and that large PMFs in the hundreds of

Tesla result from the locally induced non-homogeneous strain (Levy et al., 2010; Lu

et al., 2012). Because such small nanobubbles can be directly studied using classical

MD simulations, MD is employed to obtain the deformed graphene bubble configura-

tions due to an externally applied pressure.The atomistic potentials that describe the

carbon-carbon interactions have been extensively investigated and, hence, graphene’s

nano-mechanics can be simulated without any particular bias, and to a large accu-

racy within MD. Once the deformation field is known from the simulations, the strain

distribution in the inflated nanobubble is obtained, finally followed by a continuum

gauge field approach to extract the resulting PMF distribution (Castro Neto et al.,

2009; Guinea et al., 2010b; Guinea et al., 2010a; Guinea and Low, 2010; Guinea et al.,
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2008; Abedpour et al., 2011).

While exhibiting high strength and stiffness, graphene’s mechanical performance

is hindered by its brittle nature, where under tensile loading graphene fractures im-

mediately after yielding at strains generally not exceeding a few percent as found

experimentally (Zhang et al., 2014; Lee et al., 2008), though the fracture strains ob-

tained via simulation are much larger, and typically exceed 20% (Zhao et al., 2009;

Zhao and Aluru, 2010; Lu et al., 2011; Liu et al., 2007). A key issue then for graphene

is to not only develop techniques to enhance its ductility, but to do so in a systematic,

tunable fashion. One example in this direction is the recent work of Zhu et al. (Zhu

et al., 2014), who found that graphene nanomeshes can be stretched to nearly 50%

strain. While the nanomeshes do enable substantial increases in mechanical stretcha-

bility, there is considerably greater opportunity to tailor the shapes and hence physical

properties of graphene using the principles of kirigami, which is a version of origami

in which cutting is used to change the morphology of a structure. Examples of the

structural and geometric diversity that can be achieved using kirigami approaches for

graphene have already been demonstrated experimentally (Blees et al., 2014).

One chapter in this thesis is devoted to the investigation of the mechanical prop-

erties, as well as the electromechanical coupling that is induced in graphene kirigami.

Kirigami is a traditional Asian paper-cutting art (Temko and Takahama, 1978) and

has been used for other smart designs in different scenarios (Xiaodong, 2007; Han

et al., 2010; Sareh and Rossiter, 2013), while recently the rise of two-dimensional ma-

terials is generating another wave of studying Kirigami-like structures (Blees et al.,

2014; Rose et al., 2014; Castle et al., 2014; Hou et al., 2014). In this work, Kirigami

was applied to nanomaterials, specifically graphene, and the controllable mechanical

response was investigated.
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1.2 Graphene resonators

The second half of this work focuses on graphene nanoresonators. Graphene’s high

Young’s modulus, low mass and 2D structure make it a wonderful candidate for

resonator applications. Advances in fabrication techniques enable production and

characterization of one and two dimensional nanoscale mechanical resonators(Bunch

et al., 2007; Eriksson et al., 2008; Chen et al., 2009; Eichler et al., 2011). In particular,

carbon-based resonators are considered to be promising for many applications due to

their low mass and high quality factors (Q-factors) (Oshidari et al., 2012; Barton

et al., 2011; van der Zande et al., 2010; Eom et al., 2011). It is also known that

these systems display strongly nonlinear behavior (Atalaya et al., 2008; Eichler et al.,

2011), which makes them interesting for investigations of nonlinear dynamics. The

nonlinearities lead to a coupling between the vibrational modes (Matheny et al.,

2013; Eriksson et al., 2013). This coupling allows for intermodal energy-transfer,

which facilitates the redistribution of energy initially localized in a single mode.

In this respect, the mode-coupling provides a dissipation channel for the funda-

mental mode (FM) dynamics. In contrast to other dissipation mechanisms previously

studied in nanomechanical resonators (Lifshitz and Roukes, 2000; Cross and Lifshitz,

2001; Wilson-Rae, 2008; Remus et al., 2009; Croy et al., 2012; Imboden and Mo-

hanty, 2014), this is a fundamental intrinsic mechanism and therefore constitutes a

lower limit on the relaxation rate of the FM. At finite temperatures, the effect of the

mode couplings will be two-fold. First, they give rise to fluctuations in the resonator

strain leading to dephasing or spectral broadening of the resonator (Barnard et al.,

2012). Second, as shown in this work, they allow for energy redistribution among

the modes. To distinguish the two effects, a ring-down setup was considered, where

the total energy of the resonator is conserved and the evolution of the spectral dis-

tribution of energy is monitored. This allows us to access the dynamics of the FM
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energy.

The process of thermalization in a system of nonlinearly coupled oscillators was

originally considered by Fermi, Pasta and Ulam (FPU) in their famous computer ex-

periment in 1955 (Fermi et al., 1955; Campbell et al., 2005), and spawned an impres-

sive amount of research that eventually resulted in the development of chaos theory

(Izrailev and Chirikov, 1966) and the discovery of solitons (Zabusky and Kruskal,

1965). For the FPU problem, it is known that above a certain critical energy den-

sity, energy initially fed into the FM is quickly redistributed among all modes, and

the system approaches a thermal state. This threshold is connected to the onset of

widespread chaos in the mode dynamics (Izrailev and Chirikov, 1966; Pettini et al.,

2005) and the stability of localized modes (“q-breathers”) (Penati and Flach, 2007;

Flach et al., 2005). In recent years, the consensus has been reached that the main

features observed in the FPU problem are not specific to the original model Hamil-

tonian (Fucito et al., 1982; Bambusi and Ponno, 2008). A natural question, which is

still under debate (Benettin et al., 2008), is whether those features can be observed

in a physical system. For this to be possible two requirements need to be fulfilled:

first, the nonlinearity has to be sufficiently strong to allow for appreciable coupling

between resonator modes already at low energies. Second, the time-scale of energy

dissipation to the environment must be long compared to that for thermalization due

to the mode coupling. A chapter in this thesis is devoted to investigating the hypoth-

esis that nanomembrane resonators can be used to test the persistence of the FPU

phenomena in the thermodynamic limit.



Chapter 2

Simulation Methodology

Simulations at different length scales considering different physics require different

simulation methods. To study the electro-mechanical coupling, molecular dynamics

(MD) and molecular mechanics (MM) are used to calculate the mechanical deforma-

tion of graphene. A tight-binding (TB) model uses the deformed atomic positions

from the MD or MM calculations to extract the PMF. Finally, the Landauer-Büttiker

method is used to characterize the electron transport.

2.1 Molecular dynamics simulation

Computational methods for materials are developed for different length scales and

material properties because the governing physics is distinct. The length scale cov-

ered in this thesis spans from nano to micro, and molecular dynamics simulation is

a powerful technique for computational mechanics study. In 1957, MD was first in-

troduced by Berni Alder for phase transition problems. Later on, researchers began

using MD simulations for various studies in materials science, nanomechanics, chem-

istry, physics, biology, etc. Classical molecular dynamics is utilized here, and the word

classical means particles in simulation obeys classical mechanics, or in another words

Newton’s laws. There are three important aspects in MD simulation: 1) Potential.

The potential is to model the interaction between particles, and all electron interac-

tions are lumped into the potential form. It usually takes an empirical description

where the parameters are fitted from more accurate DFT calculations or experiments.

10
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2) The time integrator. MD involves time integration during simulation, and integra-

tors such as Verlet or Leapfrog are used for time iteration. 3) Ensemble. A statistical

ensemble is necessary to control thermodynamic quantities like pressure, temperature

and energy. Common ensembles include canonical ensemble (NVT), microcanonical

ensemble (NVE) and isothermal-isobaric ensemble (NPT). MD has many advantages

and is widely used nowadays for research in various fields. MD is capable of simu-

lating many sophisticated systems with modern powerful clusters (Abraham et al.,

2002; Buehler et al., 2004); however, it also has many well-known issues. The biggest

issue is that the time step in MD simulations is small (Alder and Wainwright, 1959)

(usually on the order of femtoseconds), and thus MD is not capable of simulating

experimental time scales of seconds or longer (Tildesley and Allen, 1987; Frenkel and

Smit, 2001). Furthermore, because the deformation in an MD simulation is achieved

in a very short time frame, the resulting strain rate is often nearly 10 orders of mag-

nitude larger than would be seen experimentally. (Yamakov et al., 2002; Wolf et al.,

2005) Appropriate choice of strain rate can well describe the mechanical deformation

of materials. (Keblinski et al., 1998; Ikeda et al., 1999; Brańıcio and Rino, 2000).

In this work, MD simulations were done with the Sandia-developed open source

code LAMMPS (Lammps, 2012; Plimpton, 1995). Carbon-Carbon interactions were

described by the AIREBO potential (Stuart et al., 2000) with a cutoff at 0.68 nm,

which has been shown to capture accurately the mechanical properties of carbon-

based nanostructures, including bond breaking, deformation, and various elastic mod-

uli (Zhao et al., 2009; Wang and et al., 2012; Qi et al., 2010). The Verlet integrator

was used for time integration, and different ensembles were applied depending on

the physical situation. Gas pressure was used to induce the deformation of graphene

bubbles, which was modeled by stand 12-6 Lenard Jones potential.
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2.2 Strain calculation in deformed graphene

One important output from the MD simulations is the computation of the PMF

of deformed graphene structures, where the strain must be known to calculate the

PMS. Derived from continuum mechanics theory, two different approaches were used

to calculate strain field of graphene from the atomistic simulation results, which are

introduced in the following sections.

2.2.1 Displacement approach

In continuum mechanics the infinitesimal strain tensor is written in Cartesian material

coordinates (Xi) as: (Ui is displacement field)

εij =
1

2

(
∂ui

∂Xj

+
∂uj

∂Xi

)
+

1

2

(
∂uk

∂Xi

∂uk

∂Xj

)
. (2.1)

To utilize Eq. 2.1, it is clear that the displacement field must be obtained such

that its derivative can be evaluated to obtain the strain. In order to form a linear

interpolation scheme using finite elements (Hughes, 1987), the geometry of the lattice

was exploited and the results of MD simulation of the deformed graphene bubble

were meshed using tetrahedral finite elements defined by the positions of four atoms:

the atom of interest (with undeformed coordinates R0), and its three neighbors (with

undeformed coordinates R1, R2, R3). After deformation, the new positions of the

atoms are r0, r1, r2 and r3, respectively. To remove spurious rigid body translation

and rotation modes, the atom of interest (R0) was taken as the reference position,

i.e., r0 = R0. The displacement of its three neighbors could then be calculated, and

subsequently the components of the strain tensor εij were obtained by numerically

evaluating the derivative of the displacement inside the element.

By subtracting the original position of each neighboring atom from its deformed

position, the displacement vectors of the three nearest neighbors were obtained: u01 =
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(u01x, u01y, u01z), u02 = (u02x, u02y, u02z), u03 = (u03x, u03y, u03z). Linear displace-

ment field can be formulated from the four-node tetrahedral element as U(x, y, z) =

(Ux, Uy, Uz) inside the tetrahedral element as: Ux = a1x+a2y+a3z, Uy = a4x+a5y+

a6z, Uz = a7x+a8y+a9z, where a1 to a9 are unknown constants for each tetrahedral

element. Inserting the positions (r1 = (x1, y1, z1), r2 = (x2, y2, z2), r3 = (x3, y3, z3))

and the corresponding displacements (u01,u02,u03) of the three neighboring atoms,

a1 to a9 can be expressed in terms of r1, r2, r3 and u01, u02 and u03, thus obtaining

all coefficients of U(x, y, z). U(x, y, z) can be rearranged to express it in terms of u01

u02 and u03 in the following equation:

⎡
⎣Ux

Uy

Uz

⎤
⎦=

⎡
⎣N1 0 0 N2 0 0 N3 0 0

0 N1 0 0 N2 0 0 N3 0
0 0 N1 0 0 N2 0 0 N3

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u01x

u01y

u01z

u02x

u02y

u02z

u03x

u03y

u03z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.2)

where Ni = Ni(x, y, z), i = 1, 2, 3 are the finite element shape functions. For simplic-

ity, Eq. 2.2 can be rewritten as:

U = N · uN, (2.3)

where uN = [u01,u02,u03]
T is the displacement field of the three neighboring

atoms.

After obtaining the displacement field U, the strain can be derived by differenti-

ating Eq. 2.3 following the continuum strain as defined in Eq. 2.1 to give

ε = T · uN, (2.4)
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where T = ∂N
∂x

is constant inside each tetrahedral element.

2.2.2 Stress approach

In MD simulations, the atomic virial stress can be extracted on a per-atom ba-

sis. In the present work, the virial stress as calculated from LAMMPS (Thompson

et al., 2009) was obtained for the strained graphene configuration. These stresses

were then related to the strain via a linear constitutive relationship, as was done

recently (Klimov et al., 2012). In the current work, a plane stress model was uti-

lized for graphene, where the in-plane strains are written as εxx = 1
E
(σxx − μσyy),

εyy = 1
E
(σyy − μσxx), εxy = σxy

G
. The material properties of graphene were chosen

as E = 1TPa (Huang et al., 2006), G = 0.47TPa (Min and Aluru, 2011) and μ =

0.165 (Blakslee et al., 1970), where E is the Young’s modulus, G the shear modulus,

and μ Poisson’s ratio. It is important to note that, because a linear stress-strain

relationship is assumed, the resulting strain is generally underestimated, particu-

larly at large deformations due to the well-known nonlinear stress-strain response of

graphene (Lee et al., 2008).

Both potential and kinetic parts were taken into account for virial stress

calculation. Note that the virial stress calculated in LAMMPS is in units of

“Pressure ·Volume”, and thus the standard value of 3.42 Åwas used as the effective

thickness of single layer graphene (Huang et al., 2006) to calculate the stress. A plane

stress constitutive model was utilized to calculate the strain via

⎡
⎣εxxεyy
εxy

⎤
⎦ =

⎡
⎣ 1

E
− μ

E
0

− μ
E

1
E

0
0 0 1

2G

⎤
⎦ ·

⎡
⎣σxx

σyy

σxy

⎤
⎦ , (2.5)
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2.2.3 Benchmark examples

The displacement and stress approaches were compared via two simple benchmark

examples, those of uniaxial stretching and simple shear. For the uniaxial stretching

case, εxx ≈ 10% strain was applied along the x-direction. The loading was done by

applying a ramp displacement that went from zero in the middle of simulation box

to a maximum value at the +x and -x edges of the graphene monolayers.

For the simple shear case, εxy ≈ 1% shear strain was applied by fixing the -x

edge and displacing the +x edge in the y-direction. Both the uniaxial stretching and

simple shear simulations were performed via MD simulations by LAMMPS (Lammps,

2012) code with the AIREBO potential (Stuart et al., 2000). The result for the uni-

axial stretching is shown in Figs. 2·1 and Fig. 2·2, while the simple shear is shown

in Figs. 2·3 and Fig. 2·4. The superior performance of the displacement approach

is seen in both cases. Specifically, because a linear stress-strain relationship is as-

sumed in the stress approach as shown in Eq. 2.5, the resulting strain is generally

underestimated, particularly at large deformations due to the well-known nonlinear

stress-strain response of graphene (Lee et al., 2008).

Once the strain distribution is determined from the MD simulations, the PMF, B,

can be directly evaluated from the definitions above. However, if the strain tensor is

calculated within the displacement approach, a second numerical derivative is needed

to get B, which is likely to introduce a certain degree of error. Nevertheless the errors

were found to be of acceptable magnitude.

Compared with the displacement approach, the stress approach avoids one nu-

merical differentiation, but a constitutive approximation is involved. To compare the

accuracy of the displacement and stress approaches, the PMF distribution in a cir-

cular bubble was calculated (for which an analytic solution is available and detailed

analysis was recently performed (Kim et al., 2011)) by obtaining the strain via three
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different methods: an analytic continuum mechanics model, i.e., the Hencky solu-

tion (Fichter, 1997), the MD-based displacement approach and the MD-based stress

approach. The PMFs generated from the MD-based displacement approach are in

good agreement with those that follow from Hencky’s analytic solution, and also with

previously reported values for a circular bubble (Kim et al., 2011). In contrast, the

stress approach fails to yield reasonable results for this loading situation. Therefore,

stress method is not used in this work.

2.3 Pseudomagnetic fields in deformed graphene

Non-zero PMFs arise from the non-uniform strain distribution in deformed graphene

structure. These PMFs reflect the physical perturbation that the electrons near the

Fermi energy in graphene feel as a result of the local changes in bond length. It

emerges straightforwardly in the following manner. Nearly all low-energy electronic

properties and phenomenology of graphene are captured by a simple single orbital

nearest-neighbor tight-binding (TB) description of the π bands in graphene (Castro

Neto et al., 2009). In second quantized form this tight-binding Hamiltonian reads

H = −
∑
i,n

t
(
ri, ri + n

)
a†ribri+n +H. c., (2.6)

where t
(
ri, ri+n

)
represents the hopping integral between two neighboring π orbitals,

n runs over the three nearest unit cells, and ari(bri) are the destruction operators at

the unit cell ri and sublattice A(B). In the undeformed lattice the hopping integral

is a constant: t
(
ri, ri + n

)
= t

(
Ri,Ri + n

)
= t = 2.7 eV. The deformations of the

graphene lattice caused by the gas pressure impact the hopping amplitudes in two

main ways. One arises from the local stretch that generically tends to move atoms

farther apart from each other and, consequently, directly affects the magnitude of

the hopping tij between neighboring atoms i and j, which is exponentially sensitive
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Figure 2·1: εxx distri-
bution by displacement
approach for uniaxial
stretching case with
10% strain.
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stretching case with
10% strain.
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to the interatomic distance. The other effect is caused by the curvature induced by

the out-of-plane deflection, which means that the hopping amplitude is no longer a

purely Vppπ overlap (in Slater-Koster notation) but a mixture of Vppπ and Vppσ. More

precisely, one can straightforwardly show that the hopping between two pz orbitals

oriented along the unit vectors ni and nj and a distance d apart is given by (Isacsson

et al., 2008; Pereira et al., 2010a).

− tij = Vppπ(d)ni · nj +
Vppσ(d)− Vppπ(d)

d2
(ni · d)(nj · d). (2.7)

To capture the exponential sensitivity of the overlap integrals to the interatomic

distance d they were modeled by

Vppπ(d) = −t e−β(d/a−1), (2.8a)

Vppσ(d) = +1.7 t e−β(d/a−1), (2.8b)

with a � 1.42 Å the equilibrium bond length in graphene. For static deformations a

value β ≈ 3 is seen to capture the distance dependence of Vppπ(d) in agreement with

first-principles calculations (Pereira et al., 2009; Pereira et al., 2010b); the same decay

constant β is used for both overlaps, which is justified from a Mülliken perspective

since the principal quantum numbers of the orbitals involved is the same (Hansson

and Stafström, 2003). In the undeformed state Eq. 2.7 reduces to −tij = Vppπ(a) ≡ −t

and is, of course, constant in the entire system. But local lattice deformations cause

t
(
ri, ri+n

)
to fluctuate, which can be described by suggestively writing t

(
ri, ri+n

)
=

t+ δt
(
ri, ri +n

)
. In the low energy (Dirac) approximation, the effective Hamiltonian

around the point ±K in the Brillouin zone can then be written as (Kane and Mele,

1997; Suzuura and Ando, 2002)

H±K
eff = vF σ · (p∓ qA

)
, (2.9)
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where �vF = 3ta/2, q represents the charge of the current carriers (q > 0 for holes

and q < 0 for electrons), and the Cartesian components of the pseudomagnetic vector

potential A = Axex +Ayey are given explicitly in terms of the hopping perturbation

by

Ax(R)− iAy(R) =
1

qvF

∑
n

δt
(
r, r+ n

)
eiK·n. (2.10)

For nearly planar deformations (small out-of-plane vs in-plane displacement ratios and

thus neglecting bending effects) δt can be expanded in terms of the local displacement

field and, consequently, can be cast in terms of the strain components. Orienting the

lattice so that the zigzag (ZZ) direction is parallel to ex leads to

Ax(R)− iAy(R) � �β

2qa

(
εxx − εyy + 2i εxy

)
, (2.11)

Since ultimately the interest is the PMF, only the contributions to A(R) arising

from the hopping modification are considered here, as they are the ones that survive

after the curl operation (de Juan et al., 2013; Kitt et al., 2012; Kitt et al., 2013b;

Sloan et al., 2013; Oliva-Leyva and Naumis, 2013); contributions beyond second

order smallness are not considered (∼ k ε, ∼ k2, etc.). In the planar strain situation

the whole information about the electronic structure is reduced to the parameter

β = −∂ log t(r)/∂ log r
∣∣
r=a

. From the coupling in Eq. 2.9 where the effects of strain

are captured by replacing p → p − qA it is clear that the local strain is felt by the

electrons in the K valley in the same way as an external magnetic field would be. In

particular, this effect can be quantified in terms of the PMF, which is defined as

B = ∂xAy(R)− ∂yAx(R). (2.12)

From an operational perspective, B can be calculated directly from Eq. 2.10 by com-

puting the hopping between all pairs of neighboring atoms in the deformed state,

or from Eq. 2.11 by calculating the strain components throughout the entire system
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as described in the previous section. The former strategy is here referred to as the

TB approach, and the latter as the displacement approach and stress approach, as

per the definitions in section 2.2.1 and 2.2.2. Another way to calculate strain is by

the continuum Hencky model developed for clamped circular membrane with a large

deflection(Fichter, 1997). There is also a third approach, namely exact diagonaliza-

tion. Specifically, the relaxed atomic positions are used as input to the exact diag-

onalization of the π-band TB Hamiltonian for graphene, using the parametrization

Vppπ(l) = t0e
−3.37(l/a−1) to describe the dependence of this Slater-Koster parameter

on the C–C distance l (t0 = 2.7 eV and a � 0.142 nm). This approximation was

shown to describe with good accuracy both the threshold deformation for the Lifshitz

band insulator transition at large deformations (Pereira et al., 2009; Ni et al., 2009),

and the behavior of Vppπ(l) or the optical conductivity when directly compared to

ab-initio calculations (Ribeiro and et al., 2009; Pereira et al., 2010b). Here electron-

electron interactions are not considered. One property extracted from this procedure

is the exact (within this TB model) local density of states (LDOS), from which the

local PMF distribution can be mapped by fitting the resonant LDOS at each atom to

the Landau level (LL) spectrum expected for graphene (McClure, 1956; Castro Neto

et al., 2009):

En = ±�ωc

√
n, �

2ω2
c = 2e�v2FBs, �vF = 3ta/2. (2.13)

The approaches used to calculate PMF are explicitly stated in following sections.

There is a recent proposal to connect structure and electronic properties of two-

dimensional crystals based on concepts from discrete geometry that allows yet another

efficient alternative to obtain the strain and PMF at discrete lattice points without

the need, for example, to perform numerical derivatives upon the displacement fields

or vector potentials extracted from the MD data (Sloan et al., 2013; Pacheco Sanjuan
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et al., 2014).

Once the strains for each atom are determined, the vector gauge fieldA is straight-

forward to compute. However, to get the pseudomagnetic field, another derivative is

needed (Eq. 2.12), calculated in a similar fashion as the strain is calculated from the

displacement field. Thus, the displacement approach involves two numerical deriva-

tives, but no approximation is made about material properties. The stress approach

involves one numerical derivative, but linear elastic plane stress approximation is

made for the material. The TB approach involves one numerical derivative, and

at the same time no material properties are assumed. The exact diagonalization

approach does not involve any numerical derivative, neither assumes any material

properties, but the system size is limited due to the Hamiltonian diagonalization.

2.4 Coupled mode equations in graphene resonator

The dynamics of suspended graphene resonators are described within continuum me-

chanics by the Föppl-von Karmann equations (Atalaya et al., 2008). For the drum

geometry (Fig. 2·5), they read (Eriksson et al., 2013)

ρGür −
[
∂rσrr + r−1∂φσrφ + r−1(σrr − σφφ)

]
= 0, (2.14a)

ρGüφ −
[
∂rσrφ + 2r−1σrφ + r−1∂φσφφ

]
= 0, (2.14b)

ρGẅ − εpre(λ+ 2μ)r−1∂r(r∂rw)−

r−1
[
∂r(rσrr∂rw + σrφ∂φw) + ∂φ

(
σrφ∂rw + r−1σφφ∂φw

)]
= 0, (2.14c)

where ur, uφ and w are the radial, angular and out-of-plane displacement fields,

σij is the stress tensor, ρG is the mass density of graphene, εpre is the pre-strain of the

sheet and λ and μ are the Lamé parameters of graphene. To derive the equation of
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motion for the mode dynamics, the in-plane dynamics is first eliminated adiabatically

by setting ür = 0 and üφ = 0 and solve the remaining stationary equations for the

in-plane fields. The equations are made dimensionless through the following scaled

variables,

r̃ =
r

R
; t̃ =

√
εprecL

R
t; w̃2 =

1

2

w2

R2εpre
; Ẽ =

E

2ε2prec
2
LρGR

2
, (2.15)

where c2L = (λ + 2μ)/ρG is the longitudinal speed of sound in graphene and R is

the radius of the drum. In the following, only radially symmetric deformations are

considered.

The dimensionless equations for the in- and out-of-plane components are, skipping

the tildes over the scaled variables for convenience,

[
ur,rr +

1

r
ur,r − 1

r2
ur

]
− 1− ν

2

1

r
w2

,r −
1

2
∂rw

2
,r = 0, (2.16a)

ẅ −
(
∂r +

1

r

)(
w,r +

w3
,r

2

)
−

(
∂r +

1

r

)
ur,rw,r − ν

1

r
∂rurw,r = 0, (2.16b)

with boundary conditions w(1, t) = 0, ur(1, t) = 0. Subscript , r denotes radial

differentiation and ν is the Poisson ratio. The in-plane field is expanded as ur(r, t) =∑
k Qk(t)J1(ξ1kr) where ξnk is the k:th zero of the n:th Bessel function, Jn(ξnk) = 0.

The amplitudes Qk(t) are given by

Qk =
J2(ξ1k)

2

2ξ21k
Ck(t), (2.17)

where

Ck(t) ≡
1∫

0

drrJ1(ξ1kr)

[
1− ν

2r
w2

,r +
1

2
∂rw

2
,r

]
. (2.18)
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Inserting this result into the equation for w, leads to

ẅ −
(
∂r +

1

r

)(
w,r +

w3
,r

2

)
−

∑
k

J2(ξ1k)
2Ck

2ξ21k

[(
∂r +

1

r

)
J ′
1(ξ1kr)w,r +

ν

r
∂r (J1(ξ1kr)w,r)

]
= 0. (2.19)

Next w(r, t) =
∑

n qn(t)J0(ξ0nr) ≡ ∑
n qn(t)φn(r) was expanded for brevity. The

equation of motion then becomes

2

J1(ξ0n)2
q̈n +

2

J1(ξ0n)2
ξ20nqn +

1

2

∑
k,l,m

Mklmnqkqlqm −
∑
k,l

J2(ξ1k)
2Ck

2ξ21k
Kklnql, (2.20)

with

Mklmn =

1∫
0

drrφk,rφl,rφm,rφn,r, (2.21a)

Kkln = −
1∫

0

dr [rJ ′
1(ξ1,kr)φn,rφl,r + νJ1(ξ1,kr)φn,rφl,r] . (2.21b)

Inserting the expansion of w into the definition of Ck leads to

Ck =
1

2

∑
ij

Kkijqiqj. (2.22)

Consequently, the equation of motion for the out-of-plane motion becomes

q̈n + ξ20nqn +
∑
i,j,m

Wij;mnqiqjqm = 0, (2.23)

with

Wij;mn = J1(ξ0n)
21

4
Mijmn − J1(ξ0n)

21

4

∑
k

J2(ξ1,k)
2

2ξ21,k
KkimKkjn. (2.24)

being the effective coupling matrix, which enters Eq.(1). From the definition, it

is clear that Mijmn is symmetric in all indices. The second term in the definition

of the coupling matrix is symmetric under i ↔ j and m ↔ n, which is reflected in
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Figure 2·5: Schematic image of the simulated structure.

Index  m,n

In
de

x 
 i,

j

 

 

0−0 0−15 1−0 1−15 2−0 2−15 3−0 3−15 4−0 4−15 5−0 5−15 6−0 7−0 8−0 9−0

0−0

0−7

0−15

0−23

0−31
−6

−4

−2

0

2

4

6

8

logWij ;mn

Figure 2·6: Visualization of the nonlinear mode coupling to the funda-
mental mode. The axes provide the mode number combinations. The
coupling generally increases with mode number.

the notation Wij;mn. An alternative derivation based on the Airy stress function is

outlined in (Eriksson et al., 2013).

2.5 Metastable states in FPU problem

The dynamics of the fundamental mode is the interest of this thesis, hence the struc-

ture of the matrix can be visualized by fixing the first index to i = 0, and loop over

the remaining indices, treating ij and mn as superindices. From Fig. 2·6, it is clear
that the strength of the coupling as well as the density of modes to which the fun-

damental mode couples increases with mode number. One of the striking features of
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the FPU problem is the existence of a long-lived metastable state far from equiparti-

tion. An initial understanding of the apparent lack of equipartition was based on the

similarity of the FPU model to the Korteweg-de Vries (KdV) equation (Zabusky and

Kruskal, 1965). The KdV equation is integrable, and the lack of equipartition was

attributed to this fact. However, the metastability persists only for energies below a

certain threshold. Above the threshold, the metastable state disappears and the sys-

tem approaches equipartition on a relatively short time scale (Izrailev and Chirikov,

1966). The metastability is therefore not completely explained by the similarity of

the FPU problem to the integrable KdV equation. A complementary approach to

describe the metastable state was developed by Flach and coworkers (Flach et al.,

2005), which focusses on the energy spectrum in mode space (q-space). For van-

ishing nonlinearity, any excitation consisting of only one mode is a periodic orbit.

For nonzero nonlinearity, the orbit will spread out to nearby modes, constituting

what is denoted a q-breather. These q-breathers are exponentially localized in mod-

espace, and are obtained by treating the FPU system as a perturbation to a system

of uncoupled harmonic oscillators. Consequently, the q-breather formalism applies

to generic nonlinear lattices as long as a non-resonance condition is fulfilled and for

sufficiently low energies. The exponential localization in mode space is present also

in the system considered in this thesis, see Fig. 2·7. Here, the four lowest modes

are initialized with equal energy simulated with 32 sites in continuum model. The

localization length shows a clear dependence on the excitation energy, and in the limit

of large energies the spectrum is essentially flat, signifying equipartition.

To study the intrinsic loss mechanisms in such systems, MD simulations were

also performed to systematically investigate the free vibrations of pristine circular

graphene monolayers with varying radius, prestrain, temperature and excitation en-

ergy. After an initial relaxation stage, the graphene monolayer was strained and
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length with energy. Blue squares correspond to total energy E = 5 ·
10−5, black circles to E = 10−4 and green diamonds to E = 2. The
mode energies are normalized to the energy of the fundamental mode.

system was equilibrated for 10 ps. Thereafter, the monolayer was actuated and al-

lowed to vibrate freely for 5000 ps. More details can be found in section 6.1.



Chapter 3

Graphene Hexagon: In-Plane Deformation

and Electromechanical Coupling

In order to capture the microscopic details as realistically as possible, a combined

atomistic, electronic and transport calculation procedure is employed, which provides

a set of unbiased results at all these levels. The microscopic configuration of each

carbon atom is obtained by a fully relaxed Molecular Mechanics (MM) approach.

Knowledge of the position of each atom allows us to extract the π-band bandstructure

of the relaxed lattice via a tight-binding exact diagonalization approach, as well as to

calculate the quantum transport properties across the structure via a non-equilibrium

Green’s function (NEGF) approach. In this way one unveils the local electronic

structure, from which the local pseudo-magnetic fields and local current distribution

can be extracted, without approximations, using a system of realistic dimensions with

more than 6000 atoms.

The deformed configurations of an hexagonal graphene monolayer were obtained

using standard MM simulations at 0K. For definiteness, the system shown in Fig. 3·1
was focused on, with 6144 atoms, and a side length, L = 7.87 nm, but note that the

results do not show variance among specific sizes and can be straightforwardly rescaled

to larger or smaller dimensions. The lattice orientation is nevertheless important, and

the one in Fig. 3·1 is chosen, which maximizes the magnitude of the PMF(Guinea

et al., 2010b).

The system was triaxially stretched by in-plane displacement increments of 10−3 nm

27
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Figure 3·1: Real-space distribution of the PMF Bs (Tesla) under
εeff = 15% obtained by mapping the tight-binding-derived LDOS at
each atom. Inset: diagram of the tri-axial loading and contact scheme.
L � 8 nm.
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Figure 3·2: (a) LDOS at two representative neighboring sites
(Fig. 3·1) for εeff = 15%. (b) Peak positions vs sgn(n)

√|n|, extracted
from spectra such as (a), and for different εeff. Straight lines are fits to
Eq. 2.13 from which the local Bs can be extracted at the site where the
LDOS was sampled.
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Figure 3·3: Dependence of Bmax
s on εeff obtained by the tight binding

and displacement approaches discussed in the text.

along each of the three arms shown in Fig. 3·1. Following each strain increment,

graphene was allowed to relax according to the conjugate gradient algorithm, until

relative changes in the system energy from one increment to the next were smaller

than 10−7. Since the strain thus generated is non-uniform, the nominal strain εeff =

(d−d0)/d0 is introduced, where d0(d) is the distance from the center to the edge of the

hexagon before (after) stretching, as illustrated in Fig. 3·1. Nominal strains ranging

from 0 to 18% are considered below. Once the relaxed configurations were obtained at

each value of strain the atomic positions were used as the basis for electronic structure

and quantum transport calculations. Here exact diagnolization approach was used to

extract PMF from MM results.

An example of typical LDOS spectra is shown in Fig. 3·2(a). Eq. 2.13 was used

to obtain the local Bs distribution throughout the system by fitting the slope of

En vs
√
n seen in the numerical LDOS at various strains, as shown in Fig. 3·2(b).

Notice that the n = 0 LL is absent in the LDOS of one of the sublattices, similarly to

data recently reported in experiments with artificial honeycomb lattices (Gomes and
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Figure 3·4: (a) Transmission coefficient T21(T31) vs EF for εeff = 0
and 10%. The inset shows a close-up of the total DOS of the strained
dot in the low energy region. A LDOS map (white is zero) of selected
transmission resonances for εeff = 10% is shown in (b) for E = 0.018t0,
and (c) for E = 0.16t0. (d) A transverse section of (b) along the vertical
direction through the center of the hexagon, showing the profile of the
LDOS and the PMF (“displacement approach”). R̃ marks the distance
to the center.

et al., 2012). To complement this exact numerical calculation of Bs at each lattice

point, the displacement approach was also used for comparison and control. Both

methods are used to map the PMF distribution, thus assessing the range of validity

of this “displacement approach + Dirac equation” in comparison with the direct exact

diagnolization on the deformed lattice.
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3.1 PMF distribution

Recent experiments show in a spectacular way how strain can impact the electronic

properties of graphene by confirming the existence of strain-induced LLs correspond-

ing to fields from 300 to 600T in graphene nanobubbles (Levy et al., 2010; Lu et al.,

2012). The approach of sampling the LDOS and fitting the LL resonances to Eq. 2.13,

as illustrated in Fig. 3·2, is the theoretical analog of the STM analysis done in those

experiments. The real space PMF distribution for εeff = 15% is shown in Fig. 3·1,
and follows the general predictions of previous study (Guinea et al., 2010b). Most

notably, the PMF is nearly uniform in most of the inner portion, which is a con-

sequence of the trigonal loading conditions. This field uniformity is crucial to have

well defined LLs at nominal strains as small as 3%. To quantify the dependence of

the field on the nominal strain, the maximum, Bmax
s was plotted at the center of

the hexagon in Fig. 3·3, showing that, for the parameter β used here and at small

εeff, each 1% of nominal strain increases Bmax
s by ≈ 40T. Direct comparison of the

curves generated by the two methods mentioned above shows that Bs obtained using

the “displacement approach” begins overestimating Bs beyond εeff ∼ 5%. This is

expected insofar as Eq. 2.11 results from an expansion of Vppπ(l) to linear order in

εeff, and hence is bound to overestimate the rate of change of Vppπ (and thus Bs) at

higher deformations. On the basis of data at low εeff, the scaling Bmax
s = C εeff/L was

extracted, with C � 3×104Tnm. This relation can be used to obtain Bs for systems

with any L and εeff. For large εeff the data in Fig. 3·3 must be taken into account to

correct for the overestimate. The magnetic lengths, �Bs , associated with these large

PMFs can easily become comparable to the system size, and thus a strong interplay

between magnetic and spatial confinement is expected. In particular, the small size

of the quantum dot implies that most low energy states will not be “condensed” into

LLs (Lent, 1991) and, in addition, resonant transport behavior can be seen in these
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structures as a result of tunneling assisted by the magnetically confined states in the

central region. This is characterized next.

3.2 Quantum transport

To calculate the quantum transport characteristics of the strained hexagon, three un-

strained semi-infinite metallic armchair (AC) graphene nanoribbons were coupled to

the sides of the ZZ hexagon where the load was applied (cf. inset of Fig. 3·1), thereby
creating a Y-junction. There is no barrier between the metallic contacts and the cen-

tral region, and the only perturbation to the electronic motion arises from the strain-

induced changes in the nearest neighbor hoppings inside the hexagon. The width of

the contacts coincides with the side, L, of the hexagon. In a multi-contact device

the current in the p-th contact is expressed using the Landauer-Büttiker formalism as

Ip =
2e2

h

∑
q[TqpVp−TpqVq] (Datta, 1995). With no loss of generality, a bias voltage V1

was applied to contact 1, while contacts 2 and 3 were grounded. In this configuration

I1 = 2e2

h
[T21 + T31]V1, I2 = −2e2

h
T21V1 and I3 = −2e2

h
T31V1, reducing the calculations

to the transmission coefficient between contact 1 and 2: T21 (T31 = T21 under sym-

metric loading). The transmission coefficient is given by Tqp = Tr[ΓqG
rΓpG

a], where

the Green’s functions are Gr = [Ga]† = [E + iη −H − Σ1 − Σ2 − Σ3]
−1, the coupling

between the contacts and the device is Γq = i[Σq − Σ†
q], and Σq is the self energy

of contact q, all of them calculated numerically (Bahamon et al., 2010). Fig. 3·4(a)
shows the transmission coefficient T21 (= T31 under symmetric loading) as a function

of the Fermi energy, EF , for the Y-junction of Fig. 3·1. The smooth (blue) curve is

the transmission in the absence of strain, and the resonant trace (black) the trans-

mission for εeff = 10%. The unstrained junction’s transmission is characterized by

a threshold and a broad resonance around E/t0 ≈ 0.063, and a set of broad reso-

nances and anti-resonances on a smooth background as E increases. The resonance
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at the threshold marks the fundamental mode of the hexagonal cavity which, from

the geometry, is estimated to appear at E ≈ �vF (π/
√
2L) = 0.06t0. Spatial map-

ping of the LDOS (not shown) at this energy confirms this. Upon stretching, three

different regions can be identified in the curve of T21(E) in Fig. 3·4(a): (i) at low

energies the transmission is suppressed; (ii) at intermediate energies the transmission

develops a series of regularly spaced sharp resonances; (iii) at higher energies the

transmission shows unevenly spaced and rapidly oscillating peaks. To characterize

these different regimes, the features of the overall DOS, as well as the LDOS distri-

bution, N(r, E) = (−1/π) Im[Gr(r, r;E)] were resorted, at representative energies.

The DOS is shown in the inset of Fig. 3·4(a) and, even though there are plenty of

low energy states, only those above E ≈ 0.08 t0 have an appreciable signature in

the transmission. To understand this absence of transmission, refer to Fig. 3·4(b),
which plots a real-space LDOS map of a state at E = 0.018t0, representative of these

low energy states that have no signature in the transmission. Apart from the non-

propagating LDOS accumulation at the ZZ edges, the significant LDOS amplitude is

distributed within an annulus of radius ≈ 4 nm and width ≈ 2.5 nm. Since the LDOS

does not extend to the vicinity of the contacts, revealing a small coupling between this

state and the modes of the contacts, the only possibility for transmission is through

tunneling. But since the spatial barrier for tunneling into this confined state is rather

large (≈ 2.5 nm), the resonant peak in the transmission associated with this state has

a vanishingly small amplitude and is not seen on the scale of Fig. 3·4. A transverse

cut of the LDOS in (b) along the vertical direction through the hexagon center is

shown in panel (d). It reflects the wavefunction of a PMF-induced Landau edge state

confined to the hexagonal quantum dot, analogous to the edge states in magnetic

quantum dots (Lent, 1991). As the energy is progressively increased, the associated

states spread out, approaching the boundaries. Their coupling to the contacts in-
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creases until the tunneling-assisted conductance becomes of the order of the quantum

conductance and the associated transmission resonances become visible in the black

trace of Fig. 3·4(b).The LDOS map in Fig. 3·4(c) corresponds to E = 0.16t0, and typ-

ifies the behavior at higher EF . It is clear that this state is completely different from

the one in Fig. 3·4(b), as its LDOS spreads over the entire quantum dot and is highly

peaked at the center. It corresponds to a state in the n = 1 LL. The rapid oscillations

in the transmission coefficient and DOS at that energy are also consistent with this

interpretation (Sivan et al., 1989). An additional quantitative confirmation is given

as follows. If the state at E = 0.16t0 belongs to the n = 1 LL, its associated magnetic

length will be�Bs =
√
2�vF/En=1 � 1.9 nm. The energy difference between Landau

edge states whose energy is below En=1 will be given by ΔE ≈ En=1�Bs/2L ≈ 0.02t0

(Sivan et al., 1989). Inspecting the inset of Fig. 3·4(a) one sees that below E � 0.1t0

the level spacing is indeed ∼ 0.02t0. Moreover, given that this quantitative estimate

is consistent, the average magnetic field determining the transport behavior can be

extracted, which is Bav
s = �/e�2Bs

� 164T. This value, obtained independently and

solely from the transmission characteristics, expectedly corresponds to the PMF in

the region of maximum LDOS for this state: from Fig. 3·4(d), and correcting for the

overestimation in the PMFs obtained from the “displacement approach” in Fig. 3·3,
that would be ≈ 270/1.6 = 169T. Hence, transport in the strained junction is char-

acterized by LL-assisted resonant tunneling, analogously to a magnetic quantum dot,

with the novelty that here the Landau quantization arises from the strain-induced

PMF, Bs. Due to the effective magnetic barrier, electrons injected from contact 1

can tunnel with a probability 0 < T < 1, which is enhanced when there is significant

LDOS in the contact region. The maximum tunneling probability through a local-

ized state is T = 1, irrespective of the number of open channels in the contacts. This

implies that between the LL n = 0 and n = 1, Tmax
21 = 0.5 is expected (0.5 because
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Figure 3·5: (a) Detail of the splitting in the T21 resonances under
an external field Bext, for εeff = 10%. (b) Eigenenergies of the same
hexagon vs Bext, when disconnected from the contacts. (c) Likewise,
but for εeff = 0, where LL condensation (Lent, 1991) is more clearly
observed. In (b) and (c) straight lines mark the lowest LLs in the
infinite system, and the large range of Bext used in the horizontal axes
is to accommodate the very large PMF induced by strain.

there are two symmetric exit channels). However each LL with n �= 0 in graphene

is doubly degenerate, and hence Tmax
21 = 1, which is consistent with the calculated

transmission seen in Fig. 3·4(a), where T21(E = 0.126t0) = 0.79, for example.

3.3 Valley splitting

The strain-induced PMF does not break time-reversal symmetry (TRS) in the system,

which in practice means that a low energy electron around one of the zone-edge val-

leys feels a PMF which is exactly the opposite to the one felt by its TRS counterpart

at the other inequivalent valley. This leads to the degeneracy discussed above and,
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in addition, to the result that the currents associated with the two valleys exactly

cancel each other. This degeneracy is lifted under a real magnetic field, Bext, since

the total field at each valley will be different: Bext±Bs. The corresponding LL split-

ting is given by E+
n − E−

n � EnBext/B
av
s . Fig. 3·5(a) shows explicitly this splitting

for the edge states detached from the n = 1 LL. Taking the values estimated above

for Bav
s � 164T, and En=1 � 0.16t0, the expected splitting under the external field

is (E+ − E−)/t0 � 0.001Bext T
−1. Direct inspection of Fig. 3·5(a) shows that this

is indeed quantitatively verified. A different perspective over the splitting of valley

degeneracy is given in Fig. 3·5(b), which shows the spectrum of the strained hexagon

disconnected from the contacts, as a function of Bext. When compared with the un-

strained case in Fig. 3·5(c), one sees that the effect of the large PMF induced by strain

is to split the Landau fan, which is a clear evidence of valley degeneracy breaking.

Notice also that this degeneracy breaking is visibly achieved under 10T, as shown

in Fig. 3·5(a). Another interesting consequence of breaking the valley degeneracy is

that, as Bext increases, the edge states in one valley will shrink to a smaller radius

than in Fig. 3·4(b), whereas the ones associated with the other will expand due to

the opposite evolution of the respective magnetic lengths. Therefore, by increasing

Bext one can spatially “expand” the edge states of one valley [cf. Fig. 3·4(b)] so that

they start coupling more effectively with the leads. This is reflected in Fig. 3·5 by

the asymmetry in T12 of the split transmission resonances: the state which increases

in energy under Bext is the one whose �B increases, thereby facilitating the resonant

tunneling process, and displaying higher transmission than its counterpart associated

with the other valley. Consequently, with an external field one can restrict the as-

sisted tunneling to states from one or the other valley. The current path will then

have a well defined chirality depending on which valley is assisting the tunneling.

This suggests the possibility of exploring this chiral resonant tunneling to channel
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the current from lead 1 selectively to lead 2 or 3.

3.4 Asymmetry, disorder and lattice orientation

The triaxial strain profile of Fig. 3·1 was chosen in this investigation as it provides

a nearly optimal PMF distribution within the nanostructure (Guinea et al., 2010b).

However, the magnitude of the PMF will depend on the relative orientation of traction

and crystal directions, implying that the magnitude of the confining effects, for exam-

ple, is sensitive to that orientation. This is a general feature of strain induced PMFs

in graphene. Likewise, non-symmetric triaxial tension perturbs the PMF distribution

as well, which has consequences for the electronic behavior. For a perspective on

this, the transport behavior was discussed for different lattice orientations, as well as

asymmetric tension. An analysis of the consequences of edge roughness shows that

the LL-assisted tunneling is sensitive to the amount of roughness at the boundaries,

which is expected since the large PMF at the center of the hexagon forces the current

to flow close to the boundary. In this sense, the experimental exploration of the LL-

assisted tunneling described here is more straightforwardly observable in graphene

structures synthesized via bottom-up microscopic approaches (Zhi and Mullen, 2008;

Cai, 2010), or artificial graphene structures (Gomes and et al., 2012), where the effects

of fabrication-induced disorder can be minimized. With respect to the strain symme-

try, it is observed that extreme deviations from symmetric traction deteriorate the

LL-assisted resonant tunneling that is possible under the conditions discussed above.

This arises because asymmetric strain displaces the region of strong field towards one

of the boundaries. This, on the other hand, can be explored to selectively block one

of the output contacts in the y-junction, allowing control over which of the two is the

exit channel. A specific case is analyzed bellow.
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Figure 3·6: (a) Hexagon (0% strain) with ZZ edges. The arrows are a
schematic representation of the symmetrically applied tri-axial strain.
In the transport calculations the contacts are attached to the edges
under traction as well because the edge atoms are held fixed along the
direction transverse to the tension, which allows us to keep the metal-
lic contacts undeformed. (b) Deformed hexagon with ZZ edges after
10% of symmetric strain. (c) Deformed hexagon with ZZ edges after
15% of asymmetric (ramp) strain. (d) Hexagon (0% strain) with AC
edges. The arrows are a schematic representation of the asymmetrical
(ramp) strain setup. (e) Deformed hexagon with AC edges under 15%
of symmetric strain. (f) Deformed hexagon with AC edges under 15%
of asymmetric (ramp) strain.

3.4.1 Deformed hexagons under strain

Fig. 3·6 shows the hexagonal quantum dots considered in this study under different

loading conditions and for different lattice orientations with respect to the applied

strain. The strategy used to explore deviations from the symmetric loading is shown

schematically in Fig. 3·6(d). In this case the traction was applied only to edge 3, and

in such a way that the displacement follows a ramp pattern, being maximal at one

end of the edge and linearly decreasing to zero towards the opposite end. Edges 1

and 2 were held fixed Figs 3·6c and 3·6f show the actual relaxed structures after the

MM simulation under this ramp traction profile, and for 15% of atomic displacement
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Figure 3·7: (a) Transmission coefficient T21(T31) vs Fermi Energy
for a symmetrically strained AC Y-junction. (b) LDOS mapping at
E = 0.043t0 for the 15% symmetrically strained AC Y-junction.

applied to the lower atoms.

3.4.2 Armchair Y-junction

The electronic spectrum and transport characteristics of graphene nanostructures is

strongly influenced by the nature of the edges. Strain-induced PMFs also depend on

the relative orientation of the strain with respect to the underlying crystal directions

of the graphene lattice. Here a quantum dot was considered with the same geometry

and the same approximate dimensions as the one discussed above, but for which the

graphene lattice has been rotated so that the edges were the armchair type. This

corresponds to a rotation of the original lattice by π/2, or any other equivalent angle.

The calculation of the transmission was done now by attaching three unstrained

semi-infinite zigzag graphene nanoribbons, which acted as ideal contacts. The con-

tacts were connected to the sides of the hexagon where the load was applied, creating

an AC Y-junction. In Fig. 3·7(a) it shows the transmission coefficient for 0% strain

(red). As discussed above for the ZZ case, the onset of transmission in the unstrained

structure is characterized by a very broad hump that is associated with the funda-
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mental mode of the cavity. The different nature of the AC edges manifests itself by

the wider and deeper resonances and anti-resonances that develop as the energy in-

creases, in comparison with the transmission fingerprint of the unstrained ZZ junction

discussed above. When strain was applied up to the nominal value of 10% the trans-

mission coefficient mostly resembles the unstrained case, and the case of εeff = 15%,

represented by the black curve in Fig. 3·7(a) was still qualitatively similar to the un-

strained situation. More specifically, despite the additional structure, there were no

isolated resonant peaks in contrast to the case of the ZZ junction, and transmission

was never zero after the initial onset at around E � 0.02. In clear contrast with the

case analyzed above for ZZ Y-junction, the transmission signature of this junction

is not compatible with the presence of a significant pseudomagnetic field within the

central region of the hexagon. Direct inspection of the real-space LDOS distribu-

tion at the transmission peaks confirms this. Fig. 3·7(b) represents a density plot of

the LDOS for the transmission peak at E = 0.043t0, revealing a LDOS distribution

qualitatively similar to any resonance in the unstrained structure.

The inference that there is no significant homogeneous magnetic field within the

junction from the transport fingerprint alone is compatible with the expectation for

the pseudomagnetic field distribution anticipated in this case. Despite the generic

relevance of the edge chirality in small graphene structures, the crucial detail in the

context of generating suitable PMF distributions is the orientation of the lattice with

respect to the strain directions. On the basis of the results derived in reference

(Guinea et al., 2010b) it is expected that the magnitude of the PMF near the cen-

ter of the hexagon to vary with the lattice orientation as ∝ cos(3ϕ), where ϕ = 0

corresponds to a lattice with a ZZ direction along the horizontal axis. Since the AC

case studied in Fig. 3·7 corresponds to ϕ = π/6, π/2 , etc. the magnitude of the

pseudomagnetic field is expected to be mostly suppressed in the central region.
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Figure 3·8: Sections of Bs and LDOS for a strained ZZ Y-junction
with εeff = 10%. Panel (a) shows a density plot of Bs in the entire
system obtained with the “displacement approach”. In panels (b)-(d)
the profile of Bs (black) and LDOS (red) at E = 0.018t0 were plotted
along the directions defined in the text: θ = π/2, θ = π/6, and θ =
−π/6, respectively.

3.4.3 Profile of Bs and LDOS (ZZ junction)

The case of a ZZ junction under εeff = 10% above was studied in detail. From the

nature of the resonant transmission at low energies, and from the equidistant spacing

between resonances, an average PMF Bav
s determining the behavior of transmission

was extracted. Moreover, the resonant transmission occurred only through the assis-

tance of those edge states whose radius was such that they effectively couple to the

contacts at the border.

To clarify these points, the values of Bs and LDOS at E1 = 0.018t0 in the ZZ

junction with εeff = 10%, were extracted along transverse sections equivalent by
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Figure 3·9: Sections of Bs and LDOS for a strained AC Y-junction
with εeff = 15%. Panel (a) shows a density plot of Bs in the entire
system obtained with the “displacement approach”. In panels (b)-(d)
the profile of Bs (black) and LDOS (red) at E = 0.043t0 were plotted
along the directions defined in the text: θ = π/2, θ = π/6, and θ =
−π/6, respectively.
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symmetry. The origin of coordinates is set at the center of the strained hexagon,

with the x and y axes along the conventional horizontal and vertical directions. The

direction of the transverse section with respect to the horizontal axis is defined by

the angle θ, and the position of a point in the lattice along this section is identified

by R̃ = sign(y)
√
x2 + y2. The three equivalent transverse sections are considered

along θ = π/2 and ±π/6. For example, contact 1 appeared at R̃ ≈ 74 Å in a section

taken along θ = π/2. These three sections were chosen to confirm and highlight the

isotropy of both Bs and the LDOS in the interior of the structure.

The overall distribution of Bs within the hexagon is shown in Fig. 3·8(a). The

value of Bs shown here was extracted using the “displacement” approach discussed

in Section 2.2.1. It consists in using the coordinates of the relaxed atoms directly

to interpolate the strain tensor, after which the vector potential As is extracted.

This method has the potential disadvantage of requiring a sequence of two numerical

derivatives to obtain the value of Bs at a given lattice point, given the relaxed atomic

coordinates, and also overestimates Bs at large deformations, as shown in Fig. 3·3.
However it is much more expeditious than the mapping of the LDOS, and extraction of

the local LL spectrum from the tight-binding calculation, which was the method used

to plot Bs in Fig. 3·1. Correcting for the overestimate in magnitude discussed and

shown in Fig. 3·3, the distribution of Bs obtained with either method in the interior

of the structure is equivalent. The values of Bs and LDOS along the three sections

mentioned above are plotted in Figs. 3·8(b)-(d), represented by the black traces. The

LDOS is plotted together with the PMF along the three sections, represented by

the red traces. First, note that the large peaks located at boundary R̃ = −65 Å

(θ = π/2), R̃ = 68 Å (θ = π/6), and R̃ = 68 Å (θ = −π/6) are due to ZZ edge

states. At the opposite boundary (where the contacts are attached) the LDOS is

small, signaling that this state is well confined within the interior of the structure,
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and that the probability of transmission through it is small. The most interesting

detail of the LDOS distribution, however, is its distribution in the interior of the

structure. It is clear that the wave function does not follow local features in Bs, such

as changes of strength or sign of Bs (Masir et al., 2011). In contrast, the LDOS

intensity is almost completely confined to an annular region inside the junction, fully

resembling the LDOS of an edge state in a magnetic quantum dot, as described by

Lent (Lent, 1991). From the LDOS profile �Bs ≈ 2 nm is obtained, which corresponds

to the average field Bav
s = �/el2Bs

� 164T.

3.4.4 Profile of Bs and LDOS (AC junction)

The procedure described in the previous section was applied to the analysis of the

AC junction with εeff = 15%. As expected, the magnitude of Bs is roughly zero in the

interior region of the junction. Sharp features appear only around small regions near

the corners and edges, where the field is strong and alternates in sign. Figs. 3·9(b)-(d)
show the profile of Bs together with the LDOS at E = 0.043t0, the same energy used

in Fig. 3·7 above.

3.4.5 Edge roughness and asymmetric strain

In order to simulate the effect of edge roughness, vacancies were added with a prob-

ability of 0.4 to the edges of the two types of Y-junction. These vacancies were

added in the strained electronic Hamiltonian neglecting the relaxation of local strain

in the vicinity of the vacancy. This simplification should not modify the results since

the main ingredient is that edge roughness reduces the transmission through pseudo-

magnetic edge states (standing waves in the strain barrier) for ZZ edged Y-junctions,

as can be seen in Fig. 3·10(a). In these structures the Bs in the interior of the junc-

tion behaves like a barrier, pushing the current towards the edges. This current is

effectively suppressed at low energies by the strong backscattering induced by the
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Figure 3·10: Transmission coefficient for: (a) 10% strained ZZ Y-
junction with and without edge disorder; (b) 15% strained AC Y-
junction with and without edge disorder; (c) 15% asymmetrically
strained ZZ Y-junction; (d) 15% asymmetrically strained ZZ Y-junction
with edge disorder. In panels (e) and (f) the distribution of Bs was dis-
played generated by the asymmetric traction illustrated in Fig. 3·6(d)
for the case of, respectively, the ZZ and AC edged hexagon nanostruc-
tures considered in this work.
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vacancies. This creates the gap in transmission at low energies that can be seen in

Fig. 3·10(a). In the AC-edged hexagonal dot, since the average Bs ≈ 0 in the center

of the Y-junction, current flows easily through the central region, and there is no

transmission gap.

To address the problem of asymmetry in the traction (and consequently in the

overall strain distribution), the extremely asymmetric situations considered are illus-

trated in Figs. 3·6(c) and (f). The transmission data is shown in Fig. 3·10(c), for a
structure where a ramp displacement is applied only to the hexagon side where the

third contact is attached. An asymmetric strain pattern ensures that T21 �= T31, and

can potentially be explored to channel the current between specific pairs of contacts

by suitable asymmetric traction conditions. The ramp strain considered here creates

a Bs that is not uniform in the center of the hexagon, but has a strong maximum in

the vicinity of the third contact. Although the values of Bs in that region are large

(�Bs < L0), and of the same order of magnitude as the ones found in the symmetric

junction, the transmission and LDOS signatures are rather different from the signa-

tures of a symmetrically strained hexagon. In particular the resonant peaks in T31

at E = 0.042t0 and E = 0.072t0 are due to states having a LDOS distribution of

two distorted standing waves, rather than the magnetic edge state profiles seen in the

symmetric case in Fig. 3·8. The reason for the different behavior is mostly due to

the non-uniform nature of Bs in the interior of the system, in comparison with the

symmetrically strained situation. This means that the electrons don’t feel a quantum

dot with a nearly constant magnetic field everywhere in this case, but instead are

scattered from the regions of higher field. In essence, this extreme asymmetric case

results in a distribution of Bs that acts as a barrier for current flow only in certain

regions inside the Y-junction. Since that barrier is higher in the region of contact 3

the current is scattered to contact 2 and, consequently, T31 < T21. This imbalance in
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Figure 3·11: Current density mapping in real space for selected trans-
mission features discussed above: (a) E = 0.126t0 for the symmetric
ZZ Y-junction with εeff = 10%; (b) for the asymmetrically strained ZZ
Y-junction with εeff = 15% at E = 0.1t0; (c) at E = 0.033t0 for the
symmetric AC Y-junction with εeff = 15%; (d) for the asymmetrically
strained AC Y-junction at E = 0.095t0. In all plots, the length of the
arrow is proportional to the value of the density current in that point.

T31 vs T21 becomes even more evident at higher energies. Inside the ZZ Y-junction,

for low energies, the current flows through the regions of low Bs, as shown in more

detail the next section.

The effect of edge disorder in the asymmetric ZZ junction is presented in Fig. 3·10(d),
where the effect is not as marked as in the symmetric case shown in Fig. 3·10(a).
This is consistent with the above description of the transmission process in this case,

whereby electronic current flows through the large portions of the hexagon that are

not under a significant Bs.
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3.4.6 Bs as a barrier

The current between neighboring sites m and n can be expressed as (Datta, 1995;

Bahamon et al., 2011)

Imn =
2e

h

+∞∫
−∞

dE[tnmG
<
mn − tmnG

<
nm], (3.1)

where the lesser Green’s function in the absence of interactions can be written as

G<(E) = Gr(E)[Γ1f1 + Γ2f2 + Γ3f3]G
a(E). f1(2)(3) is the Fermi distribution in the

respective electrodes. The current density is mapped for different energies for the ZZ

and AC Y-junction with symmetric and asymmetric strain. For reference, Fig. 3·11
shows the current maps for some of the cases discussed above.

The case plotted in Fig. 3·11(a) pertains to a symmetrically strained ZZ Y-

junction, at the energy E = 0.126t0 that corresponds to one of the isolated transmis-

sion resonances. Since Bs is strong in most of the interior region, the current path

exhibits the intuitively expected behavior by flowing through the regions of smallest

field towards the edges. Due to the microscopic details of Bs the current density

distribution is not perfectly symmetric between contacts 1–2 and contacts 1–3. A

higher density of current flows between 1–3, and part of it is scattered from contact 3

to contact 2 ensuring final transmissions of T21(0.126t0) = 0.31 ≈ T31(0.126t0) = 0.32.

For the asymmetrically strained ZZ Y-junction in Fig. 3·11(b) the bulk of the

current flows directly through the center of the junction, exiting predominantly via

contact 2. Most of the current near contact 3 is scattered towards 2, since in the

asymmetric ZZ case the magnetic barrier induced by Bs is displaced to the vicin-

ity of 3. This explains the quantitative imbalance in the respective transmissions:

T21(0.1t0) = 1.37 > T31(0.1t0) = 0.47 [cf. Fig. 3·10(c)]. The qualitative picture is

similar for the AC Y-junction asymmetrically strained by 15% in Fig. 3·11(d). The



49

main point is that under asymmetric traction conditions the distribution of Bs is

no longer nearly homogeneous in the central region, and a strong maximum appears

towards one of the pulling arms. This restricts the magnetic barrier to a particular

portion of the system, but does not lead to the Landau level assisted tunneling res-

onances seen in the symmetric ZZ case. The asymmetric cases can be understood

intuitively by considering the regions of strong Bs as barriers that divert the electronic

current, and lead to an asymmetry in the conductance measured between contacts

1–2 and 1–3.

For completeness in Fig. 3·11(c) the current density in a 15% symmetrically

strained AC Y-junction is also shown, extracted at a maximum in the transmission

at E = 0.033t0.



Chapter 4

Graphene Bubble: Three Dimensional

Deformation and Electromechanical

Coupling

4.1 Simulation setup

The graphene nanobubble system consisted of three parts, as illustrated in Fig. 4·1:
a graphene monolayer, the hexagonal (111) surface of an face-centered cubic (FCC)

gold substrate, and argon gas which was used to inflate the graphene bubble. The

substrate-graphene and gas-graphene interactions were modeled by a standard 12-6

Lennard-Jones potential:

V (rij) = 4 εij

[(
σij

rij

)12

−
(
σij

rij

)6
]
, (4.1)

where rij represents the distance between the i-th carbon and the j-th gold atom. The

dimension of the simulation box was 20×20×8 nm3, and the substrate was comprised

of Au atoms with a thickness of 2 nm, or about 2.5 times the cutoff distance of

the interatomic potential (Neek-Amal and Peeters, 2012a). Apertures of different

shapes (viz. triangle, rectangle, square, pentagon, hexagon, and circle) were “etched”

in the center of the substrate to allow the graphene membrane to bulge inwards

due to the pressure exerted by the Ar gas. The whole system was first relaxed for

50 ps, at which time the Ar gas was pushed downward (as in a piston) to exert

pressure on the graphene monolayer, causing it to bulge inward in the shape cut-out

50



51

Figure 4·1: Illustration of the strategy employed in the studies to
generate nanobubbles by pressurizing graphene through a predefined
substrate aperture. The picture shows one of the actual simulation cells
used in MD computations. In gold, gray and red colors are represented,
respectively, the Au substrate, the graphene sheet and the Ar atoms. A
hole is carved in the Au substrate (perimeter outlined), and its perime-
ter geometry determines the shape of the resulting graphene bubble.
Visualization is performed using VMD (Humphrey et al., 1996).

from the gold substrate. The system was then allowed to equilibrate again under

the increased gas pressure. All simulations were carried out at room temperature

(300K) using the Nose-Hoover thermostat (Hoover, 1985). The choice of Ar in the

calculations is not mandatory. Substitution with other molecular species should pose

no difficulty, the same being true regarding the substrate, as shown previously in

references (Neek-Amal and Peeters, 2012a; Neek-Amal et al., 2012). To elucidate

the effect of different substrates on the PMF distributions in the nanobubbles, MD

simulations were performed with two different substrates, in addition to performing

the simulations with fixed edges and no substrate. Specifically, both Au and Cu (111)

substrates were used, where the detailed parameters and descriptions will be discussed

in later sections. After obtaining the graphene bubble, the pressure was held constant

for 10 ps to achieve thermal equilibrium. Note that during the entire simulation no gas

molecules leaked away from the system, which again demonstrates the experimentally
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observed atomic impermeability of monolayer graphene (Nair et al., 2012; Bunch

et al., 2008).

The simulations are close in spirit to the experiments reported in reference (Koenig

et al., 2011), but targeting smaller hole apertures due to computational limitations.

This method of using gas-pressure to generate the graphene nanobubbles is differ-

ent from the situations explored in the recent experiments that focus on the PMF

distribution (Levy et al., 2010; Lu et al., 2012). However, it is in some ways more

controllable due to the utilization of a substrate with a distinct pattern coupled with

externally applied pressure to force graphene through the patterned substrate to form

a bubble with controllable shape and height. The final (inflated bubble) configuration

gives the basic ingredients needed to extract the strain distribution in the system, as

well as the perturbed electronic hopping amplitudes. To calculate the strain directly

from the displaced atomic positions, “displacement” approach is employed. A pre-

vious study (Klimov et al., 2012) used “stress” approach for a similar calculation.

However, the stress approach fails to predict reasonable results in this case, which

attributes to the inability of the virial stresses to properly convey the total stress

at each atom of the graphene sheet when the load results from interaction with gas

molecules. Furthermore, in the stress approach one assumes a planar (and, in ad-

dition, usually linear) stress-strain constitutive relation which leads to errors when

large out-of-plane deformations arise, as in the case of the nanobubbles.

PMF is the central quantity of interest in this work; in the subsequent sections

the combined effects of gas pressure, hole geometry, and substrate interaction will be

analyzed from the point of view of the resulting magnitude and space distribution of

the PMF, B, obtained in this way. For definiteness it is set as q = e, e being the

elementary charge, which means that the PMF is analyzed from the perspective of

holes (q > 0).
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Figure 4·2: Results for a circular graphene bubble with 4 nm ra-
dius and pressurized up to ∼1 nm deflection; in this case graphene
was clamped at the edge of the substrate aperture. (a) Radial strain,
(b) tangential strain, (c) PMF by TB method with both in-plane
and bending components, (d) PMF arising from Hencky’s analytic
model (Fichter, 1997) with the axes scaled in units of the circle ra-
dius, (e) PMF by TB method with in-plane component only, (f) PMF
by displacement method. Note that, except for (d), all the panels refer
to the same atomistic configuration. PMF shown in units of Tesla. The
edge of the substrate aperture used in the MD simulation is outlined
(gray line) for reference.
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Figure 4·3: Angular-averaged amplitude of the PMF for the same
cases presented in Fig. 4·2 in the form of density plots. The horizontal
axis represents the distance from the center of a pressurized circular
graphene nanobubble with clamped boundary conditions. The data
contained here is the same shown in Fig. 4·4(a), except that here the
(orange) data corresponding to the PMF obtained from the full hopping
perturbation [Eq. 2.7] is included for comparison as well. The bending
effects are clearly dominant around the edge/clamping region. Away
from the edge, and inside, the three numerical curves follow Hencky’s
model.

Fig. 4·3 below shows the radial dependence of the averaged PMF amplitude close

to the edge of the circular aperture for the clamped circular case discussed in section

4.2 (Fig. 4·2).
The data shown reflect the PMF amplitude averaged over the azimuthal direction.

To extract the average PMF at a given radius, the 2D distribution of the field is

divided into a sequence of radial and azimuthal bins (annular sectors). For each

radial annulus there are 20 bins, each with a 18 degree width. The width of the

radial annulus is chosen such that at least 10 atoms lie in each bin (this is why there

are fewer data points near the center of the bubble). The average and standard

deviations of the PMF in each bin correspond to the value and error bar of that

bin. For example, each point in Fig. 4·6(c) corresponds to this average PMF for a



55

given bin. Afterwards, for each radial annulus the data is fit to the expected sin(3θ)

dependence. The amplitude of the best fit is plotted as a point [e.g., as in Fig. 4·3]
and the fitting error provides the error bar.

4.2 Clamped graphene nanobubbles

The simulation cases start an idealized system consisting only of Ar gas molecules

and graphene, neglecting the interaction with the underlying substrate, and where

all carbon atoms outside the aperture region are strictly fixed during simulation.

This provides a good starting point to understand how the shape of the substrate

aperture affects the PMF distribution. A similar system has been used in previous

work (Wang et al., 2013), as this corresponds to a continuum model with clamped

edges (Guinea et al., 2008; Kim et al., 2011). Analysis starts with the most sym-

metric geometry, a circular graphene bubble, and compares the atomistic result with

the continuum Hencky solution (Fichter, 1997). In contrast to small deformation

continuum models (Kim et al., 2011), the Hencky model is valid for large in-plane

(stretching) deformations, which lead to a different PMF distribution. To compute

the PMFs associated with this analytical solution Eq. 2.11 was used. Figs. 4·2(c,d)
show that the PMF distribution is dominated by very large magnitudes at the edges

followed by a rapid decay towards the inside region of the nanobubble. Both the MD

and Hencky results show the six-fold symmetry expected for a cylindrically symmet-

ric strain distribution; this agreement demonstrates the MD simulation successfully

captures the strain distribution underlining the computed PMF. There are, however,

two quite clear discrepancies between the PMF in these two figures: (i) Hencky’s so-

lution (panel d) yields values considerably smaller in magnitude than the calculation

based on the MD deformations combined with Eqs. 2.7 and 2.10 (panel c); (ii) the

sign of the PMF in panel (d) is apparently reversed with respect to the sign of panel
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(c). These discrepancies stem from the substantial bending present in graphene near

the hole perimeter, and deserve a more detailed inspection in terms of the relative

magnitude of the two contributions to the hopping variation: bond stretching and

bond bending. Since Hencky’s result of Fig. 4·2(d) hinges on Eq. 2.11 that expresses

the vector potential directly in terms of the strain tensor components, it starts by

analyzing the predictions obtained by applying it to the atomistic case as well; to

do that one computes the strain from the MD simulations using the displacement

approach discussed earlier. The result of that is shown in Fig. 4·2(f), where the most

important difference in comparison with Fig. 4·2(c) is the significant reduction of the

maximal fields obtained near and at the edges; this reflects the error incurred in the

quantitative estimate of B when the effect of bending is neglected. Note that, by

construction, Eq. 2.11 accounts only for the bond-stretching, and is accurate only

to linear order in strain because it is based on a linear expansion of the hopping in

the interatomic distances. Hence, in order to correctly extract from the atomistic

simulations the total stretching contribution beyond linear order while still ignoring

bending effects, the PMF calculation should be done with the hopping as defined in

Eq. 2.7 (TB approach), but explicitly setting ni · nj = 1 and ni · d = 0 (i.e.assuming

local flatness). The outcome of this calculation is shown in Fig. 4·2(e) which, in

practical terms, is the counterpart of Fig. 4·2(c) with bending effects artificially sup-

pressed. In comparison with panel (f), it leads to slightly smaller PMF magnitudes.

The linear expansion in strain of Eq. 2.10 thus slightly overestimates the field mag-

nitudes, something expected because the hopping is exponentially sensitive to the

interatomic distance and, by expanding linearly, one overestimates its rate of change

with distance, overestimating the field magnitude as a result. One key message from

Fig. 4·2 and the comparison between panel (c) and any of the subsequent ones is

that the effects of curvature are significant at these scales of deflection and bubble
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size, particularly at the edge, where they clearly overwhelm the “in-plane” stretching

contribution. This will be revisited in more detail in section 4.5.

The second key message gleaned from Fig. 4·2 pertains to the importance of

properly considering the boundary and loading conditions when analytically modeling

the strain and deflection of graphene. This is related to the apparent opposite sign in

the PMF at the edge obtained from Hencky’s solution in panel (d) when compared

with all the other panels (containing the MD-derived results). To elucidate the origin

of the difference, Fig. 4·4(a) shows the PMF divided by the angular factor sin(3θ), and

averaged over all the angles (details discussed in 4.1). This plot provides a summary of

the data in Figs. 4·2(d,e,f) and allows a cross-sectional view of the variation of the field

magnitude with distance from the center of the nanobubble. Direct inspection shows

that the averaged MD data follows Hencky’s prediction inside the bubble nearly all

the way to the edge, at which point the PMF derived from the atomistic simulations

swerves sharply upwards, changes sign, and returns rapidly to zero within one lattice

spacing beyond the bubble edge (the curve derived from Hencky’s model terminates

at the edge, by construction). This effective sectional view explains why the density

plots in Figs. 4·2(c,d) seem to have an overall sign mismatch: in the MD-derived

data, the plots of the PMF distribution are dominated by the large values at the edge

which have an opposite sign to the field in the inner region. Fig. 4·4(a) shows that,
rather than a discrepancy, there is a very good agreement between the strain field

predicted by Hencky’s solution and a fully atomistic simulation throughout most of

the inner region of the nanobubble. However, since Hencky’s solution assumes fixed

boundary conditions at the edge (zero deflection, zero bending moment) (Fichter,

1997), it cannot capture the sharp bends expected at the atomic scale generated by the

clamping imposed in these particular MD simulations (in effect, corresponding to zero

deflection and its zero derivative). The finite bending stiffness of graphene (Wei et al.,
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Figure 4·4: (a) Angular-averaged values of B/ sin(3θ) for the circu-
lar nanobubble with R = 4nm considered in Fig. 4·2. The different
datasets correspond to different strategies discussed above to obtain
the PMF. The vertical line at r = R ≈ 40 Å marks the radius of the
circular aperture in the substrate. For r < R the results extracted from
MD closely follow the analytical curve, but there is a sharp sign change
and increase at r ≈ R (see 4.1 for details of the averaging procedure,
as well as for the TB data including the full hopping perturbation).
(b) Comparison between the pressure-induced deflection and maximum
PMF magnitude at the edge, |B(R ≈ 40 Å) |, obtained with the dif-
ferent approximations discussed in the text. The points corresponding
to the complete TB hopping are scaled by 0.1 for better visualization.
(c) A section of the simulated nanobubble (MD) at ∼19 kBar and the
corresponding Hencky’s solution (the inset shows a 3D perspective of
the former with the color scale reflecting the vertical displacement).
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2013) comes into play in that region, generating additional strain gradients which

explain the profile and large magnitude of the PMF seen in the atomistic simulations.

In Fig. 4·4(b) the evolution of the deflection and maximum PMF with increasing gas

pressure are plotted. The maximum PMF is obtained around the edge of the aperture,

and the values shown in the figure correspond to an angular average of the PMF

amplitude there (see 4.1 for details). The MD and analytical (Hencky’s) solutions

give comparable results for the deflection in the pressure range below < 1 × 104 bar

(Fig. 4·4(b), right vertical scale). At higher pressures, Figs 4·4(b) and 4·4(c) show

that the analytical solution yields a slightly smaller deflection, as the underlying

model does not capture the nonlinear elastic softening that has been observed in

graphene in both experiments (Lee et al., 2008) and previous MD simulations (Jun

et al., 2011). Fig. 4·4(b) includes also the maximum PMFs occurring at the bubble

edge, when computed with the different approaches discussed above in connection

with Figs 4·2(c-f). Note that Hencky’s solution cannot generate significant PMFs

even at the largest deflections, whereas experiments in similarly sized and deflected

nanobubbles easily reveal PMFs in the hundreds of Teslas (Levy et al., 2010; Lu et al.,

2012). This raises questions about the applicability of the Hencky solution at these

small scales and large deflections. The pressure required to rupture this graphene

bubble was determined to be around 1.9× 105 bar from the MD simulations. Such a

large value is required because of the small dimensions of the bubble. The fracture

stress can be calculated by adopting a simple model for a circular bulge test, i.e.,

σ ∼ RδP
2w

, where σ, δP , R, and w are the stress, pressure difference, radius, and

thickness of the membrane, respectively. Assuming w to be 3.42 Å, a fracture strength

of about 80GPa is obtained, which is in agreement with previous theoretical (Zhao

and Aluru, 2010) and experimental (Lee et al., 2008; Zhao and Aluru, 2010) results.

Note that the plot in Fig. 4·4 shows very large pressures (up to near the rupture limit
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of the bubble) and correspondingly large deflections since it is to highlight the points

of departure between the elastic model and the simulation results. Pressures and

deflections considered in the specific cases discussed below are considerably smaller.

With the good performance of the atomistic model on the circular graphene bubble

established, next the analysis is extended to nanobubbles with different shapes. The

bubbles are similarly obtained by inflation of graphene under gas pressure against a

target hole in the substrate with the desired shape. Fig. 4·5 shows results of a study of

different shapes to which the displacement approach was applied to obtain the strain

field and, thus, the PMFs. The shapes are a square, a rectangle (aspect ratio of 1:2),

a pentagon, a hexagon, and a circle, and are presented in order of approximately

decreasing symmetry. Those geometries were chosen because they are sufficiently

simple that they can be readily fabricated experimentally with conventional etching

techniques. The dimensions of the different bubbles were chosen such that their areas

were approximately ∼50 nm2. The pressure was 19000 bar and side lengths for the

bubble geometries shown in Figs. 4·5(a)-4·5(f) were, respectively, 4 nm (circle), 4.4 nm

(hexagon), 5.7 nm (pentagon), 5 nm (rectangle, short edge), 7.1 nm (square), 10.6 nm

(triangle).

It is worth emphasizing that these features depend on the orientation of the

graphene lattice with respect to the substrate aperture, as expected. This is clearly

visible in the case of the square bubble in Fig. 4·5(e), for which the sharp magnetic

field along the boundary is present along the horizontal (zigzag) edges of the bubble

but not along the vertical ones (armchair). This is also the reason why only the tri-

angular aperture shown in Fig. 4·5(f) leads to a strong PMF that is nearly uniform as

one goes around the boundary of the nanobubble. This is an important consideration

for the prospect of engineering strained graphene nanostructures capable of guiding

or confining electrons within, much like a quantum dot (Qi et al., 2013). The sharp
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(a) (b) (c) 

(d) (e) (f) 

Figure 4·5: Top views of PMF patterns for graphene bubbles of differ-
ent geometries without substrate. (a) circle (b) hexagon (c) pentagon
(d) rectangle (aspect ratio 1:2) (e) square (f) triangle. All the bubble
areas are ∼ 50 nm2, and side lengths and pressures can be found in the
text. In all cases, the graphene lattice is oriented with the zigzag direc-
tion along the horizontal. The same color scale (in Tesla) is used in all
panels. The edge of the substrate apertures used in the MD simulations
is outlined (gray line) for reference.
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PMF at the boundary acts effectively as a strong magnetic barrier, which might be

tailored to confine some of the low energy electronic states (De Martino et al., 2007;

Masir et al., 2009; Klimov et al., 2012). The resulting PMF patterns in Fig. 4·5 show

that the highest values are found at the corners and edges of the different bubble

shapes. To illustrate more clearly the PMF patterns, the bubbles are inflated to

large deflections (∼1 nm) with strains reaching 10% and the corresponding pressure

exceeding 1 × 104 bar. These large deflections explain why the PMF magnitudes in

Fig. 4·5 may reach over 500T. Given that the gas pressures used to achieve the results

shown in this figure are rather high, some comments are in order. First, it is worth

emphasizing that the relevant parameter is the deflection, rather than the pressure

itself. In other words, gas pressure was employed here as one way of generating

graphene nanobubbles with predefined boundary geometries and target deflections,

but other loading conditions might be used to achieve the same parameters. This

choice is motivated by the desire to constrain graphene and its interaction with the

substrate as little as possible. Since it is intended to reproduce bubbles with lateral

size and deflections matching the magnitude of the values observed experimentally

(Levy et al., 2010; Lu et al., 2012) this requires large pressures (for a given target

deflection P is naturally smaller for larger apertures).

Second, a previous study (Lu et al., 2012) reported that experimental bond elon-

gations, estimated from direct STM mapping of the atomic positions and deflections,

can exceed 10% in graphene nanobubbles on Ru. The high pressures considered in

the MD simulations allow us to reach bond elongations of this order of magnitude.

Third, pressures of the order of 10 kbar (1GPa) have been recently estimated to

occur within nanobubbles of similar dimensions and deflections to the ones considered

here, formed upon annealing of graphene-diamond interfaces (Lim et al., 2012). Thus,

pressures of this magnitude are not unrealistic in the context of nanoscale graphene
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blisters.

4.3 Substrate interaction: Graphene on Au (111)

After the ideal case of graphene without a substrate, a more realistic case of graphene

lying on an Au (111) substrate is studied. The main difference is that the carbon

atoms are not rigidly attached to the substrate anymore outside the aperture, mean-

ing that graphene can slide into the aperture during inflation, subject to the inter-

action with the substrate. This is an important qualitative difference, and reflects

more closely the experimental situation, as recently reported in reference(Kitt et al.,

2013a). The interatomic interactions were parameterized with εC−Au=0.02936 eV,

σC−Au=2.9943 Å (Piana and Bilic, 2006); εC−Ar=0.0123 eV, σC−Ar=3.573 Å (Tuzun

et al., 1996); εAr−Ar=0.0123 eV, σAr−Ar=3.573 Å (Rytknen et al., 1998); the Ar-Au

(gas-substrate) interactions were neglected to save computational time, and the sub-

strate layer was held fixed for the entire simulation process. Most of the graphene

layer was unconstrained, except for a 0.5 nm region around the outer edges of the

simulation box where it remained pinned. Since the interaction with the substrate

is explicitly taken into consideration, this approach realistically describes the sliding

and sticking of graphene on the substrate as the gas pressure is increased, as well as

details of the interaction with the substrate in and near the hole perimeter.

The discussion starts with a direct comparison of the deformation state of a circu-

lar bubble obtained from the simulations with the predictions of a recently developed

and experimentally verified ‘extended-Hencky’ model (Kitt et al., 2013a) that ac-

counts for the same sliding and friction effects. As can be seen in Fig. 4·6(a), after
fitting the friction in the continuum model to the MD simulation there is a very good

agreement between the MD and extended Hencky results for the radial and tangential

strains, εrr and εθθ, both in the inner and outer regions with respect to the substrate
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Figure 4·6: (a) Strain components εrr and εθθ of a graphene bubble
pressurized to a deflection of ∼ 1 nm against a circular hole with 4 nm
radius on a Au(111) substrate. (b) The corresponding PMF along
the radial direction from the bubble center computed according to the
extended Hencky model (Kitt et al., 2013a) (solid line) and from MD
simulations within the TB (blue) or displacement (red) approach. Panel
(d) shows the angular dependence of the PMF for selected radii.
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aperture. The same good agreement is seen in the PMF profile extracted from the

MD and analytical approaches, which is presented in Fig. 4·6(b). The numerical data

points shown in this panel represent an angular average over an annulus centered at

different radii.

An important message from Fig. 4·6(b) is that the maximum magnitude of the

PMF occurs around the edge of the aperture, but on the outside of the bubble.

Whereas one expects the maximal PMFs to occur around the edge where the strain

gradients are larger, the fact that the magnitude is considerably higher right outside

rather than inside is not so obvious. This has important implications for the study of

PMFs in graphene nanostructures but has been ignored by previous studies. It implies

that models where only the deflection inside the aperture is considered (such as the

simple Hencky model) can miss important quantitative and qualitative features. They

are captured here because the friction and sliding effects due to graphene-substrate

interactions are naturally taken into account from the outset. One consequence is

the “leakage” of strain outside the bubble region and the concurrent emergence of

PMFs outside the aperture. This should be an important consideration in designing

nanoscale graphene devices with functionalities that rely on the local strain or PMF

distribution.

The other shapes studied on the Au (111) substrate are shown in Fig. 4·7. The

dimensions are the same as in Fig. 4·5, with an applied pressure of ∼ 30 kbar. In

addition to the appearance of non-negligible PMF outside the aperture region, a

comparison with the data for bubbles clamped to the hole perimeter shows that

now the PMF distribution inside is noticeably perturbed, and that the large field

magnitudes observed in Fig. 4·5 along the perimeter are considerably reduced and

smoother.

To understand the origin of this difference, detailed analysis should be done for the



66

(a) (b) (c) 

(d) (e) (f) 

Figure 4·7: Top views of PMF patterns for graphene bubbles of dif-
ferent geometries on Au (111) substrates. (a) circle (b) hexagon (c)
pentagon (d) rectangle (aspect ratio 1:2) (e) square (f) triangle. All
the bubble areas are ∼ 50 nm2, and side lengths and pressures can be
found in the text. In all cases, the graphene lattice is oriented with the
zigzag direction along the horizontal. The same color scale (in Tesla)
is used in all panels. The edge of the substrate apertures used in the
MD simulations is outlined (gray line) for reference.
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Figure 4·8: Spatial patterns of the strain tensor components εrr and
εθθ for a triangular bubble with a 10.6 nm side. (a) and (b) pertain to
graphene on a Au (111) substrate whose PMF profile has been shown
in Fig. 4·5(f), while (c) and (d) correspond to the graphene bubble
with an artificially fixed boundary condition whose PMF is shown in
Fig. 4·7(f). The edge of the substrate aperture used in the MD simu-
lation is outlined (gray line) for reference.
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representative case of a triangular nanobubble, as previous experiments have shown

that such nanobubbles can exhibit PMFs in excess of 300T (Levy et al., 2010).

Using the MD-based simulation approach, the PMFs for triangular graphene bubbles

were calculated by inflating a graphene monolayer through a triangular hole in the

substrate. The set-up is as illustrated in Fig. 4·1, but with the circular hole replaced

by a triangular one. The triangular hole in the substrate had a side length of 10.6 nm,

and the graphene sheet was inflated to a deflection of ∼ 1 nm.

The resulting PMF distribution when one artificially clamps graphene outside

the hole region has been shown in Fig. 4·5(f); the underlying strain components

can be seen in Figs. 4·8(c,d). Upon inflation under the gas pressure, the geometry

and the clamped conditions enforce an effective tri-axial stretching in the graphene

surface that is clearly visible in the strain distribution. As pointed out by previous

study (Guinea et al., 2010b), this tri-axial symmetry is crucial for the experimental

observation of Landau levels in reference(Levy et al., 2010) because it leads to a quasi-

uniform PMF inside the nanobubble. Inspection of Fig. 4·5(f) confirms that the field

is indeed of significant magnitude and roughly uniform within the bubble. When the

full interaction with the substrate is included and the graphene sheet is allowed to

slip and slide towards the aperture under the inflation pressure, the geometry is no

longer as effective as before in generating a clear triaxial symmetry: a comparison of

the top and bottom rows of Fig. 4·8 shows that the triaxial symmetry of the strain

distribution is not so sharply defined in this case. Therefore, the finite and roughly

uniform PMF inside the triangular boundary that is seen clearly in Figs. 4·5(f) is

largely lost here.

To understand the difference, note that the orientation of the triangular hole with

respect to the crystallographic axes used here is already the optimum orientation

in terms of PMF magnitude, with its edges perpendicular to the 〈100〉 directions
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(i.e., parallel to the zigzag directions). Further, since the graphene sheet is allowed

to slide, the strain distribution in the central region of the inflated bubble tends

to be more isotropic, as expected for an inflated membrane because of the out of

plane displacement, and as can be seen in Fig. 4·8. This means that the trigonal

symmetry imposed on the overall strain distribution by the boundaries of the hole

is less pronounced near the center. As a result, even though strain increases as one

moves from the edge towards the center (as measured, for example, by looking at

the bond elongation directly from the MD simulations), the magnitude of the PMF

decreases because the trigonal symmetry and strain gradients become increasingly

less pronounced and recall that the isotropic (circular) hole yields zero PMF at the

apex (Fig. 4·2). The differences in trend and the sensitivity of the PMF distribution

to the details of the interaction with the substrate highlight the importance of the

latter in determining the final distribution and magnitude of the PMF, in addition

to the loading, hole shape, and boundary conditions. In order to stress this aspect,

and to make the role of the substrate interaction even more evident, a different metal

surface needs to be considered.

4.4 Substrate interaction: Graphene on Cu (111)

To gain further insight into the important effects of substrate interactions, simulations

were carried out for a Cu (111) substrate, in addition to the Au (111) case considered

above. This is in part motivated by a recent experimental study (He et al., 2012)

showing that graphene grown by chemical vapor deposition (CVD) on a Cu (111)

substrate is under a nonuniform strain distribution. This nonuniform strain suggests

that there might be interesting PMFs in the region of graphene surrounding the

bubble. To analyze that the PMF profile generated by the inflation of a graphene

bubble constrained by a circular aperture was studied with a radius of 4 nm on a
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(d) (e) (f) 

Figure 4·9: Top views of PMF patterns for graphene bubbles of dif-
ferent geometries on Cu (111) substrate. (a) circle (b) hexagon (c)
pentagon (d) rectangle (aspect ratio 1:2) (e) square (f) triangle. All
the bubble areas are ∼ 50 nm2, and side lengths and pressures can be
found in the text. In all cases, the graphene lattice is oriented with the
zigzag direction along the horizontal. The same color scale (in Tesla)
is used in all panels. The edge of the substrate apertures used in the
MD simulations is outlined (gray line) for reference.
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Cu(111) substrate. The Cu-C interactions were modeled using a Morse potential

with parameters D0=0.1 eV, α=1.7 Å, r0=2.2 Å, and a cutoff radius of 6 Å(Maekawa

and Itoh, 1995). Fig. 4·9 shows the PMF distributions for differently shaped bubbles

with deflection of ∼1 nm on Cu (111) substrate. Despite the similarity between the

geometry, dimensions, and deflections of this system and the one studied in Fig. 4·7,
this one shows a much more pronounced modulation of PMF in the regions outside

the aperture. In the same way that the Moiré patterns seen experimentally in a

previous study (He et al., 2012) reflect a non-negligible graphene-Cu interaction, the

PMF distributions in Figs. 4·9(a-f) are much richer than in Figs. 4·7(a-f). That

this simulation strategy involves pressing graphene against the substrate certainly

enhances the interaction and promotes increased adhesion. This, in turn, adds a

non-isotropic constraint for the longitudinal displacement and deformation of the

graphene sheet which will affect the overall magnitude and spatial dependence of the

PMF in the central region in such a way that, for this case, the PMF magnitude

is higher outside the inflated portion of graphene, rather than inside or in the close

vicinity of the boundary. This shows that the strain and PMF patterns in graphene

can be strongly influenced by the chemical nature of the substrate and not just its

topography.

To reveal the PMF that is induced by the substrate alone, Fig. 4·10 presents a side-
by-side comparison of the PMFs that result when graphene is let to relax on Au (111)

and Cu (111), respectively. The plotted data are obtained from energy minimization

without pressure or aperture to show the intrinsic effect of the two substrates. Several

interesting features emerge from these results, the first of which being the spontaneous

development of a superlattice structure with a characteristic and well defined periodic-

ity that is different in the two substrates. This Moiré pattern in the PMF is the result

of a corresponding pattern in the strain field throughout the graphene sheet, which is
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(a) (b) 

Figure 4·10: PMF distributions of graphene on perfect (a) Cu (111)
substrate and (b) Au (111) substrate without apertures nor gas pres-
sure. The superlattice structure arises naturally from the need of the
system to release strain buildup because of the mismatch in the lattice
parameters of graphene and the underlying substrate. The PMF scale
is in units of Tesla.

caused by the need of the system to release strain buildup due to the mismatch in the

lattice parameters of graphene and the substrate. A second important aspect is the

considerable magnitude of the PMFs that can locally reach a few hundreds of Tesla

just by letting graphene reach the minimum energy configuration in contact with the

flat metal substrate. Another detail clearly illustrated by these two examples is the

sensitivity to the details of the substrate interaction: the substrate-induced PMF on

Cu can be many times larger than that on Au, and the Moiré period is also different.

These super-periodicities are expected to perturb the intrinsic electronic structure

of flat graphene whose electrons now feel the influence of this additional periodic

potential. That leads, for example, to the appearance of band gaps at the edges

of the folded Brillouin zone. Such effects are currently a topic of interest in the

context of transport and spectroscopic properties of graphene deposited on boron

nitride, where this type of epitaxial strain is conjectured to play a crucial role in

determining the metallic or insulator character (Woods et al., 2014; San-Jose et al.,

2014; Neek-Amal and Peeters, 2014; Jung et al., 2015). Since Fig. 4·10 reveals a
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strong graphene-substrate interaction, it is not surprising that the PMF patterns in

Fig. 4·9 are still strongly dominated by the substrate-induced PMF. Unlike the cases

discussed in Fig. 4·5, a significant structure remains in the PMF distribution outside

the hole region due to the tendency of the lattice to relax towards the characteristic

Moiré periodicity of Fig. 4·10(a) when in contact with a flat portion of substrate.

In contrast, Au (111) has a larger lattice spacing and generates considerably less

epitaxial strain in the graphene film, implying comparatively weaker PMFs. It is

then natural that in the presence of the nanobubbles the geometry of the aperture

dominates the final PMF distribution over the entire system when pressed against

Au (111) (Fig. 4·7), whereas for Cu (111) the epitaxial contribution is the one that

dominates (Fig. 4·9).

4.5 Bending effects

The large deflection-to-linear dimension ratio in the inflated graphene bubbles an-

alyzed so far calls for an analysis of the relative importance of the contribution to

the PMF from bending in comparison with that from the local stretching of the dis-

tance between carbon atoms. When full account of stretching and bending is taken

by replacing the hopping Eq. 2.7 in the definition of the vector potential A given in

Eq. 2.10 the resulting PMF can have considerably higher magnitudes, as was already

seen in Fig. 4·2(f). To isolate the effect of bending alone one can split the full hopping

Eq. 2.7 in two contributions, tij = t
(xy)
ij + t

(c)
ij , where the “in plane” stretching term is

simply

−t
(xy)
ij = Vppπ(d). (4.2)

Since the gauge field A is a linear function of the hopping Eq. 2.10, it can be likewise

split into the respective stretching and bending contributions so thatA = A(xy)+A(c).

When the PMF associated with A(c) is thus calculated for the circular bubble of
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Figure 4·11: Density plot of the bending contribution to the pseu-
domagnetic field, B(c), for a circular graphene bubble with radius of
4 nm and a deflection of ∼ 1 nm calculated by the TB method (a) and
Hencky’s model (b). The axes in (b) are scaled in units of the circle
radius. The PMF scale is in units of Tesla. The edge of the substrate
aperture used in the MD simulation is outlined (gray line) for reference.

Fig. 4·2 the result is obtained shown in Fig. 4·11(a). As was already seen when

comparing the different PMF curves in Fig. 4·4, the effect of the curvature at the

edges is quite remarkable and overwhelmingly dominant in that region.

More importantly, this fact could have been underappreciated if the stretching and

bending contributions had been extracted only on the basis of an analytical solution

of the elastic problem such as Hencky’s model. To be definite in this regard, the

magnitude of the contribution to the PMF that comes from bending in the continuum

limit was considered. If a gradient expansion of the full hopping Eq. 2.7 is performed,

the vector potential Eq. 2.10 can be expressed in terms of quadratic combinations of

the second derivatives of the deflection h(x, y) (Pereira et al., 2010a). For example,

the term Vppπ(d)ni · nj in Eq. 2.7 leads to

A(c)
x = −3a2V 0

ppπ

8qvF

[(∂2h

∂y2

)2
−

(∂2h

∂x2

)2]
, (4.3a)

A(c)
y = −3a2V 0

ppπ

4qvF

[
∂2h

∂x∂y

(∂2h

∂y2
+

∂2h

∂x2

)]
. (4.3b)
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Figure 4·12: Ratio of the maximum PMF induced by bending and
stretching (Bc/Bxy) for circular graphene bubbles as a function of the
graphene radius R, according to Hencky’s solution.

This particular contribution was previously discussed by a previous study (Kim and

Castro Neto, 2008) and, since all the bending terms have the same scaling ∼ a2h2/R4,

where h and R are the characteristic height and radius, respectively, consideration of

this one alone suffices for the purpose of establishing the magnitude of the bending

terms in comparison with the stretching one. Replacing the deflection h(x, y) pro-

vided by Hencky’s solution in Eq. 4.3 leads to the result shown in Fig. 4·11(b); it is
clear that the maximum Bc so obtained at the edges is much smaller than the one de-

rived from the atomistic simulation with the full hopping. It is not surprising that the

PMF coming from bending at the level of Hencky’s model is so small. A simple scal-

ing analysis of the vector potentials in the continuum limit shows that, from Eq. 2.11,

Axy scales with strain as Axy ∼ ε and strain itself scales with deflection as ε ∼ (h/R)2

for a characteristic linear dimension R of the bubble. On the other hand, from Eq. 4.3

Ac scales like Ac ∼ (ah)2/R4. Therefore, the ratio Bc/Bxy will scale as ∼ (a/R)2.

Since the bubble under analysis has a/R ≈ 0.04 the bending contribution is indeed

expected to be much smaller than the stretching one. It can even be more quanti-
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tative and extracts the maximum values of Bc and Bxy from Hencky’s solution and

compare their relative magnitudes as a function of circle radius, as shown in Fig. 4·12.
Hencky’s solution predicts that only when the radius of the circular bubble decreases

below about 1 nm does the contribution of the curvature-induced pseudomagnetic

field become of the same order as that due to in-plane stretching. This situation is

equivalent to the need to account for the curvature and orbital re-hybridization when

describing the electronic structure of carbon nanotubes with diameters below length

scales of this same magnitude at the tight-binding level (Blase et al., 1994; Kane

and Mele, 1997); the neglect of these effects in the nanotube case leads to incorrect

estimation of the band gaps and even of their metallic or insulating character. The

problem with these considerations is that they fail to anticipate the large effect at the

edges, particularly the scaling analysis which only tells about the relative magnitude

of bending vs stretching in the central region. But, because graphene is inflated un-

der very high pressures in order to achieve deflections of the order of 1 nm, a sharp

bend results at the edge of the substrate aperture through which graphene can bulge

outwards; it is this curvature effect that dominates the PMF plot in Fig. 4·11, not the
overall curvature of the bubble on the large scale. Hencky’s solution cannot capture

this since it is built assuming zero radial bending moment at the edge (Fichter, 1997).

Moreover, since this happens within a distance of the order of the lattice constant

itself, the details of the displacements at the atomistic level including non-linearity

and softening at large strains and curvatures become crucial. This further highlights

the importance of accurate atomistic descriptions of the deformation fields in small

structures such as the sub-5 nm graphene bubbles considered in this thesis, and which

have been shown experimentally to lead to significant PMFs (Levy et al., 2010; Lu

et al., 2012); at this level models based on continuum elasticity theory can become

increasingly limited for accurate quantitative predictions and should be applied with
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Figure 4·13: Density plot of the bending contribution to the pseudo-
magnetic field, B(c), for a graphene bubble deflected to ∼ 1 nm upon
pressuring through a circular aperture of radius 4 nm in a Au (a) and a
Cu (b) substrate. The PMF scale is in units of Tesla. The edge of the
substrate apertures used in the MD simulations is outlined (gray line)
for reference.

caution.

Finally, when realistic substrate conditions are considered, one can see that the

slippage effects contribute very differently for the PMFs arising from stretching and

from bending. A general feature of the PMF distribution obtained with realistic Au

and Cu substrates is its smaller overall magnitude in comparison with the artificially

clamped nanobubbles. This is easy to understand because the ability to slide in

contact with the substrate allows graphene to stretch not only in the bubble region,

but essentially everywhere, thereby reducing the strain concentration around the edge

of the aperture; and with smaller strain gradients one gets smaller PMFs. The bending

effects, on the other hand, are not expected to be much affected by the sliding,

especially when comparing nanobubbles with the same amount of vertical deflection,

because the sharpness of the bend at the edge of the aperture is constrained mostly

by the geometry alone. Direct inspection of the contribution to the PMF arising from

curvature in the Au and Cu substrates directly confirms this intuitive expectation,

as shown in Fig. 4·13. Just as in the clamped case where graphene is pinned to the
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substrate and cannot slide, the PMF associated with bending is seen to dominate the

field distribution, with magnitudes similar to the registered in Fig. 4·11, and much

larger than the PMF in the center of the bubble or the substrate region (cf. Figs. 4·7
and 4·9). This not only shows how crucial the PMF associated with bending can be

in certain approaches to generate graphene nanobubbles, but also that it is an effect

largely insensitive to the details of the substrate.



Chapter 5

Graphene Kirigami

5.1 Simulation setup

Beyond the in-plane deformation imposed on the graphene hexagon, and the out of

plane deformation imposed on the graphene bubble, graphene can be deformed and

manipulated in other ways. In this chapter, the results of classical MD simulations

on the tensile deformation of a specific, experimentally-realized form of graphene

kirigami (Blees et al., 2014) is presented. It is demonstrated that the resulting mono-

layer graphene kirigami can sustain yield and fracture strains that can be more than

three times larger than can pristine, bulk graphene. While kirigami has tradition-

ally been applied to increase the flexibility of macroscale structures, here its benefits

extend down to single-layer, two-dimensional nanomaterials. Moreover, two non-

dimensional design constants are introduced that can be used to tailor and tune the

mechanical and electronic properties of the kirigami.

The graphene kirigami were constructed by making cuts in a graphene nanoribbon,

which exposed free edges with the resulting kirigami shown schematically in Fig. 5·1.
The graphene kirigami in Fig. 5·1 is marked by several key geometric features, which

will be described now. First, the length of the nanoribbon is L0, while the width is

b. The height of each interior cut is w, while the width of each interior cut is c. The

distance between successive kirigami cuts is d, while the edge cut length is defined

to be half of the interior cut length (i.e. 0.5w). For simplicity, all of the half cut

lengths are the same, while all of the interior cut lengths are also fixed. While the

79
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Figure 5·1: Schematic of the graphene kirigami, with key geometric
parameters labeled. The kirigami is deformed via tensile displacement
loading that is applied at the two ends in the direction indicated by the
arrows.

dimensions of the kirigami changed according to the parametric studies performed, a

representative kirigami structure studied here had 11408 atoms, L0 ∼340 Å, w ∼67 Å,

b ∼100 Å, c ∼5 Åand successive kirigami cut distance of d ∼48 Å. The discussion

below on the deformation mechanisms and failure process will be based on this specific

geometry, though trends in mechanical properties will be reported based on a range

of geometric parameters, to be described later.

The kirigami structure was first relaxed for 10 ps within the constant temperature

(NVT) ensemble at room temperature (300K). Zigzag chirality was primarily consid-

ered, though simulations of armchair graphene were also conducted to verify that the

results are qualitatively independent of chirality. Non-periodic boundary conditions

were used in three directions. The kirigami was deformed in tension within the same

NVT ensemble by applying a uniform displacement loading on both edges, resulting

in a strain rate of ∼ 109 s−1 until fracture occurred. To illustrate the deformation

response, a series of snapshots of the representative stages are shown during elonga-

tion in Fig. 5·2 along with the tensile stress strain curve in Fig. 5·3 for the zigzag

graphene kirigami configuration illustrated in Fig. 5·1.
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a1 

a4 

a2 

a3 

b1 

b2 

b3 

Figure 5·2: Left column: snapshots of the top view (a1-a4) illustrating
the deformation stages for zigzag graphene kirigami. A representative
yield region is marked in (a3). The tensile strains corresponding to
the different stages are 14%, 29%, 56% and 65% respectively. Right
column: schematic top view pictures (b1-b3) of similarly patterned
paper kirigami for comparison. (b1-b3) correspond to (a1-a3) while
paper kirigami fracture picture is not shown. Graphene figures were
generated by VMD (Humphrey et al., 1996). All snapshots were scaled
for purposes of simplicity of visualization.

5.2 Numerical results

Fig. 5·2(a1)-(a4) shows that the graphene kirigami exhibits four distinct stages pre-

ceding fracture. Before any tensile loading was applied, the structure rippled out of

plane during the initial thermal equilibration stage. Once tensile loading was applied,

as shown in (a1), the kirigami structure elongated, with the interior cuts exhibiting

tensile elongations of roughly 20% strain along the loading direction. While the in-

terior cuts were initially vertical after the thermal equilibration, during this initial

stage of tensile loading (for strains smaller than about 20%), the cuts flipped and

rotated such that they make a nearly 45 degree angle with the loading direction, as

shown in (a1). This flipping and rotation is the key mechanism that enables the high

ductility of graphene kirigami, and during this stage kirigami structure was elongated

without significantly stretching carbon bonds. This can be seen from Fig. 5·3 where
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Figure 5·3: Stress-strain curve of the representative graphene kirigami
as shown in Fig. 5·2, where the 2D stress was calculated as stress σ times
thickness t. Green, blue, orange and red regions correspond to the four
stages of deformation discussed in the text and illustrated in Fig. 5·2.
A stress-strain curve of a pristine zigzag graphene nanoribbon with the
same width is shown in the inset for comparison.

the stress was nearly zero in this stage (green region). In the second stage, shown

in (a2), the carbon bonds started to be stretched together with the strained kirigami

structure causing the stress increase as shown in Fig. 5·3 for strains between about

20% and 38% (blue region). Note that the deformation in the first two stages, which

accounted for nearly 40% tensile strain, was elastic and reversible.

Yielding began in the third stage, as shown in (a3) at a global tensile strain of

almost 40%. The yielding initiated from the tips of the interior cuts, as marked in

(a3), as those tips exhibited high stress concentrations due to the large deforma-

tions. Finally, fracture occurred in the fourth stage at a strain of about 65% in (a4).

Armchair graphene kirigami structures were also studied and found similar deforma-

tion patterns. Note that (a2) are snapshots before yield while (a3) are after yield in

Fig. 5·2.
In order to demonstrate that the atomic scale, single-layer graphene kirigami de-
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forms similarly to macroscale kirigami, paper kirigami was created using A4 paper

with similar geometric parameters, and subjected to uniaxial stretching as shown in

Fig. 5·2(b1-b3). As can be seen, the graphene and paper kirigami exhibited qualita-

tively similar deformation features, which shows that many of the known advantages

of macroscale kirigami may hold even for a single-layer, two-dimensional material.

Fracture of the paper kirigami is not shown for preservation purposes.

Having established that kirigami is an effective method to enhance stretchability

in graphene, one key challenge is to systematically understand how the geometric

parameters of the kirigami shown in Fig. 5·1 impact the key mechanical properties

of interest, i.e. the yield stress and strain, as well as the fracture strain. Such an

understanding will enable experimentalists to design graphene kirigami that possesses

a desired combination of mechanical properties. Two dimensionless parameters are

defined to characterize the mechanical properties of the kirigami: α = (w − 0.5b)/L0

and β = (0.5d − c)/L0. Apparently, the number of cuts will directly affect the

mechanical response of the kirigami, and thus these parameter choices are based on

the assumption that all cases contain the same number of cuts, namely seven middle

cuts and six edge cut pairs for all the cases studied in this thesis as shown in Fig. 5·2.
Verification of the choices for α and β as the appropriate geometric parameters

was conducted and shown in Fig. 5·4. To validate the choice of α and β, we conducted

simulations with constant α, β values but with varying values of b and w, c and d,

respectively to test the validity of the two dimensionless parameters. In Fig. 5·4, it
can be seen that for constant α and β, yield strains are essentially constant, which

validate the choices made for these constants.

The kirigami structures studied in this thesis contained seven interior cuts and

six edge cut pairs. To demonstrate that the results in this thesis are independent

of this particular choice of interior and edge cut numbers, simulation with different



84

20, 16 28, 20 32, 22 36, 24
0.45

0.5

0.55

0.6

0.65

b, w

ε yi
el

d
α validation

α = 0.074 (a)

20, 4 22, 5 24, 6 26, 7 28, 8
0.25

0.3

0.35

0.4

0.45

d, c

ε yi
el

d

β validation

β = 0.052 (b)

Figure 5·4: (a) α validation with varying w and b, all cases were
zigzag with constant α = 0.074. (b) β validation with varying d and c,
all cases were zigzag with constant β = 0.052, L0 = 115Å.
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Figure 5·5: Yield strain as a function of interior (N) and edge (M) cut
pairs, demonstrating that the choice of 7 interior and 6 edge cut pairs
used in this work is representative of the kirigami deformation within
the limits of computational capabilities.

of number of cuts were conducted with corresponding length L0, while the other

geometric parameters b, w, c and d were kept constant. In Fig. 5·5, it shows that

yield strains are nearly constant, which shows that within the limits of computational

capabilities, the results presented in this work are independent of the number of

interior and edge cut pairs.

The first parameter, α, is the ratio of the overlapping cut length to the nanoribbon

length, and controls how much the interior cut, and thus the kirigami, can elongate

during tensile deformation. Specifically, α affects the yield strain and fracture strain

due to the flipping elongation mechanism shown in Fig. 5·2(a2). The yield strain

and fracture strain for different values of α are shown in Fig. 5·6. It is clear that

for α > 0, the kirigami becomes significantly more ductile, where the fracture strain

εfrac is normalized by the fracture strain for bulk graphene. This is because α = 0

corresponds to the configuration when the edge cuts and interior cuts just overlap.

When α < 0, the edge and interior cuts do not overlap and the flipping and rotation
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Figure 5·6: Influence of α on yield strain and fracture strain for zigzag
and armchair graphene kirigami, for constant β = 0.057. Data are
normalized by graphene nanoribbon results with the same width.

mechanism of Fig. 5·2(a2) and (b2) does not occur. In contrast, when α > 0, the

flip-rotation mechanism for the interior cuts does occur, and enables the kirigami

to expand without substantial stretching of the carbon bonds. This is also reflected

from the 2D stress-strain curve as shown in Fig. 5·3, where the stress was calculated

as stress times thickness to avoid known controversies in defining the thickness for

carbon-based nanostructures (Huang et al., 2006). For completeness, note that for

the paper kirigami seen in Fig. 5·2(b1-b3), the non-dimensional values are α ∼ 0.13

and β ∼ 0.06.

The deformation illustrated in Fig. 5·2(a1) and (b1) corresponds to the green

region in Fig. 5·3, where before roughly ε = 0.2 the kirigami structure elongates

without significant stretching of the carbon bonds, which explains the very low value

of stress for that strain region. However, between strains of ε = 0.2 to ε = 0.38 (yield

strain), the carbon bonds begin to be stretched substantially, leading to the increase

in stress seen in Fig. 5·3. With a further increase in strain, yielding occurs via local

fracture of graphene as shown in Fig. 5·2(a3) and (b3). Eventually, the local fracture
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Figure 5·7: Influence of α on the kirigami yield stress, for constant
β = 0.057. Data are normalized by graphene nanoribbon results with
the same width.

Figure 5·8: Von Mises stress distribution of zigzag graphene kirigami
corresponding to the snapshots in Fig. 5·2(a3), where the data was
scaled between 0 to 1. Figure was generated by AtomEye (Li, 2003).

propagates and results in global fracture at ε = 0.65 as shown in Fig. 5·2(a4) and the

red region in Fig. 5·3.
In contrast to the pristine graphene nanoribbon as shown in Fig. 5·3, it is clear

that the stress that can be sustained by the kirigami is about one order of magnitude

smaller. However, the stretchability, as defined by the fracture strain, is increased by

more than a factor of two. Furthermore, the ductility, defined as the strain after yield,

is significantly higher for the kirigami, as it can sustain more than 20% elongation after

yield, while the pristine graphene nanoribbon fractures immediately after yielding.

While the yield strain increases for increasing α, the opposite trend is observed
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for the yield stress, as shown in Fig. 5·7. This is also because for negative α, the

middle and edge cuts do not overlap, and thus the kirigami behaves like a cut-free

nanoribbon. However, when α is positive, the kirigami deforms like the snapshots

shown in Fig. 5·2 and yields due to the tearing mechanism previously described,

where the stress distribution prior to yielding is shown in Fig. 5·8.
The graphene kirigami thus fractures quite differently as compared to bulk graphene

or a graphene nanoribbon. Instead of brittle fracture, the yielding of graphene

kirigami begins from the corners of the interior cuts, and gradually propagates until

fracture occurs. The stress distribution in Fig. 5·8 shows that the stress is concen-

trated at the corners of the interior cuts while being very small in other regions of the

kirigami. This stress localization explains why the yield stress curve turns flat after

α becomes positive, as shown in Fig. 5·7.
The results shown in Figs. 5·6 and 5·7 were carried out at a constant value of

β = 0.057. While α describes the geometry perpendicular to the tensile loading

direction, β describes the geometry parallel to the tensile loading direction. Referring

to the kirigami schematic in Fig. 5·1, shows that β represents the ratio of overlapping

width to the nanoribbon length, which is directly related to the density of cuts, and

where theoretically β can take values ranging from nearly zero to one. However, in

practice, when β exceeds about 0.125, the edge atoms between adjacent edge cuts

interact and thus break the kirigami structure.

The impact of β on the yield strain is shown in Fig. 5·9 for constant α = 0.07.

In contrast to α, which describes the length of the overlapping region, β describes

the width of the cuts. Furthermore, while the cut length determines how much

the kirigami can elongate in along the loading direction, as previously illustrated in

Fig. 5·6, the cut width determines the aspect ratio of the overlapping region, which

controls the likelihood of the flipping and rotating mechanism previously discussed.
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Figure 5·9: Influence of β on fracture strain and yield strain, for con-
stant α = 0.07. Data are normalized by graphene nanoribbon results
with the same width.

Therefore, Fig. 5·9 demonstrates that when β increases, the overlapping region width

increases, which results in increased difficulty for the flipping and rotation mechanism

to occur, resulting in a decrease in the yield and fracture strains.

Other than the yield strain, fracture strain and yield stress, other parameters

were also studied, including the Young’s modulus, toughness and fracture strength

for the graphene kirigami. Results for the kirigami geometry in Fig. 5·1 are listed

in Table. 5.1, where the Young’s modulus was obtained through linear fitting of

the stress-strain curve, while the toughness UT was calculated as UT =
∫ εf
0

σdε.

The nature of the stress-strain curve of Fig. 5·3 leads one to define two Young’s

moduli. The first (E1) corresponds to the low stress region for strains smaller than

ε = 0.2 (green) in Fig. 5·3, while the second (E2) corresponds to the increasing

stress region between ε = 0.2 and ε = 0.38 (blue). Table. 5.1 illustrates that for

both armchair and zigzag graphene kirigami, the Young’s modulus, toughness and

fracture strength are significantly lower compared to either bulk graphene or graphene

nanoribbons. Furthermore, though the kirigami structure significantly enhances the



90

Table 5.1: Young’s Modulus (E), Toughness (UT ) and Frac-
ture Strength (σfrac)

Case E1 E2 UT σfrac

kirigami(ZZ) 0.80 15.17 1.21 4.73
kirigami(AC) 0.36 11.03 1.12 5.01

nanoribbon(ZZ) - 295.91 8.27 54.64
nanoribbon(AC) - 304.70 4.78 43.31

bulk(ZZ) - 315.53 9.29 67.14
bulk(AC) - 319.69 5.34 44.93

Note: all results are in unit of N/m. For kirigami (ZZ) cases,
L0 = 340Å, b = 100Å, α ∼ 0.05 and β ∼ 0.06; for kirigami
(AC) cases, L0 = 347Å, b = 117Å, α ∼ 0.05 and β ∼ 0.05.

yield and fracture strains for graphene, the order of magnitude reduction in yield

stress and fracture strength results in an overall decrease in toughness for graphene

kirigami as compared to pristine graphene.

Besides the single-unit kirigami model above, double-unit models were also stud-

ied as shown in Fig. 5·10. These are essentially same as the single-unit models but

duplicated in the direction that is orthogonal to the applied strain. These “double-

unit” kirigami structures are considered because they have been fabricated experi-

mentally (Blees et al., 2014). Results for the yield and fracture strains of double-unit

kirigamis as well as the deformation mechanisms are similar in all aspects to the

single-unit kirigami models.

Finally, simulation shows that the large deformations enabled by the kirigami ge-

ometry can strongly impact graphene’s electronic properties. In particular, the cou-

pling between mechanical deformation and PMFs have previously been investigated

both experimentally (Levy et al., 2010), and theoretically (Guinea et al., 2010b; Qi

et al., 2013; Qi et al., 2014). The PMFs of deformed graphene kirigami were calcu-

lated at about 17% strain, or before yielding occurs, in Fig. 5·11. The PMFs were

calculated using the tight binding method including both in-plane and bending terms,

as discussed previously (Qi et al., 2013; Qi et al., 2014). It is evident that signifi-
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(b) 

(a) 

Figure 5·10: (a) Original and (b) deformed (ε = 0.24) configuration
top-view snapshots of double Y-unit graphene kirigami structures. The
geometry parameters are same as the text, Fig. 1, but with twice the
width. Figure was generated by VMD (Humphrey et al., 1996). The
snapshots were scaled to same length for visualization purposes.
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Figure 5·11: Pseudomagnetic field distribution for zigzag graphene
kirigami at ε ∼ 0.17 (i.e. before yield) with L0 ∼ 340Å, b ∼ 100Å, α ∼
0.008, β ∼ 0.06.

cant PMFs can be generated by deforming the graphene kirigami in tension, with the

largest magnitudes arising near the sites of highest stress concentration between two

kirigami unit cells.



Chapter 6

Mode Coupling in Graphene

Nanoresonator

6.1 Simulation setup

While mode-coupling is present in any crystalline membrane, this chapter focuses on

graphene due to the many realizations of membrane resonators using this material.

To study the intrinsic loss mechanisms in such systems, classical MD simulations and

continuum mechanics model (details discussed in sections 2.4 and 2.5) were utilized to

systematically investigate the free vibrations of pristine circular graphene monolayers

with varying radius, pre-strain, temperature and excitation energy.

After an initial relaxation stage, the graphene monolayer was strained and fixed

at its edges. The system was then equilibrated at a specific temperature within the

canonical ensemble (NVT) for 10 ps. Thereafter, the monolayer was actuated by

assigning an initial velocity profile in the out of plane direction corresponding to the

fundamental mode shape of the resonator. After that point, the system was allowed

to vibrate freely in the micro canonical (NVE, or energy conserving) ensemble for

5000 ps with a time step of 1 fs. The entire simulation was divided into 10 time

windows of 500 ps each; the first 100 ps of each time window were used for further

analysis. Specifically, total kinetic energy and velocity history of each atom were

recorded to calculate the total kinetic energy spectrum. Four temperatures (T = ∼0,

50, 100 and 300 K), four radii (R = 5, 7, 9 and 11 nm) and four initial excitation
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energies (vmax = 2, 5, 10 and 15 Å/ps) were studied. Additionally, the pre-strain εpre

of the structures was varied.

6.2 Results and discussion

In Fig. 6·1, the time evolution of the kinetic energy spectral density of a circular

graphene sheet of radius 5 nm, εpre = 0.5% kept at a temperature of 300 K is reported

up to a time of 5 ns. Initially, the FM was excited by a velocity of 10 Å/ps.

The spectral density of the kinetic energy in Fig. 6·1 corresponds to the fre-

quency distribution of the contribution to the kinetic energy from the out-of-plane

motion. The in-plane contribution is negligible in the frequency range relevant for

flexural vibrations. The area under a peak gives the kinetic energy of that mode.

The prominent peak initially located around ∼ 200 GHz corresponds to the FM, and

its energy decreases continuously during the time evolution. Simultaneously, the fre-

quency of the FM decreases. As the FM frequency is energy-dependent, this suggests

that energy is redistributed among normal modes in the system.

This redistribution is known to occur in the problem of coupled Duffing oscillators.

In fact, in a continuummechanics (CM) approach (Eriksson et al., 2013; Atalaya et al.,

2008) the present system is also described by a system of coupled Duffing oscillators.

In dimensionless form, the equation of motion for the mode amplitudes qn is written

as [see section 2.4]

∂2
τ qn + ω̃2

nqn +
∑
ijk

Wij;knqiqjqk = 0. (6.1)

The coupling matrix Wij;kn depends only on the geometry of the resonator. For

drum geometries it is, in contrast to the FPU case (Lichtenberg et al., 2008), a dense

matrix, with permutation symmetry in the indices i ↔ j and k ↔ n (Eriksson et al.,

2013).
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Figure 6·1: Time evolution of the energy spectral density of a cir-
cular graphene sheet obtained by MD simulations for the out-of-plane
motion. Parameters are given in the text. Note the decay of the FM en-
ergy which is indicated by the filled area under the curve, as well as the
shift in the FM frequency. The dashed black line is the FM frequency
as estimated from the CM model. The inset shows the evolution of the
individual mode energies obtained from the CM model in logarithmic
scale.
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The dimensionless time and energy are related to the physical units through

τ =

√
εprecL

R
t, Ẽ =

E

2πε2prec
2
LρGR

2
, (6.2)

where cL =
√

Y2D/ρG is the longitudinal speed of sound in graphene, with Y2D ≈
350 N/m being the two dimensional Young’s modulus of graphene (Lee et al., 2008)

and ρG = 0.76 mg/m2 the graphene mass density. In deriving Eq. 6.1 the radial

coordinate r and the vertical displacement w are scaled according to r̃ = r/R, w̃ =

(1/2)w/(ε2preR). The linear frequencies are given by the zeros ξ0,n of the zeroth order

Bessel function, ω̃n = ξ0,n.

The two models (CM and MD) complement each other. The MD is derived from an

atomistic approach, but is computationally heavy and is restricted to relatively small

systems. The CM equations are derived assuming negligible bending rigidity and long

wavelength deformations, but require less computational power and further allow to

predict scaling behaviors for various physical parameters. Since the CM model is

a long wavelength approximation, only the low-frequency modes can be accurately

described within the model. Additionally, in the CM-simulations presented here only

radially symmetric modes are considered, as the interaction term in Eq. 6.1 conserves

the radial symmetry of the fundamental mode.

The dimensionless and parameter free form of the CM equations implies that the

dynamics is completely determined by the initial conditions. Further, strong mixing in

phase space causes the distribution functions of the modes to decouple. The dynamics

of the system is then described by the total dimensionless energy Ẽ and the ratio of

applied FM energy Ẽ0 to total energy, η = Ẽ0/Ẽ. There will also be a dependence on

the number of degrees of freedom in the system, set by the number of atoms. In the

CM model, this is introduced artificially through the number of modes N that are

considered in the simulations. This number is always much smaller than the number
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Figure 6·2: (a) Fundamental mode frequency as a function of mode
energy. Symbols correspond to MD results, while the full line is the
curve predicted from CM. The finite length of the time window used to
calculate the frequency spectrum limits the frequency resolution. This
is represented by the size of the symbols. (b) Simulation of Eq. 6.1 for
a fixed total energy, but with varying initial FM energy. By shifting
time, the curves align. The solid line is a fitted sigmoid function used to
extract the transition time τtr. (c) Extracted rates Γ = τ−1

tr from MD
simulations (filled symbols) and CM (open symbols) for fixed initial
value of η = 1/2 and varying total energy, reported as a function of the
effective temperature T ∗ for fixed εpre = 0.2 % according to Eq. 6.3.
The dashed line corresponds to a linear scaling with T ∗.

of atoms in the physical system.

The dimensionless energy can be written in terms of the average energy per atom

κ as

Ẽ =
1

2ε2pre

κ

mcc2L
, (6.3)

where mc is the carbon atom mass. For a system of uncoupled harmonic oscil-

lators in equilibrium, κ = kBT . A non equilibrium situation was studied, but an

effective temperature may be defined by considering the energy not residing in the

FM, kBT
∗ ≡ (E −E0)/N where N is the number of degrees of freedom. The relation

in Eq. 6.3 shows the correspondence between temperature and strain in this system.

The importance of the mode coupling is determined by the thermal fluctuations of

the membrane. These may be enhanced either by increasing the temperature, or by

decreasing the strain.
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The shift of the FM frequency in Fig. 6·1 can be reproduced in the CM model.

In Fig. 6·2(a), the energy dependence of the FM frequency is reported for the MD

simulations (symbols), together with the predicted curve from the CM model. The

frequency shift is a result of nonlinearities, and the overall agreement indicates that

the nonlinearities are well described within the CM model.

Next the dynamics of the FM energy is considered. The inset of Fig. 6·1 shows

the temporal evolution of the individual mode energies in the CM model, when ini-

tially all energy is fed into the fundamental mode. Note the appearance of an initial

metastable state, with nearly all energy localized in the fundamental mode. Among

modes with mode number > 3, the energy is always equipartitioned, indicating that

the assumption of strong mixing is valid. These modes define an instantaneous effec-

tive temperature of the system, which due to the redistribution increases in time. This

effect is more pronounced in the CM-simulations due to the mode number cut-off.

In Fig. 6·2(b) the normalized FM energy η was monitored as a function of time,

by calculating the mode dynamics from Eq. 6.1 for a system of N = 32 modes

for a fixed total energy Ẽ = 3.25. The degree of initial excitation over the thermal

background, i.e. η, was varied in the simulations. Shifting the time, so that η = 1/2

at t = 0, the curves align. This indicates that the important parameters are the total

energy and η. Further, two separate time-scales associated with the non-equilibrium

dynamics of the system can be identified; initially, when most energy is in the FM, the

system relaxes to a long-lived metastable state with energy dependent life-time τm.

In this region, the system is sensitive to fluctuations and the relaxation is therefore

strongly temperature dependent. Thereafter the system undergoes a sharp transition

to an equipartition region during a time τtr = Γ−1.

The MD simulations are best suited to investigate the shortest of these timescales,

the transition time τtr. MD simulations were performed at various total energies
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with initial data chosen such that the system was initially in the transition stage.

The velocity applied to the FM was chosen such that η ≈ 1/2 at the beginning of

each simulation. An estimate of the inverse transition time is then given by the

(dimensionless) time derivative of the ratio between fundamental and total energy,

Γ = ∂τη = ξ0,0∂tẼ0/ω0Ẽ. This quantity may be considered as an “instantaneous

Q-factor” of the resonator. The Q-factors reported here were evaluated at η ≈ 1/2,

where the relaxation rate is maximal. If temperature and excitation velocity are

changed independently the ratio of fundamental to total energy will also change,

which will obscure the scaling of the transition time-scale with energy. To avoid this,

the total energy was tuned by changing the pre-strain, employing the duality between

temperature and strain apparent from Eq. 6.3. The pre-strains of the structures used

in the MD simulations are determined by considering the number of atoms in the

resonators and the radius, using further the known value for the graphene bond

length obtained from the AIREBO potential (1.396 Å (Stuart et al., 2000)).

The results from the MD simulations (filled symbols) and CM model (open sym-

bols) are compared in Fig. 6·2(c). There is no dependence of the dimensionless relax-

ation rate on the size of the drum. This is consistent with the observation that the

dimensionless energy in Eq. 6.3 does not contain any length scale. The transition rate

is linear in energy for both models, i.e. Γ ∝ T ∗/ε2pre. Note that previous studies on

CVD-grown resonators show a power law dependence of the Q-factor on radius (Bar-

ton et al., 2011), in contrast to what is reported here. However, for CVD-grown

graphene grain boundaries will introduce an additional length scale that determines

the mode coupling (Qi and Park, 2012).

The existence of an initial metastable state for initial conditions far from equilib-

rium is a well known feature of the FPU-problem (Benettin et al., 2008; Fucito et al.,

1982; Campbell et al., 2005), and occurs also in other nonlinear lattices (Fucito et al.,
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1982) [see section 2.5]. The metastable state is strongly localized in mode space, and

is related to so called q-breathers (Flach et al., 2005; Penati and Flach, 2007). The

metastable state is obtained when the energy in the FM is much larger than the

thermal energy. External losses and thermal noise are expected to destroy this state,

but traces of it may be found by considering the relaxation as a function of excita-

tion energy. Numerical evidence on the FPU-chain suggests a stretched exponential

dependence of the life-time with excitation energy, τm � exp
(
Ẽ−α

)
(Benettin et al.,

1984; Benettin et al., 2008).

The metastable state was probed by initially feeding all energy into the FM,

and monitoring the evolution of the FM energy. As the time-scales for the decay

of this state is very long compared to the FM oscillations, this state is most readily

investigated using the CM model. For the present model, the exponent α ≈ 0.18 was

obtained from CM simulations with N = 32 and N = 40 modes (see Fig. 6·3). The

life-time of the metastable state didn’t show a dependence on the number of modes.

Note that the exponent α is model dependent (Pettini and Landolfi, 1990), e.g. for

the FPU-β-problem α = 0.25 has been reported (Berchialla et al., 2004).

The energy was strongly localized to the FM during the metastable state. The

localization of the metastable state in mode space depends on the frequency spectrum.

For the drum resonator, the frequencies can be approximated by ωn,drum ≈ ξ0,0 + nπ.

In comparison, for small wave numbers the frequencies of the FPU chain are given

by ωn,FPU ≈ nπ (Berman and Izrailev, 2005). Low frequencies of the FPU chain are

almost resonant, and so the formation of a q-breather will consist of a cascade of

modes being excited. The present system, being far from resonant, displays a strong

localization of energy.

The CM model can make quantitative predictions for the relaxation rate due to

energy redistribution in resonators of arbitrary size and tension. As an example, a
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drum of arbitrary radius, εpre = 0.2% and T = 4 K. The relaxation rate can be read

off from Fig. 6·2(c), giving a transition time of approximately 24000 oscillations,

decreasing to ∼ 200 oscillations at 300 K. For this relaxation to be observable, the

Q-factor arising from external losses must exceed these values.



Chapter 7

Future Work

Besides the work on graphene hexagon, bubble and kirigami presented in this the-

sis, there are infinitely many more possible couplings of mechanical deformation

graphene’s electronic properties. One immediate extension (though non-trivial, par-

ticularly within the context of calculating electronic properties in the presence of me-

chanical strain) is to extend the ideas presented in this thesis to other two-dimensional

materials. One important and emerging group of 2D materials is the transition metal

dichalcogenides (TMDs), which have the atomic structure of MX2, where M denotes

a transition metal atom and X denotes a chalcogen atom. As one of the represen-

tative TMDs, Molybdenum disulfide (MoS2) has drawn large amount of interests;

while another 2D material that has recently been widely studied is black phospho-

rus. MoS2 has sandwich layer and band gap (Mak et al., 2010) which is different

from graphene, and it can also be obtained by exfoliation. Black phosphorus also

has a band gap (Keyes, 1953) and its puckered lattice structure results in inter-

esting properties like auxeticity (Jiang and Park, 2014). Furthermore, both MoS2

and black phosphorus’s band gaps can be tuned by mechanical strain (Rodin et al.,

2014; Conley et al., 2013), which opens new doors for NEMS/MEMS applications.

Because of the 2D nature, they can be stacked to make heterostructures adding an-

other dimension to them. This stacking turns out to unveil a lot of more promising

engineering applications (Geim and Grigorieva, 2013; Novoselov and Neto, 2012).

Therefore, future studies can be carried out to explore the possibility to apply similar
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mechanical-electronic approach to simulate MoS2, black phosphorus and their het-

erostructures. These future studies rely on appropriate corresponding MD potentials

and TB formalism.
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Chapter 8

Conclusions

The unparalleled elastic properties of graphene and the unusual response of its elec-

trons to deformations captured by the PMF concept imply that nanostructures de-

formed with the right symmetry can behave as magnetic quantum dots. Conductance

at low EF is limited to edge state assisted resonant tunneling, and the valley degen-

eracy can be explicitly broken under an external field, allowing control over which

valley assists in the tunneling process. Since Bs can easily reach hundreds of Tesla in

experiments (Levy et al., 2010; Lu et al., 2012), such small pseudomagnetic quantum

dots are a viable prospect and certainly warrant further investigation.

PMFs in pressure-inflated graphene nanobubbles of different geometries and on

different substrates were also investigated, whose configurations under pressure were

obtained by classical MD simulations. The geometry of the nanobubbles is estab-

lished by an aperture of prescribed shape in the substrate against which a graphene

monoloayer is pressed under gas pressure. The results provide new insights into the

nature of pseudomagnetic fields determined by the interplay of the bubble shape

and the degree of interaction with the underlying substrate. In particular,comparing

nanobubbles inflated in three different substrate scenarios (clamped without sub-

strate, Au (111) and Cu (111)), demonstrates that the graphene-substrate interaction

is an essential aspect in determining the overall distribution and magnitude of the

strain and the PMFs both inside and outside the aperture region. For example, in

atomically flat regions graphene can adhere substantially to the substrate, leading to
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sizeable PMFs stemming from epitaxial strain even in the absence of any pressure or

substrate patterning. This adhesion varies from substrate to substrate and, in the

presence of an aperture or other substrate patterning, perturbs the strain distribu-

tion of the nanobubble when compared to a simply clamped edge, thus altering the

final PMF profile as well. The magnitude of the separate contributions from bond

bending and stretching to the PMF was analyzed as well. In this respect, whereas

the overall, large-scale curvature of the graphene sheet leads to significant corrections

to the pseudomagnetic field only in ultra-small bubbles with diameter smaller than

2 nm, sharp bends arising from direct clamping or from being pressed against an edge

in the substrate aperture result in much stronger PMFs locally, which remain in con-

siderably larger systems. In these cases, the bending contribution to the PMF can

be many times larger than the stretching counterpart, leading to a PMF distribution

dominated by large values near the edges of the substrate apertures. Furthermore,

if bending is (or can be) neglected, it has been established that an approximate dis-

placement approach is adequate to obtain the strain tensor and accurate values of

the pseudomagnetic fields from MD simulations, when compared with a direct tight-

binding approach where the modified hoppings are considered explicitly.

As alternative way of patterning and deforming graphene, a systematic study of

an experimentally-realized form of graphene kirigami was performed. In doing so, two

key geometric parameters are identified that can be tuned to controllably and pre-

dictably tailor the mechanical properties of graphene kirigami. Of particular interest,

the kirigami structures were found to exhibit yield and fracture strains that can be

more than three times that of bulk graphene or graphene nanoribbons. These simula-

tions demonstrate that the benefits of kirigami patterning, which have been exploited

for macroscale structures, may also hold in the thinnest possible nanostructures. It is

therefore expected that these kirigami structures may prove to be extremely useful in
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ameliorating the known brittle behavior of graphene nanostructures, and to provide

new methods for producing novel strain engineered graphene devices.

Energy dissipation in a mechanical graphene nanoresonator was systematically

studied. For pristine graphene, the redistribution of energy in graphene resonators

due to nonlinear mode coupling was investigated numerically in a ring-down setup.

This coupling is a limiting factor for the stability of excitations of individual modes.

At low temperatures, evidence was found for a state akin to the metastable state

found in the FPU problem. After a time increasing exponentially with inverse ex-

citation energy, the system relaxes toward its equilibrium with an energy-dependent

rate. The rate of relaxation from a strong non-equilibrium situation with all energy

in the FM to a situation close to equipartition depends only on the dimensionless

energy of the resonator, which in turn depends on temperature and strain through

the ratio T ∗/ε2pre, but not on resonator size. The Q-factors obtained are comparable

in magnitude to experimentally observed Q-factors (Eichler et al., 2011). Therefore,

it should be possible to experimentally verify the proposed mechanisms. Since the

system is closed, the rates reported here constitute a lower bound on the dissipa-

tion of graphene resonators. Many applications of nanomechanical systems rely on

high Q-factors (Ilic et al., 2004; LaHaye et al., 2004), and therefore an improved

understanding of the physical processes limiting this is of fundamental interest. The

results demonstrate the possibility of using graphene resonators as a test bed for

FPU physics. By this approach long standing questions in non-equilibrium statistical

mechanics might eventually be within experimental reach.



References

Abanin, D. A. and Pesin, D. A. (2012). Interaction-induced topological insulator
states in strained graphene. Physical Review Letters, 109:066802.

Abedpour, N., Asgari, R., and Guinea, F. (2011). Strains and pseudomagnetic fields
in circular graphene rings. Physical Review B, 84:115437.

Abraham, F. F., Walkup, R., Gao, H., Duchaineau, M., De La Rubia, T. D., and
Seager, M. (2002). Simulating materials failure by using up to one billion atoms
and the world’s fastest computer: Brittle fracture. Proceedings of the National
Academy of Sciences of USA, 99(9):5777–5782.

Alder, B. J. and Wainwright, T. (1959). Studies in molecular dynamics. i. general
method. Journal of Chemical Physics, 31(2):459–466.

Atalaya, J., Isacsson, A., and Kinaret, J. M. (2008). Continuum elastic modeling of
graphene resonators. Nano Letters, 8(12):4196–4200.

Bahamon, D. A., Pereira, A. L. C., and Schulz, P. A. (2010). Tunable resonances
due to vacancies in graphene nanoribbons. Physical Review B, 82:165438.

Bahamon, D. A., Pereira, A. L. C., and Schulz, P. A. (2011). Third edge for a
graphene nanoribbon: A tight-binding model calculation. Physical Review B,
83:155436.

Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and
Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano
Letters, 8(3):902–907.

Bambusi, D. and Ponno, A. (2008). Resonance, metastability and blow up in fpu.
In The Fermi-Pasta-Ulam problem. Springer.

Barnard, A. W., Sazonova, V., van der Zande, A. M., and McEuen, P. L. (2012).
Fluctuation broadening in carbon nanotube resonators. Proceedings of the National
Academy of Sciences of USA, 109(47):19093–19096.

Barton, R. A., Ilic, B., van der Zande, A. M., Whitney, W. S., McEuen, P. L., Parpia,
J. M., and Craighead, H. G. (2011). High, size-dependent quality factor in an array
of graphene mechanical resonators. Nano Letters, 11(3):1232–1236.

107



108

Benettin, G., Carati, A., Galgani, L., and Giorgilli, A. (2008). The fermi-pasta-ulam
problem and the metastability perspective. In The Fermi-Pasta-Ulam problem.
Springer.

Benettin, G., Galgani, L., and Giorgilli, A. (1984). Boltzmann’s ultraviolet cutoff
and nekhoroshev’s theorem on arnold diffusion. Nature, 311(5985):444–446.

Berchialla, L., Giorgilli, A., and Paleari, S. (2004). Exponentially long times to
equipartition in the thermodynamic limit. Physics Letters A, 321(3):167 – 172.

Berman, G. P. and Izrailev, F. M. (2005). The fermi-pasta-ulam problem: fifty years
of progress. Chaos, 15(1):015104.

Blakslee, O. L., Proctor, D. G., Seldin, E. J., Spence, G. B., and Weng, T. (1970).
Elastic constants of compression-annealed pyrolytic graphite. Journal of Applied
Physics, 41(8):3373.

Blase, X., Benedict, L. X., Shirley, E. L., and Louie, S. G. (1994). Hybridization
effects and metallicity in small radius carbon nanotubes. Physical Review Letters,
72:1878–1881.

Blees, M., Rose, P., Barnard, A., Roberts, S., and McEuen, P. L. (2014). Graphene
kirigami. http://meetings.aps.org/link/BAPS.2014.MAR.L30.11.

Bolotin, K. I., Sikes, K., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., and
Stormer, H. (2008). Ultrahigh electron mobility in suspended graphene. Solid
State Communications, 146(9):351–355.
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