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RESEARCH RELATED TO HIGH DIMENSIONAL ECONOMETRICS

(Order No. )

MINGLI CHEN

Boston University, Graduate School of Arts and Sciences, 2015

Major Professor: Pierre Perron, Professor of Economics

ABSTRACT

This dissertation consists of three chapters related to high dimensional econometrics

dealing with the estimation of nonlinear panel data models and networks models.

The �rst chapter proposes a �xed e�ects expectation-maximization estimator for a class

of nonlinear panel data models with unobserved heterogeneity modeled as individual and/or

time e�ects or an arbitrary interaction of the two. The estimator is obtained through a com-

putationally simple iterative two-step procedure, both steps having a closed form solution.

I show that the estimator is consistent in large panels, derive the asymptotic distribution

for a probit model with interactive e�ects, and develop analytical bias corrections to deal

with the incidental parameter problem.

The second chapter considers estimation and inference for semiparametric nonlinear

panel single index models with interactive e�ects. These include static and dynamic probit,

logit, and Poisson models. An iterative two-step procedure to maximize the likelihood is

proposed. The estimator is consistent, but has bias due to the incidental parameter problem.

Analytical and jackknife bias corrections are developed to remove the bias without increasing

variance.

The third chapter proposes Quantile Graphical Models (QGMs) to characterize pre-

dictive and conditional dependence relationships within a set of random variables in non-

Gaussian settings. These characterize the best linear predictor under asymmetric losses

and the conditional dependence at each quantile. Estimators based on high-dimensional

techniques are proposed. Each QGM represents the tail interdependence and the associated
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tail risk network and can be used to measure systemic risk contributions for the study of

�nancial contagion and hedging under a market downturn.
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Chapter 1

Estimation of Nonlinear Panel Models with Multiple

Unobserved E�ects

1.1 Introduction

Panel data allow the possibility of controlling for unobserved heterogeneity. Such heterogene-

ity can be an important phenomenon, and failure to control for it can result in misleading

inference. For example, in demand estimation, unobserved individual heterogeneity is an

important source of variation.

In this paper, I model unobserved heterogeneity as individual-speci�c e�ects to control

for individual heterogeneity, and/or time speci�c e�ects to control for common shocks that

occur to each individual. The way I control for those individual and time e�ects in nonlinear

models is to treat each e�ect as a separate parameter to be estimated, and I propose a �xed

e�ects expectation-maximization (EM) estimator that can be applied to a class of nonlinear

panel data models with those individual and/or time e�ects. Of particular interest is the

case of interactive e�ects, i.e., when the unobserved heterogeneity is modeled as a factor

analytical structure. To the best of the author's knowledge, the current paper presents the

�rst �xed e�ects EM-type estimator for nonlinear panel data models.

Interactive e�ects relax the invariant heterogeneity assumption and allow a more general

model of time-varying heterogeneity. These interactive e�ects can be arbitrarily correlated

with the observable covariates, which accommodates endogeneity and, at the same time,

allows correlations between individual e�ects. As an example of why these interactive ef-
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fects are important, (Moon et al., 2014), in a demand estimation setting, demonstrate that

interactive �xed e�ects can capture strong persistence in market shares across products and

markets, and �nd evidence that the factors are indeed capturing much of the unobservable

product and time e�ects leading to price endogeneity.

The nonlinear panel data models with unobserved �xed e�ects that I consider in this

paper have the following latent representation:

Y ∗
it = X

′
itβ + g(αi, γt) + εit, (1.1)

Yit = r(Y ∗
it), (1.2)

for t = 1, ..., T and i = 1, ..., N . The econometrian observes Yit, the dependent variable for

individual i at time t (or t can be a group), and Xit, the time-variant K×1 regressor matrix.

The econometrician does not observe Y ∗
it (the latent dependent variable), αi (the unobserved

time-invariant individual e�ect), γt (the unobserved time e�ect), or εit (the unobserved error

term). The vector β contains the main structural parameters of interest. The function r(·) is

a known transformation of the unobserved latent variable. The individual e�ects αi and time

e�ects γt are allowed to be correlated with the regressor matrix. I do not make parametric

assumptions on the distribution of either individual e�ects or time e�ects, hence the model

is semiparametric.1 The method proposed here can be applied to many functional forms

between αi and γt. The leading case I consider is when g(αi, γt) = α
′
iγt where both αi and

γt are R × 1 vectors; note that this includes the special case settings with only individual

e�ects or settings with additive individual and time e�ects.

Substantial theoretical and computational challenges are present in nonlinear panel mod-

els involving a large number of individual and time e�ects. In particular, in these models it

is in general not possible to remove the unobserved e�ects by di�erencing as is commonly

done in linear models. The incidental parameter problem, �rst pointed out by (Neyman and

1Relaxing parametric assumptions on the distribution of unobserved heterogeneity in nonlinear models
is important, as often such restrictions cannot be justi�ed by economic theory.
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Scott, 1948), may also be present due to the fact that an estimator of β will be a function

of the estimators of αi and γt, which converges to their limits at slower convergence rates

than that of β.

To deal with these problems, I propose a �xed e�ects expectation-maximization (EM)

type estimator, which I denote IF-EM when applied to the interactive e�ects case. The

estimator is obtained through an iterative two-step procedure, where the two steps have

closed-form solutions. The �rst step (the �E�-step) involves obtaining the expectation of the

mean utility function (the latent index) conditional on the observed dependent data.2 The

second step (the �M�-step) involves maximizing the resulting �linear� model. In practice, the

estimator is simple and straightforward to compute. Monte Carlo simulations demonstrate

it has good small-sample properties.

The incidental parameters problem might be present because estimates of �xed e�ects

are partially consistent, and structural parameters of interest are functions of these esti-

mates.3 For example, I discuss a panel probit model with interactive �xed e�ects (which

I denote PPIF) and demonstrate that its estimator PPIF is biased. I develop analytical

bias corrections to deal with the incidental parameter problem. The correction is based on

adapting to my setting the general asymptotic expansion of �xed e�ects estimators with

incidental parameters in multiple dimensions under asymptotic sequences where both di-

mensions of the panel grow with the sample size (as in (Fernández-Val and Weidner, 2013)).

In addition to model parameters, I provide bias corrections for average partial e�ects, which

are functions of the data, parameters, and individual and time e�ects in nonlinear models.

The proposed model and estimates can have wide applications in economics. For ex-

ample, factor structures have been used in a probit setting to represent market structure

(as in (Elrod and Keane, 1995)) or, in a linear setting, to explain labor and behavioral out-

2As shown later, this is essentially an inverse distribution approach. For the exponential class of distri-
butions, under Bregman loss, the conditional expectation is optimal in terms of MSE.

3The incidental parameters problem has di�erent e�ects in di�erent contexts and might not be present
in some nonlinear models, e.g., Poisson models or slope coe�cients in Tobit models. Additionally, marginal
e�ects in probit models with individual �xed e�ects might not have bias or might have small bias, as shown
in (Fernández-Val, 2009).
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comes ((Heckman et al., 2006)) or estimate the evolution of cognitive and noncognitive skills

((Cunha and Heckman, 2008; Cunha et al., 2010)). Another example where the �xed e�ects

approaches are used is the international trade partner choice (as in (Helpman et al., 2008)).

The estimator is also particularly useful in empirical �nance and in the setting with long

time series, such as empirical work using PSID data. Furthermore, the estimation procedure

can easily be extended to multinomial choice models.

This paper is related to multiple strands of the literature. First, it is related to the

literature on linear panel data models with factor structures. (Bai, 2009a) estimates factors

using the method of principal components. (Moon et al., 2014) extend the standard BLP

random coe�cients discrete choice demand model and propose a two-step procedure to

calculate the estimator. Other related papers include (Holtz-Eakin et al., 1988; Ahn et al.,

2001; Bai and Ng, 2002; Bai, 2003; Ahn et al., 2013; Andrews, 2005; Pesaran, 2006; Bai,

2009b; Moon and Weidner, 2010a), and (Moon and Weidner, 2010b). Some of these papers

(e.g. (Bai, 2009b)) let N → ∞ and T → ∞ while others (e.g. (Ahn et al., 2013)) have T

�xed and N → ∞.

This paper is also related to the literature on nonlinear panel data models and bias cor-

rection, such as (Arellano and Hahn, 2007; Hahn and Newey, 2004; Hahn and Kuersteiner,

2002; Fernández-Val, 2009; Bester and Hansen, 2009; Carro, 2007; Fernández-Val and Vella,

2011; Bonhomme, 2012; Chamberlain, 1980), and (Dhaene and Jochmans, 2010). (Charbon-

neau, 2012) extends the conditional �xed e�ects estimators to logit and Poisson models with

exogenous regressors and additive individual and time e�ects. (Fernández-Val and Weidner,

2013) develop analytical and jackknife bias corrections for nonlinear panel data models with

additive individual and time e�ects. (Freyberger, 2012) studies nonparametric panel data

models with multidimensional, unobserved individual e�ects when T is �xed. (Chen et al.,

2013) develop analytical and jackknife estimators for a class of nonlinear panel data models

with individual and time e�ects which enter the model interactively.

A �nal contribution of this paper is on the computation front, relating to the EM al-
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gorithm and latent back�ting procedure. Related work includes (Orchard and Woodbury,

1972; Dempster et al., 1977; Pan, 2002; Meng and Rubin, 1993; Laird, 1985), and (Pastorello

et al., 2003).

The remainder of the paper is structured as follows. Section 1.2 introduces the model,

the leading examples and their estimators. I also discuss the convergence of the estimation

procedure. Section 1.3 presents consistency and asymptotic results for probit with interactive

�xed e�ects. Section 1.4 presents some extensions and discussions. Section 1.5 contains

Monte Carlo simulation results and Section 1.6 presents the empirical examples. Section 1.7

concludes. All proofs are contained in the Appendix.

1.2 Models and Estimators

In this section, I start with the panel probit with interactive individual and time e�ects

case. I �rst specify the model and present the parameters and functional of interest and

then show how the model can be estimated using the proposed EM procedure.

1.2.1 Panel probit with interactive �xed e�ects (PPIF)

1.2.1.1 Model

I consider the following interactive �xed e�ects probit model

Y ∗
it = X ′

itβ + α
′
iγt + εit,

Yit = 1{Y ∗
it ≥ 0}, (1.3)

for i = 1, ..., N and t = 1, ...., T . Here, Yit is a scalar outcome variable of interest, Xit is a

vector of explanatory variables, and β is a �nite dimensional parameter vector. The variables

αi and γt are unobserved individual and time e�ects that in economic applications capture

individual heterogeneity and aggregate shocks, respectively. The model is semiparameteric

in that I do not specify the distribution of these e�ects nor their relationship with the
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explanatory variables, but, given that I consider probit in this section, I do specify ε to be

normally distributed with unit variance.

Denoting the cumulative distribution function of εit as Φ(·), the standard normal dis-

tribution, the conditional distribution of Yit can then be written using the single-index

speci�cation

P (Yit = 1|Xit, β, αi, γt) = Φ(Xitβ + α
′
iγt).

For estimation, I adopt a �xed e�ects approach, treating the unobserved individual and

time e�ects as parameters to be estimated. I collect all these e�ects in the vector ϕNT =

(α1, ..., αN , γ1, ..., γN )′. The model parameter β usually includes regression coe�cients of

interest, while the unobserved e�ects ϕNT are treated as nuisance parameters. The true

values of the parameters are denoted by β0 and ϕ0
NT = (α0

1, ..., α
0
N , γ01 , ..., γ

0
T )

′. Other

quantities of interest involve averages over the data and unobserved e�ects, such as average

partial e�ects, which are often the ultimate quantities of interest in nonlinear models. These

can be denoted

δ0NT = Eϕ[∆NT (β
0, ϕ0

NT )], ∆NT (β, ϕNT ) = (NT )−1
∑
i,t

∆(Xit, β, α
′
iγt), (1.4)

where ∆(Xit, β, α
′
iγt) represents some partial e�ect of interest and Eϕ denotes the expecta-

tion with respect to the distribution of the data, conditional on ϕ0
NT and β0.

Some examples of partial e�ects are the following:

Example 1.2.1. (Average partial e�ects) If Xit,k, the k-th element of Xit, is binary, its

partial e�ect for model speci�ed by (1.3) on the conditional probability of Yit is

∆(Xit, β, α
′
iγt) = Φ(βk +X

′
it,−kβ−k + α

′
iγt)− Φ(X

′
it,−kβ−k + α

′
iγt), (1.5)

where βk is the k-th element of β, and Xit,−k and β−k include all elements of Xit and β

except for the k-th element. If Xit,k is continuous, the partial e�ects of Xit,k for model (1.3)
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on the conditional probability of Yit is

∆(Xit, αi, γt) = βkϕf (X
′
itβ + α

′
iγt), (1.6)

here ϕf (·) is the derivative of Φ.

A particular application of this model is the study of international trade partner choice.

For example, (Helpman et al., 2008) consider panel of unilateral trade �ows between 158

countries for the year 1986. They use a probit model for the extensive margin of a gravity

equation with exporter and importer country e�ects to allow for asymmetric trade.

Example 1.2.2. (International Trade)

Pr(Tradeij = 1|Xij , αiγj) = Φ(X ′
ijβ + α

′
iγj), ∀i, j ∈ V, i ̸= j,

here V contains the identities of all the countries considered.

Here Tradeij is an indicator for positive trade from country j to country i, Xij includes

log of bilateral distance, and nine indicators for geography, institution and culture di�er-

ences.4 In this setting, N ≈ T . The estimated �xed e�ects can be used for forecasting

network linkages or calculating average partial e�ects as well.

1.2.1.2 Estimator for panel probit with interactive �xed e�ects

In this section, I describe how the model with interactive �xed e�ects can be estimated using

the proposed EM procedure. I discuss the case where the model has a known number of

factors R.5 I will start with R = 1; the case for R > 1 will be discussed in Section 1.4.

For full identi�cation, I assume γ1 = 1, though di�erent normalization restrictions can be

imposed and will require di�erent maximization steps, but this does not a�ect the estimation

of β as the factor structure enters into the model jointly as αiγt.

4See (Helpman et al., 2008) for additional details.
5Choosing the number of factors is beyond the scope of this paper.
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De�nition 1.2.1. (PPIF) The EM procedure for estimating the panel probit model with

interactive �xed e�ects is as follows:

(1) Given initial (β(k), α
(k)
i , γ

(k)
t ), denote µ

(k)
it = X ′

itβ
(k) + α

(k)
i γ

(k)
t ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗

it |Yit, Xit, β
(k), α

(k)
i , γ

(k)
t ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · ϕf (µ

(k)
it )/{Φ(µ(k)

it )(1− Φ(µ
(k)
it )},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given αi and γt, the parameter β can be updated by

β(k+1) =

(
N∑
i=1

T∑
t=1

XitX
′
it

)−1{ N∑
i=1

T∑
t=1

Xit

(
Ŷ

(k)
it − α

(k)
i γ

(k)
t

)}
,

CM-step 2: Given β and γt, the parameter αi can be updated by

α
(k+1)
i =

{
T∑
t=1

(Ŷ
(k)
it −X

′
itβ

(k+1))γ
(k)
t

}/ T∑
t=1

{
γ
(k)
t

}2
,

CM-step 3: Given β and αi, the parameter γt can be updated by

γ
(k+1)
t =

{
N∑
i=1

(Ŷ
(k)
it −X

′
itβ

(k+1))α
(k+1)
i

}/ N∑
i=1

{
α
(k+1)
i

}2
,

(4) Iterate the above steps until convergence.

Convergence and consistency, along with the asymptotic distribution of β will be dis-

cussed in the next sections.

Note that the estimation procedure can be adapted to linear panel data models with

interactive �xed e�ects, e.g. (Bai, 2009b). In a linear panel data model, Y ∗ is observed, and

hence the E-step described here will not be needed. However, the conditional maximization

procedure can still be applied to estimate a linear model.
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The EM procedure proposed here is simple, easy to implement and has closed-form

solutions in each step. The conditional maximization steps involves replacing the functional

of the current estimates of the other parameters.6

Remark 1.2.1. Di�erent normalizations for the individual and time e�ects can lead to dif-

ferent estimation procedures, even for linear models. For example, with the normalization

γ1 = 1, the linear panel data model with interactive �xed e�ects

Yit = X ′
itβ + αiγt + εit,

can be estimated as follows

CM-step 1: Given αi and γt, the parameter β can be updated by

β(k+1) =

(
N∑
i=1

T∑
t=1

XitX
′
it

)−1{ N∑
i=1

T∑
t=1

Xit

(
Yit − α

(k)
i γ

(k)
t

)}
,

CM-step 2: Given β and γt, the parameter αi can be updated by

α
(k+1)
i =

{
T∑
t=1

(Yit −X
′
itβ

(k+1))γ
(k)
t

}/ T∑
t=1

{
γ
(k)
t

}2
,

CM-step 3: Given β and αi, the parameter γt can be updated by

γ
(k+1)
t =

{
N∑
i=1

(Yit −X
′
itβ

(k+1))α
(k+1)
i

}/ N∑
i=1

{
α
(k+1)
i

}2
,

Iterate until convergence.

Since individual e�ects and additive individual and time e�ects are special cases of

interactive e�ects, I will present results for the individual e�ects case only.7 For the case

with additive individual and time e�ects, see Appendix A.1.1.

6This is an expectation and conditional maximization (ECM) procedure, see (Meng and Rubin, 1993) for
more details about ECM.

7More precisely, when the unobserved individual and time e�ects are multidimensional, the additive
individual and time e�ects case is a special case of the interactive e�ects case.
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1.2.2 Panel probit with only individual �xed e�ects

In this setting, I consider the following model

Y ∗
it = X ′

itβ + αi + εit,

Yit = 1{Y ∗
it ≥ 0}, (1.7)

for i = 1, ..., N and t = 1, ...., T . Here, Yit is a scalar outcome variable of interest, Xit is a

vector of explanatory variables, β is a �nite-dimensional parameter vector, αi are unobserved

individual e�ects.

Similarly to Section (1.2.1), I model the conditional distribution of Yit using the single-

index speci�cation

P (Yit = 1|Xit, β, αi) = Φ(Xitβ + αi),

and for estimation I adopt a �xed e�ects approach treating the unobserved individual e�ects

as parameters to be estimated. I collect all these e�ects in the vector ϕNT = (α1, ..., αN )′.

The true values of the parameters are denoted by β0 and ϕ0
NT = (α0

1, ..., α
0
N )′. Other

quantities of interest involve averages over the data and unobserved e�ects

δ0NT = E[∆NT (β
0, ϕ0

NT )], ∆NT (β, ϕNT ) = (NT )−1
∑
i,t

∆(Xit, β, αi), (1.8)

and examples of partial e�ects (∆) are the following:

Example 1.2.3. (Average partial e�ects) If Xit,k, the k-th element of Xit, is binary, its

partial e�ect for model (1.7) on the conditional probability of Yit is

∆(Xit, β, αi) = Φ(βk +X
′
it,−kβ−k + αi)− Φ(X

′
it,−kβ−k + αi), (1.9)

where βk is the k-th element of β, and Xit,−k and β−k include all elements of Xit and β
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except for the k-th element. If Xit,k is continuous, for model (1.7) the partial e�ects of Xit,k

on the conditional probability of Yit is

∆(Xit, αi) = βkϕf (X
′
itβ + αi), (1.10)

where ϕf (·) is the derivative of Φ.

De�nition 1.2.2. The �xed e�ects EM estimator for panel probit with individual �xed

e�ects is de�ned by

(1) Given initial (β(k), α
(k)
i ), denote µ

(k)
it = X ′

itβ
(k) + α

(k)
i ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗

it |Yit, Xit, β
(k), α

(k)
i ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · ϕf (µ

(k)
it )/{Φ(µ(k)

it )(1− Φ(µ
(k)
it )},

(3) M-step: This contains two conditional maximization steps

CM-step 1: Given αi, the parameter β can be updated by

β(k+1) = (
N∑
i=1

T∑
t=1

XitX
′
it)

−1{
N∑
i=1

T∑
t=1

Xit(Ŷ
(k)
it − α

(k)
i )},

CM-step 2: Given β, the parameter αi can be updated by

α
(k+1)
i =

1

T

T∑
t=1

(Ŷ
(k)
it −X

′
itβ

(k+1)),

(4) Iterate until converge.

This is essentially the case γt = 1, ∀t = 1, .., T . Note that the CM-step 2 here is just

the average over time using Ŷ
(k)
it as surrogate for Y ∗

it . This estimation procedure does not

involve computing the inverse of the Hessian.
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1.2.3 Nonlinear panel models with multiple unobserved e�ects

In this section, I describe how a general nonlinear panel data model with individual and

time e�ects can be estimated using the proposed EM procedure.

De�nition 1.2.3. The �xed e�ect EM estimator for a class of nonlinear panel data model

with individual and time e�ects is de�ned by

(1) Given initial (β(k), α
(k)
i , γ

(k)
t );

(2) E-step: calculate Ŷ
(k)
it := E[Y ∗

it |Yit, Xit, β
(k), g(α

(k)
i , γ

(k)
t )],

(3) M-step:

(β(k+1), α(k+1), γ(k+1)) ∈ argmin
β,α,γ

S(β(k), α(k), γ(k)) = (Ŷ
(k)
it −X

′
itβ − g(αi, γt))

2), (1.11)

(4) Iterate until convergence.

Convergence and consistency of β̂, de�ned as the output from the iteration, will be

discussed in the following sections. Note that this procedure is di�erent from the traditional

EM algorithm (discussed in (Dempster et al., 1977)), which is used to maximize the expected

log-likelihood function when there are latent variables, and its E-step is to augment the

incomplete likelihood with conditional likelihood for Y ∗
it |Yit; while here, the E-step is to

calculate a surrogate, Ŷit, for the unobserved Y ∗
it when there are unobserved individual and

time e�ects. This di�erence leads to a di�erent strategy of proof. Speci�cally, I adopt

the approach of using the conditional expectation of Y ∗
it because under Bregman loss the

conditional expectation is optimal in terms of mean squared error. Under certain conditions,

e.g., the density of the error term is in the exponential class of distributions, as shown in

Section 1.3, as well as for probit, those two have the same score functions. This is due to

the quadratic loss function of the probit model.

Remark 1.2.2. Depending on the functional form of the individual and/or time e�ects, the

M-step can be as follows:
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CM-step 1: Given αi and γt, the parameter β is updated via

β(k+1) = (
N∑
i=1

T∑
t=1

XitX
′
it)

−1{
N∑
i=1

T∑
t=1

Xit(Ŷ
(k)
it − g(α

(k)
i , γ

(k)
t ))},

CM-step 2: Given β, the parameters αi and γt are updated by maximizing

−
N∑
i=1

T∑
t=1

(Ŷ
(k)
it −X

′
itβ − g(α

(k)
i , γ

(k)
t ))2,

and this step can be implemented by using the method of least squares (or principal com-

ponents).

1.2.3.1 Convergence

In this section, I show the resulting estimate from the estimation procedure converges to a

point that maximizes the observed log-likelihood function. I focus on the interactive �xed

e�ects case, which is more complex due to the high degree of nonlinearity of the unobserved

e�ects term (all the other cases are concave in the �xed e�ects, though the convergence rates

are di�erent). Consistency results are discussed in Section 1.4. The IF-EM for probit su�ers

from asymptotic bias because the �xed e�ects converge slowly, which I address in Section

1.3.

For a binary model, denote the negative log-likelihood function

−LNT = −
∑
i,t

logF (qit(X
′
itβ + α′

iγt)),

where qit := 2Yit−1 and F is the cdf of Yit conditional on Xit,αi and γt. For brevity, assume

F is symmetric. De�ne the hazard function h(θ1) := −∂logF (θ1)/∂θ1 for a particular

argument θ1.

Recall the quadratic loss function S(β(k), α(k), γ(k)) = (Ŷ
(k)
it −X

′
itβ − g(αi, γt))

2 of the

M-step that the proposed �xed e�ects EM-type estimator depends on. The strategy of
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the proof is to show the negative log likelihood function of the model under consideration

is majorized by this quadratic function (up to some constant), which is satis�ed by the

following propositions

Proposition 1.2.1. Suppose X is a three-dimensional matrix with p sheets (N × T × p),

β and β̃ are p× 1 vectors, α and α̃ are N × R matrices, and γ and γ̃ are T × R matrices.

De�ne h̃it := h(qit(X
′
itβ̃ + α̃′

iγ̃t)), then

−LNT (β, α, γ) ≤ −LNT (β̃, α̃, γ̃)−
1

2

∑
i,t

h̃2it +
1

2

∑
i,t

(z̃it −X ′
itβ − α′

iγt)
2.

Proof: See Appendix A.1.2.

Proposition 1.2.2. (i) Up to a constant that depends on (β(k), α(k), γ(k)) but not on (β, α, γ),

the function S(β(k), α(k), γ(k)) majorizes −LNT (β, α, γ) at (β
(k), α(k), γ(k)).

(ii) Let (β(k), α(k), γ(k)), k = 1, 2, ..., be a sequence obtained by the IF-EM procedure.

Then S(β(k), α(k), γ(k)) decreases as k increases and converges to a local minimum

of −LNT (β, α, γ) as k goes to in�nity.

The proof of part (i) follows by applying the result from Proposition 1.2.1. The proof of

part (ii) follows from the property of the quadratic majorization.

This proves the convergence of the general EM procedure. Note that although I show

it for an interactive �xed e�ects model, the same proof procedure can be adapted to other

single index models with individual and time �xed e�ects. I discuss consistency in Section

1.4. Since the asymptotic distribution di�ers for di�erent models, in the next section I

will show the asymptotic distribution for the probit model, in which case the incidental

parameter problem occurs, and provide an analytical bias correction solution.

The EM procedure proposed here is simple, easy to implement, and has a closed form

solution in each step. The method can be extended in a straightforward way to handle

composite data which consists of both binary and continuous variables. While the binary

variables are modeled with Bernoulli distributions, the continuous variables can be modeled
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with Gaussian distributions. Including some continuous variables corresponds to adding

some Gaussian log-likelihood terms to the existing log-likelihood expression. Since the

Gaussian log-likelihood is quadratic, the ultimate function would still be majorized by a

quadratic function.8

1.3 Asymptotic theory for panel probit with interactive �xed e�ects

In this section, I discuss consistency and asympototic bias of the proposed estimator. I do so

in the context of PPIF but my method of proof can be extended to a wider class of models.

1.3.1 Consistency

I show PPIF is consistent but su�ers from incidental parameters bias. I will also discuss

bias corrections to the parameter and average partial e�ects in the next section.

I consider a panel probit model with scalar individual and time e�ects that enter the

likelihood function interactively through πit = αiγt. In this model, the dimension of the

incidental parameters is dimϕNT = N + T . I prove the consistency of PPIF under assump-

tions on the indexes. Since the proposed �xed e�ects EM estimator has the same score as

that of MLE, I derive its properties directly through the expansion of the score of its pro�le

likelihood function.

In this section, the parametric part of the model takes the form

logΦ(qit(X
′
itβ + πit)) = ℓit(β, πit).

Hence, the log-likelihood function is

LNT (β, ϕNT ) = LNT (β, π) =
1

NT

∑
i,t

ℓit(β, π) =
1

NT

∑
i,t

logΦ(qit(X
′
itβ + πit)).

8When there are no �xed e�ects, convergence is proved by the contraction mapping theorem argument.
See (Gourieroux et al., 1987)
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I make the following assumptions:

Assumption 1. Let v > 0 and µ > 4(8 + v)/v. Let ε > 0 and let B0
ε be a subset of

Rdimβ+1that contains an ε-neighborhood of (β0, π0
it) for all i, t, N, T .

(i) Asymptotics: Consider limits of sequences where N/T → κ2, 0 < κ < ∞, as N,T →

∞.

(ii) Sampling: Conditional on ϕ, {(Y T
i , XT

i ) : 1 ≤ i ≤ N} is independent across i, and

for each i, {Yit, Xit : 1 < t ≤ T} is α-mixing with mixing coe�cients satisfying supi ai(m) =

O(m−µ) as m → ∞, where

ai(m) := sup
t

sup
A∈Ai

t,B∈Bi
t+m

|P (A ∩B)− P (A)P (B)|

and for Zit = (Yit, Xit), Ai
t is the sigma �eld generated by (Zit, Zi,t−1, ...), and Bi

t is the

sigma �eld generated by (Zit, Zi,t+1, ...).

(iii) Moments: The partial derivatives of ℓit(β, π) w.r.t. the elements of (β, π) up to

fourth order are bounded in absolute value uniformly over (β, π) ∈ B0
ε by a function M(Zit) >

0 a.s., and maxi,t Eϕ[M(Zit)
8+v] is a.s. uniformly bounded over N,T . There exist constants

bmin and bmax such that for all (β, π) ∈ B0
ε , 0 < bmin ≤ −Eϕ[∂π2ℓit(β, π)] ≤ bmax a.s.

uniformly over i,t, N , T .

(iv) Non-colinearity condition: ∃c > 0, such that w.p.a.1,

min
{α∈R,∥α∥=1}

min
Λ∈RN×2

1

NT
Tr[(α ·X)′Mα(α ·X)] > c

Assumption (i) de�nes the large-T asymptotic framework as in (Hahn and Kuersteiner,

2002; Fernández-Val and Weidner, 2013; Chen et al., 2013). Assumption (ii) de�nes the data

sampling conditions. Assumption (iii) de�nes the �nite moment condition. Assumption (iv)

states that no linear combination of the regressors converges to zero, even after projecting

any two-dimensional factor loading α. Note that this rules out time-invariant and cross-

sectional invariant regressors.
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De�ne the �xed e�ects EM estimator for PPIF as β̂PPIF .

Lemma 1.3.1. Under Assumption 1, β̂PPIF = β0 + oP (1).

The proof is found in Appendix A.2.1 and contains two steps. I �rst show the consistency

of the index with the generalized residuals from the E-step. Then, in step two I show that

the residuals satisfy the conditions imposed on the linear panel data models with interactive

�xed e�ects as in (Bai, 2009b). The consistency of β̂PPIF follows.

1.3.2 Asymptotic results

De�ne the nonlinear di�erencing operator

Dβπqℓit := ∂πq+1ℓit(Xit − Ξit), for q = 0, 1, 2

where Ξit is a dimβ-vector including the least squares projections of Xit on the space of

incidental parameters spanned by α0
i γ

0
t (αi + γt) weighted by Eϕ(−∂π2ℓit), i.e.,

Ξit,k = α0
i γ

0
t (α

∗
i,k + γ∗t,k), (1.12)

(α∗
k, γ

∗
k) ∈ argmin

αi,k,γt,k

∑
i,t

Eϕ[−∂z2ℓit(Xit − α0
i γ

0
t (αi,k + γt,k))

2].

Let H be the (N+T )×(N+T ) expected value of the Hessian matrix of the log-likelihood

with respect to the nuisance parameters evaluated at the true parameters, i.e.,

H = Eϕ[−∂ϕϕ′L] =

[
H(αα) H(αγ)

H
′

(αγ) H(γγ)

]
,

where H(αα) = diag(
∑

t(γ
0
t )

2Eϕ[−∂π2ℓit])/(NT ), H(αγ)it = (α0
i γ

0
t Eϕ[−∂π2ℓit])/(NT ), and

H(γγ) = diag(
∑

i(α
0
i )

2Eϕ[−∂π2ℓit])/(NT ). Furthermore, let H−1
(αα), H

−1
(αγ), H

−1
(γα), and H−1

(γγ)
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denote the N ×N , N × T , T ×N and T × T blocks of the inverse H−1
of H. Then

Ξit = − 1

NT

N∑
j=1

T∑
τ=1

(H−1
(αα)ijγ

0
τγ

0
t +H−1

(αγ)iτα
0
jγ

0
t

+ H−1
(γα)tjα

0
i γ

0
τ +H−1

(γγ)tτα
0
iα

0
j )Eϕ(∂βπℓjτ ). (1.13)

This nonlinear di�erencing operator generalizes to nonlinear models the partialing-out of

individual and time e�ects in linear models. For example, if the model is linear, ∂π2ℓit = −1,

∂βπℓit = −Xit, and

Ξit = T−1
T∑
t=1

Eϕ[Xit] +N−1
N∑
i=1

Eϕ[Xit]− (NT )−1
N∑
i=1

T∑
t=1

Eϕ[Xit],

so that Dβℓit = −(Xit − Ξit)∂πℓit, Dβπℓit = −(Xit − Ξit), and Dβπ2ℓit = 0.

Let E := plimN,T→∞. The following theorem establishes the asymptotic distribution of

the �xed e�ects EM estimator for PPIF, β̂PPIF .

Theorem 1.3.1. (Asymptotic distribution of β̂PPIF ). Suppose that Assumption 1 holds,

that the following limits exist

B∞ = −E

[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t γ

0
t γ

0
τEϕ[∂πℓitDβπℓiτ ] +

1
2

∑T
t=1(γ

0
t )

2Eϕ(Dβπ2ℓit)∑T
t=1(γ

0
t )

2Eϕ(∂π2ℓit)

]
,

D∞ = −E

[
1

T

T∑
t=1

∑N
i=1(α

0
i )

2Eϕ(∂πℓitDβπℓit +
1
2Dβπ2ℓit)∑N

i=1(α
0
i )

2Eϕ(∂π2ℓit)

]
,

W∞ = −E

[
1

NT

N∑
i=1

T∑
t=1

Eϕ(∂ββ′ℓit − ∂π2ℓitΞitΞ
′
it)

]
,

and that W∞ > 0. Then,

√
NT (β̂PPIF − β0)

d−→ W
−1
∞ N(κB∞ + κ−1D∞,W∞).
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The detailed proof is in Appendix A.2.2.

Let X̃it = Xit − Ξit be the residual of the least squares projection of Xit on the space spanned

by the incidental parameters weighted by Eϕ(ωit), for ωit = (ϕf (X
′
itβ + α0

i γ
0
t ))

2/[Φ(X
′
itβ

0 +

α0
i γ

0
t )(1− Φ(X

′
itβ + α0

i γ
0
t ))].

Remark 1.3.1. For the probit model with Xit strictly exogenous, observe that

B∞ = E[
1

2N

N∑
i=1

∑T
t=1(γ

0
t )

2Eϕ[ωitX̃itX̃
′
it]∑T

t=1(γ
0
t )

2Eϕ[ωit]
]β0,

D∞ = E[
1

2T

T∑
t=1

∑N
i=1(α

0
i )

2Eϕ[ωitX̃itX̃
′
it]∑N

i=1(α
0
i )

2Eϕ[ωit]
]β0,

W∞ = E

[
1

NT

N∑
i=1

T∑
t=1

Eϕ[ωitX̃itX̃
′
it]

]
.

The asymptotic bias is therefore a positive-de�nite-matrix of the weighted average of the

true parameters as in the case of the probit model with additive e�ects (see (Fernández-Val

and Weidner, 2013)).

1.3.3 Asymptotic distribution of the average partial e�ects

In nonlinear models, the researcher is often interested in average partial e�ects in addition

to the model structural parameters. These e�ects are averages of the data, parameters

and unobserved e�ects as in equation (1.4). I impose the following sampling and moment

conditions on the function ∆ that de�nes the partial e�ects:

Assumption 2. (Partial e�ects). Let v > 0, ϵ > 0, and B0
ϵ all be as in Assumption 1

(i) Sampling: for all N , T ,{αi}N and {γt}T are deterministic;

(ii) Model: for all i, t, N , T , the partial e�ects depend on αi and γt through αiγt:

∆(Xit, β, αi, γt) = ∆it(β, αiγt).

The realizations of the partial e�ects are denoted by ∆it := ∆it(β
0, α0

i γ
0
t ).
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(iii) Moments: The partial derivatives of ∆it(β, π) with respect to the elements of (β, π)

up to fourth order are bounded in absolute value uniformly over (β, π) ∈ B0
ε by a function

M(Zit) > 0 a.s., and maxi,t Eϕ[M(Zit)
8+v] is a.s. uniformly bounded over N,T .

(iv) Non-degeneracy and moments: mini,t V ar(∆it) > 0 and maxi,t V ar(∆it) < ∞,

uniformly over N , T .

Analogous to Ξit in equation (1.13), de�ne

Ψit = − 1

NT

N∑
j=1

T∑
τ=1

(H−1
(αα)ijγ

0
τγ

0
t +H−1

(αγ)iτα
0
jγ

0
t +H−1

(γα)tjα
0
i γ

0
τ +H−1

(γγ)tτα
0
iα

0
j )∂π∆jτ ,

which is the population projection of ∂π∆it/Eϕ[∂π2ℓit] on the space spanned by the incidental

parameters under the metric given by Eϕ[−∂π2ℓit]. I use a analogous notation to the previous

section for the derivatives with respect to β and higher order derivatives with respect to π.

Let δ0NT be the APE as de�ned in equation (1.4), and δ̂ be its estimator ∆NT (β̂, ϕ̂NT ) =

(NT )−1
∑

i,t∆(Xit, β̂, α̂iγ̂t). The following theorem establishes the asymptotic distribution

of δ̂.

Theorem 1.3.2. (Asymptotic distribution of δ̂). Suppose that the assumptions of Theorem

1.3.1 and Assumption 2 hold, and that the following limits exist:

(Dβ∆)∞ = E[
1

NT

N∑
i=1

T∑
t=1

Eϕ(∂β∆it − Ξit∂π∆it)],

B
δ
∞ = (Dβ∆)

′

∞W
−1
∞ B∞ + E[

1

N

N∑
i=1

∑T
t=1

∑T
τ=t γ

0
t γ

0
τEϕ(∂πℓit∂π2ℓiτΨiτ )∑T

t=1(γ
0
t )

2Eϕ(∂π2ℓit)
]

−E[
1

2N

N∑
i=1

∑T
t=1(γ

0
t )

2[Eϕ(∂π2∆it)− Eϕ(∂π3ℓit)Eϕ(Ψit)]∑T
t=1(γ

0
t )

2Eϕ(∂π2ℓit)
],

D
δ
∞ = (Dβ∆)

′

∞W
−1
∞ D∞ + E[

1

T

T∑
t=1

∑N
i=1(α

0
i )

2Eϕ(∂πℓit∂π2ℓitΨit)∑N
i=1(α

0
i )

2Eϕ(∂π2ℓit)
]

−E[
1

2T

T∑
t=1

∑N
i=1(α

0
i )

2[Eϕ(∂π2∆it)− Eϕ(∂π3ℓit)Eϕ(Ψit)]∑N
i=1(α

0
i )

2Eϕ(∂π2ℓit)
],
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V
δ
∞ = E{ 1

NT

N∑
i=1

[
T∑

t,τ=1

Eϕ(∆̃it∆̃
′
iτ ) +

T∑
t=1

Eϕ(ΓitΓ
′
it)]},

for some V
δ
∞ > 0, where ∆̃it = ∆it − E(∆it) and Γit = (Dβ∆)

′

∞W
−1
∞ Dβℓit − Eϕ(Ψit)∂πℓit.

Then,
√
NT (δ̂ − δ0NT − T−1B

δ
∞ −N−1D

δ
∞)

d−→ N(0, V
δ
∞).

The bias and variance are of the same order asymptotically under the asymptotic se-

quence of Assumption 1(i).

Remark 1.3.2. (Average e�ects from bias-corrected estimators). As in the case of the probit

with additive e�ects ((Fernández-Val and Weidner, 2013)), the �rst term in the expressions

of the biases B
δ
∞ and D

δ
∞ comes from the bias of the estimator of β. It drops out when

the APEs are constructed from asymptotically unbiased or bias-corrected estimators of the

parameter β, i.e.,

δ̃ = ∆(β̃, ϕ̂(β̃)),

where β̃ is such that
√
NT (β̃−β0)

d→ N(0,W
−1
∞ ). The asymptotic variance of δ̃ is the same

as in Theorem 1.3.2.

In the following examples I assume that the APEs are constructed from asymptocially

unbiased estimators of the model parameters.

Example 1.3.1. Consider the partial e�ects de�ned in (1.5) and (1.6) with

∆it(β, αiγt) = Φ(βk +X
′
it,−kβ−k + αiγt)− Φ(X

′
it,−kβ−k + αiγt)

and

∆it(β, αiγt) = βkϕf (X
′
itβ + αiγt).

Denote Hit = ϕf (X
′
itβ + α0

i γ
0
t )/[Φ(X

′
itβ

0 + α0
i γ

0
t )(1 − Φ(X

′
itβ + α0

i γ
0
t ))] and use notations

previously introduced, the components of the asymptotic bias of δ̃ are
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B
δ
∞ = E[

1

2N

N∑
i=1

∑T
t=1[2

∑T
τ=t+1 Eϕ(Hit(Yit − Φit)ωiτ Ψ̃iτ )− Eϕ(Ψit)Eϕ(Hit∂

2Φit)∑T
t=1 Eϕ(ωit)

]

+ E[
1

2N

N∑
i=1

Eϕ(∂π2∆it)]∑T
t=1 Eϕ(ωit)

]

D
δ
∞ = E[

1

2T

T∑
t=1

∑N
i=1[−Eϕ(Ψit)]Eϕ(Hit∂

2Φit) + Eϕ(∂π2∆it)∑N
i=1 Eϕ(ωit)

]

where Ψ̃it is the residual of the population regression of −∂π∆it/Eϕ[ωit] on the space

spanned by the incidental parameters under the metric given by Eϕ[ωit]. If all the compo-

nents of Xit are strictly exogenous, the �rst term in the numerator of B
δ
∞ is zero.

1.3.4 Bias-corrected estimators

The results of the previous sections show that the asymptotic distributions of the interactive

�xed e�ects estimators of the model parameters and APEs can have asymptotic bias under

sequences where T grows at the same rate as N , as also discussed in (Chen et al., 2013).

This large-T version of the incidental parameters problem can invalidate any inference based

on the asymptotic distribution. In this section I discuss how to construct analytical bias

corrections for PPIF and give conditions for the asymptotic validity of the analytical bias

corrections. The proof strategy here is similar to (Fernández-Val and Weidner, 2013) which

is under the additive individual and time e�ects setting.

The analytical corrections are constructed using sample analogs of the expressions in

Theorems 1.3.1 and 1.3.2, replacing the true values of β and ϕ by the estimated ones. To

describe these corrections, I introduce some additional notation. For any function of the

data, unobserved e�ects and parameters φitj(β, αiγt, αiγt−j) with 0 ≤ j < t, let φ̂itj =

φit(β̂, α̂iγ̂t, α̂iγ̂t−j) be its estimator, e.g., Eϕ
̂[∂π2ℓit] denotes the estimator of Eϕ[∂π2ℓit]. Let
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Ĥ−1
(αα), Ĥ

−1
(αγ), Ĥ

−1
(γα) and Ĥ−1

(γγ) denote the blocks of the matrix Ĥ−1, where

Ĥ =

(
Ĥ(αα) Ĥ(αγ)

Ĥ′

(αγ) Ĥ(γγ)

)
,

Ĥ(αα) = diag(−
∑

t(γ̂t)
2Eϕ[∂̂π2ℓit])/(NT ), Ĥ(αγ)it = −α̂iγ̂tEϕ[∂̂π2ℓit]/(NT ), and Ĥ(γγ) =

diag(−
∑

i(α̂i)
2Eϕ[∂̂π2ℓit])/(NT ). Let

Ξ̂it = − 1

NT

N∑
j=1

T∑
τ=1

(Ĥ−1
(αα)ij γ̂τ γ̂t + Ĥ−1

(αγ)iτ α̂j γ̂t + Ĥ−1
(γα)tjα̂iγ̂τ + Ĥ−1

(γγ)tτ α̂iα̂j)Eϕ(∂̂βπℓjτ ),

the kth component of Ξ̂it corresponds to a least square regression ofXit on the space spanned

by the incidental parameters weighted by −Eϕ(∂̂βπℓit). The analytical bias-corrected esti-

mator of β0 is

β̃A = β̂ − B̂/T − D̂/N,

where

B̂ = − 1

N

N∑
i=1

∑L
j=0(T/(T − j))

∑T
t=j+1 γ̂tγ̂τE( ̂∂πℓitDβπℓiτ ) +

1
2

∑T
t=1(γ̂t)

2E(D̂βπ2ℓit)∑T
t=1(γ̂t)

2E(∂̂π2ℓit)
,

D̂ = − 1

T

T∑
t=1

∑N
i=1(α̂i)

2E( ̂∂πℓitDβπℓit +
1
2D̂βπ2ℓit)∑N

i=1(α̂i)2E(∂̂π2ℓit)
,

and L is a trimming parameter for estimation of spectral expectations such that L → ∞

and L/T → 0, see (Hahn and Kuersteiner, 2011).

Asymptotic (1− p)- con�dence intervals for the components of β0 can be formed as

β̃A
k ± z1−p

√
Ŵ−1

kk /(NT ), k = {1, ...,dimβ0}.

where z1−p is the (1 − p) quantile of the standard normal distribution, and Ŵ−1
kk is the
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(k, k)-element of the matrix Ŵ−1 with

Ŵ = − 1

NT

N∑
i=1

T∑
t=1

Eϕ
̂(∂ββ′ℓit)− Eϕ( ̂∂π2ℓitΞitΞ′

it).

The analytical bias-corrected estimator of δ0NT is

δ̃A = δ̃ − B̂δ/T − D̂δ/N,

where I use δ̃, i.e., the APE constructed from a bias corrected estimator of β. Let

Ψ̂it = − 1

NT

N∑
j=1

T∑
τ=1

(Ĥ−1
(αα)ij γ̂τ γ̂t + Ĥ−1

(αγ)iτ α̂j γ̂t + Ĥ−1
(γα)tjα̂iγ̂τ + Ĥ−1

(γγ)tτ α̂iα̂j)∂̂π∆jτ ,

then the estimated asymptotic biases are

B̂δ =
1

N

N∑
i=1

∑L
j=0[T/(T − j)]

∑T
t=j+1 γ̂tγ̂τEϕ(∂̂πℓi,t−j ∂̂π2ℓitΨ̂it)∑T

t=1(γ̂t)
2Eϕ(∂̂π2ℓit)

− 1

2N

N∑
i=1

∑T
t=1(γ̂t)

2[Eϕ(∂̂π2∆it)− Eϕ(∂̂π3ℓit)Eϕ(Ψ̂it)]∑T
t=1(γ̂t)

2Eϕ(∂̂π2ℓit)

D̂δ =
1

T

T∑
t=1

∑N
i=1(α̂i)

2[Eϕ(∂π ̂ℓit∂π2ℓitΨit)− 1
2Eϕ(∂̂π2∆it) +

1
2Eϕ(∂̂π3ℓit)Eϕ(Ψ̂it)]∑N

i=1(α̂i)2Eϕ(∂̂π2ℓit)
].

The estimator of the asymptotic variance depends on the assumptions about the distribu-

tion of the unobserved e�ects and explanatory variables. Assumption 2(i) requires imposing

a homogeneity assumption on the distribution of the explanatory variables to estimate the

�rst term of the asymptotic variance. For example, if {Xit : 1 ≤ i ≤ N, 1 ≤ t ≤ T} is

identically distributed over i, this term is given by

V̂ δ =
1

NT

N∑
i=1

[

T∑
t,τ=1

ˆ̃∆it
ˆ̃∆

′
iτ +

T∑
t=1

Eϕ(Γ̂itΓ
′
it)],

for ˆ̃∆it = ∆̂it − N−1
∑N

i=1 ∆̂it. Bias corrected estimators and con�dence intervals can be
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constructed in the same fashion as for the model parameter.

The following theorems show that the analytical bias corrections eliminate the bias from

the asymptotic distribution of the �xed e�ects estimators of the model parameters and

APEs without increasing the variance, and that the estimators of the asymptotic variances

are consistent. Those are the main results of this section.

Theorem 1.3.3. (Bias correction for β̂) Under the conditions of Theorem 1.3.1,

Ŵ
p−→ W∞,

and, if L → ∞ and L/T → 0,

√
NT (β̃A − β0)

d−→ N(0,W∞
−1).

Theorem 1.3.4. (Bias correction for δ̂) Under the conditions of Theorems 1.3.1 and 1.3.2,

V̂ δ p→ V
δ
∞,

and, if L → ∞ and L/T → 0,

√
NT (δ̃A − δ0NT )

d→ N(0, V
δ
∞).

Remark 1.3.3. Split-panel jackknife as described in (Chen et al., 2013; Fernández-Val and

Weidner, 2013) can also be applied.
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1.4 Discussions and Extensions

1.4.1 Comparison with the existing estimators: No �xed e�ects or only indi-

vidual e�ects

When there are no �xed e�ects, the model becomes

Y ∗
it = X ′

itβ + εit,

Yit = 1{Y ∗
it ≥ 0}, (1.14)

where all objects are as de�ned previously. The conditional distribution of Yit is given by

P (Yit = 1|Xit, β) = Φ(Xitβ),

and for estimation the following EM procedure can be used:

De�nition 1.4.1. (1) Given initial β(k), denote µ
(k)
it = X

′
itβ

(k);

(2) E-step: Calculate Ŷ
(k)
it := E[Y ∗

it |Yit, Xit, β
(k)];

(3) M-step: The parameter β is updated via

β(k+1) = (

N∑
i=1

T∑
t=1

XitX
′
it)

−1{
N∑
i=1

T∑
t=1

XitŶ
(k)
it }.

(4) Iterate until convergence.

I start by comparing this estimation with existing methods.

Proposition 1.4.1. For panel probit models, the proposed EM-type estimator is asymptot-

ically equivalent to the MLE.

Proof: See Appendix A.3.1.1. When applying the proposed �xed e�ects EM-type esti-

mator to probit (or for the general exponential family), its E-step involves calculating the

conditional expectation of the error, which is exactly the score of expected, complete data,
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log-likelihood function or the score of the observed log-likelihood (it also corresponds to the

notion of generalized residuals proposed in (Gourieroux et al., 1987) for cross-sectional data).

Hence, the �xed e�ects EM-type estimator directly works with the observed score. For the

case when there are no unobserved e�ects, the EM method is asymptotically equivalent to

MLE and there is no asymptotic bias. For the cases when there are unobserved e�ects, and

when there are incidental parameter problems, an iterated bias correction to the score can

be easily implemented through the E-step.

Proposition 1.4.2. For the panel probit model with individual e�ects, the di�erence between

the proposed �xed e�ects EM-type estimator and Newton's method lies in whether inverting

the Hessian of the observed data log-likelihood function.

Proof: See Appendix A.3.1.2. I explicitly compare the two iterative steps of the �xed

e�ects EM-type estimator and the Netwon's method. Each iteration of the proposed �xed

e�ects EM-type estimator is a least squares calculation (with the generalized residual); it

does not use the inverse of the Hessian of the observed data log-likelihood function like

Newton's method.9

1.4.2 PPIF with multiple factors

In this setting, the model, written in matrix notation, is

Y = 1(Xβ + αγ′ + ε ≥ 0),

where Y = (Y1, ..., YN )′ (with Yi = (Yi1, ..., YiT )
′, a T × 1 vector) is an N × T matrix and

X (with Xi = [Xi1, ..., XiT ]
′
is a T × p matrix) is a three-dimensional matrix with p sheets

(N × T × p), the ℓ-th sheet of which is associated with the ℓ-th element of β(ℓ = 1, ..., p).

α = (α1, ..., αN )
′
is an N ×R matrix, while γ = (γ1, ..., γT )

′ is a T ×R matrix. The product

Xβ is an N × T matrix and ε = (ε1, ..., εN ) is an N × T matrix.

9See (Greene, 2004) for more about estimation of nonlinear panel data models with individual �xed
e�ects.
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Since αγ′ = αA−1Aγ′ for any R × R invertible A, identi�cation is not possible without

restrictions.

Condition 1. (Normalization) (i) γ′γ/T = IR; (ii) α
′α = diagonal.

Under di�erent normalization conditions, the estimation procedure (the conditional max-

imization steps) for the factor is di�erent.

De�nition 1.4.2. The EM procedure for estimating a panel probit model with multi-

dimensional interactive �xed e�ects under Condition 1 is de�ned by the following:

(1) Given initial (β(k), α
(k)
i , γ

(k)
t ), denote µ

(k)
it = X ′

itβ
(k) + (α

(k)
i )′γ

(k)
t ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗

it |Yit, Xit, β
(k), α

(k)
i , γ

(k)
t ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · ϕf (µ

(k)
it )/{Φ(µ(k)

it )(1− Φ(µ
(k)
it )},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given αi and γt, the parameter β is updated via

β(k+1) =

(
N∑
i=1

X
′
iXi

)−1{ N∑
i=1

X
′
i(Ŷ

(k)
i − α

(k)
i γ(k))

}
,

CM-step 2: Given β and αi, the parameter γ is updated via

γ(k+1) = eig[
1

NT

N∑
i=1

(Ŷ
(k)
i −Xiβ

(k+1))(Ŷ
(k)
i −Xiβ

(k+1))′],

CM-step 3: Given β and γt, the parameter α is updated via

α(k+1) = T−1(Ŷ (k) −Xβ(k+1))γ(k+1),

(4) Iterate until convergence.
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The CM-step 2 calculates the R largest eigenvector of the matrix in brackets, arranged

in decreasing order. It imposes the normalizations of Condition 1 by using eigenvectors.

An alternative estimation procedure based on a QR decomposition that does not impose

Condition 1(ii) is also proposed below.

De�nition 1.4.3. The QR-based decomposition EM procedure for estimating a panel probit

model with multi-dimensional interactive �xed e�ects is de�ned by the following:

(1) Given initial (β(k), α
(k)
i , γ

(k)
t ), denote µ

(k)
it = X ′

itβ
(k) + (α

(k)
i )′γ

(k)
t ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗

it |Yit, Xit, β
(k), α

(k)
i , γ

(k)
t ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · ϕf (µ

(k)
it )/{Φ(µ(k)

it )(1− Φ(µ
(k)
it )},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given αi and γt, the parameter β is updated via

β(k+1) =

(
N∑
i=1

X
′
iXi

)−1{ N∑
i=1

X
′
i(Ŷ

(k)
i − α

(k)
i γ(k))

}
,

CM-step 2: Given β and αi, the parameter γ is updated via

γ(k+1) = (Ŷ (k) −Xβ(k+1))′α(k)((α(k))′α(k))−1.

Compute the QR decomposition γ(k+1) = γ̃(k+1)RM and replace γ(k+1) by γ̃(k+1),

CM-step 3: Given β and γ̃, the parameter α is updated via

α(k+1) = (Ŷ (k) −Xβ(k+1))γ̃(k+1),

(4) Iterate until convergence.

Through the iterations, the columns of the updated values of γ are made orthonormal via
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the QR decomposition (imposing normalization, but other decomposition methods can also

be used), i.e., (γ̃(k+1))′γ̃(k+1) is orthonormal (IR). The QR decomposition is often used to

solve the linear least squares problem, and is the basis for a particular eigenvalue algorithm.

With additional restrictions, such as a full rank condition on γ and a sign restriction on RM ,

the QR decomposition method can achieve unique values of α and γ.

Note that the orthogonalization does not alter the convergence property. Let γ(k+1)

be the optimizer before orthogonalization. Then S(β, γ(k+1), α(k)) ≤ S(β, γ(k), α(k)). Let

γ(k+1) = γ̃(k+1)RM be the QR decomposition of γ(k+1), and let α̃(k) = α(k)R
′
M . Then

α̃(k)(γ̃(k+1))′ = α(k)(γ(k+1))
′
, so S(β, γ̃(k+1), α̃(k)) = S(β, γ(k+1), α(k)), and, consequently,

S(β, γ̃(k+1), α̃(k)) ≤ S(β, γ(k), α(k)).

1.4.2.1 Consistency

In general, the consistency proof contains two steps as shown in the proof for PPIF. The

�rst step involves the consistency of the conditional expectation, and the second checks the

assumptions needed for the consistency of the �linearized� model.

Assumption 3. (Bounded second-order derivative) ∂π2LNT (β, π) ≥ bmin.

Lemma 1.4.1. Under Assumption 3 and Assumption 1(i), (ii), and (iv), β̂IF−EM = β0 +

op(1).

Proof: See Appendix A.3.2.

1.5 Simulations

This section reports evidence on the �nite sample behavior of �xed e�ects estimators in

static models with strictly exogenous regressors. This includes several cases: no unobserved

e�ects, individual e�ects, additive individual and time e�ects, and interactive individual

and time e�ects. I analyze the performance of the generalized least square (GLS) method

using the R-package glm, which is available on CRAN, and the �xed e�ects EM-type
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estimators in terms of bias and inference accuracy based on their asymptotic distribution. I

also analyze the performance of the uncorrected and bias-corrected interactive �xed e�ects

EM-type estimators in terms of bias and inference accuracy. In particular, I compute the

biases, standard deviations, and root mean squared errors (RMSE) of the estimators, the

ratio of averaged standard errors to the simulation standard deviations (SE/SD); and the

empirical coverages of con�dence intervals with 95% nominal value (p; .95). All results are

based on 500 replications.

The data generating processes are:

• DGP-1: Yit = 1{Xitβ + εit > 0}, (i = 1, ..., N ; t = 1, ..., T ),

• DGP-2: Yit = 1{Xitβ + αi + εit > 0}, (i = 1, ..., N ; t = 1, ..., T ),

• DGP-3: Yit = 1{Xitβ + αi + γt + εit > 0}, (i = 1, ..., N ; t = 1, ..., T ),

• DGP-4: Yit = 1{Xitβ + αiγt + εit > 0}, i = 1, ..., N ; t = 1, ..., T ,

where β = 1, αi ∼ N(0, 1), γt ∼ N(0, 1), and Xit ∼ N(0, 1) are strictly exogenous with

respect to εit with εit ∼ N(0, 1).

Throughout, �No FE� refers to the probit without �xed e�ects; �FE i� refers to the probit

with individual �xed e�ects; �FE 2� refers to the probit with additive individual and time

�xed e�ects; �IF� refers to the probit with interactive �xed e�ects; �glm� refers to the GLS

estimator in R, while �EM� refers to the �xed e�ects EM-type estimators proposed. For

interactive �xed e�ects, I also implement the bias correction procedure proposed here; �BC-

IF� refers to the bias-corrected estimator. All the results are reported in percentages of the

true parameter value.

The simulation results are summarized in Table 1.1 for N = 100 and T = 8, 12, 20, and

in Table 1.2 for N=52 and T = 14, 26, 52. They show that in all the cases analyzed EM has

smaller biases and variances and compares favorably to glm. For example, for the case with

additive individual and time e�ects, when N = 100 and T = 12, the bias for glm is 21%,
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whereas the EM estimator is only 11%. Even for the case without unobserved e�ects, when

N = 100 and T = 20, the bias for glm is 0.52%, whereas the EM estimator is only 0.11%. In

terms of RMSE, for the case of individual e�ects, when N = 52 and T = 14, the RMSE for

glm is 16%, whereas for the EM estimator it is 15%. When there is a bias, the results also

show that it is of the same order of magnitude as the standard deviation for the uncorrected

EM and glm estimator, and this causes severe undercoverage of the con�dence intervals.

The analytical bias correction removes the bias without increasing dispersion and produces

substantial improvements in terms of RMSE and coverage probabilities. For example, the

analytical bias correction reduces the RMSE by more than 4% and increases coverage by

around 20% in the N = 100 and T = 12 case.

1.6 Empirical example

1.6.1 A gravity equation and the extensive margins of trade

Understanding how di�erent trade barriers in�uence trade �ows is key when one wants to

study the impact of distance, trade agreements, and other trade frictions. See (Helpman

et al., 2008; Bernard et al., 2007; Charbonneau, 2012). For my application, I use the same

data set as in (Helpman et al., 2008), which consists of information on who trades with

whom for a large set of countries.

I illustrate the estimation and di�erence when including di�ering degrees of �xed e�ects,

namely the cases with no �xed e�ects, only individual �xed e�ects, additive individual and

time �xed e�ects, and interactive �xed e�ects. The �xed e�ects are importer and exporter

�xed e�ects for a single year, the year 1986. I obtain a balanced panel of 158 countries that

account for the majority of world trade. The probability of country j exporting to country

i is

Prob[Tradeij = 1|Xij , g(αi, γj)] = Φ(X ′
ijβ + g(αi, γj)).
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Here Xij contains Dij , representing the distance between country i's and country j's

most populated cities; Borderij , a dummy that takes the value 1 if i and j share a border;

Legalij , a dummy that takes the value 1 if the two countries have the same legal system;

Languageij , a dummy that takes the value 1 if i and j have the same o�cial language;

Colonyij , a dummy that takes the value 1 if i and j were ever in a colonial relationship;

Currencyij , a dummy that takes the value of 1 if the two countries use the same currency;

RTAij , a dummy that takes the value 1 if i and j are in a regional trade agreement; and,

�nally, αi and γj , respectively representing importer and exporter �xed e�ects.

The results of the e�ects of trade barriers are summarized in Table 1.3. After accounting

for exporter �xed e�ects the e�ect of a common currency decreases in magnitude from about

-0.45 to -0.16. This suggests that excluding exporter e�ects may overstate the decrease in

the likelihood of trade when trading partners share a common currency. The changes of

magnitude on language and region suggest that excluding exporter e�ects may understate

the importance of having the same language and the same religion. Similarly, the magnitude

changes of distance, from about -0.19 to -0.29, suggesting that excluding exporter e�ects

may understate the importance of distance. Importantly, the magnitude of the coe�cient for

border changes from 0.16 to -0.03 suggests overstating the importance of sharing a border.

Note also that the e�ect of free trade agreements is rather robust to the inclusion or complete

omission of �xed e�ects. This suggests that perhaps the e�ect of a free trade agreement

on the likelihood of trade between a pair of countries does not depend on the exact trade

network of those countries; FTAs appear to increase the likelihood of trade regardless of

which �xed e�ects are included.

1.7 Conclusion

This paper presents an EM type method of estimating nonlinear panel data models with

multiple unobserved e�ects, allowing for interactions between the unobserved individual and

time speci�c e�ects. The method can be applied to models with individual e�ects, additive
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individual and time e�ects, interactive e�ects and other general functional form of unob-

served e�ects. In �nite-sample simulations, the method outperform the existing generalized

least square methods for the models with individual e�ects and additive individual and time

e�ects in terms of both bias and variance. Furthermore, I derive the asymptotic distribu-

tion of the proposed EM estimator for the panel probit model with interactive �xed e�ects.

Analytical bias corrections are developed to deal with the incidental parameter problem for

both the estimates of the coe�cients and its associated average partial e�ects. Simulations

demonstrate the correction works well in reducing the bias and root mean squared error

and improves coverage rates. Finally for purpose of illustration, I use the example of inter-

national trade networks demonstrating that misspecifying the �xed e�ects model can over

or understate the importance of certain factors on the likelihood of trade. A wide range of

future theoretical and empirical work can build upon the results of this paper. For example,

sample selection models with interactive e�ects or models with strategic interactions, such

as binary game models, could bene�t from and build on the approach proposed here.
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Table 1.1: Finite Sample Properties of Static Probit Estimators, N=100

Model Estimator Bias Std.Dev. RMSE SE/SD P;.95

T=8

No FE EM 0.26 7.48 7.49 1.03 0.97

glm 0.69 7.59 7.61 1.02 0.96

FE i EM 20.74 10.37 23.18 0.73 0.29

glm 22.38 11.73 25.26 0.85 0.39

Add-FE EM 20.73 9.24 22.69 0.86 0.28

glm 29.21 13.95 32.36 0.83 0.32

IF 8.95 10.08 13.47 0.72 0.69

BC-IF -4.69 8.91 10.06 0.81 0.84

T=12

No FE EM -0.10 6.01 6.02 1.04 0.96

glm 0.31 6.09 6.09 1.03 0.96

FE i EM 12.53 7.61 14.65 0.79 0.45

glm 13.43 8.11 15.68 0.89 0.53

Add-FE EM 10.88 6.62 12.73 0.99 0.64

glm 20.81 10.20 23.17 0.89 0.38

IF 7.64 6.94 10.32 0.83 0.73

BC-IF -0.45 6.42 6.43 0.9 0.92

T=20

No FE EM 0.11 4.93 4.94 0.98 0.94

glm 0.52 5.00 5.02 0.97 0.95

FE i EM 6.44 5.22 8.28 0.85 0.67

glm 7.20 5.50 9.06 0.95 0.70

Add-FE EM 3.56 4.60 5.82 1.02 0.89

glm 10.88 6.57 12.71 0.93 0.60

IF 4.03 4.86 6.31 0.90 0.83

BC-IF -0.99 4.62 4.72 0.95 0.94

Notes: All the entries are in percentage of the true parameter value. 500 replications.
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Table 1.2: Finite Sample Properties of Static Probit Estimators, N=52

Model Estimator Bias Std.Dev. RMSE SE/SD P;.95

T=14

No FE EM -0.02 7.83 7.84 1.03 0.94

glm 0.43 7.97 7.98 1.01 0.95

FE i EM 11.3 9.55 14.79 0.81 0.68

glm 12.47 10.53 16.31 0.9 0.77

Add-FE EM 2.92 7.74 8.27 1.02 0.94

glm 24.05 15.28 28.48 0.8 0.53

IF 4.8 9.28 10.44 0.79 0.83

BC-IF -3.56 8.52 9.22 0.86 0.87

T=26

No FE EM -0.13 5.92 5.92 0.99 0.94

glm 0.27 5.99 5.99 0.99 0.94

FE i EM 4.88 6 7.73 0.88 0.85

glm 5.33 6.21 8.17 0.98 0.89

Add-FE EM 0.53 5.63 5.65 1 0.95

glm 10.94 8.08 13.59 0.93 0.7

IF 3.43 6.28 7.16 0.85 0.87

BC-IF -1.3 5.96 6.09 0.9 0.92

T=52

No FE EM -0.18 4.22 4.22 0.98 0.95

glm 0.22 4.27 4.27 0.98 0.95

FE i EM 2.2 4.07 4.62 0.91 0.89

glm 2.48 4.2 4.88 1 0.92

Add-FE EM 1.21 3.97 4.15 1 0.94

glm 6.99 5.17 8.69 0.96 0.71

IF 1.5 3.91 4.18 0.96 0.91

BC-IF -1.48 3.78 4.05 0.99 0.94

Notes: All the entries are in percentage of the true parameter value. 500 replications.
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Table 1.3: Coe�cients of Static Probit Model for Trade

(1) (2) (3) (4)

Distance -0.185 -0.177 -0.294 -0.297

Border 0.161 0.152 -0.027 -0.041

Island -0.175 -0.178 -0.153 -0.16

Landlock -0.357 -0.358 -0.471 -0.474

Legal -0.308 -0.309 -0.208 -0.212

Language 0.08 0.079 0.166 0.173

Colony 2.222 2.245 2.06 1.962

Currency -0.446 -0.449 -0.158 -0.19

FTA 1.685 1.629 1.645 1.648

Religion 0.2 0.191 0.367 0.36

Importer e�ects Yes Yes Yes

Exporter e�ects Yes Yes

Interactive Yes



Chapter 2

Nonlinear Panel Models with Interactive E�ects1

2.1 Introduction

Panel data models are useful to identify causal e�ects because they allow the researcher

to control for multiple sources of unobserved heterogeneity modeled as individual and time

e�ects. The general idea is to use variation across time to control for unobserved time

invariant individual e�ects and to use contemporaneous variation across individuals to con-

trol for aggregate time e�ects. We consider estimation and inference on semiparametric

nonlinear panel models with predetermined explanatory variables and interactive individual

and time e�ects. We focus on single index models, which cover static and dynamic probit,

logit, and Poisson models. We adopt a �xed e�ects approach that treats the realizations

of the unobserved individual and time e�ects as parameters to be estimated, and therefore

does not impose any restriction on the relationship between these e�ects and the observable

explanatory variables. Fixed e�ects estimation in nonlinear models with interactive e�ects,

however, is computationally challenging and su�ers from the incidental parameter problem.

Maximum likelihood estimation of standard single index models with cross section data

is computationally tractable because the likelihood function is concave in all the model

parameters. This computational tractability is preserved in panel models with additive

individual and time e�ects, but it breaks down in panel models with interactive e�ects be-

cause the index is no longer linear in the individual and time e�ects. Moreover, the principal

components algorithm proposed by (Bai, 2009b) for linear models with interactive e�ects

1This chapter is based on a joint work with Iván Fernández-Val and Martin Weidner
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cannot be applied to nonlinear models. We deal with this challenge by proposing an iterative

two-step algorithm to compute the �xed e�ects conditional maximum likelihood estimator

(FE-CMLE), where each step solves a concave optimization program. The algorithm is

based on the observation that the likelihood program is concave on the individual e�ects

after �xing the time e�ects and vice versa. We show that the algorithm converges to a local

maximum, as the likelihood function decreases at each step of the algorithm. In a simple

model where the FE-CMLE can be obtained by principal components methods, the iterative

algorithm �nds the same estimates as principal components up to numerical tolerance error.

We characterize the asymptotic properties of the FE-CMLE under sequences where the

cross section (N) and time series (T ) dimensions of the panel pass to in�nity at the same rate.

We give conditions for consistency of the estimators of the index coe�cients. Consistency

is hard to establish in this setting because the dimension of the parameter space grows with

the sample size and we cannot resort to concavity, unlike in models with additive individual

and time e�ects. While consistent, the FE-CMLE has a bias in the asymptotic distribution

of the same order as the variance. This is the large-T version of the well-known incidental

parameter problem (Neyman and Scott, 1948), where the bias arises from the large number of

estimated parameters and the nonlinearity of the model. We characterize the �rst order bias,

and propose analytical and jackknife corrections that remove the bias from the asymptotic

distribution. Asymptotically the correction does not increase variance and the con�dence

intervals constructed around the corrected estimator have correct coverage. We also derive

asymptotic theory for �xed e�ects estimators of average partial e�ects (APEs). These APEs

are often the quantities of interest in nonlinear models and are functions of the data, index

coe�cients and unobserved individual and time e�ects. As (Fernández-Val and Weidner,

2013), we �nd that in general the incidental parameter bias is asymptotically of second order

because the estimators of the APEs have slower rate of convergence than the estimators of

the index coe�cients. In numerical simulations, we show that the asymptotic results provide

a good approximation to the behavior of the FE-CMLE and the bias corrections perform
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well in �nite samples for multiple values of N and T.

Literature review: (Neyman and Scott, 1948), (Heckman, 1981), (Lancaster, 2000), and

(Greene, 2004) discussed the incidental parameter problem in panel data models. (Phillips

and Moon, 1999), (Hahn and Kuersteiner, 2002), (Lancaster, 2002), (Woutersen, 2001),

(Hahn and Newey, 2004), (Carro, 2007), (Arellano and Bonhomme, 2009), (Fernández-

Val, 2009), (Hahn and Kuersteiner, 2011), (Fernández-Val and Vella, 2011), and (Kato

et al., 2012) proposed large-T bias corrections for �xed e�ects estimators in linear and

nonlinear panel models with additive individual e�ects; see also (Arellano and Hahn, 2007)

for a recent survey on this literature. (Bai, 2009b) and (Moon and Weidner, 2010a; Moon

and Weidner, 2010b) considered large-T bias corrections for FE-CMLE estimators of linear

models with interactive individual and time e�ects. (Charbonneau, 2012) and (Fernández-

Val and Weidner, 2013)considered �xed e�ects estimation of nonlinear panel models with

additive individual and time e�ects.

In Section 2.2, we introduce the model and �xed e�ects estimators. Section 2.3 describes

the bias corrections to deal with the incidental parameters problem and illustrates how

the bias corrections work through an example. Section 2.4 provides the asymptotic theory.

Section 2.5 gives numerical examples. We collect the proofs of all the results and additional

technical details in the Appendix.

2.2 Model and Estimators

2.2.1 Model

The data consist of N × T observations {(Yit, X ′
it)

′ : 1 ≤ i ≤ N, 1 ≤ t ≤ T}, for a scalar

outcome variable of interest Yit and a vector of explanatory variables Xit. We assume

that the outcome for individual i at time t is generated by the sequential conditionally
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independent process:

Yit | Xt
i , α, γ, β ∼ fY (· | X ′

itβ + αiγt), (i = 1, ..., N ; t = 1, ..., T ),

where Xt
i = (Xi1, . . . , Xit), α = (α1, . . . , αN ), γ = (γ1, . . . , γT ), fY is a known probability

function, and β is a �nite dimensional parameter vector.

The variables αi and γt are unobserved individual and time e�ects that in economic ap-

plications capture individual heterogeneity and aggregate shocks, respectively. The model

is semiparametric because we do not specify the distribution of these e�ects nor their re-

lationship with the explanatory variables. The conditional distribution fY represents the

parametric part of the model. The vector Xit contains predetermined variables with respect

to Yit. Note that Xit can include lags of Yit to accommodate dynamic models. The model

is a single index model because the explanatory variables and unobserved e�ects enter fY

through the index zit := X ′
itβ + αiγt and is interactive because the individual and time

e�ects enter the index zit multiplicatively as αiγt = αi × γt.

We consider three running examples throughout the analysis:

Example 2.2.1. [Linear model] Let Yit be a continuous outcome. We can model the con-

ditional distribution of Yit using the Gaussian linear model

fY (y | X ′
itβ + αiγt) = φ((X ′

itβ + αiγt)/σ)/σ, y ∈ R,

where φ is the density function of the standard normal and σ is a positive scale parameter.

Example 2.2.2. [Binary response model] Let Yit be a binary outcome and F be a cumulative

distribution function of the standard normal or logistic distribution. We can model the

conditional distribution of Yit using the probit or logit model

fY (y | X ′
itβ + αiγt) = F (X ′

itβ + αiγt)
y[1− F (X ′

itβ + αiγt)]
1−y, y ∈ {0, 1}.
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Example 2.2.3. [Count response model] Let Yit be a non-negative interger-valued outcome,

and f(·;λ) be the probability mass function of a Poisson random variable with mean λ > 0.

We can model the conditional distribution of Yit using the Poisson model

fY (y | X ′
itβ + αiγt) = f(y; exp[X ′

itβ + αiγt]), y ∈ {0, 1, 2, ....}.

For estimation, we adopt a �xed e�ects approach treating the realization of the unob-

served individual and time e�ects as parameters to be estimated. We collect all these e�ects

in the vector ϕNT = (α1, ..., αN , γ1, ..., γT )
′. The model parameter β includes the index co-

e�cients of interest, while the unobserved e�ects ϕNT are treated as a nuisance parameter.

The true values of the parameters, denoted by β0 and ϕ0
NT = (α0

1, ..., α
0
N , γ01 , ..., γ

0
T )

′, are

the solution to the population �xed e�ects conditional maximum likelihood program

max
(β,ϕNT )∈Rdim β+dimϕNT

Eϕ[LNT (β, ϕNT )],

LNT (β, ϕNT ) := (NT )−1/2
∑
i,t

log fY (Yit | X ′
itβ + αiγt), (2.1)

for every N,T , where Eϕ denotes the expectation with respect to the distribution of the

data conditional on the unobserved e�ects and initial conditions including strictly exoge-

nous variables. We need to impose a scale normalization on ϕ0
NT because multiplying by

a constant to all αi, while dividing by same constant to all γt, does not change αiγt. We

normalize ϕ0
NT to satisfy

∑
i[α

0
i ]
2 =

∑
t[γ

0
t ]

2. Existence and uniqueness of the solution to

the population problem up to the scale normalization will be guaranteed by our assumptions

in Section 2.4 below, including concavity of the objective function in the index X ′
itβ +αiγt.

The pre-factor (NT )−1/2 in LNT (β, ϕNT ) is just a convenient rescaling for the asymptotic

analysis.
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Other quantities of interest involve averages over the data and unobserved e�ects

δ0NT = E[∆NT (β
0, ϕ0

NT )], ∆NT (β, ϕNT ) = (NT )−1
∑
i,t

∆(Yit, Xit, β, αiγt), (2.2)

where E denotes the expectation with respect to the joint distribution of the data and

the unobserved e�ects, provided that the expectation exists. They are indexed by N and

T because the marginal distribution of {(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T} can be

heterogeneous across i and/or t; see Section 2.4.2. These averages include scale parameters

and other average partial e�ects (APEs), which are often the ultimate quantities of interest

in nonlinear models. Some examples of partial e�ects are the following:

Example 2.2.1 (Linear model). The variance σ2 in the linear model can be expressed as

an APE with

∆(Yit, Xit, β, αiγt) = (Yit −X ′
itβ − αiγt)

2. (2.3)

Example 2.2.2 (Binary response model). If Xit,k, the kth element of Xit, is binary, its

partial e�ect on the conditional probability of Yit is

∆(Yit, Xit, β, αiγt) = F (βk +X ′
it,−kβ−k + αiγt)− F (X ′

it,−kβ−k + αiγt), (2.4)

where βk is the kth element of β, and Xit,−k and β−k include all elements of Xit and β

except for the kth element. If Xit,k is continuous and F is di�erentiable, the partial e�ect

of Xit,k on the conditional probability of Yit is

∆(Yit, Xit, β, αiγt) = βk∂F (X ′
itβ + αiγt), (2.5)

where ∂F is the derivative of F .

Example 2.2.3 (Count response model). If Xit,k, the kth element of Xit, is binary, its
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partial e�ect on the conditional probability of Yit is

∆(Yit, Xit, β, αiγt) = exp(βk +X ′
it,−kβ−k + αiγt)− exp(X ′

it,−kβ−k + αiγt), (2.6)

where βk is the kth element of β, and Xit,−k and β−k include all elements of Xit and β

except for the kth element. If Xit,k is continuous, the partial e�ect of Xit,k on the conditional

expectation of Yit is

∆(Yit, Xit, β, αiγt) = βk exp(X
′
itβ + αiγt). (2.7)

2.2.2 Fixed e�ects estimators

The sample analog of the program (2.1) is

max
(β,ϕNT )∈Rdim β+dimϕNT

LNT (β, ϕNT ). (2.8)

As in the population case, we shall impose conditions guaranteeing that the solutions to

the previous programs exist and are unique with probability approaching one as N and

T become large, including the scale normalization on ϕNT . The program (2.8) cannot be

solved using standard optimization algorithms because it is not concave in ϕNT due to the

multiplicative structure. We propose an iterative two-step algorithm for the case where the

log-likelihood is concave in the index zit, where each step solves a concave maximization

program. The algorithm is based on the observation that the log-likelihood program is

concave on the individual e�ects after �xing the time e�ects and vice versa. To describe the

algorithm it is convenient to separate ϕNT = (α, γ), so that LNT (β, ϕNT ) = LNT (β, α, γ).

Algorithm 2.2.1 (IFE-CMLE). 1. Iteration 0: �nd initial values (β̂(0), α̂(0), γ̂(0)) solv-
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ing

γ̂(0) ∈ arg max
(β,γ)∈Rdim β+T

LNT (β, 1N , γ), (β̂(0), α̂(0)) ∈ arg max
(β,α)∈Rdim β+N

LNT (β, α, γ̂
(0)),

where 1N is a N -vector of ones.

2. Iteration k: update (β̂(k−1), α̂(k−1), γ̂(k−1)) in two steps solving

(a) Step 1: γ̂(k) ∈ argmaxγ∈RT LNT (β̂
(k−1), α̂(k−1), γ),

(b) Step 2: (β̂(k), α̂(k)) ∈ argmax(β,α)∈Rdim β+N LNT (β, α, γ̂
(k)).

3. Repeat 2 until convergence in m iterations, e.g. when

LNT (β̂
(m), α̂(m), γ̂(m))− LNT (β̂

(m−1), α̂(m−1), γ̂(m−1)) < ϵtol,

where ϵtol is a tolerance level (e.g., 10−4).

4. Final iteration: de�ne the IFE-CMLE as

β̂NT = β̂(m), ϕ̂NT = (cα̂(m), γ̂(m)/c),

where c4 = γ̂(m)′ γ̂(m)/α̂(m)′α̂(m). The rescaling by c imposes the scale normalization∑
i α̂

2
i =

∑
t γ̂

2
t in ϕ̂NT .

Remark 2.2.1. [Convergence of IFE-MLE] If zit 7→ log fY (Yit | zit) is concave, then the

objective functions in each step γ 7→ LNT (β, α, γ) and (β, α) 7→ LNT (β, α, γ) are also

concave. Moreover, in view of the fact

LNT (β̂
(k−1), α̂(k−1), γ̂(k−1)) ≤ LNT (β̂

(k−1), α̂(k−1), γ̂(k)) ≤ LNT (β̂
(k), α̂(k), γ̂(k)),

the convergence of the algorithm to a local maximum of the program (2.8) is guaranteed.

We �nd that the speed of convergence is fast in simulations.
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To analyze the statistical properties of the estimator of β it is conceptually convenient

to solve the program (2.8) in two steps. First, we concentrate out the nuisance parameter

ϕNT . For given β, we de�ne the optimal ϕ̂NT (β) as

ϕ̂NT (β) = arg max
ϕNT∈RdimϕNT

LNT (β, ϕNT ) . (2.9)

The �xed e�ects estimators of β0 and ϕ0
NT are then

β̂NT = arg max
β∈Rdim β

LNT (β, ϕ̂NT (β)) , ϕ̂NT = ϕ̂NT (β̂). (2.10)

Estimators of APEs can be formed by plugging-in the estimators of the model parameters

in the sample version of (2.2), i.e.

δ̂NT = ∆NT (β̂, ϕ̂NT ). (2.11)

2.3 Incidental parameter problem and bias corrections

In this section we give a heuristic discussion of the main results, leaving the technical details

to Section 2.4.

2.3.1 Incidental parameter problem

Fixed e�ects estimators in nonlinear or dynamic models su�er from the incidental parameter

problem ((Neyman and Scott, 1948)). The individual and time e�ects are incidental param-

eters that cause the estimators of the model parameters to be inconsistent under asymptotic

sequences where either N or T are �xed. To describe the problem let

βNT := arg max
β∈Rdim β

Eϕ

[
LNT (β, ϕ̂NT (β))

]
. (2.12)
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In general, plimN→∞βNT ̸= β0 and plimT→∞βNT ̸= β0 because of the estimation er-

ror in ϕ̂NT (β) when one of the dimensions is �xed. If ϕ̂NT (β) is replaced by ϕNT (β) =

argmaxϕNT∈RdimϕNT Eϕ[LNT (β, ϕNT )], then the resulting βNT = β0. We consider analyti-

cal and jackknife corrections for the bias βNT − β0.

2.3.2 Bias Corrections

Some expansions can be used to explain our corrections. Under suitable sampling conditions,

the bias is small for large enoughN and T , i.e., plimN,T→∞βNT = β0. For smooth likelihoods

and under appropriate regularity conditions, as N,T → ∞,

βNT = β0 +B
β
∞/T +D

β
∞/N + oP (T

−1 ∨N−1), (2.13)

for some B
β
∞ and D

β
∞ that we characterize in Theorem 2.4.1, where a ∨ b := max(a, b).

Unlike in nonlinear models without incidental parameters, the order of the bias is higher

than the inverse of the sample size (NT )−1 due to the slow rate of convergence of ϕ̂NT .

Note also that by the properties of the maximum likelihood estimator

√
NT (β̂NT − βNT ) →d N (0, V ∞).

Under asymptotic sequences where N/T → κ2 as N,T → ∞, the �xed e�ects estimator

is asymptotically biased because

√
NT (β̂NT − β0) =

√
NT (β̂NT − βNT ) +

√
NT (B

β
∞/T +D

β
∞/N + oP (T

−1 ∨N−1))

→d N (κB
β
∞ + κ−1D

β
∞, V ∞). (2.14)

This is the large-N large-T version of the incidental parameters problem that invalidates

any inference based on the asymptotic distribution. Relative to �xed e�ects estimators with

only individual e�ects, the presence of time e�ects introduces additional asymptotic bias
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through D
β
∞.

The analytical bias correction consists of removing estimates of the leading terms of the

bias from the �xed e�ect estimator of β0. Let B̂β
NT and D̂β

NT be estimators of B
β
∞ and D

β
∞,

respectively. The bias corrected estimator can be formed as

β̃A
NT = β̂NT − B̂β

NT /T − D̂β
NT /N.

If N/T → κ2, B̂β
NT →P B

β
∞, and D̂β

NT →P D
β
∞, then

√
NT (β̃A

NT − β0) →d N (0, V ∞).

The analytical correction therefore centers the asymptotic distribution at the true value of

the parameter, without increasing asymptotic variance.

We consider a jackknife bias correction method that does not require explicit estima-

tion of the bias, but is computationally more intensive. This method is the double split

panel jackknife (SPJ) correction of (Fernández-Val and Weidner, 2013), which extended the

jackknife correction of (Dhaene and Jochmans, 2010) to models with additive individual

and time e�ects. Alternative jackknife corrections based on the leave-one-observation-out

panel jackknife (PJ) of (Hahn and Newey, 2004) and combinations of PJ and SPJ are also

possible. We do not consider corrections based on PJ because they are theoretically justi�ed

by second-order expansions of βNT that are beyond the scope of this paper.

To describe the double SPJ correction, let β̃N,T/2 be the average of the 2 split jackknife

estimators that leave out the �rst and second halves of the time periods, and let β̃N/2,T

be the average of the 2 split jackknife estimators that leave out half of the individuals.2

In choosing the cross sectional division of the panel, one might want to take into account

individual clustering structures to preserve and account for cross sectional dependencies. If

2When T is odd we de�ne β̃N,T/2 as the average of the 2 split jackknife estimators that use overlapping

subpanels with t ≤ (T + 1)/2 and t ≥ (T + 1)/2. We de�ne β̃N/2,T similarly when N is odd.
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there are no cross sectional dependencies, β̃N/2,T can be constructed as the average of the

estimators obtained from all possible partitions of N/2 individuals to avoid ambiguity and

arbitrariness in the choice of the division.3 The bias corrected estimator is

β̃J
NT = 3β̂NT − β̃N,T/2 − β̃N/2,T . (2.15)

To give some intuition about how the corrections works, note that

β̃J
NT − β0 = (β̂NT − β0)− (β̃N,T/2 − β̂NT )− (β̃N/2,T − β̂NT ),

where β̃N,T/2−β̂NT = B
β
∞/T+oP (T

−1∨N−1) and β̃N/2,T −β̂NT = D
β
∞/N+oP (T

−1∨N−1).

The time series split removes the bias term B
β
∞ and the cross sectional split removes the

bias term D
β
∞.

2.4 Asymptotic Theory for Bias Corrections

In nonlinear panel data models the population problem (2.12) generally does not have closed

form solution, so we need to rely on asymptotic arguments to characterize the terms in the

expansion of the bias (2.13) and to justify the validity of the corrections.

2.4.1 Asymptotic distribution of model parameters

We consider single index panel models with predetermined explanatory variables and scalar

interactive individual and time e�ects that enter the likelihood function through zit = X ′
itβ+

αiγt. In these models the dimension of the incidental parameters is dimϕNT = N + T .

These models cover the linear, probit and Poisson speci�cations of Examples 2.2.1�2.2.3.

3There are P =
(
N
2

)
di�erent cross sectional partitions with N/2 individuals. When N is large, we can

approximate the average over all possible partitions by the average over S ≪ P randomly chosen partitions
to speed up computation.
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The parametric part of our panel models takes the form

log fY (Yit | Xit, αi, γt, β) = ℓit(zit). (2.16)

We denote the derivatives of the log-likelihood function ℓit by ∂zqℓit(z) := ∂qℓit(z)/∂z
q,

q = 1, 2, . . . We drop the argument zit when the derivatives are evaluated at the true value

of the index z0it := X ′
itβ

0 + α0
i γ

0
t , i.e., ∂zqℓit := ∂zqℓit(z

0
it). We also drop the dependence on

NT from all the sequences of functions and parameters, e.g. we use L for LNT and ϕ for

ϕNT .

We make the following assumptions:

Assumption 4. [Panel models] Let ν > 0 and µ > 4(8 + ν)/ν. Let ε > 0 and let B0
ε be a

bounded subset of R that contains an ε-neighbourhood of z0it for all i, t,N, T .

• (i) Asymptotics: we consider limits of sequences where N/T → κ2, 0 < κ < ∞, as

N,T → ∞.

• (ii) Sampling: conditional on ϕ, {(Y T
i , XT

i ) : 1 ≤ i ≤ N} is independent across i

and, for each i, {(Yit, Xit) : 1 ≤ t ≤ T} is α-mixing with mixing coe�cients satisfying

supi ai(m) = O(m−µ) as m → ∞, where

ai(m) := sup
t

sup
A∈Ai

t,B∈Bi
t+m

|P (A ∩B)− P (A)P (B)|,

and for Zit = (Yit, Xit), Ai
t is the sigma �eld generated by (Zit, Zi,t−1, . . .), and Bi

t is

the sigma �eld generated by (Zit, Zi,t+1, . . .).

• (iii) Model: for Xt
i = {Xis : s = 1, ..., t}, we assume that for all i, t, N, T,

Yit | Xt
i , ϕ, β ∼ exp[ℓit(X

′
itβ + αiγt)].

The realizations of the parameters and unobserved e�ects that generate the observed
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data are denoted by β0 and ϕ0.

• (iv) Smoothness and moments: We assume that z 7→ ℓit(z) is four times continuously

di�erentiable over B0
ε a.s. The partial derivatives of ℓit(z) with respect to z up to fourth

order are bounded in absolute value uniformly over z ∈ B0
ε by a function M(Zit) > 0

a.s., and maxi,t Eϕ[M(Zit)
8+ν ] is a.s. uniformly bounded over N,T . In addition, we

assume that Xit is bounded uniformly over i, t, N, T .

• (v) Concavity: For all N,T, z 7→ ℓit(z) is strictly concave over z ∈ R a.s. Further-

more, there exist positive constants bmin and bmax such that for all z ∈ B0
ε , bmin ≤

−∂z2ℓit(z) ≤ bmax a.s. uniformly over i, t,N, T .

• (vi) Strong factors: 1
N

∑
i(α

0
i )

2 →P σ2
α > 0 and 1

T

∑
t(γ

0
t )

2 →P σ2
γ > 0.

• (vii) Generalized noncolinearity: For any dv-vector v, de�ne the coprojection matrix

as Mv = Idv − v(v′v)v′, where Idv denotes the identity matrix of order dv. The

dimβ × dimβ matrix with elements

Dk1k2(γ) = (NT )−1Tr(Mα0Xk1MγX
′
k2), k1, k2 ∈ {1, ..., dimβ},

satis�es D(γ) > c > 0 for all γ ∈ RT , wpa1.

We assume that the index z0it is bounded. This condition holds if Xit, αi and γt are

bounded. The relative rate of growth of N and T is chosen to produce a non-degenerate

asymptotic distribution. Assumption 4(i)− (v) are similar to (Fernández-Val and Weidner,

2013), so we do not discuss them further here. The strong factor and generalized nonco-

linearity assumptions were previously imposed in (Bai, 2009b) and (Moon and Weidner,

2010a; Moon and Weidner, 2010b) for linear models with interactive e�ects. Generalized

noncolinearity rules out time and cross section invariant explanatory variables.

To describe the asymptotic distribution of the �xed e�ects estimator β̂, it is convenient

to introduce some additional notation. Let H be the (N + T )× (N + T ) expected Hessian
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matrix of the log-likelihood with respect to the nuisance parameters evaluated at the true

parameters, i.e.

H = Eϕ[−∂ϕϕ′L] =
(

H(αα) H(αγ)

[H(αγ)]
′ H(γγ)

)
, (2.17)

where H(αα) = diag(
∑

t Eϕ[−∂z2ℓit])/
√
NT , H(αγ)it = Eϕ[−∂z2ℓit]/

√
NT , and H(γγ) =

diag(
∑

i Eϕ[−∂z2ℓit])/
√
NT . Furthermore, let H−1

(αα), H
−1
(αγ), H

−1
(γα), and H−1

(γγ) denote the

N ×N , N × T , T ×N and T × T blocks of the Moore-Penrose pseudoinverse H−1
of H. It

is convenient to de�ne the projection vector Ξit and the residual X̃it by

Ξit := − 1√
NT

N∑
j=1

T∑
τ=1

(γ0t γ
0
τ H

−1
(αα)ij + α0

i γ
0
τ H

−1
(γα)tj

+ γ0t α
0
j H

−1
(αγ)iτ + α0

iα
0
j H

−1
(γγ)tτ ) Eϕ (∂z2ℓjτXjτ ) ,

X̃it := Xit − Ξit. (2.18)

The k-th component of Ξit corresponds to the following population least squares projec-

tion

Ξit,k = α∗
i,kγ

0
t + α0

i γ
∗
t,k,

(α∗
k, γ

∗
k) = arg min

αi,k,γt,k

∑
i,t

Eϕ(−∂z2ℓit)

(
Eϕ(∂z2ℓitXit)

Eϕ(∂z2ℓit)
− α∗

i,kγ
0
t − α0

i γ
∗
t,k

)2

.

Let E := plimN,T→∞. The following theorem establishes the asymptotic distribution of

the �xed e�ects estimator β̂.

Theorem 2.4.1 (Asymptotic distribution of β̂). Suppose that Assumption 4 holds, that the
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following limits exist

B∞ = −E

 1

N

N∑
i=1

∑T
t=1

∑T
τ=t γ

0
t γ

0
τEϕ

(
∂zℓit∂z2ℓiτ X̃iτ

)
+ 1

2

∑T
t=1(γ

0
t )

2Eϕ(∂z3ℓitX̃it)∑T
t=1(γ

0
t )

2Eϕ (∂z2ℓit)

 ,

D∞ = −E

 1

T

T∑
t=1

∑N
i=1(α

0
i )

2Eϕ

(
∂zℓit∂z2ℓitX̃it +

1
2∂z3ℓitX̃it

)
∑N

i=1(α
0
i )

2Eϕ (∂z2ℓit)

 ,

W∞ = −E

[
1

NT

N∑
i=1

T∑
t=1

Eϕ

(
∂z2ℓitX̃itX̃

′
it

)]
,

and that W∞ > 0. Then,

√
NT

(
β̂ − β0

)
→d W

−1
∞ N (κB∞ + κ−1D∞, W∞),

so that B
β
∞ = W

−1
∞ B∞ and D

β
∞ = W

−1
∞ D∞ in equation (2.13).

It is instructive to evaluate the expressions of the bias also in our running examples.

Example 2.2.1 (Linear model). In the linear model with strictly exogenous explanatory

variables, Yit | XT
i , α, γ ∼ N (X ′

itβ + αiγt, σ
2) independently over i and t, the expressions of

the bias of Theorem 2.4.1 yield

B∞ = D∞ = 0,

which agree with the no asymptotic bias result in (Bai, 2009b) for homoskedastic linear

models with interactive e�ects.

Example 2.2.2 (Binary response model). In this case

ℓit(z) = Yit logF (z) + (1− Yit) log[1− F (z)],

so that ∂zℓit = Hit(Yit−Fit), ∂z2ℓit = −Hit∂Fit+ ∂Hit(Yit−Fit), and ∂z3ℓit = −Hit∂
2Fit−

2∂Hit∂Fit+∂2Hit(Yit−Fit), where Hit = ∂Fit/[Fit(1−Fit)], and ∂jGit := ∂jG(Z)|Z=z0it
for

any function G and j = 0, 1, 2. Substituting these values in the expressions of the bias of
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Theorem 2.4.1 for the probit model with all the components of Xit strictly exogenous yields

B∞ = E

[
1

2N

N∑
i=1

∑T
t=1(γ

0
t )

2Eϕ[∂z2ℓitX̃itX̃
′
it]∑T

t=1(γ
0
t )

2Eϕ (∂z2ℓit)

]
β0,

D∞ = E

[
1

2T

T∑
t=1

∑N
i=1(α

0
i )

2Eϕ[∂z2ℓitX̃itX̃
′
it]∑N

i=1(α
0
i )

2Eϕ (∂z2ℓit)

]
β0.

The asymptotic bias is therefore a positive de�nite matrix weighted average of the true pa-

rameter value as in the case of the probit model with additive individual and time e�ects

(Fernández-Val and Weidner, 2013).

Example 2.2.3 (Count response model). In this case

ℓit(z) = zYit − exp(z)− log Yit!,

so that ∂zℓit = Yit − ωit and ∂z2ℓit = ∂z3ℓit = −ωit, where ωit = exp(z0it). Substituting these

values in the expressions of the bias of Theorem 2.4.1 yields

B∞ = −E

 1

N

N∑
i=1

∑T
t=1

∑T
τ=t+1 γ

0
t γ

0
τEϕ

[
(Yit − ωit)ωiτ X̃iτ

]
∑T

t=1(γ
0
t )

2Eϕ (ωit)

 ,

and D∞ = 0. If in addition all the components of Xit are strictly exogenous, then we get

the no asymptotic bias result B∞ = D∞ = 0.

2.4.2 Asymptotic distribution of APEs

In nonlinear models we are often interested in APEs, in addition to the model parame-

ters. These e�ects are averages of the data, parameters and unobserved e�ects; see ex-

pression (2.2). For the panel models of Assumption 4 we specify the partial e�ects as

∆(Yit, Xit, β, αi, γt) = ∆it(β, αiγt). The restriction that the partial e�ects depend on αi and
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γt through πit = αiγt is natural in our panel models since

E[Yit | Xt
i , αi, γt, β] =

∫
y exp[ℓit(X

′
itβ + πit)]dy,

and the partial e�ects are usually de�ned as di�erences or derivatives of this conditional

expectation with respect to the components of Xit. For example, the partial e�ects for the

probit and Poisson models and the scale parameter in the linear model described in Section

2.2 satisfy this restriction.

The distribution of the unobserved individual and time e�ects in general is not ancillary

for the APEs, unlike for model parameters. We therefore need to make assumptions on this

distribution to de�ne and interpret the APEs, and to derive the asymptotic distribution of

their estimators. Here, we control the heterogeneity of the partial e�ects assuming that the

individual e�ects and explanatory variables are identically distributed cross sectionally and

stationary over time so that the APE δ0NT does not change with N and T, i.e. δ0NT = δ0. We

also impose smoothness and moment conditions on the function ∆ that de�nes the partial

e�ects. We use these conditions to derive higher-order stochastic expansions for the �xed

e�ect estimator of the APEs and to bound the remainder terms in these expansions. Let

π0
it = α0

i γ
0
t , {αi}N := {αi : 1 ≤ i ≤ N}, {γt}T := {γt : 1 ≤ t ≤ T}, and {Xit, αi, γt}NT :=

{(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

Assumption 5. [Partial e�ects] Let ν > 0, ϵ > 0, and let B0
ε be a subset of Rdimβ+1 that

contains an ε-neighbourhood of (β0, π0
it) for all i, t,N, T ..

• (i) Sampling: for all N,T, {Xit, αi, γt}NT is identically distributed across i and/or

stationary across t.

• (ii) Model: for all i, t, N, T, the partial e�ects depend on αi and γt through αiγt:

∆(Yit, Xit, β, αi, γt) = ∆it(β, αiγt).



56

The realizations of the partial e�ects are denoted by ∆it := ∆it(β
0, α0

i γ
0
t ).

• (iii) Smoothness and moments: The function (β, π) 7→ ∆it(β, π) is four times contin-

uously di�erentiable over B0
ε a.s. The partial derivatives of ∆it(β, π) with respect to

the elements of (β, π) up to fourth order are bounded in absolute value uniformly over

(β, π) ∈ B0
ε by a function M(Zit) > 0 a.s., and maxi,t Eϕ[M(Zit)

8+ν ] is a.s. uniformly

bounded over N,T .

• (iv) Non-degeneracy and moments: 0 < mini,t[E(∆2
it) − E(∆it)

2] ≤ maxi,t[E(∆2
it) −

E(∆it)
2] < ∞, uniformly over N,T.

Analogous to Ξit in equation (2.18) we de�ne

Ψit = − 1√
NT

N∑
j=1

T∑
τ=1

(
γ0t γ

0
τ H

−1
(αα)ij + α0

i γ
0
τ H

−1
(γα)tj + γ0t α

0
j H

−1
(αγ)iτ + α0

iα
0
j H

−1
(γγ)tτ

)
∂π∆jτ ,

(2.19)

which also corresponds to a weighted least squares population projection. We denote the

derivatives of the partial e�ects ∆it(β, π) by ∂β∆it(β, π) := ∂∆it(β, π)/∂β, ∂ββ′∆it(β, π) :=

∂2∆it(β, π)/(∂β∂β
′), ∂πq∆it(β, π) := ∂q∆it(β, π)/∂π

q, q = 1, 2, 3, etc. We drop the argu-

ments β and π when the derivatives are evaluated at the true parameters β0 and π0
it := α0

i γ
0
t ,

e.g. ∂πq∆it := ∂πq∆it(β
0, π0

it).

Let δ0 and δ̂ be the APE and its �xed e�ects estimator, de�ned as in equations (2.2)

and (2.11), where δ̂ is constructed from a bias corrected estimators of the parameter β, i.e.

δ̂ = ∆(β̃, ϕ̂(β̃)), where β̃ is such that
√
NT (β̃ − β0) →d N(0,W

−1
∞ ). The following theorem

establishes the asymptotic distribution of δ̂.

Theorem 2.4.2 (Asymptotic distribution of δ̂). Suppose that the assumptions of Theo-

rem 2.4.1 and Assumption 5 hold, and that the following limits exist:

B
δ
∞ = E

[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t γ

0
t γ

0
τEϕ (∂zℓit∂z2ℓiτΨiτ )∑T

t=1(γ
0
t )

2Eϕ (∂z2ℓit)

]
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− E

[
1

2N

N∑
i=1

∑T
t=1(γ

0
t )

2 [Eϕ(∂π2∆it)− Eϕ(∂z3ℓit)Eϕ(Ψit)]∑T
t=1(γ

0
t )

2Eϕ (∂z2ℓit)

]
,

D
δ
∞ = E

[
1

T

T∑
t=1

∑N
i=1(α

0
i )

2Eϕ (∂zℓit∂z2ℓitΨit)∑N
i=1(α

0
i )

2Eϕ (∂z2ℓit)

]

− E

[
1

2T

T∑
t=1

∑N
i=1(α

0
i )

2 [Eϕ(∂π2∆it)− Eϕ(∂z3ℓit)Eϕ(Ψit)]∑N
i=1(α

0
i )

2Eϕ (∂z2ℓit)

]
,

V
δ
∞ = E

 r2NT

N2T 2
E

( N∑
i=1

T∑
t=1

∆̃it

)(
N∑
i=1

T∑
t=1

∆̃it

)′

+

N∑
i=1

T∑
t=1

ΓitΓ
′
it

 ,

for some deterministic sequence rNT → ∞ such that rNT = O(
√
NT ) and V

δ
∞ > 0, where

∆̃it = ∆it − δ0 and Γit = E
[
(NT )−1

∑N
i=1

∑T
t=1 ∂β∆it

]′
W

−1
∞ ∂zℓitXit −Eϕ(Ψit)∂zℓit. Then,

rNT (δ̂ − δ0 − T−1B
δ
∞ −N−1D

δ
∞) →d N (0, V

δ
∞).

Remark 2.4.1. [Convergence rate, bias and variance] The rate of convergence rNT is deter-

mined by the inverse of the �rst term of V
δ
∞, which corresponds to the asymptotic variance

of δ := (NT )−1
∑N

i=1

∑T
t=1∆it,

r2NT = O

 1

N2T 2

N∑
i,j=1

T∑
t,s=1

E[∆̃it∆̃
′
js]

−1

.

Assumption 5(iv) and the condition rNT → ∞ ensure that we can apply a central limit

theorem to δ. The exact rate of convergence in general depends on the sampling properties

of the unobserved e�ects. For example, if {αi}N and {γt}T are independent sequences, and

αi and γt are independent for all i, t, then in general rNT =
√

NT/(N + T − 1),

V
δ
∞ = E

 r2NT

N2T 2

N∑
i=1

 T∑
t,τ=1

E(∆̃it∆̃
′
iτ ) +

∑
j ̸=i

T∑
t=1

E(∆̃it∆̃
′
jt) +

T∑
t=1

E(ΓitΓ
′
it)

 ,

and the asymptotic bias is of order T−1/2 +N−1/2. The bias and the last term of V
δ
∞ are
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asymptotically negligible in this case under the asymptotic sequences of Assumption 4(i).

Example 2.2.1 (Linear model). For δ = σ2, the convergence rate is rNT =
√
NT regardless

of the sampling properties of the unobserved individual and time e�ects because ∆it = (Yit−

X ′
itβ

0 − π0
it)

2 is independent over i and α-mixing over t. The distribution of the unobserved

e�ects is ancillary for the APE because the information matrix of the log-likelihood ℓit =

−.5 log 2π − .5 log δ − .5(Yit − X ′
itβ − πit)

2/δ is orthogonal in πit and δ at πit = π0
it and

δ = δ0.

2.4.3 Bias corrected estimators

The results of the previous sections show that the asymptotic distributions of the �xed

e�ects estimators of the model parameters and APEs can have biases of the same order as

the variances under sequences where T grows at the same rate as N . This is the large-

T version of the incidental parameters problem that invalidates any inference based on

the asymptotic distribution. In this section we describe how to construct analytical bias

corrections for panel models and give conditions for the asymptotic validity of analytical

and jackknife bias corrections.

The jackknife correction for the model parameter β in equation (2.15) is generic and

applies to the panel model. For the APEs, the jackknife correction is formed similarly as

δ̃JNT = 3δ̂NT − δ̃N,T/2 − δ̃N/2,T ,

where δ̃N,T/2 is the average of the 2 split jackknife estimators of the APE that leave out the

�rst and second halves of the time periods, and δ̃N/2,T is the average of the 2 split jackknife

estimators of the APE that leave out half of the individuals.

The analytical corrections are constructed using sample analogs of the expressions in

Theorems 2.4.1 and 2.4.2, replacing the true values of β and ϕ by the �xed e�ects estimators.

To describe these corrections, we introduce some additional notation. For any function
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of the data, unobserved e�ects and parameters gitj(β, αiγt, αiγt−j) with 0 ≤ j < t, let

ĝitj = git(β̂, α̂iγ̂t, α̂iγ̂t−j) denote the �xed e�ects estimator, e.g., ̂Eϕ[∂z2ℓit] denotes the �xed

e�ects estimator of Eϕ[∂z2ℓit]. Let Ĥ−1
(αα), Ĥ

−1
(αγ), Ĥ

−1
(γα), and Ĥ−1

(γγ) denote the blocks of the

Moore-Penrose pseudo inverse matrix Ĥ−1, where

Ĥ =

(
Ĥ(αα) Ĥ(αγ)

[Ĥ(αγ)]
′

Ĥ(γγ)

)
,

Ĥ(αα) = diag(−
∑

t
̂Eϕ[∂z2ℓit])/

√
NT , Ĥ(αα) = diag(−

∑
i

̂Eϕ[∂z2ℓit])/
√
NT , and Ĥ(αγ)it =

− ̂Eϕ[∂z2ℓit]/
√
NT . Let

Ξ̂it := − 1√
NT

N∑
j=1

T∑
τ=1

(γ̂tγ̂τ Ĥ−1
(αα)ij + α̂iγ̂τ Ĥ−1

(γα)tj

+ γ̂tα̂j Ĥ−1
(αγ)iτ + α̂iα̂j Ĥ−1

(γγ)tτ )
̂Eϕ (∂z2ℓjτXjτ ),̂̃Xit := Xit − Ξ̂it.

The k-th component of Ξ̂it corresponds to the following least squares projection

Ξ̂it,k = α̂∗
i,kγ̂t + α̂iγ̂

∗
t,k,

(α̂∗
k, γ̂

∗
k) = arg min

αi,k,γt,k

∑
i,t

̂Eϕ(−∂z2ℓit)

(
̂Eϕ(∂z2ℓitXit)

̂Eϕ(∂z2ℓit)
− α∗

i,kγ̂t − α̂iγ
∗
t,k

)2

.

The analytical bias corrected estimator of β0 is

β̃A = β̂ − Ŵ−1B̂/T − Ŵ−1D̂/N,

where

B̂ = − 1

N

N∑
i=1

∑L
j=0[T/(T − j)]

∑T
t=j+1 γ̂tγ̂t−j

̂
Eϕ

(
∂zℓi,t−j∂z2ℓitX̃it

)
+ 1

2

∑T
t=1 γ̂

2
t

̂Eϕ(∂z3ℓitX̃it)∑T
t=1 γ̂

2
t

̂Eϕ (∂z2ℓit)
,
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D̂ = − 1

T

T∑
t=1

∑N
i=1 α̂

2
i

[
̂

Eϕ

(
∂zℓit∂z2ℓitX̃it

)
+ 1

2

̂
Eϕ

(
∂z3ℓitX̃it

)]
∑N

i=1 α̂
2
i

̂Eϕ (∂z2ℓit)
,

Ŵ = −(NT )−1
N∑
i=1

T∑
t=1

̂
Eϕ

(
∂z2ℓitX̃itX̃ ′

it

)
,

and L is a trimming parameter for estimation of spectral expectations such that L → ∞

and L/T → 0 (Hahn and Kuersteiner, 2011). The factor T/(T − j) is a degrees of freedom

adjustment that rescales the time series averages T−1
∑T

t=j+1 by the number of observations

instead of by T . Unlike for variance estimation, we do not need to use a kernel function

because the bias estimator does not need to be positive. Asymptotic (1 − p)�con�dence

intervals for the components of β0 can be formed as

β̃A
k ± z1−p

√
Ŵ−1

kk /(NT ), k = {1, ...,dimβ0},

where z1−p is the (1 − p)�quantile of the standard normal distribution, and Ŵ−1
kk is the

(k, k)-element of the matrix Ŵ−1.

The analytical bias corrected estimator of δ0 is

δ̃A = δ̂ − B̂δ/T − D̂δ/N,

where δ̂ is the APE constructed from a bias corrected estimator of β. Let

Ψ̂it = − 1√
NT

N∑
j=1

T∑
τ=1

(
γ̂tγ̂τ Ĥ−1

(αα)ij + α̂iγ̂τ Ĥ−1
(γα)tj + γ̂tα̂j Ĥ−1

(αγ)iτ + α̂iα̂j Ĥ−1
(γγ)tτ

)
∂̂π∆jτ .

The �xed e�ects estimators of the components of the asymptotic bias are

B̂δ =
1

N

N∑
i=1

∑L
j=0[T/(T − j)]

∑T
t=j+1 γ̂tγ̂t−j

̂Eϕ (∂zℓi,t−j∂z2ℓitΨit)∑T
t=1 γ̂

2
t

̂Eϕ (∂z2ℓit)



61

− 1

2N

N∑
i=1

∑T
t=1 γ̂

2
t

[
̂Eϕ(∂π2∆it)− ̂Eϕ(∂z3ℓit)Êϕ(Ψit)

]
∑T

t=1 γ̂
2
t

̂Eϕ (∂z2ℓit)
,

D̂δ =
1

T

T∑
t=1

∑N
i=1 α̂

2
i

[
̂Eϕ (∂zℓit∂z2ℓitΨit)− 1

2
̂Eϕ(∂π2∆it) +

1
2

̂Eϕ(∂z3ℓit)Êϕ(Ψit)
]

∑N
i=1 α̂

2
i

̂Eϕ (∂z2ℓit)
.

The estimator of the asymptotic variance in general depends on the sampling properties of

the unobserved e�ects. Under the independence assumption of Remark 2.4.1,

V̂ δ =
r2NT

N2T 2

N∑
i=1

 T∑
t,τ=1

̂̃∆it
̂̃∆′
iτ +

T∑
t=1

∑
j ̸=i

̂̃∆it
̂̃∆′
jt +

T∑
t=1

̂Eϕ(ΓitΓ′
it)

 , (2.20)

where ̂̃∆it = ∆̃it − δ̂. Note that we do not need to specify the convergence rate to make

inference because the standard errors
√

V̂ δ/rNT do not depend on rNT . Bias corrected

estimators and con�dence intervals can be constructed in the same fashion as for the model

parameter.

We use the following homogeneity assumption to show the validity of the jackknife cor-

rections for the model parameters and APEs. It ensures that the asymptotic bias is the same

in all the partitions of the panel. The analytical corrections do not require this assumption.

Assumption 6. [Unconditional homogeneity] The sequence {(Yit, Xit, αi, γt) : 1 ≤ i ≤

N, 1 ≤ t ≤ T} is identically distributed across i and strictly stationary across t, for each

N,T.

Remark 2.4.2. [Test of homogeneity] Assumption 6 is a su�cient condition for the validity

of the jackknife corrections. The weaker condition that the asymptotic biases are the same

in all the partitions of the panel can be tested using the Chow-type test recently proposed

in (Dhaene and Jochmans, 2014).

The following theorems are the main result of this section. They show that the analytical

and jackknife bias corrections eliminate the bias from the asymptotic distribution of the �xed

e�ects estimators of the model parameters and APEs without increasing variance, and that
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the estimators of the asymptotic variances are consistent.

Theorem 2.4.3 (Bias corrections for β̂). Under the conditions of Theorems 2.4.1,

Ŵ →P W∞,

and, if L → ∞ and L/T → 0,

√
NT (β̃A − β0) →d N (0,W

−1
∞ ).

Under the conditions of Theorems 2.4.1 and Assumption 6,

√
NT (β̃J − β0) →d N (0,W

−1
∞ ).

Theorem 2.4.4 (Bias corrections for δ̂). Under the conditions of Theorems 2.4.1 and 2.4.2,

V̂ δ →P V
δ
∞,

and, if L → ∞ and L/T → 0,

rNT (δ̃
A − δ0NT ) →d N (0, V

δ
∞).

Under the conditions of Theorems 2.4.1 and 2.4.2, and Assumption 6,

rNT (δ̃
J − δ0) →d N (0, V

δ
∞).

Remark 2.4.3. [Rate of convergence] The rate of convergence rNT depends on the properties

of the sampling process for the explanatory variables and unobserved e�ects (see remark

2.4.1).
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2.5 Numerical Examples

To illustrate how the bias corrections work in �nite samples, we consider the non-regression

version of Example 2.2.1, Yit | α, γ ∼ N (αiγt, σ
2) independently over i and t. In this linear

model the �xed e�ects estimator of ϕNT can be obtained by the principal component method

of (Bai, 2009b) or by Algorithm 2.2.1 with LNT (δ, ϕNT ) = −
∑

i,t(Yit −αiγt)
2/2. Then, the

�xed e�ects estimator of the APE δ = σ2 is

δ̂NT = (NT )−1
∑
i,t

(Yit − α̂iγ̂t)
2 .

Applying the results of Theorem 2.4.2 to ∆it = (Yit − αiγt)
2, the probability limit of

δ̂NT admits the expansion

δ̂NT = δ0
(
1− 1

T
− 1

N

)
+ oP

(
1

T
∨ 1

N

)
,

as N,T → ∞, so that B
δ
∞ = −δ0 and D

δ
∞ = −δ0.

To form the analytical bias correction we can set B̂δ
NT = −δ̂NT and D̂δ

NT = −δ̂NT . This

yields δ̃ANT = δ̂NT (1 + 1/T + 1/N) with

δ̃ANT = δ0 + oP (T
−1 ∨N−1).

This correction reduces the order of the bias, but it increases �nite-sample variance because

the factor (1 + 1/T + 1/N) > 1. We compare the biases and standard deviations of the

�xed e�ects estimator and the corrected estimator in a numerical example below. For the

Jackknife correction, straightforward calculations give

δ̃JNT = 3δ̂NT − δ̂N,T/2 − δ̂N/2,T = δ0 + oP (T
−1 ∨N−1).

Table 2.1 presents numerical results for the bias and standard deviations of the �xed
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e�ects and bias corrected estimators in �nite samples obtained from 50,000 simulations. We

consider panels with N,T ∈ {10, 25, 50}, and only report the results for T ≤ N since all the

expressions are symmetric in N and T . All the numbers in the table are in percentage of the

true parameter value, so we do not need to specify the value of δ0. We only report results

based on the �xed e�ects estimator that uses Algorithm 2.2.1, because the results based on

the estimator that uses principal components are identical up to the tolerance level.4 By

comparing the �rst two rows of the table, we �nd that the �rst order approximation captures

most of the bias of the �xed e�ects estimator. The analytical and jackknife corrections o�er

substantial improvements in terms of bias reduction. The second and sixth row of the

table show that the bias of the �xed e�ects estimator is of the same order of magnitude

as the standard deviation, where V NT = Var[δ̂NT ] = 2(N − 1)(T − 1)(δ0)2/(NT )2 under

independence of Yit over i and t conditional on the unobserved e�ects. The seventh row

shows the increase in standard deviation due to analytical bias correction is small compared

to the bias reduction, where V
A
NT = Var[δ̃ANT ] = (1+1/N +1/T )2V NT . The last row shows

that the jackknife yields less precise estimates than the analytical correction in small panels.

The asymptotic variance V ∞ = 2(δ0)2/(NT ) in the �fth row provides a good approximation

to the �nite sample variance of all the estimators.

Table 2.2 illustrates the e�ect of the bias on the inference based on the asymptotic

distribution. It shows the coverage probabilities of 95% asymptotic con�dence intervals for

δ0 constructed in the usual way as

CI.95(δ̂) = δ̂ ± 1.96V̂
1/2
NT = δ̂(1± 1.96

√
2/(NT ))

where δ̂ = {δ̂NT , δ̃
A
NT , δ̃

J
NT } and V̂NT = 2δ̂2/(NT ) is an estimator of the asymptotic variance

V ∞. Here we �nd that the con�dence intervals based on the �xed e�ect estimator display

severe undercoverage for all the sample sizes. The con�dence intervals based on the corrected

estimators have high coverage probabilities, which approach the nominal level as the sample

4We set the tolerance criterium to |δ̂(m) − δ̂(m−1)| < ϵtol = 10−4.
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size grows, as expected from the asymptotic results.
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Table 2.1: Biases and Standard Deviations for Yit | α, γ, δ ∼ N (αiγt, δ)

N = 10 N=25 N=50

T = 10 T=10 T=25 T=10 T=25 T=50

(B∞/T +D∞/N)/δ0 -.20 -.14 -.08 -.12 -.06 -.04

(δ̂NT − δ0)/δ0 -.20 -.14 -.08 -.12 -.06 -.04

(δ̃ANT − δ0)/δ0 -.04 -.02 -.01 -.01 .00 .00

(δ̃JNT − δ0)/δ0 .01 .00 -.01 .00 .00 .00√
V ∞/δ0 .14 .09 .06 .06 .04 .03√
V NT /δ

0 .13 .08 .05 .06 .04 .03√
V

A
NT /δ

0 .15 .09 .06 .07 .04 .03√
V

J
NT /δ

0 .18 .10 .06 .07 .04 .03

Notes: Results obtained by 50,000 simulations

Table 2.2: Coverage probabilities for Yit | α, γ, δ ∼ N (αiγt, δ)

N = 10 N=25 N=50

T = 10 T=10 T=25 T=10 T=25 T=50

CI.95(δ̂NT ) .52 .53 .63 .43 .62 .67

CI.95(δ̃
A
NT ) .88 .91 .93 .92 .94 .94

CI.95(δ̃
J
NT ) .89 .90 .92 .92 .93 .94

Results obtained by 50,000 simulations. Nominal coverage probability is .95.



Chapter 3

Quantile Graphical Models: Prediction and

Conditional Independence with Applications to

Financial Risk Management1

3.1 Introduction

We propose Quantile Graphical Models (QGMs) to characterize and visualize the dependence

structure of a set of random variables. The proposed framework allows us to understand

prediction and conditional independence between these variables. Moreover, it also enable

us to focus on speci�c parts of the distributions of these variables such as tail events. Such

understanding plays an important role in applications like �nancial contagion and systemic

risk measuring where extreme events are the main interest for regulators. Our techniques

are intended to be applied in high-dimensional settings where the total number of variables

(or additional conditioning variables) is large � possibly larger than the sample size.

Our work is complementary to a large body of work that focused on the case of jointly

Gaussian random variables (Lauritzen, 1996). In such setting, it is well known that condi-

tional independence structure is completely characterized by the covariance matrix of the

random variables of interest. Indeed, a zero entry in the precision matrix (inverse of the

covariance matrix) identi�es a pair of conditionally independent variables. Thus the preci-

sion matrix can be directly translated into a Gaussian graphical model (GGM) which can

be used to study the interdependence. Further this approach characterize the conditional

1This chapter is based on a joint work with Alexandre Belloni and Victor Chernozhukov
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mean predictability of one set of the variables by linear combinations of the other variables.

In this work we provide an alternative route to estimate conditional independence and

predictability under asymmetric loss functions that is appealing to Gaussian and non-

Gaussian settings. It hinges on the equivalence between conditional probabilities and con-

ditional quantiles to characterize a random variable. We build upon the quantile regression

literature (Koenker, 2005) to represent dependence. Furthermore, we exploit recent works

on penalized quantile regression methods that allow the estimation of the conditional quan-

tile function in high dimensional settings which enables us to handle many controls and

transformations of the original variables to achieve a �exible speci�cation.

Our interest lies on understanding the dependence between the components of a d-

dimensional random vector XV , where the set V contains the labels of the components.

Quantile graph models (QGMs) allow us to visualize dependence for each speci�c quantile

index τ through a graph where the set of nodes V represents the components of XV and

edges represent a relation between the corresponding components. Therefore we have a graph

process indexed by τ ∈ (0, 1). The structure represented by the τ -quantile graph represents

a local relation and can be valuable in applications where the tail interdependence (high or

low quantile index) is the main interest.

The network produced by QGMs has several important features. First, it enables dif-

ferent strength of the links in di�erent directions. This is important because for undirected

networks, the distinction between exposure and contribution is unclear. Second, compared

with Gaussian Graphical Models (which is characterized by the covariance matrix), QGMs

are able to capture the tail interdependence through estimating at up or low quantiles. Third,

QGMs can capture the asymmetric dependence structure at di�erent quantiles, which can be

particularly useful in applications (e.g., stock market returns, exchange rate dependence). In

addition, by considering all the quantiles we can characterize the conditional independence

structure between the variables. This is useful specially when the variables are not jointly

Gaussian distributed, in which case the covariance matrix cannot completely characterize
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establish conditional independence.

We also provide estimation methods to learn QGMs from data. The estimators are

geared to cover high-dimensional settings where the size of the model is large relative to the

sample size. These estimators are based on ℓ1-penalized quantile regression and low biased

equations. Under mild regularities conditions, we discuss rates of convergence and properties

of the selected graph structure that hold uniformly over a large class of data generating pro-

cess. Furthermore, based on proper thresholding, recovery of the QGMs pattern is possible

when coe�cients are well separated from zero which parallel the results for graph recovery

in the Gaussian case based on the estimation of the precision matrix. (Similar to the graph

recovery in the Gaussian case the exact recover is subject to the lack of uniformity validity

critiques of Leeb and Pötscher (Leeb and Pötscher, 2008).) Of independent interest, the

analysis of the ℓ1-penalized quantile regression derived here considers a set of index T that

grows to (asymptotically) cover (0, 1). Under additional weak conditions, the same rate of

convergence established in (Belloni et al., 2011) can be achieved when T grows (provided it

does not grow too fast relative to the sample size).

QGMs can play an important role in applications where tail events are relevant. With

certain rescaling of the edge weights, we are able to capture the importance of each node

or measuring its systemic risk contribution. In parallel with (Andersen et al., 2013), many

approaches to systemic risk measurement �t naturally into the QGMs. For example, one

can view the ∆CoV aR
b|a
τ , a, b ∈ V (suitably scaled), as a measure of the impact of �rm a

on �rm b, as the weight in the edge of a QGM at quantile τ . Then, the systemic risk of

�rm a, ∆CoV aR
sys|a
τ which measures contributions of individual �rms to systemic network

event, equals to the sum of coe�cients over b ∈ V ,
∑

b∈V ∆CoV aR
b|a
τ . Similarly, the sum

over a ∈ V measures exposures of individual �rms to systemic shocks from the network.

QGMs can also be used to study contagion and network spillover e�ects since it is useful

for studying tail risk spillovers. We consider the study of international �nancial contagion

in volatilities, specializing in estimating the risk transmission channels, see (Claessens and
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Forbes, 2001) for an overview on international �nancial contagions. After estimating the

risk transmission channels, we can use our ∆CoV aR measure to calculate the contribution

and exposure of each country to the whole market. Our method applies to the case where

many countries involved, overcome the problem of curse of dimensionality that traditional

methods might have.

Understanding the dependence between stock returns plays a key role in hedging strate-

gies. However, these strategies are critical precisely during downside movement of the mar-

ket. The union of QGMs can be more informative in representing conditional independence

than Gaussian graphical models in this setting. Indeed, recent empirical evidence (Ang

et al., 2006; Ang and Chen, 2002; Patton, 2004) points to non-Gaussianity of the distribu-

tion of stock returns, especially during market downturns. Further, hedging decisions are

typically interested on extreme outcomes rather than average outcomes. Finally, it is also

instructive to understand how the dependence (and policies) would change as the downside

movement of the market becomes more extreme. This application motivated us to consider

conditional QGMs that extend the previous models to be conditional on additional events

(e.g. downside movement of the market).

Regarding the conditional independence structure for high dimensional models, this pa-

per relates to the large statistic literature on estimating high dimensional Gaussian Graphical

Models. It is well known that recovering the structure of an undirected Gaussian graph is

equivalent to recovering the support of the precision matrix, i.e. covariance matrix esti-

mation, (Dempster, 1972) and (Lauritzen, 1996; Cox and Wermuth, 1996; Edwards, 2000).

Several methods for covariance matrix estimation involves hypothesis testing, (Edwards,

2000; Drton and Perlman, 2004; Drton and Perlman, 2007; Drton and Perlman, 2008). In

the high-dimensional setting, (Meinshausen and Bühlmann, 2006) propose neighborhood se-

lection with the Lasso for each node in the graph and combine the results column-by-column

to get the �nal Gaussian graphs. (Yuan and Lin, 2007; Banerjee et al., 2008; Friedman et al.,

2008) directly estimate the precision matrix through penalizing the log-likelihood function
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directly. Other re�nement estimators including (Yuan, 2010; Cai et al., 2011; Liu and Luo,

2012; Sun and Zhang, 2012; Liu and Wang, 2012). (Liu et al., 2009) extended the result

to a more general class of models called nonparanormal models or semiparametric Gaussian

copula models, i.e., the variables follow a joint normal distribution after a set of unknown

monotone transformations. See also (Liu et al., 2012; Xue and Zou, 2012; Xue et al., 2012).

However, all those methods assume the (transformed) random matrix follows a joint normal

distribution. The proposed work provides a complementary method for additional settings

by giving up e�ciency in the Gaussian case.

The rest of the paper is organized as follows. Section 3.2 lays out the foundation of

QGMs. Section 3.3 contains estimators for QGMs. Section 3.4 contains some simulation

evidence. Section 3.5 provides empirical applications of QGMs to measure systemic risk

contribution and to hedging conditional on the downside movements of the US stock market.

Notation. For an integer k, we let [k] := {1, . . . , k} denote the set of integers from 1 to k.

For a random variableX we note by X its support. We use the notation a∨b = max{a, b} and

a∧b = min{a, b}. We use ∥·∥p to denote the p-norm of a vector as well as the induced p-norm

of a matrix. We denote the ℓ0-�norm� by ∥·∥0 (i.e., the number of nonzero components), the

max norm by ∥A∥max = max{|Aij |}, the Frobenius norm by ∥A∥F = {
∑

i∈V
∑

j∈V A2
ij}1/2.

We denote by ∥β∥1,n =
∑d

j=1 σ̂j |βj | the ℓ1-norm weighted by σ̂j 's. Finally, given a vector

δ ∈ Rp, and a set of indices T ⊂ {1, ..., d}, we denote by δT the vector in which δTj = δj if

j ∈ T , δTj = 0 if j /∈ T .

3.2 Quantile Graph Models

In this section we describe quantile graph models associated with a d-dimensional random

vector X = XV where the set V = [d] = {1, . . . , d} denotes the labels of the components.

These models aim to provide a description of the interdependence between the random

variables in XV . In particular, they induce graphs that allow for visualization of dependence

structures. However, di�erent models arise from di�erent objectives as we discuss below.
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3.2.1 Conditional Independence Quantile Graphs

Conditional independence graphs have been used to provide a visualization and insight on

the dependence structure between random variables. Each node of the graph is associated

with a component of XV . We denote the conditional independence graph as GI = (V,EI)

where GI is an undirected graph with vertex set V and edge set E which is represented by

an adjacency matrix (EI
a,b = 1 if the edge (a, b) ∈ GI , and EI

a,b = 0 otherwise). An edge

(a, b) is not contained in the graph if and only if

Xa ⊥ Xb | XV \{a,b}, (3.1)

namely Xb and Xa are independent conditionally on all remaining variables XV \{a,b} =

{Xk; k ∈ V \{a, b}}.

Remark 3.2.1 (Conditional Independence Under Gaussianity). In the case that X is jointly

normally distributed, XV ∼ Nd(0,Σ) with Σ as the covariance matrix of XV , the conditional

independence structure between two components is determined by the inverse of covariance

matrix, i.e. the precision matrix Θ = Σ−1. It follows that the nonzero elements in the

precision matrix corresponds to the nonzero coe�cients of the associated (high dimensional)

mean regression. The family of Gaussian distributions with this property is known as a

Gauss-Markov random �eld with respect to the graph G. This observation has motivated a

large literature (Lauritzen, 1996) and some extension that allow transformations of Gaussian

variables.

Our main interest is to allow for non-Gaussian distributions. In order to achieve a

tractable concept in such generality, we use that (3.1) occurs if and only if

FXa(· | XV \{a}) = FXa(· | XV \{a,b}) for all XV \{a} ∈ XV \{a}. (3.2)

In turn, by the equivalence between conditional probabilities and conditional quantiles to
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characterize a random variable, we have that (3.1) occurs if and only if

QXa(τ |XV \{a}) = QXa(τ |XV \{a,b}) for all τ ∈ (0, 1), and XV \{a} ∈ XV \{a}. (3.3)

For a quantile index τ ∈ (0, 1), we de�ne the τ -quantile conditional independence graph

as the directed graph G(τ) = (V,EI(τ)) with vertex set V and edge set EI(τ). An edge

(a, b) is not contained in the edge set EI(τ) if and only if

QXa(τ | XV \{a}) = QXa(τ |XV \{a,b}) for all XV \{a} ∈ XV \{a}. (3.4)

By the equivalence between (3.2) and (3.3), the union of τ -quantile graphs over τ ∈ (0, 1)

represents the conditional independence structure of X, namely EI = ∪τ∈(0,1)E
I(τ). This

motivates us to consider a relaxation of (3.1). For a set of quantile indices T ⊂ (0, 1), we

say that

Xa ⊥T Xb | XV \{a,b}, (3.5)

Xa and Xb are T -conditionally independent given XV \{a,b}, if (3.4) holds for all τ ∈ T .

Thus, we have that (3.1) implies (3.5).2 We de�ne the quantile graph associated with T as

EI(T ) = ∪τ∈T E
I(τ).

Although the conditional independence concept relates to all quantile indices, the quantile

characterization described above also lends itself to quantile speci�c impacts which can be

of independent interest.3

2In our analysis we will allow T to change with n so that it approaches (0, 1) asymptotically.
3For example, we might be interested in some extreme events which typically correspond to crises in

�nancial systems.
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3.2.2 Prediction Quantile Graphs under Asymmetric Check Function Loss

Prediction Quantile Graph Models (PCGMs) are concerned with prediction accuracy (in-

stead of conditional independence as in Section 3.2.1). More precisely, for each a ∈ V , we

are interested on the predicting Xa based on linear combinations of the remaining variables,

XV \{a}, where accuracy is measured with respect to an asymmetric loss function. Formally,

PQGMs measure accuracy as

LQτ (a | V \ {a}) = min
β

E[ρτ (Xa −X ′
V \{a}β)] (3.6)

where the asymmetric loss function ρτ (t) = τ − 1{t ≤ 0}t is the check function used in

Koenker and Basset (1978).

Importantly, PQGMs are concerned with the best linear predictor under the asymmetric

loss function ρτ . This is a fundamental distinction with respect to CIQGMs discussed

in Section 3.2.1 where the speci�cation of the conditional quantile was approximately a

linear function of transformations Za. Indeed, we note that under suitable conditions the

linear predictor that solves the minimization problem in (3.6) approximates the conditional

quantile regression as shown in (Belloni et al., 2011). (In fact, the conditional quantile

function would be linear if the vector XV was jointly Gaussian.) However, PQGMs do not

assume that the conditional quantile function of Xa is well approximated by a linear function

and instead it focuses on the best linear predictor.

In principle each component of XV can have predictive power for other components.

However, we say that Xb is predictively uninformative for Xa given XV \{a,b} if

LQτ (a | V \ {a}) = LQτ (a | V \ {a, b}) for all τ ∈ (0, 1).

Therefore, considering a linear function ofXb does not improve our performance of predicting

Xa with respect to the asymmetric loss function ρτ .

Again we can visualize the prediction relations using a graph process indexed by τ ∈
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(0, 1). PQGMs allow us to visualize which variables are predictively informative to another

variable by using a directed graph GP (τ) = (V,EP (τ)) where edge (a, b) is in the graph only

if Xb is predictively informative for Xa given XV \{a,b} at the quantile τ . Finally we de�ne

the PQGM associated with T ⊂ (0, 1) as

EP (T ) = ∪τ∈T E
P (τ).

3.2.3 Conditional Quantile Graphical Models

In this section we discuss an useful extension of the QGMs discussed in Sections 3.2.1 and

3.2.2. It allows for conditioning on additional events Z where the index set Z is possibly

in�nite. This is motivated by several applications where the interdependence between the

random variables in XV maybe substantially impacted by additional observable events.

This general framework allows to accommodate di�erent forms of conditioning: (i) Z

might denote additional variables; or (ii) Z can be an event. The main implication of this

extension is that the QGMs are now graph processes indexed not only by τ ∈ (0, 1) but also

by Z ∈ Z.

In order to generalize CIQGMs, we say that (T , Z)-conditionally independent,

Xa ⊥T Xb | XV \{a,b}, Z (3.7)

provided that for all τ ∈ T we have

QXa(τ |XV \{a}, Z) = QXa(τ |XV \{a,b}, Z). (3.8)

The conditional independence edge set associated with (τ, Z) is de�ned analogously as

before. We denote them by EI(τ, Z) and EI(T , Z) = ∪τ∈T E
I(τ, Z) for Z ∈ Z.

The extension of PQGMs proceeds by de�ning the accuracy under the asymmetric loss



76

function conditionally on Z. More precisely, we de�ne

LQτ (a | V \ {a}, Z) = min
β

E[ρτ (Xa −X ′
V \{a}β) | Z]. (3.9)

The predictive edge set associated with (τ, Z) is also de�ned analogously as before. We

denote as EP (τ, Z) and EP (T , Z) = ∪τ∈T E
P (τ, Z).

Example 3.2.1 (Predictive QGMs of Stock Returns Under Downside Market Movement).

Hedging decisions rely on the dependence of the returns of various stocks. However, hedging's

performance is more relevant during downside movements of the market. In such setting

it is of interest to understand interdependence conditionally on downside movements. We

can parameterize the downside movements by using a random variable M , which denotes

a market index, and condition the on the event Z = {M ≤ m}. This allows us to de�ne

conditional quantile graphical models GP (τ, Z) = (V,EP (τ, Z)), for Z ∈ Z.

3.3 Estimators for High-Dimensional Quantile Graphical Models

In this section we propose and discuss estimators for QGMs introduced in Section 3.2.

Throughout this section it is assumed that we observe i.i.d. observations of the d-dimensional

random vector XV , namely {XiV : i = 1, . . . , n}. Given the �nite data, unless additional

assumptions are imposed we cannot estimate the quantities of interest for all τ(0, 1). We

will consider a (compact) set of quantile index T ⊂ (0, 1). Nonetheless, the estimators are

intended to handle high dimensional models. In particular we consider a sequence of models

where d and T are indexed by the sample size n and allowed to grow as n grows.

3.3.1 Estimators for Conditional Independence Quantile Graphs

Next we discuss the speci�cation and propose an estimator for CIQGMs. In general it is

potentially hard to correctly specify coherent models. The following examples provide us

with a starting point.
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Example 3.3.1 (Gaussian Case). Consider the Gaussian case, XV ∼ N(µ,Σ) and V = [d].

It follows that for a ∈ V , the conditional distribution Xa | XV \{a} satis�es

Xa | XV \{a} ∼ N

µa −
∑

j∈V \{a}

(Σ−1)aj
(Σ−1)aa

(Xj − µj),
1

(Σ−1)aa

 .

Therefore the conditional quantile function of Xa is linear in XV \{a} and is given by

QXa(τ |XV \{a}) =
Φ−1(τ)

(Σ−1)
1/2
aa

+ µa −
∑

j∈V \{a}

(Σ−1)aj
(Σ−1)aa

(Xj − µj).

Example 3.3.2 (Multiplicative Error Model). Consider d = 2 so that V = {1, 2}. Assume

that X2 and ε are independent positive random variables. Assume further that they relate

to X1 as

X1 = α+ εX2.

In this case we have that the conditional quantile functions are linear and given by

QX1(τ |X2) = α+ F−1
ε (τ)X2 and QX2(τ |X1) = (X1 − α)/F−1

ε (1− τ).

Example 3.3.3 (Additive Error Model). Consider d = 2 so that V = {1, 2}. Let X2 ∼

U(0, 1) and ϵ ∼ U(0, 1) be independent random variables. Also de�ne the random variable

X1 is de�ned as

X1 = α+ βX2 + ε.

It follows that QX1(τ |X2) = α+ βX2 + τ . However, if β = 0, we have QX2(τ |X1) = τ , and

for β > 0, direct calculations yield that

QX2(τ |X1) =

{
τ
β (X1 − α), if X1 ≤ α+ β
τ + (1− τ)(X1 − α− β), if X1 ≥ α+ β
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where we note that X1 ∈ [α, 1 + α+ β].

Although a linear speci�cation is correct for Examples 3.3.1 and 3.3.2, Example 3.3.3

above illustrates that we need to consider more general transformation of the basic covariates

XV in the speci�cation for each conditional quantile function. Nonetheless, speci�cations

with additional non-linear terms can approximate non-drastic departures from normality.

We will consider a conditional quantile representation for each a ∈ V . It is based

on transformations of the original covariates XV \{a} that creates a p-dimensional vector

Za = P (XV \{a}) ∈ Rp so that

QXa(τ |XV \{a}) = Z ′
aβ

a(τ) + ra(τ), βa(τ) ∈ Rp, for all τ ∈ T (3.10)

where ra(τ) denotes a small approximation error. For b ∈ V \ {a} we let Ia(b) := {j :

Zaj depends on Xb}. That is Ia(b) has the components of Za that are functions of Xb.

Under correct speci�cation, if Xa and Xb are conditionally independent, we have βa
j (τ) = 0

for all j ∈ Ia(b).

This allows us to connect the conditional independence quantile graph estimation prob-

lem with a model selection within quantile regression. Indeed, the representation (3.10) has

been used in several quantile regression models, see (Koenker, 2005). Under mild condi-

tions this model allows us to identify the process (βa(τ))τ∈T as the solution of the following

optimization problem

βa(τ) ∈ argmin
β

E[ρτ (Xa − Z ′
aβ)]. (3.11)

In order to allow a �exible speci�cation, it is attractive to consider a high-dimensional vector

of Za where its dimension p is possibly larger than the sample size. In turn, having a large

number of technical controls creates an estimation challenge if the number of coe�cients p

is not negligible with respect to the sample size n. A useful condition that makes estimation

possible in such high dimensional setting that applies to several applications is approximate
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sparsity (Fan et al., 2011; Belloni et al., 2012; Belloni et al., 2014). Formally we require

max
a∈V

sup
τ∈T

∥βa(τ)∥0 ≤ s and max
a∈V

sup
τ∈T

{E[r2a(τ)]}1/2 .
√

s/n, (3.12)

where the sparsity parameter s of the model is allowed to grow (at a slower rate) as n grows.

Algorithm 1 below contains our proposal to estimate βa(τ), a ∈ V, τ ∈ T . It is based on

three procedures in order to overcome the high-dimensionality. In the �rst step we apply a

ℓ1-penalized quantile regression. The second step applies Lasso where the data is weighted

by

faτ = fXa|XV \{a}(QXa(τ | XV \{a}) | XV \{a}),

the conditional density at the true quantile. (We note that an estimate for faτ is directly

available based on the estimator for ℓ1-penalized quantile regression for τ+h and τ−h where

h is a bandwidth parameter, see (Koenker, 2005; Belloni et al., 2013b).) Finally the third

step aims to remove the bias from penalization and applies instrumental quantile regression.

There are several parameters that need to be speci�ed for Algorithm 1. First, it assumes

that the columns have been normalized such that En[Z
2
iaj ] = 1, a ∈ V , j ∈ [p]. The penalty

parameter λI is chosen as the (1 − ξ)-quantile of the ℓ∞-norm of the score at the true

quantile function where 1 − ξ is the desired con�dence level. It was shown in (Belloni and

Chernozhukov, 2011) that the score has a pivotal distribution

W = max
a∈V

sup
τ∈T

∥En[(1{Ui ≤ τ} − τ)Za]∥∞√
τ(1− τ)

(3.13)

where {Ui : i = 1, . . . , n} are i.i.d. uniform (0, 1) random variables. Regarding the parame-

ters for the weighted Lasso in Step 2, the choice of penalty level λ := 1.1n−1/22Φ−1(1− ξ)

and penalty loading Γ̂τ = diag[Γ̂τkk, k ∈ [p] \ {j}] is a diagonal matrix de�ned by the the

following procedure: (1) Compute the Post Lasso estimator θ̃0τ based on λ and initial values

Γ̂τjj = max
i≤n

fiaτ{En[Z
2
iajZ

2
iak]}1/2. (2) Compute the residuals v̂i = fiaτ (Ziaj −Z ′

ia\{j}θ̃
0
τ ) and
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update

Γ̂τkk =
√

En[f2
iaτZ

2
iakv̂

2
i ], k ∈ [p] \ {j}. (3.14)

Finally, Step 3 uses Aτ = {α ∈ R : |α− α̃τ | ≤ 10{En[Z
2
iaj ]}−1/2/ log n}.

Algorithm 1 (Conditional Independence Quantile Graphical Model)

For each a ∈ V , and j ∈ [p], and τ ∈ T , perform the following:

1. Run Post-ℓ1-quantile regression of Xa on Zaj and Za\{j};

keep �tted value Z ′
a\{j}β̃τ ,

(α̂τ , β̂τ ) ∈ argminα,β En[ρτ (Xia − Ziajα− Z ′
ia\{j}β)] + λI

√
τ(1− τ)∥β∥1

(α̃τ , β̃τ ) ∈ argminα,β En[ρτ (Xia − Ziajα− Z ′
ia\{j}β)] :

support(β) ⊆ support(β̂
(2s)
τ ).

2. Run Post-Lasso of fiaτZiaj on fiaτZia\{j};

keep the residual ṽi := fiaτ (Ziaj − Z ′
ia\{j}θ̃τ ),

θ̂τ ∈ argminθ En[f
2
iaτ (Ziaj − Z ′

ia\{j}θ)
2] + λ∥Γ̂τθ∥1

θ̃τ ∈ argminθ En[f
2
iaτ (Ziaj − Z ′

ia\{j}θ)
2] : support(θ) ⊆ support(θ̂τ ).

3. Run Instrumental Quantile Regression of Xia − Z ′
ia\{j}β̃τ on Ziaj

using ṽi as the instrument for Ziaj ,

β̌a
j (τ) ∈ arg min

α∈Aτ

Ln(α),

where Ln(α) :=
{En[(1{Xia≤Ziajα+Z′

ia\{j}β̃τ}−τ)ṽi]}2

En[(1{Xia≤Ziajα+Z′
ia\{j}β̃τ}−τ)2ṽ2i ]

.

Algorithm 1 above has been studied in (Belloni et al., 2013b) when it is applied to a

single triple (a, j, τ). Under similar conditions, results that hold uniformly over (a, j, τ) ∈

V × [p]×T are achieved based on the tools developed in (Belloni and Chernozhukov, 2011)

and (Chernozhukov et al., 2012). Algorithm 1 is tailored to achieve good rates of convergence

in the ℓ∞-norm. In particular, under regularity conditions with probability going to 1 we

have

sup
τ∈T

∥βa(τ)− β̌a(τ)∥∞ .
√

log(p ∨ n)

n
.
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In order to create an estimate of EI(τ) = {(a, b) ∈ V × V : maxj∈Ia(b) |βa
j (τ)| > 0}, we

de�ne

ÊI(τ) =

{
(a, b) ∈ V × V : max

j∈Ia(b)

|β̌a
j (τ)|

se(β̌a
j (τ))

> λ̄

}

where se(β̌a
j (τ)) = {τ(1 − τ)En[ṽ

2
i ]}1/2 is an estimate of the standard deviation of the

estimator, and λ̄ is set to be of the order of
√

log(p ∨ n)/n to account for the uniformity

over a ∈ V , j ∈ [p], and τ ∈ T .

Remark 3.3.1 (Stepdown procedure for λ̄). Setting a critical value λ̄ that accounts for the

multiple hypothesis that are being tested plays an important role to select the graph ÊI(τ).

Further improvements can be obtained by considering the stepdown procedure of (Romano

and Wolf, 2005) for multiple hypothesis testing that was studied for the high-dimensional

case in (Chernozhukov et al., 2013). The procedure iteratively creates a suitable sequence

of decreasing critical values. In each step only null hypotheses that were not rejected are

considered to determine the critical value. Thus, as long as any hypothesis is rejected at a

step, the critical value decreases and we continue to the next iteration. The procedure stops

when no hypothesis in the current active set is rejected.

3.3.2 Estimators for Prediction Quantile Graphs

Next we discuss the speci�cation and propose an estimator for PQGMs. In this case we are

interested on studying prediction of Xa, a ∈ V , using a linear combination of XV \{a} under

the asymmetric loss discussed in (3.6). Given the loss function ρτ , the target d-dimensional

vector of parameters βa(τ) is de�ned as (part of) the solution of the following optimization

problem

(αa(τ), βa(τ)) ∈ argmin
α,β

E[ρτ (Xa − α−X ′
V \{a}β)]. (3.15)

By considering the case that d is large, the use of high-dimensional tools to achieve good

estimators is of interest. The estimation procedure we propose is based on ℓ1-penalized

quantile regression. Again we consider models that satisfy an approximately sparse condi-
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tion. Formally, we require the existence of sparse coe�cients {β̄a(τ) : a ∈ V, τ ∈ T } such

that

max
a∈V

sup
τ∈T

∥β̄a(τ)∥0 ≤ s and max
a∈V

sup
τ∈T

{E[{X ′
V \{a}(β

a(τ)− β̄a(τ))}2]}1/2 .
√

s/n, (3.16)

where the sparsity parameter s of the model is allowed to grow as n grows. A key issue is

to set the penalty parameter properly so that it upper bounds

max
a∈V

sup
τ∈T

max
j∈V \{a}

|En[(1{Xia ≤ αa(τ) +X ′
iV \{a}β

a(τ)} − τ)Xij ]|

σ̂j
√
τ(1− τ)

(3.17)

where σ̂j = {En[X
2
ij ]}1/2. However, it is important to note that we do not assume that the

conditional quantile of Xa is a linear function of XV \{a}. Thus the penalty parameter in

the penalized quantile regression needs to account for such misspeci�cation and is no longer

pivotal as in (Belloni and Chernozhukov, 2011).

In order to handle this issue we make a two step estimation. In the �rst step the penalty

parameter λ0 is conservative and set via bounds constructed based on symmetrization argu-

ments, see (van de Geer, 2008; Belloni et al., 2013a). The second steps uses the preliminary

estimator to bootstrap (3.17) based on the tools in (Chernozhukov et al., 2013). The fol-

lowing algorithm states the procedure.

Under correct linear speci�cation, ℓ1-QR has been studied in (Belloni and Chernozhukov,

2011). The work (Belloni et al., 2013b) allows for a vanishing approximation error. It was

shown to achieve good rates of convergence in the ℓ2-norm. In particular, under regularity

conditions with probability going to 1 we have

max
a∈V

sup
τ∈T

∥βa(τ)− β̌a(τ)∥ .
√

s log(d ∨ n)

n
.
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Algorithm 2 (Predictive Quantile Graph Model)

For each a ∈ V , and τ ∈ T , perform the following:

1. Run ℓ1-quantile regression of Xa on XV \{a} with penalty λ0

(α̂a
τ , β̂

a
τ ) ∈ argminβ En[ρτ (Xia − α−X ′

iV \{a}β)] + λ0
∑

j∈V \{a} σ̂j |βj |

where σ̂j = {En[X
2
ij ]}1/2.

2. Set ε̂iaτ = 1{Xia ≤ α̂a
τ +X ′

iV \{a}β̂
a
τ } − τ for i ∈ [n], a ∈ V and τ ∈ T . Compute the

penalty level λB = (1− ξ)-quantile of W where

W := max
a∈V

sup
τ∈T

max
j∈V \{a}

|En[ε̂iaτeiXij ]|∞
σ̂j
√

τ(1− τ)

where {ei : i = 1, . . . , n} is a sequence of i.i.d. standard Gaussian random variables.
For each a ∈ V , and τ ∈ T , perform the following:

3. Run ℓ1-quantile regression of Xa on XV \{a} with penalty λB

(α̌a(τ), β̌a(τ)) ∈ argminβ En[ρτ (Xia − α−X ′
iV \{a}β)]

+λB

√
τ(1− τ)

∑
j∈V \{a} σ̂j |βj |

The estimate of the prediction quantile graph is given by

ÊP (τ) =
{
(a, b) ∈ V × V : |β̌a

b (τ)| > 0
}
,

that is, it is induced by the covariates selected by the ℓ1-penalized estimator.

3.3.3 Conditional Quantile Graph Models

In order to handle the additional conditional event Z ∈ Z we propose to modify the Algo-

rithms 1 and 2 based on kernel smoothing. To that extent, we assume that the observed

data is of the form {(XiV , Zi) : i = 1, . . . , n}, where Zi might be de�ned through additional

variables. Furthermore, we assume that for each Z ∈ Z we have access to a kernel function

KZ .

Example 3.3.4 (Predictive QGMs of Stock Returns Under Downside Market Movements,
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Algorithm 1' (Z-Conditional Independence Quantile Graphical Model)

For each a ∈ V , and j ∈ [p], τ ∈ T , and Z ∈ Z, perform the following:

1. Run (local) Post-ℓ1-quantile regression of Xa on Zaj and Za\{j}; keep �tted value

Z ′
a\{j}β̃τ ,

(α̂τ , β̂τ ) ∈ argminα,β En[KZ(Zi)ρτ (Xia − Ziajα− Z ′
ia\{j}β)] + λI

√
τ(1− τ)∥β∥1

(α̃τ , β̃τ ) ∈ argminα,β En[KZ(Zi)ρτ (Xia − Ziajα− Z ′
ia\{j}β)]

with support(β) ⊆ support(β̂
(2s)
τ ).

2. Run (local) Post-Lasso of fiaτZiaj on fiaτZia\{j}; keep the residual ṽi := fiaτ (Ziaj −
Z ′
ia\{j}θ̃τ ),

θ̂τ ∈ argminθ En[KZ(Zi)f
2
iaτ (Ziaj − Z ′

ia\{j}θ)
2] + λ∥Γ̂τθ∥1

θ̃τ ∈ argminθ En[f
2
iaτ (Ziaj − Z ′

ia\{j}θ)
2]

with support(θ) ⊆ support(θ̂τ ).

3. Run (local) Instrumental Quantile Regression of Xia − Z ′
ia\{j}β̃τ on Ziaj using ṽi as

the instrument for Ziaj ,

β̌a
j (τ) ∈ arg min

α∈Aτ

Ln(α),

where Ln(α) :=
{En[KZ(Zi)(1{Xia≤Ziajα+Z′

ia\{j}β̃τ}−τ)ṽi]}2

En[K2
Z(Zi)(1{Xia≤Ziajα+Z′

ia\{j}β̃τ}−τ)2ṽ2i ]
.

continued). In Example 3.2.1, we have Zi = Mi denote the market return and the condi-

tioning event to be Z = 1{M ≤ m}. We might be interest on a �xed m or on a family

of values m ∈ (−m̄, 0]. The latter induces Z = { {M ≤ m} : m ∈ (−m̄, 0]}. The kernel

function is simply KZ(t) = 1{t ≤ m}/
∑n

i=1 1{Zi ≤ m}.

3.4 Simulations of Predictive Quantile Graph Models

In this section we perform numerical simulations to illustrate the performance of the esti-

mators for PQGMs. We will consider several di�erent designs. In order to compare with

other proposals we will consider Gaussian and non-Gaussian examples.
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Algorithm 2' (Z-Conditional Predictive Quantile Graph Model)

For each a ∈ V , τ ∈ T , and Z ∈ Z perform the following:

1. Run (local) ℓ1-quantile regression of Xa on XV \{a} with penalty λ0

(α̂a
τ , β̂

a
τ ) ∈ argminβ En[KZ(Zi)ρτ (Xia − α−X ′

iV \{a}β)]

+λ0
∑

j∈V \{a} σ̂j |βj |

where σ̂j = {En[KZ(Zi)X
2
ij ]}1/2.

2. Set ε̂iaτ = 1{Xia ≤ α̂a
τ +X ′

iV \{a}β̂
a
τ } − τ for i ∈ [n], a ∈ V and τ ∈ T . Compute the

penalty level λB = (1− ξ)-quantile of W where

W := max
a∈V

sup
τ∈T

max
j∈V \{a}

|En[KZ(Zi)ε̂iaτeiXij ]|∞
σ̂j
√

τ(1− τ)

where {ei : i = 1, . . . , n} is a sequence of i.i.d. standard Gaussian random variables.
For each a ∈ V , and τ ∈ T , perform the following:

3. Run (local) ℓ1-quantile regression of Xa on XV \{a} with penalty λB

(α̌a(τ), β̌a(τ)) ∈ argminβ En[KZ(Zi)ρτ (Xia − α−X ′
iV \{a}β)]

+λB

√
τ(1− τ)

∑
j∈V \{a} σ̂j |βj |

3.4.1 Isotropic Non-Gaussian Example

The equivalence between a zero in the inverse covariance matrix and a pair of conditional in-

dependent variables break down for non-gaussian distribution. The nonparanormal extends

Gaussian graphical models to semiparametric Gaussian copula models by transforming the

variables by smooth functions. We illustrate the applicability of QGM in representing the

independence structure of a set of variables when the random variables are not jointly (non-

para)normal.

Consider i.i.d. copies of an d-dimensional random vector W = (W1, . . . ,Wd) from the

following multivariate normal distribution, W ∼ N(0, Id×d), where Id×d is the identity

matrix. Further, we generate

Y = −
√

2
3π−2 +

√
π

3π−2W
2
d−1|Wd|. (3.18)
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It follows that E[Y ] =
√

π
3π−2(E[|Wd|] −

√
2/π) = 0 and V ar(Y ) = π

3π−2(E[W 2
d ·W 4

d−1] −
2
π ) = 1. In addition, equation (3.18) is a location-scale-shift model in which the conditional

median of the response is zero while quantile functions other than the median are nonzero.

We de�ne the vector XV as

XV = (W1, ...,Wd−1, Y )′.

In this new set of variables, only Xd−1 and Xd (i.e. Wd−1 and Y ) are not (conditionally)

independent. Nonetheless, the new covariance matrix of XV is still Id×d.
4

Next we consider an i.i.d. sample with a sample size of n = 300 and d = 15. We show

graphs of independence structure estimated by using both the GGM and QGM(s) in this

the non-Gaussian setting,

Gaussian is estimated by using graphical lasso without any transformation of XV , and

the �nal graph is chosen by Extended Bayesian information criterion (ebic), see (Foygel and

Drton, 2010). Nonparanormal is estimated by using graphical lasso with nonparanormal

transformation of XV , see (Liu et al., 2009), and the �nal graph is chosen by ebic. Both

graphs are estimated by using R-package huge.

We also compare our estimation results using QGM with neighborhood selection meth-

ods, e.g. TIGER of (Liu and Wang, 2012) in R-package �are, the left graph is when choosing

the turning parameter to be
√

log d
n while the right graph is when choosing the tuning pa-

rameter to be 2
√

log d
n . Throughout, we use Tiger2 (or TIGER2) represent TIGER with

penalty level 2
√

log d
n .

As expected, GGM cannot detect the correct dependence structure when the joint dis-

tribution is non-Gaussian while QGM can still represent the right independence structure.

4Indeed, for any k ≤ d− 1 we have

E[Xd ·Xk] = E[Y ·Wk] = E[Wk · (−
√

2
3π−2

+ 1√
3−2/π

W 2
k |Wd|)]

=
√

π
3π−2

E[|Wd|W 3
k ]−

√
2

3π−2
E[Wk] = 0.
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Figure 3.1: QGM(s) and GGM

Figure 3.2: Tiger1 and Tiger2
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3.5 Empirical Applications of QGM

3.5.1 Financial Contagion

In this section we apply QGM for the study of international �nancial contagion. We focus

on examining �nancial contagion through the volatility spillover perspective. (Engle and

Susmel, 1993) reported that international stock markets are related through their volatilities

instead of returns. (Diebold and Yilmaz, 2009) studied the return and volatility spillovers

of 19 countries and found di�erences in return and volatility spillovers. For a survey of

�nancial contagion see (Claessens and Forbes, 2001). We also illustrate how QGM can

highlight asymmetric dependence between the random variables.

We use daily equity index returns, September 2009 to September 2013 (1044 observa-

tions), from Morgan Stanley Capital International (MSCI). The returns are all translated

into dollar-equivalents as of September 6th 2013. We use absolute returns as a proxy for

volatility. We have a total of 45 countries in our sample, there are 21 developed markets (Aus-

tralia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong, Ireland, Italy,

Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzer-

land, the United Kingdom, the United States), 21 emerging markets (Brazil, Chile, Mexico,

Greece, Israel, China, Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Ko-

rea, Malaysia, Peru, Philippines, Poland, Russia, Taiwan, Thailand, Turkey), and 3 frontier

markets (Argentina, Morocco, Jordan).

Below we provide a full-sample analysis of global volatility spillovers at di�erent tails.

We denote 20% quantile as Low Tail, 50% quantile as Median, 80% quantile as Up Tail.

Both QGMs and GGM are estimated. Our purpose is to show the usefulness of QGM in

representing nonlinear tail interdependence allowing for heteroskedasticity and to show that

QGM measures correlation asymmetry by looking at behavior in the tails of the distribution

(not speci�c to any model).

There are signi�cant di�erences in the network structure in terms of volatility spillovers



89

Low Tail

argentina

brazil

chile

mexico

australia

austria belgiumcanada

denmark

francegermany

greece

hong kong

ireland

israel

italy

japan

netherlands

new zealand

norway

portugal

singapore

spain

sweden

switzerland

uk

usa

china

colombia

czech republic

egypt

hungary

india

indonesiakorea

malaysia

morocco

peru

philippines

jordan

poland

russia

taiwan

thailand

turkey

Median

argentina

brazil

chile

mexico

australia

austria belgiumcanada

denmark

francegermany

greece

hong kong

ireland

israel

italy

japan

netherlands

new zealand

norway

portugal

singapore

spain

sweden

switzerland

uk

usa

china

colombia

czech republic

egypt

hungary

india

indonesiakorea

malaysia

morocco

peru

philippines

jordan

poland

russia

taiwan

thailand

turkey

Up Tail

argentina

brazil

chile

mexico

australia

austria belgiumcanada

denmark

francegermany

greece

hong kong

ireland

israel

italy

japan

netherlands

new zealand

norway

portugal

singapore

spain

sweden

switzerland

uk

usa

china

colombia

czech republic

egypt

hungary

india

indonesiakorea

malaysia

morocco

peru

philippines

jordan

poland

russia

taiwan

thailand

turkey

Gaussian Graph

argentina

brazil

chile

mexico

australia

austria belgiumcanada

denmark

francegermany

greece

hong kong

ireland

israel

italy

japan

netherlands

new zealand

norway

portugal

singapore

spain

sweden

switzerland

uk

usa

china

colombia

czech republic

egypt

hungary

india

indonesiakorea

malaysia

morocco

peru

philippines

jordan

poland

russia

taiwan

thailand

turkey

Figure 3.3: International Financial Contagion
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when using QGM and Gaussian graph. QGM permits conditional asymmetries in correlation

dynamics, suited to investigate the presence of asymmetric responses. We �nd signi�cant

increase at the up tail interdependence between the volatility series, i.e. we �nd downside

correlation (high volatility) are much larger than upside correlation (low volatility). This

con�rms �ndings in �nance literature that �nancial markets become more interdependent

during high volatility periods.

We also �nd if two countries are located in the same geographic region, with many sim-

ilarities in terms of market structure and history, they tend to be closely connected (the

homophily e�ect as in network terminology); while two economies located in separate geo-

graphic regions are less likely directly connected. We �nd among European Union member

countries, Germany appears to play a major role in the transmission of shocks to others.

While in Asia, Hong Kong, Thailand, and Singapore appears to play a major role. Among

all the north and south American countries, Canada and US play a major role in risk trans-

mission.

We also report net-∆CoV aR to measure spillover accounting for the network (see Ap-

pendix C.1) for the volatility series through QGM at up tail in Figure 3.4.

Figure 3.4 shows that, globally, total volatility spillovers from Germany, France, US and

Hong Kong to the others are much larger than total volatility spillovers from the others

to them; while the opposite happens to Greece and Spain. Both Greece and Spain receive

larger volatility spillovers from others than contribute to the others. The estimated network

structure is important here as it demonstrates that shocks originating in some stock markets,

e.g. Germany and Hong Kong, may be ampli�ed in their transmission throughout the

system, posing greater risks to the whole market than other shock's origination.

3.5.2 Stock Returns Conditional on Market Downside Movement

Stock markets are in general non-Gaussian. (Ang and Chen, 2002) �nd correlation asym-

metries in the data and reject the null hypothesis of multivariate normal distributions at
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daily, weekly, and monthly frequencies, conditional on market �downside� movements. See

also (Longin and Solnik, 2001; Patton, 2006) among other studies in the empirical �nance

literature for the non-Gaussian feature of �nancial markets. Hence, generally in the �-

nancial market context, conditional correlation only conveys partial and often misleading

information on the actual underlying conditional dependencies.

We contribute to the literature by showing the union of a set of QGMs can be used

to obtain a conditional independence graph when the main interest lies in estimating the

conditional independence structure of stocks under a market downturn. While the joint

distribution of stocks considered is generally non-Gaussian, since QGM does not impose any

parametric assumption on the joint distribution of stocks, the union of QGMs allows for both

Gaussian and non-Gaussian joint distributions in estimating the conditional independence

structure.

This will be modelled with a conditional quantile graph models. We consider the condi-

tioning events to be Z = {Market return ≤ mu} for we set mu = u-th quantile of the market

index return to capture downside movement of the market (note that u = 1 corresponds

to regular market). We obtain daily stock returns from CRSP. The full sample consists of

2769 observations of daily stock returns for 86 stocks in the S&P 500 from Jan 2, 2003 to

December 31, 2013. The total number of stocks is 86 due to data availability at CRSP. We

de�ne market downside as when the market index returns are below a pre-speci�ed level

and we use S&P 500 as market index. In this case, the conditioning on a particular Z

corresponds simply to consider the subsample based on whether the corresponding date's

market return is less equal to the u-th quantile of the market index returns. We reported the

number of edges, there is no linkage between two stocks if there are conditional independent,

at di�erent subsamples in Table 3.1 below.

For estimators based on QGM and GGM, the number of edges increases with the quantile

index. However, potentially due to asymmetry in relations, there are signi�cant di�erences

between the results of QGMs and GGM. There are signi�cantly higher interdependence
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in GGM. Nonetheless, increase in conditional correlation could be a result of assuming

conditional normality for the return distribution � estimation bias in correlation conditional

on market upside or downside moves will cause false correlation. These empirical �ndings

support evidence from the empirical �nance literature.
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Table 3.1: Edges Produced by Di�erent Graph Estimators

Quantile of market index (u) PQGM Glasso(eBIC) TGalasso TIGER

0.15 406 1752 1804 3372

0.5 744 2152 2278 5734

0.75 842 2380 2478 6180

0.9 978 2461 2564 6344

1 1062 2518 2660 6290



Appendix A

Proofs for Chapter 1

A.1 Results of Section 1.2

A.1.1 Panel probit with additive individual and time e�ects

In this setting, I consider the following model

Y ∗
it = X ′

itβ + αi + γt + εit,

Yit = 1{Y ∗
it ≥ 0}, (A.1)

for i = 1, ..., N and t = 1, ...., T . Here, Yit is a scalar outcome variable of interest, Xit is

a vector of explanatory variables, β is a �nite-dimensional parameter vector, the variables

αi and γt are unobserved individual and time e�ects that in economic applications capture

individual heterogeneity and aggregate shocks respectively.

Similarly to Section (1.2.1), I model the conditional distribution of Yit using the single-

index speci�cation

P (Yit = 1|Xit, β, αi, γt) = Φ(Xitβ + αi + γt),

and for estimation I adopt a �xed e�ects approach treating the unobserved individual

and time e�ects as parameters to be estimated. I collect all these e�ects in the vector

ϕNT = (α1, ..., αN , γ1, ..., γN )′. The true values of the parameters are denoted by β0 and

ϕ0
NT = (α0

1, ..., α
0
N , γ01 , ..., γ

0
T )

′. Other quantities of interest involve averages over the data
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and unobserved e�ects

δ0NT = Eϕ[∆NT (β
0, ϕ0

NT )], ∆NT (β, ϕNT ) = (NT )−1
∑
i,t

∆(Xit, β, αi, γt), (A.2)

and examples of partial e�ects (∆) are the following:

Example A.1.1. (Average partial e�ects) If Xit,k, the k-th element of Xit, is binary, its

partial e�ect for model (A.1) on the conditional probability of Yit is

∆(Xit, β, αi + γt) = Φ(βk +X
′
it,−kβ−k + αi + γt)− Φ(X

′
it,−kβ−k + αi + γt), (A.3)

where βk is the k-th element of β, and Xit,−k and β−k include all elements of Xit and β

except for the k-th element. If Xit,k is continuous, for model (A.1) the partial e�ects of Xit,k

on the conditional probability of Yit is

∆(Xit, αi, γt) = βkϕf (X
′
itβ + αi + γt), (A.4)

where ϕf (·) is the derivative of Φ.

De�nition A.1.1. The �xed e�ect EM estimator for panel probit with additive �xed e�ects

is de�ned by

(1) Given initial (β(k), α
(k)
i , γ

(k)
t ), denote µ

(k)
it = X ′

itβ
(k) + α

(k)
i + γ

(k)
t ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗

it |Yit, Xit, β
(k), α

(k)
i , γ

(k)
t ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · ϕf (µ

(k)
it )/{Φ(µ(k)

it )(1− Φ(µ
(k)
it )},

(3) M-step: This contains three conditional maximization steps
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CM-step 1: Given αi and γt, the parameter β can be updated by

β(k+1) = (
N∑
i=1

T∑
t=1

XitX
′
it)

−1{
N∑
i=1

T∑
t=1

Xit(Ŷ
(k)
it − α

(k)
i − γ

(k)
t )},

CM-step 2: Given β and γt, the parameter αi can be updated by

α
(k+1)
i =

1

T

T∑
t=1

(Ŷ
(k)
it −X

′
itβ

(k+1) − γ
(k)
t ),

CM-step 3: Given β and αi, the parameter γt can be updated by

γ
(k+1)
t =

1

N

N∑
i=1

(Ŷ
(k)
it −X

′
itβ

(k+1) − α
(k+1)
i )

(4) Iterate until convergence.

Note that the CM-step 2 and CM-step 3 here are just the average over time and individual

using Ŷ
(k)
it as surrogate for Y ∗

it .

A.1.2 Proof of Proposition 1.2.1

By second-order Taylor expansion, for any two arguments θ1 and θ2,

−logF (θ1) = −logF (θ2)−
∂logF (θ2)

∂θ2
(θ1 − θ2)−

1

2

∂2logF (θ)

∂2θ
|θ∗(θ1 − θ2)

2.

Denote h(θ) = −∂logF (θ)
∂θ . Using the fact that −logF (qitzit) is strictly convex on (0, 1)

for logit and probit, and simple calculation shows 0 < −∂2logF (θ)
∂2θ

|θ∗ < 1, one has

−logF (θ1) ≤ −logF (θ2) + h(θ2)(θ1 − θ2) +
1

2
(θ1 − θ2)

2,

by completing the square, this can be written as

−logF (θ1) ≤ −logF (θ2) +
1

2
(θ1 − θ2 + h(θ2))

2 − 1

2
h2(θ2).
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Now substitute qit(X
′
itβ + α′

iγt) for θ1 and qit(X
′
itβ̃ + α̃′

iγ̃t) for θ2, one has

−logF (qit(X
′
itβ + α′

iγt)) ≤ −logF (qit(X
′
itβ̃ + α̃′

iγ̃t)−
1

2
h2(qit(X

′
itβ̃ + α̃′

iγ̃t))

+
1

2
((X ′

itβ + α′
iγt)− (X ′

itβ̃ + α̃′
iγ̃t) + qith(qit(X

′
itβ̃ + α̃′

iγ̃t)))
2

sum over i and t to obtain the required results.

A.2 Proofs of Section 1.3

A.2.1 Proof of Consistency for β̂PPIF

The proof contains two steps. In Step 1, I show the estimated index z̃it is a good approxi-

mation to zit with some structural error (the generalized residuals). In Step 2, I show the

structural error satis�es the assumption in (Bai, 2009b) for linear panel data models with

interactive �xed e�ects. With a little abuse of notation, in this section I use β̂ to denote

β̂PPIF which is the estimate of the EM procedure for panel probit models.

Step 1. Denote qit = 2Yit − 1. I prove the consistence directly from the likelihood

function

ℓit(β, αi, γt) = logΦ(qit(X
′
itβ + αiγt)), LNT =

1

NT

∑
i,t

ℓit =
∑
i,t

logΦ(qitzit),

for any θ1 and θ2, the following is an upper bound for the negative log-likelihood:

−logΦ(θ1) ≤ −logΦ(θ2)−
ϕf (θ2)

Φ(θ2)
(θ1 − θ2) +

1

2
(θ1 − θ2)

2

= −logΦ(θ2) +
1

2
(θ1 − θ2 −

ϕf (θ2)

Φ(θ2)
)2 − 1

2
(
ϕf (θ2)

Φ(θ2)
)2,
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where ϕf (·) is the Gaussian density. Substitute qitzit for θ1 and qitz̃it for θ2, then

−logΦ(qitzit) ≤ −logΦ(qitz̃it) +
1

2
(zit − z̃it + qit

ϕf (qitz̃it)

Φ(qitz̃it)
)2 − 1

2
(
ϕf (qitz̃it)

Φ(qitz̃it)
)2. (A.5)

Note, from the proof here, one can also infer using z̃it = zit + qit
ϕf (qitz̃it)
Φ(qitz̃it)

= zit +

Yit−Φ(zit)
Φ(zit)(1−Φ(zit))

ϕf (qitzit) is a good next step approximation, as the quadratic loss is a surrogate

for the Bernoulli log-likelihood function.

Step 2. Denote the structural error (generalized residual) as eit =
Yit−ϕf (zit)
Φ(zit)Φ(zit)

ϕf (qitzit).

One has Eϕ[eit] = 0. Since the estimated parameters minimize the objective function, with

equation (A.5) one has

0 ≥ LNT (β
0, ϕ0)− LNT (β̂, ϕ̂) ≥

1

2NT

∑
i,t

[(z0it − ẑit + eit)
2 − e2it]

The consistency proof for β̂ is equivalent to that for the linear regression model with in-

teractive �xed e�ects. In matrix notation, as in Section 1.4, the above inequality would

be

1

NT
Tr(e′e) ≥ 1

NT
Tr[(X ′(β̂ − β0) + α̂γ̂ − α0γ0 − e)′(X ′(β̂ − β0) + α̂γ̂′ − α0γ0 − e)]

≥ 1

NT
Tr[(X ′(β̂ − β0)− e)′M(α̂,α0)(X

′(β̂ − β0)− e)]

where M(α̂,α0) = 1T − (α̂, α0)[(α̂, α0)′(α̂, α0)]−1(α̂, α0)′ is the projector that projects orthog-

onal to (α̂, α0).

With Assumption 1 (iv), which says that no linear combination of the regressors con-

verges to zero, even after projecting any factor loading α, one has 1
NT Tr(Xe′) = op(1), and

E[eit] = 0. One can also check that ∥e∥ = op(
√
NT ). The assumption 1

NT Tr(XX ′) = Op(1)

is satis�ed from the distributional assumption on the regressors above. One then has

| 1

NT
Tr(e′M(α̂,α0)Xk)| ≤ 1

NT
|Tr(e′Xk)|+

1

NT
|Tr(e′P(α̂,α0)Xk)|
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≤ op(1) +
2

NT
∥e∥∥Xk∥ = op(1).

Under these, one has

0 ≥ c∥β̂ − β∥+ op∥β̂ − β0∥+ op(1),

from which it is concluded that β̂ = β0 + op(1).

A.2.2 Proofs of Theorems 1.3.1 and 1.3.2

In the section, I suppress the dependence on NT of all the sequences of functions and

parameters to lighten the notation, e.g. I write L for LNT and ϕ for ϕNT . It is also

convenient to introduce some notation that will be extensively used in the analysis. Let

S(β, ϕ) = ∂ϕL(β, ϕ) H(β, ϕ) = −∂ϕϕ′L(β, ϕ),

where ∂xf denotes the partial derivative of f with respect to x, and additional subscripts

denote higher-order partial derivatives. I refer to the dim ϕ -vector S(β, ϕ) as the incidental

parameter score, and to the dim ϕ× dim ϕ matrix H(β, ϕ) as the incidental parameter

Hessian. I omit the argument of the functions when they are evaluated at the true parameter

values (β0, ϕ0), e.g. H = H(β0, ϕ0). I use a bar to indicate expectations, e.g. ∂βL̄ = E[∂βL],

and a tilde to denote that the variables are in deviation with respect to their expectations,

e.g. ∂βL̄ = ∂βL − ∂βL̄. For c ≥ 0, I de�ne the sets B(c, β0) = {β : ∥β − β0∥∞ ≤ c}, and

Bq(c, β
0, ϕ0) = {(β, ϕ) : ∥β − β0∥ < c, ∥ϕ − ϕ0∥q < c}, which are closed balls of radius c

around the true parameters β0 and (β0, ϕ0), respectively, under the L2 norm and Lq-norm.

Analogous to Ξit de�ned in Eq (1.13), I de�ne

Λit = − 1

NT

N∑
j=1

T∑
τ=1

(H−1
(αα)ijγ

0
τγ

0
t +H−1

(αγ)iτα
0
jγ

0
t +H−1

(γα)tjγ
0
τα

0
i +H−1

(γγ)tτα
0
jα

0
i )∂πℓjτ
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and analogous to Dβℓit de�ned in the main text I also de�ne Dβ∆it = ∂β∆it − ∂π∆itΞit.

With a little abuse of notation, in this section I use β̂ to denote β̂PPIF which is the

estimate of the EM procedure for panel probit models.

A close look at the iterative EM procedure yields

β̂(k+1) = (
∑
i,t

XitX
′
it)

−1
∑
i,t

Xit(Ŷ
(k)
it − α̂

(k)
i γ

(k)
t )

= β(k) + (X ′X)−1∂βL(β(k), ϕ̂(β(k))), (A.6)

which depends on the score of the pro�le likelihood function.

For r ≥ 0, de�ne the sets B(r, β0) = {β : ∥β − β0∥ ≤ r}, and Bq(r, ϕ
0) = {ϕ : ∥ϕ −

ϕ0∥q ≤ r}, which are closed balls of radius r around the true parameter values β0 and ϕ0,

respectively.

Before going to the proof of Theorems 1.3.1 and 1.3.2, I �rst introduce two lemmas that

will be used.

Lemma A.2.1. (Asymptotic expansions of β̂). Let Assumption 1 hold. Then

√
NT (β̂ − β0) = W

−1
∞ U + op(1),

where U = U (0) + U (1), W∞ := limN,T→∞W exists with W∞ > 0, and

W = − 1

NT

N∑
i=1

T∑
t=1

[Eϕ(∂ββ′ℓit) + Eϕ(−∂π2ℓit)ΞitΞ
′
it],

U (0) =
1√
NT

N∑
i=1

T∑
t=1

Dβℓit,

U (1) =
1√
NT

N∑
i=1

T∑
t=1

{−Λit[Dβπℓit − E(Dβπℓit)] +
1

2
Λ2
itE(Dβπ2ℓit)}.

Proof. The proof follows from using Theorem B.1 of (Fernández-Val and Weidner, 2013)

and applying Lemma A.4.1. From Theorem B.1 of (Fernández-Val and Weidner, 2013),
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√
NT∂βL(β, ϕ̂(β)) = U −W

√
NT (β − β0) +R(β),

with

W = −(∂ββ′L+ [∂βϕ′L]H−1
[∂ϕβ′L]),

hence applying Lemma A.4.1 (ii) yields

W = − 1

NT

N∑
i=1

T∑
t=1

[Eϕ(∂ββ′ℓit) + Eϕ(−∂π2ℓit)ΞitΞ
′
it]. (A.7)

Similarly, applying Theorem B.1 of (Fernández-Val and Weidner, 2013) yields

U (0) =
√
NT (∂βL+ [∂βϕ′L̄]H−1S),

U (1) =
√
NT ([∂βϕ′L̃]H−1S − [∂βϕ′L]H−1H̃H−1S)

+
√
NT

dimϕ∑
g=1

(∂βϕ′ϕgL+ [∂βϕ′L]H−1
[∂ϕϕ′ϕgL])[H

−1S][H−1S]g/2.

By using Lemma A.4.1 (i),

U (0) =
1√
NT

N∑
i=1

T∑
t=1

(∂βℓit − Ξit∂πℓit) =
1√
NT

N∑
i=1

T∑
t=1

Dβℓit. (A.8)

Decompose U (1) = U (1a) + U (1b), with

U (1a) =
√
NT ([∂βϕ′L̃]H−1S − [∂βϕ′L]H−1H̃H−1S),

and

U (1b) =
√
NT

dimϕ∑
g=1

(∂βϕ′ϕgL+ [∂βϕ′L]H−1
[∂ϕϕ′ϕgL])[H

−1S][H−1S]g/2.
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By using Lemma A.4.1 (i) and (iii),

U (1a) = − 1√
NT

N∑
i=1

T∑
t=1

Λit(∂βπ ℓ̃it + Ξit∂π2 ℓ̃it) = − 1√
NT

N∑
i=1

T∑
t=1

Λit[Dβπℓit − Eϕ(Dβπℓit)],

and

U (1b) =
1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
it[Eϕ(∂βπ2ℓit) + [∂βϕ′L]H−1Eϕ(∂ϕ∂π2ℓit)],

where for each i, t it is the case that ∂ϕ∂π2ℓit is a dim ϕ-vector, which can be written as

∂ϕ∂π2ℓit =

(
A1T
A′1N

)
for an N ×T matrix A with elements Ajτ = ∂π3ℓjτ if j = i and τ = t,

and Ajτ = 0 otherwise. Thus, again applying Lemma A.4.1(i) yields [∂βϕ′L̄]H−1
∂ϕ∂π2ℓit =

−
∑

j,τ Ξjτδ(i=j)δ(t=τ)∂π3ℓit = −Ξit∂π3ℓit. Therefore

U (1b) =
1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
itE(∂βπ2ℓit − Ξit∂π3ℓit) =

1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
itEϕ(Dβπ2ℓit),

hence

U (1) =
1√
NT

N∑
i=1

T∑
t=1

{−Λit[Dβπℓit − E(Dβπℓit)] +
1

2
Λ2
itE(Dβπ2ℓit)}. (A.9)

Lemma A.2.2. (Asymptotic expansion of δ̂). Let Assumptions 1 and 2 hold and let ∥β̂ −

β0∥ = Op((NT )−1/2) = op(rβ). Then

√
NT (δ̂ − δ) = V

(0)
∆ + V

(1)
∆ + op(1),

where

V
(0)
∆ = [

1

NT

∑
i,t

Eϕ(Dβ∆it)]
′W

−1
∞ U (0) − 1√

NT

∑
i,t

Eϕ(Ψit)∂πℓit,
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V
(1)
∆ = [

1

NT

∑
i,t

Eϕ(Dβ∆it)]
′W

−1
∞ U (1) +

1√
NT

∑
i,t

Λit[Ψit∂π2ℓit − Eϕ(Ψit)Eϕ(∂π2ℓit)]

+
1

2
√
NT

∑
i,t

Λ2
it[Eϕ(∂π2ℓit)− Eϕ(∂π3ℓit)Eϕ(Ψit)].

Proof. The proof follows from using Theorem B.4 of (Fernández-Val and Weidner, 2013)

and applying Lemma A.4.1. Theorem B.4 of (Fernández-Val and Weidner, 2013) implies

δ̂ − δ = [∂β′∆+ (∂ϕ′∆)H−1
(∂ϕβ′L)](β̂ − β0) + U

(0)
∆ + U

(1)
∆ + op(1/

√
NT ), (A.10)

with

U
(0)
∆ = (∂ϕ′∆)H−1S,

U
(1)
∆ = (∂ϕ′∆̃)H−1S − (∂ϕ∆)H−1H̃H−1S

+
1

2
S ′H−1

[∂ϕϕ′∆+

dimϕ∑
g=1

[∂ϕϕ′ϕgL][H
−1

(∂ϕ∆)]g]H
−1S.

By using Lemma A.4.1,

√
NTU

(0)
∆ = − 1√

NT

∑
i,t

Eϕ(Ψit)∂πℓit, (A.11)

√
NTU

(1)
∆ =

1√
NT

∑
i,t

Λit[Ψit∂π2ℓit − Eϕ(Ψit)Eϕ(∂π2ℓit)]

+
1

2
√
NT

∑
i,t

Λ2
it[Eϕ(∂π2∆it)− Eϕ(∂π3ℓit)Eϕ(Ψit)]. (A.12)

From the proof of Lemma A.2.1 and the following proof of Theorem 1.3.1, it follows that
√
NT (β̂ − β0) = W

−1
∞ U + op(1) = Op(1), by Lemma A.4.1,

√
NT [∂β′∆+ (∂ϕ′∆)H−1

(∂ϕβ′L)](β̂ − β0) = [
1

NT

∑
i,t

Eϕ(Dβ∆it)]
′
W

−1
∞ (U (0) +U (1)) + op(1).

(A.13)
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Combining equations A.10, A.11, A.12 and A.13 gives the result.

A.2.2.1 Proof of Asymptotics for β̂PPIF

I characterize the asymptotic distribution of β̂ from the limit average Hessian W∞ and the

limiting distribution of the approximated score U . Next two steps are to get the eventual

result.

Step 1 shows U (0) d−→ N(0,W∞). In the likelihood setting E∂βL = 0, ES = 0, and, by

the Bartlett identities E(∂βL∂β′L) = − 1
NT ∂ββ′L, E(∂βLS ′) = − 1

NT ∂βϕ′L̄ , and E(SS ′) =

1
NT H. Denote v = ((α0)′,−(γ0)′)′, S ′v = 0 and ∂βϕ′L̄v = 0.

From the de�nitions W = −(∂ββ′L + [∂βϕ′L]H−1
[∂ϕβ′L]) and U (0) =

√
NT (∂βL +

[∂βϕ′L]H−1S),

E(U (0)) = 0, V ar(U (0)) = W (A.14)

which implies limN,T→∞V ar(U (0)) = W∞.

According to Lemma A.2.1

U (0) =
1√
NT

N∑
i=1

T∑
t=1

Dβℓit, (A.15)

where Dβℓit := ∂βℓit−∂πℓitΞit is a martingale di�erence sequence for each i and independent

across i, conditional on ϕ. Applying Theorem 2.3 in (McLeish, 1974) yields

U (0) d−→ N [0, lim
N,T→∞

V ar(U (0))] ∼ N(0,W∞) (A.16)

Step 2 shows that U (1) →P κB̄∞ + κ−1D̄∞. Since U (1) = U (1a) + U (1b), with

U (1a) = − 1√
NT

∑
i,t

Λit[Dβπℓit − Eϕ(Dβπℓit)]
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and

U (1b) =
1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
itEϕ(Dβπ2ℓit)

Plugging-in the de�nition of Λit, I decompose U
(1a) = U (1a,1)+U (1a,2)+U (1a,3)+U (1a,4),

where

U (1a,1) =
1

(NT )3/2

∑
i,j

H−1
(αα)ij(

∑
τ

∂πℓjτγ
0
τ )
∑
t

(Dβπℓit − EϕDβπℓit)γ
0
t ,

U (1a,2) =
1

(NT )3/2

∑
t,j

H−1
(γα)tj(

∑
τ

∂πℓjτγ
0
τ )
∑
i

(Dβπℓit − EϕDβπℓit)α
0
i ,

U (1a,3) =
1

(NT )3/2

∑
i,τ

H−1
(αγ)iτ (

∑
j

∂πℓjτα
0
j )
∑
t

(Dβπℓit − EϕDβπℓit)γ
0
t ,

U (1a,4) =
1

(NT )3/2

∑
t,τ

H−1
(γγ)tτ (

∑
j

∂πℓjτα
0
j )
∑
i

(Dβπℓit − EϕDβπℓit)α
0
i .

By the Cauchy-Schwarz inequality applied to the sum over t in U (1a,2),

(U (1a,2))2 ≤ 1

(NT )3
[
∑
t

(
∑
j,τ

H−1
(γα)tj∂πℓjτγ

0
τ )

2][
∑
t

(
∑
i

(Dβπℓit − EDβπℓit)α
0
i )

2]

=
1

(NT )3
[
∑
t

Op(NT )][
∑
t

Op(N)] = Op(1/N) = op(1)

Using that both H−1
(γα)∂πℓjτγ

0
τ and (Dβτ ℓit − EDβπℓit)α

0
i are mean zero, independent

across i.

Therefore, U (1a,2) = op(1). Analogously U (1a,3) = op(1).

According to Lemma A.2.5, it is the case thatH−1
(αα) = −diag[( 1

NT

∑T
t=1 Eϕ(∂π2ℓit(γ

0
t )

2))−1]+

Op(1). Analogously to the proof of U (1a,2), the Op(1) part of H
−1
(αα) has an asymptotically
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negligible contribution to U (1a,1). Thus,

U (1a,1) =
1

(NT )3/2

∑
i,j

H−1
(αα)ij(

∑
τ

∂πℓjτγ
0
τ )
∑
t

(Dβπℓit − EϕDβπℓit)γ
0
t

= − 1

(NT )1/2

∑
i

(
∑
τ
∂πℓiτγ

0
τ )
∑
t
(Dβπℓit − EϕDβπℓit)γ

0
t∑T

t=1 Eϕ(∂π2ℓit(γ0t )
2)

+ op(1)

previous assumptions guarantee that Eϕ[(U
(1a,1)
i )2] = Op(1), uniformly over i. Note that

both the denominator and the numerator of U
(1a,1)
i are of order T . For the denominator this

is obvious because of the sum over T . For the numerator there are two sums over T , but both

∂πℓiτγ
0
τ and (Dβπℓit−Eϕ(Dβπℓit))γ

0
t are mean zero weakly correlated processes, the sum over

which is of order
√
T each. By applying the WLLN over i, 1

N

∑
i
U

(1a,1)
i = 1

NEϕU
(1a)
i +oP (1),

and therefore

U (1a,1) = −
√

N

T

1

N

N∑
i=1

T∑
t=1

T∑
τ=t

Eϕ(∂πℓitDβπℓiτγ
0
t γ

0
τ )∑T

t=1 Eϕ(∂π2ℓit(γ0t )
2)︸ ︷︷ ︸

≡
√

N
T
B

(1)

+ op(1).

Here, I use that Eϕ(∂πℓitDβπℓiτ ) = 0 for t > τ . Analogously,

U (1a,4) = −
√

T

N

1

T

T∑
t=1

N∑
i=1

Eϕ(∂πℓitDβπℓit(α
0
i )

2)

N∑
i=1

Eϕ(∂π2ℓit(α0
i )

2)︸ ︷︷ ︸
≡
√

T
N
D

(1)

+ op(1).

hence U (1a) = κB
(1)

+ κ−1D
(1)

+ op(1).

Next, I analyze U (1b). I decompose Λit = Λ
(1)
it + Λ

(2)
it + Λ

(3)
it + Λ

(4)
it , where
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Λ
(1)
it = − 1

NT

N∑
j=1

H−1
(αα)ijγ

0
t

T∑
τ=1

∂πℓjτγ
0
τ , Λ

(2)
it = − 1

NT

N∑
j=1

H−1
(γα)tjα

0
i

T∑
τ=1

∂πℓjτγ
0
τ ,

Λ
(3)
it = − 1

NT

T∑
τ=1

H−1
(αγ)iτγ

0
t

N∑
j=1

∂πℓjτα
0
j , Λ

(4)
it = − 1

NT

T∑
τ=1

H−1
(γγ)tτα

0
i

N∑
j=1

∂πℓjτα
0
j .

This decomposition of Λit includes the following decomposition of U (1b)

U (1b) =

4∑
p,q=1

U (1b,p,q), U (1b,p,q) =
1

2
√
NT

∑
i,t

Λ
(p)
it Λ

(q)
it Eϕ(Dβπ2ℓit).

Due to symmetry U (1b,p,q) = U (1b,q,p) this is a decomposition into 10 distinct terms.

Consider U (1b,1,2),

U (1b,1,2) = 1√
NT

N∑
i=1

U
(1b,1,2)
i , with

U
(1b,1,2)
i = 1

2T

T∑
t=1

γ0t Eϕ(Dβπ2ℓit)
1
N2

N∑
j1,j2=1

H−1
(αα)ij1H

−1
(γα)tj2α

0
i (

1√
T

T∑
τ=1

∂πℓj1τγ
0
τ )(

1√
T

T∑
τ=1

∂πℓj2τγ
0
τ ).

Using Eϕ(
∑
t
∂πℓitγ

0
t ) = 0, Eϕ(

∑
t
∂πℓitγ

0
t

∑
j
∂jτγ

0
τ ) for i ̸= j, and the properties of the

inverse expected Hessian from Theorem A.2.5 one �nds Eϕ[U
(1b,1,2)
i ] = Op(1/N), uni-

formly over i, and Eϕ[(U
(1b,1,2)
i )2] = Op(1), uniformly over i, and Eϕ[U

(1b,1,2)
i U

(1b,1,2)
j ] =

Op(1/N), uniformly over i ̸= j. This implies that EϕU
(1b,1,2) = Op(1/N), and Eϕ[(U

(1b,1,2)−

EϕU
(1b,1,2))2] = Op(1/

√
N), and therefore U (1b,1,2) = op(1). By similar arguments one ob-

tains U (1b,p,q) = op(1) for all combinations of p, q = 1, 2, 3, 4, except for p = q = 1 and

p = q = 4.

For p = q = 1, U (1b,1,1) = 1√
NT

N∑
i=1

U
(1b,1,1)
i , and

U
(1b,1,1)
i = 1

2T

T∑
t=1

(γ0t )
2Eϕ(Dβπ2ℓit)

1
N2

N∑
j1,j2=1

H−1
(αα)ij1H

−1
(αα)ij2(

1√
T

T∑
τ=1

∂πℓj1τγ
0
τ )(

1√
T

T∑
τ=1

∂πℓj2τγ
0
τ ).

Analogous to the result for U (1b,1,2) one �nds Eϕ[(U
(1b,1,1)−EϕU

(1b,1,1))2] = Op(1/
√
N),

and therefore U (1b,1,1) = EϕU
(1b,1,1) + op(1).
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Furthermore,

EϕU
(1b,1,1) =

1

2
√
NT

N∑
i=1

∑T
t=1(γ

0
t )

2Eϕ(Dβπ2ℓit)Eϕ[(∂πℓitγ
0
t )

2]

[
∑T

t=1(γ
0
t )

2Eϕ(∂π2ℓit)]2
+ o(1)

= −
√

N

T

1

2N

N∑
i=1

T∑
t=1

(γ0t )
2Eϕ(Dβπ2ℓit)

T∑
t=1

(γ0t )
2Eϕ(∂π2ℓit)︸ ︷︷ ︸

≡
√

N
T
B

(2)

+ o(1),

analogously,

U (1b,4,4) = EϕU
(1b,4,4) + op(1) = −

√
T

N

1

2T

T∑
t=1

∑N
i=1(α

0
i )

2Eϕ(Dβπ2ℓit)∑N
i=1(α

0
i )

2Eϕ(∂π2ℓit)︸ ︷︷ ︸
≡
√

T
N
D

(2)

+ op(1),

thus U (1b) = κB
(2)

+ κ−1D
(2)

+ op(1).

Since B∞ = limN,T→∞[B
(1)

+ B
(2)

] and D∞ = limN,T→∞[D
(1)

+ D
(2)

], then U (1) =

κB∞ + κ−1D∞ + op(1).

I have shown U (0) d−→ N(0,W∞), and U (1) p−→ κB∞+κ−1D∞. Using this and Lemma

A.2.1 I obtain
√
NT (β̂ − β0)

d−→ W
−1
∞ N(κB∞ + κ−1D∞,W∞).

A.2.2.2 Proof of asymptotic distribution of APE

I consider the case of scalar ∆it to simplify the notation. Decompose

√
NT (δ̂ − δ0NT −B

δ
∞/T −D

δ
∞/N) =

√
NT (δ − δ0NT ) +

√
NT (δ̂ − δ −B

δ
∞/T −D

δ
∞/N).

# Part (1): Limit of
√
NT (δ̂ − δ − B

δ
∞/T − D

δ
∞/N). An argument analogous to the
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proof of 1.3.1 using Lemma A.2.2 yields

√
NT (δ̂ − δ)

d→ N(κB
δ
∞ + κ−1D

δ
∞, V

δ(1)
∞ ),

where V
δ(1)
∞ = E{(NT )−1

∑
i,t Eϕ[Γ

2
it]}, for the expressions of B

δ
∞, D

δ
∞, and Γit given in the

statement of the theorem. Then, by Mann-Wald theorem

√
NT (δ̂ − δ −B

δ
∞/T −D

δ
∞/N)

d→ N(0, V
δ(1)
∞ ).

# Part (2): Limit of
√
NT (δ − δ0NT ). Here I show that

√
NT (δ − δ0NT )

d→ N(0, V
δ(2)
∞ )

and characterize the asymptotic variance V
δ(2)
∞ . I characterize V

δ(2)
∞ as V

δ(2)
∞ = E{NTE[(δ−

δ0NT )
2]}, because E[δ− δ0NT ] = 0. Note, the rate

√
NT is determined through E[(δ− δ0NT )

2],

where

E[(δ − δ0NT )
2] = E[(

1

NT

∑
i,t

∆̃it)
2] =

1

N2T 2

∑
i,j,t,s

E[∆̃it∆̃js], (A.17)

for ∆̃it = ∆it − E(∆it). The order of E[(δ − δ0NT )
2] is equal to the number of terms of the

sums in equation (A.17) that are nonzero, which is determined by the sample properties of

{(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}. Under Assumption 2(i)

E[(δ − δ0NT )
2] =

1

N2T 2

∑
i,t,s

E[∆̃it∆̃is] = O(N−1),

because {∆̃it : 1 ≤ i ≤ N ; 1 ≤ t ≤ T} is independent across i and α-mixing across t.

#Part(3): Limit of
√
NT (δ̂−δ0NT −T−1B

δ
∞−N−1D

δ
∞).The conclusion of the Theorems

follows because (δ − δ0NT ) and (δ̂ − δ − T−1B
δ
∞ −N−1D

δ
∞) are asymptotically independent

and V
δ
∞ = V

δ(2)
+ V

δ(1)
.
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A.2.3 Proofs of Theorems 1.3.3 and 1.3.4

I start by stating a lemma that is going to be used for this section. It corresponds to Lemma

C.2 of (Fernández-Val and Weidner, 2013) and the proof is omitted for brevity.

Lemma A.2.3. Let G(β, ϕ) := 1
N(T−j)

∑
i,t≥j+1 g(Xit, Xi,t−j , β, αiγt, αiγt−j) for 0 ≤ j < T ,

and B0
ε be a subset of Rdimβ+2 that contains an ε-neighborhood of (β, π0

it, π
0
i,t−j) for all

i, t, j,N, T , and for some ε > 0.

Assume that (β, π1, π2) → gitj(β, π1, π2) := g(Xit, Xi,t−j , β, π1, π2) is Lipschitz continuous

over B0
ε a.s., i.e. |gitj(β1, π11, π21)− gitj(β0, π10, π20)| ≤ Mitj∥(β1, π11, π21)− (β0, π10, π20)∥

for all (β1, π11, π21) ∈ B0
ε , (β0, π10, π20) ∈ B0

ε , and some Mitj = Op(1) for all i, t, j,N, T .

Let (β̂, ϕ̂) be an estimator of (β, ϕ) such that ∥β̂ − β0∥ p→ 0 and ∥ϕ̂− ϕ0∥∞
p→ 0. Then,

G(β̂, ϕ̂)
p→ E[G(β0, ϕ0)],

provided that the limit exists.

This lemma shows the consistency of the estimators of averages of the data and param-

eters. I will use this result to show the validity of the analytical bias corrections and the

consistency of the variance estimators.

A.2.3.1 Proof of Theorem 1.3.3

I separate the proof in two parts corresponding to the two statements of the theorem.

Part I: Proof of Ŵ
p→ W∞. The asymptotic variance and its estimators can be expressed

as W∞ = E[W (β0, ϕ0)] and Ŵ = W (β̂, ϕ̂), where W (β, ϕ) has a �rst order representation as

a continuously di�erentiable transformation of terms that have the form ofG(β, ϕ) in Lemma

A.2.3.The result then follows by the continuous mapping theorem noting that ∥β̂−β0∥ p−→ 0

and ∥ϕ̂− ϕ0∥∞
p→ 0.

Part II: Proof of
√
NT (β̃A − β0)

d→ N(0,W
−1
∞ ). I show that B̂

p→ B∞ and D̂
p→ D∞.

These asymptotic biases and their �xed e�ects estimators are either time-series averages of
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fractions of cross-sectional averages, or vice versa. The nesting of the averages makes the

analysis a bit more cumbersome than the analysis of Ŵ , but the results follows by similar

standard arguments, also using that L → ∞ and L/T → 0 guarantee that the trimmed

estimator in B̂ is also consistent for the spectral expectations; see Lemma 6 in (Hahn and

Kuersteiner, 2011).

A.2.3.2 Proof of Theorem 1.3.4

I separate the proof into two parts corresponding to the two statements of the theorem.

Part I: V̂ δ p→ V
δ
∞. V

δ
∞ and V̂ δ have a similar structure to W∞ and Ŵ in part I of the

proof of Theorem 1.3.3, so that the consistency follows by an analogous argument.

Part II:
√
NT (δ̃A − δ0NT )

d→ N(0, V
δ
∞). As in the proof of Theorem 1.3.2, I decompose

√
NT (δ̃A − δ0NT ) =

√
NT (δ − δ0NT ) +

√
NT (δ̃A − δ).

Then, by Mann-Wald theorem,

√
NT (δ̃A − δ) =

√
NT (δ̂ − B̂δ/T − D̂δ/N − δ)

d→ N(0, V
δ(1)
∞ ),

provided that B̂δ p→ B
δ
∞ and D̂δ p→ D

δ
∞, and

√
NTδ − δ0NT )

d→ N(0, V
δ(2)
∞ ), where

V
δ(1)
∞ and V

δ(2)
∞ are de�ned as in the proof of Theorem 1.3.2. The statement thus follows by

using a similar argument to part II of the proof of Theorem 1.3.3 to show the consistency

of B̂δand D̂δ, and because (δ − δ0NT ) and (δ̃A − δ) are asymptotically independent, and

V
δ
∞ = V

δ(2)
+ V

δ(1)
.

A.2.4 Properties of the Inversed Expected Incidental Parameter Hessian

The following two lemmas would be used in the proof of asymptotic distributions of β and

δ.
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Lemma A.2.4. Let Assumption 1 hold, then ∥H−1
(αα)H(αγ)∥∞ < 1− bmin

bmax
,

and ∥H−1
(γγ)H(γα)∥∞ < 1− bmin

bmax
.

Proof. Let hit = E(−∂π2ℓit), Assumption 1 guarantees that bmin ≤ hit ≤ bmax, therefore

∥H−1
(αα)H(αγ)∥∞ = max

i

∑
t |α0

i γ
0
t hit|∑

t(γ
0
t )

2hit
= 1−max

i

∑
t((γ

0
t )

2 − |α0
i γ

0
t |)hit∑

t(γ
0
t )

2hit

≤ 1−
∥γ0∥2 −min

i
|α0

i |∥γ0∥1
∥γ0∥2

bmin

bmax

similar,

∥H−1
(γγ)H(γα)∥∞ = max

t

∑
i |α0

i γ
0
t hit|∑

i(α
0
i )

2hit
= 1−max

t

∑
i((α

0
i )

2 − |α0
i γ

0
t |)hit∑

i(α
0
i )

2hit

≤ 1−
∥α0∥2 −min

t
|γ0t |∥α0∥1

∥α0∥2
bmin

bmax

Since ∥α0∥2 ≥ 1
N ∥α0∥21, as long as 1

N ∥α0∥1 ≥ min
t
|γ0t |, ∥H

−1
(αα)H(αγ)∥∞ ≤ 1− bmin

bmax
; similarly

since∥γ0∥2 ≥ 1
T ∥γ

0∥21, as long as 1
T ∥γ

0∥1 ≥ min
i
|α0

i |, ∥H
−1
(γγ)H(γα)∥∞ ≤ 1− bmin

bmax
.

Lemma A.2.5. Under Assumption 1,

∥H−1 − diag(H(αα),H(γγ))
−1∥max = Op(1).

Proof. By the inversion formula for partitioned matrices

H−1
=

(
A −AH(αγ)H

−1
(γγ)

−H−1
(γγ)H(γα)A H−1

(γγ) +H−1
(γγ)H(γα)AH(αγ)H

−1
(γγ)

)
,

with

A ≡ (H(αα) −H(αγ)H
−1
(γγ)H(γα))

−1 = H−1
(αα)(I−H−1

(αα)H(αγ)H
−1
(γγ)H(γα))

−1
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= H−1
(αα)

∞∑
n=0

(H−1
(αα)H(αγ)H

−1
(γγ)H(γα))

n.

De�ne

B ≡
∞∑
n=1

(H−1
(αα)H(αγ)H

−1
(γγ)H(γα))

n,

thenA = H−1
(αα)+H−1

(αα)B. By using the matrix norm property that∥AB∥max ≤ ∥A∥∞∥B∥max

and Lemma A.2.4

∥B∥max ≤
∞∑
n=1

(H−1
(αα)H(αγ)H

−1
(γγ)H(γα))

n∥H−1
(αα)∥∞∥H(αγ)∥max∥H

−1
(γγ)∥∞∥H−1

(γα)∥max

≤ [
∞∑
n=1

(1− bmin

bmax
)2n]T∥H−1

(αα)∥∞∥H−1
(γγ)∥∞∥H(αγ)∥2max = O(N−1).

From this I obtain

∥A∥∞ ≤ ∥H−1
(αα)∥∞ +N∥H−1

(αα)∥∞∥B∥max = O(N).

From the di�erent blocks of

H−1 −D−1
=

(
A−H−1

(αα) −AH(αγ)H
−1
(γγ)

−H−1
(γγ)H(γα)A H−1

(γγ)H(γα)AH(αγ)H
−1
(γγ)

)

it can be seen that

∥A−H−1
(αα)∥max = ∥H−1

(αα)B∥max ≤ ∥H−1
(αα)∥∞∥B∥max = Op(1),

∥ −AH(αγ)H
−1
(γγ)∥max ≤ ∥A∥∞∥H(αγ)∥max∥H

−1
(γγ)∥∞ = Op(1)

∥H−1
(γγ)H(γα)AH(αγ)H

−1
(γγ)∥max ≤ ∥H−1

(γγ)∥2∞∥H(γα)∥∞∥A∥∞∥H(αγ)∥max

≤ N∥H−1
(γγ)∥2∞∥A∥∞∥H(γα)∥2max = Op(1)

Having the bound Op(1) for the max-norm of each block of the matrix yields also the same

bound for the max-norm of the matrix itself, as desired.
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This result establishes that H−1
can be uniformly approximated by a diagonal ma-

trix, which is given by the inverse of the diagonal terms of H. The diagonal elements of

diag(H(αα),H(γγ))
−1 are of order N and T respectively, hence the order of di�erence estab-

lished by the lemma is relatively small.

With this result, ∥H−1∥∞ ≤ ∥H−1 − D−1∥∞ + ∥D−1∥∞ ≤ (N + T )∥H−1 − D−1∥max +

∥D−1∥∞ = Op(N) which can be used to verify the assumption in the proof of Theorem B.1

of (Fernández-Val and Weidner, 2013).

A.3 Proof of Section 1.4

A.3.1 Compare with existing methods

A.3.1.1 Proof of Proposition 1.4.1

The proof is mainly for the case without unobserved e�ects, but similarly argument can be

used to the proof of other cases.

The model looks Yit = 1{X ′
itβ + εit ≥ 0}, and εit is normally distributed with variance

1. When estimating the structural parameter of probit using MLE,

β ∈ argmax
β∈Θ

LNT =
∑
i,t

ℓit =
∑
i,t

YitlogΦ(X
′
itβ) + (1− Yit)log(1− Φ(X

′
itβ)),

and then the score of β is

∑
i,t

Xit{Yit
ϕf (X

′
itβ)

Φ(X
′
itβ)

− (1− Yit)
ϕf (X

′
itβ)

1− Φ(X
′
itβ)︸ ︷︷ ︸

g̃it(β)

} = 0

⇔
∑
i,t

Xit{
Yit − Φ(X

′
itβ)

Φ(X
′
itβ)(1− Φ(X

′
itβ))

ϕf (X
′
itβ)} = 0,
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which relates to the generalized residuals part of EM,

Ŷit = Xitβ + Yit · ϕf (Xitβ)/Φ(Xitβ)− (1− Yit) · ϕf (Xitβ)/{1− Φ(Xitβ)}︸ ︷︷ ︸
git(β)

,

= Xitβ + (Yit − Φ(Xitβ)) · ϕ(Xitβ)/{Φ(Xitβ)(1− Φ(Xitβ))},

and

β = (
N∑
i=1

T∑
t=1

XitX
′
it)

−1{
N∑
i=1

T∑
t=1

X
′
itŶit}.

Denote µ
(k)
it = X

′
itβ

(k), the score function is of β is zero, i.e. the unique �xed-point

property, means that,

N∑
i=1

T∑
t=1

X
′
it((Yit − Φ(X

′
itβ)) · ϕf (X

′
itβ)/{Φ(X

′
itβ)(1− Φ(X

′
itβ))}) = 0 ⇒ β(k) = β0,

this is due to the identi�cation condition that

E0[git(β
0)|Xit] = E0[E[εit|Yit, Xit, β

0]|Xit] = E0[εit|Xit] = 0.

By central limit theory for the score

√
NTE[∇βlit] =

√
NTE[

∑
i,t

Xitgit(β)]
d→ N(0, E

ϕ2
it

Φit(1− Φit)
XitX

′
it),

with V ar(
∑
i,t
Xitg̃it(β)) = V ar(

∑
i,t
Xit

Yit−Φ(Xitβ)
Φ(Xitβ)(1−Φ(Xitβ))

ϕf (X
′
itβ)).

Since V ar(Yit − Φ(X ′
itβ)|Xit) = Φ(X ′

itβ)(1− Φ(X ′
itβ)),

√
NT (β̂ − β)

d−→ N(0, [E
ϕ2
it

Φit(1− Φit)
XitXit]

−1)

for both EM and MLE.
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A.3.1.2 Proof of Proposition 1.4.2

This is to show the di�erence between the proposed �xed e�ects EM-type estimator and the

Newton's method as described in (Greene, 2003).

From the E-step, one has Ŷ
(k)
it = X

′
itβ

(k) + α
(k)
i +

Yit − Φ(µ
(k)
it )

Φ(µ
(k)
it )(1− Φ(µ

(k)
it ))

ϕit(µ
(k)
it )︸ ︷︷ ︸

g
(k)
it

.

For �xed e�ects EM-type estimator, given αi, parameter β can be updated by

β(k+1) = (

N∑
i=1

T∑
t=1

XitX
′
it)

−1{
N∑
i=1

T∑
t=1

Xit(Ŷ
(k)
it − α

(k)
i )}

= β(k) + (

N∑
i=1

T∑
t=1

XitX
′
it)

−1{
N∑
i=1

T∑
t=1

Xitg
(k)
it }︸ ︷︷ ︸

∆
(k)
βEM

,

hence αi can be updated by

α
(k+1)
i =

1

T

T∑
t=1

(Ŷ
(k)
it −X

′
itβ

(k+1)) = α
(k)
i + g

(k)
ii − 1

T

T∑
t=1

X
′
it∆

(k)
βEM

.

For Newton's method as described in (Greene, 2003) Chapter 21

β(k+1) = β(k) − {
N∑
i=1

T∑
t=1

hit(Xit −Xi)(Xit −Xi)
′}−1{

N∑
i=1

T∑
t=1

g
(k)
it (Xit −Xi)}

= β(k) +∆
(k)
βNR

,

and

α
(k+1)
i = α

(k)
i − g

(k)
ii /h

(k)
ii −X

′

i∆
(k)
βNR

,

here hit = g
′
it =

ϕf (zitqit)
Φ(zitqit)

− (
ϕf (zitqit)
Φ(qitzit)

)2, zit = X ′
itβ + αi, qit = 1− 2Yit, hii =

T∑
t=1

hit,

and gii =
T∑
t=1

git. The sign di�erence is due to that hit is negative for all values of zitqit.
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A.3.2 Proof of Consistency for general β̂

In general, the consistency proof will contain two steps as shown in the proof of PPIF.

Denote zit = X ′
itβ+αiγt, under the bounded from below of the second order derivatives

assumption

∀y ∈ Y, z ∈ Z : bmin < ∂z2L(y, z),

also assume that Z is convex, i.e. since Z ⊂ R it is an interval (either open or closed). From

this it follows that for all z1, z2 ∈ Z one has

L(y, z1)− L(y, z2) = [∂zL(y, z1)](z1 − z2) +
1

2
[∂z2L(y, z̃)](z1 − z2)

2

≥ [∂zL(y, z1)](z1 − z2) +
bmin

2
(z1 − z2)

2

=
bmin

2
(z1 − z2 +

1

bmin
[∂zL(y, z1)])2 −

1

2bmin
[∂zL(y, z1)]2,

where z1 ≤ z̃ ≤ z2. De�ne ẑit = zit(β̂, α̂i, γ̂t), and eit =
1

bmin
[∂zLit]. Note that E(eit) = 0.

Since the estimated parameters minimize the objective function, observe that

0 ≥ LNT (β
0, ϕ0)− LNT (β̂, ϕ̂) =

1

NT

∑
i,t

[Lit(z
0
it)− Lit(ẑit)]

≥ bmin

2NT

∑
i,t

[(z0it − ẑit + eit)
2 − e2it] =

bmin

2NT

∑
i,t

{[X ′
it(β̂ − β0) + α̂iγ̂t − α0

i γ
0
t − eit]

2 − e2it}.

Once the last inequality is obtained, the consistency proof for β̂ is equivalent to that

for the linear regression model with interactive �xed e�ects. In matrix notation, the above

inequality reads
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1

NT
Tr(e′e) ≥ 1

NT
Tr[(X ′(β̂ − β0) + α̂γ̂ − α0γ0 − e)′(X ′(β̂ − β0) + α̂γ̂′ − α0γ0 − e)]

≥ 1

NT
Tr[(X ′(β̂ − β0)− e)′M(α̂,α0)(X

′(β̂ − β0)− e)]

where M(α̂,α0) = 1T − (α̂, α0)[(α̂, α0)′(α̂, α0)]−1(α̂, α0)′ is the projector that projects orthog-

onal to (α̂, α0).

The assumptions on the panel model already guarantee that 1
NT Tr(Xe′) = oP (1). One

can furthermore show that ∥e∥ = oP (
√
NT ), also the assumption 1

NT Tr(XX ′) = Op(1) is

satis�ed from the distribution assumption on the regressors above. Then,

| 1

NT
Tr(e′M(α̂,α0)Xk)| ≤ 1

NT
|Tr(e′Xk)|+

1

NT
|Tr(e′P(α̂,α0)Xk)|

≤ op(1) +
2

NT
∥e∥∥Xk∥ = op(1).

Under these, one has

0 ≥ c∥β̂ − β∥+ op∥β̂ − β0∥+ op(1)

from which β̂ = β0 + op(1).

A.4 Some useful algebraic results

For any N × T matrix A, de�ne the N × T matrix PA as follows

(PA)it = α0
i γ

0
t (α

∗
i + γ∗t ), (α∗, γ∗) ∈ argmin

αi,γt

∑
i,t

E(−∂π2ℓit)(Ait − α0
i γ

0
t (αi + γt))

2.

Here, the minimization is over α ∈ RN and γ ∈ RT , and P is the projection operator. It
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is a linear projection, i.e. PP = P. It is also convenient to de�ne

P̃A = PÃ, where Ãit =
Ait

E(−∂π2ℓit)
. (A.18)

P̃ is a linear operator, but not a projection. Note that Ξ and Λ de�ned before can be written

as Ξk = P̃Bk and Λ = P̃C, where Cit = −∂πℓit and Bk,it = −Eϕ(∂βkπℓit), for k = 1, ..., dimβ.

1

The linear operator P̃ is closely related to the projection operator P. The following

lemma shows how in the context of panel probit model some expressions that regularly

appear in the general expansions can conveniently be expressed by using the operator P̃.

Lemma A.4.1. Let A, B and C be N×T matrices, and let the expected incidental parameter

Hessian H be invertible. De�ne the N + T vectors A and B and the (N + T ) × (N + T )

matrix C as follows

A =
1

NT

(
Aγ0

A′α0

)
, B =

1

NT

(
Bγ0

B′α0

)
,

and

C =
1

NT

(
diag(C(γ0 ◦ γ0)) C ◦ (α0(γ0)′)
(C ◦ (α0(γ0)′))′ diag(C ′(α0 ◦ α0))

)
where ◦ denotes the Hadamard product, i.e., element-by-element product. Then

(i) A′H−1B = 1
NT

∑
i,t
(P̃Ait)Bit =

1
NT

∑
i,t
(P̃B)itAit,

(ii) A′H−1B = 1
NT

∑
i,t
E(−∂π2ℓit)(P̃A)it(P̃B)it,

(iii) A′H−1CH−1B = 1
NT

∑
i,t
(P̃A)itCit(P̃B)it.

Proof. Let α0
i γ

0
t (α̃

∗
i + γ̃∗t ) = (PÃ)it = (P̃A)it, with Ã as de�ned in eq (A.18). The FOC of

the minimization problem in the de�nition of (PÃ)it can be written as H
(

α0 ◦ α̃∗

γ0 ◦ γ̃∗
)

= A.

1Bk and Ξk are N × T matrices with entries Bk,it and Ξk,it respectively, while Bit and Ξit are
dimβ-vectors with entries Bk,itand Ξk,it.
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One solution to this is

(
α0 ◦ α̃∗

γ0 ◦ γ̃∗
)

= H−1A. Therefore,

A′H−1B =

(
α0 ◦ α̃∗

γ0 ◦ γ̃∗
)′

B =
1

NT

∑
i,t

α0
i γ

0
t (α̃

∗
i + γ̃∗t )Bit =

1

NT

∑
i,t

(P̃A)itBit.

This is the �rst equality of the Statement (i) in the lemma. The second equality of Statement

(i) follows by symmetry. Statement (ii) is a special case of Statement (iii) with C = H, so

Statement (iii) needs to be proved.

Let α0
i γ

0
t (α

∗
i + γ∗t ) = (PB̃)it = (P̃B)it, where B̃it =

Bit
E(−∂π2ℓit)

. Analogous to the above,

choose

(
α0 ◦ α∗

γ0 ◦ γ∗
)

= H−1B as one solution to the minimization problem. Then

A′H−1CH−1B

=
1

NT

∑
i,t

(α0
i γ

0
t )

2[α̃∗
iCitα

∗
i + γ̃∗tCitα

∗
i + α̃∗

iCitγ
∗
t + γ̃∗tCitγ

∗
t ]

=
∑
i,t

(P̃A)itCit(P̃B)it



Appendix B

Proofs for Chapter 2

B.1 Results

We drop the subscript NT on ϕNT and LNT (β, ϕ), and we denote the unpenalized objective

function (denoted by LNT (β, ϕ) in the main text) as

L∗(β, ϕ) =
1√
NT

N∑
i=1

T∑
t=1

ℓit(zit),

where ϕ = (α′, γ′)′ and zit = X ′
itβ + αiγt. To �x the rescaling freedom in αi and γt we

introduce the penalized objective function

L(β, ϕ) = L∗(β, ϕ)− b

8
√
NT

(
N∑
i=1

α2
i −

T∑
t=1

γ2t

)2

,

where b > 0 is a constant. Let β̂ and ϕ̂ = (α̂′, γ̂′)′ be the maximizers of L(β, ϕ). The

penalty term guarantees that the estimator satis�es the normalization
∑N

i=1 α̂
2
i =

∑T
t=1 γ̂

2
t .

Note that we also normalize the true parameters such that the same normalization holds,

i.e.
∑N

i=1(α
0
i )

2 =
∑T

t=1(γ
0
t )

2. In addition, let ϕ̂(β) = (α̂(β)′, γ̂(β)′)′ be the maximizer of

L(β, ϕ) for given β.
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B.1.1 Consistency

Lemma B.1.1. Let Assumption 4 be satis�ed. Then we have ∥β̂ − β0∥ = OP (N
−3/8) and

1√
NT

∥∥α̂(β)γ̂(β)′ − α0γ0′
∥∥
F
= OP (N

−3/8 + ∥β − β0∥),

uniformly over β in a ϵ-neighborhood around β0 for some ϵ > 0. This implies1

1√
N

∥ϕ̂(β)− ϕ0∥ = OP (N
−3/8 + ∥β − β0∥),

uniformly over β in a neighborhood around β0.

Proof. Let ∂zℓit = ∂zℓit(z
0
it), etc. For all z1, z2 ∈ Z a second order Taylor expansion of

ℓit(z1) around z2 gives

ℓit(z1)− ℓit(z2) = [∂zℓit(z1)](z1 − z2)−
1

2
[∂z2ℓit(z̃)] (z1 − z2)

2

≥ [∂zℓit(z1)](z1 − z2) +
bmin

2
(z1 − z2)

2

=
bmin

2

(
z1 − z2 +

1

bmin
[∂zℓit(z1)]

)2

− 1

2bmin
[∂zℓit(z1)]

2. (B.1)

where z̃ ∈ [min(z1, z2),max(z1, z2)]. Let eit := ∂zℓit/bmin. We have

0 ≥
√
NT

[
L(β0, ϕ0)− L(β̂, ϕ̂)

]
=
∑
i,t

[
ℓit(z

0
it)− ℓit(ẑit)

]
≥ bmin

2

∑
i,t

[
(z0it − ẑit + eit)

2 − e2it
]

=
bmin

2

∑
i,t

{[
X ′

it(β̂ − β0) + α̂iγ̂t − α0
i γ

0
t − eit

]2
− e2it

}
.

Note that the penalty term of the objective function does not enter here, because it is zero

1For this we need the strong-factor assumption (not required before in this theorem) and the normalization∑N
i=1 α̂

2
i =

∑T
t=1 γ̂

2
t and

∑N
i=1(α

0
i )

2 =
∑T

t=1(γ
0
t )

2.
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when evaluated both at the estimates or at the true values of the parameters.

Let e be the N × T matrix with entries eit. Let Xk be the N × T matrix with entries

Xk,it, k = 1, . . . , dimβ. Let β · X =
∑

k βkXk. In matrix notation, the above inequality

reads

Tr(e′e) ≥ Tr

[(
(β̂ − β0) ·X + α̂γ̂′ − α0γ0′ − e

)(
(β̂ − β0) ·X + α̂γ̂′ − α0γ0′ − e

)′]
.

Analogous to the consistency proof for linear regression models with interactive �xed e�ects

in (Bai, 2009b) and (Moon and Weidner, 2010a) we can conclude that

1

NT
Tr(e′e) ≥ 1

NT
Tr

[
Mα0

(
(β̂ − β0) ·X − e

)
Mγ̂

(
(β̂ − β0) ·X − e

)′]
(B.2)

=
1

NT

[
Tr(e′e) + Tr

[
Mα0

(
(β̂ − β0) ·X

)
Mγ̂

(
(β̂ − β0) ·X

)′]
(B.3)

+ 2Tr

[(
(β̂ − β0) ·X

)′
e

]
+OP (∥e∥2) +OP (∥β̂ − β0∥∥e∥max

k
∥Xk∥)

]
, (B.4)

where we used that e.g.

∣∣Tr (X ′
kPα0e

)∣∣ ≤ rank
(
X ′

kPα0e
) ∥∥X ′

kPα0e
∥∥ ≤ ∥Xk∥∥e∥,∣∣Tr (e′Pα0e

)∣∣ ≤ rank
(
e′Pα0e

) ∥∥e′Pα0e
∥∥ ≤ ∥e∥2.

Lemma D.6 in (Fernández-Val and Weidner, 2013) shows that under our assumptions we

have ∥∂zℓ∥ = OP (N
5/8), where ∂zℓ is the N × T matrix with entries ∂zℓit. We thus also

have ∥e∥ = OP (N
5/8). We furthermore have ∥Xk∥2 ≤ ∥Xk∥2F =

∑
itX

2
k,it = OP (NT ), and

therefore ∥Xk∥ = OP (
√
NT ). We thus have ∥Xk∥∥e∥ = OP (N

13/8) and ∥e∥2 = OP (N
5/4).

Furthermore

Tr
(
X ′

ke
)
=

1

bmin

∑
it

Xit∂zℓit = OP (
√
NT ).
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Applying those results and the generalized collinearity assumption to (B.4) gives

0 ≥ c∥β̂ − β0∥+OP (N
−3/8∥β̂ − β0∥) +OP (N

−3/4).

This implies that ∥β̂ − β0∥ = OP (N
−3/8).

De�ne eit(β) = ∂zℓit(X
′
itβ+α0

i γ
0
t )/bmin. Analogous to the above argument we �nd from

L(β, ϕ̂(β)) ≥ L(β, ϕ0) that

0 ≥
√
NT

[
L(β, ϕ0)− L(β, ϕ̂(β))

]
=
∑
i,t

[
ℓit(X

′
itβ + α0

i γ
0
t )− ℓit(X

′
itβ + α̂i(β)γ̂t(β))

]
=

bmin

2

∑
i,t

{[
α̂i(β)γ̂t(β)− α0

i γ
0
t − eit(β)

]2 − [eit(β)]
2
}
.

This implies that

Tr(e(β)′e(β))

≥ Tr
[(
α̂(β)γ̂(β)′ − α0γ0′ − e(β)

) (
α̂(β)γ̂(β)′ − α0γ0′ − e(β)

)′]
= Tr(e(β)′e(β)) + Tr

[(
α̂(β)γ̂(β)′ − α0γ0′

) (
α̂(β)γ̂(β)′ − α0γ0′

)′]︸ ︷︷ ︸
=∥α̂(β)γ̂(β)′−α0γ0′∥2F

+OP

(∥∥α̂(β)γ̂(β)′ − α0γ0′
∥∥
F
∥e(β)∥

)
Note that since α̂(β)γ̂(β)′−α0γ0′ is at most rank 2 we have that 1√

2

∥∥α̂(β)γ̂(β)′ − α0γ0′
∥∥
F
≤∥∥α̂(β)γ̂(β)′ − α0γ0′

∥∥ ≤
∥∥α̂(β)γ̂(β)′ − α0γ0′

∥∥
F
, i.e. the Frobenius and the spectral norm are

equivalent.

We have eit(β) = eit + [X ′
it(β − β0)]∂z2ℓit(X

′
itβ̃ + α0

i γ
0
t )/bmin, where β̃ lies between β

and β0. Therefore ∥e(β)∥ ≤ ∥e∥+OP (
√
NT∥β − β0∥). We thus �nd

0 ≥ 1

NT

∥∥α̂(β)γ̂(β)′ − α0γ0′
∥∥2
F
+OP

[
(N−3/8 + ∥β − β0∥)

∥∥α̂(β)γ̂(β)′ − α0γ0′
∥∥
F
/
√
NT

]
.
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From this we conclude that

1√
NT

∥∥α̂(β)γ̂(β)′ − α0γ0′
∥∥
F
= OP (N

−3/8 + ∥β − β0∥).

Next, let d :=
∥∥α̂(β)γ̂(β)′ − α0γ0′

∥∥
F
. By the triangular inequality,

∥∥α0γ0′
∥∥
F
− d ≤

∥α̂(β)γ̂(β)′∥F ≤
∥∥α0γ0′

∥∥
F
+d, or equivalently ∥α0∥∥γ0∥−d ≤ ∥α̂(β)∥∥γ̂(β)∥ ≤ ∥α0∥∥γ0∥+d.

Using our normalization this gives ∥α0∥2 − d ≤ ∥α̂(β)∥2 ≤ ∥α0∥2 + d. This implies that

∥α̂(β)∥ = ∥α0∥+O(d/∥α0∥) = ∥α0∥+O(d/
√
N), or equivalently ∥γ̂(β)∥ = ∥γ0∥+O(d/

√
N).

Let θα be the angle between the vectors α0 and α̂. We have

d =
∥∥α̂(β)γ̂(β)′ − α0γ0′

∥∥
F
≥
∥∥Mα̂(β)

(
α̂(β)γ̂(β)′ − α0γ0′

)∥∥
F

=
∥∥Mα̂(β)α

0γ0′
∥∥
F
=
∥∥Mα̂(β)α

0
∥∥∥∥γ0∥∥ = cos(θα)∥α0∥∥γ0∥.

Therefore cos(θα) ≤ d/(∥α0∥∥γ0∥) = O(d/N). Together with ∥α̂(β)∥ = ∥α0∥ + O(d/
√
N)

this implies that ∥α̂(β) − α0∥ = O(d/
√
N). Analogously we conclude that ∥γ̂(β) − γ0∥ =

O(d/
√
N).

B.1.2 Inverse Expected Incidental Parameter Hessian

The expected incidental parameter Hessian evaluated at the true parameter values is

H = Eϕ[−∂ϕϕ′L] =

(
H∗

(αα) H∗
(αγ)

[H∗
(αγ)]

′ H∗
(γγ)

)
+

b√
NT

vv′,

where v = vNT = (α0′,−γ0′)′, H∗
(αα) = diag( 1√

NT

∑
t(γ

0
t )

2Eϕ[−∂z2ℓit]),

H∗
(αγ)it =

1√
NT

α0
i γ

0
t Eϕ[−∂z2ℓit], and H∗

(γγ) = diag( 1√
NT

∑
i(α

0
i )

2Eϕ[−∂z2ℓit]).

Lemma B.1.2. Under Assumptions 4 we have

∥∥∥∥H−1 − diag
(
H∗

(αα),H
∗
(γγ)

)−1
∥∥∥∥
max

= OP

(
(NT )−1/2

)
.
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The goal of this appendix subsection is to prove Lemma B.1.2, but before doing so it is

useful to present two more intermediate lemmas.

In the following we assume that α0
i ̸= 0 and γ0t ̸= 0 holds for all i, t. However, this

is only assumed for notational simplicity of the proof. Concretely, |α0
i |−1 and |γ0t |−1 will

occur below, but actually only in expressions where |α0
i |−1 is eventually multiplied with α0

i ,

and |γ0t |−1 is eventually multiplied with γ0t . Therefore, all results also hold without this

assumption. More importantly, the proof does never require that α0
i and γ0t are bounded

away from zero.

Lemma B.1.3. If the statement of Lemma B.1.2 holds for some constant b > 0, then it

holds for any constant b > 0.

Proof. Write H = H∗
+ b√

NT
vv′, where H∗

= Eϕ

[
− ∂2

∂ϕ∂ϕ′L∗
]
. Since H∗

v = 0,

H−1
=
(
H∗
)†
+

(
b√
NT

vv′
)†

=
(
H∗
)†
+

√
NT

b∥vv′∥2
vv′ =

(
H∗
)†
+

√
NT

b [
∑

i(α
0)2 +

∑
t(γ

0)2)]2
vv′,

where † refers to the Moore-Penrose pseudo-inverse. Thus, if H1 is the expected Hessian

for b = b1 > 0 and H2 is the expected Hessian for b = b2 > 0,
∥∥∥H−1

1 −H−1
2

∥∥∥
max

=∥∥∥∥( 1
b1

− 1
b2

) √
NT

[
∑

i(α
0)2+

∑
t(γ

0)2)]
2 vv

′
∥∥∥∥
max

= OP

(
(NT )−1/2

)
. Here we used that maxi |α0

i | and

maxt |γ0t | are bounded and that 1
N

∑
i(α

0)2 and 1
T

∑
t(γ

0)2 converge to positive constants.

In the following, let |α0| be the N -vector with entries |α0
i |, and let |γ0| be the T -vector

with entries |γ0t |.

Lemma B.1.4. Let Assumptions 4 hold and let 0 < b ≤ bmin

(
1 + bmax

bmin

)−1
. Then,

∥∥∥diag(|α0|)−1H−1
(αα)H(αγ)diag(|γ0|)

∥∥∥
∞

< 1− b

bmax
,

and ∥∥∥diag(|γ0|)−1H−1
(γγ)H(γα)diag(|α0|)

∥∥∥
∞

< 1− b

bmax
.
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Proof. Let hit = Eϕ(−∂z2ℓit), and de�ne

h̃it = (hit − b)− 1

b−1 +
∑

j(α
0
j )

2 (
∑

τ (γ
0
τ )

2hjτ )
−1

∑
j

(α0
j )

2(hjt − b)∑
τ (γ

0
τ )

2hjτ
.

By de�nition, H(αα) = H∗
(αα) + bα0α0′/

√
NT and H(αγ) = H∗

(αγ) − bα0γ0′/
√
NT . The

matrix H∗
(αα) is diagonal with elements

∑
t(γ

0
t )

2hit/
√
NT . The matrix H∗

(αγ) has elements

α0
i γ

0
t hit/

√
NT . The Woodbury identity states that

H−1
(αα) = H∗−1

(αα) −H∗−1
(αα)α

0
(√

NT b−1 + α0′H∗−1
(αα)α

0
)−1

α0′H∗−1
(αα).

Then, H−1
(αα)H(αγ) = H∗−1

(αα)H̃/
√
NT , where H̃ is the N × T matrix with elements α0

i γ
0
t h̃it.

Therefore

∥∥∥diag(|α0|)−1H−1
(αα)H(αγ)diag(|γ0|)

∥∥∥
∞

= max
i

∑
t(γ

0
t )

2h̃it∑
t(γ

0
t )

2hit
.

The assumption guarantees that bmax ≥ hit ≥ bmin, which implies hjt − b ≥ bmin − b > 0,

and

h̃it > hit − b− 1

b−1

∑
j

(α0
j )

2(hjt − b)∑
τ (γ

0
τ )

2hjτ
≥ bmin − b

(
1 +

∑
j(α

0
j )

2∑
τ (γ

0
τ )

2

bmax

bmin

)

= bmin − b

(
1 +

bmax

bmin

)
≥ 0,

where we used the normalization
∑

j(α
0
j )

2 =
∑

τ (γ
0
τ )

2 and the upper bound we impose on

b. We conclude that

∥∥∥diag(|α0|)−1H−1
(αα)H(αγ)diag(|γ0|)

∥∥∥
∞

= max
i

∑
t(γ

0
t )

2h̃it∑
t(γ

0
t )

2hit

= 1−min
i

1∑
t(γ

0
t )

2hit

∑
t

(γ0t )
2

b+
1

b−1 +
∑

j(α
0
j )

2 (
∑

τ (γ
0
τ )

2hjτ )
−1

∑
j

(α0
j )

2(hjt − b)∑
τ (γ

0
τ )

2hjτ
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< 1−
∑

t(γt)
2b∑

t(γt)
2bmax

= 1− b

bmax
.

Analogously one �nds that
∥∥∥diag(|γ0|)−1H−1

(γγ)H(γα)diag(|α0|)
∥∥∥
∞

< 1− b
bmax

.

Proof. [Proof of Lemma B.1.2] We choose b ≤ bmin

(
1 + bmax

bmin

)−1
, so that Lemma B.1.4

becomes applicable. According to Lemma B.1.3 the choice of b has no e�ect on the general

validity of the lemma for all b > 0.

By the inversion formula for partitioned matrices,

H−1
=

(
A −AH(αγ)H

−1
(γγ)

−H−1
(γγ)H(γα)A H−1

(γγ) +H−1
(γγ)H(γα)AH(αγ)H

−1
(γγ)

)
,

with A := (H(αα) −H(αγ)H
−1
(γγ)H(γα))

−1. The Woodbury identity states that

H−1
(αα) = H∗−1

(αα) −H∗−1
(αα)α

0
(√

NT/b+ α0′H∗−1
(αα)α

0
)−1

α0′H∗−1
(αα)︸ ︷︷ ︸

=:C(αα)

,

H−1
(γγ) = H∗−1

(γγ) −H∗−1
(γγ)γ

0
(√

NT/b+ γ0′H∗−1
(γγ)γ

0
)−1

γ0′H∗−1
(γγ)︸ ︷︷ ︸

=:C(γγ)

.

By our assumptions we have ∥H∗−1
(αα)∥∞ = OP (1), ∥H∗−1

(γγ)∥∞ = OP (1), ∥H∗
(αγ)∥max =

OP (1/
√
NT ). Therefore2

∥C(αα)∥max ≤ ∥H∗−1
(αα)∥2∞

∥∥α0α0′∥∥
max

(√
NT/b+ α0′H∗−1

(αα)α
0
)−1

= OP (1/
√
NT ),

∥H−1
(αα)∥∞ ≤ ∥H∗−1

(αα)∥∞ +N∥C(αα)∥max = OP (1).

Analogously, ∥C(γγ)∥max = OP (1/
√
NT ) and ∥H−1

(γγ)∥∞ = OP (1). Furthermore, ∥H(αγ)∥max ≤

∥H∗
(αγ)∥max + b∥α0γ0′∥/

√
NT = OP (1/

√
NT ).

2Here and in the following me make use of the inequalities ∥AB∥max < ∥A∥∞∥B∥max, ∥AB∥max <
∥A∥max∥B′∥∞, ∥A∥∞ ≤ n∥A∥max, which hold for any m× n matrix A and n× p matrix B.
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We also have
∥∥diag(|α0|)−1H(αγ)

∥∥
max

= OP (1/
√
NT ) and

∥∥diag(|α0|)−1Cαα

∥∥
max

=

OP (1/
√
NT ). Those last two results do not require α0

i to be bounded away from zero, be-

cause in those expressions the |α0
i |−1 gets multiplied with α0

i and we have |α0
i |−1α0

i = O(1).

We thus have

∥∥∥diag(|α0|)−1H−1
(αα)H(αγ)

∥∥∥
∞

=
∥∥∥diag(|α0|)−1H∗−1

(αα)H(αγ) − diag(|α0|)−1CααH(αγ)

∥∥∥
∞

=
∥∥∥H∗−1

(αα)diag(|α0|)−1H(αγ) − diag(|α0|)−1CααH(αγ)

∥∥∥
∞

≤
∥∥∥H∗−1

(αα)

∥∥∥
∞

∥∥diag(|α0|)−1H(αγ)

∥∥
∞ +

∥∥diag(|α0|)−1Cαα

∥∥
∞
∥∥H(αγ)

∥∥
∞

≤ N
∥∥∥H∗−1

(αα)

∥∥∥
∞

∥∥diag(|α0|)−1H(αγ)

∥∥
max

+N
∥∥diag(|α0|)−1Cαα

∥∥
max

∥∥H(αγ)

∥∥
∞

= OP (1).

De�ne D := diag(|α0|)−1H−1
(αα)H(αγ)H

−1
(γγ)H(γα)diag(|α0|) and

B :=
(
1N −H−1

(αα)H(αγ)H
−1
(γγ)H(γα)

)−1
− 1N

= diag(|α0|)
[
(1N −D)−1 − 1N

]
diag(|α0|)−1

= diag(|α0|)

( ∞∑
n=1

Dn

)
diag(|α0|)−1

= diag(|α0|)

( ∞∑
n=0

Dn

)
diag(|α0|)−1H−1

(αα)H(αγ)H
−1
(γγ)H(γα).

Note that A = H−1
(αα) +H−1

(αα)B = H∗−1
(αα) − C(αα) +H−1

(αα)B. By Lemma B.1.4, we have

∥D∥∞ =
∥∥∥diag(|α0|)−1H−1

(αα)H(αγ)diag(|γ0|)diag(|γ0|)−1H−1
(γγ)H(γα)diag(|α0|)

∥∥∥
∞

≤
∥∥∥diag(|α0|)−1H−1

(αα)H(αγ)diag(|γ0|)
∥∥∥
∞

∥∥∥diag(|γ0|)−1H−1
(γγ)H(γα)diag(|α0|)

∥∥∥
∞

<

(
1− b

bmax

)2

< 1.
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We thus have

∥B∥max ≤
∥∥diag(|α0|)

∥∥
∞

( ∞∑
n=0

∥D∥n∞

)∥∥∥diag(|α0|)−1H−1
(αα)H(αγ)

∥∥∥
∞

∥∥∥H−1
(γγ)

∥∥∥
∞

∥∥H(γα)

∥∥
max

≤ max
i

|α0
i |

( ∞∑
n=0

(
1− b

bmax

)2n
)
OP (1)OP (1)OP (1/

√
NT ) = OP (1/

√
NT ).

By the triangle inequality,

∥A∥∞ ≤ ∥H−1
(αα)∥∞ +N∥H−1

(αα)∥∞∥B∥max = OP (1).

Thus, for the di�erent blocks of

H−1 −

(
H∗

(αα) 0

0 H∗
(γγ)

)−1

=

(
A−H∗−1

(αα) −AH(αγ)H
−1
(γγ)

−H−1
(γγ)H(γα)A H−1

(γγ)H(γα)AH(αγ)H
−1
(γγ) − C(γγ)

)
,

we �nd

∥∥∥A−H∗−1
(αα)

∥∥∥
max

=
∥∥∥H−1

(αα)B − C(αα)

∥∥∥
max

≤ ∥H−1
(αα)∥∞∥B∥max − ∥C(αα)∥max = OP (1/

√
NT ),∥∥∥−AH(αγ)H

−1
(γγ)

∥∥∥
max

≤ ∥A∥∞∥H(αγ)∥max∥H
−1
(γγ)∥∞ = OP (1/

√
NT ),∥∥∥H−1

(γγ)H(γα)AH(αγ)H
−1
(γγ) − C(γγ)

∥∥∥
max

≤ ∥H−1
(γγ)∥2∞∥H(γα)∥∞∥A∥∞∥H(αγ)∥max + ∥C(γγ)∥max

≤ N∥H−1
(γγ)∥2∞∥A∥∞∥H(αγ)∥2max + ∥C(γγ)∥max

= OP (1/
√
NT ).

The bound OP (1/
√
NT ) for the max-norm of each block of the matrix yields the same

bound for the max-norm of the matrix itself.
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B.1.3 Local Concavity of the Objective Function

The consistency result for ϕ̂(β) in Lemma B.1.1 is not su�cient to apply the general expan-

sion results in Ferndez-Val and Weidner (2013).3 The goal of this section is to close this gap

by using local concavity of L(β, ϕ) in ϕ around ϕ0.

In the following we only consider parameter values that satisfy the constraint
∑

i α
2
i =∑

t γ
2
t (otherwise there are additional terms in the Hessian from the penalty terms, which we

do not want to consider). Let ℓit(β, πit) = ℓit(zit), where πit = αiγt and zit = X ′
itβ + αiγt.

Let hit(β, πit) = −∂πℓit(β, πit). The incidental parameter Hessian reads

H(β, ϕ) = −∂ϕϕ′L(β, ϕ) =

(
H∗

(αα)(β, ϕ) H∗
(αγ)(β, ϕ)

[H∗
(αγ)(β, ϕ)]

′ H∗
(γγ)(β, ϕ)

)
+

b√
NT

v(ϕ)[v(ϕ)]′,

where v(ϕ) = (α′,−γ′)′, H∗
(αα)(β, ϕ) = diag[ 1√

NT

∑
t γ

2
t hit(β, αiγt)],

H∗
(αγ)it(β, ϕ) =

1√
NT

αiγthit(β, αiγt)− 1√
NT

∂zℓit(zit),

and H∗
(γγ)(β, ϕ) = diag[ 1√

NT

∑
i α

2
i hit(β, αiγt)]. We decompose the Hessian as H(β, ϕ) =

H(β, ϕ) + F (β, ϕ), where

H(β, ϕ) =

(
H(αα)(β, ϕ) H(αγ)(β, ϕ)

[H(αγ)(β, ϕ)]
′ H(γγ)(β, ϕ)

)
=

(
H∗

(αα)(β, ϕ) H∗
(αγ)(β, ϕ)

[H∗
(αγ)(β, ϕ)]

′ H∗
(γγ)(β, ϕ)

)
+

b√
NT

v(ϕ)[v(ϕ)]′,

F (β, ϕ) =

(
0N×N F(αγ)(β, ϕ)

[F(αγ)(β, ϕ)]
′ 0T×T

)
,

where H∗
(αα)(β, ϕ) = H∗

(αα)(β, ϕ), H
∗
(αγ)it(β, ϕ) =

1√
NT

αiγthit(β, αiγt),

H∗
(γγ)(β, ϕ) = H∗

(γγ)(β, ϕ), and F(αγ)it(β, ϕ) = − 1√
NT

∂zℓit(zit).

Lemma B.1.5. For λmin[H(β, ϕ)], the smallest eigenvalue of H(β, ϕ), we have

λmin[H(β, ϕ)] ≥ min

{
min

i∈{1,...,N}

1√
NT

T∑
t=1

γ2t [hit(β, αiγt)− |hit(β, αiγt)− b|] ,

3Assumption B.1(iii) of the general expansion requires ∥ϕ̂(β)− ϕ0∥q = oP
(
(NT )−ϵ

)
for some q > 4 and

some ϵ ≥ 0.
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min
t∈{1,...,T}

1√
NT

N∑
i=1

α2
i [hit(β, αiγt)− |hit(β, αiγt)− b|]

}
.

Thus, if hit(β, αiγt) ≥ b for all i, t, then we have

λmin[H(β, ϕ)] ≥ min

{
b√
NT

T∑
t=1

γ2t ,
b√
NT

N∑
i=1

α2
i

}
.

We will only use the second bound for λmin[H(β, ϕ)] provided in the lemma, but the �rst

bound for λmin[H(β, ϕ)] provided in the lemma shows that the condition hit(β, αiγt) ≥ b is

not necessary to appropriately bound λmin[H(β, ϕ)], but it is convenient.

Proof. In the following proof we drop all parameter arguments from the functions. De-

�ne g
(1)
i := b√

NT

∑T
t=1 γ

2
t − 2√

NT

∑T
t=1 1(b > hit)γ

2
t (b − hit) and g

(2)
t := b√

NT

∑N
i=1 α

2
i −

2√
NT

∑N
i=1 1(b > hit)α

2
i (b−hit). Equivalently we can write g

(1)
i = 1√

NT

∑T
t=1 γ

2
t [hit(β, αiγt)−

|hit(β, αiγt)− b|] and g
(2)
t = 1√

NT

∑N
i=1 α

2
i [hit(β, αiγt)− |hit(β, αiγt)− b|].

Let G be the diagonal (N + T )× (N + T ) matrix with diagonal elements given by g
(1)
i ,

i = 1, . . . , N and g
(2)
t , t = 1, . . . , T , in that order. It is easy to verify that H = H(β, ϕ)

satis�es

H = G+
b√
NT

(α′, 01×T )
′(α′, 01×T ) +

b√
NT

(01×N , γ′)′(01×N , γ′)

+
1√
NT

N∑
i=1

T∑
t=1

1(hit ≥ b)(hit − b)(γte
′
N,i, αie

′
T,t)

′(γte
′
N,i, αie

′
T,t)

+
1√
NT

N∑
i=1

T∑
t=1

1(b > hit)(b− hit)(γte
′
N,i,−αie

′
T,t)

′(γte
′
N,i,−αie

′
T,t).

This shows that H − G is positive de�nite, i.e. H ≥ G, which implies that λmin(H) ≥

λmin(G). Since G is diagonal we have λmin(G) = min{mini g
(1)
i ,mint g

(2)
t }.

Lemma B.1.6. Let Assumption 4 be satis�ed, and let rβ = rβ,NT = oP (1) and rϕ =

rϕ,NT = oP (
√
N). Then, H(β, ϕ) is positive de�nite for all β ∈ B(rβ, β0) and ϕ ∈ B(rϕ, ϕ0),
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wpa1, where B(rβ, β0) and B(rϕ, ϕ0) are balls under the Euclidian norm. This implies that

L(β, ϕ) is strictly concave in ϕ ∈ B(rϕ, ϕ0), for all β ∈ B(rβ, β0).

Proof. Let β ∈ B(rβ, β0) and ϕ ∈ B(rϕ, ϕ0). We have H(β, ϕ) = H(β, ϕ) + F (β, ϕ). Weyl's

inequality guarantees that λmin[H(β, ϕ)] ≥ λmin[H(β, ϕ)] − ∥F (β, ϕ)∥, where ∥F (β, ϕ)∥ is

the spectral norm of F (β, ϕ).

By choosing b = bmin in Lemma B.1.5,

we �nd λmin[H(β, ϕ)] ≥ bminmin
{

1√
NT

∑T
t=1 γ

2
t ,

1√
NT

∑N
i=1 α

2
i

}
. Thus, the desired result

follows if we can show that ∥F (β, ϕ)∥ = oP (1), or equivalently ∥F(αγ)(β, ϕ)∥ = oP (1).

Remember that F(αγ)it(β, ϕ) = − 1√
NT

∂πℓit(β, αiγt). A Taylor expansion gives

∂πℓit(β, αiγt) = ∂πℓit(β
0, α0

i γ
0
t ) + (β − β0)′∂βπℓit(β̃it, π̃it) + (αiγt − α0

i γ
0
t )∂π2ℓit(β̃it, π̃it).

The spectral norm of the N × T matrix with entries ∂βkπℓit(β̃it, π̃it) is bounded by the

Frobenius norm of this matrix, which is of order
√
NT , since we assume uniformly bounded

moments for ∂βkπℓit(β̃it, π̃it). The spectral norm of the N × T matrix with entries (αiγt −

α0
i γ

0
t )∂π2ℓit(β̃it, π̃it) is also bounded by the Frobenius norm of this matrix, which is equal

to
√∑

it(αiγt − α0
i γ

0
t )

2[∂π2ℓit(β̃it, π̃it)]2 and thus bounded by bmax

√∑
it(αiγt − α0

i γ
0
t )

2 =

bmax∥αγ′ − α0γ0′∥F . We thus �nd

∥∥F(αγ)it(β, ϕ)
∥∥ ≤ 1√

NT

(
∥∂πℓit∥+OP (

√
NT )∥β − β0∥+ bmax∥αγ′ − α0γ0′∥F

)
= OP (

1√
NT

N5/8) +OP (rβ) +OP (rϕ/
√
N)

= oP (1),

where we also used that ∥αγ′−α0γ0′∥F = OP (
√
N)∥ϕ−ϕ0∥. We thus have ∥F(αγ)(β, ϕ)∥ =

oP (1), which was left to show.
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B.1.4 Proof of Theorem 2.4.1

Proof. The above results show that all regularity conditions are satis�ed to apply the ex-

pansion results in Theorem B.1 and Corollary B.2 of (Fernández-Val and Weidner, 2013).

Note that the objective function is not globally concave, but is locally concave according

to Lemma B.1.6, and due to the consistency result in Lemma B.1.1 the local concavity is

su�cient here. From (Fernández-Val and Weidner, 2013) we thus know that

√
NT (β̂ − β0) = W

−1
∞ U + oP (1),

where W∞ = plimN,T→∞W , U = U (0) + U (1), and

W = − 1√
NT

(
∂ββ′L+ [∂βϕ′L] H−1

[∂ϕβ′L]
)
,

U (0) = ∂βL+ [∂βϕ′L]H−1S,

U (1) = [∂βϕ′L̃]H−1S − [∂βϕ′L]H−1 H̃H−1 S

+
1

2

dimϕ∑
g=1

(
∂βϕ′ϕgL+ [∂βϕ′L]H−1

[∂ϕϕ′ϕgL]
)
[H−1S]gH

−1S. (B.5)

We could use these formulas as a starting point to derive the result of the theorem. It

is, however, convenient to note that the �rst order asymptotic results for the interactive

model ℓit(β, αiγt) = ℓit(zit) are closely related to those obtained from the infeasible model

ℓ†it(β, αi, γt) := ℓit(β, αiγ
0
t +α0

i γt−α0
i γ

0
t ). This infeasible model can also be written in terms

of a �standard� additive model by de�ning α
(†)
i := αi/α

0
i , γ

(†)
t = γt/γ

0
t , and ℓ

(†)
it (β, α

(†)
i +

γ
(†)
t ) ≡ ℓit

(
β, α0

i γ
0
t (α

(†)
i + γ

(†)
t − 1)

)
, where we have to assume α0

i ̸= 0 and γ0t ̸= 0, however

(ignore this for the moment). The estimator for β in model ℓ†it and ℓ
(†)
it are identical, i.e. β̂† =

β̂(†). The asymptotic results for the model ℓ
(†)
it (β, α

(†)
i +γ

(†)
t ) are known from (Fernández-Val

and Weidner, 2013), namely
√
NT

(
β̂(†) − β0

)
→d

[
W

(†)
∞

]−1
N (κB

(†)
∞ + κ−1D

(†)
∞ , W

(†)
∞ ),

with B
(†)
∞ , D

(†)
∞ and W

(†)
∞ de�ned there.
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The relation between certain derived quantities of model ℓ
(†)
it and ℓit is given by:

[
H−1

](†)
= diag(α0′, γ0′)−1 H−1

diag(α0′, γ0′)−1,

∂zqℓ
(†)
it = (α0

i γ
0
t )

q∂πℓit,

∂βπqℓ
(†)
it = (α0

i γ
0
t )

q∂βπℓit,

Ξ
(†)
it = (α0

i γ
0
t )

−1 Ξit.

Using this we �nd that B
(†)
∞ , D

(†)
∞ and W

(†)
∞ can be written in terms of model ℓit quantities

as

B
(†)
∞ = −E

[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t γ

0
t γ

0
τEϕ (∂πℓitDβπℓiτ ) +

1
2

∑T
t=1(γ

0
t )

2Eϕ(Dβπ2ℓit)∑T
t=1(γ

0
t )

2Eϕ (∂π2ℓit)

]
,

D
(†)
∞ = −E

[
1

T

T∑
t=1

∑N
i=1(α

0
i )

2Eϕ

(
∂πℓitDβπℓit +

1
2Dβπ2ℓit

)∑N
i=1(α

0
i )

2Eϕ (∂π2ℓit)

]
,

W
(†)
∞ = −E

[
1

NT

N∑
i=1

T∑
t=1

Eϕ

(
∂ββ′ℓit − ∂π2ℓitΞitΞ

′
it

)]
.

What is left to do is to adjust these known results for β̂† = β̂(†) for the discrepancy between

β̂ and β̂†, i.e. accounting the di�erence between model ℓit and ℓ†it, using the expansion

results in (B.5) above.

We only consider correctly speci�ed models here, which implies that Var(S) = E[SS ′] =

1√
NT

H∗
(Bartlett identity). Using this we �nd that

Eϕ

1

2

dimϕ∑
g=1

(
∂βϕ′ϕgL+ [∂βϕ′L]H−1

[∂ϕϕ′ϕgL]
)
[H−1S]gH

−1S


=

1

2
√
NT

dimϕ∑
g,h=1

(
∂βϕgϕh

L+ [∂βϕ′L]H−1
[∂ϕϕgϕh

L]
)
[H−1

]gh, (B.6)

where the di�erence between H∗
and H does not matter. Since U (1) only contributes bias

and no variance to β̂ it is thus su�cient to evaluate the second line in (B.6), instead of the
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more complicated �rst line.

Comparing model ℓit and ℓ†it we �nd that

S = S†,

∂βL = ∂βL†,

H = H†
,

H̃ = H̃† +
1√
NT

(
0N×N [−∂πℓit]N×T

[−∂πℓit]T×N 0T×T

)
,

∂βϕ′L = ∂βϕ′L†
,

∂βϕ′L̃ = ∂βϕ′L̃†,

∂ββ′L = ∂ββ′L†
,

∂βkϕϕ′L = ∂βkϕϕ′L†
+

1√
NT

(
0N×N [∂βkπ ℓit]N×T

[∂βkπ ℓit]T×N 0T×T

)
,

∂αiαjαk
L = ∂αiαjαk

L†
,

∂αiαjγtL = ∂αiαjγtL
†
+ 1(i = j)

2√
NT

γ0t ∂π2ℓit,

∂αiγtγsL = ∂αiγtγsL
†
+ 1(t = s)

2√
NT

α0
i ∂π2ℓit,

∂γtγsγuL = ∂γtγsγuL
†
.

Thus, we have U (0) = U (0)† (this term contributes variance, but no bias) and for the

terms in U (1) (which contribute bias, but no variance)

[∂βϕ′L̃]H−1S − [∂βϕ′L̃†]
[
H−1

]†
S† = 0,

i.e. no additional bias contribution from this term.

− [∂βkϕ′L]H−1 H̃H−1 S −
{
−[∂βkϕ′L]† [H−1

]†[H̃]†[H−1
]†[S]†

}
= − 1√

NT
[∂βkϕ′L]H−1

(
0N×N [−∂πℓit]N×T

[−∂πℓit]T×N 0T×T

)
H−1S
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=
1

NT

N∑
i=1

T∑
t=1

[∂βkϕ′LH−1
]i ∂πℓit [H

−1
]tt

N∑
j=1

α0
j∂πℓjt}

︸ ︷︷ ︸
=:Tnew1

+
1

NT

N∑
i=1

T∑
t=1

{
[∂βkϕ′LH−1

]t ∂πℓit [H
−1

]ii

T∑
s=1

γ0s∂πℓis

}
︸ ︷︷ ︸

=:Tnew2

+ oP (1),

where Tnew = Tnew1 + Tnew2 ,and the o�-diagonal elements of the second H−1
only

give vanishing contributions. Taking expectations and using that Eϕ [∂πℓit∂πℓjs] = −1(i =

j)1(t = s)∂π2ℓit we obtain the following non-vanishing bias contribution:

EϕTnew = − 1

NT

N∑
i=1

T∑
t=1

{
[∂βkϕ′LH−1

]i ∂π2ℓit α
0
i [H

−1
]tt + [∂βkϕ′LH−1

]t ∂π2ℓit γ
0
t [H−1

]ii

}
=

1√
NT

T∑
t=1

∑N
i=1[∂βkϕ′LH−1

]iα
0
i ∂π2ℓit∑N

i=1(α
0
i )

2∂π2ℓit

+
1√
NT

N∑
i=1

∑T
t=1[∂βkϕ′LH−1

]tγ
0
t ∂π2ℓit∑T

t=1(γ
0
t )

2∂π2ℓit
+OP (1/

√
NT ),

where we used our result on the structure of H−1
.

1

2
√
NT

dimϕ∑
g,h=1

∂βkϕgϕh
L [H−1

]gh −
1

2
√
NT

dimϕ∑
g,h=1

∂βkϕgϕh
L†

[H−1
]†gh

=
1

2NT
Tr

[(
0N×N [∂βkπ ℓit]N×T

[∂βkπ ℓit]T×N 0T×T

)
H−1

]
= OP (1/

√
NT ),

because the diagonal elements of H−1
do not contribute here, while the o�-diagonal

terms elements contribute as 1
NT

∑
itOP (1/

√
NT ) = OP (1/

√
NT ), according to the lemma

on H−1
.
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1

2
√
NT

dimϕ∑
g,h=1

[∂βkϕ′L]H−1
[∂ϕϕgϕh

L] [H−1
]gh

− 1

2
√
NT

dimϕ∑
g,h=1

∂βkϕ′L†
[H−1

]†∂ϕϕgϕh
L†

[H−1
]†gh

=
1

NT

N∑
i=1

T∑
t=1

{[∂βkϕ′LH−1
]i α

0
i ∂π2ℓit [H

−1
]tt

+ [∂βkϕ′LH−1
]t γ

0
t ∂π2ℓit [H

−1
]ii}+OP (1/

√
NT )

= − 1√
NT

T∑
t=1

∑N
i=1[∂βkϕ′LH−1

]iα
0
i ∂π2ℓit∑N

i=1(α
0
i )

2∂π2ℓit

− 1√
NT

N∑
i=1

∑T
t=1[∂βkϕ′LH−1

]tγ
0
t ∂π2ℓit∑T

t=1(γ
0
t )

2∂π2ℓit
+OP (1/

√
NT ),

where the o�-diagonal elements of the second [H−1
] only contribute terms of order

1/
√
NT . Thus, we �nd that for the correctly speci�ed case the two additional bias con-

tributions (that occur for the model ℓit but are not present in model ℓ†it) from the terms

−[∂βϕ′L]H−1 H̃H−1 S and 1
2

∑dimϕ
g=1 [∂βϕ′L]H−1

[∂ϕϕ′ϕgL][H
−1S]gH

−1S exactly cancel. We

have thus shown that the asymptotic distribution of β̂ and β̂† are identical.



Appendix C

Supplemental Materials for Chapter 3

C.1 Incorporating network structure: CoVaR, network spillover e�ects,

and systemic risk

Traditional risk measures, such as Value of Risk (VaR), focus on the loss of an individual

institution only. CoVaR proposed by (Adrian and Brunnermeier, 2011) measures the VaR

of the whole �nancial system or a particular �nancial institution by conditioning on another

institution being in distress. Thus, it relates systemic risk to tail spillover e�ects from

individual institutions to the whole system. (Adrian and Brunnermeier, 2011) de�ne �rm

b's CoVaR at level τ conditional on a particular outcome from �rm a, as the value of

CoV aR
b|a
τ that solves

Pr(Xb ≤ CoV aRb|a
τ |C(Xa)) = τ,

A particular case is C(Xa) = {Xa = V aRa
τ} for a low quantile index τ , which is inter-

preted as with probability τ institution b is in trouble given that institution a is in trouble.

They also de�ne institution a's contribution to b as

∆CoV aRb|a
τ = CoV aRb|Xa=V aRa

τ
τ − CoV aRb|Xa=Mediana

τ .

They mainly use quantile regression to estimate the CoV aRmeasure. More precisely, the
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predicted value from the quantile regression of Xb on Xa gives the value at risk of institution

b conditional on institution a since V aRb
τ given Xa is just the conditional quantile, i.e.

conditional VaR

V aRb
τ |Xa = αb(τ) + βb(τ)Xa,

Replacing variable Xa by its unconditional quantile, i.e. V aRa
τ , yields

CoV aRb|Xa
τ = αb(τ) + βb(τ)V aRa

τ and ∆CoV aRb|a
τ = βb(τ)(V aRa

τ − V aRa
50%)

We incorporate network spillover e�ects into risk measuring. We show that with QGM,

individual institution's contribution to systemic risk can incorporate tail risk interconnec-

tions between institutions in the whole �nancial system (in the network, each node rep-

resents a �nancial institution now). The identi�ed risk connections between all �nancial

institutions constitute a systemic risk network. Note, institution a's overall systemic risk

contribution, ∆CoV aRsys|a measures the contribution of institution a to overall systemic

risk
∑

a∆CoV aRsys|a.

We de�ne

Pr(Xb ≤ CoV aRb|a,V \{a,b}
τ |C(Xa, XV \{a,b})) = τ

then

CoV aR
b|Xa=V aRa

τ ,XV \{a,b}=V aR
V \{a,b}
q

τ = βb
0(τ) + βb

a(τ)V aRa
τ + βb

V \{a,b}(τ)V aRV \{a,b}
τ

∆CoV aRb|a,V \{a,b}
τ = βb

a(τ)(V aRa
τ − V aRa

50%)
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where βb(τ) = {βb
0(τ), β

b
V \{b}(τ)} is estimated via ℓ1-penalized quantile regression.

We stack ∆CoV aR
b|a,V \{a,b}
τ as the (a, b)-th element of an d × d matrix Eβ(τ) repre-

senting a weighted directed network of institutions. Here d is the number of total �nan-

cial institutions considered. Following (Andersen et al., 2013), the systemic risk contribu-

tion of �rm a, ∆CoV aRsys|a, is the network to-degree of institution a which is de�ned as

δtoa = ∆CoV aRsys|a =
∑

k ∆CoV aRk|a,V \{a,k}. To-degrees measure contributions of indi-

vidual institutions to the overall risk of systemic network events.

Similarly, from-degree of node a is de�ned as δfroma = ∆CoV aRa|sys =
∑

b∆CoV aR
a|b,V \{a,b}
τ .

From-degrees measure exposure of individual institutions to systemic shocks from the net-

work. The total degree δ, i.e.
∑

a∆CoV aRsys|a, aggregates institution-speci�c systemic

risk across institutions hence provides a measure of total systemic risk in the whole �nancial

system.

Finally , we de�ne the net contribution as net-∆CoV aRa = δtoa −δfroma . For more about

network theory, see (Kolaczyk, 2009).

C.2 ℓ1-Penalized Quantile Regression for Near Extreme Quantiles Indices

In this section we revisit the rate of convergence of ℓ1-penalized quantile regression esti-

mators. We are concerned to the case that the compact set T ⊂ (0, 1) grows so that it

asymptotically covers (0, 1). Namely, the measure of the estimated set of indices goes to on,

|T | → 1. Our results build upon the prior work (Belloni and Chernozhukov, 2011) which

focused on the case that T is bounded away from the extreme quantiles. In what follows we

let τ := minτ∈T τ(1 − τ) to characterise how fast T approaches the extremes. We use the

notation and assumptions (D.1-D.4) in (Belloni and Chernozhukov, 2011)

In what follows we let Kn such that maxi≤n ∥xi∥∞ ≤ Kn with probability 1− ε → 1.

Lemma C.2.1 (Rate of Convergence of ℓ1-QR). Suppose that Assumptions D1-D4 hold and
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K2
n log(n ∨ p) = o(nminτ∈T τ(1− τ)). Then, we have with probability 1− α− 4γ − εn

sup
τ∈T

∥J1/2
τ (β̂(τ)− β(τ))∥ .P

1

f1/2κc0

√
s log(n ∨ p)

n

where J
1/2
τ = E[fy|x(x

′β(τ) | x)xx′]

Lemma C.2.1 complements the rates of convergence derived in Theorem 2 of (Belloni and

Chernozhukov, 2011). The latter does not assume the additional requirementK2
n log(n∨p) =

o(nτ) but it was established for a �xed set T , that is, τ bounded away from zero. Indeed

Theorem 2 of (Belloni and Chernozhukov, 2011) yields the rate

1

τ1/2f1/2κ

√
s log(n ∨ p)

n

which is potentially slower than the rate established in Lemma C.2.1 as τ can go to zero

with n (provided the additional requirement K2
n log(n ∨ p) = o(nτ) holds).

The proof of Lemma C.2.1 follows the proof of Theorem 2 of (Belloni and Chernozhukov,

2011) and the improvement is achieved by controlling the penalty choice under the additional

requirement K2
n log(n ∨ p) = o(nτ). This is done in the following technical lemma.

Lemma C.2.2 (Penalty Parameter Bound). Let τ = minτ∈T τ(1−τ) andKn = maxi≤n ∥xi∥∞.

Under K2
n log(d/τ) = o(nτ), for n large enough we have that for some constant C̄

Λ(1− α | X) ≤

√
1 +

log(16/α)

log(d/τ)
C̄
√

n log(d/τ).

Proof. Conditionally on x1, . . . , xn, letting σ̂2
j = En[x

2
ij ], we have that

Λ = sup
τ∈T

∣∣∣∣∣nEn[xij(τ − 1{ui ≤ τ})]
σ̂j
√

τ(1− τ)

∣∣∣∣∣ .
Step 1. (Entropy Calculation) Let F = {xij(τ − 1{ui ≤ τ}) : τ ∈ T }, hτ =

√
τ(1− τ), and
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G = {fτ/hτ : τ ∈ T }. We have that

d(fτ/hτ , fτ̄/hτ̄ ) ≤ d(fτ , fτ̄ )/hτ + d(fτ̄/hτ , fτ̄/hτ̄ )
≤ d(fτ , fτ̄ )/hτ + d(0, fτ̄/hτ̄ )|hτ − hτ̄ |/hτ

Therefore, since ∥F∥Q ≤ ∥G∥Q by hτ ≤ 1, and d(0, fτ̄/hτ̄ ) ≤ 1/hτ̄ we have

N(ε∥G∥Q,G, Q) ≤ N(ε∥F∥Q/{2min
τ∈T

hτ},F , Q)N(ε/{2min
τ∈T

h2τ}, T , | · |).

Thus we have for some constants K and v that

N(ε∥G∥Q,G, Q) ≤ d(K/{ϵmin
τ∈T

h2τ})v.

Step 2.(Symmetrization) Since we have E[g2] = 1 for all g ∈ G, by Lemma 2.3.7 in

(van der Vaart and Wellner, 1996) we have

P (Λ ≥ t
√
n) ≤ 4P (maxj≤d supτ∈T |Go

n(g)| ≥ t/4)

where Go
n : G → R is the symmetrized process generated by Rademacher variables. Condi-

tional on (x1, u1), . . . , (xn, un), we have that {Go
n(g) : g ∈ G} is sub-Gaussian with respect

to the L2(Pn)-norm by the Hoe�ding inequality. Thus, by Lemma 16 in (Belloni and Cher-

nozhukov, 2011), for δ2n = supg∈G En[g
2
i ] and δ̄n = δn/∥G∥Pn , we have

P (sup
g∈G

|Go
n(g)| > CK̄δn

√
log(dK/τ) | {Xi, Ui}ni=1) ≤

∫ δ̄n/2

0
ϵ−1{d(K/{ϵmin

τ∈T
h2τ})v}−C2+1dε

for some universal constant K̄.

In order to control δn, note that δ
2
n = supg∈G

1√
n
Gn(g

2)+E[g2]. In turn, since supg∈G En[g
4] ≤

δ2nmaxi≤nG
2
i , we have

P (sup
g∈G

|Go
n(g

2)| > CK̄δnmax
i≤n

Gi

√
log(dK/τ) | {Xi, Ui}ni=1) ≤

∫ δ̄n/2

0
ϵ−1{d(K/{ϵτ})v}−C2+1dε
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Thus with probability 1−
∫ 1/2
0 ϵ−1{d(K/ϵτ)v}−C2+1dε, since E[g2] = 1 and maxi≤nGi ≤

Kn/
√
τ , we have

δn ≤ 1 +
C ′Kn

√
log(dK/τ)√
n
√
τ

.

Therefore, under Kn

√
log(dK/τ) = o(

√
n
√
τ), conditionally on {Xi}ni=1 and n su�-

ciently large, with probability 1− 2
∫ 1/2
0 ϵ−1{d(K/{ϵτ})v}−C2+1dε we have that

sup
g∈G

|Go
n(g)| ≤ 2CK̄

√
log(dK/τ)

The stated bound follows since for C > 2

2

∫ 1/2

0
ϵ−1{d(K/{ϵτ})v}−C2+1dε ≤ {d/τ}−C2+12

∫ 1/2

0
ϵ−2+C2

dε ≤ {d/τ}−C2+1.
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