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RESEARCH RELATED TO HIGH DIMENSIONAL ECONOMETRICS
(Order No. )
MINGLI CHEN
Boston University, Graduate School of Arts and Sciences, 2015

Major Professor: Pierre Perron, Professor of Economics

ABSTRACT

This dissertation consists of three chapters related to high dimensional econometrics
dealing with the estimation of nonlinear panel data models and networks models.

The first chapter proposes a fixed effects expectation-maximization estimator for a class
of nonlinear panel data models with unobserved heterogeneity modeled as individual and/or
time effects or an arbitrary interaction of the two. The estimator is obtained through a com-
putationally simple iterative two-step procedure, both steps having a closed form solution.
I show that the estimator is consistent in large panels, derive the asymptotic distribution
for a probit model with interactive effects, and develop analytical bias corrections to deal
with the incidental parameter problem.

The second chapter considers estimation and inference for semiparametric nonlinear
panel single index models with interactive effects. These include static and dynamic probit,
logit, and Poisson models. An iterative two-step procedure to maximize the likelihood is
proposed. The estimator is consistent, but has bias due to the incidental parameter problem.
Analytical and jackknife bias corrections are developed to remove the bias without increasing
variance.

The third chapter proposes Quantile Graphical Models (QGMs) to characterize pre-
dictive and conditional dependence relationships within a set of random variables in non-
Gaussian settings. These characterize the best linear predictor under asymmetric losses
and the conditional dependence at each quantile. Estimators based on high-dimensional

techniques are proposed. Each QGM represents the tail interdependence and the associated

vii



tail risk network and can be used to measure systemic risk contributions for the study of

financial contagion and hedging under a market downturn.
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Chapter 1

Estimation of Nonlinear Panel Models with Multiple

Unobserved Effects

1.1 Introduction

Panel data allow the possibility of controlling for unobserved heterogeneity. Such heterogene-
ity can be an important phenomenon, and failure to control for it can result in misleading
inference. For example, in demand estimation, unobserved individual heterogeneity is an
important source of variation.

In this paper, I model unobserved heterogeneity as individual-specific effects to control
for individual heterogeneity, and/or time specific effects to control for common shocks that
occur to each individual. The way I control for those individual and time effects in nonlinear
models is to treat each effect as a separate parameter to be estimated, and I propose a fixed
effects expectation-maximization (EM) estimator that can be applied to a class of nonlinear
panel data models with those individual and/or time effects. Of particular interest is the
case of interactive effects, i.e., when the unobserved heterogeneity is modeled as a factor
analytical structure. To the best of the author’s knowledge, the current paper presents the
first fixed effects EM-type estimator for nonlinear panel data models.

Interactive effects relax the invariant heterogeneity assumption and allow a more general
model of time-varying heterogeneity. These interactive effects can be arbitrarily correlated
with the observable covariates, which accommodates endogeneity and, at the same time,

allows correlations between individual effects. As an example of why these interactive ef-



fects are important, (Moon et al., 2014), in a demand estimation setting, demonstrate that
interactive fixed effects can capture strong persistence in market shares across products and
markets, and find evidence that the factors are indeed capturing much of the unobservable
product and time effects leading to price endogeneity.

The nonlinear panel data models with unobserved fixed effects that I consider in this

paper have the following latent representation:

0= XuB+glon ) + e, (1.1)

Yie = r(Yi), (1.2)

fort =1,...,7 and i = 1,..., N. The econometrian observes Y;;, the dependent variable for
individual 7 at time ¢ (or ¢ can be a group), and Xj;, the time-variant K x 1 regressor matrix.
The econometrician does not observe Y;; (the latent dependent variable), c; (the unobserved
time-invariant individual effect), v, (the unobserved time effect), or €;; (the unobserved error
term). The vector § contains the main structural parameters of interest. The function r(-) is
a known transformation of the unobserved latent variable. The individual effects «; and time
effects y; are allowed to be correlated with the regressor matrix. I do not make parametric
assumptions on the distribution of either individual effects or time effects, hence the model
is semiparametric.! The method proposed here can be applied to many functional forms
between «; and 7;. The leading case I consider is when g(a;,v:) = oe;'yt where both «o; and
v+ are R x 1 vectors; note that this includes the special case settings with only individual
effects or settings with additive individual and time effects.

Substantial theoretical and computational challenges are present in nonlinear panel mod-
els involving a large number of individual and time effects. In particular, in these models it
is in general not possible to remove the unobserved effects by differencing as is commonly

done in linear models. The incidental parameter problem, first pointed out by (Neyman and

!Relaxing parametric assumptions on the distribution of unobserved heterogeneity in nonlinear models
is important, as often such restrictions cannot be justified by economic theory.



Scott, 1948), may also be present due to the fact that an estimator of 8 will be a function
of the estimators of a; and 7, which converges to their limits at slower convergence rates
than that of 3.

To deal with these problems, I propose a fixed effects expectation-maximization (EM)
type estimator, which I denote IF-EM when applied to the interactive effects case. The
estimator is obtained through an iterative two-step procedure, where the two steps have
closed-form solutions. The first step (the “E”-step) involves obtaining the expectation of the
mean utility function (the latent index) conditional on the observed dependent data.? The
second step (the “M”-step) involves maximizing the resulting “linear” model. In practice, the
estimator is simple and straightforward to compute. Monte Carlo simulations demonstrate
it has good small-sample properties.

The incidental parameters problem might be present because estimates of fixed effects
are partially consistent, and structural parameters of interest are functions of these esti-
mates.> For example, I discuss a panel probit model with interactive fixed effects (which
I denote PPIF) and demonstrate that its estimator PPIF is biased. I develop analytical
bias corrections to deal with the incidental parameter problem. The correction is based on
adapting to my setting the general asymptotic expansion of fixed effects estimators with
incidental parameters in multiple dimensions under asymptotic sequences where both di-
mensions of the panel grow with the sample size (as in (Ferndndez-Val and Weidner, 2013)).
In addition to model parameters, I provide bias corrections for average partial effects, which
are functions of the data, parameters, and individual and time effects in nonlinear models.

The proposed model and estimates can have wide applications in economics. For ex-
ample, factor structures have been used in a probit setting to represent market structure

(as in (Elrod and Keane, 1995)) or, in a linear setting, to explain labor and behavioral out-

2As shown later, this is essentially an inverse distribution approach. For the exponential class of distri-
butions, under Bregman loss, the conditional expectation is optimal in terms of MSE.

3The incidental parameters problem has different effects in different contexts and might not be present
in some nonlinear models, e.g., Poisson models or slope coefficients in Tobit models. Additionally, marginal
effects in probit models with individual fixed effects might not have bias or might have small bias, as shown
in (Fernandez-Val, 2009).



comes ((Heckman et al., 2006)) or estimate the evolution of cognitive and noncognitive skills
((Cunha and Heckman, 2008; Cunha et al., 2010)). Another example where the fixed effects
approaches are used is the international trade partner choice (as in (Helpman et al., 2008)).
The estimator is also particularly useful in empirical finance and in the setting with long
time series, such as empirical work using PSID data. Furthermore, the estimation procedure
can easily be extended to multinomial choice models.

This paper is related to multiple strands of the literature. First, it is related to the
literature on linear panel data models with factor structures. (Bai, 2009a) estimates factors
using the method of principal components. (Moon et al., 2014) extend the standard BLP
random coefficients discrete choice demand model and propose a two-step procedure to
calculate the estimator. Other related papers include (Holtz-Eakin et al., 1988; Ahn et al.,
2001; Bai and Ng, 2002; Bai, 2003; Ahn et al., 2013; Andrews, 2005; Pesaran, 2006; Bai,
2009b; Moon and Weidner, 2010a), and (Moon and Weidner, 2010b). Some of these papers
(e.g. (Bai, 2009b)) let N — oo and 7" — oo while others (e.g. (Ahn et al., 2013)) have T’
fixed and N — oo.

This paper is also related to the literature on nonlinear panel data models and bias cor-
rection, such as (Arellano and Hahn, 2007; Hahn and Newey, 2004; Hahn and Kuersteiner,
2002; Fernandez-Val, 2009; Bester and Hansen, 2009; Carro, 2007; Ferndndez-Val and Vella,
2011; Bonhomme, 2012; Chamberlain, 1980), and (Dhaene and Jochmans, 2010). (Charbon-
neau, 2012) extends the conditional fixed effects estimators to logit and Poisson models with
exogenous regressors and additive individual and time effects. (Ferndndez-Val and Weidner,
2013) develop analytical and jackknife bias corrections for nonlinear panel data models with
additive individual and time effects. (Freyberger, 2012) studies nonparametric panel data
models with multidimensional, unobserved individual effects when T is fixed. (Chen et al.,
2013) develop analytical and jackknife estimators for a class of nonlinear panel data models
with individual and time effects which enter the model interactively.

A final contribution of this paper is on the computation front, relating to the EM al-



gorithm and latent backfiting procedure. Related work includes (Orchard and Woodbury,
1972; Dempster et al., 1977; Pan, 2002; Meng and Rubin, 1993; Laird, 1985), and (Pastorello
et al., 2003).

The remainder of the paper is structured as follows. Section 1.2 introduces the model,
the leading examples and their estimators. I also discuss the convergence of the estimation
procedure. Section 1.3 presents consistency and asymptotic results for probit with interactive
fixed effects. Section 1.4 presents some extensions and discussions. Section 1.5 contains
Monte Carlo simulation results and Section 1.6 presents the empirical examples. Section 1.7

concludes. All proofs are contained in the Appendix.

1.2 Models and Estimators

In this section, I start with the panel probit with interactive individual and time effects
case. I first specify the model and present the parameters and functional of interest and
then show how the model can be estimated using the proposed EM procedure.

1.2.1 Panel probit with interactive fixed effects (PPIF)

1.2.1.1 Model

I consider the following interactive fixed effects probit model

Go= XLB+ e+ e,
Yi = 1{Y; >0}, (1.3)
fori=1,..,N and t = 1,....,T. Here, Yj; is a scalar outcome variable of interest, X; is a

vector of explanatory variables, and ( is a finite dimensional parameter vector. The variables
«; and 7y are unobserved individual and time effects that in economic applications capture
individual heterogeneity and aggregate shocks, respectively. The model is semiparameteric

in that I do not specify the distribution of these effects nor their relationship with the



explanatory variables, but, given that I consider probit in this section, I do specify € to be
normally distributed with unit variance.

Denoting the cumulative distribution function of &;; as ®(-), the standard normal dis-
tribution, the conditional distribution of Yj; can then be written using the single-index
specification

P(Yi = 1 Xat, B, i, ve) = ®(Xit + a;ye)-

For estimation, I adopt a fixed effects approach, treating the unobserved individual and
time effects as parameters to be estimated. I collect all these effects in the vector o7 =
(a1, .y aN, Y15 -, YN)'. The model parameter 3 usually includes regression coefficients of
interest, while the unobserved effects ¢n7 are treated as nuisance parameters. The true
values of the parameters are denoted by B° and ¢%; = (af,...,a%,7?,....,7%). Other
quantities of interest involve averages over the data and unobserved effects, such as average
partial effects, which are often the ultimate quantities of interest in nonlinear models. These

can be denoted

R = Eg[Anr (B, %7)l,  Ant(B,¢nt) = (NT) ™S A(Xip Boagy), (1.4)
it

where A(Xj, 5, a;’yt) represents some partial effect of interest and E4 denotes the expecta-
tion with respect to the distribution of the data, conditional on ¢%,, and °.

Some examples of partial effects are the following:

Example 1.2.1. (Average partial effects) If Xj; , the k-th element of Xy, is binary, its

partial effect for model specified by (1.3) on the conditional probability of Y is
A(Xie: By aiye) = BBy + Xig B + ain) — B(Xjy 1Bk + ain), (1.5)

where (3, is the k-th element of 3, and X;; _; and B_j include all elements of X;; and 3

except for the k-th element. If Xj; ;, is continuous, the partial effects of Xj; ;, for model (1.3)



on the conditional probability of Yj; is

A(Xit, iy m) = Brop(Xih + aim), (1.6)

here ¢¢(-) is the derivative of ®.

A particular application of this model is the study of international trade partner choice.
For example, (Helpman et al., 2008) consider panel of unilateral trade flows between 158
countries for the year 1986. They use a probit model for the extensive margin of a gravity

equation with exporter and importer country effects to allow for asymmetric trade.

Example 1.2.2. (International Trade)
Pr(Trade;; = 1|Xi5, i) = ®(X];8+ ), Vi, jEV, i#j,

here V contains the identities of all the countries considered.

Here Trade;; is an indicator for positive trade from country j to country 4, X;; includes
log of bilateral distance, and nine indicators for geography, institution and culture differ-
ences.* In this setting, N ~ T. The estimated fixed effects can be used for forecasting

network linkages or calculating average partial effects as well.

1.2.1.2 Estimator for panel probit with interactive fixed effects

In this section, I describe how the model with interactive fixed effects can be estimated using
the proposed EM procedure. I discuss the case where the model has a known number of
factors R.5 T will start with R = 1; the case for R > 1 will be discussed in Section 1.4.
For full identification, I assume v; = 1, though different normalization restrictions can be
imposed and will require different maximization steps, but this does not affect the estimation

of B as the factor structure enters into the model jointly as a;~;.

“See (Helpman et al., 2008) for additional details.
®Choosing the number of factors is beyond the scope of this paper.



Definition 1.2.1. (PPIF) The EM procedure for estimating the panel probit model with
interactive fixed effects is as follows:
(1) Given initial (8%, (k),*yt( )) denote ,u,gf) = —I—a( )’y( )

(2) E-step: Calculate

Vs = BIYGIYa, X, B0, 0 4]

= u) + (Y — (i) - b (i) @iy ) (1 — @ (i)},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given «; and -y, the parameter 5 can be updated by
U+ (ZZX”X ) {ZZX”< 704( )vfk))},
i=1 t=1 =1 t=1

CM-step 2: Given f and 4, the parameter a; can be updated by

oo =[S i 5 ()

CM-step 3: Given S and «, the parameter v, can be updated by

D = {i(lﬁi" - X;tﬁ<k+l>>a§“”} / > {af0},
=1

i=1
(4) Iterate the above steps until convergence.

Convergence and consistency, along with the asymptotic distribution of £ will be dis-
cussed in the next sections.

Note that the estimation procedure can be adapted to linear panel data models with
interactive fixed effects, e.g. (Bai, 2009b). In a linear panel data model, Y* is observed, and
hence the E-step described here will not be needed. However, the conditional maximization

procedure can still be applied to estimate a linear model.



The EM procedure proposed here is simple, easy to implement and has closed-form

solutions in each step. The conditional maximization steps involves replacing the functional

of the current estimates of the other parameters.

Remark 1.2.1. Different normalizations for the individual and time effects can lead to dif-
ferent estimation procedures, even for linear models. For example, with the normalization

~v1 = 1, the linear panel data model with interactive fixed effects
Yie = X8 + ciye + €it

can be estimated as follows

CM-step 1: Given «; and 4, the parameter S can be updated by
N T LN T
B = (Z Z Xz‘tX;t) {Z Z Xit <Yit - az(k)%(k)> } ;
i=1 t=1 i=1 t=1
CM-step 2: Given § and ~y, the parameter o; can be updated by
k41 d k d k)2
O‘z(' = {Z(th _Xitﬂ(k+1))7t( )} /Z{’Yt( )} )
t=1 t=1
CM-step 3: Given § and «;, the parameter v, can be updated by
k+1 al k1 al k+1) 2
%( = {Z(th - Xz‘tﬁ(kﬂ))o%( " )} /Z {O‘z(' i )} )
i=1 i=1
Iterate until convergence.

Since individual effects and additive individual and time effects are special cases of
interactive effects, I will present results for the individual effects case only.” For the case

with additive individual and time effects, see Appendix A.1.1.

5This is an expectation and conditional maximization (ECM) procedure, see (Meng and Rubin, 1993) for
more details about ECM.

"More precisely, when the unobserved individual and time effects are multidimensional, the additive
individual and time effects case is a special case of the interactive effects case.
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1.2.2 Panel probit with only individual fixed effects

In this setting, I consider the following model

Yi = Xif+oiteu,

Yii = 1{Yj; =0}, (1.7)

fore =1,..,N and t = 1,....,T. Here, Yj; is a scalar outcome variable of interest, X; is a
vector of explanatory variables, § is a finite-dimensional parameter vector, ; are unobserved
individual effects.

Similarly to Section (1.2.1), I model the conditional distribution of Yj; using the single-
index specification

P(Yy = 1| X4, B, ) = ©( XS + ),

and for estimation I adopt a fixed effects approach treating the unobserved individual effects

as parameters to be estimated. T collect all these effects in the vector oy = (a1, ..., an)’.

The true values of the parameters are denoted by 8% and ¢, = (af,...,a%;). Other

quantities of interest involve averages over the data and unobserved effects
0r = E[ANT(B, 6%r)],  Ant(B,¢n1) = (NT)™H) A(Xit, B, ), (1.8)
it

and examples of partial effects (A) are the following:

Example 1.2.3. (Average partial effects) If X, the k-th element of Xy, is binary, its

partial effect for model (1.7) on the conditional probability of Yj; is
A(Xit, B, i) = BBy + Xy 1Bk + i) — (Xjy B + ), (1.9)

where f, is the k-th element of 3, and Xj; _ and B_j include all elements of X;; and /8
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except for the k-th element. If Xj; ;, is continuous, for model (1.7) the partial effects of Xj;

on the conditional probability of Yj; is

A(Xit, 05) = Beop(XiyB + o), (1.10)

where ¢¢(-) is the derivative of ®.

Definition 1.2.2. The fixed effects EM estimator for panel probit with individual fixed
effects is defined by
(1) Given initial (ﬂ(k),agk)), denote ,uz(-f) = X! p® + agk),

(2) E-step: Calculate

v = BV, Xi, %), oY)

— 1+ (Vi — () - o (ul) HR () (1 — 2 ()3,

(3) M-step: This contains two conditional maximization steps

CM-step 1: Given «y, the parameter 8 can be updated by
N T i .
B (33 XX 1YY X — ),
i=11=1 i=11=1

CM-step 2: Given 3, the parameter «; can be updated by

oY = IS (T - x5,

(4) Iterate until converge.

This is essentially the case ¢4 = 1,Vt = 1,..,T. Note that the CM-step 2 here is just
A k/,)

the average over time using YQS‘, as surrogate for Y;;. This estimation procedure does not

involve computing the inverse of the Hessian.
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1.2.3 Nonlinear panel models with multiple unobserved effects

In this section, I describe how a general nonlinear panel data model with individual and

time effects can be estimated using the proposed EM procedure.

Definition 1.2.3. The fixed effect EM estimator for a class of nonlinear panel data model
with individual and time effects is defined by
(1) Given initial (3%, (") #)),

(2) E-step: calculate Yn(fk) = E[YiﬂYit,Xit,ﬁ(k),g(a(k),'yt(k))],

(3

(3) M-step:

(BET, oD (D) ¢ arg minS(80), a®) 30 = (V" — X8 glai,1))?),  (111)
7a”y

(4) Tterate until convergence.

Convergence and consistency of B, defined as the output from the iteration, will be
discussed in the following sections. Note that this procedure is different from the traditional
EM algorithm (discussed in (Dempster et al., 1977)), which is used to maximize the expected
log-likelihood function when there are latent variables, and its E-step is to augment the
incomplete likelihood with conditional likelihood for Y;|Yj; while here, the E-step is to
calculate a surrogate, f/it, for the unobserved Y;; when there are unobserved individual and
time effects. This difference leads to a different strategy of proof. Specifically, I adopt
the approach of using the conditional expectation of Y;; because under Bregman loss the
conditional expectation is optimal in terms of mean squared error. Under certain conditions,
e.g., the density of the error term is in the exponential class of distributions, as shown in
Section 1.3, as well as for probit, those two have the same score functions. This is due to

the quadratic loss function of the probit model.

Remark 1.2.2. Depending on the functional form of the individual and/or time effects, the

M-step can be as follows:
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CM-step 1: Given «; and -, the parameter § is updated via

N T N T
Y = (303 XuXi) YD X% — (e )},

i=1t=1 i=1t=1

CM-step 2: Given 3, the parameters «; and 7y, are updated by maximizing

N ~(k k k
SN - x4, - glaM 492,

i=11=1
and this step can be implemented by using the method of least squares (or principal com-

ponents).

1.2.3.1 Convergence

In this section, I show the resulting estimate from the estimation procedure converges to a
point that maximizes the observed log-likelihood function. I focus on the interactive fixed
effects case, which is more complex due to the high degree of nonlinearity of the unobserved
effects term (all the other cases are concave in the fixed effects, though the convergence rates
are different). Consistency results are discussed in Section 1.4. The IF-EM for probit suffers
from asymptotic bias because the fixed effects converge slowly, which I address in Section
1.3.

For a binary model, denote the negative log-likelihood function

—Lynr ==Y _logF(qi(X}:8 + aw)),
it
where g;; := 2Y;; —1 and F is the cdf of Yj; conditional on Xi,a; and ;. For brevity, assume
F is symmetric. Define the hazard function h(6) := —0logF(61)/061 for a particular
argument 6.
Recall the quadratic loss function S(B*), k) ~(k)) = (Aigk) — X, — g(ai,v))? of the

M-step that the proposed fixed effects EM-type estimator depends on. The strategy of
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the proof is to show the negative log likelihood function of the model under consideration
is majorized by this quadratic function (up to some constant), which is satisfied by the

following propositions

Proposition 1.2.1. Suppose X is a three-dimensional matriz with p sheets (N x T X p),
B and B are p x 1 vectors, o and & are N X R matrices, and v and v are T X R matrices.

Define hi i= h(qit(XZ(tB + &A1), then

2,t

N PG
—Lnr(B,0,7) < —Ln7(B,8,7) — 52@ + 52(% — X}, — i),
it

Proof: See Appendix A.1.2.

Proposition 1.2.2. (i) Up to a constant that depends on (B%), a®) ~®)) but not on (B, a, ),
the function S(/B(k),a(k),v(k)) magjorizes —Ln7(B, a,7y) at (B(k),a(k),'y(k)).

(i) Let (B, a®) ~®)) k= 1,2 ..., be a sequence obtained by the IF-EM procedure.
Then S(ﬁ(k), a(k),’y(k)) decreases as k increases and converges to a local minimum

of —Ln1(B,a,7) as k goes to infinity.

The proof of part (i) follows by applying the result from Proposition 1.2.1. The proof of
part (ii) follows from the property of the quadratic majorization.

This proves the convergence of the general EM procedure. Note that although I show
it for an interactive fixed effects model, the same proof procedure can be adapted to other
single index models with individual and time fixed effects. I discuss consistency in Section
1.4. Since the asymptotic distribution differs for different models, in the next section I
will show the asymptotic distribution for the probit model, in which case the incidental
parameter problem occurs, and provide an analytical bias correction solution.

The EM procedure proposed here is simple, easy to implement, and has a closed form
solution in each step. The method can be extended in a straightforward way to handle
composite data which consists of both binary and continuous variables. While the binary

variables are modeled with Bernoulli distributions, the continuous variables can be modeled
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with Gaussian distributions. Including some continuous variables corresponds to adding
some Gaussian log-likelihood terms to the existing log-likelihood expression. Since the
Gaussian log-likelihood is quadratic, the ultimate function would still be majorized by a

quadratic function.®

1.3 Asymptotic theory for panel probit with interactive fixed effects

In this section, I discuss consistency and asympototic bias of the proposed estimator. I do so

in the context of PPIF but my method of proof can be extended to a wider class of models.

1.3.1 Consistency

I show PPIF is consistent but suffers from incidental parameters bias. I will also discuss
bias corrections to the parameter and average partial effects in the next section.

I consider a panel probit model with scalar individual and time effects that enter the
likelihood function interactively through 7 = ;7. In this model, the dimension of the
incidental parameters is dim ¢ 7 = N +T'. I prove the consistency of PPIF under assump-
tions on the indexes. Since the proposed fixed effects EM estimator has the same score as
that of MLE, I derive its properties directly through the expansion of the score of its profile
likelihood function.

In this section, the parametric part of the model takes the form

log®(qit (X[, 8 + mit)) = Lit(B, mit).

Hence, the log-likelihood function is

Lyt (B, ¢nT) = LNT(B,T) = %Z&t(ﬁ,ﬂ) = %Zlogq)(%’t()qtﬁ + Tit)).
it it

®When there are no fixed effects, convergence is proved by the contraction mapping theorem argument.
See (Gourieroux et al., 1987)
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I make the following assumptions:

Assumption 1. Let v > 0 and u > 4(8 +v)/v. Let € > 0 and let B? be a subset of
RY™ A+ that contains an e-neighborhood of (B°, 7 for alli,t,N,T.

(i) Asymptotics: Consider limits of sequences where N/T — k%, 0 < k < 00, as N, T —

.o . R e T T . . . . .
(i1) Sampling: Conditional on ¢, {(Y;", X, ) : 1 < i < N} is independent across i, and
for each i, {Yi, Xi : 1 < t < T} is a-mizing with mizing coefficients satisfying sup; a;(m) =

O(m™*) as m — oo, where

aj(m) :==sup  sup |P(AN B) — P(A)P(B)|
t AeAl,BeBi,,,
and for Zy = (Yit, Xit), Al is the sigma field generated by (Zit, Zit—1,...), and By is the
sigma field generated by (Zi, Zi 411, ...).

(14i) Moments: The partial deriwatives of (B, 7) w.r.t. the elements of (B,7) up to
fourth order are bounded in absolute value uniformly over (3,7) € B2 by a function M (Zy) >
0 a.s., and max;  Ey[M(Z;+)%°] is a.s. uniformly bounded over N,T. There exist constants
bmin and bumax such that for all (B,m) € BY, 0 < byin < —Eg[0r20it (B, 7)] < bmax a.s.
uniformly over i,t, N, T.

(iv) Non-colinearity condition: 3¢ > 0, such that w.p.a.1,

1
) in ——T - X)'M, - X
Bl BT XMl 0] > <

Assumption (i) defines the large-7" asymptotic framework as in (Hahn and Kuersteiner,
2002; Fernandez-Val and Weidner, 2013; Chen et al., 2013). Assumption (ii) defines the data
sampling conditions. Assumption (iii) defines the finite moment condition. Assumption (iv)
states that no linear combination of the regressors converges to zero, even after projecting
any two-dimensional factor loading «. Note that this rules out time-invariant and cross-

sectional invariant regressors.
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Define the fixed effects EM estimator for PPIF as Bppjp.
Lemma 1.3.1. Under Assumption 1, BPP[F =% +op(1).

The proof is found in Appendix A.2.1 and contains two steps. I first show the consistency
of the index with the generalized residuals from the E-step. Then, in step two I show that
the residuals satisfy the conditions imposed on the linear panel data models with interactive

fixed effects as in (Bai, 2009b). The consistency of B pprr follows.

1.3.2 Asymptotic results

Define the nonlinear differencing operator
Dgralis := Opat1liy(Xst — Zit), for ¢=0,1,2

where Z;; is a dim S-vector including the least squares projections of X;; on the space of

incidental parameters spanned by a7 (a; + ;) weighted by E4(—0,20:), i.e.,
Bitk = @Y (g + Vik); (1.12)
(af, 7)) € argminy Eg[—0:2Lie(Xie — afp (@i +1e4))7].

kYt Kk it
s

Let H be the (N +T) x (N +T) expected value of the Hessian matrix of the log-likelihood

with respect to the nuisance parameters evaluated at the true parameters, i.e.,

H=E4[-0pp L] = /

Hiay) Hiyy

Hioa) Hiar) ]

where H(aq) = diag(>,(00)?Eg[—0x20it])/(NT), Higmyit = (I Eg[—0x20y])/(NT), and

= . e s G ——1
7_[(77) = dlag(zi(a?)Q}E(b[—@ﬂz&t])/(NT). Furthermore, let /H(aa)a /H(a'y)v /H(WO‘), and /H(’Y’Y)
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denote the N x N, N x T, T x N and T' x T blocks of the inverse ﬂ_l of H. Then

S = ZZ (ac) 1377'%‘/ +H(a'y)m-aj'7t
] 17=1
+ ,H(Wa)tjalr%' +H(77)tr ?)Eqﬁ(aﬁngT)- (1.13)

This nonlinear differencing operator generalizes to nonlinear models the partialing-out of
individual and time effects in linear models. For example, if the model is linear, 0,2¢;; = —1,
Oprlit = —Xit, and

T

N N T
B =T Eg[Xul + N7V Eg[Xu] - (NT) D ) Ey[Xu

t=1 i=1 i=1 t=1

SO that Dgfit = _(Xit — Eit)&réit, Dﬁwgit = _(Xit — Eit)a and Dﬁﬂ-QEit = 0.
Let E := plim N, T—oo- The following theorem establishes the asymptotic distribution of

the fixed effects EM estimator for PPIF, Bppjp.

Theorem 1.3.1. (Asymptotic distribution of Bpp[p). Suppose that Assumption 1 holds,

that the following limits exist

B = —E Zzt 127- t’Yt'YTE¢[8 &thﬂ&T] +3 Zt 1<7t)2E¢(D,37r2€Zt)
L Zt—l(% )2E¢(87r2fz‘t)
5 - _E 1 ET: fvl E¢(6 litDgrliy + 5 Dgr2lir)
o _T SN (@9)2E g (9,204 ’
_ _ 1 /
We = —-E WZZEgb(aﬁﬂ’eit - a7r2£itEitEit)] ,
L i=1t=1

and that W, > 0. Then,

V NT(BPPIF — BO) i> W;}N(HEOO + H_lﬁoo,Woo).



19

The detailed proof is in Appendix A.2.2.

Let Xit = X;; — Z; be the residual of the least squares projection of X;; on the space spanned
by the incidental parameters weighted by Eg(w;t), for wir = (gbf(X;t,B + a?’yg))Q/[CD(X;tﬁD +
o) (1 = (X8 + afyf)))-

Remark 1.3.1. For the probit model with X;; strictly exogenous, observe that

N ~ o~y
B. = E[LZ Sy () B wie Xit X 150
2N i=1 3:1 (7?)2E¢> [wit]

D — E[lZZi]\il(a?)QE¢[WitXitX;t]]Bo
2T (o) B wie]
1 N T
W — Dl . ~, !
Woo = K WZZE¢[LU“X”X“] .

The asymptotic bias is therefore a positive-definite-matrix of the weighted average of the
true parameters as in the case of the probit model with additive effects (see (Fernandez-Val

and Weidner, 2013)).

1.3.3 Asymptotic distribution of the average partial effects

In nonlinear models, the researcher is often interested in average partial effects in addition
to the model structural parameters. These effects are averages of the data, parameters
and unobserved effects as in equation (1.4). I impose the following sampling and moment

conditions on the function A that defines the partial effects:

Assumption 2. (Partial effects). Let v >0, ¢ >0, and B° all be as in Assumption 1
(i) Sampling: for all N, T {a;}n and {v¢}7r are deterministic;

(ii) Model: for all i, t, N, T, the partial effects depend on co; and v through o;y.:

A(Xit, B, iy ve) = Dit(B, ainye).

The realizations of the partial effects are denoted by Ay := Ay (B°, ad7?).
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(1ii) Moments: The partial derivatives of Ai(B, ) with respect to the elements of (B, )
up to fourth order are bounded in absolute value uniformly over (8,7) € BY by a function
M(Zy) > 0 a.s., and max; Ed,[M(ZZ't)SJ”’] is a.s. uniformly bounded over N,T.

(iv) Non-degeneracy and moments: min;; Var(Ay) > 0 and max;; Var(Ay) < oo,

uniformly over N, T.

Analogous to Zj in equation (1.13), define

N T
1 —1
Vit =~ 0> a0 + Hayir 09 + Hyayej0972 + Hipyeralad) e Ay,
j=1r=1

which is the population projection of 0x Ay /Ey[0;2¢;] on the space spanned by the incidental
parameters under the metric given by Eg[—0,20;]. T use a analogous notation to the previous
section for the derivatives with respect to S and higher order derivatives with respect to .

Let 5?\,T be the APE as defined in equation (1.4), and 5 be its estimator ANT(B, qAﬁNT) =
(NT)_leA(Xit, B, @&iA41). The following theorem establishes the asymptotic distribution

of ¢.

Theorem 1.3.2. (Asymptotic distribution of 5} Suppose that the assumptions of Theorem

1.3.1 and Assumption 2 hold, and that the following limits exist:

N T
1 _
(Dgh),, = E[WE D Eg (900 — EndrAn)],

i=1t=1

Eio — (DBA) W Boo+]E ZZt 127’ t7t77'12E¢(6 thaﬂ'zgl’qulT):l
= t= 1(%) Eg(Or2lit)
_E[LZZt:I 1) [Eg (92 Air) —E¢(aﬂ3£it)E¢(\yit)1]
2N i1 (92 (D2 tie)
T N 2
D), = (Ds8), Wr Do +El 1221 1(09)*Eg (Ox Ezt@r?@t‘l’zt)]
T = Zz 1( )2E¢(a7r252t)

_E[%Z S (a)?[Eg(0p2 Air) — E(ﬁ(an-?’git)EqS(qjit)]]’

SN (0)2E (2l
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N T T

— 1 ~ )

Ve = E{ﬁ [ZE¢(AitAiT)+ZE¢(Fitrit)]}a
t=1

i=1 t,r=1

/

for some Vio > 0, where Ay = Ay — E(Ay) and Ty = (DBA)OOW;}Dﬁ&t — Eg(Wit)Onlis.
Then,
VNT(5 — 8%, — T B, - N'D°_) -4 N(0, 7).

The bias and variance are of the same order asymptotically under the asymptotic se-

quence of Assumption 1(i).

Remark 1.3.2. (Average effects from bias-corrected estimators). As in the case of the probit
with additive effects ((Fernandez-Val and Weidner, 2013)), the first term in the expressions
of the biases Eio and ﬁio comes from the bias of the estimator of 5. It drops out when
the APEs are constructed from asymptotically unbiased or bias-corrected estimators of the

parameter 3, i.e.,

6 = A(B,0()),
where § is such that v NT(3 — (°) 4 N(0, Wo_ol) The asymptotic variance of ¢ is the same
as in Theorem 1.3.2.

In the following examples I assume that the APEs are constructed from asymptocially

unbiased estimators of the model parameters.

Example 1.3.1. Consider the partial effects defined in (1.5) and (1.6) with

Ai(B, i) = (B + Xip Bk + aive) — ®(Xjy 1Bk + i)

and

ANit(By i) = Bros(XiuB + aive).

Denote Hi = ¢5(X;,8 + a¥99)/[®(X;,8° + a24)(1 — ®(X,,8 + a?+P))] and use notations

(2 (2

previously introduced, the components of the asymptotic bias of § are
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B = E[lzN:Zil[?Zf:Hl By (Hit(Y: _(I)it)wz‘r\i’m—)—E(z,(\llit)E(z,(HitaQ(I)it)]
= =L Ey(wn)
N
1 L By
+ E[MZM]
=1 2ot=1 Eg(wit)
D’ = E[1iZlN1[_E¢(\Ijit)]E¢(Hit82q)it) +E¢(6ﬂ2Ait)]
h 2T =1 Zz’]\ilEMWz’t)

where W, is the residual of the population regression of —0:A;;/Eylwit] on the space
spanned by the incidental parameters under the metric given by Eg[w;]. If all the compo-

. . -0 .
nents of Xj; are strictly exogenous, the first term in the numerator of B is zero.

1.3.4 Bias-corrected estimators

The results of the previous sections show that the asymptotic distributions of the interactive
fixed effects estimators of the model parameters and APEs can have asymptotic bias under
sequences where T' grows at the same rate as IV, as also discussed in (Chen et al., 2013).
This large-T" version of the incidental parameters problem can invalidate any inference based
on the asymptotic distribution. In this section I discuss how to construct analytical bias
corrections for PPIF and give conditions for the asymptotic validity of the analytical bias
corrections. The proof strategy here is similar to (Ferndndez-Val and Weidner, 2013) which
is under the additive individual and time effects setting.

The analytical corrections are constructed using sample analogs of the expressions in
Theorems 1.3.1 and 1.3.2, replacing the true values of § and ¢ by the estimated ones. To
describe these corrections, I introduce some additional notation. For any function of the
data, unobserved effects and parameters @i (5, cive, ivi—;) with 0 < j < t, let @y =

cpit(lg’,oli’yt, Giyi—;) be its estimator, e.g., Eg[0,20;] denotes the estimator of Eg[0,20;]. Let
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H L 7—[(_&17), 7-2(;1&) and 7:[(_717) denote the blocks of the matrix 7!, where

(aa)’

g

7:[(0404) = diag(_ Zt(&t)2E¢[a7r2€it])/(NT)a (ay)it — _di&tEcb[aWQgit]/(NT): and ﬂ(’y’y) =

diag(— 32,(6:)?Eg[Frlu])/(NT). Let

N T
N 1 . ) .
i = ——NT E E (/H(aa)zj’YT’Yt + /H(Ow)m_a]’yt + /H(q/a)tja”y"' + H( ) OéiOéj)E(z,(aﬂﬂij),

j=17r=1
the kth component of S corresponds to a least square regression of X;; on the space spanned
by the incidental parameters weighted by —E¢(873-;€it). The analytical bias-corrected esti-
mator of 3° is

BA:B_B/T_‘[)/Na

where
L _1iz§o<T/<Tj>>z?ij (9xEDelir) + § s G PE(Dsrali)
N Zt 1(%) E(o 2€zt)
T <N
E(0 EtDﬁﬂ-gzt—i- Dlgﬁz&t)

1
TZ 11

zl 1 (60)2E (D2 6)

and L is a trimming parameter for estimation of spectral expectations such that L — oo
and L/T — 0, see (Hahn and Kuersteiner, 2011).

Asymptotic (1 — p)- confidence intervals for the components of 3% can be formed as

B+ 21\ /WL /(NT), k= {1,...,dim 8°}.

where 21—, is the (1 — p) quantile of the standard normal distribution, and Wk_kl is the
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(k, k)-element of the matrix W1 with

T
> Ey(Oprtit) — Bp(Dr2lisZinly).
i=11=1
The analytical bias-corrected estimator of 6% N 18

54— §— BT — DN,

where I use 5, i.e., the APE constructed from a bias corrected estimator of 8. Let

= 1 =1 4 o2 =1 A a =1 A s =1 A AN AL
Pie = _NT;ZI(H(M)U%% M (yir @it T H g GiTr + H o 0005)On A,
j=1r=
then the estimated asymptotic biases are
Bé _ Z ] =0 T/ T - ])] Zt_3+1 ’Yt’YTE¢>(8 gzt ja7r2€Zt\I/’Lt)
N S ()2 (O i)
ZZt 1 [E¢(8W2A”Lt) Eg(0r3lit)Eg (V)]
2N i 1(%)2E¢(3ﬂ2fit)
o *Zzl (@3B (On D2l ¥ie) = 3O t) + §Eo (Dol B (Bir),

zﬁaa»%@m

The estimator of the asymptotic variance depends on the assumptions about the distribu-
tion of the unobserved effects and explanatory variables. Assumption 2(i) requires imposing
a homogeneity assumption on the distribution of the explanatory variables to estimate the
first term of the asymptotic variance. For example, if {X;; : 1 < i < N,1 <t < T} is

identically distributed over ¢, this term is given by
T

1NT:~
N2 el + S BTur)

=1

for Ajy = Ajy — N1 Zf\il A;;. Bias corrected estimators and confidence intervals can be
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constructed in the same fashion as for the model parameter.

The following theorems show that the analytical bias corrections eliminate the bias from
the asymptotic distribution of the fixed effects estimators of the model parameters and
APEs without increasing the variance, and that the estimators of the asymptotic variances

are consistent. Those are the main results of this section.

Theorem 1.3.3. (Bias correction for B} Under the conditions of Theorem 1.5.1,
w5 W,
and, if L — oo and L/T — 0,

VNT(BA - 8% -4 N0, W ™).

Theorem 1.3.4. (Bias correction for 5) Under the conditions of Theorems 1.3.1 and 1.5.2,
o8 P Y0
V=V,

and, if L — oo and L/T — 0,

VNT (A = 8%,) 5 N0, 7).

Remark 1.3.3. Split-panel jackknife as described in (Chen et al., 2013; Fernandez-Val and

Weidner, 2013) can also be applied.
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1.4 Discussions and Extensions

1.4.1 Comparison with the existing estimators: No fixed effects or only indi-

vidual effects

When there are no fixed effects, the model becomes

th = Xz{t/B"i_Eit?

Vi = 1{Y; >0}, (114)
where all objects are as defined previously. The conditional distribution of Yj; is given by
P(i/lt = 1|th7ﬂ) = ¢(Xltﬁ)a

and for estimation the following EM procedure can be used:

Definition 1.4.1. (1) Given initial ), denote /%(t = X%
(2) E-step: Calculate }A/;gk) = E[Y;’HY;t,Xit,g(k)];

(3) M-step: The parameter ( is updated via

B+ ZZthX 1{22%1/(’“

i=1t=1 i=1t=1

(4) Iterate until convergence.
I start by comparing this estimation with existing methods.

Proposition 1.4.1. For panel probit models, the proposed EM-type estimator is asymptot-

ically equivalent to the MLE.

Proof: See Appendix A.3.1.1. When applying the proposed fixed effects EM-type esti-
mator to probit (or for the general exponential family), its E-step involves calculating the

conditional expectation of the error, which is exactly the score of expected, complete data,
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log-likelihood function or the score of the observed log-likelihood (it also corresponds to the
notion of generalized residuals proposed in (Gourieroux et al., 1987) for cross-sectional data).
Hence, the fixed effects EM-type estimator directly works with the observed score. For the
case when there are no unobserved effects, the EM method is asymptotically equivalent to
MLE and there is no asymptotic bias. For the cases when there are unobserved effects, and
when there are incidental parameter problems, an iterated bias correction to the score can

be easily implemented through the E-step.

Proposition 1.4.2. For the panel probit model with individual effects, the difference between
the proposed fized effects EM-type estimator and Newton’s method lies in whether inverting

the Hessian of the observed data log-likelithood function.

Proof: See Appendix A.3.1.2. I explicitly compare the two iterative steps of the fixed
effects EM-type estimator and the Netwon’s method. Each iteration of the proposed fixed
effects EM-type estimator is a least squares calculation (with the generalized residual); it
does not use the inverse of the Hessian of the observed data log-likelihood function like

Newton’s method.?

1.4.2 PPIF with multiple factors

In this setting, the model, written in matrix notation, is

Y =1(XB+ay +e>0),

where Y = (Y1,...,Yn)" (with ¥; = (Yi1,...,Yir), a T x 1 vector) is an N x T matrix and
X (with X; = [Xa, ..., XiT]/ is a T' x p matrix) is a three-dimensional matrix with p sheets
(N x T x p), the ¢-th sheet of which is associated with the ¢-th element of 5(¢ = 1,...,p).
o= (a1, ...,ay) is an N x R matrix, while 4 = (1, ...,77)" is a T x R matrix. The product

Xpis an N x T matrix and € = (1, ...,ex) is an N x T matrix.

?See (Greene, 2004) for more about estimation of nonlinear panel data models with individual fixed
effects.
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Since oy’ = a A~ Ay’ for any R x R invertible A, identification is not possible without
restrictions.

Condition 1. (Normalization) (i) v'v/T = Ig; (ii) &/« = diagonal.

Under different normalization conditions, the estimation procedure (the conditional max-

imization steps) for the factor is different.

Definition 1.4.2. The EM procedure for estimating a panel probit model with multi-
dimensional interactive fixed effects under Condition 1 is defined by the following:
(1) Given initial (B(k),ocgk)a%(k)), denote ,ul(-f) = X! p® + (agk))’fyt(k),

(2) E-step: Calculate

= uy) + (Yie — (i) - b (i) @iy ) (1 — @ (i)},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given «; and -4, the parameter § is updated via

o) o)

CM-step 2: Given § and «y, the parameter v is updated via
1 o o o (k
YD = eigl o> (F ) - Xip® )30 — xptDy,

=1

CM-step 3: Given [ and 7y, the parameter « is updated via

QD) = 1P k) _ xglkad)y (k)

(4) Iterate until convergence.
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The CM-step 2 calculates the R largest eigenvector of the matrix in brackets, arranged
in decreasing order. It imposes the normalizations of Condition 1 by using eigenvectors.
An alternative estimation procedure based on a QR decomposition that does not impose

Condition 1(ii) is also proposed below.

Definition 1.4.3. The QR-based decomposition EM procedure for estimating a panel probit
model with multi-dimensional interactive fixed effects is defined by the following:
(1) Given initial (ﬂ(k),agk),%(k)), denote ,ul(-f) = X! p® + (agk))’fygk),

(2) E-step: Calculate

VP = BV, X, B, 0l 4 9]

= uy) + (Yie — (i) - b (i) @iy ) (1 — @ (i)},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given «; and 4, the parameter [ is updated via

N
k+1 <ZX X) {Z X;(Yi(k) _ agk)v(k))} 7
=1

CM-step 2: Given § and «y, the parameter v is updated via
,y(k—l-l) _ (}A/(k) - Xﬁ(k—’_l))/a(k)((a(k)),a(k))_l.

(k+1) (k+1) (k+1)

Compute the QR decomposition y*+1) =

Rjs and replace vy by ¥

CM-step 3: Given 8 and ¥, the parameter « is updated via

O[(k-i—l) — (Y/(k Xﬁ (k+1) ) (k—l—l)

(4) Tterate until convergence.

Through the iterations, the columns of the updated values of v are made orthonormal via
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the QR decomposition (imposing normalization, but other decomposition methods can also
be used), i.e., (3 D)3, +1) is orthonormal (Ig). The QR decomposition is often used to
solve the linear least squares problem, and is the basis for a particular eigenvalue algorithm.
With additional restrictions, such as a full rank condition on v and a sign restriction on Ry,
the QR decomposition method can achieve unique values of o and ~.

Note that the orthogonalization does not alter the convergence property. Let A (k+1)
be the optimizer before orthogonalization. Then S(ﬁ,’y(k+1),oz(k)) < S(,B,’y(k),oz(k)). Let
D = 3D Ry be the QR decomposition of y*+1) and let &*) = o®R),. Then
a®) (D) = k) (4 (D)) “go §(3, 76D G#)) = §(5,4F+D R and, consequently,

S(8,4%+1, &) < 5(8,7®), k).

1.4.2.1 Consistency

In general, the consistency proof contains two steps as shown in the proof for PPIF. The
first step involves the consistency of the conditional expectation, and the second checks the

assumptions needed for the consistency of the “linearized” model.
Assumption 3. (Bounded second-order derivative) Or2 L1 (5, T) > bmin-

Lemma 1.4.1. Under Assumption 3 and Assumption 1(i), (i), and (iv), Brr—pn = B° +

op(1).

Proof: See Appendix A.3.2.

1.5 Simulations

This section reports evidence on the finite sample behavior of fixed effects estimators in
static models with strictly exogenous regressors. This includes several cases: no unobserved
effects, individual effects, additive individual and time effects, and interactive individual
and time effects. I analyze the performance of the generalized least square (GLS) method

using the R-package glm, which is available on CRAN, and the fixed effects EM-type
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estimators in terms of bias and inference accuracy based on their asymptotic distribution. I
also analyze the performance of the uncorrected and bias-corrected interactive fixed effects
EM-type estimators in terms of bias and inference accuracy. In particular, I compute the
biases, standard deviations, and root mean squared errors (RMSE) of the estimators, the
ratio of averaged standard errors to the simulation standard deviations (SE/SD); and the
empirical coverages of confidence intervals with 95% nominal value (p; .95). All results are
based on 500 replications.

The data generating processes are:

DGP-1: Yy = 1{XyB+¢c; >0}, (i=1,..,.N; t=1,..T),

DGP-2: Yy =1 {XyS+a;+ei >0}, (i=1,...,N;t=1,..T),

DGP-3: Vi = 1{XuB+ i+ +ex >0}, (i=1,..N;t=1,..T),
e DGP-4: Yy = 1{XuB+ aiyy + e >0}, i=1,..,N; t=1,..,T,

where =1, a; ~ N(0,1), 7+ ~ N(0,1), and X;; ~ N(0,1) are strictly exogenous with
respect to g;; with g4 ~ N(0,1).

Throughout, “No FE” refers to the probit without fixed effects; “FE i” refers to the probit
with individual fixed effects; “FE 2” refers to the probit with additive individual and time
fixed effects; “IF” refers to the probit with interactive fixed effects; “glm” refers to the GLS
estimator in R, while “EM” refers to the fixed effects EM-type estimators proposed. For
interactive fixed effects, I also implement the bias correction procedure proposed here; “BC-
IF” refers to the bias-corrected estimator. All the results are reported in percentages of the
true parameter value.

The simulation results are summarized in Table 1.1 for N = 100 and T = 8,12, 20, and
in Table 1.2 for N=52 and T' = 14, 26, 52. They show that in all the cases analyzed EM has
smaller biases and variances and compares favorably to glm. For example, for the case with

additive individual and time effects, when N = 100 and 7" = 12, the bias for glm is 21%,
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whereas the EM estimator is only 11%. Even for the case without unobserved effects, when
N =100 and T' = 20, the bias for glm is 0.52%, whereas the EM estimator is only 0.11%. In
terms of RMSE, for the case of individual effects, when N = 52 and T = 14, the RMSE for
glm is 16%, whereas for the EM estimator it is 15%. When there is a bias, the results also
show that it is of the same order of magnitude as the standard deviation for the uncorrected
EM and glm estimator, and this causes severe undercoverage of the confidence intervals.
The analytical bias correction removes the bias without increasing dispersion and produces
substantial improvements in terms of RMSE and coverage probabilities. For example, the
analytical bias correction reduces the RMSE by more than 4% and increases coverage by

around 20% in the N = 100 and T = 12 case.

1.6 Empirical example

1.6.1 A gravity equation and the extensive margins of trade

Understanding how different trade barriers influence trade flows is key when one wants to
study the impact of distance, trade agreements, and other trade frictions. See (Helpman
et al., 2008; Bernard et al., 2007; Charbonneau, 2012). For my application, I use the same
data set as in (Helpman et al., 2008), which consists of information on who trades with
whom for a large set of countries.

I illustrate the estimation and difference when including differing degrees of fixed effects,
namely the cases with no fixed effects, only individual fixed effects, additive individual and
time fixed effects, and interactive fixed effects. The fixed effects are importer and exporter
fixed effects for a single year, the year 1986. I obtain a balanced panel of 158 countries that
account for the majority of world trade. The probability of country j exporting to country

1 1S
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Here X;; contains D;;, representing the distance between country i’s and country j’s
most populated cities; Border;j, a dummy that takes the value 1 if 7 and j share a border;
Legal;j, a dummy that takes the value 1 if the two countries have the same legal system;
Language;;, a dummy that takes the value 1 if 4 and j have the same official language;
Colony;j, a dummy that takes the value 1 if ¢ and j were ever in a colonial relationship;
Currency;;, a dummy that takes the value of 1 if the two countries use the same currency;
RT A;;, a dummy that takes the value 1 if 7 and j are in a regional trade agreement; and,
finally, c;; and y;, respectively representing importer and exporter fixed effects.

The results of the effects of trade barriers are summarized in Table 1.3. After accounting
for exporter fixed effects the effect of a common currency decreases in magnitude from about
-0.45 to -0.16. This suggests that excluding exporter effects may overstate the decrease in
the likelihood of trade when trading partners share a common currency. The changes of
magnitude on language and region suggest that excluding exporter effects may understate
the importance of having the same language and the same religion. Similarly, the magnitude
changes of distance, from about -0.19 to -0.29, suggesting that excluding exporter effects
may understate the importance of distance. Importantly, the magnitude of the coefficient for
border changes from 0.16 to -0.03 suggests overstating the importance of sharing a border.
Note also that the effect of free trade agreements is rather robust to the inclusion or complete
omission of fixed effects. This suggests that perhaps the effect of a free trade agreement
on the likelihood of trade between a pair of countries does not depend on the exact trade
network of those countries; FTAs appear to increase the likelihood of trade regardless of

which fixed effects are included.

1.7 Conclusion

This paper presents an EM type method of estimating nonlinear panel data models with
multiple unobserved effects, allowing for interactions between the unobserved individual and

time specific effects. The method can be applied to models with individual effects, additive
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individual and time effects, interactive effects and other general functional form of unob-
served effects. In finite-sample simulations, the method outperform the existing generalized
least square methods for the models with individual effects and additive individual and time
effects in terms of both bias and variance. Furthermore, I derive the asymptotic distribu-
tion of the proposed EM estimator for the panel probit model with interactive fixed effects.
Analytical bias corrections are developed to deal with the incidental parameter problem for
both the estimates of the coefficients and its associated average partial effects. Simulations
demonstrate the correction works well in reducing the bias and root mean squared error
and improves coverage rates. Finally for purpose of illustration, I use the example of inter-
national trade networks demonstrating that misspecifying the fixed effects model can over
or understate the importance of certain factors on the likelihood of trade. A wide range of
future theoretical and empirical work can build upon the results of this paper. For example,
sample selection models with interactive effects or models with strategic interactions, such

as binary game models, could benefit from and build on the approach proposed here.
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Table 1.1: Finite Sample Properties of Static Probit Estimators, N=100
Model  Estimator Bias Std.Dev. RMSE SE/SD P;.95
T=8

No FE EM 0.26 7.48 7.49 1.03 097

glm 0.69 7.59 7.61 1.02  0.96

FE i EM 20.74  10.37 23.18 0.73  0.29

glm 2238 11.73 25.26 0.85  0.39

Add-FE EM 20.73 9.24 22.69 0.86  0.28

glm 29.21  13.95 32.36 0.83  0.32

IF 8.95 10.08 13.47 0.72  0.69
BC-IF  -4.69 8.91 10.06 0.81 0.84
T=12

No FE EM -0.10 6.01 6.02 1.04  0.96
glm 0.31 6.09 6.09 1.03 0.96

FE i EM 12.53 7.61 14.65 0.79 0.45
glm 13.43 8.11 15.68 0.89 0.53

Add-FE EM 10.88 6.62 12.73 0.99 0.64
glm 20.81 10.20 23.17 0.89 0.38

IF 7.64 6.94 10.32 0.83 0.73
BC-IF -0.45 6.42 6.43 0.9 0.92
T=20

No FE EM 0.11 4.93 4.94 098 094
glm 0.52 5.00 5.02 097 095

FE i EM 6.44 5.22 8.28 085  0.67
glm 7.20 9.90 9.06 0.95 0.70

Add-FE EM 3.56 4.60 5.82 1.02  0.89
glm 10.88 6.57 12.71 093  0.60

IF 4.03 4.86 6.31 0.90  0.83
BC-IF  -0.99 4.62 4.72 095 094

Notes: All the entries are in percentage of the true parameter value. 500 replications.
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Table 1.2: Finite Sample Properties of Static Probit Estimators, N=52
Model  Estimator Bias Std.Dev. RMSE SE/SD P;.95

T=14
No FE EM -0.02 7.83 7.84 1.03  0.94
glm 0.43 7.97 7.98 1.01 0.95
FE i EM 11.3 9.55 14.79 0.81 0.68

glm 1247 10.53 16.31 0.9 0.77
Add-FE EM 2.92 7.74 8.27 1.02 0.94
glm 24.05 15.28 28.48 0.8 0.53

IF 4.8 9.28 10.44 0.79  0.83
BC-IF  -3.56 8.52 9.22 0.86  0.87
T=26

No FE EM -0.13 5.92 9.92 099 094
glm 0.27 5.99 5.99 099 094

FE i EM 4.88 6 7.73 0.88  0.85
glm 5.33 6.21 8.17 0.98  0.89

Add-FE EM 0.53 0.63 9.65 1 0.95
glm 10.94 8.08 13.59 0.93 0.7

IF 3.43 6.28 7.16 0.85 0.87
BC-IF -1.3 5.96 6.09 0.9 0.92
T=52

No FE EM -0.18 4.22 4.22 098 0.95
glm 0.22 4.27 4.27 098  0.95

FE i EM 2.2 4.07 4.62 0.91 0.89
glm 248 4.2 4.88 1 0.92

Add-FE EM 1.21 3.97 4.15 1 0.94
glm 6.99 5.17 8.69 0.96 0.71

IF 1.5 3.91 4.18 096 091
BC-IF  -1.48 3.78 4.05 099 094

Notes: All the entries are in percentage of the true parameter value. 500 replications.
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Table 1.3: Coefficients of Static Probit Model for Trade
(1) (2) (3) (4)

Distance -0.185 -0.177 -0.294 -0.297
Border 0.161  0.152 -0.027 -0.041
Island -0.175 -0.178 -0.153 -0.16

Landlock -0.357 -0.358 -0.471 -0.474
Legal -0.308 -0.309 -0.208 -0.212

Language 0.08 0.079 0.166 0.173
Colony 2,222 2245 2.06  1.962
Currency -0.446 -0.449 -0.158 -0.19
FTA 1.685 1.629 1.645 1.648
Religion 0.2 0.191 0.367 0.36
Importer effects Yes Yes Yes
Exporter effects Yes Yes

Interactive Yes




Chapter 2

Nonlinear Panel Models with Interactive Effects!

2.1 Introduction

Panel data models are useful to identify causal effects because they allow the researcher
to control for multiple sources of unobserved heterogeneity modeled as individual and time
effects. The general idea is to use variation across time to control for unobserved time
invariant individual effects and to use contemporaneous variation across individuals to con-
trol for aggregate time effects. We consider estimation and inference on semiparametric
nonlinear panel models with predetermined explanatory variables and interactive individual
and time effects. We focus on single index models, which cover static and dynamic probit,
logit, and Poisson models. We adopt a fixed effects approach that treats the realizations
of the unobserved individual and time effects as parameters to be estimated, and therefore
does not impose any restriction on the relationship between these effects and the observable
explanatory variables. Fixed effects estimation in nonlinear models with interactive effects,

however, is computationally challenging and suffers from the incidental parameter problem.

Maximum likelihood estimation of standard single index models with cross section data
is computationally tractable because the likelihood function is concave in all the model
parameters. This computational tractability is preserved in panel models with additive
individual and time effects, but it breaks down in panel models with interactive effects be-
cause the index is no longer linear in the individual and time effects. Moreover, the principal

components algorithm proposed by (Bai, 2009b) for linear models with interactive effects

!This chapter is based on a joint work with Ivan Fernandez-Val and Martin Weidner
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cannot be applied to nonlinear models. We deal with this challenge by proposing an iterative
two-step algorithm to compute the fixed effects conditional maximum likelihood estimator
(FE-CMLE), where each step solves a concave optimization program. The algorithm is
based on the observation that the likelihood program is concave on the individual effects
after fixing the time effects and vice versa. We show that the algorithm converges to a local
maximum, as the likelihood function decreases at each step of the algorithm. In a simple
model where the FE-CMLE can be obtained by principal components methods, the iterative

algorithm finds the same estimates as principal components up to numerical tolerance error.

We characterize the asymptotic properties of the FE-CMLE under sequences where the
cross section (V) and time series (7') dimensions of the panel pass to infinity at the same rate.
We give conditions for consistency of the estimators of the index coefficients. Consistency
is hard to establish in this setting because the dimension of the parameter space grows with
the sample size and we cannot resort to concavity, unlike in models with additive individual
and time effects. While consistent, the FE-CMLE has a bias in the asymptotic distribution
of the same order as the variance. This is the large-T" version of the well-known incidental
parameter problem (Neyman and Scott, 1948), where the bias arises from the large number of
estimated parameters and the nonlinearity of the model. We characterize the first order bias,
and propose analytical and jackknife corrections that remove the bias from the asymptotic
distribution. Asymptotically the correction does not increase variance and the confidence
intervals constructed around the corrected estimator have correct coverage. We also derive
asymptotic theory for fixed effects estimators of average partial effects (APEs). These APEs
are often the quantities of interest in nonlinear models and are functions of the data, index
coefficients and unobserved individual and time effects. As (Fernandez-Val and Weidner,
2013), we find that in general the incidental parameter bias is asymptotically of second order
because the estimators of the APEs have slower rate of convergence than the estimators of
the index coefficients. In numerical simulations, we show that the asymptotic results provide

a good approximation to the behavior of the FE-CMLE and the bias corrections perform
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well in finite samples for multiple values of N and 7.

Literature review: (Neyman and Scott, 1948), (Heckman, 1981), (Lancaster, 2000), and
(Greene, 2004) discussed the incidental parameter problem in panel data models. (Phillips
and Moon, 1999), (Hahn and Kuersteiner, 2002), (Lancaster, 2002), (Woutersen, 2001),
(Hahn and Newey, 2004), (Carro, 2007), (Arellano and Bonhomme, 2009), (Fernandez-
Val, 2009), (Hahn and Kuersteiner, 2011), (Fernandez-Val and Vella, 2011), and (Kato
et al., 2012) proposed large-T" bias corrections for fixed effects estimators in linear and
nonlinear panel models with additive individual effects; see also (Arellano and Hahn, 2007)
for a recent survey on this literature. (Bai, 2009b) and (Moon and Weidner, 2010a; Moon
and Weidner, 2010b) considered large-T" bias corrections for FE-CMLE estimators of linear
models with interactive individual and time effects. (Charbonneau, 2012) and (Fernandez-
Val and Weidner, 2013)considered fixed effects estimation of nonlinear panel models with

additive individual and time effects.

In Section 2.2, we introduce the model and fixed effects estimators. Section 2.3 describes
the bias corrections to deal with the incidental parameters problem and illustrates how
the bias corrections work through an example. Section 2.4 provides the asymptotic theory.
Section 2.5 gives numerical examples. We collect the proofs of all the results and additional

technical details in the Appendix.

2.2 Model and Estimators

2.2.1 Model

The data consist of N x T observations {(Yi, X},)' : 1 <i < N,1 <t < T}, for a scalar
outcome variable of interest Y;; and a vector of explanatory variables X;;. We assume

that the outcome for individual ¢ at time ¢ is generated by the sequential conditionally
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independent process:

YVit | Xfaa)’%/ﬁ ~ fY( | Xz,t/B +05i'7t)7 (Z = ]-7 7N7t = ]-a "'7T)7

where X! = (X;1,...,Xut), @ = (a1,...,an), ¥ = (Mm,--.,77), fy is a known probability
function, and  is a finite dimensional parameter vector.

The variables «; and ; are unobserved individual and time effects that in economic ap-
plications capture individual heterogeneity and aggregate shocks, respectively. The model
is semiparametric because we do not specify the distribution of these effects nor their re-
lationship with the explanatory variables. The conditional distribution fy represents the
parametric part of the model. The vector X contains predetermined variables with respect
to Y. Note that X;; can include lags of Yj; to accommodate dynamic models. The model
is a single index model because the explanatory variables and unobserved effects enter fy
through the index z; := X/,8 + a;y: and is interactive because the individual and time
effects enter the index z; multiplicatively as a;v: = a; X V.

We consider three running examples throughout the analysis:

Example 2.2.1. [Linear model] Let Y;; be a continuous outcome. We can model the con-

ditional distribution of Y;; using the Gaussian linear model

fr(y | XiB + cive) = (X8 + ciye) /o) o, y €R,

where ¢ is the density function of the standard normal and o is a positive scale parameter.

Example 2.2.2. [Binary response model| Let Y;; be a binary outcome and F be a cumulative
distribution function of the standard normal or logistic distribution. We can model the

conditional distribution of Y;; using the probit or logit model

Fr(y | XpB + am) = F(X[8 + aim)?[L — F(X},8 + am)]' ™%, y € {0, 1}.
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Example 2.2.3. [Count response model| Let Y;; be a non-negative interger-valued outcome,
and f(-; A) be the probability mass function of a Poisson random variable with mean A > 0.

We can model the conditional distribution of Yj; using the Poisson model

fy(y | XiB + i) = fy;exp[ X8+ aiy), y€{0,1,2,....}.

For estimation, we adopt a fixed effects approach treating the realization of the unob-
served individual and time effects as parameters to be estimated. We collect all these effects
in the vector ¢y = (a1, ..., AN, 71, ..., 7). The model parameter 5 includes the index co-
efficients of interest, while the unobserved effects ¢ 7 are treated as a nuisance parameter.
The true values of the parameters, denoted by A% and ¢9\7T = (a(l), ...,a?v,’y?, ...,’y%)’, are

the solution to the population fixed effects conditional maximum likelihood program

E4lL , ,
(5,¢NT)611$§“}%+&“‘¢NT slent (B, on7)]
Lyr(B,ént) = (NT)"V2 Y "log fy (Yie | X{iB + i), (2.1)

it

for every N, T, where E4 denotes the expectation with respect to the distribution of the
data conditional on the unobserved effects and initial conditions including strictly exoge-
nous variables. We need to impose a scale normalization on ¢?VT because multiplying by
a constant to all «;, while dividing by same constant to all v, does not change a;vy;. We
normalize ¢Q to satisfy >_.[al]> = >,[1P]%. Existence and uniqueness of the solution to
the population problem up to the scale normalization will be guaranteed by our assumptions
in Section 2.4 below, including concavity of the objective function in the index X/, 3 + a;y.

The pre-factor (NT) =2 in Ly7(83, ¢n7) is just a convenient rescaling for the asymptotic

analysis.
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Other quantities of interest involve averages over the data and unobserved effects

0 = E[ANT(B%, %r)], Ant(B,ént) = (NT) ™D A(Ya, Xit, B, 00, (2.2)

it
where E denotes the expectation with respect to the joint distribution of the data and
the unobserved effects, provided that the expectation exists. They are indexed by N and
T because the marginal distribution of {(X,a;,v) : 1 < i < N,1 <t < T} can be
heterogeneous across ¢ and/or t; see Section 2.4.2. These averages include scale parameters
and other average partial effects (APEs), which are often the ultimate quantities of interest

in nonlinear models. Some examples of partial effects are the following:

2

Example 2.2.1 (Linear model). The variance o= in the linear model can be expressed as

an APE with

A(}/:itv Xit7 /Bv Oéi’Yt) = (}/Z - Xl/t/B - ai’yt)z‘ (23)

Example 2.2.2 (Binary response model). If X, the kth element of Xy, is binary, its

partial effect on the conditional probability of Yi; is
A(Yit, Xit, B, i) = F(Br + Xjy _p,Bk + i) — F(Xjy _pBr + aim), (2.4)

where By, is the kth element of 5, and X i and B_j include all elements of Xi; and B
except for the kth element. If X is continuous and F is differentiable, the partial effect

of Xt on the conditional probability of Yy is

A(Yir, Xit, B, i) = BrOF (X, B + i), (2.5)

where OF is the derivative of F.

Example 2.2.3 (Count response model). If Xj ., the kth element of Xy, is binary, its
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partial effect on the conditional probability of Yi is
A(Yit, Xit, B, cirye) = exp(Br, + Xy Bk + i) — exp(Xj; Bk + ive), (2.6)

where B, is the kth element of B, and X;; 1 and B_j include all elements of X;; and B
except for the kth element. If X 1. is continuous, the partial effect of Xy 1, on the conditional
expectation of Yy is

A(Yie, Xit, B, airve) = Brexp(X[, 8 + cie)- (2.7)

2.2.2 Fixed effects estimators

The sample analog of the program (2.1) is

max Lyr(B, dNT)- (2.8)

(B,pn)ERm AtdiménT

As in the population case, we shall impose conditions guaranteeing that the solutions to
the previous programs exist and are unique with probability approaching one as N and
T become large, including the scale normalization on ¢x7. The program (2.8) cannot be
solved using standard optimization algorithms because it is not concave in ¢ due to the
multiplicative structure. We propose an iterative two-step algorithm for the case where the
log-likelihood is concave in the index z;;, where each step solves a concave maximization
program. The algorithm is based on the observation that the log-likelihood program is
concave on the individual effects after fixing the time effects and vice versa. To describe the

algorithm it is convenient to separate ¢y = (o, ), so that L7 (8, ¢n1T) = LT (B, o, 7y).

Algorithm 2.2.1 (IFE-CMLE). 1. [lteration 0: find initial values (B(O),&(O)ﬁ(o)) solv-



45
mng

%(0)

gl € arg max ‘CNT(ﬁa ]-N7 ’7)7 (B\(O)’ a(O)) € arg max ACNT(Ba O‘7$(0))7

(8.7) R 3+ (8.0 Reim A+
where 1y 1s a N-vector of ones.
2. Iteration k: update (E(k_l),@(k_l),/v\(k_l)) in two steps solving

(a) Step 1: 7¥) € arg max., cgr ENT(B(k_l),a(k_l),’y),

(b) Step 2: (B®),a1) € arg max(g o)cpdim s+~ LNT (5, a, 7).

3. Repeat 2 until convergence 1n m iterations, e.g. when
Lyr(B™,a0,50M) = Lyp(BmY,a0m D 3 <y,

where €1 is a tolerance level (e.g., 107%).

4. Final iteration: define the IFE-CMLE as
Byt =B, oyt = (™, 7™ /c),

where ¢t = FM'FM) )G G0 The rescaling by ¢ imposes the scale normalization
207 = 3,3 in ONT.

Remark 2.2.1. [Convergence of IFE-MLE] If z; — log fy(Yit | zit) is concave, then the
objective functions in each step v — Lyr(5,a,v) and (8,«) — Ln7(B,a,7) are also

concave. Moreover, in view of the fact
Lyr(B*D,a%0 F3E) < Lyp(B*, 60D, 50) < Lyp(B®, a0 50,

the convergence of the algorithm to a local maximum of the program (2.8) is guaranteed.

We find that the speed of convergence is fast in simulations.
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To analyze the statistical properties of the estimator of g it is conceptually convenient
to solve the program (2.8) in two steps. First, we concentrate out the nuisance parameter

ont. For given 3, we define the optimal q?NT(ﬂ) as

onT(B) =arg  max LNT(B; ¢NT) - (2.9)

ONT ERdim ONT

The fixed effects estimators of 3° and ¢9\7T are then

~ -~

Byt = arg max  Ly7(8,onr(8)) ont = dnr(B). (2.10)
feRdim 3

Estimators of APEs can be formed by plugging-in the estimators of the model parameters

in the sample version of (2.2), i.e.
ont = Anr(B. dnr). (2.11)

2.3 Incidental parameter problem and bias corrections

In this section we give a heuristic discussion of the main results, leaving the technical details

to Section 2.4.

2.3.1 Incidental parameter problem

Fixed effects estimators in nonlinear or dynamic models suffer from the incidental parameter
problem ((Neyman and Scott, 1948)). The individual and time effects are incidental param-
eters that cause the estimators of the model parameters to be inconsistent under asymptotic

sequences where either N or T are fixed. To describe the problem let

O i=mg max By |Lyr (8 ovr(9))] (2.12)
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In general, plimy_, . Byr # B° and plimy_, . Byr # B° because of the estimation er-
ror in qAﬁNT(B) when one of the dimensions is fixed. If qAﬁNT(B) is replaced by on7(8) =
argmax, . cgdamonr Eo[CNT(B, ¢nT)], then the resulting Byt = B°. We consider analyti-

cal and jackknife corrections for the bias By, — 8°.

2.3.2 Bias Corrections

Some expansions can be used to explain our corrections. Under suitable sampling conditions,
the bias is small for large enough N and T, i.e., pth7T—>ooBNT = °. For smooth likelihoods

and under appropriate regularity conditions, as N, T — oo,
2 _ a0, BB -8 -1 1
Byr =B+ Boo/T + Do /N +op(T™" VN), (2.13)

for some E’fo and Efo that we characterize in Theorem 2.4.1, where a V b := max(a,b).
Unlike in nonlinear models without incidental parameters, the order of the bias is higher
than the inverse of the sample size (NT)~! due to the slow rate of convergence of (/jFNT.

Note also that by the properties of the maximum likelihood estimator
A% NT(BNT — BNT) —d N(O, Voo)

Under asymptotic sequences where N/T — k% as N, T — 0o, the fixed effects estimator

is asymptotically biased because

VNT (Byr — 8°) = VNT(Byr — Byr) + VNT(Bo, /T + Dag /N +op(T~ vV NY)

—a N8B + kD0 Vo). (2.14)

This is the large-N large-T" version of the incidental parameters problem that invalidates
any inference based on the asymptotic distribution. Relative to fixed effects estimators with

only individual effects, the presence of time effects introduces additional asymptotic bias
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through ﬁfo.
The analytical bias correction consists of removing estimates of the leading terms of the
bias from the fixed effect estimator of 8°. Let EgT and ﬁﬁ,T be estimators of E’fo and ﬁ’fo,

respectively. The bias corrected estimator can be formed as
g]éfT = ENT - E]%T/T - ﬁj/i,T/N.
If N/T — k2, §]€,T —p Efo, and EJB\,T —p ﬁfo, then
VNT By — %) =a N (0, Vo).

The analytical correction therefore centers the asymptotic distribution at the true value of
the parameter, without increasing asymptotic variance.

We consider a jackknife bias correction method that does not require explicit estima-
tion of the bias, but is computationally more intensive. This method is the double split
panel jackknife (SPJ) correction of (Fernandez-Val and Weidner, 2013), which extended the
jackknife correction of (Dhaene and Jochmans, 2010) to models with additive individual
and time effects. Alternative jackknife corrections based on the leave-one-observation-out
panel jackknife (PJ) of (Hahn and Newey, 2004) and combinations of PJ and SPJ are also
possible. We do not consider corrections based on PJ because they are theoretically justified
by second-order expansions of By that are beyond the scope of this paper.

To describe the double SPJ correction, let 5 ~N.1/2 be the average of the 2 split jackknife
estimators that leave out the first and second halves of the time periods, and let EN/Q’T
be the average of the 2 split jackknife estimators that leave out half of the individuals.?
In choosing the cross sectional division of the panel, one might want to take into account

individual clustering structures to preserve and account for cross sectional dependencies. If

2When T is odd we define EN,T/Q as the average of the 2 split jackknife estimators that use overlapping
subpanels with ¢ < (T'+1)/2 and t > (T'+ 1) /2. We define By/2,r similarly when N is odd.
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there are no cross sectional dependencies, EN/Z,T can be constructed as the average of the
estimators obtained from all possible partitions of N/2 individuals to avoid ambiguity and

arbitrariness in the choice of the division.> The bias corrected estimator is
B = 3BT — EN,T/Q - gN/Z,T— (2.15)
To give some intuition about how the corrections works, note that
Bier — Bo = (Bnt — Bo) — (Bnrja — Byt) — (Bnyjar — Byr),s

where EN,T/2_BNT = Efo/T—FOp(T_l\/N_l) and EN/Q,T_B\NT = Efo/N—i—OP(T_l\/N_l).
The time series split removes the bias term Efo and the cross sectional split removes the

bias term E’fo.

2.4 Asymptotic Theory for Bias Corrections

In nonlinear panel data models the population problem (2.12) generally does not have closed
form solution, so we need to rely on asymptotic arguments to characterize the terms in the

expansion of the bias (2.13) and to justify the validity of the corrections.

2.4.1 Asymptotic distribution of model parameters

We consider single index panel models with predetermined explanatory variables and scalar
interactive individual and time effects that enter the likelihood function through z; = X{tﬁ +
;Y. In these models the dimension of the incidental parameters is dim ¢y = N + T.

These models cover the linear, probit and Poisson specifications of Examples 2.2.1-2.2.3.

3There are P = (]; ) different cross sectional partitions with N/2 individuals. When N is large, we can
approximate the average over all possible partitions by the average over S <« P randomly chosen partitions
to speed up computation.
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The parametric part of our panel models takes the form

log fy (Yit | Xit, iy v, 8) = it (zit). (2.16)

We denote the derivatives of the log-likelihood function €;; by 0,40 (z) = 09 (2)/029,
qg=1,2,... We drop the argument z;; when the derivatives are evaluated at the true value
of the index 2}, := X/, 8% + aP4?, i.e., Oralit 1= D,alit(2%). We also drop the dependence on
NT from all the sequences of functions and parameters, e.g. we use £ for Ly and ¢ for

ONT-

We make the following assumptions:

Assumption 4. [Panel models] Let v > 0 and pn > 4(8 +v)/v. Let ¢ > 0 and let BY be a

bounded subset of R that contains an e-neighbourhood of 2% for all i,t,N,T.

e (i) Asymptotics: we consider limits of sequences where N/T — k?, 0 < k < 00, as

N, T — oo.

e (i) Sampling: conditional on ¢, {(Y;L,XF) : 1 < i < N} is independent across i
and, for each i, {(Yit, Xit) : 1 <t < T} is a-mizing with mizing coefficients satisfying

sup; a;(m) = O(m™") as m — oo, where

a;(m) := sup sup |P(ANB) — P(A)P(B)|,
t AcAi,BeBi,

and for Zy = (Y, Xut), Al is the sigma field generated by (Zy, Zit-1,...), and Bi is

the sigma field generated by (Zit, Zi 141, - . .).

e (iii) Model: for X! = {X;s:s=1,...,t}, we assume that for all i,t, N, T,

Yi \ Xf, ¢, ~ exp[git(thB + am)].

The realizations of the parameters and unobserved effects that generate the observed
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data are denoted by 8° and ¢°.

e (i) Smoothness and moments: We assume that z — €y (z) is four times continuously
differentiable over BY a.s. The partial derivatives of £i(z) with respect to z up to fourth
order are bounded in absolute value uniformly over z € BY by a function M(Zy) > 0
a.s., and max;; Ey[M(Zy)%™"] is a.s. uniformly bounded over N,T. In addition, we

assume that Xy is bounded uniformly over i,t, N, T.

e (v) Concavity: For all N,T, z — l;y(2) is strictly concave over z € R a.s. Further-
more, there exist positive constants buyin and byax such that for all z € Bg, bmin <

—0,20it(2) < bmax a.s. uniformly over i,t, N, T.
e (vi) Strong factors: %> ;(a)? —=p 02 >0 and 7> ,(¥0)* —p o2 > 0.

e (vii) Generalized noncolinearity: For any d,-vector v, define the coprojection matriz
as M, = I, — v(v'v)v', where 1;, denotes the identity matriz of order d,. The

dim 8 x dim 8 matriz with elements
Dk, (7) = (NT) ' Tr(M o X, My XG,), Ky ko € {1, ..., dim 8},

satisfies D(y) > ¢ > 0 for all v € RT, wpal.

We assume that the index z?t is bounded. This condition holds if X;;, a; and v, are
bounded. The relative rate of growth of N and T is chosen to produce a non-degenerate
asymptotic distribution. Assumption 4(i) — (v) are similar to (Fernandez-Val and Weidner,
2013), so we do not discuss them further here. The strong factor and generalized nonco-
linearity assumptions were previously imposed in (Bai, 2009b) and (Moon and Weidner,
2010a; Moon and Weidner, 2010b) for linear models with interactive effects. Generalized
noncolinearity rules out time and cross section invariant explanatory variables.

To describe the asymptotic distribution of the fixed effects estimator B , it is convenient

to introduce some additional notation. Let H be the (N + T) x (N + T expected Hessian
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matrix of the log-likelihood with respect to the nuisance parameters evaluated at the true

parameters, i.e.

a7 g aa
oy

X X

(a7) ) , (2.17)

()

where H(aq)y = diag(d", Eg[—0,20])/VNT, Hapyit = Epl—0,20i]/VNT, and Hyy =
diag(>", Eg[—0.20;])/VNT. Furthermore, let H(aa), ”H(_alv), ﬁ(;la), and ﬁ(_wlw) denote the
N XN, NxT,TxN and T x T blocks of the Moore-Penrose pseudoinverse H ' of H. Tt

is convenient to define the projection vector =; and the residual )N(Z-t by

1 L 1
ZZ 71‘,77 (aa)ij t o ’YTH( a)tj

]:1 T=1

m

'ﬂ

—1 —1
+ %05 Hayir + 0505 Hpyr) By (0:265-X7)

Xit = Xt — S (2.18)

The k-th component of =;; corresponds to the following population least squares projec-

tion

— % 0 0_ *
Sitk = QG Ve T G Ve ko

E it X
) (B0t

2
= Eqy( —af, A0 — aO~* .
(akz ’Yk) arg min Z d) E¢(6Z2 gzt) Q; BVt ; /yt,k>

Q4 kYt k

Let E := plim N.T—oo- The following theorem establishes the asymptotic distribution of

the fixed effects estimator f)’\

Theorem 2.4.1 (Asymptotic distribution of E) Suppose that Assumption 4 holds, that the
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following limits exist

Zt 1 E tvt ,YTE(ﬁ (8 Elta QEZTXTF) + 35 Zt 1(725) E¢(0Z3€it)~(it)

Bo = -F ,
N ; Zt:l(% )2Eg (0,24it)
D i [ 1 T Zi\il( )2]E<Z> (a Ezta ngtht + a 3£tizt>
T t=1 Zf\f 1( )2E¢ (a 2£zt) ’
- . N o
Woo=-E| =Y 3 B (azgfitxitxgt)] ,
i=1 t=1

and that W, > 0. Then,
VNT (B=8°) =4 Wl N (5B + 5 Do, Woo),
I =8  w=—1= . .
so that By, =W Boo and Do, =W Do in equation (2.13).

It is instructive to evaluate the expressions of the bias also in our running examples.
Example 2.2.1 (Linear model). In the linear model with strictly ezogenous explanatory
variables, Yi | XZ-T, a,y ~ N(XLB+ ap, 0 02) independently over i and t, the expressions of
the bias of Theorem 2.4.1 yield

Boo = Doo = 0,

which agree with the no asymptotic bias result in (Bai, 2009b) for homoskedastic linear
models with interactive effects.

Example 2.2.2 (Binary response model). In this case
lir(z) = Yielog F(2) + (1 — Vi) log[l — F(z)],

s0 that 0,0y = Hy(Yit — Fy), 0,28y = —HyOFy +0Hy (Y — Fyy), and 0,30y = —H;y0* Fyy —
26Hzt8th +82Hz‘t(Y;t zt) where Hzt = 8th/[ zt( it)]7 and 6jGit = 87G(Z)|Z:Z(_>t fO’F

any function G and j = 0,1,2. Substituting these values in the expressions of the bias of
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Theorem 2.4.1 for the probit model with all the components of Xy strictly exogenous yields

B. - E|-L = S (2 Eg[0.2 0 X X5] | o
S LNZ S (W0)2Eg (8,20:) b
Zz 1 o )2E¢[ Z2£lthtX ] 0
2T Z (Oé )2E¢ (6 Q&t) ] 5 ’

Dy = E

The asymptotic bias is therefore a positive definite matriz weighted average of the true pa-
rameter value as in the case of the probit model with additive individual and time effects

(Ferndndez-Val and Weidner, 2013).

Example 2.2.3 (Count response model). In this case
lir(z) = 2Yi — exp(z) — log Yi!,

so that 0.4y = Yt — wir and 0,20 = 0,30y = —wit, where wi = exp(z%). Substituting these

values in the expressions of the bias of Theorem 2.4.1 yields

T T S
N oY ZT:tJrl 7?79E¢ (Yit — wit)wir Xir

B, — -E|-
N ; S (W)2Eg (wie)

and Do = 0. If in addition all the components of Xy are strictly ezogenous, then we get

the no asymptotic bias result Boo = Do = 0.

2.4.2 Asymptotic distribution of APEs

In nonlinear models we are often interested in APEs, in addition to the model parame-
ters. These effects are averages of the data, parameters and unobserved effects; see ex-
pression (2.2). For the panel models of Assumption 4 we specify the partial effects as

A(Yi, Xit, B, iy ve) = Air(B, aiye). The restriction that the partial effects depend on «; and
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¢ through m;; = ;7 is natural in our panel models since
B[Yie | Xf1,9.8) = [ yexplti(Xi6 + )l

and the partial effects are usually defined as differences or derivatives of this conditional
expectation with respect to the components of X;;. For example, the partial effects for the
probit and Poisson models and the scale parameter in the linear model described in Section
2.2 satisfy this restriction.

The distribution of the unobserved individual and time effects in general is not ancillary
for the APEs, unlike for model parameters. We therefore need to make assumptions on this
distribution to define and interpret the APEs, and to derive the asymptotic distribution of
their estimators. Here, we control the heterogeneity of the partial effects assuming that the
individual effects and explanatory variables are identically distributed cross sectionally and
stationary over time so that the APE 6% does not change with N and T, i.e. 63, = ¢°. We
also impose smoothness and moment conditions on the function A that defines the partial
effects. We use these conditions to derive higher-order stochastic expansions for the fixed
effect estimator of the APEs and to bound the remainder terms in these expansions. Let
71'2% = a?y?, {ailn ={a; : 1 <t < N}, {w}r ={n:1<t<T} and { Xy, i, %}nT =

{(Xity i, 1) : 1 <1 <N, 1<t<T}.

Assumption 5. [Partial effects] Let v > 0, ¢ > 0, and let BY be a subset of RU™ A+ that

contains an e-neighbourhood of (8°,7%) for all i, t,N,T..

o (i) Sampling: for all N,T, {X,a;, v} N1 is identically distributed across i and/or

stationary across t.

e (i1) Model: for all i,t, N, T, the partial effects depend on «; and v through o;y;:

A(Eh X’ita B? g, ')’t) = Ait(ﬁa Oéz’Yt)
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The realizations of the partial effects are denoted by Ay = Ny (B°, a?’y?).

e (iii) Smoothness and moments: The function (5, m) — Ay (B, ) is four times contin-
wously differentiable over BY a.s. The partial derivatives of Ay (B, 7) with respect to
the elements of (B,m) up to fourth order are bounded in absolute value uniformly over
(B,7) € BY by a function M(Zit) > 0 a.s., and max; E4[M(Z;)®1"] is a.s. uniformly
bounded over N,T.

e (iv) Non-degeneracy and moments: 0 < min;[E(A%) — E(A;)?] < max;:[E(A%) —

E(A;)?] < oo, uniformly over N, T.

Analogous to Zj in equation (2.18) we define

N T
> <% Y H aayis + 0092 Hrayts + 1008 Hiamyir + 0l H(w)tf) OrAjry

1
v N j=171=1

N

(2.19)

which also corresponds to a weighted least squares population projection. We denote the
derivatives of the partial effects Ay (5, 7) by 080 (8, 7) := 00y (B, 7) /0B, Opp Ait(B, ) =
0?0t (B,m)/(0BOB), Oralit(B,7) := 01A4(B,m) /0, ¢ = 1,2,3, etc. We drop the argu-
ments 3 and 7 when the derivatives are evaluated at the true parameters 8% and 7%, := a{4?,
e.g. Onal\jt := Ora Ay ( ,th)

Let 6° and 0§ be the APE and its fixed effects estimator, defined as in equations (2.2)
and (2.11), where § is constructed from a bias corrected estimators of the parameter (3, i.e.
5= A(B, 5(5)), where 3 is such that VNT(3 — 8°) —4 N(O,W;l). The following theorem

establishes the asymptotic distribution of 5.

Theorem 2.4.2 (Asymptotic distribution of 5A) Suppose that the assumptions of Theo-

rem 2.4.1 and Assumption 5 hold, and that the following limits exist:

E Z Zt 1 Z tfyt WTE¢ (8 lit0, QEZT\I/ZT)
t= 1(’Yt )2E¢ (0x20it)




o7

i S ()2 [Eg (D2 Ait) — B (9,300 Eg (Vi)
Zt 1(’Yt )2E¢> (8 2£zt)

N (092K (8,640,201 )

]' ’L
Tt; SN (9B (D.20ir)

—|1 i SN (09)2 [Eg(0,2A4) — Eg(05lit B (Ws0)]
2T t=1 va 1( )2E¢ (8 2€zt)

BRI N T o\ N7
Vee =E{ 3o72E (ZZAﬁ) (ZZ%) +Y N rary | o

-E

9

i
2

D =E

i=1 t=1 i=1 t=1

L, -0
for some deterministic sequence N7 — 00 such that ryy = O(VNT) and V o > 0, where

~ — ,7_
Aip =Ny — 8 and Ty = E {(NT)*l DA i aﬁAit} W 0,05 X0 — Eg(Uit)d.lir. Then,

rnr(8 — 80 —T7'BY, — N7'Dy) —a N(0, Vo).
Remark 2.4.1. |Convergence rate, bias and variance| The rate of convergence rn7 is deter-

mined by the inverse of the first term of Vio, which corresponds to the asymptotic variance
1N T
Of 6 = (NT) 1 Zi:l thl Aita

-1

N T
1
2 _ /
rir =0 | gz D D ElduA
i,j=1t,s=1
Assumption 5(iv) and the condition ry7 — oo ensure that we can apply a central limit

theorem to §. The exact rate of convergence in general depends on the sampling properties

of the unobserved effects. For example, if {o;}n and {v;}r are independent sequences, and

a; and 7; are independent for all 4,¢, then in general ryp = \/NT/(N + T — 1),

N T

2
RETEE ™ 91 DL L AR 3 SECEARD SELTAI 1S

i=1 |t,7=1 j#i t=1 =1

and the asymptotic bias is of order T~%2 + N~1/2_ The bias and the last term of Vio are



58

asymptotically negligible in this case under the asymptotic sequences of Assumption 4(i).

Example 2.2.1 (Linear model). For § = o2, the convergence rate is rnt = vV NT regardless
of the sampling properties of the unobserved individual and time effects because Ny = (Vi —
X1,B0 — 79)?% is independent over i and a-mizing over t. The distribution of the unobserved
effects is ancillary for the APE because the information matriz of the log-likelihood £;; =
—.5log2m — 5logd — .5(Yyy — X[, 0 — 7it)2/8 is orthogonal in Ty and § at my = 7r?t and
§ = 0"

2.4.3 Bias corrected estimators

The results of the previous sections show that the asymptotic distributions of the fixed
effects estimators of the model parameters and APEs can have biases of the same order as
the variances under sequences where 7' grows at the same rate as N. This is the large-
T version of the incidental parameters problem that invalidates any inference based on
the asymptotic distribution. In this section we describe how to construct analytical bias
corrections for panel models and give conditions for the asymptotic validity of analytical
and jackknife bias corrections.

The jackknife correction for the model parameter S in equation (2.15) is generic and

applies to the panel model. For the APEs, the jackknife correction is formed similarly as
5% = 30NT — ON.T/2 — ON/2.Ts

where 5N7T/2 is the average of the 2 split jackknife estimators of the APE that leave out the
first and second halves of the time periods, and gN/Q,T is the average of the 2 split jackknife
estimators of the APE that leave out half of the individuals.

The analytical corrections are constructed using sample analogs of the expressions in
Theorems 2.4.1 and 2.4.2, replacing the true values of 8 and ¢ by the fixed effects estimators.

To describe these corrections, we introduce some additional notation. For any function
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of the data, unobserved effects and parameters g;;;(8, oy, aiyi—;) with 0 < 5 < t, let

Gitj = git(g, QiY, 0i7i—j) denote the fixed effects estimator, e.g., Eg[0,2¢;] denotes the fixed
: 51 4-1 g5-1 -1

effects estimator of Ey[0,20;]. Let ”H((m), H(aw), H(va)’ and H(w) denote the blocks of the

Moore-Penrose pseudo inverse matrix ﬁ_l, where
i ( Haa) - Hiay) )
P! Hem

Hnoy = diag(— X, Egl0.20u)) /VNT, Hna) = diag(— 32 Egl0.20u))/VNT, and Hgyyir =
—E@it]/v NT. Let

N T
Zini= == 2 D (0 By + 80 Hiay
j=171=1
+ %&j H(_al,y)” + azaj ,H(_'y{y)t‘r) Eqg (8z2€jTXjT)’

~

Xip = Xy — Eir.
The k-th component of éit corresponds to the following least squares projection

= ~ o~ ~ o~k
itk = O kYt 1 Qi ks

— 2
PR . — E (0,20 X; o~ o~ x

i kst k it EQS(azQEZt)

The analytical bias corrected estimator of 5 is
BA=B—-W'B/T—W~'D/N,

where

—
o —

1L ST/ T = S 3B (0:tis 02t ) + 3 X0y APE (00t Kit)
i1 S A7E (9.20)

)
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— —

SN & [E¢ (a zltazzenxn) +1E, (a Je,txn)}

R 1 &
D=-2>. — ,
T t=1 Zf\;l agEﬁ (azﬂit)
N T — .
)~ Z Z Eg (822£itXitX{t) ;
i=1 t=1

and L is a trimming parameter for estimation of spectral expectations such that L — oo
and L/T — 0 (Hahn and Kuersteiner, 2011). The factor T/(T — j) is a degrees of freedom
adjustment that rescales the time series averages 7! Z?: j+1 by the number of observations
instead of by 7. Unlike for variance estimation, we do not need to use a kernel function
because the bias estimator does not need to be positive. Asymptotic (1 — p)—confidence

intervals for the components of 5% can be formed as
B+ 21 p\/WSL/(NT), k= {1,...,dim 3},

where 21—, is the (1 — p)—quantile of the standard normal distribution, and ﬁ\/,ﬁ_kl is the
(k, k)-element of the matrix w-L

The analytical bias corrected estimator of 69 is
64 =56-B°/T — D°/N,

where ¢ is the APE constructed from a bias corrected estimator of B. Let

N T
~~ 45-1 ~ ~ 47-1 ~~ g5-1 ~ ~ 471 A
Z Z (FYtFYT H(aa)ij + QT H(’ya)tj + N H(a’y)iﬂ' + Qg H(’y'y)tr) 87TAJT'

j=17=1

W = —

3-
~

The fixed effects estimators of the components of the asymptotic bias are

1 iz;omw D1 3B (02Li 150,200 Vi)
i=1 Zt 172E¢( 0,20;t)
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N ZtT=1 3 [E mzt) - E(b@zt)Em)
2N = Zt V2B (0.20i0) 7
L IYN & [E¢ (0-L30,20iWiy) — SEg(D2D) + %IE(z,@it)Em)}
T ; Zi:l a?EQS(/az?Eit) '

The estimator of the asymptotic variance in general depends on the sampling properties of

the unobserved effects. Under the independence assumption of Remark 2.4.1,

‘76 = ](712\[17':2 Z A’LtAZT + Z Z AztA]t + Z]E¢ ”F , (220)

i=1 [t,7=1 t=1 j#i

~

where Ait = Ait — 3. Note that we do not need to specify the convergence rate to make
inference because the standard errors \/‘% /rnT do not depend on ryp. Bias corrected
estimators and confidence intervals can be constructed in the same fashion as for the model
parameter.

We use the following homogeneity assumption to show the validity of the jackknife cor-
rections for the model parameters and APEs. It ensures that the asymptotic bias is the same

in all the partitions of the panel. The analytical corrections do not require this assumption.

Assumption 6. [Unconditional homogeneity] The sequence {(Yie, Xit, iy ye) @ 1 < i <

N,1 <t < T} is identically distributed across i and strictly stationary across t, for each

N,T.

Remark 2.4.2. [Test of homogeneity] Assumption 6 is a sufficient condition for the validity
of the jackknife corrections. The weaker condition that the asymptotic biases are the same
in all the partitions of the panel can be tested using the Chow-type test recently proposed
n (Dhaene and Jochmans, 2014).

The following theorems are the main result of this section. They show that the analytical
and jackknife bias corrections eliminate the bias from the asymptotic distribution of the fixed

effects estimators of the model parameters and APEs without increasing variance, and that
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the estimators of the asymptotic variances are consistent.

~

Theorem 2.4.3 (Bias corrections for 3). Under the conditions of Theorems 2.4.1,
W —p W,
and, if L — oo and L/T — 0,
VNT (B4~ %) —a N (0, ).
Under the conditions of Theorems 2.4.1 and Assumption 6,
VNT(5 = ) 2 N(O,TW).
Theorem 2.4.4 (Bias corrections for A). Under the conditions of Theorems 2.4.1 and 2.4.2,
Vo p 70,
and, if L — oo and L/T — 0,
(84 = 6%7) —a N (0, V20).
Under the conditions of Theorems 2.4.1 and 2.4.2, and Assumption 6,

rar(37 — 6% —a N(0,V2).

Remark 2.4.3. |Rate of convergence| The rate of convergence 7y depends on the properties
of the sampling process for the explanatory variables and unobserved effects (see remark

24.1).
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2.5 Numerical Examples

To illustrate how the bias corrections work in finite samples, we consider the non-regression
version of Example 2.2.1, Yi; | a, v ~ N (v, 0?) independently over ¢ and ¢. In this linear
model the fixed effects estimator of ¢ y7 can be obtained by the principal component method
of (Bai, 2009b) or by Algorithm 2.2.1 with Ly7(d, dnT) = — Zi,t(Yit — a;7¢)%/2. Then, the

fixed effects estimator of the APE § = o2 is

o = (NT)™' Y (Y — @idn)*.

it

Applying the results of Theorem 2.4.2 to Ay = (Yiy — aiy;)?, the probability limit of

SNT admits the expansion

- 11 11
0
1—
onT 5( T N>+0P<TVN>’

as N, T — o0, so that Eio =69 and ﬁio — 50
To form the analytical bias correction we can set E?VT = —SNT and f)?VT - —SNT- This

yields 64, = on7(1 4 1/T 4+ 1/N) with
Sy =08 +op(T-' VN,

This correction reduces the order of the bias, but it increases finite-sample variance because
the factor (14 1/7 + 1/N) > 1. We compare the biases and standard deviations of the
fixed effects estimator and the corrected estimator in a numerical example below. For the

Jackknife correction, straightforward calculations give
g]{/T = 3ZS\NT - gN,T/z - ZS\]\7/277“ =40 + Op(T*1 V Nﬁl).

Table 2.1 presents numerical results for the bias and standard deviations of the fixed



64

effects and bias corrected estimators in finite samples obtained from 50,000 simulations. We
consider panels with N, T' € {10, 25,50}, and only report the results for 7' < N since all the
expressions are symmetric in N and 7T'. All the numbers in the table are in percentage of the
true parameter value, so we do not need to specify the value of §°. We only report results
based on the fixed effects estimator that uses Algorithm 2.2.1, because the results based on
the estimator that uses principal components are identical up to the tolerance level.* By
comparing the first two rows of the table, we find that the first order approximation captures
most of the bias of the fixed effects estimator. The analytical and jackknife corrections offer
substantial improvements in terms of bias reduction. The second and sixth row of the
table show that the bias of the fixed effects estimator is of the same order of magnitude
as the standard deviation, where V y7 = Var[gNT] = 2(N — 1)(T — 1)(6°)2/(NT)? under
independence of Y;; over ¢ and ¢ conditional on the unobserved effects. The seventh row
shows the increase in standard deviation due to analytical bias correction is small compared
to the bias reduction, where Vj\‘,T = Var[gjé,T] = (14+1/N+1/T)*V yr. The last row shows
that the jackknife yields less precise estimates than the analytical correction in small panels.
The asymptotic variance Vo, = 2(6°)2/(NT) in the fifth row provides a good approximation
to the finite sample variance of all the estimators.

Table 2.2 illustrates the effect of the bias on the inference based on the asymptotic
distribution. It shows the coverage probabilities of 95% asymptotic confidence intervals for

80 constructed in the usual way as

Clos(8) = 6 + 1.96V /7 = 5(1 + 1.961/2/(NT))

where § = {SNT, g]‘?,T, SJ{,T} and Vyp = 252 /(NT) is an estimator of the asymptotic variance
V. Here we find that the confidence intervals based on the fixed effect estimator display
severe undercoverage for all the sample sizes. The confidence intervals based on the corrected

estimators have high coverage probabilities, which approach the nominal level as the sample

4We set the tolerance criterium to \g(m) — S(m_1)| < €0 = 1074,
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size grows, as expected from the asymptotic results.
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Table 2.1: Biases and Standard Deviations for Yj; | o, v, ~ N (v, )

N =10 N=25 N=50
T=10 T=10 T=25 T=10 T=25 T=50
(Boo/T + Doo/N) /5% -20 -14  -08 -12 -06  -.04
(Ot — 69)/6° 20 -14  -08 12 -.06  -.04
(04, — 69)/6° 04 -02  -01 -01 .00 .00
(0%, — 69)/6° 01 00  -01 .00 .00 .00
V'V /80 14 .09 .06 .06 .04 .03
V'V /8 13 .08 .05 .06 .04 .03
/8 15 09 06 07 04 .03

\/VTNT/éO 18 10 06 .07 .04 .03

Notes: Results obtained by 50,000 simulations

Table 2.2: Coverage probabilities for Yi; | a, 7,0 ~ N (e, d)

N =10 N=25 N=50

T=10 T=10 T=25 T=10 T=25 T=50

Clos(Onr) .52 53 63 .43 .62 67
Clos(04,) .88 91 93 92 94 94
Clos(0%,) .89 90 92 .92 .93 94

Results obtained by 50,000 simulations. Nominal coverage probability is .95.



Chapter 3

Quantile Graphical Models: Prediction and
Conditional Independence with Applications to

Financial Risk Management!

3.1 Introduction

We propose Quantile Graphical Models (QGMs) to characterize and visualize the dependence
structure of a set of random variables. The proposed framework allows us to understand
prediction and conditional independence between these variables. Moreover, it also enable
us to focus on specific parts of the distributions of these variables such as tail events. Such
understanding plays an important role in applications like financial contagion and systemic
risk measuring where extreme events are the main interest for regulators. Our techniques
are intended to be applied in high-dimensional settings where the total number of variables
(or additional conditioning variables) is large — possibly larger than the sample size.

Our work is complementary to a large body of work that focused on the case of jointly
Gaussian random variables (Lauritzen, 1996). In such setting, it is well known that condi-
tional independence structure is completely characterized by the covariance matrix of the
random variables of interest. Indeed, a zero entry in the precision matrix (inverse of the
covariance matrix) identifies a pair of conditionally independent variables. Thus the preci-
sion matrix can be directly translated into a Gaussian graphical model (GGM) which can

be used to study the interdependence. Further this approach characterize the conditional

!This chapter is based on a joint work with Alexandre Belloni and Victor Chernozhukov
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mean predictability of one set of the variables by linear combinations of the other variables.

In this work we provide an alternative route to estimate conditional independence and
predictability under asymmetric loss functions that is appealing to Gaussian and non-
Gaussian settings. It hinges on the equivalence between conditional probabilities and con-
ditional quantiles to characterize a random variable. We build upon the quantile regression
literature (Koenker, 2005) to represent dependence. Furthermore, we exploit recent works
on penalized quantile regression methods that allow the estimation of the conditional quan-
tile function in high dimensional settings which enables us to handle many controls and
transformations of the original variables to achieve a flexible specification.

Our interest lies on understanding the dependence between the components of a d-
dimensional random vector Xy, where the set V contains the labels of the components.
Quantile graph models (QGMs) allow us to visualize dependence for each specific quantile
index 7 through a graph where the set of nodes V represents the components of Xy and
edges represent a relation between the corresponding components. Therefore we have a graph
process indexed by 7 € (0,1). The structure represented by the 7-quantile graph represents
a local relation and can be valuable in applications where the tail interdependence (high or
low quantile index) is the main interest.

The network produced by QGMs has several important features. First, it enables dif-
ferent strength of the links in different directions. This is important because for undirected
networks, the distinction between exposure and contribution is unclear. Second, compared
with Gaussian Graphical Models (which is characterized by the covariance matrix), QGMs
are able to capture the tail interdependence through estimating at up or low quantiles. Third,
QGMs can capture the asymmetric dependence structure at different quantiles, which can be
particularly useful in applications (e.g., stock market returns, exchange rate dependence). In
addition, by considering all the quantiles we can characterize the conditional independence
structure between the variables. This is useful specially when the variables are not jointly

Gaussian distributed, in which case the covariance matrix cannot completely characterize
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establish conditional independence.

We also provide estimation methods to learn QGMs from data. The estimators are
geared to cover high-dimensional settings where the size of the model is large relative to the
sample size. These estimators are based on ¢;-penalized quantile regression and low biased
equations. Under mild regularities conditions, we discuss rates of convergence and properties
of the selected graph structure that hold uniformly over a large class of data generating pro-
cess. Furthermore, based on proper thresholding, recovery of the QGMs pattern is possible
when coefficients are well separated from zero which parallel the results for graph recovery
in the Gaussian case based on the estimation of the precision matrix. (Similar to the graph
recovery in the Gaussian case the exact recover is subject to the lack of uniformity validity
critiques of Leeb and Pétscher (Leeb and Potscher, 2008).) Of independent interest, the
analysis of the ¢1-penalized quantile regression derived here considers a set of index T that
grows to (asymptotically) cover (0,1). Under additional weak conditions, the same rate of
convergence established in (Belloni et al., 2011) can be achieved when 7 grows (provided it
does not grow too fast relative to the sample size).

QGMs can play an important role in applications where tail events are relevant. With
certain rescaling of the edge weights, we are able to capture the importance of each node
or measuring its systemic risk contribution. In parallel with (Andersen et al., 2013), many
approaches to systemic risk measurement fit naturally into the QGMs. For example, one
can view the ACoVaRgla, a,b € V (suitably scaled), as a measure of the impact of firm a
on firm b, as the weight in the edge of a QGM at quantile 7. Then, the systemic risk of
firm a, ACoVaRf-ys‘a which measures contributions of individual firms to systemic network
event, equals to the sum of coefficients over b € V, >, i ACOVCLR?—'a. Similarly, the sum
over a € V measures exposures of individual firms to systemic shocks from the network.

QGMs can also be used to study contagion and network spillover effects since it is useful
for studying tail risk spillovers. We consider the study of international financial contagion

in volatilities, specializing in estimating the risk transmission channels, see (Claessens and
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Forbes, 2001) for an overview on international financial contagions. After estimating the
risk transmission channels, we can use our ACoVaR measure to calculate the contribution
and exposure of each country to the whole market. Our method applies to the case where
many countries involved, overcome the problem of curse of dimensionality that traditional
methods might have.

Understanding the dependence between stock returns plays a key role in hedging strate-
gies. However, these strategies are critical precisely during downside movement of the mar-
ket. The union of QGMs can be more informative in representing conditional independence
than Gaussian graphical models in this setting. Indeed, recent empirical evidence (Ang
et al., 2006; Ang and Chen, 2002; Patton, 2004) points to non-Gaussianity of the distribu-
tion of stock returns, especially during market downturns. Further, hedging decisions are
typically interested on extreme outcomes rather than average outcomes. Finally, it is also
instructive to understand how the dependence (and policies) would change as the downside
movement of the market becomes more extreme. This application motivated us to consider
conditional QGMs that extend the previous models to be conditional on additional events
(e.g. downside movement of the market).

Regarding the conditional independence structure for high dimensional models, this pa-
per relates to the large statistic literature on estimating high dimensional Gaussian Graphical
Models. It is well known that recovering the structure of an undirected Gaussian graph is
equivalent to recovering the support of the precision matrix, i.e. covariance matrix esti-
mation, (Dempster, 1972) and (Lauritzen, 1996; Cox and Wermuth, 1996; Edwards, 2000).
Several methods for covariance matrix estimation involves hypothesis testing, (Edwards,
2000; Drton and Perlman, 2004; Drton and Perlman, 2007; Drton and Perlman, 2008). In
the high-dimensional setting, (Meinshausen and Bithlmann, 2006) propose neighborhood se-
lection with the Lasso for each node in the graph and combine the results column-by-column
to get the final Gaussian graphs. (Yuan and Lin, 2007; Banerjee et al., 2008; Friedman et al.,

2008) directly estimate the precision matrix through penalizing the log-likelihood function
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directly. Other refinement estimators including (Yuan, 2010; Cai et al., 2011; Liu and Luo,
2012; Sun and Zhang, 2012; Liu and Wang, 2012). (Liu et al., 2009) extended the result
to a more general class of models called nonparanormal models or semiparametric Gaussian
copula models, i.e., the variables follow a joint normal distribution after a set of unknown
monotone transformations. See also (Liu et al., 2012; Xue and Zou, 2012; Xue et al., 2012).
However, all those methods assume the (transformed) random matrix follows a joint normal
distribution. The proposed work provides a complementary method for additional settings
by giving up efficiency in the Gaussian case.

The rest of the paper is organized as follows. Section 3.2 lays out the foundation of
QGMs. Section 3.3 contains estimators for QGMs. Section 3.4 contains some simulation
evidence. Section 3.5 provides empirical applications of QGMs to measure systemic risk
contribution and to hedging conditional on the downside movements of the US stock market.

Notation. For an integer k, we let [k] := {1,..., k} denote the set of integers from 1 to k.
For a random variable X we note by X’ its support. We use the notation aVb = max{a, b} and
aAb = min{a,b}. We use |||, to denote the p-norm of a vector as well as the induced p-norm
of a matrix. We denote the fyp-“norm” by ||-||o (i.e., the number of nonzero components), the
max norm by [|A|lmes = max{|A;;|}, the Frobenius norm by [|Allr = {3 ;e > ey A?j}l/Q.

We denote by ||l = 322, 615;] the £1-norm weighted by ;’s. Finally, given a vector

=1

d € RP, and a set of indices T C {1, ...,d}, we denote by o7 the vector in which dr; = d; if
jGT,&TjZOifj¢T.

3.2 Quantile Graph Models

In this section we describe quantile graph models associated with a d-dimensional random
vector X = Xy where the set V = [d] = {1,...,d} denotes the labels of the components.
These models aim to provide a description of the interdependence between the random
variables in Xy . In particular, they induce graphs that allow for visualization of dependence

structures. However, different models arise from different objectives as we discuss below.
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3.2.1 Conditional Independence Quantile Graphs

Conditional independence graphs have been used to provide a visualization and insight on
the dependence structure between random variables. Each node of the graph is associated
with a component of Xy,. We denote the conditional independence graph as G = (V, ET)
where G! is an undirected graph with vertex set V and edge set E which is represented by
an adjacency matrix (Eib = 1if the edge (a,b) € G, and Eib = 0 otherwise). An edge

(a,b) is not contained in the graph if and only if
Xo L Xp | Xvn\fap)s (3.1)

namely X; and X, are independent conditionally on all remaining variables Xy (45 =

{Xk; ke V\{a7 b}}

Remark 3.2.1 (Conditional Independence Under Gaussianity). In the case that X is jointly
normally distributed, Xy ~ Ng(0, %) with 3 as the covariance matrix of Xy, the conditional
independence structure between two components is determined by the inverse of covariance
matrix, i.e. the precision matrix © = X! It follows that the nonzero elements in the
precision matrix corresponds to the nonzero coefficients of the associated (high dimensional)
mean regression. The family of Gaussian distributions with this property is known as a
Gauss-Markov random field with respect to the graph G. This observation has motivated a
large literature (Lauritzen, 1996) and some extension that allow transformations of Gaussian

variables.

Our main interest is to allow for non-Gaussian distributions. In order to achieve a

tractable concept in such generality, we use that (3.1) occurs if and only if

FXE(‘ | XV\{a}) = FXa<' ‘ XV\{a,b}) for all XV\{a} S X\/\{a}. (3.2)

In turn, by the equivalence between conditional probabilities and conditional quantiles to
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characterize a random variable, we have that (3.1) occurs if and only if
Qx, (T|XV\{a}) =Qx, (T|XV\{a,b}) for all 7 € (0, 1), and XV\{a} S XV\{a}~ (33)

For a quantile index 7 € (0, 1), we define the 7-quantile conditional independence graph
as the directed graph G(7) = (V, E!(7)) with vertex set V and edge set E(7). An edge

(a,b) is not contained in the edge set E'(7) if and only if
Qx. (7| Xinfa)) = Qx, (7| Xy (apy) for all Xy () € X\ (a)- (3.4)

By the equivalence between (3.2) and (3.3), the union of T-quantile graphs over 7 € (0, 1)
represents the conditional independence structure of X, namely E! = UTE(OJ)EI (7). This
motivates us to consider a relaxation of (3.1). For a set of quantile indices 7 C (0,1), we
say that

Xo L7 Xp | Xv\(ap}s (3.5)

X, and X; are T-conditionally independent given Xy~ (44}, if (3.4) holds for all 7 € T.

Thus, we have that (3.1) implies (3.5).2 We define the quantile graph associated with T as
EN(T) = UreTE' (7).

Although the conditional independence concept relates to all quantile indices, the quantile
characterization described above also lends itself to quantile specific impacts which can be

of independent interest.?

2In our analysis we will allow 7 to change with n so that it approaches (0, 1) asymptotically.
3For example, we might be interested in some extreme events which typically correspond to crises in
financial systems.
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3.2.2 Prediction Quantile Graphs under Asymmetric Check Function Loss

Prediction Quantile Graph Models (PCGMs) are concerned with prediction accuracy (in-
stead of conditional independence as in Section 3.2.1). More precisely, for each a € V', we
are interested on the predicting X, based on linear combinations of the remaining variables,
Xv\{a}, Where accuracy is measured with respect to an asymmetric loss function. Formally,

PQGMs measure accuracy as
£0-(a | V\ {a}) = min Elpr(Xa = Xip, ) (3.6)

where the asymmetric loss function p,(t) = 7 — 1{t < 0}t is the check function used in
Koenker and Basset (1978).

Importantly, PQGMs are concerned with the best linear predictor under the asymmetric
loss function p,. This is a fundamental distinction with respect to CIQGMs discussed
in Section 3.2.1 where the specification of the conditional quantile was approximately a
linear function of transformations Z,. Indeed, we note that under suitable conditions the
linear predictor that solves the minimization problem in (3.6) approximates the conditional
quantile regression as shown in (Belloni et al., 2011). (In fact, the conditional quantile
function would be linear if the vector Xy was jointly Gaussian.) However, PQGMs do not
assume that the conditional quantile function of X, is well approximated by a linear function
and instead it focuses on the best linear predictor.

In principle each component of Xy can have predictive power for other components.

However, we say that Xj is predictively uninformative for X, given Xy (44 if
LOr(a|V\{a})=LO:(a|V\{a,b}) forall 7e€(0,1).

Therefore, considering a linear function of X} does not improve our performance of predicting
X, with respect to the asymmetric loss function p;.

Again we can visualize the prediction relations using a graph process indexed by 7 €
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(0,1). PQGMs allow us to visualize which variables are predictively informative to another
variable by using a directed graph G (1) = (V, EF (7)) where edge (a, b) is in the graph only
if Xy is predictively informative for X, given Xy~ (44} at the quantile 7. Finally we define

the PQGM associated with 7 C (0,1) as

EP(T) = Urer X (7).

3.2.3 Conditional Quantile Graphical Models

In this section we discuss an useful extension of the QGMs discussed in Sections 3.2.1 and
3.2.2. It allows for conditioning on additional events Z where the index set Z is possibly
infinite. This is motivated by several applications where the interdependence between the
random variables in Xy maybe substantially impacted by additional observable events.

This general framework allows to accommodate different forms of conditioning: (i) Z
might denote additional variables; or (ii) Z can be an event. The main implication of this
extension is that the QGMs are now graph processes indexed not only by 7 € (0, 1) but also
by Z € Z.

In order to generalize CIQGMSs, we say that (7, Z)-conditionally independent,

Xo L7 Xp | Xv\(ap), Z (3.7)

provided that for all 7 € T we have

Qx, (T1X\(a}, Z) = Qx, (T| X1\ (a0} £)- (3.8)

The conditional independence edge set associated with (7, Z) is defined analogously as
before. We denote them by E!(7,Z) and E!(T,Z) = U,e7EX (1, Z) for Z € Z.

The extension of PQGMs proceeds by defining the accuracy under the asymmetric loss
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function conditionally on Z. More precisely, we define
£0:(a |V \ {4} 2) = min Elpr(Xu = Xin ) | 2). (3.9)

The predictive edge set associated with (7,Z2) is also defined analogously as before. We

denote as E¥ (7, Z) and E¥(T,Z) = U;eTEF (1, 2).

Example 3.2.1 (Predictive QGMs of Stock Returns Under Downside Market Movement).
Hedging decisions rely on the dependence of the returns of various stocks. However, hedging’s
performance is more relevant during downside movements of the market. In such setting
it is of interest to understand interdependence conditionally on downside movements. We
can parameterize the downside movements by using a random variable M, which denotes

a market index, and condition the on the event Z = {M < m}. This allows us to define

conditional quantile graphical models G¥' (7, Z) = (V, E¥ (1, Z)), for Z € Z. O

3.3 Estimators for High-Dimensional Quantile Graphical Models

In this section we propose and discuss estimators for QGMs introduced in Section 3.2.
Throughout this section it is assumed that we observe i.i.d. observations of the d-dimensional
random vector Xy, namely {X;y : i = 1,...,n}. Given the finite data, unless additional
assumptions are imposed we cannot estimate the quantities of interest for all 7(0,1). We
will consider a (compact) set of quantile index 7 C (0,1). Nonetheless, the estimators are
intended to handle high dimensional models. In particular we consider a sequence of models

where d and T are indexed by the sample size n and allowed to grow as n grows.

3.3.1 Estimators for Conditional Independence Quantile Graphs

Next we discuss the specification and propose an estimator for CIQGMs. In general it is
potentially hard to correctly specify coherent models. The following examples provide us

with a starting point.
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Example 3.3.1 (Gaussian Case). Consider the Gaussian case, Xy ~ N(u,>) and V = [d].

It follows that for a € V', the conditional distribution X, | Xy\{a} satisfies

%) 1
S )

aa

Xo | X\(ay ~ N | pa— >
j€V\{a}

Therefore the conditional quantile function of X, is linear in Xy, (,} and is given by

(D_l 271 ai
Qx,(T|Xv\(a}) = 7_1(92 +pa— Y EE_ Joi (X5 — pj).
(57 aa jeV\{a)

Example 3.3.2 (Multiplicative Error Model). Consider d = 2 so that V' = {1,2}. Assume
that X5 and ¢ are independent positive random variables. Assume further that they relate
to X7 as

X1 =a+eXs.

In this case we have that the conditional quantile functions are linear and given by
Qx,(1]X2) =a+ F7H(m) X2 and  Qx,(7|X1) = (X1 — a)/F7H (1 - 7).

O

Example 3.3.3 (Additive Error Model). Consider d = 2 so that V' = {1,2}. Let Xs ~
U(0,1) and € ~ U(0, 1) be independent random variables. Also define the random variable
X7 is defined as

X1:O£+,8X2+6.

It follows that Qx, (7|X2) = o + X2 + 7. However, if 5 = 0, we have Qx,(7|X1) = 7, and

for g > 0, direct calculations yield that

[ Z(X1-a), if Xy<a+p
QXQ(Tle)—{T’B+(1_7)(X1_a_ﬁ), it Xi>a+p
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where we note that X; € [o,1 + o + S]. O

Although a linear specification is correct for Examples 3.3.1 and 3.3.2, Example 3.3.3
above illustrates that we need to consider more general transformation of the basic covariates
Xy in the specification for each conditional quantile function. Nonetheless, specifications
with additional non-linear terms can approximate non-drastic departures from normality.

We will consider a conditional quantile representation for each a € V. It is based

on transformations of the original covariates Xy (,) that creates a p-dimensional vector

= P(XV\{a}) € RP go that
Qx, (T]XV\{Q}) = Z!B%T) +ro(7), B7)ERP, forallTeT (3.10)

where 74(7) denotes a small approximation error. For b € V \ {a} we let I,(b) := {j :
Zq; depends on Xp}. That is I,(b) has the components of Z, that are functions of Xj.
Under correct specification, if X, and X} are conditionally independent, we have ﬁ?(T) =0
for all j € I,(b).

This allows us to connect the conditional independence quantile graph estimation prob-
lem with a model selection within quantile regression. Indeed, the representation (3.10) has
been used in several quantile regression models, see (Koenker, 2005). Under mild condi-
tions this model allows us to identify the process (8%(7))reT as the solution of the following
optimization problem

§(r) € argmin Elpr (X, - Z,5)] (3.11)

In order to allow a flexible specification, it is attractive to consider a high-dimensional vector
of Z, where its dimension p is possibly larger than the sample size. In turn, having a large
number of technical controls creates an estimation challenge if the number of coefficients p
is not negligible with respect to the sample size n. A useful condition that makes estimation

possible in such high dimensional setting that applies to several applications is approximate
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sparsity (Fan et al., 2011; Belloni et al., 2012; Belloni et al., 2014). Formally we require

maxsup [|5(7)]lo < s and rna‘}sup{E[Tfi(T)H*l/2 S Vs/n, (3.12)
ac

TeT acV rcT

where the sparsity parameter s of the model is allowed to grow (at a slower rate) as n grows.

Algorithm 1 below contains our proposal to estimate 8%(7),a € V,7 € T. It is based on
three procedures in order to overcome the high-dimensionality. In the first step we apply a
£1-penalized quantile regression. The second step applies Lasso where the data is weighted
by

Jar = Fxa)xo o) (@0 (T | X\ (ay) | Xvr\(ay),

the conditional density at the true quantile. (We note that an estimate for f,, is directly
available based on the estimator for ¢1-penalized quantile regression for 74 h and 7—h where
h is a bandwidth parameter, see (Koenker, 2005; Belloni et al., 2013b).) Finally the third
step aims to remove the bias from penalization and applies instrumental quantile regression.

There are several parameters that need to be specified for Algorithm 1. First, it assumes

that the columns have been normalized such that E,[Z2.] =1, a € V, j € [p]. The penalty

iaj
parameter A; is chosen as the (1 — &)-quantile of the /s-norm of the score at the true
quantile function where 1 — ¢ is the desired confidence level. It was shown in (Belloni and

Chernozhukov, 2011) that the score has a pivotal distribution

|En[(1{U; <7} — 7)Za]lloo

W = max sup (3.13)
a€V reT 7'(1 — 7')
where {U; : i =1,...,n} are i.i.d. uniform (0,1) random variables. Regarding the parame-

ters for the weighted Lasso in Step 2, the choice of penalty level A := 1.1n~1/228~1(1 — ¢)
and penalty loading T'; = diag[['7xx, k € [p] \ {j}] is a diagonal matrix defined by the the

following procedure: (1) Compute the Post Lasso estimator 59 based on A and initial values

ijj = m<axfiaT{IEn[Z2 72 ]}1/2. (2) Compute the residuals U; = figr(Ziaj — Z{a\{j}eo) and

iaj “iak



80

update

ka:k = En[figarzfakazg]a ke [p] \ {]} (3-14)

Finally, Step 3 uses A; = {a € R: |a —a,| < 10{En[Zi2aj]}_1/2/log n}.

Algorithm 1 (Conditional Independence Quantile Graphical Model)
For each a € V', and j € [p], and 7 € T, perform the following:
1. Run Post-f1-quantile regression of X, on Z,; and Z,\ (;;
keep fitted value Z(’l\{j}ﬂr,
(dT»B‘r) € argmin, g En[pr(Xia — Ziajo — Zl{a\{j}ﬁ)] + As V (1 =78l
(ar, Br) € argming g En[pr(Xia — Zigjor — Z;a\{j}ﬂ)] :
support(f) C support(ﬁgs)).

2. Run Post-Lasso of fiqrZiqj on fm.rZZ-a\{j};
keep the residual v; := figr(Ziqj — Z{a\{j}HT),

0, € argming By [f2 (Ziaj — Zéa\{j}9)2] + M|T,6]1
0, € argming E,[f2, (Ziaj — Z;a\{j}9)2] . support(0) C support(6y).

3. Run Instrumental Quantile Regression of X;, — ZZ{a\ U BT on Ziqj
using v; as the instrument for Z;,;,

: L
Bj(r) € axg min Lu()

o {]En[(1{Xia§ija+Zz(a\{j}§T}_T)gi}}z
where Ln(a) o ]En[(I{XiaSZiajoa-‘rZ;a\{j}BT}_T)Q?}?} .

Algorithm 1 above has been studied in (Belloni et al., 2013b) when it is applied to a
single triple (a,j,7). Under similar conditions, results that hold uniformly over (a,j,7) €
V x [p] x T are achieved based on the tools developed in (Belloni and Chernozhukov, 2011)
and (Chernozhukov et al., 2012). Algorithm 1 is tailored to achieve good rates of convergence

in the ¢so-norm. In particular, under regularity conditions with probability going to 1 we

sup [162(7) — B (7)o < 4/ 2BV ),
TET n

have
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In order to create an estimate of E/(7) = {(a,b) € V x V : max;er, ) |57 (T)| > 0}, we
define

1) — ) (a : maxm )
E' (1) = {( b)) eV XV j€1a(b) se(B?(T)) - )\}

where SQ(B;-L(T)) = {7(1 — 7)E,[2?]}'/? is an estimate of the standard deviation of the

estimator, and \ is set to be of the order of y/log(p V n)/n to account for the uniformity

overa €V, jep,and T €T.

Remark 3.3.1 (Stepdown procedure for ). Setting a critical value A that accounts for the
multiple hypothesis that are being tested plays an important role to select the graph E! (7).
Further improvements can be obtained by considering the stepdown procedure of (Romano
and Wolf, 2005) for multiple hypothesis testing that was studied for the high-dimensional
case in (Chernozhukov et al., 2013). The procedure iteratively creates a suitable sequence
of decreasing critical values. In each step only null hypotheses that were not rejected are
considered to determine the critical value. Thus, as long as any hypothesis is rejected at a
step, the critical value decreases and we continue to the next iteration. The procedure stops

when no hypothesis in the current active set is rejected.

3.3.2 Estimators for Prediction Quantile Graphs

Next we discuss the specification and propose an estimator for PQGMs. In this case we are
interested on studying prediction of X,, a € V, using a linear combination of Xy~ () under
the asymmetric loss discussed in (3.6). Given the loss function p,, the target d-dimensional
vector of parameters 8%(7) is defined as (part of) the solution of the following optimization
problem

(a(1),8% 7)) € argmin E[p;(Xq —a — X{,\{a}ﬁ)]. (3.15)

@,
By considering the case that d is large, the use of high-dimensional tools to achieve good

estimators is of interest. The estimation procedure we propose is based on ¢i-penalized

quantile regression. Again we consider models that satisfy an approximately sparse condi-



82

tion. Formally, we require the existence of sparse coefficients {3%(7) : @ € V,7 € T} such

that

max sup ||3%(7)||o < s and maxsup{E[{X{/\{a}(,Ba(T) — B2 < V/s/n, (3.16)
a€V reT a€V reT

where the sparsity parameter s of the model is allowed to grow as n grows. A key issue is

to set the penalty parameter properly so that it upper bounds

Eal(1{Xia < a%(7) + Xfpr 1 8(7)} — 7))
max sup max - (3.17)
a€V reT jeV\{a} Gij\/T(1—7)

where 6; = {En[ij]}lﬂ. However, it is important to note that we do not assume that the
conditional quantile of X, is a linear function of Xy (.. Thus the penalty parameter in
the penalized quantile regression needs to account for such misspecification and is no longer
pivotal as in (Belloni and Chernozhukov, 2011).

In order to handle this issue we make a two step estimation. In the first step the penalty
parameter \g is conservative and set via bounds constructed based on symmetrization argu-
ments, see (van de Geer, 2008; Belloni et al., 2013a). The second steps uses the preliminary
estimator to bootstrap (3.17) based on the tools in (Chernozhukov et al., 2013). The fol-
lowing algorithm states the procedure.

Under correct linear specification, £1-QR has been studied in (Belloni and Chernozhukov,
2011). The work (Belloni et al., 2013b) allows for a vanishing approximation error. It was
shown to achieve good rates of convergence in the fo-norm. In particular, under regularity

conditions with probability going to 1 we have

. slog(dV n
maxsup |8°() — ()| < 4/ 2108y
acV reT n
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Algorithm 2 (Predictive Quantile Graph Model)
For each a € V', and 7 € T, perform the following:

1. Run /;1-quantile regression of X, on Xy (43 with penalty Ao
(&27 Bﬁ) € arg minﬁ En[pT(Xia —a— X;V\{a}’B)] + Ao Zjev\{a} &j’ﬁj‘
where 6; = {En[ij]}l/Q.

2. Set jgr = H{Xjg < a2+ X;V\{a}/g’g} — 7 fori € [n],a € Vand 7 € T. Compute the
penalty level Ap = (1 — £)-quantile of W where

W := maxsup max |En[EiareiXij]|oo
a€V erjeViat 6iy/m(L - 7)

where {e; : i =1,...,n} is a sequence of i.i.d. standard Gaussian random variables.
For each a € V, and 7 € T, perform the following:

3. Run {;-quantile regression of X, on Xy~ (4} with penalty Ap

(a%(1), B%(7)) € argming By [pr(Xiq — o — X;v\{a}ﬁ)]

A/ T(1=7) 3 iev\ (a3 95155

The estimate of the prediction quantile graph is given by
EP (1) = {(a,b) e V x V : |B}(1)| > 0},
that is, it is induced by the covariates selected by the ¢1-penalized estimator.

3.3.3 Conditional Quantile Graph Models

In order to handle the additional conditional event Z € Z we propose to modify the Algo-
rithms 1 and 2 based on kernel smoothing. To that extent, we assume that the observed
data is of the form {(X;v,Z;):i=1,...,n}, where Z; might be defined through additional
variables. Furthermore, we assume that for each Z € Z we have access to a kernel function

Ky.

Example 3.3.4 (Predictive QGMs of Stock Returns Under Downside Market Movements,
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Algorithm 1’ (Z-Conditional Independence Quantile Graphical Model)
For each a € V,and j € [p], 7 € T, and Z € Z, perform the following:

1. Run (local) Post-/1-quantile regression of X, on Z,; and Z, ;; keep fitted value
Za(j}Br

(&r, Br) € argming 5 Bn[K7(Z:)pr(Xia — Ziajo = Zigy (38)] + Ary/T(L=7)[1B]1u

(ar, Br) € argming g B, [K7(Z;) pr (Xia — Ziajo — Zz{a\{j]ﬁ)]

with support(B) C support( 128)).

2. Run (local) Post-Lasso of fiur Ziaj on fiar Zia\(j}; keep the residual Ui = fiar(Ziaj —
) ~
Ziav(jy07):
b, € argming By [K7(Z) 2 (Ziaj — Zj (46)°] + AT
0, € argming E,, [f2, (Ziaj — Z;a\{j}0)2]

with support(0) C support(6;).

3. Run (local) Instrumental Quantile Regression of X, — Zéa\ {j]ﬁT on Zq; using v; as

the instrument for Z;q;,

a in L
Bi(r) € arg Jnin n(a),

 AEaKZ(Z)(UXia<Ziajat Z,,, (5, Bry—T)0i]}2
where Ly, (a) :== BnlK3(Z0) ({Xia <ot 2Ly B} —1)200]

continued). In Example 3.2.1, we have Z; = M, denote the market return and the condi-
tioning event to be Z = 1{M < m}. We might be interest on a fixed m or on a family
of values m € (—m,0]. The latter induces Z = { {M < m} : m € (—m,0]}. The kernel

function is simply Kz(t) = 1{t <m}/> 1", 1{Z; < m}.

3.4 Simulations of Predictive Quantile Graph Models

In this section we perform numerical simulations to illustrate the performance of the esti-
mators for PQGMs. We will consider several different designs. In order to compare with

other proposals we will consider Gaussian and non-Gaussian examples.
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Algorithm 2’ (Z-Conditional Predictive Quantile Graph Model)
For each a € V, 7 € T, and Z € Z perform the following:

1. Run (local) ¢;-quantile regression of X, on Xv\{a} With penalty Ao

(d?, Bg) € arg minﬂ En[KZ(Zi)pT(Xia —a— lev\{a}ﬁ)]
X0 2 jev\fa} 9515

where 6; = {En[KZ(Zz‘)Xin]}l/2-

2. Set €igr = H{Xip < &2+ ng\{a}ﬁﬂ} — 7 fori € [n],a € Vand 7 € T. Compute the
penalty level Ap = (1 — £)-quantile of W where

W := maxsup max [En[K7(Zi)€iareiXijlloo
a€V reT jeV\{a} Gj\/T(1 —1)

where {¢; : i =1,...,n} is a sequence of i.i.d. standard Gaussian random variables.
For each a € V, and 7 € T, perform the following:

3. Run (local) ¢1-quantile regression of X, on Xy~ (43 with penalty Ap

(a*(7), Ba(T)) € argming B, [Kz(Z;)pr(Xia — o — X'L{V\{a}/B)]
A V/T(1=7) 3 jen 1ay 94155

3.4.1 Isotropic Non-Gaussian Example

The equivalence between a zero in the inverse covariance matrix and a pair of conditional in-
dependent variables break down for non-gaussian distribution. The nonparanormal extends
Gaussian graphical models to semiparametric Gaussian copula models by transforming the
variables by smooth functions. We illustrate the applicability of QGM in representing the
independence structure of a set of variables when the random variables are not jointly (non-
para)normal.

Consider i.i.d. copies of an d-dimensional random vector W = (Wy,...,Wy) from the
following multivariate normal distribution, W ~ N(0, Ijxq), where Ijxq is the identity

matrix. Further, we generate

Y = —\/525 + /325 Wi Wal. (3.18)
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It follows that E[Y] = /75 (E[|[Wq4|] — \/2/7) =0 and Var(Y) = sZ5(E[W7 - Wi ] -
2) = 1. In addition, equation (3.18) is a location-scale-shift model in which the conditional
median of the response is zero while quantile functions other than the median are nonzero.

We define the vector Xy as

Xy = (Wi, .., Wa_1,Y).

In this new set of variables, only X;_; and Xy (i.e. Wy_; and Y) are not (conditionally)
independent. Nonetheless, the new covariance matrix of Xy, is still Iicgt

Next we consider an i.i.d. sample with a sample size of n = 300 and d = 15. We show
graphs of independence structure estimated by using both the GGM and QGM(s) in this
the non-Gaussian setting,

Gaussian is estimated by using graphical lasso without any transformation of Xy, and
the final graph is chosen by Extended Bayesian information criterion (ebic), see (Foygel and
Drton, 2010). Nonparanormal is estimated by using graphical lasso with nonparanormal
transformation of Xy, see (Liu et al., 2009), and the final graph is chosen by ebic. Both
graphs are estimated by using R-package huge.

We also compare our estimation results using QGM with neighborhood selection meth-

ods, e.g. TIGER of (Liu and Wang, 2012) in R-package flare, the left graph is when choosing

log d

the turning parameter to be while the right graph is when choosing the tuning pa-

rameter to be 2 M. Throughout, we use Tiger2 (or TIGER2) represent TIGER with
penalty level 2 1°g d

As expected, GGM cannot detect the correct dependence structure when the joint dis-

tribution is non-Gaussian while QGM can still represent the right independence structure.

Indeed, for any k < d — 1 we have

E[Xq-Xi] = E[Y -Wi]=E[W;-(—

3m— 2+ ﬁWk‘Wd‘)]

525 EIWal W] — /525 EWi] = 0.
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3.5 Empirical Applications of QGM

3.5.1 Financial Contagion

In this section we apply QGM for the study of international financial contagion. We focus
on examining financial contagion through the volatility spillover perspective. (Engle and
Susmel, 1993) reported that international stock markets are related through their volatilities
instead of returns. (Diebold and Yilmaz, 2009) studied the return and volatility spillovers
of 19 countries and found differences in return and volatility spillovers. For a survey of
financial contagion see (Claessens and Forbes, 2001). We also illustrate how QGM can
highlight asymmetric dependence between the random variables.

We use daily equity index returns, September 2009 to September 2013 (1044 observa-
tions), from Morgan Stanley Capital International (MSCI). The returns are all translated
into dollar-equivalents as of September 6th 2013. We use absolute returns as a proxy for
volatility. We have a total of 45 countries in our sample, there are 21 developed markets (Aus-
tralia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong, Ireland, Italy,
Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzer-
land, the United Kingdom, the United States), 21 emerging markets (Brazil, Chile, Mexico,
Greece, Israel, China, Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Ko-
rea, Malaysia, Peru, Philippines, Poland, Russia, Taiwan, Thailand, Turkey), and 3 frontier
markets (Argentina, Morocco, Jordan).

Below we provide a full-sample analysis of global volatility spillovers at different tails.
We denote 20% quantile as Low Tail, 50% quantile as Median, 80% quantile as Up Tail.
Both QGMs and GGM are estimated. Our purpose is to show the usefulness of QGM in
representing nonlinear tail interdependence allowing for heteroskedasticity and to show that
QGM measures correlation asymmetry by looking at behavior in the tails of the distribution
(not specific to any model).

There are significant differences in the network structure in terms of volatility spillovers
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Figure 3.3: International Financial Contagion
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when using QGM and Gaussian graph. QGM permits conditional asymmetries in correlation
dynamics, suited to investigate the presence of asymmetric responses. We find significant
increase at the up tail interdependence between the volatility series, i.e. we find downside
correlation (high volatility) are much larger than upside correlation (low volatility). This
confirms findings in finance literature that financial markets become more interdependent
during high volatility periods.

We also find if two countries are located in the same geographic region, with many sim-
ilarities in terms of market structure and history, they tend to be closely connected (the
homophily effect as in network terminology); while two economies located in separate geo-
graphic regions are less likely directly connected. We find among European Union member
countries, Germany appears to play a major role in the transmission of shocks to others.
While in Asia, Hong Kong, Thailand, and Singapore appears to play a major role. Among
all the north and south American countries, Canada and US play a major role in risk trans-
mission.

We also report net-ACoVaR to measure spillover accounting for the network (see Ap-
pendix C.1) for the volatility series through QGM at up tail in Figure 3.4.

Figure 3.4 shows that, globally, total volatility spillovers from Germany, France, US and
Hong Kong to the others are much larger than total volatility spillovers from the others
to them; while the opposite happens to Greece and Spain. Both Greece and Spain receive
larger volatility spillovers from others than contribute to the others. The estimated network
structure is important here as it demonstrates that shocks originating in some stock markets,
e.g. Germany and Hong Kong, may be amplified in their transmission throughout the

system, posing greater risks to the whole market than other shock’s origination.

3.5.2 Stock Returns Conditional on Market Downside Movement

Stock markets are in general non-Gaussian. (Ang and Chen, 2002) find correlation asym-

metries in the data and reject the null hypothesis of multivariate normal distributions at
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daily, weekly, and monthly frequencies, conditional on market “downside” movements. See
also (Longin and Solnik, 2001; Patton, 2006) among other studies in the empirical finance
literature for the non-Gaussian feature of financial markets. Hence, generally in the fi-
nancial market context, conditional correlation only conveys partial and often misleading
information on the actual underlying conditional dependencies.

We contribute to the literature by showing the union of a set of QGMs can be used
to obtain a conditional independence graph when the main interest lies in estimating the
conditional independence structure of stocks under a market downturn. While the joint
distribution of stocks considered is generally non-Gaussian, since QGM does not impose any
parametric assumption on the joint distribution of stocks, the union of QGMs allows for both
Gaussian and non-Gaussian joint distributions in estimating the conditional independence
structure.

This will be modelled with a conditional quantile graph models. We consider the condi-
tioning events to be Z = {Market return < m,,} for we set m,, = u-th quantile of the market
index return to capture downside movement of the market (note that u = 1 corresponds
to regular market). We obtain daily stock returns from CRSP. The full sample consists of
2769 observations of daily stock returns for 86 stocks in the S&P 500 from Jan 2, 2003 to
December 31, 2013. The total number of stocks is 86 due to data availability at CRSP. We
define market downside as when the market index returns are below a pre-specified level
and we use S&P 500 as market index. In this case, the conditioning on a particular Z
corresponds simply to consider the subsample based on whether the corresponding date’s
market return is less equal to the u-th quantile of the market index returns. We reported the
number of edges, there is no linkage between two stocks if there are conditional independent,
at different subsamples in Table 3.1 below.

For estimators based on QGM and GGM, the number of edges increases with the quantile
index. However, potentially due to asymmetry in relations, there are significant differences

between the results of QGMs and GGM. There are significantly higher interdependence
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in GGM. Nonetheless, increase in conditional correlation could be a result of assuming
conditional normality for the return distribution — estimation bias in correlation conditional
on market upside or downside moves will cause false correlation. These empirical findings

support evidence from the empirical finance literature.



Table 3.1: Edges Produced by Different Graph Estimators
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Quantile of market index (u) PQGM Glasso(eBIC) TGalasso TIGER
0.15 406 1752 1804 3372
0.5 744 2152 2278 0734
0.75 842 2380 2478 6180
0.9 978 2461 2564 6344
1 1062 2518 2660 6290




Appendix A

Proofs for Chapter 1

A.1 Results of Section 1.2

A.1.1 Panel probit with additive individual and time effects

In this setting, I consider the following model

o= XiB 4 i+t e,
Yo = 1{¥i =0}, (A1)
fort =1,...,N and ¢t = 1,....,T. Here, Y;; is a scalar outcome variable of interest, X is

a vector of explanatory variables, [ is a finite-dimensional parameter vector, the variables
a; and 4 are unobserved individual and time effects that in economic applications capture
individual heterogeneity and aggregate shocks respectively.

Similarly to Section (1.2.1), I model the conditional distribution of Yj; using the single-
index specification

P(}/;t = I‘Xit7/8705i7,7t) = @(thﬁ + a; + "Yt),

and for estimation I adopt a fixed effects approach treating the unobserved individual
and time effects as parameters to be estimated. I collect all these effects in the vector
édnT = (a1, ...y N, Y1, -, YN)". The true values of the parameters are denoted by A° and

(])VT = (af, ...,oz?v,'y(f, ...,fy:(})’. Other quantities of interest involve averages over the data



96

and unobserved effects

Sr = Bs[Anr(8% ¢%r)l,  Anr(B,n1) = (NT) ™D A(Xit, B, i, 1), (A.2)

it
and examples of partial effects (A) are the following:

Example A.1.1. (Average partial effects) If X, the k-th element of X, is binary, its

partial effect for model (A.1) on the conditional probability of Y is
A(Xit, By + 1) = ®(By + Xiy B + i +7) — ®( Xy Bk + i + ), (A.3)

where (3, is the k-th element of 3, and X;; _; and B_j include all elements of X;; and 3
except for the k-th element. If X, ;, is continuous, for model (A.1) the partial effects of Xj; j,

on the conditional probability of Yj; is
A(Xit, iy ) = Brdy (XioB + i +7), (A4)

where ¢¢(-) is the derivative of ®.

Definition A.1.1. The fixed effect EM estimator for panel probit with additive fixed effects
is defined by
(1) Given initial (8%, a!® /¥, denote 1Sy = X!,8%) + ¥ 44

%

(2) E-step: Calculate

Yiz(‘,k): = E[K?IEt,Xﬁ,B(’”,aEk), )]

= uy) + (Vi — (i) - o () HR () (1 — (i),

(3) M-step: This contains three conditional maximization steps
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CM-step 1: Given «; and 7, the parameter 5 can be updated by
N T N T
. o (k k k
IR = (30 XaXi) YD XV — ol =)}
i=1t=1 i=1t=1
CM-step 2: Given § and 7y, the parameter a; can be updated by

T

k 1 o (K ' 2
o = 23— X ),
t—1

CM-step 3: Given § and «, the parameter v, can be updated by

N

k41 1 (K ' k+1
Y = G - X o)

(4) Iterate until convergence.

Note that the CM-step 2 and CM-step 3 here are just the average over time and individual

ok
using Zg ) as surrogate for Y.

A.1.2 Proof of Proposition 1.2.1

By second-order Taylor expansion, for any two arguments 61 and 6a,

OlogF'(62)
00

}32logF(9)

—logF (61) = —logF(62) — 5 %9

(61 — 67) — o+ (01 — 62)2.

Denote h(f) = —810%5(0). Using the fact that —logF'(gizi) is strictly convex on (0, 1)

for logi . . . 8%logF ()
or logit and probit, and simple calculation shows 0 < —Tb* < 1, one has

1
—logF'(61) < —logF(02) + h(02)(6h — 02) + 5(91 — 03)?,

by completing the square, this can be written as

1 1
—logF (0h) < ~logF(0) + 5 (61 — 02+ h(62))? — 5112((92).
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Now substitute g;:(X/,8 + a;y) for 6; and qit(XZ{t,B + &/4;) for 62, one has

. -
—logF(qit( X8+ aiyr)) < —logF (qi(XiyB + &) — ihQ(Qit<Xz(tﬁ + &%)

1 ~ . ~ .
+§((X7,{t5 + 0‘;%) - (Xz(tﬁ + 0‘;‘%) + qith(qit(Xz{t/B + 0‘2%)))2

sum over ¢ and ¢ to obtain the required results.

A.2 Proofs of Section 1.3

A.2.1 Proof of Consistency for Bppir

The proof contains two steps. In Step 1, I show the estimated index Z;; is a good approxi-
mation to z;; with some structural error (the generalized residuals). In Step 2, I show the
structural error satisfies the assumption in (Bai, 2009b) for linear panel data models with
interactive fixed effects. With a little abuse of notation, in this section I use B to denote
3 pprr which is the estimate of the EM procedure for panel probit models.

Step 1. Denote g; = 2Y; — 1. 1 prove the consistence directly from the likelihood

function

/ 1
Cit(By i, ve) = 1og®(qie(XyB + i), LT = ﬁz&t = log®(qitzut),

it it
for any 6, and 6, the following is an upper bound for the negative log-likelihood:

P7(02)
®(62)

1
= —lOg(I)(HQ) + 5(01 — Oy —

~log®(01) < —log®(02) —

1
(61— 02) + 5 (61 — 62)”

¢f(92))2 B 1(¢f(92))2
®(6-) 2" ®(0s) "
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where ¢¢(-) is the Gaussian density. Substitute g1z for 61 and ¢;Z; for 0, then

<Z5f(q@‘t5it) 2 (Qbf(Qitzit))Q. (A.5)

1 1
Cloa®(aiz:) < —loa®(qiF) L = (2 — 3 , _ -
og (tazzt) = og (qltzzt) + B (Z’Lt Zit + Qi ‘I)(qy;tgit) 5 q)(qitgit)

br(qiZit) _ 2 +

@(qitZit)
%gfy (gitzit) is a good next step approximation, as the quadratic loss is a surrogate

Note, from the proof here, one can also infer using Zi; = 2z + g

for the Bernoulli log-likelihood function.

Yit ¢f Zzt

Step 2. Denote the structural error (generalized residual) as e;; = mqﬁ #(Qirzit)-

One has Ey[e;]) = 0. Since the estimated parameters minimize the objective function, with

equation (A.5) one has

1

> 2NT (25 — Zit + i) — €3]

0 > Lnr(8°,¢°) — Lnr(B,0) >
The consistency proof for B is equivalent to that for the linear regression model with in-
teractive fixed effects. In matrix notation, as in Section 1.4, the above inequality would
be

S Tr(de) > ﬁwx'(ﬂ B°) + & — a4 — )/ (X'(B — B%) + 64/ — a0 — ¢)]

> WTT[(X/(B ﬁo) )/Mozao ( (/8 BO) - 6)]

where M4 40y = 17 — (&, a°)[(&, a") (&, )] 7! (&, a°)’ is the projector that projects orthog-
onal to (&, ).

With Assumption 1 (iv), which says that no linear combination of the regressors con-
verges to zero, even after projecting any factor loading «, one has ﬁTT(Xe') = 0p(1), and
Ele;t] = 0. One can also check that ||| = 0,(v/NT). The assumption 3577m(XX') = Op(1)

is satisfied from the distributional assumption on the regressors above. One then has

liTT( e M0 Xp)| < 7!T7“( /Xk)‘—i_i’TT(ePaao)Xk)‘
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< op(1) + el | Xl = 0p(1)
< op NT e k|l = op(1).

Under these, one has

0> cl|B = Bll + opll3 = Bl + 0p(1),
from which it is concluded that 5 = 8% + o,(1).

A.2.2 Proofs of Theorems 1.3.1 and 1.3.2

In the section, I suppress the dependence on NT of all the sequences of functions and
parameters to lighten the notation, e.g. I write £ for Ly and ¢ for ¢n7. It is also

convenient to introduce some notation that will be extensively used in the analysis. Let

8(67¢) = 8¢£(57¢) H(ﬁv¢) - _8¢¢/£(67¢)7

where 0, f denotes the partial derivative of f with respect to z, and additional subscripts
denote higher-order partial derivatives. I refer to the dim ¢ -vector S(3, ¢) as the incidental
parameter score, and to the dim ¢x dim ¢ matrix H(53,¢) as the incidental parameter
Hessian. I omit the argument of the functions when they are evaluated at the true parameter
values (8%, ¢Y), e.g. H = H(B°,¢"). I use a bar to indicate expectations, e.g. 9gL = E[95L],
and a tilde to denote that the variables are in deviation with respect to their expectations,
e.g. 0L = 0gL — OgL. For ¢ > 0, I define the sets B(c, 8%) = {8 : |8 — Bl < ¢}, and
B,(c, 8°,¢%) = {(B,9) : |1B— B8l < cll¢—¢°ly < c}, which are closed balls of radius ¢
around the true parameters 3° and (8°, ¢"), respectively, under the Ly norm and Lg-norm.

Analogous to Zj defined in Eq (1.13), I define

N T
1 —1 ——1 ——1 =1
Ay = _WZZ(H(aa)ij727? + H(a'y)i‘f'a?%? + ,H('ya)tj’yga? + H('y'y)t‘ra?a?)aﬂ'ng
j=17=1



101

and analogous to Dgl;; defined in the main text I also define DgA;; = 03 — 0x AjtZis.
With a little abuse of notation, in this section I use B to denote Bpp]F which is the
estimate of the EM procedure for panel probit models.

A close look at the iterative EM procedure yields

B(k+1) _ (ZXitXth)—lint(ffigk) _ dl('k)'ygk))
it 2.t

= W+ (X'X) 98, 6(8M)), (A.6)

which depends on the score of the profile likelihood function.
For 7 > 0, define the sets B(r,8°) = {8 : || — B°|| < r}, and B,(r,¢°) = {¢ : ||¢ —
#°|lg < r}, which are closed balls of radius 7 around the true parameter values 5% and ¢°,

respectively.

Before going to the proof of Theorems 1.3.1 and 1.3.2, I first introduce two lemmas that

will be used.

Lemma A.2.1. (Asymptotic expansions of B} Let Assumption 1 hold. Then
VNT(B— 8% = WU +0,(1),

where U = U + U(l), Weo i= limN,T_mOW exists with W > 0, and

N T

— 1 o

W= —WZZ[EM@J’B/&J+E¢(—37r2€it):z‘t:it],
i=1t=1

U — 1%%1) 0
\/ﬁ, BLity

i=1t=1
1 N T 1
o - 1 .y o 1 |
v = m;;{ AitlDgnlin = E(Dgnli)] + SAYE(Dgratic)}.

Proof. The proof follows from using Theorem B.1 of (Fernadndez-Val and Weidner, 2013)
and applying Lemma A.4.1. From Theorem B.1 of (Ferndndez-Val and Weidner, 2013),
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VNTOL(B,9(8)) = U = WVNT(B — %) + R(B),

with

—_ — — 1 p—
W = —(0ps L + [0pp LIH [0p5 L]),
hence applying Lemma A.4.1 (ii) yields

N T

_ 1 —

W o= —WZZ[E(b(aﬂﬁ,eit)+E¢(—aﬂ2@t):it:it]. (A7)
i=1t=1

Similarly, applying Theorem B.1 of (Ferndndez-Val and Weidner, 2013) yields

U = VNT(9sL + [0 LIH'S),

UV = VNT([0p LIH 'S — [0s0 LIH HH 'S)
dim ¢
— —1a5—1 e P, [, |
+VNT Y (9s06,L + 050 LIH [Dp00, L)) [HSI[HSly/2.
g=1

By using Lemma A.4.1 (i),

vo — 1 ii(a lit — 2440 50)271 iip l; (A.8)
\/W. BLit —tUntat \/W Brit- .

i=1t=1 i=1t=1

Decompose UM = (1) 4 (10 with
U1 = VNT ([0 LIH 'S — [0p0 LIH HH'S),

and
dim ¢

U = VNT " (006, L + 030 LI [Oprs, L) SIH Sl /2.
g=1
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By using Lemma A.4.1 (i) and (iii),

U(la) = —7221\115 8,87r it +'—*Zta7r2€7,t ZZAlt Dﬂﬂ' it E¢(Df3ﬂ'€“>]
Z 1t=1 z 1t=1
and
v _ 2Eg(Opralit) + [65¢,Z]Q_IE¢,(8¢6W2£”)],

zltl

where for each 4, t it is the case that 040,20; is a dim ¢-vector, which can be written as

O0pOr2liy = < xf&]Tv > for an NV x T' matrix A with elements A;; = 0,3/, if j =i and 7 = ¢,

and Aj; = 0 otherwise. Thus, again applying Lemma A.4.1(i) yields [8g¢/2]ﬁ_18¢8ﬁzﬁit =
— Zj’T Ejr0(i=j)0(1=r)Or3lit = —ZitOr3lir. Therefore

FZZA (Opn2lit — BinOpsliy) = FZZA%I&# Dggaliy),

i=1t=1 i=11t=1

hence

g — FZZ{ Nit[Dpnlis — E(Dgnlin)] + AnE(Dﬁﬂzzn)} (A.9)

i=1t=1

O

Lemma A.2.2. (Asymptotic ezpansion of 8). Let Assumptions 1 and 2 hold and let |3 —
Bl = Op((NT)12) = 0p(rg). Then

VNT (6 —6) =V + v +0,(1),
where

v = NTZ]E¢ D)W U ZE¢ Ui) 0l

7
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1
VA( ) = NTZqu DaAy)'W g \/—ZtAit[‘Pitaﬂgit — Eg(Wit)Eg(Or2lit)]

7

+ A2 [Eg(Dr2lit) — By (Drslit) B (V)]
Qm; t[ 47( 2 t) 47( 3 t) ¢( t)]

Proof. The proof follows from using Theorem B.4 of (Ferndndez-Val and Weidner, 2013)

and applying Lemma A.4.1. Theorem B.4 of (Ferndndez-Val and Weidner, 2013) implies

A J— J— 771 — ~

§—0=[0yA+ (0yDVH (O L)(B— %) + UL + UL +0,(1/VNT),  (A.10)
with

v = (0, 'S,

v = (0,AH 'S — (0,M)H HH 'S

dim ¢
——v1 11
+5 LS 0,05 + > [Op0ro, LIH (0D)],JH'S.
g=1
By using Lemma A.4.1,
1
VNTUL = = NTE, ()0, 4, All
A \/W; ¢< t) t ( )

1 1
VNTUY = WZAit[\Pitaﬂzfit—E¢(\Ifit)E¢(aw2£it)]

5 FZA (B (052 Ait) — B (0r3lit) By (Wir)]. (A.12)

From the proof of Lemma A.2.1 and the following proof of Theorem 1.3.1, it follows that
VNT(3 — %) = WU + 0,(1) = O,(1), by Lemma A.4.1,

VNT [0y B+ (0 AV Oop D)5~ %) = [ > Bl D) W

it

WO UMY 40,(1).

(A.13)
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Combining equations A.10, A.11, A.12 and A.13 gives the result. O

A.2.2.1 Proof of Asymptotics for Bpprr

I characterize the asymptotic distribution of B from the limit average Hessian W, and the
limiting distribution of the approximated score U. Next two steps are to get the eventual

result.

Step 1 shows U© —% N(0,W). In the likelihood setting EdzL = 0, ES = 0, and, by
the Bartlett identities E(agﬁaglﬁ) = —ﬁagglz, E(agﬁsl) = —ﬁ@fwﬁ , and E(SS’) =
7 H. Denote v = ((a®),—(7°)"), 8'v = 0 and dgx Lv = 0.

From the definitions W = —(93'L + [0y L]H 1[3¢5/Z]) and U®) = V/NT(95L +

056 LIHS),

which implies limy 700 Var(U®) = W

According to Lemma, A.2.1

N T
1
0) _ .
U<>_7\/ﬁ§ > Dgly, (A.15)

i=1t=1
where Dgly; := 0gliyy — O-€tZ; is a martingale difference sequence for each ¢ and independent

across i, conditional on ¢. Applying Theorem 2.3 in (McLeish, 1974) yields

U© L N0, lim Var(U®)] ~ N0, Wa) (A.16)
N, T—oc0

Step 2 shows that U —p kBoo + £ 1Ds.  Since v =pyQa) 4 U(lb), with

1
yle) — —WZA“ [Dgrlit — Eg(Dpnlit)]
1,t
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and

o) — FZZANﬁEQb D5ﬂ2£it)

i=11=1
Plugging-in the definition of A, I decompose U(1®) = yal) 4 y1ae2)  yaes) 4 yiad)

where

a 1 71
yltad) = (NT)2 > Hinayij O 0xti:72)D (Dprlis — By Drlin)yy,
i,] T t

la,2 0
U( ) (NT 3/2 ZH 7a t] Z@ EJT’YT Z Dﬁwgit — E¢Dﬂw€it)ai,
U(la,3) (NT 3/2 ZH a,y)“- Z&rﬁﬁag)Z(Dgﬂ&t — E¢D5W€it)'y?,

j t

la,4 _
gt = (NT /2 ZH ’Y’Y)tT Za 5]7—04 Z (Dprliv — E¢D3ﬂ-€lt)

By the Cauchy-Schwarz inequality applied to the sum over ¢ in U (1a,2),

IN

t 1

(Ute2))y2 (N;)s Do H 0l D (O (Dpmlie ~ EDgrlic)af)’
t 4,7

L(NT)) Zo O,(1/N) = 0,(1)

Using that both ﬁ(iyla)f)ﬂﬂjfy? and (Dgliy — EDlgﬂ&t)a? are mean zero, independent
across i.

Therefore, U(1%2) = 0,(1). Analogously U(1%3) = o,(1).

According to Lemma A.2.5, it is the case that ’H(aa) = diag[(ﬁ 23:1 Eg(0x2lit(79)%)) 71+

O,(1). Analogously to the proof of U(12) the O,(1) part of 7—[( «) has an asymptotically
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negligible contribution to U1%1 Thus,

1

a ——1
plad - T > Hiaaij(Q_07€ir12)D _(Dprlic — EsDrlic) vy
1, T t
X (30:4i-70) Y- (Datic - EyDgrlit)V)
_ T +0p(1)
(NT)'/2 ZZ: Y1 B (0r2tin(19)?) '

previous assumptions guarantee that E¢[(Ui(1a’1))2] = Op(1), uniformly over i. Note that

) are of order T'. For the denominator this

both the denominator and the numerator of Ui(la’1
is obvious because of the sum over T'. For the numerator there are two sums over T', but both
Orlizry2 and (Dgrliv—Ey(Dprlis) )7 are mean zero weakly correlated processes, the sum over

which is of order v/T each. By applying the WLLN over i, %ZU}IG’I) = %E¢Ui(1a) +op(1),

and therefore

T T
R > Y Eg(0nlit DprliziV?)
yal)  — _\/7275:17:;
TN& YL Eg(0rli())?)

;\éﬁ(”

Here, T use that Eg4(0xlit Dgrlir) = 0 for t > 7. Analogously,

+ 0p(1).

M=

T 1L, Eg(9xlit Dpxlir(af)?)
= +op(1).
=1 Eg(0x2lit(a?)?)

U(la,4) -

=
o

Il
<,..

(2

v

T
N

hence U0 = xBY 1 x1DW 4 op(1).

Next, I analyze U, T decompose Ay = Agtl) + Agtz) + AZ(»?) + AZ(;L), where
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Az(tl) = NTZH(aa ijyt Za 6]7-77—7 ’Lt = ZH(’Y@)UQZ Z@ KJT’YTa
T=1
it - ]\TTZ/H(Cw it Za EJTO[J’ Az(‘?) - ZH (ytr & zza f]‘ra .

This decomposition of A includes the following decomposition of U (1b)

(1) — E y(top, q {7 (1b.p,q)
p,q=1

FZAU it E¢ D/BWQ&t)

Due to symmetry U1bP0) = U(bap) this is a decomposition into 10 distinct terms.

Consider U(lb’l’z)

N

Ub,12) — 1b71,2 with

5l

(1512) _ 1 <~ 0 1 771 1 e 0
Uz ﬁz tIE (D,Bﬂ’Qelt)T Z 1H(aoz ij1H('ya)t]2 z( Za £]1T7'r)(7 ZaﬂngT’YT)‘
Ji1.J2=

Using Ey (> 0x lt'yt) =0, Eg(> 0, lu! Zajr%) for i # 7, and the propertles of the

7 7

inverse expected Hessian from Theorem A.2.5 one finds JE(b[Ui(lb’l’Q)] = Op(1/N), uni-
formly over 4, and E¢[(Ui(1b’1’2))2] = Op(1), uniformly over ¢, and E¢[Ui(1b’1’2)U;1b’1’2)] =
O,(1/N), uniformly over i # j. This implies that EgU %12 = 0,(1/N), and E,[(U1>12) —
EgU10L2)2) = 0,(1/V/N), and therefore U112 = o,(1). By similar arguments one ob-
tains U10r9) = op(1) for all combinations of p,q = 1,2,3,4, except for p = ¢ = 1 and
p=q=4.
(16,1,1) _ N (1b1,1)
Forp=¢=1, U"""Y = ﬁNTZU , and

T T
16,1,1
Uz( )= 2T Z (’yt )2E¢(Dﬁﬁ2£’lt) ; jZ: I,H(oza zng(aa)ijg(ﬁ Zlaﬂ'gjﬂ'/yg)(ﬁ Zlaﬂ'gjé‘l"yg)'
1,J2= T= T=
Analogous to the result for U1%1:2) one finds Ey[(ULD —E4U1LD)2] = 0,(1/V/N),

and therefore U611 = E,u(bL1) 4 o (1).
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Furthermore,
2Ey(Dgr2lit) Eg[(Orl;
E¢U(1b,1,1) _ 1 ZZt 1 ’Vt) o ﬁ;rz 1) Eg[( t’Yt) ] +o(1)
2VN [0 () 2B (D2 )2

T
N 1 N t;(%)QE¢(D,87r2€zt)
=13 (9)?Eg(Or2lir)

t=1

=/~B%Y
analogously,

/ V2Eg(Dgr2lit)
pvdd) — g ybdd) 4, 1) Zz 1 P\ Br T o,(1),
¢ (1) Z Z 2E¢(3ﬂ2€zt) p(1)

E\/%ﬁ@)

thus UM = kB + k1D + 0,(1).
Since Boo = limy 7500 [E(l) + E(Q)] and Do = limMT%oo[ﬁ(l) + E@)], then U =
kBoo + K Dog + 0p(1).

d

[ have shown U(® —% N(0,W), and UD 2y kBoo+ £ 1 Deo. Using this and Lemma

A.2.1 1 obtain

A.2.2.2 Proof of asymptotic distribution of APE

I consider the case of scalar A to simplify the notation. Decompose
VNT(§ - 6%y — B2 /T — D, /N) = VNT(6 — 6%7) + VNT(6 — 6 — B2, /T — Doy /N).

# Part (1): Limit of VNT(6 — 6 — EiO/T - Eio/N). An argument analogous to the
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proof of 1.3.1 using Lemma A.2.2 yields

VNT(6 —8) % N(xB’, + x 1D, 720,

where Vi()l) =E{(NT)™! >t Eo [T'2]}, for the expressions of Eio, ﬁio, and I';; given in the

statement of the theorem. Then, by Mann-Wald theorem

VNT(G -6 - B, )T - D’ /N) % N0, V).

# Part (2): Limit of vVNT(5 — 0%;). Here I show that VNT(8 — 6%7) < N (0, V2P
and characterize the asymptotic variance Viff). I characterize 7222) as Vif) =E{NTE[(6—

6%7)%]}, because E[§ — %] = 0. Note, the rate vV NT is determined through E[(§ — 6%.7)?],

where

B[(5 - 8%)%) = El( 7Y Au) = 5o O Bldudsi) (A17)

i7j7t7s
for Ajy = Ay — E(As). The order of E[(§ — §%,,)?] is equal to the number of terms of the
sums in equation (A.17) that are nonzero, which is determined by the sample properties of

{(Xit, iy 7) : 1 <i < N,1<t<T}. Under Assumption 2(i)

E[(6 ~ 80)%) = yazg D ElBudsn] = ON ),

i,t,5
because {Ait :1<i<N;1<t<T} is independent across ¢ and a-mixing across t.
#Part(3): Limit of VNT (5 — 8 — T_IE(;O — N_IE;).The conclusion of the Theorems
follows because (6 — 6%7) and (6—06— T_lﬁio - N _1ﬁio) are asymptotically independent

5(2) | 77601

and V2, =7 17
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A.2.3 Proofs of Theorems 1.3.3 and 1.3.4

I start by stating a lemma that is going to be used for this section. It corresponds to Lemma

C.2 of (Fernandez-Val and Weidner, 2013) and the proof is omitted for brevity.

Lemma A.2.3. Let G(8, ¢) := m Zi,tzjﬂ 9(Xit, Xit—j, By iy, aiye—j) for0 < j < T,
and BY be a subset of RU™P+2 that contains an e-neighborhood of (B,W%,Wgt_j) for all
i,t,7, N, T, and for some € > 0.

Assume that (8,71, m2) = gitj (B, m1,m2) = 9(Xit, Xit—j, 8,71, m2) is Lipschitz continuous
over BY a.s., i.e. |gitj(B1,T11,721) — Git; (Bo, T10, T20)| < Mits]|(B1, w11, m21) — (Bo, 10, T20) |
for all (B1,m11,7m21) € B2, (Bo,T10,720) € BY, and some M;j = Op(1) for all i,t,j,N,T.
Let (B,0) be an estimator of (8,¢) such that |3 — 8% 2 0 and ||¢ — ¢°||ec = 0. Then,

G(B,9) B E[G(8°,¢°)],

provided that the limit exists.

This lemma shows the consistency of the estimators of averages of the data and param-
eters. I will use this result to show the validity of the analytical bias corrections and the

consistency of the variance estimators.

A.2.3.1 Proof of Theorem 1.3.3

I separate the proof in two parts corresponding to the two statements of the theorem.

Part I: Proof of W 2 W The asymptotic variance and its estimators can be expressed
as Weo = E[W(8°, ¢°)] and W= W(B, é), where W (3, ¢) has a first order representation as
a continuously differentiable transformation of terms that have the form of G(, ¢) in Lemma
A.2.3.The result then follows by the continuous mapping theorem noting that ||3—8°|| = 0
and [|¢ — ¢°]|oc = 0.

Part II: Proof of W(BA ) A N(O,W;ol). I show that B & B and D 5 Do

These asymptotic biases and their fixed effects estimators are either time-series averages of
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fractions of cross-sectional averages, or vice versa. The nesting of the averages makes the
analysis a bit more cumbersome than the analysis of W, but the results follows by similar
standard arguments, also using that L — oo and L/T — 0 guarantee that the trimmed
estimator in B is also consistent for the spectral expectations; see Lemma 6 in (Hahn and

Kuersteiner, 2011).

A.2.3.2 Proof of Theorem 1.3.4

I separate the proof into two parts corresponding to the two statements of the theorem.
Part I: VO & V V and V9 have a similar structure to W and W in part I of the
proof of Theorem 1.3.3, so that the consistency follows by an analogous argument.

Part II: VNT(64 — 8%7) A N(O,Vio). As in the proof of Theorem 1.3.2, I decompose
VNT (64 = 6%7) = VNT(6 — 6%7) + VNT (5 - 9).

Then, by Mann-Wald theorem,

91

VNT(64 = §) = VNT(5 — B*)T — D° /N — 5) % N(0, Vo),

provided that B’ % Pio and D% & bio, and VNTS — 6%7) KN N(O,Vi(f)), where
Viél) and Vif) are defined as in the proof of Theorem 1.3.2. The statement thus follows by
using a similar argument to part II of the proof of Theorem 1.3.3 to show the consistency
of Band D, and because (6 — 8%) and (64 — §) are asymptotically independent, and

VPO 0

A.2.4 Properties of the Inversed Expected Incidental Parameter Hessian

The following two lemmas would be used in the proof of asymptotic distributions of 5 and

J.
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Lemma A.2.4. Let Assumption 1 hold, then Hﬂ(_ (ay)lloo <1 — Dwin

max

-1 75 .
and |H ) Hqayllos < 1— g2z,

max

Proof. Let hyy = E(—0;24;), Assumption 1 guarantees that byin < hiy < bpax, therefore

1 0 0 0 h
H%(ala)H(a'y)Hoo _ maXZt |O[ Vi lt| -1 _ math((%) |az’}/t D
Zt(%) it t Zt(%) it
170> - milnlaglllvolh b
<
N ||70H2 brmax
similar,
0 0\2 0,0
— 1 — ;v h ((a)* — | h;
HH('ylV)H(’ya)HOO _ maXE ’ t2 Zt| l—maXZZ(( z) O‘Qz’YtD it
t Zz( z) h’Lt t Zz(az) hit
[®] = min|y?|[|a]|1 ,,
<
B Haollz bmax
Since [|a®]|? > & [a’(|3, as long as +[|a®|y > min|7?|, ||ﬁ71 )ﬂ oo <1 — %; similarly
since[|7°[| > £[1°[13, as long as F[|7°]l1 > minag], |H w)ﬁ (rayllos < 1 — Pmin-, O

Lemma A.2.5. Under Assumption 1,

-1 . = _

7 — diag(Haa), Hiry)) ™ lmax = Op(1).
Proof. By the inversion formula for partitioned matrices

=1
_— ( A ~AHanHiny ) |

HimHowAd Hom + Him Hom AR ) Hiy)

with

o 7 a1 57 1 a1 -1 57 -1 a7 1
A = (Ha) = HanHenHew) = Hiaa) T = Hiaa) Hian M Hia)
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= aa)Z oy o Hipm Hira)"™

Define

B=>" (HiawyHiay Him Hira)"
n=1

then A = 7-[( )+H(aa)B By using the matrix norm property that||AB||max < [|A]|co||Bllmax

and Lemma A.2.4

> =1 = 1 57 nnar—1 v 1 1
HBHmax < Z(H(aa)H(ay)H(w)H(m)) HH(aa)HOOHH(M)HmaXHH(w)HOOHH(ya)Hmax
n=1
> lelIl —
< [Z(l - b ) ]THH(aa ||00||H 'y'y)HOOHH(a’y)Hmax = O(N 1)‘
n=1

max

From this I obtain

=1 ——1
[Alloo < H(aa)lloo + N[ H(aa) ool Bllmaz = O(N).

From the different blocks of

-1
T ( A—Haa) ~AH (0 )
A HomAd  Hin Hoa AHian

7Y)

it can be seen that

—1 —1 —1
HA - ,H(aa)HmaX - HH(aa)BHmaX < HH aa)HOOHBHmaX = OP(1)7

= -1
= AH () H () [ macx

IN

1Al oo [ ) lmas [ F i oo = Op(1)

||H(77 (’ya)AH(a’y)H(qﬂy Hmax < Hﬂ(_m/ ||go||ﬁ(wa)||00||A”00”ﬁ(a7)|‘max

IN

N 12l Aoy ax = Op(1)

Having the bound O,(1) for the max-norm of each block of the matrix yields also the same

bound for the max-norm of the matrix itself, as desired. O
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This result establishes that ﬂ_l can be uniformly approximated by a diagonal ma-
trix, which is given by the inverse of the diagonal terms of 7. The diagonal elements of
diag(ﬁ(w),ﬁ(w))_l are of order N and T respectively, hence the order of difference estab-
lished by the lemma is relatively small.

With this result, [H oo < [H =D oo+ D oo < (N+T)[H " =D lmax +
||5_1 lloo = Op(IN) which can be used to verify the assumption in the proof of Theorem B.1

of (Fernandez-Val and Weidner, 2013).

A.3 Proof of Section 1.4

A.3.1 Compare with existing methods
A.3.1.1 Proof of Proposition 1.4.1

The proof is mainly for the case without unobserved effects, but similarly argument can be
used to the proof of other cases.
The model looks Y;; = l{X;tB + eyt > 0}, and € is normally distributed with variance

1. When estimating the structural parameter of probit using MLE,

B € argmaxLyy = Zﬁzt = Zlﬁtlogq) X,,8) + (1 — Yi)log(1 — ®(X,;,5)),

peo 2.t 2t

and then the score of [ is

¢>f( 1t6) : ¢f(X;t6) _
2 Xty e

!71':(,5)

) Yit — (I)(X;tﬂ) / _
< ;XZt{CI’(X;tIB)(l — (I)(letﬁ))(bf(Xltﬁ)} =0
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which relates to the generalized residuals part of EM,

Yie = XuB+ Y- 0p(XuB)/P(Xit8) — (1 = Yi) - op(Xit8) /{1 — ®(Xi5)},
9:it(B)
= Xuf+ (Yie — ®(XitB)) - 0(XitB) /{2 (Xt B) (1 — &( X))},

and
N T N T
B= QD XuXi) DD Xu¥ul
i=1t=1 i=1t=1
Denote ,ul(-f) = X;tﬂ(k), the score function is of 3 is zero, i.e. the unique fixed-point

property, means that,

N T
SO X (Vi — ©(X8)) - 64(X3,8)/{®(X;,8)(1 — ®(X;,8)}) = 0= K = g°,

i=1t=1

this is due to the identification condition that
E°9i(8%)| Xit) = E°[Eleit|Yit, Xit, B%)| Xit) = E°[et| Xit) = 0.

By central limit theory for the score

2

VNTE[Vla) = VNTE[S Xugin(8)] % N(0, E—-2 X, X1,),
— D (1 — Pyyr)

with Var(¥Xigu(8)) = Var@;xn@(Xﬁg;ﬁiﬁfgi;m)¢f(X;t/a’>>.

Since Var (Y — ®(X/,6)|Xi) = ©(X[,8)(1 — ©(X},1)),

2

A d i ) 1=
VNT(B - B) — N(0, [Esztht] Y

for both EM and MLE.
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A.3.1.2 Proof of Proposition 1.4.2

This is to show the difference between the proposed fixed effects EM-type estimator and the

Newton’s method as described in (Greene, 2003).

(k)
Yiie — O(u;
From the E-step, one has th = X;,3%) ) + O (p ) ¢zt(ﬂzt ).
S(uy)) (1 - @(ufy)))
gt

For fixed effects EM-type estimator, given «;, parameter 5 can be updated by

N T
k+1 _ ZZX”X 1{22){#(5};9) _ az(k))}

i=11=1 i=1t=1
N T N T
IN— k
9 (D XX DY Xadid
i=11=1 i=1t=1
(k)
AﬂEM
hence «; can be updated by
(k+1) L0 (k)
k+1 o (k ' k
@ = TZ(Y;t _Xitﬁ(k+1)):ai +9n ZthAﬁEM
t=1 t 1

For Newton’s method as described in (Greene, 2003) Chapter 21

/B(kJrl) = {Z tht it z zt - l{zzgzt zt - z }

=1 t=1 i=1t=1
(k) (k)
B+ A/BNR’
and
(k+1) (k) k) (k) 57 AR
a; =0 =G [y *XiAgNR,
¢ (Zitqit) O (2itqit) \2 / I
here hiy = g;y = g — Cotguany ) Zit = XuB + ai, qip = 1= 2Y5, hyy = Zlhita
t—

T

and g;; = Y ¢git. The sign difference is due to that hj; is negative for all values of z;;q;.
t=1
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A.3.2 Proof of Consistency for general 6

In general, the consistency proof will contain two steps as shown in the proof of PPIF.
Denote 2z = X, + a;7t, under the bounded from below of the second order derivatives

assumption

VYyel, z€ Z: bpin < 0,2L(y, 2),

also assume that Z is convex, i.e. since Z C R it is an interval (either open or closed). From

this it follows that for all 21, zo € Z one has

$10.2£(y,2))(21 — 22)?

> [0:L(y, z1)](21 — 22) + bT;m (21 — 22)?

L(y,z1) — L(y,22) = [0:L(y,21)](21 — 22) +

b .
_ mzn(zl_22+

: 0:L(y. 211,

[0:L(y, 21)])* —

2 bmin

bmin

where 21 < Z < z9. Define 2;; = zit(B,di,%), and e;; = ﬁ[@zﬁit]. Note that E(e;) = 0.

Since the estimated parameters minimize the objective function, observe that

0 Z ENT(BO,QsO)—[/NTBCg NTZ Zt zt ( )}

v

bmi .
2]"\?;2[(23 — Zit +eir)” —eqy] = 27\?;2{ )+ @iy — afy) — en)” — €}
2,0
Once the last inequality is obtained, the consistency proof for B is equivalent to that
for the linear regression model with interactive fixed effects. In matrix notation, the above

inequality reads
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TTrH(E) 2 S Tr(X (B = 5) + 44 — %P — o) (X'(3 - B%) + 3 — a0 — o)
> g TrICC (B = %) = € Miga0)(X'(5 = 89— )

where M4 40y = 17 — (&, a°)[(&, a") (&, )] 71 (&, a®)’ is the projector that projects orthog-
onal to (&, ).

The assumptions on the panel model already guarantee that +=1r(Xe') = op(1). One
can furthermore show that ||| = op(v/NT), also the assumption 3+77T(XX') = Opy(1) is

satisfied from the distribution assumption on the regressors above. Then,

IN

Tr(e'Ma,00)Xk)| (' Xp)| +

1 1
~NT LT W|TT(€,P(&,O¢0)X7€)|

2
op(1) + el Xel| = (1),

|1
NT

IN

Under these, one has
0> ¢|B = B8]l +opll3 = 8°ll + 0p(1)
from which 8 = 8° 4 0,(1).

A.4 Some useful algebraic results

For any N x T matrix A, define the N x T matrix PA as follows

(PA)ir = afrf (o] +77),  (a*,7") € argmin E(=8patis) (Air — ag 7 (i + 7))

gyt it
b

Here, the minimization is over @ € RY and v € R, and P is the projection operator. It
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is a linear projection, i.e. PP = P. It is also convenient to define

At

PA =PA Ayp=—>2
, where " B(—020)

(A.18)

P is a linear operator, but not a projection. Note that = and A defined before can be written
as By = PBy and A = PC, where Ciy = —8,4;; and By it = —Ey(9p,rlit), for k = 1, ..., dim 3.
1

The linear operator P is closely related to the projection operator P. The following
lemma shows how in the context of panel probit model some expressions that regularly

appear in the general expansions can conveniently be expressed by using the operator P.

Lemma A.4.1. Let A, B and C be N xXT matrices, and let the expected incidental parameter
Hessian H be invertible. Define the N + T vectors A and B and the (N +T) x (N +T)

matriz C as follows

_ LAy _ L (B
A_M<Ala0>7 B_]VT'<B,O[0 )

- i (O Cotaben )
NT \ (Co(a®(")))  diag(C'(a® 0 a?))

and

where o denotes the Hadamard product, i.e., element-by-element product. Then

(i) AT B = ﬁzt(ﬁAit)Bit = ﬁzt(ﬁB)itAit,

(i) AH 'B= Fr SE(-02 ) A (BB,
(iii) AH'CH 'B = ﬁzt(ﬁA)itcit(ﬁB)it_
Proof. Let ad?(ar +7;) = (PA); = (PA)y, with A as defined in eq (A.18). The FOC of

~ _ 0~ 5%
the minimization problem in the definition of (PA);; can be written as H ( ?;0 Zg;* > = A

!By and = are N x T matrices with entries By and Zg respectively, while B;; and =;; are
dim f-vectors with entries By rand Eg s¢.
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0 . ~x* _
One solution to this is < (3;0 Z?;* > —H A Therefore,

1

W — (I?P{)A)’LtBZt
1,

o 0~ A% ! 1
1 a’od x| =
AH B = ( N ) B = ]\]T;a?%?(af +791)Bit =
This is the first equality of the Statement (i) in the lemma. The second equality of Statement
(i) follows by symmetry. Statement (ii) is a special case of Statement (iii) with C = H, so
Statement (iii) needs to be proved.

Let a272(a} + ;) = (PB)y = (PB)y;, where By = m. Analogous to the above,
0 *
a’oa

choose 0 . %
Yoy

) = ﬁ_lB as one solution to the minimization problem. Then
AH'CH'B
1 ~ % * ~ % * ~ % * ~ % *
= WZ(Q?%?)Q[O% Cireiy +%; Civai + @i Caryy + 3 Ciry]
it

= Y (PA)uCiu(PB)i

it



Appendix B

Proofs for Chapter 2

B.1 Results

We drop the subscript NT on ¢y and Ly (8, ¢), and we denote the unpenalized objective

function (denoted by Lx7(8, ¢) in the main text) as

£(B0) = = 303 b

where ¢ = (¢/,7') and 2z = X[,8 + a;ys. To fix the rescaling freedom in «; and ~y; we

introduce the penalized objective function

b N T 2
2 2
SVNT (;O‘i ;%) )

where b > 0 is a constant. Let 3 and ¢ = (@’,%")" be the maximizers of L£(8,¢). The
penalty term guarantees that the estimator satisfies the normalization Zf\il a? = Zthl 32,
Note that we also normalize the true parameters such that the same normalization holds,

ie. Zfil(a?)g = YT (32 In addition, let o(8) = (@(B),3(8)) be the maximizer of
L(f, ¢) for given 3.
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B.1.1 Counsistency

Lemma B.1.1. Let Assumption / be satisfied. Then we have || — 8°| = Op(N"3/8) and

[a(BF(B) = a""|| . = Op(N¥E 4|8 = 5°)),

uniformly over 3 in a e-neighborhood around B° for some € > 0. This implies'
L= 0 -3/8 0
— % = Op(N~38 418 - 8°),
—113(6) = 6°ll = Op(N~5 + 15 - 5]

uniformly over 3 in a neighborhood around B°.

Proof. Let 0.4 = 82&15(225), etc. For all 21,29 € Z a second order Taylor expansion of

lit(z1) around zo gives

fil) = filz) = [0abi (1)) (21 — 22) = 302 al2)] (21 — 227

Z@%%W&—@+%?Qr%ﬁ
. 2
_ 6“2““ <21 o bmm 0, &t(zl)]) _ %[azeﬁ(zl)]? (B.1)

min

where Z € [min(z1, z2), max(z1, 22)]. Let e; := 0,4it/bmin. We have

0>¢‘[w%% £(3,9)
—Z it( zt it zzt)]

b i ~
> Igm Z [(Z?t — Zi +ei)? — G?t]

it

b —~ o 2
= toin S L 33 80+ a — b -] — 3}

it

Note that the penalty term of the objective function does not enter here, because it is zero

'For this we need the strong -factor assumptlon (not required before in this theorem) and the normalization

L al =30, and Yo (af)? = 300, ()
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when evaluated both at the estimates or at the true values of the parameters.
Let e be the N x T matrix with entries e;;. Let X be the N x T matrix with entries
Xiit, B =1,...,dimpB. Let 8-X = >, frX). In matrix notation, the above inequality

reads
Tr(e) > Tr [((3 8- X +87 -l — ) (B- 67 X + 87 — %" e)'] .

Analogous to the consistency proof for linear regression models with interactive fixed effects

in (Bai, 2009b) and (Moon and Weidner, 2010a) we can conclude that

N 2 T (Moo (-89 X ) Ms (B 59X )| (B.2)
— % [Tr(e'e) Ty [Mao ((B —8Y. X) M ((E —8Y. X)] (B.3)

#21x |((5- 8- X)'e| + Onllel) + 015 - #llellmpx | 541D (B.)
where we used that e.g.

| Tr (X}, Pyoe) | < rank (X} Pyoe) || XiPaoe|| < | Xxllllell,

| Tr (¢'Pyoe) | < rank (¢'Pyoe) ||e’ a0€H < |le|?.

Lemma D.6 in (Fernandez-Val and Weidner, 2013) shows that under our assumptions we
have ||.¢|| = Op(N°/®), where 0,¢ is the N x T matrix with entries 8.¢;;. We thus also
have |le|| = Op(N®/8). We furthermore have || X||? < || Xi[% = >, Xl%ﬂ.t = Op(NT), and
therefore | X,|| = Op(V/NT). We thus have | X||[le]| = Op(N'3/%) and |le||> = Op(N>/4).

Furthermore

Tr (Xpe) = ! > Xudly = Op(VNT).

min

it
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Applying those results and the generalized collinearity assumption to (B.4) gives
0> B = 8%+ Op(N=/55 = 5°) + Op(N=/4).

This implies that |3 — 8°]| = Op(N~3/8).
Define e;(5) = 0.0 ( X[, 8+ aZ 79) /bmin. Analogous to the above argument we find from
L(B,$(8)) > L(8,¢") that

0> VNT [£(5,6°) - £(5,5(9))]
= > [6u(X0B + aff) — (X8 +@i()3u(8))

= 2 5 {[@(R(8) - adof — eul®)]’ - el )}

it

This implies that

Tr(e(8)'e(B))

> Tr [(@(BF(8) — ™" ~ e(8) (@A) — a®7" — e(8))']

= Tu(e(B) e(8)) + Tt [ (@(BA(B) — a®+") (@(B)F(B) — a’+")'|
=[la(B)7(B)' -7 |1%

+0p ([a(BAB) = ™| lle(®])

Note that since a(8)7(8) —a’~y” is at most rank 2 we have that == ||a(s - ozo'yo’
V2

[a(B)F(B) — Y| < ||a(B)F(B) — a° O’HF, i.e. the Frobenius and the spectral norm are
equivalent.

We have e;(8) = ey + [X,(8 — 8)]0,20i(X1,B + 299 /bmin, where 5 lies between j
and B°. Therefore |le(B)]| < |le|| + Op(vVNT||3 — 8°||). We thus find

02 57 [8(B)F(BY = a7+ Op (N5 11| = 8°1) [@(BYA(B)' ~ a®+"" |, /VNT| .
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From this we conclude that

1 G(B)(B) — a9 -3/8 0
Op(N — .
~ a8 (8) ~ | = Onr( +18 -5
Next, let d = ||@(8)7(8) — aO'yO’HF. By the triangular inequality, ||a%y O’H

1&(B)7(B) 5 < [|a®y”|| p+d, or equivalently ]| [+°]|—d < [[@(8)[I[F(B)]| < a®[|[+°]|+d.
Using our normalization this gives ||a?||? —d < [|[a(B)|? < ||a®||> + d. This implies that
&8Il = a®[+0(d/[[a°])) = la®|+O(d/V'N), or equivalently [7(8)|| = [|°[|+O(d/VN).

Let 6, be the angle between the vectors o’ and @. We have

d=laB)F(B) — |z = [|[Mag) (@(BAB) — ")

= [|Magga®+"| . = [[Mag@a®|| 11°]] = cos(Ba)lla®[[[I7°]]-

Therefore cos(6y) < d/(||a°]|[|7°|]) = O(d/N). Together with ||a(8)| = ||| + O(d/V/'N)
this implies that [|a(8) — || = O(d/v/N). Analogously we conclude that ||[7(8) — %) =
O(d/V/N). O
B.1.2 Inverse Expected Incidental Parameter Hessian

The expected incidental parameter Hessian evaluated at the true parameter values is

_ H, H, b
H=Eg[-0ppL] = | 1 4 )+ —w,
Hiamn]  Hiy

where v = vy = (¥, "), ﬂz‘aa) = diag(\% S (YPEG[—D,2414]),

Hoyyit = a7 0P Eg[—0.2i], and Hyyy = diag(—= g i) Eg 0.2,

Lemma B.1.2. Under Assumptions 4 we have

" = ding (i i)

= Op ((NT)_I/Q) .

max
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The goal of this appendix subsection is to prove Lemma B.1.2, but before doing so it is
useful to present two more intermediate lemmas.

In the following we assume that o # 0 and 1 # 0 holds for all i, t. However, this

0‘—1

i

is only assumed for notational simplicity of the proof. Concretely, |« and |y?|~1 will

occur below, but actually only in expressions where || ™! is eventually multiplied with a?,

and |7?]~! is eventually multiplied with Y. Therefore, all results also hold without this
assumption. More importantly, the proof does never require that oz? and ) are bounded

away from zero.

Lemma B.1.3. If the statement of Lemma B.1.2 holds for some constant b > 0, then it

holds for any constant b > 0.

Proof. Write H = o+ \/%vv’, where H' = Ey [—%;WE*} . Since H' v =0,

1 et b N\ et VNT ot VNT )
H = (7—[ ) —i—(\/ﬁvv) = (’H ) —|—va = (H ) +b[2i(a0)2+2t(7°)2)]2w’

where t refers to the Moore-Penrose pseudo-inverse. Thus, if H; is the expected Hessian

e

for b = by > 0 and Hs is the expected Hessian for b = by > 0,

‘(1_1) VNT v
b1 b2 [Zi(a0)2+zt(70)2)] ax
max; [7Y| are bounded and that 3 >;(a”)? and £ >°,(7°)? converge to positive constants.

max

=0Op ((NT)*l/Q). Here we used that max; |ay| and

O

In the following, let |a®| be the N-vector with entries |a?], and let |°| be the T-vector

with entries |[17].

-1
Lemma B.1.4. Let Assumptions 4 hold and let 0 < b < bpin (1 + lgr“:ﬁ) . Then,

|

b

bmax

. - 7_1 2 3
diag(|a®|) 1H(W)H(M>dlag(lv°|)Hoo <1-

i

and

b

bm ax

|diag(1n") ™ Hi) Hediag(a®D]| < 1-
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Proof. Let hy = Ey(—0,20;), and define

1 hjy — b)
b+ 35092 (92 hyr) 12 E Dhyr

hit = (hit — b) —

By definition, H(aa) = H(aa) + b2°a”/VNT and Hay) = Hi(a,) — ba’y”/v/NT. The
matrix ﬁ?aa) is diagonal with elements >_,(v?)?hit/v'NT. The matrix ﬁ?ow) has elements
a999h; /v NT. The Woodbury identity states that

——1 7**—1 7*—1 ¢ 1 oa7*—1 0o -1 ora7%—1
Haa) = H(aa) = H(aa)® (VNTb +a'“f‘(aa>0‘) " H(aa):

Then, g(;la) ﬁ(av) = ﬁ?;;)fl/\/ NT, where H is the N x T matrix with elements a?’y?izit.
Therefore

The assumption guarantees that bmax > hit > bmin, which implies hj; — b > byin — b > 0,

. 1751 = . i
diag(|0°]) ™ H ooy o diag(177])||_ = max S50

and

m
/\
\/\/
1k
ST
SN—

1 hjt —b) >l
hzt > hi — 71 Z ,YT 2]1]7- > bmin — b ( Z (

J
- bmln —b (1 bmaX 07

bmln

where we used the normalization }_, (oz?)2 =" _(7?9)? and the upper bound we impose on

b. We conclude that

ey iy diag(11°])]|

= —miné 0y2 1 hjt —b)
i e 200\ P e i o o) IZ S
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Zt(%)
<1-—
Et(’)’t) max
b
—1—
bnlaX

Analogously one finds that Hdiag(hon_lﬁ(}g) ﬁ(w)diag(\aODH <1l-

bmax :

-1
Proof. [Proof of Lemma B.1.2] We choose b < bpin (1 + Z:ﬁ) , so that Lemma B.1.4
becomes applicable. According to Lemma B.1.3 the choice of b has no effect on the general
validity of the lemma for all b > 0.

By the inversion formula for partitioned matrices,

a1 g1 /7 0 0
H(ocoz) - H(aa) - H(aoc ( /b ta /H ) ) ,H(aa)

::C(aa>

~1
/'NT 0 Org+—1
W) H(W) H(W ( T/b+~"H, 77)7 ) v ,H(w) :

=C(yy)
. —*—1 —*—1 ——%
By our assumptions we have |[H(4q)llcc = Op(1), [Hyplloo = Opr(1), [H(ay)llmax =
Op(1/v/NT). Therefore?

HC(aa)HmaX < Hﬁ?c?ci)”io Hao OIH

max

(\/ﬁ/b—k aO/ﬁZé)ao) o Op(1/VNT),

71 F7x—1
1 (aa)lloo < [H(aa) oo + N[Caa) llmax = Op(1).

Analogously, [|C(y)|lmax = Op(1/VNT) and Hﬂ(_,ylv)ﬂoo = Op(1). Furthermore, || (qq) |lmax <
H (o llmax + blla®y"||/V/NT = Op(1/VNT).

*Here and in the following me make use of the inequalities ||AB|max < ||Allco||Bllmax, [|AB|lmax <
| Allmax||B’]l s, [|Alloc < 1||Allmax, which hold for any m X n matrix A and n x p matrix B.
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We also have Hdiag(!ao\)_lﬁ(av)“ Op(1/V/NT) and ||diag(|a®]) 1C’aaH

Op(1/V/NT). Those last two results do not require ? to be bounded away from zero, be-

max max

cause in those expressions the |a?| ™! gets multiplied with o and we have |a?|71a? = O(1).

We thus have

. [ P,
d1ag(]oz0|) IH(aa)H(a'y)Hoo
. e e . _ =
= ||diag(|a®|) 17—[(aa)7{(a,y) — diag(|a")) 10&0‘%(&7)”00

*—1 .. 1= . _ —-—
— (|72 diag(10®)) " H ) — ding(|a®]) ICWH(M)HOO

IN

ﬁ aa)

_ |diag(a®) ™ H ey, + [[diag(la’) " Caall . [ o

< NH%HOO |diag(1a%) ™ F [ + N [[diag(10®) ™ Caa e |[Fiam |

max

= Op(1).
Define D := diag(]a®|)~'H aa)ﬁ(m)ﬁ(ﬁ%)gw&)diag(\ao|) and

L -1
B _(1N H(aa)H(av)H(w)H( >> —

= diag(]a’|) [(1N -D) ' - 1N} diag(Ja”) ™!

= diag(|a°|) (Z Dn) diag(|a®])~"

n=1

n 1/ a1 77
= diag(|a°|) (ZD ) diag(|a®)"VH,, aa)H(M)H(W)H(W).
n=0

Note that A = ﬁ(;la) + ﬁ(ala)B = ﬁ?;;) — Claa) + ﬁ(ala)B. By Lemma B.1.4, we have

1Dl = |

. 1571 =5 . . 1571 77 .
diag (|0 ]) ™ H o ey ding (17" ling (1)~ H oy Hyeping (]| |

< ||ding (0" ) ™ H o) P divg (10 °D)|_ ||cine (12D~ Hiypy Hradiveg o)) |

b 2
1-— 1.
< < bmax> <
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We thus have

1Blmax < [|ding(a”])] . (i ||D|i.z> | tiag10®) ™ H ooy Fan | _ o 1000
n=0

o] 2n
< mlax\agl (Z (1 _ > > Op(1) Op(1) Op(1/VNT) = Op(1/VNT).

b
n=0 max

By the triangle inequality,
-1 -1
[Alloo < H (a0 lloo + N[H (aa) lloo | Bllmax = Op(1).

Thus, for the different blocks of

i -1 —_—— J— _
0 Hey “Hemy R A Higy) Higa) At ey Hiyy) = Coam

() )
we find
4=, = [FawB = G,
< | e ol Bllmase = o) lmax = Op(1/VNT),
|~ AT by < 1Al oel Py s P o = OP(1/ V),
[ oy AT Hiopy = Coom| . < 1P e P el Allel P s + 1€

771 —_
< N H 36 1Al o0 1 H (o) e + 1) llmax

= Op(1/VNT).

The bound Op(1/VNT) for the max-norm of each block of the matrix yields the same

bound for the max-norm of the matrix itself. O
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B.1.3 Local Concavity of the Objective Function

The consistency result for 5(6) in Lemma B.1.1 is not sufficient to apply the general expan-
sion results in Ferndez-Val and Weidner (2013).2 The goal of this section is to close this gap
by using local concavity of £(,¢) in ¢ around ¢°.

In the following we only consider parameter values that satisfy the constraint ), a? =
Dot 7? (otherwise there are additional terms in the Hessian from the penalty terms, which we
do not want to consider). Let £;(5, mit) = lit(zit), where 1y = oy and 2z = X[, 0 + aiye.

Let hit (8, mit) = —0xlit(B, 7). The incidental parameter Hessian reads

mm):—%ﬁ(ﬁ,w:([ ool
’ 7Y)

B¢ b )
m; ) (@),
where U(¢) = (OL/, _7/)/7 H*aa (/8? ¢) = dlag[ﬁ Zt thzt(ﬁv 041‘%)];

a7 zt(ﬁ ¢) = VT it hit(B, ciyt) — \/}V—Taz&t(zit),
and H(w) (B,0) = dlag[ﬁ > aZhi(B, aivi)]. We decompose the Hessian as H (8, ¢) =
H(B,¢)+ F(B,¢), where

where HEkaa) (/67 ¢) = >(.<O¢Oc) (ﬁ7 d)); H(*Oé’y)lt(/B Qb) Oél’)/t Zt(/Bu O[l’)/t)
He (8,9) = M) (8, 9), and Fiaq)it(8, ¢) = _ﬁazfit(zit).

Lemma B.1.5. For \pnin[H (B, )], the smallest eigenvalue of H(B, ¢), we have

1 T
Amin[H (8, ¢)] > min { ie{rll}}?N} INT ;%2 (hit (B, aiye) — [hie(B, cirye) — b]]

3 Assumption B.1(iii) of the general expansion requires 6(8) — ¢°|l4 = op ((NT)~¢) for some q > 4 and
some € > 0.
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N

te{1, ,T} Z hit (B, aiye) — [hie (B, cirye) — bl] }

=1

Thus, if hit(8, ciye) > b for all i,t, then we have

N
NuinlH (8, )] zmin{fwzvf, ]”VTZa%}-

We will only use the second bound for Ayin[H (8, ¢)] provided in the lemma, but the first
bound for A\pin[H (5, ¢)] provided in the lemma shows that the condition h; (5, a;y:) > b is

not necessary to appropriately bound Apin[H (3, ¢)], but it is convenient.

Proof. In the following proof we drop all parameter arguments from the functions. De-

@, 1(b > hi)y? (b — hit) and gt(2) =

1 _

b N 2
fine g; \/tzi_la. —

,ﬁ Zt 1 V2 it (B, airve) —
[hit(B, i) = bl) and g = A= 5V 02 [hie(B, i) = [hae(B, i) — Bl
Let G be the diagonal (N + T') x (N + T') matrix with diagonal elements given by g(l)

1 Y

T
F >ie1 % D=1
\/t SN 10 > hy)a? (b—hit) Equivalently we can write g;

= , N and 9(2) t =1,...,T, in that order. It is easy to verify that H = H ({3, ¢)
satisfies
H = G+ —2 (0, 01)' (@, 011) + —oe (013, 7Y (01,7
= \/]W a,Uixr) (&, UixT \/ﬁ 1xN,Y 1xXN5 Y
, NoT
v DD MTEL T TN (CEMIE
i=1 t=1
, N
+ INT DD 1 > ha) (b — hi) (el iy —ciely) (i€l i —0uelr ).

-
I
—
&~
Il
—

This shows that H — G is positive definite, i.e. H > G, which implies that Ayin(H) >

Amin(G). Since G is diagonal we have Apin(G) = min{min; 9(1)7 ming g§2)}. O

)

Lemma B.1.6. Let Assumption 4 be satisfied, and let rg = rgnyr = op(l) and ry =
re N7 = 0p(VN). Then, H(B, ¢) is positive definite for all B € B(rs, 8°) and ¢ € B(rg, ¢°),
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wpal, where B(rg, 8°) and B(ry,#°) are balls under the Euclidian norm. This implies that
L(B,¢) is strictly concave in ¢ € B(rg, ¢°), for all B € B(rg, 5°).

Proof. Let B € B(rg, 8°) and ¢ € B(ry, ¢°). We have H(B,¢) = H(B,¢) + F(B,$). Weyl’s
inequality guarantees that Amin[H (8, ®)] > Amin[H (B, 9)] — [[F (8, ¢)|l, where [|F(5,¢)| is
the spectral norm of F (3, ¢).

By choosing b = byin in Lemma B.1.5,
we find Apin[H (5, ¢)] > bpin min { INT Zt 172, \/7 ZZ Lo } Thus, the desired result
follows if we can show that [[F'(3,#)|| = op(1), or equivalently ||F(q.)(83,¢)[ = op(1).

Remember that Fio.)(5,¢) = —ﬁ&r&t(,@, a;yt). A Taylor expansion gives
Orlit (B, ie) = Oxlit(B°, a999) + (B — B°) Opnlit (Bit, Tir) + (ive — alv)Or2 it (Bit, Tit)-

The spectral norm of the N x T matrix with entries 8gkﬂ€it(ﬁ~it,7~rit) is bounded by the

Frobenius norm of this matrix, which is of order v/ NT, since we assume uniformly bounded

moments for ﬁgwﬁit(@t, 7;t). The spectral norm of the N x T matrix with entries (a;y: —
?7?)8ﬂz€it(@t,frit) is also bounded by the Frobenius norm of this matrix, which is equal

to \/Zn (ciye — ad49)?] szit(@'tﬁit)]Q and thus bounded by bmax\/zit(am —ady)? =
bmax||y’ — a%Y|| . We thus find

[ Flary . )| < e (105t + Op(VAT)B = ) + bl 03" )

N5/8) + Op(rg) + Op(ry/VN)

(m
op(1).

where we also used that |jay —a%Y||r = Op(V/N)||¢ — ¢°||. We thus have [ Eay) (B D)l =

op(1), which was left to show. O
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B.1.4 Proof of Theorem 2.4.1

Proof. The above results show that all regularity conditions are satisfied to apply the ex-
pansion results in Theorem B.1 and Corollary B.2 of (Fernandez-Val and Weidner, 2013).
Note that the objective function is not globally concave, but is locally concave according
to Lemma B.1.6, and due to the consistency result in Lemma B.1.1 the local concavity is

sufficient here. From (Fernandez-Val and Weidner, 2013) we thus know that
VNT(3 = 8°) = W U +op(1),
where Wo, = plimMT_)mW, U=U0+UW, and

_ 1 _ — —1 _
W=-T77F (@wﬁ + [0sp L] H [%@’E]) :

U0 = 0L + [8,3(15/2] H 18,

AT — ~ =1

UD = (05 LIH 'S — (00 L) H HH 'S

dim ¢
1 — —137—1 =\ -1 o1 75—1

5 3 (0500, + [0sw LA [0, £1) SIS, (B.5)
g

=1

We could use these formulas as a starting point to derive the result of the theorem. It
is, however, convenient to note that the first order asymptotic results for the interactive
model £ (3, a;v) = Lit(zir) are closely related to those obtained from the infeasible model
EL(B, i, ve) = Lie(B, iy + v —a?4?). This infeasible model can also be written in terms
of a “standard” additive model by defining agﬂ = o/, %F“ = /7Y, and KZ(-Z) (ﬁ,agﬂ +
'yﬁ)) =l <ﬁ, a?’y?(al(»ﬂ + ’ytm — 1)), where we have to assume oY # 0 and 7Y # 0, however
(ignore this for the moment). The estimator for £ in model f;-rt and Eg) are identical, i.e. B\T =
BM. The asymptotic results for the model Eg) (8, ozlm +%(T)) are known from (Fernandez-Val
and Weidner, 2013), namely vV NT (B\(T) - 5()) —d {723)} _l.l\f(nﬁgj) + nflﬁg}, WS;)),

with ES;), ES} and W defined there.

o
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)

The relation between certain derived quantities of model KZ(Z and ¢ is given by:

() _

7] = diag(a”, 2" A diag(a”, 1),
0, K(T) (@29N)90,.4;4,
prall]) = (a97)) D lit

ES) = (Oé?’)/ ) ! :zt

Using this we find that EC(L), D and W(o? can be written in terms of model ¢;; quantities

[e.o]

as

;_Eizgfmm%wM%m+zummwmm
Ztﬂ (% )2E¢ (aﬂ2£it)

_ _ V2Ey (05lit Dpnlis + 3D gl
DQ:_E Z i1 (@) Eg (OntitDprlic + 5 Dgratie) |
= S (0)2Ey (Dralit)

Y

wi - | % Z Z Ey (9pplit — aﬂeitgitagt)] .
L i=1 t=1
What is left to do is to adjust these known results for B\T = B\(T) for the discrepancy between
B and ,/6’\T, i.e. accounting the difference between model ¢; and KL, using the expansion
results in (B.5) above.

We only consider correctly specified models here, which implies that Var(S) = E[SS'] =

L_77" (Bartlett identity). Using this we find that

VNT
1 dim ¢ B B B . .
Es Q5 (3ﬁ¢'¢gﬁ+[3ﬁ¢/£]’ﬂ [3¢>¢'¢gﬁ]) [H "SlgH S
g=1
~ Y Nt 05 LV 0000, L)) (] B.6
= SUNT g;l(ﬁqﬁm + 9py/ b9 ) gh (B.6)

where the difference between 7' and H does not matter. Since UM only contributes bias

and no variance to 3 it is thus sufficient to evaluate the second line in (B.6), instead of the
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more complicated first line.

Comparing model ¢;; and E;-rt we find that

S =&t
9L = 9L,
H="H,
A=A+ < A 0 ) |
s L = s L',
Oper L = 9oy L1,
9ssL = oL
g0 L = Op00 L + \/]1\[7 ( [%?:Z;]VTXN [%8 ffLNXT ) 7
aaiajakz = 8aiaj04kZT)
Dsoy L = Doy B} 4101 = J) e

Oa £i7
\/NT fYt m2Lit
?ai rt%s Eai Yt7Ys CT ]‘(t E)

) _

\/ﬁ O[? 871.2621,
rd =T

a’Yt’Ys’Yuﬁ = 8%75%5 .

Thus, we have U = U1 (this term contributes variance, but no bias) and for the

terms in UM (which contribute bias, but no variance)

~— ~ =117
(Op0 LTH 'S = 05 L1 [H'| ST =0,

i.e. no additional bias contribution from this term.

1 o ONxN [=O0clit)NxT | 37-1
\/ﬁ[aﬁk(ﬁlﬁ]}t ( [_87r£it]T><N OTXT 7
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N T
= o S s LH ) 0nt [ ttZaMﬁ}

i=1 t=1
:'Tnewl
| X
Fir o 0T o P o
i=1 t=1
:ITnewg
+op(1),
where Thew = Tnew; + Thew, ,and the off-diagonal elements of the second ﬁ_l only
give vanishing contributions. Taking expectations and using that Eg [0x0;0x;s] = —1(i =

§)1(t = 8)0,20; we obtain the following non-vanishing bias contribution:

T
Z{ 05,6 LH i 02 lie o TH N + 1050 LH e 0ol 7 [ﬁfl]u‘}

zN: 05,0 LH ' 1i00 0,20y
v = Zﬁ\;l(a?) aﬂzit

— 1 0 7
Z Zt 1 8ﬁk¢ LH ]tht 871-2£zt + Op(l/\/ﬁ),
VN Y1 (39)2 02t

]E¢Tnew = -

'Mﬂ HMZ

where we used our result on the structure of ﬁ_l

dim ¢ dim ¢

1 R -
it g%::lammc (Hlon — F Z Oppsgsnl [H 1),
_ 1 OnxN 08, it]N><T -1
B 2NTTr [( [0,n bitlTx N Orxr H| = Op(1/VNT),

because the diagonal elements of H ' do not contribute here, while the off-diagonal

terms elements contribute as 5= >_;, Op(1/VNT) = Op(1/VNT), according to the lemma

=1

on H
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1 dim ¢ .

[0 /£ 0 L] [H
SINT hzl B [¢¢g¢h ][

]gh

dim ¢
1 —t
F Z O L' TH 1T 0p0,6, L' [H- ];h

1 A A _ —_—
- WZZ{[%MH i a0 0l [

i=1 t=1

+[agk¢ffﬁ‘11n?aﬂzen[ i} + Op(1/VNT)

Z Zz 1 8ﬁk¢/£H ]104? @rzzﬁ
\/7 z 1(040) 87r2zit

/ 0 !
Z Zt 1 aﬁm LH ]t’Yt On2lit + Op(l/\/ﬁ),
i=1 Zt 1(%&) 7r2€’Lt

where the off-diagonal elements of the second [ﬂil] only contribute terms of order

1/ V/NT. Thus, we find that for the correctly specified case the two additional bias con-
tributions (that occur for the model £;; but are not present in model EL) from the terms
— [0 LI H "HH 'Sand ! Zdlmd)[@gd,/Z] ﬁil[(?w/%Z] [ﬁilS]gﬁfls exactly cancel. We

have thus shown that the asymptotic distribution of B\ and B\T are identical.



Appendix C

Supplemental Materials for Chapter 3

C.1 Incorporating network structure: CoVaR, network spillover effects,

and systemic risk

Traditional risk measures, such as Value of Risk (VaR), focus on the loss of an individual
institution only. CoVaR proposed by (Adrian and Brunnermeier, 2011) measures the VaR
of the whole financial system or a particular financial institution by conditioning on another
institution being in distress. Thus, it relates systemic risk to tail spillover effects from
individual institutions to the whole system. (Adrian and Brunnermeier, 2011) define firm

b’s CoVaR at level 7 conditional on a particular outcome from firm a, as the value of

C oVaRﬁla that solves

Pr(X, < CoVaR)‘|C(X,)) = T,

A particular case is C(X,) = {X, = VaR?} for a low quantile index 7, which is inter-
preted as with probability 7 institution b is in trouble given that institution a is in trouble.

They also define institution a’s contribution to b as

ACOVQRE_‘G = COVaRﬂXa:VaR? _ COV&RE_‘XQ:M@dmn“,

They mainly use quantile regression to estimate the CoV aR measure. More precisely, the
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predicted value from the quantile regression of Xp on X, gives the value at risk of institution
b conditional on institution a since VaRg given X, is just the conditional quantile, i.e.

conditional VaR

VaR?| X, = ab(r) + °(7) Xa,

Replacing variable X, by its unconditional quantile, i.e. VaR2, yields

CoVaRVMW¥e = ab(7) + B(T)VaR: and ACoVaRY* = (1) (VaR? — VaR%y,)

We incorporate network spillover effects into risk measuring. We show that with QGM,
individual institution’s contribution to systemic risk can incorporate tail risk interconnec-
tions between institutions in the whole financial system (in the network, each node rep-
resents a financial institution now). The identified risk connections between all financial
institutions constitute a systemic risk network. Note, institution a’s overall systemic risk
contribution, ACoVaR*¥*1* measures the contribution of institution a to overall systemic
risk >, ACoVaR*¥sle.

We define

Pr(Xy, < CoVaRY*VMaPHC( Xy, Xy fapy)) = T

then

Bl Xa=VaR®, X1 (41 =VaR) @0}
CoVaRTI 7 XV\{a,b} q = BY%() + B (T)VaR® + 5@/\{%1)} (r)VaRY b}

ACoVaRUVMebt = gb(r)(VaR® — VaR%yy,)
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where B°() = {B84(7), 5?/\{1;} (1)} is estimated via ¢1-penalized quantile regression.

We stack ACoVaR!™ M) a5 the (a,b)-th element of an d x d matrix E?(7) repre-
senting a weighted directed network of institutions. Here d is the number of total finan-
cial institutions considered. Following (Andersen et al., 2013), the systemic risk contribu-
tion of firm a, ACoVaR*¥*l%, is the network to-degree of institution a which is defined as
sto = ACoVaR®¥*le = 3, ACoVaRFI“V\ak}t - To-degrees measure contributions of indi-
vidual institutions to the overall risk of systemic network events.

Similarly, from-degree of node a is defined as 5,{mm = ACoVaRsys = Zb ACOV&R?lb’V\{a’b}.
From-degrees measure exposure of individual institutions to systemic shocks from the net-
work. The total degree 6, i.e. ), ACoVaR®¥sle, aggregates institution-specific systemic
risk across institutions hence provides a measure of total systemic risk in the whole financial
system.

Finally , we define the net contribution as net-ACoVaR®* = §%° — §47™ . For more about

network theory, see (Kolaczyk, 2009).

C.2 /;-Penalized Quantile Regression for Near Extreme Quantiles Indices

In this section we revisit the rate of convergence of ¢i-penalized quantile regression esti-
mators. We are concerned to the case that the compact set 7 C (0,1) grows so that it
asymptotically covers (0,1). Namely, the measure of the estimated set of indices goes to on,
|7| — 1. Our results build upon the prior work (Belloni and Chernozhukov, 2011) which
focused on the case that 7 is bounded away from the extreme quantiles. In what follows we
let 7 := min,;e7 7(1 — 7) to characterise how fast 7 approaches the extremes. We use the
notation and assumptions (D.1-D.4) in (Belloni and Chernozhukov, 2011)

In what follows we let K, such that max;<y, [|2;|lcc < K, with probability 1 —e — 1.

Lemma C.2.1 (Rate of Convergence of ¢1-QR). Suppose that Assumptions D1-Dj hold and
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K2log(n V p) = o(nmin,er7(1 — 7)). Then, we have with probability 1 — o — 4y — &,

R 1 1 V
su5)-||JTl/2(5(T) - Bl <P il/QnCO slog(n V p)

TE

n

where J}'* = E[f,.(«'8(7) | z)aa]

Lemma C.2.1 complements the rates of convergence derived in Theorem 2 of (Belloni and
Chernozhukov, 2011). The latter does not assume the additional requirement K2 log(nVp) =
o(nT) but it was established for a fixed set 7, that is, 7 bounded away from zero. Indeed

Theorem 2 of (Belloni and Chernozhukov, 2011) yields the rate

1 slog(n V p)
Il/Qfl/QK n

which is potentially slower than the rate established in Lemma C.2.1 as 7 can go to zero
with n (provided the additional requirement K2log(n V p) = o(nt) holds).

The proof of Lemma C.2.1 follows the proof of Theorem 2 of (Belloni and Chernozhukov,
2011) and the improvement is achieved by controlling the penalty choice under the additional

requirement K2 log(n V p) = o(nr). This is done in the following technical lemma.

Lemma C.2.2 (Penalty Parameter Bound). Let 7 = min,c7 7(1—7) and K,, = max;<y ||;||cc-

Under K2 log(d/T) = o(nt), for n large enough we have that for some constant C

Al—a]|X) <4 /1+ li)fg((lj//:;)C\/nlog(d/T).

Proof. Conditionally on x1,...,x,, letting (}jz =E, [x?j], we have that

A =sup
TET

nBy oy (r — U < 7)) | |
Gj\/T(1—1)

Step 1. (Entropy Calculation) Let F = {z;;(7 — 1{u; <7}): 7€ T}, hy = /7(1 —7), and
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G ={fr/hs : 7 € T}. We have that

d(fr/hr, fz/hz) < d(fr, fz)/hr +d(fz/hr, fz/hz)
< d(fr, fz)/hr +d(0, fz/hz)|hr — hz|/h;

Therefore, since ||F||g < ||G|/q by hr <1, and d(0, fz/hz) < 1/hz we have
N([Gllg:G. Q) < N(ElFllg/{2minhr}, F, QN(e/ (2min k2L, T - .
Thus we have for some constants K and v that
N([Gllg.6,@) < d(/{eminh2})"

Step 2.(Symimetrization) Since we have E[g?] = 1 for all ¢ € G, by Lemma 2.3.7 in
(van der Vaart and Wellner, 1996) we have

P(A>tyn) < 4P(maxj<qsup,cr |Gy(g)l = 1/4)

where GY : G — R is the symmetrized process generated by Rademacher variables. Condi-
tional on (x1,u1),. .., (Zn, uy), we have that {G2(g) : g € G} is sub-Gaussian with respect
to the Ly(P,)-norm by the Hoeffding inequality. Thus, by Lemma 16 in (Belloni and Cher-

nozhukov, 2011), for 62 = sup,cg En[g7] and &, = 6,/[G|lp,, we have

_ 5n/2
Plsup [62(9)| > O /log{dR/7) | {X: Uiy < [ ¢ Ha(k {emint2y)) e
0 TE

geg

for some universal constant K.
In order to control 6, note that 62 = SUPgeg ﬁ(@n(gQH—E[gQ]. In turn, since supgeg Ey, [g4] <

62 max;<, G7, we have

_ 5n/2
P(sup\GZ(gQ)\ > CKb6, max Givlog(dK/T) | {X;,Ui}iq) < / eil{d(K/{ez})”}*CQHds
G i<n 0

ge
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Thus with probability 1— f01/2 e Hd(K Jer)?}~“"+1de, since E[g?] = 1 and max;<, G; <

K, /\/T, we have
<14 C'Kp\/log(dK /1)
n = \/ﬁ\/f .
Therefore, under K,+/log(dK/r) = o(y/n\/T), conditionally on {X;}?; and n suffi-
ciently large, with probability 1 — 2 f01/2 e H{d(K/{er})"}~C*Tlde we have that

sup |G (g)| < 2CK \/log(dK /T)

geg

The stated bound follows since for C' > 2

[ ey < (2 [ e < qagmye
0 0
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