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ABSTRACT

The microcantilever has become a ubiquitous tool for surface science, chemical sens-

ing, biosensing, imaging, and energy harvesting, among many others. It is a device

of relatively simple geometry with a static and dynamic response that is well under-

stood. Further, because of it’s small size, it is extremely sensitive to small external

perturbations. These characteristics make the microcantilever an ideal candidate for

a multitude of sensing applications. In this thesis dissertation we use the micro-

cantilever to conduct numerous physical measurements and to study fundamental

phenomena in the areas of fluid dynamics, turbulence, and biology. In each area we

use the cantilever as a sensitive transducer in order to probe fluctuating forces.

In micro and nanometer scale flows the characteristic length scale of the flow ap-

proaches and is even exceeded by the fluid mean free path. This limit is beyond

the applicability of the Navier-Stokes equations, requiring a rigorous treatment using

kinetic theory. In our first study, we conduct a series of experiments in which we

use a microcantilever to measure gas dissipation in a nanoscopically confined system.
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Here, the distance between the gas molecules is of the same order as the separation

between the cantilever and the walls of its container. As the cantilever is brought

towards the wall, the flow becomes confined in the gap between the cantilever and

the wall, affecting the resonant frequency and dissipation of the cantilever. By care-

fully tuning the separation distance, the gas pressure, and the cantilever oscillation

frequency, we study the flow over a broad range of dimensionless parameters. Using

these measurements, we provide an in-depth characterization of confinement effects

in oscillating nanoflows. In addition, we propose a scaling function which describes

the flow in the entire parameter space and which unifies previous theories based on

the slip boundary condition and effective viscosity.

In our next study, we seek to gain a better understanding of the transition to

turbulence in a channel flow. We use a cantilever embedded in the channel wall to

perform two sets of experiments: first, we study transition to turbulence triggered

by the natural imperfections of the channel walls and second, we study transition

under artificially added inlet noise. Our results point to two very different paths to

turbulence. In the first case, wall effects lead to an extremely intermittent transi-

tional flow and in the second case, broadband fluctuations originating at the inlet

lead to less intermittent flow that is more reminiscent of homogeneous turbulence.

The two experiments result in random flows in which high-order moments of near-

wall fluctuations differ by orders of magnitude. Surprisingly however, the lowest

order statistics in both cases appear qualitatively similar and can be described by a

proposed noisy Landau equation. The noise, regardless of its origin, regularizes the

Landau singularity of the relaxation time and makes transitions driven by different

noise sources appear similar. Our results provide evidence of the existence of a finite

turbulent relaxation time in transitional flows due to the persistent nature of noise

in the system.
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In our last study, we turn to biologically-driven fluctuations from bacterial motion.

Recent studies suggest that the motion of living bacteria could serve as a good indi-

cator of bacteria species and resistance to antibiotics. To gain a better understanding

of these fluctuations, we measure the nanomechanical motion of bacteria adhered to

a chemically functionalized silicon microcantilever. A non-specific binding agent is

used to attach E. coli to the surface of the device. The motion of the bacteria couples

efficiently to the cantilever well below its resonance frequency, causing a measurable

increase in its mechanical fluctuations. We vary the bacterial concentration over two

orders of magnitude and are able to observe a corresponding change in the amplitude

of fluctuations. Additionally, we administer antibiotics (Streptomycin) to kill the

bacteria and observe a decrease in the fluctuations. A basic physical model is used to

explain the observed spectral distribution of the mechanical fluctuations. These re-

sults lay the groundwork for understanding the motion of microorganisms adhered to

surfaces and for developing micromechanical sensors for rapid bacterial identification

and antibiotic resistance testing.
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Chapter 1

Introduction

Many physical phenomena appear to be unpredictable or random, yet when studied

closely, can reveal important information about the fundamental physics which govern

their behavior. Noisy systems are ubiquitous in nature and a careful study of their

fluctuations can be conducted if appropriate experimental systems can be devised. It

is often difficult, however, to measure these fluctuations since many of these phenom-

ena occur on length and time scales that are beyond reach of traditional measurement

systems. Advances in fabrication technology over the last three decades have led to

a multitude of developments in the complexity and variety of microelectromechanical

systems (MEMS). These new devices have enabled a new paradigm of sensing in the

areas of mass detection (Yang et al., 2006), rheology (Ahmed et al., 2001), charge mea-

surements (Cleland and Roukes, 1998), biosensing (Longo and Kasas, 2014), chemical

sensing (Lavrik et al., 2004), and temperature sensing (Zhang et al., 2013) among

many others (Waggoner and Craighead, 2007). The microcantilever, in particular,

has been one of the mainstays for probing minuscule forces. The first mainstream

use of the microcantilever as a sensor was in atomic force microscopy (AFM) (Meyer

and Amer, 1988). More recently, researchers have developed more complex structures

including cantilevers that incorporate fluid microchannels to enable single molecule

mass measurements (Burg et al., 2007) and self-sensing piezoresistive cantilevers (Wee

et al., 2005). These experiments made use of both the static deflection and the dy-

namic motion of the cantilever in order to conduct sensitive measurements.

1
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In this thesis work we are interested in exploiting the exquisite sensitivity and

relative simplicity of the microcantilever in order to conduct measurements of fun-

damental physical phenomena. In almost all of the studies presented here, we use

commercial silicon cantilevers to probe fluctuating forces that arise in a diverse range

of systems. We employ sensitive optical measurement techniques to monitor the

fluctuations of the cantilever which correspond to perturbations in the cantilever’s

environment. We present studies of physical phenomena in the areas of fluid dy-

namics, turbulence, and biology. Through rigorous experimentation and theoretical

analysis we attempt to advance the boundaries of our understanding of fluctuations

in confined, turbulent, and biological flows.

1.1 Organization

We begin in Chapter 2 with an overview of the different optical techniques used to

measure nanomechanical fluctuations. In the studies presented here we employ a

combination of techniques including homodyne and heterodyne Michelson interfer-

ometry and optical beam deflection. We describe these techniques and discuss shot

noise limited optical detection. In Chapter 3 we present experimental measurements

of the driven and thermomechanical motion of microscale cantilever and membrane

resonators in a spatially unbounded Newtonian fluid. We discuss how these measure-

ments can be used to determine the modal device parameters, and we compare the

results of many measurements. We also discuss the limits of classical hydrodynamics

and the transition to the kinetic regime that occurs in a certain parameter space.

In Chapter 4 we study fluctuations in a nanoscopically confined oscillatory flow by

introducing an additional length scale to the system, the gap between the resonator

and the walls of its container. Here, this length scale approaches and is even exceeded

by the fluid mean free path λ. This parameter space is beyond the applicability of
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the Navier-Stokes equations and we must use kinetic theory to describe the flow. We

conduct a series of experiments in which we use a microcantilever to measure the

gas dissipation as we vary the gap, the gas pressure, and the oscillation frequency.

The cantilever’s oscillations drive an oscillatory flow which, when confined in the

gap between the cantilever and the wall, affects the frequency and dissipation of the

cantilever. We use our results and physical intuition to construct a scaling function

which can describe the dissipation in the entire parameter space studied. Our scaling

function accurately captures the transition from the hydrodynamic to the kinetic fluid

regime and reconciles previous models which depend on modified boundary conditions

and effective viscosity.

In Chapter 5 we study fluctuations driven by the activity of motile bacteria.

Recent concerns regarding microbial resistance to antibiotics have sounded the alarm

over the need for new antibiotics and bacteria diagnostics. Studies have shown that

important information, including species identification and bacterial resistance, can

be extracted by measuring the motion of bacteria and their response to various stimuli.

In this study, we adhere a motile strand of E. coli bacteria to the surface of a silicon

cantilever. The cantilever is held in a liquid medium and its fluctuations are monitored

using the optical beam deflection technique. The collective motion of the bacteria

cause a measurable change in the cantilever’s fluctuations. We vary the bacterial

surface concentration over an order of magnitude and observe corresponding changes

in the amplitude of fluctuations. Additionally, we administer antibiotics to kill the

bacteria and observe cessation of their motion. We develop a basic physical model to

describe the observed spectral content of the fluctuations.

In Chapter 6 we study fluctuations in a channel flow near the transition to tur-

bulence. We embed a microcantilever in the wall of a rectangular channel and once

again, we employ optical beam deflection to monitor the cantilever’s mechanical fluc-
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tuations. We conduct two sets of experiments. In the first set, we study the transition

to turbulence triggered by the natural imperfections of the channel walls. In the sec-

ond set, we insert a flexible wire mesh at the channel inlet to create perturbations

in the flow. The resultant turbulent states are quite different yet are qualitatively

similar and each can be described by a proposed noisy Landau equation. Our results

provide evidence of the existence of a finite turbulent relaxation time in transitional

flows due to the persistent nature of noise in the system.

Finally, in Chapter 7 we conclude with some final thoughts on the results of these

studies. We also suggest opportunities for future studies in the field.

1.2 The Microcantilever as a Physical Probe

As we will see in the following chapters, the microcantilever, and other micromechani-

cal systems, are versatile tools which can be used for a wide range of studies. Here, we

first discuss specific details regarding the dynamics of these microscale systems. Ad-

ditionally, we consider the thermomechanical fluctuations of a cantilever and provide

a brief discussion of the fluctuation dissipation theorem.

1.2.1 Damped Harmonic Oscillator Model

A microcantilever resonator oscillating in one of its resonant modes behaves like a

damped harmonic oscillator to a very good approximation. Coupling this oscillatory

motion to external physical phenomena allows for very sensitive measurements of

the phenomena. In a resonant mechanical system with light damping and sufficient

spacing between modes, the displacement functions of each mode yj (t) are oscillatory

and each mode can be well described using a damped harmonic oscillator model. We

consider a lumped model in which the parameters of the system are approximated

as scalar values, independent of the position coordinate r, the dissipation is constant

and spatially uniform, and the displacement is measured at a single point (usually
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the location of maximum displacement). We write the equation of motion for the jth

natural mode as

m
d2y (t)

dt2
+
mω0

Q

dy (t)

dt
+mω0

2y (t) = f (t) (1.1)

where we omit the j notation for brevity. Here, f (t) is the driving force, m is the

effective modal mass, ω0 is the resonance frequency, and Q is the quality factor of

the resonance. The parameters ω0 and Q (the undamped frequency and the quality

factor) of each mode are highly sensitive to environmental perturbations and can be

measured readily through experimentation. The dimensionless dissipation term, 1/Q,

represents dissipation from all sources (both intrinsic and extrinsic) in the system.

We expand the driving force and the displacement into their Fourier components

as f (t) =
∑

k Fk cos (ωkt+ φk) and y (t) =
∑

k Yk cos (ωkt+ φ′k), respectively. We

then find the transfer function G (ω) of the mechanical system using the equation of

motion Eq. (1.1) as

G(ω) =
1

m
(
ω0

2 − ω2 + iωω0

Q

) . (1.2)

The spectral density of the mechanical fluctuations Sy (ω) is related to the trans-

fer function as Sy (ω) = SF (ω) |G (ω)|2 where SF (ω) is the spectral density of the

force (Ekinci and Roukes, 2005). We see that if we know the transfer function for

a system and if we can measure the spectral density of its fluctuations, then we can

make a measurement of the forces acting on that system.

For a damped harmonic oscillator, the square of the transfer function is

|G(ω)|2 =
1

m2

1

(ω0
2 − ω2)2 +

(
ωω0

Q

)2 . (1.3)

It is instructive to have a close look at this system because it is used in every study

presented here. We plot Eq. (1.3) in Figure 1·1 for a system with parametersm = 1 kg,

ω0 = 1 s−1, and Q = 100. We see from the figure and from the equation that in the
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Figure 1·1: Square of the transfer function of a damped harmonic
oscillator (Eq. (1.3)) with m = 1 kg, ω0 = 1 s−1, and Q = 100 on (a)
log-log and (b) log-linear axes.

limit ω → 0, the transfer function approaches a constant value |G(0)|2 = 1/κ2 where

κ = mω0
2 is the spring constant of the mode. In this sub-resonant frequency range,

where the spectral response of the damped harmonic oscillator is nearly flat, we

can use our device as a sensitive broadband transducer. We exploit this frequency

range in our measurements of bacterial fluctuations, presented in Chapter 5 and in our

measurements of transitional turbulence, presented in Chapter 6. In these studies, the

signals of interest have a broad spectrum which are relatively low frequency (ω ≤ ω0)

and the sub-resonant device motion is linearly proportional to the force acting on the

system. At frequencies near the resonance ω ≈ ω0, we find |G(ω0)|2 = Q/κ2. Here,

any force acting on the system is amplified by a factor of Q in the device’s response.

We exploit this regime in our modal mass measurements (Chapter 3) and in our gas

confinement studies (Chapter 4) where we are interested in determining the mode

frequency and the quality factor with high sensitivity. At high frequencies, where

ω > ω0, the transfer function decays as |G(ω)|2 ∝ 1/ω4 and the system responds very

weakly to perturbations. We do not exploit this region in any of our measurements.
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1.2.2 Thermomechanical Fluctuations

In some of the experiments presented in this thesis we measure the spectral density

of the deterministically driven system response in order to obtain a measurement of

the dissipation and resonance frequency of the system. In other measurements, we

are interested in studying the stochastic thermomechanical fluctuations of the device

under test. Here, we present an example of the thermomechanical fluctuations of a

silicon cantilever and provide a brief review of the theory of Brownian fluctuations in

damped harmonic oscillator systems.

The fluctuation-dissipation theorem in its general form was first presented by

Callen and Welton in 1951 (Callen and Welton, 1951) as a method to relate the power

spectrum of the fluctuations of any system in thermodynamic equilibrium with the

energy dissipation of the system. It states that the fluctuations are so well-linked

to the dissipation because they are actually a result of the dissipation in the first

place. Returning to the equation of motion for a one-dimensional damped harmonic

oscillator system, Eq. (1.1), we consider a randomly fluctuating thermal force of the

form f (t) =
∑

k Fk cos (ωkt+ φk), where Fk is a Gaussian random variable with zero

average and φk is a uniformly random phase (Kouh et al., 2014). We further assume

that the power spectral density of the thermal force SF (ω) has a white spectrum

given as

SF (ω) =
4mkBTω0

Q
. (1.4)

We also expand the displacement into its Fourier components:

y (t) =
∑

k Yk cos (ωkt+ φ′k), where Yk is also a Gaussian random variable but it is

a function of the frequency ωk. We can write the spectral density of the thermal

fluctuations as

Sy (ω) =
4kBTω0

mQ

[
(ω0

2 − ω2)2 +
(
ωω0

Q

)2
] . (1.5)
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Figure 1·2: Power spectral density of the thermomechanical motion
of a silicon cantilever. This particular measurement was conducted at
atmospheric pressure and the resonance has a quality factor of 200.

Further, the mean-square displacement at the end of the cantilever due to thermal

excitation can be calculated by integrating the spectral density of the fluctuations

over all frequencies (Albrecht et al., 1991). We find:

〈y2
th〉 =

1

2π

∞∫
0

Sy (ω) dω, (1.6)

and upon substitution,

〈y2
th〉 =

1

2π

∞∫
0

4kBTω0

mQ

[
(ω2

0 − ω2)
2

+
(
ω0ω
Q

)2
]dω. (1.7)

We see immediately from this relation that the fluctuations are intimately linked to

the dissipation in the system. In a typical experimental measurement, such as the

one depicted in Figure 1·2, we can measure the spectral density of the fluctuations

directly using a spectrum analyzer. In the case of a damped harmonic oscillator with

light damping, we can fit the spectrum to a Lorentzian line shape to find the quality
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Figure 1·3: (a) A time trace of the signal measured from the fluc-
tuations of a microscale cantilever. (b) A histogram of the time trace
data shown in (a). The distribution is fit to a Gaussian line shape. This
measurement includes 65,000 data points acquired over 13 milliseconds.
The device used is the same as that shown in Figure 1·2

factor of the mechanical mode. Additionally, we can integrate over the spectrum to

compute the mean-square displacement 〈y2
th〉 as in Eq. (1.7).

We present a measurement of the thermal fluctuations of a silicon cantilever in

Figures 1·2 and 1·3. Here, the cantilever is held at atmospheric pressure and room

temperature and it is stochastically actuated by its own thermomechanical energy.

We measure its fluctuations using a heterodyne Michelson interferometer which uses

the interference between a probe beam striking the resonator, and a reference beam

to convert small displacements into detectable signals (as described in detail in Chap-

ter 2). The measured electrical signal (in Volts) is proportional to the displacement

of the resonator. The signal can be viewed in the time domain using an oscilloscope

or frequency domain measurements can be conducted using a spectrum analyzer.

Figure 1·2 is a plot of the power spectral density of the cantilever’s fluctuations mea-

sured with a fast Fourier transform spectrum analyzer. By fitting this spectrum to

a Lorentzian lineshape (red, solid line in the figure) we find Q ∼ 200. Figure 1·3(a)

depicts a 500 µs time trace of the signal from the photodetector measured with an
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oscilloscope. A histogram of this signal is plotted in Figure 1·3(b). The histogram is

fit to a Gaussian with a coefficient of determination of R2 = 0.999. This distribution

is exactly as we would expect from our discussion above.



Chapter 2

Nanoscale Displacement Measurements

In order to conduct sensitive measurements with MEMS and NEMS devices it is

first necessary to be able to measure these devices with great precision. In this

chapter we discuss the different optical measurement techniques used to conduct the

measurements presented in this dissertation. We begin with the most seemingly

straightforward method, optical beam deflection, in which the optical beam reflecting

from the tip of the microcantilever falls upon a split photodetector, which provides a

voltage signal proportional to the tip displacement. This type of optical measurement

was used to conduct most of the studies presented in Chapters 4, 5, and 6. We

then discuss homodyne and heterodyne Michelson interferometry, the latter of which

was used to conduct the measurements presented in Chapter 3. In interferometric

measurements two optical beams, one reference beam and one object beam reflected

from the tip of the microcantilever, are superimposed to create an interference signal.

The motion of the microcantilever modulates the optical path length of the object

beam which results in a change in the interference signal which is proportional to the

tip displacement. We review these optical detection methods below. In addition, we

discuss optical shot noise and how to experimentally determine the focused spot size.

2.1 Optical Beam Deflection

Optical beam deflection has become a ubiquitous method for conducting sensitive

optical measurements due to its simplicity and reliability. The method was first

11
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Figure 2·1: Optical beam deflection setup.

introduced by Meyer and Amer (Meyer and Amer, 1988) as a simpler alternative

to interferometric detection, to monitor cantilever deflections in the atomic force

microscope. This brought the method into wide use and it was soon implemented in

commercial AFM systems and laboratory settings.

A basic schematic of an optical beam deflection measurement is depicted in Fig-

ure 2·1. In the figure, laser light is focused down to the tip of the backside of a

microcantilever. The reflected light is directed onto a split photodetector where the

incident light is converted into an electrical signal. The signal at each quadrant is

independently amplified and the normal motion of the cantilever can be read out by

taking the difference signal between the top and bottom quadrants. A four-quadrant

photodetector enables measurement of both the normal and lateral motion of the

cantilever (Meyer and Amer, 1990). This is achieved by taking the difference signal

between either the top and bottom quadrants (normal motion) or the left and right

quadrants (lateral motion).

Optical beam deflection is most attractive as a measurement method because of

its relative simplicity and versatility. In Chapter 4 we use the technique to measure
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the fluctuations of a microcantilever held inside a vacuum chamber. In Chapter 5 we

use it to monitor the motion of a cantilever which is inside of a fluid cell. In Chapter 6

we measure the motion of a cantilever which is held inside of a microchannel. The use

of optical beam deflection in all of these studies led to experimental setups that were

much easier to manipulate and more compact than interferometry based systems, yet

gave excellent detection sensitivity (∼ 500 fm/Hz1/2).

Though the optical beam deflection method appears to be simple, it can be used

to conduct measurements with atomic resolution (Alexander et al., 1989). In prac-

tice, the sensitivity of the technique can meet or even exceed that of interferometric

methods (Putman et al., 1992). Here, we briefly review the sensitivity in an optical

beam deflection measurement. We consider a Gaussian laser spot incident on a can-

tilever of length l with normal displacement ∆z at its tip. If x is the distance between

the cantilever and the photodetector, we see that the displacement of the spot at the

detector ∆s will be

∆s ≈ 2g1
∆z

l
x, (2.1)

where g1 is a dimensionless geometric parameter taking into account the position of

the spot on the cantilever (Putman et al., 1992). If the laser spot has a focused

diameter at the cantilever of D0, the diameter at the photodetector will be

Dpd ≈
4λ

π

x

D0

, (2.2)

where λ is the wavelength of the laser light (Saleh and Teich, 2007). We then find

the displacement of the spot at the detector to be

∆s = g1
π

2

∆z

λ

D0Dpd

l
. (2.3)

We see that the displacement of the spot on the detector (and therefore, the differ-

ential signal between the top and bottom quadrants) is linearly proportional to the
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cantilever tip displacement ∆z. If the optical beam has a Gaussian intensity profile,

the differential optical power ∆P at the detector is

∆P = 4

√
2

π

∆s

Dpd

Ptot, (2.4)

where Ptot is the total optical power. For a shot-noise limited system, the shot noise

power (square of the current) is given as (∆i)2 = 2e∆f 〈i〉, where ∆f is the bandwidth

of the detection system and 〈i〉 is the average photocurrent on the detector. Consid-

ering these equations, we find the signal-to-noise ratio (SNR) of the measurement to

be

SNR =

(
ληP

hc∆f

)1/2

2
√
πg1

∆z

l

D0

λ
. (2.5)

We see from this equation that the sensitivity of the measurement is independent of

the distance between the cantilever and the detector. Although the displacement of

the spot is proportional to this distance, so is the size of the spot. The SNR can be

increased by increasing the optical power, decreasing the measurement bandwidth,

and by ensuring that the focused spot is incident at the tip of the cantilever. More

details regarding the sensitivity of optical beam deflection measurements can be found

in the literature (Lee et al., 2010; Putman et al., 1992).

Because optical beam deflection is a non-interferometric transduction technique,

it is not easy, in practice, to obtain the transduction gain (the conversion factor for

the displacement into Volts) directly, although some clever schemes have been de-

vised (Shusteff et al., 2006). Instead, the gain is typically determined by calibrating

against a measurement of a known quantity (such as scanning the cantilever over a

step of known height). In the experiments presented in Chapters 4, 5, and 6, we mea-

sure the thermal noise amplitude of the cantilever oscillations and calibrate it against

the equipartition theorem result zrms
2 = kBT/κ (Butt and Jaschke, 1995), with the

cantilever stiffness κ calculated from elasticity considerations to be (Cleland, 2003)
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Figure 2·2: Knife-edge optical detection scheme.

κ = Ewh3/(4l3), where E is the Young’s modulus and l, w, and h are the length,

width, and thickness of the cantilever, respectively. Interferometric techniques, how-

ever, are inherently calibrated against the wavelength of laser light used (as we will

see below) and can provide a direct displacement calibration.

2.1.1 Knife-Edge Detection

Knife-edge optical detection is an alternative beam deflection technique that doesn’t

require a split or quadrant photodetector. Here, an opaque flat plate with a sharp

edge is placed in front of the photodetector to block half of the light reflecting from

the device under test, as illustrated in Figure 2·2. Because of the knife edge, as

the cantilever moves the optical power on the photodetector varies proportionally

with the displacement of the cantilever tip (Karabacak et al., 2006); this allows for

monitoring the oscillations of the cantilever with good displacement sensitivity. The

first microcantilever-based bacteria studies presented in Chapter 5 were conducted

using the knife-edge method. Knife-edge systems are often used to measure the size

of optical spots (Khosrofian and Garetz, 1983), as we will demonstrate in Section 2.4.
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2.2 Michelson Interferometry

Michelson interferometry is a widely used optical measurement technique that can

provide ultrasensitive measurements of sub-nanoscale fluctuations. Ultimately, the

accuracy of these measurements are limited only by the accuracy with which the

optical wavelength is known (Lawall et al., 2001). Heterodyne interferometers, for

example, can achieve accuracy as small as 10 pm (Lawall and Kessler, 2000). In

an interferometer, two optical beams, one reference beam and one object beam, are

superimposed to interfere with one another. The degree of constructive or destruc-

tive interference between the beams provides information about their relative phases

which can be related to the change in the path length of one of the beams. In our

experiments, The motion of the microcantilever modulates the optical path length of

the object beam which results in a change in the interference signal which is propor-

tional to the tip displacement. Here, we review the theory of operation of homodyne

and heterodyne Michelson interferometry, the latter of which was used to conduct the

measurements presented in Chapter 3.

2.2.1 Homodyne Interferometry

In homodyne interferometry, the two optical beams are of the same wavelength and

a change in the path length of one of the beams creates a change in the interference

between the beams which results in a change in the intensity of light at the pho-

todetector. To see this, let us consider two optical beams of monochromatic light of

wavelength λ. If the reference and object beams traverse a total path of length zR

and zO − 2δ, respectively, they can be represented at the detector as

AR = aRe
i(ωt−kzR)

AO = aOe
i(ωt−k(zO−2δ)) (2.6)
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where ω = 2πc/λ, k = 2π/λ, and 2δ is the variation in the object path length due

to the motion of the device under test (Wagner, 1990). The total optical intensity at

the detector will then be

ID = |AO + AR|2 = (AO + AR) (A∗O + A∗R)

= a2
O + a2

R + 2aOaR cos [k(zR − zO) + 2kδ] . (2.7)

If the displacement is much smaller than the wavelength of light (δ � λ) this reduces

to

ID =
(
a2
O + a2

R

){
1 + 2

aRaO
a2
O + a2

R

[cos k(zR − zO) cos 2kδ − sin k(zR − zO) sin 2kδ]
}

∼
(
a2
O + a2

R

){
1 + 2

aRaO
a2
O + a2

R

[cos k(zR − zO)− 2kδ sin k(zR − zO)]
}
. (2.8)

We see from this expression that the optical intensity on the detector can be sepa-

rated into a constant background illumination (first two terms in brackets) and an

illumination that is proportional to the device displacement δ (third therm in brack-

ets). Further, we see that in the case zR − zO = nλ where n is any integer, the

total intensity is maximized and we have Imax = (a2
O + a2

R) + 2aRaO. The mini-

mum case occurs when zR − zO = nλ/2 where n is an odd integer, and we have

Imin = (a2
O + a2

R) − 2aRaO. Finally, we see that in the case zR − zO = nλ/4 where

n is an odd integer, the background will be minimized, the term proportional to the

displacement will be maximimized, and we will have

ID =
1

2
(Imax + Imin)− 2πδ

λ
(Imax − Imin) . (2.9)

In our experiments, we use active path-length stabilization to fix the interferometer

in the condition described in Eq. (2.9) to achieve the best possible sensitivity. This

stabilization also serves to compensate for any drifts that may occur in the setup due
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to temperature fluctuations, room vibrations, and other low frequency environmental

perturbations. This optical signal is read out at the photodetector. For fluctuating

displacements δ, the DC detector output will be proportional to the background

signal (first term in Eq. (2.9)) and the AC detector output will be proportional to the

fluctuating optical power (second term in Eq. (2.9)). The detector voltage outputs will

be VDC = PDCRDCR and VAC = PACRACR whereR is the detector responsivity, RAC

and RDC are the AC and DC detector gains, and PDC and PAC are the background

and fluctuating components of the optical signal. Considering these we see that the

fluctuating voltage will be

VAC = δ
2π

λ
RACR (Vmax − Vmin) , (2.10)

which becomes

VAC = δ
2π

λ

RAC

RDC

Vp−p, (2.11)

where Vp−p = Vmax − Vmin is the peak-to-peak difference between the maximum and

minimum DC output. We see that the fluctuating voltage is linearly proportional

to the displacement of the device. The minimum detectable displacement can be

improved by maximizing Vp−p (by improving the alignment and balancing the optical

power in each beam path).

The basic layout of the path-stabilized, polarizing, homodyne Michelson interfer-

ometer used in this work is shown in Figure 2·3. Light from a helium-neon laser is

directed through an optical isolator and collimating optics (not shown), through a

half-wave plate, and to a polarizing beam splitter (PBS). The wave plate allows for

direct control of the polarization of the linearly polarized laser light, thereby con-

trolling the proportion of light that will be transmitted or reflected at the PBS. The

transmitted beam (the object beam) passes through a quarter-wave plate, is focused

through the objective to the device under test, and is reflected all the way back to
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Figure 2·3: Schematic of a path-stabilized, polarizing, homodyne in-
terferometer. PD: photodetector, BS: beam splitter, PBS: polarizing
beam splitter, M: mirror.
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the PBS. The double pass through the quarter-wave plate shifts the polarization of

the light so that it reflects upon its return at the PBS (Saleh and Teich, 2007) and is

directed onto the non-polarizing beam splitter (BS). The reference beam is initially

transmitted through the PBS, reflected off a series of mirrors, and directed to the BS.

One of the mirrors is mounted on a linear piezo actuator so that the path length of

the reference beam can be controlled to compensate for slow mechanical drifts in the

system and to keep the system at the point of optimal sensitivity, as described above.

The object and reference beam are carefully aligned so that they interfere at the BS.

The beams are then split 50/50 and directed to two photodetectors; one is used for

feedback stabilization of the system and the other is used to make measurements of

the fluctuating signal. The feedback stabilization signal is sent to a proportional-

integral-derivative (PID) controller which drives the piezo actuator to achieve stable

closed-loop control.

2.2.2 Heterodyne Interferometry

In heterodyne interferometry, beams of two different optical frequencies are used

and the signal of interest is recovered after electronically demodulating the signal on

the photodetector (Wu et al., 1999). The technique is used to shift a measurement

signal to a different frequency range. In our experiments, we employ a heterodyne

interferometer to shift our signal up by 40 MHz to avoid interference in our signal

from low frequency noise in our helium-neon laser. The laser is shot noise limited

and has a much cleaner spectrum at 40 MHz so this is a desirable range to use for a

sensitive measurement.

Let us consider two optical beams of initially monochromatic light of optical fre-

quency ω (wavelength λ = 2πc/ω). If the reference and object beams traverse a total

path of length zR and zO − 2δ, respectively, and if the reference beam is modulated
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at frequency ωm, they can be represented at the detector as (Wagner, 1990)

AR = aRe
i[(ω+ωm)t−kzR]

AO = aOe
i[ωt−k(zO−2δ)]. (2.12)

The total optical intensity at the detector will then be

ID = |AO + AR|2 = (AO + AR) (A∗O + A∗R) , (2.13)

and we find

ID =
(
a2
O + a2

R

){
1 + 2

aRaO
a2
O + a2

R

cos [ωmt+ k(zR − zO) + 2kδ]
}
. (2.14)

We see that the signal on the photodetector varies sinusoidally in time at the mod-

ulation frequency ωm and has a phase-shift which is proportional to the device dis-

placement δ. In order to demodulate the heterodyne signal, we must mix it down

with a signal from a local oscillator (LO) of the form aLO cos (ωmt+ φLO) where aLO

and φLO are the amplitude and phase of the LO. The output from the mixer will be

aDaLO
2

{
cos [k(zR − zO)− φLO + 2kδ] + cos [2ωmt+ k(zR − zO) + φLO + 2kδ]

}
,

(2.15)

where aD is the amplitude of the oscillating signal on the detector. We note that the

first term in Eq. (2.15) has no dependence on the carrier frequency and the second

term oscillates at 2ωm. We filter out this second term using a low pass filter and use

the first term as our measurement signal. In our setup we use active feedback control

to compensate for drifts in the system by setting φLO such that k(zR− zO)−φLO = 0

and the first term in Eq. (2.15) varies only with the device motion δ. For small

displacements, we end up with an output voltage signal that is directly proportional

to δ.
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The basic layout of a heterodyne Michelson interferometer is shown in Figure 2·4.

The key benefit of a heterodyne interferometer over a homodyne interferometer is its

ability to carry the measurement signal to a much higher frequency by modulating the

optical frequency of the reference beam. This can be achieved in many ways, but here

we use an acousto-optic modulator (AOM) which is driven by a 40 MHz sinusoidal

drive. In the figure, the unmodulated light is shown in red and the frequency-shifted

light is shown in orange. Light from a helium-neon laser is directed through an

optical isolator and collimating optics (not shown), through a half-wave plate, and

through the AOM. Half of the light passes directly through the AOM unchanged and

is transmitted through the polarizing beam splitter (PBS). This beam (the object

beam) passes through a quarter-wave plate, is focused through the objective to the

device under test, and is reflected all the way back to the PBS. It is then reflected and

is directed onto the non-polarizing beam splitter (BS). The reference beam (shown

in orange) is frequency modulated at the AOM and is directed to the BS where it

interferes with the object beam. The beams are then split 50/50 and directed to two

photodetectors, as in the case of the homodyne interferometer. We achieve feedback

stabilization in this setup by modulating the drive frequency of the AOM. Briefly, we

feed the detector signal to a PID controller which sends a DC control voltage to the

voltage controlled oscillator (VCO) which drives the AOM. The PID parameters are

chosen such that a stable feedback loop tracks the low frequency phase shifts in the

detector signal and compensates by modulating the AOM frequency.

2.3 Optical Shot Noise

Optical shot noise is the noise in an optical measurement caused by the quantized

nature of the arrival of photons at the photodetector. In other words, the fluctuations

in the number of photons arriving at the detector cause fluctuations in the photocur-
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rent that place an intrinsic limit on the sensitivity of any optical measurement. When

constructing an optical measurement system it is often desirable to reduce all sources

of noise in the system so that the unavoidable optical shot noise provides the great-

est noise contribution. Such a system is said to be shot noise limited. In order to

test whether a system meets this criteria one can measure the spectral content of

the optical signal as a function of the average optical power. For light which has

Poissonian photon statistics we expect the time-independent average current 〈i〉 and

the time-varying fluctuating current ∆i to follow (∆i)2 ∝ 〈i〉 (Fox, 2006), where we

have separated the photocurrent as i(t) = 〈i〉+ ∆i. The noise power in the signal is

related to the fluctuations in the photocurrent as

Pnoise(t) = ∆i(t)2RLoad (2.16)

where RLoad is the load resistance of the photodetector. Upon taking the Fourier

transform of i(t) and measuring the variance of the current fluctuations within a

frequency band ∆f , we find (Fox, 2006)

(∆i)2 = 2e∆f 〈i〉 , (2.17)

where e is the elementary charge. We write the noise power as

Pnoise(f) = 2e∆fRLoad 〈i〉 . (2.18)

The average voltage and fluctuating voltage at the photodetector output are related

to the average photocurrent and fluctuating photocurrrent by 〈V 〉 = 〈i〉RDC
L and

∆V = ∆iRAC
L where RDC

L and RAC
L are the DC and AC photodetector gains, re-

spectively. Combining the above equations we can write the spectral density of the
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Figure 2·5: Optical shot noise of a 0.8 mW helium-neon laser with
λ = 632.8 nm.

voltage fluctuations as

(∆V )2

∆f
=

2e
(
RAC
L

)2

RDC
L

〈V 〉 . (2.19)

We see that the spectral density of the fluctuations is linearly proportional to the

average voltage from the detector.

In Figure 2·5 we present a measurement of the shot noise of a 0.8 mW helium-neon

laser (λ = 632.8 nm) incident on an amplified photodetector (New Focus Model 1801-

FS). Here, the light is directed through a continuously variable neutral density filter

wheel and onto the detector. A spectrum analyzer is used to measure the spectral

density of the voltage fluctuations (∆V )2/∆f at high frequency (between 10 and 20

MHz) and a multimeter is used to measure the average voltage 〈V 〉. The spectrum of

the voltage fluctuations on the photodetector are shown in Figure 2·5(a) for various

values of average optical power. We plot the average of the spectral density of the

voltage fluctuations (averaged in the range 10 - 20 MHz) versus the mean voltage in

Figure 2·5(b). The theory, Equation (2.19), is also plotted as a solid line. We see from

the agreement between experiment and theory at larger optical power levels that this

system is shot noise limited. We do note, however, that that there is disagreement
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Figure 2·6: Measurement of optical spot size.

between data and theory for the lowest optical power levels. In this range, our

measurement is limited by the electrical noise in the detector circuit. More details

regarding shot noise limited detection can be found in the literature (Fox, 2006; Saleh

and Teich, 2007) and in other thesis work (Ozsun, 2014).

2.4 Optical Spot Size

When making optical measurements, it is often necessary to determine the focused

spot size of a laser beam. A focused beam should have an intensity profile defined as

I (r, z) = I0

(
W0

W (z)

)2

e
− 2r2

W (z)2 (2.20)

where W (z) is the beam width and r =
√
x2 + y2 and z are the radial and axial

positions, respectively. At any axial location z, the intensity is a Gaussian function

of the radial position r with its peak at r = 0.

We can measure the spot size of a focused spot by positioning a photodetector

at the beam focus, mounting a knife edge in front of the detector, and by moving

the detector-knife-edge setup past the beam. If the detector is translated in the x
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direction, the total optical power measured on the detector will be (Khosrofian and

Garetz, 1983)

P (xb) =

∞∫
−∞

xb∫
−∞

I (x, y) dxdy, (2.21)

where xb is the x coordinate of the knife-edge. We can then measure the intensity

profile of the beam by taking the derivative of the signal on the detector with re-

spect to the detector position. A measurement of this type is shown in Figure 2·6.

In Figure 2·6(a) we show the mean photodetector signal versus the location of the

photodetector x. The signal reaches a saturation on each side of the curve because

we have moved the detector from a position where the light is completely blocked

(x ≈ 0 µm) to a position where all of the light reaches the detector (x ≈ 200 µm). In

Figure 2·6(b) we show the derivative of the signal with respect to the detector posi-

tion. By fitting the data to a Gaussian lineshape (red line) we extract the full width

at half maximum of the curve which is the same as the focused spot size (37.5 µm in

this case).



Chapter 3

Estimation of Modal Parameters from

Resonance Measurements

3.1 Background

To a very good approximation, a mechanical resonator oscillating in one of its res-

onant modes behaves like a damped harmonic oscillator. Coupling this oscillatory

motion to external physical phenomena allows for very sensitive measurements of

the phenomena. This resonant measurement paradigm works well over length scales

that span many orders of magnitudes — from macroscopic gravitational wave de-

tectors all the way down to nanomechanical resonators. Mechanical resonators with

typical dimensions in the micron and sub-micron range (also known as micro- and

nano-electro-mechanical systems (MEMS and NEMS)) have enabled sensitive mea-

surement applications, including mass detection (Yang et al., 2006), rheology (Ahmed

et al., 2001), charge measurements (Cleland and Roukes, 1998), and temperature sens-

ing (Zhang et al., 2013) among many others. Apart from sensing, small mechanical

resonators have facilitated studies of fundamental physical phenomena, e.g., those

rooted in quantum mechanics.

Typically, MEMS and NEMS resonators are fabricated using standard photo-

lithographic techniques in a clean-room environment. Some common geometries are

depicted in Figure 3·1. The devices used in this study all have dimensions on the

order of tens or hundreds of microns, however, their mechanical displacements are

28
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sometimes only fractions of a nanometer. They usually possess high intrinsic qual-

ity factors (small internal damping), high natural frequencies, and minuscule active

masses.

The measured quantity in a resonant measurement is typically determined in terms

of the modal parameters of the mechanical resonator. In mass sensing, for instance,

the added mass is expressed in terms of the modal mass Mj and the resonance fre-

quency ωj = 2πfj of (the jth mode of) the resonator, and other parameters of the

measurement. For an accurate resonant measurement, it is therefore essential that

all the modal parameters be accurately established, requiring a careful determination

of the linear dimensions. While microscopy techniques can provide high resolution

images for this purpose, it is important to obtain an independent mass (and subse-

quent spring constant) measurement. This is because in commonplace MEMS and

NEMS — e.g., cantilevers, doubly-clamped beams, or membranes — there typically

is a small thickness dimension, the uncertainties in which strongly affect the modal

parameters, and which is hard to determine accurately. Furthermore, in multi-layer

structures fabricated through etching and deposition steps, there are always thickness

uncertainties. For example, for a microcantilever of linear dimensions l × w × h, the

uncertainty in the modal mass can be quantified as δMj = Mj

(
δl
l

+ δw
w

+ δh
h

)
, where

(c)(b)(a)

Figure 3·1: Illustrations of some common geometries of microscale and
nanoscale resonators. The devices depicted are (a) a doubly-clamped
beam, (b) a cantilevered beam, and (c) a rectangular membrane.
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the effective modal mass is

Mj = ρlwh

l∫
0

Ψj(x)2dx, (3.1)

with
l∫

0

Ψj(x)2dx = α being the eigenfunction normalization. Assuming h � w, l

and a given standard deviation in the measurement of the linear dimensions, the

uncertainty δh has a more significant effect on the error. Furthermore, if ρh can be

determined, this directly leads to the modal mass.

In this chapter we show how to determine ρh, and consequently the modal mass,

from thermal fluctuations and gas damping measurements. The parameters of the

devices used in this study, which include cantilever and membrane resonators, are

listed in Table 3.1. The materials, densities, and dimensions in the table are from

manufacturer specifications except in the case of device M1 which was measured by

optical microscopy (width and length) and by ellipsometry (thickness). We begin

with a discussion of thermal noise measurements.

3.2 Thermomechanical Fluctuations

An accurate calibration of the mass of a resonator comes from its thermal fluctuations.

Let us illustrate this for a microcantilever in its jth mode under thermal equilibrium

Device Material Density Dimensions Total Mass
ρ (kg/m3) l × w × h (µm3) mtotal (kg)

C1 Silicon 2330 110× 35× 2 1.79× 10−11

C2 Silicon 2330 110× 32.5× 1 0.83× 10−11

C3 Silicon 2330 90× 32.5× 1 0.68× 10−11

C4 Silicon 2330 130× 32.5× 1 0.98× 10−11

M1 Silicon Ni 3440 1260× 1260× 0.563 3.07× 10−9

Table 3.1: Parameters of devices measured in this study.
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at temperature T . We write the time-dependent thermal displacement of any point

on the microcantilever as

y (x, t) =
∞∑
j=1

Ψj (x) aj (t) , (3.2)

where Ψj (x) and aj (t) are the position-dependent mode shape functions and time-

dependent displacement functions, respectively, for the jth natural mode of the sys-

tem. Assuming the modes are well-separated in the frequency domain due to small

dissipation and the thermal amplitudes remain extremely small, we can express both

the kinetic energy T and the elastic potential energy U of the cantilever in terms of

the modal amplitude:

〈T 〉 = 〈U〉 ≈ 1

2
ρwhωj

2
〈
aj

2
〉 l∫

0

Ψj(x)2dx. (3.3)

Here, the brackets indicate ensemble averaging. We note that each degree of freedom

that contributes a quadratic term to the energy of the system has an average energy of

kBT
2

, according to the equipartition theorem (Hauer et al., 2013). We assume that we

measure the displacement of the mode at point x′ along the cantilever such that the

measured signal is proportional to y(x′, t), as is common in optical detection. Since

y(x′, t) ≈ Ψj(x
′)aj(t), and considering the equipartion theorem, the thermal energy

becomes

1

2
kBT ≈

1

2
ρwhωj

2
〈
y(x′, t)

2
〉 l∫

0

Ψj(x)2

Ψj(x′)
2dx. (3.4)

It is apparent from Eq. (3.4) that ρh and the modal mass Mj (Eq. (3.1)) can be found

uniquely to calibrate a measurement if the mean-square displacement and resonance

frequency can be determined with some accuracy.
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Figure 3·2: Thermal spectra and mechanical modeshapes of cantilever
C4 for the (a) first, (b) second, and (c) third mechanical modes. The
modeshapes are computed using simple beam theory.
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3.2.1 Measurements

In order to test these ideas, we first perform experiments on microcantilevers. The

microcantilevers are placed in a variable pressure chamber with optical viewports. A

heterodyne optical interferometer with a noise floor of 10 fm/Hz1/2 at 1 mW optical

power is used for measuring the microcantilever oscillations. Figure 3·2 shows the

results of measurements on a cantilever (device C4) with l×w×h = 130×32.5×1 µm3.

The thermal spectra and mechanical modeshapes are shown for the first (a), second

(b), and third (c) harmonic modes of the cantilever. An estimate of the mean-square

displacement of each mode of the device 〈y(x′, t)2〉 can be found by integrating the

total power under each of these curves. The modal frequencies ωj can be determined

by fitting a Lorentzian lineshape to each curve. Additionally, it is important to

carefully determine the location of the measurement x′ so that Ψj(x
′) can be found.

From these data and using Eq. (3.4), we find ρh to be 3.28× 10−3, 3.05× 10−3, and

3.16 × 10−3 kg/m2 for the first, second, and third mechanical modes, respectively.

This compares favorably to the value we would expect using the manufacturer stated

thickness and density (2.33× 10−3 kg/m2).

Estimates of ρh obtained using this method and from gas dissipation measure-

ments are presented in Section 3.4 below for all devices listed in Table 3.1. While the

method based on thermal fluctuations is accurate, a thermal noise measurement is

more difficult in practice than a driven measurement. Below, we explain how ρh can

be measured accurately from gas dissipation measurements.

3.3 Gas Damping

In this section we explore how measurements of gas dissipation in the rarefied gas

regime can be used to provide an alternative calibration of ρh and the modal mass.

We begin with a discussion of gas damping in the hydrodynamic and the kinetic
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regimes and present experimental measurements of the dissipation on cantilever and

membrane resonators.

When a resonant mechanical device is held in a high-vacuum environment the

most significant source of dissipation is typically from internal losses in the ma-

terial (Hosaka et al., 1995). If the pressure in the environment is increased from

vacuum, gas damping will provide an increasingly large contribution to the overall

measured dissipation and the quality factor of the device’s resonance will decrease.

To describe the dissipation of energy in a fluidic environment it is first necessary to

determine what parameter space the fluid is in and what physical laws are appropri-

ate. Significant attention has been given to the transition from the hydrodynamic

to the kinetic gas regime in the literature by our group (Ekinci et al., 2010; Ekinci

et al., 2008; Karabacak et al., 2007; Yakhot and Colosqui, 2007) and others (Svitel-

skiy et al., 2012; Svitelskiy et al., 2009) and in other thesis work (Karabacak, 2008).

In particular, Yakhot et al. (Yakhot and Colosqui, 2007) developed a scaling relation

to describe the crossover. Ekinci et al. (Ekinci et al., 2008) later showed, using ex-

perimental data, that this relation was in fact a universality, useful in most nanoflows

regardless of geometry. It was proven that the relative time scales in the system (the

Weissenberg number) were the most important in determining when the transition

from hydrodynamics to kinetics occurs.

In general, the classical continuum description of flow can be used if the fluid mean-

free path λ is much smaller than the characteristic length scale L of the flow, λ� L,

or equivalently, when the dimensionless Knudsen number Kn is small
(
Kn = λ

L � 1
)
.

Gas flows in this parameter space are typically well described by Newtonian fluid

dynamics. In this regime, viscous air damping is the dominant dissipation mecha-

nism. At lower pressures, where the mean-free path between molecules is larger, the

assumptions of classical fluid dynamics begin to break down (Bhiladvala and Wang,
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2004). In particular, this transition will typically occur when the mean-free path is

close to the characteristic length scale of the flow (Kn ≈ 1). In the low pressure

regime (where λ ≥ L) the fluid must be treated as a rarefied gas.

In addition to this length scale dependence, the interaction between the fluid and

the mechanical oscillator is also strongly dependent on the relative time scales in

the system. The relaxation time of the fluid τf scales inversely with the pressure(
τf ∝ 1

p

)
(Yakhot and Colosqui, 2007) and the mechanical oscillator time scale is

generally taken as the period of oscillation τm = T = 2π
ω

. Classical fluid dynamics is

valid when the relaxation time scale is shorter than the time scale of any perturbation

to the flow (τf � τm), or when the dimensionless Weissenberg number Wi is small(
Wi ≈ τf

τm
� 1

)
. However, an oscillator-driven nanoscale flow may reach very high

frequencies or very small time scales. In these cases classical assumptions do not hold.

Here, it is possible that the relaxation time scale of the fluid is actually larger than

the time scale of the mechanical oscillator. In this regime, where τm ≤ τf , the fluid

again must be treated as a rarefied gas.

To illustrate the transition from the hydrodynamic regime to the kinetic gas regime

we present a measurement of the dissipation on a cantilever beam in Figure 3·3. Here,

we measure the fluctuations of a silicon microcantilever oscillating in an unbounded

nitrogen gas environment. By fitting the power spectral density of the cantilever’s

oscillations to a Lorentzian line shape we can extract the quality factor Q of the

resonance. This quality factor is inversely proportional to the total dissipation in

the system which may arise from many possible intrinsic and extrinsic sources. By

measuring the dissipation in a vacuum environment we can identify the intrinsic

damping (1/Qi) and subtract this from the total measured damping (1/Qm) to find

the fluidic damping (1/Qf ). Figure 3·3 shows the fluidic dissipation 1/Qf measured

as a function of pressure using the fundamental flexural mode of the cantilever with
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ωτ 

Figure 3·3: 1/Qf measured as a function of pressure p using the
fundamental flexural resonance (221 kHz) of a rectangular microlever.
Solid line is from viscous theory, as presented in Chapter 4, Eq. (4.2),
and the dotted line is from molecular theory, Eq. (3.14). The crossover
from the hydrodynamic to the kinetic regime occurs when Wi ≈ 1
(p = 2.6 Torr).

an oscillation frequency of 221 kHz. It is apparent from the data that there is a

physical transition near p ≈ 2.6 Torr (or at Wi = 2πfτf ≈ 1). At this point the

flow transitions from the hydrodynamic to the kinetic regime. At pressures above the

transition the dissipation is described using viscous theory. The solid line is a fit to

Eq. (4.2) where we have approximated the cantilever as an oscillating sphere, although

its cross-section is rectangular (as discussed in Chapter 4). The equation is only fit

at larger pressures where the system is in the hydrodynamic regime. At pressures

below the transition the dissipation is proportional to the pressure 1/Qf ∝ p and we

use kinetic theory to describe the flow (dotted line, Eq. (3.14)). One formulation for

dissipation in the kinetic regime is described below.
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3.3.1 Gas Damping in the Kinetic Regime

In a rarefied gas below the transition to viscous flow, the most significant energy

dissipation mechanism for an oscillating resonator is the momentum transfer between

the gas molecules and the resonator in the direction of motion. The process is not

spatially uniform as the gas collisions only occur on the surface. However, it can be

assumed to be uniform on the surface normal to the motion, i.e., the same dissipa-

tion occurs per unit area of the resonator on the surfaces normal to the direction of

motion. The kinetic model by Christian (Christian, 1966) provides a formula for the

dissipative force per unit area acting on a plate moving with velocity ux in a rarefied

gas, Eq. (3.10). Here we review this model.

Transverse Motion of a Plate

We begin by considering an oscillating plate of area A which is held in a gas of volume

V with pressure p, as illustrated in Figure 3·4. The plate is laying in the y − z plane

and at a given instant it is moving in the +x direction with velocity ux. We assume

that the molecules have a Maxwell-Boltzmann velocity distribution given as

dn = n

(
m

2πkBT

) 3
2

e
−
(

m
2kBT

)
(v2x+v2y+v2z)dvxdvydvz (3.5)

where n is the molecular density, m is the mass of one molecule, and vx, vy, and vz are

the molecular velocities in the x, y, and z directions. Molecules will strike the plate

with velocity (vx + ux) at the front surface and (vx − ux) at the back surface. The

number of molecules that strike the front and back surfaces of the plate per unit time

per unit area are (vx + ux) dn and (vx − ux) dn, respectively. By considering that the

pressure exerted on the plate is twice the rate of change of momentum we write the
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Figure 3·4: Illustration of a rectangular plate of area A moving with
velocity ux in a gas of pressure p and volume V .

differential pressure Pd as

Pd = 2m

∞∫
0

[(vx + ux)
2 − (vx − ux)2]dn. (3.6)

By inserting our definition of dn from Eq. (3.5) and noticing that only the cross-terms

vxux survive after subtraction, the integral becomes

Pd = 4nux

(
2m3

πkBT

) 3
2
∫∫∫

vxe
−
(

m
2kBT

)
(v2x+v2y+v2z)dvxdvydvz. (3.7)

We must integrate over vx in the interval from 0 to∞. This is because the back of the

plate will only be struck by molecules with vx > 0 and the front will only be struck

by molecules with vx < 0. In the other directions, vy and vz, we integrate from −∞

to +∞ because the particles will strike the plate regardless of whether these velocity

components are positive or negative.

Pd = 4nux

(
2m3

πkBT

) 3
2
∞∫

−∞

e
−mv2y
2kBT dvy

∞∫
−∞

e
−mv2z
2kBT dvz

∞∫
0

vxe
−mv2x
2kBT dvx. (3.8)
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We compute the integrals over vy and vz and find

Pd = 4nux

(
2m3

πkBT

) 1
2
∞∫

0

vxe
− mv2x

2kBT dvx. (3.9)

Upon solving the integral over vx and making the substitution n = p/kBT we find

the differential pressure to be

Pd = 4

√
2

π

√
m

kBT
pux. (3.10)

We can then multiply by the area of the plate A to compute the total dissipative

force on the plate.

Cantilever Beam

In the case of a cantilever beam which has deflection y (x, t) at position x and time t,

we can approximate a small area dxdz on the resonator surface as a plate. We find

an expression for the dissipative force for each point on the surface as

Pddxdz = 4

√
2

π

√
m

kBT
p
∂y (x, t)

∂t
dxdz. (3.11)

Recalling the beam equation for the elastic deflection for a dissipationless structure:

ρwh
∂2y (x, t)

∂t2
+ EI

∂4y (x, t)

∂x4
= f(x, t). (3.12)

Here, ρ is the density and E is the Young’s modulus of the beam; I = wh3/12 is

its moment of inertia; f(x, t) is assumed to be a harmonic drive force close to the

jth resonance frequency ωj. To introduce to the equation of motion a constant and

spatially uniform dissipation term, one adds ρwh
ωj
Qf

∂y(x,t)
∂t

such that:

ρh
ωj
Qf

∂y (x, t)

∂t
dxdz = 4

√
2

π

√
m

kBT
p
∂y (x, t)

∂t
dxdz. (3.13)
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resulting in

1

Qf

= 4

√
2

π

√
m

kBT

p

ρhωj
, (3.14)

and a modal mass

Mj = 4

√
2

π

√
m

kBT

pQf

ωj
lw

l∫
0

Ψj(x)2dx. (3.15)

We see from these results that the dissipation in the kinetic regime is proportional

to the pressure 1/Qf ∝ p. Returning to Fig. 3·3 we see good agreement between the

experimentally measured dissipation in the kinetic regime and the prediction from

Christian’s theory, Eq. (3.14). The theory is represented by a dotted line in the

figure. The effective mass and ρh can be measured by fitting the equation to the

measured data and allowing ρh to be the free parameter of the fit. It is apparent

that an independent modal mass calibration can be found by measuring Qf vs p and

the resonator surface area. It should be noted that formulas for modal masses can

be found for irregular resonator structures as long as the modal shapes and surface

areas are available.

Shear Motion

Shear motion is another important case which should be considered when discussing

damping in the kinetic regime. The most dominant movement of a quartz-crystal

microbalance, for example, comes from a shearing mode rather than a flexural mode

(which is most common in cantilevers, membranes, and beams). If the plate is oriented

in the x − z plane, at a given instant the velocity of its top surface may be ux and

the velocity on the bottom will be −ux. Molecules will strike the plate with velocity

(vx − ux) at the top surface and (vx + ux) at the bottom surface. The number of

molecules that strike the top and bottom surfaces of the plate per unit time per unit

area are (vy) dn for both surfaces, where vy is the velocity of the molecules in the y

direction. Once again, by considering that the pressure exerted on the plate is twice
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the rate of change of momentum we write the differential pressure Pd as

Pd = 2m

∞∫
0

[vy (vx + ux)− vy (vx − ux)]dn. (3.16)

We must integrate over vy in the interval from 0 to ∞: this is because the top of the

plate will only be struck by molecules with vy > 0 and the bottom will only be struck

by molecules with vy < 0. In the other directions, vx and vz, we integrate from −∞

to +∞ because the particles will strike the plate regardless of whether these velocity

components are positive or negative.

Pd = 2nux

(
2m3

πkBT

) 3
2
∞∫

−∞

e
−mv2x
2kBT dvx

∞∫
−∞

e
−mv2z
2kBT dvz

∞∫
0

vye
−mv2y
2kBT dvy. (3.17)

Upon computing the integrals we find the differential pressure as

Pd = 2

√
2

π

√
m

kBT
pux. (3.18)

We see from this result that the dissipation on a plate with shear motion has the

same functional dependence as that of a plate moving in the transverse direction

(Eq. (3.10)). It is only reduced by a factor of 2.

3.3.2 Measurements

In order to test these ideas, we perform gas dissipation measurements on all of the

microcantilevers and membranes listed in Table 3.1. As in the thermal noise measure-

ments, the devices are placed in a variable pressure chamber and a heterodyne optical

interferometer is used to measure the oscillations. In these measurements the devices

are mounted on a piezo-electric shaker so that they can be driven deterministically.

We use a network analyzer to sweep the drive frequency over the resonance of the

device and to measure the response of the system.
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Figure 3·5: Measured fluidic dissipation 1/Qf as a function of pressure
p for three modes of device C4. Solid lines are fits to Eq. (3.14).

Figure 3·5 shows the dimensionless fluidic dissipation 1/Qf versus the pressure p

for the first three modes of device C4. Fitting a line through the data points, we

extract ρh from Eq. (3.14) to be 4.26 × 10−3, 3.08 × 10−3, and 3.08 × 10−3 kg/m2

for the first, second, and third modes, respectively. Indeed, the agreement is good

between these values and those determined from the thermal noise measurements

presented above. Further measurements on other cantilevers are listed in Table 3.2

for comparison.

The cantilever results give us confidence to move forward. We next turn to the

calibration of a membrane resonator fabricated in a layer of silicon nitride (SiN)

deposited onto a silicon substrate. First, we use optical microscopy to measure the

length and width of the membrane. Then, we use an ellipsometer to estimate the

thickness which we find to be h = 563 nm for device M1. Next, we characterize

the modes of the membrane as shown in Figure 3·6. The mode frequencies ωmn
2π

depend linearly on (n2 +m2)
1/2

as expected (Timoshenko et al., 1974) for a tension-

dominated square membrane. Finally, we select modes and measure the dimensionless

dissipation 1/Qf as a function of pressure. We present our results for five modes of
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Figure 3·6: Measured mode frequencies of a membrane resonator (de-
vice M1) as a function of mode numbers n and m. The frequencies

depend linearly on (n2 +m2)
1/2

device M1 in Figure 3·7. We are able to fit all measured modes of the device with the

gas damping theory and we find ρh to be 1.83 × 10−3 kg/m2 for the first mode and

1.64×10−3 kg/m2 for the next four measured modes. These compare favorably (within

15%) to the value calculated using the thickness from the ellipsometer measurement

and the material density (ρh = 1.94× 10−3 kg/m2). We present all of our results in

Table 3.2 below.

3.4 Results and Discussion

We have conducted thermal noise measurements and gas damping measurements on

all of the devices listed in Table 3.1. We can compare the results of these two mea-

surements to eachother and to manufacturer estimates. Our results are summarized

in Table 3.2. The first and second columns in the table list the device and the fre-

quency of the mechanical mode. The third column is an estimate of ρh obtained from

manufacturer specifications of h (ellipsometry in the case of M1) and the density of

the material. The fourth and fifth columns are estimates of ρh obtained from the gas

dissipation and thermal noise measurements, respectively. These values are found by



44

10-2 10-1 100 101 102
10-5

10-4

10-3

10-2

 146 kHz
 294 kHz
 587 kHz
 885 kHz
 1330 kHz

1/
Q

f

Pressure (Torr)

Figure 3·7: Measured fluidic dissipation 1/Qf as a function of pressure
p for five mechanical modes of device M1.

fitting our data using Eq. (3.14) and Eq. (3.4) for the two cases as described above.

In the case of the cantilever devices, the data show good agreement with an average

error of 5.7% between results from the gas damping method and the thermal noise

method. The results also correspond closely with the estimates from manufacturer

specifications. In the case of the membrane (M1) the agreement is not satisfactory

and we do not have a complete data set for the thermal noise measurements. In

fact, thermal measurements could only be made on the 146.0 and 294.3 kHz modes

because the thermal displacements of the higher modes were below the noise floor

of the measurement system. There are some experimental difficulties that must be

addressed to improve this measurement including reducing the spot size and increasing

the stability of the optical measurement system. It is encouraging, however, that the

membrane gas damping results give an estimate of ρh that is within 15% of the value

calculated using the material properties of the membrane. Assuming the density of

SiN to be ρSiN ≈ 3440 kg/m3, we arrive at an estimate of the membrane thickness

h between 480 and 530 nm, very close to the number determined from ellipsometry

(563 nm).
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Device Frequency Geometric Gas Damping Equipartition
ω0/2π (kHz) ρh (kg/m2) ρh (kg/m2) ρh (kg/m2)

C1 221.4 4.66× 10−3 4.68× 10−3 4.6× 10−3

C1 1360.4 4.66× 10−3 4.68× 10−3 4.89× 10−3

C2 150 2.33× 10−3 3.22× 10−3 3.22× 10−3

C2 925 2.33× 10−3 3.22× 10−3 3.52× 10−3

C3 224 2.33× 10−3 3.42× 10−3 3.35× 10−3

C3 1358 2.33× 10−3 3.42× 10−3 3.68× 10−3

C4 110 2.33× 10−3 4.26× 10−3 3.28× 10−3

C4 676 2.33× 10−3 3.08× 10−3 3.05× 10−3

C4 1866 2.33× 10−3 3.08× 10−3 3.16× 10−3

M1 146.0 1.94× 10−3 1.83× 10−3 2.7× 10−3

M1 294.3 1.94× 10−3 1.64× 10−3 5.8× 10−3

M1 587.0 1.94× 10−3 1.64× 10−3 −

M1 884.6 1.94× 10−3 1.64× 10−3 −

M1 1330.1 1.94× 10−3 1.64× 10−3 −

Table 3.2: Results of measurements of ρh determined by multiple
methods.

In this chapter we have presented multiple methods which can be used to estimate

modal mass in mechanical systems and we have performed experiments to test these

methods. In the gas damping method we measured the energy dissipated (quality

factor) by a mechanical oscillator at various pressures in order to extract the mass.

In the thermal noise method we measured the thermal fluctuations of an oscillator

and related its modal energy to the modal mass. While this method is accurate, it

requires the used of a well-calibrated and very sensitive measurement system that can

reliably detect thermal fluctuations of the device under test. We have shown here that

the gas dissipation method provides accurate results and that it can provide a suitable
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alternative to the thermal calibration method. Because it relies on the driven system

response, rather than thermomechanical motion, the device fluctuations are orders of

magnitude larger in the gas dissipation method and the measurements are easier to

conduct. Additionally, the gas dissipation method does not require the determination

of the absolute device deflection; only a reliable measurement of the quality factor is

necessary.



Chapter 4

Crossover from Hydrodynamics to the

Kinetic Regime in Confined Nanoflows

In this chapter, we present an experimental study of a spatially confined nanoflow,

which is generated by a sphere attached to the end of a microcantilever, oscillating

in the proximity of a flat solid wall. In this case, the symmetry of the problem is

broken and the physical behavior of the flow is quite different than in the case of an

unbounded oscillatory flow. As the cantilever is brought towards the wall, the flow

becomes confined in the gap between the cantilever and the wall, affecting the reso-

nant frequency and dissipation of the cantilever. By carefully tuning the separation

distance, the gas pressure (the fluid mean free path), and the cantilever oscillation

frequency, we study the flow over a broad range of dimensionless parameters. We

observe deviations from continuum fluid dynamics at small gaps, low pressures, and

high frequencies. Using these measurements, we provide an in-depth characterization

of confinement effects in oscillating nanoflows. In addition, we construct a scaling

function which describes the flow in the entire parameter space, including both the

hydrodynamic and the kinetic regimes. Our scaling function unifies previous theo-

ries based on the slip boundary condition and the effective viscosity. This work was

published in Physical Review Letters (Lissandrello et al., 2012).

47
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4.1 Background

As we have seen in Chapter 3, in micron and nanometer scale flows (Karniadakis

et al., 2005; Tabeling, 2005), the characteristic dynamic length scale L of the flow

approaches and is even exceeded by the mean free path of the fluid λ. This limit is

clearly beyond the applicability of the Navier-Stokes equations, requiring a rigorous

treatment using kinetic theory. A less rigorous but widely used approach to describe

these small scale flows is to extend the Newtonian description by imposing a slip

boundary condition on solid walls. This approach is justified as follows. Derivation

of the Navier-Stokes equations from kinetic theory results in the appearance of a

Knudsen layer of thickness λ near the wall (Lifshitz and Pitaevskii, 1981). Because

a fluid element of linear dimension ∼ λ is treated as a mathematical point in the

hydrodynamic approximation, the velocity at the wall becomes uw ≈ λ du
dz

∣∣
z=0

, with u

being the hydrodynamic velocity (assumed parallel to the wall) and ẑ being the wall

normal. Thus, the slip length b, where b ∼ λ, is applied as a convenient empirical

parameter to extend the Navier-Stokes equations into the kinetic regime. As required

by macroscopic hydrodynamics, b becomes negligible when the Knudsen number,

Kn ≡ λ
L , is small, i.e., Kn� 1.

The above approach comes with some problems. To describe some gas flows,

for instance, unphysical slip lengths, b � λ, may be required. To alleviate this

problem, one can assume specular reflections of the gas molecules from the wall.

However, experiments show that this assumption is not very accurate for heavier

gases and untreated surfaces (Arkilic et al., 2001; Trott et al., 2011). Worse is the

problem when the Navier-Stokes solution (with the slip boundary condition) fails

to converge with the prediction of the kinetic theory. A good example of this is

oscillating nanoflows (Karabacak et al., 2007; Ekinci et al., 2008; Ekinci et al., 2010;

Svitelskiy et al., 2009; Lee et al., 2011). Efforts to describe oscillating nanoflows using
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the Navier-Stokes equations in conjunction with a slip length agree with experiments

only in a limited range of relevant parameters (Bhiladvala and Wang, 2004). A proper

kinetic treatment of the problem (Yakhot and Colosqui, 2007) illustrates why: the

finite relaxation time τ of the fluid modifies the physics of the flow, resulting in

the “telegrapher’s equation,” which is substantially different from the Navier-Stokes

equations.

Until now our discussion has been primarily focused on unbounded oscillatory

flows in both the hydrodynamic and the kinetic regime. In this section, we turn our

attention to nanometer scale confined flows in the limit h . λ, where h is the confining

length scale. To date, a group of researchers have extended Reynolds’ hydrodynamic

formulation (Reynolds, 1886; Vinogradova, 1995) to small scales by imposing the

slip boundary condition (Honig et al., 2010; Bowles and Ducker, 2011; Maali and

Bhushan, 2008; Laurent et al., 2011; Ramanathan et al., 2010; Veijola et al., 1998) —

as described above. Others, coming from kinetic theory, have developed the concept

of the effective viscosity, which typically depends upon a properly defined Knudsen

number (Bao et al., 2002). There is no question that both approaches must agree for

the same flow parameter space. Here, we present an experimental study of nanometer

scale confined flows covering a broad range of parameters — including gap h, pressure

p, and frequency ω
2π

— along with a scaling theory. Our scaling function describes

the physical behavior of the flow in the entire parameter space, accurately capturing

the transition from hydrodynamics to the kinetic regime.

4.2 Experimental Setup

We study the oscillatory hydrodynamic response of a sphere in the proximity of a

solid surface. Our experimental device is a micron-scale silica sphere with radius R

glued to the end of a microcantilever of linear dimensions l × w × t. An image of
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(a) (b)

Figure 4·1: Silver-coated silica sphere adhered to a silicon microcan-
tilever. (a) SEM image of the cantilever with sphere attached. Scale
bar is 20 µm. (b) Close-up SEM image of the sphere with R ≈ 20 µm.

one of the devices, taken with a scanning electron microscope (SEM), is shown in

Figure 4·1. The sphere is connected to the cantilever by using a precise stage to dip

the cantilever tip in epoxy and then to make contact with the sphere. The sphere-

cantilever apparatus is then heated on a hot plate to cure the epoxy. The optical

beam deflection technique, common in atomic force microscopy (AFM) (Meyer and

Amer, 1988) and as described in Chapter 2, is used to measure the fluctuations of

the microcantilever. In this study, we have employed both the fundamental and first

harmonic flexural modes of a soft cantilever (C1), and the fundamental flexural mode

of a shorter, stiffer cantilever (C2). Figure 4·2 depicts optical measurements and finite

element method (FEM) simulations (run in COMSOL Multiphysics) of the mechanical

modeshapes of C1. For each device and mode, we first extract the the intrinsic quality

factor Qi and resonance frequency ωi
2π

in ultra-high vacuum (UHV) away from any

surfaces. The modal mass me is determined from the resonance frequency shifts

before and after the sphere is attached to the cantilever. These parameters are listed

in Table 4.1.

Once the mechanical mode is characterized, we change the flow parameters while



51

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

 

 

Am
pl

itu
de

 (n
m

)

Normalized x Coordinate

x

z

Figure 4·2: Measured (symbols) and simulated (inset and solid lines)
mechanical modes of the sphere-cantilever device. In the first harmonic
mode (blue), FEM simulations suggest that the node appears at the
position where the sphere is attached to the cantilever and that the
sphere undergoes small rotational oscillations about an axis (parallel
to the y-axis) through the node.

optically monitoring the dissipation and the resonance frequency of the mode. In

particular, we continuously vary two parameters for each mode as follows. i) We

change the gap h (shortest distance) between the sphere and a flat solid (Silicon)

surface. At small gaps (h ≤ 200 nm), we drive the cantilever to achieve ‘intermittent

contact’ between the sphere and the solid, and determine the gap from the amplitude.

For large gaps, h is extracted from a calibrated linear motion stage. ii) We vary the

surrounding pressure p by admitting dry N2 into the chamber. These provide a

two-dimensional parametric map of the dimensionless dissipation and the (angular)

Device Mode l × w × t (µm3) R (µm) ωi
2π

(kHz) Qi me (kg)

C1 1 230× 40× 3 35 13.7 12×103 5×10−10

C1 2 230× 40× 3 35 45.8 3.4×103 16×10−10

C2 1 125× 35× 4 21.5 122.4 6.8×103 1×10−10

Table 4.1: Parameters of devices measured in this study.
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Figure 4·3: Measured dimensionless dissipation 1/Qm as a function
of gap h, obtained from the driven frequency response and thermal
oscillations of the device.

resonance frequency: Qm
−1 = Qm

−1(h, p) and ωm = ωm(h, p). Before presenting the

data, we show in Fig. 4·3 that 1/Qm measured by linearly driving the resonator and

by monitoring its thermal fluctuations agree closely, with a typical discrepancy less

than 1%. The maximum amplitudes in driven and thermal measurements remain ∼ 1

nm and ∼ 0.01 nm, respectively.

4.3 Results and Discussion

The dissipation of the resonator measured in an experiment, 1/Qm, is in fact a combi-

nation of the fluidic dissipation, intrinsic dissipation, and any other dissipative sources

that may be present in the system. By properly subtracting the intrinsic dissipation

from the measured dissipation, one can obtain the fluidic dissipation:

1

Qf

=
1

Qm

− 1

Qi

. (4.1)

Figure 4·4(a) and (b) show the Qf
−1 = Qf

−1(h, p) data set for the 13.7 kHz mode in

double-logarithmic plots against gap h and pressure p, respectively. In Fig. 4·4(a), the
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Figure 4·4: (a) Dimensionless fluidic dissipation 1/Qf as a function
of gap h at fixed pressures p. Solid line segments show asymptotic
values 1/Qf∞ from viscous theory. Inset is a semi-logarithmic plot of
the same data. The h error bars for h ≤ 200 nm are due to roughness
and contact uncertainty. Otherwise, the error comes from the linear
stage. The error bars in 1/Qf are smaller than the symbol sizes. (b)
1/Qf measured as a function of pressure p with the gap fixed. Solid
line is from viscous theory and the dotted line is from molecular theory.
All data in this figure are obtained from device C1.

gap is varied in the range 10−8 m ≤ h ≤ 10−4 m with the pressure held at p = 100, 300

and 1000 Torr. Conversely, in Fig. 4·4(b), the pressure is swept continuously in

the range 10−2 Torr ≤ p ≤ 103 Torr, while the gap is fixed at h = 0.1, 0.2, 1 and

20 µm. The inset in Fig. 4·4(a) is a semi-logarithmic plot, showing the characteristic

saturation of Qf
−1 vs. h (see discussion on 1/Qf∞ below). The accompanying mode

frequency, ωm = ωm(h, p), show very little variation (less than 0.1%) in this parameter

space.

Several important preliminary observations can be made from the data of Fig. 4·4.

As we have seen in Chapter 3, for a sphere oscillating at frequency ω
2π

in an unbounded
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fluid at the viscous limit ωτ � 1 (Yakhot and Colosqui, 2007; Karabacak et al., 2007;

Ekinci et al., 2008; Ekinci et al., 2010), the dimensionless dissipation can be written

as (Landau and Lifshitz, 1987)

1

Qf∞
=

6πµR

mω

(
1 +

R

δ

)
, (4.2)

where R is the radius and m is the mass of the sphere, µ is the dynamic viscosity of the

fluid, and δ =
√

2µ
ρω

is the viscous boundary layer thickness. The fluidic dissipation

from the rectangular cantilever can also be found, albeit numerically (Sader et al.,

1999). The solid line segments in Fig. 4·4(a) and the solid curve in Fig. 4·4(b) show

the 1/Qf∞ predictions of viscous theory at large gaps, h→∞. In these calculations,

the independent contributions to dissipation from the sphere and the cantilever are

simply added. The velocity field of an oscillating sphere-cantilever system should be

different from that obtained by adding the individual velocity fields of a sphere and a

cantilever. Regardless, the agreement between experiment and calculations in Fig 4·4

is satisfactory. For the 13.7 kHz and 122 kHz modes, the ratio of the measured and

calculated 1/Qf∞ agree closely, with an error . 15%. For the 45.8 kHz mode, the

measured 1/Qf∞ is a factor of 4 larger than the calculated value. This is possibly due

to the more complex motion of the sphere. In Fig. 4·4 (b), the prediction of molecular

theory (Bhiladvala and Wang, 2004) is also shown.

When a wall is placed in the proximity of an oscillating sphere, the entire velocity

field (not just the field in the gap) will be modified substantially. Regardless, the

dissipation caused by the squeezing of fluid in the gap can be conveniently studied by

subtracting the dissipation in an infinite fluid, i.e., 1/Qh = 1/Qf − 1/Qf∞. Subtract-

ing the experimental h-independent 1/Qf∞ asymptotes in Fig. 4·4(a) from the 1/Qf

data results in the dimensionless gap-dependent dissipation 1/Qh in Fig. 4·5(a). Fig-

ure 4·5 depicts similarly-obtained 1/Qh for three different modes at multiple pressures
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Figure 4·5: Gap dependent dimensionless dissipation 1/Qh as a func-
tion of gap h at fixed pressure. (a), (b) Fundamental modes of devices
C1 and C2, respectively. (c) First harmonic mode of device C1. Solid
lines in (a)-(c) are fits to Eq. (4.8) with α = 0.5 and β = 1.6, multiplied
by a fitting factor of C ≈ 0.23± 0.11. The deviation from the solid line
in (c) is possibly due to the additional rotational motion of the sphere.
The dashed line in (c) is the improved fit with the added rotational
dissipation (Kim and Karrila, 1991). The noise in all the data in (a)-
(c) increases for h ≥ 104 nm due to the subtraction of 1/Qf∞. The
representative error bars are found by an analysis of the noise at the
tails (h ≥ 104 nm) and become smaller than symbols for h . 103 nm.
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as the gap is varied. Solid lines are fits to theory (see below). A first pass analysis of

the data can be provided based upon the dimensionless Knudsen number, Knh ≡ λ
h
.

When Knh � 1, 1/Qh ∝ 1/h and can be approximated as (Brenner, 1961; Kim and

Karrila, 1991; Chadwick and Liao, 2008):

1

Qh

=
6πµR

mω
× R

h
. (4.3)

At the opposite limit of Knh � 1, the dimensionless dissipation saturates. Between

these two limits, there is a well-defined transition from the hydrodynamic to the

kinetic regime.

4.3.1 Scaling Theory

We now provide a theoretical background for the observed transition. Since 1/Qh → 0

as h→∞, we can write a general relation

1

Qh

=
6πµR

mω
× R

h
× f

(
λ

h
,
λ

δ
,
λ

R
, ...,

R

δ

)
. (4.4)

The scaling function f({xi}), which is analytic in the limit {xi} → 0, depends on

various dimensionless variables pertaining to different dynamic regimes. It is clear

that the first few {xi} are the familiar Knudsen numbers based on appropriate linear

dimensions characterizing the system: Knh = λ
h
, Knδ = λ

δ
, KnR = λ

R
and so on. The

last dimensionless variable, R
δ

= R
√

ω
2ν

=
√

UR
ν

= Reδ, can be regarded as a Reynolds

number based on the velocity U = ωR/2. In the limit Kni → 0 and Reδ → 0, Taylor

expansion gives

1

Qh

=
6πµR

mω
× R

h
×
(
1 + f (1) + f (2) + ...

)
, (4.5)

where

f (1) = a
(1)
h Knh + a

(1)
δ Knδ + ...+ a

(1)
ReReδ (4.6)
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f (2) = a
(2)
h Knh

2 + a
(2)
δ Knδ

2 + ...+ a
(2)
ReReδ

2

+a
(2)
h,δKnhKnδ + a

(2)
h,ReKnhReδ + ... (4.7)

The relative magnitudes of the a
(n)
i and the dimensionless parameters {xi} determine

the physics of the flow. By varying {xi} over a broad range, one can extract the

magnitudes of a
(n)
i from experiment.

To gain more insight into the proposed expansion in Eq. (4.5), let us consider

the limits. When h → ∞ (Knh → 0), dimensionless dissipation due to squeezing

disappears, 1/Qh → 0. This suggests that the first order term in the Taylor expansion

in Eq. (4.6) should not strongly depend on the other Knudsen numbers, Knδ, KnR

and so on. In the limit of small h (Knh � 1), momentum transfer is dominated by

the ballistic impact of the molecules emitted from the stationary plate incident on the

moving sphere. The contribution of intermolecular collisions can be neglected. If the

thermal molecular velocity uth is large, the dimension of the gap h must disappear

from the expression for dissipation.

Keeping a finite number of terms in Eq. (4.5), one can only hope to find an

approximation for the scaling function f({xi}) valid in the limit xi → 0. To obtain

an expression valid in the entire range of {xi} variation, one has to keep infinitely

many terms. This can be achieved by recasting the scaling function in Eq. (4.4)

into a ratio of low-order polynomials with unknown coefficients to be determined

experimentally. The resulting expression

1

Qh

=
6πµR

mω
× R

h
× 1

1 + αλ
h

(
1 + βR

δ

) (4.8)

can be perceived as the simplest Padé approximant, which should describe experi-

ments in a broad parameter range. The constants α and β are related to a
(n)
i . It is

interesting to note that, in this choice, the term of linear order O(Reδ) disappears
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due to the subtraction, 1/Qh = 1/Qf − 1/Qf∞. However, the higher order term

O(KnhReδ) survives. In the small-gap limit Knh = λ
h
� 1, one obtains as prescribed

1

Qh

∼ 6πρuthR
2

mωα
(
1 + βR

δ

) . (4.9)

Returning to Fig. 4·5, we now describe how the fits to the experimental data

are obtained based upon the above scaling form. The device parameters m = me,

ω, and R are experimental constants. The fluid parameters are all assumed to be

independent of h, but may depend on p: λ ∝ p−1, δ ∝ p−1/2, and µ is independent of

p. The very same constants α and β in the scaling function in Eq. (4.8) must uniquely

fit all data sets — regardless of pressure, frequency, mode and so on. Indeed, we can

fit all our data with α = 0.5 and β = 1.6, found by iteration. Any small changes

in α and β cause the curves in Fig. 4·5 to shift along the h-axis, making the fits

unacceptable. The fits can be improved along the 1/Qh-axis by multiplying with

fitting factors of C ≈ 0.33, 0.20 and 0.16 for the 13.7 kHz, 122.4 kHz and the 45.8

kHz modes, respectively, resulting in the solid curves in Fig. 4·5. To within our

experimental accuracy, however, C remains a constant as C ≈ 0.23 ± 0.11 for all our

devices, and may be needed due to non-idealities in geometry (e.g., the cantilever

and epoxy above the sphere), inaccuracies in determining me (especially for the first

harmonic mode) and deviations from normal relative motion (see below). Deeper

physical factors — such as the non-trivial effects of the subtraction of the 1/Qf∞

tails and unsteady corrections to Eq. (4.3)— cannot be ruled out, and may give rise

to the small deviations in C from device to device.

The fit in Fig. 4·5(c) (solid curve) deviates from the data for 102 nm . h . 5 ×

104 nm. FEM simulations for this mode suggest that the sphere undergoes rotational

motion — with the displacement of its closest point to the wall being in the direction

0.98x̂ + 0.2ẑ (see Fig. 4·4(a)). Then, the dissipation comes from shearing the fluid
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Figure 4·6: Collapse of all experimental data from this work. Here,
f is the scaling function defined in Eq. (4.8) and the same Cs are used
as above.

in the gap as well as from squeezing it. For shear, 1
Qh

= 48πµR
15mω

× ln
(
R
h

)
(Kim and

Karrila, 1991) as opposed to the expression in Eq. (4.3) for squeezing. The dashed

line in Fig. 4·5(c) is the fit found by näıvely adding these two forms in the ratio

of the FEM motional amplitudes, and by keeping the scaling function exactly the

same. Because the effect remains small, the 1/h dependence of the dissipation can

be assumed prevalent for all devices considered here and in the literature.

4.3.2 Collapse of Data

Having fit individual data traces, we can collapse all our data as shown in Fig. 4·6.

The collapse is obtained by removing the trivial effects of the device size and frequency

from the data as well as the more profound effects of the scaling function f({xi}). The

plotted dimensionless quantity, 1
Qh
× mω

6πµR
× 1

f
can be regarded as the dimensionless

size- and frequency-independent dissipation, in which the kinetic effects have been

deconvoluted. It therefore shows the hydrodynamic R/h dependence at all length
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scales studied here.

Finally, our results can be interpreted as follows. In the hydrodynamic limit

(h � λ), this problem is described by Eq. (4.3), where the viscosity µ is dominated

by intermolecular collisions, µ ∼ ρuthλ, with a relaxation timescale ∼ λ/uth. To gain

insight into the kinetic limit (h � λ), one can simply write the shear stress on the

sphere as σ ∼ ρuth

∣∣∣ḣ∣∣∣. It is easy to see that σ ∼ ρuthh
|ḣ|
h
∼ ρuthh

du
dz

, where du
dz

is

the velocity gradient. This result can be interpreted as the appearance of an effective

viscosity, µeff ≈ ρuthh, due to an effective mean free path, λeff ≈ h. Substituting

µeff into the hydrodynamic solution simply results in 1
Qh
∼ ρuthR

2

mω
, consistent with

Eq. (4.9). Thus, in principle, one may justify an attempt to reach the kinetic regime

by using the Navier-Stokes equations, but combined with effective (and sometimes

frequency-dependent) viscosities, slip lengths and so on.

In this chapter, we have presented experimental data on confined nanoflows cover-

ing a broad range of flow parameters. Our simple scaling theory describes experiments

in the entire parameter range — without explicitly employing an effective viscosity

and/or slip length. In all cases the Weissenberg numbers remain small, Wi = ωτ � 1.

Since the appearance of frequency in effective viscosity essentially leads to a modifi-

cation of the equations of motion (Karabacak et al., 2007; Ekinci et al., 2008; Ekinci

et al., 2010; Yakhot and Colosqui, 2007), generalization of confined nanoflows to the

interval Wi� 1 will require further experimental and theoretical work.



Chapter 5

Nanomechanical Motion of Escherichia

coli Adhered to a Surface

In this chapter we turn to an experimental study of a biologically driven flow. We

study the nanomechanical motion of bacteria adhered to a chemically functionalized

silicon microcantilever by conducting measurements of the cantilever’s fluctuations. A

non-specific binding agent is used to attach Escherichia coli (E. coli) to the surface of

the microcantilever. The microcantilever is kept in a liquid medium, and its nanome-

chanical fluctuations are monitored using an optical displacement transducer. The

motion of the bacteria couples efficiently to the microcantilever well below its reso-

nance frequency, causing a measurable increase in the microcantilever fluctuations. In

the time domain, the fluctuations exhibit large-amplitude low-frequency oscillations.

In corresponding frequency-domain measurements, it is observed that the mechanical

energy is focused at low frequencies with a 1/fα-type power law. A basic physical

model is used to explain the observed spectral distribution of the mechanical energy.

These results lay the groundwork for understanding the motion of microorganisms

adhered to surfaces and for developing micromechanical sensors for bacteria. The

results presented here were published in Applied Physics Letters (Lissandrello et al.,

2014).

61
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5.1 Background and Motivation

Antimicrobial resistance (AMR) has become an increasingly serious threat to global

public health. Resistant strains of microbes, including bacteria and viruses, develop

naturally when resistant traits randomly evolve. In the case of bacterial resistance

to antibiotics, this evolution has been shown to predate the selective pressure of

modern-day antibiotic use (D’Costa et al., 2011). Despite this, the overuse and mis-

use of antimicrobial drugs has exacerbated the problem by creating an environment

which is very conducive for the reproduction of these resistant microbes. Their per-

vasiveness has reduced the effectiveness of treatment resulting in prolonged illness,

higher health care expenditures, and a greater risk of death (World Health Organi-

zation, 2014). The World Health Organization estimates that the annual economic

effect of AMR on the US health system could be as large as $34 billion. There is thus

a need for rapid and accurate methods for bacterial detection and identification. Con-

ventional techniques, such as polymerase chain reaction or agar plate culture, require

complex steps, expensive infrastructure, and skilled technicians, which make their

implementation in primary care settings challenging. Furthermore, these assays are

time-consuming (e.g., 48-72 hours for agar plate culture) and rely on multiple sample

processing steps. Here, we propose a new approach which exploits the motile nature

of some bacteria in order to rapidly detect their presence and to perform subsequent

tests of antibiotic efficacy.

Biological function in motile microorganisms is intimately coupled to mechanical

motion (Pelling et al., 2004; Arnoldi et al., 2000; Zhang et al., 2001; Jiang et al.,

2003), which is generated and sustained by a vast array of forces. Conversely, motile

microorganisms exert forces on their surroundings as a result of their incessant mo-

tion and metabolism (Bao and Suresh, 2003). A deeper physical understanding of

biological processes in terms of these nanomechanical forces and motions is of value
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Figure 5·1: Illustration of a motile E. coli bacterium. The bacterium
is approximately 2 µm long with a rod-shaped body, many cilia, and a
few flagella which are used for propulsion.

for both fundamental science and clinical medicine (Frauenfelder et al., 1999). For

instance, bacterial communication through motion is believed to be an important

factor for infections and for bacterial resistance to antibiotics (Visick and Fuqua,

2005; Callegan et al., 2005; Wang et al., 2013). Consequently, the development of

sensitive force and motion probes (Moffitt et al., 2008), which can match the time

and length scales of microorganisms, has been an important element in the study of

motile microorganisms.

The microcantilever has been one of the mainstays for probing the forces and

motions of biological entities (Lavrik et al., 2004; Ekinci and Roukes, 2005). Early

microcantilever-based experiments were extensions of AFM. For instance, the AFM

tip scanned over biomolecules adsorbed on a surface provided information on the

conformational changes of the biomolecules (Radmacher et al., 1994; Thomson et al.,

1996). Similarly, nanomechanical motion and forces of microorganisms, such as Sac-

charomyces cerevisiae (Pelling et al., 2004) and bacteria, were investigated using

contact-mode or dynamic-mode AFM under a number of different biological condi-

tions. More recently, biological entities have been attached to bio-chemically function-
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Figure 5·2: An E. coli bacterium propels itself by rotating its flagella.
The locomotion follows a running and tumbling pattern with periods
during which the bacterium “swims” in a straight line and periods
during which it rotates in place.

alized microcantilevers in an effort to develop novel sensors. These micromechanical

biosensors, which are typically integrated with microfluidics, utilize both the static

deflection and the resonance frequency shift of the cantilever (Ramos et al., 2006;

Burg et al., 2007). In static and resonant sensing modalities, microcantilevers have

allowed for the sensing of diverse biological entities, ranging from DNA to proteins to

microorganisms (Arlett et al., 2011; Wu et al., 2001; Gfeller et al., 2005) (e.g., viruses

and bacteria). In more recent work, Longo and co-workers (Kasas et al., 2015; Longo

and Kasas, 2014; Longo et al., 2013) adhered bacteria to a microcantilever, and mea-

sured the nanomechanical fluctuations of the cantilever before and after adhesion.

With the bacteria present on the cantilever, the fluctuations increased significantly.

Based on these results, a rapid detection scheme for bacterial antibiotic resistance

was proposed.

The above-mentioned studies clearly demonstrate that small mechanical devices

are capable of measuring signals from biological entities, given the attainable force

sensitivities and response times. In this chapter, we apply the microcantilever-based

technique developed by Longo et al. (Kasas et al., 2015; Longo and Kasas, 2014;

Longo et al., 2013) to measurements of the nature (e.g., time scales and amplitudes)

of the forces that bacteria exert on the microcantilever. In our measurements we use
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a motile type of E. coli bacteria (illustration in Figure 5·1) which have rod-shaped

bodies approximately 2 µm in length, many cilia, and a small cluster of flagella

at one end which are used for propulsion. The bacteria are not swimming freely

but are loosely connected to the surface of the cantilever. Still, it is instructive to

understand their propulsion mechanisms. Scientists have observed that the motion of

these bacteria tend to follow a “run-and-tumble” pattern (Lauga and Powers, 2009)

as illustrated in Figure 5·2. During the “run” period a bacterium will propel itself in a

straight line for a short time by bundling its flagellar filaments tightly. Eventually, one

flagellar motor reverses, causing the filaments to unwind, and the bacterium rotates

in place (or “tumbles”). When the motor reverses direction again the bundle reforms

and the “run” resumes in a new direction.

In our study we start with time-domain measurements, in which we observe an

increase in the variance of the microcantilever fluctuations due to bacterial motion. In

complementary frequency-domain measurements, we elucidate the spectral properties

of the microcantilever fluctuations. The power of the fluctuations scale with frequency

as 1/fα as well as with the surface density of the bacteria. We provide a basic physical

model for the observed spectral distribution of the mechanical energy, and discuss

implications of these results on biology and biosensor development.

5.2 Experimental Setup

We perform all experiments presented here in a custom liquid chamber (Fig. 5·3).

The chamber is formed by gluing a rubber o-ring to a clean glass slide with aquarium

epoxy. Biologically compatible adhesive is used to mount the cantilever in the center

of the chamber. Liquid transfer into and out of the apparatus is achieved by manual

micropipetting. We seal the chamber with a glass cover slip to allow for optical access

to the microcantilever. The optical beam deflection technique (Meyer and Amer,
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Figure 5·3: Schematic of the experimental setup. The cantilever is
housed in a liquid chamber; its motion is probed using an optical tech-
nique. PD: photodetector. The inset shows the cantilever, the optical
beam, and the split photodetector.

1988; Azak et al., 2007) is used to measure the fluctuations of the microcantilever,

which has linear dimensions l×w× t = 350× 32.5× 1 µm3. Briefly, the optical beam

reflecting from the tip of the microcantilever falls upon a split photodetector, which

provides a voltage signal proportional to the tip displacement (inset of Fig. 5·3(a)).

The displacement sensitivity of the technique is ∼ 10−12 m/Hz1/2 in the frequency

range 100 Hz < f < 10 kHz. For f ≤ 100 Hz, 1/f -noise limits the displacement

sensitivity to lower values (see Fig. 5·7). The voltage signal from the photodetector

is converted to displacement units by using the thermal calibration technique (Butt

and Jaschke, 1995) (see thermal spectrum inset of Fig. 5·7(a)). The microcantilever

fluctuations are measured in the time domain with a digital storage oscilloscope and

in the frequency domain with a FFT spectrum analyzer.
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5.2.1 Sample Preparation

In the experiments, we used a genetically modified strain of E. coli (BL21 Star).

The bacteria were transfected with pRSET-EmGFP plasmid consisting of ampicillin

resistance and green fluorescence protein by incubating at 41◦ C for 30 seconds and

transferred onto ice, as suggested by the manufacturer. The genetically modified

strain was then incubated at 37◦ C on a shaking incubator at 250 RPM for an hour in

lysogeny broth (LB) Broth (Lennox) containing catabolite repression medium. Next,

the strain was plated onto LB agar containing 100 mg/mL of ampicillin, followed by

a 16-hour incubation at 37◦ C. An individual E. coli colony was selected to inoculate

in 5 mL of LB medium containing 100 mg/mL of ampicillin for 16 hours at 37◦ C

on a shaking incubator at 250 RPM. To quantify the culture, the stock solution was

diluted in phosphate-buffered saline (PBS) and spread onto LB-ampicillin plates, fol-

lowed by an overnight incubation at 37◦ C. The individual colonies were then counted,

and the stock solution was found to have a bacterial density of 109 colony forming

units per milliliter (CFU/mL). We serially diluted the solution to create solutions of

concentrations C = 106, 107, and 108 CFU/mL in PBS. To prepare the microcan-

tilever surface for adhesion of bacteria, we first cleaned it with acetone, methanol,

and isopropanol and dried in nitrogen gas. The cantilever was then submerged in a

reservoir containing 1% (3-aminopropyl)triethoxysilane (APTES) dissolved in molec-

ular biology grade water for 15 minutes, and was rinsed with water afterward. The

APTES provided functional amine groups for bacterial attachment. Next, the can-

tilever was submerged in the E. coli solutions of various concentrations and incubated

for 15 minutes at room temperature. During incubation, the bacteria adhered to the

cantilever surface.

We confirmed bacterial adhesion by immediately imaging the cantilever surface

with a microscope in fluorescence and in bright-field modes (Fig. 5·4). To quantify
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Figure 5·4: Fluorescence image of the cantilever after bacterial adhe-
sion. Both single bacterium and clumps of bacteria are visible. Scale
bar is 20 µm.

the number of bacteria adhered onto the surface, we performed a separate study,

in which we adhered bacteria to large pieces of silicon using the above-described

steps and imaged in bright-field. We subsequently used these images to obtain the

average surface density of bacteria for all bacterial concentrations tested. We plot

the surface density of the bacteria as a function of the bacterial concentration in

solution in Figure 5·5. The error bars are due to the finite number of images analyzed

(5 images of 300 × 300 µm2 for each concentration), clumping of bacteria, and the

occasional non-uniformities in coverage. To confirm statistical significance of the

data we performed a one-way analysis of variance (ANOVA) with Tukey’s posthoc

test followed by Bonferroni’s Multiple Comparison test for equal variances, and the

statistical significance threshold was set to 0.05 (p < 0.05). We observed a statistically

significant increase in bacteria count on the surface in the 108 CFU/mL case compared

to the 106 and 107 CFU/mL cases (n = 5, p < 0.05).

A typical experiment began by measuring the fluctuations of the cantilever in

PBS before bacterial adhesion. This determined the baseline for the fluctuations of

the cantilever. After the collection of the baseline data, we proceeded with the bac-
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Figure 5·5: (a) Surface density of bacteria adhered to a silicon sur-
face for three different bacterial concentrations. Data are indicated as
averages ± standard deviations. * represents statistical significance of
this data point. (b) Bright-field image of bacteria adhered to a silicon
surface. Scale bar is 20 µm. Images like this were used to computer
the densities in (b).

terial adhesion process, allowed time for incubation, and flushed the liquid chamber

with PBS. We then repeated our measurement. Finally, we introduced to the liq-

uid chamber a 1 mg/mL solution of streptomycin dissolved in water, allowed time

for incubation, flushed the chamber with PBS, and repeated the measurement once

more.

5.3 Results and Discussion

5.3.1 Time-Domain Measurements

All the time traces were collected for continuous periods of 40 s by sampling the

signal at every τ = 0.32 ms (i.e., at a sampling rate of 3.125 kSa/s) with a total of

1.25 × 105 data points. The signal was DC-coupled to an oscilloscope without any

filters present. (The DC component of the signal was nulled by small adjustments to

the optical beam with respect to the split photodetector.) We assume that the length
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Figure 5·6: (a) Time-domain measurement of the microcantilever fluc-
tuations. The top (black) trace is the baseline cantilever fluctuations
with no bacteria present in PBS. The middle (green) trace is the same
measurement after bacteria have adhered to the cantilever surface in a
108 CFU/mL solution. The data in Fig. 5·5 and the cantilever area sug-
gest that the signal comes from ∼ 102 bacteria on the microcantilever.
The bottom (blue) trace is after the bacteria are killed in an antibiotic
solution. (b) PDFs of the three time signals shown in (a) with Gaussian
fits. (c) Variance of the microcantilever fluctuations measured from the
three data traces in (a). Data are indicated as averages ± standard de-
viations. Brackets represent groups which were compared by statistical
analysis.
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C N σ0
2 σ1

2 σ1
2 − σ0

2

(CFU/mL) (nm2) (nm2) (nm2)

106 4 3.59 4.02 0.43

107 27 2.01 3.39 1.38

108 96 2.08 6.29 4.21

Table 5.1: Variance of displacement fluctuations. The number of
bacteriaN on the microcantilever was estimated from the concentration
C using the data in Fig. 5·3(b). The variances for the baseline and
bacteria experiments are σ0

2 and σ1
2, respectively; σ1

2− σ0
2 quantifies

the additional cantilever fluctuations induced by the bacterial motion.

of the time trace sets the lowest measurement frequency to ∼ 0.025 Hz. Figure 5·6(a)

depicts a typical time-domain measurement of the mechanical fluctuations of the tip

of the microcantilever, z(t), under different conditions. The top (black) trace shows

the fluctuations measured in PBS before bacterial adhesion. The middle (green) trace

shows the fluctuations after bacteria have been adhered to the cantilever as described

above. Finally, the bottom (blue) trace shows the fluctuations after administration of

the antibiotic streptomycin. The probability density function (PDF) of the three time

signals is shown in Fig. 5·6(b) to demonstrate the Gaussian nature of the fluctuations.

For these particular measurements a concentration of C = 108 CFU/mL of bacteria

was used, and we estimate, using the data in Fig. 5·5(b), that there were N ∼

102 bacteria on the microcantilever. Qualitatively, there are differences between the

middle trace with bacteria and the other two traces; the data taken after bacterial

adhesion exhibit large-amplitude low-frequency fluctuations, which are not present

in the no-bacteria case. The different characteristic frequencies in these data traces

provided the motivation for measuring the spectrum of the fluctuations.

For each experiment, we repeated these measurements three times, waiting for

∼ 1/2 hour between measurements, and computed the variance of the fluctuating
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time signal as

σ2 =
1

N

N∑
k=1

[z(kτ)− z̄]2, (5.1)

where z̄ is the mean (typically z̄ = 0 m). In Table 5.1, we present these average

variances from the cantilevers that were incubated in bacteria solutions with con-

centrations C = 106, C = 107, and C = 108 CFU/mL, corresponding to N ∼ 4,

N ∼ 30 and N ∼ 102 bacteria, respectively. The sample prepared using the lowest

bacteria concentration (C = 106 CFU/mL) with N ∼ 4 was below the uncertainty

of the experimental measurement. In Table 5.1, σ0
2 and σ1

2 correspond to the vari-

ances for the baseline and bacteria experiments, respectively. We also subtracted σ0
2

from σ1
2 to obtain a quantitative measure of the additional cantilever fluctuations

induced by the bacterial motion. The higher bacterial concentration case exhibits a

larger increase in variance than the lower concentration case. The average variances

for the C = 108 CFU/mL experiment are also depicted graphically in Fig. 5·6(c).

These values match those found from the Gaussian fits of the PDFs in Fig. 5·6(b).

To confirm statistical significance of the data, we performed a statistical analysis on

the variance measurements. We observed that the variance of the fluctuations after

bacteria adhesion was significantly greater than the other two cases (baseline and

antibiotics) (n = 3, p < 0.05). Further, after the application of antibiotics to the

bacteria-adsorbed surfaces, the signal decreased to the baseline level. The statistical

analysis demonstrated that the time domain data for baseline and antibiotics were

not significantly different (n = 3, p > 0.05).

5.3.2 Frequency-Domain Measurements

All the PSD measurements were performed with a FFT spectrum analyzer using the

following resolution bandwidths (RBW): RBW ≈ 0.25 Hz for 0.25 Hz ≤ f ≤ 100 Hz;

RBW ≈ 1 Hz for 100 Hz ≤ f ≤ 500 Hz; and RBW ≈ 16 Hz for f ≥ 500 Hz.
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Figure 5·7(a) depicts the power spectral density (PSD) Sz(f) of the fluctuations of

the microcantilever tip in a double-logarithmic plot under three different conditions:

the black trace (lower, solid) S0
z (f) is obtained in PBS before bacterial adhesion;

the green trace (upper, solid) S1
z (f) is obtained after the adhesion of bacteria in the

C = 108 CFU/mL bacteria solution; the blue line (lower, dashed) is obtained after

administration of streptomycin. The PSD increases after bacterial adhesion, but only

in the frequency range f . 100 Hz. After incubation in antibiotics, we observe that

the PSD returns to the baseline (no bacteria) level to within experimental error.

The presented data were averaged at two different time scales: to suppress the

random noise, 1000 traces were averaged during collection; to assess longer-term drifts,

the measurement was repeated three times with ∼ 1/2 hour temporal separation. The

standard deviation between the measurements obtained at different times is shown

as the shaded regions of uncertainty in Fig. 5·7. (The error bars are shown only in

the relevant frequency region.)

The calibration of the displacements was based on the thermal resonance peak

visible around fR ≈ 2.5 kHz using standard AFM calibration practices. The inset

shows the thermal peak in a linear plot. The (red) line is a fit to the damped

harmonic oscillator model driven by the fluctuations in a liquid (Paul et al., 2006)

with the addition of white noise. The PSD has a resonance frequency fR ≈ 2.5 kHz

and quality factor Q ≈ 1.5. The cantilever is assumed to be at room temperature,

composed of silicon, and has a spring constant of K ≈ 0.03 N/m.

5.3.3 Physical Model

Returning to Fig. 5·7(a), we notice that, at the low frequency region, the noise data

can be approximated by 1/fα with α ≈ 2. This is the noise signature of our measure-

ment setup, possibly the laser (Labuda et al., 2012). To find the power spectral density

SBz (f) of bacterial motion, we näıvely subtract the PSDs, SBz (f) ≈ S1
z (f) − S0

z (f),
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Figure 5·7: (a) PSD of microcantilever fluctuations as a function of
frequency in a double-logarithmic plot. Single standard deviations are
shown in gray behind the data traces. The cantilever thermal resonance
is at fR ≈ 2.5 kHz with Q ≈ 1.5. The inset shows this thermal peak
in PBS in a linear plot. The data are fitted to a damped harmonic
oscillator model driven by fluid fluctuations. (b) Subtracted PSD of
the microcantilever fluctuations as a function of frequency. The PSD of
the baseline is subtracted from that measured after bacterial adhesion.
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i.e., we subtract the black curve from the green curve. The subtracted PSDs are

shown in Fig. 5·7(b). The extra noise power due to the bacteria is not appreciable for

f & 80 Hz. It appears that the majority of the noise power stays at low frequencies;

SBz (f) ∝ 1/fα for 1 Hz . f . 80 Hz.

Although it is typically difficult to untangle 1/f noise sources (Dutta and Horn,

1981), several features in the data suggest that subtraction of the PSDs as described

above effectively removes the experimental 1/f noise. First, in Fig. 5·7(a), the PSD

of cantilever fluctuations with adsorbed bacteria is almost an order of magnitude

above the baseline. Second, in Fig. 5·7(b), the additional noise power coming from

the bacteria, i.e., SBz (f), grows with the number of bacteria on the microcantilever.

Convinced that the observed 1/f -like behavior is indeed due to the bacteria, we turn

to a discussion of possible explanations. Many diverse biological processes fluctuate

with PSDs S(f) ∼ 1/fα. While the ubiquity of this 1/f behavior is intriguing, it

may only be a reflection of the simple fact that the measured signal combines many

processes that act on different time scales (Hausdorff and Peng, 1996). Here, each

bacterium exhibits motions with different characteristic time scales τi and amplitudes

Ai. For instance, τi can pertain to the motion of the cilia; the motion of the flagella;

and even the slow diffusive motion of the entire bacterium on the surface due to the

breaking and re-forming of chemical bonds. The spectral density of the motion of

a single bacterium can thus be considered to be a sum of these different spectral

densities,
∑
i

Ai
2τi

1+(2πfτi)
2 . This argument suggests that the noise power spectral density

of a single bacterium should be ∼ 1/fα with α determined by the interplay between

the numerous time scales τi present in the problem. While this simple explanation

may be satisfactory for a first-pass analysis, a comprehensive model should take into

account further complexities due to the fact that the cantilever responds to input

from many bacteria. For instance, bacteria will have a distribution of sizes and thus
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time scales; bacteria are positioned randomly on the cantilever; the coupling strength

of the motion of each bacterium to the cantilever will be different; and so on.

5.4 Conclusions and Outlook

Regarding sensor applications, we emphasize that conventional methods for studying

bacterial behavior and detecting bacteria are time consuming and require expensive

infrastructure. Recent biosensing approaches developed on microfluidic platforms

based on electrical and optical sensing are not able to monitor bacterial motion and

antibiotic resistance in real-time (Wang et al., 2012a; Wang et al., 2012b; Inci et al.,

2013; Tokel et al., 2014; Mani et al., 2014; Shafiee et al., 2013); similarly, microme-

chanical detection based on frequency shifts of a microcantilever resonator does not

provide enough sensitivity in viscous liquids (Ekinci et al., 2010). For instance, there

was no noticeable frequency shift in our experiments due to the mass of the bacteria,

while fluctuations due to the bacteria were detectable. The theoretical limit for the

minimum detectable mass based on frequency shift is of order Mc/Q ∼ 2× 10−11 kg

(Ekinci et al., 2004), where Mc is the cantilever mass. Given that the mass of a single

E. coli is ∼ 1× 10−15 kg, ∼ 104 bacteria are needed for a detectable frequency-shift

based signal. All these suggest that, by monitoring the fluctuations of a cantilever,

one can develop functional and versatile sensors. It may be possible to enhance the

fluctuation signal by lowering the spring constant of the microcantilever; this may re-

duce the resonance frequency and make the resonator overdamped in liquid. Careful

modeling is required for finding the optimal design parameters for next generation

sensors.

In this chapter, we measured the nanomechanical spectrum of the forces that

bacteria exert on a microcantilever from the fluctuations of the microcantilever. We

observed that the amplitude of the fluctuations scales with frequency as 1/fα (2 ≤
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α ≤ 3) as well as the surface density of the bacteria. Our physical model suggests

that each bacterium provides fluctuations with multiple time scales and amplitudes,

resulting in a collective 1/f -like spectrum.



Chapter 6

Noisy Transition to Turbulence in

Microchannels

In this chapter, we present an experimental study of a noisy transitional flow in a mi-

crochannel. We use a microcantilever sensor embedded in the microchannel wall and

perform two sets of experiments in the same microchannel: first, we study transition

triggered by the natural imperfections of the walls; subsequently, we study transition

under artificially added inlet noise. The two experiments result in random flows in

which high-order moments of near-wall fluctuations differ by orders of magnitude.

Surprisingly however, the lowest order statistics in both cases appear qualitatively

similar and can be described by a proposed noisy Landau equation for a slow mode.

The noise, regardless of its origin, regularizes the Landau singularity of the relaxation

time and makes transitions driven by different noise sources appear similar.

6.1 Introduction

More than a century ago, Osborne Reynolds investigated the transition to turbulence

in glass pipes in a series of experiments in which he injected a filament of dye at

the pipe inlet (Reynolds, 1883). Reynolds noticed that the characteristics of the dye

filament and hence the entire flow field depended on the dimensionless flow rate or

the Reynolds number, Re = UD/ν (here, U is the mean flow velocity, D the pipe di-

ameter, and ν the kinematic viscosity of the fluid). Below a critical value Re� Recr,

the dye propagated downstream as a thin filament without breaking up, indicating

78
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a laminar flow in the pipe. At Re ≥ Recr, this pattern changed dramatically: waves

appeared in the vicinity of the inlet, sometimes leading to substantial flow random-

ization downstream. With increasing Re, the fraction of the tube length occupied by

these waves increased, and at Re� Recr, the entire flow became turbulent.

Reynolds, however, was unable to determine a unique value for Recr. He noticed

that the value of Recr was sensitive to various imperfections, most notably the ge-

ometry of the inlet. If the inlet was sharp, inlet perturbations appeared in the form

of shedded vortices that caused transition to turbulence at large Reynolds numbers.

These perturbations, however, rapidly decayed downstream, if Reynolds number was

not too large. By carefully eliminating these, Reynolds was able to delay the tran-

sition up to Re ≈ 12, 800 (Reynolds, 1883). Others following Reynolds were able to

sustain laminar flows in pipes even for Reynolds numbers as high as 100, 000 (Pfen-

ninger, 1961). Relatively recently, the effect of initial (inlet) perturbations on Recr

were quantified by introducing well-controlled disturbances (called turbulent “puffs”

or “slugs”), which filled the entire pipe cross-section and were able to travel along

the length of the pipe, in a laminar flow (Darbyshire and Mullin, 1995). Consis-

tent with Reynolds’ observations, the flow became turbulent at smaller and smaller

Reynolds numbers as the ratio of the disturbance velocity to the mean flow velocity

was increased. (For a comprehensive review, see (Yaglom, 2012).)

The above-described “decay or amplification” of waves (or perturbations) forms

the basis of Landau’s phenomenological theory of transition (Landau and Lifshitz,

1987). Landau’s theory, though insightful, is better applicable to wakes in flows past

bluff bodies (Sreenivasan et al., 1987) and in convection, i.e., in situations where

wall effects and viscosity do not dominate. It is well-justified in pipe flows when the

characteristic size of a perturbation is O(D) and wall effects are unimportant, e.g.,

in the case of puffs or slugs. Efforts to describe transition in pipes using the Landau
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theory, most notably by Stuart and others (Stuart, 1971), focused on obtaining the

magnitudes of the coefficients γ1 and α (as will be described below) and testing their

possible universality. This universality remains elusive, suggesting that wall effects

must be important in transition. Numerical simulations and experimental data show

that, at least in the range 2300 ≤ Re ≤ 105, powerful bursts generated by unstable

boundary layers are mainly responsible for turbulence production in the bulk.

The majority of researchers studying transition to turbulence in pipes have been

interested in the flow response to perturbations at the inlet in an otherwise perfect

pipe (Yaglom, 2012). This interest can partially be explained by the mathematical

well-posedness of the problem and by the emergence of numerical methods combined

with powerful computers. Conversely, the “fuzzy” problem involving inlet distur-

bances, pipe imperfections, and pipe roughness has not attracted as much attention

(Pausch and Eckhardt, 2015). In this chapter, we focus, both experimentally and the-

oretically, on transition to turbulence triggered by noise in an imperfect microchannel.

Experimentally, we show that adding inlet disturbances, while keeping everything else

the same, strongly influences the transition process. Our measurements of the fre-

quency spectra and the probability distributions of near-wall fluctuations provide

insights into transition to turbulence in a noisy flow. To describe our experimental

observations, we propose a modified Landau theory in which all imperfection-induced

flow disturbances are treated as added high-frequency noise. This theory agrees well

with our experimental observations. An important consequence of this theory is that

noise regularizes the Landau singularity of the relaxation time.
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6.2 Theory

6.2.1 Landau’s Stability Analysis

The stability of a laminar flow in Landau’s interpretation is formulated as follows.

Consider an infinitesimally small perturbation v to the laminar (transitional) velocity

field ū, so that the total velocity is u = ū + v and the total pressure is p = p0 + p1.

Then, the Navier-Stokes equations

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u; ∇ · u = 0 (6.1)

can be written as:

ū · ∇ū = −∇p0

ρ
+ ν∇2ū; ∇ · ū = 0 (6.2)

and

∂v

∂t
+ ū · ∇v + v · ∇ū + v · ∇v = −∇p1

ρ
+ ν∇2v; ∇ · v = 0 (6.3)

subject to the boundary condition that ū and v both vanish on the solid walls.

Neglecting the O(v2) contribution to Eq. (6.3) results in linearized Navier-Stokes

equations to be used for investigating instabilities in fluid flows.

Now, the task is to find a solution to Eqs. (6.2-6.3) describing the time evolution

of an initially (t = 0) infinitesimally small perturbation v. In this case, the O(v2)

contribution to Eq. (6.3) is neglected. For the perturbation, Landau assumed the form

v(r, t) = A(t)f(r), where A(t) = constant×e−iΩt is the slowly-varying amplitude with

a complex eigenfrequency, Ω = ω1 + iγ1, and f(r) describes the spatial dependence.

We find A(t) = constant × eγ1t−iω1t so that waves will decay if γ1 < 0 and grow if

γ1 > 0. From the form of A(t) we see that it must satisfy the equation

d|A|2

dt
= 2γ1|A|2, (6.4)
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Figure 6·1: Time evolution of the disturbance amplitude |A(t)| con-
sidering only second-order terms in A (as in Eq. (6.4)) for positive (red
line) and negative (blue line) values of γ1.

where γ1 ∝ (Re − Recr). The time evolution of the disturbance amplitude |A(t)| is

shown in Figure 6·1 for positive (red line) and negative (blue line) values of γ1.

This description, however, is only valid if the Re of the flow is not too large

(small γ1) and the initial disturbance amplitude A(0) is small. We quickly realize

that we must consider higher order terms to develop a more complete theory. The

third order terms in A and the complex conjugate A∗ (such as terms proportional

to AA∗2 and A2A∗) will oscillate with frequency ω1. These periodic oscillations are

rapid in comparison with the rate of change of A(t) (|ω1| � |γ1|). If we average over

a time scale that is large compared to 2π/|ω1| but small compared to 1/|γ1|, these

third-order terms will disappear. The next higher order terms will be proportional to

|A|4 and we write

d|A|2

dt
= 2γ1|A|2 − α|A|4. (6.5)

The fourth-order terms do not oscillate at frequency ω1 and they survive the averaging

process. Equation (6.5) is known as the Landau equation and its general solution can
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Figure 6·2: Time evolution of the disturbance amplitude |A(t)| con-
sidering up to fourth-order terms in A (as in Eq. (6.5)) for different
initial disturbance amplitudes A0 with (a) α > 0 and γ1 < 0 and (b)
α > 0 and γ1 > 0. The asymptotic value Ae is also shown as a dotted
line in (b).

be found as

|A(t)|2

|A0|2
=

e2γ1t

1 + |A0|2 α
2γ1

(e2γ1t − 1)
, (6.6)

where A(0) = A0 is the initial perturbation amplitude.

The sign of the parameter α in Eq. (6.5) determines whether nonlinear effects will

work to stabilize (α > 0) or destabilize (α < 0) the disturbance. First, we consider

the case of positive values of α. Here, setting γ = c(Re−Recr), one can reproduce the

observed “decay or amplification” of perturbations. We plot the time evolution of the

disturbance amplitude in Figure 6·2 for γ1 < 0 and γ1 > 0 in (a) and (b), respectively.

When Re − Recr < 0 (γ1 < 0), all perturbations decay (A(t) → 0) in the limit

t → ∞ (t � 1/γ1). When Re − Recr > 0 (γ1 > 0), the amplitude grows, saturating

at |A(∞)| = Ae = (2γ1/α)1/2 and we note that this asymptote is proportional to

(Re− Recr)
1/2. This asymptote is shown as a dotted line in Figure 6·2(b). In the case

of γ1 > 0 it is apparent that disturbances with initial amplitudes smaller than the

equilibrium value (A0 < Ae) will be amplified and will saturate at Ae. Disturbances
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Figure 6·3: Time evolution of the disturbance amplitude |A(t)| con-
sidering up to fourth-order terms in A (as in Eq. (6.5)) for different
initial disturbance amplitudes A0 with (a) α < 0 and γ1 > 0 and (b)
α < 0 and γ1 < 0. The asymptotic value Ae is also shown as a dotted
line in (b).

with initial amplitudes larger than the equilibrium value (A0 > Ae) will decay to Ae

over time.

We now consider the case of negative values of α where the fourth-order term in

Eq. (6.5) serves to destabilize the disturbance to the flow. We plot the time evolution

of the disturbance amplitude in Figure 6·3 for γ1 > 0 and γ1 < 0 in (a) and (b),

respectively. When γ1 < 0, all perturbations with initial amplitude less than the

asymptotic value (A0 < Ae) will decay (A(t) → 0) in the limit t → ∞. If, however,

A0 > Ae, the perturbation will be amplified. In the case of γ1 > 0, the amplitude

grows indefinitely regardless of the initial perturbation amplitude.

We see that in these cases, where A(t)→∞, Eq. (6.5) is not sufficient to describe

the system and we must consider even higher-order terms. We neglect the fifth-order

terms which average to zero (as in the case of the third-order terms) and we add a

term of sixth-order in |A|, −β|A|6 with β > 0. We write

d|A|2

dt
= 2γ1|A|2 + |α||A|4 − β|A|6. (6.7)
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Figure 6·4: The long-time limit of the disturbance amplitude (Ae)
versus Re for α > 0 (a) and α < 0 (b).

In the long time limit, this gives us

|A(∞)|2 =
|α|
2β
±

√
|α|2

4β2
+

2γ1

β
. (6.8)

The long time limit of the disturbance amplitude Ae = |A(∞)| is shown versus the

Reynolds number in Figure 6·4 for α > 0 and α < 0 in (a) and (b), respectively.

In the case of α > 0, Eq. (6.5) is sufficient to describe the flow and we simply have

Ae = (2γ1/α)1/2. If α < 0 the system has a range of Re for which it can be considered

to be metastable, that is, perturbations of large enough amplitude will be amplified

while smaller perturbations will decay. The unstable region is represented by dashed

lines in the figure.

The above theory, particularly Eq. (6.4), suggests that information about the ini-

tial conditions of the flow disappears on a time scale τ = 1
2|γ1| ∝

1
|Re−Recr| . This behav-

ior is similar to the “critical slowing down” in the proximity of a critical point in phase

transitions (Procaccia and Gitterman, 1981). In pipe flows, it has important and in-

teresting consequences. A perturbation occurring at position l and being advected by

a mean flow of velocity U stays in the pipe for a time interval t0 ≈ (L− l)/U , where
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L is the pipe length. Therefore, to observe the decay of a perturbation generated in

the bulk or its growth toward a final turbulent state, one needs t0 � τ , requiring un-

reasonably long pipes around Recr. The divergent relaxation time τ ∝ |Re− Rcr|−ζ

with ζ ≈ 0.56 was also recently obtained in numerical simulations of transition in

force-driven Navier-Stokes equations by McComb et al. (McComb et al., 2014).

6.2.2 Landau’s Stability Analysis with Noise

In this section we consider the non-idealities in our experimental system which may

trigger perturbations in the flow. We incorporate this experimental noise into the

Landau theory by considering a general additive noise term φ(t). We assume that

a high-frequency random Gaussian force φ(t) defined by the correlation function

φ(t)φ(t′) = 2φ2δ(t− t′) stirs the fluid. Then, Eq. (6.3) is modified as

∂v

∂t
+ ū · ∇v + v · ∇ū + v · ∇v = −∇p1

ρ
+ ν∇2v + φ(t). (6.9)

Repeating Landau’s arguments leading to Eq. (6.5), we write

∂A

∂t
= γ1A−

α

2
A3 + φ(t) (6.10)

Averaging over high-frequency fluctuations gives a modified Landau equation for the

slow mode:

d|A|2

dt
= 2γ1|A|2 − α|A|4 + φ2. (6.11)

In a force-driven flow with initial condition A0 = 0, the solution to Eq. (6.11) is

|A(t)|2 =
γ1

α
+
β− − β+e

− t
τ

β− + β+e
− t
τ

(
β+ −

γ1

α

)
. (6.12)

where

β± = ±γ1

α
+

√
γ1

2

α2
+
φ2

α
> 0 (6.13)
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and the relaxation time is

τ =
1

2
√
γ2

1 + φ2α
. (6.14)

This gives in the long-time limit:

|A(∞)|2 = β+ =
γ1

α
+

√
γ1

2

α2
+
φ2

α
. (6.15)

Remembering that in Landau theory γ1 = c(Re− Recr), we notice an important

consequence of noise: the relaxation time τ remains finite in the limit Re → Recr,

in contrast to the “critical slowing down” discussed above. Thus, the external noise

source regularizes the dynamics around the transition point. In addition, Eq. (6.10)

indicates that, when A is small in the low Re limit so that the O(A3) contributions

can be neglected, A obeys Gaussian statistics.

6.3 Experiment

To test these ideas, we have designed an experiment in a rectangular micro-channel

in which the inlet condition can be modified to create artificial perturbations. The

rectangular micro-channel has linear dimensions L×W ×H = 35×8×0.9 mm3 with

hydraulic diameter D ≈ 1.6 mm. The circular inlet and outlet tubes have diameters

of ≈ 8 mm. A pressurized air source is used to establish air flow in the channel. The

flow rate is monitored using a rotameter, and the pressure drop between the inlet and

outlet is measured using a differential pressure gauge. Two different inlet conditions

were investigated as illustrated in Figure 6·5(a): (i) the inlet was unblocked; (ii) the

inlet was partially blocked by a mesh made up of a relatively loose plug of steel wool

with 25 µm fiber thickness. The near-wall flow in the microchannel is probed by a

rectangular microcantilever with linear dimensions l×w× h = 225× 27.5× 3.0 µm3.

The chip carrying the microcantilever is embedded in the bottom wall of the micro-
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Figure 6·5: (a) Rectangular micro-channel with linear dimensions
L × W × H = 35 × 8 × 0.9 mm3 shown in cases (i) and (ii). The
hydraulic diameter is D ≈ 1.6 mm. The test section is highlighted in
blue. (b) The microcantilever chip is integrated to the middle of the
bottom wall seamlessly.

channel by a surrounding aluminium structure (Figure 6·5(b)). The test section is

approximately 17 mm (≈ 11D) from the inlet (highlighted in blue in the figure). The

channel has a transparent top wall, and the motion of the tip of the microcantilever

is read out using the optical beam deflection technique (Meyer and Amer, 1988) as

discussed in Chapter 2.

We conduct scanning white light interferometry measurements to determine the

surface roughness of the channel walls and the cantilever surface. We find the sili-

con surface of the cantilever to have an RMS roughness of ∼ 30 nm over an area of

0.71× 0.53 mm. The upper channel wall is made from machined polycarbonate and

has an RMS roughness of ∼ 270 nm over the same area. The aluminum structure

surrounding the cantilever chip (made from aluminum shim stock) has a local rough-

ness of ∼ 290 nm but wide-field images covering the entire length of the channel show

a variation as large as ±100 µm. One full-field white light interferometer image of

the type used to estimate roughness is shown in Figure 6·6(a). The image covers the

entire length of the channel and is constructed by stitching together many measure-
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Figure 6·6: (a) White light interferometer image of the microchannel
(b) Optical image of the microcantilever and the surrounding aluminum
structure. Scale bar is 200 µm.

ments of smaller areas. We also show an optical image of the cantilever mounted in

the channel in Figure 6·6(b). The cantilever, cantilever chip, and surrounding alu-

minum shim stock are visible in the image. We see that there is a gap of ∼ 200 µm

between the left and right sides of the chip and the aluminum shim stock. The gap

between the cantilever tip and the nearest aluminum is ∼ 500 µm. Reducing the gap

between the cantilever and the surrounding structure is difficult in practice but future

experiments can incorporate a hole in the wall of the channel so that the cantilever

can be embedded more carefully.

Our flow sensor, the microcantilever, responds to pressures acting on its top and

bottom surfaces, and moves primarily in the z direction. We model the cantilever as a

one-dimensional damped harmonic oscillator with a complex linear response function

G(ω) = 1
m(ω0

2−ω2+iωω0/Q)
. Here, m is the mass and Q is the quality factor of the

mode (the fundamental mode). The square root of the power spectrum of the system

response under no flow is shown in Figure 6·7. The fundamental resonance of the

cantilever is clearly visible at f0 ≈ 80 kHz with a quality factor Q ≈ 190. These

thermally-excited resonant oscillations appear above our noise floor because of the
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Figure 6·7: Square root of the power spectral density of the noise in
the system. The peak at 80 kHz is due to the thermal oscillations of the
cantilever. The cantilever motion is obscured below the resonance due
to technical noise. The red curve is the calculated thermal response of
the cantilever.

high Q of the cantilever. The high Q ensures that almost all of the thermal noise is

accounted for in the resonant motion (Saulson, 1990), allowing calibration using the

equipartition theorem (Butt and Jaschke, 1995).

After extracting the cantilever parameters from its resonance and determining

the calibration factors, we can compute the thermal response of the microcantilever

over the entire frequency range. This is the lower curve shown in Fig. 6·7. While

we can detect resonant thermal motion with high fidelity, the detection noise (∼

5 × 10−13 m/
√

Hz) obscures the off-resonance thermal fluctuations. At the opposite

end of its dynamic range, our displacement read-out stays linear up to a RMS tip

amplitude of 250 nm. We confirm that our optical transducer remains linear in

the explored parameter space. The saturation of the optical read-out is shown in

Figure 6·8, where the cantilever is resonantly driven to a known amplitude using a

calibrated piezo-shaker.

We emphasize that we are not concerned with the particulars of the flow in this
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Figure 6·8: Calibrated RMS displacement of the cantilever tip under
sinusoidal drive. The optical read-out remains linear up to displace-
ments of ∼ 250 nm.

non-ideal channel. The non-idealities include significant surface roughness (r/D ∼

0.001 where r is the RMS roughness), wall asperities, and so on. The main comparison

in this study comes from changing the inlet conditions while keeping everything else

(including the non-idealities) the same, i.e., cases (i) and (ii).

6.3.1 Pressure Drop

The pressure drop ∆p between the inlet and outlet of the micro-channel as a function

of the Reynolds number is shown in Figure 6·9(a) on log-log axes. Figure 6·9(b) shows

the same data on linear axes in a limited range near the origin. The pressure drop in

case (ii) is systematically larger than that in case (i) at a given Re. The difference can

be attributed to the pressure drop in the mesh. In the low Reynolds number range

0 ≤ Re . 103, the pressure drop in case (i) can be fit to that in a Poiseuille flow using

the nominal microchannel parameters with no free parameters (Bruus, 2008). This

is the asympote (dashed line) in Figure 6·9. In the high Re regime, the data appears

to converge to another asymptote (dotted line). This asymptote is based on the
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Figure 6·9: (a) Double logarithmic plot of pressure drop ∆p as a
function of Reynolds number in the channel. Lines are fits to laminar
(dashed) and Blasius (dotted) flow models with the transition around
2× 103. (b) The low-Reynolds-number region of the same data plotted
on linear axes.

pressure drop calculated from the Colebrook equation in a rectangular duct (Jones,

1976), again using only the experimentally available parameters. Below, we describe

these fits in more detail. We note that in both cases (i) and (ii), we do not notice

abrupt signatures of transition to turbulence.

The pressure drop in a laminar flow through a channel of rectangular cross-section

is approximated in the limit H
W
→ 0 as

∆p ≈ 12µLQ

H3W
[
1− 0.63H

W

] , for H < W. (6.16)

Here, Q = UHW is the volumetric flow rate. We define Re = UD
ν

where D = 2HW
H+W

is the hydraulic diameter and find the pressure drop through the channel in terms of

Re as

∆p ≈ Re
6µνL

H3W

H +W[
1− 0.63H

W

] . (6.17)

We fit our pressure drop data in Fig. 6·9 for Re < 1000 (dashed line) using this

equation and the parameters of our system.
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At higher flow rates, when the flow has entered the transition regime, the pressure

drop exhibits a different dependence on Re. Here, we calculate the Darcy friction

factor f in the channel using an approximation to the Colebrook equation (Jones,

1976);

1√
f

= 2.0log10(Re∗)
√
f − 0.8, (6.18)

where Re∗ = Reφ∗ is the modified Re for rectangular ducts and φ∗
(
W
H

)
= 0.764 for

our channel dimensions. The Darcy friction factor is related to the pressure drop as

∆p = f
L

D

ρU2

2
, (6.19)

and reparameterizing,

∆p = fν2Re2 L

D3

ρ

2
, (6.20)

where ρ is the density of air. We plot this function in Fig. 6·9 for Re > 1000 (dotted

line).

6.4 Results

We first turn to the spectral properties of the near-wall fluctuations. Flow forces act

on the microcantilever and give rise to mechanical fluctuations. The microcantilever

has a sharply-peaked resonance at 100 kHz with a linewidth of 500 Hz. Its linear

response function is frequency-independent in the frequency range f < 80 kHz and

can be approximated as |G(f)| ≈ 1/κ, with κ being the cantilever spring constant

and κ ≈ 3 N/m. Thus, the linear relation, Sz(f) ≈ SF (f)/κ2, between the spectral

densities of the force SF (f) and the cantilever displacement Sz(f) remains valid below

f < 80 kHz. At very low flow rates (Re . 800), Sz(f) becomes obscured by the

measurement noise because the flow cannot generate detectable cantilever motion.

Sz(f) obtained under the two inlet conditions is shown at different Reynolds num-
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Figure 6·10: Power spectral density Sz(f) of cantilever displacements
for different Reynolds numbers for cases (i) and (ii). The dotted line in
(a) shows the noise floor of the measurement; the noise floor remains
flat for the frequency range f ≥ 300 Hz.
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Figure 6·11: Power spectral density Sz(f) of cantilever displacements
for different Reynolds numbers for cases (i) (a) and (ii) (b).
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bers in Figure 6·10. The same data is shown for all Reynolds numbers measured in this

study on single plots for cases (i) and (ii) in Figure 6·11. At Re = 800 (Fig. 6·10(a)),

the spectra for both cases are barely above the noise floor (dotted black line) and

appear similar for the most part. At Re = 1050 (Fig. 6·10 (b)), one notices some

high-frequency peaks in case (ii) around 104 Hz. For Re ≥ 1600 (Fig. 6·10(c)-(h)),

there are dramatic differences between the two cases, especially in the frequency range

f ≥ 103 Hz. First, the intensity of the high-frequency fluctuations in case (ii) is larger

than that in case (i) by a few orders of magnitude. Second, around the transition

1600 . Re . 2100, one sees distinct sharp peaks in case (ii) — absent in case (i).

When Re ≈ 2600 is reached (Fig. 6·10(g)), these sharp peaks disappear and both

data traces look smooth.

The sharp peaks observed in case (ii) must correspond to propagating modes

triggered by the mesh at the inlet, because they are not present in case (i). Let us

provide some estimates using Landau theory. Because of the geometry, we assume

that the perturbation is of the form v = ei(kx−Ωt)f(y, z) with Ω(k) = ω(k) + iγ(k)

around Recr. The first few unstable modes (traveling waves) satisfy ∂kγ ≈ 0, and their

temporal frequency can be estimated as ω(k) ≈ kU , where the average velocity U is

taken as the group velocity. Then, f = ω
2π
∼ U

H
. This is because the channel height H

is the only finite length scale in the problem, and the wavelength of the first unstable

mode should be O(H). With U ≈ 10 − 20 m/s in the range 1000 . Re . 2100, we

expect f ≈ 104−2×104 Hz with H ≈ 10−3 m. This estimate is in good agreement with

the peaks observed in Fig. 6·10. The fact that the inlet perturbations can propagate

so far downstream even in low-Reynolds-number flows is somewhat surprising and

agrees with observations of long life-times of fluctuations (Hof et al., 2006).

Next, we turn to the statistical properties of near-wall fluctuations. We collect a

long-time trace of the cantilever amplitude filtered in the frequency range 100 Hz <
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Figure 6·12: PDFs for different Reynolds numbers for cases (i) and
(ii). Note that the x-axes are in normalized units of zrms, which are
different for each data set (see Table 6.1).
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f < 30 kHz to remove the high-frequency resonant oscillations. We then sample the

time data every 3 µs, obtaining ∼ 106 data points. Because we are interested in a

single-point probability density function (PDF), we do not worry about over-sampling

in comparison to other relaxation times in the measurement, e.g., the ring-down time

of the cantilever. The PDFs for different Reynolds numbers are plotted in Fig. 6·12,

and the calculated moments are displayed in Table 6.1 for cases (i) and (ii). It is

revealing to interpret the PDFs in Fig. 6·12 in light of the spectra already presented

in Fig. 6·10. For Re . 800, our measurement is dominated by technical noise, and the

PDFs in both cases (i) and (ii) are perfectly Gaussian (dashed line in the figure). The

PDFs for a slightly higher Reynolds number, Re = 1050 < Recr show no substantial

modification in case (i), but a slight asymmetry and deviation from Gaussianity is

noticeable in case (ii), consistent with the first appearance of the sharp peaks in the

spectra in Fig. 6·10(b). In the range 1600 . Re . 2300, both PDFs go through

dramatic changes. First, one notices a substantial broadening of the tails of the PDF

in case (i), indicating the presence of strong wall velocity/pressure bursts, which

may reach the bulk (Yakhot et al., 2010). Here, the PDFs in case (i) cannot be fit

to a Gaussian, even at very small displacements; an exponential decay seems more

appropriate. The PDFs observed in case (ii) for 1600 . Re . 2300 suggest that the

broadband fluctuations coming from the inlet are somwehat homogenous, but wall

bursts make the PDFs more asymmetric and intermittent. This trend continues with

increasing Reynolds number. The observations from Figs. 6·10, 6·11, and 6·12 can be

summarized as follows. The random flow in case (i) is more intermittent compared

to case (ii); however, the intensity of fluctuations in case (ii) is much larger. This

effect can also be clearly seen in the normalized moments listed in Table 6.1. Based

upon these observations, it may not be incorrect to conclude that these are two very

different random flows, generated by different mechanisms.
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Re 〈z2〉1/2 (nm) 〈z4〉
〈z2〉2

〈z6〉
〈z2〉3

〈z8〉
〈z2〉4

(i) (ii) (i) (ii) (i) (ii) (i) (ii)

0 0.07 0.07 2.99 3.07 14.9 16.1 104 118

800 0.07 0.07 2.99 3.08 15.0 16.1 106 118

1050 0.08 0.14 3.00 3.18 15.1 17.8 107 147

1600 0.25 1.68 5.61 3.35 81.5 20.8 1894 198

2080 0.97 8.36 8.75 3.89 261 32.8 15381 445

2325 1.13 23.0 13.7 9.08 654 192 60383 5926

2570 1.46 28.6 20.7 6.69 2842 158 1.0× 106 7334

2800 1.79 31.4 31.2 7.09 5962 212 2.4× 106 13960

3050 2.82 43.8 48.5 6.34 20084 133 1.4× 107 5164

Table 6.1: Moments.

We now turn to the lowest order moment or the r.m.s displacement of the can-

tilever, zrms = 〈z2〉1/2 (brackets indicate averaging), as a function of Reynolds number,

shown in Fig. 6·13. The dashed lines are fits to our proposed equation, as discussed

below. The zrms values are obtained from measurements of the time traces of the

cantilever tip position z(t) filtered in the frequency range 100 Hz ≤ f ≤ 30 kHz.

There are three regions in the plot marked with different shadings. The first region,

Re . 800, is dominated by technical noise and does not provide any insight. In the

second region (blue) where 1000 . Re . 1600, the magnitude of the cantilever fluc-

tuations are of the same order for both case (i) and (ii), zrms ∼ 1 nm. This suggests

that perturbations at the inlet do not propagate efficiently near the wall and make

it to the test section (x ≈ 11D) — even though they may be convected in the bulk.

In the third region (pink) where Re & 2000, the inlet perturbations reach efficiently

to the wall. The observed RMS amplitude of near-wall fluctuations in case (ii) are

significantly larger than those in case (i). It is surprising that near-wall fluctuations
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Figure 6·13: RMS displacement of the cantilever, zrms, versus Re for
cases (i) and (ii). Dashed lines are fits to the noisy Landau Equation,
Eq. (6.15), with fit parameters in Table 6.2.

are strongly affected by the inlet conditions even in this relatively long channel. The

slope changes for both data traces around Re ≈ 2000, suggesting the onset of more

sustained perturbations. The data traces appear to increase parallel to each other

for Re & 2000. The similarities in the two data traces in Fig. 6·13 suggest that there

may be common underlying physics to both cases.

6.5 Discussion

The obtained results can be used to quantitatively explain the experimental data of

Fig. 6·13. The time-dependent force acting on the cantilever is

F = F ẑ = −
∫
S

p1 · ndS ≈
∂p1

∂z
V ẑ, (6.21)

where ẑ is the unit vector, and V is the volume of the cantilever. We simplify the

problem by approximating our microchannel as a long and wide rectangular (planar)

duct and, neglecting noise, write the perturbation equation in the z direction from
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Eq. (6.9) as

1

ρ

∂p1

∂z
= −∂vz

∂t
− 3

2
U

(
1− 4z2

H2

)
∂vz
∂x

+ ν∇2vz +O(
∂v2

∂z
). (6.22)

In close proximity to the wall, z ≈ H/2, and the second term on the right hand

side of Eq. (6.22) is small. Numerical simulations (Lee et al., 2004), in which statis-

tics of acceleration in close proximity to a wall was studied, suggest that bursts are

dominated by the z-component of the velocity (v2 = O(vz
2)) and the viscous term is

unimportant. We therefore write

1

ρ

∂p1

∂z
≈ −∂vz

∂t
+O(

∂vz
2

∂z
). (6.23)

Here, ∂tvz = O(vzU/H). To find an order of magnitude estimate for ∂z(vz
2), we

extrapolate the results of (Yakhot et al., 2010), which shows that, for Re < 105, the

velocity of wall bursts are vz = O(U/10). This means that the magnitude of the

two terms on the right hand side of Eq. (6.23) are comparable and O(vz
2) must be

accounted for. Thus, we deduce ∂zp1 = O(vz
2/H) and write

zrms ∼
ρV vz

2

κH
∝ |A(∞)|2, (6.24)

where |A(∞)|2 = Ae
2 as in Eq. (6.15). This exercise provides the fits (dashed lines)

shown in Fig. 6·13 with the parameters in Table 6.2. The ultimate justification for

the above arguments comes from the agreement between experiment and theory in

Fig. 6·13. The following simple order of magnitude estimate further bolsters our

confidence in our theory. Assuming that vz
2/U2 ≈ 0.008 around Recr (Yakhot et al.,

2010) and using the experimentally available parameters (V ≈ 2×10−14 m3, H ≈ 10−3

m, κ ≈ 3 N/m), we find zrms ≈ 10−10 m, close to the experimentally observed value.

Our results point to two very different paths to turbulence. In the the first, wall

effects (wall roughness and channel imperfections) lead to an extremely intermittent
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Recr γ1/α (m2/s2) φ2/α (m4/s4)

Case (i) 1850 0.14× (Re− Recr) 2.37× 103

Case (ii) 1700 1.92× (Re− Recr) 3.28× 104

Table 6.2: Noisy Landau Fit Parameters.

transitional flow, probably dominated by a few unstable modes. The exponential

PDF resembles the PDF observed in Bénard convection in the hard turbulence regime

dominated by the plumes emitted from the unstable thermal boundary layer (Castaing

et al., 1989). In the second, bursts coming from the wall are modulated by powerful

broadband fluctuations originating at the inlet. The resulting flow is less intermittent

and resembles homogeneous turbulence; the interaction between the wall and the inlet

disturbances is quite strong. Remarkably, the lowest order statistics of the these two

different flows with distinctly different noise sources are well-described by the noisy

Landau equation. The applicability of the noisy Landau equation to both cases is

due to the fact that the noise term is taken to be at high frequencies as compared

to the slow mode in question. In other words, the noise can come from any natural

or artificial source as long as the stirring of the fluid occurs at high frequencies.

In typical experiments (including ours), this is an accurate statement. Microscopic

surface asperities, for instance, are at high spatial frequency compared to any length

scales of the flow. Similarly, perturbations from the inlet generate high-frequency

waves, which can also be incorporated into the noise term, as shown here. Along the

same lines, we believe that even thermal fluctuations in the fluid would likely result

in a similar regularization of the Landau equation. The phenomena observed here

may have important consequences for heat and mass transfer in wall-bounded flows.



Chapter 7

Conclusion

In this thesis study we have conducted nanomechanical measurements of fluctua-

tions in biological, turbulent, and confined flows. We employed silicon cantilevers as

sensitive transducers to probe these fluctuations and to uncover underlying physi-

cal phenomena. The results presented have implications for many physical systems.

Here, we review our results and discuss opportunities for future work.

In Chapter 3 we presented multiple methods that can be used to estimate modal

mass in resonant mechanical systems. In the thermal noise method, we measured

the thermomechanical fluctuations of a cantilever and related its modal energy to

its modal mass. In the gas damping method, we measured the quality factor of a

cantilever’s resonance at various pressures. We demonstrated how this measurement

could be used to obtain an independent mass calibration. Our experiments showed

that gas dissipation measurements provided accurate results and that they could serve

as a suitable alternative to the more traditional thermal noise calibration method.

In addition, these measurements were easier to perform because they relied on the

driven system response rather than the thermomechanical motion.

In Chapter 4 we studied dissipation in a spatially confined oscillatory flow using

a microcantilever positioned in the proximity of a wall. We presented experimental

data that covered a broad range of flow parameters including the gas pressure, the

device frequency, and the gap between the cantilever and the nearby wall. Using our

experimental results and physical intuition, we developed a scaling function which

103
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was able to describe the flow in the entire parameter space without explicitly impos-

ing an effective viscosity or a slip length at the wall. In all of the cases studied, the

dimensionless Weissenberg number remained small, Wi = ωτ � 1. Further experi-

mental and theoretical work can be done to measure flows in the interval Wi� 1 and

to generalize our theory of confined nanoflows. In addition, it would be interesting

to repeat the experiments using a different gas. This may shed light on how the

interactions between the gas molecules and the surface of the cantilever change with

the molecular mass and the thermal velocity in a confined system.

In Chapter 5 we studied fluctuations driven by the activity of motile bacteria.

Once again, we used a microcantilever as our experimental probe. We observed an

increase in the amplitude of the cantilever’s fluctuations as we increased the concentra-

tion of bacteria adhered to the cantilever’s surface. We also administered antibiotics

to kill the bacteria and observed the cessation of these fluctuations. A spectral anal-

ysis of the fluctuations of E. coli bacteria showed that their collective motion on the

cantilever was broad in spectrum and focused at low frequencies with a 1/fα-type

power law. We presented a simple model to explain these observations. Our results

lay the foundation for further development of this technology as a diagnostic tool.

Current biosensing approaches are not able to monitor bacterial motion and bacterial

susceptibility to antibiotics in real-time. The cantilever-based approach presented

here has the potential to serve as the central component of a robust, inexpensive, and

real-time system for bacterial monitoring. If the optical measurements can be scaled

down, it should be possible to construct a portable diagnostic tool.

In Chapter 6 we measured fluctuations in a transitional channel flow. In particular,

we studied the transition to turbulence in two different cases in the same channel. In

the first case, the transition was triggered by the natural imperfections of the channel

walls. In the second case, the transition was triggered by a flexible wire mesh at
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the channel inlet. Each of the cases resulted in final turbulent states in which high-

order moments of near-wall fluctuations differed by orders of magnitude. Despite this,

the lowest order statistics were qualitatively similar between experiments and each

could be described by a proposed noisy Landau equation. Our results here provide

evidence of a finite turbulent relaxation time in transitional flows due to the persistent

nature of noise in these systems. Many future studies can be devised to follow up on

the results of this work. An ideal study would center around a microchannel with

walls of roughness that can be carefully tuned. This would allow the experiment

to be repeated and for the noisy Landau equation to be systematically tested for a

larger variety of roughness-induced disturbances in the flow. Additionally, it would

be interesting and physically important to understand the flow conditions necessary

for perturbations originating at one channel wall to cross the channel, rather than

to decay or remain near the wall. An experiment could be devised in which sensors

are mounted on opposing channel walls and measurements of their fluctuations are

cross-correlated. Our results also may have important consequences for heat and mass

transfer in wall-bounded flows.

We see from the above studies that fluctuations in physical systems can reveal

interesting information about the underlying physics governing these systems. Our

hope is that through the experiments and theoretical analyses presented here, we

have provided new insights into fluctuations in confined, turbulent, and biological

flows and have opened new pathways for further studies.
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