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ABSTRACT 

Forests play an important role in mitigating climate change by removing carbon 

dioxide (CO2) from the atmosphere via photosynthesis and storing it in plant tissues and 

soil organic matter (SOM). Plant roots are a major conduit for transporting recently fixed 

CO2 belowground, where carbon (C) remains in SOM or returns to the atmosphere via 

respiration of soil microbes. Compared to aboveground plant processes related to the C 

cycle, there is little understanding of how belowground plant-C allocation to roots, 

symbiotic root fungi and secretions into the soil influence the gain or loss of C from the 

soil. Further, the uncertainty in the timing and amount of root growth that occurs in 

forests is a barrier to understanding how root activity responds to global change and feeds 

back to the C cycle. Therefore, the objective of my research is to quantify the timing and 

magnitude of C allocation to roots and soil via data compilation, field studies and 

modeling across broad spatial scales. Using data compilation at the global scale, I show 

that root and shoot phenology are often asynchronous and that evergreen trees commonly 

have later root growth compared to deciduous trees using meta-analysis across four 
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biomes. At the plot scale, field studies in a mid-latitude forest demonstrate that deciduous 

stands allocate more C belowground earlier in the growing season compared to a conifer 

stand. The difference in phenology between stands can be attributed to the timing of root 

growth. At the root scale, zymographic analysis demonstrates that microbial extracellular 

enzyme activity is concentrated near the surface of roots and that the rhizosphere can 

extend well beyond 2 mm from the root surface. Finally, I developed a new model of 

microbial physiology and extracellular enzyme activity to assess how climate change 

may affect plant – microbe interactions and soil organic matter decomposition. I show 

that increases in temperature and the quantity of C inputs substantially alter 

decomposition. Collectively, these results demonstrate the importance of belowground 

allocation to the C cycle of terrestrial ecosystems. 
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CHAPTER ONE: INTRODUCTION 

For over a century, researchers have recognized the link between atmospheric 

carbon dioxide (CO2) concentrations and the re-radiation of thermal energy back to the 

Earth’s surface (Arrhenius & Sandström, 1903, Chamberlin, 1899). In 1957, Roger 

Revelle and Hans Seuss were among the first to suggest that the observed accumulation 

of fossil-fuel-derived CO2 in the atmosphere would not only contribute to a warmer 

climate, but that the extent of climate change may depend on interactions between the 

atmosphere, biosphere, and geosphere that are not yet known (Revelle & Suess, 1957). 

“Thus,” they write, “human beings are now carrying out a large scale geophysical 

experiment of a kind that could not have happened in the past nor be reproduced in the 

future.” 

From 1750 to the present, the terrestrial biosphere and ocean have mitigated 

climate change by sequestering 300 of the 550 Pg C released from the combustion of 

fossil fuels (Stocker et al., 2013). There is at present substantial uncertainty regarding the 

size of the terrestrial sink over the coming century with continued climate change 

(Ahlström et al., 2012). There is also debate as to whether the feedback between climate 

change and the land sink for atmospheric CO2 will mitigate or exacerbate future climate 

change (Stocker et al., 2013). On the one hand, if the growing season lengthens as a 

result of warming temperatures, C uptake is expected to increase because of sustained 

photosynthesis (Richardson et al., 2009). On the other hand, extension of the growing 



 

 
 

2 

season may exacerbate drought, fire frequency, and stimulate decomposition resulting in 

a net loss of CO2 to the atmosphere (Piao et al., 2008, Wu et al., 2013).  

The terrestrial sink for atmospheric CO2 is in plant biomass and soil. Typically 2- 

to 3-fold more C is stored in soil than biomass, increasing substantially with latitude 

(Ciais et al., 2014). The activity of soil microbes, often referred to as heterotrophs, is 

temperature sensitive, with greater respiration consuming soil C and releasing CO2 to the 

atmosphere. Heterotrophic respiration is expected to increase with warming temperatures, 

but the magnitude of this effect depends on the extent to which microbes physiologically 

acclimate to warm temperatures, microbial community composition is changed, or the 

availability of soil C declines (Bradford et al., 2008, Hartley et al., 2007). As a result, the 

long-term effect of global warming on heterotrophic respiration is unclear (Frey et al., 

2013, Melillo et al., 2002).  

The research presented in this dissertation is a continuation of the effort to 

understand feedbacks between plants, microbes, soil and the atmosphere. Ultimately all 

soil C is derived from plant matter and thus plants are intimately tied to the activity of 

soil microbes. The main process by which this occurs is referred to as “allocation” of C to 

leaves, stems, and roots. 

Plant C allocation is an inherently seasonal process. The timing of seasonal 

events, or phenology, of aboveground plant organs and the tools used to observe it are 

advanced compared to studies of root growth and mortality. For example, there are 

records from the 9
th

 century of cherry tree flowering in Kyoto, Japan, as well as a myriad 
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of historical phenological records of various plant phenomena dating back to 18
th

 century 

England and 19
th

 century United States (Aono & Kazui, 2008, Margary, 1926, Miller-

Rushing & Primack, 2008). Since the 1970s, “remote sensing” technology using 

satellites, unmanned aerial vehicles, and mounted cameras have been instrumental in 

estimating growing season length and C uptake over the globe (Sharma et al. 2013, 

Hufkens et al. 2012). 

In contrast to aboveground phenology, root dynamics are hidden from view, and 

there is no non-invasive technique analogous to remote-sensing that can be used to 

accurately assess root biomass, growth, or turnover. Root biomass has been estimated 

using coring and excavation for over half of a century (Lyford, 1980, Lyford & Wilson, 

1964). In these and similar studies, root growth was measured by taking the difference in 

root biomass between two sample intervals. Beginning in the early 1980s, Vogt, Persson, 

Gower, and others popularized “sequential” coring in plots over a finer resolution of time 

and ingrowth techniques to separate rates of root growth from those of mortality 

(Persson, 1980, Vogt et al., 1986). By the late 1980s, minirhizotron cameras were 

developed to capture magnified images of root growth and death along the surface of a 

plexiglass tube installed into the soil (Brown & Upchurch, 1987). Though root boxes and 

minirhizotrons have been in use for some time, only recently has the automation of image 

capture and annotation begun to develop (Roberti et al., 2014, Zeng et al., 2008). 

Carbon allocated belowground is used for root production, respiration and 

exudation, but these fluxes are difficult to measure individually. In 1989, Raich and 
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Nadelhoffer proposed that calculating the difference between outputs (i.e., soil CO2 

efflux) from the soil and inputs (i.e., litterfall) to the soil provides a useful estimate of the 

total quantity of C allocated belowground (Davidson et al., 2002, Litton et al., 2007). 

This estimate assumes that soils are in steady state. Otherwise, it is necessary to measure 

the change in the C pool associated with roots and soil, as in: 

TBCF = Fefflux – Flitter + Δ(Croots + Csoil)   [1] 

where TBCF is the total belowground carbon flux, Fefflux is annual soil respiration, 

Flitter is annual litterfall, and Δ(Croots + Csoil) is the annual change in the C pool associated 

with roots and soil. If Δ(Croots + Csoil) is equal to zero, then it is only necessary to measure 

Fefflux and Flitter. 

The assumption that the pool of C in roots and soil does not change over time is 

often violated. For example, Giardina & Ryan (2002) found that the change in the root 

and soil pool was about 14% of measured TBCF in a Hawaiian Eucalyptus plantation. In 

my study, I found that 0.2 - 40% of TBCF can be represented by the change in the root 

pool. The most accurate method to estimate belowground C allocation may be to compare 

multiple methods, such as using the difference between soil CO2 efflux and litterfall in 

combination with measuring belowground allocation to roots [production, respiration, 

exudation] directly (Drake et al., 2011). 

Once C enters the soil via root exudation or turnover, it is available to the 

microbial community for decomposition. Soil microbes are able to utilize a diverse array 
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of substrates for metabolism (Bai et al., 2013). Given the metabolic flexibility of 

microbes and the amount of energy stored in soil organic matter, it is paradoxical that 

there should be more than 1500 Pg of soil organic matter remaining on Earth (Ciais et al., 

2014). Most soil organic matter has an irregular structure and is therefore difficult to 

characterize by chemical or spectral analysis. Indeed, for the past several decades, the 

prevailing paradigm to explain the persistence of SOM was that most organic matter 

cannot be degraded because of its irregular chemical structure (Oades, 1989, Skjemstad et 

al., 1996). Recent research has placed more emphasis on the physical separation of SOM 

from the microbial extracellular enzymes that would degrade them (Schmidt et al., 2011) 

and the physical protection of SOM bound to or within soil aggregates (Conant et al., 

2011). 

The wealth of research over the past century has clarified many feedbacks 

between the biosphere and atmosphere, by demonstrating that phenology has changed 

with warming, and that respiration and C allocation may also change (Bradford et al., 

2008, Melillo et al., 2011, Richardson et al., 2009). As a result, we have a greater ability 

to monitor and simulate C pools and fluxes at global scales than we did only two decades 

ago (Stocker et al., 2013, Tang & Riley, 2015). 

Despite these advances, many mechanisms of belowground C allocation are not 

yet clear. Individual studies have observed many different seasonal patterns of root 

growth (Bevington & Castle, 1985, Iivonen et al., 2001, McCormack et al., 2014), but it 

is not clear if particular biomes or plant types have synchronous or lagged phenology. 
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Because belowground C allocation data are few, we know little about the seasonal C 

partitioning to roots and how this varies between tree species, growth form (e.g., 

evergreen, deciduous), or mycorrhizal association. In part because of the paucity of data 

with which to parameterize models and infer process-level relationships, terrestrial 

biosphere models struggle to represent the soil C cycle mechanistically and often default 

to defining belowground C allocation as an instantaneous, fixed fraction of net C uptake 

at each time step (Medvigy et al., 2009, Oleson et al., 2010, Smith et al., 2013). There is 

little understanding of the priority of C allocation in both plants and microbes, though 

some promising frameworks for determining allocation to different plant organs are 

emerging from evolutionary theory based on competition for light and nutrients (Craine 

& Dybzinski, 2013, Dybzinski et al., 2011).  

Microbial allocation to extracellular enzymes, biomass growth, and respiration is 

largely unknown, and is a major difficulty in parameterizing microbial physiology 

models (Averill, 2014). Fortunately, allometric relationships for microbial communities, 

as well as models of microbial metabolism are emerging frameworks for estimating 

microbial allocation to different processes (Harcombe et al., 2014, Sinsabaugh et al., 

2014).  

The interaction between plant roots and microbes is similarly data-limited. For 

example, including my findings, estimates of the size of the rhizosphere, defined as the 

zone of soil around a root where microbial exoenzyme activity is stimulated, ranges from 

0.1 cm to over 7 cm (De Neergaard & Magid, 2001, Spohn & Kuzyakov, 2014). This 
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wide range reflects the few studies that have made these measurements, and suggests that 

there is either a large methodological uncertainty about how to quantify the rhizosphere 

extent, a large heterogeneity in the actual size of the rhizosphere, or both.  

The research community is uncertain how rhizosphere and bulk soil microbes will 

respond to changes in temperature and substrate supply (Davidson & Janssens, 2006, 

Tang & Riley, 2015, Wieder et al., 2013). Long-term field studies of soil warming 

indicate that a large initial increase in heterotrophic respiration decreases over time, 

suggesting some combination of acclimation, microbial community shift, or substrate 

limitation (Frey et al., 2013, Melillo et al., 2002, Melillo et al., 2011). Regional climate 

projections also predict that some areas of North America, particularly the northeastern 

United States, will receive more precipitation, and others less (Melillo et al., 2014). It is 

unclear how changes in soil moisture in combination with warming will affect microbial 

activity. 

Dissertation Overview 

The objective of the research in this dissertation is to better understand the 

seasonality, magnitude, and partitioning of C to root and soil processes at global-to-local 

scales. To achieve this objective, I used a combination of data compilation, field studies, 

and computer simulation. In Chapter 2, my objective was to determine the relationship 

between above and belowground phenology. I performed a meta-analysis, compiling data 

that quantified the offset between the maximum in root and shoot growth in woody and 

herbaceous perennial plants. Using data from 40 studies, 63 species, and 4 biomes, I 
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found that root and shoot phenology are often asynchronous and that evergreen trees 

commonly have later root growth compared to deciduous trees. I also found broad 

differences in phenology across biomes, finding that boreal biomes had later root growth 

than did temperate biomes, possibly due to the predominance of evergreen trees in boreal 

ecosystems. 

In Chapter 3, my objective was to determine the magnitude, timing and 

partitioning of seasonal belowground C allocation at the plot scale, using field studies at 

the Harvard Forest in Petersham, MA. I recorded the total amount of C allocated 

belowground monthly during the growing season in three mono-dominant stands, white 

ash (Fraxinus americana), red oak (Quercus rubra), and eastern hemlock (Tsuga 

canadensis). I found that the red oak stand allocated more C belowground earlier in the 

growing season compared to the eastern hemlock stand. This difference in the phenology 

of belowground C allocation can be attributed to the timing of root growth, making this 

finding consistent with the observation in Chapter 2 that deciduous trees have earlier root 

growth than evergreen trees. The magnitude of the belowground C flux was highest in the 

red oak stand, consistent with the observed increase in aboveground biomass of red oak 

at the Harvard Forest over the past 20 years (Keenan et al., 2012, Urbanski et al., 2007). 

The belowground C flux was lowest in the eastern hemlock stand due to a decline in 

allocation to root production over the study period. This decline is coincident with the 

arrival and spread of the hemlock woolly adelgid in this stand. 

In Chapter 4, my objective was to estimate the spatial extent of the rhizosphere at 

the scale of individual roots, using a recently-developed enzyme imaging, or 
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zymography, technique. I incubated chromatography paper soaked in the substrate of four 

C-, N-, or P-releasing enzymes on rooted soil surfaces. When an extracellular enzyme 

decomposed substrate fixed to the paper, the cleavage resulted in a colorimetric or 

fluorometric tag that remained on the paper. These zymograph images were digitized 

along with photographs of roots in the sample area. I developed a quantitative framework 

for analyzing these image data. I used two regression models, a spatial error model that 

accounted for the autocorrelation between image pixels, and a “break-point” regression 

model that estimated the location of a change in the slope of the relationship between 

extracellular enzyme activity and distance from a root. I used this break point as a proxy 

for the rhizosphere extent. The rhizosphere extent varied depending on the resolution of 

image analysis, as a result of increased sample size, background staining, or 

misalignment of images. Nevertheless, I found that extracellular enzyme activity was 

concentrated near the surface of roots. The break points that I estimated suggest that the 

rhizosphere can extend beyond 2 mm from the root surface, suggesting that recent 

estimates of rhizosphere contributions to decomposition and nutrient mineralization are 

very conservative (Finzi et al., 2015). 

In Chapter 5, my objective was to develop a combined model of microbial 

physiology and extracellular enzyme activity to assess how climate change may affect 

plant–microbe interactions, soil organic matter decomposition, and soil C storage. I 

merged two existing models: the Dual-Arrhenius Michaelis Menten (DAMM) model 

(Davidson et al., 2012) and the Microbial Carbon and Nitrogen Physiology (MCNiP) 

model (Finzi et al., 2015). The combined model reproduced heterotrophic respiration 
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measured in a trenched plot at the Harvard Forest in central Massachusetts. It also 

captured the seasonal pattern of C efflux better than MCNiP alone, and predicted C efflux 

during wet-up events better than both models alone. DAMM-MCNiP predicted that 

stands with a wide C:N ratio [litter, roots, microbial biomass] stored more C, consistent 

with recent empirical findings at the global scale (Averill et al., 2014). When subject to a 

series of climate change simulations, the model predicted that C mineralization increases 

with either +5ºC warming or a 50% increase in soil moisture. The response to added soil 

moisture was unexpected given that oxygen (O2) availability limits microbial activity at 

high soil moisture, and suggests that in this model O2 limitation has a small effect on 

microbial respiration relative to substrate diffusion.  

This research demonstrates that belowground C allocation affects C balance on 

the plot-to-global scale. There are broad differences in root phenology across biomes and 

plant types, and in a mid-latitude temperate forest, there are stand-level differences in 

both the magnitude and partitioning of C belowground, driven primarily by allocation to 

root growth. A significant amount of root C is allocated to the microbial community, 

where it stimulates microbial activity. I demonstrate that the C:N ratio of root exudates 

influences both the magnitude of SOM decomposition and the mechanism by which 

decomposition is stimulated. These findings demonstrate the importance of plant roots to 

the terrestrial C cycle. 
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CHAPTER TWO: ARE ABOVE AND BELOWGROUND PHENOLOGY IN 

SYNC? 

Abstract 

Globally, root production accounts for 33-67% of terrestrial net primary 

productivity and influences decomposition via root production and turnover, carbon (C) 

allocation to mycorrhizal fungi and root exudation. As recognized aboveground, the 

timing of phenological events affects terrestrial C balance, yet there is no parallel 

understanding for belowground phenology. In this paper I examine the phenology of root 

production and its relationship to temperature, soil moisture, and aboveground 

phenology. Synthesizing 87 observations of whole plant phenology from 40 studies, I 

found that on average root growth occurs 25 ± 8 days after shoot growth but that the 

offset between the peak in root and shoot growth varies > 200 days across biomes 

(boreal, temperate, Mediterranean, and subtropical). Root and shoot growth are positively 

correlated with median monthly temperature and mean monthly precipitation in boreal, 

temperate, and subtropical biomes. However, a temperature hysteresis in these biomes 

leads to the hypothesis that internal controls over C allocation to roots are an equally, if 

not more, important driver of phenology. The specific mechanism(s) are as yet unclear 

but are likely mediated by some combination of photoassimilate supply, hormonal 

signaling, and growth form.  
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Introduction 

It is widely acknowledged that roots play a fundamental role in terrestrial C 

cycling, consuming up to 70% of net primary production (Grier et al., 1981, Jackson et 

al., 1997), yet there is little understanding of the factors controlling patterns of root 

growth (Pregitzer et al., 2000). Fine root production can occur in a single flush but often 

occurs in multiple flushes throughout the growing season (Bevington & Castle, 1985, 

Harris et al., 1995, Reich et al., 1980, Steinaker et al., 2010). Soil temperature, moisture 

and nutrient availability affect the growth of roots (Fukuzawa et al., 2013, Noguchi et al., 

2013), but there is often no temporal correlation between these abiotic factors and root 

growth apart from obvious growing-to-nongrowing season transitions (Hendrick & 

Pregitzer, 1996, Joslin et al., 2001; Table 2.S1). In these cases internal signaling such as 

photoassimilate transport may control root growth (Sloan & Jacobs, 2008), such that 

roots cannot grow when shoots are consuming the majority of photoassimilate. 

Supporting this, several studies have observed patterns of alternating root and shoot 

growth (Cardon et al., 2002, Drew & Ledig, 1980, Mickelbart et al., 2012, Reich et al., 

1980).  

Most conceptual and terrestrial biosphere models allocate C belowground as a 

fixed fraction of net C uptake, which by definition makes root phenology synchronous 

with aboveground growth (Table 2.1). The purpose of this review is to show that current 

data support asynchrony between above and belowground growth. I acknowledge that the 

available data are few and that inference regarding broad-scale patterns is subject to 

change as more data become available. I hope, however, that bringing currently available 
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data to light in this regard will generate the collection of new data, and refine current 

understanding of belowground phenology and its relevance at the ecosystem scale. 

A compilation of available data 

It is commonly assumed that root growth peaks early in the growing season and is 

therefore synchronous with aboveground growth (Medvigy et al., 2009). While this can 

be true (Misson et al., 2006, Scagel et al., 2007), there are many exceptions (Lahti et al., 

2005, Palacio & Montserrat-Marti, 2007, Willaume & Pagès, 2006). Some studies report 

root growth lagging shoot growth by several weeks, an observation attributed to air 

temperature warming faster than soil temperature in the spring (Steinaker & Wilson, 

2008). Others report root growth preceding shoot growth by several weeks to months 

(Broschat, 1998, Ploetz et al., 1992). In a common garden study in Pennsylvania, some 

species such as Acer negundo and Pinus strobus had large interannual variability in root 

phenology while others such as Liriodendron tulipfera did not (McCormack et al., 2014), 

suggesting that some trees may be environmentally cued while others are inflexible in 

their timing (i.e., phenological programming sensu Hendrick & Pregitzer, 1996, Joslin et 

al., 2001).  

To address broad-scale patterns in phenology, I conducted a literature survey to 

quantify the offset between the maximum in root and shoot growth in woody and 

herbaceous perennial plants. Web of Science was searched using the following keywords: 

belowground phenology, root phenology, root allocation, and root growth in combination 

with shoot phenology, aboveground, stem growth, leaf out, budburst or greenness. I 

considered only studies that simultaneously measured both root and shoot production. Of 
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the 13,934 results from the keyword search, only 40 studies had suitable data. There were 

a total of 87 datasets containing shoot and root growth for 63 species (see Paper 

selection, Gross and net root production, Monthly root and shoot growth, and 

Temperature and precipitation data in Supplementary Information for a more detailed 

description of the data used in this survey). The data are compiled in Tables 2.S2 and 

2.S3. Each observation was classified into one of four biomes (boreal, temperate, 

Mediterranean and subtropical) based on Whittaker’s biome classification system (1970). 

In order to visualize findings from the literature, I quantified the difference between peak 

shoot and root growth using the equation,  

Offset (days) = DOYmaximum root – DOYmaximum shoot    [1] 

where DOY is the day of year of maximum root or shoot growth as indicated. In 

plants with multiple root and shoot flushes, maximum root or shoot growth rate was used 

to calculate offset. Positive offset values therefore indicate peak shoot growth preceding 

the peak in root growth whereas negative values would indicate root growth preceding 

the peak in shoot growth. Differences in root and shoot data collection methods 

marginally affect offset (F6,80 = 2.17, P = 0.055), so they were included in stepwise model 

selection (see Offset in Supplementary Information). Soil coring methods tended to detect 

later root growth relative to shoot growth. 

Primary Data Findings 

There was wide variation in the timing of maximum shoot growth relative to root 

growth (Figure 2.1). In the majority of cases maximum shoot production occurred before 

root production (offset > 0 in 54 out of 87 observations) and the mean offset for all 
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studies (25 ± 8 days) was greater than zero (one sample t-test; t = 3.15, df = 86, P < 0.01) 

indicating that root and shoot growth are not synchronous on a broad geographic scale. 

There was no difference in offset between tree, shrub and herbaceous growth forms.  

As the data are largely from extratropical, northern hemisphere localities, there is 

a significant correlation between growth and temperature (Table 2.2, Figure 2.S1). At the 

biome scale, subtropical plants were significantly different from all other biomes, with 

the peak in root growth occurring 45 ± 19 (n = 11) days earlier than shoot growth, 

whereas offset in boreal, Mediterranean, and temperate biomes occurred 48 ± 8 (n = 20), 

36 ± 19 (n = 11), and 28 ± 12 (n = 45) days after shoot production, respectively (Figure 

2.2a). The generally late root relative to shoot growth in boreal biomes may, however, be 

confounded with tree growth form. Conifer (n = 14) root growth peaked 44 ± 12 days 

later than deciduous tree species (n = 20, Figure 2.2b).  

Similar to temperature, there is a positive linear correlation between growth and 

mean monthly precipitation (MMP) in boreal and subtropical biomes (Table 2.2). In these 

biomes median monthly temperature (MMT) and MMP are highly correlated ( = 0.89 

and  = 0.85 for boreal and subtropical climate variables respectively), so it is difficult to 

separate the precipitation from the temperature effect. By contrast, precipitation predicts 

growth poorly in temperate and Mediterranean biomes (Table 2.2). In the temperate data 

set precipitation did not have large seasonal variation (Figure 2.3b). In the Mediterranean 

data set shoot growth occurs in a large spring pulse following winter rain, whereas root 

growth appears to proceed at a steadily rising rate over the year (Figure 2.3c).  
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To visualize the phenology of root relative to shoot growth, I plotted the 

proportion of peak root growth as a function of peak shoot growth and generated a 

hysteresis plot for each biome. Deviations from the 1:1 line indicate dominance of root 

relative to shoot growth (or vice versa) across the year (Figure 2.3e-h). In boreal 

ecosystems root growth remains low throughout spring shoot expansion with the largest 

proportion of root growth observed in the summer through autumn (Figure 2.3e). In 

temperate ecosystems, however, root growth is entirely proportional to shoot growth, 

with all data plotting closely to the 1:1 line (Figure 2.3f). The Mediterranean observations 

are unlike the others. There is no clear hysteresis between root and shoot growth (Figure 

2.3g). The subtropical biome is similar to the temperate biome in that root growth mirrors 

shoot growth not deviating from the 1:1 line (Figure 2.3h).  

Some Implications of the Data 

The available data suggest that root and shoot growth is largely asynchronous. At 

broad spatial scales temperature and precipitation influence this asynchrony, for example, 

the positive offset between peak shoot and root growth with decreasing annual 

temperatures (data not shown). As suggested by Steinaker & Wilson (2008), air 

temperature rises more rapidly than soil temperature in the spring and hence root growth 

is delayed later into the spring or summer (Figure 2.3a-d). The boreal dataset supports 

this hypothesis. A corollary to this observation is that thermal buffering allows soils to 

remain warm through the autumn and, as a result, the duration of root production can be 

40% longer than shoot production (Steinaker & Wilson, 2008, Steinaker et al., 2010). 
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Once again, this observation is strongly supported by the boreal zone data set (Figure 

2.3a).   

There is, however, at least as much variation in the offset between peak root and 

shoot growth within and between biomes as that explained by climate variables (Table 

2.2). This leads to the ecologically interesting hypothesis that endogenous control of plant 

C allocation is an important driver of root phenology. What evidence is there in support 

of this hypothesis? 

For the purposes of this paper, I define endogenous cuing as any factor that 

influences the growth of roots other than direct effects of temperature and precipitation. 

One of the clearest examples of endogenous root cuing is the production, storage and 

transport of photoassimilate (Palmroth et al., 2006, Pregitzer et al., 2000). There are 

important stores of carbohydrates in plants that can fuel production (Richardson et al., 

2013), and root growth depends on these stores as well as newly fixed C from 

aboveground organs. Isotopic labelling studies have confirmed that substantial C used in 

root biomass is newly fixed (Keel et al., 2006, Trumbore et al., 2006). Root growth stops 

or is greatly reduced in response to experimental manipulations such as girdling and stem 

chilling that cut off the supply of photoassimilates from the canopy (Högberg et al., 2001, 

Johnsen et al., 2006) and thus belowground phenology must be in part regulated by 

aboveground phenology (Litton et al., 2007). 

Does the difference in root growth phenology implicate the supply of 

photoassimilate? It does appear to provide a parsimonious explanation. Leaf area and 

photosynthetic rates in temperate deciduous forests tend to be highest in the spring and 
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decline through late summer and rapidly in autumn as a consequence of canopy 

senescence (Wu et al., 2010). This seasonality is highly synchronous with the most active 

period of root growth, and the progressive summer decline in photosynthesis and 

autumnal leaf senescence correlate with reductions in root growth (Figure 2.3f). The 

prolonged autumnal root growth in the boreal zone may also reflect photoassimilate 

control in that the retention of live-needles in the canopy sustains the supply of 

photoassimilate even as temperatures cool and day length declines (but soils stay warm). 

Additional support for photoassimilate-regulated autumnal root growth is observed when 

separating the boreal dataset into evergreen trees vs. deciduous woody and herbaceous 

species. Doing so shows that autumnal root growth in evergreen trees dominates the 

hysteresis (Figure 2.S2a) in Figure 2.3f. Autumnal root growth in the deciduous plants 

follows that found in the temperate biome data (i.e., maximum root growth in the spring 

and very little in the autumn; Figure 2.S2b). Boreal evergreen trees may also utilize 

stored C during late season root growth (Nordgren et al., 2003). 

The subtropical and Mediterranean data are challenging to interpret. The 

subtropical data come from evergreen species, largely palms, in a consistently warm 

environment, yet there is a distinct phenology in shoot and root production with the peak 

in both following the wettest months of the year (Figure 2.3d). I speculate that the distinct 

phenology may be analogous to observations from seasonally dry Amazonian rainforests 

where evapotranspiration rates are highest in the dry season (Hutyra et al., 2007) because 

of reductions in cloudiness and light-limitation of photosynthesis (Restrepo-Coupe et al., 

2013). It is possible that the reduction in late summer and autumnal precipitation is 
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sufficiently large that PAR does not limit photosynthesis during this period of time and 

peak growth occurs.  

The Mediterranean observations are the most challenging to interpret under the 

assumption that the majority of C used for root growth is newly fixed.  Shoot and root 

growth are not correlated with MMT or MMP and root growth is apparently decoupled 

from shoot growth (Figure 2.3g). The one exception is a concentrated pulse of vernal 

shoot growth following winter precipitation and the delay in peak root relative to shoot 

growth (Figure 2.3c). The strong asynchrony between shoot and root growth that extends 

across the year, however, suggests that endogenous cuing and subsequent allocation of 

stored carbohydrates is a dominant driver of root growth in Mediterranean plants. Root 

and stem nonstructural carbohydrates generally decline during the growing season and re-

accumulate in autumn (Loescher et al., 1990, Richardson et al., 2013), as stored 

carbohydrates are allocated to respiration and growth during the growing season. 

However, limited data availability in this biome may prevent any meaningful 

conclusions. 

Finally, I note that the time scale of the data analysis here cannot address the 

occurrence of alternating above and belowground growth, for example, as found in 

Quercus spp. (Cardon et al., 2002, Reich et al., 1980). Whether this is common is not 

well known, but at least these data suggest coordination of C allocation across the 

growing season, which may be mediated by both above and belowground plant organs. 

For example, roots produce and transport several shoot regulating hormones acropetally, 

such as abscisic acid, cytokinin and strigolactone, that can affect stomatal closure, shoot 
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and bud growth respectively (Domagalska & Leyser, 2011, Sharp, 2002). Roots may also 

control photoassimilate transport by modifying the rate that photoassimilates in the 

phloem are taken up by root tissues (Patrick, 1997) that feedback to genetic regulatory 

networks (Koch, 1996). Numerous studies provide support for shared control of C 

allocation (Davidson & Holbrook, 2009, Farrar & Jones, 2008). 

Moving Forward 

At the extreme, root and shoot phenology can be offset by ±200 days, and both 

are mechanistically linked by temperature, water and C allocation. This dataset 

establishes possible generalizations regarding root and shoot phenology based on biome 

and growth form (i.e., evergreen, deciduous). Temperature and moisture are positively 

correlated with the phenology of both shoot and root growth in three of four biomes 

suggesting that abiotic factors both directly and indirectly affect root physiology. 

Endogenous factors (e.g., allocation of photoassimilate, source-sink dynamics, hormonal 

control) are also likely to be important drivers of phenology but as yet I am not able to 

make any broad conclusions with the possible exception that photoassimilate supply, 

storage and transport are key drivers of root growth phenology. The temperature 

hysteresis in Figure 2.3 provides support for endogenous controls—particularly the 

boreal and Mediterranean datasets. At the present time, there are few data available in the 

literature probably because of the difficulty in making measurements of seasonal root 

growth. Current datasets are derived from techniques that are relatively indirect (soil 

respiration), often destructive (coring), labor intensive (minirhizotrons) and hence 

expensive to implement. In addition to the paucity of data, many methods are difficult to 
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compare often with known biases (e.g., minirhizotron vs. isotopic methods; Guo et al., 

2008), and suffer from chronic under-sampling (Taylor et al., 2013). However, for my 

purposes these methods capture temporal change in root length or biomass well enough 

to characterize its timing, though perhaps not its magnitude. I hope that improved scaling 

methods (Taylor et al., 2014) and standardization across large networks (Keller, 2010) 

will alleviate sampling difficulties and allow for more accurate and generalizable data to 

emerge over time. Root growth is an important conduit for photosynthetically-fixed C 

into the soil with well-established feedbacks on C and N cycling (Averill et al., 2014, 

Brzostek et al., 2013, Drake et al., 2011, Schmidt et al., 2011). Quantitative models 

assume the phenology of root growth is synchronous with that of aboveground phenology 

despite empirical evidence to the contrary. Whether the addition of belowground 

phenology will affect total C efflux in terrestrial biosphere models is presently unknown. 

In the temperate biome where phenology is largely in sync such a change may be 

unnecessary, but in boreal biomes late season root allocation may explain observed fall 

increases in soil respiration that are currently poorly explained by temperature and soil 

moisture (Davidson et al., 2006, Giasson et al., 2013). Since both root growth and 

decomposition are known to be temperature-sensitive, and the latter also substrate 

limited, understanding the phenology and drivers of above- vs. belowground-C allocation 

is important for estimating ecosystem C fluxes under global change.  
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Table 2.2. Regression statistics for the proportion of maximum monthly root or shoot growth as a function of 

median monthly temperature (MMT) or mean monthly precipitation (MMP).  The slope estimate (β) for MMT 

are in units of growth per oC and MMP growth per mm precipitation. Significant variables and overall model 

significance are indicated by: NS = not significant, * P < 0.05, ** P < 0.01 and *** P < 0.001.  

Biome Organ MMT Radj
2
  MMP Radj

2
  

All biomes Root 0.02
***

 0.48  0.01
*
 0.09  

 

Shoot 0.01
**

 0.21  0.01
**

 0.17  

        

Boreal Root 0.02
***

 0.79  0.01
***

 0.83  

 
Shoot 0.02

*
 0.47  0.01

**
 0.67  

        

Temperate Root 0.02
***

 0.80  0.01
**

 0.01  

 
Shoot 0.02

***
 0.75  0.011

NS
 0.01  

        

Mediterranean Root 0.01
NS

 0.01  0.01
NS

 0.18  

 
Shoot 0.01

NS
 0.00  0.01

NS
 0.01  

        

Subtropical Root 0.05
**

 0.61  0.01
*
 0.37  

  Shoot 0.04
*
 0.38  0.01

*
 0.31  
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Figure 2.1. Kernel density curve of the offset in days between the maximum in root and shoot production. A 

kernel density curve is analogous to a histogram, but rather than showing counts of binned data, it estimates a 

probability density function of offset using sample data. The curve is smoothed using a kernel bandwidth of 1. 

Offset is defined as DOYmaximum root – DOYmaximum shoot, where DOY refers to day of year from 1 to 365. Data 

include 63 tree, shrub, and herbaceous species from 40 studies (Table 2.S2), grouped by biome. The black 

vertical dotted line is the grand mean of all offset values.  
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Figure 2.2. (a) Offset in days between maximum shoot and root production for 87 observations averaged across 

four biomes: boreal, temperate, Mediterranean and subtropical (Table 2.S2). Letters indicate a statistically 

significant difference in means (α = 0.05) calculated using Tukey’s HSD after one way ANOVA (offset ~ biome + 

root collection method, biome: F3,80 = 5.0, P = 0.0032, root collection method: F3,80 = 2.67, P = 0.053, model F6,80 = 

3.83, P = 0.0021). (b) Deciduous (n = 20) trees had a significantly smaller offset than did evergreen (n = 14) trees 

(ANOVA, F1,32 = 7.52, P = 0.009). 
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Figure 2.3. The proportion of maximum monthly root and shoot growth for each month in (a) boreal, (b) 

temperate, (c) Mediterranean, and (d) subtropical biomes (Table 2.S3). In panels a-d, dark brown corresponds 

to root growth and light green is shoot growth. The blue dotted line is mean monthly precipitation (mm, right 

side y-axis). The color bar across the top is a heat map showing seasonal temperatures ranging from -10°C 

(purple) to 25°C (red), with 0°C as bright blue. Panels e-h plot the proportion of maximum monthly root vs. 

shoot growth. In these panels, black lines join consecutive months and the direction of the arrowheads indicates 

time from January to December. This approach assumes that shoot growth is a suitable proxy for the initiation 

of photosynthesis. Calculating the proportion of peak root or shoot growth rather than absolute growth rates 

enables us to plot the different types of data on the same y-axis (i.e., minirhizotron vs. soil coring). Note that 

these proportions are not a probability distribution function (i.e., area under the curve ≠ 1) and that no point 

equals 1 because multiple studies with differently timed maximum growth were averaged.  
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Supplementary Information 

Paper selection 

Web of Science was searched using the following keyword search: (belowground 

phenology OR root phenology OR root allocation OR root growth) AND (shoot 

phenology OR aboveground OR stem growth OR leaf out OR budburst OR greenness), in 

order to capture a variety of above and belowground measurements. There were 13,934 

returns on Feb 3, 2014. I evaluated all papers at the abstract level for mention of seasonal 

root and/or shoot data. All candidate papers were read in full. Data including 

measurements of root and either leaf or stem production were included. Studies 

measuring transpiration rates, flowering, or single phenological events with no time 

series were not included.  

Gross and net root production 

In this study, offset is calculated using both gross and net root production. The 

phenology of net root production may be affected by seasonal variations in root mortality, 

especially when growth and mortality are asynchronous [1]. However, studies in 

temperate and boreal regions show that rates of root mortality are roughly synchronous 

with root growth [2, 3], implying that in these cases measurements of net root production 

may underestimate the magnitude of growth but not the timing of growth peaks. I found 

no significant difference between offset calculated using either gross or net root 

production (ANOVA, F1,86 = 0.788, P = 0.38) in the observations used in this study. 

These and all other analyses were performed in R [4]. 
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Offset 

Each observation was classified into one of four biomes based on Whittaker’s 

biome classification system (1970). When median annual temperature and mean annual 

precipitation were close to the edge of a biome, classification was determined using 

USDA Natural Resources Conservation Service Major Biomes Map [5]. Day of year for 

peak root and shoot production was calculated as a mean of replicates with varying 

sample size (n = 2-48). For samples that produced multiple shoot and root flushes, the 

day of year of the largest peak was used to represent the above or belowground peak. 

Offset was calculated as the number of days between the peak in shoot and root 

production (offset = DOYpeak root – DOYpeak shoot). Negative offset values indicate that 

peak root production preceded peak shoot production. To explore possible biome-specific 

effects, I used analysis of variance to test for the effect of biome, root collection methods, 

and study on offset. Differences in root and shoot data collection methods (ANOVA: 

offset ~ root collection method + shoot collection method, F6,80 = 2.17, P = 0.055), and 

study author did not affect offset (ANOVA: offset ~ study author, F1,85 = 0.00004, P = 

0.99). Stepwise model selection using explanatory variables 1) biome, 2) data collection 

method, and 3) study author indicated that the [biome + root collection method] model 

had the lowest AIC value (stepAIC[library:MASS] Initial model: offset ~ biome + shoot 

collection method + root collection method + study author, AIC = 749.6731; Final model: 

offset ~ biome + root collection method, AIC=737.1790) . Offset between the peak in 

root and shoot production in the subtropical biome was significantly different from other 

biomes (Tukey’s HSD after ANOVA: offset ~ biome + root collection method, biome: 
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F3,80 = 5.0, P = 0.0032, root collection method: F3,80 = 2.67, P = 0.053, model F6,80 = 3.83, 

P = 0.0021, Figure 2.S1a). Offset was not affected by plant growth form (herbaceous, tree 

or shrub; ANOVA: offset~growth form, F2,84 = 0.827, P = 0.44).  

Monthly root and shoot growth 

Measurements from literature were used to estimate monthly root and shoot 

growth rates for each biome. Growth rate of roots and shoots were tabulated from each 

study (excluding those that did not include seasonal data [i.e., measured DOY 1 as start 

of experiment rather than the Julian day]) and converted to a % of the maximum growth 

rate. Growth rates were averaged for each month with > 5 observations. Most rates do not 

exceed 1 because multiple studies with differently timed maximum growth were 

averaged (Table 2.S3). For all biomes, root and shoot growth together have a positive 

relationship with MMT and MMP (Growth = 0.0148*MMT + 0.123, F1,85 = 41.05, P < 

0.0001, Radj
2
 = 0.32; Growth = 0.00190*MMP + 0.240, F1,85 = 14.19, P < 0.001, Radj

2
 = 

0.13). There was no significant interaction effect between MMT and MMP when both 

were included in a model (MAT:MAP P = 0.15, model F3,83 = 17.22, P < 0.0001, Radj
2
 = 

0.36).  

Temperature and precipitation data 

To explore whether the seasonal variation in organ growth was the result of 

changes in temperature or precipitation, I obtained monthly daily maximum and 

minimum temperature as well as monthly mean total precipitation data for the station 
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located nearest each study site from the World Weather Information Service [6]. Means 

are based on 30 year averages from 1959-1997 (Greece), 1961–1990 (Chile, Czech 

Republic, Malaysia, Sweden), 1971–2000 (Canada, Finland, France, the Netherlands, 

Spain), or 1981-2010 (Japan, United Kingdom, United States of America). Daily 

maximum and minimum temperatures for each month were averaged to obtain a median 

monthly temperature (°C). Precipitation was reported as monthly mean total precipitation 

(mm). Precipitation refers to all types of precipitation in Sweden, Canada, France, 

Netherlands, and Spain. Only rainfall was measured in Greece, Chile, Czech Republic, 

Malaysia, Finland, Japan, United Kingdom, and United States of America. 
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Figure 2.S1. Proportion root (a) and shoot (b) growth for data in all biomes plotted against median monthly 

temperature (ºC). Color and symbol shape indicate biome. Regression statistics are found in Table 2.2. 
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Figure 2.S2. (a) The relationship between root growth and MMT in boreal evergreen tree roots only. Arrows 

indicate direction of time from April to November. (b) The relationship between root growth and MMT in 

boreal deciduous tree, shrub and herbaceous plant roots. Arrows indicate the direction of time from March to 

September.  
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Table 2.S3. Monthly root and shoot growth rates for each biome estimated from literature. Growth rate of roots 

and shoots were tabulated from each study (excluding those that did not include seasonal data [i.e. measured 

DOY 1 as start of experiment rather than the Julian day]) and converted to a % of the maximum growth rate. 

Growth rates were averaged for each month with > 5 observations. These rates do not exceed 1 because many 

studies with differently timed maximum growth were averaged. MMT, median monthly temperature (°C); 

MMP, mean monthly precipitation (mm). 

Biome Month Growth (% max) Organ MMT MMP 

Boreal (n=17) Jan - ± - root -13.229 22.38 

 
Feb - ± - root -10.221 16.85 

 
Mar 0.08 ± 0.06 root -3.9353 22.51 

 

Apr 0.24 ± 0.07 root 4.4382 25.75 

 
May 0.29 ± 0.07 root 11.7118 47.65 

 

Jun 0.65 ± 0.09 root 16.6588 69.85 

 

Jul 0.71 ± 0.09 root 18.8676 67.5 

 

Aug 0.55 ± 0.08 root 17.6882 52.41 

 

Sep 0.35 ± 0.08 root 11.6382 39.82 

 

Oct 0.39 ± 0.15 root 5.1824 30.59 

 

Nov 0.18 ± 0.11 root -3.6735 24.36 

 

Dec - ± - root -10.506 25.04 

 Jan - ± - shoot -13.229 22.38 

 Feb - ± - shoot -10.221 16.85 

 Mar 0.03 ± 0.01 shoot -3.9353 22.51 

 
Apr 0.15 ± 0.07 shoot 4.4382 25.75 

 
May 0.66 ± 0.09 shoot 11.7118 47.65 

 

Jun 0.68 ± 0.06 shoot 16.6588 69.85 

 
Jul 0.46 ± 0.10 shoot 18.8676 67.5 

 
Aug 0.27 ± 0.08 shoot 17.6882 52.41 

 
Sep 0.18 ± 0.07 shoot 11.6382 39.82 

 

Oct 0.12 ± 0.07 shoot 5.1824 30.59 

 
Nov 0.05 ± 0.02 shoot -3.6735 24.36 

 
Dec - ± - shoot -10.506 25.04 

Mediterranean (n=20) Jan 0.25 ± 0.07 root 11.525 45.2 

 

Feb 0.20 ± 0.07 root 13.335 48.42 

 Mar 0.45 ± 0.11 root 15.27 36.89 
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Biome Month Growth (% max) Organ MMT MMP 

Mediterranean (n=20) Apr 0.31 ± 0.08 root 16.82 29.02 

 

May 0.31 ± 0.10 root 19.745 30.3 

 

Jun 0.52 ± 0.16 root 22.67 23.62 

 

Jul 0.41 ± 0.15 root 25.215 18.31 

 Aug 0.53 ± 0.15 root 25.145 14.35 

 
Sep 0.41 ± 0.13 root 22.875 18.28 

 
Oct 0.54 ± 0.10 root 19.025 25.17 

 Nov 0.55 ± 0.14 root 14.555 33.7 

 Dec 0.52 ± 0.11 root 11.725 40.38 

 Jan 0.08 ± 0.08 shoot 11.525 45.2 

 
Feb 0.04 ± 0.03 shoot 13.335 48.42 

 

Mar 0.39 ± 0.13 shoot 15.27 36.89 

 

Apr 0.76 ± 0.13 shoot 16.82 29.02 

 

May 0.70 ± 0.11 shoot 19.745 30.3 

 

Jun 0.18 ± 0.07 shoot 22.67 23.62 

 
Jul 0.13 ± 0.06 shoot 25.215 18.31 

 Aug 0.16 ± 0.06 shoot 25.145 14.35 

 
Sep 0.11 ± 0.05 shoot 22.875 18.28 

 
Oct 0.08 ± 0.05 shoot 19.025 25.17 

 Nov 0.14 ± 0.11 shoot 14.555 33.7 

 Dec 0.02 ± 0.02 shoot 11.725 40.38 

Subtropical (n=11) Jan 0.21 ± 0.08 root 19.4333 59.1 

 
Feb 0.23 ± 0.07 root 20.4222 61.63 

 
Mar 0.36 ± 0.08 root 21.6611 75.92 

 Apr 0.31 ± 0.09 root 23.5111 67.56 

 May 0.41 ± 0.06 root 25.8111 118.6 

 Jun 0.51 ± 0.12 root 27.6333 212.4 

 
Jul 0.64 ± 0.11 root 28.7 118.5 

 
Aug 0.71 ± 0.10 root 28.6889 159.7 

 
Sep 0.91 ± 0.03 root 27.95 182.8 

 

Oct 0.71 ± 0.09 root 25.9056 109.7 

 

Nov 0.59 ± 0.09 root 23.1333 69.36 

 

Dec 0.36 ± 0.12 root 20.6222 54.36 

 
Jan 0.26 ± 0.08 shoot 19.4333 59.1 

 
Feb 0.31 ± 0.10 shoot 20.4222 61.63 

 
Mar 0.27 ± 0.11 shoot 21.6611 75.92 

 
Apr 0.41 ± 0.10 shoot 23.5111 67.56 

 May 0.38 ± 0.13 shoot 25.8111 118.6 

 Jun 0.44 ± 0.11 shoot 27.6333 212.4 
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Biome Month Growth (%max) Organ MMT MMP 

Subtropical (n=11) Jul 0.38 ± 0.11 shoot 28.7 118.5 

 Aug 0.78 ± 0.11 shoot 28.6889 159.7 

 
Sep 0.73 ± 0.09 shoot 27.95 182.8 

 
Oct 0.54 ± 0.10 shoot 25.9056 109.7 

 

Nov 0.43 ± 0.13 shoot 23.1333 69.36 

 
Dec 0.33 ± 0.11 shoot 20.6222 54.36 

Temperate (n=38) Jan 0.04 ± 0.02 root -0.5392 79.24 

 Feb 0.10 ± 0.04 root 0.9284 72.46 

 Mar 0.23 ± 0.06 root 4.9851 82.22 

  Apr 0.31 ± 0.07 root 10.1203 78.32 

 
May 0.44 ± 0.06 root 15.0743 86.3 

 
Jun 0.63 ± 0.05 root 19.2946 90.63 

 

Jul 0.66 ± 0.06 root 21.7824 86.54 

 

Aug 0.43 ± 0.07 root 21.2757 78.34 

 
Sep 0.27 ± 0.05 root 17.4554 83.59 

 
Oct 0.29 ± 0.05 root 11.6743 79.73 

 Nov 0.18 ± 0.06 root 6.2986 94.68 

 
Dec 0.08 ± 0.03 root 1.273 89.37 

 Jan 0.08 ± 0.06 shoot -0.5392 79.24 

 Feb 0.06 ± 0.06 shoot 0.9284 72.46 

 
Mar 0.20 ± 0.07 shoot 4.9851 82.22 

  Apr 0.30 ± 0.07 shoot 10.1203 78.32 

 May 0.64 ± 0.06 shoot 15.0743 86.3 

 Jun 0.59 ± 0.06 shoot 19.2946 90.63 

 

Jul 0.60 ± 0.07 shoot 21.7824 86.54 

 
Aug 0.46 ± 0.07 shoot 21.2757 78.34 

 Sep 0.29 ± 0.06 shoot 17.4554 83.59 

 Oct 0.23 ± 0.05 shoot 11.6743 79.73 

 Nov 0.20 ± 0.05 shoot 6.2986 94.68 

  Dec 0.08 ± 0.05 shoot 1.273 89.37 
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CHAPTER THREE: SEASONALITY AND PARTITIONING OF ROOT 

ALLOCATION TO RHIZOSPHERE SOILS IN A MID-LATITUDE FOREST 

Abstract 

Fine roots are a seasonally dynamic carbon (C) pool that accounts for a large 

proportion of net primary production. Roots affect the composition and function of the 

soil microbial community through turnover of root tissues, exudation of labile organic 

compounds and allocation of C to mycorrhizal fungi. As such root growth, mortality, and 

exudation are important components of biogeochemical cycles, yet data on the timing and 

partitioning of C to these processes are rare. The objective of this study is to estimate the 

seasonality, magnitude, and partitioning of C allocated belowground across the growing 

season in three mid-latitude hardwood and conifer stands at Harvard Forest in central 

Massachusetts using a minirhizotron camera, infrared gas analyzer, and cuvette collection 

to measure root production, respiration and exudation, respectively. 

Fine root growth and respiration were both positively correlated with temperature, 

but differed in their phenology. Root phenology was characterized by multiple flushes of 

growth and mortality, whereas root respiration was unimodal across the growing season. 

Deciduous hardwood stands allocated C belowground earlier in the season compared to a 

conifer-dominated stand. Total belowground C flux (TBCF) was highest in the red oak 

stand, consistent with the observed increase in aboveground biomass of red oak at 

Harvard Forest over the past 20 years. TBCF was lowest in the eastern hemlock stand due 

to a decline in allocation to root production over the study period. This decline is 

coincident with the arrival and spread of the hemlock woolly adelgid in this stand. This 
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study elucidates the seasonal partitioning of belowground C within the context of long-

term stand dynamics.  
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Introduction 

Fine roots are a dynamic carbon (C) pool that accounts for 10-60% of net primary 

production (NPP, Keyes & Grier 1981, Helmisaari et al., 2002, Ostonen et al., 2005). 

Allocation of C to roots is the main conduit by which C is transported belowground and 

incorporated into soil organic matter (SOM). Roots affect the composition and function 

of the soil microbial community through tissue turnover, exudation of labile organic 

compounds and allocation of C to mycorrhizal fungi. Root exudation stimulates microbial 

biomass growth and extracellular enzyme activity, thereby increasing the decomposition 

rate of SOM, liberating plant available nitrogen (N), and releasing carbon dioxide (CO2) 

to the atmosphere (Kuzyakov, 2010, Phillips et al., 2011). As such root growth, mortality 

and exudation are important components of biogeochemical cycles (Finzi et al., 2015).  

Root respiration can account for up to 70% of total belowground C allocation and 

over half of soil CO2 efflux (Burton et al., 2008, Drake et al., 2011, Fahey et al., 2005). 

Soil respiration is a large flux that integrates information about autotrophic and 

heterotrophic processes that together follow the seasonal cycle of air temperature and 

photosynthesis, and as a result it is relatively easy to detect the seasonal pattern of soil 

respiration. In contrast, measuring individual processes that contribute to belowground C 

allocation and soil respiration, such as autotrophic respiration, is far more challenging 

because of disturbance effects associated with sampling, small sample volume and small 

fluxes. A compromise approach measures the rate of root respiration indirectly by 

subtracting soil respiration rates in trenched and untrenched plots. While seasonally 

resolved, this method may over- or under-estimate autotrophic respiration as a result of 
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root death and decomposition (Drake et al., 2012, Savage et al., 2013) or the loss of 

priming effects (Finzi et al., 2015). Perhaps as a result of these difficulties, few studies 

assess seasonal patterns of belowground C allocation, making it difficult to understand 

how the belowground C flux is partitioned among roots, exudates, and mycorrhizal fungi 

(Drake et al., 2011). There are a handful of studies that have included seasonally resolved 

measurements of root respiration using chamber measurements on intact or excavated 

roots (Burton et al., 2002, Davidson & Holbrook, 2009, Davidson et al., 2006). Similarly, 

there are few seasonally-resolved measurements of fine root nonstructural carbohydrates 

(NSC) pools despite their potential importance to ecosystem-scale C cycling (Boldingh et 

al., 2000, Li et al., 1996). Even less is known about the seasonality of root exudation 

(Phillips et al., 2008, Pritchard et al., 2008). 

Despite the paucity of process-level data, there are sufficient studies that 

document notable variations in the phenology of belowground C allocation. For example, 

Cardon et al. (2002) report multiple flushes of root production in oak species throughout 

the growing season. There are also observations of differences in the phenology of root 

growth between different tree species in the same geographical location, indicating that 

belowground phenology depends in part on internal cues (McCormack et al., 2014). At 

the biome scale, root production is commonly asynchronous with aboveground growth, 

particularly where coniferous tree species are present (Abramoff & Finzi, 2015). 

In previous work I found that the phenology of belowground autotrophic activity 

is sensitive to variations in temperature, precipitation, and substrate supply (Abramoff & 

Finzi, 2015, Giasson et al., 2013). One observation common to both studies is a peak in 
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soil respiration or maximum root growth occurring after the peak in ecosystem 

respiration and maximum shoot growth, respectively. Neither of these studies, however, 

directly measured the components of belowground C allocation and their phenology 

using the same methods through time. 

 The objective of this study is to assess the phenology, magnitude, and 

partitioning of C allocated belowground across the growing season in mid-latitude, 

hardwood and conifer stands at the Harvard Forest in central Massachusetts. Based on the 

results of my previous work, I hypothesize that (1) deciduous stands allocate C 

belowground earlier in the growing season than the conifer stand; (2) root growth, 

mortality and respiration are positively correlated with soil temperature and precipitation; 

and the (3) total belowground C flux (TBCF) is highest overall in the red oak stand 

compared to the white ash and eastern hemlock stand, consistent with the observed 

increase in red oak aboveground biomass throughout the Harvard Forest over the past 20 

years (Urbanski et al., 2007), and consistent with the arrival of the invasive pest the 

hemlock woolly adelgid to the hemlock stand (Ellison et al., 2015). 

Materials and Methods 

Study Site 

This study was conducted in the Prospect Hill tract of the Harvard Forest Long 

Term Ecological Research site, a 120+-year-old secondary-growth forest located in 

Petersham, MA (42’N, 72’W, elevation 340 m; Wofsy et al., 1993, Goulden et al., 1996). 

The dominant species are northern red oak (Quercus rubra) and red maple (Acer 

rubrum), with smaller populations of eastern hemlock (Tsuga canadensis), white ash 
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(Fraxinus americana), white pine (Pinus strobus) and red pine (Pinus resinosa). The site 

is located on former agricultural land that was abandoned in the mid-1800s allowing 

forest regrowth beginning late in the 19
th

 century (Foster et al., 2003). Forest uptake of C 

has increased since 1990 from ~ 2 Mg C ha
-1 

yr
-1

 to ~ 5 Mg C ha
-1 

yr
-1

 (Keenan et al., 

2012, Urbanski et al., 2007). Soils are Typic Distrochrepts derived from glacial deposits 

of granite, schist and gneiss.  

Plots were established in three mono-dominant stands: white ash, red oak, and 

eastern hemlock (Figure 3.1). Each stand occupies an area of 3.4, 8.3, and 10.9 hectares, 

respectively. I established 6 biometry plots per stand (N = 18) and 10 minirhizotron tube 

plots per stand (N = 30). The basal area in each 8-m-radius biometry plot is composed of 

80% dominant tree species, with the inner 5-m basal area containing only the dominant 

species. The three stands differ in soil chemistry and biogeochemistry (Brzostek & Finzi, 

2012). The white ash stand has a lower ratio of C-to-N content in the soil than the oak 

and hemlock stand (Table 3.1). 

Root Production and Biomass 

Root production and turnover were measured April–December 2012, March–

November 2013, and April–November 2014 using a BTC-100x high magnification 

minirhizotron camera system (Bartz Technology Company, Carpenteria, CA). 

Measurements were made bi-weekly during the growing season in 2012 and monthly in 

2013, 2014, and during the snow-free dormant season of each of the three years. There 

was no sampling from December 2012 to March 2013 and November 2013 to April 2014.  
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The camera system was inserted into cellulose acetate butyrate tubes installed at a 

45° angle to a vertical soil depth of 40 cm. Thirteen tubes were installed in the center of 

each minirhizotron tube plot at Harvard Forest 10+ years ago (n = 4 in red oak, n = 9 in 

eastern hemlock). Seventeen tubes were installed in November 2012 (n = 6 in red oak, n 

= 1 in eastern hemlock, and n = 10 in white ash) for a sample size of n = 10 for each 

stand in 2013 and 2014. Minirhizotron tubes installed in November 2012 likely severed 

existing roots during placement and may have increased root growth rates in the 

following seasons. To test for this effect I conducted an analysis of variance using growth 

or mortality as the dependent variable and sample date and whether or not the sample 

came from a recently installed minirhizotron tube as fixed effects for 2013 and 2014. 

The camera captures thirty-nine sequential images that are 13.5 x 17 mm in size 

along the upper axis of each tube at each sampling interval. The resulting images were 

processed using the open source imaging software Rootfly (Rootfly Development Team, 

Version 2.0.2, GNU General Public License). In each image, every root or root segment’s 

length and diameter was annotated. Length (mm) and diameter (mm) were scaled to mass 

(g) using a site-specific relationship based on n = 20 per species. For each root sample I 

recorded length and diameter, and dried it to constant mass at 60°C for 4 days. The 

polynomial fit to mass as a function of length and diameter was of the form: 

mass = length*[a*(diameter)
2
 – b*(diameter)]    [1] 

where the coefficients [a, b] were [3*10
-4

, 1*10
-5

], [6*10
-4

, 5*10
-5

], and [4*10
-4

, 

9*10
-5

], for white ash, red oak, and eastern hemlock respectively. The R
2
 value for this 

relationship was greater than 0.94 for each species. Root biomass was estimated from the 

file:///C:/Users/manishapatel/AppData/Local/Temp/Rootfly_2_0_2_setup.exe
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images assuming that the viewing depth is 0.7848 mm and calculating the diameter of the 

imaged root using the method of Taylor et al. (2014). Assuming that roots are cylindrical, 

the relationship between the true diameter (D) and diameter perceived (p) at depth (f) is: 

D = 
(𝑓2+

1

4
𝑝2)

𝑓
      [2] 

Daily fine root growth and mortality (g root d
-1

) in each minirhizotron image for 

each sampling interval were calculated as:  

Growth (g root d
-1

) =  
𝑚𝑡2− 𝑚𝑡1

𝑡2− 𝑡1
 when mt2 – mt1 > 0   [3] 

Mortality (g root d
-1

) =  
𝑚𝑡2− 𝑚𝑡1

𝑡2− 𝑡1
 when mt2 – mt1 < 0                            [4] 

where m is the total mass of roots traced on day of year (DOY) t1 and t2. Gross 

root production refers to total fine root growth summed over an interval of time. Net root 

production is the sum of growth and mortality for that interval. Root production 

measurements were scaled to g C m
-2 

d
-1

 using the assumption that each minirhizotron 

image is representative of a 0.173 cm
3
 (13 mm x 17 mm x 0.7848 mm) volume of soil 

(Taylor et al., 2014). 

The standing biomass of roots was estimated from field samples. I collected three 

10 x 10 cm samples of the organic horizon and three 5 cm diameter mineral soil samples 

to a depth of 15 cm monthly in each plot. Roots were removed and sorted into fine (< 2 

mm), coarse (> 2 mm), live and dead pools. Roots were then dried and weighed to obtain 

standing biomass for live fine roots (g m
-2

). Subsamples of roots from monthly soil 

coring were assayed for carbon content (%C) using an elemental analyzer (model 

NC2500; CE Instruments, Milan, Italy). Fine root standing biomass for the organic 
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horizon down to a depth of 15 cm in the mineral soil was scaled up to g C m
-2 

by 

adjusting for the horizontal area of the soil core, the carbon content of roots in each stand, 

and rock content. 

Root Respiration 

CO2 efflux was measured directly on recently severed roots using an infrared gas 

analyzer (LI6400, LiCor Biosciences, Lincoln, NE). Measurements were made monthly 

from March to October 2013 on three samples per stand. Respiration rates have been 

measured successfully using severed roots in previous studies (Burton et al., 2012, 

Burton & Pregitzer, 2003). Furthermore, I compared respiration measurements of an 

attached and severed root system for each stand on three separate days and confirmed that 

respiration rates were similar between the two types of roots (correlation coefficient = 

0.78) and stable up to approximately 7 hours. 

Two measurements per sample were made on each sample date within 7 hours of 

collection, one in the field at ambient temperature and one in the lab at a constant 

temperature. Field measurements of CO2 efflux were fit to the Arrhenius equation, 

RS =A*e
(-Ea/RT)

      [6] 

where RS is the respiration rate (μmol CO2 s
-1 

g
-1

), Ea is the activation energy (kJ 

mol
-1

), A is a pre-exponential factor (μmol CO2 s
-1 

g
-1

), T is temperature (Kelvin) and R is 

the gas constant (kJ Kelvin
-1 

mol
-1

). The parameters Ea and A were estimated using non-

linear curve fitting in SigmaPlot (Version 10.0, Systat Software, San Jose, CA). I then 

estimated growing season rates of RS using daily soil temperature measured at 10 cm 

depth from HOBO data loggers installed in March 2013 in each stand. Mass-specific RS 
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(μmol CO2 g root
-1

 s
-1

) was scaled to g C m
-2 

s
-1

 using the mass of root per square meter 

ground surface area and converting from μmol to μg.  

Nonstructural Carbohydrates 

The pool of NSC was estimated as the sum of the concentration of sugars 

(assumed to be glucose:fructose:galactose in 1:1:1 ratio) and starch using the method of 

Chow & Landhausser (2004). I collected three ~1- 2 g root samples from each biometry 

plot monthly from May to November 2011 and four times from March to November 

2012. Roots were excavated, washed, and frozen in liquid nitrogen until analysis. Sugars 

were extracted from dried and finely ground root tissue using a 12:5:3 

methanol:chloroform:water solution before being developed with 2% phenol and 

concentrated sulfuric acid. Absorbance was measured at 490 nm using a digital 

spectrophotometer (Spectronic 20D+, Thermo Scientific). Starch was extracted using a 

0.005 N sulfuric acid solution at 95ºC and developed as described above. 

Root Exudation 

Root exudates were collected from six root systems per stand in June and August 

2012, and April, May, July and October 2013 following the method of Phillips et al. 

(2008, 2011). In brief, roots were excavated 48 hours prior to collection, washed, and 

incubated in a moist soil-sand mixture. Roots were placed into cuvettes with glass beads 

and a C-free nutrient solution 24 hours prior to collection. At the time of collection, 

exudate-containing nutrient solution was extracted with two additional flushes of C-free 

nutrient solution to ensure that exudates adhering to glass beads were flushed into 
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solution. Samples were transported back to the lab on ice and analyzed for non-purgeable 

organic carbon content using an elemental analyzer (Shimadzu TOC-VCSH analyzer, 

New Haven, CT). Exudation rate (g C g root
-1

 d
-1

) was scaled to g C m
-2 

d
-1

 using root 

biomass (g root m
-2

) from soil cores.  

Total Belowground C Flux 

To estimate the quantity of C allocated belowground during the growing season 

(herein abbreviated as “gs”), I define a simplified belowground C flux budget (sensu 

Litton et al., 2007, Drake et al., 2011) using two different approaches. First, a top-down 

estimate of total belowground C flux (TBCFtop, g C m
-2

 gs
-1

) is defined as: 

TBCFtop = Fefflux + Fleaching – Flitter + Δ(Croots + Csoil)    [7] 

where Fefflux is the growing season rate of soil respiration, Fleaching is the flux of 

dissolved organic C into streamwater,  Flitter is litterfall, and Δ(Croots + Csoil) is the growing 

season change in the C pool associated with fine roots and soil. Fefflux is estimated from a 

22-year synthesis of soil CO2 efflux data using a range of methods across multiple stand 

types (Giasson et al., 2013). Flitter is measured using litter baskets (Barker Plotkin, 2010, 

Brzostek, 2012, Frey & Ollinger, 1999, Hadley, 2009, Lemos, 2013, Munger & Wofsy, 

1999). I estimated ΔCroots using net root production from this paper. I set ΔCsoil = 0, 

assuming that it is small relative to the timescale of this study (Gaudinski et al., 2000).  

Second, a bottom-up estimate (TBCFbottom, g C m
-2

 gs
-1

) is defined as: 

TBCFbottom = Froots + Fresp + Fexudates     [8] 

where Froots is gross fine root production, Fresp is fine and coarse root respiration, 

and Fexudates is root exudation. Froots, Fexudates, and fine root respiration are estimated using 
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measurements from this study. Coarse root respiration is estimated using the observation 

that mass-specific rates of coarse root respiration are ca. 70% lower than fine root 

respiration rates in the same stand (Desrochers et al., 2002, Fahey et al., 2005, Pregitzer 

et al., 1998). Coarse root respiration (μmol CO2 g root
-1

 s
-1

)  was scaled to g C m
-2 

s
-1

 

using coarse root biomass to 15 cm from soil pits in evergreen and hardwood stands at 

Harvard Forest and the Harvard Conservation Trust (Harvard, MA, 42
o
31’N 71

o
32’W), 

respectively (Lemos, 2013). 

I did not include transpiration of dissolved inorganic C, fungal production or 

throughfall leaching in the calculation of C outputs or inputs as these terms are generally 

< 5% of the C budget in other mid-latitude forest stands (Fahey et al., 2005, Drake et al., 

2011). Coarse root production may account for 5-10% of total C inputs (Fahey et al. 

2005; Drake et al. 2011), but I had no data on coarse root production at Harvard Forest 

and therefore did not include it.  

Belowground C pools were derived from the Harvard Forest Data Archive and 

this study. Soil C content data were from both published (Bowden et al., 2009, Brzostek, 

2012, Frey et al., 2014, Lemos, 2013, Nadelhoffer et al., 1999, Orwig & Foster, 2009) 

and unpublished sources (Drake, unpublished data; Sorensen, unpublished data). 

Standing biomass of roots was estimated using data from this study as well as a previous 

study conducted on the same plots (Lemos, 2013). Soil microbial biomass in the hemlock 

stand was measured in June, July, August, and September of 2012 (Averill, unpublished 

data). Soil microbial biomass in the ash stand was measured in July of 2011 (Averill, 
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unpublished data). Microbial biomass data in oak-dominated hardwoods stands were 

taken from Drake et al. (2013) and more recent studies (Sorensen, unpublished data).  

Monthly values of gross primary production (GPP) were estimated using 

partitioned NPP measured in 2012 at the eddy-covariance towers located in a mixed 

hardwood stand and a hemlock stand at Harvard Forest (ORNL-DAAC, 2013). Data were 

not available for ash stand GPP or soil CO2 efflux; for the purpose of this budget I 

assumed these values were equivalent to oak-dominated hardwoods, although I recognize 

this makes the ash belowground C budget less certain. I used PhenoCam data 

(http://phenocam.sr.unh.edu/) to determine maximum canopy greenness in red oak and 

eastern hemlock stands. 

Data Analysis 

All statistical analyses were performed in R Statistical Software (R Development 

Core Team, 2013). Stand-specific and seasonal-to-interannual variations in fine root 

growth, mortality, respiration, NSC concentration, and exudation were modeled using a 

mixed-effects model with stand, sample date, and year as fixed effects and plot as a 

random effect. A Tukey’s HSD post-hoc test was used to test for differences between 

stands. Analysis of variance (ANOVA) was used to test for the effect of newly installed 

tubes on root growth and mortality, to test for the effect of stand on root tissue [N], to test 

for the effect of stand and soil horizon on root biomass, and to test for a significant 

difference between TBCFbottom and TBCFtop. I also used ANOVA to test for differences 

in C content, N content, and organic horizon mass between stands, averaging across 



 

 

67 

subsamples. All mixed effects and ANOVA models were constructed using the aov 

function in base R. 

Linear regression was used to correlate root growth with root mortality, and to 

correlate root growth with temperature for each stand separately. Multiple linear 

regression was used to model mass-specific respiration as a function of soil temperature, 

precipitation, and stand. I used a linear-mixed-effects model to model root mortality as a 

function of temperature, precipitation, stand, year, and day of year with tube as a random 

effect. Precipitation and day of year were not significant effects and were dropped from 

the final model. I also used a linear-mixed-effects model to model root growth as a 

function of temperature, precipitation, stand, year, and day of year with tube as a random 

effect using the lmer function in the lme4 package in R (Bates et al., 2014). In mixed-

effects, ANOVA, and regression models, fine root growth and mortality were log-

transformed to meet assumptions of normality.  

Results 

Root Production and Biomass  

There was a measurable but transient effect of tube installation on root production 

in red oak. In 2013, mean red oak root growth was 0.34 g C m
-2

 d
-1

 higher in newly 

installed tubes compared to tubes established a decade earlier (F2,79 = 2.7, P = 0.07), but 

this difference diminished in 2014 to 0.09 g C m
-2

 d
-1

 (P = 0.12). There was no detectable 

installation effect on red oak root mortality or on the single hemlock tube installed. All 

white ash tubes were newly installed in November 2012 so it was not possible to 

establish an effect of installation on white ash root production. 
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Root growth was positively correlated with soil temperature in each stand (P < 

0.001, Table 3.2), but was not correlated with precipitation (Table 3.3). As a result root 

growth was concentrated in mid-summer, but with distinct stand-level differences (Figure 

3.2, a-f). Red oak root growth occurred in 1–3 flushes over the growing season, with 

highest mortality in mid to late-summer (Figure 3.2, a-c). Root mortality was not 

correlated either with soil temperature (P = 0.13) or precipitation (P = 0.76). Hemlock 

root growth was low throughout the growing season with smaller production peaks 

occurring in the fall in 2013 and 2014. White ash root growth peaked in mid-summer with 

high mortality in late-summer. In red oak and white ash stands the peak in maximum 

canopy greenness (data not shown) occurred ~20 days earlier than in the eastern hemlock 

stand, but the peak in root growth occurred ~50 days earlier. As a result, the deciduous 

stands had a smaller offset between maximum canopy greenness and peak root growth 

than did the hemlock stand. Similar to the phenology of gross production, net fine root 

production increased in early to mid-summer in the deciduous stands. In 2012 hemlock 

fine root NPP was positive but in 2013 and 2014 there was no net production of fine 

roots. 

Root biomass was significantly higher in the red oak (P < 0.001) and eastern 

hemlock (P < 0.1) stand compared to ash, largely because of a surface organic horizon 

(F1,111 = 47.9, P < 0.001). White ash stands at Harvard Forest lack an organic horizon, 

possibly the result of bioturbation by exotic earthworms that are not present in the red 

oak or eastern hemlock stands. In this stand, surface litter is incorporated directly into the 
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mineral soil horizon in less than 1 year. As a result, there is relatively little variation in 

the root depth profile in this stand (Table 3.4).  

In all years, red oak and white ash stands allocated more C to fine roots compared 

to eastern hemlock (Figure 3.2, g-i). Averaged across growing seasons 301 ± 76 g C m
-2

 

gs
-1

 and 133 ± 42 g C gs
-1

 were allocated to fine roots in red oak and white ash stands, 

respectively. C allocation to gross fine root production in eastern hemlock was 42 ± 13 g 

C m
-2

 gs
-1

.  

Root Respiration 

The phenology of fine root respiration was similar between stands, with highest 

mass-specific respiration rates in mid-summer (Figure 3.3a). This follows from a positive 

correlation with soil temperature (Figure 3.3b, R
2

adj = 0.68, P < 0.001). Mass-specific 

rates of fine root respiration were significantly higher in the white ash stand than in oak 

and hemlock (Figure 3.3b). Arrhenius fits to mass-specific data indicate that white ash 

root respiration had a lower apparent activation energy (Ea = 20 kJ mol
-1

) across the 

growing season compared to that of red oak (Ea = 40 kJ mol
-1

) and eastern hemlock (Ea = 

29 kJ mol
-1

). The pre-exponential constant A (umol CO2 g
-1

 s
-1

) varied over three orders 

of magnitude between stands and was highly correlated with Ea (R
2
 > 0.99).  

Root respiration measured in the lab increased across the growing season (Figure 

3.4). The average rate of fine root respiration for the six month growing season was 191 ± 

24, 167 ± 33, and 205 ± 27 g C m
-2

 gs
 -1

 for red oak, eastern hemlock, and white ash, 

respectively (Figure 3.3c). 
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Nonstructural Carbohydrates and Root Exudation 

There was large inter-annual variability in the concentration of NSC in fine roots 

(Figure 3.5). In 2012, there was a decline in NSC concentration mid-summer relative to 

the spring and fall. In 2011, there was a slight but significant increase in NSC 

concentration across the growing season (P < 0.001). Red oak roots had significantly 

lower NSC concentration than white ash and eastern hemlock (P < 0.001, Figure 3.5). 

Exudation rate was highly variable and there was no clear stand level difference 

or seasonal pattern, although there were significantly lower exudation rates in early 

spring (DOY = 106) compared to summer and fall (Table 3.5). Exudation rates for red 

oak, eastern hemlock, and white ash were 47 ± 24, 55 ± 25, and 46 ± 11 g C m
-2

 gs
-1

, 

respectively. 

Total Belowground C Flux 

In the red oak stand, total belowground C flux was 577 ± 85 g C m
-2

 gs
-1

 based on 

TBCFbottom. Of this, 52% was allocated to root production, 40% to root respiration, and 

8% to exudation (Figure 3.6, orange bars). TBCFtop was 791 ± 94 g C m
-2

 gs
-1

. In the 

eastern hemlock stand, TBCFbottom was 340 ± 51 g C m
-2

 gs
-1

. Approximately 13% of this 

flux was allocated to root production, 71% to root respiration, and 16% to exudation 

(Figure 3.6, purple bars). TBCFtop was 474 ± 29 g C m
-2

 gs
-1

. In the white ash stand, 

TBCFbottom was 449 ± 57 g C m
-2

 gs
-1

. Thirty percent of TBCFbottom was allocated to root 

production, 60% to root respiration, and 10% to exudation (Figure 3.6, blue-green bars). 

TBCFtop was 633 ± 58 g C m
-2

 gs
-1

. 
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TBCFtop was larger than TBCFbottom in all of the stands, but this difference was not 

significant (Table 3.6). In the red oak stand, TBCFtop was 214 ± 127 g C m
-2

 gs
-1 

larger 

than TBCFbottom. 

The phenology of TBCFbottom differed between stands (Figure 3.7). Red oak 

stands allocated more C belowground earlier in the growing season compared to white 

ash and eastern hemlock. The peak in TBCFbottom in red oak was coincident with the 

spring ramp-up of GPP. In eastern hemlock stands, the phenology of TBCFbottom was not 

pronounced. In both oak and hemlock stands, soil respiration peaked later in the season 

than either GPP or TBCFbottom. 

Discussion 

Data on timing and partitioning of C to belowground processes are rare 

(Dohleman et al., 2012, Fahey et al., 2013). This paper provides a first look at the 

seasonal dynamics of multiple root processes over 2-3 years in a mid-latitude forest. I 

observed significant stand-level differences in belowground C flux and its partitioning to 

root growth, exudation and respiration. The phenology of TBCF also differed broadly 

between stands, especially in the evergreen hemlock stands compared to the deciduous 

red oak and ash stands where the peak in TBCF was coincident with the peak in GPP. I 

found broad support for my three hypotheses (discussed below) and a proximate 

explanation for the increase in the biomass of red oak throughout the Harvard Forest over 

the last two decades. The emergence of a forest pest, the hemlock woolly adelgid, during 

the course of this study negatively affected belowground C allocation and root production 

in hemlock from 2012 to 2014. The data reported here suggest that belowground C flux is 
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sensitive to variations in temperature and C supply. Follow up studies are needed to 

assess the impact of belowground phenology on soil biogeochemistry. 

Phenology of Root Growth and Mortality 

In a recent meta-analysis I found that deciduous trees have more synchronous 

above- and belowground phenology than evergreen trees (Abramoff & Finzi, 2015). 

Consistent with the meta-analysis, I found that the offset between maximum canopy 

greenness, a proxy for aboveground phenology, and root growth was about 30 days 

shorter in the deciduous stands. Consistent with my first hypothesis, fine root growth was 

initiated earlier in the growing season in the hardwood stands compared to the hemlock 

stand (Figure 3.2, a-c). 

There was not a strong correspondence between root growth and mortality despite 

statistical significance (Figure 3.2, R
2

adj
 
= 0.01, P < 0.05). At best, a visual inspection of 

the data suggests a lag in mortality relative to growth for most stands and years. A more 

striking observation was the multiple flushes of root growth observed in red oak, 

particularly in 2012 (Figure 3.2a). The direct observation of multiple root flushes confirm 

the results inferred by Cardon et al. (2002), who based their inference on a negative 

correlation between shoot elongation and soil respiration in a common garden experiment 

with red oak saplings. There were fewer flushes in the 2013 and 2014 data that may 

reflect sampling intensity. The minirhizotrons were sampled biweekly in 2012 and 

monthly in 2013 and 2014. It is possible that the lower sampling frequency missed 

flushing episodes. Alternatively, there may have been fewer flushes in these years. 
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Environmental Controls over Root Growth and Respiration 

Consistent with hypothesis 2, root growth and respiration were sensitive to 

variations in soil temperature (Table 3.3). Contrary to my second hypothesis, there was 

no effect of precipitation on growth or respiration, and mortality was unrelated to 

variations in temperature or precipitation. The positive correlation between root growth 

and temperature observed here has been observed in a variety of ecosystems using both 

observational (Bevington & Castle, 1985, Teskey & Hinckley, 1981) and experimental 

approaches (Lahti et al., 2005, Tryon & Chapin III, 1983). The positive relationship 

between root growth and temperature reflects a number of processes including enhanced 

C supply due to photosynthesis, increases in the rate of cell division and lower resistance 

to water uptake favoring cell expansion (Lambers et al., 2008). Though very high 

temperatures (> 30ºC) can inhibit root growth, I did not observe soil temperatures greater 

than 24ºC (Barney, 1951, Graves et al., 1991). 

There was a strongly seasonal cycle to the rate of fine root respiration that 

reflected the sensitivity of respiration to temperature (Figure 3.3a,b). The apparent 

temperature sensitivity (Ea) of root respiration was lowest in the ash stands and highest in 

the red oak stand (Table 3.7). The measurement of temperature sensitivity reported here 

convolves many potential sources of variability such as differences in root chemistry and 

substrate supply. Thus it is difficult to ascribe control(s) for the greater temperature 

sensitivity in red oak compared to the other species. 

When incubated at a common temperature the rate of root respiration increased 

across the growing season in all three species (Figure 3.4). This suggests an increase in 
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photosynthate allocation to roots through time and that the decline of respiration rates in 

the fall is related to temperature rather than acclimation of root respiration or substrate 

limitation. This observation is qualitatively similar to that of Burton & Pregitzer (2003) 

who did not find acclimation of root respiration across the growing season in sugar maple 

stands in Michigan. Both studies contrast with the apparent acclimation of root 

respiration in response to experimental soil warming at the Harvard Forest (Burton et al., 

2008).  

Fine root respiration in ash was significantly higher than oak and hemlock and 

appears to be the result of high root [N]. The rate of N mineralization is high in ash 

compared to oak and hemlock stands (Brzostek & Finzi, 2012, Finzi et al., 1998). The 

presence of the invasive European earthworm Lumbricus terrestris in these plots further 

accelerates the rate of N cycling because they rapidly incorporate leaf litter into the 

mineral soil and decrease the turnover time of organic matter (Marhan & Scheu, 2005, 

Scheu, 1987). High N availability is most likely the reason root [N] is significantly higher 

in ash compared to oak and hemlock (F2,68 = 90.3, P < 0.001). Given that root N 

concentration is correlated with respiration rate (Burton et al., 2002, Reich et al., 2002), 

the high mass-specific rates of root respiration in this species are most likely explained by 

their high [N]. Notably at the plot scale, total fine root respiration (g C m
-2

 gs
-1

) was 

highest in the ash stand despite it having ~50% lower biomass than that in red oak. 

Nonstructural Carbohydrates and Root Exudation  

Root NSC concentrations varied significantly between stands, years, and within 

each growing season (Figure 3.5). In 2012, there was a strong apparent seasonal decline 
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in root NSC mid-summer, which may reflect the metabolism of NSC for root growth and 

maintenance respiration (Lynch et al., 2013). In 2011, there was no evidence for a 

seasonal decline. The difference between years may reflect inter-annual variation in 

allocation to root NSC pools. It is also possible that NSC concentrations vary over 

timescales finer than the monthly sampling interval used here, in contrast to stemwood 

NSC, for which monthly sampling appears sufficient to capture the seasonal trend in the 

NSC pool (Richardson et al., 2013). 

In contrast to root NSC there was no significant difference in exudation rate 

among stands (Table 3.8). Brzostek et al. (2013) similarly found no difference in the rate 

of root exudation among four stand types, including the hemlock and ash plots studied 

here. Exudation did, however, vary significantly at the seasonal time-scale with the main 

distinction being significantly lower rates in the spring compared to summer and fall 

collection dates (Table 3.5). This pattern of exudation mirrors the seasonal increase in 

mass-specific rates of root respiration and supports the idea of a progressive increase in C 

allocation belowground across the growing season (Figure 3.4). 

I caution that the detectability of variations in exudation may prove difficult given 

the methods presently available for research in the field. The collection of exudation 

requires the physical extraction of intact root systems from the soil that necessarily 

disrupts microbial interactions (Phillips et al., 2008). Similarly, sample collection 

requires submerging root tips in a liquid medium with a chemical composition different 

from the soil solution. This may affect the rate at which C is released from roots into the 
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solution. Indeed, other studies of exudation across the growing season did not detect a 

clear seasonal pattern (Phillips et al., 2008, Phillips et al., 2011). 

Total Belowground C Flux 

TBCF varied between 28 and 35% of GPP (Table 3.6). Consistent with my third 

hypothesis, red oak had the highest rate of TBCF and the greatest proportional allocation 

to fine root production (Figure 3.6). Eddy-covariance estimates of net ecosystem 

production at the Harvard Forest mixed hardwood tower site suggest a near doubling of C 

uptake from the atmosphere over the last 20 years (Keenan et al., 2012, Urbanski et al., 

2007). The increase in C uptake is correlated with an increase in red oak productivity and 

biomass. Of the dominant species within the tower footprint, the concentration of N in 

red oak foliage is among the highest, and this species has the most rapid rate of light-

saturated net photosynthesis (Bassow & Bazzaz, 1997). Foliar [N] concentration in red 

oak remains unchanged throughout, suggesting that the rate of annual N uptake from the 

soil has also increased. Given that belowground C allocation is required to acquire soil N, 

this analysis suggests that high TBCF in this red oak stand relative to hemlock, the 

second most dominant tree species in the tower footprint, has facilitated its emergence as 

the dominant species at this site (Figure 3.6, Table 3.6). 

The modest C investment in root production in hemlock stands may be an 

attribute of this species in particular or evergreen trees in general, which allocate a 

substantial fraction of C to ectomycorrhizal symbionts (Clemmensen et al., 2013, 

Hobbie, 2006). Confounding this interpretation of the results, however, is the recent 

infestation of the invasive pest hemlock woolly adelgid (HWA), which became 
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widespread at the Harvard Forest in 2012 with visible signs of crown thinning and HWA-

induced tree mortality recorded in 2014. Compared to 2012, the allocation of C to root 

production in hemlock stands dropped by 11% in 2013 and 72% in 2014, suggesting a 

negative effect of the HWA on root C allocation. Surveys of hemlock roots in infested 

stands in Connecticut found that ectomycorrhizal colonization, bacterial abundance in the 

adjacent rhizosphere, and root C:N all declined (Vendettuoli et al., 2015).  

The phenology of TBCFbottom differs between stands and relative to that of GPP or 

soil respiration (Figure 3.7). In the deciduous red oak stand, the peak in TBCFbottom 

precedes the peak in soil respiration and coincides with spring ramp-up of GPP. This 

suggests that belowground C allocation in oak is strongly dependent upon the supply of 

photosynthate. This result is consistent with pulse-chase experiments demonstrating rapid 

transfer of C belowground (Hogberg et al., 2008) and girdling experiments showing steep 

declines in springtime soil respiration owing to the absence of active roots (Högberg et 

al., 2001). 

TBCFtop was consistently greater than TBCFbottom. This suggests an over-estimate 

of ΔCroot in TBCFtop, an underestimate of root GPP, respiration, or exudation in 

TBCFbottom, or a combination of both. The largest difference between TBCFtop and 

TBCFbottom (~240 gC m
-2

 gs
-1

) was observed in the red oak stand. The differences were 

smaller in the ash and hemlock stands. Root NPP was estimated from minirhizotron 

images and was highest in red oak (Figure 3.2, g-i). High NPP contributes to a large 

estimate of ΔCroot and hence the estimate of TBCFtop (equation [1]). In contrast to the high 

minirhizotron estimate of root NPP, there was no significant change in root biomass in 
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soil cores collected across the growing season in 2012 (data not shown). Because of high 

spatial variability (Taylor et al., 2013), the absence of a change in root biomass in one 

year does not exclude the possibility of high root NPP. However, the three-growing-

season average root NPP of 225 g C m
-2

 estimated from minirhizotron imaging is about 

one-half of the standing crop (Figure 3.3c), and should be measurable in soil cores. TBCF 

in red oak is therefore likely to reside between the two estimates. 

Summary 

Climatic and atmospheric perturbations alter the magnitude of C inputs 

belowground (e.g., Drake et al., 2011) and thus at the inter-annual time-scale it is likely 

that changes in the quantity and phenology of belowground C inputs will influence soil 

biogeochemical cycling. Warming-induced increases in growing season length have 

significantly increased annual ecosystem C uptake at Harvard Forest, a large portion of 

which is hypothesized to be allocated belowground (Keenan et al., 2014). Whether and 

how this enhanced allocation belowground will affect long-term soil-C cycling and C 

storage remains an open question.  
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Table 3.1. Stand-level characteristics. Total C content refers to organic and mineral horizon soil C down to 15 

cm. Letters indicate a statistically significant difference in means using analysis of variance at the P < 0.05 level. 

Stand 

Total C 

content 

(g m
-2

) 

Total N 

content 

(g m
-2

) 

O horizon 

mass 

(g m
-2

) 

pH 
Soil C:N 

Ratio 

White ash 5989 ± 330
b
 431 ± 24

a
 - 5.1 13.9 ± 0.17

b
 

Red oak 7709 ± 438
a
 354 ± 23

b
 131 ± 8

a
 5.2 21.8 ± 0.72

a
 

Eastern hemlock 6922 ± 246
a
 290 ± 13

b
 105 ± 7

b
 3.7 23.9 ± 0.70

a
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Table 3.2. Summary of multiple linear regression statistics that model log(fine root growth) for each stand as a 

function of soil temperature. Fine root growth was log-transformed to meet assumptions of normality. *** P < 

0.001, ** P < 0.01, * P < 0.05, . P < 0.1 

  Soil temperature 

 Log (fine root growth) β F R
2

adj P-value  

White ash 0.08 48.9 0.26 *** 

Red oak 0.11 89.2 0.30 *** 

Eastern hemlock 0.08 43.8 0.15 *** 

  



 

 

82 

Table 3.3. Summary of multiple linear regression statistics that model fine root growth, mortality, and mass-

specific respiration as a function of soil temperature and precipitation. Growth and mortality were log-

transformed to meet assumptions of normality. *** P < 0.001, ** P < 0.01, * P < 0.05, . P < 0.1 

  Soil temperature  Precipitation 

  β F R
2

adj P-value  P - value 

Growth 1.5 202.9 0.47 ***  ns 

Mortality 1.3 3.4 0.19 *  ns 

Respiration 0.29 32.2 0.68 ***  ns 
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Table 3.4. Median root biomass (5th percentile, 95th percentile) in g C m-2 estimated from minirhizotron tubes 

binned in 10 cm depth increments. Uppercase letters indicate significant differences between columns, and 

lowercase letters indicate significant differences between rows at the P < 0.01 level. 

Depth White ash Red oak Eastern hemlock 

O horizon - 3.46 (2.29, 6.65)
Aa

 2.82 (0.80, 7.33)
ABa

 

  0 - 10 cm 0.98 (0.20, 1.84)
Bb

 3.03 (0.71, 6.17)
Ab

 1.17 (0.53, 1.46)
ABb

 

10 - 20 cm 0.79 (0.45, 1.08)
Bb

 0.77 (0.38, 1.66)
Ab

 1.16 (0.42, 3.24)
ABb

 

20 - 30 cm 0.79 (0.41, 2.62)
Bb

 0.49 (0.25, 4.19)
Ab

 0.50 (0.01, 1.29)
ABb

 

30 - 40 cm 0.45 (0.16, 2.22)
Bb

 0.71 (0.08, 2.01)
Ab

 0.65 (0.06, 1.92)
ABb

 

40 - 50 cm 0.19 (0.07, 0.66)
Bb

 - - 
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Table 3.5. Exudation rate (± SE) for samples collected in 2012 and 2013. There is a signficant effect of sample 

date (F1,106= 8.0, P < 0.01), but no differences between years or stands. The exudate rate on the April sample date 

(DOY = 106) was significantly lower than the exudation rate measured on June, July, and October sample dates 

at the P < 0.05 level. 

Stand Date N 

Exudation Rate  

(mg C g root
-1

 day
-1

) 

White ash 6/19/2012 6 1.35 (0.43) 

 
8/26/2012 6 1.14 (0.25) 

 
4/16/2013 6 0.29 (0.23) 

 
5/30/2013 7 1.03 (0.07) 

 
7/27/2013 7 2.69 (0.68) 

 
10/7/2013 6 1.39 (0.34) 

Red oak 6/19/2012 7 2.65 (1.34) 

 
8/26/2012 7 0.26 (0.10) 

 
4/16/2013 7 -0.47 (0.33) 

 
5/30/2013 6 0.52 (0.09) 

 
7/27/2013 6 1.37 (0.54) 

 
10/7/2013 6 0.70 (0.24) 

Eastern hemlock 6/19/2012 5 0.78 (0.35) 

 
8/26/2012 6 0.36 (0.07) 

 
4/16/2013 6 0.02 (0.17) 

 
5/30/2013 6 0.56 (0.25) 

 
7/27/2013 6 2.23 (0.99) 

 
10/7/2013 6 3.59 (1.77) 
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Table 3.6. Total belowground carbon flux (TBCF, g C m-2 gs-1) for each stand. TBCFtop is defined as Fefflux + 

Fleaching – Flitter + Δ(Croots + Csoil). TBCFbottom is Froots + Fresp + Fexudates. 

Flux White ash Red oak 

Eastern 

Hemlock 

TBCFtop 633 (58) 791 (94) 474 (29) 

TBCFbottom 449 (57) 577 (85) 340 (51) 

  



 

 

86 

Table 3.7. Activation energy (Ea, kJ mol-1), pre-exponential constant (A, nmol CO2 s
-1 g-1), and R2 of mass-

specific rates of root respiration (nmol CO2 g
-1 s-1) for each stand over the growing season. 

 Ea  A  R
2
 

White ash 20 20872 0.60 

Red oak 40 36498539 0.81 

Eastern hemlock 29 572865 0.56 



 

 

87 



 

 

88 

 

Figure 3.1. Map of plot locations at the Harvard Forest’s Prospect Hill Tract. There are 6 biometry plots 

(circles) and 10 minirhizotron plots (stars) per stand. Colored symbols indicate stand type. Blue-green symbols 

are white ash (Fraxinus americana), orange are red oak (Quercus rubra), and purple are eastern hemlock (Tsuga 

canadensis). 
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Figure 3.2. Growth (a-c), mortality (d-f), and net primary production (NPP, g-i) of fine roots. In 2012, n = 4 and 

n = 9 for red oak and eastern hemlock, respectively. In subsequent years, n = 10 for each stand. Error bars are 

standard error of the mean. There was a significant effect of year and stand on both growth and mortality 

(Table 3.8). The eastern hemlock stand had significantly less growth and mortality than red oak and white ash 

stands (P < 0.001), but red oak and white ash stands were not different from each other (growth was only 

marginally different, P < 0.1). 
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Figure 3.3. (a) Field measurements of monthly mean mass-specific fine root respiration (± SE) in 2013 (left y-

axis). The shaded area represents soil temperature (right y-axis). (b) Relationship of fine root respiration to the 

temperature of the measurement chamber (n = 61). Lines are nonlinear fits of the Arrhenius function to data for 

each stand. (c) Fine root respiration (± SE) scaled to the growing season using fine root biomass from soil coring. 

In panels a and b, asterisk indicates that white ash had significantly higher respiration rates than red oak and 

eastern hemlock. In panel c, letters indicate significant differences between stands at the P < 0.001 level.  
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Figure 3.4. Fine root respiration measured in the lab at temperatures ranging between 16ºC and 25ºC, with a 

mean of 22.8 ± 0.5ºC. There was a significant positive relationship between fine root respiration and sample date 

for white ash (β = 0.016, F1,11 = 15.3, P < 0.01, R2
adj = 0.54), red oak (β = 0.012, F1,9 = 17.6, P < 0.01, R2

adj = 0.62), 

and eastern hemlock (β = 0.011, F1,9 = 32.1, P < 0.001, R2
adj = 0.76). Dash lines are 95% confidence intervals 

around the regression fit. 
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Figure 3.5. Total nonstructural carbohydrates (± SE) from n = 6 samples from each stand. There were 

significant differences between years (F1,1089= 23.7, P < 0.001), sample dates (F1,1089= 66.9, P < 0.001), and stands 

(F2,1089= 67.0, P < 0.001). Each stand was significantly different from the other two stands in both years. 
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Figure 3.6. Gross primary production and belowground fluxes (litterfall, TBCFbottom [fine root production, root 

respiration, exudation], heterotrophic respiration, soil CO2 efflux) and pools (microbial biomass, root biomass, 

organic horizon soil C, mineral horizon soil C) for each stand. Heterotrophic respiration is estimated as the 

difference between soil CO2 efflux and root respiration. Standard error is reported in parentheses next to each 

pool or flux value, and all units are g C m-2 gs -1. The growing season is defined as the six month period from 

May-October.  
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Figure 3.7. Time series of gross primary production estimated using data from the Harvard Forest 

Environmental Measurement Site flux tower and the hemlock tower in 2012 (circles). Soil respiration for the 

eastern hemlock and red oak stands (squares) and TBCFbottom (diamonds) for red oak, eastern hemlock and 

white ash stands calculated using root GPP, respiration and exudation from May to October. For Jan–Apr and 

Nov–Dec when data were not available (shaded areas), I used the median ratio of TBCF:GPP to extrapolate 

TBCF from GPP data. This ratio (5th, 95th percentiles) was 0.42 (0.23, 0.5) for hardwoods and 0.36 (0.28, 0.57) 

for hemlock. The orange and pink colored bars show the maximum canopy greenness in red oak and eastern 

hemlock stands, respectively, for this study period determined using PhenoCam data 

(http://phenocam.sr.unh.edu/). 
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CHAPTER FOUR: WHERE DOES THE RHIZOSPHERE END? SPATIALLY 

RESOLVED MEASUREMENTS OF IN SITU SOIL EXTRACELLULAR 

ENZYME ACTIVITY 

Abstract 

Rhizosphere soils are hotspots for soil organic matter decomposition, with soil 

decomposing enzymes stimulated up to 100%, but there are few estimates of rhizosphere 

spatial extent in the field. Zymography (i.e., 2-D visualization of enzyme activity) allows 

for spatially resolved in situ measurements of soil extracellular enzyme activity (EEA), 

but there has been no quantitative analysis of the relationship between EEA and distance 

from a root. The objective of this work is to develop a quantitative framework for 

zymogram image analysis as a means for estimating the spatial extent of the rhizosphere. 

My analysis utilizes a spatial error model and break-point regression analysis to estimate 

the scale over which four enzymes – beta-glucosidase, N-acetyl-beta-D-glucosaminidase, 

aminopeptidase, and acid phosphatase – vary as a function of distance from a root. This 

analysis compares two different types of enzyme substrates (i.e., colorimetric and 

fluorometric) at three different image resolutions. For each assay, it was possible to 

visualize and estimate the size of the rhizosphere. The resolution of image analysis did 

not affect the estimate of the rhizosphere extent for fluorometric assays, but did affect the 

estimate of rhizosphere extent for colorimetric assays, where the break-point regression 

was only significant at very-fine-image resolution. I also note methodological concerns 

specific to the type of enzyme substrate, such as uneven background staining in the 

colorimetric assay and diffusion of the substrate in the fluorometric assay, and provide 
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recommendations to improve the method. Zymography is a promising methodology with 

the potential to increase the spatial resolution of rhizosphere studies compared to methods 

that measure enzyme activity by physically removing soil.  
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Introduction 

Soil is the largest terrestrial carbon (C) pool, storing more C than the atmosphere 

and terrestrial vegetation combined (Schlesinger & Bernhardt, 2013). A substantial 

portion of this pool is associated with plant roots. In the root-associated zone, or 

rhizosphere, soil-organic-matter-decomposing enzymes are stimulated up to 100% 

relative to surrounding bulk soil (Kourtev et al., 2002, Tscherko et al., 2004). Though the 

rhizosphere occupies a small soil volume relative to bulk soil, up to 40% of heterotrophic 

respiration can be attributed to the rhizosphere (Finzi et al., 2015). As a result, the 

rhizosphere has a disproportionate effect on biogeochemical cycling. 

Roots exude low-molecular-weight C compounds such as organic acids and 

amino acids into the soil (Jones, 1998, Phillips et al., 2004). This labile C stimulates 

microbial growth and nutrient demand, resulting in the production of extracellular 

enzymes that decompose soil organic matter (SOM; Brzostek & Finzi, 2011). Previous 

research shows that root exudates can be found anywhere from 0.1 to 1.2 cm from the 

root surface (De Neergaard & Magid, 2001, Jones, 1998, Sauer et al., 2006, zu 

Schweinsberg-Mickan et al., 2010). Where root exudates are present, microbial biomass, 

respiration, enzyme activity, N mineralization, and soil organic matter decomposition are 

all increased relative to soil that is unaffected by roots (Finzi et al., 2015, Phillips et al., 

2012). 

At present, measurements of microbial and extracellular enzyme activity (EEA) 

use coarse approaches to separate rhizosphere and bulk soil. For example, some studies 

consider the rhizosphere to be the soil adhering to the root after gentle shaking or soil that 
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is ≤ 2 mm from the root surface (Landi et al., 2006, Phillips & Fahey, 2006). Of the 

studies that try to estimate diffusion distance of exudates in order to determine the 

rhizosphere extent (Darrah, 1991a,b, Kuzyakov et al., 2003, Raynaud et al., 2003), most 

assay exudate concentration at up to 10 distances from the root surface by cutting the soil 

into sections of ~1 – 2 mm and analyzing the homogenized soil sample (Nuruzzaman et 

al., 2006, Sauer et al., 2006, zu Schweinsberg-Mickan et al., 2010).  

Two methods represent a recent advance in the visualization of enzyme activity 

using zymography, and allow for spatially resolved in situ measurements of soil EEA at 

finer resolution than traditional studies (Dong et al., 2007, Spohn et al., 2013). These 

methods produce an image where the brightness, hue, or intensity of coloration or 

fluorescence corresponds to the amount of enzyme activity in a given area of the image, 

and provide the opportunity to quantify the relationship between EEA and distance from 

a root at a very fine spatial resolution, without compromising the integrity of root-

microbe interactions. To date, where these methods have been applied, there has been no 

quantitative analysis of the relationship between EEA and distance from a root (Dong et 

al., 2007, Spohn et al., 2013). 

The objective of this study is to develop a quantitative framework for analyzing 

zymograms, in order to determine the relationship between EEA and distance from a 

root. This is part of a longer-term objective of quantifying rhizosphere volume for 

different species and ecosystems. Here I propose two statistical methods to quantify this 

relationship. The first is linear regression with a spatially autocorrelated error term in 

order to account for the lack of independence between neighboring pixels in an image. 
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The second is “break-point” regression analysis, which determines the location of a 

change in the slope of the linear regression. Within this context, I also compare enzyme 

substrates that leave either a visual or fluorescent tag when degraded. Colorimetric 

substrates, such as that for acid phosphatase and aminopeptidase, leave behind a colored 

stain following reaction with an enzyme, whereas fluorometric substrates, such as that for 

beta-glucosidase and N-acetyl-beta-D-glucosaminidase leave behind a fluorescent stain. 

The previous study that used both colorimetric and fluorescent substrates found 

qualitative differences in the staining pattern of the assays (Dong et al., 2007). Both types 

of assays were applied to rooted soil surfaces in three mono-dominant stands at the 

Harvard Forest in central Massachusetts. To determine whether image resolution affects 

the scaling of EEA and distance from a root, I compared images analyzed at three spatial 

scales. 

Methods 

Site description 

The field portion of this study was conducted at the Harvard Forest Long Term 

Ecological Research Site in Petersham, MA (42’N, 72’W, elevation 340 m). The site is 

located on former agricultural land that was abandoned in the mid-1800s allowing forest 

regrowth beginning late in the 19
th

 century (Foster et al., 2003). Soils are Typic 

Distrochrepts derived from glacial deposits of granite, schist and gneiss. The dominant 

tree species in this tract are northern red oak (Quercus rubra) and red maple (Acer 

rubrum), with smaller populations of eastern hemlock (Tsuga canadensis), white ash 

(Fraxinus americana), white pine (Pinus strobus) and red pine (Pinus resinosa).  
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Twelve root boxes were constructed at Boston University and installed in the field 

in March 2012. Each root box was built from 0.9 cm thick clear polycarbonate sheeting. 

Each side is 40 × 40 cm, with two sides beveled out at 15° to form a rhomboid. Root 

boxes were set in soil pits and backfilled with excavated soil, maintaining the mineral and 

organic horizon delineation. Each box was equipped with two 20 × 20 cm removable 

panels that allow for access to the rooted soil surface (Figure 4.1). Four root boxes (n = 8 

panels) were installed in each of three monodominant stands: white ash, red oak, and 

eastern hemlock. I assume that the > 2 years between root box installation and data 

collection allowed sufficient time for soils to recover from disturbance and form dense 

root networks. 

Each root box panel (n = 24) was assessed for the activity and spatial extent of 

four extracellular enzymes: acid phosphatase (AP), aminopeptidase (PR), beta-

glucosidase (BG), and N-acetyl-beta-D-glucosaminidase (NAG) in late June – early July 

2014. EEA was measured using zymograms prepared following Dong et al. (2007). 

Briefly, a 20 × 20 cm sheet of chromatography paper was soaked in a buffer solution 

containing colorimetrically (AP, PR) or fluorescently (BG, NAG) labeled substrate for 

each enzyme, alpha naphthyl phosphate (AP), L-leucyl 2-naphthylamide (PR), 4-

methylumbelliferyl-beta-glucopyranoside dehydrate (BG), or 4-methylumbelliferyl-N-

acetyl-beta-glucosaminide (NAG). Standards were made by applying acid phosphatase 

from wheat germ (AP), aminopeptidase from Aspergillus oryzae (PR), or fluorescent 4-

methylumbelliferone (BG, NAG) to prepared zymograms. The units for acid phosphatase 

and aminopeptidase activity are enzyme units per milliliter (EU ml
-1

), defined as the 
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amount of enzyme in one milliliter that is needed to convert 1μmol of substrate per 

minute, and for fluorescent 4-methylumbelliferone, millimolar (mM). Each zymogram (N 

= 96; 8 root box panels × 3 stands × 4 enzymes) was incubated against the soil surface for 

30 minutes (BG, NAG) to 1 hour (AP, PR) depending on the type of assay. Immediately 

following incubation, zymograms were transported back to Boston University where they 

were dried, and imaged using a Ricoh 907Ex 600dpi color scanner (AP, PR; Ricoh 

Electronics, Inc., Tustin, CA) or an AlphaImager HP UV gel scanner (BG, NAG; 

ProteinSimple, San Jose, CA). 

All image processing was done in the open source software ImageJ (Rasband, 

1997). Digital photographs of open root box panels taken at the time of incubation were 

cropped, corrected for image distortion, and converted to 8-bit black and white. The 

background of each image was detected using a rolling ball algorithm (Sternberg, 1983). 

This algorithm averages over a 50 pixel area around each pixel to compute a local 

background value which is then subtracted from that pixel. Roots were selected by pixel 

brightness and false positives (e.g., light colored soil aggregates, insects, rocks) were 

removed manually using the selection tool. The selection of rooted area was converted to 

a thresholded mask, where pixels containing roots were given a value of 0 (i.e., black) 

and non-root pixels were given a value of 255 (i.e., white). The zymogram images were 

also converted to 8-bit black and white. Digital photographs and zymogram images were 

compressed to 30 × 30, 100 × 100, or 1500 × 1500 pixels using bilinear interpolation, 

corresponding to an effective pixel length of 6.7 mm, 2 mm, or 0.13 mm, respectively. 

The x- and y-coordinate position of each pixel was used to overlay the root threshold 



 

 

102 

image onto zymogram images. Image pixel brightness values and their x- and y-

coordinate position were output to R Statistical Software (R Development Core Team, 

2013), where all subsequent analyses took place. 

In order to determine the relationship between EEA (EU ml
-1

 or mM) and 

distance from a root (mm), Euclidian distance from the nearest root was determined for 

each pixel in the zymogram image by creating a vector with the location of each root-

containing pixel, and finding the element in this vector with the minimum distance to 

each pixel. Image pixel brightness values were converted to EU ml
-1

 or mM using a linear 

relationship between the standards and their pixel brightness values for AP (β = -4.9, F1,3 

= 28.0, R
2

adj = 0.87, P < 0.05), PR (β = -1.3, F1,3 = 15.9, R
2

adj = 0.79, P < 0.05), NAG (β = 

-45, F1,3 = 60.5, R
2

adj = 0.93, P < 0.01), and BG (β = -47, F1,2 = 22.3, R
2
adj = 0.88, P < 

0.05; Figure 4.2). High brightness values correspond to low enzyme activity due to the 

convention of setting brightness values to 0 for black and 255 for white pixels. I 

considered the total area of all pixels containing roots to be the rooted area for each stand. 

I used ANOVA and Tukey’s HSD to test for differences in rooted area among the three 

stands.  

I tested for the presence of spatial autocorrelation between neighboring pixels 

using the Moran’s I statistic. I used the moran.test function in the spdep package for R 

Statistical Software (Bivand et al., 2014). To establish a relationship between EEA and 

distance from a root while accounting for spatial autocorrelation between pixels and their 

neighbors, I used a spatial simultaneous autoregressive error model of the form: 
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Y = β1 x1 + β2 x2 + β3+ ε, and      [1] 

ε = ρ W e + u      [2] 

where Y is EEA (EU ml
-1

 or mM), x1 is distance from root (mm), x2 is depth 

(mm), and β1, β2, and β3 are linear regression coefficients. The error term, ε, contains a 

spatially structured error term, ρ W e, where ρ is a fit coefficient, W is the spatial weight 

matrix, e is the spatial error term, and u is a random residual. This model assumes that 

neighboring pixels are not independent of one another, and as a result the predicted value 

for a given pixel depends in part on the value of its neighbors. The fit parameter ρ 

corresponds to the strength of autoregression between neighboring pixels on model 

residuals. I fit the spatial error model to data from each image using the errorsarlm 

function in the spdep package for R Statistical Software (Bivand et al., 2014).  

To test for the location of a change in the slope of the relationship, or break point, 

between EEA and the distance from a root, I used a weighted “break-point” regression. I 

used the break point as a proxy for the rhizosphere extent. EEA was fit as a function of 

distance from a root using the equation:  

Y =  β1 x + β2 (x - c) + γ I (x > c)    [3] 

where x is the Euclidian distance from the root (mm), β1 and β2 are slope and 

intercept parameters, c is the break point, and I (x > c) is an index variable that is equal to 

zero when x < c. The model minimizes γ, a measure of the distance between the two 

segments in order to constrain the segments to be close to continuous. 

I observed that the sample size (i.e., number of pixels represented at each root 

distance) decreased as distance from a root increased (Figure 4.3). As a result, rather than 
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minimizing the sum of squared residuals (SSE) as in ordinary least squares, I minimized 

the weighted SSE: 

Weighted SSE = ∑ 𝑤𝑖(𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1     [4] 

where 𝑤𝑖 is a vector of weights proportional to the sample size such that 

𝑤𝑖 =  
𝑁𝑖

∑ 𝑁𝑖
𝑛
𝑖=1

       [5] 

and 𝑁𝑖 is the number of pixels at each root distance i to n. This model was fit 

using the segmented function in the segmented package for R statistical software 

(Muggeo, 2008).  

I used the spatial autoregressive error model (Eq. [1]) on images at coarse and 

fine resolution in order to determine if there was an effect of image resolution on the 

relationship between EEA and distance from a root. At coarse image resolution (30 × 30 

pixels) each pixel was 6.7 mm in length, corresponding to an area of 0.44 cm
2
 per pixel. 

At fine image resolution (100 × 100 pixels) each pixel was 2 mm in length, 

corresponding to an area of 0.04 cm
2
 per pixel. 

I used break-point regression (Eq. [3]) on images at coarse, fine, and very fine 

resolution in order to determine if there was a relationship between pixel size and break-

point value. For very-fine-resolution image analysis, I examined a subsection of a 1500 × 

1500 pixel-resolution image focusing on a rooted area in hemlock soil (Figure 4.4a, Box 

4.1). In this image, the length of each pixel was 0.13 mm, corresponding to an area of 

1.7×10
-4 

cm
2
. 
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Results 

Visual inspection 

White ash and red oak stands were more sparsely rooted than eastern hemlock 

with 14 ± 1.0 cm
2
 and 15 ± 1.1 cm

2
 of rooted area out of the 400 cm

2
 sample area, 

respectively (F2,93 = 34.5, P < 0.001, Table 4.3). Eastern hemlock images contained 27 ± 

1.7 cm
2
 of rooted area. The mean area covered by roots across the three stands is 18.7 

cm
2
, approximately 5% of the sample area.  

The staining pattern on scanned zymogram images was visibly different for 

colorimetric compared to fluorometric assays. The colorimetric acid phosphatase assay 

had the most localized staining (Figure 4.4a). Aminopeptidase zymograms developed the 

least amount of staining (60% of pixels had no detectable EEA) compared to AP (10%), 

BG (1.7%), or NAG (3.2%). However, when PR did stain, it was 20–40% brighter than 

the other zymograms (Figure 4.4b). Beta-glucosidase and N-acetyl-beta-D-

glucosaminidase were fluorometrically assayed. I found this assay to be relatively 

diffuse, often with large areas of high EEA covering >50% of the zymogram (Figure 

4.4c,d).  

At coarse image resolution, clusters of roots and EEA were visible, but not fine 

root morphology (Figure 4.5a). At fine resolution, individual fine roots were visible 

(Figure 4.5b), but it was not possible to determine the diameter of fine roots < 2 mm. At 

both image resolutions, there appeared to be fewer pixels with high EEA at 0 – 10 mm 

from the top of the image in BG and NAG images (data not shown). At very fine 

resolution, it was possible to distinguish between small- and large-diameter roots (Figure 
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4.5c). There was visible overlap in many images between locations of rooted pixels and 

locations with high enzyme activity at fine resolution. However, in some cases there was 

a < 1 – 5 mm misalignment of images, where EEA associated with a root was offset from 

the thresholded mask of the root as a result of manual error in the image analysis steps 

that were not fully automated (i.e., root thresholding, image distortion correction). 

Coarse image resolution 

EEA ranged between 0–10 EU ml
-1

 for AP, 0–40 EU ml
-1

 for PR, and 0–4.9 mM 

for BG and NAG. EEA generally declined as distance from a root increased (Figure 4.6). 

For all images, there was significant spatial autocorrelation (Moran’s I, P < 0.05). Of the 

96 images analyzed, 54 had a significant relationship between EEA and distance from a 

root, including 51 which had a significant negative relationship (Table 4.1). Red oak had 

the greatest proportion of significant negative relationships between EEA and root 

distance (78%) of the three stands. Acid phosphatase had the greatest proportion (88%) of 

significant negative relationships of the four enzymes, and aminopeptidase had the fewest 

(25%). Forty-three out of 48 significant spatial error models predicted that EEA declined 

with depth (Table 4.1). Eastern hemlock had the greatest proportion of significant and 

negative relationships with depth (60%) of the three stands. 

In the break-point regression model, the relationship between EEA and distance 

from a root was not significant for the colorimetrically assayed enzymes (AP, PR). 

Fluorometrically assayed enzymes (BG, NAG) had break points of 7.5 cm and 1.8 cm, 

respectively (Figure 4.6). Averaging across the enzymes with a significant relationship 

between EEA and distance to a root (BG, NAG), I identified break points at 5.8 cm and 
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4.7 cm for white ash and red oak (Figure 4.7). The break-point regression model for 

eastern hemlock was not significant.  

Fine image resolution 

At fine image resolution, computing time increased 72-fold compared to coarse 

resolution. The increased resolution allowed us to observe a greater range of brightness 

values compared to coarse resolution. EEA ranged between 0-30 EU ml
-1

 for AP, 0-170 

EU ml
-1

 for PR, and 0-5.3 mM for BG and NAG. The break point was closer to the root 

surface than at coarse resolution, reflecting the closer association between pixel size and 

root size (Figure 4.8). 

A spatially autoregressive error model fit to the data found 84 of 96 significant 

relationships between EEA and distance from a root, of which 39 were negative (Table 

4.2). BG and NAG images had the greatest number of negative regression coefficients, 

while AP and PR had a majority of positive coefficients, indicating that EEA increased 

with distance from a root. Sixty-eight of 96 images had a significant relationship with 

depth. Of these, 57 were positive relationships. 

In the break-point regression model, the relationship between EEA and root 

distance was not significant for AP and PR. The break points for BG and NAG were 6.7 

and 1.5 cm, respectively (Figure 4.8). The break-point regression between EEA and 

distance from a root for eastern hemlock was not significant. Break points for white ash 

and red oak were identified at 7.1 and 1.2 cm, respectively (Figure 4.9). 
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Very fine image resolution 

In a very-fine-resolution subsection of an acid phosphatase assay in the hemlock 

stand (Figure 4.4, Box 4.1), the maximum observable EEA was 36 EU ml
-1

, compared to 

32 EU ml
-1

 in the fine resolution and 9 EU ml
-1

 in the coarse resolution analysis of the 

same enzyme. The median EEA (1.6 EU ml
-1

) was identical to that at coarse resolution. 

EEA was high within 10 mm of the root, but declined quickly thereafter. Break-point 

regression placed the break-point location at 2.6 mm (Figure 4.10). 

Discussion 

There were differences in the localization of EEA in colorimetric compared to 

fluorometric assays, with colorimetric assays resulting in more specific staining 

compared to fluorometric assays. This is likely the result of the fluorometric tag’s ability 

to diffuse when wet (Spohn & Kuzyakov, 2013). The colorimetric aminopeptidase assay 

resulted in an average of 60% of the image with no detectable EEA, indicating that there 

was little aminopeptidase enzyme activity in the soils that I sampled. In the colorimetric 

acid phosphatase assay, there was an increase in EEA with distance from a root at the 

fine resolution that I did not observe at coarse resolution. I did not expect this result given 

the visual correspondence between EEA and roots in this assay. However, the acid 

phosphatase assay developed an orange-colored background. Uneven background color 

and image misalignment are two methodological concerns that would be exacerbated at 

fine resolution compared to coarse resolution, given the wider range of EEA and smaller 

pixel size, respectively. Analysis of a subset of a very-fine-resolution image suggests that 

a negative relationship between EEA and root distance is observable in colorimetric 
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assays at high resolution if the background color is even and the zymograph and 

thresholded root mask are well-aligned. 

Rhizosphere extent across stand types and enzyme classes 

For the fluorometric assays, EEA declined with increasing distance from a root. 

Break point analysis predicted that the rhizosphere extent ranged from 0.26 to 7.5 cm, 

depending on the resolution of analysis. Direct sampling and isotopic labeling studies 

place the rhizosphere extent between 0.1 and 1.2 cm (De Neergaard & Magid, 2001, 

Dessureault-Rompré et al., 2007, Falchini et al., 2003, Sauer et al., 2006, zu 

Schweinsberg-Mickan et al., 2010), but another study using a similar method to the one 

used here recorded enhanced EEA up to 6 cm away from the root surface (Spohn & 

Kuzyakov, 2014). It is therefore possible that recent estimates of rhizosphere 

contributions to decomposition and nutrient mineralization based on an exudate diffusion 

distance of 2 mm are very conservative (Finzi et al., 2015). 

Effects of image analysis resolution 

The resolution of the image analysis affected the spatial distribution of EEA, the 

break-point location, and the influence of artifacts and image alignment. As resolution 

increased, the maximum observable EEA increased because there was a larger sample 

size and less averaging of high EEA pixels with pixels of intermediate and low EEA. In 

addition, the distance of the break point to the root surface declined due to greater 

visibility of root morphology relative to staining of EEA (Figure 4.5). Generally, this 
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suggests that matching the scale of resolution to the scale of fine root architecture will 

increase the accuracy of both EEA and break point estimates. 

At fine image resolution, the spatial error model predicted a mixture of positive 

and negative relationships between EEA and distance from a root. There were a 

surprising number of instances where the relationship between EEA and distance from a 

root was positive. This was more common for the colorimetric assays, AP and PR (Figure 

4.8). For AP in particular, background staining developed from the substrate solution, a 

mix of α-naphthyl phosphate and Fast Red TR. Though care was taken to apply the 

substrate evenly, there was variation in the background coloring of the zymograms. At 

high resolution, this variation in background color may have introduced artifacts into the 

assessment of EEA using pixel brightness. This was somewhat accounted for by 

subtracting the background using a rolling ball algorithm, but with very unevenly stained 

backgrounds such as that in Figure 4.4a, there may have been some pixels with under- or 

over-estimated EEA. 

Image misalignment was another error that was exacerbated at fine resolution. 

Images were scaled to identical size and overlayed automatically, but root images were 

corrected for pixel distortion and cropped manually, and no image-aligning algorithm 

was used. Any misalignment of images would be on the scale of < 1 mm to 5 mm, so 

coarse image resolution that averages over large root clusters may alleviate errors that are 

a result of misalignment.  

I wanted to explore whether or not there was value in investing the additional 

computing time to analyze very-fine-resolution images in order to more accurately 
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represent fine root morphology. I selected a subset of the zymogram pictured in Figure 

4.4a (Box 4.1) that appeared to have even background staining and be well aligned with 

the image of the root. In this subset, EEA declined steeply as distance from the root 

increased up to 2.6 mm (Figure 4.10). From 2.6 mm to 7 cm the relationship was 

relatively flat. This analysis is not replicated, but suggests that high resolution images can 

be used to estimate relationships between EEA and roots if methodological concerns are 

alleviated. 

Fluorescent clustering of EEA in the center of the image may result from the 

diffusion of the substrate when wet. In colorimetric zymograms, there was more EEA at 

the surface of the soil than at depth, corresponding with high root abundance. In the 

fluorescent zymograms, however, there was comparatively less EEA at the soil surface, 

suggesting that as the zymograms are incubated in a vertical position, the fluorescent tag 

diffused downward in response to gravity. Zymograms were moistened before 

incubation, and the 4-methylumbelliferone tag is known to diffuse readily when wet 

(Spohn & Kuzyakov, 2013). Because the zymogram staining is diffuse, coarse-resolution 

image processing is sufficient to represent the correspondence between EEA and root 

distribution. Thus, fine resolution is only necessary when the zymogram staining also has 

fine spatial resolution, as in the colorimetric acid phosphatase assay. 

Methodological considerations 

This methodology can be improved with image-analysis techniques. I counted the 

number of black pixels in the root image to estimate the proportion of sample area 

covered by roots and found that red oak stands were more sparsely rooted than hemlock. 
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From a visual inspection of the root boxes, it is clear that red oak root boxes are heavily 

rooted, but that these roots are very fine and similar in color to the soil. In contrast, 

hemlock roots are thick and light-colored compared to the soil (Figure 4.1). As a result, a 

greater number of roots in the hemlock stand were successfully thresholded relative to the 

red oak stand. A different annotation method or an edge-detection algorithm may 

improve root detection in stands with roots that are similar in color to their background 

(Canny, 1986, Lobet et al., 2011). Higher resolution images may also aid in detecting 

very fine roots that may be smaller than the pixel size. 

Some patches of high EEA were unrelated to root activity. This method cannot 

yet annotate mycorrhizal hyphae or detect other possible microbial hotspots associated 

with invertebrate casts or litter that may not be near a root surface. Additionally, not all 

roots produce an active rhizosphere. Exudates are primarily released from growing root 

tips, and assuming an average root growth rate of 1 μm s
-1

 and a 30-minute half-life for 

exudates, then at 30 mm behind the growing root tip there will be < 1% of the original 

exudate remaining (Hirsch et al., 2013). Finally, my thresholding function does not 

distinguish between suberized roots, dead roots, absorptive roots, or growing root tips, 

and therefore areas of high root proliferation with low EEA may reflect different 

demographic stages of the root. For this reason, coarse resolution averaging over thickly 

rooted areas may partially alleviate this issue. An alternative would be to manually 

annotate fine absorptive roots and root tips. 
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Conclusions 

In order to scale up measurements of microbial activity (e.g., enzyme activity, 

microbial biomass) made in bulk and rhizosphere soils to an ecosystem scale estimate, 

some assumption of the volume of the rhizosphere is necessary. Finzi et al. (2015) used a 

numerical model to estimate the volume of the rhizosphere, and demonstrated that 

changing the assumption of the exudate diffusion distance can cause estimates of the 

proportion of soil that is in the rhizosphere to vary by > 20%.  

Soil zymography provides the opportunity to generate statistical relationships 

between EEA and distance from a root, in order to determine the rhizosphere extent of a 

given soil. Zymograms are easy to prepare and deploy in the field, and allow for spatial 

analysis of multiple enzymes across heterogeneous soil surfaces. Many techniques in 

automatic annotation, background correction, and image alignment are well-developed 

and can be applied to this method (Amat et al., 2008, Nobis & Hunziker, 2005, Ritchie et 

al., 2007). The main methodological concerns for this method are evenness of 

background staining and image alignment for the colorimetric assay and diffusion of the 

tag in the fluorometric assay. Methodological improvements such as using agarose gel to 

keep soil particles from quenching the fluorescent tag are also promising (Spohn et al., 

2013). In this method, enzymes can diffuse through the gel to the zymogram, but soil 

particles do not contact the zymogram, resulting in high staining accuracy. 

To determine the rhizosphere extent of enzymes that degrade a colorimetric 

substrate, I make the following recommendations: 

 Use very fine image resolution (~0.13 mm) 



 

 

114 

 Use an image-aligning algorithm 

 Annotate root tips and absorptive roots 

To determine the rhizosphere extent of enzymes that degrade a fluorometric 

substrate, I make the following recommendations: 

 Use coarse or fine image resolution (2 mm – 6 mm) 

 Dry zymogram flat after substrate application and soil incubation to 

reduce vertical diffusion 

 Prepare zymogram using agarose gel layer, following Spohn et al., (2013) 

I have provided a quantitative framework to analyze and estimate the rhizosphere 

extent from image data using a zymographic method. This analysis could be expanded to 

include uncertainty associated with the linear parameters estimated in both the spatial 

error regression and the break-point regression using Bayesian or Monte Carlo 

techniques. In addition, nesting images within stands, sites, and region may eventually 

allow for geographically specific estimates of rhizosphere extent interpolated between 

locations for which zymographic data has been collected. Given access to a rooted soil 

surface, preparation and incubation of zymograms is a simple and relatively inexpensive 

process. Once a quantitative framework for image analysis is adopted, determination of 

rhizosphere extent using zymograms will be much easier than cutting, extracting, and 

measuring enzyme activity from soil directly. 
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Table 4.1. Summary of spatial error model regression coefficients estimated at coarse resolution. Enzyme 

activity (EU ml-1 or mM) is modeled as a function of distance from a root (mm) and soil depth (mm). ρ is the 

spatial error coefficient. AIC is the Akaike information criterion, a model-selection score that balances 

goodness-of-fit against the number of parameters. Regression coefficients, ρ, and AIC for each image were 

averaged to obtain one value for each stand and enzyme. AP = acid phosphatase, PR = aminopeptidase, BG = 

beta-glucosidase, NAG = N-acetyl-beta-D-glucosaminidase, F = white ash, Q = red oak, T = eastern hemlock. 

Enzyme Stand Intercept Distance Depth ρ AIC 

AP F 2.45 -0.018 -0.13 0.92 2498 

 
Q 0.63 -0.029 -0.44 0.93 2821 

 
T -1.70 -0.045 -0.45 0.93 2412 

PR F 1.71 -0.003 -0.04 0.85 3791 

 
Q 1.16 0.000 -0.02 0.80 3518 

 
T 1.98 0.005 -0.05 0.84 3786 

BG F 0.81 -0.006 -0.04 0.99 2096 

 
Q 0.96 -0.011 -0.08 1.00 2385 

 
T 1.20 -0.004 -0.05 0.99 2028 

NAG F 0.62 -0.004 -0.10 0.98 1596 

 
Q 1.60 -0.009 -0.08 0.98 1283 

 
T 2.84 -0.005 -0.16 1.00 2131 

  



 

 

116 

Table 4.2. Summary of spatial error model regression coefficients estimated at fine resolution. Enzyme activity 

(EU ml-1 or mM) is modeled as a function of distance from a root (mm) and soil depth (mm). ρ is the spatial 

error coefficient. AIC is the Akaike information criterion, a model-selection score that balances goodness-of-fit 

against the number of parameters. Regression coefficients, ρ, and AIC for each image were averaged to obtain 

one value for each stand and enzyme. AP = acid phosphatase, PR = aminopeptidase, BG = beta-glucosidase, 

NAG = N-acetyl-beta-D-glucosaminidase, F = white ash, Q = red oak, T = eastern hemlock. 

Enzyme Stand Intercept Distance Depth ρ AIC 

AP F 0.58 0.058 0.87 0.96 36234 

 
Q 0.30 0.060 0.85 0.96 39796 

 
T 1.69 0.029 0.01 0.96 33604 

PR F -2.23 0.185 0.06 0.96 59046 

 
Q -4.19 0.190 0.10 0.96 58653 

 
T -2.19 0.209 0.08 0.95 61021 

BG F -4.46 -0.010 0.05 1.00 24530 

 
Q -5.63 -0.019 0.05 1.00 27673 

 
T -5.46 -0.005 0.03 1.00 23748 

NAG F -2.30 -0.004 -0.01 1.00 19855 

 
Q -8.07 -0.006 0.04 1.00 16399 

 
T -0.44 -0.005 -0.01 1.00 24662 
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Table 4.3. Tukey’s HSD test on an ANOVA model of rooted area (cm2) per 20 × 20 cm panel as a function of 

stand. Different superscript letters denote significant differences at P < 0.05. 

 
Rooted area (cm

2
) 

Stand 6mm 2mm 

White ash 13.9 ± 0.84
b
 13.6 ± 1.0

b
 

Red oak 17.1 ± 1.1
b
 14.9 ± 1.1

b
 

Eastern hemlock 26.6 ± 1.9
a
 27.4 ± 1.7

a
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Figure 4.1. Plexiglass root box designed and constructed for this study at Boston University. Roots can be 

accessed by lifting a hinged panel. The second hinged panel is partially visible in the lower right hand corner. 
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Figure 4.2. Linear relationship between enzyme activity and brightness values for the zymogram area, 

determined by staining the zymogram with a range of acid phosphatase, protease, or 4-MUB concentrations. AP 

= acid phosphatase, PR = aminopeptidase, BG = beta-glucosidase, NAG = N-acetyl-beta-D-glucosaminidase. 
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Figure 4.3. Sample size (number of pixels) in each 1 mm distance from root bin at coarse (6.7 mm) and fine (2 

mm) image resolution.  
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Figure 4.4. Zymograms measuring the activity of (a) acid phosphatase, (b) aminopeptidase, (c) beta-glucosidase, 

and (d) N-acetyl-beta-D-glucosaminidase on the same hemlock stand root box panel. Thresholded mask of roots 

is overlaid on each zymogram at 70% transparency. Box 4.1 is the image subset used in very-fine-resolution 

analysis. 
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Figure 4.5. Level of detail visible across a range of spatial resolution. Length of the side of one pixel is, (a) 6.7 

mm, (b) 2 mm, or (c) 0.13 mm (resolution of original 8-bit image).  
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Figure 4.6. Enzyme activity (EU ml-1 or mM) versus distance from root (mm) for four extracellular enzymes: 

acid phosphatase (AP), aminopeptidase (PR), beta-glucosidase (BG), and N-acetyl-beta-D-glucosaminidase 

(NAG) at coarse resolution. The broken solid line is the best-fit break-point regression line. The dotted vertical 

line indicates the location of the break point. The shaded gray area is the interquartile range of the data.   
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Figure 4.7. Enzyme activity (EU ml-1 or mM) versus distance from root (mm) for white ash, red oak, and eastern 

hemlock stands at coarse resolution. The broken solid line is the best-fit break-point regression line. The dotted 

vertical line indicates the location of the break point. The shaded gray area is the interquartile range of the data. 

 

  



 

 

125 

 

Figure 4.8. Enzyme activity (EU ml-1 or mM) versus distance from root (mm) for four extracellular enzymes, 

acid phosphatase (AP), aminopeptidase (PR), beta-glucosidase (BG), and N-acetyl-beta-D-glucosaminidase 

(NAG) at fine resolution. The broken solid line is the best-fit break-point regression line. The dotted vertical line 

indicates the location of the break point. The shaded gray area is the interquartile range of the data. 
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Figure 4.9. Enzyme activity (EU ml-1 or mM) versus distance from root (mm) for white ash, red oak, and eastern 

hemlock stands at fine resolution. The broken solid line is the best-fit break-point regression line. The dotted 

vertical line indicates the location of the break point. The shaded gray area is the interquartile range of the data. 
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Figure 4.10. Enzyme activity (EU ml-1) in a 400 × 400 pixel subsection of a high-resolution photo (1500 × 1500 

pixels). Break point for this subsection is 2.6 mm.
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CHAPTER FIVE: A PARSIMONIOUS MODULAR APPROACH TO BUILDING 

A MECHANISTIC BELOWGROUND C AND N MODEL 

Abstract 

More carbon (C) is stored in soil than in the atmosphere and terrestrial vegetation 

combined, and microbial decomposition of soil organic matter (SOM) makes up the 

largest proportion of the flux of carbon dioxide from the soil to the atmosphere. As a 

result, microbial activity can have a large effect on the global C cycle. Microbial 

decomposition and uptake of dissolved substrate is sensitive to temperature and substrate 

supply, the latter of which can be limited by diffusion of substrate to microbial 

extracellular enzymes or by oxygen limitation. Many decomposition models use 

temperature and soil moisture in a linear decomposition coefficient, and few explicitly 

model the processes that limit substrate supply on the micro-site level. In order to build 

process-level representation of the effect of temperature and substrate supply on 

microbial physiology, I merged a model that uses temperature and substrate supply to 

predict depolymerization rate with a C and nitrogen (N) microbial physiology model.  

I tested the performance of the combined model relative to each model alone 

using measurements of heterotrophic respiration in a mid-latitude forest located in central 

Massachusetts, USA. I then applied the combined model to theoretical concepts such as 

the response of microbial activity to varying ratios of C-to-N (C:N), and global change-

inspired perturbations to mean annual temperature and soil moisture. The combined 

model predicted realistic C efflux during transient wet-up events, but over-predicted C 

efflux in constant high soil moisture conditions. Model predictions of SOM 
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decomposition in response to variable C:N inputs are consistent with the observation that 

wide C:N stands store more C than narrow C:N stands. The combined model reproduced 

realistic responses to temperature perturbation, and thus may be useful for investigating 

the interaction between substrate and temperature controls on soil C storage at regional 

and global scales.
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Introduction 

Soil is the largest terrestrial carbon (C) pool, and the flux of CO2 from the soil to 

the atmosphere is dominated by microbial decomposition (Schlesinger & Bernhardt, 

2013). Hence, the rate of C mineralized by soil micro-organisms affects the global C 

cycle. A number of biotic and abiotic factors control the amount of C that microbes 

release via decomposition. Soil microbes produce extracellular enzymes in order to 

depolymerize soil organic matter (SOM), but they can also utilize C and N substrates 

released by plant roots (Brzostek & Finzi, 2011, Frey et al., 2013). Labile organic C and 

N exuded from plant roots can induce microbial population growth and nutrient 

limitation, which results in enhanced production of microbial extracellular enzymes that 

decompose SOM (Brzostek et al., 2013, Kuzyakov, 2010).  

The carbon-to-nitrogen (C:N) ratio of root exudates has been shown to affect 

depolymerization rates, with root inputs of C and N together stimulating decomposition 

more than additions of C alone (Drake et al., 2013). Since litter and root inputs affect 

microbial activity, differences in the C:N of inputs owing to differences in species traits 

may affect the function of soil microbial communities. For example, a stand with acidic 

soils that supports ectomycorrhizal fungi such as eastern hemlock (Tsuga canadensis) has 

a wider litter and root C:N ratio as well as a higher fungal-to-bacterial (F:B) ratio relative 

to a stand such as white ash (Fraxinus americana), that has narrow litter C:N and a low 

F:B ratio (Finzi et al., 1998, Strickland & Rousk, 2010). 

Microbial activity is also temperature sensitive, with depolymerization of SOM 

and uptake of dissolved organic carbon (DOC) conforming to Arrhenius kinetics (Lloyd 
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& Taylor, 1994). However, soil temperature is only the dominant driver of microbial 

activity when substrate supply is not limiting. When substrate supply is limited by 

diffusion or oxygen (O2) limitation, then decomposition conforms to Michaelis-Menten 

kinetics (Davidson & Janssens, 2006). Substrate and O2 limitation have been 

demonstrated using field experiments measuring carbon dioxide (CO2) efflux under 

different soil moisture conditions (Davidson et al., 1998, McNicol & Silver, 2015). 

Physical separation between substrate and enzyme is cited as a mechanism by which 

SOM persists through time (Schmidt et al., 2011). 

Despite well-known effects of temperature and substrate supply on the activity of 

soil microbes, microbial processes have not been modeled explicitly in terrestrial 

biosphere models. In these models, decomposition rate is determined using a linear rate 

constant that may vary as a function of temperature or soil moisture (Bolker et al., 1998, 

Jenkinson et al., 1990). Indeed, none of the models in the Fifth Coupled Model 

Intercomparison Project (CMIP5), used by the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (2013), have process-level representation of 

microbial physiology (Todd-Brown et al., 2013). Where they have been included, the 

models suggest that process-level representation of microbial physiology influences soil 

C storage at the global scale (Hararuk et al., 2014, Tang & Riley, 2015, Wieder et al., 

2013). 

Linear rate constants do have the advantage of being computationally and 

mathematically tractable, and do not result in the oscillatory behavior that is commonly 

reported in models that incorporate non-linear processes such as Arrhenius and 
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Michaelis-Menten relationships (Hararuk et al., 2014, Wieder et al., 2014). Given the 

importance of microbial physiology to global C cycling, I believe that process-level 

representation is necessary, but the resulting model should be as parsimonious as possible 

and modular enough to easily exclude features that are not necessary to a particular user 

or for which data is not available at a particular site. 

In order to build process-level representation of the effect of temperature and 

substrate supply on microbial physiology, I merged a model that uses temperature and 

substrate supply to predict depolymerization rate (Davidson et al., 2012) with a C and N 

microbial physiology model (Finzi et al., 2015). Merging two models involves a number 

of challenges including combining model equations, parameterization, and model 

assessment. To simplify the presentation of these processes I describe two overarching 

objectives here. My first objective is to test the performance of the combined model 

relative to each model alone using measurements of heterotrophic respiration in a mid-

latitude forest located in central Massachusetts, USA. My second objective is to apply the 

combined model to theoretical concepts such as the response of microbial activity to 

varying ratios of C and N substrate additions, and global-change-inspired perturbations to 

mean annual temperature and soil moisture. To link these modeling activities to my prior 

research on belowground C allocation and rhizosphere processes, I hypothesize that 

forest stands characterized by a high C-to-N ratio [litter, root inputs, microbial biomass] 

will have lower C efflux rates, and store more soil C than narrow C:N stands (Averill et 

al., 2014). My second hypothesis is that warming will increase C efflux, but that added 
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soil moisture will not increase microbial activity as a result of the cancellation of a 

positive effect on C supply and a negative effect on O2 supply. 

Methods 

Model description 

The DAMM-MCNiP model is a parsimonious belowground C and N model with 

core processes-level representation of microbial and exoenzymatic activity. This model 

was developed from the merger of the Dual-Arrhenius Michaelis Menten (DAMM) 

model of Davidson et al. (2012) with the Microbial Carbon and Nitrogen Physiology 

(MCNiP) model of Finzi et al. (2015). DAMM explicitly simulates the effects of 

temperature, soil moisture and substrate supply on the kinetics of soil organic matter 

(SOM) depolymerization. Outputs of the MCNiP model include microbial maintenance 

respiration, biomass production, exoenzyme production, and C and N uptake and 

mineralization. 

Soil temperature and moisture inputs constrain the rate of unprotected SOM 

depolymerization and uptake of dissolved organic matter, including carbon and nitrogen 

(DOM) to the microbial biomass pool. Microbes depolymerize SOM and take up DOM 

according to Arrhenius and Michaelis-Menten kinetics. Further, SOM availability is 

limited by soil moisture according to DAMM principles of substrate diffusion, and DOM 

uptake is limited by soil moisture via O2 availability. Microbes allocate C to maintenance 

respiration, enzyme production, growth, and overflow C and N mineralization. Enzyme 

production and growth are dependent on the C:N ratio of the DOM taken up, as well as 

the carbon use efficiency of microbial metabolism. Microbial biomass and enzymes turn 
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over at a constant rate, and this carbon is partitioned to SOM and DOM pools (Figure 

5.1). 

In DAMM-MCNiP, a series of differential equations determines the change in 

each pool size at each time step. The change in the soluble C and N pool is modeled as: 

dDOC/dt = inputDOC + DEPOLYC + DEATH * (1 – MICC toSOMC )  + (CNe/(1+CNe)) + ELOSSC  –  UPTC [1] 

dDON/dt = inputDON + DEPOLYN + DEATH * (1 – MICN toSOMN )  + (1/CNe) + ELOSSN  –  UPTN  [2] 

where dDOM/dt is the change in the DOM pool size, inputDOM is the root input 

[exudation, turnover], DEPOLY is the depolymerization rate of SOM, DEATH is microbial 

turnover, MIC toSOM is the fraction of dead microbial biomass C or N returned to the 

SOM pool, CNe is the C:N ratio of exoenzymes, ELOSS is the enzyme turnover rate, and 

UPT is the rate of DOM uptake by the microbial biomass pool. 

Depolymerization rate is modeled as: 

DEPOLYC  =  VmaxC * a*Enz *avail_ SOC/(KmC +avail_ SOC)  [3] 

DEPOLYN  =  VmaxN * (1-a)*Enz * avail_SON/(KmN +avail_ SON) [4] 

where Vmax is the maximum reaction rate when the enzyme is saturated with 

substrate, a is the proportion of the enzyme pool acting on the SOC pool (i.e., 1- a is the 

proportion acting on the SON pool), Enz is the enzyme pool size, avail_SOM is 

unprotected SOM, and Km is the half-saturation constant for depolymerization. 

Unprotected SOM and Vmax are modeled as: 

avail_SOM=SOM*frac*Dliq*soilM^3    [5] 

VmaxC_N  = AC_N  * exp (-EaC_N  / RT)    [6] 
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where frac is the fraction of unprotected SOM, using soluble substrate estimated 

from Magill et al. (2000), Dliq is the diffusion coefficient for unprotected SOM in liquid, 

soilM is the volumetric water content, A is the pre-exponential constant for SOM 

depolymerization, Ea is the activation energy for SOM depolymerization, R is the 

universal gas constant, and T is temperature. 

Microbial biomass is modeled as: 

dMICC/ dt =CNm*GROWTH – DEATHC   [7] 

dMICN/ dt =GROWTH – DEATHN    [8] 

where MIC is the microbial biomass, CNm is the C:N ratio of microbial biomass, 

and GROWTH is microbial biomass growth, and: 

GROWTH = ((1-p)*UPTC*CUE + EnzC – CNe*EPROD) /CNm  [C limited]   [9] 

GROWTH = (1-q)*UPTN*EnzN – EPROD  [N limited]    [10] 

DEATH = rdeath * MicC_N       [11] 

where p and q are the proportion of assimilated C or N, respectively, allocated to 

enzyme production, CUE is carbon use efficiency, EPROD is enzyme production, and 

rdeath is the microbial turnover rate. 

Microbial uptake is defined as: 

UPTC_N =  MicC_N  * VmaxuptC_N * DOC_N / (KmuptC_N + DOC_N)*O2/(KmO2 + O2) [12] 

where Vmaxupt and Kmupt are the maximum reaction rate and half-saturation 

constants for uptake, respectively. O2 is the oxygen concentration and KmO2 is the half-

saturation constant for O2 as a substrate. Vmaxupt and O2 are determined by: 

VmaxuptC_N  = AuptC_N  * exp (-EauptC_N  / RT)     [13] 
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O2 = Dgas*O2airfrac*[(porosity –soilM)4/3]   [14] 

porosity = 1 – BD/PD      [15] 

where Aupt is the pre-exponential constant for DOC uptake, Eaupt is the activation 

energy for DOC uptake, Dgas is the diffusion coefficient for O2 in air, O2airfrac is the 

volume fraction of O2 air, BD is bulk density and PD is particle density of the soil. 

Enzyme production can be C or N limited depending on the stoichiometry of the 

DOM taken up: 

EPROD=p*(CUE*UPTC)/CNe [C limited]   [16] 

EPROD = q*UPTN  [N limited]     [17] 

C mineralization, overflow C, and N mineralization are modeled as: 

CMIN = UPTc * (1 – CUE)      [18] 

NMIN = GROWTHN - GROWTH    [19] 

OverflowC = GROWTHC – CNm*GROWTH   [20] 

The enzyme pool is a balance between production and turnover, defined as a first 

order process: 

dEnz/dt = EPROD – ELOSS      [21] 

ELOSS = renzloss*Enz      [22] 

where renzloss is the enzyme turnover rate.  

Lastly, the change in the SOM pool is modeled as: 

dSOMC_N/dt = LitterC_N  + DEATH*MICC_NtoSOMC_N – DEPOLYC_N    [23] 

where LitterC_N is the litter input to the SOC pool. 
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Inputs to the model include litter and root exudate C and N, temperature and soil 

moisture. Outputs used in this study are the rate of C mineralization (i.e., C efflux) and N 

mineralization. Litter (leaf, root) is partitioned to SOM and DOM pools at each timestep 

(h
-1

). Root exudates enter the DOM pool only.  

Model parameters were identical to original DAMM and MCNiP parameters, 

excepting the following: AuptC_N, EauptC_N, AC_N, EaC_N, KmC_N. I estimated AuptC_N, 

EauptC_N, AC_N, and EaC_N from independent measurements of β-glucosidase activity from 

organic and mineral soil (Davidson et al., 2012, Finzi et al., 2015). Because I cannot 

experimentally distinguish between depolymerization kinetics and uptake kinetics, each 

pair of A and Ea values are identical. KmC_N was estimated such that at standard 

temperature, 293 K (20ºC), and the mean soil moisture value for this site, 0.229 cm
3
 H2O 

cm
-3

 soil, KmC_N was equal to the initial available substrate SOM concentration (sensu 

Davidson et al., 2012). In contrast to Allison et al. (2010) and MCNiP, I did not choose a 

Km larger than the available SOM pool. Microbes in MCNiP have access to the entire 

SOM pool, so without a Km value that is high relative to the SOM pool size, substrate 

will always be saturating. My parameterization allows for substrate to saturate a reaction 

site, for example, if substrate is temporarily mobilized during a wet-up event (Birch, 

1958, Davidson et al., 2014). Model parameters are found in Table 5.1. 

Model parameters in MCNiP are based on Allison et al. (2010). One exception is 

the C:N of soil, taken from Schimel and Weintraub (2003). Default initial pool sizes were 

determined after model spin up for 2000 years using spin up parameters from Allison et 

al. (2010) for the C pool. The N pool was parameterized using the following principles, 
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SON = SOC/27.6 [C:N ratio of soil], DON = DOC/15 [mid-range of DOC:DON from 

Hopkinson et al. (1997) and Neff & Hooper (2002)], microbial biomass N = microbial 

biomass C/10 [C:N ratio of microbes]. For the default model, I assume that litter and root 

inputs have C:N of 27.6 (Table 5.2). 

Model comparison 

I compared model performance of the DAMM-MCNiP model against three other 

models, DAMM alone, MCNiP alone, and DAMM-MCP (without any mechanistic 

linkage between C and N cycling). DAMM parameters are from Davidson et al. (2012). 

MCNiP’s enzyme kinetic parameters, AuptC_N, EauptC_N, AC_N, EaC_N, KmC_N and initial 

values were parameterized as in Finzi et al. (2015). DAMM-MCNiP and DAMM-MCP 

have identical parameter values (Table 5.1). In DAMM-MCP, N limitation is not possible 

because I removed the conditional statements that determine whether or not the system is 

N-limited. As a result, C dynamics control the model and N pools follow C pools 

according to stoichiometry. I ran DAMM and MCNiP for one year. I ran DAMM-MCNiP 

and DAMM-MCP for 200 years to achieve stable efflux values.  

To test model performance, I used measurements of soil temperature, moisture, 

and C efflux from a trenching experiment at Harvard Forest, MA. A 5 x 5 m trench was 

dug to 1 m depth in November 2008 in a mixed hardwood stand on the Prospect Hill tract 

of Harvard Forest. Automated measurements of C efflux were collected from April 

through October 2009. I used C efflux from trenched plots as an estimate of heterotrophic 

respiration. This dataset is described in greater detail in Davidson et al. (2012). 
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Linear regression was used to fit the output predicted by each model with C efflux 

measurements from trenching, and to fit model-predicted N mineralization with soil 

moisture measurements. I computed the correlation coefficient (Pearson’s ρ) between 

model-predicted C efflux and temperature or soil moisture. All analyses were conducted 

in R Statistical Software (R Development Core Team, 2013).  

Root input measurements 

Root C inputs were measured in three stands at Harvard Forest, white ash 

(Fraxinus americana), red oak (Quercus rubra), and eastern hemlock (Tsuga 

canadensis). Root exudates were collected from six root systems per stand in June and 

August of 2012, and April, May, July and October of 2013 following the method of 

Phillips et al. (2008, 2011). Root turnover was measured April–December 2012, March–

November 2013, and April–November 2014 in ten minirhizotron tubes per stand using a 

BTC-100x high magnification minirhizotron camera system (Bartz Technology 

Company, Carpenteria, CA). I averaged across the three stands and across replicate 

samples to determine the base rate of root input, 120 g C m
-2

 yr
-1

, which was comprised 

of an exudation (102 g C m
-2

 yr
-1

) and root turnover (18 g C m
-2

 yr
-1

) flux component. I 

assume that exudation occurs primarily during the growing season and follows a 

unimodal Gaussian distribution with a standard deviation of 42 days. I used this root 

input rate and phenology for the following simulations that manipulate C:N, temperature, 

and soil moisture. 
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Model simulation of microbial physiology response to C:N ratio 

I conducted model simulations of DAMM-MCNiP that test the importance of 

stand-level differences in C:N on microbial physiology. C and N mineralization was 

simulated in two theoretical forests differing in their litter, root input, and microbial 

biomass C:N, based on ranges reported in literature for an arbuscular-mycorrhizal 

hardwood stand where decomposition is dominated by bacteria (herein Narrow C:N), and 

an ectomycorrhizal conifer stand where decomposition is dominated by fungi (herein 

Wide C:N; Table 5.3). In order to compare the effects of varying input and microbial 

C:N, I conducted three tests. First, I ran the model using either high or low values of litter 

and root input C:N. Second, I ran the model using high or low values of microbial 

biomass C:N. Finally, I varied both input and biomass C:N (Table 5.3). 

To determine the effect of root input C:N on depolymerization and microbial 

efficiency, I varied root input C:N between 1 and 100 and recorded the SOC pool size at 

different quantities of root input and root input C:N. I used the ratio of depolymerization 

rate to microbial biomass as a measure of microbial efficiency. 

Model simulations of global change 

In order to estimate the effect of global change on annual C and N efflux, I 

perturbed the temperature and soil moisture inputs for the last year of each model run of 

DAMM-MCNiP. First, I increased and decreased the temperature at each time point by 

5ºC. Second, using ambient temperature forcing, I increased and decreased soil moisture 

at each time point by 50%. I calculated the absolute difference between each temperature 
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and soil moisture treatment relative to ambient, and cumulatively summed the C or N 

efflux over the year. 

Results 

Model comparison 

From a visual inspection of the model output, DAMM captures the seasonality of 

measured C efflux well, though it slightly over-predicts C efflux during mid-summer 

(DOY 220-250), and under-predicts efflux during large precipitation events (e.g., DOY 

170, 240; Figure 5.2a). The RMSE of the correlation between DAMM and measured C 

efflux is 31.7 (β = 0.85, F1,2903 = 3102, P < 0.001, R
2

adj = 0.52; Figure 5.3a). MCNiP has 

an RMSE of 7.6 with little change in amplitude between summer and winter efflux 

(Figure 5.2b). The slope (β) of the relationship between MCNiP and measured efflux is 

lower than 1 (β = 0.20, F1,2965 = 2998, P < 0.001, R
2

adj = 0.50; Figure 5.3b). The RMSE of 

DAMM-MCNiP is 26.7, and is lower than that of DAMM. The slope of the relationship 

between predicted and measured efflux for DAMM-MCNiP is lower than 1, but higher 

than MCNiP (β = 0.59, F1,2965 = 2156, P < 0.001, R
2

adj = 0.42; Figure 5.3c). DAMM-

MCP lacks any linkage to the N cycle, and has an RMSE of 25.9 (β = 0.57, F1,2965 = 

2096, P < 0.001, R
2

adj = 0.41; Figure 5.3d).  

DAMM-MCNiP model residuals indicate that DAMM-MCNiP slightly over-

predicts C efflux across the range of soil moisture values and under-predicts some C 

efflux values between 0.3 and 0.5 cm
3
 H2O cm

-3
 soil (Figure 5.4a). DAMM alone over-

predicts C efflux at low and high soil moisture values and under-predicts C efflux 

between 0.3 and 0.5 cm
3
 H2O cm

-3
 soil (Figure 5.4b). At soil moisture values > 0.68 cm

3
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H2O cm
-3

 soil, DAMM cannot solve for a C efflux value, because soil pores are 

completely filled with water. In DAMM-MCNiP, however, I implemented a drainage 

subroutine that allows water to exit soil pores, alleviating the mathematical impossibility 

of having more water in the soil than available pore space. 

DAMM is more strongly correlated with temperature (ρ = 0.90) than soil moisture 

(ρ = 0.15). DAMM-MCNiP is correlated with temperature (ρ = 0.69) and soil moisture (ρ 

= 0.33). In DAMM-MCNiP, the seasonal pattern of temperature and soil moisture is 

similar to the pattern of depolymerization rate, C uptake rate, C mineralization rate and 

the size of DOC pool (Figure 5.5a,b,e,f,g,j). The phenology of the SOC pool is opposite 

that of the microbial biomass and enzyme C pools, such that SOC is most depleted (i.e., 

DOY 250) when the microbial biomass pool reaches its annual peak (Figure 5.5i,k,l). N 

mineralization is not confined to the growing season and has a significant negative 

relationship with soil moisture (F1,4559 = 925, P < 0.001, R
2

adj = 0.17; Figure 5.5b,d). 

Overflow C is the release of excess C from microbes after allocation to maintenance 

respiration, enzyme production, and biomass growth. Overflow C is an intermittent flux 

that only occurs when all available N is immobilized (i.e., when N mineralization is low 

or absent; Figure 5.5h; Figure 5.6).  

Model simulation of microbial physiology response to C:N 

The theoretical Narrow C:N stand had higher C and N mineralization rates 

compared to the Wide C:N stand, by 12 g C m
-2 

yr
-1

 and 0.9 g N m
-2 

yr
-1

, respectively. 

When input C:N was changed from default settings but microbial biomass C:N was held 

constant, the Narrow C:N stand mineralized 27 g C m
-2 

yr
-1

 and 1.4 g N m
-2 

yr
-1

 more than 
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the Wide C:N stand (Figure 5.7a,d). In contrast, the Wide C:N stand had higher C and N 

mineralization by 12 g C m
-2 

yr
-1

 and 0.9 g N m
-2 

yr
-1

, respectively, when only microbial 

biomass C:N was changed from default settings (Figure 5.7b,e). As a result, the 

difference in C and N mineralization between the Wide and Narrow C:N stands was 

small when both input and microbial biomass C:N were varied (Figure 5.7c,f; Table 5.3). 

SOC depolymerization increased with the magnitude of root input to the DOC 

pool, depleting the SOC pool. This effect appeared to exhibit asymptotic behavior at high 

values of exudate inputs. Low root input C:N resulted in more depolymerization than 

high input C:N (Figure 5.8a). At low C:N, there was an increase in microbial efficiency 

with root inputs (Figure 5.8b, red line). At high C:N, SOC was depleted as a result of an 

increase in microbial biomass (Figure 5.8c). 

Model simulations of global change 

A 5ºC warming of seasonal temperature inputs increased C efflux by 119 g C m
-2 

yr
-1

. An equivalent decrease in ambient temperature caused C efflux to fall by 71 g C m
-2 

yr
-1

 (Table 5.4; Figure 5.9a). N mineralization increased by 0.37 g N m
-2 

yr
-1

 with 

warming and decreased 0.32 g N m
-2 

yr
-1

 with cooling (Figure 5.9b). 

A 50% increase in seasonal soil moisture caused a large increase in C (220 g C m
-

2 
yr

-1
) efflux and a smaller increase in N mineralization (0.9 g C m

-2 
yr

-1
), while a 50% 

decrease in soil moisture decreased C efflux by 156 g C m
-2 

yr
-1

 and N mineralization by 

0.21 g N m
-2 

yr
-1

 (Figure 5.9c,d). There were also large changes in the seasonal pattern of 

N mineralization, with more variation in the wet treatment compared to the dry treatment 

(Figure 5.9d). The absolute difference in C efflux in the warming and added soil moisture 
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treatments were greater than the reduced temperature and soil moisture treatments, but 

the effect of each treatment was similar for N mineralization (Figure 5.10). Cumulative 

sums of mineralization measured over the growing season demonstrate that temperature 

and soil moisture treatments had a larger effect on annual C efflux than on N 

mineralization (Figure 5.11). In addition, N mineralization in the dry treatment exceeded 

both ambient and wet treatments for large portions of the year (Figure 5.10d, 5.11d).  

Discussion 

As currently parameterized, DAMM-MCNiP predicts realistic C efflux during 

transient wet-up events (Figure 5.4a), an area where many present-day models struggle to 

represent the increase in C efflux with soil moisture (Ise & Moorcroft, 2006, Rodrigo et 

al., 1997). However, DAMM-MCNiP over-predicts C efflux in constant high soil 

moisture conditions. DAMM-MCNiP produces realistic responses to temperature 

perturbation, and thus may be useful for investigating the interaction between substrate 

and temperature controls on microbial activity. Consistent with hypothesis 1, model 

predictions of SOM decomposition in response to variable C:N inputs show that N-rich 

root exudates increase the decomposition rate of SOM and that wide C:N stands store 

more C than narrow C:N stands (Averill et al., 2014).  

Model comparison 

DAMM alone captures the seasonality of C efflux. The slope of the C efflux 

predicted by DAMM plotted against measured C efflux is the closest to 1 of the four 

models. However, DAMM parameters were fit to these data using parameter 

optimization, and therefore is it not surprising that model bias is low. The RMSE of 
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DAMM, however, is highest of the four models. In contrast, MCNiP alone has the lowest 

RMSE of the four models, but does not capture the observed seasonal pattern of C efflux, 

with the slope between observed and predicted efflux equal to 0.2. This indicates that 

while MCNiP has high precision, alone it has low predictive accuracy. In contrast to 

DAMM, MCNiP is currently parameterized from literature values as a theoretical model, 

and has not been previously fit to data (Allison et al., 2010, Schimel & Weintraub, 2003). 

That it performs as well as it does is notable. 

Together, DAMM and MCNiP capture the seasonal cycle of soil C efflux. Though 

the RMSE of DAMM-MCNiP is much higher than that of MCNiP, DAMM-MCNiP has 

the ability to predict realistic seasonal patterns in response to fluctuations in temperature 

and soil moisture. That is, the slope of the predicted compared to observed efflux is 

closer to 1 for DAMM-MCNiP compared to MCNiP. 

The correlation coefficients between C efflux predicted by DAMM and 

temperature (ρ = 0.90) or soil moisture (ρ = 0.15) indicate that DAMM alone is more 

sensitive to temperature than to soil moisture. DAMM-MCNiP is relatively more 

sensitive to soil moisture (ρ = 0.33) than is DAMM. As a result, DAMM-MCNiP 

successfully predicts the large increase in C efflux after wet-up events, which DAMM 

alone cannot recreate. 

The major benefit of DAMM-MCNiP in comparison to DAMM and MCNiP 

alone is the process-level representation of microbial physiology coupled with the ability 

to represent substrate availability at the micro-site scale. Another benefit is the coupling 

of the C and N cycle, which allows for investigation into nutrient limitation and priming 



 

 
 

146 

effects. Although, DAMM-MCP is decoupled from the N cycle, model performance is 

similar to DAMM-MCNiP [slightly lower RMSE and slope], though the lack of a N cycle 

limits its utility. The fact that it does perform as well as DAMM-MCNiP suggests the 

need to assess both models against other datasets. The stoichiometric coupling in 

DAMM-MCNiP may also benefit from data-model assimilation using Harvard Forest 

datasets, modifications to the model’s core structure, or both. 

From a visual inspection of the model inputs, pools and fluxes, it is clear that 

temperature and soil moisture together determine the rate of depolymerization, which 

then constrains the DOC pool, C uptake, and C efflux (Figure 5.5e,f,g). N mineralization 

occurs throughout the growing season, and is negatively correlated with soil moisture. 

Overflow C occurs when the system is N-limited, and as a result overflow C and N 

mineralization are nearly mutually exclusive (Figure 5.6). This is an important model 

diagnostic which demonstrates that the coupling of C and N in the model is working 

properly. 

Model simulation of microbial physiology response to C:N 

When I narrowed the C:N ratio of root inputs and microbial biomass, I observed a 

small increase in the amounts of C and N mineralized, supporting my first hypothesis that 

stands with narrow C:N will have higher C efflux rates (Figure 5.7). This response to low 

C:N is consistent with my understanding of priming based on MCNiP (Finzi et al., 2015) 

and related models (Drake et al., 2013), where adding N increased C efflux and SOM 

decomposition (Figure 5.8a). 
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The mechanism by which more SOM is decomposed with added exudates at root 

C:N > 3 is an increase in microbial biomass rather than an increase in microbial 

efficiency (Figure 5.8b,c). This understanding of priming is not necessarily counter to 

findings that suggest that low N inputs stimulate foraging for N by inducing N limitation 

(Craine et al., 2007). Adding more N to the system supports a larger microbial biomass, 

but these microbes can still be N limited, since the C:N of litter and root inputs is still 

higher than the C:N of microbial biomass (Table 5.3). 

When only microbial biomass C:N was varied, the wide C:N stand predicted a 

slightly higher C efflux than the narrow C:N stand, because microbial biomass with high 

C:N is more closely matched to the C:N of litter and root inputs. Varying input and 

microbial biomass C:N together does not change the overall C efflux by a large amount, 

consistent with idea that microbial activity is limited by the stoichiometry of its substrate 

(Sinsabaugh et al., 2009). 

Model simulations of global change 

Warming seasonal temperatures by 5ºC increased C efflux by about 55%, 

supporting the first part of the second hypothesis that warming increases heterotrophic 

respiration. C efflux increased ~50% from cold to ambient treatments, suggesting that the 

temperature response to 5ºC warming is consistent regardless of the starting temperature. 

A 50 – 55% increase in heterotrophic respiration with warming was greater than the 

observed increase in total soil CO2 efflux in response to 5ºC warming in two studies at 

the Harvard Forest by 11 and 27% (Contosta, 2011, Melillo et al., 2002). Soil warming in 

the field usually dries the soil along with heating, which may account for the smaller 
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increase in C efflux observed in the field. In fact, when I simultaneously warmed the soil 

by 5ºC and decreased soil moisture by 10%, which corresponds to the amount of drying 

observed by Contosta et al. (2011) in the soil organic horizon, I predicted an increase in 

C efflux increase of only 17% over ambient conditions (Figure 5.12). 

Warming and cooling treatments had similar effects on N mineralization (Figure 

5.10b), with a slightly positive effect of warming, but many instances over the growing 

season where N mineralization decreased with additional warming. At the seasonal time-

scale, N mineralization was not very sensitive to temperature with perhaps marginally 

more N mineralization during the growing season, so it is not surprising that at the annual 

time-scale, an increase in temperature also had a small effect on N mineralization. 

In contrast to the second part of hypothesis 2, soil moisture manipulations had a 

larger effect on C efflux than did either warming or cooling. I hypothesized that a 50% 

increase in soil moisture would have a relatively small positive effect, because the 

increase in diffusive transport of substrates would be moderated by O2 limitation. 

However, I found that O2 limitation had a small effect relative to diffusion because C 

efflux was strongly stimulated in the 1.5x soil moisture treatment and strongly limited in 

the 0.5x soil moisture treatment. Suseela et al. (2012) found that heterotrophic respiration 

was reduced in a mesic suburban old-field site when volumetric soil moisture was outside 

of a 15-26% window. Davidson et al. (1998) found high soil respiration at similar 

volumetric soil moisture values. The mean volumetric soil moisture for the dry and wet 

treatments in the simulation was outside of this window (15% and 41%, respectively), 

suggesting that DAMM-MCNiP may overestimate C efflux at high soil moisture values. 
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Soil moisture manipulations had a large impact on N mineralization. At low soil 

moisture, N mineralization had a lower coefficient of variation (CV = 0.41) over the 

growing season than it had at ambient (CV = 0.96) or added soil moisture (CV = 1.1; 

Figure 5.9d). During dry conditions there is little substrate available for depolymerization 

and microbial uptake. Because substrate supply is low throughout the growing season, 

this limits the rate N mineralization. Conversely, when substrate is plentiful during wet 

conditions, N mineralization is widely variable depending upon whether microbial 

growth is C or N limited. Since the wet treatment resulted in a large pool of available 

SOC, I expected that N mineralization would decrease because microbial growth 

becomes N limited. This was not the case, however, because there were many time 

periods throughout the simulation when microbial growth was C limited (Figure 5.10d). 

This suggests that the model may be operating under greater C limitation than expected. 

Summary 

The DAMM-MCNiP model is a parsimonious model that simulates 

decomposition and C and N mineralization using process-level representation of 

microbial physiology and stoichiometry. It is one of the first microbial physiology 

models that can represent the C and N cycle together with plant substrate supply, making 

DAMM-MCNiP a candidate for linkage with terrestrial biosphere models that allocate a 

fraction of fixed C belowground at each time-step. The model inputs are similar to 

CENTURY (i.e., soil temperature, moisture, C and N), but rather than combining 

temperature and soil moisture effects into a linear decomposition factor, DAMM-MCNiP 
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explicitly models the processes by which temperature and moisture affect substrate 

availability and enzyme kinetics (Bolker et al., 1998).  

DAMM-MCNiP requires parameter estimation and sensitivity analyses beyond 

those performed here (i.e., by varying C:N, soil temperature and soil moisture) in order to 

reproduce measured C efflux without bias. Future work will focus on parameterizing 

DAMM-MCNiP using Baysian data assimilation, first at the Harvard Forest in 

Petersham, MA and then at other sites. I will nest parameter value estimates and their 

associated uncertainty at each site using a hierarchical framework that can then estimate 

broader regional-scale parameters. A broadly parameterized microbial physiology model 

such as DAMM-MCNiP may improve terrestrial biosphere model predictions of SOC 

pools under global change. 
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Table 5.1. DAMM-MCNiP default model parameter values.  

Parameter Units Default Value Description 

rootDOC mg cm
-3

 input Root exudates 

T K input temperature in Kelvin 

θ cm
3
 H2O cm

-3
 soil input volumetric water content 

BD g cm
-3

 0.8 bulk density 

PD g cm
-3

 2.52 particle density 

O2airfrac L O2/ L air 0.209 volume fraction of O2 air  

frac g C cm
-3

/ g C cm
-3

 0.000414 fraction of unprotected SOM, 

using soluble substrate estimated 

from Magill et al., 2000 

Dliq - 3.17 diffusion coefficient for 

unprotected SOM and DOM in 

liquid 

Dgas - 1.67 diffusion coefficient for O2 in air 

KmO2  cm
3
 O2 cm

-3 
air 0.121 Michaelis constant for O2 

R kJ K
-1

 mol
-1

 0.0083145 universal gas constant 

endTime h 2000000 number of hours simulated in 

model run 

p  - 0.5 proportion of assimilated C 

allocated to enzyme production 

q - 0.5 proportion of assimilated N 

allocated to enzyme production 

a - 0.5 proportion of enzyme pool acting 

on SOC pool (1-a = proportion 

acting on SON pool) 

initSOC mg cm
-3

 144.5986 initial SOC pool 

initSON mg cm
-3

 5.4413 initial SON pool 

initDOC mg cm
-3

 0.00091631 initial DOC pool 

initDON mg cm
-3

 0.00049421 initial DON pool 

initBiomassC mg cm
-3

 1.1957 initial microbial biomass C 

initBiomassN mg cm
-3

 0.1196 initial microbial biomass N 

LitterC_N mg cm
-3 

hr
-1

 0.0005 litter input to SOC pool 

LitterCN mg cm
-3 

hr
-1

 27.6 C:N of litter input to SOC pool 

initEnz mg cm
-3

 0.0381 initial enzyme pool 

inputDOC mg cm
-3 

hr
-1

 0.0005 root input to DOC pool 

inputDOCN mg cm
-3 

hr
-1

 27.6 C:N of litter input to DOC pool 

r_death  hr
-1

 0.00015 microbial turnover rate 

r_EnzLoss  hr
-1

 0.001 enzyme turnover rate 

MICC_NtoSOCC_N mg mg
-1

 0.5 fraction of dead microbial biomass 
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Parameter Units Default Value Description 

AC_N mg SOM cm
-3

 (mg 

Enz cm
-3

)
-1

 h
-1

 

1.0815*10
11

 Pre-exponential constant for SOM 

depolymerization 

AuptC_N mg DOC cm
-3

 (mg 

biomass cm
-3

)
-1

 h
-1

 

1.0815*10
11

 Pre-exponential constant for DOC 

uptake 

KmC_N mg cm
-3

 0.0025 Half-saturation constant for SOM 

depolymerization 

KmuptC_N mg cm
-3

 0.3 Half-saturation constant for DOC 

uptake 

CUE mg mg
-1

 0.31 Carbon use efficiency 

EaC_N kJ mol
-1

 61.77 Activation energy for SOM 

depolymerization 

EauptC_N kJ mol
-1

 61.77 Activation energy for DOC uptake 

CNs - 27.6 C:N of soil 

CNl - 27.6 C:N of litter 

CNm - 10 C:N of microbial biomass 

CNe - 3 C:N of enzymes 

CNex - 27.6 C:N of root inputs 
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Table 5.2. Initial pool sizes (Spin Up) and the resulting default initial pool sizes (Default) after 2000 years of 

spin-up. 

Parameter Abbreviation Units Spin Up Default 

SOC pool initSOC mg cm
-3

 100 144.5986 

SON pool initSON mg cm
-3

 3.6232 5.4413 

DOC pool initDOC mg cm
-3

 0.5 0.00091631 

DON pool initDON mg cm
-3

 0.0333 0.00049421 

microbial biomass C initBiomassC mg cm
-3

 0.5 1.1957 

microbial biomass N initBiomassN mg cm
-3

 0.05 0.1196 

enzyme pool initEnz mg cm
-3

 0.01 0.0325 
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Table 5.3. Parameter values for the C:N of litter, root inputs, and microbial biomass for two theoretical stands. 

  Narrow C:N Wide C:N Reference 

Litter input 50 100 Finzi et al. 2001 

Root input 10 100 Drake et al. 2013, Finzi et al. 2015 

Microbial 

biomass 6 12 

Wallenstein et al. 2006, Bengtson et al. 

2012 
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Table 5.4. Annual C and N mineralization predicted by DAMM-MCNiP in four simulations that manipulate 

either temperature or soil moisture. Here θ refers to volumetric soil moisture. 

 Ambient +5ºC –5ºC 1.5x θ 0.5x θ 

C mineralization 

(g C m
-2

 yr
-1

) 

217 337 146 437 61 

N mineralization 

(g N m
-2

 yr
-1

) 

2.9 3.2 2.5 3.7 2.6 
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Figure 5.1. Conceptual figure of the merger of DAMM (blue and orange boxes) and MCNiP (box and arrow 

diagram). SOM depolymerization occurs using Arrhenius and Michaelis-Menten kinetics, substrate diffusion, 

and a temperature-dependent Vmax (blue box). I held Km constant for the model runs in this study, but a linear 

temperature-sensitivity relationship can be applied to it if desired. DOC uptake is controlled by DAMM kinetics 

as well as O2 concentration at the reaction site (orange box; see Table 5.1 for DAMM equation parameter 

definitions). MCNiP has four pools: SOM, DOM, Microbial biomass, and Enzymes. Litter and root inputs enter 

the SOM and DOM pools, respectively, and outputs are CO2 as a product of respiration and inorganic N as a 

product of N mineralization. 

 

  



 

 
 

157 

 

Figure 5.2. Model inter-comparison of (a) DAMM (pink), (b) MCNiP (blue), (c) DAMM-MCNiP (red), and (d) 

DAMM-MCP (green) overlayed on soil C efflux measurements from trenched plots in Harvard Forest, MA. 
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Figure 5.3. Relationship between predicted and measured C efflux for (a) DAMM, (b) MCNiP, (c) DAMM-

MCNiP, and (d) DAMM-MCP. The solid line is the regression fit, and the dotted line is the 1:1 line. 
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Figure 5.4. (a) DAMM-MCNiP and (b) DAMM model residuals plotted as a function of soil moisture (θ). 
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Figure 5.5. DAMM-MCNiP model inputs (black), fluxes (blue) and pools (pink). 
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Figure 5.6. Plot of overflow C as a function of N mineralization. 
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Figure 5.7. Annual C and N mineralization in stands with narrow (pink) or wide (blue) C:N using parameters 

defined in Table 5.3. (a) C and (d) N mineralization when only input C:N was varied between stands and 

microbial biomass was held at the default value. (b) C and (e) N mineralization when only microbial biomass 

C:N was varied and inputs were held at their default value. (c) C and (f) N mineralization when both input C:N 

and microbial biomass C:N were varied between stands. 
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Figure 5.8. (a) SOC as a function of root inputs. (b) Microbial efficiency (depolymerization per unit microbial 

biomass) as a function of root inputs. (c) Microbial biomass as a function of the SOC pool. In panels a-c, root 

input C:N varies between 1 and 100 (colored lines). 
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Figure 5.9. Effect of 5ºC warming (pink) and 5ºC cooling (blue) on (a) C and (b) N mineralization. Effect of 1.5x 

soil moisture (pink) and 0.5x soil moisture (blue) on (c) C and (d) N mineralization. Black lines indicate C or N 

mineralization at ambient temperature and soil moisture conditions. 
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Figure 5.10. Absolute difference in (a) C and (b) N mineralization between ambient and 5ºC of warming (pink) 

or cooling (blue). Absolute difference in (c) C and (d) N mineralization between ambient and 1.5x (pink) or 0.5x 

soil moisture (θ; blue). 
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Figure 5.11. Cumulative sums of (a) C and (b) N mineralization rates under 5ºC warming (pink) and cooling 

(blue). Cumulative sums of (c) C and (d) N mineralization rates with 1.5x soil moisture (pink) and 0.5x soil 

moisture (blue). Black lines indicate cumulative sums of C or N mineralization at ambient temperature and soil 

moisture conditions.  

  



 

 
 

167 

 

Figure 5.12. C mineralization under ambient temperature and soil moisture (θ; black line), 5ºC warming with no 

change in soil moisture (pink line), and 5ºC warming with a 10% decrease in soil moisture (0.90x; green line). 
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CHAPTER SIX: CONCLUSION 

The research in this dissertation followed C from aboveground allocation through 

roots to soil microbes at seasonal and inter-annual timescales. I used data compilation, 

field studies, and computer simulation to study global, plot-level, and micro-site spatial 

scales, respectively. One overarching objective of this work was to scale up 

measurements of local or micro-site processes to make ecosystem scale inferences. This 

was accomplished using plot averaging in the field study in Chapter 3, and using 

computer simulation to scale micro-site microbial activity to recreate plot-level 

phenomena (i.e., heterotrophic respiration) in Chapter 5. I explored a new method for 

quantifying rhizosphere extent in Chapter 4, which could then be used to scale up 

microbial activity in models that represent the distribution of roots in soil and root-

derived substrate supply (Finzi et al., 2015). 

A second overarching theme was the effect of substrate supply on plant and 

microbial activity, such as the temporal coupling between photosynthesis and root growth 

or respiration, or the exudation of labile C to support microbial growth and soil organic 

matter (SOM) decomposition. My primary focus on C cycling was motivated by the 

fundamental role of C in organizing biological systems, as well as its role as a potent 

greenhouse gas that is altering the Earth’s climate, with largely negative impacts on 

ecosystem services (Field & Van Aalst, 2014).  

Phenology and C allocation 

In both a meta-analysis across multiple biomes and field studies in a mid-latitude 

temperate forest, I found a difference in the phenology of evergreen compared to 
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deciduous trees. Deciduous root growth occurred earlier in the growing season relative to 

evergreen trees. Moreover, the timing of maximum root production in deciduous trees 

was more synchronous with measurements of aboveground phenology than that of 

evergreen trees. If this difference in phenology is consistent among the many species that 

are represented in each growth form, then there are implications for the ecosystem 

models that currently assume all phenology is synchronous (Medvigy et al., 2009, Oleson 

et al., 2010, Woodward & Lomas, 2004). Based on the findings of Chapters 2 and 3, this 

assumption of synchronicity is accurate for the temperate broadleaf deciduous plant 

functional type (PFT). However, a more accurate representation of the temperate 

needleleaf evergreen PFT is a lagged allocation of C belowground to roots. 

It is difficult to determine one set of parameters for the all of species represented 

in a PFT because of the diversity of plant trait values among different species. As a result 

of this limitation, recent proposals are focusing on replacing PFTs altogether with 

species-specific or phylogenetically hierarchical plant traits that may vary as a function of 

temperature, soil moisture, clay content, or other widely available correlates of plant 

function (Wullschleger et al., 2014). Though existing plant trait databases are very sparse 

(Kattge et al., 2011), advances in matrix imputation may be able to use phylogenetic 

relationships to fill in missing plant traits with traits of closely-related taxa (Swenson, 

2014). My data are immediately applicable as part of a plant trait database. Chapter 2 

meta-analysis data have already been submitted to TRY, a global plant trait database 

initiated in 2007 (Kattge et al., 2011). 
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Temperate deciduous trees have high growing season photosynthetic rates relative 

to temperate conifers (Hadley et al., 2008), resulting in similarly high rates of 

belowground C allocation. I found that red oak (Quercus rubra) stands allocated ~250 g 

m
-2

 more C belowground than eastern hemlock (Tsuga canadensis) during the growing 

season. This discrepancy is driven by the difference in root production between stands. 

This observation suggests that long-term increases in C uptake and biomass noted in red 

oak trees at the Harvard Forest are facilitated by root production to meet nutrient demand 

(Keenan et al., 2012, Urbanski et al., 2007).  

In red oak, increasing root production was a confirmation of high stand 

productivity, but in eastern hemlock, decreasing root production suggested a stand-level 

decline. The year-over-year decline in root production is coincident with the arrival of the 

hemlock woolly adelgid in 2012, its spread throughout Harvard Forest in subsequent 

years, and visible signs of crown thinning and HWA-induced tree mortality recorded by 

2014. From these data, I conclude that disease-related declines in productivity are 

manifested belowground. Notably, live roots sampled from the hemlock stand had similar 

nonstructural carbohydrate, exudation, and respiration measurements to the other stands. 

Both the tight coupling of above and belowground phenology in red oak and the rapidity 

of disease-related decline in hemlock suggest that newly fixed C is important to root 

growth and longevity.  

There is still little known about the phenology of roots. The National Ecological 

Observatory Network (NEON), founded in 2006 to collect standardized observational 

data across the United States, is building soil arrays that include minirhizotron cameras 
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permanently mounted in tubes installed into their terrestrial sites (Pennisi, 2010). These 

cameras can rotate and move vertically on a track in order to take photos and wirelessly 

transmit data back to a field station (Roberti et al., 2014). This will be the first large-scale 

implementation of this technology, and will also create the need to improve automated 

root detection, as the number of root images proposed cannot be annotated manually 

(Vamerali et al., 1999, Zeng et al., 2008). I am optimistic that NEON’s national 

implementation of minirhizotron cameras as well as ancillary soil and environmental 

measurements will produce data that greatly improve estimates of root production and its 

environmental drivers. 

Modeling the micro-site at global scales 

I developed a model that represents the effect of temperature and substrate supply 

on microbial activity by merging the Dual Arrhenius Michaelis-Menten model of 

Davidson et al. (2012) with the Microbial Carbon and Nitrogen Physiology Model of 

Finzi et al. (2015). The combined model, DAMM-MCNiP, reproduced measured rates of 

heterotrophic respiration over the growing season, and performed particularly well 

compared to each model alone when confronted with wet-up events. I show that the 

stoichiometry of root exudates influences both the amount and the mechanism by which 

priming occurs. 

In order to scale up DAMM-MCNiP’s rhizosphere and bulk soil model outputs to 

an ecosystem flux, I had to make an assumption about the rhizosphere volume. Currently, 

DAMM-MCNiP is parameterized for 1 cm
3
 of soil that is assumed to be exactly 20% 

rhizosphere, determined using a modeling exercise based on the assumption that exudates 
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diffuse 2 mm away from the root surface (Finzi et al., 2015). I developed a quantitative 

framework for estimating the spatial extent of the rhizosphere using image analysis of 2-

D zymographs that may be able to improve estimates of the exudate diffusion distance. 

An alternative to using a single value for the rhizosphere volume in models is to 

explicitly represent fluid transport of root exudates. I am preparing a depth-resolved 

version of DAMM-MCNiP that can include vertical or lateral transport of root exudates 

that are dissolved into the DOC pool, as well as declining root inputs with depth based on 

the depth distribution of root biomass (Finzi et al., 2015). Given adequate data on the 

enzyme activity of bulk versus rhizosphere soil, it may also be possible to use a future 

version of DAMM-MCNiP to estimate an effective rhizosphere distance by fitting it as a 

parameter to measureable outputs such as C and N mineralization. 

The main contribution of DAMM-MCNiP is that it explicitly represents the 

processes that control the availability of SOM. However, SOM availability is also 

determined by the chemical composition of the soil, which influences aggregate 

formation, adsorption, and desorption of organic matter to minerals (Conant et al., 2011, 

Grandy & Neff, 2008). DAMM-MCNiP does not currently represent physical or 

chemical protection of SOM dynamically. Rather, DAMM-MCNiP considers a fixed 

fraction of SOM at each time step to be “unprotected”. This unprotected SOM is 

available for microbial depolymerization if it can diffuse to an extracellular enzyme. 

While DAMM-MCNiP can reproduce C efflux after a wet-up event by accurately 

representing the large amount of available C released by wet-up (Parton et al., 2012), it 
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over-predicts C efflux in constant high soil moisture conditions. DAMM-MCNiP’s 

representation of soil moisture dynamics may improve with parameter optimization, but it 

is also possible that there is a temperature control on SOM protection that is not currently 

represented. 

Some microbial physiology models have also started to incorporate some 

representation of sorption to soil minerals (Tang & Riley, 2015, White et al., 2014). One 

microbial physiology model that has an intriguing simplification of SOM protection is 

MIMICS, which omits soil moisture but calculates the half-saturation constant of 

depolymerization as a function of soil clay content. This approximation of SOM 

“protection” simulates changes in SOM pools better than DAYCENT, a model lacking 

microbial physiology (Wieder et al., 2014).  

There are a large number of decomposition models, many of which have some 

representation of microbial physiology (Allison et al., 2010, Drake et al., 2013, 

Moorhead et al., 2012, Schimel & Weintraub, 2003, Tang & Riley, 2015). Though 

DAMM-MCNiP is the only microbial physiology model to include representation of 

temperature, substrate supply, C and N cycling, it may not necessarily have the most 

predictive power. In order to determine which models perform well when confronted 

with new data, there needs to be a framework for model testing and comparison. In 

CMIP5, the predicted pools or fluxes of different process-models are plotted together and 

a moving average of these models is considered the most likely scenario (Ahlström et al., 

2012). If parameter uncertainty can be propagated through to outputs, then it is possible 
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to compare model outputs to each other and also identify which parameters require more 

data constraints. This type of error propagation could be done in a Bayesian framework 

(Tang & Zhuang, 2009) or in a computationally simpler Monte Carlo framework (Keenan 

et al., 2013). 

Summary 

The research presented in this dissertation focuses on the seasonality and 

partitioning of belowground C allocation to roots and soil microbes. I found that above 

and belowground phenology are often asynchronous, and that root growth drives the 

phenology of belowground C allocation. Root growth and respiration are positively 

correlated with temperature, and C allocation to root production in a deciduous mid-

latitude forest is tightly coupled with photosynthesis. Continued burning of fossil fuels 

will increase the temperature and CO2 concentration in the atmosphere, resulting in an 

increase in belowground C allocation (Drake et al., 2011). Root allocation and elevated 

temperature both stimulate soil microbial activity, and ultimately, the flux of CO2 into the 

atmosphere via heterotrophic respiration. This cycle constitutes a positive feedback to 

climate change, one that may be mitigated by C sequestration in plant biomass, 

acclimation of microbial metabolism, or depletion of substrate supply (Frey et al., 2013, 

Norby et al., 2005).  

DAMM-MCNiP is one of the first microbial physiology models that can represent 

the C and N cycle together with plant substrate supply, making it a candidate for linkage 

with terrestrial biosphere models that are used to estimate feedbacks between plants, 

microbes, soil and the atmosphere. Though I have only tested DAMM-MCNiP against 
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one data set thus far, others have demonstrated that including microbial processes in C 

cycle models substantially improves predictions of the spatial distribution of SOC 

(Hararuk et al., 2014). Inclusion of these processes can change the prediction of future 

SOC pool size by > 300 Pg C (Tang & Riley, 2015, Wieder et al., 2013), indicating that 

plant–microbe–soil feedbacks are critical to the global C cycle.
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