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ABSTRACT 

 Researchers increasingly advocate the use of ecosystem-based management 

(EBM) for managing complex marine ecosystems. This approach requires managers to 

focus on processes and cross-scale interactions, rather than individual components. 

However, they often lack appropriate tools and data sources to pursue this change in 

management approach. One method that has been proposed to understand the ecological 

complexity inherent in marine ecosystems is the study of biological hotspots. Biological 

hotspots are locations where organisms from different trophic levels aggregate to feed on 

abundant supplies, and they are considered a first step toward understanding the 

processes driving spatial and temporal heterogeneity in marine systems. Biological 

hotspots are supported by phytoplankton aggregations, which are characterized by high 

spatial and temporal variability. As a result, methods developed to locate biological 

hotspots in relatively stable terrestrial systems are not well suited for more dynamic 

marine ecosystems. The main objective of this thesis is thus to identify and characterize 

local-scale biological hotspots in the western side of the Gulf of Maine. The first chapter 

describes a new methodological framework with the steps needed to locate these types of 

hotspots in marine ecosystems using remote sensing datasets. Then, in the second chapter 
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these hotspots are characterized using a novel metric that uses time series information 

and spatial statistics to account for both the temporal variability and spatial structure of 

these marine aggregations. This metric redefines biological hotspots as areas with a high 

probability of exhibiting positive anomalies of productivity compared to the expected 

regional seasonal pattern. Finally, the third chapter compares the resulting biological 

hotspots to fishery-dependent abundance indices of surface and benthic predators to 

determine the effect of the location and magnitude of phytoplankton aggregations on the 

rest of the ecosystem. Analyses indicate that the spatial scale and magnitude of biological 

hotspots in the Gulf of Maine depend on the location and time of the year. Results also 

show that these hotspots change over time in response to both short-term oceanographic 

processes and long-term climatic cycles. Finally, the new metric presented here facilitates 

the spatial comparison between different trophic levels, thus allowing interdisciplinary 

ecosystem-wide studies. 
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PREFACE 

Persistent overfishing in ocean environments is severely impacting the health of 

these ecosystems and, in turn, the livelihoods of people depending on their resources 

(Chandler et al. 1996, FAO 2009). This has had many consequences including the 

reduction of biomass, elimination of keystone species (i.e. those species playing a central 

role in an ecosystem) (Botsford et al. 1997), entangling and killing of marine mammals, 

birds, and non-target fish species (i.e. "bycatch") (Dayton et al. 2002), destruction of 

benthic habitat (Auster 1998), and alteration of predator-prey relationships (Pauly et al. 

1998, Christensen et al. 2003). With many trophic levels affected at the same time, 

marine ecosystems are losing part of their biodiversity and functionality and, in turn, the 

ability to return to a desirable state after a perturbation (i.e. resilience) (Worm et al. 

2006). More vulnerable marine ecosystems mean that economies dependent on them are 

highly vulnerable as well.  

Historically, managing marine resources in US waters has been contentious, 

partly because of the complexity inherent in all levels of the system (Steneck and Wilson 

2010). From an ecological point of view, this complexity is due in part to the spatially 

and temporally dynamic distributions of its species (Crowder and Norse 2008). These 

heterogeneous distributions likely depend on a combination of factors, including 

topographic, oceanographic, and biological characteristics of the system (Hyrenbach et 

al. 2000). Moreover, the patchiness of biological aggregations is not only apparent at the 

surface (i.e. epipelagic zone) of the ocean, but also throughout the water column (i.e. 

mesopelagic zone) and at the seafloor (i.e. benthos) (Norse et al. 2005). Today, ocean 
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governance is further complicated by the mismatch often present between the spatial 

scale at which biological systems operate and the structure of human institutions 

(Costanza et al. 1998, POC 2003, Crowder et al. 2006). For example, the Gulf of Maine 

(northwest Atlantic ocean) is divided between Canadian and US waters, and the latter are 

further subdivided into State (coastline to 3 nautical miles offshore), Federal (3 to 200 

nautical miles offshore) and International waters (beyond 200 nautical miles offshore). 

Even though these subdivisions made sense historically and politically at one point, they 

are not adequate at managing ocean resources and human activities benefiting from them.  

One of the solutions proposed to deal with the complexity on both ecological and 

human systems is an ecosystem-based approach to management (Christensen et al. 1996, 

POC 2003, Pikitch 2004, Norse et al. 2005). This approach, named Ecosystem-Based 

Management (EBM), considers all components of an ecosystem, including the complex 

interactions between its different parts in the context of their environment. As part of 

ecosystems, humans are included in this approach, taking into account both the services 

they need from the system and the cumulative impacts of their actions on this system. As 

McLeod and Leslie (2009) pointed out, EBM principles are "grounded in the idea that 

ultimately we are managing people's influences on ecosystems, not ecosystems 

themselves". Embracing EBM principles implies a change in the way natural resources 

are managed, focusing on processes and cross-scale interactions instead of individual 

parts of the system, and planning based on unambiguous long-term objectives instead of 

immediate crises (Cochrane 2000, McLeod and Leslie 2009). This represents a dramatic 

change in approach that has yet to gain traction in policy circles, in part because the 
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research community has not yet developed the kinds of data and methods of 

dissemination that would enable managers to understand the interconnectedness between 

ecological, social and economic parts of the system (Murawski 2007) and act 

accordingly. This does not mean that current data collection efforts should be abandoned, 

but that data sources need to be integrated across disciplines, and analyzed at appropriate 

(i.e. biologically relevant) geographic scales.  

From an ecological point of view, most of the complexity present in marine 

ecosystems is due to the temporal and spatial heterogeneity of their resources (Crowder 

and Norse 2008). This complicates the analysis of ecosystem processes, as spatial data 

have a set of unique characteristics that prevent them from being analyzed using 

traditional statistical tools (Anselin 1989, LeSage 1999). These can be generally 

explained by Tobler's First Law of Geography, which states that "everything is related to 

everything else, but near things are more related than distant things" (Tobler 1970). Thus, 

values from points that are closer together are likely to be more related than values from 

points that are farther apart. This is known in spatial statistics as "spatial dependency" or 

"spatial autocorrelation", and it violates the key assumption of traditional statistics that all 

observations are independent and follow identical distributions. Moreover, spatial data 

also exhibits "spatial heterogeneity" or "spatial non-stationarity", in which relationships 

and behaviors between variables vary across space. Consequently, errors and uncertainty 

vary across space as well, usually resulting in a spatially clustered distribution that 

violates the assumption in traditional statistics of constant error variances (i.e. 

homoskedasticity). When these two characteristics of spatial data are ignored and false 
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assumptions of independence and homogeneity are forced into the analysis of data, 

specification errors can occur and the results of the analysis may not be accurate (Shekhar 

et al. 2011).  

The presence of spatial heterogeneity in marine ecosystems implies that resources 

are distributed unevenly across space. A consequence of this heterogeneity is the 

existence of biological hotspots. Biological hotspots are locations where different trophic 

levels temporally and spatially overlap (Hyrenbach et al. 2000, Worm et al. 2003, 

Davoren 2007). Numerous species from different trophic levels aggregate in these 

locations often to feed on abundant food supplies (Hooker and Gerber 2004), making 

these areas potentially critical for the long-term resilience of adjacent marine organisms. 

Understanding the dynamics of hotspots is a non-trivial issue for fisheries managers. 

Increasingly popular marine activities happening at the surface might affect processes in 

deeper areas (Grober-Dunsmore et al. 2008). Thus, after more data become available, 

different management tools, such as "vertical zoning", may need to be considered. 

Hotspots may also spur increased human activity, particularly if they contain 

commercially valuable species, and consequently be at greater risk of negative impacts. 

Any resulting losses of biomass in these areas could then impair adjacent populations of 

marine organisms that depend on them, affecting in turn other levels of the ecosystem. 

Therefore, prioritizing available resources for the protection of these hotspots may be 

warranted (Norse et al. 2005). 

Ocean primary producers (mainly phytoplankton organisms) sustain these 

hotspots by fixing carbon dioxide dissolved in water into organic compounds and 
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incorporating nutrients into living tissues. Phytoplankton is a broad group of 

microorganisms that includes species from different divisions, such as Cyanobacteria, 

Pyrrhophyta (including dinoflagellates) or Bacillariophyta (including diatoms). Some 

species are non-motile but fast-growing (e.g. Diatoms) and others are slow-growing and 

motile, usually migrating vertically through the water column in response to light (e.g. 

Dinoflagellates). Growth of phytoplankton species is limited by several environmental 

factors, including light, temperature, and nutrient availability (Cibik et al. 1998). 

Phytoplankton live in the photic zone, which is the layer of the water column that is 

exposed to sunlight, as they need sun energy for the photosynthetic process. Also, 

similarly to other living organisms, they require various inorganic components (such as 

phosphorus, nitrogen, and iron) and organic nutrients (such as vitamins) to grow. 

Temperature can also limit the growth of primary producers, with growth rates generally 

increasing exponentially as temperatures increase (Eppley 1972). However, different 

species of phytoplankton react differently to these factors (Cibik et al. 1998). 

Consequently, the composition of phytoplankton assemblages is often characterized by 

strong spatial variability.  

Overall phytoplankton biomass follows a seasonal cycle, with the lowest 

concentration in winter, followed by a spring bloom, a decrease during the summer, and 

finally a fall bloom (Thomas et al. 2003). Compared to land ecosystems, where plants are 

adapted to an annual cycle, phytoplankton organisms tend to have a faster cycle (usually 

around 100 times per year) as a consequence of their own growth rate and the grazing 

pressure of planktivorous species (Calbet and Landry 2004). The spring phytoplankton 
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bloom occurs when the rise in temperatures and higher sunlight create a thermocline 

trapping nutrients near the surface of the ocean, providing the right conditions for 

phytoplankton to grow quickly (Townsend and Cammen 1988). The input of freshwater 

from rivers and nutrients from coastal upwelling also help the quick increase of 

phytoplankton biomass. The spring bloom can last from just a few weeks to months, 

depending on nutrient availability and grazing pressure (Winder and Cloern 2010). Once 

surface nutrients are depleted and stratification prevents the influx of more nutrients to 

the surface, the bloom collapses and the overall phytoplankton biomass declines. The fall 

bloom, by contrast, is usually less intense than the spring bloom, and tends to occur 

during the early fall months due to an excess of nutrients near the surface of the ocean.  

In general, the abundance and distribution of phytoplankton across space depend 

on processes that either stimulate surface productivity or concentrate productivity 

produced elsewhere (Mackas et al. 1985). Most of the nutrients in the Gulf of Maine 

come from an inflow of deep slope water through the Northeast Channel (Lynch et al. 

1996). When deep currents of cold and nutrient rich water meet prominent seafloor 

irregularities, the water is forced to mix, promoting upwelling (Mackas et al. 1985). The 

rise of nutrient-rich waters to the surface stimulates primary productivity, simultaneously 

increasing turbulence and mixing of the water column. Topographic features can also 

enhance vertical mixing when they interact with tidal waves in highly stratified water 

(especially during the summer), producing what are called "internal waves" (Scotti and 

Pineda 2004). Internal waves can also concentrate phytoplankton created elsewhere by 

forming pockets of warm water rich in primary producers. Fronts can also increase 
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phytoplankton patchiness (Wolanski and Hamner 1988). These oceanographic features 

are characterized by waters of different temperatures and salinities that meet, producing a 

steep gradient that can potentially function as a barrier for plankton species. Similarly, 

Langmuir cells, which are produced by surface winds blowing over calm seas, can also 

concentrate phytoplankton in a specific location, although on a smaller scale (Stavn 

1971).  

The strength, timing, and location of phytoplankton blooms have the potential to 

determine the characteristics of the rest of the system. Higher primary production often 

leads to increased biomass of other species higher up the food chain (Norse et al. 2005, 

Worm et al. 2003, Nur et al. 2010, Incze et al. 2010). Growth and retention of 

phytoplankton leads to zooplankton blooms, which attract planktivorous species and 

ultimately larger predators. Changes in the timing of these phytoplankton blooms can 

also affect the success of other levels of the trophic chain. For example, certain species of 

zooplankton, such as the copepod in the genus Calanus, have adapted their life cycle, 

specifically the timing of their early stages, to coincide with the spring phytoplankton 

bloom and the resulting abundance of food (Daly and Smith 1993). If the spring bloom 

occurs earlier than it usually does, phytoplankton can grow without any grazing pressure 

during the early stages of the bloom. By the time zooplankton organisms arrive, nutrients 

are already mostly depleted so the phytoplankton population is not at its maximum 

abundance. Moreover, the rate at which zooplankton feeds on phytoplankton determines 

the amount of energy transferred to higher trophic levels and the quantity left either to be 
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consumed by microorganisms or to settle to the bottom to be used by benthic 

communities (Townsend and Cammen, 1988).  

 In recent years there has been much discussion about the potential effects of 

climate change on the timing and abundance of phytoplankton concentrations, and how 

these changes affect the rest of the system (Sarmiento et al. 2004, Navarro et al. 2011). 

Previous research suggests that higher temperatures may decrease global abundance of 

phytoplankton by increasing ocean stratification and thereby inhibiting the flow of 

nutrients from deeper layers of the water column (Boyce et al. 2010), although other 

studies suggest that such a decline in productivity might be due to changes in wind 

patterns (Ueyama and Monger 2005, Ji et al. 2010) or increased cloudiness (Nixon et al. 

2009). Moreover, changes in the input of freshwater may change the timing of the 

phytoplankton blooms (Ji et al. 2007). Researchers have also pointed out that higher 

temperatures tend to favor cyanobacteria over other groups of phytoplankton, increasing 

the probability of harmful algal blooms (Paerl and Huisman 2008). These changes in 

timing and abundance of phytoplankton will probably trickle down the trophic chain, 

having consequences on the whole ocean ecosystem.  

Using a combination of traditional and spatial statistics principles, the overall 

objective of this thesis is to locate primary productivity hotspots and study their spatial 

and temporal characteristics. The next sections explain the three chapters that form this 

thesis, which are structured as independent research projects. The main research 

objectives of this thesis are the following:  
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1. Design a methodological framework for identifying productivity hotspots in ocean 

systems using remote sensing data.  

2. Examine the spatial and temporal variability in the magnitude of local productivity 

hotspots in the western Gulf of Maine 

3. Explore the spatial and temporal overlap between primary producers and both surface 

and benthic fish organisms 

  



	  

	   xvii 

TABLE OF CONTENTS 

 
DEDICATION ................................................................................................................... iv	  

ACKNOWLEDGMENTS .................................................................................................. v	  

ABSTRACT ....................................................................................................................... vi	  

PREFACE ........................................................................................................................ viii	  

TABLE OF CONTENTS ................................................................................................ xvii	  

LIST OF TABLES ............................................................................................................ xx	  

LIST OF FIGURES ......................................................................................................... xxi	  

CHAPTER ONE: LOCATING BIOLOGICAL HOTSPOTS IN MARINE 

ECOSYSTEMS USING REMOTE SENSING DATA: METHODOLOGICAL 

CHALLENGES AND BEST PRACTICES ....................................................................... 1	  

ABSTRACT .................................................................................................................... 1	  

INTRODUCTION .......................................................................................................... 2	  

FINDING MARINE HOTSPOTS .................................................................................. 6	  

1. WHAT IS THE BEST DATASET FOR THE STUDY AREA? ............................ 6	  

2. WHAT IS THE OPTIMAL SPATIAL RESOLUTION FOR THE ANALYSIS? . 8	  

3. WHAT MEASURE SHOULD BE USED TO DETECT HOTSPOTS? .............. 10	  

4. DO HOTSPOT MEASURES NEED TO BE ADJUSTED FOR SPATIAL NON-

STATIONARITY? ................................................................................................... 12	  

5. WHAT ARE THE LIMITS OF HOTSPOTS? ..................................................... 16	  



	  

	   xviii 

6. HOW CAN DYNAMIC PROCESSES BE CAPTURED? .................................. 17	  

CONCLUSIONS .......................................................................................................... 18	  

CHAPTER TWO: LOCATION, MAGNITUDE, AND TEMPORAL VARIABILITY OF 

LOCAL PRIMARY PRODUCTIVITY HOTSPOTS IN THE GULF OF MAINE ........ 20	  

ABSTRACT .................................................................................................................. 20	  

INTRODUCTION ........................................................................................................ 21	  

METHODOLOGY ....................................................................................................... 25	  

STUDY AREA ......................................................................................................... 25	  

LOCAL PRIMARY PRODUCTIVITY HOTSPOTS .............................................. 28	  

TEMPORAL VARIABILITY OF HOTSPOTS ....................................................... 32	  

UNCERTAINTY ANALYSIS AND VALIDATION .............................................. 33	  

RESULTS ..................................................................................................................... 35	  

LOCAL PRIMARY PRODUCTIVITY HOTSPOTS .............................................. 35	  

TEMPORAL VARIABILITY OF HOTSPOTS ....................................................... 38	  

UNCERTAINTY ANALYSIS AND VALIDATION .............................................. 42	  

CONCLUSIONS .......................................................................................................... 44	  

CHAPTER THREE: LOCAL BIOLOGICAL HOTSPOTS IN THE GULF OF MAINE: 

SPATIAL MATCH/MISMATCH BETWEEN PRIMARY PRODUCTIVITY AND FISH 

ABUNDANCE ................................................................................................................. 48	  

ABSTRACT .................................................................................................................. 48	  

INTRODUCTION ........................................................................................................ 49	  

METHODS ................................................................................................................... 52	  



	  

	   xix 

LOCATING PRIMARY PRODUCTIVITY HOTSPOTS ....................................... 54	  

ABIOTIC VARIABLES ........................................................................................... 56	  

FISH ABUNDANCE ................................................................................................ 59	  

EXPLORING SPATIAL CORRELATION BETWEEN VARIABLES .................. 60	  

PREDICTING FISH ABUNDANCE FROM ABIOTIC AND PRODUCTIVITY 

INFORMATION....................................................................................................... 61	  

RESULTS ..................................................................................................................... 63	  

LOCATING SURFACE PRODUCTIVITY HOTSPOTS ....................................... 63	  

ABIOTIC VARIABLES ........................................................................................... 65	  

FISH ABUNDANCE ................................................................................................ 67	  

EXPLORING SPATIAL CORRELATION BETWEEN VARIABLES .................. 68	  

PREDICTING FISH ABUNDANCE FROM ABIOTIC AND PRODUCTIVITY 

INFORMATION....................................................................................................... 70	  

CONCLUSIONS .......................................................................................................... 74	  

CONCLUDING REMARKS ............................................................................................ 78	  

BIBLIOGRAPHY ............................................................................................................. 81	  

CURRICULUM VITAE ................................................................................................... 90	  

	  
  



	  

	   xx 

LIST OF TABLES 

Table 1 – Best fit models from exploratory OLS regressions. The dependent variables for 

these regressions are: (Top to bottom) abundance of groundfish for spring and fall, 

and abundance of pelagics for spring and fall. For each dependent variable, this table 

only shows the model run that had the lowest AIC value. ........................................ 71	  

Table 2 – Comparison of AIC values from different model runs (OLS, Spatial Lag and 

GWR) before and after ICAP values are added as independent variables. .............. 73	  

	  
  



	  

	   xxi 

LIST OF FIGURES 

Figure 1 – Methodological framework to derive hotspots in ocean ecosystems. ............... 5	  

Figure 2 – Comparison of the size of features found on remote sensing images over land 

and ocean. Both images were taken around the state of Massachusetts (USA): (left) 

NDVI values from Landsat-5 (30m resolution), (right) chlorophyll-a concentration 

from MERIS (300m resolution). For comparison purposes, both variables have been 

scaled to a 0-100 range. Plots represent semi-variograms resulting from the process 

described in Woodcock and Strahler (1987). .............................................................. 9	  

Figure 3 – Visual comparison of hotspots depending on the threshold used: (Left) global 

threshold, (right) local threshold ............................................................................... 11	  

Figure 4 – Visual representation of spatial non-stationarity (adapted from Fortin and Dale 

2005) ......................................................................................................................... 13	  

Figure 5 – (Left) Visual representation of the different methodologies. (Right) 

Comparison of the resulting hotspots for each methodology. Only pixels with G* 

value above 2 are shown. .......................................................................................... 15	  

Figure 6 – Map showing study area and some of the principal topographic features. The 

area of study was separated in two sections: north (orange dashed line) and south 

sections (turquoise dashed line). White-background areas represent locations with 

depths shallower than 10m. ....................................................................................... 26	  

Figure 7. - Graphic representation of the methodology in this study ............................... 27	  

Figure 8. - Plot of regional climatologies for both study areas (north in orange, south in 

turquoise). ................................................................................................................. 36	  



	  

	   xxii 

Figure 9. - Modified ICAP values for the northern study area. (Top-left) Spring bloom, 

(top-right) summer break, (bottom-left) fall bloom, and (bottom-right) winter break. 

Values range from a persistent high spatial concentration of anomalous values (dark 

brown) to a low concentration (dark purple). Gray colored background signal no-

data values ................................................................................................................. 37	  

Figure 10. – Modified ICAP values for the southern study area. (Top-left) Spring bloom, 

(top-right) summer break, (bottom-left) fall bloom, and (bottom-right) winter break.

................................................................................................................................... 38	  

Figure 11. – Maps showing the type of model fitted for each pixel in the north (left) and 

south (right) study areas. Blue colored pixels have models with only a 12-month 

harmonic. Yellow pixels have models with 12 and 6-month harmonics. Finally, pink 

pixels have models with 12, 6 and 3-month harmonics. ........................................... 39	  

Figure 12 –Magnitude of the amplitudes for each of the Fourier harmonics and trend 

values for each pixel: (from left to right, top to bottom) 12 month harmonic, 6 month 

harmonic, 3 month harmonic and trend coefficient. Pixels with white background 

signal models where the value is zero ....................................................................... 40	  

Figure 13.- Boxplots showing the range of RMSE values within each biological season 

and study area. Only values for pixels with modified ICAP values above 25% within 

each season are shown. (Left) Northern area, (right) southern area. ........................ 41	  

Figure 14.- Scatter plots showing the amplitude for the 12-month harmonic (top-left), the 

6-month harmonic (top-right) and trend (bottom-left) when different number of 

cloud-free days are used to fit the Fourier curve. Blue crosses signal runs where the 



	  

	   xxiii 

lasso-glm model chose to set the variable to zero. Dotted lines represent the bounds 

of the 95% confidence interval and solid lines signal the mean. (Bottom-right) 

Histogram showing the number of cloud-free days per pixel. .................................. 43	  

Figure 15.- MERIS-derived yearly amplitude of hotspot values versus the MWRA-

derived amplitude for each of the MWRA field stations. The error bars represent ±1 

standard error of the mean of the yearly amplitudes (maximum – minimum of all 

values per year) ......................................................................................................... 44	  

Figure 16. – Visual representation of the methodological steps in this thesis .................. 53	  

Figure 17. - Map showing the area of study (yellow), which corresponds to VTR 

statistical area 514, and the regional area (orange) used as a reference to calculate 

hotspots and coldspots. White-colored cells are locations with depths shallower than 

10 meters and thus not included in the study area. ................................................... 54	  

Figure 18 – Visual representation of Slope, Aspect and Bathymetric Position Index (BPI)

................................................................................................................................... 58	  

Figure 19. – Cumulative seasonal productivity hotspot values (ICAP): (left) Spring, 

(right) Fall. Values range from a persistent high spatial concentration of anomalous 

values (dark purple) to a low concentration (yellow). White-colored cells are 

locations too shallow to be included in the study area. ............................................. 64	  

Figure 20. – Comparison between different hotspot metrics for Spring. From left to right: 

ICAP value, seasonal mean and FCPI. White-colored cells are locations too shallow 

to be included in the study area. ................................................................................ 64	  



	  

	   xxiv 

Figure 21. – Sea surface Temperature cumulative Hotspots (top) and Coldspot (bottom) 

values, for both Spring (left) and Fall (right) seasons. White-colored cells are 

locations too shallow to be included in the study area. ............................................. 65	  

Figure 22. – Comparison between BPI at a fine scale (left) and broad scale (right). High 

BPI values show peaks (red) and low values show valleys (green). Yellow colored 

cells signal areas with BPI close to zero. White cells are locations outside of the 

study area. ................................................................................................................. 67	  

Figure 23. – Average CPUE derived from VTR dataset: (top) Values for groundfish 

species, and (bottom) values for pelagic species. ..................................................... 68	  

Figure 24. – Semi-variograms comparing each dependent variable to ICAP values for 

each season. ............................................................................................................... 69	  

Figure 25. – Comparison of predicted spring bottom fish abundance between Spatial lag 

(left) regression and GWR (right) regressions. ......................................................... 73	  

	  
 
 
 



	  

	  

1 

CHAPTER ONE: LOCATING BIOLOGICAL HOTSPOTS IN MARINE 

ECOSYSTEMS USING REMOTE SENSING DATA: METHODOLOGICAL 

CHALLENGES AND BEST PRACTICES 

 

ABSTRACT1 

The spatial heterogeneity of most ecosystems adds complexity to the management 

of their resources. This heterogeneity is often seen in the form of hotspots, which are 

generally described as aggregations of organisms in space. Hotspots are signs of 

underlying processes occurring in an ecosystem. Locating and characterizing these 

hotspots are great steps towards a better understanding of the complexity inherent in 

these systems. However, while hotspot analyses are common in land-based studies, they 

are rare over the ocean. This may be due to the highly dynamic spatial and temporal 

distribution of phytoplankton organisms, which directly support hotspots. Also, the 

challenging nature of data collection in ocean ecosystems further complicates this type of 

analysis. Remote sensing data can greatly benefit the analysis of hotspots in marine 

ecosystems. However, methods need to be adapted for the use of this type of dataset in 

ocean systems. To encourage researchers to study hotspots in marine ecosystems, I 

present a simplified methodological framework that explains the steps needed for this 

analysis, describes the potential challenges in ocean systems compared to land-based 

ones, and explores possible solutions. This study is not intended to be an extensive 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  To be submitted to “Frontiers in Ecology and the Environment”. Structure matches the publication’s 
guidelines.	  
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review of all aspects of hotspot analyses or remote sensing, but a way to facilitate the 

introduction to researchers of this type of methodology.  

 

INTRODUCTION 

Most ecosystems are spatially heterogeneous (Levin 1992), with species and 

habitats distributed unevenly across space. Management plans often over-simplify this 

heterogeneity, creating a mismatch between the scale at which systems operate and the 

scale at which they are managed (Crowder et al. 2006). One of the best approaches to 

visualizing the uneven distribution of resources in ecosystems is the detection of 

hotspots. Hotspots are generally defined as locations where multiple organisms aggregate 

(Malakoff 2004). When these organisms represent different species, the resulting hotspots 

are known as “biodiversity hotspots” (e.g. Myers et al. 2000). In contrast, more general 

aggregations of organisms, independent of species, to feed on abundant resources result 

in “biological hotspots” (Davoren 2007). Both biodiversity and biological hotspots result 

from a combination of environmental, ecological and human processes that stimulate or 

aggregate resources in one particular location. Finding and characterizing hotspots 

therefore provides critical information on the processes driving spatial heterogeneity in 

ecosystems (Norse et al. 2005), and in turn may be key to successfully managing these 

systems. 

Hotspot analyses are common in terrestrial ecosystems. For example, hotspots 

have been used to map land cover classifications (Gould 2000) and to find areas with 
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high concentrations of bird species (Seto et al. 2004). However, in ocean systems, hotspot 

methods have been largely under-utilized. One reason for this may be the different 

biological nature of marine and terrestrial resources. In the case of ocean ecosystems, 

biological hotspots are supported by high concentrations of phytoplankton organisms 

(Stevick et al. 2008). These primary producers have a life cycle estimated to be in the 

order of 100 times faster than their land-based counterparts (e.g. grasses and trees) 

(Winder and Cloern 2010). As a result, marine hotspots are highly variable in time, with 

phytoplankton aggregations lasting from a few days to months. Furthermore, the 

distribution of marine primary producers is highly dependent on dynamic oceanographic 

processes, such as fronts and internal waves (Mackas et al. 1985). Given that these 

processes aggregate productivity at various spatial scales, phytoplankton aggregations 

may span from a few meters to several kilometers. Thus, the high temporal and spatial 

variability of marine systems complicates the process of deriving local hotspots using 

techniques developed for more persistent and sessile land-based systems.  

Another barrier to the use of hotspot analyses in ocean ecosystems is the 

availability of suitable data. Because of its large surface area (about 70% of the Earth’s 

surface area) and difficult access, in-situ data collection in ocean systems is often 

resource-intensive and time-consuming. As a result, very few field-data sets have both 

the spatial coverage (i.e. size of area of study) and spatial resolution (i.e. number of data 

points per unit of distance) required for hotspot analysis. Remote sensing data, on the 

other hand, may be able to meet these requirements (Wulder and Boots 1998). Ocean 

satellite sensors capture the spectral reflectance of surface ocean waters, which are then 
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converted to chlorophyll-a concentrations (O’Reilly et al. 1998). These chlorophyll-a 

values are then used as a proxy for abundance of surface primary producers. The most 

popular satellite sensors used to study the ocean are the SeaWiFS (Sea-Viewing Wide 

Field-of-View Sensor), MERIS (Medium Resolution Imaging Spectrometer) and MODIS 

(Moderate-Resolution Imaging Spectroradiometer) sensors. These datasets have a 

relatively high resolution (300m – 1000m), a high repeat frequency (2-3 days), and 

provide global coverage. Also, since these data sources are currently available for free, 

they may become a very suitable option for locating ocean productivity hotspots. 

However, because of the different spatial and temporal characteristics of the processes 

occurring over the ocean compared to land, deriving ocean hotspots using this type of 

remote sensing dataset will require updated methods and approaches. With proper 

guidance, more ocean researchers may be encouraged to pursue hotspot analyses as a first 

step towards unraveling the spatial and temporal drivers of heterogeneity in marine 

ecosystems. 

Here I describe a methodological framework for identifying productivity hotspots 

in ocean systems using remote sensing data. This framework presents a series of 

questions that guide the user through the steps, methodological challenges, and potential 

solutions of a hotspot analysis. This study does not intend to provide a thorough review 

of hotspot analysis or remote sensing applications. However, I hope it provides enough 

insight on the process of deriving ocean local hotspots so researchers are encouraged to 

use this type of analysis in the future for their areas of interest. 
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Figure 1 – Methodological 
framework to derive 
hotspots in ocean ecosystems.  
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FINDING MARINE HOTSPOTS 

I created a basic methodological framework (Figure 1) that guides users through 

the process and decisions needed to locate marine hotspots using remote sensing data. 

This framework is comprised of six structured questions that allow users to explore 

critical choices needed to pursue this type of analysis. While I focused this framework on 

identifying local productivity aggregations, these processes could be easily generalized to 

other types of datasets. The following sections explain each of the questions and their 

possible answers. 

 

1. WHAT IS THE BEST DATASET FOR THE STUDY AREA? 

The choice of source of remote sensing data for hotspot analyses depends in part 

on the location of the study area. Different sensors have very different characteristics, 

from the placement of their bands to their resolution, making them suited for certain 

locations but not recommended for others (see Turner et al 2003 for a review). The 

choice of sensor is especially critical in coastal study areas. In shallow areas along the 

coasts, light travels through clear ocean waters, reaches the seafloor, and it is often 

reflected back towards the surface (Lee et. al. 1998). As a result, the radiation that 

reaches the satellite sensor comes from the surface of the ocean confounded by the 

properties of the rest of the water column. This contaminated surface reflectance signal 

typically results in an overestimation of chlorophyll-a values. Sensors with higher 

spectral resolution (i.e. narrower bands) are more capable of separating the specific 
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frequencies reflected by phytoplankton pigments (Bricaud et al. 1999). Consequently, 

these types of sensors may be able to mitigate the problem of light reflected by seafloor, 

so the results in coastal waters may have less uncertainty. However, even when using 

these sensors, there is still a possibility some of the results may be affected.  

Coastal waters are also known for being turbid (i.e. high number of dissolved 

particulates) (Maritorena et al. 1994). Turbid waters (i.e. “Case-2 waters”) tend to reflect 

light at a higher rate than clear waters (i.e. “Case-1 waters”) (Morel and Prieur 1977). 

Because many remote sensing algorithms are calibrated using clear water properties, the 

resulting chlorophyll-a values in turbid areas may not be fully accurate. New algorithms 

have been tested to be able to overcome some of the consequences of both turbid (e.g. 

Schroeder et al. 2007) and shallow waters (e.g. Lee et al 1999). However, there is still 

much discussion on the accuracy of some of these methods, so more research is needed.  

Due to its high spectral resolution and the placement of its bands along the 

electromagnetic spectrum, MERIS is often recommended in coastal areas (Doerffer et al. 

1999). However, the European Space Agency lost contact with MERIS in April 2012, so 

newer studies will likely be limited to the use of MODIS data. While MODIS may be 

able to accurately reflect phytoplankton abundance in open ocean waters (McClain 2009), 

in coastal locations it is important to either consider newer algorithms to analyze its 

datasets (e.g. Dall’Olmo et al. 2005) or take into account the potential error on the results.  
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2. WHAT IS THE OPTIMAL SPATIAL RESOLUTION FOR THE ANALYSIS? 

Hotspot analyses capture processes that either stimulate or aggregate resources in 

a particular location (Mackas et al. 1985). Some of these processes have a global 

influence, with resulting aggregations spanning a few kilometers, while others have a 

local effect, with the size of the resulting hotspots being just a few meters. The scale of 

the process under consideration will determine the scale of the study and the spatial 

resolution of the dataset that needs to be used (Woodcock and Strahler 1987). The choice 

of spatial resolution is key for correctly locating and characterizing hotspots. For 

example, low-resolution datasets (e.g. 10 km) may be able to detect large regional scale 

seasonal blooms (Song et al. 2010), but may miss local scale processes such as internal 

waves (Scotti and Pineda 2004).  

Satellite sensors provide data at native spatial resolutions (e.g. 300m for MERIS), 

but researchers have the choice of resampling datasets to a broader resolution before 

running hotspots analyses to better match the scale of the process under study. While the 

selection of the appropriate spatial resolution of an object-based analysis like hotspot 

identification is often left to the experienced eye of the researcher in most ecological 

analyses, there is a procedure to help make this choice. This procedure, which was first 

described by Woodcock and Strahler (1987), uses semi-variograms to explore the change 

in variance of an image as its spatial resolution decreases. The optimal spatial resolution 

is the one that maximizes the variance between cells. This methodology has been 

effectively used in many studies on land ecosystems (e.g. Curran 1988), where the 

features are often well defined. However, for ocean ecosystems, the results may be more 
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difficult to interpret, as illustrated by Figure 2. Phytoplankton aggregations have ill-

defined borders and are controlled by processes of different spatial scales occurring 

simultaneously, so the resulting semi-variogram does not show just one peak where 

variance is maximized but many different peaks at different resolutions. However, these 

results still provide valuable information as an initial exploration of a dataset, so 

Woodcock and Strahler’s procedure should still be recommended for any marine hotspot 

analysis.  

 
Figure 2 – Comparison of the size of features found on remote sensing images over land and ocean. Both images 
were taken around the state of Massachusetts (USA): (left) NDVI values from Landsat-5 (30m resolution), 
(right) chlorophyll-a concentration from MERIS (300m resolution). For comparison purposes, both variables 
have been scaled to a 0-100 range. Plots represent semi-variograms resulting from the process described in 
Woodcock and Strahler (1987).  
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3. WHAT MEASURE SHOULD BE USED TO DETECT HOTSPOTS? 

The process of locating hotspots generally involves the comparison between the 

value of a data point and the value of a threshold. This threshold may be set “globally”, 

using all available data (e.g. Link et al. 2013), or “locally”, using only the data of the 

locations in the vicinity of the data point (e.g. LeDrew et al. 2004). Figure 3 shows a 

visual representation of each type of threshold. In the case of a global threshold, any data 

point that has a value above the threshold (often mean plus two standard deviations) is 

considered a hotspot. Global-threshold methods are useful when researchers have access 

to a complete dataset (i.e. full range of possible values) or they are certain that the 

processes driving hotspots are constant across the region. However, for many local scale 

studies, this is rarely the case. 

Local threshold methods consider a hotspot any data point that has similar values 

to its neighbors. Unlike in the global threshold approach where any value above a given 

threshold is considered a hotpot, using the local definition an isolated high-value point 

would not be considered a hotspot. For ecological studies, one of the most effective ways 

to locate hotspots using local thresholds is to use indices of “spatial autocorrelation” 

(Dormann et al. 2007). These indices take advantage of the fact that many ecological 

datasets are “spatially dependent” or “spatially auto-correlated”, meaning that data points 

that are closer together are likely to be more related than points that are farther apart 

(Tobler 1970). A point whose value is similar to the values of its neighbors shows 

significant spatial autocorrelation. If this point also has a relatively high value, then it 

may be considered a hotspot. Several local autocorrelation indices exist (see Sokal et al. 
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1998 for a review), although the most frequently used for ecological studies is the G* 

index by Getis and Ord (1992). This index may be standardized and reported as a z-score 

(Ord and Getis 1995), which allows its comparison across space and time. The G* index 

requires both the mean and standard deviation of the study area (i.e. “global reference 

parameters”), which are assumed constant across space.  

 
Figure 3 – Visual comparison of 
hotspots depending on the 
threshold used: (Left) global 
threshold, (right) local threshold 
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4. DO HOTSPOT MEASURES NEED TO BE ADJUSTED FOR SPATIAL NON-

STATIONARITY? 

In ocean ecosystems, different areas are often governed by different ecological 

processes (Windle et al. 2010). For example, productivity values in near-shore areas are 

often consistently higher than those on the open ocean due to oceanographic processes 

such as upwelling. This overarching global gradient may mask local aggregations of 

productivity, for example the ones created by local fronts. This creates productivity 

aggregations that change in magnitude, timing and spatial scale across space. 

Statistically, this manifests in ocean datasets in the form of “spatial non-stationarity”. The 

effect of non-stationarity is especially problematic when using local spatial 

autocorrelation indices, because they require global reference parameters that are 

assumed constant across space. If the data are non-stationary, hotspots may only be 

located in areas with higher means and variances, usually near the coast, and 

aggregations offshore could be ignored.  

The effect of spatial non-stationarity is difficult to detect in remote sensing 

datasets. Usually, the best way to know there is a problem is to calculate the mean and 

standard deviation across several years for each pixel and then map all the values. If these 

resulting global parameters show any spatial pattern or trend (i.e. they are a function of 

the location), then the data may indeed be spatially non-homogeneous. However, this 

process requires a long time-series of data layers, which some researchers may not be 

able to obtain. When using just one data layer, the simplest way to determine if datasets 

follow a global gradient may be to plot the values along different transects (e.g. inshore 
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to offshore) and inspect the results for trends (Fortin and Dale 2005). Figure 4 shows a 

hypothetical example. Semi-variograms may also be used for this purpose, with 

unbounded variograms (i.e. not plateauing as distance increases) signaling spatial non-

stationarity in the dataset.  

 
Figure 4 – Visual representation of spatial non-stationarity (adapted from Fortin and Dale 2005) 

 

If spatial non-stationarity is suspected in the dataset due to a known global trend, 

the easiest solution is to de-trend the data and derive local spatial autocorrelation values 

from the resulting values. However, when the pattern is not known, there are two main 

types of methodological approaches to take to calculate local spatial autocorrelation 

indices (see box 1 for a case study). The first type comprises all “spatial partitioning” 
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methods (Fortin and Dale 2005), which include methods such as spatial clustering or 

boundary delineation. They separate the overall area of study into smaller homogeneous 

(i.e. stationary) areas and G* indices are derived using only the values within each area. 

The second type of methods, which Mackenzie (2007) called the “Multi-region G*”, are 

designed exclusively for the G* index (Ord and Getis 2001). This methodology derives a 

different circular “global” reference area centered on each data point. The size of each 

global area is selected based on its homogeneity, which is then used to derive G* for each 

pixel. Spatial partitioning methods work best when the borders of the hotspots are well 

defined. When the borders appear more like a gradient than a line, this type of 

methodology may show some problematic values at the edges between partitions (see box 

1). Multi-region G* methods may be the best solution for hotspots with ill-defined 

borders. However, most of the methods of this second group are not fully tested, and need 

to be compared to field validation data to ensure its accuracy at detecting hotspots.   

 

BOX 1 – CASE STUDY: COMPARISON OF METHODS TO LOCATE HOTSPOTS IN 

THE PRESENCE OF SPATIAL NON-STATIONARITY 

I used a full-resolution MERIS data layer from the Gulf of Maine to compare the 

results when using the following methods to locate hotspots in the presence of spatial 

non-stationarity (see Figure 5): 
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Figure 5 – (Left) Visual representation of the different methodologies. (Right) Comparison of the resulting 
hotspots for each methodology. Only pixels with G* value above 2 are shown.  
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- Spatial partitioning using delineating boundary methods: Use fuzzy c-means 

clustering to separate the area in different homogeneous zones. Calculate the global 

parameters exclusively for each zone and use them to derive G* values. (see Fortin and 

Dale 2005 for more information) 

- Multi-region G* method: For each pixel, create different global distance bands of 

increasing sizes. For each distance band, calculate the coefficient of variation 

(CV=standard deviation/mean). The distance band at which the CV value is minimized is 

the one used as a reference layer to derive the value of the G* index. This is a 

modification of the process defined in Mackenzie (2007). 

-  “Status-quo”: Assume spatial homogeneity.  

 

5. WHAT ARE THE LIMITS OF HOTSPOTS? 

Once spatial autocorrelation values are derived, it is often necessary to determine 

the borders around hotspots. Finding the limits of local marine hotspots may be done by 

either using image-processing techniques to define features or by determining a threshold 

of statistical significance. Due to the ill-defined nature of borders around hotspots, image-

processing techniques may be challenging. To facilitate border detection, Aldstadt and 

Getis (2006) created a new process called AMOEBA that iteratively detects the cells that 

belong to each hotspot based on the absolute value of the G* index. This method, 

however, is very computationally intensive so it may not be advisable for high-resolution 

remote sensing layers, especially when the area of study is wide.  
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A threshold of statistical significance is often complicated to determine with local 

spatial autocorrelation indices due to the problem of multiple testing with points that are 

not independent. A common proposed solution for this effect is the Bonferroni 

adjustment, which divides the significance level (e.g. 0.05) by the number of tests. 

However, in data layers where the points are spatially correlated, this adjustment tends to 

be very restrictive, creating a very high critical threshold value. Rogerson (2002) 

proposed a different adjustment, called M* adjustment, that uses Gaussian kernels to 

calculate a new critical significance value. However, more research is needed to 

determine whether this adjustment is accurate for ocean studies. Meanwhile, if the 

purpose of the study is just exploratory, Nelson and Boots (2008) recommended to treat 

any value above 2 as a hotspot due to the fact that G* values are considered z-scores. 

 

6. HOW CAN DYNAMIC PROCESSES BE CAPTURED? 

The concept of a hotspot, especially on land ecosystems, is often assumed to be 

static, meaning that the processes that create these hotspots are thought to be constant 

throughout time. However, most marine ecosystems are very dynamic (Mann and Lazier 

1996). The abundance of phytoplankton organisms depends on a combination of 

environmental conditions that change over time, such as temperature and nutrient 

availability. In temperate locations, a major component of the temporal variability in 

phytoplankton abundance is seasonal, with two major phytoplankton blooms during 

spring and fall (Thomas et al. 2003). The variability that goes beyond this expected 
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seasonality is often called “anomalies” and, even though it is less predictable than 

seasonal variability, it is as important at determining the distribution and abundance of 

phytoplankton populations (Kahru et al. 2012).  

In the past few years, there has been a move towards redefining hotspots 

depending on their predictability over time. Hotspots are defined as areas that have a high 

probability of presenting favorable conditions for the presence of high productivity at one 

point during the year (Etnoyer et al. 2004). New metrics have taken this concept and 

applied it to dynamic ocean systems, defining hotspots based on either the high incidence 

of positive anomalies (Suryan et al. 2012) or their seasonal magnitude (Chapter 2, this 

thesis). These metrics facilitate the comparison of information from different trophic 

levels (Winiarski et al. 2013). Also, because these are based on time series, it is possible 

to study the year-to-year changes on a location or long-term climatic processes.  

 

CONCLUSIONS 

Oceans are complex systems, in part because of the spatially and temporally 

dynamic distributions of their species (Crowder and Norse 2008). For many years, 

researchers have been proposing an ecosystem-based approach to management as a way 

to take into account the complex interactions between marine species within the context 

of their environment (Christensen et al. 1996). However, translating these principles into 

practical plans has proven challenging (Arkema et al. 2006). Because local hotspots 

provide information on the processes driving spatial heterogeneity in marine ecosystems, 
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developing systematic approaches to mapping marine hotspots may be a critical first step 

towards characterizing and unraveling the complexity inherent in marine systems. 

In essence, hotspots highlight ecosystem processes and cross-scale interactions 

instead on individual parts of the system. Therefore, the results of marine hotspot analysis 

can be used to start conversations on effective changes in management approach. 

Stakeholders easily understand the concept of a hotspot, as they see it in the field every 

day. In fact, fishermen often target these locations (Hooker and Gerber 2004). Therefore, 

understanding where and how hotspots form will help ensure the long-term protection of 

biodiversity and ecological progresses. The study of hotspots will also provide the means 

to study potential long-term changes in these aggregations. For example, it is possible to 

understand whether climate change is affecting the number and magnitude of feeding 

aggregations in an ecosystem. I believe hotspot analyses, especially when combined with 

remote sensing data, will allow researchers to test hypothesis that they could not consider 

before. I am hoping that the simplified methodological framework presented here will 

open the door to new possible studies than in the long-term benefit the management of 

extremely valuable ocean resources. 
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CHAPTER TWO: LOCATION, MAGNITUDE, AND TEMPORAL 

VARIABILITY OF LOCAL PRIMARY PRODUCTIVITY HOTSPOTS IN THE 

GULF OF MAINE  

 

ABSTRACT2 

Identification of primary productivity hotspots may be a necessary step toward 

ecosystem-based management goals, as these often signal underlying processes that 

aggregate or stimulate resources in a particular location. However, previously used 

metrics to locate these hotspots are not easily adapted to local marine datasets, in part due 

to the high spatial and temporal variability of phytoplankton populations. The objective 

of this study was to identify local-scale primary productivity hotspots in two separate 

regions in the western side of the Gulf of Maine using remote sensing chlorophyll-a data 

(from MERIS sensor), and to study their variability in space and time. For this reason, I 

first defined a new hotspot metric, the Index of Cumulative Anomalous Productivity 

(ICAP), which identified as a hotspot any area that consistently exhibited high-magnitude 

anomalies (i.e. residuals from seasonal pattern) through time, a sign of highly dynamic 

communities. I used this metric to identify hotspots for every “biological season”, which 

were defined based on phenology. I then determined the seasonal, inter-annual and long-

term variability of the hotspots in these areas by fitting Fourier curves to each pixel’s 

time series. Finally, I tested the uncertainty of our results and validated them using field 

data. Our results revealed that both the location and the magnitude of hotspots are highly 
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dependent on the season and the area of study. Our data also suggest that the variability 

of the magnitude of these aggregation areas in time depends on where these hotspots are 

located and during what time of the year they occur. I argue that this new hotspot index 

compliments existing global measures as it helps managers understand the dynamic 

characteristics of a complex marine system. It also provides a unique metric that is easily 

compared across space and between different trophic levels, which may facilitate future 

ecosystem-wide studies.  

 

INTRODUCTION 

The identification of hotspots is becoming an important step in marine ecosystem 

based management efforts (Hooker and Gerber 2004). Hotspots are generally defined as 

locations where organisms aggregate (Nelson and Boots 2008), and they often signal 

underlying processes driving spatial patterns that would not occur by chance. 

Understanding the nature of these processes may provide information on the complexity 

present within the system (Getis and Boots 1979), which may in turn help managers with 

their efforts towards applying ecosystem-based principles to their management plans. 

Hotspots have already been used in studies to identify feeding grounds (Nur et al. 2011), 

study the effect of human activity on overall ecosystem health (Davoren 2007), and help 

prioritize marine areas to protect (Worm et al 2003). However, while the benefits of this 

type of analysis are clear, there are multiple challenges in the process of locating 

hotspots, especially in marine ecosystems.  
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The methodology used for locating hotspots often varies depending on the scale 

of the study. In global scale studies, hotspots are usually located by comparing the value 

of each data point with a global threshold, which is often the mean plus one standard 

deviation of all available values (e.g. Myers et al 2000). This processes is frequently used 

to locate global areas with high number of different species (i.e. “biodiversity hotspots”) 

and in turn in need of increased conservation efforts. The process of locating hotspots 

using a global threshold is successful when the whole Earth’s surface can be used to 

establish an appropriate threshold. However, the results may be difficult to interpret in 

regional or local scale studies, where the threshold must be set using the limited data 

available or subjectively determined values (e.g. Link et al. 2013). For these local scale 

studies, Wulder and Boots (1998) recommended the use of spatial statistics to locate 

hotspots. In this case, hotspots are defined as concentrations of similarly high values in 

space (Ord and Getis 1995) and they are located using local spatial autocorrelation 

indices, which compare the value of each location to its neighbors. Locations with both 

positive spatial autocorrelation and a significantly high value of a variable are considered 

hotspots. When these autocorrelation indices are applied to abundance or productivity 

data, the resulting hotspots signal locations where organisms aggregate in space to feed 

on abundant supplies (Worm et al. 2003), which in ecological studies are often referred to 

as “biological hotspots”.  

The characterization of biological hotspots in marine ecosystems is challenging, 

in part because of the high temporal and spatial variability of the resources supporting 

them. Marine biological hotspots are usually supported by high abundance of primary 



	  

	  

23 

producers, which attract other species higher up the food chain to feed (Norse et al. 

2005). As a result, characteristics of phytoplankton populations directly determine the 

characteristics of the resulting hotspots. Aggregations of primary producers are 

dependent on a combination of environmental conditions, such as temperature and 

nutrient availability, that either stimulate or aggregate primary productivity at varying 

spatial and temporal scales (Mackas et al. 1985). These environmental conditions are 

both spatially and temporally dynamic (Mann and Lazier 1996), making the associated 

biological hotspots highly variable as well. In temperate locations, part of this variability 

is due to the seasonal fluctuations of phytoplankton abundance, which are often 

characterized by a low concentration in winter, followed by a spring bloom, a decrease 

during the summer and finally a fall bloom (Thomas et al. 2003). The strength and timing 

of the blooms may vary from year to year, but the general seasonality is largely consistent 

over time. Variability beyond this seasonal pattern, however, is more difficult to predict 

(McGowan et al. 1996). This variability, often called “anomalies”, can be in the form of 

either long-term global trends (e.g. climate change), year-to-year variations caused by 

large-scale atmospheric cycles (e.g. North Atlantic Oscillation), or short-term variations 

caused by various oceanographic processes (Wolanski and Hamner 1988).  

Previous studies of ocean biological hotspots have been static, only considering 

aggregations during a particular moment in time (e.g. Barrell and Grant 2013). However, 

to fully understand the processes driving the complexity in marine systems, there is the 

need to incorporate the temporal variability of marine resources into the analysis of 

biological hotspots. For this reason, Suryan et al. (2102) proposed to redefine biological 
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hotspots as areas that have a higher probability of presenting positive productivity 

anomalies over time. These should signal areas of increased and predictable transfer of 

organic matter between trophic levels, which may in turn predict the locations where 

predators aggregate. The authors created an index, the Frequency of Chlorophyll Peaks 

Index (FCPI), which measured the proportion of days a location had a positive anomalous 

value of chlorophyll-a (i.e. positive residual) compared to the regional seasonal pattern. 

The FCPI uses remote sensing information, so it is simple to adapt to different areas 

across the globe and can be easily compared to datasets from other trophic levels. 

However, this index does not take into account the magnitude of the anomalies, so it has 

shown limited applicability when comparing areas with very different overall mean 

chlorophyll values, such as coastal and offshore locations (Suryan et al. 2012, Winiarski 

et al. 2013). Also, because it does not use spatial statistics measures to account for the 

variability across space, it is affected by the presence of outliers in remote sensing 

datasets.  

In this paper, I examine the spatial and temporal variability in magnitude of local 

productivity hotspots in the western Gulf of Maine. I define a novel hotspot index that 

uses local spatial statistic indices to detect spatial concentrations of anomalous 

chlorophyll-a values. This new metric characterizes different locations based on their 

ability to either stimulate phytoplankton growth or concentrate it at a higher rate 

compared to the regional pattern. The remainder of this paper is separated in three 

sections: first, I define this new hotspot metric and apply it to locate primary productivity 

hotspots; second, I determine the seasonal, inter-annual and long-term variability of the 
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identified hotspots; and third, I calculate the uncertainties of our model and validate the 

results using field data. 

 

METHODOLOGY 

STUDY AREA 

The area of study for this project spans the western third of the Gulf of Maine (see 

Figure 6). The Gulf of Maine is one of the most productive and complex temperate areas 

in the world, making it especially sensitive to human disturbance (Auster et al. 1996). 

The habitats present in this semi-enclosed sea support an estimated 3,317 species of flora 

and fauna (Thompson 2010), which in turn support a fishing industry of about 20,000 

commercial fishermen, 10 million yearly visitors (with activities ranging from whale 

watching to birding, recreational fishing, and boating), and multiple transportation and 

energy industries. The study area is centered over Stellwagen Bank and includes some of 

the most popular fishing spots in the area (e.g. Jeffrey’s Ledge). The Stellwagen Bank is 

a complex temperate system of mid-water and benthic habitats which supports over 575 

marine species (SBNMS 2010). The popularity of this area as a fishing and tourist spot is 

due not only to its high biological productivity and diversity but also to its close 

proximity to Boston (25 miles) and its neighboring towns. It is also one of the most 

popular spots in the world for whale watching. Since 1992, this bank has been part of the 

Stellwagen Bank National Marine Sanctuary (SBNMS). I divided the study area into two 

separate areas, north and south, with the limit between the two being the latitude of 

Chatham, MA. This step was necessary because areas north and south of Cape Cod are 
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characterized by different regional oceanographic processes, which I assumed would 

result in different seasonal patterns of productivity and confound hotspot identification 

within each region. 

 
 

Figure 6 – Map showing study area and some of 
the principal topographic features. The area of 
study was separated in two sections: north 
(orange dashed line) and south sections (turquoise 
dashed line). White-background areas represent 
locations with depths shallower than 10m.  
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Figure 7. - Graphic representation of the methodology in this study 
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LOCAL PRIMARY PRODUCTIVITY HOTSPOTS 

I used chlorophyll remote sensing data from the Medium Resolution Imaging 

Spectrometer (MERIS) as a proxy for phytoplankton abundance. I acquired all available 

reduced resolution MERIS Level-2 imagery (a total of 1661 images) collected between 

April 2002 and April 2012. These reduced resolution datasets are 3-day composites with 

a spatial resolution of 1200m. They were acquired by the European Space Agency (ESA) 

and processed by the National Aeronautics and Space Administration (NASA). I screened 

each 3-day level-2 data layer for incorrect values and missed clouds. The screening 

process included the removal of chlorophyll-a values above 45 mg/m3, a threshold 

representing the maximum-recorded concentration in the area of study (Hyde et al. 2007). 

I also removed values within a two-pixel distance of any cloud and in locations with 

water depths shallower than 10m, to prevent incorrect chlorophyll values due to either 

shallow waters or proximity to land (Maritorena et al. 1994). To eliminate the possibility 

of missed clouds and cloud-shadows, I also fitted a curve to each pixel’s time series using 

a LOWESS non-parametric algorithm (Cleveland 1981). Its residuals were then 

converted to z-scores, and values above 5 and below -5 were considered outliers and thus 

removed from the dataset. Finally, all layers were both collocated to the same reference 

grid so the coordinates for the center of all pixels were the same in every layer, and 

mean-centered (i.e. subtract overall all-time mean from each layer) to remove any 

possible global spatial gradient.  

I located seasonal hotspots using a new metric, the Index of Cumulative 

Anomalous Productivity (ICAP), which it is a measure of the magnitude of productivity 
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anomalies within each pixel and across time. The derivation of this index (see Figure 7) is 

a process adapted from Suryan et al. (2012). It includes four main steps: (1) deriving a 

regional climatology (i.e. seasonal pattern); (2) calculating the anomalies (i.e. residuals) 

for each pixel and time period; (3) deriving local spatial autocorrelation values for each 

pixel and time period; and (4) adding all the significant spatial autocorrelation values 

within a season. For this study, instead of defining seasons based on astronomical dates, I 

defined seasons based on the phenology of the regional seasonal blooms. For the 

remainder of the paper, I will refer to these seasons as “biological seasons”. The main 

advantages of using biological seasons over astronomical ones are two-fold: first, they 

better match the life cycle of phytoplankton species; and second, they may help locate 

areas where the timing of the blooms is consistently different than the regional norm. The 

start and end dates of both spring and fall blooms were determined based on the regional 

climatology, using the methodology described in Siegel et al. (2002). This results in four 

different “biological seasons”: Spring bloom, summer break, fall bloom, and winter 

break.  

Step 1 – Regional climatology. I first derived the spatial average (i.e. average 

value of all pixels within a layer) from each 3-day MERIS layer. The result was a 

regional time series, with one data value for each time period (𝑥!). I then obtained a 

regional climatology (𝑦!) by fitting a Fourier curve to this time series. I chose the Fourier 

curve to fit this time series because it represents well a repetitive seasonal pattern with 

two main peaks throughout the year. Also, the parameters of the Fourier curve can be 

used to derive the characteristics of the regional seasonality. For this study, the fourier 



	  

	  

30 

curve included an intercept value, an overall trend, and up to 2 pairs of sine and cosine 

values that represent the different harmonics (12-month and 6-month harmonics). To 

ensure the best-fit possible, I allowed the model to choose the number of harmonics 

needed based on the resulting AIC (Akaike Information Criterion). As an example, this is 

the equation with two harmonics: 

 

𝑦! = 𝑎! + 𝑎!𝑥! + 𝑎! 𝑐𝑜𝑠 𝑤𝑥! + 𝑎! 𝑠𝑖𝑛 𝑤𝑥! + 𝑎! 𝑐𝑜𝑠 2𝑤𝑥! + 𝑎! 𝑠𝑖𝑛 2𝑤𝑥!  

  𝑤 = 2𝜋/365.25 (1) 

 

This curve was fitted using the “lasso-glm” function in MATLAB (Mathworks, 

Inc.). Lasso is a shrinkage regression method (Tibshirani 1996), which predicts 

coefficients that are biased to be small, thus reducing potential errors due to the presence 

of outliers.  

Step 2 – Anomalies. This step involves subtracting the regional climatology from 

each pixel’s time series to derive 3-day anomaly layers. Positive anomalies signal 

concentrations of chlorophyll-a that are above what is expected for the region.  

Step 3 – Local spatial autocorrelation. From the anomalies values, I derived local 

spatial autocorrelation values for each pixel using Getis and Ord (1992) G* index. This 

index measures the proportion between the values within a certain distance from a point 

and the variance for the rest of the study area. It was modified by Wulder and Boots 

(1998) for its use with remote sensing data and standardized so the resulting values are z-
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scores, thus comparable across space and time. The equation to derive this form of the G* 

index is: 

Gi*=
wij d pj −Wi

*pj

s Wi
* n−Wi

*

n− 1

1/2  

 Wi
* = 𝑤!"(𝑑)!    ,   𝑝 = 𝑝!!    ,   𝑠! =

!!
!

!

!!!!
 (2) 

where pi is the positive anomaly value at pixel i. wij is the weigh matrix (in this case, a 3 

by 3 matrix of all ones). The values of 𝑝 and s are the mean and standard deviation of all 

anomalies within a layer. To ensure that the distribution of the resulting Gi* is normal, it 

is recommended that this index is only derived when a pixel has at least 8 surrounding 

data points (Griffin et al. 1996). This step resulted in G* values for each pixel and date.  

Step 4 – ICAP values. I aggregated all significant Gi* values for each pixel and 

biological season. Following the recommendations by Wulder and Boots (1998), I 

considered any G* value above 2 as being a significant hotspot. Due to data gaps created 

by the presence of clouds (specially during winter), I calculated 15-day averages of the 

Gi* indices prior to calculating the ICAP value per season. Also, to take into account the 

variability between years, I calculated the ICAP for each year and season, and then 

averaged all the yearly results. The resulting ICAP values represent the extra productivity 

available within each pixel, compared to the regional pattern. Researchers may use these 

indices to compare values across pixels and across seasons. However, it is possible that in 

some regions the biological seasons have different number of days, which makes the 

comparison between seasons challenging. In this case, I converted the ICAP index to 
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percentage values (named here “Modified ICAP”). These percentages represent the ratio 

between ICAP values and the maximum potential ICAP value. This maximum potential 

value is the value that would occur if every 15-day group had a “high anomaly” (median 

plus one standard deviation of all Gi* values within a region).  

 

TEMPORAL VARIABILITY OF HOTSPOTS 

To determine the spatial changes in the temporal variability of biological hotspots, 

I derived a seasonal curve from the G* values for each pixel and day. Following the same 

methodology above, I fitted a Fourier curve including an intercept value, an overall trend, 

and up to three harmonics (12, 6 and 3-month harmonics) depending on the resulting 

AIC. From each pixel’s fitted curve, I derived the amplitude (i.e. seasonal variability), the 

trend (i.e. long-term variability), and root-mean square error (i.e. short-term variability). 

The amplitude (A) is represented by the square root of the sum of squares of the 

coefficients representing the 12 month, 6 month, and 3 month harmonics. For each 

harmonic, the amplitude is calculated as follows: 

 

𝐴!" = 𝑎!! + 𝑎!!    ,    𝐴! = 𝑎!! + 𝑎!!    ,     𝐴! = 𝑎!! + 𝑎!! (3) 

 

where a2 to a7 are the coefficients from the Fourier curve equation corresponding to each 

of the harmonics. The 12-month amplitude represents the differences between the first 

half of the year and the last. The 6-month amplitude represents the differences between 

seasons. The 3-month amplitude represents the persistent within-season changes (i.e. 
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fluctuation within seasons that occurs in most years). The trend (i.e. linear change over 

time) is represented by the coefficient a1. Finally, the root-mean square error (RMSE) is 

the square root of the squared residuals divided by the total number of observations. 

RMSE symbolizes short-term changes in productivity that are not repetitive every year. It 

can also be considered as the year-to-year variability. 

 

UNCERTAINTY ANALYSIS AND VALIDATION 

Most of the uncertainty in the results stems from the presence of clouds in the 

dataset. Consequently, in this study I wanted to characterize how much the results change 

due to missing data points. I first chose the pixel with the highest number of cloud-free 

observations. Then, I randomly selected samples from this time series to generate vectors 

with different lengths (400 different vectors with lengths ranging from 100 to 500 cloud-

free observations). I fitted Fourier curves to each increasingly sized sample vector, and 

from these fitted curves I derived amplitude values for each of the harmonics and trend. 

Validation of the model results is challenging since there is no field database that 

has both a wide spatial coverage to calculate hotspots and a long time series that matches 

the MERIS remote sensing dataset. In fact, the only database available in the area that has 

a persistent record of surface chlorophyll-a concentration across time is the 

Environmental Monitoring and Mapping System (EM&MS) database managed by the 

Massachusetts Water Resource Authority (MWRA). The MWRA has been collecting 

monitoring data from different sites across Massachusetts Bay to study the effects of the 

placement of the new wastewater outfall (which started in September 2000) on the water 
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quality and organisms around the Bay (Werme et al. 2012). This dataset includes 10-

years of monthly surface chlorophyll-a concentration for 23 stations across Massachusetts 

Bay. The MWRA database has several limitations for this study. First, samples were 

collected once every month, thus the temporal resolution is lower compared to the remote 

sensing dataset. Also, most stations have gaps in data collection, especially during winter 

months. Most stations are also close to the coastline, so their yearly patterns are very 

similar. In fact, only 10 stations are both within our study area and have enough data-

points to be used as validation data. Finally, these field stations are not close enough to be 

able to calculate G* indices, so the results cannot be compared one-to-one with ICAP 

values. However, even with all these limitations, it is possible to use the MWRA dataset 

to test the ability of the MERIS data to capture the seasonal variation within each field 

station.  

I adopted the same methodology used to derive ICAP indices, with a few 

exceptions. I used the same climatology derived in step 3 above, although I reduced its 

temporal resolution by averaging the values for each month. This climatology was 

subtracted from each station’s chlorophyll-a values, which were previously mean-

centered. To be able to compare these results to the G* values, I converted the resulting 

anomalies to z-scores. I fitted a Fourier curve with 2 harmonics to these anomalies. 

Finally, to measure the uncertainty on the fitted amplitude of each station, I derived 

yearly amplitudes by calculating the difference between the maximum and minimum 

anomaly value for each year and calculated the standard error of the resulting values.  
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RESULTS 

LOCAL PRIMARY PRODUCTIVITY HOTSPOTS 

The regional seasonal curves (i.e. climatologies) resulting from fitting Fourier 

curves to each study area’s spatially averaged information are shown in Figure 8. Based 

on the resulting AICs from each fit, the model chose the 12-month and the 6-month 

harmonic in both study areas (north and south). Visually, the northern climatology has its 

lowest value during the winter break, followed by a spring bloom peak, a dip during the 

summer months, and finally a peak during the fall bloom, which is slightly smaller than 

the spring peak. On the other hand, the southern climatology’s lowest value occurs during 

the summer break, with a fall peak that is less noticeable compared to the northern 

climatology. The overall fluctuation of the northern climatology is also higher compared 

to the southern climatology. The trends for both curves are positive (i.e. values increasing 

across time), although the one for the northern area is of slightly higher magnitude than 

the southern trend.  

I derived the start and end dates of the phytoplankton blooms from the 

climatology curves. These dates were used to define “biological seasons”. For the 

northern areas, spring bloom season started on day number 70 (March 11th), summer 

break started on day number 170 (May 19th), fall bloom started on day number 239 

(August 27th), and winter break started on day number 316 (November 12th). On the other 

hand, for the south area spring bloom season started on day 32 (February 1st), summer 

break on day 153 (May 2nd), fall bloom on day 257 (September 14th), and winter break on 

day 312 (November 8th).  
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Figure 8. - Plot of regional climatologies for both study areas (north in orange, south in turquoise).  

 

The ICAP indices for the northern and southern study areas are shown in Figures 

9 and 10, respectively. During the spring bloom, the northern area has a concentration of 

anomalous values north of Stellwagen Bank (an area known as Tillies Bank) and around 

Cape Ann (where Gloucester is located). High ICAP values are also located along the 

western edge of Stellwagen bank and over its southwest corner. Once summer break 

arrives, very few locations have high ICAP values, except the area just offshore from 

Boston and just north of Cape Ann. The situation during the fall bloom shows most of the 

productivity concentrated along the coastal regions of New Hampshire, Maine and 

Massachusetts. Finally, during the winter break, the greatest spatial concentration of 

anomalous values is located in Cape Cod Bay. Spring bloom ICAP indices for the 

southern study area show a high concentration of anomalous chlorophyll values on the 

Nantucket Shoals. During the summer break, only locations within Buzzards Bay show 

high concentrations of anomalies. During the fall bloom and winter break, productivity 



	  

	  

37 

anomalies are concentrated on the southwestern end of Cape Cod, and near the coasts of 

Rhode Island and Connecticut.  

 
Figure 9. - Modified ICAP values for the northern study area. (Top-left) Spring bloom, (top-right) summer 
break, (bottom-left) fall bloom, and (bottom-right) winter break. Values range from a persistent high spatial 
concentration of anomalous values (dark brown) to a low concentration (dark purple). Gray colored 
background signal no-data values 
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Figure 10. – Modified ICAP values for the southern study area. (Top-left) Spring bloom, (top-right) summer 
break, (bottom-left) fall bloom, and (bottom-right) winter break.  

 

TEMPORAL VARIABILITY OF HOTSPOTS 

I fitted a Fourier curve to each pixel’s time series of Gi* values. During this 

process, the model chose the optimal number of harmonics to ensure a better fit. The 

resulting number of harmonics chosen signal the overall seasonal patterns for each pixel. 

For example, in the northern study area, most of the pixels with only the 12-month 

harmonic (Figure 11, blue color) are located along a band east of Stellwagen Bank. This 

band mainly coincides with the location of the Western Maine Coastal Current, which 

brings cold nutrient-rich waters from the northern areas of the Gulf of Maine. Models 

with only this harmonic represent seasonal patterns with only one bloom during the year. 
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This band continues to the south for a few kilometers until it disappears off the eastern 

side of the study area. Most of the remainder of the area has a combination of pixels with 

the 12, 6, and 3 month harmonics, and pixels with only 12 and 6-month harmonics. These 

two cases represent areas with two major blooms, although the pixels with the 3-month 

harmonic have blooms with significantly different magnitudes. 

 
Figure 11. – Maps showing the type of model fitted for each pixel in the north (left) and south (right) study 
areas. Blue colored pixels have models with only a 12-month harmonic. Yellow pixels have models with 12 and 6-
month harmonics. Finally, pink pixels have models with 12, 6 and 3-month harmonics. 

 

The maps in Figure 12 show the amplitude values for each of the harmonics for 

the northern study area. Locations with a high amplitude for the 12-month harmonic have 

higher differences in productivity between the first 6-months of the year and the last 6-

months. For the northern area, these pixels are concentrated along the coast and over 

Cape Cod Bay. Conversely, the locations with the lowest 12-month amplitude are along 

locations known for high mixing of the water column, which allows productivity to 

maintain a high level throughout the seasons. A high value of the 6-month harmonic 

indicates a high difference between seasons. In this case, pixels with high amplitude are 
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mainly concentrated north and south of Cape Ann and within Cape Cod Bay. The fact 

that Cape Cod bay has high amplitude for both the 12 and 6 month harmonic signals that 

only one biological season (in this case winter) has high productivity compared to the rest 

of the year. Finally, the amplitude of the 3-month harmonic represents variability within a 

season. However, unlike RMSE values (see below), this variability is persistent across 

the years. Pixels with high 3-month amplitude are concentrated along the areas offshore 

of Boston and Provincetown in Massachuetts, and Portland in Maine. 

 

 
Figure 12 –Magnitude of the amplitudes for each of the Fourier harmonics and trend values for each pixel: 
(from left to right, top to bottom) 12 month harmonic, 6 month harmonic, 3 month harmonic and trend 
coefficient. Pixels with white background signal models where the value is zero 
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Figure 12 also shows the trend (a1) coefficient values (representing long-term 

variability) for each pixel in the northern study area. Overall, trend values for all seasons 

are centered at zero and range from -2 x 10-3 to 2 x 10-3. Generally, negative trend values 

appear within Massachusetts Bay and over Cape Cod Bay. Positive trend values are 

located north of Cape Ann and along the coast of New Hampshire and Maine. Most of 

the offshore areas east of Stellwagen bank have trend values close to zero. The boxplots 

in Figure 13 show RMSE values for pixels with modified ICAP values over 25% 

separated by biological season and study area. RMSE values represent the variability that 

is not repetitive. I considered these values as the year-to-year variability. RMSE values in 

both regions are lower during the fall bloom and the winter break than throughout the rest 

of the year. The highest RMSE values are found during the northern area’s summer 

break, thus signaling a highly dynamic system during this time of the year.  

 

 
Figure 13.- Boxplots showing the range of RMSE values within each biological season and study area. Only 
values for pixels with modified ICAP values above 25% within each season are shown. (Left) Northern area, 
(right) southern area. 
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UNCERTAINTY ANALYSIS AND VALIDATION 

Figure 14 shows the resulting amplitudes (12 months and 6 months) and trend 

coefficients when I vary the number of samples in a time series. The pixel I chose (with 

437 cloud-free observations, the highest of all pixels) had a fitted curve that had 

originally 3 harmonics and a negative trend. Because the Fourier curve is fitted using a 

regularization method such as lasso, a coefficient is set to zero when it is either not 

needed to fit the curve or there is not enough data to find its value. Therefore, as the 

number of cloud-free observations decreases, I would expect the number of zero values to 

increase (represented in blue cross markers on the scatter plots). Also, as the number of 

observations decreases, I expect the variance for the results to increase, thus signaling an 

increased uncertainty. 

The regularization effect can be seen in all scatter plots in Figure 14, but 

especially in the plot for the trend coefficient (bottom-left). In this case, as the number of 

cloud-free observations decreases, the trend value slightly fluctuates in the positive range. 

However, when the number of observations falls bellow 300, the lasso-glm is unable to 

correctly fit a trend value in most cases and sets the coefficient to zero. For the few cases 

the model fits a trend, these values show a high variance, even reaching negative values. 

The scatter plots for the amplitude values for the 12 month and 6 month harmonics show 

two very different situations. The results for the 12-month harmonic show a smaller 

variance, thus smaller uncertainty, as the number of cloud-free observations decrease. 

When the number of observations falls below 300, the model either chooses to set the 

coefficients to zero or fits a value within the 95% confidence interval. Conversely, the 
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values for the amplitude of the 6-month harmonic show a high variance as the number of 

observations decrease. In very few cases, the model sets the coefficients to zero.  

 

 
Figure 14.- Scatter plots showing the amplitude for the 12-month harmonic (top-left), the 6-month harmonic 
(top-right) and trend (bottom-left) when different number of cloud-free days are used to fit the Fourier curve. 
Blue crosses signal runs where the lasso-glm model chose to set the variable to zero. Dotted lines represent the 
bounds of the 95% confidence interval and solid lines signal the mean. (Bottom-right) Histogram showing the 
number of cloud-free days per pixel.  

 

Finally, I compared the amplitudes derived from the MERIS remote sensing data 

to the amplitudes derived using the MWRA field data (Figure 15). The scatter-plot shows 

all stations but one clustered within a small range of amplitude values. As previously 

explained, this lack of a wide range of values is one of the main limitations of using the 
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MWRA dataset for validation. Also, because I was unable to calculate the G* index due 

to the high distance between stations, the values from the MWRA dataset cannot be 

compared 1:1 to the values derived from the MERIS dataset. However, I was able to fit a 

linear regression to the resulting amplitude values. The regression line has an equation 

with a positive slope (2.62) and an intercept near zero (0.36). The R-square for this 

regression is 0.829, signaling a tight fit.  

 

 
Figure 15.- MERIS-derived yearly amplitude of hotspot values versus the MWRA-derived amplitude for each of 
the MWRA field stations. The error bars represent ±1 standard error of the mean of the yearly amplitudes 
(maximum – minimum of all values per year)  

 

CONCLUSIONS 

In this study I presented a novel index to locate and study local productivity 

hotspots in a marine ecosystem. Because ICAP values are based on anomalies and not 
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absolute productivity values, they show a clear picture of the areas where processes 

concentrate productivity at a higher rate than what is expected for the region. When used 

on studies related to marine ecosystems, ICAP values provide various advantages over 

other previously used metrics. For example, compared to averages of chlorophyll-a 

concentrations, ICAP values provide information on the temporal persistence of hotspots 

in each area, which help researchers studying very dynamic systems. Also, ICAP values 

are compared to indices based on percentages of positive anomalies (e.g. Suryan et al. 

2012), the former are able to separate distinct areas based on the magnitude of their 

anomalies, addressing one of the main limitations from percentage-based measurements 

(Winiarski et al 2013).  

The ICAP index also facilitates the testing of research hypothesis related to spatial 

and temporal heterogeneity in marine ecosystems. In this study, the maps of the seasonal 

ICAP values in both study areas of the Gulf of Maine support the hypothesis that the 

magnitude and spatial distribution of local primary productivity hotspots vary by season. 

They also support the idea that different processes of different scales aggregate 

phytoplankton at each area. For example, above-average spring blooms in the northern 

area occur in areas with high topographic changes, while fall hotspots concentrate near 

coastal areas where there is a release of nutrients that stimulate phytoplankton abundance. 

ICAP values may also be used to locate areas where the timing of the phytoplankton 

blooms is persistently different than the rest of the region. One clear example of this is 

the high magnitude hotspot during the winter break in Cape Cod Bay. This persistent 

hotspot signals an early spring bloom in the area, which has been recorded in the past in 
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various field data studies (e.g. Bigelow et al. 1940). The derivation of the regional 

climatologies prior to calculating ICAP values also provides information on the distinct 

processes occurring at a regional scale. It is important to ensure that the climatologies are 

properly fitted and that areas with different regional processes are studied separately. For 

example, if our two study areas were to be studied together, hotspot values between 

blooms in the south would have been overestimated.  

The ability to track productivity over time for each pixel allows us to not only 

understand what the normal pattern is for the area but also to determine when a location 

persistently departs from this normal. The results from our area of study show that the 

inter-annual and long-term variability of hotspots are both location and season dependent. 

The simplicity of the Fourier algorithm provides the means of comparison between 

different sources of temporal variability. Especially interesting is the comparison between 

the 3-month amplitude values and RMSE values, as they can describe how predictable 

the within-season variability may be. For example, in certain areas in the middle of 

Stellwagen Bank, the 3-month amplitude is relatively low while the RMSE is relatively 

high. This signals an area that does not show persistent high concentrations of 

productivity, although occasional ephemeral local processes may concentrate 

productivity. Trend values are useful at determining the effects of long-term climate 

change on patterns of marine productivity, although with only ten years of data, the 

results in this study should be interpreted cautiously. However, even within the available 

data, certain patterns are starting to emerge, which correlate to changes users have started 

to see in the field. For example, for the past few years there has been a decline in the 
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abundance of seabirds in the southwestern corner of Stellwagen Bank, while seabird 

abundance has increased further south near Chatham, MA (personal communication with 

researchers in the Stellwagen area). This effect can be seen in the results from this study, 

especially when spatially plotting the fitted-curves trend values.  

The main objective of this research was to explore the spatial and temporal 

complexity in a marine ecosystem. I wanted to provide the basis to formulate new 

hypotheses and a metric to be able to test them in the future. Our novel cumulative 

hotspot index, ICAP, was able to detect biologically relevant productivity aggregations 

using remote sensing data. This information combined with the coefficients from the per-

pixel fitted Fourier curves provided a clearer picture on the complex dynamic processes 

occurring in the western Gulf of Maine than existed previously. The results from this 

study also strengthen our belief that the study of primary productivity hotspots may be an 

important tool at understanding and monitoring the consequences from long-term 

processes such as climate change. Besides, given that hotspots are often targeted by 

fishermen and other resource extractors, they are of critical importance to fisheries 

managers. I hope this research offers the first step for ecosystem wide analyses, which 

may help modify how marine ecosystems are managed in the future. 

.
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CHAPTER THREE: LOCAL BIOLOGICAL HOTSPOTS IN THE GULF OF 

MAINE: SPATIAL MATCH/MISMATCH BETWEEN PRIMARY 

PRODUCTIVITY AND FISH ABUNDANCE 

 

ABSTRACT3 

Primary productivity values from remote sensing sources have been widely used 

in the past to predict aggregations of top predators in marine ecosystems, even though 

these organisms feed on species several levels higher up the trophic chain. High 

productivity has also been used as a predictor of overall benthic biomass, even though the 

connection between the two is not direct. With this inclusion of productivity information 

to prediction models, researchers assume that some locations facilitate the spatial and 

temporal overlap between the availability of food resources and the species that depend 

on them. These locations, known as “biological hotspots”, often originate with 

aggregations of phytoplankton, which attract organisms higher up the trophic chain. 

However, because there is no direct trophic transfer between them, it still remains unclear 

whether there is in fact an overlap between primary producers and both pelagic and 

benthic predators. Previous attempts to test this hypothesis, often known as the ‘Spatial 

Match/Mismatch Hypothesis’, have had inconclusive results, due in part to the metrics 

used to account for aggregations of primary producers. In this study, I explored the 

spatial match between surface productivity and fish abundance in the western Gulf of 

Maine. I tested the hypothesis that aggregations of primary producers spatially correlate 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  To be submitted to “Marine Ecology – Progress Series”. Structure matches the publication’s guidelines.	  
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to both pelagic and benthic fish abundance. I also explored whether primary productivity 

is a significant predictor of fish abundance, together with abiotic variables such as sea 

surface temperature and topography. I quantified surface productivity using the Index of 

Cumulative Anomalous Productivity (ICAP) applied to MERIS remote sensing data. 

Benthic and pelagic fish abundances were derived from the Vessel Trip Report (VTR), a 

fisheries-dependent data source. Results show a significant spatial correlation between 

pelagic fish abundance and aggregations of primary productivity for both spring and fall 

seasons. Spatial correlations were also significant between benthic fish abundance and 

primary productivity hotspots during spring months, but not during fall. Abiotic variables 

alone were strong predictors of both overall surface productivity and benthic abundance, 

signaling the possibility that environmental conditions are the cause of the spatial overlap 

between surface and benthic resources. 

 

INTRODUCTION 

Biological hotspots are generally defined as locations where high number of 

organisms from different trophic levels aggregate (Worm et al. 2003, Malakoff 2004). 

These are usually areas that provide the right conditions for the lower levels of the food 

chain to grow and where predators aggregate to feed on abundant resources. Locating and 

characterizing these biological hotspots provides information on the drivers of spatial 

heterogeneity in marine ecosystems, and it is considered a good first step towards 

understanding the complexity inherent in these systems (Wulder and Boots 1998). 

Biological hotspots are supported by high concentrations of phytoplankton organisms, 
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which provide the resources that attract organisms higher up the trophic chain. These 

primary producers may also determine the spatial and temporal characteristics of the 

resulting hotspots (Norse et al. 2005, Nur et al. 2010, Incze et al. 2010). In general, the 

abundance and distribution of phytoplankton across space depend on either 

environmental conditions that stimulate surface productivity, such as temperature or 

nutrient availability, or oceanographic processes that concentrate productivity produced 

elsewhere (Mackas et al. 1985). Topographic features can enhance aggregations of 

productivity by facilitating processes such as upwelling or internal waves (Scotti and 

Pineda 2004). Due to the high temporal and spatial variability of these processes, 

biological hotspots tend to be highly variable as well. 

The concept of biological hotspots implies there is a temporal and spatial overlap 

between organisms and the resources they depend on. For example, aggregations of 

seabirds often temporally and spatially overlap with surface aggregations of forage fish, 

thus creating a biological hotspot (Davoren 2007). Some researchers have referred to this 

as the “Spatial match-mismatch hypothesis” (Durant et al. 2007). This hypothesis states 

that the survival of a predator is dependent on the spatial and temporal overlap between 

its distribution and the one of its prey. While this hypothesis has been difficult to test 

directly, the spatial overlap between predators and resources is often assumed in many 

studies, especially in ecosystem-wide models (e.g. Steele et al. 2007). In fact, this overlap 

is often assumed even when the groups of organisms do not share a direct trophic link. 

For example, phytoplankton abundance has been repeatedly used for predicting the 

location and abundance of both pelagic (e.g. Worm et al. 2003) and benthic predators 
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(e.g. Wei et al 2010), even though these predators do not feed directly on primary 

producers. The use of surface primary productivity to predict abundance of other 

organisms either assumes that the conditions that facilitate aggregations of phytoplankton 

organisms may also encourage aggregations of other species (Reese and Brodeur 2006), 

or that the productivity not consumed may deposit and enhance secondary productivity in 

the long term (Townsend and Cammen 1988). 

Understanding the spatial overlap between primary producers and other tropic 

levels is not a trivial matter. Recent studies have described changes in timing, abundance 

and location of phytoplankton blooms due to climate change (Behrenfeld et al. 2006), 

which may result in shifting species’ distributions towards northern latitudes (Jones and 

Cheung 2014). This in turn may produce a spatial mismatch between the locations of the 

resources and the organisms depending on them, which has already been reported in land 

ecosystems (Schweiger et al. 2008). However, the study of this spatial overlap in marine 

ecosystems has been especially problematic in part because the high temporal and spatial 

variability of phytoplankton organisms. For example, Grémillet et al. (2008) concluded 

there was a mismatch between surface and benthic productivity, although indices used to 

describe primary productivity did not facilitate the comparison in highly dynamic 

ecosystems. In the past few years, a few researchers have proposed a shift towards 

redefining biological hotspots from the point of view of primary producers, taking into 

account their temporal and spatial heterogeneity (Suryan et al. 2012). From this point of 

view, hotspots are defined as areas that exhibit productivity aggregations at a higher 

frequency compared to the rest of the region. These are areas that facilitate the growth or 
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concentration of phytoplankton organisms, and in turn encourage the transfer of energy 

from primary producers to the rest of the trophic chain. Suryan et al. (2012) and later 

Ribera et al. (Chapter 2, in this thesis) adapted this new definition of biological hotspots 

into novel metrics that locate hotspots based on the frequency and magnitude of 

productivity anomalies (i.e. residuals) above the expected regional seasonal pattern.  

The main objective of this study was to test whether there is a spatial overlap 

between primary producers and both surface and benthic fish organisms. For this reason, 

we used anomaly-based metrics on remote sensing datasets to define biological hotspots, 

and explored the advantages this type of metric has over previously used approaches. 

This study was structured in two main parts: first, we used remote sensing and fisheries 

dependent data to test whether abiotic variables alone drive aggregations of both pelagic 

and benthic organisms; and second, we tested whether adding surface productivity to the 

model better accounts for variability in abundance of surface and benthic fish species.  

 

METHODS 

For this study, we followed the methodological steps represented in Figure 16. 

This study includes four main steps: (1) location of biological hotspots using remote 

sensing datasets, (2) exploration of the spatial correlation between primary productivity 

hotspots and fish abundance data from both the surface and bottom of the water column 

using semi-variograms, (3) fitting a model predicting fish abundance using only abiotic 

variables (temperature and topographic variables), and (4) adding surface productivity 

hotspot information to this model to determine whether it adds any predictive power. 
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Figure 16. – Visual representation of the methodological steps in this thesis 

 

I chose to run this study in a section of the Western Gulf of Maine (Figure 17). 

This area is centered over the Stellwagen National Marine Sanctuary, which is located 

about 30 miles offshore from the city of Boston (MA). This is a highly productive 

temperate system, well known as a fishing area for both pelagic and benthic species. 

Figure 17 shows both the limits of the study area and the limits of the regional area. The 

regional area is the reference extent for the calculation of hotspot values. The limits of the 

study area correspond to a statistical fishing area known as area 514 (see below).  
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Figure 17. - Map showing the area of study (yellow), which corresponds to VTR statistical area 514, and the 
regional area (orange) used as a reference to calculate hotspots and coldspots. White-colored cells are locations 
with depths shallower than 10 meters and thus not included in the study area. 

 

LOCATING PRIMARY PRODUCTIVITY HOTSPOTS 

I used chlorophyll-a concentration derived from the Medium Resolution Imaging 

Spectrometer (MERIS) sensor as a proxy for phytoplankton abundance. MERIS is a 

sensor on the satellite ENVISAT managed by the European Space Agency (ESA). It 

collects ocean-color data at a 1200m resolution every 3 days. I used all available level-2 

data from April 2002 to April 2012 (1661 layers). I processed all layers using BEAM 

(software created by Brockmann Consult for ESA), removing pixels flagged for clouds, 

high-glint, and ice. All layers were also collocated to the same reference grid so the 
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coordinates for the center of all pixels were the same in every layer. I removed any value 

above 45mg/l, as I considered this threshold to represent the maximum concentration of 

chlorophyll-a recorded in the area of study (Hyde et al. 2007).  For each layer, the pixels 

contiguous to clouds (i.e. 2 pixel buffer around each cloud) and the ones with a depth 

below 10 meters were also removed. Finally, to eliminate the possibility of missed clouds 

and cloud-shadows, I fitted a lowess non-parametric curve to each pixel’s time series. Its 

residuals were then converted to z-scores, and values above 5 and below -5 were 

removed from the dataset.  

I used the Index of Cumulative Anomalous Productivity (ICAP) created in chapter 

2 to determine whether each pixel may be considered a hotspot. This index is based on 

anomalies (i.e. residuals) above the regional seasonal pattern. It is a measure of both the 

persistence (i.e. the probability a location becomes a hotspot) and the strength (i.e. the 

magnitude of the anomalies over time) of productivity in a location. It is based on an 

index created by Suryan et al. (2012) named Frequency of Chlorophyll Peaks Index 

(FCPI). However, unlike the FCPI index, which defines a hotspot as an area with a 

frequent presence of high anomalies (above the 80% confidence interval), the ICAP 

considers both the spatial structure of each data layer to determine whether a location is 

considered a hotspot and the magnitude of the anomalies.  

I followed the methodology described in chapter 2 to derive the ICAP values. The 

process involves five main steps: (1) mean-center all values (subtract the all-time mean 

from each pixel), (2) calculate a spatial average from each layer and derive a regional 

climatology (i.e. seasonal pattern); (3) derive the anomalies (i.e. residuals) for each pixel 
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and time period by subtracting each pixel’s time series to the regional climatology; (4) 

calculate the local spatial autocorrelation value (Getis and Ord’s local G* index) for each 

pixel; and (5) add all the significant positive spatial autocorrelation values within a 

season. I calculated the ICAP indices for both spring and fall seasons. However, 

following the same process in chapter 2, I defined the seasons based on the start of the 

spring and fall blooms in the region. For each of the seasons, I also derived the FCPI and 

an overall mean value, and compared the results.  

 

ABIOTIC VARIABLES 

Sea surface temperature hotspots and coldspots 

Sea surface temperature (SST) information was derived from the Advanced Along 

Track Scanning Radiometer (AATSR) dataset. Like MERIS, this radiometer is also on 

the ENVISAT and managed by ESA. The AATSR features a dual-view of the ocean’s 

surface, providing one image at nadir (perpendicular to Earth’s surface) and one forward 

view. This ensures the accurate detection of low-level clouds, including fog. Also, the on-

board calibration system ensures that the temperature is accurately recorded and that the 

processing of the resulting data does not need to be compared to field measurements. I 

used Level-2P data, which was processed by the Group for High Resolution Sea Surface 

Temperature (GHRSST). The AATSR L2P dataset already came pre-processed, with 

pixels near the coast and around clouds removed.  

The AATSR dataset provides SST temperature at a 1km spatial resolution and a 

repeat frequency of 3 days. This data was resampled to 1200m to match the resolution of 
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MERIS. To derive SST hotspots, I followed the same methodology used in the case of 

chlorophyll-a hotspots. These hotspots represent areas that show high frequency of 

positive temperature anomalies throughout a season. I called these ICAT values (Index of 

cumulative anomalous temperature). I also derived SST “coldpots”, which I defined as 

areas that consistently show low temperature anomalies (with G* values below -2).  

 

Topographic features 

I used multibeam bathymetry to assess the topographic characteristics of the 

seafloor. This dataset was collected by Valentine et al. (2000) and provides depth 

information for each cell. It has a native spatial resolution of 10 meters. Using multibeam 

bathymetry, I also derived information on the shape of the seafloor. Particularly, I 

measured the Slope, Aspect and Benthic Position Index (BPI) (Figure 18). The first two 

variables were calculated using ArcGIS 10.1 and its Spatial Analyst Extension. The latter 

measure was calculated using ArcGIS and the Benthic Terrain Modeler toolbox (Wright 

et al. 2005). The slope is measured as the maximum rate of change from the value of a 

cell to its eight surrounding cells. It is measured in degrees, from 0 (flat) to 90 (fully 

vertical drop). Aspect determines the direction the slope is facing (i.e. North). It is 

measured clockwise in degrees, from 0 to 360. Finally, I also derived the distance in 

meters from each data point to the coastline.  
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Figure 18 – Visual representation of Slope, Aspect and Bathymetric Position Index (BPI) 

 

Bathymetric Position Index (BPI) is a measure of the position of a cell relative to 

its neighbors, and it is used to determine whether a cell is located in a ridge or a valley 

(Figure 18, bottom). It is analogous to the Topographic Position Index (TPI) used in land-

based studies. A cell with a positive BPI value represents an area shallower than its 

surrounding cells, signaling a possible ridge or peak. On the other hand, locations with 

negative BPI values typically signal valleys, which are areas deeper than their 

surrounding cells. Locations with BPI values close to zero represent either flat areas 

(slope near zero) or areas where the slope is constant (slope of a cell significantly greater 

than zero). The BPI index is scale-dependent, so its values depend on the amount of cells 
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used to calculate it. I calculated BPI indices at two separate scales: fine scale (using a 

buffer of 3 cells) and broad scale (using a buffer of 25 cells).  

Multibeam bathymetry and its derived products have a spatial resolution of 10m. 

However, to be able to compare them to chlorophyll-a or temperature data, they need to 

be resampled at a resolution of 1200m. Often, this resampling is done by averaging all 

values within a 1200m cell. However, in this case I not only calculated the mean, but also 

the standard deviation, range, maximum and minimum values within each 1200m for 

each of the derived products. For example, cells with high range values of BPI may 

signal areas where features change from peaks to valleys within the same 1200m cell.   

 

FISH ABUNDANCE 

For this study, I used catch per unit effort (CPUE) derived from the Vessel Trip 

Report (VTR) dataset (Orphanides and Magnusson 2007) as a proxy for fish abundance. 

VTR, also known as logbook, is a report each fishing vessel is required to fill after each 

trip, or within a trip if there is a change in gear or fishing area (based on statistical areas). 

Most federally managed fisheries (except lobster fishery) are included in this dataset. 

Each report includes, among other information, the date and time of the trip, the location 

fished, the type of gear used, the species caught, and the total amount landed. VTR is a 

fisheries-dependent self-reported dataset, and as a result, its use as a proxy for fish 

abundance has a series of limitations. First, the locations of each of the sampling points 

are not random, as they depend on where the fishermen travelled. Therefore, the whole 
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area of study has not been sampled with the same effort. Also, the voluntary reporting 

nature of this dataset adds more uncertainty to the results.  

I used VTR records from 1998 to 2010 in the reporting zone number 514, which 

includes Stellwagen Bank, Cape Cod Bay and the southern part of Jeffrey’s ledge. 

Identifying information such as the vessel permit number or name were removed prior to 

analysis. I aggregated data to 1200m grids and cleaned for clearly incorrect locations (i.e. 

on land). I only considered records for gears classified as trawls, including bottom and 

mid-water trawls. I separated the records in two main groups based on the type of species 

caught: pelagics, also known as forage fish (e.g. atlantic herring), and groundfish (e.g. 

atlantic cod). These groups were based on the classification used in VTR records. For 

each group, I calculated CPUE as the total catch divided by the number of hours the trawl 

was in the water. I considered total catch as the sum of the number of individuals caught 

(both the ones kept and the ones discarded) within a cell and season. I derived CPUE for 

every year and season, and then calculated a seasonal average.  

 

EXPLORING SPATIAL CORRELATION BETWEEN VARIABLES 

I first explored the spatial correlation between ICAP values for spring and fall, 

and benthic and pelagic fish abundances using semi-variograms (Curran 1988). Semi-

variograms compare the value of a point with the values within a spatial lag distance. 

Semi-variograms are useful to visualize the spatial pattern of the variability in the dataset. 

In this case, I first run a linear regression between each pair of dependent-independent 

variables (e.g. groundfish abundance ~ ICAP spring), and then fitted the variogram to the 
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residuals. This way, I could explore the spatial pattern of the correlation between the 

variables. Spatially correlated variables should result in semi-variograms where values 

are smaller at shorter spatial lags, and increase as the spatial lag distance increases, until 

they reach a plateau. To fit the experimental variograms, I used R statistical software 

(version 3.1.1) with the function “variogram” from the package “gstat”. I binned results 

every 1200m, and standardized the variables prior to fitting the semi-variograms.  

 

PREDICTING FISH ABUNDANCE FROM ABIOTIC AND PRODUCTIVITY 

INFORMATION 

To test whether adding information on primary productivity hotspots improves the 

predictions of both benthic and pelagic fish abundances, I run two separate linear 

regressions: one with only abiotic variables (topography and SST) and one including both 

abiotic variables and ICAP values. However, prior to running the predictive models, I 

determined the best combination of abiotic independent variables for each dependent 

variable. I run multiple Ordinary Least Squares regressions (OLS) for each dependent 

variable (abundance of ground-fish during spring and fall seasons, and abundance of 

pelagics during spring and fall seasons) with all possible combinations of independent 

variables, including all topographic variables and SST hotspots and coldspots. Prior to 

running each OLS regression, the Belsley, Kuh, and Welsch’s collinearity diagnostics 

were run (Belsey et al. 1980) to ensure only combinations of independent variables with 

weak collinearity (i.e. condition indices lower than 30) were tested. Also, all variables 

were standardized prior to running the regressions. This resulted in 404 overall model 
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runs. I compared the models using the Akaike Information Criteria (AIC), and choose the 

model that minimized this value.  

For the prediction of fish abundances from abiotic variables, I tested three types 

of linear models: OLS, Spatial lag, and Geographic weighted regression (GWR). OLS fits 

a regression line to the data by minimizing the size of the prediction errors. This type of 

model assumes that the observations are independent of one another. However, often in 

ecological studies, the value of a data point depends on the values of its neighbors, a 

property known as “spatial autocorrelation” or “spatial dependence”. When this occurs, 

the residuals of the OLS regression are not randomly distributed in space, showing often 

a clustered pattern. One way to include this spatial dependence in a regression model is 

through adding a spatial lag relationship between the points (i.e. weighted information 

from the immediate neighbors for each location). This results in what is known as the 

“Spatial lag model”. While OLS and Spatial lag models fit one regression line for the 

study area, GWR fits a regression line for each data point and its neighbors (Brunsdon et 

al. 2002). GWR is often recommended to account for the spatial variation in the 

relationship between dependent and independent variables. This occurs when different 

ecological processes occur at different spatial locations. For each dependent variable, I 

fitted the three types of regression models using the combination of independent variables 

that had the best AIC values when tested through exploratory OLS regression. OLS and 

Spatial-lag models were fitted using the application GEODA, created by Anselin et al. 

(2006). GWR models were fitted using the application GWR4, created by Nakaya et al. 
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(2005). I then run the same models adding seasonal ICAP values. All these model runs 

were compared using AIC values.  

 

RESULTS 

LOCATING SURFACE PRODUCTIVITY HOTSPOTS 

Following the methodology described in Chapter 2 in this thesis, I derived 

cumulative hotspot values (ICAP) for both spring and fall seasons. The limits of the 

seasons were set based on the phenology of the regional climatology. Spring started on 

day number 70 (March 11th) and ended on day number 170 (May 19th), and fall started on 

day number 239 (August 27th) and ended on day number 316 (November 12th). I plotted 

ICAP values to visually compare the results for each season (Figure 19). Spring values 

are concentrated mainly near Cape Ann, over Tillies’ Bank, the southwestern corner of 

Stellwagen Bank, and over Cape Cod Bay. On the other hand, fall values are overall 

higher than spring values and they are mainly concentrated along the coast.  

I compared ICAP values with two other popular productivity metrics: the FCPI by 

Suryan et al. (2012) and the seasonal average chlorophyll-a value. Figure 20 shows the 

results for the spring season. Visually, the map with ICAP values exhibits more defined 

hotspots areas than the one for the mean values. Because ICAP values are derived using 

the G* index, they also have less isolated high or low isolated values compared to the 

FCPI map. Also, FCPI does not take into account the value of the anomaly, just the fact 

that it surpasses a threshold, so the values are more homogeneous across the area.  
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Figure 19. – Cumulative seasonal productivity hotspot values (ICAP): (left) Spring, (right) Fall. Values range 
from a persistent high spatial concentration of anomalous values (dark purple) to a low concentration (yellow). 
White-colored cells are locations too shallow to be included in the study area. 

 

 

 

Figure 20. – Comparison between different hotspot metrics for Spring. From left to right: ICAP value, seasonal 
mean and FCPI. White-colored cells are locations too shallow to be included in the study area. 
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ABIOTIC VARIABLES 

Sea surface temperature hotspots and coldspots 

 

 

Figure 21. – Sea surface Temperature cumulative Hotspots (top) and Coldspot (bottom) values, for both Spring 
(left) and Fall (right) seasons. White-colored cells are locations too shallow to be included in the study area.  

 

I used the same methodology described above to derive hotspots and coldspots of 

sea surface temperature. Figure 21 shows these ICAT values for both spring and fall 

seasons. During the spring bloom, positive temperature anomalies (i.e. values higher than 

the regional seasonal pattern) are concentrated around Cape Ann, part of Cape Cod Bay, 

and the Southwest corners of Stellwagen Bank. Opposite to what occurs in other 
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locations, the water column during this time of the year is colder in the surface than at the 

bottom, so warmer anomalies at the surface may signal upwelling events mixing the 

water column. On the other hand, the cold temperature anomalies are concentrated 

around Provincetown and offshore, east of Stellwagen Bank. During the fall bloom, high 

temperature anomalies strengthen in Cape Cod Bay and remain the same around Cape 

Ann and over the southwest corner of Stellwagen Bank. However, the low temperature 

anomalies are mainly concentrated east of Stellwagen Bank, just south of Jeffrey’s ledge.  

 

Topographic features 

From multibeam bathymetry layers, I derived depth, slope, aspect, and BPI values 

at two spatial scales (broad and fine). Figure 22 shows the comparison between the BPI 

values at both scales. These maps show the native resolution of the multibeam 

bathymetry layers (10m). BPI values above zero signal areas that may be considered 

peaks. At a fine scale, these are located mainly along the border of Stellwagen Bank and 

Jeffrey’s ledge, and as small features just offshore of Boston. At a broad scale, high BPI 

values cover most of the major topographic features in the study area, such as Tillies 

Bank and Jeffrey’s ledge. BPI values below zero signal areas that may be considered 

valleys. At a fine scale, these BPI values draw a border along the main topographic 

features. However, at a broad scale, negative values are concentrated in between the 

banks at Tillies, and surrounding the main features of Stellwagen Bank and Jeffrey’s 

ledge.  
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Figure 22. – Comparison between BPI at a fine scale (left) and broad scale (right). High BPI values show peaks 
(red) and low values show valleys (green). Yellow colored cells signal areas with BPI close to zero. White cells 
are locations outside of the study area.  

 

FISH ABUNDANCE 

Figure 23 shows average CPUE values for each season (spring and fall) and 

species group (groundfish and pelagics). The pink dotted line represents the limits of the 

West Gulf of Maine Closure. This closure, which has been in place since 1998, prevents 

any bottom fishing within its borders. As a result, for all seasons, the highest CPUE 

values for bottom species are along the western border of Stellwagen Bank. In spring, the 

highest abundance of groundfish concentrates towards the northwest corner of Stellwagen 

Bank. On the other hand, abundance values are more evenly distributed during fall 

months, mainly over Tillies bank, and Stellwagen bank’s northwest and southwest 

corners. In the case of pelagic fish, due to seasonal closures and the fact that very few 

boats are responsible for most of the catch, in spring there are very few cells with CPUE 

above zero. These are mostly concentrated north of Cape Ann. During fall months, 
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pelagic CPUE values are mainly concentrated over Stellwagen’s southwest corner, over 

Jeffrey’s ledge and north of Cape Ann.  

 

 

Figure 23. – Average CPUE derived from VTR dataset: (top) Values for groundfish species, and (bottom) values 
for pelagic species.  

 

EXPLORING SPATIAL CORRELATION BETWEEN VARIABLES 

To explore the spatial correlation between each dependent variable and ICAP 

values, I fitted experimental semi-variograms with the residuals from the regressions 

comparing each pair of variables. Figure 24 shows the resulting scatterplots. Plots that 

show an initial increase in variance as distance increases may be considered to show 
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spatial correlation between the variables. This is the case for both ground-fish 

abundances and fall pelagic abundance, but not for spring pelagic abundance. These 

results may be explained by the quality of VTR data for pelagic species. Due to fisheries 

regulations and seasonal closures, there are very few cells with abundance values above 

zero during spring months. The semi-variogram for fall pelagic abundance shows an 

initial increase in variance but it rapidly levels off. Therefore, in this case there may be 

spatial correlation between productivity and fish abundance at local scales, within a 10-

kilometer radius, but not beyond this distance. I must note that the high y-intercept (i.e. 

nugget) in all variograms may signal a high error in the regression results. 

 

 

Figure 24. – Semi-variograms comparing each dependent variable to ICAP values for each season. 
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PREDICTING FISH ABUNDANCE FROM ABIOTIC AND PRODUCTIVITY 

INFORMATION 

Before fitting all predictive models, I determined the best combination and 

number of independent variables for each dependent variable. For this reason, I run 

multiple OLS regressions with all possible combinations of topography and SST values 

as independent variables, and fish abundance for each group as dependent variables. For 

each dependent variable, I chose the model run that had the smallest AIC value. Table 1 

shows the resulting models. For example, in the case of spring ground-fish abundance, 

the best model included sea-surface temperature hotspots and coldspots, standard 

deviation of depth values, mean of slope values, minimum BPI value at fine scale, 

distance to coast and range of BPI values at a broad scale. This combination of variables 

signal that ground-fish abundance values may be correlated to big changes in topographic 

features. The variable “aspect” was not included in any of the resulting models. Also, due 

to the small number of spring pelagic abundance values above zero, I chose to not include 

this group in further tests.  
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Table 1 – Best fit models from exploratory OLS regressions. The dependent variables for these regressions are: 
(Top to bottom) abundance of groundfish for spring and fall, and abundance of pelagics for spring and fall. For 
each dependent variable, this table only shows the model run that had the lowest AIC value.  

 
GROUNDFISH - SPRING 

	  
GROUNDFISH - FALL 

	     AIC 19921.9 	     AIC 20288 

	     ADJ. R2 0.114374 	     ADJ. R2 0.13924 

	     STANDARD ERROR 1.39575 	     STANDARD ERROR 1.44144 

	     F- STATISTIC 105.81 ***	   	     F- STATISTIC 132.283 ***	  

	     MORAN'S I (Resid.)   65.5514 ***	   	     MORAN'S I (Resid.)   73.6952 ***	  

IN
D

E
P

E
N

D
E

N
T 

V
A

R
IA

B
LE

S
 

  SST HOTSPOT 0.2801 *** 
	  

  SST COLDSPOT -0.0258 *** 

  DEPTH (St. Dev.) 0.4867 *** 
	  

  BPI Broad (Min.) -0.1757 *** 

  SLOPE (Mean) -0.7165 *** 
	  

  SST HOTSPOT 0.2586 *** 

  BPI Fine (Min.) -0.3198 *** 
	  

  SLOPE (Max.) 0.3753 *** 

  SST COLDSPOT -0.1592 *** 
	  

  BPI Fine (Range) -0.3896 *** 

  DISTANCE COAST -0.1065 *** 
	  

  DEPTH (St. Dev.) 0.2171 *** 

  BPI Broad (Range) 0.1722 *** 
	  

  DISTANCE COAST -0.1067 *** 

	   	   	  
	  

	   	   	  
	  

	  
PELAGICS - SPRING 

	  
PELAGICS - FALL 

	  

  AIC 13282.2 
	  

  AIC 21296.6 

	  

  ADJ. R2 0.018334 
	  

  ADJ. R2 0.053045 

	  

  STANDARD ERROR 0.778212 
	  

  STANDARD ERROR 1.57537 

	  

  F- STATISTIC 17.6646 ***	  

	  

  F- STATISTIC 52.9824 ***	  

	  

  MORAN'S I (Resid.)   20.4231 ***	  

	  

  MORAN'S I (Resid.)   49.9016 ***	  

IN
D

E
P

E
N

D
E

N
T 

V
A

R
IA

B
LE

S
   SST COLDSPOT -0.0130 *** 

	  

DISTANCE COAST -0.0100 *** 

  DISTANCE COAST -0.0044 *** 
	  

DEPTH (St. Dev.) 0.0226 *** 

  BPI Broad (Max.) 0.0057 *** 
	  

SLOPE (Mean) -0.0397 *** 

  BPI Fine (Max.) -0.0086 *** 
	  

BPI Fine (St. Dev.) 0.0209 *** 

  DEPTH (Max.) 0.0030 *** 
	  

BPI Broad (Mean) 0.0069 *** 

  SLOPE (Max.) 0.0040 *** 
	  

SST COLDSPOT -0.0128 *** 
 

SIGNIFICANCE LEVELS:  *** < 0.01 ** < 0.05 * < 0.1 
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I run OLS, spatial lag, and GWR regression models for each of the “winning” 

combinations of independent variables. Table 2 shows the resulting AIC values in each 

case. In all cases, AIC values for both GWR and spatial lag models were smaller than the 

corresponding ones for OLS regressions, indicating a better model fit. Because GWR fits 

a regression line to each data point and its neighbors, I considered GWR results to 

represent the “local” relationship between variables. In fact, in this study, the optimal 

bandwidth selected for all GWR models was 3600m. On the other hand, because Spatial 

lag models only fit one regression line for the whole area of study, its results may be 

considered a representation of the “global” relationship between variables.  

Table 2 also shows resulting AIC values when I added ICAP values as an 

independent variable to each model run. In the case of spring ground-fish abundance, 

adding ICAP values significantly improves the fit for both spatial lag and GWR models. 

On the other hand, for fall ground-fish abundance, the AIC values for spatial lag models 

do not change when adding productivity information, but they decrease for GWR model 

fits. Also, the t-values for the ICAP coefficients in this case are not significant. These 

results signal the lack of a significant “global” relationship between fall ground-fish 

abundance and surface productivity. For pelagic fall abundance values, productivity 

values significantly improve all three model runs. Finally, Figure 25 shows predicted 

spring ground-fish abundance values from both Spatial lag and GWR model runs. Both 

model runs do a good job at predicting values at the northwestern edge of the Stellwagen 

Bank. However, because of the presence of the West Gulf of Maine closure, the spatial 

lag model does not correctly predict values on the eastern side of the bank. It is possible 
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that adding the variable “distance to closure” as an independent variable may improve the 

overall spatial lag model fit.  

 
Table 2 – Comparison of AIC values from different model runs (OLS, Spatial Lag and GWR) before and after 
ICAP values are added as independent variables.  

 

  
OLS SPATIAL LAG GWR 

  
NO CHL WITH CHL NO CHL WITH CHL NO CHL WITH CHL 

GROUNDFISH 
SPRING 19921.90 19770.70 17506.30 17490.00 12325.09 9275.77 

FALL 20288.00 20237.00 17396.20 17396.20 10527.95 9963.36 

PELAGICS FALL 21296.60 21287.60 19890.10 19888.70 11387.37 9495.65 

 

 

 

Figure 25. – Comparison of predicted spring bottom fish abundance between Spatial lag (left) regression and 
GWR (right) regressions.  
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CONCLUSIONS 

The main objective of this study was to determine whether adding primary 

productivity hotspot information to a model improves the spatial prediction of both 

pelagic and benthic fish abundance. Through this process, I tested novel metrics for both 

primary productivity and SST hotspots, which improved the comparison between the 

different sources of data. These metrics are based on the tendency certain areas have to 

show high or low valued anomalies over time. They do not provide values of productivity 

or temperature at a moment in time, but they identify areas that provide the right 

conditions to either stimulate productivity or concentrate the one produced elsewhere. 

This new way of defining biological hotspots allows the comparison between datasets 

from different trophic levels and in turn provides the basis for ecosystem wide studies. I 

also run three different types of regression models to allow for spatial dependence 

between the variables tested.  

Results from this analysis show a seasonal variability in the relationship between 

productivity hotspots and abundance of species from other trophic levels. When focusing 

on benthic fish, adding productivity information does improve the fit of the model during 

spring months. However, during fall months, the “global” model fit does not change 

when adding productivity. One way to explain these results is through the influence 

topography has on both surface and bottom productivity. Spring phytoplankton blooms 

occur when increased water temperatures and sunlight create a thermocline that trap 

nutrients near the surface of the ocean, thus providing the optimal conditions for 

phytoplankton growth. As a result, surface productivity hotspots during the spring are 
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often found in areas with big topographic features, since upwelling events enhance the 

mixing of the water column, and increase the flow of nutrients and higher temperatures to 

the surface. At the same time, topographic features also create favorable conditions for 

many ground-fish species to grow, providing protection and sources of food. As a result, 

areas with significant topographic features do have both high surface productivity and 

high benthic abundance.  

A second explanation for this significant positive correlation may be the process 

of “bentho-pelagic coupling”. Surface productivity that is not consumed during the spring 

bloom may be deposited on the seafloor, enhancing secondary productivity (Townsend 

and Cammen 1988). Even though the fact that only Spring results are significant does not 

support this hypothesis, I need more information to fully test it. Surface productivity 

values need to be spatially and temporally compared to productivity values across the 

water column. Currently, very few datasets provide the resolution and spatial extent 

needed for this type of analysis. One dataset that may be able to fit these requirements is 

the one collected by HabCam. The HabCam (Gallager et al. 2005) is a non-motorized 

vehicle operated by the Woods Hole Oceanographic Institute (WHOI) that is towed from 

a ship. While HabCam was build to take pictures of the ocean seafloor for habitat 

characterization, it also includes equipment that measures sea surface temperature, 

salinity, dissolved oxygen and chlorophyll-a concentration. In the following months, I am 

planning to use this dataset to test the hypothesis that surface productivity increases 

overall benthic productivity.  
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Prediction of fall pelagic species does also improve when adding productivity. 

While most pelagic species do not feed on phytoplankton, they eat organisms (e.g. 

zooplankton) that do. Therefore, areas that tend to have higher concentrations of 

productivity throughout the seasons may attract forage fish species. Our results for spring 

pelagic abundance were limited by the availability of data. The reduced availability of 

data for spring months compared to fall is mainly due to fisheries regulations in the area, 

including seasonal closures of pelagic fisheries and limits on days at sea. In general, 

using fisheries-dependent datasets for this type of analysis presents a series of limitations. 

First, sampling is not done randomly across the area, so the same effort was not applied 

in every single location. Fishermen decide where to fish based not only on resources but 

also on other socio-economic factors, such as previous knowledge of the area, cost of 

fuel, presence of protected areas, and other fisheries regulations. Also, because of 

temporary closures of fisheries due to low stocks, the sampling was not constant 

throughout the twelve years of analysis. Another big limitation of VTR data comes from 

its self-reporting nature. Previous studies have pointed out the lack of accuracy when it 

comes to discarded fish abundance for all gear types. It is possible to use LPUE (Landing 

per Unit Effort) instead, which only includes the individuals that are kept and landed. 

However, I decided to include both kept and discarded individuals to account for species 

that are not commercially valuable (e.g. sand-lance). Also, the fact that all yearly values 

are averaged into a final result does reduce the uncertainty of the final abundance values.  

This study explored the spatial relationship between productivity aggregations 

and aggregations of other organisms. The results in this analysis support the concept of 
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biological hotspots. Because of high abundance of organisms, these biological hotspots 

often spur increased human activity, particularly if they contain commercially valuable 

species. As a result, they are at greater risk of negative impacts due to overfishing. Any 

resulting losses of biomass in these areas could then impair adjacent populations of 

marine organisms that depend on them, affecting in turn other levels of the ecosystem. 

Therefore, prioritizing available resources for the protection of these biological hotspots 

may be warranted. Interdisciplinary studies such the one presented here may provide 

managers with the information and tools that would help them determine the level of 

human activity permitted in these areas to ensure that they are healthy and sustainable in 

the future.  

 

.
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CONCLUDING REMARKS 

 

The main objective of this thesis was to identify and characterize biological 

hotspots in the Gulf of Maine. In the first chapter, I described a simplified 

methodological framework to guide users through the process of locating these local-

scale hotspots. This framework described the challenges when locating hotspots in 

marine ecosystems compared to terrestrial ones, and proposed new solutions researchers 

may want to consider for future projects. In the second chapter, I defined a new metric, 

the Index of Cumulative Anomalous Productivity (ICAP), which identified hotspots 

based on their predictability over time and the magnitude of their productivity anomalies. 

Using time series analysis, I also described the seasonal, inter-annual and long-term 

variability of these hotspots. Finally, in the third chapter of this thesis, I compared these 

ICAP values to both abiotic variables (e.g. sea surface temperature) and fish abundance 

information. This ecosystem-wide study tested the spatial correlation between 

aggregations of primary producers and fish from both benthic and pelagic areas of the 

ocean. Results showed that certain areas of the Gulf of Maine facilitate aggregations of 

primary producers and both benthic and pelagic fishes, creating biological hotspots, 

though these organisms do not have a direct trophic link. 

This thesis relied extensively on satellite remote sensing data, mainly as a proxy 

for both primary productivity abundance and sea surface temperature. Satellite datasets 

provided a wide spatial coverage, fine spatial resolution, and high temporal repetition, 

which benefited the study of biological hotspots. However, this type of data source also 
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has limitations. High concentrations of clouds limit the amount of information available. 

Data may also be lost because of high water column turbidity, which frequently occurs in 

coastal locations. While the lack of data because of clouds cannot be controlled, incorrect 

data values due to high turbidity may be prevented in the future by using more advanced 

algorithms to process remote sensing data. These algorithms are specifically created for 

Case-2 waters. Also, because the European Space Agency lost contact with MERIS in 

2012, we were only able to analyze 10 years worth of data. Over the past few years, many 

researchers have started to use the Moderate Resolution Imaging Spectroradiometer 

(MODIS) operated by the National Aeronautics and Space Administration to derive 

productivity estimates. Future studies in a variety of fields would benefit from an 

increased effort to build and deploy sensors specially made for deriving ocean water 

properties, which would increase the availability and accuracy of data used for studies 

such as the thesis presented here.  

This thesis was also limited by the availability of fisheries data. The VTR dataset 

relies on fishermen collecting accurate data on number of fish, species caught, and 

locations where fishing took place. Moreover, fishing effort is not homogeneous across 

the study area, as it depends on fisheries regulations and the overall behavior of 

fishermen. This adds uncertainty to the results of this study. Federal agencies, such as the 

National Oceanographic and Atmospheric Administration (NOAA), have been collecting 

fisheries independent information for the past few years, which would directly benefit 

studies such as the ones presented here. However, currently these data sources are only 

available to federal employees. This study was also limited by the availability of 



	  

	  

80 

validation data. The MWRA dataset is currently the only one that offers the minimum 

temporal resolution necessary to compare field and remote sensing hotspot values in the 

Gulf of Maine. For interdisciplinary studies such the ones presented in this thesis, there is 

a need for coordinated field collection efforts that acquire information from different 

levels of a marine ecosystem and that are designed following the spatial and temporal 

requirements of hotspot analyses.  

The results from this thesis will be added to a decision support tool to facilitate 

the management of marine resources in the Gulf of Maine. This tool, the Marine 

Integrated Decision Analysis System (MIDAS), was created by a team of Boston 

University researchers lead by Prof. Suchi Gopal and Prof. Les Kaufman. MIDAS was 

first designed to manage marine protected areas in Belize and was subsequently adapted 

for Gulf of Maine waters (Gopal et al. 2015). This interactive decision support tool was 

developed to improve the effectiveness of marine spatial planning in the Gulf of Maine 

by translating complicated model results into simple visualizations, allowing stakeholders 

to run scenarios based on their own parameters. The results from this thesis will allow 

MIDAS to adapt its simulation model to include spatial and temporal heterogeneity in 

phytoplankton populations, which in turn may ensure that the model more closely 

represents the real dynamics of marine systems in the area. The results of this thesis 

should also serve as the foundation for researchers to identify and test other hypothesis on 

the processes driving spatial heterogeneity in coastal systems, which in turn may help 

managers apply ecosystem–based principles to their managements plans. 
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