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AN INFORMATION THEORETIC APPROACH FOR

GENERATING AN AIRCRAFT AVOIDANCE MARKOV

DECISION PROCESS

ANDREW J. WEINERT

ABSTRACT

Developing a collision avoidance system that can meet safety standards required

of commercial aviation is challenging. A dynamic programming approach to collision

avoidance has been developed to optimize and generate logics that are robust to the

complex dynamics of the national airspace. The current approach represents the air-

craft avoidance problem as Markov Decision Processes and independently optimizes

a horizontal and vertical maneuver avoidance logics. This is a result of the current

memory requirements for each logic, simply combining the logics will result in a signif-

icantly larger representation. The “curse of dimensionality” makes it computationally

inefficient and infeasible to optimize this larger representation. However, existing and

future collision avoidance systems have mostly defined the decision process by hand.

In response, a simulation-based framework was built to better understand how

each potential state quantifies the aircraft avoidance problem with regards to safety

and operational components. The framework leverages recent advances in signals

processing and database, while enabling the highest fidelity analysis of Monte Carlo

aircraft encounter simulations to date. This framework enabled the calculation of how

well each state of the decision process quantifies the collision risk and the associated

memory requirements. Using this analysis, a collision avoidance logic that leverages

both horizontal and vertical actions was built and optimized using this simulation-

based approach.
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∆h, ḣo + ḣi
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Chapter 1

Introduction

The U.S National Airspace System (NAS) is a dynamic and complex system that

supports conveniences of everyday life, the global economy, and the freedom to travel.

Both its capacity and ability to maintain safety is stressed by numerous air-carriers,

cargo airlines, business jets, general aviation, and, most recently, UAS. Regulatory or-

ganizations such as the Federal Aviation Administration (FAA) and the International

Civil Aviation Organization (ICAO) mandate the use of manned collision avoidance

systems to maintain an acceptable level of safety. It consists of sensor(s) to identify

other intruder aircraft and an aircraft avoidance algorithm to recommend actions to

avoid the intruders and prevent an imminent mid-air collision.

The first and to-date only globally mandated aircraft avoidance system is the

Traffic Alert and Collision Avoidance System (TCAS) (William, 1989; Kuchar and

Drumm, 2007). It warns pilots when they are in danger of a mid-air collision and has

been mandated by the FAA on aircraft with at least ten seats. TCAS has been very

successful in preventing mid-air collisions over the years through the use of vertical

collision avoidance maneuvers. Yet, the way in which the logic was designed limits

its robustness. Specifically, the tight integration between the system components and

its sole functional design for manned collision avoidance. With the current evolution

of the NAS, TCAS can no longer completely support the safety and operational

requirements of the airspace. To meet these requirements, a major overhaul of TCAS

and collision avoidance philosophy is required.



2

In response, the Airborne Collision Avoidance System (ACAS X) program is de-

veloping an aircraft avoidance logic represented as a numeric table that has been

optimized with respect to models of the airspace (Holland et al., 2013). Using similar

operational inputs and outputs as TCAS, ACAS X generates an avoidance algorithm

via a logic optimization process using a probabilistic dynamic and multi-objective util-

ity models. The probabilistic dynamical model is a statistical representation of where

the aircraft will be in the future, and the multi-objective utility model represents the

safety and operational objectives of the system. A Markov decision process (MDP)

represents the dynamic model combined with the utility model. A numeric lookup

table is generated via dynamic programming (DP) optimization. This contrasts the

ad hoc rule-based pseudo code approach of TCAS. The ACAS X system reduces the

number of alerts and increases safety when compared to the legacy TCAS system.

Figure 1·1: ACAS X trajectory propagation methods. Nominal trajec-
tory propagation used by TCAS (green) only examines the most likely
trajectory. Worst-case trajectory propagation (red) searches the space
of possible trajectories that result in NMAC. Probabilistic trajectory
propagation (blue) accounts for the relative likelihood of all trajectories.

The MDP DP approach of ACAS X has been endorsed by the FAA, which has

designated it as TCAS’s successor. The program has been expanded to develop new

algorithms for UAS and general aviation, which are outside the historical user class of

manned, commercial aircraft. These new algorithms may leverage horizontal maneu-

vers instead of the traditional vertical maneuvers. However an ACAS X algorithm
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that considers both horizontal and vertical maneuvers separately has not developed.

Horizontal and vertical maneuvers are currently considered independently. This is

due to the consequences of the “curse of dimensionality (Powell, 2007),” a phenom-

ena of high-dimensional problems. The direct consequence of adding dimensions is

greater requirements computational power and memory for optimization. Attempts

at developing a joint MDP through a union of the horizontal and vertical maneuver

MDPs has proven to be computationally infeasible for DP optimization.

1.1 Motivation

The development of a joint horizontal and vertical maneuver MDP is important be-

cause many of the assumption about airborne collision avoidance are becoming irrel-

evant, outdated, or simply wrong in the new airspace. Supporting new user classes

as UASs is a key operational requirement and is challenging because their perfor-

mance characteristics can widely vary. Rotorcraft with their unique ability to hover

currently lack a mandate or operational collision avoidance system. Due to the range

of performances, it maybe faster to increase separation via a horizontal action. This

is especially important for UAS where certain vertical rates can potentially interfere

with communications. Examining the trade offs and relationships between different

maneuvers will lead to the development of safer collision avoidance systems.

This challenge is compounded due the historical use of vertical only maneuvers in

TCAS, there simply has been less research and development an evaluation of horizon-

tal collision avoidance maneuvers. Due to growing need for new collision avoidance

systems, insights and analysis of horizontal or joint maneuvers are becoming increas-

ingly important. While the vertical maneuver variant of ACAS X can leverage most

of the previous TCAS research and operational knowledge, there are less historical

resources to assist in formulating and optimizing a horizontal or joint maneuver MDP.
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For years, ACAS X has had a multi-organization team working on improving the op-

timization parameters and overall process. Many of these parameters are tailored for

vertical maneuvers; they may not be suitable when considering both horizontal and

vertical actions, limiting their utility of existing optimization configurations. This is

attributed to a lack of a qualitative understanding on the relationship between hori-

zontal and vertical maneuvers, better defining this will result in improvements in the

optimization.

When developing these MDPs, there exists trade-offs between the robustness and

completeness; computational requirements for optimization; and resulting operational

safety of implementing the optimal MDP solution. Computation time is a finite re-

source and is a important factor in determining the feasibility of a system. Greater

computation time results in fewer design iterations and longer development time.

Additionally, if the optimal control solution requires significantly large memory re-

quirements, it may not be operationally suitable. with Aircraft avionic systems have

finite memory resources and an aircraft avoidance algorithm must fit within memory.

Deploying new avionic systems to enhance memory could result in costly certification

and implementation problems (Kinnan, 2009). Furthermore the larger the memory

requirements, the longer the potential read-time of the policy at runtime, which can

subsequently introduce additional delay prior to maneuvers.

Understanding how aircraft behave during close encounters is critical when formu-

lating the MDP. While probabilistic models that describe aircraft behave exist, there

are constrained to a selection of states and focus on manned aircraft. This limits their

use when exploring different and new MDP formulations. A better understanding of

the aircraft encounter space would lead to more efficient MDP formulations and allow

the generation of a joint horizontal and vertical maneuver MDP for any aircraft user

class. Additionally, a better understanding of aircraft encounter dynamics outside of
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manned aircraft would provide critical insights to improve the safety of the NAS.

1.2 Objectives

Collision avoidance systems, like TCAS and ACAS X and assessments currently focus

on a small set of historically validated states. These states have been selected by hand

and directly correspond to physical dynamics than are easily observed by humans.

Hence, one primary research objective is to develop and implement a quantitative an-

alytic approach to identifying aircraft encounter states that are memory efficient and

quantify the collision risk. This supports the other primary objective of formulating

and optimizing an MDP that leverages both horizontal and vertical maneuvers; the

analytic approach will guide the MDP state selection process.

To support these objectives, a new simulation-based framework was developed.

Modifying the ACAS X framework and hard coding dynamics for each new poten-

tial state would be time consuming and inefficient. Instead a new simulation-based

framework is implemented that leverages recent advances in signals processing and

databases.

The analytic approach will apply information theoretic concepts to the aircraft

avoidance problem. New metrics that quantify the information each state provides

about a potential collision and that define the inherent collision risk for each state are

required. Formulating new MDPs will require an insight into the trade offs and rela-

tionships between different maneuvers. Since ACAS X implements a traditional DP

optimization, a new alternative optimization architecture that leverages simulation-

based dynamics is required.

These research objectives focusing on demonstrating feasibiliy of the formulating

MDP and the utility of applying information theoretics to collision avoidance. It is

out of scope to include all ten TCAS vertical commands in addition to horizontal
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commands, rather the emphasis is the development of MDP and the composition

of the information vector, that describes the “state of the world.” Additionally, the

emphasis is on the existence of an suitable MDP formulation and not the configuration

of the DP optimization.

These objectives will be met if simulated large-scale aircraft data can be processed

and used to formulate a MDP. The resulting collision avoidance algorithm will be

evaluated using a historically-validated safety and operational metrics. With the

emphasis on the evaluating of states and subsequent MDP formulation feasibility, the

research objectives in order of importance are:

1. Develop a quantitative approach for selecting aircraft avoidance MDP states

2. Generate an aircraft collision avoidance algorithm that considers both horizontal

and vertical actions

3. Implement a new simulation-based aircraft encounter analysis framework

4. Build an acuity on the relationship between horizontal and vertical maneuvers

5. Implement an alternative to ACAS X MDP optimization framework that allows

greater flexibility in algorithm design

1.3 Contributions

The development of the simulation-based framework was the enabling technology to

meet the research objectives. The framework enabled the highest fidelity analysis of

Monte Carlo aircraft encounter simulations to date. It extends upon the development

of probabilistic aircraft models and Monte Carlo aviation simulations. Generally only

summary statistics are collected for each encounter with only a subset of individual

encounters inspected with higher fidelity. The developed framework enables order
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of magnitude greater amount of data to be processed, leading to the calculation of

state-transitions for a MDP formulations. The flexibility of the framework did not

constraint state selection nor the time horizon, enabling a high fidelity exploration

of the aircraft encounter space. Observing all potential states from a Monte Carlo

simulation instead of calculating each state during optimization, enables a new flex-

ibility algorithmic design capability. Existing aircraft encounter models are limited

to modeling aircraft at one second intervals, which can make it difficult how evolves

over time. Analysis of Monte Carlo simulations based on these models overcame this

limitation and lead to a new perspective on horizontal and vertical maneuvers.

In addition to exploring different states, the framework was leveraged to the de-

velopment of new information theoretic metrics. Information theory and the concept

of entropy had sporadically been applied to aviation safety and was mostly applied

for strategic problems. There was only a few instances of applying these concepts to

a tactical aviation problem like collision avoidance. The development and successful

use of the near mid-air collision (NMAC) entropy and NMAC horizon metrics demon-

strated the viability and potential of applying information theoretics to aviation safety

problems. Specific contributions were made in quantifying risk and assessing an MDP

prior to optimization and policy assessment.

ACAS X has been a very successful research and development effort that is paving

the way forward for the next generation of operational aircraft avoidance. The ini-

tial clear focused towards manned aircraft, lead to some design decisions to limit the

flexibility of the developed framework. Specifically, the barrier of the curse of di-

mensionality and the challenges to developing a horizontal and vertical action policy.

The contributed simulation-based approach leverages the concept of MDP DP while

introducing new flexibility for algorithmic design. This can easily be extended to

different user classes such as rotorcraft and airships.
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Finally, a new and alternative framework for aircraft MDP algorithm development

was created. Leveraging this framework resulted in an extending collision avoidance

algorithms to consider both horizontal and vertical maneuvers. An ACAS X frame-

work can now be built to model and optimize this MDP formulation. Introducing

additional optimization and MDP parameters to meet operational requirements and

specific airspace modes can now begin. The simulation-based methodology however

should result in less of these parameters, specifically with regards to response delay

and maneuver coordination.

1.4 Outline

This document details the work completed over ten months associated with a M.S.

thesis. Throughout this document, altitudes are in ft, vertical rates in ft/sec, airspeed

in ft/sec. Time is reported in seconds (s). These units slightly differ from standard

units used in aviation. The document consists of six chapters:

Chapter 1 introduces the thesis and it’s motivations, objectives, and contributions.

Chapter 2 overviews MDP optimization, aircraft avoidance, and encounter models.

Chapter 3 considers the formulation of the MDP and simulation-based framework.

Chapter 4 discusses how the framework from Chapter 3 was implemented.

Chapter 5 examines the formulations and the performance of the algorithms.

Chapter 6 summarizes this thesis’s contributions and future work.

Appendix A lists the states observed in the Monte Carlo simulations.

Appendix B defines different types of aircraft encounters.



Chapter 2

Background

This chapter provides relevant background material. First, it overviews MDPs and

how they are used in optimization. Computational concerns for optimization follow.

Next, a history of aircraft collision avoidance systems is provided with an empha-

sis on specific system. Finally, probabilistic models of aircraft encounters used in

simulations, optimization, and safety studies are discussed.

2.1 Markov Decision Process Optimization

MDPs have been a topic of research since the 1950’s and have modeled a wide vari-

ety of problems (Bellman, 1956; Bertsekas, 2005; Puterman, 2009), including aircraft

encounters. The state of the world is assumed to evolve according to a fixed, poten-

tially nonlinear, dynamic model. Solving an MDP involves searching for a strategy

for choosing actions, also called a policy, that maximizes a performance metric, a cost

associated with each combination of an action, current state, and future state.

A MDP’s formal definition is a discrete time stochastic control process where

there is some probability to transition from state s to s′ where S is the a set of all

states. Given a set of actions A, the transition matrix T indicates the transition

probability for each pair of states in S. The cost matrix g encodes an associated

cost for each transition. The work described implements a finite discretization for all

9
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states, however this is not required. Mathematically, this is represented as a 4-tuple:

| S | <∞ (2.1)

| A | <∞ (2.2)

Ta(s, s
′) = P

(
st+1 = s′|st = s, at = a

)
(2.3)

ga(s, s
′) = c(st+1=s′|st=s,at=a) (2.4)

The state-transitions are assumed to be Markovian, with sufficient information

provided for the states. To be Markovian, the state-transitions must be “memoryless,”

defined by Equation 2.5, where st+1 only depends on st and given a present state

st, no past states st−1, ..., s0 give no additional information about the future state

st1 (Papoulis and Pillai, 2002). Previous work by Kochenderfer has validated the

Markovian assumption for aircraft avoidance optimization problems (Kochenderfer

and Chryssanthacopoulos, 2011).

P
(
s(tn) ≤ sn(t) | s(t)

)
= P

(
s(tn) ≤ xn | s(tn−1)

)
∀t ≤ tn−1 (2.5)

While a general MDP can be used when the state information vector is noisy, a

partially observed Markov decision process (POMDP) is more suitable. A POMDP

includes an additionally observation model that generates an information vector based

on the states. Several different POMDP solution strategies assume full observability

using a DP algorithm (Littman et al., 1995; Hauskrecht, 2000; Fernández et al., 2006;

Ross et al., 2008). A POMDPs formulation has been applied to aircraft avoidance

problems (Kochenderfer and Chryssanthacopoulos, 2011; Bai et al., 2012). However

the research discussed only considers a MDP formulation but can easily be extended

to an POMDP.
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2.1.1 Solving MDPs

While, MDPs can be solved in multiple ways, an DP based framework has shown

to be effective for aircraft encounter problems. The optimal policy is defined by the

optimal expected cost function JK which is calculating via an iterative process. First,

the function is initialized to zero for all states. Next, iterations of Jk are calculated

given the function Jk−1 until the desired horizon K.

J0(s) = 0 ∀s (2.6)

Jk(s) = min
a


g(s, a) +

∑

s′

T (s, a, s′)Jk−1(s′)


 ∀0 < k < K (2.7)

JK(s, a) = min
a


g(s, a) +

∑

s′

T (s, a, s′)JK−1(s′)


 ∀k < K (2.8)

The optimal K-step policy µ is the minimum of the expected cost function for all

states and actions at each time step. Equation 2.9 defines the subproblem nature of

DP, where the many smaller subproblems are solved and then combined to determine

the overall optimal solution (Bellman, 1956).

µ∗K(s) = arg min
a
JK(s, a) (2.9)

In practice, aircraft avoidance MDP problems have been solved where the state

transitions and costs are calculated during optimization. The state-transition matrix

probabilities and cost criteria are then provided as input to the optimization algo-

rithm. This results in a tight coupling between the inputs and the potential states

and difficult to add new states or controls. A simulation-based approach where the

MDP is calculated prior to optimization has not been seriously considered prior. This

can be attributed that is unfeasible, nor practical, to calculate a one-step transition

matrix with large number of state variables across many dimensions for DP.
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As of most physical systems, aircraft operate as continuous variables in NAS

but are often discretized for simulation. The field of approximate DP has studied

several different approaches (Powell, 2007) to address this, including the use of neural

networks (Bertsekas and Tsitsiklis, 1995) and decision trees (Munos and Moore, 2002).

A grid-based discretization (Davies, 1997) has shown to be a sufficient approximation

for aircraft avoidance MDPs (Kochenderfer and Chryssanthacopoulos, 2011).

2.1.2 Shape Optimization

MDP DP is a specific approach to calculating an optimal policy but there are many

ways to model and define the optimization itself. One general technique is simulation-

based learning and models. In this regard, the simulation model can be thought of as

a “mechanism that turns input parameters into output performance measures (Law

et al., 1991).” The simulation itself is a function, whose explicit form is unknown,

given a set of inputs and is represented as a set of numeric values (April et al., 2003).

Given a function, optimization is very similar to the traditional iterative techniques.

Defining the function is often a challenge but can significantly impact the optimization

behavior, “Since simulations are computationally expensive, the optimization process

would be able to search the solution space more extensively if it were able to quickly

eliminate from consideration low-quality solutions, where quality is based on the

performance measure being optimized (Laguna and Mart́ı, 2002).”

A specific application of simulation-based learning is shape and topology optimiza-

tion. Shape optimization is the process of optimizing the MDP formulation prior to

calculating the optimal policy. A shape is considered optimal if it minimizes a cer-

tain cost function while satisfying known constraints. This is typically labeled as a

state-space search (Torczon, 1997) and generally solved via numerical iteration.

Shape optimization can also be applied to the cost matrix. In principle, cost

shaping is encoding additional information into the cost matrix in attempt to manip-
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ulate the optimal policy. Conceptually, this can be viewed as giving the optimization

algorithm a “hint.” It is considered a form of approximate DP (Powell, 2007) and

have been applied to linear programming problems (de Farias and Van Roy, 2006)

and selection of an appropriate cost matrix (de Farias and Weber, 2008).

Another technique are online costs, which are used by ACAS X (Asmar and

Kochenderfer, 2013), the aircraft avoidance algorithm described in Section 2.3.3. This

approach first generates an optimal policy using a fixed cost matrix. During policy

execution, additional online costs are added and the expected cost for each state-

transition and actions are calculated at runtime. An advantage is that the initial

optimization does not include the state variables associated with the online costs,

thus saving memory and computational power. However, a disadvantage is that the

true optimal policy can only be identified via simulation.

A similar concept found in statistics is response surface methodology (RSM),

which explores the relationships between explanatory and response variables (Box

and Wilson, 1951). Through iteration, an easy to estimate and apply approximation

of the optimal response can be obtained, regardless of the observed system. RSM

starts with exploring which explanatory variables that influence the response vari-

ables. Once identified, these variables are used to build a more complicated model.

Some extensions of response surface methodology deal with the multiple response

problem (Myers et al., 2009).

Closely related to RSM is surrogate modeling which models the response and

views the inputs as a “black box (Audet et al., 2000).” ACAS X has used surrogate

modeling for specific operations, such as closely spaced parallel operations (Smith,

2013). As a form of shape optimization, it explores the design space and enables better

prediction of the functional response (Jones et al., 1998). It is considered a better

process to produce ideal ACAS X alerting behavior than hand tuning parameters.



14

2.2 Computational Considerations

Any MDP and optimization parameters must be stored in memory, for complex prob-

lems, such as aircraft encounters, memory requirements can become very large. The

computational requirements for representing an MDP can increase due to a variety of

factors such as expanding the state space or increasing the discretization of existing

states. The computation efficiency and performance are important in evaluating the

feasibility of the optimization.

A single simulated aircraft encounter can include over 50 states and metrics for

each one-second interval. For hundreds of thousands individual encounters that can

each last for a few simulated minutes, the computational requirements become very

steep. Instead of storing all the simulation state outputs, Monte Carlo aircraft sim-

ulation results often include summary statistics supplemented with more in depth

analysis of specific examples. Previous research have not compiled a complete distri-

bution of simulation variables. Working with extremely large data sets are common

to both commercial and research projects and significantly work have gone into de-

veloping systems to accommodate these data sets.

2.2.1 Storage and Access

Databases are used to store Monte Carlo aircraft simulation results. Parallel databases

are designed to quickly ingest large datasets and provide reasonable access to (De-

Witt and Gray, 1992) Google pioneered the technology with it’s BigTable (Chang

et al., 2008) technology, followed by Apache Accumulo (Apache Software Foundation,

2014), a column based “NoSQL” database (Stonebraker, 2010). Data is represented

as a triple store of strings consisting of a row key, a column key, and a value that

correspond to the entries of a sparse matrix. An advantage to triple stores over a

relational schema, is that triple stores are optimized for storage and retrieval.
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Accumulo and “NoSQL” provide Basic Availability, Soft-state, Eventual consis-

tency (BASE) (Cattell, 2011), and guarantee that queries will provide the same an-

swers eventually. This relaxed consistency contrasts traditional databases with a high

level of Atomicity, Consistency, Isolation, Durability (ACID) (Cattell, 2011). High

ACID databases guarantee that separate queries of the same data at the same time

will give the same answer. A key advantage of a relaxed consistency database is that

it can be built simply and provide high performance on commodity computing hard-

ware. Accumulo is considered the one of highest performing databases and is widely

used for government applications (Byun et al., 2012).

Leveraging the tuple and triple-store concepts, Dynamic Distributed Dimensional

Data Model (D4M) (Kepner et al., 2013), a uniform mathematical framework based

on associative arrays was developed. An associative array is an abstract data type

that is a collection of keys associated with a value (Mehlhorn and Sanders, 2008).

D4M doesn’t require a priori knowledge of the data for ingestion or parsing, so little

a priori query optimization is required.

Accumulo and D4M have four specific features which make it ideal for recording

complete Monte Carlo aircraft encounter simulations: row store, sparsity, unlimited

columns, and high performance. Accumulo is a row store, so any row key can be

looked up in constant time. The D4M schema stores both the database and its

transpose, so any row or column can be looked up in constant time. This is due to

data represented as extremely sparse tables, only non-empty columns are stored in

a row. Additionally, there is no penalty for adding columns; resulting in the ability

for unlimited columns. Finally, these features are enhanced by the high performance

nature of Accumulo and D4M. Since it is parallel and distributed, many processes

can modify the database across various tables in an efficient matter.



16

2.2.2 Matrix Representation

While databases store information, how to represent mathematically is also impor-

tant, specifically MDP state-transition and reward matrices as square matrices. The

basic data structure for a matrix is a two-dimensional array. Each entry in the array

can be accessed by the two indices i (row) and j (column). A sparse matrix is a m×n
matrix populated primarily with zeros as elements of the table (Pissanetzky, 1984).

By contrast, if a larger number of elements differ from zero, then it is common to

refer to the matrix as a dense matrix.

Sparsity corresponds to systems which are loosely coupled and is useful in combi-

natorics or physical dynamic models which have a low density of significant data or

connections. Dynamics of physical objects, such as aircraft, are assumed to be loosely

coupled due to kinematic constraints. For example, it is unrealistic for an aircraft

to travel one mile in one second. This coupling can result in a diagonally dominant

state-transition matrix. Equation 2.10 defines a diagonally dominant matrix where

the magnitude of the diagonal entry in a row is larger than or equal to the sum of the

magnitudes of all the other (non-diagonal) entries in that row. A symmetric diago-

nally dominant real matrix with nonnegative diagonal entries is positive semidefinite,

an important optimization characteristic.

| Pij | ≥
∑

j 6=i
| Pij | ∀i (2.10)

Special mathematical algorithms have been developed to leverage the structure of

sparse matrices to improve computation speed (Yuster and Zwick, 2005), as quantified

by Big O notation (Black, 2014). For dense matrices, the simplest algorithm for

matrix multiplication of one n × m matrix and one m × p matrix is O(nmp), thus

two n× n matrices has complexity of O(n3). Sparse matrices are typically solved in

parallel. If n is the number of non-zeros in the row, then the depth of the computation



17

is the depth of the sum, which is O(log n), and the work is the sum of the work across

the elements, which is O(n).

For an m × n dense matrix, enough memory to store up to m × n entries to

represent the matrix is needed. Conversely, a sparse matrix only stores the nonzero

elements and their indices and often eliminate operates on zero elements, leading

to potentially substantial reduction in memory requirements. The memory savings

are illustrated by Figure 2·1, which plots the memory requirement for a MAT-

LAB 10,000 × 10,000 square matrix as a function of percentage of nonzero ele-

ments. For a 100,000,000 element matrix, the full dense matrix requires a constant

800,000,000 Bytes (0.8 Gigabytes) of memory. The full and sparse matrices have the

same memory requirements when 50% of the elements are nonzero.
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Figure 2·1: Memory required for MATLAB 10,000 × 10,000 matrix.

As the percentage of nonzero elements approaches zero, exponential memory sav-

ings can be realized using a sparse representation. The constant memory requirement

for full dense matrices prevents MATLAB from holding large, multi-dimensional MDP

matrices in memory.
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2.2.3 Entropy

Given an allotment of memory constrained by the matrix representation, the entropy,

a probabilistic representation of information content, can be quantified. From a finite

sample of states, Shannon’s entropy for an event X is (Shannon, 2001) :

H(X) =
∑

i

Pr(xi)I(xi) (2.11)

= −
∑

i

Pr(xi) logb Pr(xi) (2.12)

A common logarithmic base b is 2. A key characteristic is additivity, which asserts the

quantity of entropy is independent of different parts of the process. Thus, the total

entropy of a system can be calculated from the individual entropies of each of it’s

sub-systems if the interactions between the sub-systems are known. Given a known

interaction, then the conditional entropy of two events X|Y can be calculated:

H(X|Y ) =
∑

i,j

p
(
xi, yj

)
log

p(yj)

p
(
xi, xj

) (2.13)

Entropy is a seminal metric in communications (Fang et al., 1997) and is widely

used as weighting for optimization (Bejan, 1995) or state-space exploration (Doye

and Wales, 1998). However, it has sparsely been applied to aviation safety systems.

Entropy has represented the total population of aircraft operating in an airspace

to guide an strategic air traffic optimization method (Lv et al., 2013); focusing on

minimizing the occurrence of aircraft encounters, rather than issuing collision avoid-

ance maneuvers. Another strategic effort used defined an aircraft obstacle avoidance

problem where entropy quantified terrain (Doebbler et al., 2005).

For close-encounters, Šǐslák proposed an autonomous aircraft avoidance algorithm

using a game theory approach where entropy defines the amount of information pro-

vided to each aircraft in a Nash equilibrium (Šǐslák et al., 2009). This is analogous
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to defining entropy to quantify coordination between aircraft or probabilistic knowl-

edge of the intruder’s aircraft potential maneuvers. Lai uses a relative entropy rate

for target tracking and acquisition for a vision-based UAS sense and avoid (SAA)

system (Lai, 2010). Entropy concepts have been used to calculate aggregate weights

for evaluating airborne weapon systems (Mon et al., 1994; Cheng, 1997), a similar

problem where the objective is to collide rather than avoid.

2.3 Aircraft Avoidance Algorithms

The previous sections established the theoretical and computational aspects of MDP

and simulation-based learning. The primary research objective is to develop an air-

craft avoidance algorithm. Understanding current and future manned and UAS avoid-

ance algorithms are important to developing design criteria and decisions.

Regardless for use on manned or unmanned aircraft, these systems need to prevent

or minimize the risk of a NMAC. A NMAC is often used a surrogate for collisions

when evaluating safety performance. It is defined as an incident associated with the

operation of an aircraft in which a possibility of collision occurs as a result of proximity

of less than 500 ft horizontally and less than 100 ft vertically to another aircraft, or a

report is received from a pilot or a flight crew member stating that a collision hazard

existed between two or more aircraft. An aircraft avoidance maneuver algorithm will

issue a maneuver advisory, a recommended maneuver to reduce NMAC risk. The

algorithm needs to consider a variety of factors, any of which can could be potential

state variables in an optimization:

• Aircrafts’ performance limits

• Aircrafts’ position and airspeed

• Aircrafts’ dynamic rates

• Airspace class

• Effect on air traffic control (ATC)

• Number of aircraft
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• Operational suitability

• Pilot or aircraft response

• Right of way rules

• Traffic density

As technology and the NAS evolves, different collision avoidance capabilities and

systems have been developed. Aircraft collision avoidance has been identified as a

global safety requirement since a series of mid-air collisions in the 1950s.

The 1956 collision between two airliners over the Grand Canyon, the first commer-

cial airline crash to result in more than 100 deaths, highlighted the collision risk and

led to the establishment of the FAA in 1958. These collisions spurred both the airline

and aviation authorities to initiate development of effective collision avoidance sys-

tems (Schlager, 1994). Morrel provided the first mathematical representation of the

aircraft avoidance problem (Morrel, 1956) and subsequent early attempts of collision

protection include strategic airspace design and tactical ATC.

For several decades thereafter, a variety of approaches to collision avoidance were

explored, until 1974, FAA narrowed its focus to the Beacon Collision Avoidance

System (BCAS), a transponder-based airborne system that was operationally suitable

only in low-density airspace. In 1978, a mid-air collision near San Diego resulting in

144 fatalities led to the expansion of the collision avoidance effort; in 1981, the name

was changed to the TCAS and developed for all airspaces (Harman, 1989). TCAS

is now required worldwide for manned aircraft 1 and provides a collision avoidance

functionality as one part of a layered air traffic management (ATM) architecture.

With the advent of UAS integration into the NAS,the integrated ATM system

is comprised of independent conflict management layers to mitigate collision risk

with manned and unmanned aircraft taking different responsibilities. UASs require

a unique SAA capability to maintain well clear from and avoid collisions with other

1Aircraft with a maximum take-off mass of over 5700 kg (12,600 lb) or authorized to carry more
than 19 passengers.
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Figure 2·2: Development and evolution of airborne collision avoidance

airborne traffic (Federal Aviation Administration, 2013). The FAA has not (nor will

ever) certify the use of TCAS as an acceptable alternative for UAS SAA requirements.

A supporting argument for this lack of certification is that historical manned aircraft

performance assumptions are not applicable to UASs. In response, new collision

avoidance avoidance algorithms are being developed along with UAS-specific systems

that also must meet a self separation requirement to maintain well clear of other

aircraft (Code of Federal Regulations, 2011).

OtherATM system evolutions, such as future airspace requirements and imple-

menting of NextGen ATM, requires a major overhaul of TCAS and collision avoid-

ance philosophy. New collision avoidance systems need to function with a variety

of different possible surveillance sources, such as automatic dependent surveillance-

broadcast (ADS-B) (Lacher et al., 2007). For UAS, collision avoidance systems should

be cognizant of self separation systems that protect against well-clear violations. Tra-

ditionally it is viewed that self separation leverages gentler horizontal maneuvers while

collision avoidance implements stronger vertical maneuvers leading to a layered SAA

architecture.
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Horizontal self separation
(well-clear)

Vertical collision avoidance
(NMAC)

Figure 2·3: Traditional collision avoidance and self separation layered
architecture

2.3.1 TCAS

The TCAS was the first and only airborne collision avoidance system to be man-

dated on all large manned transport aircraft. It uses an on-board beacon radar to

monitor the local air traffic and logic to determine when to alert pilots to potential

conflicts (Williamson and Spencer, 1989) and has been shown to significantly improve

safety (Espindle et al., 2009; European Organisation for the Safety of Air Navigation,

2011). TCAS consists of a sensor and algorithm; the algorithm is implemented as

pseudocode designed through human expert opinion. The coupling of the sensor to

the algorithm and the pseudocode design makes it very difficult to modify or upgrade

TCAS.

TCAS implements a five dimension state space and does not directly consider any

horizontal states. This is a consequence of the TCAS sensor which provides signif-

icantly better aircraft estimates in the vertical axis than horizontal. Additionally,

due to the reliance on beacon surveillance, TCAS does not protect against aircraft

that are operating without a transponder. Thus the TCAS state space consists of the

following and is illustrated by Figure 2·4:
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• τh: TCA horizontally,

• ∆h: relative altitude,

• ḣo: vertical rate of ownship

• ḣi: vertical rate of the intruder, and

• sRA: state of RA.

These states were not selected via an analytic approach due to the technology

available in the 1970’s and 1980’s. Instead states that could be easily correlated

with observed aircraft dynamics (i.e. vertical rate) or the output of the surveillance

system were selected. However some assumption are no longer appropriate. For

example, level flight was defined as a vertical rate of ±10 ft/s (600 ft/min) (Clark and

McFarland, 1977), yet some UASs’ maximum vertical rates or less than ±10 ft/s.

ḣi ḣo∆h

τh

sRA

Figure 2·4: TCAS states

The TCAS algorithm mimics many of the concepts put forth by Morrell in 1956 (Mor-

rel, 1956). The τ aggregate feature was introduced as a sufficient approximation of

separation due to either poor surveillance or to simplify the dynamic model due to the

complexity of calculating the separation distance. τ can be considered a countdown

to collision and for unaccelerated flight the true time till collision and τ are suffi-

ciently similar. The TCAS algorithm defines a close encounter as potential collision

between aircraft within τh <= 45 s, which is the range of the 30–60 s minimum alert

(“escape”) time originally recommended by Morrell. Finally, three states quantify

the vertical axis and sRA is a discrete variable that represents the advisory.
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An advisory is either a traffic alert (TA) or RA. A TA notifies pilots that another

aircraft is in the vicinity. A RA is a stronger advisory when there is significant NMAC

risk and is a direct vertical maneuver to prevent a conflict. The TA and RA alerting

regions can vary by altitude layer, as illustrated by Figure 2·5.

600 ft
850 ft

RA Region

TA Region

Figure 2·5: Example TCAS altitude criterion for 5000–10,000 ft.

Generally, a TCAS RA is either preventive or corrective and issues an RA 40 s or

less prior to a safety conflict. A preventive RA, such as maintain or do not climb, is a

maneuver that prevents a risker encounter geometry and is generally a less disruptive

maneuver. Table 2.1 lists all TCAS corrective RAs actions.

Table 2.1: TCAS correction RA action set.

Command Description

COC Clear of conflict
MLTO Multithreat level off or composite advisory
MDES Maintain descend
MCL Maintain climb
DES2500 Descend at 2500 ft / min
CL2500 Climb at 2500 ft / min
DES1500 Descend at 1500 ft / min
CL1500 Climb at 1500 ft / min
DNC Do not climb
DND Do not descend

During initial development, TCAS implemented both horizontal and vertical ma-

neuvers (Clark and McFarland, 1977; Zeitlin, 1979). Due to the simper dynamics of

the vertical axis and poor azimuth accuracy of the TCAS sensor, horizontal maneu-

vers were removed as TCAS matured from a research to operational system. However,
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the TCAS architecture allowed for future research of horizontal maneuvers, as evident

by left-over horizontal maneuver code in the TCAS pseudocode.

2.3.2 Horizontal TCAS

During initial TCAS development, horizontal maneuvers were considered “passive”

while vertical maneuvers as “active” and designed so that a combination of horizon-

tal and vertical maneuvers could be displayed to the pilot. After TCAS simplified

the algorithm to only leverage vertical maneuvers, subsequent efforts to incorporate

horizontal maneuvers include Enhanced TCAS II and TCAS III.

Enhanced TCAS II was developed by the Bendix Corporation in the first half of

the 1980’s. It implemented only horizontal maneuvers with the algorithm consider-

ing horizontal acceleration and miss distance error (Sinsky et al., 1984). Additional

sensors and surveillance information were incorporated to address the poor azimuthal

accuracy of the TCAS sensor. Specifically, the algorithm uses the standard deviation

of the horizontal miss estimate, σD and σB, the angular rate’s standard deviation:

σD = (vo + vi)τ
2
hσB. (2.14)

The algorithm implements a straight line linear projection and attempts to achieve

a horizontal miss distance approximately a third of the potential horizontal displace-

ment, as depicted by Figure 2·6. The algorithm designer’s claimed that a safe hor-

izontal maneuver is possible if the error in estimating miss distance is smaller than

the aircraft’s ability to outmaneuver that error.

In the second half of the 1980’s MIT Lincoln Laboratory (MIT LL) explored the

feasibility of a probabilistic method for selecting between horizontal and vertical ma-

neuvers (Wood, 1987). They explored the dynamics of aircraft avoidance maneuvers

and associated operational impacts. Due to NMAC defined as greater in the horizon-
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X
vi vo3σD

rh = (vo + vi)τh

Figure 2·6: Enhanced TCAS II algorithm (Sinsky et al., 1984).

tal plane (500 ft) than the vertical axis (100 ft), it simply takes longer to maneuver

and requires greater displacements. For commercial manned aircraft where vertical

maneuvers were shown to be sufficient, the benefits of including horizontal maneu-

vers could be minimal. It is noteworthy because this probabilistic model did not

leverage τ , instead directly using horizontal and vertical separation at closets point

of approach (CPA) and true aircraft states.

Majority of horizontal TCAS research and development focused on surveillance

and bearing measurements rather than robust algorithm designs. Achieving an ac-

ceptable position and bearing rate error were not feasible during development (Burgess

et al., 1994; Burgess and Altman, 1995) and is a cited as a major factor in not tran-

sitioning these algorithms to an operational capability. With recent advantages in

surveillance technology, sufficient azimuth measurements can now be obtained.

2.3.3 ACAS X

In 2009, the FAA TCAS Program Office began formal research on the next genera-

tion of collision avoidance system designed to improve upon the level of safety and

operational performance provided by TCAS, termed ACAS X (Holland et al., 2013).

It adopts a completely different design methodology than TCAS based on decision

theory (Kochenderfer et al., 2012). This new approach involves automatically deriv-

ing the optimal logic based on explicit probabilistic models and cost functions that

represent the objectives of the system. Development is then focused on choosing
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models and cost parameters to achieve safety and operational performance objectives

rather than modifying pseudocode likeTCAS. In addition to greatly simplifying the

development and maintenance of the system, ACAS X accommodates a variety of

different sensor systems, enabling new procedures and user classes. There are four

ACAS X variants actively being developed (Holland et al., 2013):

• ACAS Xa (active) is intended to replace TCAS. It incorporates active transponder-

based observations to provide global protection against tracked aircraft.

• ACAS Xo (operation) provides operation-specific alerting during procedures

such as closely-spaced parallel runway operations. Xo facilitates procedure-

optimized alerting against a user-selected aircraft while providing global Xa

protection against all other traffic (Smith, 2013).

• ACAS Xu (unmanned) is designed for UASs and accepts a variety of surveillance

inputs and uses logic optimized for a UAS performances (Brooker, 2013).

• ACAS Xp (passive) will be used on low-performance general aviation aircraft

and helicopters that currently lack certified SAA capability. It passively re-

ceives surveillance information and provides vertical guidance optimized for the

expected range of aircraft performance (Billingsley et al., 2012).

General Overview

ACAS X consists of three systems: surveillance, logic, and display. The surveillance

system detects and tracks local air traffic and through a use of weight samples, rep-

resents an aircraft’s state estimate. Unlike TCAS which is optimized for only the one

transponder-based surveillance system, ACAS X is more flexible and configured as a

a plug-and-play system. This is a benefit to the decision theory architecture. Given

that a surveillance system meets certain performance criteria, it can be integrated
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into ACAS X; enabling support for ADS-B or non transponder-based surveillance

systems, such as electro-optical and infrared sensors.

The logic system uses the weighted state samples as input and decides which advi-

sory, if any, to display to the user. The ACAS X logic is tuned using a structured, it-

erative, computational DP process to improve relative to operational and safety goals.

The ACAS X cost function incorporates factors pertaining to safety and operational

performance. For example, a state which is associated with an NMAC will incur a

penalty cost to discourage transitions into an NMAC-related state. Through using

MDPs, the logic accounts for uncertainty in the aircraft dynamics and pilot response,

leading to significantly improved robustness compared to TCAS (Chryssanthacopou-

los and Kochenderfer, 2011), while handling multiple simultaneous threats (Chrys-

santhacopoulos and Kochenderfer, 2012).

The display system provides the user with the recommended advisory. The display

system is dependent upon the ACAS X variant and user class. Unlike TCAS, ACAS X

does not assume users are a trained private pilot (McCarley and Wickens, 2004).

The display must also be accessible enough to maximize pilot compliance (Pritchett

et al., 2012). As ACAS X transitions to operational capabilities, display research will

become a greater focus.

Finally, the common ACAS X framework results in these variants being interoper-

able with each other and with legacy versions of TCAS. For variants with similar con-

trols, ACAS X coordinates complementary maneuvers with either ACAS X or TCAS

over a datalink (Kochenderfer and Chryssanthacopoulos, 2011). This coordination is

achieved by imposing constraints in the cost function.

Logic Design

Of the variants, ACAS Xa is the most mature and ACAS Xu is one of few attempts

to fully develop a horizontal action algorithm in over a decade. ACAS Xa was the
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Figure 2·7: ACAS X logic development approach. Nodes in yellow
represent the models, blue nodes represent the computer optimization
process based on the model, and those in red represent the implemen-
tation at runtime.

first variant developed and provides both the theoretical foundation and code base

for all other variants. A fifteen month tuning effort to optimize costs and focused on

improving performance using existing transponder-based surveillance culminated in

a proof-of-concept flight test in 2013 (Holland et al., 2013). The multi-year tuning

effort highlights the difficulty in generating the cost matrix.

Unlike TCAS which leverages a deterministic pilot response model and linear

extrapolation to predict future states, ACAS X implements a probabilistic pilot re-

sponse. It has been observed via radar data that there is significant variability

significant variability in the delay and strength of the response of pilots to advi-

sories (Kuchar and Drumm, 2007). This is reasonable since humans are almost never

deterministic in anything (Rasmussen, 1983).
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ACAS Xa shares the same action command set as TCAS, previously described in

Table 2.1 and state state described in Section 2.3.1. This is rational because ACAS Xa

will replace TCAS. Instead of psuedocode, ACAS Xa is the implementation of an

optimal MDP using a state space represented as a multidimensional discretized grid.

The proof-of-concept DP algorithm used horizontal range instead of τh and the model

parameters were chosen by hand without any analytical assessment (Temizer et al.,

2009). As the approach evolved into ACAS X program, majority of the research

effort focused on the optimization process and parameters, rather than the state-

transition representation. These initial efforts recognized that resources such as the

probabilistic encounter models exist and could for used for state space exploration.

This reorganization was a contributing factor to the development of the research

objectives described in Section 1.2.

ACAS Xu arose from the limited vertical capabilities of many UASs and the

development of self separation SAA. Some UAS can only acheive vertical rates of

approximately ±12.5 ft/sec (750 ft/min), half of what TCAS and ACAS Xa assume for

the vertical maneuvers. With the rapidly growing need for UAS airspace access, a

comprehensive state space search was not feasible. Instead, ACAS Xu adopted a

similar approach to the ACAS Xa by reducing an axis into a τ state; whereas ACAS

Xa reduced the horizontal plane to τh, ACAS Xu reduced the vertical axis into a

vertical aggregate feature τv. The horizontal plane is then decomposed into first

order states, resulting in a seven dimension state space:

• rh: horizontal range,

• ψi: own aircraft heading,

• ψ̇: relative heading rate,

• vo: own aircraft airspeed,

• vi: intruder aircraft airspeed,

• τv: time of closet approach (TCA)

vertically, and

• sRA: state of the RA.
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The state space is larger due since the horizontal axis is a plane whereas the

vertical axis is geometric line. Relative geometry has four quadrants, unlike ACAS

Xa where relative geometry only has two (above and below).

ACAS Xu does not currently implement a uniform grid discretization. This is due

to a variety reasons but foremost is that the horizontal spatial space is spatially larger.

Whereas the maximum separation in ACAS Xa is ±4000 ft vertically, ACAS Xu has a

maximum separation of 60,760,ft (10,miles) horizontally. ACAS Xu must also account

for π wrap around for the heading variables which significantly increases the number

of states in these dimensions. The corresponding increased memory requirements

prevent a simple merger of the ACAS Xa and ACAS Xu state spaces.

2.3.4 Non-Dynamic Programming Based

In addition to the upgrading and maintaining TCAS (Espindle et al., 2009) and

the development of dynamic programming-based SAA via the ACAS X program,

other SAA effort have taken place over the past decade. The Multiple Intruder

Autonomous Avoidance (MIAA) program leveraging the Jointly Optimal Collision

Avoidance (JOCA) algorithm (Graham et al., 2011) and the U.S Navy’s Triton pro-

gram implementing due-regard operations (Lutz et al., 2013) are briefly discussed

with emphasis on how they represent the aircraft avoidance problem.

Jointly Optimal Collision Avoidance

The JOCA algorithm is part of the MIAA system currently in development (Graham

et al., 2011) whose goal is to develop a UAS capability to autonomously detect and

perform collision avoidance against all aircraft classes. MIAA has the capability to

ingest position and velocity information; ownship intent information such as current

control values and way points; and TCAS information.

JOCA provides the optimal trajectory control solution to the Multi-sensor Inte-
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grated Conflict Avoidance (MuSICA) system (Graham et al., 2011). JOCA is a type

of online model predictive control (MPC) algorithm that selects a maneuver based on

minimizing a cost function at each time step and uses an internal aircraft response

model to predict the trajectory of the unmanned aircraft. Figure 2·8 shows the ma-

neuver selection hierarchy used by JOCA’s MPC algorithm. Instead of optimizing

over a state space, JOCA simply calculates each potential trajectory and is limited

by the computational power required to calculate a set of trajectories. Additionally,

for intruders with a transponders, JOCA requires TCAS.

Stay within ATC corridor

Keep intruder in field-of-view limits

Stay well clear (2460 ft)

Passive ranging maneuver

Right of way

Follow TCAS RA

820 ft
separation

Figure 2·8: JOCA MPC maneuver selection hierarchy.

It takes course deviation into account by calculating how much the maneuver

will deviate from its intended course. It also estimates how a maneuver will affect

its estimate of the intruder’s position by considering where the intruder will be in

the sensor field of regard and using an extended Kalman filter tracker (Chen et al.,

2011). If the intruder is noncooperative, the aircraft has to be able to continuously

track the intruder aircraft with its on-board sensors. Passive ranging maneuvers

can also increase the confidence of the estimate of the intruder’s relative position

and velocity (Shakernia et al., 2005). It chooses maneuvers that, when appropriate,

comply with right of way rules for aircraft (ICAO, 1990) and with TCAS RAs.
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Due Regard

A different approach is to provide guidance to the UAS human controller, who will

decide and issue SAA commands. As part of the due regard safety case, this approach

relies on minimizing UAS operations in high traffic densities. Simulations to assess

the potential efficacy of the approach leverages an advisory logic developed from pseu-

docode based on expected human responses, instead of a mathematical model like a

MDP or MPC. The psuedocode is based on Department of Defense (DOD) Instruc-

tion 4540.01 which describe procedures for military aircraft to conduct operations in

international airspace that cannot be performed under ICAO flight procedures. These

options include (Department of Defense, 2007):

• Aircraft shall be operated in visual meteorological conditions.

• Aircraft shall be operated within surveillance and radio/satellite communica-

tions of a surface and/or airborne facility.

• Aircraft shall be operated outside controlled airspace.

From an optimization perspective, it is extremely difficult to represent these op-

tions as a discrete state space, many different discrete states would be required. The

state space would rapidly expand and a comprehensive representation has not been

shown to be feasible. As such this approach provides little insight into computation-

ally efficient state spaces. Research efforts focus more on developing pilot models and

quantifying human decision making abilities rather solving for the mathematically

optimal maneuver.

2.4 Encounter Models

The ACAS X MDP approach leverages aircraft encounter models to help calculate

state-transitions. A simple white-noise transition model is used for optimization and
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a higher fidelity encounter model is leveraged to evaluate the ACAS X optimal policy.

Aircraft encounters models were developed prior to the development of ACAS X and

can be attributed as one of the primary factors why ACAS X has been successful.

An aircraft encounter model is a statistical model that mathematically represent

how aircraft behave during close encounters. An encounter model must accurately

represent the distribution of encounters where a SAA system would be likely to alert;

otherwise, the output of the system evaluation will be erroneous. Specifically, an

encounter model shall:

• Realistically capture the initial relative geometry of the aircraft;

• Be built using aircraft operational data;

• Reflect realistic aircraft flight dynamic

• Have a representative time period for different evaluations;

• Have dependencies on geographic region, airspace class, and altitude layer;

• Enable fast-time simulation;

2.4.1 Types and Use

Early encounter models were built to support the development and certification of

TCAS (McLaughlin, 1997; MITRE, 1983). These models capture the behavior of air-

craft in encounters that TCAS was expected to resolve—that is, encounter situations

with cooperatively equipped aircraft. In the past decade, more advance models have

been developed to evaluate the performance of SAA systems (Kochenderfer et al.,

2010b). The four primary types are:

• Uncorrelated Encounter Model of the National Airspace System:used

to evaluate the performance of SAA systems when at least one aircraft is nonco-



35

operative or neither aircraft is in contact with ATC (Kochenderfer et al., 2008b;

Weinert et al., 2013).

• Correlated Encounter Model of the National Airspace System: used

to evaluate the performance of SAA systems when both aircraft are cooperative

and at least one aircraft is receiving ATC services (Kochenderfer et al., 2008a).

• Encounter Models for Unconventional Aircraft: used to evaluate the per-

formance of an SAA system when encountering unconventional aircraft, defined

as aircraft unlikely to carry a transponder (Kochenderfer et al., 2009).

• Due Regard Encounter Model: used to evaluate SAA systems for UAS

flying due regard in oceanic airspace (Griffith et al., 2013).

Each of these encounter models includes variables that account for variations in

encounters with respect to different airspaces. For example, one of the variables in

the uncorrelated encounter model is Airspace Class, which includes B, C, D, and

O (Other). Table 2.2 indicates the appropriate model to use based on the study

being performed.2 For the offshore environment, the correlated and uncorrelated

encounter models encompass encounters more than 1 NM beyond the shore and the

due regard model begins at 12 NM, where due regard flight is permitted.3 The oceanic

environment includes international airspace beyond radar coverage. Note that no

existing model covers encounters between two IFR aircraft in oceanic airspace. The

reason for this is that one cannot observe encounters of sufficient fidelity in the data

feeds. Similarly, there is no model that covers encounters with visual flight rules

(VFR) or noncooperative aircraft in oceanic airspace due to a lack of surveillance

data. If a collection of encounters for these types of encounters is required, they should

2Note that a model does not exist for combinations without a mark.
3Note that one cannot build a correlated encounter model from radar data for due regard flight

in the offshore environment because one does not observe a sufficient number of encounters between
instrument flight rules (IFR) and non-IFR traffic beyond 12 NM.
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be built based on best assumptions about aircraft behavior and should leverage data

from similar encounter models as is necessary. For example, one could use offshore

models or enroute model of the Contiguous United States (CONUS).

Table 2.2: Encounter model categories.

Aircraft of Interest Intruder Aircraft

Location Flight Rule IFR VFR
Noncooperative Noncooperative

Conventional Unconventional

CONUS
IFR C C U X

VFR C U U X

Offshore

IFR C C U X

VFR C U U X

Due Regard D U U X

Oceanic

IFR

VFR

Due Regard D

2.4.2 Development and Structure

To develop the uncorrelated and correlated encounter models, radar data was used

from the 84th Radar Evaluation Squadron (RADES) at Hill AFB, Utah. RADES

receives radar data from FAA and Department of Defense sites throughout the United

States. They maintain continuous real-time feeds from a network of sensors with

radar ranges varying from 60 – 250 nm. Recently these models now includes the

offshore environment out to the limits of radar coverage (Weinert et al., 2013). The

unconventional aircraft encounter models were developed using weather balloon data

and GPS data (Edwards, 2010) and the due regard model with self-reported positions

of aircraft flying in oceanic airspace (Griffith et al., 2013).

The raw radar data are first processed using a tracking algorithm developed at
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MIT LL (Grappel, 2001). A fusion algorithm, also developed at MIT LL (Gertz,

1983), then fuses tracks from multiple sensors. After the raw tracks have been

developed, they are passed through an outlier detection algorithm, smoothed and

interpolated. From the interpolated tracks, features are extracted to build the en-

counter models. A detailed explanation of processing the radar data into the en-

counter model can be found in the documentation of other models (Kochenderfer

et al., 2010b). Recent processing advances including implementing outlier detection

algorithms and rejection sampling to improve the accuracy of the models for longer

simulation times (Weinert et al., 2013).

Figure 2·9: RADES sensor coverage map ignoring terrain masking.
Radars in red theoretically only provide data over CONUS.

The current model structure is a Bayesian network, a representation of a mul-

tivariate probability distribution as a directed acyclic graph(Murphy, 2002). Each

node in the network structure represents a variable and arrows represent conditional

dependencies between variables. There are two Bayesian networks in an encounter

model: an initial network to set up an encounter, and a transition network to describe

how the variables specifying the trajectories evolve over time. The dynamic Bayesian

network structure is learned by maximizing the posterior probability of the network

structure given the data. Dynamic behavior is modeled in a dynamic Bayesian net-

work as a MDP. Aircraft turn rate, airspeed acceleration and vertical rate may change

once per second. Given a set of initial conditions and these dynamic variables, the
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aircraft trajectories in the encounter can be constructed.

By sampling to produce trajectories many times, a Monte Carlo simulation defined

by the encounter model is possible. By aggregating the results of the individual

simulations, a distribution of an unknown probabilistic state is calculated (Metropolis

and Ulam, 1949). Together the samples are representative the airspace with Monte

Carlo simulations primarily supporting simulation analysis.

Optimization Use

Historically they have been analysis tools because they only contain a subset of po-

tential aircraft avoidance state variables. While the encounter models are Markovian

with an exhaustive state-transition matrix that specifies the probability of transition-

ing between all pairs of states. However, the number independent parameters required

to define the matrix grows super-exponentially with the number of variables defining

the model, as the “curse of dimensionality” affects optimization and Bayesian mod-

els alike. The more independent parameters there are in the model, the more data

one needs to properly estimate their values. Leveraging dynamic Bayesian networks

reduces the number of parameters but does not completely address the exponentially

growth associated with adding new state variables.

Therefore for simulation-based optimization, the encounter models can not di-

rectly be used because they do not contain sufficient information for optimization.

For example, the uncorrelated encounter model has no state variables that are associ-

ated with range between aircraft. Costs based on safety metrics, such as NMAC, can

not be encoded. This leads to the requirement to simulate the aircraft encounter and

record the required state variables. The simulation output, based on encounter model

input, would address the research objectives; the development of this metamodel is

discussed in detail in Chapter 3.
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Chapter 3

Theory and Approach

The previous Chapter 2 overview aircraft avoidance efforts and MDP DP optimiza-

tion. This chapter details the theory and approach used to meet the research objec-

tives described in Section 1.2. The overall problem from the theoretical perspective

for collision avoidance is first developed and leads into formulation of an aircraft

avoidance MDP via simulations. For each of these MDP elements, a comprehensive

assessment of potential states, including aggregate features, is provided. An NMAC

risk entropy metric is then defined to assist in evaluating each potential state. Finally,

the approach to evaluate the feasibility of the simulation-based MDP is discussed. The

following Chapter 4 discusses the technical details of implementing these concepts.

3.1 Overview

For optimization, the abstract conceptual avoidance problem needs to be represented

as a mathematical numeric system. As described in Section 2.1, a probabilistic MDP

with states, actions, and costs is used. The MDP must quantify the following abstract

questions:

• What is the frequency of each state-transition?

• What is the safety and operational risk for a given state-transition?

The optimization challenge is then selecting a set of states that sufficiently quantify

both the safety risk while enabling transitions between discrete states. Traditionally
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aircraft avoidance algorithms decompose either the horizontal plane or vertical axis

into a τ state where τ = 0 indicates a complete less of separation in that axis. The

algorithm can then select an action in the other axis to increase separation. TCAS

and ACAS Xa decomposes the horizontal plane into τh and select vertical actions

while ACAS Xu decomposes the vertical axis into τv and selects horizontal actions.

Since a joint horizontal and vertical action space requires sufficient information about

both the horizontal plane and vertical axis, neither can be decomposed into a τ state.

This leads to adding additional states and the “curse of dimensionality.”

Either due to lack of computational power or historical success of using a τ state,

there has been limited to no prior research on exploring and quantifying potential

states for optimization. The success of the encounter models show that aircraft dy-

namics can be modeled via a probabilistic processes but they do not quantify the

safety and operational risk. Nor were aggregated features considered during encounter

model development. Specifically both TCAS and ACAS X selected states by hand.

The ACAS X designers also recognized that there is a wealth of available data for

intelligent state selection (Temizer et al., 2009) but never explored this space.

Therefore to assist in the development of a joint-action MDP formulation, an

exploration and search over potential variables is required. Modifying the existing

ACAS X MDP framework and dynamics for each new potential variable would be time

consuming and inefficient. Instead a new simulation-based framework is implemented,

leveraging recent advances in signals processing and databases. The framework can

quickly and efficiently calculate the joint conditional state probabilities and is flexible

enough to support any set of states. The entropy for each state and state-transition

quantifies how memory efficiency and how well it quantifies NMAC risk. Applying

shape optimization, as described in Section 2.1.2, could reduce the memory require-

ments of the state-space while persevering the utility of the space. The simulation
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itself will be Monte Carlo aircraft encounters sampled from the encounter models. A

MDP formulation will be built using this simulation-based approach to demonstrate

the feasibility of the formulation. It will be optimized using an alternative, yet similar,

approach to ACAS X.

The developed MDP assumes that decisions are made once per second, the same

same frequency at which TCAS and ACAS X. Only single intruder encounters will be

considered, as multi-intruder scenarios are relatively rare. However, through utility

fusion multiple intruder aircraft can be considered in parallel without expanding the

state space (Kochenderfer and Chryssanthacopoulos, 2011). Finally, ownship assumes

that the intruder is not equipped with an SAA system.

This alternative approach is not designed to replace ACAS X but focuses on pro-

viding more flexibility in algorithm design. There are other approaches to reduce

memory requirements. Due to the potential organized structure and combinatorial

nature of discrete state spaces, it is postulated that the optimal policy can be rep-

resented in a format other than a table. The ACAS X program has funded various

efforts to explore this idea. These efforts have focused on manipulating the state-space

representation once the optimal policy has been generated, and have not addressed

the underlying structure of the state-transitions themselves. These efforts do not

address the algorithm design question and complement the described research.

3.2 Conceptualizing the Aircraft Avoidance Problem

An aircraft encounter occurs when two or more aircraft come within close proximity of

each other and ATC separation has failed and can not provide separation assistance.

The avoidance problem is then postulated as two simple, yet fundamental, questions:

1. What is the risk of a loss of separation and collision with another aircraft?

2. If the collision risk is sufficient, what is the optimal action to minimize risk?
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While the first question solely addresses safety as defined by some loss of separa-

tion, such as an NMAC, the second question defines optimality via both safety and

operational constraints. An algorithm that alerts at even the slightest risk of NMAC

would be very safe but would not be considered optimal because it doesn’t not meet

operational alert rate requirements. Conceptually then the aircraft avoidance prob-

lem is composed of safety and operational elements. The safety element primarily

addressed the first question and the operational element the second. Based on this

conceptualization, an MDP can be organized.

3.2.1 Safety

The safety problem quantifies the risk of collision and is easily defined numerically

by three metrics:

• Horizontal and vertical distance at CPA; and

• Time to CPA.

A NMAC1 is used a surrogate for collisions. It is a binary state, a system of multiple

aircraft are either in an NMAC or not. Time to CPA is not binary and quantifies

the risk of transiting to an NMAC. Time to CPA is also used to classify collision

avoidance encounters, defined as when time to CPA is less than 45 – 60 s. This is

due to the amount of time required to increase separation to avoid an NMAC, given

ownship’s current state (Morrel, 1956).

1Separation of ±100 ft vertically and ±500 ft horizontally
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This time to CPA range is verified through simple calculations when only one

aircraft is maneuvering to avoid an NMAC. First, consider the vertical axis:

ḣo × tv = 100 ft (3.1)

tv

(
ḣo

)
=

100 ft

ḣo
(3.2)

tv
(
25.0 ft/s

)
= 4.0 s (3.3)

tv
(
12.5 ft/s

)
= 8.0 s (3.4)

Next, the required time to maneuver horizontally is slightly more complicated given

bank angle (θh) and cross aircraft motion (A) (Wood, 1987).

A

2

[
32 tan (θh)× t2CPAh

]
= 500 ft (3.5)

th (A, θh) =

√
1000A

32 tan (θh)
(3.6)

th (1, 25◦) = 8.19 s (3.7)

th (1, 15◦) = 10.8 s (3.8)

A is generally less than one and th will be greater since cross aircraft motion is

only parallel to the horizontal miss distance vector when the two aircraft are flying

in exactly opposite directions. An algorithm should not just narrowly prevent an

NMAC but increase separation as well. Extending the equations to account for this

yields maneuver times between 30 – 60 s. Time to CPA can be viewed as a surrogate

for the risk of a undesirable horizontal and vertical miss distance at CPA. A greater

time to CPA represent less risk of eventually transitioning to an NMAC in the future

than a smaller time to CPA.
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3.2.2 Operational

Unlike safety, the operational problem is not clearly defined numerically or easily

decomposed into mathematical equations. This presents a challenging problem in

optimization because a specific state can not be designated as “bad” or “good” us-

ing a binary cost structure, like NMAC. Any NMAC can be avoided by increasing

separation in either the vertical axis or horizontal plane given sufficient time prior to

CPA, the operational problem decomposes into three questions:

• How much does each action reduce the safety risk?

• What is the smallest time to CPA to initiate each action?

• What is the expected time to complete each maneuver?

Generally the first question is answered by how much does each action increase or

decrease separation. An action should only be selected when the probability of the

encounter resolving itself without an RA is low. The third question introduces a

subtle, yet complex, component. Short alerts may appear unneeded and annoying

while longer alerts may appear tedious or significantly impair the aircraft’s mission.

The operational problem is mostly aircraft class or platform specific, whereas the

safety problem is aircraft class agnostic. The NMAC definition is the same for all

aircraft but operational considerations can vary widely between aircraft. Operational

optimality is a function of an aircraft’s performance (i.e. maximum vertical rates),

mission objectives, and operating environment. During the development of TCAS,

this operational problem wasn’t as prevalent because it was assumed that only manned

commercial aircraft would equip TCAS. The introduction of UAS into the airspace

and desire to equip general aviation aircraft with collision avoidance, has increased

this complexity and relevancy of the operational problem.
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The operational problem is not independent on the safety problem and is depen-

dent upon time to CPA. This is evident by the use of τ as a countdown to CPA and

ACAS X defining its initial optimization value using τ .

3.3 NMAC Entropy

Collision avoidance is naturally defined by two events: in an NMAC or not an NMAC.

By determining the probability of these events through simulation for each state

transition, NMAC entropy can be calculated. This quantifies the measure of NMAC

randomness for a given state. By summing over all state-transitions, the total NMAC

entropy for a specific state is calculated. Since entropy is superadditive, NMAC

entropy for each state can be calculated individually.

H =
[
P (NMAC = 1) log2

(
P (NMAC = 1)

)]

+
[
P (NMAC = 0) log2

(
P (NMAC = 0)

)] (3.9)

The memory requirements for each state is paired with it’s NMAC entropy, al-

lowing the calculation of entropy per memory. This enables an understanding the

computational efficiency of the state. Comparing the entropy of two different states

leads to an analytic and quantitative approach for selecting a state space based on

NMAC. Conceptually, it a state has low NMAC entropy then will likely not provide

sufficient information about the potential of transitioning to an NMAC. It is pos-

tulated that a state space with greater NMAC entropy will perform better than a

state space with less NMAC entropy, given some assumptions. Foremost, the states

can not all serve the same categorical function. For example, a state space consist of

only vertical rates states and aggregate features does not provide sufficient informa-

tion about encounter geometry regardless of the entropy sum. To facilitate this state

exploration, for each state, various uniformed discretizations were simulated with an
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all-inclusive range that was determined via simulation.

NMAC entropy will also be used to quantitatively decide the order in which states

are added to the state space. Starting with a single state, the question “what state

should be added next?” will be answered using information gain and the Kullback-

Leibler divergence (Kullback, 1997). Generally, a state with high mutual information

should be preferred. The state that provides the greatest gain, will be the one added

to the state space. Since a state’s NMAC entropy is dependent upon the state’s dis-

cretization, building a state space using information theory enables the comparison

of states across discretizations. Information gain and the Kullback-Leibler divergence

provide a quantitative analysis between states. For example, it is possible that a

course discretized state provides greater information regarding NMAC than another

finely discretized state. This is an alternative to the time intensive approach of gen-

erating optimal solutions for various state spaces using different costs and evaluating

against safety and operational metrics. This information theory approach will help

identify potentially inefficient state spaces before MDP optimization and evaluation.

3.4 Action Space

Foremost, the potential actions than are available to any aircraft must be determined

and then filtered to define an action set used to avoid an intruder. With the advent

of UASs, it can no longer be assumed that aircraft are controlled in a similar manner.

For just UASs, there are four different levels of horizontal aircraft control, four levels

of vertical control, and three levels of speed control (Williams, 2007). The lowest level

with direct control is a traditional pilot’s yoke while the highest level is programmed

waypoints with no direct control. A simple example highlights the wide variety of

potential actions. Assume an aircraft needs to climb to an altitude of 6500 ft, a small

subset of potential controls are:
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• Issue a waypoint of 6500 ft,

• Climb to an altitude of 6500 ft,

• Climb to an altitude of 6500 ft at a

rate of X ft/min,

• Climb at X ft/min,

• Generate a pitch rate of Y deg/s, and

• Generate a pitch acceleration of

Z ft/s2.

Depending on the selected action, the aircraft can behave in different ways; vertical

take-off and landing (VTOL), fixed-wing and airships all have different performance

characteristics and constraints. Issuing a fixed vertical rate is more deterministic

than issuing a desired altitude which can be achieving by a wide variety of vertical

rates. For a traditional DP framework, different state dynamics would need to exist

for the different controls. Under the simulation-based approach, the actions can be

observed via the simulation output and recorded. Changing controls is a matter of

selecting different states and regenerating the state-transition and cost matrices; code

development for each action is not required.

VTOL

Fixed-wing

Airship

Figure 3·1: Example aircraft vertical action variety
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The simulation-based framework supports any combination of potential controls;

however, some actions have been historically validated to be effective. Avoidance ma-

neuvers via a change in airspeed is not one of these and were not considered. Airspeed

has the least effect on encounter geometry. Over the course of 30 – 60 s airspeed can

only nominally be changed. For the simplistic case of a head-on encounter, a change in

airspeed will have a minimal effect on TCA and on the encounter geometry. Changing

airspeed in hopes of having the intruder either pass in front or below of the ownship

isn’t effective.

Unlike changes in airspeed, vertical maneuvers via commanded vertical rates have

been shown to be historical effective, as demonstrated by TCAS RAs. Thus a vertical

action set representing manned aircraft consists of single climb and descend actions

of ±25 ft/s (±1500 ft/min). These rates adequately increase separation without giving

the unknowing passengers the distinct feeling of a severe maneuver. A TCAS de-

signer described this decision as, “we didn’t want to spill the martinis.” However as

noted in Section 2.3.1, assumptions for these rates are not appropriate for emerging

user classes, such as UASs. A second set of vertical rates of ±12.5 ft/s (±750 ft/min)

represents UASs and other limited performance aircraft.

While vertical aircraft avoidance has been researched for over fifty years, hori-

zontal maneuvers have only recently been considered a feasible maneuver. This is

contributed to better surveillance technology. The horizontal action space is based

on a standard rate one turn (ROT) and is a function of true airspeed and bank angle,

as shown in Figure 3·2. . For light aircraft, it is defined as a 3 deg/s turn, which com-

pletes a 360 deg turn in 2 min. It is assumed that all aircraft can achieve a standard

ROT and is not perceived as abnormal behavior to ATC.

For relatively fast airspeeds, a bank angle greater than 30 deg is required for a

standard ROT. This may not be operational feasible. For example, a manned Boeing
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Figure 3·2: Required airspeed and bank angle for various turn rates.

777 has a cruise speed of approximately 825 ft/sec (490 kt), which requires greater than

a 45 deg bank angle to achieve at standard ROT. Additionally, high bank angles at

slow airspeeds can result in the loss of control for some aircraft. Hence, rate half

turns (1.5 deg/s) are normally used when airspeed is greater than 420 ft/s (250 kt).

Tables 3.1 – 3.2 summarize the action sets and assume that both aircraft are

fixed-wing. Rotorcraft and VTOLs which can hover or airships with extremely slow

airspeeds are not considered. There is no distinction made if one action has a stronger

sense than another. An alerted action only affects the corresponding state. For exam-

ple, if an aircraft is nominally climbing and a horizontal alert is issued, the aircraft will

execute the alert maneuver while climbing. To reduce problem complexity, strength-

ening will not be considered and reversals with be limited. Strengthening alerts are

more disruptive with greater rates and are designed if the initial RA is not increas-

ing separation fast enough. The simulation-based framework can support additional

actions, if they are observed within the Monte Carlo simulation.

Actions that control both horizontal and vertical states were not considered. An

example is “straight and level” which sets vertical rate to 0 ft/min and turn rate to

0 deg/s. This varies from a preventive RA because it is actively controlling the rates.
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Representative action sets.

Table 3.1: Manned.

Command Description

COC Clear of conflict
CL1500 Climb at 1500 ft/min

DE1500 Descend at 1500 ft/min

L3 Light turn at 3 deg/s

R3 Right turn at 3 deg/s

Table 3.2: UAS.

Command Description

COC Clear of conflict
CL750 Climb at 750 ft/min

DE750 Descend at 750 ft/min

L3 Light turn at 3 deg/s

R3 Right turn at 3 deg/s

3.5 State Space

The state space represents the state of the world. Prior to selecting states an under-

standing of coordinate systems need to be established to spacial frame of reference.

Next the relationship between states and NMAC are identified. Finally, the rela-

tionship between states are explored to identify potential memory savings and state

flexibility.

Aircraft are commonly represented in three-dimensional Euclidean space. Fig-

ure 3·3 illustrate the three common coordinate systems used to represent points in

three-dimensional Euclidean space: Cartesian, cylindrical, and spherical. The Carte-

sian system specifies a point uniquely in a plane by a triple of numerical coordinates.

The cylindrical system specifies a point by the distance from a chosen reference axis,

the direction from the axis relative to a chosen reference direction, and the distance

from a chosen reference plane perpendicular to the axis. The spherical system speci-

fies a point by the radial distance from a fixed origin along with horizontal and vertical

angles. An immediate disadvantage of the spherical system is that altitude can’t be

represented as a single variable.

Physically, aircraft are observed either by primary or secondary radar. Primary

radar transmits a pulse of radio energy and generates an aircraft position estimate

based on the reflected energy. It operates independently of the target aircraft. Pri-
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Figure 3·3: Real number coordinate systems

mary radar often uses either a spherical or cylindrical coordinate system. Secondary

radar, such as Mode S, relies on equipped radar transponder, which transmits a

response to each intruder’s interrogation signal. Secondary radar traditionally use

the cylindrical coordinate system but recent technology, such as ADS-B, leverage a

Cartesian coordinate system. In application, certain states are deemed to provide

more utility such as discretized Cartesian altitude provided by beacon surveillance.

The NMAC definition nicely maps to a relative cylindrical coordinate system

with the horizontal range angle ignored by the NMAC definition. How the encounter

transitions to an NMAC is quantified by relative range rate ∆ṙ and relative vertical

rate ∆ḣ. These rates are dependent upon all aircraft in the encounter and a single

aircraft can’t directly control these relative rates.

As discussed in Section 3.4, there many different actions an aircraft can implement.

Different actions will affect these rates differently and subsequently the potential to

transition to an NMAC-related state. There is a difference between commanded

actions and how the aircraft responses. Therefore when selecting a state space, an

attempt to avoid leveraging a state that directly ties to only a subset of potential

actions is made. For example, if the horizontal action is commanded turn rate, the

turn radius will be dependent upon airspeed. The turn radius will influence the
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potential transition to an NMAC. Yet, current turn rate isn’t ideal because it doesn’t

quantify an aircraft that uses waypoints.

The state set must contain sufficient information to represents how each action

influence the state-transitions probabilities. Environmental variables such as wind or

atmospheric density are not considered to be sufficient information. It is assumed that

aircraft are close enough to be experiencing the same environmental condition. For

example, a climb or descend will change the ḣ and ∆h states and associated transition

probabilities. An 11-dimensional tuple state space has been previous proposed but

was recognized as impractical due to dimensionality (Kochenderfer et al., 2010a):

• relative altitude ∆h,

• horizontal range rh,

• own vertical rate ḣo,

• intruder vertical rate ḣi,

• own ground speed vo,

• intruder ground speed vi,

• bearing of intruder α,

• relative heading ∆ψ,

• own turn rate φo,

• intruder turn rate φi, and

• advisory state sRA.

A grid representation of this state space with 21 edges per dimension would re-

sult in 3.5 × 1014 discrete states and is infeasible for DP optimization. Instead of

decomposing into τ states to reduce dimensionality, the three-dimensional coordinate

system can be viewed as a vertical axis and a horizontal plane and treated indepen-

dently. Each independent space can then be explored for both traditional first-order

states and new aggregate features.
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3.5.1 System Perspective

Aircraft algorithm design is typically viewed from ownship’s perspective and presents

the intruder as an uncontrolled aircraft some distance away. During coordinated ma-

neuvers, an action is recommended to the intruder aircraft, but there is no guarantee

that the either aircraft will comply. This can be either due to latency, negligence, or

physical constraints on the aircraft. Section 2.3.3 and the ACAS Xu design highlight

this problem. A sufficient state space requires both understanding of the controlled

aircraft, the intruder aircraft, and the relative position of the intruder from the per-

spective of ownship.

An NMAC event requires multiple aircraft, no aircraft can be in an NMAC alone.

Using an NMAC-centric perspective then could reduce the state space requirements.

This perspective is very similar to the traditional relative to the ownhsip but em-

phasize the relationship between the aircraft. The success of τ shows the benefit

of modeling collision avoidance from an system perspective, rather than individual

aircraft. Range and range rate are functions of both aircraft and it directly corre-

lates to NMAC risk. Emphasizing relationship naturally leads to the development of

aggregate features.

There are many different types of space aggregation, the implemented aggrega-

tion constructs a nonlinear, piecewise constant feature-based architecture. For native

state is partitioned based on “similar” features between states. When extracting fea-

tures from this space, the original state is associated with unique aggregate states

and subsets. Discretized MDP states are then generated from these features. States

are often generated through simple operations (i.e. summation) across features. Al-

ternative space aggregation approaches will associate the aggregate states with the

original space or both.
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Figure 3·4: Feature-based space aggregation (Bertsekas, 2005).

3.5.2 Vertical Axis

Vertical separation (∆h) directly corresponds to the NMAC definition and notion of

safety. The vertical rates directly relate to potential actions that can increase vertical

separation and reduce the safety risk. Since the vertical axis is a line, calculating the

vertical rate change (∆̇h) is easy. It is defined by vertical separation (∆h) and the

aircraft’s vertical rates; it is an aggregate feature that quantifies
(
ḣo, ḣi | ∆h

)
:

∆̇h
(
ḣo, ḣi | ∆h

)
=





ḣo+ | ḣi | ∆h ≥ 0, ḣi ≤ 0

ḣo− | ḣi | ∆h ≥ 0, ḣi > 0

ḣi+ | ḣo | ∆h < 0, ḣo ≤ 0

ḣi− | ḣo | ∆h < 0, ḣo > 0

(3.10)

Figure 3·5 illustrates these three states, which provide sufficient information to repre-

sent where the aircraft are vertically spaced (∆h) and the rate at which their locations

are changing (ḣ0, ḣi). Both TCAS and ACAS Xa leverage them. However, there are

other potential states that may provide greater utility. Historical success of these

states does not preclude potential success of other states.
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ḣi ḣo∆h

Figure 3·5: First-order vertical states.

While useful, ḣi alone doesn’t directly explain how the overall encounter system is

evolving. Consider the pair
(
ḣo = −25, ḣi = 0

)
where the ownship is the only aircraft

affecting ∆h. Depending on the encounter geometry, a level-off preventive RA or

reversal to a corrective climb RA maybe optimal. Rather how the different aircraft

vertical rates interplay is more important. The ∆̇h state quantifies this interaction

but is also more complicated, it is hypothesized that simpler aggregate feature can

approximate ∆̇h and better quantify NMAC risk than the first-order state ḣi.

Aggregating Rates

A simple aggregate feature, such as
(
ḣo + ḣi

)
, can represent different states given ḣo

with a single value. For example, as illustrated by Figure 3·6,
(
ḣo + ḣi

)
|ḣo = 0 ,

quantifies if both aircraft are in level flight but also for when aircraft have opposite

vertical senses.

ḣo = 0

ḣi = 0

(
ḣo + ḣi

)
= 0

ḣo = −C

ḣi = C

(
ḣo + ḣi

)
= 0

ḣi = −C

ḣo = C

(
ḣo + ḣi

)
= 0

Figure 3·6: Simple visualization of vertical rate states
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If a state space included this state and ḣo, then its possible to distinguish between

the different vertical rate combinations. While ḣo = {−C, 0, C}, ḣi requires three

values each for a total of nine elements to describe Figure 3·6,
(
ḣo + ḣi

)
requires

only a single state for a total of thee elements in the space. Although the reduction

of two variables seems minuet, it can lead to exponential memory savings due to the

combinational nature of DP.

The interaction between ḣo, ḣi,
(
ḣo + ḣi

)
can be quantified via simple simulation

where the rates range from -50 ft/s to 50 ft/s with a uniform discretization of 1 ft/s.

There are 10,201 different combinations but only 201 unique
(
ḣo + ḣi

)
values and

75% of combinations produce a
(
ḣo + ḣi

)
within the vertical rates range of ±50 ft/sec,

shown in Figure 3·7. More importantly,
(
ḣo + ḣi

)
is not explicitly bounded by ḣo.
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Figure 3·7:
(
ḣo + ḣi | ḣo, ḣi

)
distribution and CDF

ACAS Xa currently ranges ḣo and ḣo from ±42 ft/s, however there are aircraft that

can exceed those vertical rates, such as military aircraft. Depending on the bound of
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(
ḣo + ḣi

)
, it can quantify a ḣi outside the range of ḣo.

(
ḣo + ḣi | ḣo = −25

)
∈ {−42, . . . , 42} ⇐⇒ −17 ≤ ḣi ≤ 67

(
ḣo + ḣi | ḣo = −25

)
∈ {−84, . . . , 84} ⇐⇒ −59 ≤ ḣi ≤ 109

Since majority of
(
ḣo + ḣi

)
values occur within the bounds of the vertical rate,

selecting a discretization that is memory efficient with an appropriate number of

states is feasible. Furthermore, the probability of a high vertical rate is relatively

low, thus there is no necessity to finely discretize outside the bounds of ḣo. This

leads a reduction in memory, latter shown in Section 5.2.6. In addition to
(
ḣo + ḣi

)
,

other aggregate features such as
(
ḣo − ḣi

)
and various ratios of vertical rates were

assessed.

Spherical Coordinates

A different option to the traditional cylindrical coordinate system representation of

the vertical axis is the spherical system which measures vertical separation as an

inclination angle (θs) given spherical range (rs). Since rh is significantly greater than

∆h, rs should be very similar to rh. If rs is large, then a vertical maneuver shouldn’t

be required in most cases and ∆h isn’t as important. Figure 3·8 illustrates this by

calculating ∆h(rs, θs); as rs increases, the range of ∆h also increases.

It was hypothesized that since ∆h is very large for modest θs values at even mod-

erate rs, that the full range of θs = {0, . . . , 180} isn’t required. As rs decreases, the

range of potential transitions of θs would increase, leading to a dynamic discretization

of vertical separation. Additionally θs is a first order output of many radar systems

which potentially would help make the optimal policy more human readable.

However after review, it was deemed that using θs as part of the state space is not

acceptable. Foremost, it also doesn’t take advantage of beacon technology and the
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Figure 3·8: ∆h(rs, θs) distribution and CDF

quantized altitude measurements it provides, leading to unnecessary greater vertical

uncertainty. Although the ∆h between angles does dynamically change, the aircraft

must be dangerously close to take advantage of the increased vertical fidelity. For rs

beyond a few miles, nearby θs states could correspond to hundreds of feet difference

in ∆h. This is emphasized when comparing angular states in the results Section 5.2.4.

3.5.3 Horizontal Plane

There are many more potential states to represent the horizontal plane. This is a

consequence of horizontal being a plane and the vertical axis can be viewed as a line.

First order states include an aircraft’s airspeed and direction and the relative range

and direction between aircraft. The τh state is an approximation of the separation

vector between aircraft due to the poor directional (azimuthal) measurements. From

an optimization perspective, each of these states have advantages and disadvantages.

Specifically, airspeed (v) is the magnitude of the an aircraft’s vector in the hori-

zontal plane. This applies to any simple transformations of these magnitudes, such
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as (vo + vi). The aircrafts’ airspeeds are easy to observe but independently do not

provide sufficient information if separation is increasing or decreasing. Range rate

(ṙh) provides this information but doesn’t distinguish how aircraft influence ṙh.

Magnitude Information

To illustrate this, consider a simple level altitude, head on encounter between two

aircraft where the airspeed ranges from 0 ft/s to 1000 ft/s (approximately 600 kts) with

a uniform discretization of 20 ft/s. Figure 3·9 illustrates the range rate produced by

any combination of airspeeds. Since this is a head-encounter with no acceleration,

ṙh = (vo + vi). Of the 2500 airspeed combinations, there are only 162 unique ṙh

states. The small percentage of unique combinations indicate that a space including

{vo, vi} may not be memory efficient. This is important for considering how different

combinations of (vo, vi) influence horizontal separation and subsequently NMAC risk.
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Figure 3·9: ṙh (v0, vi) for head-on encounter

Figure 3·10 illustrates the corresponding τh distribution and CDF given a head-on

encounter at rh = 30381 (5 nm). A max τh of 195 s is assumed; this maximum is larger

than what TCAS or ACAS Xa assume. 75% of airspeed combinations have a τh less

than 45 s which is approximately a quarter of the maximum. Even if rh is extended to
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10 nm, 75% of τh values would less than 85 s, which is still less than half of the 195 s

maximum. The long tail of the τh(vo, vi) distribution presents a key optimization

challenge and the maximum τh dictates how saturated the τh distribution will be.
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Figure 3·10: τh(vo, vi|rh = 30381) distribution and CDF

The τh tail is a function of the large range of (vo, vi) and contrasts the relatively

small range of (ho, hi). Understanding the relationship between specific airspeed

states and NMAC are critical for developing an airspeed discretization. Specifically

what is the NMAC risk for each state and if is the relative risk great enough between

states to warrant inclusion.

Angular Information

Directional information is required to form a complete vector. These vectors can

relative or absolute. Relative heading (∆ψ), the horizontal resultant vector angle

(ψ~R) and bearing (α) are the three angular states considered.
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∆ψ = ψo − ψi (3.11)

ψ~R = tan−1

[(
vo × cos (ψo)

)
+
(
vi × cos (ψi)

)
(
vo × sin (ψo)

)
+
(
vi × sin (ψi)

)
]

(3.12)

α = tan 2−1
[
(yo − yi) , (xo − xi)

]
(3.13)

Bearing (α) is calculated using a tan 2−1(y, x) which calculates with respect to

the complex number x+ iy. In practice it is used by a variety of computer languages

to calculate the arctangent with respect the appropriate quadrant of the computed

angle (Organick, 1966). By taking into account the quadrant, bearing (α) is able to

distinguish between left/right and front/behind relative geometries.

For a given rh, the relative geometry defines the encounter type, which impacts

safety risk, regulatory rules, and optimal maneuvers. Figure 3·11 illustrates that al-

though the encounter geometry is different with each intruder aircraft, only bearing

(α) varies. Bearing should provide more information about how a system of two

aircraft evolve into an NMAC with the same or less memory requirements. How-

ever, bearing doesn’t take into account individual aircraft vector angles, a head-on

encounter and an ownship directly overtaking an intruder encounter will produce the

same value, whereas ∆ψ and ψ~R will distinguish between these two encounter types.

Vector Representation

Consider an encounter sampled from the correlated encounter model in Figure 3·12.

The ownship is traveling straight and level while the intruder is circling in a holding

pattern and neither aircraft accelerate. The initial rh is 13150 ft (approximately

2.1 nm) and the intruder will turn into the ownship from the ownship’s left. TCA

occurs at 38 s with an NMAC due to 47 ft and 494 ft of vertical and horizontal

separation.



62

rh

rh

rh

rh

∆ψ = 0◦

α = −90◦
ψ~R = 0◦

∆ψ = 0◦

α = 90◦
ψ~R = 0◦

∆ψ = 0◦

α = −180◦
ψ~R = 0◦

∆ψ = 0◦

α = 0◦
ψ~R = 0◦

Figure 3·11: Simple visualization of angular states

Figure 3·13 illustrates rh, ṙh, various airspeed states, and various angular states

of the encounter in Figure 3·12. Foremost the three angular states of relative heading

(∆ψ), bearing, and resultant vector angle (ψ~R) evolve differently. Only bearing (α)

experiences a sharp change near TCA and changes it’s behavior based on rh.
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The traditional first-order airspeed states of ownship (vo) and intruder (vi) air-

speeds are static throughout the encounter since their no airspeed acceleration. The

aggregate feature of these states (vo + vi) must also be static then. Only the resultant

vector magnitude (~R) and range rate (ṙh) change as the encounter evolves. Since ~R

is calculated using angular information, it correlates with ∆ψ and ψ~R. Only ṙh indi-

cates if separation is increasing or decreasing while having some correlation with the

angular rates.

3.6 MDP Cost

As described in Section 2.1, each element in the cost matrix is associated with the

corresponding element in the state-transition matrix. The optimal policy’s behavior

is directly influenced by these costs, however the interaction between various costs

are not always obvious. ACAS X has experimented with surrogate models (Smith,

2013) and online costs (Asmar and Kochenderfer, 2013) to better manipulate and

understand MDP costs. Neither of these are leveraged because they do not directly

support the research objectives. Using a cost equation dependent upon the state-

transitions and actions have been shown to be sufficient.

3.6.1 NMAC Horizon

Since ACAS X models transition as a white-noise process, it doesn’t directly consider

the frequency of each state-transition. Instead it focuses on calculating the NMAC

risk at each state and avoiding a very small “bad” region, NMAC. Then choosing

whether to select an undesirable alert / action that reduces the risk of transitioning

into NMAC. The safety problem is quantified through an NMAC binary cost and

a few other costs to promote increasing separation near an NMAC. Majority of the

costs then quantify the operational problem and influence if alerting is more preferable

than increasing the NMAC risk.
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This approach calculates an alerting region over τ were the maximum τ value is

always clear of conflict (COC). The DP algorithm determines for a given τ and other

state variables if an alert is required. τ is not robust to specific types of encounters,

such as parallel encounters where two aircraft are flying in parallel. Regardless of

rh, a parallel formation results in ṙh = 0, which to a maximum τ . To address this,

ACAS X implements a procedure mode optimized via surrogate modeling (Smith,

2013).

An alternative approach is to define a “good” region and provide costs to select

actions that transition to it, instead of attempting to transition away from a “bad”

region defined by an NMAC. Although the end goal of increasing separation is the

same, how the costs are implemented are different. Since an aircraft encounter is

defined by time to CPA and can be used a surrogate for NMAC risk, this alternative

formulation uses cost-shaping to encourage alerting in a specific region, as defined

by state-transition’s risk of transitioning to an NMAC within some time horizon.

Through simulation, the one-step probability of transiting to an NMAC is calculated

and the n-step probability of transiting to an NMAC. The simulation can estimate

the probability of incurring an NMAC cost at some time horizon in the future. This

binary state is named νt where t is the time horizon into the future and is true if an

NMAC occurs within t time steps from current state and zero if not.

Defining alerting regions via simulation, is an extension of using simulations to

establish a risk-based separation standard for UAS (Weibel et al., 2011). The previous

research only calculated the probability of NMAC given τ or NMAC and a state. The

newly developed simulation framework is not limited to τ and calculates any state

given any other state, such as P
(
NMAC | ∆h, rh

)
. Furthermore, νt provides the DP

algorithm additional information on which maneuvers increase separation the most

over multiple time steps, instead of the single time step of the algorithm. This is
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important when comparing vertical and horizontal maneuvers.

It is a critical feature of the described approach because it enables costs to be

applied to states that don’t include either ∆h or rh, the two states that directly

define NMAC. This is incredibly important in evaluating a state-space using the

spherical coordinate system or includes aggregate features composed of either ∆h or

rh. The probability of NMAC for the state-transition pair (s, s′) is denoted as λ(s, s′).

Given a set of actions, the optimal control should minimize λ and reduce the potential

of incurring the NMAC cost at a future state.

It is postulated that the conditional probability for each value of νt can be used

a surrogate for the τ used by TCAS and ACAS X. Greater probabilities of νt = 1

indicate that the current state is at higher risk of incurring the NMAC cost and

corresponds to a lower traditional τ value. Then an alerting region can be defined

using νt as a form of cost shaping. If there is little risk of an NMAC within some

time horizon, then the algorithm doesn’t need to alert.

3.6.2 Cost Functions

The cost functions are defined as indicator (characteristic) functions which can only

take on a value of one or zero. They denote membership of an element of a subset A

in the set X, where a value of one indicates membership (Cormen et al., 2001).

1A : X → {0, 1} (3.14)

NMAC cost

The primary cost function penalizes a potential NMAC state. As the avoidance policy

will be evaluated based on how well it minimizes the risk of NMACs, the magnitude

of the cost is relatively high compared to others. The NMAC cost g(s, s′)NMAC as an
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indicator function multiplied with some configurable time-invariant constant CN .

g(s, s′)NMAC =





1{
∣∣∆hs,s′

∣∣ ≤ 100,
∣∣∣rhs,s′

∣∣∣ ≤ 500} × CN if ∆h, rh ∈ S

1
{
λ (s, s′) > 0

}
× CN otherwise

(3.15)

0 < |CN | (3.16)

Alert cost

A system that is extremely sensitive to other aircraft and alert unnecessarily is not

operationally suitable. Collision avoidance alerts represent high-stress, time-critical

interruptions that may distract users or ATC; unnecessary maneuvers over time leads

to distrust of the system (Kuchar and Drumm, 2007). Operationally, COC is preferred

because it is not interfering with current flight activities. Depending on operational

considerations and platform capabilities, a different cost can be occured for vertical

or horizontal actions. They must be less than the NMAC penalty or the optimal

control would never alert and actively transition out of the NMAC state.

ρv = 1{ak 6= {COC}|ak = {CL25, DES25}} × Cαv × λij (3.17)

ρh = 1{ak 6= {COC}|ak = {L3, R3}} × Cαh × λij (3.18)

0 <
∣∣Cρv

∣∣ < |Cν | (3.19)

0 <
∣∣Cρh

∣∣ < |Cν | (3.20)

ACAS X has an additional cost to discourage always issue a stronger RA. Since

the action set, described in Section 3.4, does not include any stronger actions, a

strengthening cost is not required.
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COC reward

To help balance out the alert cost a small reward, the clear-of-conflict reward, is

awarded at every time step the system is not alerting to provide some incentive to

discontinue alerting after the encounter has been resolved. Similar to the others, this

reward γk is an indicator function multiplied with some constant CCOC .

g(s, s′)COC = 1{a = COC} × CCOC (3.21)

Other potential costs

There are many other potential costs but to reduce problem complexity and to focus

efforts on developing the simulation-based approach, other costs were not included.

However, any cost can be implemented if the required information exists as part of

the simulation. For discussion, two costs are presented here.

The reversal / strengthening cost is applied when not in COC and a different

action is selected. This penalty discourages sharp transitions between action states.

For example, it is disruptive to be in a climb advisory state and then commanded

to descend. This cost also discourages yo-yo alerts, where the alert state fluctuates

between multiple alerting states over a close set of timesteps (Holland et al., 2013).

Collision avoidance maneuvers are generally assumed to occur approximately one

minute or less prior to CPA. With the integration UAS into the NAS, self-separation

maneuvers are a focus of research. These maneuvers are attended to be less disruptive

and to maintain well-clear whose criteria is still being formally defined.

3.7 Policy Evaluation

Implementing a MDP formulation and producing an optimal policy given cost func-

tions are not sufficient to meet the research objectives. The optimal policy must pro-

duce reasonable decisions to mitigate aircraft collision risk. Monte Carlo simulations
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have been historically used to evaluate the improvement in safety when leveraging a

SAA system (Kuchar, 2005; Espindle et al., 2009; Kochenderfer et al., 2010c; Griffith

and Edwards, 2010; Griffith and Olson, 2011; Edwards, 2012). Monte Carlo simula-

tions provide exponentially more encounters to test against than equipping the policy

onto physical hardware while being fiscally cheaper.

An encounter model simulation can be used to estimate the probability of a

NMAC, which is a common safety metric used to evaluate aviation safety systems

because it naturally relates to relevant safety criteria (e.g., collisions per flight hour).

The equation for estimating the NMAC rate per flight hour λNMAC without faults is

P (NMAC | encounter)︸ ︷︷ ︸
estimate using

encounter model simulation

×λencounters per flight hour . (3.22)

The first term can be estimated using a simulation, such as that described in the pre-

vious section. The second term, λencounters per flight hour, can be obtained by observing

air traffic to estimate how frequently aircraft encounter each other in the airspace.

A metric used to assess the relative benefit of various system configurations is the

risk ratio. A risk ratio is the relative probability of a NMAC occurring given two

different configurations and is a useful metric for comparing the relative performance

of a collision avoidance system to a different type of system or to no collision avoid-

ance system. For example, the relative benefit of equipping an avoidance capability

compared to no capability is:

P (NMAC | with the system)

P (NMAC | without the system)
. (3.23)

If the risk ratio is less than one, then the system reduces the probability of a NMAC;

if greater than one, the system increases the probability of a NMAC. A policy is

generally determined to be feasible if the risk ratio is 0.1 or less.
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Although the risk ratio is the primary safety metric, it is important to note that

other metrics are valuable in operational assessments of an SAA system. Such metrics

may include right of way compliance, alert rate, deviation from course, alert mag-

nitude, etc. These metrics generally attempt to assess the operational suitability of

the SAA system. The balance between safety and operational suitability will drive

selection of the appropriate operating point for the SAA logic. While these metrics

are outside the scope, they are critical to understanding overall SAA performance and

can be assessed using the same analysis framework. Many of these require specific

logic to evaluate so they are not presented here. Also note that the SAA workshop

has recommended a target level of safety threshold, but one has not been sanctioned

yet (Federal Aviation Adminstration, 2013).



Chapter 4

Implementation

A six step process was developed to implement the simulation-based framework and

solve the MDP formulation discussed in Chapter 3. The Lincoln Laboratory Grid

(LLGrid), a parallel computing system, and the pMatlab library (Bliss and Kepner,

2007; Kepner, 2009) were leveraged to supplement computational power.

1. Conduct Monte Carlo aircraft simulations and record all simulation states

2. Process raw simulation data into triples for D4M use

3. Calculate one-step state-transition probabilities assisted by D4M

4. Generate one-step cost matrix based on state-transitions

5. Optimize using DP

6. Evaluate optimal policy via Monte Carlo simulations

Aircraft encounters were simulated using the Collision Avoidance System Safety

Assessment Tool (CASSATT). MIT LL has used CASSATT to support several op-

erational needs, including evaluating the improvement in safety when leveraging a

SAA system (Kuchar, 2005; Espindle et al., 2009; Kochenderfer et al., 2010c; Griffith

and Edwards, 2010; Griffith and Olson, 2011; Edwards, 2012); in the development

of standards or trade studies (Griffith et al., 2008; Weibel et al., 2011); and in the

development of ACAS X.

71
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The input to a single simulation is the data that describe the encounter situation,

including the initial positions, orientations, and nominal maneuvers generated by an

encounter model. The simulation’s output is a time history of the aircraft states dur-

ing the encounter. Running many encounters (e.g., millions) through the simulation

enables estimation of the necessary state distributions.

CASSATT is composed of a MATLAB interface and Simulink model where an

aircraft is represented by three main pieces: observations, logic and response, and

dynamics. This layout is analogous to how TCAS and ACAS X operate. The ob-

servation component simulates different sensors and generates an estimate of the

intruder’s aircraft position and rates. The logic and response component contains

the decision logic and is where the lookup for an optimal policy would be. It also

contains a model of pilot response or communication delay.

Observation
Logic and
Response

Dynamics

Sensor(s)

Aircraft
Estimate

Controls
Aircraft
StateIntruder

State

Figure 4·1: Architecture of an aircraft in CASSATT

4.1 Monte Carlo Simulations

The encounter set was sampled from the correlated encounter model, described in

Section 2.4, and sampled to be representative of equipped–unequipped encounters

in the NAS. Created in January 2013, 500,000 encounters were used for Monte

Carlo simulations. Each is encounter is weighted with respect to the probability it

can occur within the actual NAS. These encounter models capture the behavior of

aircraft approximately one minute near CPA.
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A perfect sensor was assumed, thus supplying a perfect estimate of the intruder

aircraft. These initial simulations implemented no aircraft avoidance logics. The

only controls created are those sampled from the encounter model. A simple five

second initial delay after the first command and three second delay for subsequent

commands are implemented as the pilot model. Finally, these controls are executed

via a point-mass dynamics model.

The Monte Carlo simulation was parallelized across 64 processors. 52 states were

outputted from the simulation; Appendix A reports these states. The results of each

individual simulation was stored in a data file. Each observation is recorded as a

floating point number with position-based states recorded with 1.0 precision; rate

magnitudes (i.e. vertical rate, airspeed) with 1.0 precision; angular rates with 0.001

precision; and accelerations with 0.001 precision. Each line of the data file contained

all the simulation variables for one timestep. Instead of creating one file for each

unique simulation, each data file contained up to 10,000 lines and the results for

multiple encounters. This 10,000 line limit was anecdotally found to be an efficient for

load balancing in latter steps. These raw data files ranged in size from 0.18 Megabytes

to 2.56 Megabytes.

A total 13,404 files were produced; assuming 10,000 lines per file, approximately a

total of 134,040,000 s were recorded. At 52 states per line, approximately 6,970,080,000

numeric doubles were stored. Safety assessments leveraging CASSATT have tradi-

tionally only stored summary statistics for each encounter with approximately up to

13,000,000 numeric doubles comprising the results. By recording every time step,

instead of summary statistics, order of magnitudes more simulation data was stored

and eventually processed. To the author’s knowledge, this is the single largest aircraft

avoidance simulation data set ever generated.
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4.2 Simulation Processing

Each raw data file is processed to create an associative array used by D4M. An

associative array is represented by a triple store of row keys, column keys, and a

value. The row key is a concatenation of an individual encounter id and Monte Carlo

id. The column key is a concatenation of the simulation time, variable name, and

the variable discretized value. Usually a key challenge would be discretizing each

variable, however the constant look up time and unlimited column features of D4M

significantly reduces this challenge. Since each column requires a constant look up

time, the time required to query a range of values grows linearly with the granularity

of the feature’s discretization. A maximum and minimum range was not required for

discretization due to the unlimited columns Accumulo feature. Finally each value in

the associative array is one. The associative array is stored in a Matlab .mat file,

which range from 0.09 Megabytes to 1.2 Megabytes in size. This step was parallelized

using pMATLAB and LLGrid.

4.3 Calculate state-transition matrix

First, a matrix containing a matrix of all state combinations is generated where each

column represents a state and a row represents a unique combination of the states.

Structure is provided by sorting the rows in ascending order by columns left to right.

A kd-tree is generated for each individual state as well. A kd-tree is a binary space

partitioning tree often used for range and nearest neighbor searches (Bentley, 1975).

Next, for each action the state-transition matrix is preallocated as an empty sparse

matrix. A linear index matrix is also preallocated, which records the linear index for

every nonzero element in the state-transition matrix. In Matlab, linear indexing is

faster than row / column indexing. While not important for the generate of the

state-transition matrix, it is necessary to generate the cost matrix in Section 4.4.
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With everything preallocated, a for loop begins and iterates through every asso-

ciative array i assigned to it. Each unique encounter id in the associative array is

identified. A second for loop will iterate over all unique encounter ids j. The elements

associated with encounter id j are filtered using D4M and parsed into a matrix. The

state variables are then filtered and the kd-tree nearest neighborhood is calculated

for each simulation state variable. Using the structure of the sorted state matrix,

the state-transition index for each pair of (s, s′) is calculated. Leveraging the orga-

nized structure is significantly faster with the individual state kd-trees than a single

multi-dimensional kd-tree.

For the representative manned aircraft action set, all observed states are consid-

ered and used to build the state-transition matrix. For the representative UAS action

set with its limited rates, additional filtering was required. Any observation whose

vertical rate magnitude is greater than 12.5 ft/s was filtered out. The processing al-

gorithm would recognize time step jumps to prevent introduction of errors from this

filtering. Filtering for all states instead of just vertical rate is important because

of the dependency of other states on vertical rates, as discovered when building the

encounter models (Kochenderfer et al., 2010b).

Finally, the state-transition matrices are updated using the (s, s′) linear indicies

pairs. The value of a nonzero element in S is the sum of the encounter weights for all

time steps that each encounter was in that state. Each linear index is recorded and

if an NMAC occurred or not at index. The index matrix is then aggregate and the

entropy of the state space is calculated.

Depending on the number of dimensions, discretization, and action set calculating

the state-transitions on LLGrid requires anywhere from 10 minutes to 2 hours across

64–256 processors. The kd-tree, structured indexing and D4M are the primary drivers

that enable the fast processing through the hundreds of millions of samples.
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4.4 Generate cost matrix

To generate the cost matrix, first a copy of the associated state-transition matrix is

made and assigned as the cost matrix. It is assumed that only the nonzero elements in

the state-transition matrix are feasible. Using the nonzero linear indicies to generate

the cost matrix is required to efficiently manage memory. A naive approach requires

too much memory at higher dimensions and does not enable a probabilistic costs.

Figure 4·2 illustrates this principle; the blue marks represent the state-transition

matrix for a one dimensional state space of vertical separation, ∆h. The red lines

illustrate what a NMAC only cost matrix would be if all potential NMAC states

incurred a cost, regardless of physical feasibility.
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Figure 4·2: ∆h(s, s′) state transitions with naive cost matrix. The blue
marks represent the state-transitions and the red bars illustrate a naive
NMAC cost matrix.

The overlap between the state-transition matrix and the potential NMAC states

is minimal. For example, the transition from ∆hs = -8000 ft to ∆hs′ = -8000 ft isn’t
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physically possible. Naively assigning cost to potential states drastically increases

the quantity of nonzero elements in the cost matrix, needless increasing memory

requirements. Furthermore, the naive approach can not support probabilistic cost

because it relies on identifying potential states. It would be extremely difficult to

identify all potential states using a naive brute force method.

Using the index matrix to identify which elements are associated with an NMAC,

the cost functions from Section 3.6 are applied. The alerting region is determined

based on the νt distribution across states and is calculated as a convex hull of these

states in n-dimensional space. Low probability νt = 1 states can also be filtered out

using a simple standard deviation outliers detection algorithm.

4.5 Optimize policy

With the state-transition and cost matrices generated, an optimal policy is calculated

using discounted DP policy-iteration. Optimization required a single desktop and was

not parallelized. The algorithm was limited to 100 iterations with a discount value

of 0.9 and would iterate until 0.01 epsilon. The algorithm and MATLAB code was

provided by the INRA MDP Toolbox (Chadés et al., 2005).

To facilitate a smooth policy, the state matrix was dilated and eroded using a

small diamond morphological structuring element. Instead of processing over a hy-

perrectangle, smoothing was iterated over two free state variables, usually {∆h, rh}.
Smoothing generally modified five percent or less of the space. Convolution over the

space with a filter was also considered but modified the structure of the space too

much.
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4.6 Evaluate policy

The policy is evaluated in CASSATT. As described in Section 3.7, the NMAC risk

ratio was used as the safety metric. Figure 4·3 depicts the CASSATT configuration.

Advisory
Logic

White-Noise
Surveillance

Logic Table

Point-Mass
Dynamic
Model

Maneuvers

Ownship Aircraft

Pilot
Response
Model

TCAS
(coop only)

Point-Mass
Dynamic
Mode

Intruder Aircraft

Ownship States

Intruder States

Figure 4·3: CASSATT evaluation framework

A policy will be determined feasible if the risk ratio is 0.1 or less. In addition

to evaluating how well the policy mitigates an NMAC, the risk ratio of 5NMAC

boundary and average alert length are measured. The 5NMAC is simply a volume

five times as large as NMAC as is defined as a loss of separation 500 ft and 2000 ft

vertically and horizontally. This metric will quantify how well the policy maintains

separation and potential transition to a more dangerous NMAC. The average alert

length helps quantifies the operational suitability of the policy. While there is no

standard baseline, if assuming a collision avoidance maneuver requires 30 – 60 s to

execute under ideal conditions (as determined in Section 3.2), the average alert time

should be no more double than that at 60 – 120 s.



Chapter 5

Results and Evaluation

This chapter presents the results of a state space exploration for collision avoidance

MDPs via a simulation-based framework. The previous Chapter 4 described the

implementation details of this framework. First the ability to generate MDP state-

transitions is demonstrated. Following is a discussion of the NMAC entropy for

different states and identification of NMAC risk. Using these results, an MDPs was

formulated and evaluated.

Discussion emphasizes the trade offs between horizontal and vertical maneuvers,

the practicality of specific state spaces, and potential of cost shaping. To facilitate

this, most of the analysis considers the optimization as infinite horizon with single

decision epoch. The goal is by forcing a single action, clearly defined differences

between horizontal and vertical maneuvers can be identified.

5.1 State-transition generation

Section 4.3 describes the process in which state-transition matrices could be gener-

ated from any combination of Monte Carlo aircraft simulation data. It is a critical

piece of technology development; the research objectives can not be met without this

functionality. This capability was verified through analysis of a basic state space

containing a well-studied, historical state and comparing the results to historical as-

sumptions. Higher dimensional spaces were then built with a focus on exploring the

sparsity and diagonally dominant nature of the space.
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First, a one dimensional state space consisting of ∆h, a state used by TCAS and

ACAS Xa, with a 25 ft/sec discretization was generated:

∆h = {−10000,−9975, . . . , 9975, 10000} (5.1)

A convex hull of ∆h(s, s′) is depicted in Figure 5·1. It clearly shows the diagonally

dominant, loosely coupled nature of aircraft dynamics and the sparsity of the state-

transition matrix. The high degree of sparsity, indicated by the narrowness of the

convex hull, is attributed to the one-second transition time step, there is a finite num-

ber of states that can be reached in that relative short time step. This is important

when considering discrete MDPs, an action must have some probability of transition-

ing out of the current state or the action will appear to have no effect. Specifically,

the sparsity decreases and the convex hull grows wider as discretization becomes more

course. However, the matrices remain diagonally dominant for all but the most course

discretizations. These general trends were observed for both the manned and UAS

actions sets.
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Figure 5·1: Convex hull of ∆h(s, s′) using manned action set
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While Figure 5·1 illustrates a general trend but a more detailed analysis is required

in addition. Through examining of the lightly Gaussian smoothed probability density

function (PDF) of ∆h(s) in Figure 5·2, specific conclusions concerning about each

action are made.
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Figure 5·2: PDF of ∆h(s) using manned action set

As expected, there is a greater correlation between vertical maneuvers and ∆h

than horizontal maneuvers and ∆h. The distribution is also sensitive to the sense

of the vertical maneuver. If the aircraft is descending, the PDF indicates a higher

probability of the controlled aircraft would be below the intruder. A similar trend

exists from climbing and a positive ∆h. Simply, an descending or climbing aircraft

should eventually transition below/above an intruder and influence ∆h more than

horizontal maneuvers. Additionally, ∆h is independent of the sense (left or right) of

the horizontal maneuver. Since turning primarily influences the horizontal plane, this

is expected since ∆h is part of the vertical axis.

Additional state spaces were then analyzed for sparsity and expected behavior.

Table 5.1 reports the MATLAB memory requirements for representing random state-

transition matrices. Substantial memory savings are realized with a sparse represen-

tation. For large matrices, such as a 150,176 × 150,176 with 22,552,830,976 elements,

a sparse representation is required; a dense representation is not possible.
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Table 5.1: Memory requirements for random state-transition matrices.

Memory (Megabytes)
Matrix Size Nonzero Percentage Dense Sparse Memory Saved

181 × 181 100% 0.2621 0.2038 22.26%
608 × 608 6.2749% 2.9573 0.376 87.29%
641 × 641 1.818% 3.287 0.1247 96.2%
820 × 820 5.1911% 5.3792 0.565 89.5%

73,568 × 73,568 0.0545% 43,298.005 47.7434 99.89%
150,176 × 150,176 0.019% N/A 69.9005 ∞

These results provides a common sense sanity check of the framework and verify

the capability to generate appropriate state-transition matrices. Using this capability,

the NMAC entropy for each potential state can be calculated.

5.2 State Entropy

States are categorized by their function in collision avoidance and reports NMAC

entropy and memory requirements. Based on this, different state spaces composed

of memory efficient and high entropy states are generated. Note that this section’s

figures leverage the manned action sets but the conclusions are similar between sets.

5.2.1 Separation

A state space needs to represents the separation (distance) between the aircraft.

This information corresponds to the position of the aircraft in space. As discussed

in Section 3.5, there are three different coordinate systems commonly used. The

Cartesian and Cylindrical systems use the same state to quantify the vertical axis

with the relative vertical position between two points as ∆h. In the Cylindrical

system, rh is the relative horizontal position calculated as the euclidean distance. The

Spherical system has a single relative position, and is the radial distance rs. For each

of these three separation states, eight different uniform discretizations were generated.

Figure 5·4 reports the corresponding NMAC entropies and memory requirements.
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rs

rh

∆h

Figure 5·3: Separation states: ∆h, rh, rs

It is not surprising that rs and rh have similar NMAC entropy and yield greater

NMAC entropy than ∆h. Since ∆h is often orders of magnitude smaller than horizon-

tal separation, the vertical component of rs doesn’t provide much more information.

Since ∆h is primarily influenced by only four variables (hi, ho, ḣo, ḣi) and rh is influ-
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Figure 5·4: Entropy and memory of individual COC range states
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enced by many more variables, (no, ni, eo, ei, vo, vi, ψo, ψi), it is reasonable to expect

that rh should have greater entropy. Furthermore, rh will have greater mutual infor-

mation with many more states than ∆h.

Although rs and rh have significant NMAC entropy, very discretized uniform rep-

resentations are not feasible due to their memory requirements. A rs state-transition

with 10,669,857,025 elements requires 882 MB. From a memory perspective, rs and

rh are more efficient. A ∆h state-transition matrix 400,040,001 elements requires

45 MB and has an NMAC entropy of 14.08 bits. Yet a rh state-transition with

1,898,884 elements requires only 2.3412 MB and has an NMAC entropy of 13.61 bits.

This efficiency is attributed to the scale of the horizontal plane, it maybe more ben-

eficial to quantify if aircraft are a nautical mile apart horizontally than a thousand

feet vertically.

Expanding upon this, 16 different uniform discretizations of {rh,∆h} state space

were generated and analyzed; Figure 5·5 illustrates the two dimensional NMAC en-

tropies and memory requirements. Both metrics have wider range along rh than ∆h.

It provides an insight into the how the discretization of the different states corre-

spond to NMAC and helps addresses the question, “Is it better to finely discretize rh

or ∆h?” While adding more states to rh results in greater entropy on a per state ba-

sis, it also increases memory at a faster rate than ∆h. Conversely, adding additional

states to ∆h increasingly has diminishing returns. This is attributed to common

flight trajectories, once aircraft reach a cruising altitude, there are minimal altitude

changes.

Finally with negligible differences between rs and rh, it was decided to leverage

rh in analysis because it persevered the assumption of independent horizontal and

vertical components, described in Section 3.5.
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5.2.2 Range Rates

The rates in which the separation states change are discussed next: ∆̇h, ṙh, ṙs. Fig-

ure 5·7 shows that similar to the ranges, rates that include horizontal information have

greater NMAC entropy and memory requirements. Interestingly, course uniform dis-

cretizations of ∆̇h produce little NMAC entropy and at even fine discretizations, such

as ∆̇h = {−3000,−2999, . . . , 2999, 3000}, yield significant less than ṙh or ṙs.
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Figure 5·7: Entropy and memory of range rate states

5.2.3 Simple Tau

The separation and range rate states can be aggregated together to decompose either

the horizontal plane or vertical axis into a τ state. While TCAS implements a slightly

more complex modified τ and ACAS X defines it time as loss of separation, this

analysis uses the simple definition of τ :

τv =
∆h

∆̇h
(5.2)

τh =
rh
ṙh

(5.3)

τs =
rs
ṙs

(5.4)
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TCAS has discretized τh from 0–45 s but to facilitate state space exploration, two

different τ ranges were considered: 0–50 s and 0–100 s. Similar to the separation and

range rate results, the NMAC entropy for the horizontal and spherical τ in Figure 5·8
have negligible differences and yield greater NMAC entropy than τv. These states are

not sparse, there are no nonzero elements in the state-transitions. Thus, the memory

required is a linear function of the discretization and range.
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Figure 5·8: Entropy and memory of COC simple τ states

For all three τ states, increasing the range out to 100 s led to greater NMAC

entropy. More importantly, a course discretization with a maximum of 100 s yielded

greater NMAC entropy than a finely discretized state with a maximum of 50 s given

a constant memory requirement.

Vertical and horizontal maneuvers also influence τ differently, as illustrated by Fig-
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ure 5·9. Saturation, as described in Section 3.5.3, near the maximum is also clearly

evident by the significant increase in likelihood near the maximum extreme. The

saturation is greater when using a maximum of 50 s. For τh, vertical maneuvers pro-

duce greater NMAC entropy than horizontal maneuvers. Since horizontal maneuvers

can easily turn into or turn away from intruders, τ is significantly more variable and

provides less information about a potential NMAC. Conversely, vertical maneuvers

can more easily lead to a lost of separation and a potential transition into an NMAC.
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Figure 5·9: NMAC entropy and probability distribution for τh,100(s)

Examining specific τh,100(s) values, in Figure 5·10, highlights the variability of
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τ states and the analytic benefits of NMAC entropy. The x-axis is the transition

state τh,100(s′) that is potentially reached by a specific τh,100(s). For each τh,100(s) the

probability to transitioning to neighboring values is Gaussian. As τh,100(s) decreases,

the tails of the distribution grow and the peak shrinks. Similar behavior was observed

for τs and τv states and for ranges of 0–50 s.
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Figure 5·10: Entropy and probability distribution for COC τh,100(s)

From an optimization perspective, there is more information about the potential

state transition for a low value τh,100(s) state than high value state. A higher value

state, such as τh,100(s) = 90 can rapidly transition to a more dangerous low value

state; closely-spaced parallel encounters are a type of encounter that can cause this.



90

This is a consequence of τ being an approximation that address a lack of azimuth

information te due to the limitations of surveillance technology in the latter half of

the twentieth century. This NMAC entropy perspective does not devalue the utility

of a τ state but rather quantifies the amount of information that each τ state provides

about a potential transition to an NMAC or a different state.

5.2.4 Angles

The separation states do not completely quantify the encounter geometry, the angle

between the aircraft is extremely useful. TCAS and ACAS Xa do not require this

information because they only operate in the vertical axis while ACAS Xu includes

angular states. The the ratio between headings (∆ψ), the spherical inclination an-

gle (θs), and the horizontal resultant angle (ψr) were evaluated. A combinational

challenge is reducing the number of state-transitions, discretizating from -180 deg to

180 deg with 1 deg intervals, produces a state-transition matrix with 130,321 nonzero

elements, which when combined with other states can easily grow to a large state

space. Finally, the angular rates are an intriguing category due to the historically

poor azimuth observations associated with aviation surveillance. It has been his-

torically very difficult to provide an accurate angular measurement, let alone the

derivative of them to calculate the angular rate changes

The aggregated feature ψr yielded greater entropy than the traditional relative

heading state ∆ψ. Compared to other states, exponentially increasing in the number

of states does not correspond with significant increases in NMAC entropy. These

angular states, along with τ states, were not sparse. The memory requirements

between angular states vary due to the state ranges, not all span 360 deg. For a state

such as ∆̇ψ, the amount of entropy can be approximately doubled with approximately

a 500% increase in memory.

Similar to the separation states, the vertical state angle θs yielded the least NMAC
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Figure 5·11: Entropy and memory of COC angle states

entropy. ∆h also provides more entropy than θs on a per memory basis, indicating

that ∆ is more efficient in quantifying the vertical axis. This highlights the disad-

vantages of the spherical coordinate system. The mathematical intuition discussed in

Section 3.5.2 correlates with the NMAC entropy result. Figure 5·12 depicts that as

rs increases, the difference between θs states for different ∆h states becomes small.

Compared to all states, θs yielded some the lowest NMAC entropy overall.

5.2.5 Airspeed

The airspeed states consists of the ownship airspeed (vo), intruder airspeed (vi), the

resultant vector magnitude (~R), and a collection of aggregate features generated from

(vo, vi). Figure 5·13 foremost illustrates that the aggregating operation (summation,
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θs = γ

(a) Small rs

θs << γ

(b) Large rs

Figure 5·12: Spherical perspective for a constant ∆h

distraction, etc.) had little effect. The ~R state is the most complicated and aggre-

gates many states, including the heading information of both aircraft. This angular

information is a reason why ~R yields the greatest NMAC entropy but also.why ~R re-

quires memory. However, complexity and aggregated features do not guarantee good

NMAC entropy results, as shown by the modified ratio state
(
vo/vi

)∗ 1 , which yielded

the least NMAC entropy of the airspeed states.

The lack of differences in the results indicate the challenge of identifying simi-

lar features of airspeed states. Two-dimensional spaces of {rh, vo} and {rh, vo + vi}
were generated and analyzed to quantify the potential of aggregate airspeed states.

{rh, vo + vi} was more sparse and required less memory than {rh, vo}. NMAC en-

tropy of these two-dimensional state spaces ranged from approximately 11–16 bits.

The aggregate feature state generally required 10–15% less memory, while providing

2–5% more NMAC entropy.

5.2.6 Vertical Rates

The vertical rate states consist of ownship’s vertical rate (ḣo), intruder’s vertical rate

(ḣi), and a collection of aggregate features generated from
(
ḣo, ḣi

)
. Illustrated by

Figure 5·14, the simple aggregated feature of summing the vertical rates,
(
ḣo + ḣi

)

1
(
vo/vi

)∗
= 1(vo/vi)≥1

(
vo/vi

)
+ 1(vo/vi)<1

(
−vi/vo

)



93

101 102 103 104 105 106 107
0

3

6

9

12

15

N
M
A
C
E
n
tr
op

y
(b
it
s)

101 102 103 104 105 106 107

101

100

10−1

10−2

10−3

Number of states

M
em

or
y
(M

B
)

vo (vo + vi) (vo − vi) | vo − vi | vo/(vo + vi) ~R
(
vo/vi

)∗

Figure 5·13: Entropy and memory of COC airspeed states

yielded the greatest NMAC entropy with less memory at most discretizations. These

characteristics identified it as a promising candidate to be included in the complete

state space. However, unlike the other categorizes, the ranks of highest to lowest

NMAC entropy, but not memory, varied across states. For example, ḣo/ḣi yielded

more NMAC entropy than | ḣo | + | ḣi | at smaller state discretizations, but the

reverse occurs at finer discretizations. Yet ḣo/ḣi always requires more memory.

Figure 5·15 shows the NMAC entropy and probability distributions for specific
(
ḣo + ḣi

)
values. This state is very symmetric. There is significantly greater NMAC

entropy at
(
ḣo + ḣi

)
= 0 and greater risk of NMAC when neither aircraft are maneu-

vering vertically. This is expected, if two aircraft are within ±100 ft and the vertical

rate remains unchanged, then the risk NMAC will be relatively high. More impor-
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Figure 5·14: Entropy and memory of COC vertical rate states

tantly, this state accounts for different combinations of vertical rates. Specifically

if both aircraft are in level flight but also accounts for when aircraft have opposite

vertical senses. As discussed in Section 3.5.2, if a state space included
(
ḣo + ḣi

)
and

ḣo, then it is possible to distinguish between the different vertical rate combinations.

The benefits of aggregation are persevered when expanding to larger state spaces.

The NMAC entropy and memory requirements for 16 different discretizations of each
{

∆h, ḣo

}
and

{
∆h, ḣo + ḣi

}
. The memory requirements, given a number of states,

is nominally similar between the different state spaces. However, the NMAC en-

tropy degradation as the number of states decreases is different.
{

∆h, ḣo + ḣi

}
space

perseveres more NMAC entropy as the discretizations become more course and on
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Figure 5·15: Entropy and probability distribution for COC
(
ḣo + ḣi

)

average provide greater NMAC entropy. This indicates that
{

∆h, ḣo + ḣi

}
is more

computationally efficient than
{

∆h, ḣo

}
.

5.3 Identifying NMAC Risk

The NMAC entropy of a state provides a one-step perspective of the state’s utility.

Calculating and analyzing the NMAC horizon (νt) provides a longer multi-step per-

spective with regards to safety. Both these metrics will then be used to formulate a

MDP and generate a policy in Section 5.4.

While the simulation framework can support any time horizon, this analysis con-

siders horizons of 15 s, 30 s, and 45 s. Starting with a baseline space of {rh,∆h},
additional states are added and evaluated for how the additional states change the
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νt distribution. A convex hull of the NMAC risk is calculated. Instead of calculating

other νt distributions, the resulting convex hull can be influenced through filtering.

The default filter requires each state to have at least two observations where νt = 1
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and implements a basic standard deviation outlier filter. Changing the filtering pa-

rameters will change the shape of the convex hull and subsequent alerting region of

the MDP formulation.

5.3.1 Baseline {rh,∆h} State Space

Figure 5·18 shows the normalized distribution for the actions over rh and ∆h for

three different NMAC horizons: ν15, ν30, ν45 using the representative manned aircraft

action set; Figure 5·19 uses the representative UAS action set. For all actions, the

NMAC risk becomes more diffuse across the space as the time horizon increases, the

NMAC risk for any nonzero νt state increases as t decreases. This is expected since

with a larger t, there is more time for aircraft to maneuver away from each other.

Weibel (Weibel et al., 2011) obseved a similar trend when defining risk as a function

of τ . For all results, at least 80% of the NMAC risk resides when rh ≤ 15,000 ft,

which is approximately the maximum range at which TCAS may issue an RA.

Although the different actions share some common conclusions, they also sig-

nificantly influence NMAC risk. For horizontal maneuvers, majority of the risk is

concentrated when rh ≤ 1000 ft and is skewed much closer to rh = 0 than for vertical

maneuvers. When rh > 20,000 ft, vertical maneuvers are generally subject to more

risk too.
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Figure 5·19: NMAC horizons using UAS action set for {rh,∆h}
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Specifically, if ∆h is negative and an ownship is descending or if ∆h is positive

and ownship is climbing, it is very unlikely to transition to an NMAC. This is as

expected because separation will only decrease if the intruder has a vertical rate the

same sense and a greater magnitude. Both horizontal action have approximately

symmetric distributions along the vertical axis, unsurprising because turn rate does

not directly influence ∆h. Figure5·20 illustrates this.

Climb

Descend

(a) Vertical actions

Left

Right

(b) Horizontal actions

Figure 5·20: Vertical perspective within regards to action

The NMAC risk distribution is also dependent upon the action sets. Figure 5·21

illustrates the convex hulls of ν30 of each action for both action sets. The convex hulls

include any nonzero ν30 value and does not take into account the probability of the

nonzero ν30 element. The hulls of the different actions overlap with each other and

the representative UAS hulls are similar to each other than.

When directly comparing the action sets in Figure 5·22, it is clearly evident that

vertical performance constraints directly influence NMAC risk. Horizontal actions,

such as R3, contract ν30 contour along ∆h. Since the vertical rate performance was

limited with the UAS action set, | ∆̇h | on average is smaller because | ˙∆ho | on

average is also smaller. Larger ∆h states are less likely to transition to a riskier ν30

state, thus the contraction. Interestingly, when unioning the action hulls, there is

marginal difference between the action sets if the probability of νt is ignored.
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Conversely, the ν30 distributions expands along ∆h when using the UAS action

set. For example, if ownship climbing when ∆h ≥ 0, that is no longer sufficient to

minimize NMAC risk, especially at larger rh states. This is due to that the magnitude

of the intruder’s vertical rate is usually greater than the UAS ownship’s. The ν30

distribution of the UAS action set is even wider than the ν45 of the manned action

set. As a consequence, the UAS action set will produce a larger alerting volume.
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Figure 5·22: Comparison of specific action ν30 {rh,∆h} convex hulls



102

5.3.2 Adding States

A state space of {rh,∆h} isn’t sufficient because it doesn’t quantify the rate at which

the encounter system is moving and lacks an angular component to complete describe

the geometry of the encounter. Without this additional information, the DP algo-

rithm will produce a policy with a very large alerting volume and subsequently an

operationally unacceptable alert rate. If two aircraft are relatively far away from each

other and are moving away from each other, an alert is not prudent in most cases.

Three states are considered to meet this information vector requirement: ∆̇h, ṙh, α.

To facilitate discussion, only R3 and CL1500/750 will be plotted henceforth; dis-

playing all potential plots with the expanded state space easily becomes unwieldy.

This is justified since the previous section discussed the general risk volumes for the

different actions whereas R3 and L3 similar and CL1500/750 and DES1500/750 are

partial inverses.

Vertical range rate

Figure 5·24 and 5·25 shows the ν45 distributions for CL1500 and R3 for a
{
rh,∆h, ∆̇h,

}

space. Foremost, the risk distribution along the ∆h is dependent upon ∆̇h. If ∆̇h

is positive, then negative ∆h states have significantly more risk since that vertical

separation is decreasing. A similar trend is observed for a negative ∆̇h and positive

∆h. The distributions also indicate that regardless of the sign of ∆h if | ∆h |≥ 1250,

the risk of an NMAC within 45 s is very low.

Risk is quantified vertically, with co-altitude ∆h = 0 as a distinct inflection

point between significant risk and little to no risk. This is especially evident when

∆̇h = [25, 50]. A long tail along rh is evident since there is no information available

quantifying the rate at which the risk changes along rh. While seemingly common

sense, this provides an analytic measure of NMAC risk when formulating the MDP.
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How the two aircraft interact together, quantified by ∆̇h, is a better indicator of

risk than what ownship is currently doing. While ownship climbing at a standard

vertical rate above the intruder is generally very safe for manned aircraft, if ∆̇h =

[−50,−25] there is nontrival risk. This highlights the importance and contribution of

aircraft encounter system perspective

Figure 5·23 demonstrates a consequence of the UAS action set: more potential

states can eventually transition to an NMAC. For small to moderate rh values,

the reduced climb rate leads to a smaller risk volume when ∆̇h is positive. When

∆̇h = [25, 50], the intruder must be moving away vertically since ownship can only

produce a maximum ∆̇h of 12.5 ft/s by itself. Conversely for ∆̇h = [−50,−25], the

intruder must be moving towards ownship vertically. These intruder assumptions are

not valid for manned action set since ˙∆ho ∈ ±25 ft/s.
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Figure 5·23: Comparison of ν30
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}

This signifies how the implicit information of a given state, such as ∆̇h changes as

a function of the action set. While the states and discretizations between the manned

and UAS actions sets are identical, the risk associated with each state can vary and

available assumptions about the aircraft encounter also change.
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Figure 5·24: ν45 of manned action set for
{
rh,∆h, ∆̇h

}
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Figure 5·25: ν45 of UAS action set for
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rh,∆h, ∆̇h

}
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Horizontal range rate

Figure 5·26 and 5·27 shows the ν45 distributions for CL1500 and R3 when ṙh is added

to the state space. A positive ṙh indicates that rh is increase and the aircraft are

moving away from each other. As ṙh becomes negative and there is greater risk

at larger rh state, the distribution becomes more similar to the baseline {rh,∆h} in

Figures 5·18– 5·19. As ṙh becomes more positive, the ν tail becomes smaller, resulting

in a potentially smaller alerting region and alert rate. While, the {rh,∆h} effectively

has to assume the worst case ṙh, inclusion of ṙh drastically changes the risk volumes

and subsequently alerting characteristics in DP optimization.

The additional information provided by ṙh is very evident. If the ownship is

climbing or descending (not shown) using the manned action set, there is almost zero

risk of an NMAC when ṙh = [250, 500], however risk remains if the aircraft is turning.

This is due to the possibility of the ownship turning into the intruder and transiting

to a negative ṙh.

While there is effectively nominal NMAC risk for ṙh = [250, 500] with a manned

vertical action, there is still noteworthy risk when using the UAS action set. There

is also a more defined risk structure with the UAS action set when ṙh = [0, 250],

as evident by simply more NMAC events observed in those states. While the risk

volume maybe greater than the manned, the inclusion of ṙh still drastically changes

the risk volumes.
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Figure 5·26: ν45 of manned action set for {rh,∆h, ṙh, }
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Figure 5·27: ν45 of UAS action set for {rh,∆h, ṙh, }
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Bearing

Figure 5·29 and 5·29 show the ν45 distributions for CL1500 and R3 for a {rh,∆h, α, }
space. Risk given α is more subtle than the previous figures put still provides impor-

tant information. When compared to ṙh and ∆̇h, α had the least differences between

the two action sets. Since α encodes angular information, any action set uses the

full α state range and no intruder assumptions can be made for specific α values or

ranges. This is a consequence of the lack of sparsity of angular states, as discussed in

Section 5.2.4.

Foremost, risk is similar if the intruder is directly left (α = 90) or directly right

(α = −90) for both action sets and all maneuvers. Since α only contains angular

information, it demonstrates the long rh tail. The rh tail is longer and with greater

overall risk when using the UAS action set and when using vertical actions, regardless

of the action set. Vertical actions, such as CL1500/750, have little relationship with

α since ḣ operates independently to it a different axis. The long rh and a less skewed

distribution for CL1500/750, illustrates this relative independent between α and the

vertical axis.

There is a distinct change in the distribution when the intruder is either head-on

or overtaking ownship. For these geometries through the ownships nose, α provides

significantly more information and the long rh tails disappear. For vertical actions,

the ν distributions becomes smaller with each nonzero element associated with a

relatively greater probability of transitioning to a future NMAC state, as shown by

the dense red clustering in the figures. However, as for α = {−90, 90}, there is little

difference between the action sets.
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Figure 5·28: ν45 of manned action set for {rh,∆h, α, }
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Figure 5·29: ν45 of UAS action set for {rh,∆h, α, }
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5.4 Policy Generation

The previous sections analyzed the risk of NMAC through entropy and a time horizon

for different state spaces. Using these metrics an MDP is formulated. Based on the

identified risk, an alert region is calculated as convex hull and the DP algorithm is

applied to the MDP. A baseline policy using the state space of {rh,∆h} is first

generated to identify general trends about the cost and alerting structure. States for

addition to the space are then identified using information theory. Evaluation for

safety and operational feasibility of these polices is discussed in detail in Section 5.5.

5.4.1 Baseline

Using a policy-based DP optimization of a simple state space of {rh,∆h} with an equal

alerting cost between horizontal and vertical maneuvers with the manned action set

produces the collision avoidance policy in Figure 5·30. The ν30 was used to define

the alerting region. Using the UAS alerting set produces a very similar policy. The

policy relies heavily on vertical maneuvers and the lack of rate information results

in the policy alerting out to 28,000 ft. This represents a very conservative and safe

policy but is not operationally feasible, as latter discussed in Section 5.5.1.
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Figure 5·30: {rh,∆h} policy using a ν30-based alerting
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The horizontal alert cost (Cρh) was decreased to explore how this influences the

optimal policy. Figure 5·31 illustrates how the optimal policy of {rh,∆h}, using the

manned action set, changes as a function of the horizontal action alerting cost
(
Cρh
)

as some smaller fraction of the vertical action alerting cost
(
Cρv
)
.
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Figure 5·31: {rh,∆h} policies of varying Cρh using a ν30-based alerting
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As Cρh becomes smaller, there is a greater incentive to select a horizontal action.

Horizontal actions “take over” the policy starting near NMAC and radiates outward

along rh. This isn’t surprising due to the serve cost penalty for NMAC states. Ad-

ditionally, descend actions were replaced with a horizontal action faster than climb

actions as Cρh becomes smaller. This provides insight into to the cost-to-go values

for each state and action; the values between DES1500/750 and R3 are closer than

CL1500/750 and R3. This can be interpreted that there is stronger confidence that

a climb will resolve the NMAC risk. Finally, without angular information, at the

extreme case of Cρh = Cρv/90, only R3 is selected, outside a small noisy area of the

policy. This lack of angular information is contributes to the irregular alert regions

of L3, such as in Cρh = Cρv/60.

Although operational inefficient, this policy highlights many features found in

more operationally acceptable policies. Foremost, a vertical maneuver of ±25 ft/s is

sufficient to maintain safety. Vertical maneuvers alone are sufficient as a collision

avoidance action set; horizontal maneuvers require additional incentive to be opti-

mally selected. This highlights why TCAS has been successful and ACAS Xa did

not have to redesign the action space. More importantly, since the {rh,∆h} policy

is conservative enough to meet safety feasibility, then the goal of adding additional

states is to reduce the alert rate while secondarily increasing safety in specific cases

(i.e. closely-space parallel approaches).

5.4.2 Adding States using Information Theory

While Section 5.3.2 discussed how adding states influenced νt and NMAC risk, νt

alone doesn’t describe which state is more important. Information theory is used to

determine what states to add to the baseline {rh,∆h} space. The NMAC entropy

can range many bits depending upon the discretization. Thus when adding to the

state space, both a state’s purpose and discretization need to be considered.
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Various new three dimensional state spaces were generated by adding a single new

state to the baseline {rh,∆h}. These new state spaces were then compared to the

baseline in terms of information gain and memory increase. An idea new space will

minimize memory increase will maximizing information gain. Figure 5·32 compares

these metrics for various spaces, with states classified as either horizontal or vertical.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

1

2

3

4

∆ψ ∈ {0, 3, . . . , 360}

θs ∈ {0, 3, . . . , 180}
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Figure 5·32: Gain and memory increase of adding a state to {rh,∆h}

The general clustering and trends of the states are the same between action sets.

Many of the conclusions from Section 5.2 continue to hold. Aggregate features such

as (vo + vi) or ṙh generally provide more gain. It is also evident from a memory

perspective, states relating to the horizontal plane generally yield greater gain.

States that independently yielded low NMAC entropy, such as θs, provided little
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information gain. This supports the intuition that first-order states such as v or ṙh

are more useful than θs when selecting states by hand. Additionally, compensating

for low NMAC entropy with increased discretization can result in useful information

gain but at the expense of an unacceptable memory increase. For example, ∆ψ ∈
{0, 3, . . . , 360} provides 3.5 bits of gain yet increases the memory requirements by a

factor of 31. Yet, ∆ψ ∈ {0, 6, . . . , 360} provides a similar gain of 3.2 bits but only

increased the memory requirements by a factor of 18.

Information gain can also potentially increased by expanding the state’s range

with a coarser discretization. Both τh,50 ∈ {0, 5, . . . , 50} and τh,100 ∈ {0, 10, . . . , 100}
have the same number of elements and have similar memory requirements, but the

larger range results in greater gain. This highlights the complications associated with

state maximums and saturation discussed in Section 3.5.3. Sometimes it is better to

quantify a wide range at a low fidelity than a small range with a higher fidelity. The

edge case of τh = 50 encompasses many more encounter geometries than τh = 100.

This leads to greater saturation and provides less information as a result.

Based on the states tested, ṙh is recommended as the third state when using the

either action set. ṙh shares mutual information with rh and directly correlates with

NMAC risk, as shown by νt. Airspeed states generally provided similar or slightly

higher information gain but at the expense of a greater increase in memory. This

isn’t surprising because the horizontal plane requires more information to properly

quantify it. Hence the the larger state space of ACAS Xu compared to ACAS Xa.

Figure 5·33 depicts parts of resulting policy of {rh,∆h, ṙh} where the alert costs

are equal. Similar to {rh,∆h} there is a strong preference but vertical maneuvers.

There is a stark difference in the alerting volume between ṙh = −200 and ṙh = 100,

If the aircraft are moving away from each, the alerting region is significantly smaller.
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Figure 5·33:
{
rh,∆h, ṙh | Cρh = Cρv

}
polices using ν30 alerting

Unlike {rh,∆h} which met the safety but not operational requirements, this simple

{rh,∆h, ṙh} policy yields an NMAC risk ratio of 0.1025 with an average alert duration

of just 33 s. Section 5.5.2 discusses this evaluation in detail. The performance metrics

will vary depending upon the alert costs, however the cost structure of {rh,∆h}
doesn’t directly correlate with {rh,∆h, ṙh} (or any other new state space).

5.4.3 Higher order states spaces

The process to add additional states is similar the approach described in Section 5.4.2

but this analysis did not automate the process. As Figure 5·23 illustrated, inclusion

of ∆̇h to the state space influences how the NMAC risk is perceived. Yet ∆̇h has little

NMAC entropy and produces significantly less information gain compared to other

horizontal states. Vertical states have minimal mutual information with horizontal

states, this presents a design challenge where high mutual information across the state

space is desirable, leading to a minimization of conditional entropy.

Asserting that a complete space requires angular information and a vertical rate

component, an angular state was selected as the fourth state variable because it

provided greater independent entropy and information gain. For the fifth state, only
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vertical states were considered. A discrete state variable is then added to account for

COC transitions and strengthens and reversals.

S =

{
rh,∆h, ṙh, α,

(
ḣo + ḣi

)
, sRA

}
(5.5)

This space quantifies both the horizontal and vertical spaces as vectors with mag-

nitude and angular components. Since the vertical axis is a line, a vertical angular

state is not required. This policy doesn’t quantify the ownship’s current rate (i.e. ḣi)

directly. With the joint action space, the aircraft have significantly more flexibility

in responding to NMAC risk. Since ownship can maneuver either horizontally or

vertically, ownship’s current rates are less important.

For coordination, it is important that each aircraft have relatively unique perspec-

tives or a “copycat” encounter occurs. If the state information for both aircraft are

identical, then avoidance logics will issue identical maneuvers and the encounter will

not resolve itself. The state’s discretizations are almost as important as the states

themselves. Consider an extreme case, ∆h = {−8000, 8000} provides little NMAC

entropy and can not uniquely identify a co-altitude encounter geometry.

While furthering discretizating any state leads to diminishing returns, this is es-

pecially applicable to angular states due to the exponential growth of memory as the

discretization becomes finer, illustrated by Figure 5·34 and observed in Section 5.2.4.

While NMAC entropy can quantify the utility of different discretiations, it can’t

predict the optimal policy given a discretization due to costs and optimization pa-

rameters. It is important than to understand how the optimal policy changes with

the discretization. For example, does a states optimal action change from depend-

ing upon the discretization? If the angular discretization is too course, are vertical

maneuvers preferred because of the lack of information about the horizontal plane?

As the angular discretization becomes more course, the policy becomes more re-
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Figure 5·34: Angular discretization vs. unique states

liant on vertical maneuvers, similar to the optimal polices of {rh,∆h} and {rh,∆h, ṙh}.
However, there is negible difference between polices when the discretization is suffi-

ciently small at a discretization of six degrees or less. This is advantageous because

the memory requirements decrease as the discretization becomes more course. This

is enabled by using simulation-based dynamics, in traditional MDP DP, it is possible

can get “stuck” in a state if the action isn’t sufficient enough.

This is especially important for any angular or angular rate state such as α. The

MDP must represent all four Euclidean quadrants, thus a discretized angular state

must include {0◦, 90◦, 180◦, 270◦}. This isn’t sufficient for horizontal maneuvers or

for encoding right-of-way rules because a left or right sense is required, prompting

the necessity of each 45◦ angle for a minimum of eight elements of any angular state.

However, if only vertical maneuvers are implemented, like TCAS or ACAS Xa, an-

gular information isn’t as relevant but not useless. Supplementing a τ state with

basic angular information could improve a vertical action set MDP since additional

information about the encounter geometry would be available.
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Figure 5·35: Required angular positions that the MDP must represent

5.4.4 Other Considerations

Section 3.2.2 defined the operational component of aircraft avoidance primarily as

a function of alerting behavior, but there are many other operational components.

Some of these components are passenger comfort, other aircraft types, and intended

mission.
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Performance Constraints

While horizontal maneuvers have anecdotally been associated with UASs, there is

nothing prohibiting horizontal maneuvers for specific classes of manned aircraft. Pre-

vious sections have demonstrated that horizontal maneuvers can contribute to safe

optimal policy, but these policies do not quantify any human conditions. Section 3.4

recognized that even for relatively slow airspeeds, the required bank angle for a 3 deg/sec

is greater than 30 deg which could affect passenger comfort or simply not be feasible.

Since the vertical actions differ between the sets, the operational performance

constraints for different manned aircraft are ignored. Although a small four-seat

general aviation has different operational performance constraints than a large cargo

aircraft, this is not captured by the action sets. The ACAS X program addresses this

by having four different variants, including one for general aviation. As discussed in

Section 5.3, simply reducing the maximum vertical rate between the representative

manned aircraft andUAS influenced NMAC risk. It is expected that changing the

horizontal action would have similar effect and needs to be explored.

Rotorcraft and VTOL

States, such as ḣo or vo, were not included in any evaluated policies but still could

provide value. These states are particularly important when some of the assumptions

are relaxed or removed, such as the fixed-wing aircraft assumption. To maintain

controlled flight, a fixed-wing aircraft must have some positive airspeed. Rotorcraft,

however, can operate in a hover mode where it’s airspeed is zero or fly “backwards”

where the heading vector angle and airspeed vector angle are opposite.

This is important for aircraft avoidance because, for a given an RA, the resulting

trajectory is dependent upon the aircraft’s airspeed vector. The resulting encounter

geometry will evolve differently if the aircraft ascends or descends completely vertical
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from a hover or when in motion. Additionally, the unique operating VTOL operating

envelope allows for more potential controls to part of the action set. For example, a

“stop and hover” action where the RA commands vo = 0 ft/s and ḣo = 0 ft/s is feasible.

While rotorcraft possesses a unique operating envelope due to the ability to hover,

during most phases of flight, the helicopter profile is similar to that of a general avia-

tion airplane and rotorcraft pilots have expressed reluctance with vertical avoidance

maneuvers (Taylor and Adams, 1985). When assessing TCAS for helicopters, it was

asserted that the unique vertical dynamics of a helicopter do not significantly con-

tribute to NMAC risk (Taylor and Adams, 1985). It would then be advantageous to

have a similar collision avoidance MDP that is applicable for both general aviation

and rotorcraft. If the MDPs were identification, the policies would not be memory

optimal because there would be unreachable states in practice. For example, the

rotorcraft MDP would need to quantify hover and somehow represent vo = 0 ft/s, yet

vo = 0 ft/s isn’t applicable to a fixed-wing general aviation aircraft. This region of the

state space would be incredibly more valuable for rotorcraft.

Intended Mission

By its very nature collision avoidance disrupts an aircraft’s intended mission. Com-

mercial airlines want to achieve a certain heading to fly between distances, a vertical

maneuver has minimal disruption on this intended mission. However, Navy aircraft

such as the manned P-8A Poseidon or the Triton MQ-4C UAS have mission pro-

files include a dip down to a few thousand feet from a higher altitude (Steele, 2014)

where a vertical maneuver can severely disrupt the intended mission. While JOCA

addresses this by considering waypoints, a MDP DP approach requires expanding the

state space or adding costs to quantify mission intent information.

The evaluated MDPs uses relative states ,such as ∆h, to minimize memory re-

quirements. While (ho, hi) can provide similar information as ∆h, the range of (ho, hi)
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is significantly larger. Whereas the range of ∆h is thousands of feet, the range of ho

must be tens of thousands of feet since the MDP would represent all phases of flight:

from take-off to a high altitude cruise. This wider range makes (ho, hi) is likely

infeasible for MDP, regardless of how it correlates to a mission.

Adding a discrete mission state to the MDP would have a considerable effect

on the memory required. Since this state would be discrete, sparsity can not be

leveraged. The memory requirements would linearly increase as a function of the size

of the mission state. Even a binary mission state (i.e. vertical transit and cruise)

would double the memory requirements.

The simplest option is to develop multiple MDP and optimal DP policies for

different missions and flight phases. This is an extension of the sensitivity options of

TCAS and the procedure mode of ACAS X (Smith, 2013). The DP costs will change

to promote SAA behavior that minimizes the disruption of the mission. For example,

if the Triton MQ-4C UAS is executing a descend as part of a mission dip, the cost for

climb can be relatively high or the horizontal maneuvers costs could be less. This will

encourage behavior to maintain the descending profile while reducing NMAC risk.

5.5 Evaluation Results

Generated policies were evaluated in CASSATT and determined if safety and opera-

tionally feasible. Discussion focuses on the manned action set, with the UAS action

set producing similar results. The safety metrics characterize how a policy mitigates

NMACs and the operational assessment characterizes the alerting behavior. An ideal

policy prevents all NMACs and has a low alert rate with alerts that last up to 30–60 s.

The baseline policy of {rh,∆h} was first evaluated, followed by {rh,∆h, ṙh} to

highlight the benefits of adding just one state. Finally,

{
rh,∆h, ṙh, α,

(
ḣo + ḣi

)
, sRA

}

is evaluated.
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5.5.1 Baseline {rh,∆h}

The conservative logic with equal horizontal and vertical maneuver costs with a state

space consisting of {rh,∆h} discussed in Section 5.4.1, was first generated using

various νt to define the alerting region. For the evaluation, only the ownship is

equipped with a SAA system and observes the the intruder via simulated simple

white noise tracker. Table 5.2 reports the Monte Carlo evaluation results.

Table 5.2: Baseline {rh,∆h} results with manned action space

νt horizon NMAC Risk Ratio 5NMAC Risk Ratio Mean Alert Duration (s)

15 0.2474 0.3851 25
30 0.0177 0.1607 150
45 0.0181 0.0665 220

As mentioned in Section 5.4, this baseline meets the safety requirements but not

the operational requirements. However relying on last-second maneuvers, as dictated

by the smaller alerting region of ν15, reduces the NMAC risk by approximately 75%

and protects against the larger 5NMAC volume by approximately 60%. This indi-

cates that many of the “easy” NMAC encounters can be resolved with minimal state

information and warning before NMAC. Doubling the risk projection from 15 s to

30 s drastically reduces the safety risk but at the expense at a higher alert rate.

The relationship between safety and alert is illustrated by Figure 5·36, which

plots the Cρh = Cρv results from Table 5.2 and selection of other policies generated

where Cρh 6= Cρv and with different filtering of νt. Since the baseline policy of
{
rh,∆h | Cρh = Cρv

}
from Section 5.4.1, relies on almost solely on vertical maneuvers,

few MDPs where Cρh > Cρv were considered. For {rh,∆h}, vertical maneuvers do

not have to be incentivized against horizontal maneuvers.



125

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.1

0.2

0.3

ν15 | Cρh = Cρv

ν45 | Cρh = Cρv

Alert Duration (s)

N
M
A
C

R
is
k
R
at
io

Cρh = Cρv Cρh 6= Cρv

Figure 5·36: Results using {rh,∆h}

Self separation implications

The resolution of at least 60% of 5NMAC events with a simple policy is interesting

from an UAS SAA perspective, which consists of collision avoidance and self sepa-

ration. While the 5NMAC volume is smaller than most proposed well-clear volumes

that self separation protects, it does provide insight into state requirements for self

separation. The policy is designed to minimize NMAC risk, yet the policy signifi-

cantly reduces the risk of aircraft transitioning close to an NMAC. This suggestion

that defining risk based on a smaller volume can potentially produce an optimal pol-

icy that meets the safety requirements for a large volume. It is expected that the alert

duration and alert rate will be smaller than if risk was defined by the desired large

volume. This hypothesis applies for any aircraft avoidance MDP with costs defined

by risk.

If feasible, this can lead to a new methodology to defining self separation MDPs

and development of the self separation functionality. Unlike collision avoidance which

must resolve an overwhelmingly majority of potential NMACs, the maximum failure

rate of self separation is less stringent. The less rigorous safety requirement may only

require a smaller fidelity MDP representation of the aircraft encounter.
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It is conceivable that self separation functionality can be added to a collision

avoidance policy through additional costs. This functionality may only use a subset

of the collision avoidance states to meet computational and memory requirements.

This concept contrasts the current independent MDPs and implementation of collision

avoidance and self separation. It would be useful to evaluate states based on self

separation entropy and a well-clear risk-based horizon. It is possible that utility of a

state changes based on the SAA functionality.

Consequence of only using two states

The lack of angular or rate information significantly impacts the alerting character-

istics regardless of the action space. Specifically, for encounters where ḣo ∼ ḣi and

∆̇h = ε, the ownship can’t transition out of the alerting region vertically and will

continue to alert until the horizontal alerting region is cleared. This can be from

a few to many nautical miles, leading to the long alert durations. It is especially

dangerous if the aircraft are also parallel, since the baseline policy relies primarily

on vertical maneuvers, it won’t transition out of the parallel situation. Similarly for

overtaking and head-on encounters, if ∆̇h = ε, the policy will continue to alert prior

to and after the aircraft pass each other at CPA.

The lack of information on how the encounter is evolving is the other major

contributor to the long alert duration. Whether or not the aircraft are moving towards

or away from each other has little influence on the policy. As Figure 5·33 from

Section 5.4.2 illustrated, νt changes with ṙh and the corresponding alerting region

can drastically shrink. Inclusion of rate information should then have a significant

impact on the alert duration but without angular information will still strongly prefer

vertical maneuvers when Cρh = Cρv .
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5.5.2 Effect of adding range rate

Section 5.4.2 described the processing of adding a third state to create the {rh,∆h, ṙh}
space. Table 5.3 provides the evaluation metrics when all the alert costs are equal.

Using just three states, both the safety and operational feasible metrics can be met

with the following uniform state space that requires only 1.4637 Mb of memory:

∆h = {−2000,−1950, . . . , 2000} (5.6)

rh = {0, 500, . . . , 20000} (5.7)

ṙh = {−500,−400, . . . , 500} (5.8)

This demonstrates that defining the alert volume, an operational component, as

a function of νt, a safety component, is feasible when designing a collision avoidance

advisory logic. This primarily due to that for relatively positive ṙh that the NMAC

risk is relatively low which significantly shrinks the alert volume, leading to reduction

in alerting. The course discretization is supported by the joint-action space, ownship

is not only reliant on horizontal maneuvers to resolve an encounter. Instead of finely

discretizating either the horizontal or vertical, a moderate to course discretization is

sufficient for both.

Table 5.3:
{
rh,∆h, ṙh | Cρh = Cρv

}
results with manned action space

νt horizon NMAC Risk Ratio 5NMAC Risk Ratio Mean Alert Duration (s)

15 0.1843 0.2134 14
30 0.1025 0.1356 33
45 0.0562 0.0733 50

Note that {rh,∆h, ṙh}meets the objectives without an angular component because

when Cρh u Cρv , the horizontal maneuvers that require an angular component are

rarely deemed optimal.
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Effect of ṙh on alerting behavior

Inclusion of ṙh resulted in substantially shorter alert durations without compromising

meeting the safety objectives. For ν30 and ν45, the mean duration decreased by at

least 400%. In particular, slow overtaking and head-on encounters had much shorter

alert durations. The slow closure rates provide the aircraft more time to execute

another nominal maneuver (i.e. something on the flight plan) before the NMAC risk

becomes sufficient enough to warrant an alert.

Additionally, slow or positive ṙh require less adjustment to the encounter geometry

to minimize NMAC risk. For example, Figure 5·33 from Section 5.4.2 shows that the

vertical component of the policy is much smaller when ṙh = 100 than when ṙh < 100.

If the policy relies primarily on vertical maneuvers and the desired change of ∆h is

relatively small, then it simply will take less time to achieve the desired ∆h than if

the desired ∆h was large.

The policy can also exhibit some oblique behavior due to the alerting regions de-

fined by NMAC risk usually when the alert does not resolve the NMAC risk. Consider

a head-on encounter when ṙh u −500 and the optimal policy issues an RA. However

if ṙh u 500, the optimal policy may never issue an RA. Suppose during this head-on

encounter, that regardless of the RA the aircraft cross paths. Once they cross, ṙh will

jump from -500 ft/s to 500 ft/s and stop instantaneously stop alerting. This behavior

also affects any τ state where τ can jump from a small positive number to its edge

state or ∞ and angular states where the state jumps between quadrants. Ironically,

this behavior does not occur with the simpler {rh,∆h} space because of coupled

dynamics of the states; there are no quadrants or asymptotic events to “jump” over.
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Effect of not including angular information

While the alerting characteristics of overtaking and head-on encounters changed, the

lack of angular information however makes it impossible to to distinguish between

these encounter types with parallel encounters. This lack of information also results

in a policy primarily composed of vertical maneuvers and still produces some con-

servative behavior. Specifically, crossing encounters cannot be distinguished between

overtaking or head-on encounters. Depending upon the geometry, during a crossing

encounter the intruder aircraft can “nick” the front edge of the alerting region result-

ing in a few second alert, which would probably be considered a nuisance to manned

pilots.

Therefore, meeting the feasibility metrics doesn’t indicate that a {rh,∆h, ṙh} is

sufficient for operational use. The inability to unique represent common encounter

types can be addressed through adding additional states. Rather it demonstrates

the utility of a system perspective, the benefits of not decomposing into τ , and the

flexibility of the joint-action space.

5.5.3 Full state space

Section 5.4.3 outlined the methodology of creating a complete state representation of{
rh,∆h, ṙh, α,

(
ḣo + ḣi

)
, sRA

}
. The complexity of separate vertical and horizontal

alert costs presented a difficult and new challenge compared to ACAS X development,

where alerts generally have one cost. This space was built upon the moderately

discretized space of
{
rh,∆h, ṙh | Cρh = Cρv

}
. It added an angular component with

bearing and a vertical rate component with the aggregate summation of vertical rates:
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∆h = {−2000,−1950, . . . , 2000} (5.9)

rh = {0, 500, . . . , 20000} (5.10)

ṙh = {−500,−400, . . . , 500} (5.11)

α = {−180,−135, . . . , 180} (5.12)
(
ḣo + ḣi

)
= {−50, 25, . . . , 50} (5.13)

Like the smaller state spaces, this state achieved the safety and operational feasi-

bility metrics. However, this policy did not as strongly favor vertical maneuvers, due

to inclusion of angular information. Specifically, horizontal maneuvers significantly

influenced α which led to better cost-to-go values.

Table 5.4:

{
rh,∆h, ṙh, α,

(
ḣo + ḣi

)
, sRA | Cρh = Cρv

}
results

νt horizon NMAC Risk Ratio 5NMAC Risk Ratio Mean Alert Duration (s)

15 0.1758 0.2031 20
30 0.0834 0.1256 36
45 0.0651 0.0937 55

Inclusion of the two additional states increased the memory requirements from

1.4637 Mb to 41.4043 Mb. Thus, adding states such as ḣo are not memory prohibitive.

However the simulation-based framework becomes more susceptible to memory con-

straints as the state space grows. Storing the state-transition matrices of spaces

with tens of millions unique combinations can be prohibitive, even with sparse rep-

resentations. For example, this space has 1,035,045 unique state combinations. The

state-transition matrix is then size 1,035,045 × 1,035,045 with 1,071,318,152,025 ele-

ments stored as doubles. While memory savings can be realized by using a float data

representation, the large-scale of state-transition matrices can be problematic for the

simulation-based approach.
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This policy can be viewed as a refinement of {rh,∆h, ṙh} in that many of the

general conclusions and discussion points are similar between the policies but that{
rh,∆h, ṙh, α,

(
ḣo + ḣi

)
, sRA

}
can simply better distinguish between encounter ge-

ometries. Including angular information is a key driver for and it is expected that

a different angular state than α would also achieve this. It is emphasized however

that addition of these states is to meet operational feasibility alone and that there no

safety reason to prefer horizontal maneuvers or vertical.

The simulation-based framework was never intended to replace the traditional

MDP DP approach of ACAS X, but rather provide contributions as an algorithmic

design framework. This framework has shown that defining risk as a function of

NMACs, state selection via information theory, and the acceptance that not every

state requires a fine discretization leads to feasible and reasonable developmental SAA

policies.
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Chapter 6

Conclusion

Collision avoidance is a critical aviation safety technology and has been under de-

velopment since the 1950’s. The evolving ATM system has led to new user classes,

new surveillance technologies, and new operating modes. With the introduction of

UASs into the airspace, many historical assumptions are no longer valid. Hence, the

exiting collision avoidance solution, TCAS, is no longer sufficient. This is partly due

to TCAS’s pseudocode architecture, making it difficult to adapt the technology to

current needs. In response, ACAS X is being developed as TCAS’s successor and

leverages MDPs to quantify the aircraft avoidance problem and DP optimization to

generate a robust and adaptive advisory logic.

Due to the computational requirements for DP, it has been difficult to produce

an advisory logic that jointly considers horizontal and vertical maneuvers. Vertical

and horizontal maneuvers require different information vectors for optimization, a

simple union of these information vectors isn’t feasible due to the “curse of dimen-

sionality.” Additionally, there has yet been an extensive and complete assessment of

potential aircraft avoidance MDP states with regards to computational requirements

and relationship to a goal state, such as an NMAC. Furthermore majority of previ-

ous collision avoidance research has leveraged vertical maneuvers, leading to less of an

overall understanding on how horizontal maneuvers influence an aircraft encounter.

In response, a simulation-based framework was developed to better understand

how each potential state quantifies the aircraft avoidance problem with regards to
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safety and operational components. Using information theoretics, computational sig-

nals processing, and statistics, the NMAC entropy and NMAC horizon metrics were

developed and calculated. The analysis leveraged, to the author’s knowledge, the the

single largest aircraft avoidance simulation data set ever generated of approximately

6,970,080,000 numeric doubles.Using these metrics, an collision avoidance MDPs was

formulated and evaluated for feasibility.

The primary research objectives of analytically quantifying the individual compo-

nents of an aircraft avoidance MDP and the first demonstration of a joint horizontal

and vertical action set MDP were meet due to developing of a simulation-based frame-

work and new applications of information theory to collision avoidance. Future work

will emphasize developing of collision avoidance for other airframes, such as VTOLs,

and development of more advanced information theoretic metrics.

6.1 Contributions of Simulation-Framework

ACAS X has been a very successful research and development effort that is paving the

way forward for the next generation of operational aircraft avoidance. The initial clear

focused towards manned aircraft, lead to some design decisions to limit the flexibility

of the developed framework. Specifically, the barrier of the curse of dimensionality and

the challenges to developing a horizontal and vertical action policy. The contributed

simulation-based approach leverages the concept of MDP DP while introducing new

flexibility for algorithmic design.

6.1.1 Memory management

A key assumption to the simulation-based approach is that the state dynamics, re-

gardless of the dimensionality or composition, will be loosely-coupled with a high

degree of sparsity. If true, this will allow the state-transition and cost matrices to

be represented in a sparse format with the realization of substantial memory savings.
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Unrealistic or unreachable states will be zero value elements in the sparse matrix.

They did not have to be considered during optimization.

The ability to calculate the state-transitions is dependent upon the ability to

produce enough state samples to build a distributions. Only recently through D4M

and high performance computing is this possible. Storage alone was not sufficient,

the processing code had to be computationally efficient and fast. Sparse matrices

and pre-calculated state-transition and cost matrices enabled this fast processing and

optimization. In terms of memory management this approach was very direct and

simple, a key distinction in making the machine DP process “human readable.”

Since sparse matrices only store the indices of non-zero elements, there is no

penalty for allocating an extremely large state space with a large span. This enabled

the true maximum and minimum potential states to be identified and ability to fully

construct the tails of the distribution. During state exploration, the risk of saturating

the edge states was nonexistent. Based on this analysis, an appropriate state span

and discretization for a MDP was identified.

6.1.2 State and action selection

As previous noted in Section 3.4, aircraft are increasingly being controlled in differ-

ent ways. Since the simulation-model captures the dynamics, generating the state-

transitions is a matter of calculating conditional probabilities. Dynamic propagation

was not required. This enabled the rapid development of different state spaces and

action sets.

Two representative action sets were generated and analyzed in parallel using the

same code base. A direct comparison between performance capabilities with regards

to NMAC risk was completed. A new analytical relationship between an aircraft’s

performance and the logic’s alerting behavior was identified and explored. This anal-

ysis was only recently feasible due to advances in parallel signals processing.
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This approach can easily be extended to VTOLs and rotorcraft. Whereas ACAS X

is currently focused on fixed-wing aircraft, there is no variant for rotorcraft. The

dynamic capability to hover and strafe need to be account for and there doesn’t exist

a rotorcraft centric aircraft encounter model.

6.1.3 Delay and RA state

The ACAS X framework considers response delay during the optimization as delay

is not directly captured by the encounter models. For the described approach, if

the Monte Carlo simulation includes delay, this delay will be captured in the state-

transitions. Since delay is captured by the state-transitions, it does not necessary

require its own state. This directly affects the sRA variable found in TCAS and

ACAS X which must account for pilot delay. With the simulation-based approach,

sRA reduces to the state itself and no longer needs to “countdown” till the desired

action is executed.

A drawback of this approach is that a new simulation is required to implement a

probabilistic response model. Different response models can not be added dynami-

cally. Changes to the simulation must be accounted for at the start of the simulation-

based processes, whereas ACAS X implement these changes when optimizing.

6.2 Contributions of Information Theoretics

Information theory and the concept of entropy had sporadically been applied to avi-

ation safety and was mostly applied for strategic problems. There was only a few

instances of applying these concepts to a tactical aviation problem like collision avoid-

ance. The development and successful use of the NMAC entropy and NMAC horizon

metrics demonstrated the viability and potential of applying information theoretics

to aviation safety problems. Specific contributions were made in quantifying risk and

assessing an MDP prior to optimization and policy assessment.
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6.2.1 Quantifying risk of NMAC

Previous research used a simulation-based approach to establish a risk-based separa-

tion standard for UAS (Weibel et al., 2011) but only used considered a small number

of states and didn’t consider all joint probabilities between states. The developed

framework demonstrated the ability to calculate conditional probabilities for state

and conditional probabilities for any combination of states. This contribution lead to

the development of the NMAC horizon variable, νt that quantifies the probability of

an NMAC within t seconds.

The NMAC entropy of a state provided a one-step perspective of the state’s util-

ity. Calculating and analyzing the NMAC horizon (νt) provided a longer multi-step

perspective with regards to safety. Figure 5·18 expands beyond this previous research

by identifying NMAC risk as a function of position and ownship’s action. Together,

they demonstrated that defining the alert volume, an operational component, as a

function of νt, a safety component, is feasible when designing a collision avoidance

advisory logic.

6.2.2 Surrogate for MDP state’s utility

NMAC entropy and information gain was demonstrated to be surrogate for the po-

tential utility of a state as part of a MDP formulation. States such as θs provided

little NMAC entropy and little mathematical or operational justification for inclusion

into the MDP. Historically recognized important states such as ∆h and rh had some

the largest NMAC entropy values.

Beyond just identifying states, the information theoretic metrics enabled a human-

readable assessment of different discretizations. Insights into questions such as,

“Which state Is it better to finely discretize?” can now be analytically and quickly

obtained without optimizing and evaluating an MDP.
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6.3 Future Work

The optimal policies described in Section 5.4 demonstrate the feasibility of the pro-

posed state spaces but are not a replacement for any ACAS X variant at this time.

These policies were evaluated only against one type of aircraft encounters and have

not be stressed against other important types, such as closely spaced parallel ap-

proaches. Instead of repeating many of the safety evaluations of ACAS X, the de-

scribed research can be leveraged by ACAS X to address online costs and memory

requirements. Specifically, νt should be explored as an online cost and the applying

the concept of sparsity to could reduce memory requirements.

The different performance characteristics of VTOL compared to a fixed-wing air-

craft can potential lead to a different aircraft avoidance MDP formulation. Differ-

ent assumptions will result in different state ranges and discretizations; specifically

VTOLs need to account for zero airspeed while fixed-wing aircraft do not. The

NMAC entropy and NMAC horizon analyses were intentionally generic with mini-

mal fixed-wing aircraft assumptions to facilitate the early development of collision

avoidance (CA) system for VTOLs. As previous mentioned, the simulation-based

framework can assist in rapid and flexible development of new algorithms, since there

is little historical precedent or design to build an algorithm from. Instead of modify-

ing the optimization framework, with the simulation-based approach only helicopter

dynamics need to be developed. The lack of a specific encounter model is mitigated

through Monte Carlo simulations that could best approximate encounter situations

and have the helicopter dynamics provide realistic transition propagation. This re-

quires substantially less code development and provides a more accurate solution than

manually developing an encounter model through expert opinion.

The developed NMAC entropy and NMAC horizon metrics can also be applied

further to aviation safety assessments for any system. Understanding how TCAS,
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ACAS X, or JOCA change the probability of an NMAC given some time horizon is

incredibly useful. It provides a more detailed assessment of the system than relying on

summary statistics or encounter type assessments. The newly development metrics

can be correlated or integrated with historically accepted metrics to add another level

of scrutiny to these human-safety systems.

Finally, determining the utility of any state is challenging for many problems

other than aviation collision avoidance. With the advent of Big Data, it has become

very easy to record and store large data sets with many states but processing them

remains a challenge. This is particularly a concern for Public Safety systems and

communication networks, which in disaster and incident scenarios can be just as safety

critical as an aircraft avoidance system. Applying information theoretic concepts to

Public Safety decision points or scenarios has significant potential and should be

explored.



Appendix A

Simulation States

This appendix reports the states collected from the Monte Carlo simulations.Any of

these states can be considered as part of potential MDP, along with any aggregated

features developed from these states. Each state is recorded as a floating point num-

ber with position-based states at 1.0 precision; rate magnitudes (i.e. vertical rate,

airspeed) at 1.0 precision; angular rates at 0.001 precision; and accelerations at 0.001

precision. The following states were recorded for all aircraft:

• Airspeed

• Airspeed acceleration

• Altitude

• Altitude rate of change

• Bank angle

• Body-fixed angular vector (p, q, r)

• Commanded vertical rate

• Commanded turn rate

• Commanded longitude acceleration

• East position

• East position rate

• Heading angle

• North position

• North position rate

• Pitch angle

• Pitch rate

• Turn rate

• Vertical acceleration

• Vertical rate

• Yaw angle

• Yaw rate
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Additionally, the following encounter states were recorded:

• Encounter id

• Encounter weight

• Horizontal range

• NMAC

• Simulation id

• Time

• Vertical range



Appendix B

Encounter Geometry Types

This chapter illustrates many common types of encounter geometries between two

aircraft. These geometries are frequently referenced in Chapter 5 when discussing

if a specific state can help uniquely identify a specific geometry. Only geometries

decomposed into the vertical axis or horizontal plane are discussed. For example, a

complex encounter where an aircraft spirals into another is not specifically classified.

Lastly, only geometries that can lead to a lost of separation are presented.

B.1 Vertical

Figure B·1 illustrates the three basic geometries that can potentially lead to an

NMAC. A co-altitude encounter occurs when all vertical rates are zero. Additionally,

one aircraft can either climb or descend into another level aircraft or both aircraft

can climb or descend into each other.

˙∆h2

˙∆h1

(a) Co-altitude

˙∆h2

˙∆h1

(b) Into

˙∆h2

˙∆h1

(c) Polar ∆̇h

Figure B·1: Vertical encounters
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B.2 Horizontal

Figure B·2 illustrates basic head-on and overtaking encounters. A head-on encounter

occurs when ψ1 ∼ −ψ2 regardless of their airspeeds. The overtaking encounter occurs

when ψ1 ∼ ψ2 and the airspeed of the aircraft “behind” is greater.

v1

v2

ghost ghost

(a) Head-on

v1

v2

ghost ghost

(b) Overtaking

Figure B·2: Head-on and overtaking encounters

Figure B·3 illustrates crossing and parallel encounters, which are typically more

challenging to resolve. The crossing encounter are moving towards the same airspeed

but with perpendicular headings ψ1 ⊥ ψ2. Conversely, a parallel encounter occurs

when the aircraft are side-by-side with ψ1 ∼ ψ2 and v1 ∼ v2. Closely-spaced parallel

encounters when, in general, rh ≤ 3000 ft are generally considered one of the more

dangerous types of encounters.

v1

v2

(a) Crossing

v1v2

(b) Parallel

Figure B·3: Crossing and parallel encounters
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Finally, Figure B·4 illustrates a slow-closing encounter occurs where

0 <| ψ1 − ψ2 |≤ ε. The two aircraft are nearly parallel but with a small relative

heading between them. The encounter geometry will eventually produce an NMAC

but at a relatively longer time-scale.

v1

v2

Figure B·4: Slow-closure encounter
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In the News

• MIT Lincoln Lab researchers discuss games as tools for teaching, evaluating
real-world skills, Polygon, 2013.

• Students hope to create more reliable emergency communications network, Penn
State News, 2013

• Army Conducts Successful Demonstrations of the Ground Based Sense and
Avoid System, Army.mil, 2012.
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