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ABSTRACT 

 In order to eradicate HIV-1 infection the virus needs to be specifically eliminated 

from latently infected memory CD4
+
 T cells. There does not seem to be a single 

mechanism that promotes HIV-1 latency. RNA Polymerase II (RNAP II) pausing, 

chromatin structure, tissue specific transcriptional repressors and transcriptional 

interference have been implicated in regulating HIV-1 transcription. The transcription 

factor B Lymphocyte-Induced Maturation Protein 1 (Blimp-1) is expressed in B and T 

cells and upregulated in patients chronically infected with HIV-1. I hypothesized that 

Blimp-1 is a T cell intrinsic factor that binds to HIV-1 LTR, inhibits HIV-1 transcription 

and contributes to HIV-1 latency. Blimp-1 is expressed in primary peripheral blood CD4
+
 

T cells and is further induced by T cell activation. Importantly, Blimp-1 is highly 

expressed in memory CD4
+
 T cells compared to naïve CD4

+
 T cells. Ectopic expression 

of Blimp-1 in CD4
+
 T cells represses HIV-1 transcription, whereas decreasing Blimp-1 in 

memory CD4
+
 populations activates HIV-1 transcription. Reduction of Blimp-1 in 

infected primary T cells increases RNAP II processivity and histone H3 acetylation. 

Blimp-1 binds downstream of the HIV-1 5’-LTR to the interferon-stimulated response 
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element (ISRE) in resting primary CD4
+
 T cells and strongly represses Tat-dependent 

HIV-1 transcription. Upon T cell activation, Blimp-1 is released from the HIV-1 ISRE 

and this correlates with significant increase in HIV-1 transcription. These results 

demonstrate that Blimp-1 acts to limit HIV-1 transcription in memory CD4
+
 T cells and 

promotes the establishment and maintenance of latency. I also examined whether 

neighboring host promoters could impact HIV-1 transcription. Using a set of inducible 

cell lines I observed that neighboring promoters have minimal impact on HIV-1 

transcription and that enabling release of paused RNAP II by diminishing negative 

elongation factor (NELF) is sufficient to reactivate transcriptionally repressed HIV-1 

provirus. The implications of my results in the different mechanisms regulating HIV-1 

latency are discussed. 
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I.  Introduction 

 

1.  Epidemiology of Human Immunodeficiency Virus 

 

Infection with human immunodeficiency virus type 1 (HIV-1) leads to the 

development of Acquired Immunodeficiency Syndrome (AIDS), a disease whose 

hallmark is a decline in CD4
+
 T cells and an increased susceptibility to opportunistic 

infections and cancer. In addition to directly impacting the number of CD4
+
 T cells, HIV-

1 infection leads to indirect immune exhaustion by activating neighboring or bystander 

cells and results in a general imbalance of all T cell populations, facilitating the immune 

dysregulation associated with AIDS (Chevalier and Weiss, 2013; Moreno-Fernandez et 

al., 2012; Paiardini and Muller-Trutwin, 2013). HIV-1 is a zoonotic disease that resulted 

from cross-species transmission of simian immunodeficiency virus (SIV) naturally 

infecting African non-human primates (Sharp and Hahn, 2011). HIV-1 is transmitted via 

bodily fluids and the life expectancy without treatment is 9 to 11 years (Programme and 

(UNAIDS), 2014). HIV-1 was first identified as a causative agent of AIDS in 1983 

(Barre-Sinoussi et al., 1983; Gallo et al., 1983) but the first HIV-1 infection dates back to 

the 1920s (Faria et al., 2014). In 2013 the number of people living with HIV-1 worldwide 

reached an estimated 35 million (Programme and (UNAIDS), 2014) (Fig. 1). There were 

approximately 2.1 million new HIV-1 infections and 1.5 million AIDS-related deaths in 

2013 (Fig. 1) (Programme and (UNAIDS), 2014). Although the disease has plateaued in 

the recent years due to treatment options and public health efforts, there is still no cure 

for HIV-1/AIDS.   

  



 

 

2 

The current combination therapy, called Highly Active Antiretroviral Therapy 

(HAART), was available to only 12.9 million people in 2013 (36.9% of infected people) 

(Fig. 1) (Programme and (UNAIDS), 2014). Drugs used in HAART target viral fusion, 

reverse transcription, integration and maturation of the virus. HAART does not inhibit 

viral transcription or release and because it targets viral proteins (with the exception of 

entry inhibitors) the virus mutates to escape the drugs action and develops resistance. In 

addition, HAART has many side effects and does not reverse the inflammation and 

premature aging associated with HIV-1 infection even when viral load is undetectable. 

 

  

 

 

 

 

Figure 1. HIV-1 Epidemic in Numbers (based on UNSAIDS data). 
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2.  Human Immunodeficiency Virus 

 

 Virion Structure 

HIV-1 is a retrovirus belonging to the Lentivirus genus. It is a single-stranded, 

positive-sense, enveloped RNA virus. The hexameric p24 capsid (CA) protein forms a 

cone-shaped core which encloses two copies of viral RNA genome in complex with the 

p7 nucleocapsid (NC) protein, as well as the accessory proteins Tat and Rev. The capsid 

is surrounded by the p17 matrix (MA) protein which assembles into trimers. The outer 

surface of the HIV-1 membrane is a lipid bilayer derived from host cell during viral 

budding that is studded with envelope spikes composed of gp120 and gp41 trimers. The 

HIV-1 virion also contains three enzymes, reverse transcriptase, integrase and protease, 

enclosed inside the capsid, as well as accessory proteins Nef, Vpr and Vif (Fig. 2).  
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HIV-1 Genome  

 The genome of integrated HIV-1 provirus is 9719 base pairs long and is flanked at 

each end by long terminal repeats (LTRs) (Fig. 3). The 5’-LTR serves as the viral 

promoter and transcriptional enhancer. The genes encoded by HIV-1 are as follow:  

- gag – encodes the precursor polyprotein Pr55Gag which is cleaved by viral 

protease into MA, CA, NC, and p6, as well as two spacer peptides, SP1, and SP2. 

MA, CA and NC are structural proteins and the expression of Gag in the absence 

Lipid 
membrane 

(host-derived) 

Matrix 
(MA) 

Viral envelope 
(gp120/gp41 trimer) 

Capsid 
(CA) 

Nucleocapsid 
(NC) 

Host cell protein 

Viral 
RNA 

Reverse 
Transcriptase 
(RT) 

Integrase 
(IN) 

Protease 
(PR) 

 Figure 2. Structure of Human Immunodeficiency Virus. 

The HIV-1 virion contains two copies of single-stranded, positive-sense RNA which 
interact closely with the nucleocapsid. The RNA together with three viral enzymes, 
protease, reverse transcriptase and integrase, is enclosed in viral capsid. The viral 
capsid is surrounded by matrix which in turn is surrounded by lipid bilayer derived 
from the host PM. The lipid membrane is embedded with host cell proteins and is 
studded with viral envelope spikes which are composed of trimers of gp120 and 
gp41. 
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of other viral proteins and RNA genome is sufficient for the production of non-

infectious virus-like particles (VLPs). p6 is required for incorporation of Vpr into 

the HIV-1 virions and contains late domain motifs necessary for virus budding 

(Garrus et al., 2001). 

- pol – encodes Pol polyprotein processed into HIV-1 protease, reverse 

transcriptase and integrase. HIV-1 protease cleaves viral polyproteins (Gag and 

Pol) and thus is required for viral maturation. HIV-1 reverse transcriptase is 

responsible for transcribing viral RNA into DNA, while HIV-1 integrase is 

required for integration of HIV-1 DNA into host genome (Sierra et al., 2005). 

- env – encodes the viral envelope polyprotein gp160 which is spliced into gp120 

and gp41. gp120 binds to CD4 receptor and CXCR4 or CCR5 co-receptors 

enabling insertion of gp41 into PM, which in turn leads to viral fusion with the 

target cell (Postler and Desrosiers, 2013). The cytoplasmic domain of gp41 also 

contains signaling motifs that can activate NFκB, which is important for HIV-1 

transcription (Postler and Desrosiers, 2013). 

- tat – encodes cell membrane-permeable Tat (trans-activator of transcription), 

which binds to trans-activation response (TAR) RNA stemloop and recruits p-

TEFb to initiate HIV-1 transcripion (Watson and Edwards, 1999). Tat is cell 

membrane permeable (Watson and Edwards, 1999). 

- rev – encodes Rev (Regulator of Expression of Virion Proteins), a protein 

required for viral mRNA splicing and export from the nucleus (Pollard and 

Malim, 1998). 
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- nef – encodes Nef (negative regulatory protein) which is important in 

modulating host cell signaling and reponses. The expression of Nef alone in 

animal models results in AIDS-like symptoms (Rahim et al., 2009). 

- vif – encodes Vif (viral infectivity factor), a protein that increases viral 

infectivity by targeting APOBEC-3G, a cytidine deaminase (deanimates cytidine 

into uridine0, for proteasomal degradation (Goila-Gaur and Strebel, 2008). 

- vpr – encodes Vpr (viral protein R) , a protein that induces cell cycle arrest in 

CD4
+
 T cells and facilitates infection of macrophages by unknown mechanisms 

(Li et al., 2009).  

vpu – encodes Vpu (viral protein U) important for viral budding by targeting 

tetherin for proteasomal degradation (Kueck and Neil, 2012).  

 

 

 

 

Figure 3. Organization of Human Immunodeficiency-1 Virus Genome. 

HIV-1 genome has LTR at each of its ends that serve as viral promoter and 
enhancer. HIV--1 encodes gag, pol and env polyproteins, as well as accessory 
proteins: Tat, Vif, Vpr, Vpu, Rev and Nef. 
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3.  Replication Cycle of HIV-1 

 

HIV-1 replication cycle is composed of the following steps: virus binding, fusion, 

uncoating, reverse transcription, integration, transcription, translation, assembly and 

budding (Fig. 4). Upon the binding of the HIV-1 envelope to CD4 receptor and a 

chemokine co-receptor expressed at the surface of the target cell, the viral fusion peptide 

penetrates host plasma membrane (PM) and then the virion fuses with the PM or with 

endosomal compartment (Postler and Desrosiers, 2013). In the cytoplasm the viral core 

disassembles and viral RNA is reverse transcribed into double-stranded cDNA bythe 

viral reverse transcriptase. The uncoating of the virion might be blocked by TRIM5α 

(Yan and Chen, 2012). Reverse transcription is blocked by such host-restriction factors as 

APOBEC-3G (Yan and Chen, 2012), a cytidine deaminase that deaminates cytidine to 

uridine in the viral DNA during the process of reverse transcription, SAMHD1, which 

hydrolyzes dNTPs and degrades viral RNA (Yang and Greene, 2014) and TREX, an 

exonuclease digesting excessive HIV-1 DNA (Yan et al., 2010). Recent studies show that 

RNA polymerase II-associated factor 1 (PAF1) inhibits early steps of viral replication 

leading to decreased reverse transcription and proviral integration (Liu et al., 2011). The 

viral cDNA is imported to the nucleus by preintegration complex (PIC) and is integrated 

into the host genome by viral integrase. Lens epithelium-derived growth factor (LEDGF) 

binds to chromosomal DNA and HIV-1 integrase and favors HIV-1 integration into 

LEDGF-regulated, A-T-rich genes, while integrase interactor 1 (INI1) facilitates HIV-1 

integration by remodeling nucleosomes (Ciuffi et al., 2005; Lesbats et al., 2011).  The 

provirus is next transcribed by host transcriptional machinery into RNA. While the 
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multiply spliced viral RNAs encoding for Tat, Rev and Nef are processed by the cellular 

splicing and nuclear export machinery, the unspliced viral RNA genome and singly-

spliced viral mRNAs (encoding Gag, Env, Vif, Vpr and Vpu) are transported to 

cytoplasm, a process controlled by the viral protein Rev (Felber et al., 1989). The 

envelope is synthesized on the rough endoplasmic reticulum (ER) and is transported 

through the ER to Golgi and trans-Golgi network (TGN) (Saftig and Klumperman, 2009). 

Gag is synthesized by membrane-unattached ribosomes (Perlman and Resh, 2006). 

Newly synthesized Gag accumulates in the perinuclear region, and before reaching the 

PM it passes through a late endosome-like compartment (Klein et al., 2007; Perlman and 

Resh, 2006). Gag is responsible for targeting HIV-1 to lipid rafts in host plasma 

membrane (PM) by binding to phosphatidylinositol-4,5-bisphosphate (PIP2) (Klein et al., 

2007). The MA domain targets Gag to the PM via the 14-carbon-long N-myristyl group 

at the glycine 2 position, and the basic region at the amino-terminal end (Klein et al., 

2007). Gag binds to the genomic RNAs, and together with the envelope assembles into 

HIV-1 virions, which then bud off the cell (Klein et al., 2007; Postler and Desrosiers, 

2013). The budding of HIV-1 is blocked by such host factors as tetherin, ISG15, miRNA, 

TIM-1, TIM-3 and TIM-4 (Chen et al., 2014; Li et al., 2014; Pincetic et al., 2010; Yan 

and Chen, 2012). HIV-1 matures by cleavage of the Gag precursor, Pr55Gag, by viral 

protease into MA, CA, NC, and p6, as well as two spacer peptides, SP1 and SP2. 
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4.  HIV-1 Persistence During Therapy 

 

HAART is a combination of several antiviral drugs that target viral fusion, 

reverse transcription, integration and maturation of HIV-1. A remaining challenge in 

efforts to cure HIV-1 infection is targeting cells harboring quiescent, yet replication-

competent virus. HAART and host immune system do not affect latently-infected cells 

which are the source of viral rebound after cessation of antiretroviral treatments 

(Richman et al., 2009; Siliciano and Greene, 2011). Upon cessation of HAART, HIV-1 

rapidly reemerges from latently infected cells to pretreatment viral loads (Fig. 5) 

(Richman et al., 2009; Siliciano and Greene, 2011). HIV-1 preferentially infects activated 

CD4
+
 T cells. HIV-1 infection either leads to productive HIV-1 replication and cell death 

or to the transition of effector cell into a memory CD4
+
 T cell and establishment of 

latency. Memory CD4
+
 T cells are considered the main reservoir of latent HIV-1. The 

latently infected cells persist for the life of an infected individual. In addition to memory 

CD4
+
 T cells, other latent reservoirs are thought to exist. Using dual-reporter virus 

Figure 4. HIV-1 Replication Cycle. 

The HIV-1 virion binds via gp120 to its receptor, CD4, and co-receptor, CCR5 or 
CXCR4. The binding is followed by fusion of the virion with the target cell which is 
mediated by gp41. Next the viral core undergoes uncoating and RNA genome is 
reversly transcribed into dsDNA., which is next imported into the nucleus. In the 
nucleus viral integrase mediates interation of HIV-1 into host genome. The provirus 
is transcribed, the viral mRNAs spliced and exported into the cytoplasm where they 
are translated by free polysomes or in ER. The viral proteins and mRNA are 
transported to the PM. The virus assembles and buds off from lipid rafts. The 
maturation of HIV-1 involves cleaving of Pr55Gag by viral protease. For a more 
detailed description of each step in the HIV-1 replication cycle please see the text. 
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expressing one HIV-1 LTR-dependent marker to measure productive HIV-1 infection, 

and a second marker under a constitutive promoter independent of HIV-1 LTR it has 

been shown that HIV-1 establishes latency even in activated CD4
+
 T cells (Calvanese et 

al., 2013). Strategies to target latent reservoir requires characterizing the cell populations 

that harbor latent HIV-1 and understanding the biochemical mechanisms that regulate 

provirus expression in these cells.  

The size of a latently-infected viral reservoir is still a matter of debate (Stevenson, 

2013). Originally, based on the ability to grow virus from blood samples in vitro (viral 

outgrowth assay), the size of latent reservoir was estimated to be 1 cell in a million. 

However, recent studies have suggested that the size of latent reservoir is at least 60-fold 

higher than previously thought (Ho et al., 2013). Plus, exactly what cells and tissues 

harbor latent infected cells has made it difficult to accurately measure the total size of the 

viral reservoir in vivo. It has been also estimated that the latent reservoir must be reduced 

by more that 10,000-fold to cure HIV-1 infection (Hill et al., 2014).  
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The establishment of latent reservoir occurs within the first 3 days of SIV 

infection (Whitney et al., 2014). Studies using dual fluorescent reporter virus that allows 

detection of infected cells independent of transcription from HIV-1 LTR confirm that the 

majority of virus becomes latent shortly after infection and that it can be reactivated 

(Dahabieh et al., 2013). Thus, initiation of HAART as early as possible increases the 

chances of not only stopping viremia but also decreasing the possibility of viral rebound 

(Whitney et al., 2014). The “Mississippi Baby” who was perinatally infected with HIV-1 

Figure 5. HIV-1 Clinical Progression. Modified from (Fauci et al., 1996) 

During the acute infection the viral load rapidly increases while the number of CD4
+
 T 

cells falls drastically. Once the patient initiates HAART, which targets actively 

replicating virus, the viral load decreases to even undetectable levels, while the number 

of CD4
+
 T cells recovers, but not to the pre-treatment levels. However, treatment 

interruption results in a reemergence of virus from latently infected cells to high pre-

treatment levels. The latently infected cells harbor replication-competent virus that is not 

actively transcribed until some signal triggers its reactivation. Without treatment the 

infection may result in AIDS which is characterized by high viral loads and CD4
+
 T cell 

numbers below 200 cells /mm
3
 which makes the patient susceptible to opportunistic 

infections and results in death. 
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and who within 30 hours after birth was put on HAART for 18 months did not have a 

viral rebound for over 2 years after cessation of treatment (Ledford, 2014). In contrast, 

“Boston patients”, whose viremia was actively suppressed by HAART prior to receiving 

bone marrow transplants to repopulate hematopoietic cells had viral rebound within a few 

months of HAART interruption (Henrich et al., 2014) suggesting that early treatment 

might diminish but not completely suppress virus reservoir establishment and is 

associated with positive prognosis.  

 

5.  Molecular Mechanisms of HIV-1 Latency 

 

The mechanisms that establish HIV-1 latency remain incompletely defined and 

research has focused on general events that control gene expression including 

transcription initiation, elongation and epigenetic regulation of chromatin (Richman et 

al., 2009; Schiralli Lester and Henderson, 2012; Siliciano and Greene, 2011). HIV-1 

latency is driven by transcriptional repression; however there does not seem to be a single 

mechanism that promotes HIV-1 latency. RNA Polymerase II (RNAP II) pausing, 

chromatin structure and recruitment of ubiquitously expressed transcription factors as 

well as non-coding RNAs have been implicated in the regulation of HIV-1 transcription. 

Additionally, T cell specific factors may be repressing HIV-1 transcription in memory 

CD4
+
 T cells, the major reservoir of latent HIV-1. Transcriptional interference from 

neighboring host promoters is also thought to contribute to establishing and maintaining 

HIV-1 latency (Fig. 6).  
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Additionally, HIV-1 latency can be a stochastic process, where the virus enters 

latency and gets reactivated regardless of T cell activation level (Ho et al., 2013). The 

presence of Tat has been shown to inhibit the establishment of HIV-1 latency (Donahue 

et al., 2012). Superinfection with HIV-1 results in Tat-dependent reactivation of latent 

virus, suggesting that limiting amounts of Tat drive HIV-1 latency (Donahue et al., 

2013). Strategies targeting signals which regulate recruitment of transcription factors, 

chromatin remodeling complexes or regulators of RNAP II have been devised to activate 

and purge HIV-1 latent reservoirs (Deeks et al., 2012; Lafeuillade, 2012; Margolis and 

Hazuda, 2013; Richman et al., 2009; Siliciano and Greene, 2011; Tyagi and Bukrinsky, 

2012).  
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5.1 Transcription Factors 

 

HIV-1 LTR controls provirus transcription by functioning as a promoter and 

enhancer recruiting host transcription factors and co-activators necessary to initiate 

transcription. HIV-1 LTR has three binding sites for the specificity protein 1 (Sp1) and 

two binding sites for the nuclear factor κB (NFκB). Binding of Sp1 and NFκB to HIV-1 

LTR, as well as their physical interaction is required for robust HIV-1 transcription 

(Perkins et al., 1993). In addition to Sp1, NFκB acts in synergy with the activator protein 

1 (AP1), a heterodimer of c-Fos and c-Jun, to induce HIV-1 transcription (Yang et al., 

1999). HIV-1 LTR also contains three binding sites for CCAAT-enhancer-binding 

proteins (C/EBP) (Tesmer et al., 1993), which although not required, enhance basal and 

active HIV-1 transcription in macrophages (Henderson and Calame, 1997; Henderson et 

Figure 6. Model for HIV-1 Transcriptional Regulation. 

During initiation of HIV-1 transcription RNAP II is recruited to HIV--1 LTR and 

transcribes nascent TAR RNA.  However, transcriptional repressors bind to HIV--1 LTR 

and NELF forms a complex with RNAP II, DSIF and Pcf11 resulting in paused RNAP II 

at HIV--1 LTR. Additionally, methyltransferases and HDACs condense chromatin 

making it inaccessible to the transcriptional machinery. All these events are cooperative 

and combinatorial. Upon cell stimulation, transcriptional activators and enhancers are 

recruited to HIV--1 LTR, Tat binds to TAR RNA and recruits P-TEFb which activates 

RNAP II by phosphorylating its CTD. P-TEFb also phosphorylates NELF and DSIF. 

Phosphorylated NELF dissociates from RNAP II, while phosphorylation of DSIF 

changes it from transcriptional repressor to transcriptional activator. Histone modifying 

factors remodel and remove methyl groups from Nuc-1 making the chromatin more 

accessible to the transcriptional machinery. DSIF and Pcf11, which is required for 

transcript termination, travel down the provirus with RNAP II. For a more detailed 

description of HIV-1 transcription please see the text. 
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al., 1995). Upon cell activation, the transcription factor II human (TFIIH) gets recruited 

to HIV-1 LTR where it phosphorylates CTD of RNAP II enabling HIV-1 reactivation 

(Kim et al., 2006). T cell stimulation also activates RBF2, a complex composed of USF-

1, USF-2 and TFII-I to enhance HIV-1 transcription (Chen et al., 2005). Ets-1 stably 

binds to HIV-1 LTR 1 and physically interact with NFκB, NFAT and USF-1 to induce 

HIV-1 transcription (Bassuk et al., 1997; Gegonne et al., 1993; Seth et al., 1993; Sieweke 

et al., 1998). A subset of T cell transcription factors have been suggested to rapidly 

reactivate latent HIV-1 (Kaczmarek et al., 2013).  NFAT was considered critical for 

overcoming latency and induction of HIV-1 transcription in different T cell subsets 

(Dahabieh et al., 2011; Malcolm et al., 2008), although recent studies have questioned its 

role in the reactivation of latent HIV-1 (Bosque and Planelles, 2009; Kinoshita et al., 

1998; Pessler and Cron, 2004; Robichaud et al., 2002). 

HIV-1 LTR also can be bound by transcriptional repressors and contains negative 

regulatory element (NRE) between -420 and -154 of HIV-1 LTR which mediates 

inhibition of HIV-1 transcription (Rosen et al., 1985; Siekevitz et al., 1987). p50 

homodimers, a subunit of NFκB, bind to HIV-1 LTR and recruit histone deacetylase 1 

(HDAC1), which in turn decreases histone acetylation and recruitment of RNAP II 

repressing proviral transcription (Williams et al., 2006). p50 can also form heterodimers 

with E2F1 protein which repress NFκB-induced HIV-1 transcription (Kundu et al., 1997). 

Yin Yang 1 (YY1) has been shown to recruit HDAC1 to a positioned Nucleosome-1 

(Nuc-1) adjacent to the HIV-1 transcriptional start site, to decrease histone H4 acetylation 

at Nuc-1, and to co-operate with LSF to represses HIV-1 (He and Margolis, 2002; 
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Margolis et al., 1994; Romerio et al., 1997). However, recent studies showed that 

decreasing YY1 re-activates latent HIV-1 without affecting the recruitment of HDACs or 

the levels of acetylated histone H3 (Barton and Margolis, 2013). C-promoter binding 

factor-1 (CBF-1), a heterochromatin marker, represses HIV-1 transcription by inhibiting 

recruitment of RNAP II and acetylation of Nuc-1 (Tyagi and Karn, 2007). The T cell 

commitment factor B-cell lymphoma 11b (Bcl-11b, also known as CTIP-2) (Liu et al., 

2010) binds HIV-1 LTR and limits transcription by binding Tat and redirecting it to 

heterochromatic regions (Le Douce et al., 2012; Marban et al., 2007; Rohr et al., 2003). 

 

 

5.2 RNA Polymerase II Promoter Proximal Pausing 

 

RNAP II pausing is defined by stalling of the RNAP II at a promoter and is a a 

critical checkpoint in controlling gene transcription (Gaertner et al., 2012; Rahl et al., 

2010). RNAP II pausing is characterized by the accumulation of short initiated mRNA 

transcripts but lack of transcriptional elongation. RNAP II pausing may be beneficial for 

the transcription of a gene, as deletion of eleven-nineteen lysine-rich leukemia (ELL), 

which facilitates RNAP II pause site entry, results in loss of P-TEFb recruitment to pre-

initation complex and disrupts elongation (Byun et al., 2012). Negative elongation factor 

(NELF) and DRB sensitivity-inducing factor (DSIF) induce promoter-proximal pausing 

of RNAP II (Wada et al., 1998a; Yamaguchi et al., 1999). DSIF is a heterodimer 

composed of hSpt4 and hSpt5 that interacts with RNAP II and nascent RNA. NELF is 
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composed of four subunits (NELF-A, NELF-B, NELF-C/D and NELF-E) and binds to 

pre-formed DSIF-RNAP II complexes (Narita et al., 2003; Yamaguchi et al., 2002). P-

TEFb, a heterodimer of Cdk9 and cyclin T1, phosphorylates C-terminal domain (CTD) of 

RNAP II activating it and releasing the pause induced by NELF and DSIF (Fujinaga et 

al., 2004; Peterlin and Price, 2006; Wada et al., 1998b; Yamaguchi et al., 1999). P-TEFb 

also phosphorylates NELF-E causing its release and hSpt5 subunit of DSIF, switching 

DSIF to a stimulator of RNAP II processivity (Fujinaga et al., 2004; Ivanov et al., 2000; 

Wada et al., 1998a; Yamada et al., 2006). P-TEFb can be brought to poised genes by 

bromodomain-containing protein 4 (Brd4), which recruits it from the repressive 

7SK/HEXIM1 complex composed of 7SK small nuclear RNA (snRNA), HEXIM, 

LARP7 and MEPCE (Jang et al., 2005; Krueger et al., 2008; Yang et al., 2005). CDK7 is 

a subunit of TFIIH that recruits DSIF to promoters inducing RNAP II pausing, and that is 

also required for P-TEFb-mediated phosphorylation enabling transcriptional elongation 

(Larochelle et al., 2012). In addition, Gdown-1 inhibits transcriptional initiation by TFIIF 

(Cheng et al., 2012). TRIM28 has been recently implicated in regulating RNAP II 

pausing at mammalian genes (Bunch et al., 2014). Nonphosphorylated TRIM28 at S824 

stabilizes paused RNAP II, while S824-phosphorylated TRIM28 is required for release of 

paused RNAP II (Bunch et al., 2014). c-Myc is another factor required for the release of 

paused RNAP II (Rahl et al., 2010). While these cellular factors have been shown to be 

necessary for general transcription from host promoters, roles in HIV-1 LTR-mediated 

transcription have still not been confirmed for all. 
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In latently-infected cells, transcription of HIV-1 provirus is inhibited at the step of 

transcription elongation. NELF binds at HIV-1 LTR to RNAP II/DSIF complex inducing 

RNAP II promoter proximal pausing (Zhang et al., 2007). NELF also recruits Pcf11 and 

NCoR1-GPS2-HDAC3 complex to HIV-1 LTR which results in premature termination of 

transcription and condensed chromatin, respectively (Natarajan et al., 2013). Recently, 

the microprocessor complex composed of RNase III Drosha and the dsRNA-binding 

protein Dgcr8 has been shown not only to cleave the 5' stem loop RNA structure, TAR, 

but also to recruit Setx, Xrn2, and Rrp6 leading to RNAP II stalling at HIV-1 LTR 

(Wagschal et al., 2012). Setx and Xrn2 are transcription termination factors mediating 

premature termination of transcription, while Rpr6 processes cleaved TAR RNAs to 

repress HIV-1 transcription (Wagschal et al., 2012). To overcome RNAP II promoter 

proximal pausing, HIV-1 encodes a transcriptional activator, Tat, which via cyclin-

dependent kinase substrate 1 (NUCKS1)-dependent mechanism binds TAR RNA (Kim et 

al., 2014) and gets activated by the lysine methyltransferase Set7/9-KMT7 (Pagans et al., 

2010). Cyclin T1-associated Tat recruits AF4/FMR2 family member 1 (AFF1)/P-TEFb 

complexes (Lu et al., 2014a) to HIV-1 LTR that are normally sequestered away by 

HEXIM1–7SK snRNA regulatory complex (du Chene et al., 2007; Garber et al., 1998; 

Wei et al., 1998). P-TEFb alleviates transcriptional repression by phosphorylating 

components of the paused RNAP II complex including the CTD of RNAPII facilitating 

productive transcription elongation (Isel and Karn, 1999). Protein phosphatase 1A 

(PPM1A) is present at high levels in resting CD4
+
 T cells and inhibits P-TEFb activation 

by preventing CKD9 T-loop  phosphorylation, which in turn leads to repression of HIV-1 
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transcription (Budhiraja et al., 2012). In addition, Brd4 competes with Tat for binding to 

P-TEFb (Bisgrove et al., 2007). The splicing-associated c-Ski-interacting protein, SKIP, 

binds to Tat/P-TEFb complexes, and together with c-Myc and Menin transactivates Tat, 

as well as promotes transcriptional elongation of HIV-1 (Bres et al., 2005; Bres et al., 

2009). The Super Elongation Complex (SEC) composed of P-TEFb, Eleven-Nineteen 

Lysine-Rich Leukemia (ELL2), AFF1, AF4/FMR2 Family Member 4 (AFF4), eleven-

nineteen-leukemia (ENL), and ALL1-fused gene from chromosome 9 protein (AF9) 

binds to RNAP II and promotes efficient elongation (He et al., 2011). 

 

 

5.3 Chromatin Structure 

 

Regardless of the integration site the 5’ end of HIV-1 provirus is associated with 

Nucleosome-0 (Nuc-0) and Nuc-1 (Verdin et al., 1993). Nuc-0 is positioned upstream of 

5’-HIV-1 LTR, while Nuc-1 is located directly downstream of the HIV-1 LTR at 

approximately 100 nt after the transcription start site (TSS) and is better studied in 

regulation of HIV-1 transcription than Nuc-0 (Verdin et al., 1993). Histones can be post-

translationally modified by acetylation, methylation, phosphorylation and ubiquitination. 

Factors associated with the HIV-1 LTR recruit histone acetyltransferases (HATs) and 

KDM demethylases that regulate chromatin organization of the integrated provirus 

(Schiralli Lester and Henderson, 2012). HATs such as p300/CBP and P/CAF, are 

recruited by Tat to acetylate not only histones but also NF-κB (Deng et al., 2001; Furia et 
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al., 2002). However, transcriptional repressors are also recruited to HIV-1 LTR, such as 

methyltransferases including SUV39H1 (du Chene et al., 2007), G9a (Imai et al., 2010), 

GLP (Ding et al., 2013) and enhancer of Zeste 2 (EZH2) (Friedman et al., 2011), as well 

as HDACs (Keedy et al., 2009), which methylate and deacetylate histones, respectively, 

within positioned nucleosomes favoring condensation of chromatin and making the 

proviral LTR less accessible for efficient transcription. HDAC2 and HDAC3 have been 

shown to be present in the nuclei of latent cells and to repress HIV-1 transcription (Keedy 

et al., 2009). In microglial cells Bcl-11b recruits HDAC1, HDAC2, and SUV39H1 to 

HIV-1 LTR resulting in deacetylation and methylation of Nuc-1 (Marban et al., 2007). 

Furthermore, Bcl-11b facilitates binding of heterochromatin protein 1 (HP1) (Marban et 

al., 2007). In addition, CpG methylation of the 5’-HIV-1 LTR by methyl-CpG binding 

domain protein 2 (MBD2) is not required for the establishment of HIV-1 latency, but has 

been associated with increased resistance to reactivation (Blazkova et al., 2009; Kauder et 

al., 2009). BRG1-associated factors (BAF), a member of switching-defective-sucrose 

non-fermenting (SWI/SNF) family, represses HIV-1 transcription by re-positioning Nuc-

1closer to the HIV-1 LTR (Rafati et al., 2011). PBAF, another member of (SWI/SNF 

family), gets recruited by Tat and enables remodeling of Nuc-1 and transcriptional 

elongation (Easley et al., 2010; Rafati et al., 2011). USF-1 co-operates with Sp1, NF-kB 

and LEF-1 to remove histone NH(2) tails from DNA (Angelov et al., 2000). Integration 

of HIV-1 close to nuclear bodies containing promyelocytic leukemia protein (PML) is 

associated with increased H3K9me2-metylation mediated by the methyltransferase G9a 

and thus increased latency (Lusic et al., 2013). Overall, these multiple posttranslational 
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changes of histones contribute to coordinated mechanism that can positively and 

negatively influence the epigenetic state of HIV-1. 

 

 

5.4 Influence of Neighboring Promoters 

 

Three-fourths of HIV-1 provirus preferentially integrates into introns of actively 

transcribed host genes (Ding et al., 2013; Lenasi et al., 2008; Lewinski et al., 2005; Shan 

et al., 2011; Sherrill-Mix et al., 2013). Transcriptional interference is thought to occur 

when HIV-1 integrates next to a gene with stronger promoter. HIV-1 can integrate in 

three orientations relative to the host gene: parallel or tandem, convergent and divergent 

orientation (Fig. 7). Transcriptional interference has been shown to suppress gene 

expression, especially when the genes are in a convergent or parallel orientation 

(Eszterhas et al., 2002). In the parallel orientation scenario, RNAP II from the upstream 

gene reads through HIV-1 LTR displacing its transcriptional machinery (Fig. 7) (Lenasi 

et al., 2008). The inhibition of transcription from the upstream promoter can induce HIV-

1 transcription in the parallel orientation (Lenasi et al., 2008). In the convergent 

orientation the two transcriptional machineries from two promoters are thought to collide 

leading to transcriptional interruption of both genes (Fig. 7). In the divergent orientation 

scenario the two promoters may be competing for limited quantities of transcriptional 

activators and RNAP II (Fig. 7). The integration site of provirus has been shown to not 

only affect the transcriptional activity of provirus (Jordan et al., 2001), but also the 
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persistence and expansion of HIV-1-infected cells (Maldarelli et al., 2014). For example, 

integration of provirus into introns of BACH2 and MKL2 in the same transcriptional 

orientation correlates with clonal expansion and persistence of infected cells (Ikeda et al., 

2007; Maldarelli et al., 2014). Early studies showed that transcriptional interference is 

strongest in the convergent orientation, while it has the weakest influence when 

promoters are in a divergent orientation (Eszterhas et al., 2002). The integration site 

played the strongest role on transcriptional activity in the parallel orientation (Eszterhas 

et al., 2002).  

 



 

 

24 

 

 Additionally, numerous antisense RNA (asRNA) transcripts that may originate 

from transcriptional interference have been identified which might also regulate HIV-1 

transcription and replication (Landry et al., 2007; Michael et al., 1994). In addition, HIV-

1 LTR has been also implicated in the generation of asRNAs (Bentley et al., 2004; 

Peeters et al., 1996), which have been shown to halt viral transcription (Kobayashi-

Ishihara et al., 2012; Tagieva and Vaquero, 1997). A recent study detected antisense 

protein (ASP) which is encoded by a region in the minus strand env gene, and which 

regulates HIV-1 replication by inducing autophagy (Torresilla et al., 2013). 

 

 

5.5 T Cell Transcription Factors Implicated in Regulation of HIV-1 Transcription 

 

CD4
+
 effector T cell subsets possess diverse specialized functions. CD4

+
 T helper 

cells (TH1, TH2, TH17) are responsible for the production of cytokines stimulating 

specific immune responses, follicular B helper T cells (TFH) support B cell activation, 

regulatory T cells (Treg) suppress immune responses elicited by CD4
+
, CD8

+
 T cells and 

Figure 7. Potential Role of Transcriptional Interference in HIV-1 Transcription 

HIV-1 can integrate in three different orientations relative to the host gene: convergent, 

parallel and divergent. In the convergent orientation the RNAP IIs from the two 

promoters collide leading to termination of transcription. In the parallel orientation the 

RNAP II from the upstream host gene reads through HIV--1 LTR leading to occlusion 

and dissociation of transcription factors from the viral promoter. In divergent orientation 

the two promoters are competing for limiting amounts of transcriptional activators and 

RNAP II. 
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B cells, while memory T cells are important for the recall of immune response (Murphy 

and Stockinger, 2010; van Leeuwen et al., 2009; Zhu et al., 2010). During infection 

antigen presenting cells (APC) display antigenic peptides in the context of MHC II to 

naïve CD4
+
 T cells (TH0), promoting their clonal expansion and polarization into effector 

T cells. A subset of activated CD4
+
 cells will generate memory T cells responsible for 

rapid recall of the adaptive immune response upon re-exposure. The differentiation of 

CD4
+
 T cells is driven in part by avidity of T cell receptor (TCR) engagement, strength of 

signaling, co-stimulatory signals and tissue microenvironments which include cytokine 

milieu and differential interactions with APC (Fig. 8) (Zhu et al., 2010). Additionally, 

CD4
+
 T cell development is controlled by a constellation of transcription factors that 

activate and repress batteries of genes that influence proliferation, differentiation and 

lineage commitment (Murphy and Stockinger, 2010; van Leeuwen et al., 2009; Yamane 

and Paul, 2013).  
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Although all CD4
+
 T cells are susceptible to HIV-1 infection due to their 

expression of CD4 and chemokine receptors, CXCR4 and CCR5, the ability of different 

T cell populations to support HIV-1 replication varies (Chevalier and Weiss, 2013; 

Figure 8. Model of Sequential CD4
+
 T Cell Differentiation. Modified from 

(Kaczmarek et al., 2013) 

Upon activation by antigen presenting cell (APC), naïve T cell (TH0) undergoes 

differentiation into effector or memory populations. The different effector populations 

have capacity to mature into effector memory T cells (TEM). Stem cell memory T cells 

(TSCM), follicular helper T cells (TFH) and regulatory T cells (Treg) mature into central 

memory T cells (TCM), which then can become transitional memory T cells (TTM) and 

further convert into TEM. 
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Moreno-Fernandez et al., 2012; Paiardini and Muller-Trutwin, 2013), possibly reflecting 

differential expression of T cell-specific transcription factors that regulate HIV-1 

expression. It is possible that these T cell factors, by promoting HIV-1 transcription, 

influence the dissemination of virus at different stages of AIDS or, by repressing proviral 

transcription contribute to the establishment of latently infected T cells. By targeting 

CD4
+
 effector T cells, HIV-1 has a dramatic impact on the depletion, expansion and 

function of the different polarized T cell subsets. The maturation of T cell lineages is in 

part driven by intrinsic transcription factors which potentially influence how efficiently 

HIV-1 replicates (Table 1). Quiescent memory CD4
+
 T cells have been implicated as the 

primary HIV-1 reservoir because they are susceptible to HIV-1 infection, are long-lived 

and, with their ability to self-renew, potentially maintain pools of latently infected cells. 

Whether there are T cell specific factors that predispose memory cells to latent HIV-1 

infection has not been demonstrated. 

The polarization of TH1 verses TH2 cells is mediated by two primary transcription 

factors, T-bet and GATA-3, respectively, whereas RORγt facilitates the differentiation of 

TH17 cells (Amsen et al., 2009; Muranski and Restifo, 2013; Zhu et al., 2010). TH1 cells 

have been reported to be limited in their ability to support HIV-1 replication, although 

there is no evidence that T-bet, the TH1 master transcription factor, directly influences 

HIV-1 transcription (Gosselin et al., 2010). T-bet antagonizes GATA-3 function, which is 

considered the key regulator of TH2 differentiation (Amsen et al., 2009; Kanhere et al., 

2012; Zhu et al., 2010). GATA-3 binds to several sites in the HIV-1 LTR and induces 

HIV-1 transcription (Galio et al., 1997; Yang and Engel, 1993). Therefore, T-bet 
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potentially limits HIV-1 transcription by targeting GATA-3. In addition to GATA-3, c-

Maf promotes TH2 differentiation (Ho et al., 1998) and, in regards to HIV-1 transcription, 

binds HIV-1 LTR and cooperates with NF-κB and NFAT to enhance HIV-1 transcription 

(Zhang et al., 2012). The ability of GATA-3 and c-Maf to activate HIV-1 transcription is 

consistent with findings that TH2 cells support HIV-1 replication (Gosselin et al., 2010; 

Zhang et al., 2012). TH17 cells also support robust HIV-1 replication (Rodriguez-Garcia 

et al., 2014), although RORγt and RORc, factors which are abundant in TH17 cells 

(Gosselin et al., 2010), have not been shown to directly impact HIV-1 transcription. Thus, 

induction of downstream T cell signaling pathways that culminate in activation of NF-

κB, NFAT and STATs probably strongly influence HIV-1 transcription in TH17 cells. 

There has been recent interest in characterizing the role of Treg cells in HIV-1 

(Chevalier and Weiss, 2013; Moreno-Fernandez et al., 2012). In general, changes in Treg 

numbers and function have been documented in patients and include higher Treg 

frequencies in untreated AIDS patients and diminished ability of these cells to suppress 

immune activation in HAART treated patients (Chevalier and Weiss, 2013; Moreno-

Fernandez et al., 2012). Whether these changes are a direct result of HIV-1 infection or 

reflect more general immune dysfunction requires further investigation. Treg development 

is in part driven by the transcription factor FoxP3 (Zhu et al., 2010). The data as to 

whether FoxP3 directly impacts HIV-1 transcription are conflicting. Ectopically 

expressed FoxP3 in primary CD4
+
 T cells inhibits activation and recruitment of 

transcriptional activators NF-κB, CREB and NFAT2 to the LTR (Grant et al., 2006; 

Selliah et al., 2008). FoxP3 may also facilitate HIV-1 transcription by inhibiting HDAC1 
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(Holmes et al., 2011; Holmes et al., 2007). However, overexpression of FoxP3 in 

different T cell subsets may result in different transcriptional outcomes. For example, 

forced expression of FoxP3 polarized naïve CD4
+
 T cells towards a Treg phenotype and 

enhanced HIV-1 replication, but had no impact on T memory cell phenotypes or HIV-1 

transcription (Oswald-Richter et al., 2004). These conflicting results may reflect intrinsic 

differences of T cell subsets or challenges associated with overexpressing factors, and 

underscore the need to further study HIV-1 transcription in primary Treg cells. 

A unique feature of the adaptive immune response is the generation of memory. 

For CD4
+
 T cells two distinct memory populations have been well characterized based on 

the expression of surface markers, homing capacity and function upon reactivation; T 

central memory (TCM) and T effector memory (TEM) cells (Pepper and Jenkins, 2011; 

Sallusto et al., 2004; van Leeuwen et al., 2009). Recently, stem cell memory T cells 

(TSCM) have been described in humans (Gattinoni et al., 2011). These self-renewing 

memory CD4
+
 cells are reported to generate T memory and effector populations. The 

array of factors, including cytokines, signaling events and transcription factors, that 

influence the proliferation and generation of TSCM, TCM and TEM have not been fully 

elucidated. Critical transcription factors that regulate the generation and survival of TCM 

include Schnurri-2, STAT3, STAT5a TBR2, FOXO3a, Bmi1 and LKLF (Catalfamo et 

al., 2008; Hirschhorn-Cymerman et al., 2012; Juffroy et al., 2010; Kimura et al., 2007; 

Kuo et al., 1997; van Grevenynghe et al., 2008; Yamashita et al., 2008). Furthermore, 

Bach-2, IRF-1 and p27 (Kip1) have been suggested to suppress TEM differentiation 

(Jatzek et al., 2012; McElligott et al., 1997; Tsukumo et al., 2013b). Relevant to HIV-1, 
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memory cells, especially TCM and TSCM, have been implicated as primary reservoirs 

harboring latent provirus because they are susceptible to HIV-1 infection, long-lived and, 

with their ability to self-renew, may maintain and/or renew the pool of cells harboring 

latent provirus (Bosque et al., 2011; Buzon et al., 2014). This homeostatic proliferation of 

infected TCM and TSCM in the absence of T cell activation and robust HIV-1 transcription 

presents a major barrier to eradicating persistent HIV-1 infection and underscores the 

need to characterize the tissue distribution and factors that regulate these different T cell 

memory subsets (Henrich and Gandhi, 2013). The predisposition for HIV-1 to establish 

latency in TCM may reflect the expression levels of transcription factors; TCM express T-

bet (Marshall et al., 2011) and have lower levels of Cyclin T1 and phosphorylated CDK9, 

the two subunits of P-TEFb required for transcription elongation (Budhiraja et al., 2013), 

whereas, TEM have increased expression of factors shown to activate HIV-1 transcription 

including GATA-3, c-Maf and RORγt. (Dutta et al., 2013; Wang et al., 2010) The 

discrepancy of what key check points limit HIV-1 transcription in latently infected cells 

may reflect heterogeneity of memory cells, difference in cell culture conditions and 

isolation of cell subsets. The factors that repress transcription in T memory cells have not 

been defined but most likely include epigenetic factors such as HDACs or 

methyltransferases (Richman et al., 2009; Siliciano and Greene, 2011). 
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Table 1. Factors Influencing CD4
+ 

T Cells Differentiation and HIV-1 Transcription. 

 

Transcription 

Factor 

T Cell 

Subset 

Promoted 

T Cell 

Subset 

Inhibited 

Effect on 

HIV-1 

Transcription 

Reference 

Bcl-6 TFH, TCM TH2 Inhibition, 

Activation (?) 

(Baron et al., 1997; Ichii et 

al., 2007; Pepper et al., 

2011; Sawant et al., 2013; 

Yu et al., 2009) 

Bcl-11b 

(CTIP-2) 

All  Inhibition (Le Douce et al., 2012; Liu 

et al., 2010; Marban et al., 

2007; Rohr et al., 2003) 

Blimp-1  TH1, 

TH17, TFH 

Repression, 

Activation 

(Cimmino et al., 2008; 

Johnston et al., 2012; Lin et 

al., 2014) 

BRG1 TH1, TH2  Activation & 

Inhibition 

(Agbottah et al., 2006; 

Henderson et al., 2004; 

Rafati et al., 2011; Wurster 

and Pazin, 2008; Zhang and 

Boothby, 2006) 

c-Maf TH2, TFH, 

TEM 

TH1 Activation (Ho et al., 1998; Kroenke et 

al., 2012; Sato et al., 2011; 
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Zhang et al., 2012) 

c-Myb TH2, TEM  Activation (Dasgupta et al., 1990; 

Kozuka et al., 2011; Nakata 

et al., 2010) 

CIITA TH2 (?)  Activation & 

Inhibition (?) 

(Okamoto et al., 2000; 

Otten et al., 2003; 

Saifuddin et al., 2000; Sung 

and Simon, 2004) 

CREB TH1, Treg  Activation (Rabbi et al., 1997a; Rabbi 

et al., 1997b; Ruan et al., 

2009; Yao et al., 2013) 

CTCF TH1, TH2  Inhibition (Li et al., 2008; Ribeiro de 

Almeida et al., 2009; 

Sekimata et al., 2009) 

Ets-1 TH1, Treg TH17 Activation (Gegonne et al., 1993; 

Grenningloh et al., 2005; 

Moisan et al., 2007; Mouly 

et al., 2010) 

FoxP3 Treg  Activation & 

Inhibition (?) 

(Chen et al., 2003; Grant et 

al., 2006; Holmes et al., 

2011; Holmes et al., 2007; 

Selliah et al., 2006) 
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GATA3 TH2, TEM TH1 Activation (Yang and Engel, 1993; 

Zheng and Flavell, 1997) 

IRF-1 TH1 TEM Activation (Lohoff et al., 1997; 

Sgarbanti et al., 2002; Taki 

et al., 1997) 

IRF-8  TH17 Inhibition (Ouyang et al., 2011; 

Sgarbanti et al., 2002) 

JunB TH2, Treg  Activation (Blonska et al., 2012; 

Roebuck et al., 1996; Son 

et al., 2011) 

JunD  TH1, TH2 Activation (Meixner et al., 2004; 

Roebuck et al., 1996) 

Lef1 Treg  Activation (Fu et al., 2012; Sheridan et 

al., 1995) 

Menin TH17  Activation (Bres et al., 2009; 

Watanabe et al., 2014) 

NFAT TH1,  Treg TH2 Activation (Cron et al., 2000; Ranger 

et al., 1998; Tone et al., 

2008; Wu et al., 2006) 

PU.1 TH9, 

memory 

TH2, Treg Activation (Chang et al., 2009; Chang 

et al., 2010; Hadjur et al., 
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TH9 2009; Lodie et al., 1998) 

SATB1 TH2, Treg  Inhibition (Fu et al., 2012; Kumar et 

al., 2005; Notani et al., 

2010) 

SIRT1  Treg Activation & 

Inhibition 

(Pagans et al., 2005; van 

Loosdregt et al., 2010; 

Zhang and Wu, 2009) 

SMAD3 TH2, Treg, 

TEM,  TH9 

TH1, 

TH17 

Activation (Blokzijl et al., 2002; 

Coyle-Rink et al., 2002; 

Elyaman et al., 2012; 

Giroux et al., 2011; Hu et 

al., 2012; Xiao et al., 2008; 

Zhang et al., 2013) 

SMAD4 TH1, Treg  Inhibition (Coyle-Rink et al., 2002; 

Huss et al., 2011; Yang et 

al., 2008b) 

STAT1 TH1, Treg, 

TFH 

 Activation & 

Inhibition 

(Chang et al., 2002; Choi et 

al., 2013; Ouaked et al., 

2009; Owaki et al., 2005) 

STAT3 TFH, TH17, 

TH1,  TH2, 

TCM 

Treg Unknown (Ma et al., 2012; Owaki et 

al., 2008; Sawant et al., 

2013; Siegel et al., 2011a; 
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Sundaravaradan et al., 

2010; Wei et al., 2008) 

STAT5 TH2, Treg, 

TCM 

TH1, TFH, 

TH17 

Activation & 

Inhibition 

(Burchill et al., 2007; Crotti 

et al., 2007; Della Chiara et 

al., 2011; Johnston et al., 

2012; Laurence et al., 2007; 

Riou et al., 2007; Selliah et 

al., 2006; Takatori et al., 

2005; Zhu et al., 2003) 

T-bet TH1 Treg,  TH2 Unknown (Lazarevic et al., 2011; 

Lugo-Villarino et al., 2003; 

Mullen et al., 2001) 

TRAF-2  TH2 Activation (Horie et al., 2007; 

Lieberson et al., 2001; 

Tsitsikov et al., 1997) 
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5.6 B Lymphocyte-Induced Maturation Protein 1 

 

The Prdm1 gene located on chromosome 6q21 encodes B lymphocyte-induced 

maturation protein-1 (Blimp-1), a 789 amino acid-long, weighting 87,990 Da, nuclear 

transcription factor (Martins and Calame, 2008). Blimp-1 is comprised of N-terminal 

acidic domain, PRDI-BF1-RIZ1 homologous (PR) domain, proline-rich domain (PRD), 

five Kruppel-like (C2H2) zinc-fingers and another acidic domain at C-terminus (Fig. 9). 

The PRD interacts with Grucho family proteins (Ren et al., 1999), the lysine demethylase 

LSD1 (Su et al., 2009) and HDAC2 (Yu et al., 2000). Full length Blimp-1 is called 

Blimp-1α, while Blimp-1 lacking PR domain is called Blimp-1β. Even though Blimp-1β 

binds the same genes as full length Blimp-1, it has attenuated ability to repress them 

(Gyory et al., 2003). The C-terminal C2H2 zinc-fingers contain a nuclear localization 

signal and mediate binding to DNA (Martins and Calame, 2008), as well as recruitments 

of the SET domain histone methyltransferase G9a (Gyory et al., 2004) and the arginine 

methyltransferase Prmt5 (Ancelin et al., 2006). The N-terminal PR domain and two 

acidic domains of Blimp-1 have been also shown to be critical in repression of gene 

transcription and can act independently of each other (Yu et al., 2000).  
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Blimp-1 is critical for the differentiation of mature B cells into long-lived, Ig-secreting 

plasma cells and has been recently demonstrated to be expressed in dendritic cells, 

macrophages, keratinocytes and T cells (Chan et al., 2009; Chang et al., 2000; Chiang et 

al., 2013; Kim et al., 2011; Lin et al., 2002; Lin et al., 1997; Magnusdottir et al., 2007; 

Shaffer et al., 2002; Shapiro-Shelef et al., 2003; Smith et al., 2011; Turner et al., 1994). 

In T cells Blimp-1 regulates the activation and generation of CD4 and CD8 T cell 

effector populations (Hua et al., 2013; Kallies et al., 2006; Kallies et al., 2009; Martins et 

al., 2006) (Fig. 10). Blimp-1 inhibits both T cell proliferation and differentiation into TFH 

(Crotty et al., 2010). Murine CD4
+
 T cells express high Blimp-1 levels in effector and 

memory subsets and minimal Blimp-1 expression in TH0 cells (Savitsky et al., 2007) 

(Table 2). In addition to its role in the differentiation of immune cells, Blimp-1 plays a 

crucial role in limb, pharynx and heart morphogenesis (Bikoff et al., 2009).  

Figure 9. Blimp-1 Structure. Modified from (Martins and Calame, 2008) 

Blimp-1 proteins is composed of two acidic regions, one PR domain, one proline-rich 

domain and five zinc-fingers. The zinc-fingers mediate the binding of Blimp-1 to DNA. 

The proline-rich region has been shown to interact with methyltransferases and histone 

deacetylases and to recruit them to Blimp-1 target-genes. The acidic and PR domains 

have also been shown to be involved in Blimp-1-mediated transcription. 
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Phase T Cell Subset Blimp-1 Levels 

Naïve TH0 + 

Effector TH1, TH2, TH17, Treg 

TFH 

+++ 

+ 

Memory TCM, TTM, TEM ++ 

 

Blimp-1 represses the transcription of several regulatory factors including Bcl-6, 

T-bet, IL-2, IL-6, TNFα, IFN-γ, IFN-β and type-III IFNs while enhancing the expression 

of IL-10 and Mcl-1 (Chan et al., 2009; Cimmino et al., 2008; Iwasaki et al., 2013; Keller 

and Maniatis, 1991; Lin et al., 2007; Martins et al., 2008; Smith et al., 2010; Swider et 

Figure 10. Role of Blimp-1 in Immune Cell Differentiation. Modified from (Crotty et 

al., 2010) 

Blimp-1 is important regulator of differentiation and maturation of immune cells. 

Overexpression of Blimp-1 in B cells causes them to differentiation into long-lived, Ig-

secreting plasma cells. Blimp-1 is expressed at different levels in CD4
+
 T cell subsets and 

represses the differentiation of TFH. In CT8
+
 T cells the expression of Blimp-1 causes 

them to differentiate into cytotoxic T cells. 

 

Table 2. Expression of Blimp-1 in Murine CD4
+
 T Cell Subsets. 

 
 
 
 
 
 
 

Modified from (Savitsky et al., 2007) 
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al., 2014). Blimp-1-deficient DCs secret significantly higher amounts of IL-6 and CCL2, 

and favor the differentiation of TFH (Chan et al., 2009; Kim et al., 2011). Blimp-1 also 

plays an important role in innate immunity by activating granzyme B, murine p202, a 

cytosolic DNA-sensor that inhibits AIM2 inflammasome formation, and repressing 

AIM2, and NLRP-12 (Gong and Malek, 2007; Lord et al., 2009; Panchanathan et al., 

2012; Yin et al., 2013) (Fig. 11). 

 

 

Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Sendai virus 

and LPS induce Blimp-1 expression in bone marrow–derived macrophages (Severa et al., 

2014). Blimp-1 is regulated by several mechanisms in different cell types.  It is induced 

by IL-2, IL-21, OX40, STAT3, STAT5, IRF5, IFN-α, PPARγ, RXRα and TLR9 (Boettler 

Figure 11. Blimp-1 is a Global Transcriptional Regulator. 

Blimp-1 represses a constellation of genes in different cell types. However, Blimp-1 has 

been also shown to induce transcription of some genes. 
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et al., 2013; Garcia-Bates et al., 2009; Genestier et al., 2007; Hodge et al., 2012; Lien et 

al., 2010; Nurieva et al., 2012; Panchanathan et al., 2012; Parlato et al., 2013) and 

inhibited by RIG-I (Sathe et al., 2014) and Bach2, a transcription factor suppressing 

CD4
+
 T cell differentiation (Tsukumo et al., 2013a) (Fig. 12).

 

 

In the context of HIV-1, Blimp-1 expression is increased in chronically infected 

patients but remains unaltered in long term non-progressors and correlates with enhanced 

expression of negative regulators of T cell activation including PD-1, LAG3 and CTLA-

4, and with T cell exhaustion and apoptosis (Che et al., 2012; de Masson et al., 2014; 

Seddiki et al., 2013; Shankar et al., 2011). Interestingly, HIV-1 LTR contains binding 

Figure 12. Regulation of Blimp-1 Expression. 

Blimp-1 is induced via various mechanisms in different immune cells. 
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sites for both Bcl-6 and Blimp-1, suggesting that these factors directly regulate HIV-1 

transcription (Baron et al., 1997; Kaczmarek et al., 2013).
 

TFH cells support productive HIV-1 infection and are reported to expand during 

the course of HIV-1 infection (Lindqvist et al., 2012; Perreau et al., 2013). Bcl-6 is the 

master transcription factor for the generation of TFH cells (Yu et al., 2009). In particular, 

Bcl6 and Blimp-1 have an antagonistic relationship (Crotty et al., 2010; Martins and 

Calame, 2008). Unlike Bcl-6, Blimp-1 is highly expressed in TH2 cells compared to TH1 

cells and represses TH1 differentiation by repressing interferon, T-bet and Bcl-6 

expression (Cimmino et al., 2008).
 

 

 

6. Hypothesis 

 

Memory CD4
+
 T cells are the main cell reservoir harboring replication-

competent, yet transcriptionally quiescent HIV-1. Though HIV-1 latency is a rare event, 

primarily because the majority of HIV-1 proviruses are preferentially integrated in 

actively transcribed host genes, establishment of this replication competent but 

transcriptionally quiescent provirus does occur and is a significant barrier to a functional 

cure of HIV-1. Blimp-1 is a DNA-binding transcription factor that recruits multiple 

chromatin-modifying complexes, such as HDACs and methyltransferases, to targeted 

promoters. Blimp-1 is a key maturation factor of T cells and is upregulated in chronically 

HIV-1-infected patients. Together, these findings lead us to hypothesize that Blimp-1 
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binds to the HIV-1 LTR, inhibits HIV-1 transcription and contributes to HIV-1 latency 

(Fig. 13). A second hypothesis that is explored in this dissertation is that host promoters 

proximal to the HIV-1 LTR in the integrated provirus are active but have minimal impact 

on HIV-1 transcription.  

 

 

  

Figure 13. Model for Potential Role of Blimp-1 in HIV-1 Transcription. 

Blimp-1 and Bcl-6 have potential binding sites in HIV--1 LTR. I hypothesize that Blimp-

1, an antagonist of Bcl-6, contributes to paused RNAP II and thus to the establishment of 

HIV-1 latency. See text for details. 
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II.  Materials and Methods 

 

Cell Culture. Discarded deidentified tissues from otolaryngology surgeries performed at 

Boston Medical Center were mechanically separated and cultured on plastic plates for 2-3 

d to eliminate adherent cells. Cells in suspension were positively selected for CD4
+
 using 

the Dynabeads CD4 Positive Isolation Kit (Invitrogen). Peripheral blood mononuclear 

cells were isolated from whole blood by centrifuging through Histopaque gradient 

(Sigma-Aldrich). CD4
+
 T cells were positively selected using the Dynabeads CD4 

Positive Isolation Kit. Jurkat clone E6-1 was originally purchased from American Type 

Culture Collection (ATCC, Manassas, VA). Primary CD4
+
 T cells and Jurkat cells were 

propagated in RPMI 1640 supplemented with 10% fetal bovine serum (FBS), 100 

units/ml penicillin, 100 μg/ml streptomycin (P/S), and 0.2 M L-glutamine. Human 

embryonic kidney 293T cells (HEK293T) were purchased from ATCC and cultured in 

Dulbecco's modified Eagle's medium containing 10% FBS and P/S. Inducible Jurkat cell 

lines were a kind gift from Dr. Olaf Kutch and were previously described (Duverger et 

al., 2009). Cells were incubated in a 37 C humidified incubator with 5% CO2. Cells were 

either left untreated, or activated with 0.1 μg/ml anti-human CD3 (BD Biosciences) and 

1.0 μg/ml anti-human CD28 (BD Biosciences) for 30 min. 5 μg/ml of goat anti-mouse 

antibody (Sigma) was added to crosslink the receptors. T cells were harvested 24 h post-

stimulation. 

Polychromatic flow cytometry. CD4
+
 T cells were isolated from whole blood by 

negative selection using RosetteSep
TM

 Human CD4
+
 T Cell Enrichment Cocktail 

(STEMCELL Technologies). To sort T cell subsets cells were stained with CD3-
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PacificBlue (BD Biosciences), CCR7-PE-Cy7 (BioLegend), CD45RA-PE-Cy5.5 

(Invitrogen), CD27-PE (BD Biosciences), CD4-APC (BioLegend). T cell subsets were 

separated with FACSAria. 

Transfections, Virus Generation and Infections. HIV-1 LTR/GLS-luciferase reporter 

constructs with an intact or mutated (GAAAGCGAAAG mutated to GCCCGCGCCCG) 

ISRE or NL4-3ΔTat-luciferase, Blimp-1, Tat, RSV LTR-LUC (Yamamoto et al., 1980), 

FIP-LUC(Meiering et al., 2001) and DHFR-LUC (Gummuluru and Emerman, 1999) 

expression constructs were transiently transfected into HEK293T cells via calcium 

phosphate transfection as described previously (Natarajan et al., 2013). The RSV-LUC, 

FIP-LUC and DHFR-LUC were generously provided by Dr. S. Gummuluru, Boston 

University School of Medicine. Luciferase assays were performed 48 h post-transfection 

using Luciferase Assay System (Promega). 

Lentiviral vectors pNL4-3-Luc(+)Env(−)Nef(−) (Henderson et al., 1995) (obtained from 

NIH AIDS Research and Reference Reagent Program), Blimp-1 shRNA (Dharmacon), 

FUGW Blimp-1 (kindly provided by Dr. Kathryn Calame, Columbia University, New 

York), NELF shRNA (Dharmacon) were packaged by cotransfecting Tat, RSV-Rev, 

Gag/Pol and VSV-G into HEK293T cells using calcium phosphate as previously 

described (Natarajan et al., 2013). HIV-1 titers were determined using a p24 ELISA 

(PerkinElmer). Viruses were collected 48 h post-transfection and filtered through a 

Puradisc 25 Syringe Filter with 0.45-μm Polyethersulfone membrane (Whatman). Jurkat 

cells were infected by culturing with supernatants containing HIV-1-LUC or lentiviral 

constructs for 12–16 h. CD4
+
 T cells were activated with 2μg/mL PHA and 10ng/mL 
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PMA for 16 h, rested for 12 h and infected by culturing with HIV-1-containing 

supernatant or spinoculated with HIV-1-LUC supernatant plus 1 µg/ml polybrene for 1.5 

h at 1,200 ×g without prior activation described by O’Doherty et al (O'Doherty et al., 

2000). 

Quantitative RT-PCR. RNA was prepared by resuspending cells in TRIzol (Life 

Technologies), and cDNA was generated using SuperScript II Reverse Transcriptase 

(Invitrogen) and random primers (Promega). GoTaq qPCR Master Mix (Promega) was 

used for quantitative real-time PCR reaction. Blimp-1 transcripts (+2074 to +2372) were 

amplified using 5’-CAGCTCGCCCACCTGCAGAA-3’ and 5’-

GCCGCAGCGCAGTTCCCTTT-3’ primers. Initiated HIV-1 transcripts (+1 to +40) 

were amplified using 5′- GGGTCTCTCTGGTTAGA-3′ and 5′-

AGAGCTCCCAGGCTCA-3′ primers and elongated HIV-1 transcripts (+5396 to +5531) 

were amplified using 5′-GACTAGAGCCCTGGAAGCA-3′ and 5′-

GCTTCTTCCTGCCATAGGAG-3′ primers as described previously (Natarajan et al., 

2013). β-actin mRNA was amplified using a QuantiTect primer assay (Qiagen). PCR was 

carried out for 45 cycles, and the relative expression was calculated using the ΔΔCt 

method (Livak and Schmittgen, 2001), normalizing specific amplification of the 

transcripts of interest to the β-actin control for each specific sample. The product detected 

in the sh-Control was a calibrator, and the transcript levels in samples were calculated as 

fold changes in comparison to sh-Control. 

Immunoblot Analysis and Antibodies. Whole-cell lysates were prepared by washing 

cells with cold PBS and lysing them with buffer containing 10 mM Tris-Cl (pH 7.4), 150 
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mM NaCl, 1.0 mM EDTA (pH 8.0), 2.0 mM sodium vanadate, 10 mM sodium fluoride, 

10 mM sodium pyrophosphate, 1% Triton X-100, 1.0 mM phenylmethylsulfonyl fluoride, 

and protease inhibitor mixture III (Calbiochem). Protein was measured using the BSA 

assay (Pierce). Samples were heated for 5 min at 100 °C before loading onto a 10% SDS-

PAGE gel. Proteins were transferred to a polyvinylidene difluoride membrane (Millipore) 

by electroblotting. Antibodies used were as follows: anti-Blimp-1 serum (kindly provided 

by Dr. Kathryn Calame, Columbia University, New York), anti-β-actin (Sigma-Aldrich), 

anti-Tat (4138; NIH AIDS Research and Reference Reagent Program), anti-Sp1 

(Upstate), anti-IRF-1 (Santa Cruz Biotechnology), anti-IRF-8 (Santa Cruz 

Biotechnology), anti-RNAP II (Santa Cruz Biotechnology), anti-AcH3 (Upstate 

Biotechnology) and rabbit IgG (Upstate Biotechnology). 

ChIP-qPCR. Chromatin immunoprecpitations were performed as previously described 

(Natarajan et al., 2013). Quantitative real-time PCR analysis was carried out using SYBR 

green reagents and the primers 5′-GACTTTCCGCTGGGGACTTTC-3′ and 5′-

CTAACCAGAGAGACCCAGTAC-3′, which amplify the −102 to +16 region of HIV-1 

LTR, 5’-CTGGGAGCTCTCTGGCTAACTA-3’and 5’-

TTACCAGAGTCACACAACAGACG-3’, which amplify the +30 to +134 region of 

HIV-1, 5′-TCCCTCAGACCCTTTTAGTCAG-3′ and 5′- 

GTCGAGAGAGCTCCTCTGGTTT-3′, which amplify the +142 to +237 region of HIV-

1, and 5’-ACAGTACTGGATGTGGGTGATG-3’and 5'-

AATCCCTGGTGTCTCATTGTTT-3’, which amplify the +2415 to +2522 region of 

provirus. 
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Statistical analysis. Statistical analysis was carried out using Student t test. A two-tailed 

distribution was performed on paired samples. Values of <0.01 were considered 

significant. 

 

 

III.  Blimp-1 Represses HIV-1 Transcription in Memory CD4
+
 T Cells 

 

1.  Introduction 

 

 Blimp-1 is a key regulator of T cell differentiation and reciprocal inhibitor of Bcl-

6. Bcl-6 supports differentiation of TFH, a cell subset that supports robust HIV-1 

replication (Lindqvist et al., 2012; Perreau et al., 2013). In CD4
+
 T cells Blimp-1 

represses transcription of IL-2 gene (Martins et al., 2008) whose promoter share common 

cis-elements with HIV-1 LTR. Recent studies have shown that Blimp-1 is expressed at 

high levels in CD4
+
 T cells from HIV-1-infected patients and that it is induced in T cells 

by stimulation with HIV-1-pulsed DCs (Che et al., 2012; de Masson et al., 2014; Seddiki 

et al., 2013; Shankar et al., 2011). Therefore, it is important to decipher the role that 

Blimp-1 plays in HIV-1 infection  

In this chapter I show that Blimp-1 binds downstream of HIV-1 LTR to a region 

called ISRE and represses Tat-dependent and Tat-independent HIV-1 transcription. 

Blimp-1 favors closed chromatin structure at Nuc-1 by inhibiting its acetylation. Blimp-1 

contributes to the accumulation of short HIV-1 mRNA transcripts and decreases RNAP II 
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processivity. I also show that Blimp-1 contributes to the development and maintenance of 

HIV-1 latency in memory CD4
+
 T cells, the main reservoir of latent HIV-1.  

 

 

2.  Results 

 

2.1. Blimp-1 is Expressed in Primary Human CD4
+
 Cells Including Memory CD4

+
 T 

Cells.  

Although Blimp-1 expression has been characterized in murine T cells I wanted to 

confirm that it shared a similar expression pattern in human primary CD4
+
 T cells. CD4

+
 

T cells were isolated from tonsils, a rich source of follicular helper T cells (TFH), and 

from peripheral blood. Blimp-1 mRNA was detected by qRT-PCR and protein with 

immunoblots. Consistent with previous reports (Johnston et al., 2009) tonsillar CD4
+
 T 

cells expressed low levels of Blimp-1 compared to the CD4
+
 T cells isolated from whole 

blood (Fig. 14A). Activation with anti-CD3 and anti-CD28 antibodies resulted in 3-fold 

increase in Blimp-1 mRNA and protein levels (Fig. 14B and C). 

I also examined Blimp-1 expression in different memory CD4
+
 T cell populations 

obtained from peripheral blood. Flow cytometry based on CD45RA, CD27 and CCR7 

expression was used to enrich for naïve T cells (TN; CD4
+
CD3

+
CD45RA

+
), central 

memory T cells (TCM; CD4
+
CD3

+
CD45RA

-
CCR7

+
CD27

+
), transitional memory T cells 

(TTM; CD4
+
CD3

+
CD45RA

-
CCR7

-
CD27

+
) and effector memory T cells (TEM; 

CD4
+
CD3

+
CD45RA

-
CCR7

-
CD27

-
) (Fig. 14D). Although TCM have been implicated as 
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the primary cell type that is latently infected, recent reports suggest that TEM and TTM 

contribute to the latent HIV-1 reservoir (Bacchus et al., 2013; Chomont et al., 2009; 

Lassen et al., 2012). Blimp-1 mRNA was measured in memory cells by qRT-PCR and 

protein levels were determined by immunoblots. Blimp-1 expression was 10-fold higher 

in long-lived TCM compared to naïve T cells, whereas, even higher levels of Blimp-1 was 

observed in TTM and TEM (Fig. 14E, F). Overall, Blimp-1 is present in multiple T cell 

populations but is expressed at significantly higher levels in CD4
+
 T memory cells found 

within the latent reservoir.  
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2.2. Blimp-1 Binds to the ISRE Element Downstream of the 5’ HIV-1 LTR in 

Primary CD4
+
 Cells 

 

 Based on the transcriptional repressor function of Blimp-1 and my data showing 

its high expression in CD4
+
 memory T cells I hypothesized that Blimp-1 limits HIV-1 

expression in these cells. To determine if Blimp-1 regulates HIV-1 LTR activity I 

performed co-transfection experiments with Blimp-1 and an HIV-1 LTR reporter. Blimp-

1 inhibited HIV-1 LTR-driven luciferase reporter gene (HIV-1 LTR-LUC) by 67% when 

overexpressed in HEK293T cells (Fig. 15A). Overexpression of the HIV-1 transcriptional 

activator, Tat, was unable to rescue HIV-1 LTR-mediated transcription in the presence of 

Blimp-1 (Fig. 15A). In addition, Blimp-1 inhibited an HIV-1 clone that lacked Tat (ΔTat-

Figure 14. Blimp-1 is Expressed in CD4
+
 Memory T Cells. 

A) CD4
+
 cells were isolated from peripheral blood and tonsils and Blimp-1 was 

measured by qRT-PCR. B) Blimp-1 levels were measured by qRT-PCR in 

unstinmulated or CD3 + CD28 stimulated primary peripheral CD4
+
 T cells. β-actin 

was used as a reference gene to normalize values. C) Immnoblots of lysates from 

resting and CD3 + CD28 activated primary peripheral CD4
+
 T cells for Blimp-1, Sp1 

and -actin. Sp1, a transcription factor, and -acting served as loading controls.  D) 

Sorting strategy and staining profiles for T cell subsets. T cells were stained with 

Pacific Blue–labeled antibody to CD3, APC–labeled antibody to CD4, PE-Cy7–

labeled antibody to CCR7, PE-Cy5.5-labeled antibody to CD45RA and PE-labeled 

antibody to CD27. T cell subsets were separated by FACSAria into naïve T cells (TN; 

CD4
+
CD3

+
CD45RA

+
), central memory T cells (TCM; CD4

+
CD3

+
CD45RA

-

CCR7
+
CD27

+
), transitional memory T cells (TTM; CD4

+
CD3

+
CD45RA

-
CCR7

-
CD27

+
) 

and effector memory T cells (TEM; CD4
+
CD3

+
CD45RA

-
CCR7

-
CD27

-
). E) and F) 

Expression of Blimp-1 in sorted memory CD4
+
 T cell populations measured by E) 

qRT-PCR using β-actin as a reference gene and by F) immunoblots. These 

experiments represent CD4
+
 cells obtained from at least three healthy individuals. 

Bars show average values ±SD, n=3. *p < 0.05 and ***p < 0.001 (Student’s t test). 
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HIV-1-LUC) by only 30% but repressed transcription by greater than 70% when Tat was 

added back by co-transfection (Fig. 15B). Blimp-1 is not acting as a general repressor in 

these experiments since it failed to repress expression driven by Rous sarcoma virus LTR 

(RSV LTR) (Yamamoto et al., 1980) and foamy virus internal promoter (FIP) (Meiering 

et al., 2001) and even activated the dihydrofolate reductase (DHFR) (Gummuluru and 

Emerman, 1999) promoter (Fig. 15C). These data indicate that Blimp-1 inhibits Tat-

dependent HIV-1 transcription.  
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I explored whether Blimp-1 regulates HIV-1 expression in CD4
+
 T cells. I 

established a Jurkat T cell line that stably overexpressed Blimp-1 and infected it with a 

single cycle env-minus HIV-1-luciferase virus (HIV-1-LUC). HIV-1 transcription, as 

measured by the luciferase assay, was decreased by 55% in cells overexpressing Blimp-1 

(Fig. 15D). In addition, primary human CD4
+
 T cells were infected with a HIV-1-LUC 

virus (Henderson et al., 1995) and Blimp-1 was overexpressed using a lentiviral vector. 

Transduction of cells with Blimp-1 lentivirus resulted in over 13-fold increase in Blimp-1 

mRNA (Fig. 15E). Cells overexpressing Blimp-1 had 65% decrease in HIV-1 

transcription measured by HIV-1 mRNA levels (Fig. 15E) and over 90% inhibition of 

HIV-1 replication measured by HIV-1 p24 ELISA (Fig. 15E). The data from Jurkat T 

cells and primary human CD4
+
 T cells confirmed that Blimp-1 is a repressor of HIV-1 

transcription.  

Figure 15. Blimp-1 Represses Tat-dependent HIV-1 Transcription. 

A) and B) HEK293T cells were transfected with viral clones HIV--1 LTR-LUC 

containing the TAR element (A) or ΔTat-HIV-1-LUC (B) and vector control or 

Blimp-1 in the absence or presence of Tat. Luciferase assays and western blot 

analyses were performed 48 h post-transfection. (C) HEK293T cells were transfected 

with HIV--1 LTR-LUC, RSV LTR-LUC, FIP-LUC, DHFR-LUC and vector control 

or Blimp-1. Luciferase assays and western blot analyses were performed 48 h post-

transfection. (D) Jurkat T cells stably transduced with Blimp-1 lentivirus were 

infected with HIV-1. 48 h post-infection cells were lysed and luciferase activity was 

measured (E) 16 h post-HIV-1 infection primary CD4
+
 cells were transduced with 

empty lentiviral vector or with vector expressing Blimp-1. 72 h post-transduction 

expression of Blimp-1 and HIV-1 were measured by qRT-PCR. HIV-1 released into 

supernatants was assessed by measuring p24 by an ELISA. These experiments were 

performed in triplicates and the data represent at least three independent experiments. 

Experiments with primary cells were performed with cells from at least three different 

people. White bars indicate vector control; black bars indicate Blimp-1 lentiviral 

vector. Bars show average values ±SD, n=3. *p < 0.05 , **p < 0.01 and ***p < 0.001 

(Student’s t test). 
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HIV-1 provirus has four putative Blimp-1 binding sites, GAAAG, with two sites 

upstream of the transcription start site that overlap the NF-κB sites (-104 to – 80 bp) and 

a second set of sites located downstream of the transcriptional start site in an interferon 

sensitive response element (ISRE; +200 to +218 bp) (Liang et al., 1997) (Fig. 16A). Both 

regions have been reported to modulate HIV-1 transcription (Liang et al., 1997; Nabel 

and Baltimore, 1987). Mutating the HIV-1-ISRE ameliorated Blimp-1-mediated 

repression of HIV-1 following co-transfection into HEK293T cells (Fig. 16B). 

Furthermore, chromatin immunoprecipitations (ChIPs) demonstrate that Blimp-1 directly 

binds HIV-1 provirus. Chromatin was prepared from CD4
+
 T cells infected with HIV-1 

and protein-DNA complexes were enriched with Blimp-1-specific antibody. ChIPs show 

modest Blimp-1 binding at the -104/-80 bp site and 9-fold higher Blimp-1 binding at the 

+200/+218 bp ISRE site (Fig. 16C). Following T cell activation, Blimp-1 binding was 

not detected at the HIV-1 ISRE element despite increases in Blimp-1 mRNA and protein 

(Fig. 16C, Fig. 14B and C). Blimp-1 did not exclude binding of interferon regulatory 

factors (IRFs) IRF-1 and IRF-8 to the HIV-1 ISRE (Fig. 16D). These results suggest that 

Blimp-1 represses HIV-1 transcription by directly binding the proviral ISRE element. 
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The above gain of function experiments demonstrated that Blimp-1 represses 

HIV-1 expression. To determine if Blimp-1 limits HIV-1 expression in the context of 

primary cells I reduced Blimp-1 expression in primary CD4
+
 T cells using shRNA. I 

infected CD4
+
 T cells with HIV-1-LUC, transduced the infected cells with sh-Blimp-1 

lentivirus and monitored HIV-1 expression. The efficacy of Blimp-1 knock-down was 

confirmed 96 h post-transduction by qRT-PCR (Fig. 17A) and immunoblots (Fig. 17B). 

Diminishing Blimp-1 increased basal HIV-1 transcription and replication as measured by 

qRT-PCR (Fig. 17C), luciferase assay (Fig. 17D) and p24 ELISA (Fig. 17E) indicating 

that Blimp-1 limits HIV-1 transcription in primary CD4
+
 T cells. Activating T cells 

through CD3+CD28 following Blimp-1 knockdown did not further induce HIV-1 

transcription and actually decreased HIV-1 transcription by 80% suggesting that Blimp-1 

was required for optimal induction of HIV-1 transcription (Fig. 17C). These data indicate 

that Blimp-1 acts as both a repressor and transcriptional activator in the context of HIV-

1-infected primary T cells. However, the ability of Blimp-1 to activate HIV-1 

Figure 16. Blimp-1 Binds HIV-1 Provirus. 

(A) The location of HIV--1 LTR, four putative Blimp-1-binding sites and ISRE 

mutations in provirus. (B) HEK293T cells were transfected with HIV--1 LTR-LUC or 

mISRE-HIV--1 LTR-LUC and control vector or Blimp-1 in the absence or presence of 

Tat.  Luciferase assays and western blot analyses were performed 48 h post-

transfection. (C, D) 96 h post-HIV-1 infection primary human CD4
+
 cells were 

activated with anti-CD3 and anti-CD28 antibodies for 24 h and ChIPs were performed 

using anti-Blimp-1, anti-IRF-1, anti-IRF-8 or anti-rabbit antibody. Binding was 

detected with -102F/+16R and +142F/+237R HIV-1 primer sets. These data are 

performed in triplicate and represent at three independent experiments. Bars show 

average values ±SD, n=3. *p < 0.05, **p < 0.01 and ***p < 0.001 (Student’s t test). 
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transcription is independent of Blimp-1 binding to provirus since ChIPs show it is 

displaced following T cell activation (Fig. 17C). 

To gain insight into how Blimp-1 limits HIV-1 transcription I examined with 

ChIPs the distribution of RNA Polymerase II (RNAP II) on the HIV-1 genome. In cells 

expressing Blimp-1 there was an accumulation of RNAP II at the transcriptional start site 

and modest amounts of RNAP II downstream suggesting that Blimp-1 leads to RNAP II 

promoter proximal pausing (Fig. 17F). Diminishing Blimp-1 reduced RNAP II at the 

promoter and increased RNAP II downstream in the provirus by 3-fold consistent with 

RNAP II release and greater processivity (Fig. 17F). I also used qRT-PCR to measure 

initiated versus elongated transcripts. In control cells there was an accumulation of 

initiated short HIV-1 mRNA but low expression of full length mRNA (Fig. 17G) as 

would be expected with RNAP II pausing (Zhang et al., 2007). Decreasing Blimp-1 with 

shRNA altered the ratio of initiated to elongated HIV-1 mRNA so that the ratio was 

approximately one indicating processive transcriptional elongation (Fig 17G). 

Furthermore, knocking down Blimp-1 led to an increase in histone H3-acetylation 

(AcH3) at the positioned nucleosome (nuc-1) (Fig. 17H). These data suggest that Blimp-

1 targets multiple steps of transcription regulation to limit HIV-1 transcriptional 

elongation. 
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Blimp-1 was most highly expressed in memory CD4
+
 T cells which do not 

support efficient HIV-1 transcription. To examine whether Blimp-1 was limiting HIV-1 

transcription in these cells I infected isolated memory CD4
+
 T cells with HIV-1 by 

spinoculation (O'Doherty et al., 2000) which has been shown to facilitate infection of 

cells without using mediators that activate T cells and then decreased Blimp-1 with sh-

Blimp-1 lentivirus. Spinoculation enhances viral binding which increases infection of 

cells without activating stimuli and results in higher integration rates than infection of 

cells in the absence of spinoculation. Decreasing Blimp-1 levels in all three CD4
+
 T cell 

Figure 17. Blimp-1 Represses HIV-1 Transcription in Resting CD4
+
 T Cells. 

HIV-1-infected primary CD4
+
 cells were transduced with sh-Ctrl and sh-Blimp-1. 72 

h post-knockdown cells were activated with anti-CD3 and anti-CD28 antibodies for 

24 h. Expression of Blimp-1 was measure by A) qRT-PCR and B) immunoblots. HIV-

1 expression was assayed by qRT-PCR using primers for (C) elongated HIV-1 mRNA 

and (G) initiated short transcripts, D) luciferase assay and E) HIV-1 p24 ELISA. ChIP 

analysis used anti-rabbit and anti-RNAP II (F) oranti-AcH3 (H) antibody and 

+30F/+134R and +2415F/+2522R HIV-1 primer sets. These experiments were 

performed in triplicate and the data are representative of at least three independent 

experiments. White bars indicate sh-control; black bars indicate sh-Blimp-1. Bars 

show average values ±SD, n=3. *p < 0.05, **p < 0.01 and ***p < 0.001 (Student’s t 

test). 
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memory populations resulted in significant increases, 2 to 12-fold, in HIV-1 transcription 

(Fig. 18B). The levels of induction correlated with the efficiency of Blimp-1 knockdowns 

observed with more modest induction in TCM and TEM cells in which Blimp-1 

knockdowns were inefficient compared to robust induction in TTM where Blimp-1 

expression was decreased by greater than 80% (Fig. 18A). These findings support a 

model in which Blimp-1 expression correlates with limited basal HIV-1 transcription in T 

memory cells.  

 

Figure 18. Blimp-1 Represses Basal HIV-1 Transcription in Primary Memory 

CD4
+
 T Cells. 

TCM, TTM and TEM sorted as described above were infected with NL4-3 HIV-1 by 

spinoculation. 16 h post infection cells were transduced with sh-Ctrl and sh-Blimp-1. 

72 h post-knockdown mRNA was collected. Expression of (A) Blimp-1 and (B) HIV-

1 was measured by qRT-PCR using β-actin as a reference gene. These experiments 

were performed in triplicate and are representative of three separate infections from T 

cells obtained from three patients. Bars show average values ±SD, n=3.  *p < 0.05, 

**p < 0.01 and ***p < 0.001 (Student’s t test). 
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2.3. T Cell Activation and Treatment with G9a and HDACs Inhibitors Do Not 

Abolish Blimp-1-Mediated HIV-1 Repression in Jurkat Cells 

 

Posttranslational modifications of histones have been shown to regulate 

transcription of HIV-1. Trichostatin A (TSA), an inhibitor of class I and II HDACs, has 

been shown to increase HIV-1 transcription by favoring open chromatin structure (Van 

Lint et al., 1996). BIX01294, an inhibitor of the methyltransferase G9a, was also 

demonstrated to increase HIV-1 transcription and to reactivate latent HIV-1 (Imai et al., 

2010). To gain insight into the mechanism by which Blimp-1 halts HIV-1 transcription I 

have treated HIV-1-infected Jurkat cells stably overexpressing Blimp-1 with TSA and 

BIX01294 and activated them with anti-CD3+28 Abs in the presence of the inhibitors. 

TSA induced HIV-1 transcription, however Blimp-1 was still able to repress it (Fig. 19). 

Treatment with BIX01294 did not induce HIV-1 transcription and Blimp-1 was able to 

repress HIV-1 transcription in not activated cells at the highest concentration (Fig. 19). In 

contrast to primary CD4
+
 cells, the CD3+28 activation of Jurkat cell lines did not abolish 

Blimp-1 mediated repression of HIV-1 transcription highlighting the differences between 

the two cell types (Fig. 19). These results suggest that Blimp-1-mediated repression of 

HIV-1 transcription does not depend on HDACs and G9a. However, these experiments 

lack the appropriate controls and should be repeated in primary CD4
+
 T cells in which 

Blimp-1 affects HIV-1 transcription in different manner than in Jurkat cell lines upon T 

cell activation. 
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Figure 19. G9a and HDACs Inhibitors do not Inhibit Blimp-1-mediate 

Repression of HIV-1 Transcription. 

Jurkat T cells stably over-expressing Blimp-1 were infected with HIV-1 LUC. 12 h 

post infection cells were pre-treated with different concentrations of TSA, BIX01294 

or DMSO for 1 h. Cells were activated with anti-CD3+28 antibodies in the presence 

of inhibitors for 16 h.  Cells were lysed and luciferase activity was measured. Bars 

show average values ±SD, n=3.  *p < 0.05 and ***p < 0.001 (Student’s t test). 
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3.  Conclusions and Discussion 

 

Memory CD4
+
 T cells are a major reservoir of latent HIV-1 and their longevity 

and homeostatic proliferation prevents virus clearance and supports HIV-1 persistence. 

Although several mechanisms potentially inhibit HIV-1 transcription, T cell specific 

transcription factors that intrinsically program the maturation of CD4
+
 memory T cells 

could contribute to the propensity of HIV-1 to become repressed in these cells. I present 

evidence that the lymphoid differentiation factor Blimp-1 limits HIV-1 transcription in 

CD4
+
 memory T cell subsets. 

Blimp-1 is expressed in a range of immune cells, such as B cells, macrophages, 

dendritic cells and T cells. I confirmed that Blimp-1 is differentially expressed in CD4
+
 T 

cells, with low levels in TN and CD4
+
 tonsillar cells but elevated expression in cells that 

have been shown to contribute to the latent reservoir, TCM, TTM and TEM. I also showed 

that Blimp-1 is induced upon T cell activation. Blimp-1 in part influences T cell 

maturation and function by regulating the expression of key lineage restricting 

transcription factors including PAX5, STAT6, Bcl-6 and T-bet (Cimmino et al., 2008; 

Lin et al., 2002; Shaffer et al., 2002). Furthermore, Blimp-1 is required for robust CD4 

and CD8 T cells antiviral responses against influenza and lymphocytic choriomeningitis 

virus (LCMV) and mediates murine gamma herpesvirus latency in splenocytes (Hua et 

al., 2013; Kallies et al., 2009; Rutishauser et al., 2009; Shin et al., 2009; Siegel et al., 

2010). Blimp-1 is associated with increased expression of inhibitory receptors and 

decreased polyfunctionality of exhausted CD4
+
 T cells during LCMV infection 
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(Crawford et al., 2014). In TH1 Blimp-1induces the expression of IL-10, a cytokine that 

suppresses anti-viral T cell responses, while in CD8
+ 

T cells Blimp-1-mediated repression 

of CD25 and CD27 decreases their survival and differentiation into memory cells during 

LCMV infection (Parish et al., 2014; Shin et al., 2013). During Toxoplasma gondii 

infection Blimp-1 suppresses inflammation which increases survival rate (Neumann et 

al., 2014). In chronically infected HIV-1 patients Blimp-1 is elevated in CD4
+
 T cells and 

correlates with an increase in T cell exhaustion markers (de Masson et al., 2014; Seddiki 

et al., 2013). This increase in Blimp-1 may be a direct result of infection since HIV-1-

pulsed dendritic cells enhance Blimp-1 expression (Che et al., 2012; Shankar et al., 

2011). My results demonstrate that Blimp-1 limits HIV-1 transcription in T memory cells 

consistent with its function as a transcriptional repressor in different T cell subsets. 

Blimp-1 is expressed in macrophages and dendritic cells and it may limit HIV expression 

and promote latency in them although this possibility has not been explored. 

Blimp-1 binds a GAAAG consensus sequence which is also found in ISREs 

present in Blimp-1 regulated genes CIITA, IDO1 and IFN-λ1 (Barnes et al., 2009; 

Piskurich et al., 2000; Siegel et al., 2011b). Although HIV-1 provirus contains four 

putative Blimp-1-binding sequences (Kaczmarek et al., 2013), I detected Blimp-1 binding 

only at the HIV-1 ISRE element. This cis-element has been implicated in regulating HIV-

1 transcription by recruiting IRF family proteins IRF-1 and IRF-8 (Sgarbanti et al., 2002). 

Blimp-1 binds this element in resting cells and is displaced following T cell activation. It 

is possible that Blimp-1 antagonizes or competes with the transcriptional activator IRF-1, 

although, I do not observe significant changes in IRF-1 or IRF-8 binding in the absence 
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or presence of Blimp-1 or in response to T cell activation. There is also a possibility that 

T cell activation results in post-translational modifications of Blimp-1, such as 

sumoylation, phosphorylation or ubiquitination. 

Blimp-1 mediates repression of genes by recruiting epigenetic factors such as 

methyltransferases G9a, Prmt5 and LDS1, Groucho-proteins and histone deacetylases to 

promoters (Ancelin et al., 2006; Gyory et al., 2004; Ren et al., 1999; Su et al., 2009; Yu 

et al., 2000). LSD-1 and G9a limit HIV-1 transcription and are candidates for the 

repression observed in CD4
+
 memory T cells (Imai et al., 2010; Le Douce et al., 2012). I 

observed that decreasing Blimp-1 increases acetylation at nuc-1 and releases RNAP II 

pausing. Blimp-1 limiting transcription elongation is also consistent with the observation 

that Tat cannot rescue HIV-1 expression in the presence of Blimp-1 and suggests that it is 

targeting a step prior to transcription elongation and recruitment of P-TEFb which is 

mediated by Tat.  

Blimp-1 can act as a transcriptional activator and is necessary for the induction of 

IL-10 and XBP-1 (Cretney et al., 2011; Iwasaki et al., 2013; Lin et al., 2002). I also 

observe that Blimp-1 can act as a repressor and trans-activator in co-transfections with 

select promoters and in primary CD4
+
 T cells. Intriguingly, Blimp-1 is required for 

efficient induction of HIV-1 transcription upon T cell activation. However, Blimp-1 does 

not occupy either set of binding sites following T cell activation despite increased Blimp-

1 expression following CD3 + CD28 activation suggesting that Blimp-1 is not directly 

inducing HIV-1 transcription. The mechanism by which Blimp-1 induces HIV-1 

transcription following activation is not clear and may reflect Blimp-1 interacting with 
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other transcription factors, or its ability to influence the expression of other host genes, 

cytokines and restriction factors that regulate HIV-1 transcription. Another transcription 

factor that functions in a similar manner is DSIF. Unphosphorylated DSIF functions as a 

transcriptional repressor promoting RNAP II pausing at promoters (Yamaguchi et al., 

2002). Phosphorylation of DSIF by P-TEFb changes it to a transcriptional activator 

(Peterlin and Price, 2006). 

I propose a model in which Blimp-1 is highly expressed in memory CD4
+
 T cells 

which do not support robust HIV-1 replication. In resting cells Blimp-1 binds the HIV-1 

ISRE and represses HIV-1 transcription elongation whereas upon T cell activation 

Blimp-1 is released from HIV-1 provirus derepressing proviral transcription (Fig. 20). I 

show that Blimp-1 is a transcriptional repressor of HIV-1 and its expression in memory 

CD4
+
 T cells makes them prone to HIV-1 latency. Understanding how Blimp-1 is 

regulated and the transcriptional processes it coordinates to silence HIV-1 expression will 

provide insights into the establishment and maintenance of the HIV-1 reservoir. 
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Figure 20. Model for the Role of Blimp-1 in HIV-1 Transcription. 

Blimp-1 is highly expressed in memory CD4
+
 T cells, binds the HIV-1 ISRE and 

inhibits Tat-dependent HIV-1 transcription. Following T cell activation Blimp-1 is 

released from HIV-1 provirus which correlates with increased RNAP II processivity, 

histone H3 acetylation and enhanced HIV-1 transcription. 
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IV.  Neighboring Promoters and Their Influence on HIV-1 Transcription 

 

1.  Introduction 

 

HIV-1 latency is regulated by binding of factors to HIV-1 LTR, chromatin 

structure, intrinsic T cell factors, as well as NELF-mediated stalling of RNAP II at the 

viral promoter. Transcription from host neighboring genes in which HIV-1 is integrated 

has been suggested to influence HIV-1 transcription and establishment of latency. 

However, although HIV-1 has been shown to integrate into transcriptionally active host 

genes, proviral latency is established. Therefore, I hypothesized that active host genes 

have minimal impact on HIV-1 transcription. To investigate the role of proximal host 

promoters on HIV-1 transcription I have used five different cell lines with inducible 

expression of HIV-1; one with parallel promoters, three with convergent promoters and 

one with provirus integrated between two host genes (Fig. 21). My results demonstrate 

that these cells are differentially responsive to reactivation induced by T cell activation. 

Four out of five inducible cell lines were minimally responsive to treatment with HDAC 

inhibitor indicating that chromatin remodeling agents are not a general mechanism of 

repression. Additionally, I show that transcription of host genes does not exclude 

transcription from a proximally integrated HIV-1 LTR, and that HIV-1 integration may 

lead to an increase in transcription of the neighboring host gene. The majority of the cells 

had accumulation of short HIV-1 mRNA transcripts and bound RNAP II and NELF at the 

repressed HIV-1 LTR. Decreasing NELF levels led to reactivation of provirus suggesting 
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that NELF-mediated RNAP II pausing is a general mechanism of proviral repression in 

these cells. 

 

 

2.  Results 

 

2.1. Characterization of Inducible Cell Lines 

 

The inducible Jurkat cell lines, CA5, BA1, 11B10, EF7 and CG3 were a kind gift 

from Dr. Olaf Kutsch and the mapping of integration and orientation of HIV-1 provirus 

in these cells was performed by Dr. Frank Wolschendorf. The inducible cell lines were 

generated by infecting Jurkat T cells with HIV-1-GFP, activating GFP-non-expressors 

with PMA+PHA and establishing clonal cell lines from cells in which PMA+PHA 

treatment induced GFP expression (Duverger et al., 2009).CA5 cells have provirus 

integrated in the exon of RNA binding motif protein 12 (RBM12) in a parallel orientation 

(Fig. 21). RBM12 has been implicated in meibomian cell carcinoma (Kumar et al., 2007). 

RBM12 shares promoter and 5’exons with copine I (CPNE1) (Yang et al., 2008a). The 

function of RBM12 remains unidentified, while CPNE1 plays role in cell-cycle and 

proliferation (Skawran et al., 2008). BA1 cells have HIV-1 integrated in the intron of 

PDZ domain containing 8 (PDZD8) in a convergent orientation (Fig. 21). PDZD8 is a 

cytoskeleton-regulating protein that binds HIV-1 Gag and stabilizes HIV-1 capsid 

contributing to enhanced reverse transcription (Guth and Sodroski, 2014; Henning et al., 
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2010). PDZD8 is also a suppressor of Herpes Simplex Virus type-1 (HSV-1) replication 

(Henning et al., 2011). 11B10 cell line has HIV-1 inserted in the intron of HELZ in a 

convergent orientation (Fig. 21). HELZ is a zinc-finger containing RNA-helicase 

important for global translational initiation (Hasgall et al., 2011). HELZ interacts with 

RNAP II and histone methyltransferases, Smyd2 and Smyd3 (Diehl et al., 2010; 

Hamamoto et al., 2004). In EF7 cells HIV-1 is integrated in the intron of WHSC1 in a 

convergent orientation (Fig. 21). Wolf–Hirschhorn syndrome candidate 1 (WHSC1), also 

known as Multiple Myeloma SET domain (MMSET), is a histone H3 lysine 36 (H3K36) 

trimethyltransferase which together with the histone chaperone HIRA is implicated in 

incorporation of histone H3.3 into actively transcribed genes and which is required for 

IFN-induced transcription (Sarai et al., 2013). WHSC1 also interacts with Brd4 and P-

TEFb facilitating transcriptional elongation (Sarai et al., 2013). In CG3 cell line provirus 

is integrated between two genes, tigger transposable element derived 5 (TIGD5) and 

PYCRL, with a parallel orientation to TIGD5 and a convergent orientation to PYCRL 

(Fig. 21). TIGD5 is a member of the tigger subfamily of the pogo superfamily of DNA-

mediated transposons. PYCRL is cytosolic pyrroline-5-carboxylate reductase that 

catalyzes the reduction of ornithine to proline (De Ingeniis et al., 2012). 
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Figure 21. Proviral Integration Sites in CA5, BA1, 11B10, EF7 and CG3. 

Schematic of HIV-1 provirus integration sites relative to neighboring host promoter for 

latently infected Jurkat cells (obtained from the Kutsh lab UAB). 
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2.2. Repressed HIV-1 is Differentially Inducible 

 

Signals that activate T cells, such as signaling downstream of the CD3 and CD28 

receptors as well as treatment with Phorbol 12-myristate 13-acetate (PMA), a phorbol 

ester and phytohemagglutinin (PHA), a plant lectin present in red kidney beans, lead to 

induction of HIV-1 transcription and effective replication (Peterlin and Price, 2006). 

Activation with PHA requires intact CD3/TCR and increases intracellular free Ca
2++

 

(Weiss and Imboden, 1987) whereas PMA binds to and activates PKC (Manger et al., 

1987). To see if cells harboring repressed proviruses with divergent integration sites are 

responding in the same manner to T cell activation stimuli, CA5, BA1, 11B10, EF7 and 

CG3 cell lines were treated with PMA+PHA. Results indicate that provirus induction 

levels in response to PMA+PHA treatment range from 90-30% among T cell lines with 

the CA5 cells being the most inducible and the CG3 cells (harboring intragenic HIV-1 

provirus) being the least inducible (Fig. 22 A).  

HDACs have been shown to contribute to the repression of HIV-1 transcription 

by removing acetyl groups from histones, making the chromatin more condensed (Keedy 

et al., 2009). To explore the contribution of chromatin structure in limiting HIV-1 

expression I have treated cells with Trichostatin A (TSA), an inhibitor of the class I and 

II HDACs, which has been shown to be a potent inducer of HIV-1 transcription. The 

treatment with TSA was not as effective as treatment with PMA+ PHA at reactivating 

latent provirus (Fig. 22 B). TSA induced most HIV-1 expression in 11B10 and EF7 cells 

in which HIV-1 provirus and the host genes have convergent orientation (Fig. 22 B). 
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However, BA1 cells, which have both the host promoter and the HIV-1 LTR in the same 

orientation were minimally responsive to the TSA treatment (Fig. 22 B), implying that 

chromatin structure does not contribute to HIV-1 latency in all cell lines and that the 

promoter orientation does not impose a specific mode of transcriptional regulation of 

HIV-1 provirus. My data indicate that class I and II HDACs are not general regulators of 

HIV-1 transcription in these cell lines. This is consistent with the hypothesis that 

neighboring host genes being active and having open chromatin structure can influence 

transcription from the proximal HIV-1 LTR. 
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Figure 22. Provirus Integration Site Affects Reactivation Rate of Latent HIV-1. 

Cells were treated with 2μg/mL PHA and 10ng/mL PMA or 0.5μM TSA for 24 h. 

GFP expression was measured by flow cytometry. Data represent fold induction over 

background HIV-1-GFP expression. 



 

 

74 

2.3. Correlation between the Expression of Host Genes and HIV-1 Induction 

 

Because HIV-1 preferentially integrates into active host genes one may expect 

that HIV-1 transcription would interfere with transcription of the host gene (Lenasi et al., 

2008). Thus, the reactivation of HIV-1 would be at the expense of the host, leading to a 

decreased expression of the endogenous gene. However, treatment with PMA+PHA 

resulted in decreased host gene expression only in 11B10 and CG3 (PYCRL gene) (Fig. 

23). The m-RNA levels of the majority of neighboring host genes increased (BA1, EF7, 

CG3 (TIGD5 gene)) or remained constant (CA5 cells) upon T cell activation with 

PMA+PHA (Fig. 23). In addition, the integration of HIV-1 led to an increase in host gene 

expression in BA1, 11B10, EF7 and CG3 (TIGD5 gene). It is possible that host gene 

activity is crucial for the reactivation of provirus. These data indicated that host gene 

expression does not necessarily exclude HIV-1 expression. 
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2.4. RNAP II Pausing as Common Mechanism of HIV-1 Latency 

 

To determine if HIV-1 transcription in the inducible Jurkat cell line is inhibited at 

the step of transcriptional initiation or elongation I looked at the accumulation of short 

HIV-1 mRNA transcripts. Using qRT-PCR I have calculated the ratio of initiated to 

elongated HIV-1 mRNAs (Fig. 24). The ratio of initiated to elongated HIV-1 mRNA 

transcripts decreased upon PMA+PHA treatment in CA5, BA1 and 11B10 cells, 

indicating productive RNAP II transcription. CG3 cells also had accumulated short HIV-

1 transcripts, but to a much smaller degree (Fig. 24). However, EF7 cells did not contain 

accumulated initiated HIV-1 mRNAs (Fig. 24). The accumulation of short HIV-1 

mRNAs is consistent with the paused RNAP II at HIV-1 LTR which decreases upon T 

cell activation. Effective HIV-1 transcription is initiated and elongated HIV-1 mRNA is 

produced shifting the ration of initiated to elongated transcripts to “1”.  

 

Figure 23. Activation of Latent Cells Results in Altered Host Gene Expression.  

Uninfected Jurkat T cells as well as CA5, BA1, 11B10, EF7 and CG3 cells were treated 

with 2μg/mL PHA and 10ng/mL PMA for 24 h. Expression of the neighboring host gene 

mRNA was measured by qRT-PCR and normalized to β-actin.  
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RNAP II pausing is characterized by accumulation of RNAP II and NELF at the 

transcriptionally repressed promoter. The RNAP II promoter proximal pausing induced 

by NELF was confirmed in ChIP experiments looking at the binding of RNAP II and 

NELF to HIV-1 LTR. Using a ChIP assay, I detected high binding of RNAP II at HIV-1 

LTR in uninduced cells and this binding decreased upon activation with PMA+PHA 

representing release of a paused RNAP II (Fig. 25). Upon T cell activation, the levels of 

NELF, an inducer of RNAP II pausing at HIV-1 LTR, also decreased at the viral 

promoter (Fig. 25). These data suggest that HIV-1 induction correlates with a decrease in 

RNAP II pausing at HIV-1 LTR.  

Figure 24. RNAP II Pausing Occurs in Latent Cell Lines.  

Latently HIV-1-infected Jurkat cell lines were treated with 2μg/mL PHA and 10ng/mL 

PMA for 24 h. Expression of initiated and elongated HIV-1 was measured by qRT-PCR. 

These data are performed in triplicate and represent at three independent experiments. 
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Our laboratory identified the negative elongation factor (NELF) as a key player in 

mediating RNAP II promoter proximal pausing and repressing HIV-1 transcription 93 

(Natarajan et al., 2013). Data obtained by Dr. Malini Natarajan and Dr. Gillian Schiralli 

Lester indicate that knockdown of NELF in these inducible Jurkat cell lines reactivates 

provirus, although to varying degree (Fig. 26). Thus, HIV-1 provirus in the inducible cell 

lines is repressed by NELF-induced RNAP II pausing, a widespread mechanism of gene 

regulation (Gaertner et al., 2012; Rahl et al., 2010), which I propose as a general 

mechanism of HIV-1 repression and latency. 

Figure 25. T Cell Activation Results in Altered Recruitment of RNAP II. 

Cells were treated with 2μg/mL PHA and 10ng/mL PMA for 24 h. ChIP assays were 

performed to examine RNAP II and NELF binding to HIV--1 LTR. 



 

 

79 

 

 

 

3.  Conclusions and Discussion  

 

I explored the effect of neighboring host promoters on HIV-1 expression in 

different inducible Jurkat cell lines. Previous reports showed that transcription from the 

proximal host promoters may lead to repression of HIV-1 transcription. However, my 

data demonstrate that genes in the vicinity of the HIV-1 provirus and chromatin structure 

have minimal impact on the maintenance of HIV-1 latency in the inducible Jurkat cells. 

The fact that CG3 cells, which harbor intergenic provirus, are the least inducible suggests 

that HIV-1 integration into transcriptionally active genes helps reactivate HIV-1. Thus 

Figure 26. NELF Limits HIV-1 Transcription in Inducible Cells.  

Cell lines were transduced with shPRS Vector or shNelf-B specific lentivirus, 72 h post-

transduction GFP expression was measured by flow cytometry. The fold induction of 

GFP expression over the shPRS Vector sample is graphed for the representative 

experiment. 
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integration of the HIV-1 provirus into transcriptionally active genes instead of non-

coding DNA may actually help in its reactivation by assisting with promoter clearance of 

repressive factors or open chromatin. In fact, HIV-1 integration increased expression of 

the neighboring host gene by an unknown mechanism. It is possible that HIV-1 induces 

transcription of the host gene by disrupting repressive chromatin structure, obstructing 

binding of transcriptional repressors to the host gene or recruiting them away from the 

host neighboring promoter to HIV-1 LTR. The high transcriptional activity of host 

neighboring promoter was decreased upon HIV-1 induction only in 11B10 cells, 

implying that in this particular cell line high transcriptional activity of the host gene may 

lead to repression of HIV-1 LTR. It remains to be determined if the decrease in the HELZ 

gene expression in 11B10 is a result of interruption of transcriptional initiation or 

elongation of this gene. 

Recently RNAP II pausing has been shown to be one of the mechanisms of 

transcriptional interference (Palmer et al., 2009). My data show that all the inducible cell 

lines have high levels of RNAP II at HIV-1 LTR, as well as accumulation of short HIV-1 

mRNA transcripts, implying that proviruses are inhibited at the step of transcriptional 

elongation rather than initiation. The data showing HIV-1 induction upon NELF knock-

down are supportive of RNAP II promoter proximal.as the primary mechanism of HIV-1 

transcriptional repression. 

Upon cell activation, BA1, EF7 and 11B10 have differential expression of the 

neighboring host gene despite having HIV-1 integrated in convergent orientation. HIV-1 

induction decreased HELZ levels, did not affect PDZD8 expression, while it induced 
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WHSC1 levels. These differences may be possibly explained by the different distances of 

HIV-1 LTR from the proximal host gene promoter as well as the host gene promoter 

strength. In 11B10 cells, provirus is integrated 96,217 bp of HELZ compared to 36,311 

bp of PDZD8 in BA1 cells and 1,129 bp of WHSC1 in EF7 cells. These data suggest that 

the inhibition of neighboring host gene expression correlates positively with the distance 

between the host gene and viral promoter. One can also assume that the promoter of 

HELZ is weaker, while the promoters of WHSC1 and PDZD8 have the same or greater 

strength than HIV-1 LTR. 

My data demonstrate that T cell activation, inhibition of HDACs, as well as 

NELF-mediated RNAP II pausing play a differential role in maintaining the repression of 

provirus in inducible Jurkat cell lines. My data also suggests that although HIV-1 

insertion and induction differentially affect neighboring host genes, the expression of a 

host gene does not necessarily prevent the reactivation of the HIV-1 provirus. I propose a 

model in which HIV-1 transcription is repressed by a combination of mechanisms rather 

than by a single one. In this model NELF causes RNAP II pausing at HIV-1 LTR 

characterized by accumulation of short viral transcripts, while the closed chromatin 

structure at Nuc-1 may additionally prevent RNAP II from processing downstream 

provirus after its release from the pause. T cell activation leads to recruitment of 

transcriptional activators to HIV-1 LTR as well as the displacement of transcriptional 

repressors, such as Blimp-1, from provirus allowing efficient HIV-1 transcription. 
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V.  Conclusions 

 

The inability to target and eliminate latently infected memory CD4
+
 T cells 

remains a barrier to eradicating HIV-1 infection. In an effort to cure HIV-1 infection, 

strategies to purge transcriptionally repressed HIV-1 provirus from latent reservoirs have 

been employed to complement current antiretroviral therapies (Margolis and Hazuda, 

2013). Recent therapeutic approaches have focused on overcoming the repressive effects 

of chromatin, which has been implicated as a key regulator of HIV-1 transcription 

(Richman et al., 2009; Siliciano and Greene, 2011). For example, clinical trials have used 

HDAC inhibitors valproic acid (Archin et al., 2010; Routy et al., 2012) and vorinostat 

(Archin et al., 2012), which, despite modest ability to induce HIV-1 transcription in 

peripheral blood of HAART patients, did not decrease the HIV-1 reservoir. The limited 

success of these initial trials probably reflect the complexity of the latent reservoir in 

regards to the cells that are included in this compartment as well as the multiple 

mechanisms that establish and maintain latency (Richman et al., 2009; Schiralli Lester 

and Henderson, 2012; Siliciano and Greene, 2011). An additional confounder is that 

many of the factors that limit HIV-1 transcription are general transcriptional regulators 

which are necessary for normal gene expression. Targeting RNAP II, P-TEFb, and 

chromatin remodeling factors will likely be toxic, lack specificity, and have an impact on 

global gene expression.  

I wanted to gain insight into the mechanisms that might contribute to HIV-1 

latency in the context of T cells. My work explored two possible mechanisms of HIV-1 
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latency: tissue specific factors and host neighboring promoters. I show that Blimp-1 is an 

important transcriptional repressor of HIV-1 in memory CD4
+
 T cells and that 

neighboring genes have minimal impact on HIV-1 transcription. I also demonstrate that 

RNAP II pausing appears to be necessary for establishment of proviral latency in both 

scenarios. 

 

Blimp-1-mediated repression of HIV-1 transcription in memory CD4
+
 T cells 

CD4
+
 T cell subsets differentially support HIV-1 replication. For example, 

quiescent CD4
+
 memory T cells are susceptible to HIV-1 infection but do not support 

robust HIV-1 transcription and have been implicated as the primary reservoir of latent 

HIV-1. T cell transcription factors that regulate maturation potentially limit HIV-1 

transcription and mediate the establishment and maintenance of HIV-1 latency. Attempts 

to purge HIV-1 from the latent reservoir by targeting general biochemical pathways have 

had modest success; however, events regulated by T cell specific factors may provide a 

more cell specific targeting strategy that would minimize potential off-target gene 

activation. I suggest that T cell restricted transcription factors strongly influence HIV-1 

proviral transcription and that these factors may provide specific targets for eliminating 

latent HIV-1. I report that Blimp-1, a critical regulator of B and T cell differentiation, is 

highly expressed in memory CD4
+
 T cells compared to naïve CD4

+
 T cells and is induced 

following T cell activation. Furthermore, I show that Blimp-1 binds sequences 

downstream of HIV-1 LTR, called HIV-1 ISRE, and is displaced following T cell 

activation. Blimp-1 inhibits Tat-dependent HIV-1 transcription. Reduction of Blimp-1 in 
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infected primary T cells, including CD4
+
 memory T cells, increases RNAP II 

processivity, histone H3 acetylation and baseline HIV-1 transcription. Treatment with 

protease inhibitors (Pacenti et al., 2006) as well as HIV-1 Tat have been shown to 

increase Blimp-1 expression in T cells (Sforza et al., 2014), thus promoting HIV-1 

latency. Therefore, the transcriptional repressor, Blimp-1, is an intrinsic factor that 

predisposes CD4
+
 memory T cells to latent HIV-1 infection. I predict that modulating the 

expression of Blimp-1 or targeting its cofactors would reactivate and potentially purge 

latent virus in specific T cell subpopulations without global T cell activation. However, 

further research is required to understand the Blimp-1-mediated mechanisms of 

repression of HIV-1 transcription in different T cell subsets and to assess which Blimp-1-

interacting factors are the best candidates for the development of novel treatment 

strategies. NELF-induced RNAP II promoter proximal pausing is a common mechanism 

of repressing proviral expression. Further studies are required to elucidate whether RNAP 

II pausing at HIV-1 LTR can be disturbed by modulating intrinsic T cell factors. 

Blimp-1 inhibits Tat-dependent and Tat-independent HIV-1 transcription. Based 

on the latter finding, I would speculate that that Blimp-1 represses the generation of TAR 

RNA, thus inhibiting the recruitment of Tat and P-TEFb to HIV-1 LTR. Blimp-1 has 

been shown to inhibit transcription of c-Myc, a factor implicated in the release of paused 

RNAP II (Lin et al., 1997; Rahl et al., 2010). It remains to be determined if targeting of c-

Myc by Blimp-1 is another mechanism via which Blimp-1 inhibits HIV-1 transcriptional 

elongation and generation of TAR RNA stem loop. Blimp-1 is a transcription factor that 

regulates its target genes by recruiting histone-modifying complexes, such as 
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methyltransferases and HDACs. Decreasing Blimp-1 levels increased acetylation of 

histone H3 at Nuc-1 positioned next to HIV-1 LTR. It remains to be seen if Blimp-1 

recruits histone-modifying enzymes to Nuc-1. Preliminary data shows that treatment with 

TSA, an inhibitor of HDACs I and II, and BIX02194, a G9a inhibitor, did not abolish 

Blimp-1 mediated repression of HIV-1 transcription. However, the experiments should 

contain proper controls verifying that the inhibitors are effective, such as ChIPs looking 

at the acetylation and methylation of Nuc-1. It will be critical to fully characterize the 

mechanism by which Blimp-1 leads to increase in HIV-1 transcription upon T cell 

activation. It may be informative in future studies to look if Blimp-1 recruits LDS1 (Su et 

al., 2009), a histone lysine demethylase, which has been shown to repress HIV-1 

transcription by inducing trimethylation of H3K4 and H3K9 (Le Douce et al., 2012) as 

well as to activate Tat (Sakane et al., 2011). The interaction of Blimp-1 with LSD1 could 

provide a mechanism for Blimp-1-mediated repression of HIV-1 in resting T cells where 

Blimp-1 would recruit LSD1 to methylate histones, and for Blimp-1 mediated induction 

of HIV-1 transcription upon T cell activation where Blimp-1 may recruit LSD1 to Tat to 

activate it.  

I also speculate that Blimp-1 mediated enhancement of HIV-1 transcription upon 

T cell activation may be a result of Blimp-1 inhibiting another transcriptional repressor of 

HIV-1, since upon T cell activation Blimp-1 is no longer bound to provirus. Further 

studies to investigate the induction of HIV-1 transcription by Blimp-1 in activated T cells 

could also investigate the interaction of Blimp-1 with the viral transcriptional activator 

Tat or P-TEFb complex. It remains to be determined why Blimp-1 dissociates from the 
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HIV-1 ISRE upon T cell activation. I show that Blimp-1 co-occupies the HIV-1 ISRE 

with IRF-1 and IRF-8 and that T cell activation leads to a decrease in the binding to this 

site of all of these factors. Thus IRF-1 and IRF-8 do not replace Blimp-1 at the ISRE in 

the HIV-1 LTR upon activation. Future studies investigating the post-translational 

modification of Blimp-1 may provide useful information as to why Blimp-1 is released 

from the HIV-1 ISRE upon T cell activation. Future experiments should look at the 

change in Blimp-1 phosphorylation, ubiquitination and SUMOylation upon T cell 

activation and identify the protein responsible for these modifications. Co-culture of 

HIV-1-pulsed DC with T cells induces the expression of Blimp-1, as well as markers of 

exhaustion, including PD-1, Tim-3, LAG-3 and CTLA-4 (Shankar et al., 2011). 

However, Blimp-1 has been recently shown to repress the expression of PD-1and 

NFATc1, its activator, in CD8
+
 T cells (Lu et al., 2014b). It is also possible that by 

inhibiting NFAT, a transcriptional activator of HIV-1, Blimp-1 contributes to repression 

of HIV-1 transcription. It remains to be determined if Blimp-1 directly regulates the 

expression of other exhaustion molecules in HIV-1 infection. Bach-2 is a repressor of 

Blimp-1 and T cell differentiation (Tsukumo et al., 2013a) that has been shown to be 

enriched for integrated provirus site over time (Ikeda et al., 2007). It is possible that the 

disruption of BACH2 gene by provirus is in part responsible for the induction of Blimp-1 

levels in HIV-1-infected patients.  
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Role of neighboring host genes in HIV-1 transcription 

I also examined the influence of host neighboring promoters on HIV-1 

transcription to identify common mechanisms controlling HIV-1 latency. About 40% of 

human transcripts overlap with each other (Birney et al., 2007) suggesting that 

neighboring promoters affect each other’s expression. HIV-1 integrates into 

transcriptionally active host genes and its transcription is carried out and controlled by 

the host transcriptional machinery. I have shown that inducible cell lines are differentially 

responsive to T cell activation and treatment with HDACs inhibitor. In addition, 

integration of provirus in the convergent orientation resulted in the induction of the host 

gene, while HIV-1 transcription did not correlate with the neighboring host gene 

expression levels. Furthermore, my data indicates that expression of the host gene allows 

HIV-1 transcriptional activation. My research has demonstrated that the majority of 

repressed provirus integrated into host genes in the parallel and convergent orientation 

has NELF and stalled RNAP II at the LTR. Decreasing NELF was able to induce HIV-1 

transcription. My data supports a model in which HIV-1 latency is established and 

maintained by multiple mechanisms, including RNAP II promoter proximal pausing, 

condensed chromatin structure, T cell activation and intrinsic T cell transcription factors 

but is not dependent on proximity or orientation to the neighboring host promoters. 

My data suggests that neighboring promoters have minimal impact on HIV-1 

transcription; however I was not able to modulate the transcription of the host genes to 

definitely rule out their contribution to the maintenance of HIV-1 latency as there is not 

sufficient data looking at regulation of transcription of these host genes. The orientation 
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of the host genes and HIV-1 LTR does not seem to correlate with a specific 

transcriptional repression mechanism. However, in the cell lines with the convergent 

orientation of promoters the increasing distance between the two promoters seems to 

decrease the level of host gene transcription upon cell activation. It would be intriguing to 

investigate whether increasing the distance between HIV-1 LTR and a convergent 

promoter would increase their transcriptional interference by constructing a plasmid with 

the HIV-1 promoter integrated at different positions in the same gene. Because there was 

a range of responses to TSA treatment among CA5, BA1, 11B10, EF7 and CG3 cells one 

should try another HDAC inhibitor, such as valporic acid or vorinostat. It may be 

informative in future studies to look at the influence of activation with CD3+28 to see if 

signaling downstream of the TCR has different effect on host genes and HIV-1 

expression compared to treatment with PMA+PHA. Future studies should be also aimed 

at measuring the strength of the neighboring host promoter to see if it plays a role in 

repressing HIV-1 transcription. Additional experiments verifying that the host genes are 

transcriptionally active need to be performed. Future studies would benefit from looking 

at the presence of active RNAP II at the host genes by using an antibody specific to 

phosphorylated Ser-2 of RNAP II. Future studies would ideally look at the presence of 

chimeric mRNA messages spanning the upstream host gene and the viral promoter to see 

if the elongating RNAP II disrupts transcriptional machinery at HIV-1 LTR. Because 

HIV-1 latency in inducible cell lines is regulated by a combination of mechanisms it will 

be critical to see if NELF cooperates with Blimp-1 to repress HIV-1 transcription by 

inhibiting RNAP II processivity. 
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Significance and Implications 

My data show that there are common mechanisms mediating HIV-1 latency. 

Blimp-1 represses RNAP II processivity to sequences downstream of the ISRE, while 

proviruses integrated into active neighboring host genes have RNAP II paused at their 

promoters. Both, the inducible cell lines as well as cells expressing high levels of Blimp-

1 have accumulation of short HIV-1 mRNA transcripts showing that RNAP II pausing is 

a common checkpoint of HIV-1 transcription. Previous work from our laboratory showed 

that NELF recruits NCoR1-GPS2-HDAC3 complex to HIV-1 LTR to remodel chromatin 

and induce premature termination of transcripts in primary CD4
+
 T cells (Natarajan et al., 

2013). Thus, RNAP II pausing is coordinating multiple repressive pathways and targeting 

it may help in reactivating latent provirus. 

To eradicate HIV-1 infection it would be preferable to use “shock & kill” 

approach, where latency reversing agents (LRA) would be used to reactivate latent virus 

while the patient is on HAART (Fig. 27). This strategy would result in elimination of 

latent reservoir and cell death of infected cells. Recent studies showed that broadly 

neutralizing antibodies (bNAbs) prevent the establishment of new infections and in 

combination with LRA greatly reduce the chance of viral rebound after cessation of 

treatment (Halper-Stromberg et al., 2014). HIV-1 gene therapy is another promising 

venue, where by using zinc-finger endonucleases (ZFNs) one can disrupt either the genes 

encoding HIV-1 co-receptors or provirus itself (Manjunath et al., 2013). The “shock & 

kill” strategy could benefit from including bNAbs to block new infections and gene 
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therapy to further interfere with HIV-1 replication (Fig. 27). In addition drugs targeting 

NELF or Blimp-1 may aid in the release of paused RNAP II, increase RNAP II 

processivity and open chromatin structure. 

 

Figure 27. "Shock & Kill" Strategy to Cure HIV-1. 

Eradication of HIV-1 infection will require the disruption of HIV-1 latency by using 

LRA. The disruption of latency should co-occur with HAART administration. The 

addition of bNAbs may prevent new infections, while gene therapy may aid in disruption 

of latent provirus that is not responsive to LRA. The goal of the “shock & kill” strategy 

would be reactivation of all latent provirus concurrent with depletion of all infected cells. 
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APPENDIX 

 

RATIONALE 

 

 The Src kinase leukocyte-specific protein tyrosine kinase (Lck) is essential for 

initiating T cell receptor (TCR) signaling by activating downstream signaling proteins, 

such as phosphoinositide 3-kinase (PI3K) which phosphorylates PIP2 to 

phosphatidylinositol-3,4,5-trisphosphate (PIP3) (Cannons and Schwartzberg, 2004). The 

Tec kinase interleukin-2-inducible T cell kinase (Itk) is a critical mediator of cytoskeleton 

rearrangements induced by TCR signaling. Itk is recruited to the PM by binding to PIP3, 

where it is phosphorylated by Lck (Cannons and Schwartzberg, 2004). 

Previously, our lab has identified Lck and Itk as being crucial in efficient HIV-1 

replication. I have shown that Lck positively regulates HIV-1 release, and physically 

interacts with Gag (Strasner et al., 2008). In T cells Gag assembly takes place at the PM, 

but in Lck deficient T cells Gag accumulates in intracellular compartments (Finzi et al., 

2007; Strasner et al., 2008). Itk is required for efficient viral entry, transcription, and 

release (Readinger et al., 2008). I wanted to confirm that Lck increases HIV-1 release by 

regulating multiple stages of Gag intracellular transport and processing. I was especially 

interested in determining whether Lck is involved in transporting Gag to the PM, or 

preventing endocytosis of assembling Gag from the PM. 
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METHODS 

 

For fluorescence microscopy experiments I have generated GFP-tagged WT Lck 

expression construct by using CT-GFP Fusion TOPO TA Expression Kit (Invitrogen). 

293T and HeLa cells were plated on glass coverslips (Fisher). At 16 h post-transfection, 

cells were fixed in 2% paraformaldehyde, incubated with DAPI (Invitrogen), and 

mounted on glass slides. Samples were imaged using a 60x objective on Nikon 

deconvolution wide-field Epifluorescence microscope. Stack of 31 images were collected 

at 0.3-m spacing. Images were deconvolved using 10 iterations with NIS elements 

software. The data analysis was done with NIS elements software. To look at Lck role in 

HIV-1 replication I have generated Jurkat T cell lines with stable Lck knockdown using 

sh-RNA (Dharmacon). For experiments looking at the viral release VLPs were purified 

by pelleting collected supernatants on 20% sucrose gradient at 100,000 xg for 1.5 h at 4 

°C. The HIV-1 concentration in the supernatants was measured using an Alliance HIV-1 

p24 Elisa Kit (Perkin-Elmer). I have used cell fractionation to look at Lck, Itk and Gag 

co-localization in different cellular compartments. Whole cell lysates were run on SDS-

PAGE (12% gel) and western blots were used to detect protein expression. 

 

RESULTS 

 

To test the role of Lck in HIV-1 release I have generated stable, Lck-deficient 

Jurkat cell lines using Lck shRNA. Although in the past our lab had used JCaM cells, 
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which do not express functional Lck, the use of cells in which Lck was knockdown 

represents a more plausible approach to study the effect of Lck on HIV-1 release. 

Examination of virus-infected sh-Lck Jurkat cells confirmed Lck’s role in viral 

replication as the Lck knockdown decreased HIV-1 release by approximately 75% (Fig. 

28). 

  

 To determine if Lck  and Itk are the primary non-receptor tyrosine kinases 

mediating HIV-1 replication I have also examined the role of Fyn. Fyn and Lck are the 

two Src kinases expressed in T cells. I have decreased Fyn expression in Jurkat cells 

using si-Fyn. The knockdown was successful as determined by immunoblots; however, 

Figure 28. Lck is Required for Efficient HIV-1 Replication. 

Jurkat T cells stably transduced with sh-Lck or sh-Ctrl lentivirus were infected with HIV-

1-PLAP-Nef(-) and the release of HIV-1 p24 was monitored over the course of 10 days. 

Whole cell lystes were probed with either anti-HIV-1 p24
gag

, anti-Lck or anti-actin Abs. 

Results shown are from a single experiment with each data point representing three 

independent infections. These data are representative of three experiments. 
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with or without activation with anti-CD3 and -CD28 Abs , there was no significant 

difference in HIV-1 release between si-CTRL and si-Fyn transfected cells as measured by 

p24 release (Fig. 29). Thus, Lck is the primary Src kinase required for efficient HIV-1 

particle release from infected T cells. 
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Figure 29. Fyn has Minimal Impact on HIV-1 Replication in T Cells. 

Jurkat cells were electroporated with si-CTRL or si-Fyn, and infected 24 h post 

transfection with HIV-1-PLAP-Nef(+). Cells were activated with 0.1 µg/ml anti-CD3 and 

1 µg/ml anti-CD28 Abs for 24 h before collection. Release of p24
gag

 was monitored at 

days 3 and 5 post-infection. Whole cell lysates were probed with anti-Fyn and anti-actin 

Abs. 
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Previously our lab has shown that Lck promotes Gag assembly at the PM 

(Strasner et al., 2008).I have now demonstrated that in 293T (Fig. 30) and in HeLa cells 

(Fig. 31) Lck co-localizes with Gag at the PM and in intracellular compartments. 

Mutation of the basic region in the MA domain leads to redistribution of Gag and its 

intracellular accumulation in late endosomes (Chukkapalli et al., 2008; Ono and Freed, 

2004; Zhou et al., 1994). I speculated that expression of Lck may redirect the mutant Gag 

to the PM through a direct interaction with it. To test this I used Δ-MA-Gag, which has a 

deletion of residues 15 through 99 in the basic region of MA domain. However, using 

fluorescent imaging I observed that Δ-MA-Gag was located in intracellular 

compartments, even in the presence of Lck. This data suggest that Δ-MA-Gag has altered 

trafficking and thus does not interact with Lck, because it is not present in the same 

subcellular compartments as Lck, or that Lck binds to the MA domain of Gag. 
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Figure 30. Lck Co-localizes with Gag at the PM and in Intracellular Compartments. 

293T cells were plated onto glass coverslips and transfected (A) or cotransfected (B) with 

Lck, and Gag-cherry as indicated. 16H post-transfection cells were washed with PBS and 

then fixed with 2% paraformaldehyde and stained with antibody to Lck. The glass 

coverslips were mounted onto glass slides and viewed using a Nikon fluorescence 

microscope at 60x immersion and deconvoluted using 10 iterations with NIS elements 

software. 
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Figure 31. Lck Alters the Localization of Gag in HeLa Cells. 

HeLa cells were plated onto glass coverslips and transfected (A) or cotransfected (B) 

with Lck-GFP and Gag-Cherry, as indicated. 72H post-transfection cells were washed 

with PBS then fixed with 2% paraformaldehyde. The glass coverslips were mounted onto 

glass slides and viewed using a Nikon fluorescence microscope at 60x oil immersion and 

deconvoluted using 10 iterations with NIS elements software. 
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Figure 32. Lck Does Not Alter the Intracellular Accumulation of ΔMA-Gag. 

293T cells were plated onto glass coverslips and transfected with ΔMA(15-99)-Gag-

Cherry (A), or cotransfected with Lck and ΔMA-Gag-Cherry (B). 16H post-transfection 

cells were washed with PBS and then fixed with 2% prafaformaldehyde and stained with 

anti-Lck Ab. The glass coverslips were mounted onto glass slides and viewed using a 

Nikon fluorescence microscope at 60x oil immersion and deconvolved using 10 iterations 

with NIS elements software. 

Figure 20. Lck is not able to rescue the intracellular accumulation of ΔMA-Gag. 

293T cells were plated onto glass coverslips and transfected with ΔMA(15-99)-Gag-Cherry (A), or cotransfected with 

Lck and ΔMA-Gag-Cherry (B). 16H post-transfection cells were washed with PBS and then fixed with 2% 

prafaformaldehyde and stained with anti-Lck Ab. The glass coverslips were mounted onto glass slides and viewed 

using a Nikon fluorescence microscope at 60x oil immersion and deconvolved using 10 iterations with NIS elements 

software. 
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The assembly of HIV-1 occurs at the PM in T cells and macrophages, though 

some studies have suggested that intracellular compartments in macrophages can support 

virus assembly (Ono and Freed, 2004). However, as a result of frequent endocytosis Gag 

is also found in late endosomes in cells with preferential Gag assembly at the PM (Finzi 

et al., 2007; Klein et al., 2007; Ono and Freed, 2004). Clathrin- and cholesterol-

dependent endocytosis of Gag along microtubules is mediated by dynamin (Cannons and 

Schwartzberg, 2004; Klein et al., 2007). To identify the function of Lck in preventing 

intracellular Gag accumulation I treated cells with Dynasore, a dynamin inhibitor, to 

block dynamin-dependent endocytosis. The treatment of 293T cells transfected with Gag, 

as well as Jurkat cell lines infected with HIV-1 with Dynasore did not change the fold 

induction of released p24 mediated by Lck (Fig. 33 and 34). These data suggests that 

Lck does not prevent endocytosis of Gag, or that HIV-1 is not endocytosed via a dynamin 

dependent pathway. Clathrin- and dynamin-dependent endocytosis are the two major 

endocytic pathways. To assess whether Lck prevents nascent virus endocytosis future 

studies would benefit from including Chlorpromazine to inhibit the clathrin- dependent 

endocytosis. Further studies investigating whether Lck inhibits the endocytosis of Gag 

should also include live cell microscopy of cells transfected with Gag-Cherry and Lck-

GFP. The movement of Gag at the PM may be visualized by fluorescence recovery after 

photobleaching (FRAP), where regions beneath the PM associated with Gag-Cherry 

would be photobleached and monitored for subsequent recovery of Gag-Cherry. 
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The free diffusion of Gag from cytosol to the PM is prevented by densely packed 

cytoplasm and HIV-1 has to use the cellular transport system to ensure successful exit 

from the cell (Naghavi and Goff, 2007). Transport of Gag RNA, as well as Pr55Gag to 

the PM is microtubule dependent (Mouland et al., 2001). To test whether Lck-mediated 

VLPs release is actin and microtubule dependent, I co-transfected 293T cells with Gag 

and Lck or infected stable Jurkat cell lines with HIV-1 and blocked cytoskeleton 

reorganization with different inhibitors. Latrunculin B- and Cytocholasin-D-mediated 

inhibition of actin polymerization interfered with viral release, but did not block Lck-

mediated enhancement of VLPs and HIV-1 release (Fig. 34 and 35). The treatment of 

Figure 33. Lck Mediated Virus Like Particles Release is Dynamin Independent. 

293T cells were transfected with Gag along with Lck or pcDNA3.1 vector control via 

calcium phosphate.  3 h after transfection new media with 2 and 10 µM Dynasore or 

DMSO was added to cells.  72 h after transfection supernatants were collected, spun on 

20% sucrose cushion and analyzed for p24 via ELISA. 
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cells with Nocodazole, a microtubules polymerization inhibitor, did not impede the 

release of virus like particles, both in the presence and absence of Lck (Fig. 34). The 7 

day treatment of Jurkat cells with Nocodazole was toxic to the cells (Fig. 35). These data 

suggest that Lck mediated enhancement of HIV-1 release does not depend on 

cytoskeleton reorganization. Additional experiments should be performed using a 

microtubule depolymerization inhibitor (taxol) to rule-out the potential contribution of 

microtubules in Lck-mediated HIV-1 release.  
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Figure 34. Lck Mediated Virus Like Particles Release Does Not Require 

Cytoskeleton Reorganization. 

293T cells were transfected with Gag along with Lck or pcDNA3.1 vector control via 

calcium phosphate. 3 h after transfection new media with 2.5µM Cytocholasin D, 2.5µM 

Latrunculin B and 10 µg/ml Nocodazole or DMSO was added to cells. 72 h after 

transfection supernatants were collected and analyzed for p24 via ELISA. 
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Rab proteins are small GTPases controlling vesicular trafficking (Saftig and 

Klumperman, 2009). One such protein, Rab11, is located on the cytosolic face of 

perinuclear recycling endosomes and controls the trafficking of vesicles from TGN and 

recycling endosomes to the PM (Saftig and Klumperman, 2009). Src kinases are present 

on clathrin-independent vesicles that recycle back out to the PM dependent on Rab11 and 

actin (Donaldson et al., 2009). The exit of Lck from Rab11 positive endosomes requires 

the activation of Rab11 by the adaptor protein Uncoordinated 119 (Unc119), which is 

present in Rab-11 positive endosomes (Gorska et al., 2009). Rab11 enhances HIV-1 

release, and its deficiency results in an intracellular accumulation of Gag, and in a 

decreased HIV-1 release (Amet et al., 2008; Saftig and Klumperman, 2009). Because Lck 

Figure 35. Lck Mediated HIV-1 Replication Is Not Abolished by Cytoskeleton and 

Dynamin Inhibitors. 

sh-Control and sh-Lck Jurkat stable cell lines were infected with HIV-1-PLAP-Nef(+).  8 

h post-infection new media with inhibitors were added to the cells.  7 days post-infection 

the supernatants were collected and analyzed for p24 via ELISA. 
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and Gag require Rab11 to be conveyed to the PM, it is conceivable that they both follow 

similar trafficking route (Amet et al., 2008; Gorska et al., 2009).  To examine the effect 

of altering Lck trafficking on Gag release I have transfected 293T cells with Gag, Lck, 

Rab11 (Gorska et al., 2009) and Unc119 (Gorska et al., 2009) via calcium phosphate. 

Supernatants were collected 72 h post-transfection, VLPs purified and analyzed for p24 

via ELISA. The overexpression of Rab11 alone did not affect VLPs release (Fig. 36), 

even though it has been previously shown to inhibit perinuclear accumulation of Gag 

(Amet et al., 2008). Additionally, over-expression of Rab11 slightly decreased Lck-

mediated VLPs release (Fig. 36). One might expect that Unc119 increases VLPs release 

by inducing Lck to activate Abl leading to actin reorganization, as well as inhibiting 

dynamin-dependent endocytosis (Gu et al., 2009; Karim et al., 2010).However, 

overexpression of Unc119 also did not increase viral release and decreased Lck-mediated 

enhancement (Fig. 36). One possible explanation for these negative data may be the fact 

that in 293T cells Gag is transported to the PM even in the absence of Lck (Fig. 30). 

Future experiments should be performed in HeLa or preferably in T cells and use siRNAs 

to deplete Rab11 and Unc119 or dominant-negative forms of Rab11 and Unc119. 

Alternatively, Lck trafficking might be also altered by manipulating the expression of 

MAL protein (Anton et al., 2008). 
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Lck orchestrates T cell signaling by phosphorylating downstream proteins. To 

determine if Lck needs to be active to enhance HIV-1 replication I have treated Jurkat 

cells with Damnacanthal, a specific Lck autophosphorylation inhibitor, and PP2, a Src 

family inhibitor. There was no significant difference between the unstimulated cells 

treated with Damnacanthal and PP2 compared to the control cells (Fig. 37).  However, 

stimulated cells treated with Damnacanthal and PP2 showed even greater amounts of 

HIV-1 being released than the control cells (Fig. 37). This suggests that the activation of 

Figure 36. Rab11 and Unc119 do not Increase VLPs Release. 

293T cells were transfected with Gag along with Lck, Rab11, Unc119 or pcDNA3.1 

vector control via calcium phosphate. 72 h after transfection, supernatants were collected, 

spun on 20% sucrose cushion and analyzed for p24 via ELISA. 
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Lck is dispensable for efficient HIV-1 replication.  These results support the previous 

data showing that the kinase dead Lck induces virus like particles release more efficiently 

than the wild type Lck (Strasner et al., 2008), suggesting that Lck may be acting as an 

adapter protein for Gag assembly. 

 

 
 

Lck and Itk are both T cell specific non-receptor tyrosine kinases that participate 

in T cell signaling, and enhance HIV-1 release (Readinger et al., 2008; Strasner et al., 

Figure 37. Activation of Lck is Not Required for Efficient HIV-1 Replication. 

Jurkat cells were pre-treated with kinase inhibitors for 1 hour, and infected with HIV-1-

PLAP-Nef(+) in the presence of inhibitors.  12 h post-infection the new media with 

inhibitors was added to the cells.  The cells were left unactivated (A) or activated with 

anti-CD3 and 28 Abs for 24h (B).  At 7 days post-infection the supernatant was collected 

and analyzed for p-24 via ELISA.  Whole cell lysates were probed with anti-pLck 

(Tyr505) Ab. 
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2008). Consistent with previous reports the non-receptor tyrosine kinases Lck and Itk 

increased VLPs release (Fig. 38). Additionally, the co-transfection of Gag with Lck and 

Itk showed that Lck and Itk cooperatively interact to enhance VLPs release (Fig. 38). 

These data suggests that Lck and Itk functionally interact with each other to achieve 

optimal HIV-1 release. The synergistic effect between Lck and Itk on HIV-1 release 

should be confirmed in T cells by performing double knockdown of Lck and Itk. 

 

To identify intracellular compartments in which Gag and Lck interact, and the 

route that they follow to the PM I used subcellular fractionation. sh-Lck and sh-CTRL 

Jurkat cells were infected for 24 h with HIV-1. Cells were homogenized 5 days post-

infection, and separated using subcellular fractionation into 13 fractions, with fractions 1-

Figure 38. Lck and Itk Co-operate to Enhance Gag Release. 

293T cells were transfected with Gag along with Lck, Itk or pEGFP vector control via 

calcium phosphate.  72 h after transfection, supernatants were collected, spun on 20% 

sucrose cushion and analyzed for p24 via ELISA. 
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5 predicted to represent lipid rafts (Triantafilou et al., 2002). Gag co-localized with Lck 

in fractions 2-5 (Fig. 40). As expected, cells stably expressing sh-Lck had overall reduced 

levels of Lck and Lck was present only in fractions 2-4 instead of 1-5 (Fig. 40). The 

reduction of Lck levels also resulted in decreased presence of Itk in fractions 2-5 (Fig. 

39). These results suggest that the subcellular localization of Itk is Lck dependent. In the 

subcellular fraction experiment the different fractions should be probed with Abs for 

markers of lipid rafts (GM1), non-raft associated proteins (CD45), early endosomes 

(EEA1and Rab5), late endosomes (Lamp1 and TGN), as well as Rab11 and Unc119, 

proteins controlling the trafficking and activation of Lck. 

The above experiments do not provide definitive mechanism by which Lck 

enhances Gag release. All experiments with inhibitors should be better controlled, 

account for possible cell death and preferentially the cytoskeleton should be visualized 

using microscopy. 
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Figure 39. Lck Co-Fractionates with Gag in Lipid Rafts. 

A) The experimental workflow used for subcellular fractionation of HIV-1-infected cell 

lines. B) Jurkat T cells stably transduced with sh-Lck or sh-Ctrl lentivirus were infected 

with HIV-1 for 7 days. Cells were lysed in buffer A containing 0.25% Triton X-100 at 

4°C and the lysate was mechanistically disrupted. Lysates were mixed with one volume 

of 50% OptiPrep and centrifuged at 52,000 xg for 16 h at 4 °C. Thirteen fractions were 

collected from the top of the gradient, and analyzed by western blot. Fractions 1-5 are 

predicted to contain lipid rafts (Triantafilou et al., 2002). 
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