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ABSTRACT

Phase transitions and their associated critical phenomena are of fundamental importance

and play a crucial role in the development of statistical physics for both classical and quan-

tum systems. Phase transitions embody diverse aspects of physics and also have numerous

applications outside physics, e.g., in chemistry, biology, and combinatorial optimization

problems in computer science. Many problems can be reduced to a system consisting of

a large number of interacting agents, which under some circumstances (e.g., changes of

external parameters) exhibit collective behavior; this type of scenario also underlies phase

transitions.

The theoretical understanding of equilibrium phase transitions was put on a solid footing

with the establishment of the renormalization group. In contrast, non-equilibrium phase

transition are relatively less understood and currently a very active research topic. One im-

portant milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful frame-

work for describing a system with a transition point approached through a non-equilibrium

quench process.

I developed two efficient Monte Carlo techniques for studying phase transitions, one is for

classical phase transition and the other is for quantum phase transitions, both are under

vii



the framework of KZ scaling.

For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that

can completely avoid the critical slowing down problem. For quantum phase transitions,

I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) al-

gorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum

Ising model and obtain high-precision results at the transition point, in particular showing

generalized dynamic scaling in the quantum system.

To further extend the methods, I study more complex systems such as spin-glasses and

random graphs. The techniques allow us to investigate the problems efficiently. From

the classical perspective, using the NEQ approach I verify the universality class of the 3D

Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical

and quantum phase transitions. I demonstrate that under this simulation scheme, one can

extract information associated with the classical and quantum spin-glass transitions without

any knowledge prior to the simulation.
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1

Chapter 1

Introduction

Phase transitions and their associated critical phenomena have been a main theme and an

actively studied research area in the development of statistical physics. The occurrence of

phase transitions comes from the interactions between the individual constituents of the

system. The strengths of the interactions can be controlled by some parameter λ. Different

strengths corresponding to different values of λ will result in different phases, therefore

the term “phase transition.” The framework for equilibrium phase transitions has been

well established since the development of renormalization group [2, 3], however, the non-

equilibrium counterpart is relatively less completed despite some important achievement [4],

therefore will be the focus of this dissertation. In either equilibrium or non-equilibrium,

usually the Hamiltonians of this type of interacting systems can not be solved exactly,

except for a few examples such as 2D Ising mode [5] and 1D transverse-field Ising model

[6], therefore computational techniques, especially unbiased Monte Carlo simulation has

provided a major tool to investigate this class of problems.

Throughout this dissertation we will mainly use Monte Carlo simulation techniques to

investigate several phase transition problems of spins systems. In Ch. 2 and 3, the focus

will be on the developments of two numerical techniques for studying phase transitions.

In these two chapters we use classical and quantum ferromagnetic systems to demonstrate

the techniques, which are under the framework of non-equilibrium dynamics. Then we will

apply these techniques to investigate the phase transitions of more complex systems such

as spin-glasses and random graphs. It will be shown that, in many circumstances, the non-

equilibrium simulation methods will be more efficient than the equilibrium counterpart and

allow us to obtain important information that is traditionally difficult to obtain through
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(a) (b)

Figure 1.1: The order parameter as a function of tuning parameter λ (a). For the second-

order phase transition, the order parameter is 0 when λ > λc, and begins to grow when

λ ≤ λc. It should be noted that the curve only illustrates the behavior of the thermodynamic

limit, in terms of finite-size systems the curves will be rounded and the order parameter

is not strictly zero in the disordered phase [7], more specific examples will be discussed in

Sec. 1.1.2 and 1.1.3. The correlation length ξλ as a function of the reduced distance from

the critical point, ε = |λ− λc|/λc (b). As the figure illustrates, close to and exactly at λc,

the correlation length and therefore the relaxation time τrel will diverge. The divergence

of the relaxation time is the root cause of critical slowing-down [8] since the system needs

infinitely long time to relax to its equilibrium state.

equilibrium approaches.

1.1 Equilibrium phase transitions and finite-size scaling

In this dissertation we will focus on second-order phase transitions, with the transition

characterized by a tuning parameter λ and a transition point λc. In classical (thermal)

phase transitions, the tuning parameter is the temperature T , and in T = 0 quantum phase

transitions, λ is a parameter of the Hamiltonian. One characteristic feature of second-
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order phase transitions is that, around the critical point λc, physical quantities such as the

correlation length, ξλ, the order parameter, O, and the fluctuations of the order parameter

χ, will grow in terms of a power-law of ε, as illustrated in Fig. 1.1:

ξλ ∼ ε−ν ,

O ∼ εβ,

χ ∼ ε−γ ,

(1.1)

where ε ≡ |λ − λc|/λc is the reduced distance from the critical point, ν is the correlation

length exponent, β the order parameter exponent, γ is the exponent that governs the

divergence of the fluctuation in the order parameter.

Another important quantity is the relaxation time τrel:

τrel ∼ ξzλ, (1.2)

where z is the dynamic exponent. The divergence of the correlation length ξλ results in the

divergence of the relaxation time, which implies that the time required for the system to

relax to the equilibrium configuration will effectively become infinitely long. This critical

slowing-down [8] problem has posed an enormous obstacle in the field of computational

physics for almost four decades, especially when the system under study has a large value

of z, such as highly frustrated systems or spin-glasses. We will demonstrate that based on

the techniques to be discussed in Ch. 2 and 3, a non-equilibrium approach that completely

circumvents the critical slowing-down can be taken to study this type of hard problems.

1.1.1 Finite-size scaling

In this subsection we briefly review the argument of standard equilibrium finite-size scal-

ing ansatz, which will pave the way for the dynamic finite-size scaling to be discussed in

Sec. 1.2.2
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Despite the correlation length ξλ diverging at the critical point λc, as illustrated in Fig. 1.1,

in terms of finite-size system, ξλ is bounded by the linear size of the system L since it can

not grow beyond the system size. Therefore, around λc, the quantities Eqs. (1.3) and (1.2)

can be written in terms of finite-size as:

ξλ ∼ L,

ε ∼ ξ
−1/ν
λ ∼ L−1/ν ,

O ∼ εβ ∼ L−β/ν ,

χ ∼ ε−γ ∼ Lγ/ν ,

τrel ∼ ξzλ ∼ Lz.

(1.3)

More importantly, the correlation length ξλ is a characteristic length scale that separates

two different phases: when ξλ � L the system is in the disordered phase, i.e., ε � 1;

when ξλ ∼ L the system enters into the ordered phase, i.e., ε → 0. In this sense, the ratio

ξλ/L provides a universal gauge to measure how far/close the system is from the transition.

Therefore the physical quantities A can be written as:

A(λ, L) = Lκ/νG(ξλ/L), (1.4)

= Lκ/νG
(
(λ− λc)L1/ν

)
, (1.5)

where the term Lκ/ν describes the size-dependent behavior, and the function G(ξλ/L) is

a dimension-less universal function around the transition. Eq. (1.5) indicates that if one

graphs the quantity A(λ, L)L−κ/ν versus (λ − λc)L1/ν , what appears will be an universal

function G regardless of the system sizes, this phenomenon is called scaling collapse, as we

will illustrate more in the following two subsections.

The finite-size scaling expression Eq. (1.4) is especially interesting when applied to the order

parameter of the system, O:
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〈O2〉 = L−2β/νF (ξλ/L). (1.6)

We can further decompose the scaling of the order parameter as follows: When the system is

very far away from the transition and is in the disordered phase, the order parameter should

vanish as the system size grows, since in the thermodynamic limit it should be strictly zero,

as illustrated in the Fig. (1.1) (a). In this regime one can expect:

〈O2〉 ∼ 1

Ld
, when ε� 1, (1.7)

where d is the dimension of the system.

When λ moves toward λc, the order should begin to develop for finite-size systems, although

〈O2〉 should still be strictly zero on the disordered side in the thermodynamic limit. Fur-

thermore, when λ is still far away but gradually moves closer to λc, the correlation length

should also grow gradually. In this regime the domain size of the system can be described

by a ∼ O(1), which is of the order of 1 lattice spacing. In this sense, the scaling function

in Eq. (1.6) can be further written as:

〈O2〉 =

 L−2β/νa−d+2β/ν f1(ξλ/L), |λ− λc| ' 1

L−df2(a/ξλ), λ− λc � 1 (disordered side)
(1.8)

where the factor a−d+2β/ν in the first line of Eq. (1.8) is introduced as the engineering

dimension [6] to compensate for the discrepancy between the canonical dimension L−d of

〈O2〉, and its scaling dimension L−2β/ν , in any practical purpose the factor is of O(1) and

will be implicitly suppressed for simplicity. The expressions of Eq. (1.8) can be viewed as

two limits of a single function F̃ (ξλ/L, a/ξλ): When |λ − λc| ' 1 around the transition,

ξλ � a and the function F̃ reduces to f1. When λ− λc � 1 on the disordered side, ξλ � L

and the function is dominated by the second argument, therefore reduces to f2. Between

these two limits, the two scaling functions should smoothly connect to each other, and the
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most natural and straightforward form is a power-law, hence Eq. (1.8) can be explicitly

written as:

〈O2〉 =


L−2β/ν f1

(
(λ− λc)L1/ν

)
, |λ− λc| ' 1

L−2β/ν
(
(λ− λc)L1/ν

)−x
= L−d

(
(λ− λc)−1

)x
, λ− λc & 1

L−df2

(
(λ− λc)−1

)
, λ− λc � 1

(1.9)

where the exponent x can be obtained by demanding the powers on L of these two scaling

regimes be equal:

L−2β/ν
(
(λ− λc)L1/ν

)−x
= L−d.

Therefore, we have

x = νd− 2β. (1.10)

Note that f1 and f2 work in their own respective regimes, and the region of the power-law

form is where both f1 and f2 applicable. We will demonstrate this dual scaling behavior in

Sec. 1.1.2 for classical system and in Sec. 1.1.3 for quantum system. In Sec. 1.2.2, it will be

shown that similar dual scaling behavior can be found in non-equilibrium scenario.

1.1.2 Example: classical Ising model

In this subsection, we use classical 2D Ising model to demonstrate the equilibrium finite-size

scaling outlined in Sec. 1.1.1. The Hamiltonian of the 2D Ising model can be written as:

H = −J
∑
〈i,j〉

σiσj , (1.11)

where the indices 〈i, j〉 represent the nearest-neighbor spin pairs , J > 0 is the ferromagnetic

interaction, and the Ising spins take value σi = +1or − 1. The phase diagram of the model
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Figure 1.2: Results for the classical 2D Ising model. The susceptibility as a function of

temperature for different sizes (a). The peak of χ, which is shifting due to finite-size

effect, corresponds to the transition point. According to Eq. (1.13), after rescaling the

susceptibility by graphing rescaled χ versus the reduced distance from the transition point,

all curves collapse to an universal curve (b). When the sizes are small, deviations from the

universal behaviors are still detectable, however, as system size grows, it is clear that the

curve will eventually converge to a size-independent scaling form. To alleviate the critical

slowing-down problem around Tc, the efficient Swendsen-Wang cluster algorithm [9] was

used to generate the data.
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Figure 1.3: Results for the 2D classical Ising model. The dual scaling behavior of the order

parameter, the magnetization squared 〈m2〉, is shown. The f1 scaling, critical scaling ,

depicts the scaling collapse when the temperature is around the transition point Tc (a).

The f2 scaling, disordered scaling, describes the behavior when the temperature is much

higher than Tc (b). Note that these two figures come from the same data set. In f2 scaling,

the left region corresponds to where the temperature is much higher than Tc, and the right

region is where close to the transition. The middle region shows a clear power-law behavior,

the dashed line draws the power-law with the power predicted by Eq. (1.10).
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is illustrated by Fig. 1.1(a) with λ representing the temperature T and the order parameter

O stands for the magnetization 〈m〉 = (1/N)
∑

i σi. The solution to the 2D Ising model in

equilibrium is known exactly by the Onsager solution [5], Tc/J = 2/ ln (1 +
√

2), β = 1/8,

ν = 1, and γ = 7/4, therefore it provides a solid testing ground for the theory.

The susceptibility of a ferromagnetic system such as the Ising model can be derived from

χ =
(
∂〈m〉/∂h

)∣∣
h→0

:

χ =
N

T

(
〈m2〉 − 〈|m|〉2

)
, (1.12)

which can be interpreted as the fluctuation in the order parameter. The second term in the

parenthesis of Eq. (1.12) takes the absolute value to account for the fact that the symmetry

is not broken in finite-size systems, and therefore −m0 and m0 are equally likely in the

ordered phase. According to the finite-size scaling Eq. (1.5), the susceptibility should scale

as:

χ = Lγ/ν f
(
(T − Tc)L1/ν

)
. (1.13)

This means that after rescaling χ properly, one should see an universal behavior as illus-

trated in Fig. 1.2(b).

Now we turn the attention to the scaling of the order parameter 〈m2〉. According to

Eq. (1.9), 〈m2〉 should show dual scaling behavior, depending on how far away the system

is from the transition point Tc, the scaling behavior should be reflected as either f1 or f2

scaling. Fig. 1.3 illustrates this dual scaling behavior. More importantly, in f2 scaling, a

power-law regime between the regime T � Tc and the regime that is around the transition

T & Tc is clearly shown, the power predicted (drawn as the dashed line) by Eq. (1.10) shows

very good agreement with the data.
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Figure 1.4: For 1D TFIM. The dual scaling behavior of the order parameter, magnetization

squared 〈m2
z〉, is shown. The f1 scaling, critical scaling , depicts the scaling collapse when

the tuning parameter s is around the critical point sc = 1/2 (a). Strong finite-size effect can

also be observed. The f2 scaling, disordered scaling, described the behavior when s is far

away from sc (b). Same as in Fig. 1.3, the figures of these two panels come from the same

data set. In f2 scaling, the left region corresponds to where the s is relatively far away from

sc, and the right region is where it is close to the transition. Again, the middle region shows

a clear power-law behavior, the dashed line shows the power-law with the power predicted

by Eq. (1.10).

1.1.3 Example: quantum Ising model (transverse-field Ising model)

In this subsection, we use the quantum Ising model, also known as the transverse-filed Ising

model (TFIM), to demonstrate the same dual scaling behavior described by Eq. (1.9), which

we have observed in the classical Ising model. The Hamiltonian can be written as

H = −s
∑
〈i,j〉

σzi σ
z
j − (1− s)

∑
i

σxi , (1.14)

where 〈i, j〉 stands for nearest-neighbor spin paris as in the classical Ising model Eq. (1.11), s

is the tuning parameter s ∈ [0, 1], and σz, σx are Pauli matrices. Note that given the notation
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used in Eq. (1.14), the parameter λ mentioned previously could be defined as λ ≡ 1 − s.

Here we are only interested in zero temperature T = 0 quantum phase transition, therefore

there is no thermal fluctuation. However, the non-commuting property of σzi and σxi results

in quantum fluctuations, which can be controlled by the parameter s. When s = 0, the

system is in a strongly fluctuating state that can be described (in the σz basis) by an equal

superposition eigenstate:

|Ψ0〉 =
∏
i

|↑〉i + |↓〉i√
2

, (1.15)

where |↑〉 stands for single-spin up state and |↓〉 stands for single-spin down state. When

s = 1, the system reduces to the classical Ising model and the system will exhibit a perfect

ferromagnetic order since it is at T = 0. The 1D TFIM can be solved exactly [6], due to

its mapping to a (1 + 1) classical solvable Ising system [10], therefore the exponents are the

same as the 2D Ising model: β = 1/8, ν = 1, and the critical point at which the system

undergoes a transition from a disordered phase to a ferromagnetic phase as s : 0 → 1 is

sc = 1/2.

Here we focus on the order parameter, the z-component magnetization defined as: mz =

(1/N)
∑

i σ
z
i . According to Eq. (1.9), the same scaling as we saw in the classical case will

be expected, as illustrated in Fig. 1.4. The SSE-based (stochastic series expansion [11,12])

projector quantum Monte Carlo algorithm for TFIM [13] is used to carry out the simulations.

The length of the operator sequence used was M/N = 300.

1.2 Phase transitions approached through non-equilibrium

quench

Whether classical or quantum systems, as a general principle, one can slowly change the

tuning parameter λ that controls the phase of the system in order to achieve “adiabatic
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change” (or “quasi-static change” for the classical systems.) However, this idea no longer

holds when λ is tuned toward the transition point, because the relaxation time will eventu-

ally diverge at the critical point, as discussed in Sec. 1.1. The first attempt to get around

this problem is the Kibble-Zurek (KZ) arguments, [14,15] which originally focused on quan-

titatively relating defect formation (e.g., the typical defect size and the density of defects)

to the rate of change (the quench velocity) of a parameter of the system (such as the tem-

perature, external fields, etc.). The KZ mechanism and extensions of it have successfully

been used to describe out-of-equilibrium physics at both classical and quantum phase tran-

sitions, for a general review, see Ref. [16]. In Sec. 1.2.1 we outline the general ideas and

basic scalings associated with KZ. In Sec. 1.2.2, based on KZ argument, we derive the gen-

eralized dynamic finite-size scaling, and also the non-equilibrium version of the dual scaling

behavior analogous to the equilibrium case Eq. (1.8). This non-equilibrium dual scaling

behavior will be tested and verified in various systems throughout this dissertation.

1.2.1 Kibble-Zurek mechanism

We consider a system with critical point λc and whose transition can be described by Fig. 1.1.

When this system is quenched at some finite velocity to the neighborhood of λc by starting

from some initial value λi > λc and ending at some final value λc ≤ λ < λi, if the rate of

change is sufficiently slow the system evolves adiabatically toward its equilibrium state that

is controlled by λ. Small deviations from adiabaticity (the quasi-adiabatic regime) can be

described by adiabatic perturbation theory. In contrast, if the evolution is fast (the quench

velocity is high), excitations lead to a large density of defects and the adiabatic description

breaks down. The KZ mechanism provides a natural way to distinguish these perturbative

and non-perturbative regimes.

According to the arguments of KZ, for the quasi-adiabatic picture to be valid, the time τq

that the system is allowed to take to approach the final point λ must be at least of the order

of the relaxation time τrel associated with the system’s microscopic dynamical properties at
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that parameter λ. As mentioned in Eq. (1.2), the relaxation time is simply related to the

equilibrium spatial correlation length ξλ as

τrel ∼ ξzλ,

which defines the dynamic exponent z. This exponent depends on the equilibrium uni-

versality class of the phase transition, as well as the stochastic dynamics imposed on the

system (or, alternatively, one can consider Hamiltonian dynamics, e.g., in quantum sys-

tems). Thus, for a linear quench with velocity v, the criterion for staying adiabatic is

obtained by requiring for the total quench time τq:

τq ∼ |λi − λ|/v ∼ τrel ∼ ξzλ ∼ |λ− λc|−zν , (1.16)

where ν is the equilibrium correlation-length exponent.

Another way to interpret the above relationship is to consider the remaining time τ of a

quench which has reached λ > λc after starting out at some λi > λ and which is to continue

all the way down to λc. Then, for a given τ , or equivalently, for given velocity v, the relation

τ = |λ− λc|/v ∼ |λ− λc|−zν (1.17)

defines the value of parameter λ at which the system falls out of the adiabatic evolution and

essentially freezes, not being able to evolve significantly for the remainder of the quench

process. This should hold independently of the initial value λi if it is sufficiently away from

λ. From this relation we can also extract the velocity (the KZ velocity)

vc(λ) ∼ |λ− λc|1+zν , (1.18)

at which the system falls out of adiabaticity at the value λ. Thus, it is, in the thermodynamic

limit, not possible to stay adiabatic all the way down to λc. An alternative derivation of

this result has been derived in Ref. [17], where we consider the continuous quench as a series

of infinitesimal quenches.
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We can also write down the spatial length-scale ξv associated with a given velocity, i.e., the

correlation length reached at the point where the infinite system freezes and cannot follow

the instantaneous equilibrium state. Since ξv ∼ ξλ for the quasi-adiabatic evolution and

ξλ ∼ |λ− λc|−ν at the point of freezing, Eq. (1.18) gives

ξv ∼ v−1/(z+1/ν). (1.19)

For a finite system the maximum length scale is L, i.e., ξv ≤ L, and the characteristic

velocity separating the adiabatic and non-adiabatic responses then has an lower bound,

which is simply obtained, according to standard arguments in finite-size scaling theory [3],

by replacing the largest length-scale for the infinite system by L. In this case that means

ξv → L in (1.19). Thus, a system of linear size L will remain adiabatic all the way down

to λc, provided that the quench velocity is of the order of the size-dependent KZ velocity

given by

vc(L) ∼ L−(z+1/ν). (1.20)

When the velocity is below this characteristic value, the non-adiabatic response of the system

is very small and can be treated perturbatively. In contrast, when the velocity exceeds

vc(L) the quasi-adiabaticity breaks down and the response of the system corresponds to

non-adiabatic dynamics which is non-perturbative in v.

It should be pointed out that it is in general not possible to assign an exact value to vc(L)

(and all the other quantities defined above), as Eq. (1.20) only indicates a proportionality

and the change between the quasi-adiabatic and non-perturbative regime normally takes

place in the form of a smooth cross-over. Throughout this thesis we will use extensive MC

simulations to extract scaling functions of the form f(v/vc) describing the dynamic approach

to the critical point for several classical and quantum models and dynamic schemes, from

which the cross-over scale can be readily read-off. In addition to the KZ scale, we will also

investigate and quantify another higher-velocity (diabatic) cross-over scale va related to a

size-independent microscopic (lattice) scale a, as will be discussed in the Sec. 1.2.5.
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1.2.2 Dynamic finite-size scaling

It is well known in equilibrium physics, as outlined in Sec. 1.1, that systems show universal

finite-size scaling behavior in the neighborhood of the transition λc. Physical quantities can

then be described by a non-singular scaling function g(L/ξ
λ
) and a universal power of the

system size according to Eq. (1.4)

A(L, λ) = Lκ/νg(L/ξ
λ
) = Lκ/νG[(λ− λc)L1/ν ],

where κ is an exponent depending on the universality class of the transition and the quantity

A. This general equilibrium form was initially hypothesized based on observations and has

now been rigorously demonstrated through the renormalization group [2,3]. We here discuss

how the KZ mechanism introduced in Sec. 1.2.1 can be incorporated into finite-size scaling

forms for systems undergoing quench dynamics.

In a non-equilibrium setup, which we here first take to be a linear quench toward the critical

point, the scaling argument L/ξv, with ξv defined in Eq. (1.19) should enter in addition to

the equilibrium argument L/ξλ. Equivalently, as is clear from the definitions in Sec. 1.2.1,

we can also consider the velocity ratio v/vc(L). We use it to write down an ansatz in terms

of a function depending on the two scaling arguments;

A(λ, L, v) = Lκ/νf(L/ξλ, v/vc) (1.21)

= Lκ/νF
[
(λ− λc)L1/ν , vLz+1/ν

]
.

The above expression captures the basic essence of the dynamic finite-size scaling, later in

Sec. 1.2.5 a more detailed description depending on the velocity regime will be discussed.

1.2.3 Linear quench protocol

Clearly, Eq. (1.21) reduces to the standard equilibrium finite-size scaling ansatz in the limit

v → 0. When v 6= 0 the framework allows us to study the response of the system away
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from the adiabatic limit. For a system with a known value of transition λc, one can carry

out a quench process from the disordered phase, λi > λc to λc, hence eliminating the first

argument in the universal function in Eq. (1.21);

A(λc, L, v) = Lκ/νF (vLz+1/ν). (1.22)

This scaling form is analogous to the equilibrium form Eq. (1.4) and is easy to study the size

and velocity dependences of physical quantities at the transition point, using data-collapse

techniques familiar from conventional finite-size scaling.

Applying Eq. (1.22) with the exponent κ = −2β for the order parameter O, we expect

scaling at λc to be

〈O2〉 = L−2β/νF
(
vLz+1/ν

)
. (1.23)

1.2.4 Nonlinear quench protocols

The simple scaling hypothesis discussed above has also been generalized to non-linear pro-

tocols, where the critical point is approached according to an arbitrary power-law of the

time t measured with respect to the final time τq [18]:

λ− λc = v(τq − t)r, (1.24)

where the physical interpretation of v is the velocity as above for a linear quench (r = 1),

the acceleration (up to an important factor 2) for a quadratic quench (r = 2), etc. (and for

simplicity we will refer to v as the “velocity” in a generalized sense.) For a sudden quench

(r = 0), v should be regarded as the amplitude of the change in λ.

The generalized critical velocity for arbitrary r (including non-integer) can be easily found

by following the same arguments as in Sec. 1.2.1;

vc(L) ∼ L−(zr+1/ν). (1.25)
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In Ref. [17], we provide an alternative derivation of this result based on a time-discretized

quench, which also gives some information on how the unknown prefactor above depends

on the exponents involved.

The order parameter Eq. (1.23) with Eq. (1.25) becomes

〈O2〉 = L−2β/νF
(
vLzr+1/ν

)
. (1.26)

1.2.5 Complete scaling form for the order parameter

When the quench velocity becomes very high, one can imagine that the order parameter after

the quench to λc remains close to its value at λi. According to the equilibrium argument

discussed in Sec. 1.1, since λi is in the disordered phase and the correlation length has a

finite value there, one expects, for sufficiently large L,

〈O2〉 ∼ L−d, (1.27)

where d is the number of dimensions; Thus, in the high-velocity limit, 〈O2〉 should depend

on the initial value λi and scale as L−d.

When the velocity decreases one can expect the order of the system to develop gradually,

and as long as the KZ correlation length ξv is much smaller than the system size L the order

parameter should still depend on L with the trivial power above. With the scaling form

(1.26), this behavior implies that the function F in this regime must reduce to a power law

of the argument vLz+1/ν ;

〈O2〉 ∼ L−2β/ν
(
vLzr+1/ν

)−x
, (1.28)

and this exponent can be obtained by demanding this to be proportional to L−d, i.e.,

x =
d− 2β/ν

zr + 1/ν
. (1.29)

Thus, there is an intermediate universal scaling regime where

〈O2〉 ∼ L−dv−x. (1.30)
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Finally, when the velocity is decreased further and approaches vc(L), the assumption ξv � L

no longer holds. One would then expect deviations from the power-law form and a cross-

over to a regime where Eq. (1.26) tends toward the corresponding L-dependent equilibrium

value at λc, i.e., the standard finite-size behavior scaling,

〈O2〉 ∼ L−2β/ν , (1.31)

sets in. This cross-over from the v-dependent power-law to this equilibrium form is smooth

and contained in the function F in Eq. (1.26).

To incorporate all these different asymptotics in different velocity regimes, it is useful to

introduce a short-range length scale a, which is of the order of one lattice spacing, and,

therefore, can be set to 1 for any practical purpose. This non-trivial factor a is essential for

defining the engineering dimension [6], a−d+2β/ν , which compensates for the discrepancy

between the scaling dimension L−2β/ν of 〈O2〉 and its canonical dimension L−d. The short-

range length scale sets the size-independent upper limit v ∼ va beyond which the power-law

behavior Eq. (1.30) should break down;

va ∼ a−(zr+1/ν). (1.32)

More explicitly, based on the above discussion one cannot expect Eq. (1.26) to be able to

describe all situations with a single scaling function F , and this function should actually be

replaced by two different scaling functions in different regimes of (v, L), namely,

〈O2〉 =

 L−2β/νa−d+2β/ν f1(vLzr+1/ν), v < va

L−df2(a−(zr+1/ν)v−1), v > vc(L),
(1.33)

where f1 and f2 are different scaling functions, valid in their own associated velocity re-

gions. More generally, the above two scaling functions can be described by a single common

universal form with two arguments, i.e.,

〈O2〉 ∼ L−2β/νa−d+2β/νG(vLzr+1/ν , a−(zr+1/ν)/v). (1.34)
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However, it is in practice easier to analyze its two limiting forms (1.33) with single scaling

arguments.

In the velocity regime v � vc(L), the system should be perturbative in v, while in the

opposite limit when v � va, the system can be described by perturbation in 1/v. As we

will demonstrate in later chapters, there is a wide region, vc(L) < v < va, over which f1 and

f2 are both applicable. This corresponds to the regime where both perturbative descriptions

(in v and 1/v) have broken down and have been replaced by a universal power-law behavior,

expressed as Eq. (1.28) and (1.30) for f1 and f2, respectively.

The basic idea is that by quenching the system to λc with different velocities (or generalized

velocity for r 6= 1), one can generally observe cross-over behaviors at v ∼ vc(L) as well as

at v ∼ va between perturbative and non-perturbative regimes. The velocities vc(L) and va

separate different forms of the size dependencies of the order parameter. The characteristic

velocity va separates the velocity independence, 〈O2〉 ∼ L−d, from the power-law form

〈O2〉 ∼ L−dv−x for vc(L) < v < va, and then another characteristic velocity vc(L) separates

this behavior from the critical equilibrium scaling form 〈O2〉 ∼ L−2β/ν for v < vc(L).

Although it is not necessary but numerically convenient, we can also assume that the

function f1 in Eq. (1.33) can be written as a series expansion of vLz+1/ν in its perturbative

regime, and, as was pointed out above, f2 should depend on λi and can be written as a

series expansion in 1/v in its perturbative regime. In their non-perturbative regimes both

functions reduce to the same power law form (just expressed in two different ways). We

therefore expect the following forms to hold in the three different scaling regimes:

〈O2〉 =


L−2β/ν

∑
n
cn(vLzr+1/ν)n, v . vc(L)

L−d
(

1
v

)x
, vc(L)� v � 1

L−d
∑
n
cn(1/v)n, v & 1

(1.35)

where we have explicitly set a = 1 and, therefore, va = 1. Through this dissertation, we

will refer to the velocity regime v . vc(L) as the quasi-adiabatic regime, vc(L)� v � 1 as



20

(a) (b) (c)

Figure 1.5: A 4-spin system with all ferromagnetic Ising interactions has a unique ground

state configuration (a). A system with both ferromagnetic and antiferromagnetic interac-

tions that is “frustrated” and has degenerate ground state due to the competing orders

(b). Generally speaking, a frustrated system is usually associated with a rough energy

landscape in the configuration space because many different configurations would have the

same energy (c).

the universal scaling regime, and v & 1 as the diabatic regime. The asymptotic form in the

universal scaling regime vc(L)� v � 1 corresponds to the power-law behavior, Eq. (1.30),

that both scaling functions f1 and f2 converge to.

1.3 Introduction to spin-glass systems

In the previous two sections, we have introduced systems in which the spin-spin interactions

σiσj are isotropic. Another class of systems, spin-glasses, can be though of as introducing

anisotropy into the interactions. The simplest modification can be described by:

H = −
∑
〈i,j〉

Jij σiσj , (1.36)

where 〈i, j〉 can be beyond nearest-neighbor spin pairs, and the interactions Jij generally are

random in both magnitude and sign. For demonstration purpose, in this section we will only

consider Jij = ±1 spin-glasses, also known as bimodal spin-glasses, where Jij = +1(−1)
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(a) (b)

Figure 1.6: Illustrations of the 2D (a) and 3D (b) bimodal spin-glasses in which the in-

teractions are randomly assigned, Jij = +1 or − 1, both systems are highly frustrated. A

classical 2D system is known to have spin-glass transition at T = 0 [19,20]. A classical 3D

system instead has a finite transition temperature Tc ≈ 1.10(1) [21].

stands for (anti-)ferromagnetic interaction. When the interactions are all ferromagnetic, as

we have illustrated in Sec. 1.1.2 for the classical Ising model, the ground state configuration

has an unique configuration (apart from the spin-inversion configuration), as illustrated in

Fig. 1.5(a). However, when some of the interactions are replaced by anti-ferromagnetic ones,

the ground state configuration is no longer unique due to the competing interactions that

result in degenerate ground state, also known as “frustration,” as illustrated in Fig. 1.5(b).

As one can imagine, when the system becomes larger and larger, or the dimension increases

as illustrated in Fig. 1.6, the degree of frustration will increase dramatically. Therefore,

frustrations usually bring a rough energy landscape to the system in the configuration

space, because many different configurations would result in the same or similar energy

level, as illustrated in Fig. 1.5(c). Furthermore, except for a few special cases that will

be mentioned below, most spin-glass systems are too complicated to be solved exactly,

therefore, numerical techniques, especially unbiased Monte Carlo simulation, have served

as the major tool to investigate this type of systems.
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Figure 1.7: Four independent runs for a realization of 3D bimodal Ising spin-glass of size

L = 4. The energy per site,E/N , as a function of the inverse temperature β = 1/T (a). The

magnetization, m = (1/N)
∑

i σi, as a function of the inverse temperature (b). These two

panels show that below some temperature βc, the system shows degenerate configurations

since the energies are the same while the magnetizations are different.

When the system is at some high temperature, the thermal fluctuation dominates over

spin-spin interactions; however, when the temperature decreases, the thermal fluctuation

diminishes and eventually the system exhibits the rough energy landscape, i.e., spin-glass

phase. Therefore at some temperature there is a spin-glass transition. For 2D bimodal

spin-glass systems, it was found that the transition temperature is zero [19, 20]. However,

3D system has a finite transition temperature, Tc ≈ 1.10(1) [21].

Fig. 1.7 further depicts the highly degenerate behavior in the spin-glass phase. Four in-

dependent simulations were carried out for a given realization of the 3D bimodal Ising

spin-glass cube of linear size L = 4. While the energies are the same for these four indepen-

dent runs, the magnetizations show clear distinctions when the temperature is below some

value, indicating the degenerate configurations in the spin-glass phase.

The highly disordered configuration, as illustrated in Fig. 1.6, suggests that the magneti-

zation is not ideal for characterizing the spin-glass phase, since different locations in the

system may have different preferred magnetic orientations, which may result in a small
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Figure 1.8: The illustration of EA order parameter defined in Eq. (1.37), which can be

though of as the overlap between two configurations obtained respectively by two indepen-

dent simulations for the same spin-glass realization.

overall magnetization. Therefore another order parameter defined below, called Edwards-

Anderson (EA) order parameter, had ben proposed by Parisi [22] to describe the spin-glass

phase:

q =
1

N

∑
i

σ
(1)
i σ

(2)
i , (1.37)

where ~σ(1) and ~σ(2) are two “replica,” namely, the configurations from two independent

simulations. One can think of q as computing the overlap between these two replicas, as

illustrated by Fig. 1.8.

The 2D and 3D bimodal spin-glass systems mentioned above are to this day too complicated

to solve analytically. Nevertheless, currently there are two special types of spin-glasses that

can be solved exactly, both being amenable to a mean-field description, and in the classical

(thermal) description both are effectively at the upper critical dimension duc = 6 in the

sense of conversion between N and L through L = N1/d [23].

The first exactly solvable spin-glass model was the Sherrington-Kirkpatrick (SK) model [24],

which is the fully-connected model described by the same Hamiltonian Eq. (1.36), with

〈i, j〉 standing for all possible spin pairs. One example of SK model with N = 16 spins is
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(a) (b)

Figure 1.9: Two examples of exactly solvable spin-glasses. SK model with N = 16 spins

(a), in which the interactions exist between all possible spin pairs with magnitude Jij being

Gaussian-distributed at mean 0 and variance 1/N , i.e., Jij ∼ N (0, 1/N). An antiferromag-

netic 3-regular random graph with N = 32 spins (b). “3-regular” means the connectivity

is 3 for every spin, and each spin is interacting with 3 other spins individually through

the isotropic AF interactions, i.e., Jij = −1 isotropically. However, due to loops of odd

lengths, the system is highly frustrated. Both systems (a) and (b) are at the upper critical

dimension duc = 6 in terms of the classical (thermal) scaling.

illustrated in Fig. 1.9(a).

The second type of exactly solvable spin-glasses, which employs a cavity method with replica

symmetry breaking (RSB) [25–29], is the antiferromagnetic Potts model on a random graph

that has finite connectivity. In this dissertation we will specifically only consider the case

which has connectivity = 3 for every spin, also known as 3-regular random graphs, as

illustrated in Fig. 1.9(b). Although the interaction is isotropic in this case, Jij = −1, due to

large number of loops of odd lengths, the system is highly frustrated and shows a spin-glass

phase. This type of spin-glass systems is interesting in another aspect duo to its connection

to numerous combinatorial optimizations and satisfiability problems [26,27,30].
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Most importantly, we will demonstrate in different chapters of this dissertation that the

non-equilibrium dynamic finite-size scaling described in Sec. 1.2 still holds at the spin-glass

transitions. We will specifically use several spin-glass systems mentioned in this section to

demonstrate this idea from the perspective of both classical and quantum transitions.

1.4 Organizations of the rest of the dissertation

In the following six chapters, we demonstrate the idea of approaching either the classical

or quantum phase transition through non-equilibrium quench (NEQ) processes on different

systems, using the formalism outlined in Sec. 1.2.

The following three chapters 2, 3, and 4 establish and demonstrate the ideas of NEQ on

benchmark systems. The applications of NEQ with different protocols on classical and

quantum systems, and how to independently extract static and dynamic critical exponents

will be discussed in detail. Based on this approach we also present an efficient method to

study disordered and frustrated systems, which will be the focus of chapters 5, 6, and 7.

The organization of the chapters is summarized in Fig. 1.10.

In Ch. 2, we apply NEQ to the Ising model in two-dimension as well as higher dimensions.

We obtain high-precision numerical estimate of various dynamic exponents associated with

different types of dynamics. In Ch. 3, we demonstrate the idea of non-equilibrium quench

on quantum Ising model. Along these lines we also develop a new quantum Monte Carlo

algorithm called the quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm. It should

be noted that despite its name, the utility of QAQMC can actually be carried out in the

regime far away from quasi-adiabatic limit, as we will discuss in Ch. 4, in which we also

discuss the distinct difference between simulation-time quantum annealing and imaginary-

time quantum annealing that is implemented via QAQMC algorithm. In Ch. 5, we apply

NEQ to study a disordered system, namely, 3-regular random graphs with ferromagnetic

interactions, in terms of classical and quantum phase transitions, respectively. The system,
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Figure 1.10: Structural organization of the thesis.

being disordered, provides an intermediate bridge for us to go from clean systems such

as the Ising model studied in Chapters 2 and 3 to more complex systems such as spin-

glasses discussed in Chapters 6 and 7. In Ch. 6, we apply NEQ to study 3-regular random

graphs with anti-ferromagnetic interactions. The system is disordered and frustrated, i.e.,

a spin-glass system. The interest in this system arises because of its spin-glass properties

in physics as well as its correspondence to the MaxCut problem of graph partitioning in

information science, combinatorial optimization in engineering, and the complexity analysis

in quantum computing and adiabatic quantum algorithm. In Ch. 7, we look at the quench

performance on classical 3D spin-glasses with different microscopic interaction types, e.g.,

bimodal and Gaussian. Despite the notorious and severe critical slowing-down problem, the

static properties and exponents of the model with different microscopic interaction types

have been thoroughly studied and found to be in the same static universality class. However,

the dynamic universality is still controversial and unsettled to this date. We therefore use

the quench method to solve this problem.
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Chapter 2

Classical phase transitions approached through non-

equilibrium quench

2.1 Introduction

Phase transitions and critical phenomena have formed a dominant theme in statistical

physics for a long time and new aspects are still subject to active research. This is not only

because of the importance and elegance of the fundamental aspect of many-body systems

in the original setting of condensed-matter physics, but also thanks to diverse applications

to various complex systems in other areas of physics, as well as in chemistry, biology, and

even in economics and social sciences. Any system with collective behavior resulting from a

large number of interacting particles (or “agents”) can be described by methods of statistical

physics, and phase transitions often are important features of such systems.

A fundamental aspect of phase transitions is the scale invariance emerging upon approaching

a critical point, which leads to universal scaling behavior independent of microscopic charac-

teristics. The theoretical understanding of universality in equilibrium statistical mechanics

is well established in terms of the renormalization group (RG). [2] Attempts have also been

made to generalize this formalism as well as general scaling hypotheses to non-equilibrium

phase transitions and dynamic critical scaling, [4,14–16,31–37] but the understanding here

is much less complete. Since many important systems are far from equilibrium, deeper

understanding of criticality and scaling behavior under such conditions is called for.

In this chapter we report progress in characterizing dynamical critical scaling at classical

(thermal) phase transitions. We discuss a scaling hypothesis for a very general class of
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quench (or annealing) protocols in which a function with a single dynamic exponent (along

with the standard equilibrium exponents) describes the changes from adiabatic to diabatic

evolution. To test the scaling forms we study phase transitions in classical Ising models,

using Monte Carlo (MC) simulations with both single-spin and cluster updates.

2.1.1 Kibble-Zurek Mechanism

Our approach is based on extensions of the Kibble-Zurek (KZ) arguments, [14, 15] which

originally focused on quantitatively relating defect formation (e.g., the typical defect size

and the density of defects) to the rate of change (the quench velocity) of a parameter

of the system (such as the temperature, external fields, etc.). The KZ mechanism and

extensions of it have successfully been used to describe out-of-equilibrium physics at both

classical [14, 15, 32] and quantum phase transitions [31, 33, 34, 37–40] (for a general review,

see, e.g., Ref. [16]).

We consider a system with critical temperature Tc. When this system is quenched to the

neighborhood of Tc by starting from some initial temperature Ti > Tc and ending at some

final temperature Tc ≤ T < Ti, if the rate of change is sufficiently slow the system evolves

adiabatically toward its equilibrium state at temperature T . (More accurately, we should

refer to this limit as the quasi-static limit when we are dealing with an open system. We will

here use the term adiabatic in the generalized sense.) Small deviations from adiabaticity

(the quasi-adiabatic regime) can be described by adiabatic perturbation theory (as has been

demonstrated explicitly for quenches of quantum systems at zero temperature, [37,41] and

one can anticipate direct analogues for classical quenches). In contrast, if the evolution

is fast (the quench velocity is high), excitations lead to a large density of defects and the

adiabatic description breaks down. The KZ mechanism provides a natural way to distinguish

these perturbative and non-perturbative regimes.

According to the arguments of KZ, for the quasi-adiabatic picture to be valid, the time τq
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that the system is allowed to take to approach the final temperature T must be at least

of the order of the relaxation time τrel associated with the system’s microscopic dynamical

properties at that temperature. The relaxation time is simply related to the equilibrium

spatial correlation length ξT according to

τrel ∼ ξzT , (2.1)

which defines the dynamic exponent z. This exponent depends on the equilibrium uni-

versality class of the phase transition, as well as the stochastic dynamics imposed on the

system (or, alternatively, one can consider Hamiltonian dynamics, e.g., in quantum sys-

tems). Thus, for a linear quench with velocity v, the criterion for staying adiabatic is

obtained by requiring for the total quench time τq:

τq ∼ |Ti − T |/v ∼ τrel ∼ ξzT ∼ |T − Tc|−zν , (2.2)

where ν is the equilibrium correlation-length exponent.

Another way to interpret the above relationship is to consider the remaining time τ of a

quench which has reached temperature T > Tc after starting out at some Ti > T and which

is to continue all the way down to Tc. Then, for a given τ , or equivalently, for given velocity

v, the relation

τ = |T − Tc|/v ∼ |T − Tc|−zν (2.3)

defines the temperature T at which the system falls out of the adiabatic evolution and

essentially freezes, not being able to evolve significantly for the remainder of the quench

process. This should hold independently of the starting temperature Ti if it is sufficiently

above T . From this relation we can also extract the velocity (the KZ velocity)

vKZ(T ) ∼ |T − Tc|1+zν , (2.4)

at which the system falls out of adiabaticity at temperature T . Thus, it is, in the ther-

modynamic limit, not possible to stay adiabatic all the way down to Tc. In Ref. [17], we
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present an alternative derivation of this result, where we consider the continuous quench as

a series of infinitesimal quenches.

We can also write down the spatial length-scale ξv associated with a given velocity, i.e., the

correlation length reached at the point where the infinite system freezes and cannot follow

the instantaneous equilibrium state. Since ξv ∼ ξT for the quasi-adiabatic evolution and

ξT ∼ |T − Tc|−ν at the point of freezing, Eq. (2.4) gives

ξv ∼ v−1/(z+1/ν). (2.5)

For a finite system the maximum length scale is L, i.e., ξv ≤ L, and the characteristic

velocity separating the adiabatic and non-adiabatic responses then has an lower bound,

which is simply obtained, according to standard arguments in finite-size scaling theory, [3]

by replacing the largest length-scale for the infinite system by L. In this case that means

ξv → L in (2.5). Thus, a system of linear size L will remain adiabatic all the way down

to Tc, provided that the quench velocity is of the order of the size-dependent KZ velocity

given by

vKZ (L) ∼ L−(z+1/ν). (2.6)

When the velocity is below this characteristic value, the non-adiabatic response of the system

is very small and can be treated perturbatively. In contrast, when the velocity exceeds

vKZ (L) the quasi-adiabaticity breaks down and the response of the system corresponds to

non-adiabatic dynamics which is non-perturbative in v.

It should be pointed out that it is in general not possible to assign an exact value to vKZ (L)

(and all the other quantities defined above), as Eq. (2.6) only indicates a proportionality

and the change between the quasi-adiabatic and non-perturbative regime normally takes

place in the form of a smooth cross-over (although we will also demonstrate an interesting

exception, where the break-down of the quasi-adiabatic regime is sudden). We will here

use extensive MC simulations to extract scaling functions of the form f(v/vKZ) describing

the dynamic approach to the critical point for several models and dynamic schemes, from
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which the cross-over scale can be readily read-off. In addition to the KZ scale, we will also

investigate and quantify another, higher-velocity (diabatic) cross-over scale va related to a

size-independent microscopic (lattice) scale a.

2.1.2 Dynamic exponents

As we have seen in the discussion above, the dynamic scaling will naturally involve the

dynamic exponent z of a given combination of model and imposed MC dynamics (updating

scheme for the system configurations). For Metropolis dynamics [42], in which N single-spin

flip attempts define a unit of time in updating the system configurations, many works have

been devoted to extracting the value of z (which in the case of Metropolis dynamics we will

often call zM) for the 2D Ising model, e.g., Refs. [43–46]. The values obtained are typically

close to 2.2, with zM = 2.1667(5), obtained in Ref. [45], often quoted as the most reliable

result. The relatively large dynamic exponent implies that the Metropolis algorithm suffers

rather severely from critical slowing-down [8] when the system is close to its critical point—

the collective critical clusters persist for long times when updated only gradually by single-

spin flips. Despite the critical slowing-down issue, Metropolis dynamics is still indispensable

in its own right due to its close correspondence to relaxation processes due to local couplings

to the environment in experiment systems [47]. Moreover, the Metropolis algorithm is very

widely applicable to simulations even of very complex many-body systems. Even though

there is no experimental counterpart of cluster updates, efficient cluster updates such as the

Swendsen-Wang (SW) [9] and Wolff algorithms [48] have been very important to reduce or

eliminate the inefficiency caused by critical slowing down in simulations. However, unlike

the Metropolis scheme, the applicability in practice of these algorithms is restricted to a

smaller number of models.

For SW updates of the 2D Ising model, where the system is subdivided into clusters and each

cluster is flipped with probability 1/2, the nature of the dynamic scaling is still somewhat

controversial. Values for the dynamic exponent have typically fallen in the range zSW =
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0.2 ∼ 0.35, [49–52] but in some works it was instead proposed that the characteristic time

diverges not as a power Lz but logarithmically, which would imply zSW = 0. [53] For the

3D Ising model the exponent is not known very precisely, with results typically falling in

the range zSW = 0.44 ∼ 0.75 [51,52,54].

In the Wolff algorithm, which can be regarded as an improvement over the SW algorithm,

clusters are constructed one at a time and always flipped. It is therefore normally more likely

to flip large clusters [54]. The value of the dynamic exponent was estimated at zW ≈ 0.3

for the 2D Ising model, and in the range zW ∼ 0.28 to 0.44 for the 3D Ising model [52,54].

2.1.3 Aims and outline of the chapter

We here explore dynamic critical scaling in MC simulations of the Ising model, primarily

in two dimensions but with some results also for higher dimensions. We change the tem-

perature linearly or nonlinearly as a function of MC time and focus on the approach to the

critical point. When such a quench becomes extremely slow (and perhaps is more properly

referred to as annealing), the scheme described above is known as simulated annealing. [55]

While ideas of how to incorporate insights from the KZ mechanism or similar considerations

into simulated annealing processes have been discussed previously [56–58], the goal of these

works has normally been to maximize the efficiency of the process of finding the global energy

minimum of a system (optimizing the annealing schedule), or to reach the finite-temperature

equilibrium distribution as fast as possible. Also, simulated annealing was studied to analyze

the interplay between the KZ mechanism and coarsening dynamics [59, 60]. In our work

presented here, the objective is instead to study the scaling behavior when the transition

point is approached in systems of different size and at different velocities.

The basic idea is to generalize the standard finite-size scaling techniques, where scaling

functions depend on the ratio L/ξT , to finite-velocity scaling where L/ξv should enter in

a similar way. Our main aim is to establish benchmarks for dynamical critical scaling,
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especially the form of the scaling functions describing quenches to Tc, for a prototypical

model system and the above mentioned most commonly used MC updating schemes. Some

aspects of this kind of generalized KZ scaling have already been reported, e.g., in quantum

systems where similar scaling behavior applies, [33, 37, 40] in some classical systems based

on effective dynamical Ginzburg-Landau models [32]. Here we propose different ways to

analyze data and provide a more complete characterization of the scaling behaviors in the

entire velocity range.

We study basic classical Ising models described by the generic Hamiltonian

H = −J
∑
〈i,j〉

σiσj , (2.7)

where the coupling is ferromagnetic, J > 0, and the spins take values σi = ±1. The

site pairs 〈i, j〉 normally correspond to nearest neighbors (and we then impose periodic

boundary conditions) but we will also consider the fully-connected model (i.e., all site pairs

are included in the summation). We discuss the two-dimensional (2D) case in Sec. 2.3 and

discuss the three-dimensional (3D) and fully connected cases in Sec. 2.4. For the dynamics,

we use single-spin flips accepted according to the Metropolis algorithm [42] as as well as

two different cluster algorithms; those of Swendsen-Wang [9] and Wolff. [48]

The rest of the chapter is organized as follows: In Sec. 2.2 we discuss details of the dynamic

scaling of the order parameter for linear and generalized non-linear power-law protocols

through which the system is quenched to the critical point. We also discuss the use of

different scaling functions applicable in the low-velocity (quasi-adiabatic) and high-velocity

(diabatic) regimes, as well as in the regime (a universal scaling regime) connecting these

behaviors. In Sec. 2.3 we demonstrate the application of the dynamic scaling ansatz us-

ing simulation data obtained with the three different MC updating schemes for the 2D

Ising model. In Sec. 2.5 we summarize our main conclusions and discuss potential further

applications. An alternative derivation of the KZ velocity is provided in Ref. [17], where

we also briefly discuss optimized protocols given finite time resources for quenching. In
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Sec. 2.4 we demonstrate dynamic scaling with SW and Wolff cluster updates for the 3D and

fully-connected Ising models.

2.2 Dynamic Finite-Size Scaling

It is well known in equilibrium physics that systems show universal finite-size scaling be-

havior in the neighborhood of the critical temperature Tc. Physical quantities can then be

described by a non-singular scaling function g(L/ξT ) and a universal power of the system

size according to the form

A(L, T ) = Lκ/νg(L/ξT ) = Lκ/νG[(T − Tc)L1/ν ], (2.8)

where κ is an exponent depending on the universality class of the transition and the quantity

A. This general equilibrium form was initially hypothesized based on observations and has

now been rigorously demonstrated through the renormalization group. [2, 3]

We here discuss how the KZ mechanism introduced in Sec. 2.1.1 can be incorporated into

finite-size scaling forms for systems undergoing quench dynamics.

2.2.1 Generalized KZ finite-size scaling

In a non-equilibrium setup, which we here first take to be a linear quench toward the critical

point, the scaling argument L/ξv, with ξv defined in Eq. (2.5) should enter in addition to

the equilibrium argument L/ξT . As is clear from the definitions in Sec. 2.1.1, we can also

consider the velocity ratio v/vKZ(L). We use it to write down an ansatz in terms of a

function depending on the two scaling arguments;

A(T, L, v) = Lκ/νf(L/ξT , v/vKZ ) (2.9)

= Lκ/νF
[
(T − Tc)L1/ν , vLz+1/ν

]
.

This generalized scaling ansatz has been justified in quantum systems in the slow limit

using adiabatic perturbation theory, [38] and it has also been demonstrated in the case of
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quantum phase transitions in imaginary-time dynamics. [33,37] However, except for several

works by Zhong and collaborators (where an L → ∞ formalism was mostly adopted from

the outset) [61] and Chandran et al. [32] the classical counterpart has not, to our knowledge,

been investigated as extensively as the quantum case.

2.2.2 Linear quench protocol and procedures

Clearly, Eq. (2.9) reduces to the standard equilibrium finite-size scaling ansatz in the limit

v → 0. When v 6= 0 the framework allows us to study the response of the system away from

the adiabatic limit. For a system with a known value of Tc, one can carry out a quench

process from a high temperature, Ti > Tc to Tc, hence eliminating the first argument in the

universal function in (2.9);

A(Tc, L, v) = Lκ/νF (vLz+1/ν). (2.10)

This scaling form is very similar to the equilibrium form (2.8) and is easy to study the size

and velocity dependence of physical quantities at the transition point, using data-collapse

techniques familiar from conventional finite-size scaling.

The main purpose of the work reported here is to justify the generalized scaling ansatz

(2.10) at T = Tc by testing it in detail for classical phase transitions and investigating its

range of applicability. We present several benchmark cases showing that the ansatz works

extremely well. Below we will also extend Eq. (2.10) by introducing yet another scaling

argument v/va, where va is related to a microscopic scale. One can then observe scaling

over the entire velocity range v ∈ [0,∞].

Theoretically, any temperature higher than Tc can be used as the initial temperature (or

one can start below Tc from an ordered state, but here we will only consider Ti > Tc)

but in practice a higher temperature implies that it is easier to generate an equilibrated

configuration before the quench process begins (which would be particularly important

when studying spin glasses or related systems with very slow equilibration close to Tc). The
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Figure 2.1: Illustration of linear quenches of the 2D Ising model. A system of size L = 32×32

was equilibrated at the initial temperature Ti = 1.5Tc and was thereafter linearly quenched

to Tc. The quench velocity was v = 0.5Tc/τq, where τq is the total quench time. Here one

unit of time is defined as one MC step consisting N attempts to flip randomly selected spins

using the standard Metropolis probability. Shown are the temperature (bottom panel) and

the magnetization squared (top panel) versus time for different total quench times. We will

focus our studies here on the scaling of 〈m2〉 at the final point.

details of the diabatic dynamics will also of course depend on Ti, but for slower velocities

the results should become independent of the initial condition.

Knowing the exact value of Tc prior to the simulation is not a necessary condition for

this approach to work, since one can also track, e.g., the order parameter or the Binder

cumulant [62] in non-equilibrium simulations and locate Tc by various scaling techniques

similar to equilibrium finite-size scaling. We demonstrated this recently for a quantum

model. [37] However, for purpose of demonstrating dynamic scaling at classical transitions

under different dynamic schemes, we will here use the known values of Tc for the systems

of interest.
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For obtaining the results presented in this chapter, we typically started with an equilibrated

configuration at an initial temperature Ti = 1.5Tc and performed an MC quench process

carrying the system to its critical point. The quench velocity in the linear case can therefore

be written as v = 0.5Tc/τq, where τq is the total quench time in units of MC steps. We

note that one unit of time in MC simulations normally corresponds to an extensive number

of spin flips (but we will also consider a case, with Wolff dynamics, where this is not true).

The precise definition of the time unit depends on the dynamics used.

Typical examples of linear quench processes are illustrated in Fig. 2.1 with results for the

magnetization squared (which will be the only physical quantity studied in this chapter);

m2 =

(
1

N

N∑
i=1

σi

)2

. (2.11)

In this case the exponent κ = −2β in Eq. (2.10) and we expect scaling at Tc according to

〈m2〉 = L−2β/νF
(
vLz+1/ν

)
, (2.12)

provided v is sufficiently small (and we will discuss how small that is below). Note that the

process stops at Tc and there is no waiting time after that to relax the system further (which

would introduce yet another time scale, which one can certainly consider but we do not

include it here). Only a single measurement of m2 is carried out after the system has reached

Tc and the brackets 〈. . . 〉 in Eq. (2.12) represent the ensemble average over different quenches

with different equilibrated starting configurations. Typically, we calculated averages on the

basis of thousands of such independent MC runs.

The initial configuration at T = Ti was equilibrated and sampled before the start of each

run using cluster updates (to be discussed further below) to ensure statistically independent

starting configurations for each quench process. For studying slow dynamics it is strictly

not necessary to equilibrate the initial configuration, since one can expect the system to

become memoryless for slow enough quenches when approaching Tc. However, we here also

study the fast limit and want the system to reduce to the equilibrium at Ti when v → ∞.

We therefore always equilibrate.
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2.2.3 Nonlinear quench protocols

The simple scaling hypothesis discussed above has also been generalized to non-linear pro-

tocols, where the critical point is approached according to an arbitrary power-law of the

time t measured with respect to the final time τq, [18] 1

T − Tc = v(τq − t)r, (2.13)

where v is the velocity as above for a linear quench (r = 1), the acceleration (up to a

factor 2) for a quadratic quench (r = 2), etc. (and for simplicity we will refer to v as the

velocity, regardless of the power r). For a sudden quench (r = 0) v should be regarded as

the amplitude of the change in T (and with this definition note that there is no waiting time

after the quench, which is another time-scale that could be added but we do not consider

here). As in the linear case, for all r we use Ti = 1.5Tc and express v in units of Tc as

v = 0.5Tc/τ
r
q , where τq is the total quench time.

The generalized critical “velocity” for arbitrary r (including non-integer) can be easily found

by following the same arguments as in Sec. 2.1.1;

vKZ (L) ∼ L−(zr+1/ν). (2.14)

In [17] we provide an alternative derivation of this result based on a time-discretized quench,

which also gives some information on how the unknown prefactor above depends on the

exponents involved.

The magnetization scaling form (2.12) with (2.14) becomes

〈m2〉 = L−2β/νF
(
vLzr+1/ν

)
. (2.15)

We will study mainly r = 1 quenches but also discuss some results for r = 1/2 and r = 2.

Protocols for approaching the critical point very slowly, in particular with negative r, have

also been investigated recently. [32]

1In Ref. [18], the protocol was defined as T − Tc = v(τq − t)r/r!. For simplicity, we here leave out 1/r!.
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2.2.4 Complete scaling form for the order parameter

For a given system size we can access a wide range of velocities (the highest v < ∞ cor-

responding to carrying out a single MC step) and we can therefore examine very different

response regimes of the system. When the quench velocity becomes very high, our pro-

cedures ensure that the magnetization squared after the quench to Tc remains close to its

value at the initial temperature Ti. Since the correlation length has a finite value there, one

expects, for sufficiently large L,

〈m2〉 =
1

N2

∑
〈i,j〉

〈σiσj〉 =
1

N

∑
j

〈σ0σj〉 ∼ L−d, (2.16)

where d is the number of dimensions; here d = 2 except in Sec. 2.4, where we also consider

d = 3 and infinite dimensionality (in which case L is defined by L = N1/d with d the upper

critical dimension). Thus, in the high-velocity limit, 〈m2〉 should depend on the initial

temperature Ti and scale as L−d.

When the velocity decreases one can expect the order of the system to develop gradually,

and as long as the KZ correlation length ξv is much smaller than the system size L the

magnetization squared should still depend on L with the trivial power above. With the

scaling form (2.15), this behavior necessarily implies that the function F in this regime

must reduce to a power law of the argument vLz+1/ν ;

〈m2〉 ∼ L−2β/ν
(
vLzr+1/ν

)−x
, (2.17)

and this exponent can be obtained by demanding this to be proportional to L−d, i.e.,

x =
d− 2β/ν

zr + 1/ν
. (2.18)

Thus, there is an intermediate universal scaling regime where

〈m2〉 ∼ L−dv−x. (2.19)

Note that this is not consistent with the high-velocity limit for fixed L, where, as discussed

above, 〈m2〉 must converge to a constant times L−d (without any remaining v dependence).
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The power law written as Eq. (2.17) should instead hold for arbitrary large values of vLz+1/ν ,

as long as L is sufficiently large. Below we will discuss in detail the cross-overs between the

power law and the ultimate high-v limit for any L.

Finally, when the velocity is decreased further and approaches vKZ (L), the assumption

ξv � L no longer holds. One would then expect deviations from the power-law form and

a cross-over to a regime where Eq. (2.15) tends toward the corresponding L-dependent

equilibrium value of at Tc, i.e., the standard finite-size behavior scaling,

〈m2〉 ∼ L−2β/ν , (2.20)

sets in. This cross-over from the v-dependent power-law to this equilibrium form is smooth

and contained in the function F in Eq. (2.15).

To incorporate all these different asymptotics in different velocity regimes, it is useful to

introduce a short-range length scale a, which is of the order of one lattice spacing, and,

therefore, can be set to 1 for any practical purpose. This non-trivial factor a is essential for

defining the engineering dimension, [6] a−d+2β/ν , which compensates for the discrepancy

between the scaling dimension L−2β/ν of 〈m2〉 and its canonical dimension L−d. The short-

range length scale sets the size-independent upper limit v ∼ va beyond which the power-law

behavior (2.19) should break down;

va ∼ a−(zr+1/ν). (2.21)

More explicitly, based on the above discussion one cannot expect Eq. (2.15) to be able to

describe all situations with a single scaling function F , and this function should actually be

replaced by two different scaling functions in different regimes of (v, L), namely,

〈m2〉 =

 L−2β/νa−d+2β/ν f1(vLzr+1/ν), v < va

L−df2(a−(zr+1/ν)v−1), v > vKZ(L),
(2.22)

where f1 and f2 are different scaling functions, valid in their own associated velocity re-

gions. More generally, the above two scaling functions can be described by a single common
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Figure 2.2: Illustration of the dual-scaling behavior outlined in Eq. (2.22) and Eq. (2.24).

The first scaling function f1 covers from quasi-adiabatic limit up to a high-velocity cut-off,

va ∼ O(1), and the second scaling function f2 covers from the ultra-high velocity limit down

to a low-velocity cut-off, vKZ (L). The middle region is where both functions apply and both

functions reduce to a simple power-law behavior, therefore we call it universal power-law

region.

universal form with two arguments, i.e.,

〈m2〉 ∼ L−2β/νa−d+2β/νG(vLzr+1/ν , a−(zr+1/ν)/v). (2.23)

However, it is in practice easier to analyze its two limiting forms (2.22) with single scaling

arguments.

In the velocity regime v � vKZ (L), the system should be perturbative in v, while in the

opposite limit when v � va the system can be described by perturbation in 1/v. As we

will demonstrate below with numerical data, there is a wide region, vKZ(L) < v < va,

over which f1 and f2 are both applicable. This corresponds to the regime where both

perturbative descriptions (in v and 1/v) have broken down and have been replaced by a

universal power-law behavior, expressed as Eq. (2.17) and (2.19) for f1 and f2, respectively.

Fig. 2.2 illustrates the idea.

The basic idea that we are pursuing throughout this chapter is that by quenching the

system with different velocities (or generalized velocity for r 6= 1), one can generally observe

cross-over behaviors at v ∼ vKZ(L) as well as at v ∼ va between perturbative and non-

perturbative regimes. The velocities vKZ(L) and va separate different forms of the size

dependencies of the magnetization squared (which is the quantity we focus on here, but
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one of course expects analogous behaviors in other quantities). The characteristic velocity

va separates the velocity independence, 〈m2〉 ∼ L−d, from the power-law form 〈m2〉 ∼

L−dv−x for vKZ(L) < v < va, and then another characteristic velocity vKZ(L) separates

this behavior from the critical equilibrium scaling form 〈m2〉 ∼ L−2β/ν for v < vKZ(L).

The above forms Eq. (2.22) can be used to analyze numerical data by dividing 〈m2〉 by the

appropriate power of L appearing on the right-hand side and graphing the result versus the

argument of the scaling function. The data should then collapse onto the scaling function in

the region of (v, L) where it holds; hence the scaling function is obtained. The first scaling

form f1, which requires the knowledge of critical exponents, is analogous to the equilibrium

scaling at Tc. The second scaling f2, requires no knowledge of the critical exponents.

Although it is not necessary, we can also assume that the function f1 in Eq. (2.22) can be

written as a series expansion of vLz+1/ν in its perturbative regime, and, as was pointed

out above, f2 should depend on Ti and can be written as a series expansion in 1/v in its

perturbative regime. In their non-perturbative regimes both functions reduce to the same

power law form (just expressed in two different ways). We therefore expect the following

forms to hold in the three different scaling regimes:

〈m2〉 =


L−2β/ν

∑
n
cn(vLzr+1/ν)n, v . vKZ (L)

L−d
(

1
v

)x
, vKZ(L)� v � 1

L−d
∑
n
cn(1/v)n, v & 1

(2.24)

where we have explicitly set a = 1 and, therefore, va = 1. In the following, we will refer

to the velocity regime v . vKZ(L) as the quasi-adiabatic regime, vKZ(L) � v � 1 as

the universal scaling regime, and v & 1 as the diabatic regime. The asymptotic form in

the universal scaling regime vKZ(L) � v � 1 corresponds to the power-law behavior,

Eq. (2.19), that both scaling functions f1 and f2 converge to. Note again that, in practice,

the highest velocity in our simulations corresponds to one MC step, i.e., v = (Ti − Tc)/τ rq

with τq = 1, which is of the order 1 with our chosen initial temperature.

Normally the cross-overs between the different regimes in Eq. (2.24) are completely smooth,
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which we will demonstrate in the next section for Metropolis and SW dynamics in the 2D

Ising model. Remarkably, however, in the case of the Wolff cluster algorithm we will show

that the power-law regime is absent and the cross-over between the two perturbative regimes

is not smooth. Instead, in the thermodynamic limit both the quasi-adiabatic and diabatic

scaling behaviors break down discontinuously at specific values of the scaled velocity. In

this sense the Ising model with Wolff dynamics undergoes a dynamic phase transition.

2.3 Simulation Results

In this section we demonstrate the application of dynamic finite-size scaling using the stan-

dard 2D Ising model on the square lattice. We discuss results using Metropolis dynamics

in Sec. 2.3.1, SW dynamics in Sec. 2.3.2, and Wolff dynamics in Sec. 2.3.3. The exact

value of Tc and the critical exponents are known exactly from the Onsager solution: [5]

Tc/J = 2/ ln(1 +
√

2), ν = 1 and β = 1/8. This system therefore provides a good testing

ground for our techniques. For all the quench processes we consider in the following we start

with an initial temperature Ti = 1.5Tc, using the value of Tc quoted above, and then quench

the system exactly to the critical point, at which observables are computed (and note again

that there is no further waiting at Tc; a single measurement of 〈m2〉 is obtained after each

quench). The quench process for given parameters is repeated thousands of times with

different equilibrated starting configurations in order to obtain god statistical precision.

The focus here will be how the system responds to the dynamics when crossing the two

characteristic velocities defined in the previous section, va and vKZ (L) , and how the cross-

over behaviors emerge in the dynamic scaling. As shown explicitly in the scaling forms

discussed above, the scaling naturally involves the dynamic exponent z. Since the 2D Ising

equilibrium critical exponents are all known exactly, the dynamic scaling allows one to

extract z independently (and note that this exponent depends on the dynamics imposed

and is not known exactly for any of the schemes we use). In practice we here do this by
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optimizing a data collapse (onto one of the unknown scaling functions, which the process

yields) with z as the only adjustable parameter.

2.3.1 Metropolis dynamics

Typical linear quench processes using Metropolis dynamics have been shown in Fig. 2.1.

Fig .2.3 further demonstrates a typical scenario of a linear quench with Metropolis dynamics

from an initial temperature Ti to Tc.

We here follow the convention that one unit of time is defined as N = L2 attempts of flipping

a randomly selected spin with the acceptance probability p = min[1, e−∆E/T ], where ∆E is

the change in energy after flipping the spin. For convenience we will give velocities in units

of Tc, i.e., with the above Ti we define v = 0.5/τ rq for total quench time τq in units of MC

steps. To demonstrate the insensitivity of the scaling to Ti, we will also present a test of

this assumption. We first discuss the linear quenches and then present some results also for

r = 1/2 and r = 2 non-linear protocols according to Eq. (2.13).

Linear quench

Data sets for different system sizes in linear-quench simulations at different velocities are

analyzed collectively in Fig. 2.4 (a), using the scaling procedure appropriate when the first

scaling form in Eq. (2.22) applies. Scaling collapse giving the function f1 is observed all

the way from the adiabatic regime, crossing over into universal power-law scaling, which

persists up to arbitrarily large values of the KZ scaled velocity vLz+1/ν when increasingly

large L is used (pushing the diabatic cross-over further to the right). As we discussed in

Sec. 2.2, the scaling behavior allows one to determine the dynamic exponent by carrying

out a fitting procedure in which the value of z is adjusted to give the optimal fit to all the

data included, which we quantify using the standard χ2 per degree of freedom (dof). We

here use two different functional forms to describe the function f1 in the fitting procedure,
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(a) (b)

(c) (d)

Figure 2.3: Illustration of a linear quench process on 2D Ising model with Metropolis

dynamics. Shown are 25% (a), 50% (b), 75% (c), and 100% (d), through the quench

process. At Tc (d), a percolating cluster spanning the entire system is clearly observed. In

this demonstration, a total quench time τq = 3000 Monte Carlo steps is used on a 32× 32

square lattice.



46

10
0

10
2

10
4

10
6

10
8

v L
z+1/ν

10
-4

10
-3

10
-2

10
-1

10
0

<
m

2
>

 L
2
β

/ν

L = 12

L = 24

L = 48

L = 64

L = 96

L = 128

L = 192

L = 256

L = 500

L = 1024

polynomial + power-law fit

10
4

10
5

10
6

10
-3

10
-2

L = 128

(a)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

v L
z+1/ν

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

( 
<

m
2
>

 L
2
β

/ν
 -

 f
1
 )

 /
 f

1

L = 48

L = 64

L = 96

L = 128

L = 192

L = 256

L = 500

L = 1024

(b)

Figure 2.4: (a) The squared magnetization scaled by L2β/ν after linear quenches to Tc, using

Metropolis dynamics for 2D Ising models of different sizes. The collapsed data correspond to

the first scaling form, f1, in Eq. (2.22). The expected three different regimes corresponding

to different asymptotics can be clearly distinguished; (left) approach to the equilibrium

critical scaling in the quasi-adiabatic regime v . vKZ(L), (center) power-law scaling in

the universal regime vKZ (L) � v � 1, and (right-most points for each L) deviations from

the scaling function in the diabatic regime v & 1. The vertical dashed line shows the point

separating the two fitting windows used in the optimization of the data collapse (varying z);

to the left the fitted function approximating f1 in the quasi-adiabatic regime is a high-order

polynomial, and to the right a pure power law (straight line) given by Eq. (2.18) is used to

account for the universal scaling behavior. The diabatic tails for each L were not included

in the fits. The dynamic exponent used in scaling the x-axis was adjusted to obtain the

overall best simultaneous fits of the data in the quasi-adiabatic and scaling regimes, which

resulted in zM = 2.172(3) with the goodness of the fit, χ2/dof ≈ 1.0. Error bars for the data

points are all smaller than the symbol sizes. The inset shows details of the L = 128 data

in the region where the behavior crosses over from universal scaling to diabatic. (b) The

difference between the fitted function f1(vLz+1/ν) and the scaled magnetization squared,

〈m2〉L2β/ν (same data as in panel (a)). The vertical line shows the point separating the two

fitting windows. The points deviating significantly from the horizontal line correspond to

diabatic behavior and those points were systematically excluded in the fitting procedure.
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Figure 2.5: (a) Data collapse producing the second scaling function, f2, in Eq. (2.22) for

linear Metropolis-quenches with different system sizes. Here the left region corresponds to

the diabatic regime, while straight-line form corresponds to the universal power-law scaling

regime. The points deviate from the common function f2 in the L-dependent quasi-adiabatic

regime. The dashed line shows the slope expected with the dynamic exponent extracted in

Fig. 2.4. As will be discussed in Sec. 2.3.1, the line with arrow indicates the region selected

for the linear fit after taking log-log, we consider sizes L ≥ 192. The linear fit gives the

slope xr1 = 0.550(3), with χ2/dof ≈ 1.0, which implies zM = 2.17(1), consistent with the

result obtained in Fig. 2.4 of f1 scaling. (b) Data graphed according to the second scaling

function, f2, in Eq. (2.22) for linear Metropolis quenches on L = 48 system with different

initial temperatures. As expected, f2 nominally depends on the initial temperature only in

the diabatic regime. The inset shows more details of the data in the region where the data

converge to common curve.
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as in the first two lines of Eq. (6.7), in two non-overlapping windows of the scaling argument

vLz+1/ν . The “plateau and shoulder” in Fig. 2.4 correspond to the quasi-adiabatic regime

v . vKZ(L) and we use a high-order polynomial fit in this window. For practical purposes,

to minimize the order of the polynomial required, we fit to the log-log data instead of the

original data. The second window corresponds to the universal scaling regime characterized

by vKZ(L) � v � 1, where we use a pure power-law fit (a straight-line fit on the log-log

scale).

The point separating the two fitting windows is chosen such that χ2 computed individually in

each window is statistically good. High-v data are excluded for each L when they deviate

from the common curve (in which case they will also ruin the goodness of the fit, thus

allowing for systematic exclusion of diabatic data). There are of course scaling corrections

expected, as in standard finite-size scaling of equilibrium data, but for the Ising model

these are relatively small. [63] We obtain good fits by considering system sizes L ≥ 12. The

statistical error of z is computed by repeating the data-collapse procedure many times with

Gaussian noise added to the MC data (with standard deviation given by the corresponding

error bars of the data). This procedure gives zM = 2.172(3), which is in good agreement

with values previously obtained, e.g., in Refs. [44, 45].

Fig. 2.4 (b) further illustrates the optimization procedure in the form of the deviation of the

two-piece fitting function f1(vLz+1/ν) from the MC data for 〈m2〉L2β/ν . Statistically, the

data points fully obey the scaling collapse except for those corresponding to the diabatic

v & 1 regime (which are excluded from the fits).

Note that the purpose of parametrizing the scaling function and carrying out fits is only to

provide a convenient way to define the goodness of the data collapse. As long as the imposed

functional form is capable of reproducing the scaling function to within the precision set by

the error bars of the data (which is self-consistently tested by the statistical soundness of

the fit quantified by χ2), this procedure in no way distorts or biases the data collapse.
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We discuss the diabatic regime next. Data collapse according to the second of Eqs. (2.22)

is shown in Fig. 2.5 (a). The dashed line in Fig 2.5 (a) is drawn according the the value

of x given by the result of z from Fig 2.4 (a). However, independently, the power-law

behavior corresponding to the straight line allows one to estimate the dynamic exponent

in a straight-forward manner through this kind of analysis, given the relation between the

power (slope) x and z in Eq. (2.18). The advantage of this procedure is that the rescaling

of the data does not involve any critical exponents at all. As we will discuss in more detail

in Sec. 2.3.1, using linear fit after taking log-log, we obtain xr1 = 0.550(3), which implies

zM = 2.17(1), this is consistent with the result obtained by f1 scaling.

Note again that the linear regions in Figs. 2.4 (a) and 2.5 (a) correspond to the same data

points, falling within the universal scaling regime, with just two different ways of expressing

the middle line of Eq. (2.24), as stated according to Eq. (2.19) or as in Eq. (2.17) by moving

the appropriate power of L to the left.

As discussed in Sec. 2.2, the initial temperature Ti at which the system is equilibrated before

the quench process begins should only have a nominal effect on the scaling. We normally

use Ti = 1.5Tc, but to demonstrate the insensitivity of the scaling to the initial temperature

we show in Fig. 2.5 (b) results for a fixed system size and several values of Ti. As expected,

there are differences in the diabatic regime, where in the v →∞ limit the results converge

to the equilibrium at Ti. Beyond this regime, at lower velocities the data quickly converge

to a common curve in the universal scaling regime. The convergence to a pure power law

is somewhat faster for higher Ti, but it should be noted that the simulation time increases

with Ti, which implies that, for purposes of extracting the dynamic exponent by fitting a

straight line, there is some trade-off between the faster convergence to the power law and

the longer simulation time. In cases where the initial equilibration may be challenging close

to Tc, e.g., in frustrated systems (especially glasses) where cluster algorithms cannot be

used, one may also want to start at a high Ti in order to ensure good initial equilibration.
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Non-linear quenches

As we pointed out in Sec. 2.2, the KZ scaling scheme is not restricted to linear protocols.

Eq. (2.22) incorporate nonlinear quench scenarios through the exponent r in the definition

(2.13) of the more general protocol. These expressions provide a simple way to separate the

quench process from the underlying stochastic dynamics (updating scheme); the former is

characterized by the parameter r and the latter by the dynamic exponent z. Since in the

non-equilibrium scaling relations only the combination zr enters, changing the exponent

r has an effect similar to manipulating the dynamical exponent, which potentially can be

useful for optimization and other purposes. Here we just focus on testing the applicability

of scaling with r 6= 1.

In Fig. 2.6 (a), bottom panel, we show results of a “constant acceleration” quadratic quench

with r = 2, in which case the the characteristic quantity (2.14) stands for a critical accel-

eration separating a perturbative and non-perturbative regimes, in analogy with the ear-

lier discussion of the linear quench. The scaling collapse works very well, apart from the

expected ultra-high acceleration limit where a break-down again is expected (and the devi-

ations can be analyzed in terms of a different scaling function, as we will do below). The

dynamic scaling also holds when the parameter r is a non-integer number corresponding

to a non-analytic protocol, as it should, based on the derivations of the KZ scaling in [17]

(while the applicability for non-integer r is less clear from other generalizations considered

for r 6= 1 [18]). We demonstrate this with results of a square-root quench, r = 1/2, in the

top panel of Fig. 2.6 (a).

As shown in Fig. 2.6 (b), scaling collapse also works very well in the diabatic limit of both

these nonlinear quench protocols. A cross-over of the function f2 to the universal scaling

regime is observed as in the r = 1 case. Most importantly, the power-law behavior is

clearly observed. One can again use the power-law regime in the f2 scaling to estimate

the power x, which can then be translated to z according to Eq. (2.18). Using linear fit
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Figure 2.6: (a) Data collapse in non-linear quenches to Tc with Metropolis dynamics of the

2D Ising model. The top and bottom panels are for r = 1/2 and r = 2, respectively, and v

is expressed in units of Tc according to the definition (2.13) of the protocols with Ti = 1.5Tc.

The data are analyzed and graphed in the same way as the linear quenches in Fig. 2.4 (a).

The dashed lines show the slopes expected according to Eq. (2.18) with the dynamic expo-

nent extracted in Fig. 2.4 (a). The insets shows examples of the protocols used. (b) Data

collapse in the diabatic and universal scaling regimes for non-linear Metropolis quenches,

with the top and bottom panels for protocols with r = 1/2 and r = 2, respectively. The

dashed lines show the slopes expected according to Eq. (2.18) with the dynamic exponent

extracted in Fig. 2.4 (a). As we will discuss in Sec. 2.3.1, the line in r = 2 panel indicates

the region selected for linear fit after taking log-log, we consider sizes L ≥ 48. The linear

fit yields the slope xr2 = 0.32689(7), with χ2/dof ≈ 0.9, which implies zM = 2.1767(5),

consistent with the result obtained in Fig. 2.4 (a).
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after taking log-log in the f2 scaling of r = 2 quench, we obtain the slope xr2 = 0.32689(7),

which implies zM = 2.1767(5). Remarkably, the statistical precision of this result is higher

than the best results based on the r = 1 quenches discussed above, although the system

sizes there were considerably larger. It is then interesting to ask what the optimal r is for

extracting zM , but we have not investigated this systematically. The applicability of the

dual scaling for arbitrary r also opens an interesting opportunity to independently extract

all of the exponents β, ν, and z, as we will discuss in Sec. 2.3.1.

Combining results from different quenches

As shown in the previous section, the f1 and f2 dual scaling behaviors are clearly observed

in both linear and non-linear quenches. The f2 scaling scheme is particularly interesting

in practice. As we mentioned in Sec. 2.2, f2 scaling does not involve the prior knowledge

or optimization of the critical exponents, while the power in the universal scaling regime

still carries the information of the critical exponents through Eq. (2.18). The power x can

be measured easily by linear log-log fit of the data. This property of dual scaling and

the convenient way of extracting the power x from f2 scaling for any arbitrary r open an

interesting opportunity to extract the exponents z, ν, and β in a completely independent

way.

We first point out some important aspects of the applications of f2 scaling. One important

aspect of f2 scaling is that it corresponds to the regime in which the correlation length ξv

Eq. (2.5) is growing as v decreases, while ξv is still much smaller than the system size, i.e.,

ξv � L. Effectively, in this regime the rescaled quantity 〈m2〉L2 is size-independent. This

property provides a simple way to do the linear fit in practice: one can simply follow the

largest available sizes, when the data points from these sizes become indistinguishable in

the f2 plot and the system sizes, thus, are large enough to be effectively free of finite-size

effects. This L convergence aspect is seen in Figs. 2.5 (a) and 2.6 (b). Quantitatively, one

can again use χ2/dof to quantify the result. If small sizes that potentially carry finite-size
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effect are included in the linear fit, they will certainly ruin the goodness of the statistics.

The same principle can also be used for selecting the region for linear fit. The ideal region

for the linear fit should be in the power-law regime. If the data points from either the

quasi-adiabatic or diabatic regime are included, they will also ruin the goodness of the fit

quantified by χ2/dof.

In the following we use r = 1 and r = 2 quenches to demonstrate the idea outlined above.

For r = 1 quench as shown in Fig. 2.5 (a), we consider sizes L ≥ 192 since the data points

from these sizes already show indistinguishable behavior in the power-law regime. The

region in which linear fit is performed is indicated by the line with arrows. The selection

of the region is determined by the minimization of χ2/dof. We obtain xr1 = 0.550(3) with

χ2/dof ≈ 1.0. For r = 2 quench shown in the bottom panel of Fig. 2.6 (b), using the same

principle for selecting the system sizes (with L ≥ 48) and the region for linear fit (indicated

by the line with arrows), we obtain xr2 = 0.32689(7) with χ2/dof ≈ 0.9. Given two values

xr1 and xr2 , the exponents can be easily computed as :

zν =
xr2 − xr1

r1xr1 − r2xr2
≡ a,

dν − 2β =
(r2 − r1)xr1xr2
r2xr2 − r1xr1

≡ b.

(2.25)

According to the above expressions, we obtain a = 2.17(8) and b = 1.75(5). Furthermore,

with either the r1- or the r2-quench, one can use f1 scaling with 2-parameter fitting to

obtain β/ν and z + 1/ν, as indicated by Figs. 2.4 (a) and 2.6 (a). We use the f1 scaling

from the r = 1 quench, treating all exponents as unknown and performing a 2-parameter

fitting for p1 = z + 1/ν and p2 = β/ν and we obtain p1 = 3.16(5), p2 = 0.13(1) with

χ2/dof ≈ 1.0. Combining with the results from Eq. (2.25), one can then solve for z, ν, and

β:
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
z + 1/ν = p1,

zν = a,

β/ν = p2,

⇒


z = 2.16(4),

ν = 1.00(3),

β = 0.13(1).

(2.26)

These exponents all agree with their known or expected (in the case of z) values within the

error bars, which were estimated by introducing Gaussian noises to the fit parameters a,

p1, and p2 and solving the equations repeatedly.

This method should be particularly useful in cases where it is difficult to reach the adiabatic

limit and carry out standard finite-size scaling techniques around Tc, e.g., for frustrated

systems such as spin glasses. [64]

2.3.2 Swendsen-Wang dynamics

Due to the rather large dynamic exponent, the Metropolis algorithm suffers significantly

from critical slowing down. Physically, the slow dynamics originates from the inability of

single-spin (or any local) updates to quickly change the structure of configurations with large

clusters. In the SW algorithm, [9] a spin configuration is decomposed into clusters using

bond variables introduced through the Fortuin-Kasteleyn transformation. [13] A broad range

of cluster sizes appear according to Coniglio-Klein droplet theory, [65] and the algorithm is

therefore much more efficient (has a much smaller dynamic exponent) than the Metropolis

scheme.

In the SW algorithm, one unit of time is defined as decomposing the all spins in a con-

figuration into clusters, using bonds set between same-oriented spins with probability P =

1 − e−2J/T . Each spin uniquely belongs to one of the clusters (with spins having no con-

nected bonds treated as clusters of size 1) and each cluster is flipped independently with

probability 1/2. In the quench process we again start at Ti = 1.5Tc and stop exactly at the

known Tc, repeating the procedure thousands of times for averaging.

Fig. 2.7 illustrates a linear quench process on 2D Ising model with Swendsen-Wang dy-
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namics. As in the Metropolis case, when reaching Tc, a percolating cluster is also clearly

observed in the SW scenario. However, in the Metropolis case single-spin flip updating

scheme results in a rather severe critical slowing-down with zM ≈ 2.17, SW is designed to

alleviate this problem by flipping a cluster of spins at once, for example, the largest perco-

lating cluster marked by red color in Fig. 2.7 (d) can be easily flipped by SW algorithm.

Therefore one can expect to see a smaller z, as we will show in the following.

The dynamic scaling, summarized as Eq. (2.22), is independent of the underlying updating

scheme, except for the value of z. We can therefore carry out the same kind of non-

equilibrium quench process as in the previous subsection to study SW dynamics. Here we

will focus on the linear quench (r = 1) of the 2D Ising model.

We again observe scaling collapse onto a scaling function f1 according to the first line of

Eq. (2.22), as shown in Fig. 2.8 (a) (where we have not shown the diabatic data points,

which deviate from the common scaling function—they will be analyzed further below).

Here the dynamic exponent was again optimized to give the best fit. Due to the rather

small value of the exponent in this case, zSW ≈ 0.3, the universal power-law scaling regime

is less accessible than in the Metropolis case. We therefore use a polynomial fit (to log-log

data) in the whole region of the scaling variable in the figure, instead of dividing it into two

velocity regimes. Nonetheless, given the predicted power x, Eq. (2.18), one can still test the

consistency with the power-law behavior expected in the universal scaling regime after the

optimized zSW has been obtained. The result for the dynamic exponent is zSW = 0.297(3),

which is consistent with Ref. [51] (but with a smaller error bar). The dashed line in Fig. 2.8

(a) shows the predicted power-law given the above value of the dynamic exponent. The

agreement is indeed good for the right-most points. This behavior strongly supports the

conventional critical dynamics with zSW > 0, instead of a logarithmic divergence of the

time scale. [53]

Note again that, for clarity, in Fig. 2.8 (a) we have not shown the diabatic points deviating

from the common scaling function. These data points are included in Fig. 2.8 (b), which
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(a) (b)

(c) (d)

Figure 2.7: Illustration of a linear quench process on 2D Ising model with Swendsen-Wang

dynamics. Shown are 25% (a), 50% (b), 75% (c), and 100% (d), through the quench process.

For simplicity, only the largest 10 clusters are shown with the largest cluster always being

marked by the red color. Same as in the Metropolis dynamics, at Tc (d), a percolating cluster

spanning the entire system is clearly observed. In this demonstration, a total quench time

τq = 3000 Monte Carlo steps is used on a 64× 64 square lattice.
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Figure 2.8: (a) Results of linear quenches with SW dynamics of the 2D Ising model. The

magnetization squared and the quench velocity are rescaled according to the first line in

Eq. (2.22), resulting in data collapsing onto the scaling function f1. A high-order polynomial

was fitted to the data and the dynamic exponent was adjusted to optimize this fit, giving

the optimal exponent zSW = 0.297(3) with χ2/dof ≈ 1.0. The dashed line indicates the

predicted power-law behavior according to Eq. (2.18) in the universal scaling regime given

the optimized value of zSW. (b) Scaling collapse using the second line of Eq. (2.22) to obtain

the diabatic to power-law scaling function f2 in the case of SW dynamics. The dashed line

shows the slope expected with the dynamic exponent extracted in panel (a). As in the case

of Metropolis, one can also independently obtain z by measuring the slope in the power-law

regime. The line with arrow indicates the region in which linear fit is performed after taking

log-log, we obtain x = 1.35(4) with χ2/dof ≈ 0.9, which implies zSW = 0.29(4).
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shows a scaling collapse according to the second line of Eq. (2.22). We can observe that the

universal power-law regime is reached in a window of 1/v where the data is collapsed for

the system sizes we have used. As demonstrated in Metropolis case, one can independently

estimate zSW by performing linear fit in the f2 scaling after taking log-log, this procedure

yields x = 1.35(4) with χ2/dof ≈ 0.9, which implies zSW = 0.29(4). As in the Metropolis

case, the zSW extracted by f1 and f2 scalings are completely consistent.

2.3.3 Wolff dynamics

The Wolff algorithm [48] is an improvement of the SW algorithm. It is based on constructing

single clusters according to the same bond rule as in the SW algorithm, but each time

starting from a random seed site (instead of one not previously visited when decomposing the

whole system into non-overlapping clusters in the SW algorithm) and flipping the clusters

with probability one. The clusters are then on average larger than in the SW algorithm,

and the dynamic exponent is therefore normally smaller. [54]

Fig. 2.9 shows a typical scenario for a linear quench on 2D Ising model with Wolff dynamics.

Same as the Metropolis and SW dynamics, a percolation cluster is seen at Tc. Notice that

in Wolff scenario a spin is randomly selected as the “seed” which will be used to grow a

Wolff cluster. Since the selection is purely random, in some occasions the cluster may only

have small sizes even when the temperature is close to Tc. However, one can imagine that

the chances of hitting the large clusters will become higher and higher as the temperature

moves toward Tc.

In order to compare the dynamics of the SW and Wolff algorithms it is important to treat

the time-step in the latter in such a way that the number of spins flipped is proportional

to N . Clearly, above Tc this is not the case for a single cluster, but one can still define

the elementary unit of time as the flipping of one cluster and subsequently rescale the time

based on the average cluster size, so that an extensive number of spins are flipped in the
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(a) (b)

(c) (d)

Figure 2.9: Illustration of a linear quench process on 2D Ising model with Wolff dynamics.

Shown are 25% (a), 50% (b), 75% (c), and 100% (d), through the quench process. Wolff

algorithm only constructs one cluster and flips it with probability 1, regardless of the size

of the cluster. Same as in the Metropolis and SW dynamics, at Tc (d), a percolating cluster

spanning the entire system is clearly observed in Wolff scenario. In this demonstration, a

total quench time τq = 3000 Monte Carlo steps is used on a 64× 64 square lattice.
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Figure 2.10: (a) Scaling collapse in the quasi-adiabatic regime (giving the scaling function

f1) for Wolff cluster dynamics with the time unit defined as the flipping of a single cluster.

Here the scaling collapse appears to break down at a singular point, as shown in greater

detail in the inset. In the regime where scaling collapse can be achieved, the optimized

value of the dynamic exponent is z′W = 0.55(2) with χ2/dof ≈ 1.0. (b) Scaled squared

magnetization in the diabatic regime, using a velocity rescaling of the form expected in this

regime (accounting for the size of the Wolff-clusters decreasing with the system size as L−2

for fixed v).

rescaled time unit. This is straight-forward in the equilibrium, where the scaling of the

average cluster size is known in terms of critical exponents and the Fourtuin-Kasteleyn

mapping. [65] The critical Wolff cluster size scales as the magnetic susceptibility, χ ∼ Lγ/ν .

This implies that on average ∼ Ld/Lγ/ν Wolff updates correspond to one MC step as defined

in SW or Metropolis dynamics. Denoting by z′W the dynamic exponent measured using the

single-cluster time unit and by zW the exponent corresponding to properly rescaled time,

the relationship between these exponents is therefore [54]

zW = z′W − (d− γ/ν). (2.27)

In non-equilibrium simulations the situation is more complicated, as we will see below.

We here perform the same kind of linear quench with Wolff dynamics at different velocities
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as in the previous subsections for Metropolis and SW dynamics. We consider the elementary

time unit as a single cluster flip and later discuss the subtleties involved in this definition.

The scaling procedure of the squared magnetization expected to yield the function f1 is

shown in Fig. 2.10 (a). Here we observe a feature distinctively different from the Metropolis

and SW cases: There is no universal scaling regime with power-law behavior. There is still

a quasi-adiabatic regime where the data collapse well. We discuss this regime first and will

return later to the lack of universal power-law scaling regime.

In the quasi-adiabatic regime the rescaled squared magnetization is rather flat in Fig. 2.10

(a). Upon closer examination, as shown in the inset, there is still a clear drop when the

scaled velocity approaches the region where the data-collapse breaks down. Interestingly,

that break-down appears to take place at a single well defined point. Using a polynomial

fit to the data before this point and optimizing the collapse by adjusting the dynamic

exponent as in the previous cases, we obtain z′W = 0.55(2). This again is the dynamic

exponent measured according to the single-cluster definition of time, and to compare with

Metropolis and SW dynamics the exponent should be shifted according to Eq. (2.27)—

provided that the quench is sufficiently adiabatic throughout this regime. Since for the 2D

Ising model γ = 7/4 and ν = 1, we obtain zW = 0.30(2). This value is in good agreement

with previous results, e.g., Ref. [54], providing further confirmation of the quench process

being effectively adiabatic in the regime where the scaling collapse occurs in Fig. 2.10 (a).

Let us now discuss the break-down of scaling collapse and absence of a power-law regime at

higher rescaled velocity. It seems clear that the break-down should be related to the single-

cluster definition of the time unit. The typical size of the cluster is naturally associated

with the temperature and the corresponding KZ correlation length, ξv, reached at a given

time step. This implies that at the early stage of the quench most of the system is left

untouched by the Wolff construction, due to the small ξv and cluster size. The growth of

the cluster size versus T as T is decreased is of course slower than in the equilibrium. The

left panel of Fig. 2.11 shows the average cluster size for different quench times as a fraction
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Figure 2.11: (a) Temperature dependence of the average cluster size C relative to the system

size N in Wolff-quenches at different velocities on a 128 × 128 lattice. (b) The fraction of

spins that are actually flipped with respect to the initial configuration after the entire

quench process, graphed as a function of the rescaled velocity with the dynamic exponent

z′W = 0.55 as obtained in Fig. 2.10 (a). The fraction of flipped spins should approach 1/2

if the system at the initial and final times are completely decorrelated.
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of the total system size for a system of size 1282. It is also illuminating to examine the

fraction Rf of spins actually flipped with respect to the initial configuration during the

entire quench, i.e., counting the number of spins that are different in the initial and final

configurations. If the simulation is ergodic within the total quench time, so that the initial

and final configurations can become completely decorrelated, this fraction should be very

close to 1/2 (strictly speaking, Rf → 1/2 exponentially fast for quench times much longer

than the autocorrelation time). Furthermore, with any definition of the time unit where all

spins are visited, the fraction approaches some L-independent constant, Rf ∈ (0, 1/2), when

v → ∞ (in practice, with our definitions, at v = (Ti − Tc)/τq with τq = 1; the minimum

quench time of one MC step). However, as shown in the right panel of Fig. 2.11, with the

single-cluster definition the flipped fraction decays sharply with increasing velocity and size.

Interestingly, it reaches 1/2 at a scaled velocity very close to the special point where the

scaling collapse breaks down in Fig. 2.10 (a). It is clear that no quasi-adiabatic evolution, or

even critical scaling, can take place if the scheme effectively is non-ergodic, as the Rf → 0

behavior indicates.

There is still of course a diabatic regime where in the high-velocity limit the magnetization

squared approaches its equilibrium value at the initial temperature. In this case, since

the effect of the single-cluster flips in one unit of time changes with T , the velocity is not

constant if one rescales to a time unit in which an extensive number of spins is flipped.

Therefore, effectively, the procedure corresponds to a nonlinear quench protocol leading to

an effectively much faster approach to the diabatic limit with increasing v than in schemes

based on usual definitions of the time unit with an extensive number of spin flips. With

usual time definitions, for any system size L one can reach any configuration, in principle,

in a single time steps, while with the Wolff algorithm, in the diabatic regime, the number

of steps (flipped clusters) needed for ergodic sampling increases with the system size and

also with the velocity (since the clusters increase in size with decreasing velocity).

Despite the peculiarities of the Wolff time unit, we can still attempt to rescale the data
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in Fig. 2.10 (a) using the same diabatic approach as in the SW and Metropolis cases, to

obtain the scaling function f2 in Eq. (2.22) for Wolff dynamics. However, in this case we

have to modify the argument a−(zr+1/ν)/v = vaKZ/v of the scaling function, because the

effective velocity is normalized up by a factor, the inverse average fraction of flipped spins

in a time step, which, as we have seen above, vanishes with increasing L for fixed v. Since

we are analyzing the diabatic regime, where the cluster size should be L-independent for

sufficiently large L, the flipped fraction of spins in one step should scale as L−d, and, thus,

we should let v → vLd in the scaling analysis. Setting the lattice scale parameter a = 1

as before, we therefore expect scaling collapse with f2(L−d/v), here with d = 2. Indeed, as

shown in Fig. 2.10 (b), graphing 〈m2〉L2 versus L−2/v, the data collapse almost perfectly,

down to a velocity where the scaling function appears to diverge in the thermodynamic

limit (with the quasi-adiabatic plateaus splitting off later as L grows).

The above analysis shows that, even with the subtleties of the single-cluster time unit in

the Wolff algorithm, there are still two well defined slow and fast regimes, where essentially

perfect data collapse onto functions f1 and f2 can be achieved. Unlike the cases of Metropo-

lis and SW dynamics, these scaling functions do not have any universal power-law parts

connecting them in cross-overs, but instead they both break down in a singular manner with

one type of scaling replaced by a completely different kind of scaling. In terms of rescaling of

the time unit of the single-cluster Wolff steps, we have demonstrated that on the adiabatic

side it is with the standard factor (same as in the equilibrium), t → tL−(d−γ/ν), while on

the diabatic side it is just t→ tL−d. The failures of these time rescalings at singular points

leads us to conclude that Wolff dynamics is associated with a dynamic phase transition, and

this transition is related to a sudden effective loss of ergodicity as a function of the velocity

in fast quenches.



65

2.4 Higher-dimensional models

Despite the similar dynamic exponents of the SW and Wolff algorithms when applied to

the 2D Ising model, zSW ≈ zW ≈ 0.3, the degree of critical slowing-down with these

algorithms can be very different in higher dimensions. To demonstrate that the scaling

schemes developed and tested in the bulk of the chapter also apply beyond the simple 2D

Ising model, and to further examine the peculiarities of the Wolff algorithm discovered in

Sec. 2.3.3, we here present results of linear SW and Wolff quenches of Ising models in higher

dimensions. The resulting dynamic exponents are listed in Table 2.1.

For the 3D Ising model, with the Hamiltonian (2.7) defined with nearest-neighbor inter-

actions on the simple cubic lattice, numerical estimates for the critical point Tc and the

exponents are known to rather high precision; [66] J/Tc = 0.22169(2), ν = 0.6298(5), and

η = 0.0366(8). Given these exponents, we use the exponent relation 2β/ν = 1 + η in the

r = 1 dynamic scaling relation (2.15).

We write the Hamiltonian for the fully-connected (or infinite-dimensional) Ising model as

H = − J

N − 1

N∑
i=1

∑
j>i

σiσj , (2.28)

where the coupling is normalized by the system size. Since mean-field theory becomes

exact for this model when N → ∞, we have Tc/J = 1, and the critical exponents are

ν = 1/2, β = 1/2. To apply scaling forms such as Eq. (2.22) in this case we have to use the

upper critical dimension of the Ising model, dc = 4, to define the effective system length as

Leff = N1/dc and use d = dc.

2.4.1 Swendsen-Wang dynamics

Data collapse for SW dynamics on the 3D model is shown in Fig. 2.12 (a). Fitting a

polynomial to the quasi-adiabatic region and adjusting the exponent to optimize the collapse
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Figure 2.12: (a) Optimized scaling collapse for linear SW quenches of the 3D Ising model,

giving zSW = 0.53(1) with χ2/dof ≈ 1.1. The dashed line shows the anticipated power-law

asymptotic behavior in the universal scaling regime, with the above value of the dynamic

exponent and the slope x given by Eq. (2.18). (b) Optimized log-log scaling collapse for

linear SW quenches of the fully-connected Ising model, giving zSW = 1.2(2) with χ2/dof ≈

0.8.
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as before gives zSW = 0.53(1), this is in good agreement with Ref. [52]. The collapsed region

where this fitting procedure was carried out corresponds mainly to the quasi-adiabatic

regime, but a cross-over to a power-law regime, with the slope consistent with the expected

exponent, is also clear for the larger system sizes.

The same kind of scaling collapse for the fully-connected Ising model is shown in Fig. 2.12

(b). Here we have much less data, but, focusing on the quasi-adiabatic regime, we can

observe scaling collapse with a dynamic exponent zSW = 1.2(2). This in good agreement

with mean-field calculation, [54] according to which zMF = 1.

2.4.2 Wolff dynamics

As we saw in the Sec. 2.3.3, Wolff dynamics on the 2D Ising model exhibits scaling collapse

in the quasi-adiabatic and diabatic regimes, but the smooth cross-over with power-law

scaling in Eq. (2.24) is lacking. It is interesting to investigate how this behavior evolves as

the dimensionality is increased, which we do here by studying the 3D and fully connected

models.

The analysis of the data in the quasi-adiabatic regime is presented in Fig. 2.13 (a). Here,

again, the data collapse appears to break down essentially at a point, with no apparent

signs of any emergent power-law scaling behavior (although the point at which the curves

split off from the scaling function appears to show somewhat more finite-size drift than in

Fig. 2.10 (a), where almost no drift can be seen). The dynamic exponent is z′
W

= 1.27(2).

To compare this with the exponent in SW dynamics, one again has has to shift the value

according to Eq. (2.27), which gives zW = 0.24(2).

Turning now to the fully connected Ising model, Fig. 2.13 (b) shows the outcome of an

optimized data collapse yielding z′
W

= 2.04(4), or, after shifting the value according to

Eq. (2.27), zW = 0.04(4). This confirms the expectation that the Wolff algorithm should

be completely free from critical slowing down in this case. [54] The figure also shows an
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Figure 2.13: (a) Optimized scaling collapse in the quasi-adiabatic regime of the 3D Ising

model with Wolff dynamics. The optimal dynamic exponent with the single-cluster time

unit is z′
W

= 1.27(2) with χ2/dof ≈ 1.0. The shifted value according to Eq. (2.27) is

zW = 0.24(2). The inset shows more details of the data (but on a lin-lin plot) around the

point where the data collapse breaks down. (b) Optimized scaling collapse in the quasi-

adiabatic regime of the fully connected Ising model subject to Wolff dynamics. The optimal

dynamic exponent is z′
W

= 2.04(4), or zW = 0.04(4), with χ2/dof ≈ 0.9. The dashed line

shows the expected behavior with z′ = 2 and mean-field static exponents (ν = β = 1/2) if

the exponent relation (2.18) is valid (which does not appear to be the case).
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Figure 2.14: The same data as in Fig. 2.13 (b), analyzed using diabatic scaling. Here

the exponent b ≈ 1.2 accounts for the growth of the Wolff-cluster size with Leff . It was

optimized for the best data collapse. The dashed line shows the expected behavior with the

exponent (2.18) with z′ = 2, that does not appear to apply here.

interesting feature different from any of the other cases we have considered: While the

data collapse now does also extend to (apparently) arbitrarily high scaled velocities and

the behavior does look like a power law, the slope on the log-log plot is not what would

be expected based on the relationship (2.18) with the dynamic exponent extracted in the

optimization of the data collapse (i.e., with z′ = 2 in place of z in the expression for the

exponent x). While we do not know the exact reason for this, one can suspect that it has to

do with the non-locality of the model invalidating the arguments leading to the exponent

relation (2.18), perhaps similar to violation of hyperscaling relations above the upper critical

dimension.

In Sec. 2.3.3, when analyzing the the diabatic regime for the 2D model, we had to rescale the

velocity by a factor Ld to account for the fact that the Wolff clusters stay constant in size

for fixed v when the system grows. In the fully-connected model, however, since the number

of interacting bonds per site increases as N , the Wolff clusters should be expected to grow

as well, as some power of the size. We have not investigated this behavior explicitly and
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therefore just assume that it is power law and graph 〈m2〉Ldceff versus L−beff /v (= N−b/4/v),

where b is optimized and should be expected to be less than du = 4 (since the clusters

cannot grow faster than N). As shown in Fig. 2.14, we can indeed achieve data collapse

this way, with b ≈ 1.2, although the subleading finite size corrections are very strong. This

value of b indicates that the Wolff clusters grow approximately as ∼ N0.3.

Beyond the clearly diabatic behavior in Fig. 2.14 we cannot yet, for the range of system

sizes considered, observe a clear power-law scaling regime, although the convergence of the

data is certainty consistent with a power law. Again, as in Fig. 2.13 (b) the behavior does

not appear to be consistent with the expected exponent given by Eq. (2.18), shown with

the dashed line in Fig. 2.14.

2.5 Summary of results on 2D Ising model

We have demonstrated a non-equilibrium quench approach and associated dynamic scaling

scheme for studying the scale-invariant universal behavior and various cross-over behaviors

when approaching critical points of classical phase transitions. Using three different variants

of MC dynamics—Metropolis, SW, and Wolff—we demonstrated that the order parameter

(the squared magnetization) is governed by two different scaling functions describing quasi-

adiabatic (including fully adiabatic) and diabatic (including extreme diabatic) evolution

from an initial paramagnetic state to the critical point. In all cases we have studied,

the two scaling functions capture the dynamic behavior for the entire range of velocities

v ∈ [0,∞) for all system sizes (up to very small subleading finite-size corrections also

present in the equilibrium). This complete characterization of the non-equilibrium scaling

for several dynamic schedules was the main result of the chapter. In addition, we showed

that the quench scheme can also be used to extract accurate values of the dynamic exponent

for given combinations of models and dynamics. In the main part of the chapter we used

the standard 2D Ising model, but we have also investigated the 3D and fully-connected



71

Dynamics Model z

Metropolis 2D 2.1767(5)

Swendsen-Wang

2D 0.297(3)

3D 0.53(1)

fc 1.2(2)

Wolff

2D 0.30(2)

3D 0.24(2)

fc 0.04(4)

Table 2.1: Dynamic exponents obtained using either f1 or f2 scaling for Ising models in

two and three dimensions, as well as the fully-connected (fc) model (infinite-dimensional).

The Metropolis dynamic exponent for 2D case quoted above is from f2 scaling of r = 2

quench, which yields the best estimate so far. The exponents for Wolff dynamics have been

shifted using Eq. (2.27) to account for the single-cluster definition of the time unit of the

simulations.

(infinite-dimensional) variants and report results for them in Sec. 2.4. We summarize our

results for the dynamic exponents in Table. 2.1.

In this chapter we performed linear and non-linear quenches to exactly the critical point

Tc and observed excellent scaling in both cases. The quasi-adiabatic and diabatic scaling

functions can be described perturbatively in v and 1/v, respectively, for small values of

these parameters. These regimes are normally (for SW and Metropolis dynamics) smoothly

connected to each other via cross-overs to a universal, non-perturbative power-law scaling

regime that can be described by either function. However, with Wolff dynamics, the two

scaling regimes are separated in a singular manner and there is no power-law regime. This

can be traced to the single-cluster definition of the time unit in the Wolff algorithm, which

for a linear quench leads to an effectively non-linear, ultrafast approach to the diabatic

limit, where the scheme becomes effectively non-ergodic. It is remarkable that the loss of

ergodicity takes place in such a singular way, and not through a smooth cross-over. The
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singular change in the scaling function can be interpreted as a dynamic phase transition.

An issue with the non-linear quenches of the form (2.13) is that the critical point has to be

known exactly for the protocol to be asymptotically non-linear. If the critical point is not

precisely known and the final point of the quench is therefore off the targeted critical value,

the quench ultimately becomes linear (if one stops below the true Tc) [67] or doesn’t reach

Tc at all (if one stops above the true Tc). In this situation, assume that the final point of

the non-linear quench is T ∗, the offset from the critical point |Tc−T ∗|L1/ν enters as another

argument of the scaling function (2.10). As usual in the scaling theory, the shorter length

scale dominates, and, provided T ∗ is below Tc and not too far off Tc, one should be able

to observe non-linear scaling r 6= 1 for some range of velocities before a cross-over to r = 1

scaling. If T ∗ > Tc there should instead be a cross-over into high-T behavior with a finite

correlation length. These cross-overs will be interesting targets for future studies.

Non-equilibrium relaxation from an ordered state has been widely used in the past to extract

the dynamic exponents for ordered systems as well as spin glasses. [20,44] In our language,

this corresponds to a sudden quench to the critical point, r = 0 in Eq. (2.13), starting from

the ordered state (instead of starting from the disordered state, as we did in the present

work). The “velocity” in this case is the inverse waiting time [unlike our definition (2.13)

where for r → 0 there is effectively waiting before a sudden quench and no waiting after],

and the order parameter asymptotically decays as a power of the time. Normally the decay

is studied for systems sufficiently large to effectively be in the thermodynamic limit for the

time windows considered. We have not compared these approaches in terms of their abilities

to extract high-precision values for the dynamic exponent, but at least naively it appears

to us that it should be better to take advantage of finite-size and finite velocity scaling. In

addition, for a linear quench one can also easily, without much additional computational

effort, obtain results not only at a known (or approximately known) final critical point, but

one can collect data also before the critical point is reached and continue past the critical

point as well. This opens opportunities for other types of scaling studies in the vicinity of
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Tc, using Eq. (2.9) and its generalizations to incorporate both adiabatic and diabatic scaling

functions.

Our value for the dynamic exponent for Metropolis updates of the 2D Ising model is in

good agreement with the best known value. [45] As we mentioned in Sec. 2.1.2, for cluster

dynamics the value of z has been a matter of debate for some time. For SW dynamics,

it was claimed in Ref. [53] that zSW = 0 for the 2D Ising model. However, based on our

approach, a nonzero zSW is clearly shown, not only in the scaling collapse of Fig. 2.8 (a) but

also as indicated by the consistent power-law behavior in the universal scaling regime. For

Wolff dynamics of the 2D Ising model, it was reported in Ref. [53] that zW = 1.19(2), which

is significantly higher than the value obtained in Ref. [54]. The latter is consistent with our

result in Table 2.1. As pointed out in Ref. [53], zW computed with standard relaxation from

an ordered state may in practice be sensitive to the initial state, unless extremely long times

are considered. Furthermore, the result may also depend on the targeted observable. [68]

In this sense we think our approach is more stable in practice and has useful features for

self-consistency checks, e.g., the same power laws appearing in all three dynamical regimes

in Eq. (2.24).

We have demonstrated that the dynamic exponent in principle can be extracted by two

different kinds of scaling collapses, especially when the static exponents are already known,

given either the quasi-adiabatic function f1 or the diabatic function f2 in Eq. (2.22).

Throughout the demonstration we show that the results of z obtained by f1 and f2 are

completely consistent. Since the diabatic quenches are very fast in comparison to the quasi-

adiabatic ones, it is more tempting to focus on the universal power-law scaling before the

cross-over into the quasi-adiabatic behavior. Apart from the savings in raw computer re-

sources, the data-collapsing procedure for f2 in the universal scaling regime requires no

knowledge or optimization of critical exponents; one simply plots 〈m2〉N versus v−1, in the

style of Fig. 2.5 (a), Fig. 2.6 (b), or Fig. 2.8 (b), and uses linear fit to extract the slope x

of the collapsed data on the log-log plot. The resulting x of course still is a combination of
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the critical exponents (2.18) and one needs some further steps to disentangle them.

It is very interesting to note that all the static exponents can be extracted along with z by

combining results from two different quench protocols characterized by two different values

of r in Eq. (2.13), as we demonstrated in Sec. 2.3.1. This may potentially be very beneficial

to systems such as spin glasses, where the large dynamic exponent makes it very difficult

to carry out equilibrium calculations for large systems. [64] In our proposed method above,

the need to equilibrate configurations at and close to the glass transition is completely

circumvented, as one can start from some elevated temperature, where the equilibration is

fast, and any slowing down “problem” just reflects the underlying dynamic exponent and

manifests itself in the form of the desired exponent x.

We also point out that the non-equilibrium scheme discussed here is not restricted only

to classical phase transitions, but also applies to quantum phase transitions, which can be

studied, e.g., with the quantum MC simulation schemes recently developed in Refs. [33,37]

for evolution in imaginary time. Some results for transverse-field Ising models were already

reported in the above references.
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Chapter 3

Quantum phase transitions approached through quasi-

adiabatic quench

3.1 Introduction

Quantum Monte Carlo (QMC) methods [63] have become indispensable tools for ground-

state and finite-temperature studies of many classes of interacting quantum systems, in

particular those for which the infamous “sign problem” can be circumvented. [69] In ground-

state projector methods, an operator P (β) is applied to a “trial state” |Ψ0〉, such that

|Ψβ〉 = P (β)|Ψ0〉 approaches the ground state of the Hamiltonian H when β → ∞ and an

expectation value 〈A〉 = 〈Ψβ|A|Ψβ〉/Z, with the norm Z = 〈Ψβ|Ψβ〉, approaches its true

ground-state value, 〈A〉 → 〈0|A|0〉. For the projector, one can use P (β) = exp (−βH) or

a high power of the Hamiltonian, P (M) = (−H)M . Here we will discuss a modification of

the latter projector for studies of dynamical properties of systems out of equilibrium.

Real-time dynamics for interacting quantum systems is difficult to deal with computation-

ally. Solving the Schrödinger equation directly, computations are restricted to very small

system sizes by the limits of exact diagonalization. Despite progress with the Density-Matrix

Renormalization Group (DMRG) [70, 71] and related methods based on matrix-product

states, this approach is in practice limited to one-dimensional systems and relatively short

times. Efficiently studying long-time dynamics of generic interacting quantum systems in

higher dimensions is still an elusive goal. However, recently, in Ref. [33], it was demon-

strated that real-time and imaginary-time dynamics bear considerable similarities, and in

the latter case, powerful and high-precision QMC calculations can be carried out on large
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system sizes for the class of systems where sign problems can be avoided.

Our work reported here is a further development of the method introduced in Ref. [33], where

it was realized that a modification of the ground-state projector Monte Carlo approach with

P (β) = exp (−βH) can be used to study non-equilibrium set-ups in quantum quenches (or

ramps), where a parameter of the Hamiltonian depends on time according to an arbitrary

protocol. By performing a standard Wick rotation of the time axis, a wave function is

governed by the Shrödinger equation in imaginary time t = −iτ (τ being real),

∂τ |ψ(τ)〉 = −H[λ(τ)]|ψ(τ)〉. (3.1)

Here the Hamiltonian depends on the parameter λ through time, e.g.,

H = H0 + λ(τ)V, (3.2)

where V and H0 typically do not commute. The method is not limited to this form, however,

and any evolution ofH can be considered. The Schrödinger equation has the formal solution

|ψ(τ)〉 = U(τ)|ψ(τ0)〉, (3.3)

where the imaginary-time evolution operator is given by

U(τ) = Tτexp

[
−
∫ τ

τ0

dτ ′H[λ(τ ′)]

]
, (3.4)

where Tτ indicates time ordering. A time-evolved state U(τ)|Ψ(τ0)〉 and associated expec-

tation values can be sampled using a generalized projector QMC algorithm. In Ref. [33] it

was demonstrated that this non-equilibrium QMC (NEQMC) approach can be applied to

study dynamic scaling at quantum phase transitions, and there are many other potential

applications as well, e.g., when going beyond studies of finite-size gaps in “glassy” quantum

dynamics and the quantum-adiabatic paradigm for quantum computing.

Here we introduce a different approach to QMC studies of quantum quenches, which gives

results for a whole range of parameters λ ∈ [λ(τ0), λ(τ)] in a single run (instead of just

the final time), at a computational effort comparable to the previous approach. Instead
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of using the conventional time-evolution operator Eq. (3.4), we consider a generalization of

the equilibrium QMC scheme based on projection with (−H)M , acting on the initial ground

state of H[λ(τ0)] with a product of evolving Hamiltonians:

PM,1 = [−H(λM )]....[−H(λ2)][−H(λ1)], (3.5)

where

λt = λ0 + t∆λ, (3.6)

and ∆λ = [λM − λ0]/M is the single-step change in the tuning parameter.1 Here we

will consider a case where the ground state |Ψ(λ0)〉 of H(λ0) is known and easy to gen-

erate (stochastically or otherwise) and the ground states for other λ-values of interest are

non-trivial. The stochastic sampling used to compute the evolution then takes place in a

space representing path-integral-like terms contributing to the matrix element (the norm)

〈Ψ(λ0)|P1,MPM,1|Ψ(λ0)〉. We will also later consider a modification of the method in which

the ground state at the final point λM is known as well, in which case contributions to

〈Ψ(λM )|PM,1|Ψ(λ0)〉 are sampled.

Staying with the doubly-evolved situation for now, we evaluate generalized expectation

values after t out of the M operators in the product (3.5) have acted:

〈A〉t =
〈Ψ(λ0)|P1,MPM,t+1APt,1|Ψ(λ0)〉
〈Ψ(λ0)|P1,MPM,1|Ψ(λ0)〉

. (3.7)

We will refer to this matrix element as an asymmetric expectation value, with the special

case t = M corresponding to a true quantum-mechanical expectation value taken with

respect to an evolved wave function,

|ψM 〉 =
PM,1|Ψ(λ0)〉√

〈Ψ(λ0)|P1,MPM,1|Ψ(λ0)〉
, (3.8)

which approaches the ground state |Ψ[λ(τM )]〉 of the Hamiltonian H[λ(τM )] for M →∞.

1In principle, one can also consider a nonlinear grid of “time” points, but here, we will consider the

simplest case of a uniform grid.
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Away from the adiabatic limit, the evolved wave function Eq. (3.8) is, generally speaking,

not the ground state of the equilibrium system. Nevertheless, as we demonstrate in detail

in Ref. [37], a quench velocity v ∝ ∆λN can be defined such that the symmetric expectation

value 〈A〉t=M in Eq. (3.7) approaches the expectation value 〈A(τ = t)〉 after a conventional

linear imaginary-time quantum quench with Eq. (3.4) done with the same velocity v, if v is

low enough. In fact, the two quantities are the same to leading (linear) order in v, not only

in the strict adiabatic limit v → 0. We therefore name this scheme the quasi-adiabatic QMC

(QAQMC) algorithm. Importantly, the leading corrections to the adiabatic evolution of the

asymmetric expectation values for any t contain important information about non-equal

time correlation functions, very similar to the imaginary-time evolution.

The principal advantage of QAQMC over the NEQMC approach is that expectation values of

diagonal operators in the basis used can be obtained simultaneously for the whole evolution

path λ0 . . . λM , by measuring 〈A〉t in Eq. (3.7) at arbitrary t points 2 (and one can also

extend this to general off-diagonal operators, along the lines of Ref. [72], but we here limit

studies to diagonal operators). The QAQMC scheme is also easier to implement in practice

than the NEQMC method because there are no time integrals to sample.

As mentioned above, we will here have in mind a situation where the initial state |Ψ(λ0)〉 is

in some practical sense “simple,” but this is not necessary for the method to work—any state

that can be simulated with standard equilibrium QMC methods can be used as the initial

state for the dynamical evolution. The final evolved state |ψM 〉 can be very complex, e.g.,

for a system in the vicinity of a quantum-critical point or in a “quantum glass” (loosely

speaking, a system with slow intrinsic dynamics due to spatial disorder and frustration

effects). Here, as a demonstration of the correctness and utility of the QAQMC approach,

we study generalized dynamic scaling in the neighborhood of the quantum phase transitions

in the standard one-dimensional (1D) and 2D transverse-field Ising models (TFIMs).

2Eq. 3.7 has been defined for t ≤M , but we can also define the asymmetric expectation value for 2M ≥

t > M by placing the operator within the product PM,1. Clearly, we have the symmetry 〈A〉2M−t = 〈A〉t.



79

As noted first in Ref. [33], the NEQMC method can be used to extract the components of

the quantum metric tensor, [73] the diagonal elements of which are the more familiar fidelity

susceptibilities. Thanks to its ability to capture the leading non-adiabatic corrections to

physical observables, the QAQMC approach can also be used for this purpose, and, as we

will discuss briefly here and in more detail in Ref. [41], one can also extract the Berry

curvature through the imaginary antisymmetric components of the geometric tensor

The rest of this chapter is organized in the following way. In Sec. 3.3, we summarize the

result of adiabatic perturbation theory (APT) for quantum critical scaling formalism that

had been discussed in detail in Ref. [37]. In Sec. 3.4, we discuss tests of the QAQMC scheme

on 1D and 2D TFIMs, and also present a high-precision result for the critical field in the

2D model. In Sec. 3.5, we summarize our main conclusions and discuss future potential

applications of the algorithm.

3.2 Adiabatic perturbation theory

The key question we address in this section is whether the matrix element 〈A〉t in Eq. (3.7)

can give useful dynamical information for arbitrary “time” points t in the sequence of 2M

operators. The expression only reduces to a conventional expectation value at the symmetric

point t = M , and even there it is not clear from the outset how 〈A〉t=M computed for differ-

ent M relates to the velocity dependence of the expectation value 〈Ψ(0)|U∗(τ)AU(τ)|Ψ(0)〉

based on the Schrödinger time-evolution operator in Eq. (3.4). Going away from the sym-

metric point brings in further issues to be addressed. For instance, there is no variational

property of the asymmetric expectation value 〈H〉t of the Hamiltonian for t 6= M . Never-

theless, the approach to the adiabatic limit is well behaved and we can associate the leading

deviations from adiabaticity with well defined dynamical correlation functions that appear

as physical response in real time protocols. We show here, for the linear evolution Eq. (3.6),

that one can identify a velocity v ∝ N/M such that a linear imaginary-time quench with
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λt = vt in Eq. (3.6) gives the same results in the two approaches when t = M , including

the leading (linear) corrections in v. For t 6= M , the relevant susceptibilities in QAQMC

defining non-adiabatic response are different than at t = M but still well defined, contain

useful information, and obey generic scaling properties.

In order to facilitate the discussion of the QAQMC method, we here first review the previous

APT approach for Schrödinger imaginary-time dynamics [33,41] and then derive analogous

expressions for the product-evolution. After this, we discuss some properties of the sym-

metric and asymmetric expectation values.

3.2.1 Imaginary-time Schrödinger dynamics

The NEQMC method [33] uses a path-integral-like Monte Carlo sampling to solve the

imaginary-time Shcrödinger equation Eq. (3.1) for a Hamiltonian H[λ(τ)] with a time-

dependent coupling. The formal solution at time τ is given by the evolution operator

Eq. (3.4). In the strict adiabatic limit, the system will follow the instantaneous ground

state, while in the slow limit one can anticipate deviations from adiabaticity, which will

become more severe in gapless systems and, in particular, near phase transitions. Let us

discuss the leading non-adiabatic correction to this imaginary-time evolution. The natural

way to address this question is to use APT, similar to that developed in Refs. [40, 74] in

real time. We here follow closely the discussion of the generalization to imaginary time in

Ref. [33].

We first write the wave function in the instantaneous eigenbasis {|n(λ)〉} of the time-

dependent Hamiltonian H[λ(τ)]:

|ψ(τ)〉 =
∑
n

an(τ)|n(λ(τ))〉. (3.9)

We then substitute this expansion into Eq. (3.1),

dan
dτ

+
∑
m

am(τ)〈n|∂τ |m〉 = −En(λ) an(τ), (3.10)
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where En(λ) are the eigenenergies of the Hamiltonian H(λ) corresponding to the states |n〉

for this value of λ. Making the transformation

an(τ) = αn(τ) exp

[∫ 0

τ
En(τ ′)dτ ′

]
, (3.11)

we can rewrite Eq. (3.1) as an integral equation;

αn(τ) = αn(0) +
∑
m

∫ 0

τ
dτ ′ 〈n|∂τ ′ |m〉αm(τ ′)× exp

[
−
∫ 0

τ ′
dτ ′′

(
En(τ ′′)− Em(τ ′′)

)]
, (3.12)

where it should be noted that αn(0) = an(0). In principle we should supply this equation

with initial conditions at τ = τ0, but this is not necessary if |τ0| is sufficiently large, since

the sensitivity to the initial condition will then be exponentially suppressed. Instead, we

can impose the asymptotic condition αn(τ → −∞)→ δn0, which implies that in the distant

past the system was in its ground state.

Eq. (3.12) is ideally suited for an analysis with the APT. In particular, if the rate of change

is very small, λ̇(τ)→ 0, then to leading order in λ̇ the system remains in its ground state;

αm(τ) ≈ δm0 (except during the initial transient, which is not important because we are

interested in large |τ0|). In the next higher order, the transition amplitudes to the states

n 6= 0 are given by;

αn(0) ≈ −
0∫

−∞

dτ 〈n|∂τ |0〉 exp

[
−
∫ 0

τ
dτ ′∆n0(τ ′)

]
, (3.13)

where ∆n0(τ) = En(τ) − E0(τ). The matrix element above for non-degenerate states can

also be written as

〈n|∂τ |0〉 = −〈n|∂τH(τ)|0〉/∆n0(τ). (3.14)

In what follows we will assume that we are dealing with a non-degenerate ground state.

To make further progress in analyzing the transition amplitudes Eq. (3.13), we consider the

very slow asymptotic limit λ̇ → 0. To be specific, we assume that near τ = 0 the tuning
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parameter has the form (see also Ref. [74])

λ(τ) ≈ λ(0) +
vλ|τ r|
r!

Θ(−τ). (3.15)

The parameter vλ, which controls the adiabaticity, plays the role of the quench amplitude

if r = 0, the velocity for r = 1, the acceleration for r = 2, etc. It is easy to check that in

the asymptotic limit vλ → 0, Eq. (3.13) gives

αn ≈ vλ
〈n|∂λ|0〉

(En − E0)r
= −vλ

〈n|∂λH|0〉
(En − E0)r+1

, (3.16)

where all matrix elements and energies are evaluated at τ = 0. From this perturbative result

we can in principle evaluate the leading non-adiabatic response of various observables and

define the corresponding susceptibilities. For the purposes of comparing with the QAQMC

approach, Eq. (3.16) suffices.

3.2.2 Operator-product evolution

The quasi-adiabatic QMC method may appear very different from NEQMC but has a similar

underlying idea. Instead of imaginary time propagation with Eq. (3.4), we apply a simple

operator product to evolve the initial state. We first examine the state propagated with the

first t operators in the sequence Pt,1 in Eq. (3.5),

|ψt〉 = [−H(λt)] . . . [−H(λ2)][−H(λ1)]|ψ0〉, (3.17)

and after that we will consider symmetric expectation values of the standard form 〈ψM |A|ψM 〉

as well as the asymmetric expectation values in Eq. (3.7). We assume that the spectrum of

−H is strictly positive, which is accomplished with a suitable constant offset to H if needed.

Linear protocols

The coupling λ can depend on the index t in an arbitrary way. It is convenient to define

τi =
i

T
, (3.18)
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where T is the overall time scale, which can be set to unity. The leading non-adiabatic

corrections will be determined by the system properties and by the behavior of λ(τi) near the

point of measurement t. The most generic is the linear dependence λ(τi) ≈ λ(t)+ ṽλ(t−τi),

where ṽλ is related to the quench velocity (see below). In the end of this section we will

briefly consider also more general nonlinear quench protocols.

Our strategy to analyze Eq. (3.17) in the adiabatic limit will be the same as in the preceding

subsection. We first go to the instantaneous basis and rewrite

|ψ(τi)〉 ≡ |ψi〉 =
∑
n

an(τi)|n(λi)〉 ≡
∑
n

ain|ni〉. (3.19)

In the instantaneous basis, the discrete Schrödinger-like equation |ψi+1〉 = −H(τi+1)|ψi〉

reads

ai+1
n = −

∑
m

aimE i+1
n 〈ni+1|mi〉, (3.20)

and it is instructive to compare this with Eq. (3.10). It is convenient to first make a

transformation

ain =

t∏
j=i+1

1

(−Ejn)
αin. (3.21)

This transformation does not affect the transition amplitude at the time of measurement t:

atn = αtn. Then the equation above becomes

αi+1
n =

∑
m

αim

 t∏
j=i+1

Ejn
Ejm

 〈ni+1|mi〉. (3.22)

Let us introduce a discrete derivative

〈ni|
←−
∆ ≡ 〈ni+1| − 〈ni|, (3.23)

and write the Schrödinger-like equation as

αi+1
n = αin +

∑
m

αim

 t∏
j=i+1

Ejn
Ejm

 〈ni|←−∆ |mi〉. (3.24)
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In the adiabatic limit, the solution of this equation is αin = δn0, i.e., the instantaneous

ground state. To leading order of deviations from adiabaticity we find

αi+1
n = Cn +

i∑
k=0

 t∏
j=k+1

Ejn
Ej0

 〈nk|←−∆ |0k〉, (3.25)

where Cn can be determined from the initial condition. In the limit of sufficiently large t

the initial state is not important so we should have αt−in → 0 for i � 1, so that Cn = 0.

Therefore we find that the amplitude of the transition to the excited state is approximately

αtn ≈
t−1∑
k=0

 t∏
j=k+1

Ejn
Ej0

 〈nk|←−∆ |0k〉. (3.26)

Changing the summation index k to p = t− k we have

αtn ≈
t∑

p=1

 t∏
j=t+1−p

Ejn
Ej0

 〈nt−p|←−∆ |0t−p〉. (3.27)

It is clear that for large t only p� t terms contribute to the sum. In the extreme adiabatic

limit one can thus move the matrix element outside of the summation and use the spectrum

of the final Hamiltonian. In this case we find

αtn ≈ En
E0

〈n|
←−
∆ |0〉

1− En/E0

= −En∆λ
〈n|
←−
∂λ|0〉

En − E0
= En∆λ

〈n|∂λ|0〉
En − E0

, (3.28)

where ∆λ = λ(t) − λ(t − 1). By comparing Eqs. (3.16) and (3.28) we see that near the

adiabatic limit QAQMC and NEQMC are very similar if En/E0 ≈ const. This can in

principle always be ensured by having a sufficiently large energy offset, but even with a

small offset we expect the ratio to be essentially constant for the range of n contributing

significantly when the spectrum becomes gapless close to a quantum-critical point. If the

condition indeed is properly satisfied, then from Eqs. (3.16) and (3.28), we identify the

quench velocity as

vλ = E0∆λ. (3.29)
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This is the main result of this section. We will confirm its validity explicitly in numerical

studies with the QAQMC method in Sec. 3.4. Since E0 ∝ N , where N is the system size,

we can also see that vλ ∝ N∆λ ∝ N/M for a given total change in λ over the M operators

in the product.

Let us point out that Eq. (3.28) can be also rewritten as

αtn ≈ −E0∆λ
〈n|
←−
∂λ|0〉

En − E0
−∆λ〈n|

←−
∂λ|0〉. (3.30)

The first contribution here exactly matches that of Eq. (3.16) while the second term is an

additional contribution corresponding to a sudden quench.

3.2.3 Expectation values

While asymptotically Eq. (3.7) gives the ground state of the observable A in the adiabatic

limit for all values of t, the approach to this limit as t → ∞ is qualitatively different

depending on whether t is equal to M or not. More precisely, if t = ηM where η ∈ (0, 2) as

M →∞, we encounter two different asymptotic regimes for η 6= 1 and η = 1.

Symmetric expectation values; t = M

In this limit the expectation value of the observable A in the leading order of the adiabatic

perturbation theory reduces to

〈A〉t=M ≈ 〈ψ(vλ)|A|ψ(vλ)〉, (3.31)

where vλ ≈ E0∆λ is the imaginary time velocity identified earlier. For generic observables

not commuting with the Hamiltonian, we find

〈A〉t=M ≈ 〈A〉0 + vλχ
′
Aλ, (3.32)

where

χ′Aλ =
∑
n6=0

〈0|A|n〉〈n|∂λ|0〉
En − E0

+ c.c. (3.33)
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is the susceptibility. All energies and matrix elements are evaluated at “time” t = M .

For diagonal observables A, like the energy or energy fluctuations, we have

〈A〉t=M ≈ 〈A〉0 + v2
λ

∑
n6=0

|〈n|∂λ|0〉|2

(En − E0)2
〈n|A|n〉. (3.34)

In particular, the correction to the energy is always positive as it should be for any choice

of wave function deviating from the ground state. Let us emphasize that for diagonal

observables the leading non-adiabatic response at the symmetric point in imaginary time

coincides with that in real time, and, thus QAQMC or NEQMC can be used to analyze real

time deviations from adiabaticity, as was pointed out in the case of NEQMC in Ref. [33].

Asymmetric expectation value, t 6= M

It turns out that the asymptotic approach to the adiabatic limit is quite different for non-

symmetric points t = ηM with η 6= 1. Without loss of generality we can focus on 0 < η < 1

(since all expectation values are symmetric with respect to η → 2 − η for the symmetric

protocol we consider [?]). Then the expectation value of A is evaluated with respect to

different eigenstates

〈A〉t =
〈ψL|A|ψR〉
〈ψL|ψR〉

, (3.35)

where

|ψR〉 = H(λt) · · ·H(λ2)H(λ1)|ψ0〉,

|ψL〉 = H(λt+1) · · ·H(λM−1)H(λM )PM,1|ψ0〉. (3.36)

Note that the overlap 〈ψL|ψR〉 is independent of t by construction and is real.

It is easy to see that for diagonal observables we obtain a leading asymptotic as in Eq. (3.34)

but with the opposite sign in the second term

〈A〉t6=M ≈ 〈A〉0 − v2
λ

∑
n6=0

|〈n|∂λ|0〉|2

(En − E0)2
〈n|A|n〉. (3.37)
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In particular, the leading correction to the ground state energy is negative when t deviates

sufficiently from the symmetric point, i.e., |λt−λ1|/vλ �M . There is no contradiction here

since the left and right states are different (i.e., we are not evaluating a true expectation

value and there is no variational principle). Both Eqs. (3.34) and (3.37) recover the exact

result in the adiabatic limit. Since the correction up to the sign exactly matches the real

time result, we can still use the non-symmetric expectation value for diagonal observables to

extract the real time non-adiabatic response. For t→M , the sign of the correction should

change, to connect smoothly to the variational t = M expectation value. The crossover

between positive and negative corrections to the energy takes place around a point that

asymptotically converges to t = M in the adiabatic limit (where the deviation from the

ground-state energy at t = M vanishes). We will illustrate this with numerical results in

Sec. 3.3.1 (see Fig. 3.2).

As in the symmetric case, using the APT discussed in the previous section the results

derived here easily extend to other values of the exponent r.

3.3 Formalism and quantum-critical scaling

As a demonstration of the utility of QAQMC and the behaviors derived in the previous

section we here study the TFIM, defined by the Hamiltonian

H = −s
∑
〈i,j〉

σzi σ
z
j − (1− s)

∑
i

σxi , (3.38)

where 〈i, j〉 are nearest-neighbor sites, and σz and σx are Pauli matrices. Here, s plays the

role of the tuning parameter, which in the simulations reported below will vary between 0

(where the ground state is trivial) to a value exceeding the quantum-critical point; sc = 1/2

in a 1D chain and sc ≈ 0.247 in the 2D square lattice. [75]

Fig. 3.1 demonstrates a typical linear quench in imaginary time on a 2D transverse-field

Ising model. An obvious transition around s ≈ 0.247 is clearly seen, as we will discuss in
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more detail in Sec. 3.4.2. Since the quench is carried in imaginary time, the entire transition

curve m2 vs. s is obtained in a single simulation.

We work in the standard basis of eigenstates of all Szi . The simulation algorithm samples

strings of 2M diagonal and off-diagonal terms in Eq. (3.38), in a way very similar to the T >

0 stochastic series expansion (SSE) method, which has been discussed in detail in the case of

the TFIM in Ref. [13]. The modifications for the QAQMC primarily concern the sampling

of the initial state, here |Ψ(0)〉 =
∏
i | ↑i + ↓i〉, which essentially amounts to a particular

boundary condition replacing the periodic boundaries in finite-temperature simulations.

An SSE-like scheme with such modified boundaries was also implemented for the NEQMC

method in Ref. [33], and recently also in a study of combinatorial optimization problems in

Ref. [30]. We here follow the same scheme, using cluster updates in which clusters can be

terminated at the boundaries. The implementation for the product with varying coupling

s is even simpler than SSE or NEQMC, with the fixed-length product replacing the series

expansion of Eq. (3.4). The changes relative to Refs. [13, 33] are straightforward and we

therefore do not discuss the sampling scheme further here.

3.3.1 Cross-over of the energy correction

As we discussed in Ref. [37], the asymmetric expectation value (3.7) of the Hamiltonian

has a negative correction to the ground-state energy when t is sufficiently away from the

symmetric point t = M . In Fig. 3.2 we illustrate this property and the convergence to

the ground-state energy for all t with increasing M with simulation data for a small 1D

TFIM system. We here plot the results versus the rescaled propagation power η = t/M .

The region of negative deviations move toward the symmetric point with increasing M .

Note that the deviations here are not strongly influenced by the critical point (which is

within the parameter s simulated but away from the symmetric point), although the rate

of convergence should also be slow due to criticality. The rate of convergence to the ground

state can be expected to be (and is here seen to be) most rapid for η < ηc1 and η > ηc2.
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(a) (b)

(c) (d)

Figure 3.1: Illustration of a linear quench in imaginary time on 2D transverse-field Ising

model. Shown are 25% (a), 50% (b), 75% (c), and 100% (d), through the quench process.

For each panel, the top-left sub-panel shows the tuning parameter s as a function of the

imaginary-time index p, the top-right sub-panel shows the order parameter, the z-component

magnetization-squared, as a function of the tuning parameter s, and the bottom sub-panel

shows the system. In this demonstration, a normalized string length M/N = 100 is used on

a 20× 20 square lattice. Notice that the entire m2 vs. s curve can be obtained in a single

run.
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Figure 3.2: Symmetric and asymmetric expectation values of the Hamiltonian in QAQMC

calculations for 1D TFIM Eq. (3.38) with N = 24. Here, the evolution was from s = 0 to

0.6 and, thus, s = 0.6 is the symmetric point here labeled by η = t/2M = 1. For η ≤ 1,

s = 0.6η and for η ≥ 1, s = 1.2 − 0.6η, and the critical point s = 1/2 hence corresponds

to ηc1 ≈ 0.833 and ηc2 ≈ 1.167. (Bottom) Expectation value and (top) deviation from the

true ground-state energy (obtained using Lanczos exact diagonalization).
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3.3.2 Quantum-critical dynamic scaling

The idea of dynamic scaling at a critical point dates back to Kibble and Zurek for quenches

(also called ramps, since the parameter does not have to change suddenly, but linearly

with arbitrary velocity as a function of time) of systems through classical phase transitions.

[14, 15] Here, the focus was on the density of defects. The ideas were later generalized

also to quantities more easily accessible in experiments, such as order parameters, and the

scaling arguments were also extended to quantum systems. [16,31,38,39] The basic notion

is that the system has a relaxation time trel, and if some parameter (here a parameter of

the Hamiltonian) is changed such that a critical point is approached, the system can stay

adiabatic (or in equilibrium) only if the remaining time t to reach the critical point is much

larger than the relaxation time, t � trel. In general, one expects trel ∼ ξz ∼ ε−zν , where

ξ is the correlation length, ν the exponent governing its divergence with the distance ε to

the critical point, and z the dynamic exponent. For a system of finite size (length) L, ξ

is maximally of order L and, thus, for a linear quench the critical velocity vcrit separating

slow and fast power-law quenches according to Eq. (3.15) should heuristically be given by

vcrit ∼ L−(z+1/ν), and for a power-law quench with exponent r according to Eq. (3.15) this

generalizes to [74]

vcrit ∼ L−(zr+1/ν). (3.39)

One then also expects a generalized finite-size scaling form for singular quantities A,

A(L, ε) = Lκf(εL1/ν , vLzr+1/ν), (3.40)

where κ characterizes the leading size-dependence at the critical point of the quantity con-

sidered. For v → 0, Eq. (3.40) reduces to the standard equilibrium finite-size scaling

hypothesis. This scaling was recently suggested and tested in different systems, both quan-

tum [40,74] and classical [32].

The above expression Eq. (3.40) combined with the product-evolution Eq. (3.5) allows us

to study a phase transition based on different combinations of scaling in the system size



92

and the velocity in non-equilibrium setups. For example, if one wants to find the critical

point for the phase transition and the exponent ν is known, one can carry out the evolution

under the critical-velocity condition:

vLz+1/ν = c, (3.41)

where c is a constant. In this paper, we focus on linear quench protocols and set r = 1

henceforth. As we discussed in Sec. 3.2.2, the QAQMC method applied to a system of size

(volume) N based on evolution with M operators in the sequence and change ∆λ between

each successive operator corresponds to a velocity v ∝ N∆λ ∝ N/M , with the prefactor

depending on the ground state energy (at the critical point). The exact prefactor will not

be important for the calculations reported below, and for convenience in this section, we

define

v = sf
N

M
, (3.42)

where sf is the final value of the parameter s in Eq. (3.38) over the evolution (which is also

the total change in s, since we start with the eigenstate at s = 0). The critical product-

length M is, thus, given by

M =
1

c
NLz+1/ν =

1

c
Ld+z+1/ν , (3.43)

where we have also for simplicity absorbed sf into c.

Using an arbitrary c of order 1 in Eq. (3.41), the critical point sc can be obtained based on

a scaling function with the single argument εL1/ν in Eq. (3.40). We will test this approach

here, in Secs. 3.4.1 and 3.4.2, and later, in Sec. 3.4.3, we will show that exact knowledge

of the exponents in Eq. (3.41) is actually not needed. First, we discuss the quantities we

consider in these studies.
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3.3.3 Quantities studied

We will focus our studies here on the squared z-component magnetization (order parameter),

m2
z =

〈 1

N2

( N∑
i

σzi

)2〉
, (3.44)

We can also define a susceptibility-like quantity (which we will henceforth refer to as the

susceptibility) measuring the magnetization fluctuations:

χ = N(
〈
m2
z

〉
− 〈|mz|〉2). (3.45)

Here both terms have the same critical size-scaling as the equal-time correlation function;

〈mz〉2 ∼ 〈|mz|〉2 ∼ L−(d+z−2+η), (3.46)

where d is the spatial dimensionality. The prefactors for the two quantities are different,

however, a divergent peak remains in Eq. (3.45) at the transition. Away from the critical

point χ→ 0 with increasing system size.

To clarify our use of χ, we point out that we could also just study the scaling of
〈
m2
z

〉
,

but the peak produced when subtracting off the second term in Eq. (3.45) is helpful in the

scaling analysis. According to Eq. (3.40) and using z = 1 in Eq. (3.46), the full scaling

behavior of the fluctuation around the critical point should follow the form

χ ∼ L1−η f
(
(s− sc)L1/ν , vL1+1/ν

)
, (3.47)

for any dimensionality d.

We should point out here that the true thermodynamic susceptibility based on the Kubo

formula [76] (imaginary-time integral) yields a stronger divergence L2−η. This quantity is,

however, more difficult to study with the QAQMC algorithm, because, unlike in standard

finite-T QMC methods, the time integration cannot simply be carried out within the space

of time-evolving Hamiltonians in Eq. (3.5) and Eq. (3.7). The standard Feynman-Suzuki
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correspondence between the d-dimensional quantum and (d + 1)-dimensional classical sys-

tems is not realized in our scheme. The configuration space of time-evolving Hamiltonians

builds in the relaxation time, trel, in a different way, not just in terms of equilibrium fluc-

tuations in the time direction, but in terms of evolution as a function of a time-dependent

parameter.

A useful quantity to consider for extracting the critical point is the Binder cumulant, [62],

U =
3

2

(
1− 1

3

〈
m4
z

〉
〈m2

z〉
2

)
. (3.48)

For a continuous phase transition, U converges to a step function as L→∞. The standard

way to analyze this quantity for finite L is to graph it versus the argument s for different L

and extract crossing points, which approach the critical point with increasing L. Normally,

this is done in the equilibrium, either by taking the limit of the temperature T → 0 for

each L first, or by fixing β = 1/T ∝ Lz if z is known. Here, the latter condition is replaced

by Eq. (3.41), but, as we will discuss further below, the condition can be relaxed and the

exponents do not have to be known accurately a priori. Our approach can also be used

to determine the exponents, either in a combined procedure of simultaneously determining

the critical point and the exponents, or with a simpler analysis after first determining the

critical point.

We have up until now only considered calculations of equal-time observables, but, in princi-

ple, it is also possible and interesting to study correlations in the evolution direction, which

also can be used to define susceptibilities.

In the following we will illustrate various scaling procedures using results for the 1D and

2D TFIMs. The dynamic exponent z = 1 is known for both cases, and in the 1D case all

the exponents are rigorously known since they coincide with those of the classical 2D Ising

model. For the 2D TFIM, the exponents are know rather accurately based on numerics for

the 3D classical model.
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Figure 3.3: Results of typical QAQMC runs for the 1D TFIM, Eq. (3.38). The binder

cumulant Eq. (6.16) (bottom) and the susceptibility χ Eq. (3.45) (top) are graphed versus

s for several system sizes L. In these simulations, which spanned the range s ∈ [0, 0.6], the

length of the index sequence was of the form Eq. (3.43), i.e., with the exponents applicable

in this case M = L3/c with the arbitrary constant chosen to be c = 43/240.

3.4 Numerical results

3.4.1 1D transverse-field Ising model.

The 1D TFIM provides a rigorous testing ground for the new algorithm and scaling proce-

dures since it can be solved exactly. [6] The critical point corresponds to the ratio between

the transverse field and the spin-spin coupling equaling 1, i.e., s = 1/2 in the Hamiltonian

Eq. (3.38). The critical exponents, known through the mapping to the 2D Ising model, [10]

are ν = 1 and η = 1/4.

The results presented here were obtained in simulations with the parameter s spanning the
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Figure 3.4: Results of a Binder-crossing scaling analysis of the 1D TFIM data in Fig. 3.3

(including also other system sizes not shown there). Crossing points were extracted based

on system sizes L and L + 4, with L = 4, 8, . . . , 60. The curve is a fit to the form [62]

sc(L) = sc + a/Lb, sc = 0.49984(16) and b = 1.6(1).

range [0, sf ] with sf = 0.6, i.e., going from the trivial ground state of the field term to well

above the critical point. Fig. 3.3 shows examples of results for the susceptibility and the

Binder cumulant. The operator-sequence length M , Eq. (3.5), was scaled with the system

size in order to stay at the critical velocity according to Eq. (3.43). We emphasize again

that a single run produces a full curve within the s-range used. In order to focus on the

behavior close to criticality, we have left out the results for small s in Fig. 3.3. Since M is

very large (up to ≈ 106 for the largest L in the cases shown in the figure), we also do not

compute expectation values for each t in Eq. (3.7), but typically spacing measurements by

∝ N operators.

Extracting Binder curve-crossings using system-size pairs L and L+4, with L = 4, 8, 12, . . . 60,

and extrapolating the results to L→∞, we find sc = 0.49984(16), as illustrated in Fig.(3.4).

Thus, the procedure produces results in full agreement with the known critical point.

The dynamical scaling of the susceptibility is illustrated in Fig. 3.5. Here, there are no

adjustable parameters at all, since all exponents and the critical coupling are known (and
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Figure 3.5: Scaled susceptibility of the 1D TFIM. The axes have been scaled according to

the form Eq. (3.47) with the second argument constant and using the exact critical point

sc = 1/2. The results are shown on two different scales to make visible deviations (due to

subleading size and velocity corrections) from the common scaling function far away from

criticality as well as the good data collapse close to the critical point.

we use the exact critical coupling sc = 1/2, although the numerical result extracted below

is very close to this value and produces an almost identical scaling collapse). While some

deviations from a common scaling function are seen for the smaller systems and far away

from the scaled critical point (s − sc)L, the results for larger sizes and close to the peak

rapidly approach a common scaling function. This behavior confirms in practice our dis-

cussion of the definition of the velocity and the ability of the QAQMC method to correctly

take into account at least the first corrections to the adiabatic evolution.
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3.4.2 2D transverse-field Ising model

The 2D transverse-field Ising model provides a more serious test for our algorithm since

it cannot be solved exactly. Among many previous numerical studies, [75, 77] Ref. [75]

arguably has the highest precision so far for the value of the critical coupling ratio. Exact

diagonalization was there carried out for up to 6 × 6 lattice size. In terms of the critical

field hc = 1 − s in units of the coupling J = s, the critical point was determined to

hc/J = 1/0.32841(2) = 3.04497(18), where the error bar reflects estimated uncertainties in

finite-size extrapolations. Results based on QMC simulations [77] are in agreement with

this value, but the statistical errors are larger than the above extrapolation uncertainty.

One might worry that the system sizes L ≤ 6 are very small and the extrapolations may

not reflect the true asymptotic L → ∞ size behavior. However, the data points do follow

the functional forms expected based on the corresponding low-energy field theory, and there

is therefore no a priory reason to question the results. It is still useful to try to reach similar

or higher precision with other approaches, as we will do here with the QAQMC method

combined with dynamic scaling.

In this case we simulate the linear quench in the window of s ∈ [0, 0.3], which contains

the previous estimates for the critical value sc ≈ 0.247 as discussed above. Although we

could also carry out an independent scaling analysis to extract the critical exponents, we

here choose to just use their values based on previous work on the classical 3D Ising model;

1/ν ≈ 1.59, and η ≈ 0.036. [66] Our goal here is to extract a high-precision estimate of the

critical coupling, and, at the same time, to further test the ability of QAQMC to capture

the correct critical scaling behavior. We again scale M with L according to Eq. (3.43), with

the constant c = 44.59/32.

As in the 1D case, we extract Binder-cumulant crossing points based on linear system sizes

L and L+ 4 with L = 4, 8, . . . , 56. Fig. 3.6 shows the results versus 1/L along with a fit to

a power-law correction [62] for sc(L). Extrapolating to infinite size gives sc = 0.247244(4),
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Figure 3.6: Binder crossings for the 2D TFIM extracted using L and L + 4 systems with

L = 4, 8, . . . , 56. The crossing points have been fitted to the standard form [62] sc(L) =

sc + a/Lb, for which the optimal values are sc = 0.247244(4) and b = 4.0(1). The results

are shown on two different scales to illustrate large deviations from the fitted form for the

smaller systems, followed by a rapid convergence for larger sizes.
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which corresponds to a critical field (in unit of J) hc/J = 3.04458(7). This is in reasonable

good agreement with the value obtained in Ref. [75] and quoted above, with our (statistical)

error bar being somewhat smaller. To our knowledge, this is the most precise value for the

critical coupling of this model obtained to date. We emphasize that we here relied on

the non-equilibrium scaling ansatz to extract the equilibrium critical point. Allowing for

deviations from adiabaticity in a controlled way and utilizing the advantage of the QAQMC

algorithm allowed us to extract observables in the whole range of couplings in a single

run. This requires considerably less computational resources than standard equilibrium

simulations, which must be repeated for several different couplings in order to carry out the

crossing-point analysis.

Fig. 3.7 shows the susceptibility scaled according to the behavior expected with Eq. (3.40)

when the second argument is held constant. As in the 1D case, the data converge rapidly

with increasing size toward a common scaling function in the neighborhood of the transition

point, again confirming the correct quasi-adiabatic nature of the QAQMC method.

3.4.3 Further tests

The results discussed in the preceding subsections were obtained with the KZ velocity con-

dition Eq. (3.41), applied in the form of Eq. (3.43) tailored to the QAQMC approach,

with specific values for the constant c. In principle, the constant is arbitrary, but the non-

universal details of the scaling behavior depend on it. This is in analogy with a dependence

on the shape, e.g., an aspect ratio, of a system in equilibrium simulations at finite temper-

ature, or to the way the inverse temperature β = 1/T is scaled as aLz with arbitrary a in

studies of quantum phase transitions (as an alternative to taking the limit β →∞ for each

lattice size). The critical point and the critical exponents should not depend on the choices

of such shape factors or limiting procedures.

To extract the critical coupling, in the preceding subsections, we fixed the exponents ν
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Figure 3.7: Scaled susceptibility of the 2D TFIM, based on Eq. (3.47) with a constant

second argument. Here we have used 1/ν = 1.59 and η = 0.036 for the classical 3D Ising

model [66].
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and z at their (approximately) known values, and one may at first sight assume that it is

necessary to use their correct values. It is certainly some times convenient to do so, in order

to set the second argument of the scaling function Eq. (3.40) to a constant and, thus, obtain

a simpler scaling function depending on a single argument. However, one can study critical

properties based on the scaling approach discussed above as long as the velocity approaches

zero as the system size increases. This observation can be important in cases where the

critical exponents are not known and one would like to obtain an accurate estimate of the

critical coupling before carrying out a scaling analysis to study exponents. We will test this

in practice here. As we will discuss further below, one should use a different power κ in the

scaling ansatz Eq. (3.40) if the velocity is brought to zero slower than the critical form.

In cases where we use the “wrong” values of the exponents, we formally replace z + 1/ν by

a free parameter α,

v ∼ L−α/c, (3.49)

and the corresponding substitution in Eq. (3.43). To understand the scaling of the observ-

ables for arbitrary α, we return to the general scaling form given by Eq. (3.40). In the case

of the Binder cumulant and for linear quench protocol, this form reads

U = f
(
(s− sc)L1/ν , vLz+1/ν

)
. (3.50)

As we pointed out above, when the velocity scales exactly as L−(z+1/ν), the dependence on

the second argument in the scaling function drops out and we can find the crossing point in

a standard way as we did in Figs. 3.4 and 3.6. Suppose that we do not know the exponents ν

and z a priory and instead scale v as in Eq. (3.49). Then there are three possible situations:

(i) α = z + 1/ν, (ii) α > z + 1/ν, and (iii) α < z + 1/ν, where we already have analyzed

scenario (i). In scenario (ii), where velocity scales to zero faster than the critical KZ velocity,

the second argument of the scaling function Lz+1/ν/Lα approaches zero as the system size

increases and, thus, the scaling function effectively approaches the equilibrium velocity-

independent form. We can then extract the crossing point as in the first scenario, and this
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gives the correct critical coupling in the limit of large system sizes. Finally, in case (iii) the

velocity scales zero slower than the critical KZ value and the second argument in Eq. (3.50)

diverges, which implies that the system enters a strongly non-equilibrium regime. This

scenario effectively corresponds to taking the thermodynamic limit first and the adiabatic

limit second. Then, if the system is initially on the disordered side of the transition, the

Binder cumulant vanishes in the thermodynamic limit. At finite but large system sizes its

approach to zero should be given by the standard Gaussian theory:

U ≈ C

Ld
. (3.51)

Combining this with the scaling ansatz Eq. (3.50) we find that for α < z+1/ν, the expected

asymptotic of the Binder cumulant is

U ≈ L−dv−d/(z+1/ν)f̃
(
(s− sc)L1/ν

)
, (3.52)

where f̃ is some other velocity independent scaling function. Thus we can find the correct

transition point by finding crossing points of ULdvd/(z+1/ν). Similar considerations apply to

the ordered side of the transition, where the Binder cumulant approaches one as the inverse

volume.

The three cases are illustrated in the lower panel of Fig. 3.8, which shows Binder-cumulant

crossings extracted from appropriately scaled data in cases (i), (ii), and (iii) above. Addi-

tionally, to illustrate the insensitivity to the choice of the constant c in the scaled sequence

length in Eq. (3.43), results based on two different constants are shown for case (i). In all

cases, the extrapolated critical couplings agree with each other to within statistical errors.

Note that, on the one hand, if the exponent α gets very large, then the time of simulations,

which scales as M , rapidly increases with the system size and the algorithm becomes inef-

ficient. On the other hand, if α is very small, our results indicate that the size dependence

is larger and it is more difficult to carry out the extrapolation to infinite size. The optimal

value of α should be as close as possible to the critical KZ power, but to be on the safe

side when scaling according to the standard KZ critical form, case (i), one may choose a
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Figure 3.8: Critical-point estimates based on curve crossings of appropriately scaled quan-

tities for scenarios (i)-(iii) discussed in the text. The Binder cumulant (bottom) and the

squared magnetization (top) give estimates sc(L) and s′c(L), respectively, based on system

sizes L and L + 4. The red and blue curves correspond to runs in which the velocity was

kept at the critical value, scenario (i), but with different constants of proportionality c in

Eq. (3.43); c1 = 44.59/32 and c2 = 44.59/48. The yellow curves were obtained with the

velocity decreasing faster than vcrit with L, scenario (ii), with the proportionality constant

c3 = 45/32. The green and pink curves correspond to cases where the velocity is sub-critical,

scenario (iii), with constants c4 = 44.2/32, c5 = 44/32. In all cases, power-law corrections

were fit in order to extrapolate to infinite size (with small sizes excluded until statistically

sound fits were obtained).
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somewhat larger value, since the subcritical velocity in case (ii) has the same scaling form.

Next we illustrate how the same idea works in the case of the order parameter. Around the

critical point (sc, vcrit), the squared magnetization [see Eq. (3.44)] can be written as

m2
z = L−2β/νf

(
(s− sc)L1/ν , vLz+1/ν

)
. (3.53)

As in the previous discussion we scale v ∼ L−α and depending on the exponent α there are

two different asymptotics of the scaling function. For α ≥ z + 1/ν the second argument

vanishes or approaches constant so we effectively get the equilibrium scaling

m2
z = L−2β/νf

(
(s− sc)L1/ν

)
(3.54)

If, conversely, α < z + 1/ν then on the disordered side of the transition m2
z scales as L−d.

This immediately determines the asymptotic of the scaling function in Eq. (3.53):

m2
z = L−dv

(2β/ν)−d
z+1/ν f̃

(
(s− sc)L1/ν

)
. (3.55)

Equation (3.55) can be used in the same way as the Binder cumulant to extrapolate the

critical point, using the standard form [62] s′c(L) = s′c + a/Lb for the rescaled m2
z. As

shown in the top panel of Fig. (3.8), after rescaling the order parameter and extrapolating

the crossing points between the appropriately rescaled m2
z curves to the thermodynamics

limit, all curves, obtained from below or above the adiabatic limit Eq. (3.39), converge to

the same value s′c ≈ 0.247. This approach also suggests a way to determine the transition

point in experiment, since one can sweep through the critical point at different velocities,

the crossing point can then be extracted through the measurement of the order parameter.

It is also worth mentioning that since one can extrapolate the critical point independently

without knowing the actual exponent ν prior to the simulation, an optimization procedure

can be carried out to determine the exponents posterior to the simulation. [17]

For completeness we also briefly discuss the role of the final point sf of the evolution. Fig. 3.9

shows 2D results for the squared magnetization Eq. (3.44) and susceptibility Eq. (3.45)

obtained for a range of final points above the critical value. Here the velocity was kept
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Figure 3.9: Squared magnetization (bottom) and susceptibility (top) vs s of the 2D TFIM

with L = 12. In these runs, different curves correspond to different end points sf of the

evolution, with the velocity v ∝ sfN/M kept constant. The sf = 0.3 curve is from the

simulation shown in Sec. 3.4.2.

constant for all the cases. The values of the computed quantities at some fixed s, e.g., at

sc, show a weak dependence on sf for the lowest-sf runs. The deviations are caused by

contributions of order v2 and higher, which are non-universal as discussed in Sec. 3.2.2. For

very high velocities the dependence on sf can be much more dramatic than in Fig. 3.9, but

this is not the regime in which the QAQMC should be applied to study universal physics.

3.5 Summary and Discussion

We have presented a nonequilibrium QAQMC approach to study quantum dynamics, with a

simple product of operators with evolving coupling replacing the standard Schrödinger time

evolution. We showed that this approach captures the leading non-adiabatic corrections
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to the adiabatic limit, both by analytical calculations based on the APT and by explicit

simulations of quantum-critical systems with the QAQMC algorithm. The simulation results

obey the expected generalized dynamic scaling with known static and dynamic critical

exponents. We also extended the scaling formalism beyond results obtained previously in

Ref. [33]. We analyzed the leading non-adiabatic corrections within this method and showed

that they can be used to extract various non-equal time correlation functions, in particular,

the Berry curvature and the components of the metric tensor. A clear advantage of the

QAQMC approach is that one can access the whole range of couplings in a single run. Being

a simple modification of projector QMC, the QAQMC method is applicable to the same

class of models as this conventional class of QMC schemes—essentially models for which

“sign problems” can be avoided.

As an illustration of the utility of QAQMC, we applied the algorithm and the scaling

procedures to the 1D and 2D TFIMs. The expected scaling behaviors are observed very

clearly. In the 1D case we extracted a critical coupling in full agreement with the known

value, and in 2D we obtained an estimate with unprecedented (to our knowledge) precision

(small error bars); (h/J)c = 3.04458(7). Based on repeating the fitting procedures with

different subsets of the data, we believe that any systematical errors due to subleading

corrections neglected in the extrapolations should be much smaller than the statistical

errors, and, thus, we consider the above result as unbiased.

The QAQMC approach bears some similarities to previous implementations of quantum

annealing within QMC algorithms. [78, 79] However, the previous works have mainly con-

sidered standard equilibrium QMC approaches in which some system parameter is changed

as a function of the simulation time. This evolution is not directly related to true quantum

dynamics (and, thus, is not really quantum annealing), but is dependent on the particular

method used to update the configurations. In contrast, in our scheme, as in the NEQMC

method introduced in Ref. [33], the evolution takes place within the individual configura-

tions, and there is a direct relationship to true Schrödinger evolution in imaginary time.
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In Green’s function (GF) QMC simulations the gradual change of a system parameter with

the simulation time is rather closely related to the QAQMC scheme (since also there one ap-

plies a series of terms of the Hamiltonian to a state), with the difference being that QAQMC

uses true importance sampling of configurations, with no need for guiding wave functions

and no potential problems related to mixed estimators. Our asymmetric expectation values

could be considered as a kind of mixed estimator as well, but we have completely charac-

terized them within the APT. In addition, the previous uses of GFQMC with time-evolving

Hamiltonians have, to our knowledge, never addressed the exact meaning of the velocity of

the parameter evolution. The correct definition of the velocity is of paramount importance

when applying quantum-critical scaling methods, as we have discussed here. We have here

computed the velocity within APT for the QAQMC scheme. The same relationship with

Schrödinger dynamics may possibly hold for GFQMC as well, but, we have not applied the

APT to this case and it is therefore not yet clear whether GFQMC can capture correctly

the same universal non-equilibrium susceptibilities as the QAQMC and NEQMC methods.

We expect QAQMC to be superior to time-evolving GFQMC, because of its better control

over measured symmetric and asymmetric expectation values and fully realized importance

sampling.

Some variants of GFQMC use true importance sampling, e.g., the Reptation QMC (RQMC)

method, [80] which also avoids mixed estimators. The configuration space and sampling in

the QAQMC method bears some similarities with RQMC, recent lattice versions of which

also use SSE-inspired updating schemes. [81] However, to our knowledge, imaginary-time

evolving Hamiltonians have not been considered in RQMC and in other related variants of

GFQMC, nor has the role played by the velocity when crossing the quantum critical point

been stressed. This has so far been our focus in applications of the QAQMC and NEQMC

methods. In principle one could also implement the ideas of time-evolution similar to

QAQMC within the RQMC approach.

We also stress that we have here not focused on optimization. Previous works on quantum
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annealing within QMC schemes have typically focused on their abilities to optimize difficult

classical problems. While the QAQMC may potentially also offer some opportunities in this

direction, our primary interest in the method is to use it to extract challenging dynamical

information under various circumstances.

The QAQMC and NEQMC methods provide correct realizations of quantum annealing in

imaginary time. Besides their ability to study dynamic scaling, with exponents identical to

those in real-time Schrödinger dynamics, [33] it will be interesting to explore what other

aspects of real-time dynamics can be extracted with these methods. In particular, their

applicability to quantum glasses, of interest in the context of quantum adiabatic computing

[30] as well as in condensed matter physics, deserves further studies.

The ability of the QAQMC to produce results for a whole evolution path in a single run can

in principle also be carried over to the conventional Schrödinger imaginary-time evolution

with U(τ) in Eq. (3.4). By “slicing” the time evolution into K successive evolutions over a

time-segment ∆τ ,

U(τ) =
K∏
n=1

Tτexp

[
−
∫ τn

τn−1

dτH[λ(τ)]

]
, (3.56)

where τn = n∆τ , one can evaluate matrix elements analogous to Eq. (3.7) by insert-

ing the operator of interest at any point within the product of time-slice operators in

〈Ψ(λ0)|U∗(τ)U(τ)|Ψ(λ0)〉. In this case, the symmetric expectation value, evaluated at the

mid-point, is identical to the NEQMC method, [33] and the asymmetric expectation values

will exhibit properties similar to those discussed in Sec. 3.2.3. We have not yet explored

this approach, and it is not clear whether it would have any other advantage besides the

exact reduction to Schrödinger dynamics of the symmetric expectation values. In practice

the simulations will be more complex than the QAQMC approach because of the need to

sample integrals, but not much more so than the NEQMC method. It should be relatively

easy to adapt the RQMC method with an evolving Hamiltonian in this formulation of the

time-evolution.
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Figure 3.10: One-way evolution s ∈ [0, 1] with QAQMC for the 1D TFIM. (Bottom) The

susceptibility Eq. (3.45). (Top) The rescaled susceptibility Eq. (3.47). Each full curve

corresponding to a given chain length L was obtained in a single run. The constant for the

critical-velocity condition Eq. (3.41) was held at 43/80.

Finally, we point out that, in principle, one can also carry out a one-way evolutions with

the QAQMC algorithm. Instead of starting with the λ = λ0 eigenstate at both 〈ψL| and

|ψR〉 and then projecting them to the λ = λM eigenstate using two sequences of the form

Eq. (3.5), one can make 〈ψL| correspond to λ0 and let it evolve to |ψR〉 corresponding to

λM with only a single operator sequence of length M . In the case of the TFIM Eq. (3.38),

the obvious choice is then to evolve from s = 0 to s = 1 (the classical Ising model), so that

both edge states are trivial. All our conclusions regarding the definition of the velocity and

applicability of scaling form remain valid in this one-way QAQMC. Results demonstrating

this in the case of the 1D TFIM are sown in Fig. 3.10. We anticipate that this approach

may be better than the two-way evolution in some cases, but we have not yet compared the

two approaches extensively.
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Chapter 4

Comparison between simulation-time quantum an-

nealing and imaginary-time quantum annealing

4.1 Introduction

In Refs. [33,37], two quantum Monte Carlo algorithms have been developed, non-equilibrium

quantum Monte Carlo (NEQMC) and quasi-adiabatic quantum Monte Carlo (QAQMC),

both algorithms carried out quantum evolution in imaginary time. This feature of imaginary-

time evolution is reminiscent of quantum annealing [78, 82, 83] , however, so far, quantum

annealing is typically carried out in simulation time. In this Chapter, we discuss the striking

difference between the simulation-time quantum annealing and imaginary-time quantum-

annealing in detail.

In this Chapter, we will use one-dimensional (1D) transverse-field Ising model (TFIM) to

do the demonstration. The Hamiltonian reads as :

H = −s
∑
〈i,j〉

σzi σ
z
j − (1− s)

∑
i

σxi , (4.1)

where 〈i, j〉 stands for the nearest-neighbor pairs and σzi and σxi are Pauli matrices. We are

Figure 4.1: T = 0 phase diagram of the one-dimensional transverse-field Ising model with

the Hamiltonian Eq. 4.1. A QCP at sc = 1/2 is known exactly for the 1D TFIM [6].
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interested in the zero-temperature quantum phase transition as the tuning parameter s is

tuned s : 0→ 1. Since 1D TFIM can be solved analytically [6] and also through a mapping

to the two-dimensional classical Ising model [5, 10], the quantum critical point (QCP) and

critical exponents are known exactly as the following: QCP sc = 1/2 , correlation length

exponent ν = 1, order parameter exponent β = 1/8, and dynamic exponent z = 1. The

phase diagram is illustrated in Fig. 4.1.

4.2 Simulation schemes and updating schemes

Simulation-time quantum annealing [78,82,83] is motivated by simulated-annealing [55], the

latter used the decrease of the thermal fluctuation to find the minimum of a cost function,

while the former used quantum tunneling and the decrease of quantum fluctuation to achieve

the goal. Many problems that quantum annealing tried to solve are incorporated in the

same form of Eq. (4.1). The starting Hamiltonian with H(s = 0) has a ground state that

is easy to prepare, for example, in Eq. (4.1) s = 0 corresponds to an equal superposition

ground state:

|Ψ(0)〉 =
∏
i

| ↑〉i + | ↓〉i√
2

. (4.2)

And the system evolves through some protocol s : 0→ 1 to eventually H(s = 1) that has a

complicated ground state configuration. As long as the evolution is slow, the wave function

|Ψ(s)〉 should keep staying in the ground state, and therefore the hard problem embedded

in H(s = 1) is solved automatically when the evolution reaches s = 1, this is the idea of

quantum adiabatic algorithm [84].

Next we use stochastic-series expansion (SSE)-based projector quantum Monte Carlo (PQMC)

[11–13, 63] on transverse-field Ising model to demonstrate the implementation. A typical

projector quantum Monte Carlo applies on a trial state |Ψ0〉 many times, say M times, the

Hamiltonian H(s) to project out the ground state:
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|ΨGS〉 =
[
−H(s)

]M |Ψ0〉

=
∑

[iM ,...,i1]

HiM (s) . . . Hi1(s)|Ψ0〉
(4.3)

where the Hamiltonian H depends on a particular tuning parameter s and Hi is one of the

many local operators which H consists of. In the case of TFIM, there are only three types of

local operators, the single-site spin-flipping operator that is off-diagonal, the Ising interac-

tion operator that is diagonal and acting on a nearest-neighbor pair of spins, and a single-site

constant operator 1. The second line of Eq. (4.3) lays out the formalism for quantum Monte

Carlo simulations, which carries out importance sampling scheme by stochastically generat-

ing operator-spin configurations. Fig. 4.3 (a) illustrates the SSE configuration of Eq. (4.3)

when applied on a 8-spin transverse-field Ising chain with M = 8. The operator product

HiM (s) . . . Hi1(s) forms the imaginary-time dimension [7].

The QAQMC algorithm [37], which is a successor of NEQMC [33], modifies Eq. (4.3) in the

following way: instead fixing the tuning parameter s for all the operators in the operator

product, we change s from s : 0→ sf as we move along the imaginary-time direction:

|Ψsf 〉 =
[
−H(sM )

]
. . .
[
−H(s1)

]
|Ψ0〉

=
∑

[iM ,...,i1]

HiM (sM ) . . . Hi1(s1)|Ψ0〉
(4.4)

where s0 = 0 and sM = sf . The same SSE configuration in Fig. 4.3 (a) can also be used

to visualize Eq. (4.4). The caution when interpreting Eq. (4.3) and Eq. (4.4) respectively

using Fig. 4.3 (a) is that in the PQMC picture, the tuning parameter s is fixed in the

imaginary-time direction, i.e., all operators correspond to the same magnitude of s; one

the other hand, in the QAQMC picture, the parameter s is evolving s : 0 → sf along the

imaginary-time direction, i.e., each operator in the imaginary-time takes different values of

s.

1Strictly speaking, the constant operator is not necessary, it is introduced to facilitate the off-diagonal

update. [11–13,63]
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(a) (b)

Figure 4.2: Simulation-time quantum annealing (a) versus imaginary-time quantum anneal-

ing (b). In the simulation-time annealing scheme, at each instance of simulation time, the

parameter s is fixed along the imaginary-time direction. Therefore, one has to change s in

simulation time. In imaginary-time annealing scheme, the change of the parameter s has

been incorporated into the algorithm through Eq. (4.4). Each simulation time instance is

simply an independent evolution path of s : 0 → sf . In both plots, the colors of the bars

are used to represent the operators taking different magnitude of the tuning parameter s.

In Sec. 4.3, it will be revealed that these two types of annealing scheme will lead to two

dramatically different consequences.
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The approaches discussed above therefore lead to two distinct quantum annealing schemes.

In PQMC, the tuning parameter s is fixed in the imaginary-time, to perform annealing, one

has to change s in simulation time, as illustrated in Fig. 4.2 (a); at each time instance, the

snapshot of the configuration (each column in Fig. 4.2 (a)) gives an operator product in

which all operators take the same value of s. On the other hand, in QAQMC, the tuning of

s is naturally incorporated into the algorithm, therefore, at any instance of the simulation

time, the operator product corresponds to an evolution path of s : 0→ sf . Each simulation

time instance in QAQMC (each column in Fig. 4.2 (b)) is simply an independent evolution

path.

SSE-type quantum Monte Carlo (QMC) importance sampling scheme [7], generally in-

volves two stages of updates: diagonal update and off-diagonal-update. Diagonal updates

involve exchanges between the constant single-site operators and the Ising interaction op-

erators. Off-diagonal updates involve exchange between the constant single-site operators

and the single-site spin-flipping operators. Different QMC algorithms have different updat-

ing schemes. Roughly speaking, diagonal update is more universal among different QMC

algorithms, therefore will not be the focus here. The off-diagonal update, which has vari-

ations leading to different efficiencies in terms of both relaxation time as well as computer

performance, will be the focus here. Generally speaking, there are two types of off-diagonal

updates: local updates and cluster updates. Below we discuss these two updating schemes.

In classical Ising model with Metropolis [42] dynamics, one performs single-site (local) spin-

flipping updates on the individual spins one by one. However, in QMC, one can not simply

flip a single spin in the extended spatial-temporal dimension without violating a given

configuration, since in this extended space every spin is linked to another spin (either the

spin itself in the next imaginary-time instance or another spin in the next imaginary-time

instance). Therefore, the minimal local update corresponds to updating a pair of spins

in the space-time dimension, as illustrated in Fig. 4.3 (b). Although it is not exactly the

same as the Metropolis local update as in the classical Monte Carlo simulation, one can



116

(a) (b) (c)

Figure 4.3: (a) SSE representation for Eq. (4.3) and Eq. (4.4) on a 8-spin 1D TFIM with

M = 8. The horizontal direction is the spatial dimension, the vertical direction is the

imaginary-time dimension, which scales as ξz with ξ being the spatial correlation length and

z the dynamic exponent. The open square denotes a constant single-site operator, the filled

square stands for the single-site spin-flipping (off-diagonal) operator, and the bar represents

a Ising-interaction (diagonal) operator. (b) Local updates on the SSE configuration are

shown in (a). The minimal local update in QMC corresponds to updating a pair of spins

in the extended spatial-temporal dimension. When the spins are flipped, the operators

connected to the spins are also updated. The green rectangles identify the pairs of spins that

will be updated in the local update scheme. (c) Cluster update on the same configuration

shown in (a) and (b). In addition to the “local clusters” that consist only a pair of spins

shown in (b), cluster update also identifies “global clusters” then can extend the entire

spatial-temporal dimension, as highlighted by the green color. The construction of the

cluster starts with a single-site operator, continuing the construction through the Ising type

operators, and terminates when encountering another single-site operator or the boundary.
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imagine that in the thermodynamic limit, the span of the link that connects a pair of spin

will be much shorter than the scale of the imaginary-time dimension, therefore becomes

effectively “local.” Local update that attempts to flip a pair of spins in the extended space

is easy to implement, however, it is not efficient enough. Cluster updates try to improve

this drawback. Currently, the SSE-based cluster update [11–13] is the most state-of-the-art

and a widely used algorithm. In terms of TFIM, the SSE-based cluster update constructs

a “cluster” in the spatial-temporal dimension, starting from a single-site operator (either

a constant operator or an off-diagonal spin-flipping operator), continuing the construction

of cluster when encountering Ising type operators, and terminates the construction when

arriving at a single-site operator or the boundary. The process is illustrated in Fig. 4.3 (c).

It is interesting to note that, due to the mapping from a d-dimensional quantum spin system

to a (d + 1)-dimensional classical spin system [10], the local update QMC on a 1D TFIM

is reminiscent of the Metropolis local update in 2D classical Ising model, and the cluster

update QMC on a 1D TFIM is similar to the Swendsen-Wang/Wolff cluster update on 2D

classical Ising model. In the next section, we will show that this qualitatively described

correspondence of the dynamic can be also proved quantitatively.

When implementing PQMC, one needs to use the operator product that is long enough in

order to project out the ground state. For the 1D TFIM with the Hamiltonian Eq. (4.1), a

set of equilibrium runs have been tested at s = sc = 1/2. As shown in Fig. 4.4, M = 4L2

is enough to obtain convergence.

4.3 Numerical results

In this section, we use both simulation-time quantum annealing and imaginary-time quan-

tum annealing outlined in the previous section to perform critical quenches on 1D TFIM

with the Hamiltonian Eq. (4.1), whose QCP and critical exponents are all well known [6].

The simulation starts from s = 0 with the initial configuration Eq. (4.2), and the annealing
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Figure 4.4: Equilibrium runs for PQMC on 1D TFIM with difference sizes at s = sc = 1/2.

We use the order parameter 〈m2〉 as an indicator to observe how it converges as the length

of the operator product M increases. As the figure shows, M = 4L2 can achieve convincing

convergence.

process of s : 0→ sc is carried out with linear and non-linear quench protocols that can be

described by the following form:

s(t) = sc −
sc

(τN0)r
(τN0 − t)r,

v = sc/τ
r,

(4.5)

where N0 is the normalization constant, τ the total quench time, v the generalized quench

velocity, and r ∈ R the parameter that controls the quench protocol, for example r = 1

for constant velocity linear quench, r = 2 for constant acceleration quadratic quench, and

r = 1/2 for non-linear square-root quench, etc. In terms of simulation-time quantum

annealing, τ is the duration of the simulation, therefore the normalization constant is trivial:

N0 = 1. In terms of imaginary-time quantum annealing, the quench time is controlled by the

length of the operator product M , which should scale as the system size: M ∝ N , therefore

the normalization constant should be N0 = N . When quenching exactly to QCP, we will

expect to see a dynamic finite-size scaling that has been discussed in detail in Refs. [17,37]:

〈m2
z〉 = L−2β/νf(vLzr+1/ν), (4.6)
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where mz is the z-component magnetization, L is the linear size of the system. Furthermore,

based on the dynamic finite-size scaling behavior, one can expect to see a power-law behavior

in the high-velocity regime:

〈m2
z〉 = L−2β/ν(vLz+1/ν)−x, (4.7)

with the power x related to the critical exponents

x =
d− 2β/ν

zr + 1/ν
, (4.8)

where d is the dimensionality.

In simulation-time quantum annealing, the parameter s is changed at each iteration, i.e.,

each simulation time instance, while keeping s fixed along the imaginary-time direction, as

illustrated in Fig. 4.2 (a). When carrying out the QMC updates, one can consider local

updates and cluster updates, respectively, as described in the previous section. For either

case, the scaling Eq. (4.6) is expected to hold, while the only difference being the dynamic

exponent z that appears in the expression. Fig. 4.5 shows the result of scaling collapse from

the simulation-time annealing to the QCP. Panel (a) of Fig. 4.5 shows the result from the

annealing with local update, and panel (b) of Fig. 4.5 shows the result from the annealing

with cluster update. Since the static exponents ν and β are already known, one can carry

out a fitting procedure as described in Ref. [17] to estimate the dynamic exponent z. From

the local update, we obtain z ≈ 2.17, which is the Metropolis dynamics exponent of the 2D

classical Ising mode. From the cluster update, we obtain z ≈ 0.3, which is the Swendsen-

Wang/Wolff dynamic exponent of the 2D classical Ising model, neither of these two schemes

could render Hamiltonian dynamic that has z = 1 for TFIM.

Next we discuss the scenario of imaginary-time quantum annealing. As explained in detail in

Refs. [33,37], one important scaling to follow when implementing QAQMC and NEQMC is

that the length of the operator product M in Eq. (4.4) should scale as M ∝ N . As discussed
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Figure 4.5: Critical quench on the 1D TFIM with simulation-time quantum annealing in a

linear quench protocol s : 0 → sc implemented with local updates (a) and cluster updates

(b), respectively. At the QCP sc = 1/2, the scaling collapse of the form Eq. (4.6) allows one

to carry out a fitting procedure to determine the value of the dynamic exponent z. Here

z ≈ 2.17 for the local update, which is the same as the Metropolis dynamic as in the 2D

classical Ising model [17], and z ≈ 0.3 for the global update, the same as the Swendsen-

Wang/Wolff dynamics as in the 2D classical Ising model [17]. The dashed lines in both

figures indicate the power-law behavior with the power x predicted by Eq. (4.8). One issue

that should be highlighted here is that, the TFIM is known to have dynamic exponent z = 1

of Hamiltonian dynamics [6], however, simulation-time quantum annealing fails to reproduce

this result. Instead, depending on the dynamics employed (local update or cluster update),

it renders either Metropolis dynamics with z = 2.17 or Swendsen-Wang/Wolff dynamics

with z = 0.3. In either case, simulation-time quantum annealing falls into exactly the

classical scenario.
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Figure 4.6: Critical quench on 1D TFIM with imaginary-time quantum annealing of s :

0 → sc implemented with r = 1 linear quench protocol (a) and r = 2/3 non-linear quench

protocol (b). Cluster updates are used for both scenarios. A fitting procedure for the scaling

collapse of Eq. (4.6) can be carried out to determine the value of the dynamic exponent z.

For both r = 1 and r = 2/3 quenches, z = 1 is obtained. The dashed line in both panels

indicate the power-law behavior with the power x predicted by Eq. (4.8). The upshot is that,

as opposed to simulation-time annealing that falls into classical scenarios, imaginary-time

annealing successfully generates Hamiltonian dynamics and is robust to different quench

protocols.
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in the previous section, imaginary-time annealing carries out quench in the imaginary-time

direction, as illustrated in Fig. 4.2 (b). Therefore M plays the role of the total quench

time τ in Eq. (4.5). We perform imaginary-time annealing with linear quench r = 1 and

non-linear quench r = 2/3, respectively, to QCP sc. The scaling collapse of Eq. (4.6) is

expected to hold and is shown in Fig. 4.6. Once again, given the scaling form, one can carry

out the same fitting procedure discussed in Ref. [17] to determine the dynamic exponent z.

Panel (a) of Fig. 4.6 shows the scaling collapse for the r = 1 linear quench protocol, which

gives z = 1, exactly the Hamiltonian dynamics for the TFIM. Panel (b) of Fig. 4.6 shows

the scaling collapse for the r = 2/3 non-linear quench protocol, which also yields z = 1.

This result has drawn a clear distinction between simulation-time quantum annealing and

imaginary-time quantum annealing: the former only corresponds to the stochastic dynamics

of the simulation (updating) algorithm, while the latter successfully renders Hamiltonian

dynamics and is robust to various quench protocols and details of the QMC updates, i.e.,

local and cluster updates give the same z as the Hamiltonian dynamics does not depend on

the QMC method used.
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Chapter 5

Non-equilibrium quench on classical and quantum

3-regular ferromagnetic random graphs

5.1 Introduction

The non-equilibrium quench (NEQ) method for studying continuous transitions has been

thoroughly demonstrated on Ising model in terms of both classical (thermal) transition [17]

and (zero-temperature) quantum phase transition [33, 37] in the preceding chapters. To

further extend the applicability of the NEQ approach, in this Chapter we apply this method

to a 3-regular random graph with ferromagnetic (FM) interactions, which is a disordered

system but still shows ferromagnetic order at low-temperature [85]. In this system, each spin

is individually interacting with three other spins through the FM interactions. A typical

3-regular random graph is depicted in Fig. 5.1. The randomness comes from the fact that

for a given number of spins (vertices) N , there will be numerous ways of arranging the

vertices such that they have different connectivities that are unable to transform from one

to another simply by relabeling the vertex numbers, i.e., the graphs are not isomorphic. An

efficient algorithm called Steger-Wormald algorithm [86] is used to generate the realizations

of 3-regular graphs. Below, we will use 〈. . . 〉 to denote a standard statistical average and

[. . . ] for the average over realizations.

Despite the disorderedness, one can still expect an Ising-like ordered state at low temper-

ature due to the ferromagnetic interaction. In fact, the 3-regular random graph can be

though of as a special case of “scale-free” network in which the connectivities of the nodes

have a power-law distribution. The scale-free network has been investigated in detail and
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Figure 5.1: A typical 3-regular random graph in which each spin is individually interacting

with three other spins.

show continuous transition in some ranges of the power [85].

The rest of this Chapter is organized in the following way: In Sec. 5.2, we describe the

quench protocols and dynamic finite-size scaling underlying the NEQ approach. In Sec. 5.3,

we apply the NEQ approach to study the thermal transition of the 3-regular FM random

graphs. In Sec. 5.4, we study the zero-temperature quantum phase transition of the same

system in the framework of imaginary-time quantum quench.

5.2 Quench protocols and Dynamic finite-size scaling

The basic idea of NEQ is to approach the transition λc
1 through some quench protocol

that can be formulated as:

λ(t) = λc + v(τ − t)r,

v = (λ(0)− λc)/τ r,
(5.1)

1 λ plays the role of the source of fluctuation. In thermal transition, λ corresponds to the temperature

T and in quantum phase transition corresponds to the tuning parameter of the Hamiltonian.
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where τ is the total quench time, v a generalized velocity whose physical interpretation

depends on the quench protocol, and r ∈ R is the parameter controlling the quench protocol,

for example, r = 0 generates a sudden quench with quench amplitude v, r = 1 corresponds

to a linear quench with constant velocity v, r = 2 stands for a quadratic quench with

constant acceleration v, etc. For continuous transitions, the correlation length ξλ ∼ ε−ν

and relaxation time τrel ∼ ξzλ diverge at λc, where ε ≡ |λ − λc|/λc is the reduced distance

from the critical point, ν the correlation length exponent and z the dynamic exponent. The

divergence of ξλ and τrel result in the critical slowing down phenomenon [8]. To incorporate

these critical phenomena, the quench velocity should scale as:

vc(N) ∼ L−(zr+1/ν) ∼ N−(z′r+1/ν′) (5.2)

in order to be in the quasi-adiabatic regime [14, 15, 17, 33, 37]. In the above expression, we

normalize the exponents by the dimensionality d: z′ ≡ z/d and ν ′ ≡ νd, since in the random

graph system the linear size L is not well-defined.

When approaching the critical point λc through the above protocol, a dual-scaling behavior

for the order parameter m2
z, the z-component magnetization squared, as a function of the

quench velocity v is expected [17]:

〈m2
z〉 =


N−2β/ν′f1(vN z′r+1/ν′), v . vc(N)

N−1
(

1
v

)x
, vc(N)� v � 1

N−1f2(1/v), v & 1.

(5.3)

The first scaling function f1 governs the low-velocity regime, and the second scaling function

f2 describes the high-velocity regime. The intermediate velocity regime vc(N) � v � 1 is

where both functions are applicable and reduce to a pure power-law behavior. Moreover,

the power x of the power-law is closely related to the critical exponents:

x =
d− 2β/ν

zr + 1/ν
=

1− 2β/ν ′

z′r + 1/ν ′
. (5.4)
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As discussed in Ref. [17], given two different quench protocols r1 and r2 and their corre-

sponding powers x1 and x2, one can obtain:

z′ν ′ =
x2 − x1

r1x1 − r2x2
. (5.5)

This expression combined with the optimization result from the scaling collapse of Eq. (5.3)

allows us to disentangle all exponents z′, ν ′, and β, as we will demonstrate in the following

sections.

5.3 Classical quench on 3-regular ferromagnetic random graphs

In this section, we study the thermal transition of the 3-regular ferromagnetic random

graphs. The Hamiltonian is the same as the Ising model:

H = −J
∑
〈i,j〉

σiσj , (5.6)

where J > 0 is homogeneous. At high temperature, thermal fluctuation destroys the order

of the system. However, due to the ferromagnetic interaction, one can expect to see a

non-zero magnetization at low temperature. Since the system is Ising-like, we can expect a

continuous transition.

5.3.1 Locating the transition temperature Tc

In the framework of equilibrium phase transition, one can use the crossings of the finite-size

Binder cumulant [62] to locate the transition temperature Tc:

U(N,T ) =
3

2

(
1− 1

3

[
〈m4〉

][
〈m2〉

]2). (5.7)
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Figure 5.2: (a) Some typical Binder cumulants calculated using different system sizes with

a linear quench from an initial temperature Ti = 3.0 to a final temperature Tf = 1.0 with

the quench velocity v = 2.0/τ scaling as v ∼ N−α′ , here with α′ = 1.5. (b) The crossings of

the Binder cumulants from panel (a). The crossing points are expected to show power-law

behavior, which can be described by Tc(N) = a + b/N c. The intercept a corresponds to

the transition temperature in the thermodynamic limit Tc. We obtain a = 1.827 ± 0.018,

b = −2.67 ± 0.96, and c = 0.76 ± 0.18. This implies Tc ≈ 1.83(2), in good agreement with

the analytic solution [85] that yields Tc = 2/ ln 3, which is marked by the dashed horizontal

line in the figure.

Notice that the realization averages are taken first before the construction of the Binder

cumulant. In the non-equilibrium scenario with a quench velocity v, one can expect the

following scaling around the transition:

U(v,N, T ) = f
(
(T − Tc)N1/ν′ , vN z′+1/ν′

)
. (5.8)

If one can scale the velocity v ∼ N−α
′

such that α′ > z′ + 1/ν ′, the second argument in

the above equation vanishes in the thermodynamic limit. Therefore the same procedure of

extracting Binder crossings used in the equilibrium scenario can be applied here. Fig. 5.2

illustrates this procedure.
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In Fig. 5.2, α′ = 1.5 is used to scale the velocity (the value can be justified posterior to

the simulations). For all the sizes considered, we use the value of α′ to scale the velocity

v ∼ N−α
′
. Some typical curves of the Binder cumulants are shown in Fig. 5.2 (a). The

finite-size effect causes the shift of the crossings of the cumulants, these crossings can then

be fitted by a power-law form [7], since the order parameter and the physical quantities

constructed through it scale as a power-law at the transition:

Tc(N) = a+ b/N c,

where a corresponds to the transition temperature in the thermodynamic limit as N →∞.

As shown in Fig. 5.2, the extrapolation of the crossing points give Tc ≈ 1.83(2). This is in

good agreement with the analytic result for the Tc of the scale-free network [85].

5.3.2 Critical quenches to Tc

Given the known transition temperature, one can perform critical quenches to Tc and expect

the scaling behavior Eq. (5.3) 2. Here we start from an initial temperature Ti = 1.5Tc and

quench to Tf = Tc with the protocols Eq. (5.1) of r = 1 and r = 2/3, respectively. The

rescaled order parameter 〈m2〉N2β/ν′ versus the rescaled velocity vN z′r+1/ν′ is shown in

Fig. 5.3.

On both panels of Fig. 5.3, one can clearly see a power-law behavior in the middle region,

and a plateau on the left corresponding to the quasi-adiabatic limit. One can perform a

2-parameter fitting to determine the values of z′r+ 1/ν ′ and β/ν ′ that yield the optimized

scaling collapse, with the optimization quantified by χ2 per degree of freedom (dof). The

numerical results also implies the power of the power-law.

For r = 1 quench, we obtain z′ + 1/ν ′ = 1.09(2), and β/ν ′ = 0.243(3) with χ2/dof = 0.80,

which implies x1 ≈ 0.472(11). For r = 2/3 quench, we obtain 2z′/3 + 1/ν ′ = 0.90(2),

2In this Chapter, we will only focus on the first scaling function f1.
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Figure 5.3: Critical quenches to Tc = 2/ ln 3 with r = 1 (linear quenches) (a) and r = 2/3

(non-linear quenches) (b), respectively. A 2-parameter fitting is carried out to find the

optimized parameters p1 = z′r+ 1/ν ′ and p2 = β/ν ′ that yield the best scaling collapse for

the f1 function. For the r = 1 quench, we obtain z′ + 1/ν ′ = 1.09(2), and β/ν ′ = 0.243(3)

with χ2/dof = 0.80. For r = 2/3 quench, we obtain 2z′/3 + 1/ν ′ = 0.90(2), and β/ν ′ =

0.246(4) with χ2/dof = 1.05. Notice that in both panels, the tails corresponding to the

high-velocity quenches are not included in the fitting.
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Figure 5.4: f1 scaling collapse for the r = 1 linear quench (a) and r = 2/3 non-linear quench

(b). Here the mean-field exponents z′ = 1/2, ν ′ = 2, and β = 1/2 are used directly. The

dashed lines on both panels indicate the expected power of the power-law, given Eq. (5.4).
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and β/ν ′ = 0.246(4) with χ2/dof = 1.05, which implies x2/3 ≈ 0.564(14). The numerical

result for z′ + 1/ν ′ ≈ 1 also justifies the choice of α′ in the extraction of Tc. Since the

choice of α′ = 1.5 > z′ + 1/ν ′, the quench will converge to the quasi-adiabatic limit in

the thermodynamic limit. It should be noted that the same power x can be obtained

by analyzing another scaling function f2, which will yield the same result quoted above.

Combining all the fit results, the exponents can be extracted as follows:


z′ + 1/ν ′ = 1.09(2),

2z′/3 + 1/ν ′ = 0.90(2),

β/ν ′ = 0.245(5),

⇒


z′ = 0.57(9),

ν ′ = 1.92(3),

β = 0.47(1).

(5.9)

Since the 3-regular random FM graph is reminiscent of the mean-filed Ising model, one would

expect to see mean-field exponents: z = 2, ν = 1/2, β = 1/2, at the upper critical dimension

du = 4, which translate to z′ = 1/2 and ν ′ = 2. It can be argued that the numerical results

obtained in Eq. (5.9) still have some finite-size effects which lead to deviations of 2-3 error

bars from the true exponents in the case of ν ′ and β. If one uses the mean-filed exponents

to rescale the data, as shown in Fig. (5.4), a clear scaling collapse can be observed.

5.4 Quantum quench on 3-regular ferromagnetic

random graphs

In this section we study the zero-temperature (T = 0) quantum phase transition of the

3-regular random FM graphs. The Hamiltonian can be written as

H(s) = −s
∑
〈i,j〉

σzi σ
z
j − (1− s)

∑
i

σxi . (5.10)

The transition is expected to take place when the parameter s is tuned from s : 0→ sf .

A clear distinction between the simulation-time quantum annealing and imaginary-time
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quantum annealing has been made in Ch. 4, here we will focus on the latter, which allows to

study Hamiltonian dynamics. We will use quasi-adiabatic quantum Monte Carlo (QAQMC)

algorithm [37] to perform the quench in imaginary-time. The algorithm applies a series of

operators (product evolution) on a trial state |Ψ0〉:

|Ψsf 〉 =
[
−H(sM )

]
. . .
[
−H(s1)

]
|Ψ0〉

=
∑

[iM ,...,i1]

HiM (sM ) . . . Hi1(s1)|Ψ0〉
(5.11)

where |Ψ0〉 corresponds to an equal superposition state:

|Ψ0〉 =
∏
i

| ↑〉i + | ↓〉i√
2

. (5.12)

The quantum Monte Carlo importance sampling with cluster update [7,11–13] provides an

efficient way to stochastically sample the operator product in Eq. (5.11). The length of the

operator product, M , plays the role of total quench time τ in QAQMC scheme. In Ref. [37],

it has been shown that the length of the operator product should scale as the total number

of spins, i.e., M ∝ N . The quench protocol for the Hamiltonian Eq. (5.10) with s : 0→ sf

can then be defined as :

s(t) = sc −
sc
M r

(M − t)r,

v = sc/M̃
r,

(5.13)

where M̃ = M/N is the normalized length of the operator product.

5.4.1 Locating the quantum critical point sc

Despite the exact solution for the classical 3-regular FM graphs [85], to our knowledge there

is no counterpart in the T = 0 quantum system. In this subsection, we treat all critical

exponents as unknown and perform the same technique used in Sec. 5.3 to extract the
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Figure 5.5: (a) Examples of Binder cumulants from different system sizes with linear quench

s : 0 → 0.6. All the curves from different sizes satisfy the same scaling v ∼ N−α
′
, with

α chosen to be 1.5. (b) The crossings of the Binder cumulants from α′ = 1.0, α′ = 1.25,

and α′=1.5, respectively. The crossing points are expected to show power-law behavior as

described in Eq. (5.15). The extrapolations of the crossing points yield sc = 0.3110(4) for

α′ = 1.0, sc = 0.3117(1) for α′ = 1.25, and sc = 0.310(2) for α′ = 1.5. All the extrapolations

give consistent results. The inset shows a more focused window in the region 1/N → 0.

quantum critical point (QCP) of the Hamiltonian Eq. (5.10) and the relevant exponents

associated with the transition.

With the quench protocol Eq. (5.13), we scale the velocity as v ∼ N−α′ . As α′ > z′ + 1/ν ′,

the quench scenario will be quasi-adiabatic in the thermodynamic limit, therefore one can

again use the Binder cumulant defined below to locate the QCP:

U =
3

2

(
1− 1

3

[
〈m4〉
〈m2〉2

])
. (5.14)

Here the realization average [. . . ] is taken after the ratio 〈m4〉/〈m2〉2 is computed for each

realization [87].

Here we perform linear quenches for s : 0 → 0.6 with three different choices of α′, α′ =
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Figure 5.6: Critical quenches to the QCP, sc = 0.311, and the resulting f1 scaling collapse

for the r = 1 linear quench (a) and r = 2/3 non-linear quench (b), respectively. The

exponents can be extracted as discussed in the text. In both r = 1 and r = 2/3 quenches,

only sizes N ≥ 256 are included in the fitting.

1.0, 1.25 and α′ = 1.5, respectively. The values of α′ can later be examined by a consistency

check. Since the order parameter 〈m2〉 will show power-law behavior at the transition sc,

the Binder cumulant, which is constructed through the order parameter, is expected to show

the same behavior. Therefore the crossing points can be fitted by a power-law form [7]:

sc(N) = sc + b/N c. (5.15)

The extrapolations of the Binder crossings are illustrated in Fig. 5.5. All the choices of α′

extrapolated to consistent values corresponding to a QCP sc ≈ 0.311.

5.4.2 Critical quenches to the QCP sc

Once the QCP has been extrapolated, one can perform critical quenches to sc with the

protocol described in Eq. (5.13) and expect the scaling behavior Eq. (5.3). Here we perform

two different quench protocols, r = 1 and r = 2/3, respectively. For r = 1, the scaling
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collapse shown on Fig. 5.6 (a) for the f1 scaling results in z′ + 1/ν ′ = 0.87(2) and β/ν ′ =

0.296(4). For r = 2/3, another scaling collapse for the f1 scaling shown on Fig. 5.6 (b)

yields 2z′/3 + 1/ν ′ = 0.64(8) and β/ν ′ = 0.34(1). It can be seen that β/ν ′ shows a finite

difference between the r = 1 quench and r = 2/3 quench, due to finite-size effect. A similar

behavior was also observed in Fig. 1.4, in which quantum FM model would show a strong

finite-size effect.
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Chapter 6

Non-equilibrium quench on classical and quantum

3-regular anti-ferromagnetic random graphs

6.1 Introduction

The spin-glass transition has been an important topic in the development of statistical

physics, not only because of its diverse and complex phases, but also its applications in

different areas such as biology, networks, and combinatorial optimizations. Extensive works

have been done during the past few decades, [23] but still many challenges are yet to be over-

come, e.g, a more efficient simulation method that could alleviate the critical slowing-down.

Currently there are only two types of exactly solvable spin-glass models, both are under

mean-field description. The first type is the Sherrington-Kirkpatrick model which consid-

ers fully connected interactions. [24] The second type, which employs the cavity method

with replica symmetry breaking (RSB) [1, 25], is antiferromagnetic Potts model on a ran-

dom graph with finite connectivity. [28, 29] The latter has attracted more attention in the

past decade due to its relationship to algorithm design and NP problems (NP stands for

non-deterministic polynomial time) in information science. [30] Since theoretical works are

subject to limited cases, numerical simulations, especially unbiased Monte Carlo simula-

tions, have been a major tools to investigate spin-glass systems.

As discussed in the previous chapters, a non-equilibrium approach in the framework of

Monte Carlo (MC) simulations and generalized dynamic finite-size scaling have been de-

veloped for studying thermal phase transitions. [17] In this framework, the transition tem-

perature is approached through a non-equilibrium quench process, formally known as the
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Figure 6.1: A typical example of 3-regular graph with 48 spins. “3-regular” stands for

the fact that every spin is connecting to three other spins through the antiferromagnetic

interactions. Although the interaction strength is isotropic, however, due to loops of odd

number of edges, the system is geometrically frustrated. The graph is generated using the

efficient Steger-Wormald algorithm. [86]

Kibble-Zurek mechanism (KZ). [14–16, 38] It has been realized that this approach is espe-

cially suitable for studying spin-glass transitions since the quench velocity is a quantity one

can control, as opposed to the traditional equilibrium approach that suffers seriously from

the divergence of the relaxation time and the critical slowing-down. The same framework

was also established in terms of quantum phase transition [33, 37, 38] approached through

KZ. In the quantum case, it has been demonstrated [37] that one can extract quantum

critical point to high numerical precision even when the critical exponents are not known

prior to the simulation, this advantage has been demonstrated in this chapter to be valuable

when exploring the spin-glass systems.

In this chapter, we apply the non-equilibrium approach to investigate both classical and

quantum spin-glass transitions. We explicitly use antiferromagnetic Ising model on 3-regular

random graph as our benchmark system, since it is highly frustrated and shows spin-glass

phase below some finite temperature Tg > 0 while remarkably can be exactly solved in the

classical case using RSB. [28,29] A typical example of 3-regular graph with N = 48 is illus-
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trated in Fig. 6.1. The randomness comes into play when generating the realizations. Since

for a given number of spins (vertices), there are many realizations that are not isomorphic,

namely, for two realizations one can not transform one graph to the other graph by simply

relabeling the vertex numbers, an efficient algorithm called Steger-Wormald [86] is used to

generate the underlying graphs. This model is also interesting in terms of quantum case,

because of its connections to the Max Cut problem in graph theory and the complexity of

the Quantum Adiabatic Algorithm (QAA) for quantum computing [30]. Finding a Max Cut

of the graph is equivalent to finding the maximum number of satisfying boolean constraints,

or in the language of physics a ground state configuration of the given Hamiltonian. How-

ever, in previous studies not so much has been addressed in the context of KZ, therefore we

provide another perspective for the class of problems that have been studied by the QAA.

The rest of the chapter is organized in the following way: In Sec. 6.2 we summarize the

major results from Refs. [17,37] about the dynamic finite-size scaling around the transition.

In Sec. 6.3 we demonstrate the non-equilibrium approach of quenching temperature to

the transition point of the 3-regular random graph, through this process we show scaling

behaviors around the transition and extract critical exponents. In Sec. 6.4 we apply quasi-

adiabatic quantum Monte Carlo algorithm [37] to achieve quantum quench for the same

model and extract quantum critical point for the spin-glass transition, then we also show

scaling behaviors around the transition and estimate critical exponents. In Sec. 6.5 we

summarize our main result and discuss possible applications.

6.2 Dynamic finite-size scaling

We consider a system with Hamiltonian H and a parameter λ that characterizes the con-

tinuous transition. For a classical system, λ is the temperature; for a quantum system at

zero temperature, λ is the tuning parameter of the Hamiltonian. The initial value of λ sets

the initial state of the system that is either easy or trivial to prepare. We are interested in
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the behavior of the system when λ is tuned according to some power-law protocol from an

initial value to its critical value λc that corresponds to the transition of the system: [18]

λ(t) = λc + v(τ − t)r, (6.1)

where τ is the total time period during this process and v is interpreted as amplitude for

sudden quench (r = 0), velocity for linear quench (r = 1), acceleration for quadratic quench

(r = 2), etc. When the transition point λc is approached, the relaxation time will diverge

as τrel ∼ ξzλ ∼ ε−zν , where ξλ is the correlation length, ν the correlation length exponent,

z the dynamic exponent, and ε = |λ− λc|/λc the reduced distance from the critical point.

When the system is tuned into the regime in which τrel grows exponentially, the system

effectively enters into a “freeze-out” period since the fast-growing relaxation time prevents

the system from relaxing back to the equilibrium state. In addition, the velocity also comes

into play in the non-equilibrium scenario: When the velocity is low, the process is nearly

equilibrium, or quasi-adiabatic, and the response of the system can be described by the

adiabatic perturbation theory. [16] On the other hand, when the quench velocity is high,

the excitation defects lead to the breakdown of the adiabaticity. Obviously, the survival

of the adiabaticity depends on the interplay between two time scales: the quench time

and the relaxation time. It was first qualitatively purposed by Kibble and Zurek [14, 15]

that the time to reach the critical point should scale as the relaxation time in order to

keep adiabaticity, this mechanism was initially purposed to explain defect formations in

cosmology and classical phase transitions. Later the same has been applied to quantum

phase transition. [38] For a review, see Refs. [16,67]. Interestingly, the classical counterpart

has not been rigorously discussed until recently. [17, 32]

As illustrated in Fig 6.1, we are discussing a system which does not have a well-defined

length scale. We than use the following conventions to characterize the finite-size scaling:

N = Ld is the system size, where L is the effective linear size and d is the dimension of

the system defined with finite dimension. The define the normalized dynamic exponent
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z′ = z/d, and the normalized domain size exponent ν ′ = νd.

From the original qualitative argument of KZ, [14, 15] KZ for quantum phase transitions

[18, 38, 67], or rigorous derivation for classical phase transitions [17, 32], one obtains that

there is a size-dependent characteristic velocity threshold vc(N) which characterizes the

cross-over behavior between the quasi-adiabatic and non-adiabatic regimes

vc(N) ∼ L−(zr+1/ν) ∼ N−(z′r+1/ν′), (6.2)

where the physical interpretation of vc(N) depends on the quench protocol as we discussed

above. Alternatively, Eq. (6.2) also implies a characteristic domain size Vv associated with

a given v:

Vv ∼ ξdv ∼ v
− 1
z′r+1/ν′ , (6.3)

which implies that a fast quench that introduces a high density of excitation defects will

result in a small domain size. Or, equivalently, a small-r quench also result in a similar

behavior. More importantly, the characteristic threshold Eq. (6.2) implies a generalization

of the finite-size scaling ansatz for a physical quantity A: [17, 33,37]

A(N,λ, v) = Lκ/νF̃ (L/ξλ, v/vc) (6.4)

= Nκ/ν′F [(λ− λc)N1/ν′ , vN z′r+1/ν′ ],

where κ is the exponent that describes how the quantity A grows in terms of the power-law

in the reduced distance from λc, and F is an universal function for a given quantity A.

We also use the Edwards-Anderson (EA) order parameter [22] to capture the spin-glass

transition when approaching λc:
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q =
1

N

N∑
i=1

σ
(1)
i σ

(2)
i , (6.5)

where σ(1) and σ(2) are spin configurations from two independent simulations, or two in-

dependent “replica” for a given realization. Exactly at the transition λc, the expression

Eq. (6.4) for the order parameter can be written as:

[
〈q2〉

]
= N−2β/ν′F (vN z′r+1/ν′), (6.6)

where 〈. . . 〉 stands for the ensemble average for a given realization and [. . . ] stands for the

averages over realizations.

In recent study [17], it has been shown that at λc the order parameter shows a dual scaling

behavior described by two scaling functions f1 and f2:

[
〈q2〉

]
=


N−2β/ν′f1

(
vN z′r+1/ν′

)
, v < vc(N)

N−1v−x, vc(N) < v < 1

N−1f2(v−1), v & 1

(6.7)

Here the first scaling function f1 is applicable from v = 0 up to a size-independent cut-off

which is of order O(1). The second scaling function f2 applies from v = ∞ down to the

size-dependent lower bound vc(L) Eq. (6.2). The middle region vc(N) < v < 1 is where

both functions apply. Following the same terminology established in Ref. [17], we will call

the regime v < vc(N) quasi-adiabatic regime, vc(N) < v < 1 the power-law regime, and

v & 1 diabatic regime. Physically speaking, f1 describes the quasi-adiabatic regime where

v is perturbatively small compared to vc(N) and the regime in which perturbation breaks

down such that the behavior turns to a power-law; on the other hand, f2 describes the

diabatic regime where 1/v is perturbatively small and Vv is of the order of 1 lattice space

and the regime where Vv begins to grow while still much smaller than the system size. In

Ref. [17], it is also shown that the middle region, the power-law regime, is of great interest
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since it corresponds to the regime in which both perturbation in v and 1/v break down

and f1 and f2 overlap and smoothly connect to each other through the power-law. This

universal power-law regime is also important in the sense that in this regime the domain

size, Vv of Eq. (6.3), is growing when v is decreasing, while the size is still much smaller

than the system size: Vv � N . More importantly, the power x governing the power-law

contains the information of the critical exponent:

x =
1− 2β/ν ′

z′r + 1/ν ′
. (6.8)

As demonstrated in Ref. [17], the f2 scaling function and Eq. (6.8) combined has an inter-

esting application: by performing two different quenches characterized by two parameters

r1 and r2, respectively, one can compute the following by measuring the associated powers

xr1 and xr2 :

z′ν ′ =
xr2 − xr1

r1xr1 − r2xr2
,

ν ′ − 2β =
(r2 − r1)xr1xr2
r2xr2 − r1xr1

.

(6.9)

The above expressions along with the knowledge from f1 scaling function of a given quench

(either r1 or r2) allows one to independently extract all exponents z′, ν ′, and β, as we will

demonstrate in Sec. 6.4.

The dynamic finite-size scaling Eq. (6.4) has been studied extensively in ferromagnetic

systems, such as classical Ising model [17] as well as quantum Ising model in imaginary

time, [33, 37] however, to our knowledge, it has not been investigated in either classical or

quantum spin-glass transition. Therefore, in this chapter we extend this framework to the

studies of spin-glass transitions.
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6.3 Thermal spin-glass transition

In this section we demonstrate the applications of the dynamic finite-size scaling under the

framework of non-equilibrium quenches. The Hamiltonian of the antiferromagnetic Ising

model on 3-regular random graph can be written as

H = J
∑
〈i,j〉

σiσj , (6.10)

where J > 0, σi = ±1, and 〈i, j〉 stands for nearest-neighbor spin pairs. A typical example

of the 3-regular graph has been illustrated in Fig. 6.1. The presence if odd-length loops in

the system results in frustration and highly degenerate ground states. Remarkable, using

RSB, when the temperature T is higher than the spin-glass transition Tc, the loops can be

ignored since the lengths are typically of order O(ln(N)), therefore it has been argued that

a mea-field description can be used to describe the system before the RSB local instability

sets in when T < Tc, where Tc/J = −2/ ln(1− 2/(1 +
√

2)) [28, 29]. In the case of thermal

transition, the parameter λ discussed in Sec. 6.2 corresponds to the temperature T .

The simulation scheme is as following: For each realization we do equilibration at the initial

temperature Ti = 1.5Tc, and then quench the system to the final temperature Tf = Tc with

different protocols Eq. (6.1). One unit of time is defined as one Monte Carlo step in which

N attempts of single spin-flip are performed according to the Metropolis algorithm [42].

Some typical examples of linear quenches are shown in Fig. 6.2. We use 64-bit multi-spin

coding, which allows us to do average over 64 independent runs for a given simulation. Since

the system has a spin-glass phase when T ≤ Tc, we expect the fluctuation over different

realizations to be much greater than the fluctuation over different MC sampling paths

for a given realization, therefore the näive motive of improving the statistical precision

by repeatedly running the simulations (at least several thousands of times) for a given

realization will become only marginal when the ensemble average is taken to the realization
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Figure 6.2: Illustrations of linear quenches of the 3-regular random graphs with N = 512

spins. The system is first equilibrated at the initial temperature Ti = 1.5Tc and then

quenched to the final temperature Tf = Tc with different quench velocities. Shown are the

temperature as a function of time (bottom) and order parameter [〈q2〉] as a function of time,

for different velocities defined as v = 0.5/τq (in unit of Tc). The error bars are smaller than

the symbol size.

average. We therefore only do one quench (which gives average over 64 independent runs)

for a given realization, repeating the procedures for, typically, thousands of realizations.

Furthermore, since the system is equivalent to a mean-field spin-glass of upper critical

dimension d = 6, critical exponents can be computed analytically, β = 1, ν = 1/2, and z = 4

[1]. In terms of our normalized notations, the mean field values read β = 1, ν ′ = νd = 3,

and z′ = z/d = 2/3. We would like to point out that knowing the transition point Tc or the

critical exponents is not a necessary condition for our approach o work, however, the full

knowledge of the spin-glass transition serves as a good test ground for the non-equilibrium

approach we are demonstrating. Later we will show that how to numerically extract the

transition point independently and then extract critical exponents independently.
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The most distinct feature from the traditional equilibrium approach is that, this non-

equilibrium process starts from a temperature away from Tc, and then quenches to Tc.

This has allowed one to completely avoid critical slowing-down at Tc, which traditional

equilibrium techniques have always suffered from. In this non-equilibrium approach, any

critical slowing-down phenomena only reflect on the scaling behavior Eq. (6.7). In fact,

in Sec. 6.3.2, we will further discuss that how a potentially serious critical slowing-down

problem with a large z could turn to facilitate the scaling under this framework.

The duality of f1 and f2 has been demonstrated extensively in Ref. [17] for ferromagnetic

system, below in Sec. 6.3.1 we use linear quench to show the same behavior of dual scaling

in the spin-glass system. In Sec. 6.3.2 we show an approach to extract critical exponents by

combining results from different quench protocols. This approach is an efficient application

of the power-law behavior.

6.3.1 Linear quench to Tc

Some typical examples of linear quenches to Tc are shown in Fig. 6.2. For linear quenches

r=1 in Eq. (6.1). The velocity is defined as v = 0.5/τq (in unit of Tc) for a given quench

time τq. Fig. 6.3 shows the first scaling function f1 described by the dual scaling Eq. (6.7).

It is expected that in the adiabatic limit as v → 0, the scaling will reduce to the equilibrium

one, as the plateau to the left shows; the curves then make a cross-over to the power-law

regime as v increases. The power-law would extend to infinitely large v as N →∞, however,

in terms of finite-size systems, the f1 scaling eventually breaks down at some high-velocity

cut-off. More importantly, the dashed line in Fig. 6.3 shows the power-law behavior with

the power given by Eq. (6.8), one can see a very good agreement between simulations and

prediction.

It is worth mentioning that, the power-law regime corresponds to the regime when Vv of

Eq. (6.3) is growing as v is decreasing while Vv is still much smaller than the system size,
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Figure 6.3: f1 scaling for linear quenches to Tc. The mean-field values of the exponents

β = 1, ν ′ = 3, z′ = 2/3 are used. The linear quenches are performed at velocities v = 0.5/τq

for different quench times τq. The error bars are at most of the symbol size. Three different

scaling regimes described in Eq. (6.7) can be clearly observed. The plateau to the left

corresponds to the quasi-adiabatic regime, in which the scaling reduces to the equilibrium

one as v → 0. The middle region corresponds to the power-law regime in which the the

order parameter [〈q2〉] shows a power-law in v with the power x described by Eq. (6.8). The

power-law could extend to infinitely large velocity in the thermodynamic limit, however,

for finite-size systems the curves to the right eventually begin to deviate from the scaling

as v →∞. The dashed line shows the power-law with the power given by Eq. (6.8).
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Figure 6.4: f2 scaling for linear quenches to Tc. The left region corresponds to the diabatic

regime. Those tails of the curves that showed deviations in the f1 scaling of Fig. 6.3 now

collapse into a scaling form in this diabatic regime. The middle region corresponds to the

power-law regime. The dashed line shows the power-law with the power given by Eq. (6.8).

The right region corresponds to the adiabatic regime in which the curves begin to show

deviations, since the f2 scaling applies from v = ∞ down to a low-velocity cut-off. Note

that the data sets come from the same ones used in Fig. 6.3. It is also worth pointing out

that f2 scaling requires no knowledge of the the critical exponents, while the power-law still

intrinsically contains the information of the critical exponents as described by Eq. (6.8).
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i.e., Vv � N , this is when the behavior becomes effectively size-independent. However, the

effective high dimensionality, d = 6, of the system results in an equivalently small system

size, therefore Vv becomes comparable to N at considerable high velocity. This is indicated

by the limited range of the power-law as shown in Fig. 6.3. In some situations, when

the power-law is more favorable over other scalings, one can explicitly implement different

quench protocols that effectively suppress Vv such that the power-law behavior becomes

enhanced, as we will demonstrate in Sec. 6.3.2.

We now turn to the second scaling function f2, as demonstrated in Fig. 6.4. The left

region of Fig. 6.4 corresponds to the diabatic regime, the right region corresponds to the

adiabatic regime. Note that Figs. 6.3 and 6.4 are simply different scaling behaviors realized

by the same data sets. It is also worth pointing out that the deviating tails of the curves in

Fig. 6.3 now show perfect scaling in Fig. 6.4. One the other hand, since f2 is applicable from

v = ∞ down to a low-velocity cut-off, the plateau from f1 in the quasi-adiabatic regime

in Fig. 6.3 now splits into deviations in the f2 scaling. Remarkably, the power-law still

strongly holds in f2 scaling, as the agreement between the prediction (dashed line) and the

simulations is clearly observed. The f2 scaling is remarkable in the sense that, the applicable

range corresponds to the regime where the domain size Vv is still much smaller than the

system size, and the fact that rendering f2 scaling requires no knowledge of the critical

exponents, however, the power governing the power-law implicitly carries the information

of the exponents. In Sec. 6.3.2 we further discuss more applications of this property.

6.3.2 Non-linear quenches to Tc

In Sec. 6.3.1, we demonstrate the duality of scaling behaviors described by f1 and f2. This

scaling behavior has suggested a straightforward way to extract critical exponents: one can

simply carry out a fitting procedure to determine the values of β, ν ′, and z′ that yield the

optimized scaling collapse of f1, and then one can perform f2 scaling for a consistency check.

In Ref. [17], this procedure has been extensively employed to extract dynamic exponents
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of several types of dynamics to high precision. In practice, however, 2-parameter or 3-

parameter optimization is not easy to achieve high accuracy, needless to say one has to

know roughly the values of the parameters in order to find correct ranges to optimize.

The second scaling behavior f2 has actually suggested another convenient way to extract

critical exponents. The key observation is that, as we mentioned in Sec. 6.3.1, rendering

f2 requires no knowledge of the critical exponents, but remarkably, the power x associated

with the power-law corresponds to the combinations of exponents. The power xr associated

with a given r-quench protocol can be directly obtained by a linear fit after taking log-log

of the f2 scaling. Since the linear fit is practically easier to carry out than f1 optimization,

which generally involves high-order polynomial fitting, this procedure is more favorable.

In addition, since f2 describes the diabatic and power-law regimes that involve higher ve-

locities, computationally it means shorter runs are sufficient to determine the exponents.

Furthermore, by performing two different quench protocols, one can obtain two values xr1

and xr2 corresponding to two different combinations of exponents, therefore one can solve

the equations of two systems to disentangle the exponents.

As we pointed out earlier, the power-law regime corresponds to the regime in which the

domain size Vv is growing as v is decreasing but Vv is still much less than the system

size, in this regime the behavior becomes effectively size-independent and the curves should

collapse on top of each other in the power-law regime for considerable large sizes, as is

clearly observed in Fig. 6.4. This also suggests a systematic way of determining the system

sizes to be used for linear fit: one can simply observe when do the largest and the second

largest sizes begin to merge together in the f2 scaling, this is when the system sizes become

much larger than Vv and the power-law completely dominates the scaling. Since in a linear

fit, selecting the correct region for fitting is more important, as opposed to a high-order

polynomial fit in which more data points are required in order to improve the statistics,

this systematic method provides an easy way to select the correct region for the linear fit.

Apparently the applicability of the procedure through f2 scaling relies on the existence of
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r = 1/2 quenches. As discussed in the text, we include N = 12288 and N = 16384 for

linear fit. The dashed line with arrows indicates the region selected for linear fit. The

region is determined by statistical χ2/dof as data points outside this region correspond to
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therefore will ruin the χ2/dof. Linear fit after taking log-log yields the power x1/2 = 0.497(2)

with χ2/dof ≈ 0.90, where dof = 13.

10
1

10
2

v
-1

5

10

20

[<
q

2
>

] 
N

 1024

 2048

 4096

 8192

 12288

 16384

linear fit

100 200
t (MC steps)

1.0

1.2

1.4

1.6

1.8

T
(t

)

r=1/3

N
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the power-law regime, the size of which is determined by the size of the range vc(N) < v < 1.

The wider the range, the more accessible the power-law regime. This property leads to an

interesting advantage that traditional equilibrium approaches view as a disadvantage: a

large z that results in a serious critical slowing-down will naturally create a wide power-

law regime. Because of this advantage, many spin-glass systems that have serious critical

slowing-down could be investigated efficiently through this approach.

In addition, in this procedure small Vv is favorable in order to observe a size-independent

power-law behavior. As intuitively suggested by Eq. (6.3), a quench protocol with smaller

r could suppress the growth of Vv. Of course there should exist a lower limit for the choice

of r since when r → 0 the process becomes effectively a sudden quench. In principle one

could rigorously find an optimal quench protocol for this purpose, which requires details of

the system under study, but we empirically find that r = 1/2 and r = 1/3 suffice for this

3-regular random graph system. We next use these two non-linear quenches to demonstrate

the procedure we have outlined.

In Figs. 6.5 and 6.6, we perform two types of non-linear quenches with r = 1/2 and r = 1/3,

respectively, with v defined as v = 0.5/τ rq (in unit of Tc) according to Eq. (6.1). The focus

will be using linear fit to extract critical exponents from the power-law regime in the f2

scaling. As indicated by both figures, the largest two curves from N = 12288 and N = 16384

have already shown clear size-independent behavior in the power-law regime, we therefore

include these two sizes in the linear fit. Furthermore, one can then use statistical χ2 per

degree of freedom (dof) to determine the correct region that yields the optimized linear fit

result, since the points outside the power-law regime vc(N) < v < 1 will ruin the χ2/dof if

being included in the linear fit.

For the r = 1/2 quench, we obtain x1/2 = 0.497(2) with χ2/dof ≈ 0.90, and dof = 13. For

the r = 1/3 quench, we have x1/3 = 0.593(1) with χ2/dof = 0.83, where dof = 10. Using

equations Eq. (6.9), we obtain z′ν ′ = 1.9(1), and ν ′−2β = 0.97(2), which is consistent with

the mean-field calculations [1]. In this demonstration we only considered the largest two
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Figure 6.7: Results for a linear quench through the spin-glass transition. The quench starts

from Ti = 1.5Tc and goes down to Tf = 0.5Tc. The quench velocity is defined as v = 1/τq

(in units of Tc.) For different sizes, the factor vN z′+1/ν′ is kept constant. When T ≥ Tc,

the scaling Eq. (6.12) works very well. In the spin-glass phase when T < Tc, the scaling

begins to break down.

sizes, but in practice, especially when corrections to scaling are called for, one can further

include more data points, as long as they show size-independent scaling, to improve the

statistics.

6.3.3 Linear quench through the spin-glass transition

So far we have talked about the scaling behavior at Tc. It would be interesting to see

whether the scaling survives in the spin-glass phase, since the correlation length ξT may

begin to grow exponentially when T < Tc. Eq. (6.4) has suggested a way to probe the

scaling behavior in the spin-glass phase: For a given quench protocol r, one can perform a

set of simulations with different system sizes for which the factor vN z′r+1/ν′ is kept constant.

Explicitly, in a linear quench, the order parameter [〈q2〉] can be written as:
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[
〈q2〉

]
= N−2β/ν′F

[
(T − Tc)N1/ν′ , const.

]
(6.11)

= N−2β/ν′F̃
[
(T − Tc)v−1/(z′ν′+1)

]
. (6.12)

The above scaling Eq. (6.12) should work when T ≥ Tc before the spin-glass phase, it will

then be interesting to see how will this scaling extend when quenching through the critical

point. As Fig. 6.7 shows, the scaling works very well when T ≥ Tc, but, presumably due to

some special property of the glass phase, below Tc the scaling seems to break down. This

indicates that the scaling does not work for T < Tc.

It is worth pointing out that keeping the factor vN z′r+1/ν′ constant amounts to scaling the

velocity v (or generalized velocity when r 6= 1) exactly as the characteristic velocity vc(N),

Eq. (6.2). For a set of sizes that are quenched according to the condition v/vc(N) = const.,

the scenario is equivalent to the equilibrium case. Therefore, if one did not rescale data in

the style of Fig. 6.7, the curves would cross rather than collapse. More importantly, the

extrapolation of the crossing points corresponds to the transition point Tc in the thermo-

dynamic limit. This has been extensively studied in quantum Ising model [37]. We will

further discuss this application in Sec. 6.4.1.

6.4 Quantum spin-glass transition

In this section we study the same 3-regular random graph as illustrated in Fig. 6.1, but

instead of thermal transition, now we consider a T = 0 quantum Hamiltonian:

H = s
∑
〈i,j〉

σzi σ
z
j − (1− s)

∑
i

σxi , (6.13)

where σzi and σxi are Pauli matrices and s ∈ [0, 1]. The goal is to quench the quantum

fluctuation by tuning the parameter s such that s : 0→ sf at some finite velocity. We use
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Figure 6.8: Some typical examples of linear quenches for a system size N = 512. The inset
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system size N . The main frame shows the corresponding EA order parameter (overaged

over realizations) as a function of s.

the qausi-adiabatic quantum Monte Carlo algorithm (QAQMC) to achieve the evolution in

a single simulation, the details of the algorithm will be referred to Ref. [37] and we only

summarize the main idea as follows:

The evolution of the Hamiltonian Eq. (6.13) with s : 0→ sf can be achieved by applying a

product of evolving Hamiltonians PM,1 on an initial state |Ψ0〉 =
∏
i | ↑i + ↓i〉:

|ΨM 〉 = PM,1 |Ψ0〉

=
[
−H(sM )

]
. . .
[
−H(s2)

][
−H(s1)

]
|Ψ0〉

=
∑

[p
M
,...,p1 ]

Hp
M

(sM ) . . . Hp2
(s2) Hp1

(s1) |Ψ0〉

≡
∑

[p
M
,...,p1 ]

PM,1 |Ψ0〉 ,

(6.14)

where
∑

[p
M
,...,p1 ] corresponds to sum over all possible combinations of the indices. The

above expression can be described as performing a Wick rotation to the imaginary time

axis such that the evolution is carried out in imaginary time. The tuning parameter s plays

the role of λ in Eq. (6.1) and the way which specifies how the values si are discretized
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determines a protocol. Some typical examples of linear quenches are shown in Fig. 6.8. An

important result from Ref. [37] is that the length of the operator product PM,1 in Eq. (6.14)

should scale as the number of spins, i.e., M ∝ N and the velocity (or generalized velocity

when the protocol is non-linear) can be defined as v ∝ (N/M)r. The physical observables

A during the evolution can then be computed by the asymmetric expectation value:

〈A〉t =
〈Ψ0|P1,MPM,t+1 APt,1|Ψ0〉
〈Ψ0|P1,MPM,1|Ψ0〉

. (6.15)

The quantum Monte Carlo importance sampling scheme for computing the observables

Eq. (6.15) is achieved by the Stochastic Series Expansion updating scheme, [11–13] which

consists of diagonal update and cluster update. We are interested in the EA order param-

eter defined as in Eq. (6.5) with σ replaced by σz and the dimensionless Binder cumulant

constructed through the EA order parameter:

U =
1

2

[
3− 〈q

4〉
〈q2〉2

]
, (6.16)

where 〈. . . 〉 stands for the ensemble average for a given realization and [. . . ] stands for the

average over realizations. Following directly from Eq. (6.4), the scaling form of U around

the quantum critical point (QCP) sc can be written as:

U = F
[
(s− sc)N1/ν′ , vN z′r+1/ν′

]
. (6.17)

The Hamiltonian Eq. (6.13) has been studied recently [30] in the context of QAA, in which

the relation between QAA and combinatorial optimization has been discussed in detail.

Here we look at the problem in terms of non-equilibrium quench and focus on the spin-glass

transition. In Sec. 6.4.1 we extract QCP corresponding to the spin-glass transition. In

Sec. 6.4.2 we demonstrate the dual scaling behavior at QCP.
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6.4.1 Extracting the critical point sc

As we mentioned in Sec. 6.3, the thermal transition of the 3-regular random graph can

be analytically solved by the RSB solution [1, 28, 29], consequently the critical exponents

are known exactly. However, to our knowledge there is no exact solution for the quantum

case despite the development of quantum cavity method [88, 89]. Furthermore, although

there is a correspondence between d-dimensional quantum system and (d+ 1)-dimensional

classical system, it is not fully clear that if this correspondence still holds in spin-glass

system when the classical counterpart is already at the upper critical dimension. Therefore

to be unbiased, we treat all exponents associated with the quantum spin-glass transitions

as unknown. In this section, we use a technique developed in Ref. [37] to demonstrate that

one can still extract sc without knowing the exact values of the critical exponents.

Recall the original KZ argument and Eq. (6.2): to be quasi-adiabatic, the velocity should

scale as vc(N) ∼ N−(z′r+1/ν′). If the exponents are not known prior to the simulation, one

can formally assume that

v(N) ∼ N−α′ . (6.18)

We are interested in two scenarios: (i) α′ = z′r + 1/ν ′, (ii) α′ > z′r + 1/ν ′. The first

scenario follows directly from the KZ argument and Eq. (6.2). When the exponents are

already known, one can keep the second argument in Eq. (6.17) constant and use the

standard equilibrium approach of extracting Binder crossings [62] to find sc. In the second

scenario when α′ > z′r + 1/ν ′, it implies that the velocity scales to zero faster than the

velocity threshold vc(N), which means that the second argument of the scaling function

Eq. (6.17), N z′r+1/ν′/Nα′ , goes to zero in the thermodynamic limit. This scenario amounts

to taking the adiabatic limit first and taking the thermodynamic limit second, consequently,

this is equivalent to equilibrium situation in the thermodynamic limit when N →∞. This

suggests that for a given trial of α′ that potentially satisfies α′ > z′r + 1/ν ′, one can still
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Figure 6.9: Binder cumulants Eq. (6.16) for different system sizes that obey Eq. (6.18)

with α′ = 8.5/6 (top). Extrapolations of the crossings of Binder cumulants for different

choices of α′ (bottom). For α′ = 6.5/6, the extrapolation is obtained by looking at the

crossings between N and N + 64 curves with N = 192, . . . , 640. For α′ = 7.5/6, the

extrapolation is from the crossings between N and N + 64 curves with N = 192, . . . , 576.

For α′ = 8.5/6, the extrapolation is from the crossings between N and N + 32 curves with

N = 192, . . . , 448. A larger value of α′ implies that the velocity converges to zero faster,

therefore the extrapolation will converge to equilibrium earlier. Indeed, using the standard

form Eq. (6.19), the extrapolation from α′ = 8.5/6 scaling gives the smallest error bar with

sc ≈ 0.3565(12).
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look at the Binder crossings based on different system sizes on which Eq. (6.18) is imposed,

the extrapolation of the Binder crossings corresponds to the equilibrium transition point.

This procedure has been thoroughly tested in Ref. [37], below we apply this technique to

the quantum spin-glass transition.

We use linear quench protocol (r = 1), therefore α′ will be compared to z′+1/ν ′. In light of

the knowledge from the classical system, in which the quantity z′+ 1/ν ′ is 1, we intuitively

take this as the lower bound in the quantum case and empirically select α′ = 6.5/6 ≈ 1.083,

α′ = 7.5/6 = 1.25, and α′ = 8.5/6 ≈ 1.417. Later these choices can be justified after the

exponents are extracted. For a given choice of α′, one can look at the crossings between

Binder cumulants from different sizes that satisfy the condition Eq. (6.18). Some typical

examples are illustrated in the top panel of Fig. 6.9. Since close to the transition point

any quantities related to the order parameter can be written as a power-law, the standard

form [63] is used to fit the crossings of the Binder cumulant:

sc(N) = sc + a/N b, (6.19)

where a and b are fit parameters.

As the above argument implies, if the chosen α′ corresponds to scenario (ii), the extrap-

olation of the crossings to the thermodynamic limit should correspond to the equilibrium

transition point. One can further make different choices for consistency check, since the

correct trials of α′ should all lead to the same extrapolation. As indicated by the bottom

panel of Fig. 6.9, indeed different choices of α′ all lead to the same extrapolation result.

Furthermore, a larger α′ implies that the scenario will reduce to the adiabatic limit faster,

this is also indicated by the smaller error bar on the extrapolation of α′ = 8.5/6 curve, from

which we obtain sc ≈ 0.3565(12), this is in good agreement with Ref. [30].
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Figure 6.10: f1 scaling of results obtained in a linear quench to sc. The velocity is defined

as v = sc/M̃ , where M̃ = M/N and M is the total length of the operator product PM,1 in

Eq. (6.14) and should scale as M ∝ N . The scaling indicates that the velocities yield scaling

in the power-law regime, while the quasi-adiabatic regime in the region v < N−(z′+1/ν′) is

not accessible due to the requirement of long runs, and the out-of-scaling “tail” of each

curve corresponds to the diabatic regime. A fitting procedure is carried out to determine

the exponents that yield the optimized scaling collapse, we obtain z′ + 1/ν ′ = 1.31(17) and

β/ν ′ = 0.428(9), with χ2/dof ≈ 0.90. The solid line indicates the polynomial fit of the

fitting procedure.
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Figure 6.11: f2 scaling procedure of r = 1 linear quenches to sc. The data set is the same as

the one used in Fig. 6.10, but scaled according to the second scaling form in Eq. (6.7). The

left region corresponds to the diabatic regime and the right region is the adiabatic regime,

while the middle corresponds to the power-law regime. The tails that do not collapse in

Fig. 6.10 now show scaling collapse. Furthermore, one can use linear fit after taking log-

log to find the power x governing the power-law. The dashed line with arrows indicates

the region selected for the linear fit, the selection of the region is guided by what region

minimizes the χ2/dof. In addition, the power-law should be a size-independent behavior,

therefore we include sizes with N ≥ 768 in the fitting procedure, the selection of sizes is

also systematically guided by the minimization of χ2/dof. The solid line indicates the fit

result. The linear fit yields x1 = 0.1089(1) with χ2/dof ≈ 0.90, in full agreement with the

result predicted by f1 scaling.
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Figure 6.12: f2 scaling for non-linear r = 2/3 quenches to sc, in the same style as Fig. 6.11.

One can again use linear fit after taking log-log to find the power x governing the power-law

regime. The dashed line with arrows indicates the region selected for the linear fit. We

include sizes N ≥ 768 for linear fit, which gives x2/3 = 0.1255(4) with χ2/dof ≈ 1.6.

6.4.2 Scalings at the critical point

After the critical point is obtained, sc ≈ 0.3565(12), we perform another set of linear

quenches with the aim of approaching sc with different velocities. The velocity can be

defined as v = sc/M̃ , where M̃ = M/N and M is the total length of the operator product

PM,1 in Eq. (6.14). At sc the dual scaling behavior Eq. (6.7) will again be expected. So

far the exact values of the exponents appeared in Eq. (6.7) are not yet known, however the

scaling behavior allows us to numerically extract the values.

Fig. 6.10 shows the f1 scaling from linear quenches with different velocities. Since the

exponents β, ν ′, and z′ are unknown, a 2-parameter fitting procedure is performed to

determine the values of z′ + 1/ν ′ and β/ν ′. We obtain z′ + 1/ν ′ = 1.31(17) and β/ν ′ =

0.428(9), with χ2/dof = 0.9. The fitting result for z′ + 1/ν ′ also justifies the choices of α′

used for Binder crossings as we discussed in Sec. 6.4.1. A legitimate choice of α′ should be

greater than z′+ 1/ν ′, therefore, it implies that α′ = 8.5/6 are indeed corresponding to the

scenario (ii). As indicated by Fig. 6.10, the available velocities result in the f1 scaling in
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the power-law regime. The power associated with the power law can be predicted by the

fitted exponents according to Eq. (6.8). The fitted results for z′ + 1/ν ′ and β/ν ′ predict

that x ≈ 0.109. One can independently check this prediction by looking at the f2 scaling,

as we discuss next.

Fig. 6.11 shows the f2 scaling from the same data set used in Fig. 6.10. As we discussed

in Sec. 6.3, f1 and f2 are equivalent, or more precisely speaking, they are complimentary

since f1 covers the scaling in the quasi-adiabatic and power-law regimes and f2 covers the

scaling in the power-law and diabatic regimes, one can see a clear power-law behavior in

both Figs. 6.10 and 6.11. Also, having the same situation as in the classical case, in the f1

plot the tails that do not show scaling in the diabatic regime turn into scaling collapse in

the f2 plot.

Furthermore, f2 is easier to render in practice since it requires no knowledge of the critical

exponents. As we pointed out in Sec. 6.3, one can use a linear fit after taking log-log of

the data to find the power x, which governs the power-law and contains the information of

critical exponents. Ideally, the power-law regime should show a size-independent behavior.

In practice small sizes will show deviation due to finite-size effect. One then can use χ2/dof

to quantify the selections of the region in which linear fit is carried out and sizes included

in the fit, since region outside the power-law regime or small sizes will ruin the χ2/dof if

being included. As shown in Fig. 6.11, we obtain x1 = 0.1089(1) with χ2/dof = 0.9, this is

completely consistent with the prediction from f1 scaling.

To fully extract the exponents, we perform another set of non-linear quenches to sc with

r = 2/3. The goal is to obtain the power x2/3 in order to apply Eq. (6.9), therefore we

only focus on the f2 scaling. As shown in Fig. 6.12, the scaling is still clearly observed in

non-linear quench. Using linear fit for the region indicated by the dashed line with arrow,

we obtain x2/3 = 0.1255(4) with χ2/dof ≈ 1.6.

The results of x1 and x2/3 allow one to compute z′ν ′, according to Eq. (6.9). We obtain



162

z′ν ′ = 0.656(25). Combine the numerical results obtained so far, one can easily solve for

the exponents z′, ν ′, and β:


z′ + 1/ν ′ = 1.31(17),

z′ν ′ = 0.656(25),

β/ν ′ = 0.428(9),

⇒


z′ = 0.52(7),

ν ′ = 1.26(16),

β = 0.54(7).

(6.20)

The results obtained above strongly indicate that the exponents in the quantum case are

very different from the classical counterparts. We would like to point out that although the

classical system is at the upper critical dimension dcl, the dimensionality of the quantum

case should be effectively dq = dcl + zq, where zq is the dynamic exponent of the quantum

system, therefore the exponents in the quantum case are not expected to be in the mean-

field description.1 Furthermore the mean-field description can not fully capture the quantum

case since the system is anisotropic in the spatial dimension but isotropic in the imaginary

time dimension.

6.4.3 Comparison with previous results

The same Hamiltonian Eq. (6.13) has been extensively studied in the context of the perfor-

mance of QAA on the Max Cut of random 3-regular graphs. [30] One of the major issues

being discussed is that whether the energy gap decreases polynomially or exponentially with

the system size N . In Ref. [30], Farhi et al. looked at the median of the minimum gap

(taken from the median among realizations for a given system size) and found that close to

the critical point sc, a power-law better explains the vanishing of the energy gap than the

exponential form does. The power-law form extracted therein reads as ∆Emin ∝ N−0.78.

This corresponds to a z′ = 0.78 in our notation. Despite the difference in the value of z′,

it is qualitatively consistent with our conclusion that at sc a power-law scaling is clearly

1We also found that, for either r = 1 or r = 2/3 quench, if one tries to rescale the raw data in the style

of Fig. 6.10 with the classical exponents, no scaling collapse is observed.
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observed. It should also be noted that in Ref. [30], only instances of the 3-regular random

graphs satisfying certain additional conditional conditions were considered, while in our case

we consider many randomly generated realizations. Also, the power-law form extracted in

Ref. [30] is from the medians of the instances considered, while in our case we consider

average over realizations.

In the classical phase transition, the 3-regular AFM random graphs and the SK model are

known to be in the same universality class, as discussed in Sec. 6.3. However, in the quantum

scenario the situation is not clear yet. Read, Sachdev, and Ye looked at the quantum SK

model [111] and found the exponents to be z = 2, ν = 1/4, and β = 1, at an effective upper

critical dimension d = 8. Translated to our notation, it corresponds to z′ = 1/4 and ν ′ = 2.

It is possible that in the quantum case these two models are not in the same universality

class, or the QMC results are still affected by finite-size effects. However, we would like to

point out that, as will be discussed in Appendix A, the values z′ + 1/ν ′ and β/ν ′ obtained

in the r = 1 linear quenches (see Fig. 6.10) are consistent with the QAQMC result for the

quantum SK model.

6.5 Summary and Discussion

We have presented a non-equilibrium approach for studying both classical and quantum

spin-glass transitions. This approach is a further extension of KZ mechanism and general-

ized dynamic finite-size scaling.

In terms of classical transition, this framework shows advantages over the traditional equi-

librium methods, since the critical slowing-down can be completely avoided. Furthermore,

there is no any “waiting time” associated with the relaxation process that generally used in

the equilibrium approaches. In this non-equilibrium quench, one has the freedom of choos-

ing quench velocities (or generalized velocities for non-linear quenches). Remarkably, as we

showed in terms of the dual scaling behavior, different quench velocities will result in either
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z′ ν ′ β β/ν ′ p(r) p(1) p(0+) p(∞)

C 2/3 3 1 1/3 2/3+1/3r 1 1/3r 2/3

Q 0.52(7) 1.26(16) 0.54(7) 0.428 0.52 + 1/1.26r 1.31 1/1.26r 0.52

Table 6.1: Comparison between the critical exponents for the classical (C) and quantum

(Q) 3-regular AFM random graphs. The classical exponents are equivalent to the fully-

connected SK model with d = 6 [1]. The exponent p(r) ≡ z′ + 1/ν ′r governs the time scale

required for approaching the critical point without losing the adiabaticity.

f1 or f2 scaling, depending on the range the velocity falls into. Since these two scalings are

equivalent, one can solely work with one scaling function and perform consistency check

with the other. However, in practice, f2 is more favorable for the following three major rea-

sons: First, rendering f2 scaling requires no knowledge of the critical exponents, while the

power associated with the power-law regime contains the information of critical exponents.

Second, the f2 scaling describes higher velocity regime, which translates to computationally

shorter simulations. One can achieve scaling with relatively shorter runs than the tradi-

tional equilibrium methods. Third, the power governing the power-law in f2 scaling can be

measured easily, one simply performs linear fit after taking log-log. Furthermore, one can

carry out this procedure for two different quench protocols and then solve the system of

two equations to determine the critical exponents. The advantages will become more sig-

nificant when the critical slowing-down affects the performance of traditional equilibrium

simulation methods. A serious critical slowing-down problem generally is associated with

a large dynamic exponent z. However, in this non-equilibrium quench approach, critical

slowing-down has no effect on the procedure and a large z only creates a wide power-law

regime, which can be taken advantage by the f2 scaling.

As for the quantum phase transition, we use the QAQMC algorithm to demonstrate this

non-equilibrium approach. The advantage of using QAQMC is that it can take measure-

ments for the entire evolution in a single simulation when the Hamiltonian is evolving as
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a function of the tuning parameter. We demonstrate that, without any knowledge prior to

the simulation, one can extract information such as transition point and critical exponents

associated with the transition. At the first stage one can first determine the transition point

by choosing the correct velocity scaling. At the second stage after the transition point is

determined, one then uses the scaling behavior at the transition point to determine the

critical exponents. The exponents obtained are summarized in Table 6.1. The knowledge

of the critical exponents for both the classical and quantum systems also allow us to make

a systematic comparison between simulated annealing (SA) and quantum annealing (QA),

the former is a classical optimization algorithm and the later uses the idea of quantum

computing. Given the expression Eq. (6.2), one can write down the time scale to reach the

critical point as:

τ ∼ v−1/r ∼ N z′+1/ν′r. (6.21)

Therefore p(r) ≡ z′ + 1/ν ′r defines this time scale. Also, at the spin-glass transition point

the order parameter scales as 〈q2〉 ∼ N−2β/ν′ , the typical size of the order parameter

is related to β/ν ′. For linear quench, as shown in Table. 6.1, QA takes longer to reach

the critical point and also gets smaller order parameter. In other words, QA has worse

performance than SA. In the scenario when r → 0+, the time scale associated with QA

is still longer. In another limit when r → ∞, QA shows better scaling than SA. It is

therefore plausible that one can devise a non-linear quench protocol such that SA and QA

show comparable results. Nevertheless, linear quench seems to be the most approachable

protocol. Furthermore, since many optimization problems can be either reduced to the

3-regular AFM (e.g., MaxCut of a 3-regular graph) or be shown to be in the same NP-class

as the model [30], the numerical results obtain here imply that quantum algorithms can not

do better than classical algorithms for this class of problems.
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Chapter 7

Non-equilibrium quench in classical 3D spin-glasses

7.1 Introduction

Spin-glasses, a type of magnetic system that has disordered interactions, have been an

important and challenging topic in the development of statistical physics and condensed

matter physics [1,23] . In the early development, the interests in spin-glasses arose because

of the complex spin-glass phases and the complexity of finding the ground state. Later

on, it was found that many problem in other areas such as biology, computer science,

combinatorial optimization, and even social networks, can be mapped onto a spin-glass

problem. Therefore, a deeper understanding of the spin-glasses, the establishment of the

underlying mathematical framework, and the development of analytical and computational

techniques can have divers applications and impact.

A typical spin-glass Hamiltonian can be written as

H =
∑
ij

Ji,jσiσj , (7.1)

which is a modification of the Ising model. Depending on the specific cases under study,

the interaction strength Jij will be different. But generally speaking, the randomness and

disorder come into play through the interaction strength or the geometrical arrangement.

The frustration and highly degenerate ground state will result in a rough energy landscape

in the configuration space, as demonstrated in Fig. 7.1 (a).

Roughly speaking, we can categorize spin-glasses into two types, finite dimension Fig. 7.1

(b) and infinite dimension Fig. 7.1 (c) and (d). A fully-connected spin-glass with interaction

being Gaussian distributed Jij ∼ N (0, 1
N ) is known as the Sherrington-Kirkpatrick (SK)
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(a) (b)

(c) (d)

Figure 7.1: Illustration of spin-glasses. (a) A rough energy landscape in the configuration

space. (b) A three dimensional (3D) spin-glass. (c) A fully-connected spin-glass, also

known as Sherrington-Kirkpatrick (SK) model. (d) A 3-regular random graph with anti-

ferromagnetic interactions. In cases (c) and (d), the dimensionality is regarded as infinitely

dimensional.
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model Fig. 7.1 (c), which can be solved exactly by mean-field description [24]. A k-regular

random graph with nearest-neighbor anti-ferromagnetic interactions Jij = −1, Fig. 7.1 (d),

is a special case of Potts spin-glass, can also be solved using cavity method with replica

symmetry breaking (RSB) [1]. For finite dimension spin-glasses, a two-dimensional spin-

glass is known to have T = 0 transition. However, a three-dimensional spin-glass has a

non-trivial transition and there is no analytical solutions to this date.

Due to the lack of analytical solutions, numerical simulations, especially unbiased Monte

Carlo simulation has become the major tool to investigate the problem. However, an chal-

lenging issue that makes spin-glass study difficult is the critical slowing-down near the

spin-glass transition Tc [8, 23]. The serious critical slowing-down arises due to the nature

of the continuous phase transition exacerbated by the rough energy landscape in which the

configuration gets stuck in local minima and the importance sampling becomes rather inef-

fective. Despite some development of numerical approaches such as simulated annealing [55]

and replica exchange [90], a more efficient method to deal with the critical slowing down

near the spin-glass transition is still called for.

Recently, we have developed a non-equilibrium approach to study second order phase tran-

sitions [17,33,37]. The idea is based on approaching the transition point through a quench

protocol, also known as Kibble-Zurek mechanism [14, 15], and the dynamic finite-size scal-

ing ansatz. As it returns out, this non-equilibrium approach can completely avoid critical

slowing-down problem and allows one to study spin-glass transition rather efficiently. In

this Chapter we demonstrate this non-equilibrium approach on three-dimensional spin-glass

(3DSG) systems.

The most widely studied 3DSG models are of Bimodal model and Gaussian model, both

cases consider nearest-neighbor interactions, and in the former case the interaction is dis-

crete Jij = −1 or +1, while in the later the interaction is Gaussian distributed Jij ∼ N (0, 1).

In terms of the static properties of the spin-glass transitions, extensive studies [64, 91–106]

have shown that these two systems belong to the same university class, although the tran-
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sition temperatures are different:

Tc = 1.102(3) Bimodal

Tc = 0.94(2) Gaussian

ν = 2.562(42)

η = −0.3900(36)

(7.2)

The most precise measurements (smallest error bars) for the critical exponents and Tc are

from Ref. [104], which carried out large-scale simulation on Bimodal 3DSG with a dedicated

field-programmable gate array (FPGA) cluster called “Janus” located in Spain.

Despite the well-established universality class of the equilibrium property, the dynamic

aspect of the Bimodal and Gaussian 3DSG is still controversial. Different studies have been

carried out over a span of more than a decade [64, 91–106], to try to identify the dynamic

universality class. However, the serious critical slowing-down poses a severe challenge for

studying dynamics around the transition. The typical values of the dynamic exponents

for these two systems generally fall into the range 5 ∼ 7, with no consensus reached yet.

We will use the efficient non-equilibrium approach to tackle this problem and show that

Bimodal and Gaussian are actually in the same dynamic universality class.

The rest of this Chapter is organized in the following way. In Sec. 7.2, we briefly summarize

the dynamic finite-size scaling formalism established in Refs. [17]. In Sec. 7.3, we present

the simulation scheme and numerical results. in Sec. 7.4 we discuss the conclusion obtained

in this Chapter.

7.2 Dynamic critical scaling formalism

In this Chapter, we are interested in 3D spin-glasses with the geometry illustrated in Fig. 7.1

(b) and Hamiltonian of the form of Eq. 7.1. Therefore, for a cube of size length L, the num-

ber of spins is N = L3. In [17], we developed a dynamic finite-size scaling formalism when
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a continuous transition temperature Tc is approached through a non-equilibrium quench

protocol:

T (t) = Tc + v(τq − t)r, (7.3)

where τq is total quench time, r the quench parameter that controls the linear quench

(constant velocity) with r = 1, constant acceleration quench with r = 2, quadratic quench

with r = 1/2, etc, and v is the generalized velocity defined as:

v = (Ti − Tc)/τ r, (7.4)

where Ti > Tc is the initial temperature.

Based on the KZ mechanism [14, 15] and the generalized dynamic finite-size scaling [17],

we found a dual scaling behavior of the order parameter(in the case of the spin-glasses, the

Edward-Anderson order parameter Eq. (1.37), as a function of the quench velocity

〈q2〉 =


L−(1+η)f1(vLzr+1/ν), v . vKZ (L)

L−d
(

1
v

)x
, vKZ (L)� v � 1

L−df2(1/v), v & 1

(7.5)

where d is the dimensionality and vKZ (L) is a size-dependent characteristic velocity that

separates a quasi-adiabatic and high-velocity regimes:

vKZ ∼ L
−(zr+1/ν). (7.6)

The dual functions f1 and f2 describe the quasi-adiabatic and high-velocity regimes, re-

spectively. Interestingly, there is a wide region vKZ(L) � v � 1 in which both functions

apply and both functions reduce to an universal power-law, with the power being related

to the critical exponents:
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x =
d− 2β/ν

zr + 1/ν
=

2− η
zr + 1/ν

(7.7)

where the second equality is obtained by simply using the scaling relation [7].

7.3 Numerical simulations

In this section, we demonstrate the application of the dynamic finite-size scaling outlined in

Sec. 7.2 on 3D spin-glass systems. We will consider two types of spin-glasses, Bimodal and

Gaussian, whose static critical quantities have been well studied, as summarized in Eq. 7.2.

7.3.1 Simulation scheme

We work in the framework of Monte Carlo simulation. We start from an initial temperature

Ti = 2.0 and linearly quench to a final temperature Tf = 0.5, with different quench times

τq = 150 × 2n Monte Carlo steps, where n = 0, 1, 2, . . . . The quench velocity is therefore

defined as v = 1.5/τq. The simulation carries out an equilibration run at Ti to ensure

thermalization before the quench process starts, then linearly quenches to Tf , the simulation

stops immediately once Tf is reached, therefore there is no “waiting time” in this simulation

scheme. We also put 150 uniformly divided grids on the quench path Ti → Tf as our

measurement points. Some typical examples of the quench processes are illustrated in

Fig. 7.2 (a).

In terms of the simulation techniques, we use multi-spin coding with 64-bit long integer,

therefore we can simulate 64 independent “replica” in a single run. As a general rule in

the numerical study of disordered systems, for a given quantity under study, one has to do

average over many (typically, hundreds or thousands) realizations. Since spin-glasses have

large fluctuation over different realizations, the fluctuation of the ensemble average in a given

realization is expected to be much smaller than the fluctuation over different realizations.
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Figure 7.2: (a) Typical examples of linear quenches of the Bimodal 3DSG. A system of size

N = 123 was equilibrated at the initial temperature Ti = 2.0 and was then linearly quenched

to Tc = 1.10. The quench velocity is v = 1.5/τq, where τq is the total quench time. Here one

unit of time is defined as one MC step consisting N attempts to flip randomly selected spins

using the standard Metropolis probability. Shown are the temperature (bottom panel) and

the Edward-Anderson order parameter squared (top panel) versus time for different total

quench times, where [. . . ] stands for realization average. We are interested in the scaling

of [〈q2〉] at Tc. (b) The same data as (a), but plotted as [〈q2〉] versus temperature T . The

symbols are numerical data, and the lines are polynomial fit in the region around Tc ≈ 1.10.
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Therefore, for each realization, we only do one single quench run, which yields an average

of 64 independent replicas. The number of realizations for each size also depends on the

quench times: for short quench times we can obtain O(104) realizations, and for longer

quenches we will have at least O(102) realizations. In the following we will use [〈q2〉] to

denote the realization average of 〈q2〉.

The goal in the next subsection is to compare the dynamic exponents z for the Bimodal

and Gaussian 3DSGs, and therefore, identify their dynamic universality class(es). The

dual scaling behavior Eq. (7.6) requires the knowledge of the transition temperature Tc and

critical exponents ν and η. In principle one can also use the technique developed in Refs. [17,

37] to extract all the critical quantities independently, for simplicity we use the currently

known values quoted in Eq. (7.2). However, to take into account the fact that the numerical

results quoted in Eq. (7.2) all carry statistical errors, we take the following procedure to

facilitate the data analysis that will be discussed in detail in the next subsection. For each

quench curve, we use polynomial fit for [〈q2〉] vs. T around Tc, therefore we can know the

value of [〈q2〉] at any temperature in the region of interest. The procedure is illustrated in

Fig. 7.2 (b). Later, when estimating the error bars of the dynamic exponent z, we will do so

by introducing noises to Tc and see how the fluctuation in Tc affect [〈q2〉] and consequently

how this fluctuation propagates to affect the scaling behavior Eq. (7.5).

7.3.2 Results: Bimodal and Gaussian 3D spin-glasses

In this section, we use the dual scaling behavior Eq. (7.5) with the critical exponents

quoted in Eq. (7.2) at the respective spin-glass transition temperature Tc of the Bimodal

and Gaussian 3DSG to extract the dynamic exponent z. The procedure is as follows: Given

the scaling form of f1 or f2 in Eq. (7.5) and knowns values of the critical exponents ν and

η, the only unknown parameter is z, therefore one can easily carry out a fitting procedure

to determine the optimized value of z that yields the least squared error. This procedure

has been demonstrated and used extensively in Ref. [17] for classical Ising models to obtain
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several high-precision numerical estimate of the dynamic exponents. Here we apply the

same technique to illustrate the advantage of this method on spin-glass systems. In the

later part of the section we also discuss the correction to scaling.

As mentioned in the previous section, we perform quenches with different quench velocities

v = 1.5/τq from Ti = 2.0 to Tf = 0.5, and then perform polynomial fit for [〈q2〉] as a

function of T in the region around Tc. Then we can obtain the value of [〈q2〉] at Tc for all

the quenches being carried out. A simpler procedure would be simply performing quenches

to exactly Tc, however, as we will do later, we also introduce noises to Tc to estimate how

the fluctuation affects the scaling and the values of z, this procedure is more general and

preferable.

First, according to the first scaling function f1 in Eq. (7.5), which governs the scaling

around a characteristic velocity vKZ (L) ∼ L−(z+1/ν) and covers the quasi-adiabatic regime

and universal power-law regime, we graph the rescaled order parameter, [〈q2〉]L1+η versus

the rescaled velocity v/vKZ (L) = vLz+1/ν , for both cases of Bimodal 3DSG and Gaussian

3DSG, a clear scaling collapse os observed in Fig. 7.3 (a) and (b), respectively. We use the

fitting procedure outlined previously to obtain the best fit for the scaling function, which

also yields the optimized z for the scaling collapse. After the optimized z is determined,

we then introduce 1-σ noise to Tc, this results in a new set of [〈q2〉] due to the change of

Tc, we also introduce 1-σ noises to ν and η. These new data sets and critical exponents are

then used to determine the value of z. This procedure is carried out repeatedly to estimate

the error of z. For the Bimodal case, we obtain z = 5.852(55) with χ2/dof = 1.07. For the

Gaussian case, we obtain z = 6.005(96) with χ2/dof = 1.00. This numerical result strongly

supports the idea that these two models belong to the same dynamic university class. Note

that with the help of introducing 1-σ noises to all possible errors, we take all sources of

uncertainties into account.

In both panels of Fig. 7.3, it can be clearly seen that in the low velocity limit, i.e. the plateau

on the left region, the rescaled order parameter saturates. This is in good agreement with
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Figure 7.3: Log-log plot for the f1-scaling for Bimodal 3DSG (a) and Gaussian 3DSG (b),

respectively. An optimization is carried out to determine the value of the dynamic exponent

z. In the Bimodal case, we obtain z = 5.852(55) with χ2/dof = 1.07. In the Gaussian case,

the result is z = 6.005(96) with χ2/dof = 1.00. In both cases, we exclude small sizes to avoid

finite-size effects. The exclusion of the sizes is determined by the minimization of the χ2

and the stability of the fitted result. For these two cases, sizes of L < 16 are excluded. The

solid line in both panels indicate the polynomial fit. As the scaling suggests, in both panels,

the plateau on the left region corresponds to the quasi-adiabatic regime, the middle region

corresponds to the universal power-law regime, in which a straight line is clearly observed.

This power-law regime can be analyzed in another way, as will be discussed below and in

Fig. 7.4.
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the equilibrium scaling, since in the static case we have [〈q2〉] ∼ L−(1+η). To the right down

the plateau is the universal power-law regime, which exhibits a clear straight line in the

log-log plot. This power-law can be analyzed in another way, as we discuss next.

According to the second scaling function f2 of Eq. 7.5, one simply graphs the overall order

parameter [〈q2〉]N versus 1/v, the scaling will emerge, as shown in Fig. 7.4. The high-

velocity scaling f2 corresponds to a physical situation where the correlation length associated

with the velocity ξv ∼ v−1/(z+1/ν) is much smaller than the correlation length of the phase

transition ξT ∼ (T − Tc)−ν , i.e., ξv � ξT . As a manner of fact, a typical length scale ξ is

determined by ξ = min(ξv, ξT ), the high-velocity regime results in small isolated clusters,

[〈q2〉]N captures the overall contributions from these small domains.

In addition, as mentioned earlier, there is an universal power-law regime which both f1

and f2 reduce to. We can clearly see this power-law regime again in the middle region of

both panels in Fig. 7.4. Since f2 only covers high-velocity regime, one can see the curves

begin to split in the low-velocity region on the right. These splitting curves are exactly

those forming plateaus in the f1 scaling of Fig. 7.3. We note that Figs 7.3 and 7.4 are from

exactly the same raw data, only being graphed differently according to f1 and f2 scalings,

respectively, while both scalings show a clear universal power-law in the middle region of

vKZ(L)� v � 1.

More interestingly, while rendering f2 does not require the knowledge of critical exponents,

the power x is related to the critical exponents through Eq. (7.7). With the static exponents

being known, one can easily extract the dynamic exponent z. In Fig. 7.4, the data sets [〈q2〉]

at Tc are plotted versus 1/v in a log-log plot, and a linear fit is carried out to determine

the slope of the straight line, which corresponds to the power x of the power-law. The

same procedure of introducing 1-σ noises as used in the f1 scaling is again employed here.

We repeatedly introduce 1-σ noises to Tc (and therefore the data set [〈q2〉]), ν, and η, to

estimate the error of x.
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Figure 7.4: Log-log plot for the f2-scaling for Bimodal 3DSG (a) and Gaussian 3DSG (b),

respectively. For both cases, the same raw data sets used in Fig. 7.3 are used for this

figure, only being graphed differently according to the high-velocity f2-scaling rather than

the f1-scaling. It should be noted that f2-scaling does not require the knowledge of the

critical exponents, one simply plots the overall order parameter [〈q2〉]N versus 1/v and

the scaling emerges. The middle region that shows linear behavior in the log-log plot is

exactly the power-law regime (which also shows linear behavior in the log-log plot) in the

f1-scaling of Fig. 7.3. The power-law region has an anticipated form [〈q2〉]N ∼ av−x, with

the power x related to the dynamic exponent z through Eq. 7.7. Using linear fit, we obtain

x = 0.3851(45), a = 2.24(3), with χ2/dof = 1.04 for the Bimodal case, and x = 0.3745(66),

a = 1.60(4), with χ2/dof = 0.70 for the Gaussian case. This translates to z = 5.816(74)

for the Bimodal and z = 5.99(11) for the Gaussian. f2-scaling corresponds to a situation

when ξv � ξT , in terms of finite size this means the system size has to be large enough to

be approximately in the thermodynamic limit. Therefore, in both cases, we include sizes of

L ≥ 64. The selection of sizes is determined by the minimization of the χ2. The solid lines

in both panels show the fit region and the result of linear fit.
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For Bimodal 3DSG, we obtain x = 0.3851(45), with χ2/dof = 1.04. For the Gaussian 3DSG,

we obtain x = 0.3745(66), with χ2/dof = 0.70. The numerical results of the power x can be

translated to obtain the dynamic exponent z, which yields z = 5.816(74) for the Bimodal

case and z = 5.99(11) for the Gaussian case. This result again supports the conclusion

drawn from the f1 scaling that the Bimodal and Gaussian 3DSGs are in the same dynamic

universality class, and the conclusion is drawn by taking all possible sources of uncertainties

into account.

Strictly speaking, any finite-size scaling will need correction due to finite-size effect [7,

21, 107]. Even though in Figs. 7.3 and 7.4, we have used f1 and f2 scaling respectively

to demonstrate that Bimodal 3DSG and Gaussian 3DSG should be in the same dynamic

universality class, to further verify this conclusion, we do correction to scaling to clear any

concern of finite-size effect. Since f2 scaling has a simpler form than f1 scaling, and as

shown above, the universal power-law regime observed in f1 and f2 scaling are completely

equivalent, we use the following form to take into account the correction to f2 scaling in

the power-law regime:

[〈q2〉]N ∼ a(v−1)x1
[
1 + b (v−1)−x2

]
, (7.8)

where the power x1 plays the role of the näıve power x Eq. (7.7) that determines of the

dynamic exponent z. With the scaling form, we expect that the fitting function can incor-

porate a wider range of velocity and smaller sizes, as shown in Fig. 7.5.

In Fig. 7.5, the figures are plotted in the same style as Fig. 7.4, but the correction to

f2 scaling Eq. 7.8 is used to fit the data rather than the pure f2 scaling form written

in Eq. 7.5. An optimization procedure 1 is then carried out to determine the optimized

1Since the fit function Eq. 7.8 is non-linear, the optimization involved more complicated procedures.

There definitely exists comprehensive optimization routines in several programming languages and software

packages that can achieve the goal, but here we simply divide the parameter space (x1, x2, a, b) into fine

grids and use exhaustive searching to find the best parameter set. We find this approach achieve better χ2.
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Figure 7.5: Log-log plot for the f2-scaling with correction for Bimodal 3DSG (a) and Gaus-

sian 3DSG (b), respectively. For both cases, the same raw data sets used in Figs. 7.3 and

7.4 are used here. The figures are graphed according to the high-velocity f2-scaling, in the

same style as in Fig. 7.4. A correction to scaling form Eq. (7.8) is used to fit the power-law

regime in the middle. For the Bimodal case, sizes of L ≥ 32 are included in the fit. For

the Gaussian case, sizes of L ≥ 48 are included. In both panels, compared to the pure f2

scaling shown in Fig. 7.4, the correction form can include smaller sizes and a larger velocity

range, as indicated by the solid lines that show the fit result and fit region. The fit result

yields x1 = 0.376(11) with χ2/dof = 1.05 for the Bimodal case, and x1 = 0.373(25) with

χ2/dof = 1.1 for the Gaussian case, implying that z = 5.97(29) for the Bimodal case and

z = 6.02(43) for the Gaussian case. This again concludes that Bimodal and Gaussian 3DSG

are in the same dynamic universality class.
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parameters (x1, x2, a, b) that yields the minimized χ2. For the Bimodal 3DSG, we obtain

x1 = 0.376(11), x2 = 0.34(11), a = 10.40(77), and b = −0.4(2), with χ2/dof = 1.05.

For the Gaussian 3DSG, we obtain x1 = 0.373(25), x2 = 0.74(34), a = 5.08 ± 1.38, and

b = −1.0± 2.8, with χ2/dof = 1.1. We use the same technique of introducing 1-σ noises to

estimate the error bars of the parameters (x1, x2, a, b). Focusing on the leading exponent

x1, which can be translated to obtain the dynamic exponent z, we obtain z = 5.97(29) for

the Bimodal case and z = 6.02(43) for the Gaussian case. This again verifies the previously

established conclusion that the Bimodal and Gaussian 3DSGs belong to the same dynamic

universality class.

Comparing Fig. 7.5 with Fig. 7.4, we note that the correction to f2 scaling does include

more smaller sizes and a wider velocity range, even though the error bars of the relevant

exponents inevitably increase. Furthermore, the numerical result of the parameters implies

that the correction terms are statistically zero, this is also evidenced by the goodness of fit

in the pure f2 scaling.

7.4 Summary and Discussion

In this chapter, we demonstrate the application of a non-equilibrium quench techniques

developed in Ref. [17] on 3D spin-glasses. The advantage of the technique is that it does

not suffer from any critical slowing down effects. Any critical slowing down phenomena

only reflect itself in terms of the scaling behavior Eq. (7.5). Especially, the range of the

universal power-law regime is determined by L−(z+1/ν) � v � 1, this implies that the more

serious the critical slowing problem, the wider the power-law regime and the easier one can

make use of this technique to measure the power of the power-law (the slope in the log-log

plot) either in the f1 or f2 scaling.

The dual scaling behavior Eq. (7.5) also shows some advantages over the traditional single

scaling function in the equilibrium scenarios. One can use one function to perform fitting
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procedure and another one to perform consistency check. The second scaling function f2 in

some cases may be more favorable since it governs high-velocity quenches that correspond

to shorter simulations, and also its convenience of not requiring the knowledge of critical

exponents. In Ref. [17], we also demonstrate how to use f2 scaling and combine different

quench protocols to extract all the exponents. However, as explained in Sec. 7.3, f2 scaling

works best when ξv � L, that means the system size has to be large enough to be approxi-

mately be in the thermodynamic limit. Since in practice one does not know the size cut-off

prior to the simulation, one has to gradually increase the system size in order to observe

the finite-size effect vanish. f1 scaling on the other hand has milder finite-size effect. These

features therefore suggest some trade-off and optimized protocols in order to achieve the

best performances for both f1 and f2 scalings.

Most importantly, we use the dual dynamic finite-size scaling behavior Eq. (7.5) to extract

the dynamic exponents of the Bimodal and Gaussian 3DSG, the numerical results are

summarized in Table. 7.1. All the results bring us to the same conclusion that these two

spin-glass models are in the same dynamic universality class.

f1 pure f2 correction to f2

Gaussian 6.005(96) 5.99(11) 6.02(43)

Bimodal 5.852(88) 5.816(74) 5.97(29)

Table 7.1: Summary of the dynamic exponent z obtained for Bimodal and Gaussian 3DSG,

using different scaling schemes discussed in Sec. 7.3. These results are plotted in Fig. 7.6.

All the numerical results strongly support the conclusion that these two models belong to

the same dynamic universality class.

There were also other numerical techniques being developed that can be used to obtain

the dynamic exponents, mostly known is the relaxation method [44, 108, 109]. However,

the advantage of the non-equilibrium approach demonstrated here over other numerical

methods is that critical slowing down is no longer an issue. In the relaxation method, one
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Figure 7.6: Visualization of Table 7.1, with the blue color stands for the Bimodal case and

red one for the Gaussian case.

usually starts with an perfectly ordered state at Tc and observes how the order parameter

vanishes, the time scale over which the order parameter goes to zero is proportional to

the relaxation time, which shows a power-law τrel ∼ ξz, and z can then be determined

through this relation. This power-law decay will become more noticeable at later time.

However, very often, statistical fluctuations will pick up quickly at later time, this implies

that the relaxation method becomes less accurate right at the moment when the power-law

decay dominates, therefore the overall procedure is not as effective as it seems to be. In

addition, the obtained z will also depend on the targeted quantities [68] used to observe the

relaxation process. In light of these issues, we think the non-equilibrium quench will be a

more desirable approach, especially for spin-glass systems.
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Appendix A

QAQMC performance for the quantum Sherrington

Kirkpatrick model

A.1 Introduction

Throughout this thesis, the quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm has

been used extensively on different types of systems, from quantum Ising model in Ch. 3,

disordered 3-regular FM random graphs in Ch. 5, to spin-glasses in Ch .6. Despite that

now it has been well tested on several benchmark system [17, 33, 37], it is worthwhile to

further check its utility on disordered on frustrated systems. Here we perform QAQMC on

the fully-connected quantum Sherrington-Kirkpatrick (SK) model [24], whose Hamiltonian

can be written as

H(s) = s
N∑
i=1

N∑
j=1

Jijσ
z
i σ

z
j − (1− s)

N∑
i=1

σxi , (A.1)

where Jij ∼ N (0, 1/N) is the normal random variable with mean 0 and variance 1/N .

Fig. A.1 illustrates a typical example of SK model with N = 16 spins.

For spin-glass systems, a suitable order parameter is the Edwards-Anderson spin-glass order

parameter [22]:

q =
1

N

∑
i

σ
(1)
i σ

(2)
i , (A.2)

where (1) and (2) stand for two independent spin configurations (“replicas”) for a given

realization of {Jij}.
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Figure A.1: An example of fully-connected SK model with N = 16 spins. The interaction

strength Jij is a random normal variable Jij ∼ N (0, 1/N).

A.2 Numerical result

We perform QAQMC imaginary-time quenches on the quantum SK model to extract the

quantum critical point (QCP) sc. We use the Binder cumulant defined below to locate sc:

U =
3

2

(
1− 1

3

[
〈q4〉
〈q2〉2

])
, (A.3)

where 〈. . . 〉 stands for the ensemble average for a given realization of {Jij} and [. . . ] repre-

sents an average over realizations.

Around the transition, based on the dynamic finite-size scaling ansatz [17, 37], physical

quantities can be written as a size-dependent pre-factor multiplied by a scaling function

that takes two arguments: the reduced distance from the QCP and the quench velocity

normalized by a characteristic velocity vc ∼ N−(z′+1/ν′), where z′ ≡ z/d is the normal-

ized dynamic exponent and ν ′ ≡ νd is the normalized correlation length exponent, and

d is the dimension of the system. For example, the Binder cumulant Eq. (A.3), which is

dimensionless, can be written as:

U = U
(
(s− sc)N1/ν′ , vN z′+1/ν′

)
. (A.4)
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Figure A.2: (a) Binder cumulants for different sizes and quench velocities that satisfy the

scaling v ∼ N−α′ with α′ chosen to be α′ = 1. (b) Crossing points from the Binder cumulant

shown in panel (a). The crossing points can be fitted using a power-law form, Eq. (A.5),

which gives extrapolation of sc = 0.4065(49), in good agreement with Ref. [87].

Linear quench with s : 0 → sf is carried out at velocity v ∼ N−α
′
. The quench path

presumably covers the QCP sc, therefore sf > sc, and the parameter α′ is a parameter that

controls the magnitude of the velocity. To be quasi-adiabatic, α′ should satisfy the require-

ment: α′ > (z′ + 1/ν ′) [37]. When the criterion is met, the second argument in the scaling

function Eq. (A.4) vanishes in the thermodynamic limit N → ∞ and the quench becomes

effectively quasi-adiabatic. Therefore, the Binder crossing technique used to determined the

QCP in the equilibrium scenario can also be used in this non-equilibrium framework.

Here we choose α′ = 1.0 and perform linear quenches for different sizes, the resulted Binder

cumulant are shown in Fig A.2 (a). At QCP, the order parameter will show power-law

decay, therefore the Binder crossing is also expected to have the same behavior. One can

then use the power-law form to fit the crossing points, which drift due to finite-size effect:

sc(N) = sc + a/N b, (A.5)

which gives sc = 0.4065±0.0049, a = 11.6±3.8, and b = 1.55±0.85. The sc extracted here
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Figure A.3: f1 scaling for the r = 1 linear quench to sc. A 2-parameter fitting for z′ + 1/ν ′

and β/ν ′ is carried out to obtain the scaling collapse.

is in good agreement with Ref. [110].

Once the QCP is extracted, one can perform critical quenches to sc and expect the dynamic

scaling behavior Eq. 6.7. Fig. A.3 shows the result of the f1 scaling for the r = 1 linear

quench. The optimization for the scaling collapse with a 2-parameter fitting gives z′+1/ν ′ =

1.0(2) and β/ν ′ = 0.48(1). This is in good agreement with Refs. [87, 111].
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Appendix B

Performance of high-velocity quenches on 3D Ising

spin-glasses

B.1 Introduction

In Ch. 7, we have demonstrated the advantage of the non-equilibrium quenching method

on spin-glass systems over the traditional equilibrium approaches. This method allows us

to efficiently study the spin-glass transition and extract the critical exponents associated

with the transition to high numerical precision. However, the dynamic finite-size scaling,

Eq. (7.5), takes place at the transition point Tc. Therefore one has to have the knowledge of

Tc in order to take advantage of the dual scaling behavior. A typical way to extract Tc, in

the framework of the non-equilibrium quench, is to perform linear quench with the velocity

satisfying the condition:

v ∼ L−α, (B.1)

where v is the quench velocity associated with the quench protocol Eq. (7.3), and L is

the linear size of the system. As long as α ≥ z + 1/ν, the quench velocity can be kept

below or at most equal to the Kibble-Zurek velocity, Eq. (7.6), such that the system can

stay quasi-adiabatic. Consequently, for different sizes that satisfy the same condition of

Eq. (B.1), they can be analyzed in terms of the equilibrium procedure, for example, one can

keep track of the Binder cumulant to extract the transition point. This method has been

demonstrated in Chapters 3, 5, and 6. In practice, spin-glass systems typically have large

dynamic exponent z that will result in a serious critical slowing-down, as we have seen in

Ch. 7, therefore the condition α ≥ z + 1/ν corresponds to long quench simulations. The
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computational effort will eventually become unaffordable for large sizes.

In this Appendix section, we explore another way of extracting Tc. This approach is also un-

der the same framework of non-equilibrium quenching we have been demonstrating through

the thesis, nonetheless, we will focus on the high-velocity scaling regime rather than the

quasi-adiabatic one. We will use classical 3D bimodal Ising spin-glass for the demonstration.

B.2 Extracting Tc and x from the high-velocity scaling regime

In Chapters. 1, 2, and 7, it has been demonstrated in detail that at Tc there is a dual scaling

behavior as a function of the quench velocity v. In the intermediate velocity regime, the

order parameter, e.g. the Edwards-Anderson order parameter Eq. (1.37) for the spin-glass

system, shows a power-law behavior:

〈q2〉 ∼ L−2β/νf
(
(T − Tc)L1/ν , vLz+1/ν

)
,

∼ L−2β/ν(vLz+1/ν)−xf̃
(
(T − Tc)L1/ν

)
,

∼ N−1v−xf̃
(
(T − Tc)L1/ν

)
,

(B.2)

where N = Ld is the total number of spins. The above expression is simply the power-

law form that has been shown previously. Nevertheless, it has suggested another way of

exploiting the scaling form to find Tc, as we discuss in the following.

For a given system sizes, we perform different linear quenches from Ti = 2.0 to Tf = 0.5, the

quench velocity therefore is defined as v = 1.5/τ , where τ is the total quench time. Same

as the procedure discussed in Ch. 7, for each quench path, we use a polynomial to fit the

data points in the range T ∈ [0.9, 1.2], the range should presumably include the Tc. After

the polynomial is obtained, for a given system size N and quench velocity v, one can obtain

the order parameter at any given temperature within the temperature range of interest.

If the exponent x and Tc were known, Eq. (B.2) simply provides a way to collapse the

data in the high-velocity regime. If one only rescales the order parameter and graphs it
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Figure B.1: For classical 3D bimodal Ising spin-glass of system size L = 48. Linear quenches

with three different quench times τ = 16, 32, and 64 from initial temperature Ti = 2.0 to

final temperature Tf = 0.5 are performed. Plotted are the rescaled order parameter as a

function of temperature (in original scale). Given a value of x, one can determine a centroid

resulted from the three crossing points of these three curves. The centroid then defines the

sum of distances to these three crossing points. The parameters (x, Tc) are then determined

by the minimization of SOD. The insect shows the crossing of these three curves in a more

focused window around Tc.
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Figure B.2: Using high-velocity three-curve crossing technique to extract Tc and x simul-

taneously. For a given system size, the procedure outlined in the text is carried out to

determine the values of Tc and x. It is indicated from the plots that this procedure has very

little finite-size effect.

as the original scale of the temperature, the curves would cross rather than collapse. The

crossings of the curves could be used to extract Tc. Furthermore, if the exponent x is also

unknown, the following approach provides a way to determine Tc and x simultaneously:

for a given system size N and three different quench paths corresponding to three different

quench velocities, one can choose a value of x such that after the order parameter is rescaled

according to Eq. (B.2) with the given x, the three curves should nearly cross at a presumable

Tc. A correct choice of x results in three curves crossing at exactly the same point, which

corresponds to the actual Tc. In practice, due to finite grid of the parameters, the three

curves will form three crossing points that center at a centroid, which in turns defines a

sum of distances (SOD) to these three points. The optimal value of x thus corresponds to

the one that has the lowest SOD, the corresponding centroid consequently corresponds to

Tc.
1 A typical example is illustrated in Fig. B.1.

Note that this approach focuses on the high-velocity scaling regime, which is the straight

1A similar technique that uses three-curve crossing has also been discussed in Ref. [112].
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line in the log-log scale of the f1 graph such as Fig. 7.3. The data points from temperatures

other than Tc would not collapse onto the curve, only those (from different quench velocities)

that are at Tc will form scaling collapse. The procedure outline above is therefore designed

to find the value of Tc that would result in these collapsing points.

We perform the high-velocity three-curve crossing technique on different sizes. For a given

system size the procedure is carried out to determine the values of Tc and x simultaneously,

the results are shown in Fig. B.2. We have seen very little finite-size effect, and the main

source of uncertainties on Tc and x is from the procedure of determining the centroid

of the three crossing points. The extracted values are consistent withe the known ones,

Tc ≈ 1.102(3) and x ≈ 0.385(5).
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