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ABSTRACT 

This thesis is concerned with the development of techniques for analyzing the 

sequences of stereotypical electrical impulses within neurons known as spikes. Sequences 

of spikes, also called spike trains, transmit neural information; decoding them often 

provides details about the physiological processes generating the neural activity. Here, 

the statistical theory of event arrivals, called point processes, is applied to human muscle 

sympathetic spike trains, a peripheral nerve signal responsible for cardiovascular 

regulation. A novel technique that uses observed spike trains to dynamically derive 

information about the physiological processes generating them is also introduced. 

Despite the emerging usage of individual spikes in the analysis of human muscle 

sympathetic nerve activity, the majority of studies in this field remain focused on bursts 

of activity at or below cardiac rhythm frequencies. Point process theory applied to multi-

neuron spike trains captured both fast and slow spiking rhythms. First, analysis of high-

frequency spiking patterns within cardiac cycles was performed and, surprisingly, 

revealed fibers with no cardiac rhythmicity. Modeling spikes as a function of average 

firing rates showed that individual nerves contribute substantially to the differences in the 
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sympathetic stressor response across experimental conditions.  Subsequent investigation 

of low-frequency spiking identified two physiologically relevant frequency bands, and 

modeling spike trains as a function of hemodynamic variables uncovered complex 

associations between spiking activity and biophysical covariates at these two frequencies. 

For example, exercise-induced neural activation enhances the relationship of spikes to 

respiration but does not affect the extremely precise alignment of spikes to diastolic 

blood pressure.  

Additionally, a novel method of utilizing point process observations to estimate 

an internal state process with partially linear dynamics was introduced.  Separation of the 

linear components of the process model and reduction of the sampled space 

dimensionality improved the computational efficiency of the estimator. The method was 

tested on an established biophysical model by concurrently computing the dynamic 

electrical currents of a simulated neuron and estimating its conductance properties. 

Computational load reduction, improved accuracy, and applicability outside neuroscience 

establish the new technique as a valuable tool for decoding large dynamical systems with 

linear substructure and point process observations. 
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1. INTRODUCTION 

The analysis of the data recorded from nerve cells has been paramount in moving 

neuroscience forward.  There are several methods to directly record electrical activity 

associated with neural information; one of the most prominent involves detection of cells' 

cross-membrane potential.  We focus here on the problem of analyzing such recordings, 

specifically on interpreting sequences of stereotypical changes in cells' electrical activity; 

they are known as action potentials or spikes.  Spike trains are usually obtained by the 

insertion or implantation into the nerve cell tissue of tiny electrodes that collect 

information about localized electrical activity.  The recordings can either directly capture 

the voltage changes inside the cell (intracellular) or infer them from electric fields outside 

the cells (extracellular); this opens up access to the specific behavior of individual 

neurons as well as to the joint activity of neuronal ensembles.  Analyzing these spike 

trains has helped study both micro- (e.g. intracellular signal propagation) and macro-level 

processes (e.g. rhythmic activities of clusters of neurons). 

Analysis of the peripheral nerve recording in humans has been a challenge.  First, 

the difficulty of accessing the peripheral nerves in vivo has limited the study to mostly 

cardiovascular and somatosensory neurons of the sympathetic nervous system.  Getting to 

the nerves requires puncturing the skin with a relatively thick electrode, introducing the 

second problem:  high levels of background noise.  Analysis of these extracellular 

recordings, therefore, relied, and largely still does, on high degrees of averaging.  This 

eliminated noise, but also masked vast amounts of potentially important details that are 

available in raw data.  Only recently have there been introduced techniques that extracted 
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the individual cells' action potentials directly from the raw voltage trace and used them to 

study important features of the multifiber data (e.g. individual neuron contribution to the 

aggregate output of the bundle).   

Both intra- and extracellular recordings shed light on how individual cells 

function.  Because neurons process information with electric currents, modeling them is 

one of the best ways to describe the cells' functionality.  Biophysical models, if 

constructed correctly, can predict with high degree of accuracy the cell's response to a 

variety of stimuli, from external (e.g. retinal cells' light response) to purely internal (e.g. 

decision-making, reflexive responses).  The dynamics of cellular currents are 

complicated, and models describing them are complex as well.  They often involve a 

significant number of both variables and parameters, and fitting these large-dimensional 

models to data becomes an extremely complex and computationally expensive task.  In 

addition, finding suitable parameter values often is a tedious manual process.  These 

complications make dimensionality reduction techniques extremely useful in 

computational neuroscience. 

In this thesis we will utilize the spike trains obtained from the sympathetic 

nervous system in humans and study their properties without identifying individual 

neurons.  We will use the spike train analysis framework to show that the changes in the 

properties of the multifiber spike trains are related to the average intensity of the nerve 

outflow.  We will relate these changes to the concurrently collected physiological 

variables in an attempt to ground them in broader physiology.  In addition, we will 

expand the spike train analysis framework by introducing a novel method of fitting 
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dynamic biophysical models to spike train data.  Specifically, we will utilize the model's 

existing substructure to process its linear and nonlinear components separately; this will 

lead to increases in computational efficiency for large-dimensional models.  In addition, 

we will show that this method can be used to estimate both the cell's electrical activity 

and the model parameters from only a set of spikes produced by the cell. 

1.1  ORIGINAL CONTRIBUTION 

The original contributions of this thesis are: 

a) An application of the spike train statistical analysis paradigm to the human 

sympathetic nerve activity.   

b)  Identification of the structural changes in the multifiber sympathetic spiking as a 

function of the average nerve outflow and a rigorous statistical description of these 

changes.   

c)  An assessment of the relationship between the multifiber sympathetic spiking patterns 

and those of the concurrently collected hemodynamic variables. 

d)  Adaptation of the Rao-Blackwellization technique as described in Chapter 4 to the 

point process observations and the application of the resultant algorithm to large-scale 

biophysical models. 

Materials related to the four articles above have been previously published in the 

following article 

E. Zaydens, J. A. Taylor, M. A. Cohen, U. T. Eden, 2013, "Characterization and 
Modeling of Muscle Sympathetic Nerve Spiking," Biomedical Engineering, IEEE 
Transactions on, Vol. 60, No. 10, pp. 2914-2924 
 
and a conference submission 
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E. Zaydens, C. O. Tan, J. A. Taylor, M. A. Cohen, U. T. Eden, 2011, “A novel approach 
to analyzing muscle sympathetic nerve activity in humans.” Cosyne Abstracts 2011, Salt 
Lake City USA. 
 

Chapters 3 and 4 are being currently prepared for publication as two separate 

journal articles. 

 
1.2  THESIS OUTLINE 

Current thesis is divided into five total chapters.  The current chapter serves as a 

brief introduction to the overall topic of the work.  It will also review the current 

literature on point process modeling in neurosciences and on the analysis of human 

muscle sympathetic nerve activity, focusing on modeling of its high- and low-frequency 

oscillations.  Chapter 2 will describe our work on characterizing the high-frequency 

patterns of multifiber sympathetic nerve activity and relating these patterns to spike 

trains’ low-frequency oscillations.  Chapter 3 will expand this analysis to include 

hemodynamic variables.  Specifically, we will visualize and model the relationships 

between hemodynamic covariates and the sympathetic spiking in two low-frequency 

bands that were previously determined to have physiological relevance.  We will 

compare how well different covariates predict spiking within these bands and draw 

physiological conclusions.  Chapter 4 will expand the spike train analysis theory to 

include marginalization into the state-space estimation paradigm that uses point process 

observations.  It will outline the "curse of dimensionality" problem and will exploit a 

model’s linear and Gaussian substructure to solve it.  The proposed technique will be 

used to estimate parameters of the well-known model of nerve cell internal currents.  

Chapter 5 will summarize the work and draw some inferences.  It will also propose 
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avenues for future work, including expanding the range of applicable physiological 

problems as well as refinement and customization of the proposed methods. 

 
1.3  LITERATURE REVIEW 

Among techniques to collect peripheral nervous system data in humans, 

microneurography provides the most detailed account of the neuronal activity.  

Microneurography can be used to collect several different types of data, including 

afferent sensory activity (e.g. muscle spindle impulses, discharges from the tendon 

organs, muscle and skin nociceptors as well as skin mechanoreceptors) and efferent 

control activity (e.g. skin hair motor and renal activation).  Because we are interested in 

systemic peripheral effects, this review will focus on the efferent muscle sympathetic 

nerve activity (MSNA), which regulates peripheral blood flow by managing contractile 

forces of the smooth muscle comprising the resistance vessel walls.  Specifically, we will 

review the history of MSNA collection, the analysis tools used to process the collected 

data, and conclusions thereby derived about the physiology of high- and low-frequency 

content of the nerve outflow.  We will focus predominantly on the analysis of human 

MSNA. 

In this section we will also cover literature describing state space estimation 

methods that track the temporal trajectory of a process by observing only its output.  

Different state evolution and output production models can be constructed to 

accommodate various state trajectories and observation types.  We will start by covering 

the simplest designs that place the most restrictive assumptions on the process and 

observation models. We will then move on to techniques that relax these assumptions and 
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therefore can tackle substantially more difficult estimation problems.  Specifically, we 

will first focus on the famous Kalman filter and its extensions, then cover the Sequential 

Monte Carlo (SMC) technique, and end by describing the SMC improvements that take 

advantage of the models’ substructure to improve efficiency and accuracy of the 

estimation. 

1.3.1  Muscle Sympathetic Nerve Activity 

The first reported microneurographic recording of muscle sympathetic nerve 

activity is due by Hagbarth and Vallbo in 1968.  Without using anesthesia they inserted 

tungsten microelectrodes through skin directly into the nerve bundle containing 

sympathetic axons.  They found that the combined electrical sympathetic activity was 

synchronized to the cardiac cycle of the subject and also affected by subject's respiration.  

In 1971 Delius, Hagbarth, Hongell, and Wallin [26] used a sympathetic ganglion 

blocking agent to abolish such voltage traces, confirming that these are indeed 

postganglionic muscle nerve signals.  They also showed that MSNA activity was 

inversely correlated with the blood pressure signal, demonstrating the vasoconstricting 

effects of MSNA activation.  In a subsequent study [25] they tracked how the MSNA 

changed during various conditions.  These experiments showed that the baroreflex was 

the predominat mechanism regulating the sympathetic outflow, but that other reflexes 

were taking on partial control during some experimental maneuvers.   

Grassi and Esler [47] describe ways of measuring the sympathetic activity in 

humans.  Microneurographic measurements are generally expressed in number of bursts 

per minute and, correcting for different heart rates across subjects, number of bursts per 
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100 heart beats.  Burst size information (burst height and total area) is also collected, as is 

burst timing.  Fagius, Sundlof, and Wallin [40] have measured the latency of the 

individual bursts during different conditions, and found it to correspond to the conduction 

delay they measured directly [41].  Bursts latency continues to be the most detailed 

temporal information that is possible to extract from the burst-based measurements. 

Several groups increased the impedance of the microelectrode and recorded 

individual action potentials directly.  These spikes were then used to study the firing 

properties of the individual fibers.  Macefield and colleagues found that individual 

neurons mostly fire once per cardiac cycle [82] and that their firing probability plays a 

role in the acute growth of sympathetic outflow in response to various stressors [83].  

They also found positive correlation between the latency of individual firings and the 

diastolic pressure of the cardiac cycle that generated the spike, suggesting that fibers with 

higher conductance velocities are turned on by dips in blood pressure [81].  Tsukahara 

and Mano confirmed the pressure-latency link by computing fibers' firing probability: 

fibers with both higher threshold blood pressure and longer spike latency were found to 

have higher firing probability [127].  This corroborated the findings in [81] that faster-

conducting fibers were engaged by dips in blood pressure, but that this seldom happened.  

Murai et al. expanded the single-fiber work by detecting differences in how individual 

fibers respond to different stressors.  Specifically, they found that multiple firings of 

individual fibers play a larger role in the growth of MSNA outflow caused by Valsalva 

maneuver than by IHE [92]. 
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Microneurography with increased-impedance electrodes is a complex procedure 

that can only detect small number of individual fibers.  To circumventing this limitation, 

Salmanpour and colleagues used wavelets to extract individual action potentials from the 

multifiber signal obtained using standard microneurography technique [109].  They 

confirmed earlier findings that different type of sympathoexcitatory stressors elicit 

different fiber recruitment patterns.  By classifying the amplitudes of action potentials, 

they showed that no new amplitude classes activated in response to lower-body negative 

pressure [110], but that large action potentials started appearing during 

sympathoexcitation induced by end-respiratory breath hold [109].  They also found that 

different action potential sizes seem to be controlled by different physiological 

mechanisms:  small- and medium-size action potentials activated readily in response to 

baroreflex, but large action potentials exhibited lack of response [111]. 

Human MSNA exhibits oscillations at two low-frequency bands:  Mayer wave 

frequency of about 0.1 Hz and respiratory frequency that usually falls in the [0.2, 0.3] Hz 

range.  Two theories of Mayer wave origination have been put forth.  The first says that 

they are produced by a pacemaker residing in the central nervous system.  The evidence 

for this theory comes from animal studies.  Kaminski et al. found that slow waves in 

lumbar SNA in vagotomized dog can be induced by raising the subarachnoid pressure 

[71], suggesting that sympathetic oscillator can be located in the spinal cord.  Preiss and 

Polosa detected slow fluctuations in preganglionic sympathetic activity, placing any 

possible oscillator into a central nervous system [99].  Using spectral analysis, Montano 
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and colleagues found a low-frequency oscillations in some medullary sympathetic-related 

neurons in cats [91], corroborating a central nervous system oscillator theory.   

The second theory states that Mayer waves constitute feedback resonances of the 

baroreflex loop.  In particular, the filtering function of the loop is thought to possess a 

phase shift that introduces an in-phase input-output relationship, producing resonant 

oscillations [67].  The evidence for this theory also comes mainly from animal studies.  

Baroreflex loop was opened and its transfer function analyzed in dogs [114, 78], rabbits 

[61], and rats [112].  In all these studies, the resonant frequency was found to be close to 

the Mayer wave frequencies of the species. 

Several mechanisms have been proposed to explain MSNA variability at the 

respiratory frequency band.  Mano et al. [85] identified four potential ones:  central 

oscillatory theory, whereby a single central oscillator is responsible for initiation of both 

respiratory muscle contractions and MSNA efferent outflow.  Second is alveolar inflation 

reflex theory, which states that alveoli expansion causes changes in MSNA.  Third, there 

is a baro- and cardiopulmonary reflex theory that links respiratory MSNA fluctuations to 

those of arterial pressure.  And finally, there is a chemoreflex theory, whereby respiratory 

changes in blood gas levels affect MSNA.  Evidence for some of these is available from 

human subjects.  St. Croix et al. confirmed that alveolar expansion affects MSNA by 

capturing an increase in nervous outflow during passive positive pressure ventilation 

[121].  Ikeda et al. 1997 confirmed these findings by showing that MSNA is increased 

independent of the arterial pressure during spontaneous positive-pressure breathing [60].  

Somers et al. provided evidence for the chemoreceptive reflex theory by showing that 
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MSNA surged with no change in arterial pressure during last 5 seconds of Mueller 

maneuver [120].  St. Croix and colleagues also showed that baroreflex remains active 

during all experimental maneuvers [121], suggesting that noninvasive experiments are 

likely to fail in completely separating reflexes affecting MSNA at respiratory frequencies. 

1.3.2  State-space dynamic estimation 

Rudolf E. Kalman along with Richard S. Bucy have developed what is now 

known as Kalman-Bucy (or simply Kalman) filter in the beginning of 1960s [69, 70].  

Kalman filter provides an analytic solution to a problem of dynamic estimation of latent 

processes from the observations they produce.  Kalman filter assumes that a) both the 

process and its observable output are Gaussian random variables, b) state evolution 

model is linear, and c) observations linearly depend on the state variable.  Because 

engineering problems are seldom linear and are often non-Gaussian, an extension was 

immediately developed that linearized a nonlinear state transition and observation 

functions about the current state estimate [44].  This Extended Kalman filter allowed 

working with nonlinear models, but diverged if the model was misspecified or if the 

initial estimate was wrong.   

To address the inability on the Kalman-type filters to deal with highly nonlinear 

data, a methods that put no a priori constraints on the model was developed by J. E. 

Handschin and colleagues in 1969 [55, 54].  They approximated the distribution of a state 

process given the observed data (posterior probability) with a set of random weighted 

samples.  This method, known as Sequential Monte Carlo or particle filter, was 

computationally intensive and suffered from a sample degeneracy problem, where 
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weights of all but very few particles became negligible after several estimation steps.  

The sample degeneracy was addressed by Gordon et al. in 1993, who devised a way to 

rejuvenate the samples by making copies of the high-weight samples and discarding the 

low-weight samples called resampling [46].  Resampling improved the algorithm's 

stability, and, along with the increase in available computational power, led to its wide 

acceptance. 

Sequential Monte Carlo estimator was improved by several groups.  Pitt and 

Shephard proposed favoring the particles that were likely to survive at the next time step 

as opposed to resampling based strictly on the particle weights [97].  Doucet et al. unified 

several previously proposed resampling methods into a probabilistic framework 

simplifying theoretical analysis of the algorithms [32].  Godsill and colleagues introduced 

particle smoothing, whereby the estimate at a specific time is improved by using future 

"look-ahead" observations [45].  Schön et al. improved the accuracy and the efficiency of 

particle filtering by separating the linear substructure of the state transition model and 

estimating this conditional linear part with a random mixture of Gaussians [116]. 

Because of its lack of intrinsic a priori modeling assumptions particle filters were 

embraced by the neuroscience community, that often faces non-linear and non-Gaussian 

neural data.  For instance, Brockwell et al. used a particle filter to recover hand's position, 

velocity, and acceleration traces from spike trains recorded in a premotor brain area of a 

rhesus monkey [13].  Wang et al. improved on this procedure by introducing additional 

observation channels, such as somatosensory cortical spike trains [134].  Ergun and 

colleagues employed a particle filter to decode the temporal changes in the receptive field 
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of rat’s hippocampal neurons as the animal foraged in an open environment [37].  By 

incorporating model parameters into the state vector of the particle filter, Meng et al. 

concurrently estimated both the voltage dynamics and the biophysical variables (e.g. 

maximal conductance) of a neuron using only the times when the neuron spiked [89]. 
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2.  MUSCLE SYMPATHETIC NERVE ACTIVITY CHARACTERIZATION 

 Muscle sympathetic nerve activity (MSNA) is a primary source of cardiovascular 

control in humans. Traditional analyses smooth away the fine temporal structure of the 

sympathetic recordings, limiting our understanding of sympathetic activation 

mechanisms. We use multifiber spike trains extracted from standard microneurography 

voltage trace to characterize the sympathetic spiking at rest and during 

sympathoexcitation. Our analysis corroborates known features of sympathetic activity, 

such as bursting behavior, cardiac rhythmicity, and long conduction delays. It also 

elucidates new features such as large heartbeat-to-heartbeat variability of firing rates and 

precise pattern of spiking within cardiac cycles. We find that at low firing rates spikes 

occur uniformly throughout the cardiac cycle, but at higher rates they tend to cluster in 

bursts around a particular latency. This latency shortens and the clusters tighten as the 

firing rates grow. Sympathoexcitation increases firing rates and shifts the burst latency 

later. Negative rate/latency correlation and the sympathoexcitatory shift suggest that 

spike production of the individual fibers contributes significantly to the control of the 

sympathetic bursts strength. Access to fine scale temporal information, more 

physiologically accurate description of nerve activity, and new hypotheses about the 

nervous outflow control establishes sympathetic spiking as a valuable tool for the 

cardiovascular research. 

2.1  INTRODUCTION 

 Because of its importance in maintaining cardiovascular homeostasis, efferent 

muscle sympathetic nerve activity in humans has been an active area of research for 
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several decades [8]. It is traditionally assessed by collecting raw voltage traces with an 

electrode subcutaneously inserted into a peroneal nerve, and converting these traces into 

temporally smoothed signals with clearly identifiable bursts of sympathetic activity [53]. 

The bursts are quantified using the following measures: strength (e.g. burst amplitude or 

burst area), frequency (e.g. number of bursts per minute or per 100 heartbeats), and crude 

timing information (e.g. burst latencies). These measures have been successful in 

identifying human sympathetic activity patterns across reflex activations such as 

baroreflex and metaboreflex [128, 131, 39] as well as examining characteristic changes in 

outflow with pathological conditions such as hypertension, congestive heart failure, and 

obstructive sleep apnea [19, 38, 42]. 

Animal models reveal that high frequency content of the sympathetic activity can 

substantially influence vascular responses. For instance, the constriction of resistance 

vessels is augmented by the intra-burst pulse frequencies during stimulation with fixed 

inter-burst frequencies; the maximal response is attained at 10 Hz in rabbits [4] and at 40 

Hz in cats [3]. Also, the perfusion pressure was strongly correlated with the carrier wave 

frequency of up to 20 Hz during a frequency modulated stimulation of the sympathetic 

nerve trunk in the dog hind limb [100]. The smoothing inherent in the traditional MSNA 

analysis technique leads to a substantial loss of temporal resolution in the recorded 

sympathetic activity, leaving it unable to account for such high-frequency sympathetic 

activity content.  

Augmenting the microneurography setup by increasing the impedance of the 

electrodes allowed researchers to record some of the action potentials emitted by the 
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individual sympathetic fibers, thus capturing a portion of high-frequency structure 

present in the sympathetic output. More importantly, the analysis of single-fiber firings 

identified the causes of the inter-individual and cross-conditional burst size variability for 

a large number of conditions [81, 92, 127, 36, 83]. Increasing the electrode impedance to 

meticulously track the firings of single fibers considerably limits the number of axons 

that are sensed. For instance, only 14 total units from 8 subjects were recorded by 

Macefield et al.[82], 34 total units from 16 subjects were recorded by Elam et al.[36], and 

39 total units from 5 subjects were recorded by Tsukahara and Mano [127]. This is 

compared with 1100 sympathetic axons found in the rat peroneal nerve[115]. The number 

in humans is likely close: the lateral fascicles of deep peroneal nerve innervating muscle 

and not skin were found to contain a minimum of 195 (S.E.=18) myelinated fibers [123], 

and mammalian peroneal nerve is known to have unmyelinated C to myelinated A fiber 

ratio >1 [66, 98]. Accessing such a small subset of available axons makes it hard to asses 

in humans the complex patterns of sympathetic nerve firing exhibited by animal models 

(e.g. only 57% of rat muscle sympathetic neurons responded to nociception stimulus [51], 

8% of such neurons had no respiratory modulations[52]; a detection in cat of muscle 

sympathetic efferents with low cardiac rhythmicity [9]).  

A new technique was designed that addressed the limitation on the number of 

recorded fibers: the extraction of individual spike information directly from the raw 

mutlifiber voltage trace obtained using standard-impedance microneurography [29, 17, 

124]. A large number of such studies identified the action potential composition of the 

multifiber sympathetic bursts obtained with the traditional MSNA analysis [122, 12, 110, 
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86]. To do so, individual action potentials were extracted and classified based on their 

shape, obtaining up to 24 morphology types per subject [122]. Focusing on the burst 

structure left parts of the spike train unutilized, however. For instance, Steinback et al. 

[122] and Salmanpour & Shoemaker [111] extracted spikes from the whole recording, 

but only used the ones that coincided with the bursts. Maslov et al. [86] only extracted 

spikes from parts of the recording that formed the multifiber bursts. In addition, a full 

characterization of the statistical properties of the MSNA spiking patterns is, to our 

knowledge, currently missing. For example, the physiologically important high-

frequency multifiber firing within the MSNA bursts (e.g. spike placement variability) 

remains unexplored, as does its relationship to the low-frequency spiking structure (e.g. 

variability in burst sizes). In fact, most multifiber studies do not use the spikes 

themselves. For instance, Brychta et al. [16, 17] smoothed the spike train to analyze 

MSNA spectral signature and to model low-frequency arterial pressure oscillations. Also, 

while inhomogeneous Poisson models have been successfully applied to the analysis of 

spiking structure in a number of neural systems, we are not aware of them being utilized 

to identify specific spike patterns in multifiber sympathetic efferent activity. Moreover, 

statistical tools ignoring the precise spike timing (a critical information carrier for many 

neural systems [118, 20, 7, 48]) are often favored. For example, Greenwood et al. [48], 

Murai et al. [92], and Brychta et al. [17] first inferred firing rates and then applied 

standard statistical methodology (e.g. least squares regression) to test hypotheses and fit 

models. Therefore, the information currently present in the multifiber spike trains is not 

fully exploited. In particular, we do not know how the placement of spikes changes as a 
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function of time from the associated R-peak; we do not know if such placement is 

different for large vs. small bursts; we do not know if spikes occur between bursts. 

We address some of these questions in this paper, which has two main goals. 

Methodologically, we aim to combine in a novel way the existing standard-impedance 

spike extraction algorithm with a successful modeling framework in order to extract and 

utilize more information from the raw voltage trace than was previously possible. 

Scientifically, we aim to describe the aggregate firing patterns of the multifiber 

sympathetic spike trains (including firing within regions traditionally considered silent) 

and examine in detail the interactions between their high and low frequency components. 

Our analysis is structured as follows: first, the raw voltage trace is denoised and 

sequences of action potentials are extracted. The temporal structure of the resultant 

multifiber spike trains is visualized using rasters plots. A point process model is applied 

to assess the distribution of high frequency spikes as a function of the average spike rate. 

The model is fit to the spike trains observed at rest and during a sympathoexcitatory 

maneuver. Maximum likelihood estimates of the model parameters are compared across 

subjects. Finally, the similarities and differences in spiking are examined in the context of 

known physiology. 

2.2  METHODS 

This section covers the methods used in this study.  We first detail the data 

collection and spike extraction process as well as subject selection criteria.  We then 

describe the visualizations we used to help us arrive at the model we eventually utilized, 

which is described last. 
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2.2.1  Spike Extraction 

A sympathetic activity assessment technique was devised [124] that discriminates 

neural firing from physiologically-irrelevant information, and which accurately identifies 

multifiber nerve activity independent of any a priori criteria. This method is based on the 

statistical characteristics of the different artifacts, noise, and multifiber nerve activity that 

compose the unfiltered recording. A variant of the Expectation-Maximization algorithm 

was used at successive stages of processing to separate these components to extract the 

multifiber spike train. The details of the algorithm are described in [124], and, briefly, 

consist of the following steps: line noise and muscle twitches are removed from raw 

voltage recordings, producing a set of action potentials. These are then treated as a 

convolution of a set of pulses (Kronecker delta functions) with a prototypical spike 

template, which is extracted from the data. The posterior probability of a spike given the 

data is computed at each sample by deconvolving the spike template from the signal and 

removing the background noise using a mixture of distributions model. The posterior 

probabilities are then thresholded and binarized, producing a spike train at 40 kHz. Note 

that by using the action potential template we assumed that the shape of a subset of action 

potentials in the signal is roughly similar and that some fraction of the action potentials is 

considerably larger in peak amplitude than the noise source. Beyond that, both spike 

shape and amplitude are explicitly ignored because they are heavily influenced by the 

distance from the axon to the electrode and are highly variable across recording sessions. 

We did not sort the spikes because we were aiming to characterize how the spike patterns 

produced by all active fibers change as a function of outflow intensity and were not 
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looking to study how different fiber types influenced the pathway activation responses. 

The output of the spike extraction algorithm, therefore, is a binary multifiber spike train 

where neuronal firings by different axons cannot be differentiated. A refractory period 

was enforced by removing any of the spikes within 0.5 msec of each other. Average 

morphology templates were then collected and compared to noise samples and 

prototypical action potentials to ensure that spike locations in the binary train mark 

voltage deviations that are statistically significant and resemble actual spikes. We used 

this technique to extract multifiber spike trains from eight subjects under baseline and 

sympathoexcitatory conditions. Baseline activity was collected during supine rest, and an 

isometric handgrip exercise (IHE) served as a sympathoexcitatory stimulus. 

Age (yr) Height (m) Weight (kg) BMI (kg/m2) 
25.9, [21, 30] 1.71, [1.52, 1.88] 62.9, [47.6, 75.1] 21.7, [16.4, 32.5] 

Table 1.  Subject characteristics:  cross-subject means and ranges for age, height, weight, and body-
mass index (BMI).   

2.2.2  Subjects and Protocols 

All volunteers gave their written informed consent to participate. All protocols 

were approved by either the ethical committee at the Grenoble University Hospital Center 

or institutional review board at Spaulding Rehabilitation Hospital, and conformed to the 

Declaration of Helsinki. 

We studied healthy men (n=4) and women (n=4) with no signs or symptoms of 

hypertension, diabetes, cardiovascular or neurological disease or cancer, with normal 

resting ECG, and no regular use of tobacco. The population statistics are available in 

Table 1. 
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Baseline IHE 

Mean Range Mean Range 

Duration (sec) 414.5 [300.6, 609.8] 264.8 [186.6, 387.7] 
RR lengths (sec) 1.04 [0.70, 1.58] 0.79* [0.52, 1.49] 
Mean Rate (Hz) 7.30 [3.51, 12.54] 14.89* [8.74, 26.96] 
Mean Interval 
Latency (sec) 

1.27 [1.07, 1.46] 1.29 [1.11, 1.45] 

   
Subject Number 

Average firing rate 
(Hz) 

Fano 
Factor 

Average firing rate 
(Hz) 

Fano 
Factor 

1 12.30, [0, 65.09] 7.55 10.81, [0, 66.57] 4.71 
2 11.16, [0, 101.58] 10.10 22.71, [0, 98.07] 12.48 
3 15.36, [0, 55.78] 6.40 18.87, [0, 68.36] 7.79 
4 7.23, [0, 52.33] 5.30 17.02, [0, 273.26] 31.51 
5 11.51, [0, 77.61] 5.70 11.65, [0, 57.65] 5.05 
6 5.59, [0, 36.1] 4.08 11.02, [0, 40.107] 5.65 
7 9.86, [0, 162.99] 36.27 32.46, [0, 244.48] 32.87 
8 4.92, [0, 23.95] 1.99 23.79, [0, 267.46] 47.95 

Table 2.  Top panel: summary statistics for the eight subjects in the study. Includes cross-subject 
means and ranges of the following: recording durations, mean duration of RR intervals within a 
recording, mean spiking rate within a recording, and mean latency of spikes within the second period 
of elevated firing. Bottom panel: heartbeat-to-heartbeat variability of cardiac cycle firing for 
individual subjects expressed as the Fano factor, a ratio of variance of cardiac cycle spike counts to 
their mean.  

*indicates statistically different from baseline (p<0.05). 

 

Baseline activity data was derived from a five-minute period of supine rest. 

Sympathoexcitatory data was obtained by subjects performing isometric handgrip 

exercise at 35% maximal voluntary contraction (MVC) force sustained to fatigue. (The 

subject had previously performed three MVCs on a handgrip dynamometer to determine 

35% MVC.) During the exercise, target force was displayed on a computer monitor. 

Subjects had continuous visual and auditory feedback from the investigators to ensure 

maintenance of target force until exhaustion, which was defined by the inability to 

maintain a target force for more than 3 sec despite continued effort and verbal 

encouragement [10].  
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2.2.3  Visualization 

Extracting individual spikes allowed us to analyze the sympathetic activity using 

visualization techniques designed specifically for spiking data. We constructed raster 

plots, which display spikes as individual dots in time on the x-axis, with multiple trials or 

time intervals stacked on top of each other on the y-axis. In our case, the intervals are 

triggered by the ECG R-peaks, and the spiking activity for the following two-second 

period is displayed as a function of time elapsed from the R-peak (latency). Each two-

second interval includes the spiking activity over a minimum of two cardiac cycles 

following each R-peak (possibly more for shorter RR intervals during IHE). 

Based on these visualizations, and on the known conduction delays for 

sympathetic firing [40, 130], we focused on an interval of high-density spiking from 700-

1400 ms after each R-peak. We computed the average latency within each interval as a 

sum of latencies of spikes within the interval divided by its number of spikes. We also 

computed an average firing rate for each interval as the number of spikes in an interval 

divided by its duration. We visualized the distribution of these average firing rate values 

over heartbeats using box plots, histograms, and by directly plotting the average rate time 

series. To assess the heartbeat-to-heartbeat variability of the sympathetic outflow, we 

computed the Fano factor, a ratio of the variance of cardiac cycle spike counts to their 

mean. The Fano factor has a theoretical value of one for Poisson processes.  

In order to visualize the patterning of spiking activity as a function of the average 

firing rate, we modified the raster plots by sorting the intervals on the y-axis from those 

with the highest average rate to those with the lowest average rate. We also examined two 
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subsets of intervals: those with low average firing rates below 10 Hz, and those with high 

firing rates above 40 Hz, and computed for each a smoothed histogram of the spiking as a 

function of latency. This was accomplished by convolving the histogrammed spikes with 

a boxcar kernel with a width of 10 msec. 

2.2.3  Modeling Techniques 

We constructed a probability model to describe a pattern of spiking activity of the 

multifiber sympathetic nerve bundle as a function of the average firing rate over each 

interval of high density spiking. Specifically, we binned the spiking data (1 msec bin 

width) and modeled it as an inhomogeneous Poisson process conditioned on the average 

firing rate within each interval. At any given rate, the model describes the probability 

distribution of the latency relative to the associated R-peak, at which the spikes are likely 

to occur. Mathematically, let R be the average firing rate computed in a given interval of 

high-density spiking, let  be the latency relative to the associated R-peak, and let p be 

the probability that a randomly chosen spike within the interval occurs at latency τ, given 

that the interval has an average firing rate of R. Then, p is related to the firing rate 

function λ(τ) of the spiking process according to the formula: 
end
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Here C is a normalization constant that ensures that p integrates to 1, and the exponential 
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function guarantees that the probability density is positive. The model parameters 

=(1,2,3,4,5,6,7,8) are fit by maximum likelihood, i.e. they are selected to 

maximize the probability of observing the data. 

For each interval of high density spiking in the recording, we plug its average 

firing rate R into the model to obtain a probability distribution function for the location τ 

of any arbitrary spike. We compute the mode of this probability distribution to find the 

expected latency of the spiking relative to the associated R-peak, and we compute the 

variance of this distribution to describe the concentration of spiking about the expected 

latency. We also compute the maximum instantaneous rate reached within an interval, 

which defines the peak latency and describes the maximum output of the spike train in 

spikes/sec.  

Along with maximum likelihood estimators of the model parameters β, we 

compute their variance-covariance matrix. Using that information, we draw 100,000 

samples from the asymptotic distribution of β. We use these drawn values to approximate 

the sampling distribution of the expected latency, the spike concentration, and the 

maximum instantaneous rate as well as to construct their 95% confidence intervals.  

The latency range for each condition was computed by subtracting the expected 

latency for the burst with the highest rate from the expected latency of the burst with the 

rate of 10 Hz, which is the slowest spiking rate at which latency is reliably computed. 

Latency ranges were then averaged across subjects for baseline and IHE to obtain a cross-

subject mean latency range for each condition. 
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2.2.4  Statistics 

Simple linear regression was performed to compute linear changes in average spike rates 

over time and the significance of the estimated slope parameters. The significance of the 

parameter estimates in Eq. 1 was calculated based on the observed Fisher information 

computed from the data. Paired t test was used to compare RR lengths, mean rates, and 

mean interval latency across conditions. P-value <0.05 was considered significant. 

Kolmogorov-Smirnov tests that compared the modeled spike latency distribution p (Eq. 

1) and the empirical one were used to assess the model goodness-of-fit for each 

subject/condition. 

2.3  RESULTS 

Table 2 displays the spiking statistics for all subjects in this study. The recording 

duration varied from subject to subject, was generally longer at rest, and reached a 

maximum of about 10 minutes. As expected, the length of an average RR interval 

decreased from 1.04 seconds during baseline to 0.79 seconds during IHE, reflecting 

increased heart rate across all subjects during isometric handgrip exercise. The spiking 

rates were different for each subject and varied about three-fold within each condition. 

During isometric exercise, the mean spiking rate averaged across all subjects was 14.8 

Hz, about twice that at rest. Fano factors were highly variable across subjects, with the 

minimum value of 1.99 for all recordings in the study. All values were significantly 

larger than 1 (p-values <10-5 for all subjects), showing higher heartbeat-to-heartbeat 

variability in the firing rate than would be observed for Poisson Processes. The cross-

subject means of average spike latencies for both baseline and IHE were 1.27 and 1.29 
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seconds (see Table 2). The means were not statistically different. The cross-subject mean 

latency range obtained with the spiking model was 79 (S.E.=20) msec for baseline and 86 

(S.E.=19) for handgrip.   

2.3.1  Visualizations 

Figure 1 depicts the raster plots for a representative subject under baseline (left, black) 

and IHE (right, gray) conditions and highlights the aggregate characteristics of the 

sympathetic spiking by marking the latencies of all spikes trailing each R-peak by less 

than 2 seconds. The most visually striking feature is the presence of the three regions of 

increased sympathetic firing in a two-second interval following every R-peak: one at a 

latency of about 300 msec, one at 1100 msec, and the third at about 2 seconds. The 

latency of the second high-density area (700-1400 msec) matches the average conduction 

delay described in the literature [131]. The reported progressive increases in the 

sympathetic outflow and the decreases in the RR intervals during IHE [72] do not affect 

the latency of the spikes in the second area of high activity. This is observed by 

comparing the values of the three high-density areas in the right plot of Fig. 1: the latency 

of the middle one stays constant at around 1100 msec for the duration of the recording, 

but the latencies of the first and the third areas have shifted at the conclusion of the IHE 

experiment. In addition, the shortening of the average RR intervals and the increase in the 

average spiking rates (see Table 2) contributed to the higher density of spikes during 

IHE; notice that the individual spikes are distinguishable in the beginning of the IHE 

recording in Fig. 1, but blur together towards its end. These features were observed in all 

subjects. The only cross-subject variation was the timing of the high-density spiking from 
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their corresponding R-peaks; the ranges of the mean spike latency for the second high-

density region are found in Table 2. 

 
Figure 1.  A raster plot of MSNA spiking activity triggered by ECG R-peaks for baseline (left, black) 
and IHE (right, gray) conditions. Each row illustrates 2 seconds of the spiking activity following an 
R-peak. The x-axis represents the time elapsed since the corresponding R-peak. The y-axis depicts 
the time of the R-peak corresponding to that row. Note that one particular spike might appear on 
multiple rows at various latencies relative to different R-peaks. For each heartbeat, the spiking 
activity increases 900-1300 msec after the R-peak, consistent with conduction delays reported in the 
literature. This latency is consistent across baseline and IHE conditions, despite the increasing heart 
rate during IHE. The intensity of spiking progressively increases during IHE. "Horizontal 
streaking" in the observed spiking activity is indicative of the heartbeats with reduced activity 
followed by heartbeats with elevated activity. 

 

 Another salient characteristic of the sympathetic spiking was the white spaces 

cutting through the columns of high activity (see Fig. 1). These horizontal streaks 

represent heartbeats with limited or no sympathetic firing interspersed with the cardiac 

cycles exhibiting high density of spikes. Such changes in the number of sympathetic 

spikes from one heartbeat to the next can be thought of as beat-to-beat variability of 

spiking, a quantity that is commonly measured by the Fano factor. Table 2 shows the 
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sample Fano factor values ranging from 1.99 to 47.95 across all subjects/conditions; they 

are considerably larger than the theoretical value of one that Fano factor attains for an 

inhomogeneous Poisson process. This large discrepancy indicates that heartbeat-to-

heartbeat variability of the spike counts is significantly larger than what an 

inhomogeneous Poisson process would predict.  

 

Figure 2. Average spiking rates in baseline (left, black) and IHE (right, gray) conditions. Top panel: 
box plots of spiking rates across heartbeats. Median and upper whisker of the firing rate are 
increased in IHE. Middle panel: scatter plot of firing rate on each heartbeat with linear regression 
fit. Firing rate is stable in baseline condition and increasing in IHE. Bottom panel: histogram of 
firing rates. Firing rates range from 0 to about 65 Hz in both conditions, but IHE has increased beat-
to-beat variability relative to baseline; more heartbeats have virtually no spiking, and more 
heartbeats exhibit high rates of firing. Linear regression equation is R=16.0183-0.0043t for baseline 
and R=13.4179+0.0273t for IHE. 

 

The intensity of the sympathetic activity for each recording was assessed by 

analyzing the average firing rates within intervals of elevated firing occurring at latencies 

of 700 to 1400 msec. The following were constructed to describe the rates: box plots, 
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time series diagrams, and histograms of the rate distribution. The top panel of Figure 2 

displays box plots that describe the quartiles of the average rate distribution for a 

representative subject under baseline (left, black) and IHE (right, gray) conditions. Note 

that the top whisker in baseline and IHE conditions is large when compared to both the 

size of the box and of the lower whisker. This indicates that the range of the rates 

contained in the top quartile is much higher than that of the rates contained in the lower 

three quartiles. Also note that the maximum rate attained for both recordings is much 

higher than the upper boundary of the box, indicating that the rates in the top quartile of 

the distribution are appreciably higher than in the rest of the quartiles. In fact, the rate 

distributions for all subjects demonstrate similar patterns: the maximum rate for some 

recordings was 7-15 times higher than the 75th percentile and 9-16 times higher than the 

mean. Note, however, that while there was a clear increase in sympathetic firing in IHE 

when compared to baseline, the maximum firing rates were not considerably different 

between baseline and IHE for 5 out of 8 subjects (see Table 2). For instance, while 

subject 4 had IHE maximum rate higher than baseline, subject 5 had this relationship 

reversed. 

The diagrams in the middle panel of Figure 2 revealed the time-dependent 

features of the spiking. First, average rates are increasing as a function of time during 

handgrip exercise (for a subject in Fig. 2 the IHE slope is 0.0273 Hz/sec, significantly 

larger than zero at p=4.14·10-6). This upward trend was found in all subjects; the average 

slope was 0.0609 (S.E.=0.0257) Hz/sec, significantly larger than zero (p=0.0248). 

Second, there is a large variability in the rates of the neighboring regions. For instance, 
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the highest rate in Figure 2 baseline is 66.9 Hz; the region exhibiting this rate is 

surrounded by regions with significantly lower rates of 12.7 and 3.2 Hz. Third, the 

amount of high- relative to low-rate regions stays constant for baseline but slightly 

increases for IHE (note a large quantity of the low-rate regions still present at the end of 

IHE, where the expected rate is highest). In addition, sympathoexcitation increases the 

rates within the high-frequency bursts of sympathetic spiking. For example, the mean rate 

for the regions with rates over 10 Hz occurring in the last 30 seconds of IHE was 39.64 

(S.E.=5.96) Hz, which was significantly larger than the mean rate for similarly high-rate 

regions in the first 30 seconds of IHE (25.94, S.E.=1.51 Hz, p=0.0257) and in the last 30 

seconds of baseline (22.75, S.E.=2.24 Hz, p=0.0095). 

In order to directly compare the outflow strength at rest with that during peak 

sympathoexcitatory response, we compared mean rates in the first and last 30 seconds of 

IHE. A large increase was found in all subjects, the cross-subject means are 8.60 

(S.E.=0.96) Hz in the first 30 seconds of IHE to 21.94 (S.E.=4.85) Hz in the last. To 

ensure that the difference is not an artifact of the time window placement within a 

recording, we compared the mean rates in the last 30 seconds of baseline to the last 30 

seconds of IHE; an increase was found in all subjects with means of 6.83 (S.E.=0.74) Hz 

vs. 21.94 (S.E.=4.85) Hz (statistically significant). 
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Figure 3. Top panel: histogram of spike latencies for low spiking (<10 Hz, solid) and high spiking 
(>40 Hz, dot-dashed) regions for baseline (left, black) and IHE (right, gray) conditions. Low-rate 
spiking occurs uniformly across all latencies shown, while high-rate spiking tends to concentrate 
about a preferred latency with a bell-shaped distribution for both conditions. Bottom panel: raster 
plots of the MSNA spiking activity triggered by the ECG R-peaks, sorted by firing rate. Each row 
illustrates the spiking activity 700 to 1400 msec following an R-peak, with rows ordered by the firing 
rate in this interval. The y-axis depicts the indices of cardiac cycles in the ordering. For instance, 
index 50 indicates a cardiac cycle with the 50th smallest rate; index 300 denotes 300th smallest rate 
(which makes it one of the highest rates in baseline). The rates for both conditions are shown in the 
middle axes: black circles denote baseline, gray triangles denote IHE. 

The bottom panel of Figure 2 shows the distributions of the average firing rates 

over heartbeats. Note that the distribution is either unimodal or continuously decreasing, 

with the majority of the mass concentrated around the lower rates. All subjects exhibit 

skewed firing rate distributions, indicating a large number of cardiac cycles with region 

rates that are much higher than the distribution mean. The tails of the IHE distribution 

were heavier than those for baseline for all subjects, suggesting an increase in the 

quantity of the high-rate heartbeats during sympathoexcitation.  
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Figure 4. The fit to a model of the spike latency probability distribution as a function of the firing 
rate under baseline (left) and IHE (right) conditions. Similarly to Fig. 3, x-axis represents the latency 
within the high-density spiking region for each condition and y-axis represents the average firing 
rate within that region. Distribution is close to uniform for the low-rate regions and becomes 
increasingly concentrated about a preferred latency as the firing rate increases. Also, the preferred 
latency occurs earlier and the distribution becomes progressively more concentrated with increasing 
firing rate. 

Overall, the visualization analysis revealed a similarly high variability in both 

baseline and sympathoexcitatory spiking. Our primary focus was the high-frequency 

within-heartbeat firing patterns, which varied similarly as a function of rates during the 

two conditions. Because of such high-frequency focus and because it was reflected in the 

average spiking rates, we did not explicitly measure condition-dependent low-frequency 

variability. It was, however, clearly present as there was an abundance of very low and 

very high rates of firing as well as a poor predictability of their occurrence in both 

conditions. Progressive sympathoexcitation was accompanied by an increase in the 

number of high-rate sympathetic bursts as well as by a rise in the firing rates within them. 
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These observations suggest that the sympathetic outflow intensity is governed by two 

factors: the adjustment of the firing rate within high-frequency bursts of spikes and the 

modification of the number of cardiac cycles containing such bursts relative to the 

number exhibiting low-rate firing or no activity at all. 

2.3.2  Modeling 

Extracting individual spikes granted us a closer look at the structure of the 

sympathetic bursts. Figure 3 highlights, for a representative subject’s baseline (left, 

black) and IHE (right, gray) conditions, how the precise timing of spikes within a region 

of high frequency firing depends on the region’s average rate. Specifically, the top panel 

displays the pronounced differences in the organization of the spikes between regions 

with low average firing rates and those with high average firing rates. The firing in the 

low-rate intervals is approximately uniformly distributed along the latencies, but spike 

distribution in the higher-rate regions acquires a Gaussian shape, with spikes 

concentrated about a particular latency. We constructed rasters sorted by the average rate 

within these intervals to evaluate the progression from the uniform to the concentrated 

firing states (see bottom panel of Figure 3). Specifically, as we move from the low to 

high-rate regions, there is a gradual emergence of spike concentration about a specific 

peak latency, which shifts closer to the corresponding R-peak as the average region rate 

increases. Importantly, the additional spikes that boost the average spiking rate occur 

predominantly around the peak latency, progressively increasing the spike concentration 

around it. A few spikes, however, occur further away from the peak latency, making the 

spiking bursts appear wider as a function of the increasing rate. Notice that this 
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progressive change in the firing structure of high-density spiking regions was not 

qualitatively altered by sympathoexcitation and was present during both baseline and IHE 

experiments for all subjects. 

Subject 
Number 

Baseline IHE 
KS Statistic Critical Value KS Statistic Critical Value 

1 0.0244* 0.0306 0.0359 0.0260 
2 0.0312* 0.0323 0.0176* 0.0218 
3 0.0270 0.0238 0.0268 0.0178 
4 0.0196* 0.0419 0.0375 0.0232 
5 0.0263* 0.0324 0.0278* 0.0319 
6 0.0414 0.0297 0.0284* 0.0326 
7 0.0439 0.0228 0.0277 0.0197 
8 0.0456 0.0346 0.0302 0.0216 

Table 3.  Kolmogorov-Smirnov statistics and their corresponding critical values. For a model to pass 
the KS test, the statistic has to be smaller than the critical value. Models for 7 datasets passed the KS 
test (marked by asterisks). Note that the values of KS statistics are close to the critical values, 
indicating that deviations between modeled and actual spike placement probability were relatively 
mild. 

 

We fit the model in Eq. 1 to the extracted spike trains using maximum likelihood; 

Fig. 4 displays the results for a representative subject under baseline (left) and IHE (right) 

conditions. Specifically, each row represents a region of intense firing with an average 

rate indicated on the y-axis. The colors indicate a probability density that a randomly 

selected spike occurs at a specified latency. The model captured two main spiking 

features. First, the structure of the low- and high-rate regions of high-density spiking 

differed. Specifically, the low-rate distribution had high variance that spanned most of the 

modeled region (see the light gray color spanning most of the bottom rate regions in 

Figure 4). In contrast, the spike location distributions for the high-rate spiking bursts 

were narrow; most of their mass was located around peak latency, indicated by the 

relatively narrow areas of dark gray near the top of Figure 4. Secondly, the transition 
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from low- to high-rate firing mode was achieved by a gradual constriction of the density 

and a progressive heightening of the probability distribution (see progressive narrowing 

of the dark gray area as rates increase; they also become darker for higher rates). 

Moreover, the location of the peak probability has progressively shifted to the shorter 

latencies. 

 
Figure 5.  Features of the cardiac cycle spike latency distribution as a function of the firing rate. 
Subjects were pooled within baseline (black) and IHE (gray) conditions. The peak latency identifies 
the time after an R-peak with the highest intensity of spiking. In both conditions, peak latency 
decreased with the increasing firing rate; it was, however, significantly higher during IHE than at 
baseline for all rates. The standard deviation indicates the concentration of spiking about the peak 
latency. It is statistically indistinguishable between baseline and IHE for a large number of rates, but 
its reduction implies that spiking becomes more concentrated at higher rates in both conditions. 
Shaded regions represent bootstrapped 95% confidence intervals of the mean parameter estimates. 

 

The probability structure was described using two features of the distribution: 

peak latency and standard deviation. The values of these features pooled for all subjects 

in the study within baseline (black) and IHE (gray) conditions are shown in Figure 5. For 
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both conditions, the peak latency shifts closer to the corresponding R-peak as the firing 

rate increases, indicating that the spiking starts earlier for the cardiac cycles with 

increased activity. The standard deviation of the spike locations becomes smaller with 

higher rates, indicating that the spikes are progressively more concentrated about the 

peak latency. 

It is important to note that the two parameters used to describe the intra-region 

spiking vary identically as a function of the increasing firing rate for all subjects, 

specifically, the latencies get progressively shorter, and the standard deviation decreases. 

What is more remarkable is that this pattern is retained for two different states of the 

cardiovascular system: a dynamic equilibrium at baseline and a vigorous response to a 

strong sympathoexcitatory stimulus during IHE. 

The expected latency showed significant differences between conditions. It 

occurred consistently earlier for baseline than for handgrip (see left panel in Fig. 5), 

indicating that the point of maximum spiking is attained later during sympathoexcitation 

than it is at rest. This is true for cardiac cycles at all firing rates. The standard deviation 

was statistically different for most firing rates, but the differences were rate-dependent, 

pointing to the lack of clear differentiation in spike concentration between the conditions.  

The models’ goodness-of-fit is described in Table 3. The left column for each 

condition contains the values of the KS statistic calculated from the data. Right-hand-side 

columns contain corresponding critical values: a maximal KS statistic value for the model 

to pass the test. Two things are worth noting. First, models for seven out of 16 datasets 

passed the KS test as indicated by their KS statistics being smaller than critical values. 
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The small differences between the KS statistic and the critical values suggest that the 

model fits for other subjects/conditions came close to passing the KS test. Second, the 

number of samples for each test is large (varies from about 600 to over 5000), which 

substantially shrinks KS statistic confidence intervals. This indicates that even a 

relatively mild deviation of the modeled from the actual probability distribution will force 

the KS statistic to become insignificant. While higher order polynomial models are likely 

to improve this goodness-of-fit marginally, no low-order polynomial model will provide 

a perfect fit to the data, and we expect KS tests to fail as the amount of data becomes 

large. Therefore, we opted to use a cubic model that parsimoniously described the main 

important features of the distribution, and which reliably and consistently produced 

parameter estimates with well-defined error bounds for all data. 

2.4  DISCUSSION 

The primary purpose of this article is to highlight the utility of using multifiber 

spike trains for assessment of sympathetic outflow to the vasculature. We showed that 

spiking is capable of expressing the aggregate features of sympathetic activity as well as 

traditional analysis methods are. Moreover, spikes provide information about sympathetic 

activity at a high temporal resolution. We used this information to assess the structure of 

the pulse synchronous bursts of spiking in terms of a peak systemic response and spiking 

concentration. In comparing statistical features of spiking activity at rest and during 

sympathoexcitation, we identified a number of striking similarities as well as one key 

difference between these conditions. Specifically, the latency of the peak response 

shortened and the spiking became more concentrated with increasing burst average rate 
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during both conditions. The peak response latency, however, was consistently and 

significantly longer during the sympathoexcitatory maneuver than at rest. These findings 

support the conclusion that similar mechanisms underlie the production of sympathetic 

spiking at rest and during excitation, and that these states differ only in the spike rates 

required to produce a particular spiking pattern. 

2.4.1  Why Spikes? 

The coarse features of the sympathetic outflow that have previously been detected 

using traditional analysis methods were evident in the extracted spiking. First, several 

researchers showed that sympathetic outflow progressively increases during a 

sympathoexcitatory maneuver [72, 106, 117]. In fact, both the number and the amplitude 

of the sympathetic bursts were shown to increase. Similarly, we see a progressive rise in 

the average spiking rates and the number of sympathetic bursts exhibiting high rates (>10 

Hz) of firing. Second, we find the average latency of the sympathetic spike bursts to be 

close to the burst peak latencies detected in earlier studies: 1.27 (S.E.=0.05) sec for 

baseline and 1.28 (S.E.=0.04) for IHE, compared to 1.30 (S.D.=0.1, no S.E.) reported by 

Fagius et al. [41] and 1.33 (S.E.=0.03) sec reported by Wallin et al. [130]. Third, we see 

the peak latency decrease as a function of the average firing rate within the MSNA burst. 

Similarly, Wallin et al. [130] reported negative correlation between relative burst 

amplitude and burst peak latency.  

Also, the variability present in the spiking was similar to the cardiovascular 

variability reported using traditional MSNA analysis techniques. For instance, we found a 

strong phase locking between sympathetic spiking and the cardiac cycle (see Figure 1). 
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Similar rhythmicity has been reported in both animals [1, 14] and humans [25, 26] using 

traditional analysis methods; in fact, cardiac rhythmicity was one of the earliest MSNA 

features detected, and it is used today to differentiate muscle from the skin sympathetic 

activity [85]. Also, variability of spiking across heartbeats was shown to have a slow 

rhythmic structure (with a period of approximately 10-15 seconds in Figure 1) consistent 

with frequency bands with increased power (0.1 and 0.25 Hz) reported by other 

researchers [113, 84].  

In addition to the gross sympathetic outflow features, the extraction of individual 

spikes from the raw voltage trace granted us access to the information not previously 

available. Specifically, traditional methods involve a manual identification of the bursts 

of sympathetic activity based on their shape and amplitude; the statistics of these bursts 

are subsequently analyzed, while MSNA regions that fail the selection criteria are 

ignored. Here, we used the entire spike train. For instance, intervals that were thought to 

be completely silent due to systolic inhibition turn out to have sparse spiking (note spikes 

present at 400-800 and 1300-1700 msec latencies in Figure 1). In addition, we actively 

use the heartbeats that were traditionally dismissed as having too low or no sympathetic 

activity. Juxtaposing these areas with periods of high activity was key to detecting the 

striking similarities in how the fine temporal MSNA patterns change at rest and during 

sympathoexcitation. Specifically, we found that the latencies for the low-rate bursts are 

distributed uniformly: the spikes are equally likely to occur at any latency within a burst. 

As the firing rate increases, the spikes converge around a specific latency, and the spike 

latency distribution becomes more concentrated. Such differences in the distribution 
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structure suggest the presence of two classes of fibers: one that is active tonically at low 

rates and displays lesser strict cardiac rhythmicity, and another – reflexively activated – 

more closely phase locked to the cardiac cycle. This suggests in humans what has been 

shown in animals: that cardiac rhythmicity might be weak in up to one fifth of 

sympathetic neurons [51, 64]. Additional studies (e.g. ganglionic blockade) would be 

needed to validate this hypothesis and to ensure that the spikes we observed are produced 

by the muscle sympathetic efferents and not by other fiber types (e.g. skin afferents) 

contaminating the recording. 

The additional information we extracted from the spike trains yielded a much 

more precise and physiologically interpretable description of sympathetic outflow. The 

main improvement is the removal of the chronological distortions introduced into the 

MSNA signal by the temporal smoothing used in traditional analyses [53]. For instance, 

the conduction delay is usually defined as a temporal difference between the ECG R-peak 

and the top of its corresponding integrated neurogram burst [40, 25, 41]. The neurogram 

peak denotes a point where the MSNA starts to ebb just enough to offset the increase in 

the integrated neurogram signal due to sympathetic activation. This point can fluctuate 

from burst to burst and can be hard to interpret physiologically. In contrast, we measure 

the latency between the R-peak and the point when the spiking distribution is maximal. 

This makes the latency more physiologically interpretable: it is a delay between the 

initiation of a hemodynamic event from myocardial depolarization to maximum 

sympathetic response. This difference in the quantities measured likely also contributed 

to numerical discrepancies found between the latencies in our study and in the literature. 
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For instance, the intra-recording latency variability obtained with spiking is smaller than 

the one seen in a traditional MSNA signal. Specifically, the cross-subject mean latency 

range obtained with the spiking model is 79 (S.E.=20) msec for baseline and 86 

(S.E.=19) msec for IHE. In contrast, Wallin et al. [130] reported a cross-subject mean 

burst peak latency ranges (obtained with linear regression) to be 200 (S.E.=20) msec. 

2.4.2  Mechanisms and Significance 

The similarities in spiking patterns between rest and sympathoexcitation were 

present in both the coarse features of the spiking and in the structure of the individual 

bursts. For instance, a large number of cardiac cycles with little or no activity occur 

during both conditions despite a substantial increase in the nerve outflow during 

sympathoexcitation; the burst rate variability remains large as well. The spiking structure 

of individual bursts is also similar: the mean of the spike latency distribution shortens and 

its variance decreases with increasing average rate. These many similarities suggest that 

the mechanisms producing these spiking patterns are similar. 

Studies show that the primary source of variability in the sizes of the traditional 

MSNA bursts depends on the specific sympathoexcitatory reflex activated. For instance, 

burst size was increased by fiber recruitment during end-inspiratory apnea [122, 12], but 

not during moderate orthostatic stimulus [110]. Our results suggest that the increase in 

MSNA outflow during IHE (when compared to baseline) is triggered primarily by the 

increase in the output of the already active neurons. We hypothesize this to be the case 

because the shift of the rate/latency curve in the left panel of Figure 5 denotes that the 

rate produced by the fibers firing at a specific latency increases. The additional spikes can 
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be produced by either recruiting more neurons with the same latency or by increasing the 

output of the fibers that are already active. The former seems unlikely because fiber 

recruitment is suggested to occur in order from the slowest and smallest fibers to the 

fastest and largest [122, 110]. There is, however, strong evidence that various 

sympathoexcitatory maneuvers produce increases in the individual fiber output [83, 82, 

129, 58], suggesting it to be the primary cause of the rate/latency curve shift. Murai et al. 

[92] came to a similar conclusion by analyzing the firing properties of individual fibers 

recorded with increased-impedance microneurography. 

Our results also allow us to speculate about the mechanisms of the firing rate 

increases within a single experimental condition. Figure 3 shows the dense spiking to 

begin at earlier latencies for higher rates than for lower rates; the shifting peak spiking 

latency in the left panel of Figure 5 shows that our model captures these spiking 

dynamics. We also observe a decrease in the variance of spike probability p (Eq. 1) with 

rising rates, which denotes a progressively tighter organization of the spikes around the 

point of maximal spiking. Taken together, these observations indicate that as rates 

increase, a progressively higher proportion of the spikes occur at earlier latencies, and, 

therefore, the rate is controlled by these shorter-latency spikes. 

There is conflicting evidence in the literature about the potential source for these 

spikes. On the one hand, some studies indicate that the neurons at shorter latencies are 

likely to be different from the neurons at higher latencies. Specifically, the size of the 

traditional MSNA bursts was found to correlate strongly with the number of action 

potential types present in the bursts [122, 110], increasing the probability that the low-
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frequency spikes at high rates came from a distinct population of neurons. More 

importantly, all the studies that classified human sympathetic efferents and tested them 

for size/latency relationship found that larger action potentials tend to have shorter 

latencies [122, 110]. Because the size of the action potential correlates with neuron’s 

axon diameter [23] the population of neurons contributing the most to high rates in our 

study might be larger than the neurons most active at the lower rates.  

On the other hand, Macefield et al. [82] found large variability in the spike 

latencies for individual fibers (358, S.E.=33 msec), raising a possibility that short-latency 

spikes we observed at high rates came from the same neurons that produced spikes at 

longer latencies during lower rates. In the same study he found that the spiking onset 

latency for individual fibers correlates well with the onset latency of the traditional 

MSNA bursts. Since large bursts have short onset latencies and because high region rates 

in our study correspond to larger bursts in the traditional MSNA analysis, this suggests 

that the additional earlier spikes we observe causing rate increases might come from the 

fibers active in smaller bursts and not from the newly recruited ones. In the subsequent 

study Macefield et al. [83] showed that the MSNA increase seen in subjects with high 

spontaneous baseline activity vs. those with low such activity can be attributed to an 

increased number of heart beats that fibers contribute a single spike to. This provides 

further evidence that fiber recruitment is not responsible for MSNA increases within a 

single experimental condition. 

Considering the conflicting evidence in the literature and because we did not sort 

the spikes, we hypothesize that both fiber recruitment and increased active fiber output 
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contribute to the rate increase we observe within individual experimental conditions. 

We also hypothesize that the latency shift during sympathoexcitation has 

functional significance. Specifically, there exists a negative correlation between rates and 

peak latency (left panel of Figure 5), which implies that a recording with a higher average 

spiking rate should have a shorter average peak latency. However, as we see in Table 2, 

the average spike latency during baseline is statistically indistinguishable from that 

during sympathoexcitation. We believe that by shifting the entire rate/latency curve to the 

higher latency dynamic range, the cardiovascular system is able to compensate for the 

higher average firing rate during sympathoexcitation and maintain a consistent range of 

mean latencies across conditions. Our hypothesis is consistent with effects shown to 

occur during other sympathoexcitatory maneuvers: Salmanpour et al. [110] showed an 

existence of a consistent latency shift across multiple outflow intensities during lower 

body negative pressure. The potential latency difference between his baseline and LBNP 

recordings (as indicated by the range of latencies recorded across individual fibers) was 

75 msec, while the actual latency disparity (measured by average burst peak latency) was 

10 msec. End-inspiratory apnea exhibited an analogous effect with a 100 msec potential 

[122] and 10 msec actual latency [40]. Similar situations might arise in other 

sympathoexcitatory conditions that have small mean latency differences with baseline: 

cold pressor (0 msec), propranolol injections (10 msec), and sodium nitroprusside 

injections (20 msec) [40]. 

Our work does not directly address the physiology of the rate/latency dynamic 

range resetting, thus we can only broadly speculate about its mechanisms. Figure 5 shows 
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that out of three distribution parameters only the rate is altered, which requires the spike 

distribution for a particular rate to shift but to not otherwise transform. This suggests that 

any partial changes in spike production that modify the distribution (e.g. recruitment of 

some slower fibers, neural pathways sharing, etc.) are not likely to cause the shift. A 

delay that is consistent for all rates is a more likely culprit. One such possibility is 

additional time required for central drive processing, especially at the end of handgrip 

when subjects must overcome fatigue. Switching of all processing to a slower central 

pathway (akin to the discrete latency variabilities during sinus nerve stimulation of vagal 

cardiac motoneurones [87, 88]) is another possibility. A study specifically targeting this 

issue is useful to clarify the mechanisms introducing this constant delay. 

2.4.3  Conclusions 

Overall, the use of the spike trains extracted directly from the raw multifiber 

voltage trace allowed us to assess the properties of the sympathetic outflow on both 

coarse and fine time scales. Access to individual spikes elucidated features of the 

sympathetic outflow that were previously inaccessible, such as the spiking patterns of the 

individual bursts and inter-burst spiking activity. It also revealed a presence of multiple 

categories of fibers, some of which are more explicitly locked to the cardiac cycle, and 

some of which are less so. Applying to spike trains a modeling method based on the 

theory of point processes provided new evidence about the mechanisms of human 

sympathetic control, specifically that the increase of spike production by the individual 

fibers contributes substantially to sympathoexcitation. These results represent a first 
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successful step in the utilization in the peripheral nervous system of analysis methods 

fruitfully used in analyzing the dynamics of central nervous system spikes. 



 

 

46

3.  RELATING MSNA TO HEMODYNAMIC VARIABLES 

Muscle sympathetic nerve activity (MSNA) is traditionally studied with a 

multifiber signal called integrated neurogram that clearly identifies bursts of activity 

originated by the cardiac cycle hemodynamics.  Because of temporal and cross-fiber 

smoothing, the heart rate forms a hard upper limit on the frequency content that 

integrated neurograms can yield.  Identifying individual spikes within the multifiber 

voltage trace increases the temporal resolution beyond the heart rate limit and exposes the 

structure of individual pulse-synchronous bursts of sympathetic activity.  In this chapter 

we use spikes to create a statistical model that captures both the slow variability in 

sympathetic output and its fast-changing characteristics.  We relate the sympathetic 

spiking to concurrently collected hemodynamic variables across multiple experimental 

conditions and suggest physiological mechanisms that can contribute to the MSNA 

variability we observe.   

The differences between the integrated neurogram and the individual spikes have 

shaped not only the research questions addressed by the techniques, but also the MSNA 

frequency bands the two methods primarily focus on.  We review the integrated 

neurogram first.  It is created by percutaneously inserting a stiff tungsten microelectrode 

to into a nerve bundle that contains muscle sympathetic efferent axons.  Extracellular 

multifiber voltage traces are recorded by the electrode, rectified and convolved with a 

leaky integrator kernel (0.1 sec time constant) [53].  This processing technique produces 

prominent peaks representing the sympathetic response to individual heart beats' 

hemodynamic events; they occur at a fixed latency to the ECG R-peak of their initiating 
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cardiac cycles.  In frequency domain these bursts of activity correspond to a substantial 

increase in total power over a frequency band centered at the subject's heart rate (about 1 

Hz at rest); it is often the largest such power increase of the integrated neurogram's power 

spectral density.  The use of leaky integrator renders the spectral content at frequencies 

larger than heart rate uninformative, but frequencies slower than heart rate are often 

studied.  Two such frequency bands often feature increased power and have been studied 

in detail.  The first, called the Mayer wave frequency (LF), is usually centered at about 

0.1 Hz in humans.  MSNA LF variability is tightly coupled to the Mayer waves in the 

arterial blood pressure, leading some researchers to suggest that they both are driven by a 

central oscillator [91, 90] and others to propose that Mayer waves are transient 

resonances within the baroreflex feedback loop [67].  The second band of interest is 

centered at the subject's respiratory frequency (HF, approximately 0.25 Hz in humans at 

rest).  The increase in MSNA variability at the respiratory band is physiologically 

interesting because not only is it caused by the mechanical changes in lung volume 

during respiration [76], but it is also regulated by the chemical and metabolic demands of 

active muscle [27], making it useful in studying exercise.   

Extracting individual spikes from the raw multifiber voltage trace opened up 

access to MSNA frequencies higher than the subject's heart rate, and the structure of the 

pulse-synchronous MSNA bursts has been the primary focus of studies that utilized spike 

trains.  The most frequently asked question was the following: as sympathetic output 

increases, do individual human sympathetic fibers have a specific recruitment order?  The 

answer seems to be "yes:"  Steinback et al. [122] classified action potentials during 
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baseline and inspiratory apnea and showed that larger spikes are only present during 

larger bursts, implying that larger fibers activate only during high sympathetic output.  

Other groups used similar approach to suggest that a fiber recruitment order exists during 

other sympatheoexcitatory maneuvers such as the lower body negative pressure [110], 

Valsalva maneuver [108], and voluntary breath hold [12].   

In addition to describing high-frequency activity, spike trains also carry 

information about the slow oscillations in the sympathetic output.  The LF and HF 

sympathetic variability has not been studied nearly as extensively using spikes as it has 

with the integrated neurogram.  To our knowledge, there exist only two studies that used 

spikes for this purpose.  The first one, by Brychta et al. [16], captured the fluctuation of 

the power spectral density of MSNA spike trains as a function of neck suction stimuli of 

different frequencies.  The second one, also by Brychta and colleagues [17], constructed a 

model that explained the LF oscillations in systolic blood pressure in terms of the LF 

MSNA variability and systolic blood pressure HF oscillations in terms of the HF 

respiratory signal.  Neither study used the spikes directly; instead the spike trains were 

convolved a Gaussian kernel and the resultant nonparametric rate was used in model 

construction and for statistical inference.  While this approach grounds the power spectral 

density computation in physical units of (spikes/sec)2/Hz (as opposed to the "arbitrary 

units" of the integrated histogram), the smoothing inherent in the spike rate computation 

eliminates access to the high-frequency information in the same way that the convolution 

did in the traditional setting.   
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In this chapter we assess the sympathetic spike train variability at different 

frequencies and explain it either as a function of time or in terms the concurrently 

collected hemodynamic variables.  Statistically we aim to capture and predict as much 

variability in the spike trains as possible:  the long-term time-dependent 

sympathoexcitation caused by isometric handgrip exercise (IHE) (and the absence thereof 

during baseline), the slower-than-heart-rate oscillations that are coherent with 

hemodynamic variability, and the spiking structure within individual heart beats.  The 

scientific goal of the chapter is to differentiate and compare the size of the effects that 

covariates have on the sympathetic spiking:  separate long-term temporal MSNA increase 

from the LF and HF fluctuations, identify the best predictors for spiking at each 

frequency band, and separate the effects of different covariates at identical frequency 

bands. 

We expand on our earlier work in [135], where we first identified the high beat-

to-beat MSNA variability, but chose not to model it, focusing instead on the interaction 

between the within-heartbeat spiking and the intensity of total output for each heartbeat.  

Here, we decompose the beat-to-beat variability onto different frequency bands and 

attempt to explain the spiking within each band by some combination of covariates:  

recording duration, diastolic blood pressure (DAP), respiratory signal, spikes’ latency 

from the corresponding R-peak.  We only seek to capture and characterize the spike train 

variability within each frequency band, therefore we neither model the interactions 

between spiking at different frequencies, nor do we look at the cross-band influence of 

the model covariates.   
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We structure Chapter 3 in the following manner.  In the Methods section we 

describe how we record and process data and discuss our choice of the model parameters.  

We also describe our modeling methodology and specify the model formulation.  In the 

Results section, we use visualizations to articulate why we chose specific relationships to 

model as well as elaborate on how the parameters we fit informed us about the properties 

of the sympathetic nerve output.  We focus on the contribution of each frequency band to 

the total explanatory power of the model and elaborate on the relationship between the 

LF and HF spiking to the hemodynamic variables.  Finally, the Discussion section 

outlines the significance of our work within what we know about human cardiovascular 

physiology and compares it with similar studies by other researchers. 

3.1  METHODS 

This section outlines methods that we used in the analysis.  First, we describe the 

subjects and data collection protocols, followed by the explanation of the spike extraction 

procedures.  Second, we detail signal processing techniques used to compute spectral 

information and visualize spike/covariate relationships.  Third, we discuss the covariate 

extraction and spike train modeling methods involved in assessing the predictive power 

of hemodynamic variables across different frequency bands. 

3.1.1  Subjects, Measurements, and Protocols 

All volunteers gave their written informed consent to participate. All protocols 

were approved by either the ethical committee at the Grenoble University Hospital Center 

or institutional review board at Spaulding Rehabilitation Hospital, and conformed to the 

Declaration of Helsinki. 
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We studied healthy men (n=3) and women (n=4) with no signs or symptoms of 

hypertension, diabetes, cardiovascular or neurological disease or cancer, with normal 

resting ECG, and no regular use of tobacco.  The population statistics are available in 

Table 1. 

Electrocardiogram was recorded using a standard lead II ECG. The arterial blood 

pressure waveform in a finger of the hand was derived on a beat-to-beat basis by the 

Finapres Blood Pressure System (Finapres, Ohmeda), with brachial oscillometric blood 

pressure (Dash 2000, GE) employed as a calibration for the continuous Finapres 

measures. Respiration was a) collected by placing respiratory bellows around the chest to 

determine breathing depth and frequency or b) derived from inspired volumes recorded 

throughout all protocols via an infrared analyzer (VacuMed) connected to a mouthpiece 

with two-way respiratory valve. 

Baseline activity data was derived from a five-minute period of supine rest. 

Sympathoexcitatory data was obtained by subjects performing isometric handgrip 

exercise at 35% maximal voluntary contraction (MVC) force sustained to fatigue. (The 

subject had previously performed three MVCs on a handgrip dynamometer to determine 

35% MVC.)  During the exercise, target force was displayed on a computer monitor. 

Subjects had continuous visual and auditory feedback from the investigators to ensure 

maintenance of target force until exhaustion, which was defined by the inability to 

maintain a target force for more than 3 sec despite continued effort and verbal 

encouragement [10]. 
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Upon extraction and prior to applying the signal processing and modeling 

techniques, all hemodynamic data was downsampled from the original 10-40 kHz 

sampling rate to a 1 kHz sampling rate. 

3.1.2  Spike Extraction 

A sympathetic activity assessment technique was devised that discriminates 

neural firing from physiologically-irrelevant information, and which accurately identifies 

multifiber nerve activity independent of any a priori criteria [124]. This method is based 

on the statistical characteristics of the different artifacts, noise, and multifiber nerve 

activity that compose the unfiltered recording. A variant of the Expectation-

Maximization algorithm was used at successive stages of processing to separate these 

components to extract the multifiber spike train. The details of the algorithm are 

described in [124], and, briefly, consist of the following steps: line noise and muscle 

twitches are removed from raw voltage recordings, producing a set of action potentials. 

These are then treated as a convolution of a set of pulses (Kronecker delta functions) with 

a prototypical spike template, which is extracted from the data. The posterior probability 

of a spike given the data is computed at each sample by deconvolving the spike template 

from the signal and removing the background noise using a mixture of distributions 

model. The posterior probabilities are then thresholded and binarized, producing a spike 

train at 40 kHz. Note that by using the action potential template we assumed that the 

shape of a subset of action potentials in the signal is roughly similar and that some 

fraction of the action potentials is considerably larger in peak amplitude than the noise 

source. Beyond that, both spike shape and amplitude are explicitly ignored because they 
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are heavily influenced by the distance from the axon to the electrode and are highly 

variable across recording sessions.  The output of the model, therefore, is a binary 

multifiber spike train where neuronal firings by different axons cannot be differentiated. 

A refractory period was enforced by removing any of the spikes within 0.5 msec of each 

other. Average morphology templates were then collected and compared to noise samples 

and prototypical action potentials to ensure that spike locations in the binary train mark 

voltage deviations that are statistically significant and resemble actual spikes. We used 

this technique to extract multifiber spike trains from eight subjects under baseline and 

sympathoexcitatory conditions. Baseline activity was collected during supine rest, and an 

isometric handgrip exercise (IHE) served as a sympathoexcitatory stimulus.  Once spikes 

were extracted, they were binned using 1 msec bin width in order for the sampling rate to 

match that of the hemodynamic variables. 

3.1.3  Signal Processing 

Diastolic arterial pressure (DAP) signal was obtained as follows: a) blood 

pressure waveform was low-pass filtered at 10 Hz to remove high-frequency fluctuations 

that included measurement noise, b) a minimum value of the filtered signal was 

computed for each cardiac cycle, and c) a waveform for each cardiac cycle was turned 

into a horizontal line with its ordinate at the minimum value.  This produced a 

tachogram-like step DAP function with same duration and sampling frequency as the 

original blood pressure waveform.   

Power spectral density (PSD) and magnitude-squared coherence were computed 

using the multitaper approach [125] with 19 tapers and a time-bandwidth product of 10.  
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Briefly, each spike train is multiplied by several tapers (discrete prolate spheroidal 

sequences that are orthogonal to each other [119]).  Each product is then Fourier 

transformed and their average is taken to obtain a multitaper spectral estimate of the spike 

train.  This procedure decreases the variance of the estimate at the expense of local 

frequency resolution, which depends on the dataset length.  Applying 19 tapers produced 

frequency resolution of 0.02 Hz to 0.05 Hz, which struck a good balance between the 

visibility of salient spectral features and the lack of overwhelming details for a frequency 

band of lower than 0.6 Hz.  We expressed PSD in decibels:  )/(log10 010 DDdb  , 

where D0 is a PSD reference value, in our case the mean spiking rate for the whole 

recording.  PSD for IHE was expressed using baseline D0 so that PSD values could be 

compared directly across conditions. 

3.1.4  Occupancy-normalized histogram 

Extracting individual spikes allowed us to analyze the sympathetic activity using 

visualization techniques designed specifically for spiking data. Occupancy-normalized 

histogram is one such technique.  For a concurrent spikes-signal pair it is constructed as 

follows.  First, a covariate histogram is computed such that bin edges specify ranges of 

covariate values that fall within each bin.  Second, because each spike time corresponds 

to a covariate value at that time, total number of spikes/bin can be computed by counting 

how many corresponding covariate values fell into each successive bin.  Third, divide 

each bin’s spike counts by total amount of covariate samples a bin contains to obtain 

bin’s firing rate in spikes/sample.  Convert rates to Hz. 
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3.1.5  Phase extraction 

Several ways to model spiking at different frequency bands exist; we chose to use 

phase as a covariate because it allows us to focus on the variability of the spike train 

within the frequency bands without accounting for the changes in the signal amplitude.  

We used instantaneous phase to model LF and HF variability, and we used position 

within the cardiac cycle (cardiac cycle phase) to model variability at and above the heart 

rate. 

The LF and HF frequency bands were identified for each subject and 

experimental condition in the following manner.  First, a multitaper estimate of 

magnitude-squared coherence was obtained as described above.  Second, areas of 

statistically significant coherence were selected within [0, 0.6] Hz frequency range; peaks 

of those high-coherence areas were visually identified.  A Gaussian curve was fit to the 

shape of the high-coherence region using least squares methodology:  frequency was 

treated as an independent variable, and curve’s mean was constrained to lie at the 

region’s peak.  Frequencies that fell within one standard deviation of the mean were 

selected for phase extraction. 

The instantaneous phase is a continuous, monotonically increasing time-varying 

signal that can be compared to spike rate via trigonometric sin and cos functions.  Once 

the bandwidths of interest were identified, instantaneous phase was extracted from the 

original signal as in three steps.  First, the real-valued signal was band-pass filtered at the 

frequency band of interest.  To preserve the predictive nature of our spike train model, a 

causal filter was employed.  Second, a Hilbert transform was applied to the real-valued 
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filtered signal to obtain an imaginary time series that together with the real-valued signal 

formed a complex analytic representation of the original time series.  Third, the 

instantaneous phase was computed as an angle between the positive real axis and the 

complex vector at each time point. 

To compute cardiac cycle phase we define a cardiac cycle to lie between two 

consecutive ECG R-peaks.  Phase is computed by counting the consecutive indices of 

each individual sample within a cardiac cycle.  We start counting at the first sample after 

the R-peak and end counting at the very top of the next R-peak, producing a set of natural 

numbers going consecutively from 1 to the total number of samples in the cardiac cycle.  

This set is then scaled to have a range of (0, 2π] radians, so that both 0 and 2π fall on the 

two consecutive R-peaks.  The counting and scaling procedure is then repeated for all 

cardiac cycles within the recording, producing a right-continuous sawtooth function with 

a (0, 2π] range that describes the relative position of each sample within a cardiac cycle.  

Please note that this procedure only operates on full cardiac cycles; partial cycles at the 

very end of the recording are discarded. 

3.1.6  Modeling Techniques 

We constructed a probability model to capture as much of the variability present 

in the sympathetic spiking as possible.  We modeled the MSNA spike train as an 

inhomogeneous Poisson process that depended on a) the recording time, b) the 

instantaneous phase of the diastolic pressure and the respiration signal, and c) the cardiac 

cycle phase.  Model parameters were selected because they have been shown to correlate 

with sympathetic output, respectively, at time scales of the whole recording, at Mayer 
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wave and respiratory frequencies, as well as at the frequencies of heart rate and above.  

Specifically, it is well known that IHE induces a progressive time-dependent increase in 

the sympathetic output [117, 107].  The dependence of spikes on the cardiac cycle phase 

was shown by identifying a mean of a convex probability distribution in Chapter 2 and in 

[135].  It is also known that DAP and respiration affect sympathetic output and 

sympathetic spiking at frequencies slower than heart rate [59, 51]; their relationship is 

also depicted in Figures 7-8 in section 3.2.1.  

Mathematical formulation of the model follows.  Let )(tR  be the respiratory and 

)(tDAP  be the DAP instantaneous phase, let )(tC  be cardiac cycle phase, let t be the 

latency relative to the associated R-peak, and let λ(t) be the instantaneous firing rate 

function.  We fit the following model of the λ(t):  
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Here cardiac cycle phase )(tC  and instantaneous phases φR(t) and φDAP(t) are time-

dependent covariates and βs, κs and θs are parameters.  Superscript R stands for 

respiration and superscript DAP indicates diastolic arterial pressure.  Subscripts indicate 

frequency bands: HF is high and LF respiratory frequency.  The exponential function 

guarantees that the spiking rate remains positive.  Note that the dependence on respiratory 

LF instantaneous phase is absent because respiratory signal has little energy at the Mayer 

wave frequency band and because LF respiratory phase has little effect on the spiking 

rate. 
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The model parameters are fit by maximum likelihood, i.e. they are selected to 

maximize the probability of observing the data.  For each covariate signal and frequency 

band combination θs describe the phase of the maximal spiking and κ represent degree of 

spike rate modulation by the phase. Along with the maximum likelihood estimators for 

the model parameters, we compute their variance-covariance matrix.  Using this 

information we obtain the analytical expression for the asymptotic joint probability 

density of the modulation strength κ and preferred phase θ for each signal/frequency band 

combination from which we then obtain 95% confidence intervals for κ and θ. 

3.1.7  Statistics 

Paired t-tests were used to determine statistical significance of phases and 

magnitudes of the parameters in model (2).  Phases were shifted prior to testing to 

prevent wrapping affecting the results. 

3.1.8  Model assessment 

We assess the model fit in two ways.  For a visual assessment we compare the 

spiking rates generated by the model to the true spiking rates of the original MSNA spike 

train.  The rates are computed by convolving spike trains with a Gaussian kernel.  MSNA 

spikes are used to produce the true rate.  The model rate is computed in two steps: first 

spikes are generated from the model λ(t) in (2) by thinning [28], and second, these spikes 

are convolved with the Gaussian kernel to produce the instantaneous rate.  Two 

differently varying rates are produced by kernels with two different widths:  10% and 1% 
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of the length of the recording.  Identical kernels are produced to compute both true and 

model rates. 

To qualitatively assess the amount of variance in the MSNA spiking that our 

model captures, we used a generalization of the coefficient of determination metric R2 

that is appropriate for our exponential model (2).  We formulate this concept using 

deviance:   
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the number of time steps in the recording, N0:T denotes the entire spike train, Pr stands for 

probability, M denotes a model to be tested, and Mf refers to a full model containing one 

parameter for every observation so that the data are fitted exactly.  λi is a value of the 

instantaneous rate (2) at time step i, T/1  is the discretization bin size, iN  is the 

number of spikes at time step i.  The pseudo-R2 metric is then %100
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where D0 is deviance for the null model M0, which only contains a single constant term 

[24].  2
LR  in this context denotes the percentage of variance in the true spikes explained 

by the model.  In our case M0 is a homogeneous Poisson model 00 )( kt  , and M is λ(t) 

in (2).   

We also use 2
LR  to separately assess the explanatory power of three covariate 

classes by specifying the following models: 
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Each covariate class here is intended to explain the variability of a specific frequency 

range:  Mt captures variability on the scale of the whole recording (e.g. the progressive 

IHE-induced sympathoexcitation), MI captures the slower-than-heartrate frequencies, and 

MC assesses the fast within-cardiac-cycle dynamics. 

3.2  RESULTS 

Following the Box and Jenkins [11] model development paradigm, we start 

discussing our results with simple visualizations.  They highlight spike train features and 

correlated them with the hemodynamic variables.  We then explore in detail the 

magnitude and phase relationships between the spikes and the covariates that guided our 

model selection.  Modeling results are shown last.   

3.2.1  Visualizations 

Frequency domain analysis provides information about the signal variability.  

Plotting the power spectral density (PSD) visually identifies frequencies where variability 

is high.  Figure 6 displays a stereotypical PSD of the multifiber muscle sympathetic spike 

train for both baseline and isometric handgrip exercise (IHE) experimental conditions.  

Prominent baseline PSD increases are observed for several frequency bands:  [0.07, 

0.17], [0.22, 0.29], and [0.32, 0.42] Hz.  The structure of the handgrip PSD is different; it 

has two major upswings centered at about 0.01 and 0.11 Hz followed by a slow decline 

for higher frequencies.  The trajectory of the decline contains additional increases located 

at 0.23, 0.31, and 0.4 Hz.   

Some regions of increased power match between baseline and IHE density traces.  

Specifically, within the regions with frequencies smaller than 0.3 Hz, there are two such 
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matches:  one centered at about 0.11 Hz and another centered at about 0.25 Hz.  They 

correspond to the frequency bands that were previously identified as physiologically 

relevant:  Mayer wave frequency of about 0.1 Hz [67] and respiratory frequency, which is 

0.23 Hz for the subject in Figure 6 and has a cross-subject mean of 0.25 (S.E.=0.015) Hz.  

These are the frequencies we will focus on in our analysis. 

 

Figure 6. Multitaper estimates of the multifiber sympathetic spike train power spectral density (PSD) 
for a representative subject.  Top panel (black) depicts baseline, bottom panel (gray) – isometric 
handgrip exercise (IHE).  Shaded regions represent 95% confidence intervals.  Top-right corner 
insets show zoomed-out PSD for frequencies of up to 10 Hz using units identical to those of the large 
plots.  Baseline PSD increases at three frequency bands:  [0.07, 0.17], [0.22, 0.29], and [0.32, 0.42] Hz.  
PSD for IHE is structured differently; it moves sharply up for a band of [0.08, 0.13] Hz and drops 
progressively down with upswings at around 0.23, 0.31, and 0.4 Hz.  Note that the first two increases 
listed above for both experimental conditions correspond to the previously reported physiologically 
relevant frequency bands:  Mayer wave (LF) and respiratory frequencies (HF).  Also note that IHE 
exhibits a large increase in power at frequencies <0.02 Hz, likely corresponding to a progressive 
increase in sympathetic output induced by the isometric exercise.  Insets show that PSD of the spike 
trains decreases for growing frequency bands, asymptoting to the mean firing rate.  A sharp peak at 
the cardiac rate (around 1 Hz) for both baseline and IHE PSD indicates strong cardiac rhythmicity 
for both conditions. 
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The power spectral density as expressed in Figure 6 can be interpreted as showing 

the proportion of the total spike rate variability explained by the oscillations at a specific 

frequency.  Frequency bands with high power explain more spike rate variability than do 

bands with low power.  This interpretation suggests that the two sets of physiologically 

significant LF and HF sinusoids explain a large portion of the spike rate variability within 

the sympathetic spiking.  We focus on assessing how hemodynamic variables influence 

the spike train oscillations at LF and HF in an effort to shed light on the possible 

physiological mechanisms that control slow variability in muscle sympathetic nerve 

spiking. 

There are several ways to explore how covariates affect the spike train variability 

at different frequencies.  A simple empirical approach is to construct a phase-based 

occupancy-normalized histogram:  a bar plot of mean spiking rates for certain ranges of 

the covariate’s phase.  Figure 7 depicts such occupancy-normalized histograms for LF 

and HF bands for a representative subject.  Each plot in Figure 7 is a snapshot of how 

much the spiking is varying as covariates’ phases change. 

All four plots in Figure 7 contain phases with higher spiking frequency when 

compared to frequencies of nearby phases; this effect is known as phase tuning, and the 

phase with the maximal rate is termed preferred phase.  The strength of such tuning, 

exemplified by the heights of the peaks relative to the depth of the troughs, is different 

for different plots.  For instance, low-frequency (LF) respiratory plot (top left) barely 

shows any tuning to the phase.  The LF DAP tuning, to the contrary, is very strong, with 
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up to three-fold difference in spiking rates between the trough and the peak of the 

histogram.   

 

Figure 7.  Frequency of sympathetic spiking as a function of covariates' phase for a representative 
subject.  Left plot depicts spiking frequency dependence on low frequency (LF) phase of diastolic 
blood pressure (DAP).  Top right panel displays spike rates as a function of diastolic arterial pressure 
(DAP) phase at respiratory frequency (HF); bottom right panel uses HF phase of respiratory signals.  
Filled bars represent baseline experimental condition; empty bars denote isometric handgrip exercise 
(IHE).  Note that unshaded bars are generally taller for all phases, indicating sympathoexcitation 
during IHE experiments. Also note that sympathetic output is augmented by phases of all covariates; 
moreover, each signal exhibits a particular phase where spiking frequency is maximal (preferred 
phase).  The most pronounced changes are observed in DAP LF plot (left), where preferred phases at 
both baseline and IHE occur at approximately 180 degrees, suggesting that the timing of 
DAP/spiking relationship at LF remains unchanged by IHE.  Note also that preferred phases can 
change between conditions: the gray and white bars in both HF respiratory (right top) and HF DAP 
(right bottom) plots are similar in shape but are shifted relative to each other.  This suggests that, 
while the spiking/covariate relationship remains quantitatively similar across conditions at HF, the 
timing of spike production changes with IHE-induced sympathoexcitation. 

Juxtaposing shaded and empty bars shows how phase tuning changes from 

baseline to isometric handgrip exercise (IHE) respectively.  Two types of change are 

evident:  modifications in tuning strength or magnitude and variations in preferred phase.  
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For example, the relationship between the LF DAP phase and spiking (Figure 7, bottom 

left plot) does not change; for both baseline and IHE the sympathetic output is maximal 

at 180-degree phase, the point where DAP is lowest.  However, the tuning magnitude is 

substantially stronger as evidenced by empty bars being taller than the shaded bars on 

that plot.  HF relationships between spiking and both covariates are different:  the 

strength of the relationship remains unchanged, but the preferred phase is substantially 

altered by IHE-induced sympathoexcitation. 

In general, we see that hemodynamic covariates influence the spiking patterns 

within both low-frequency and respiratory frequency bands.  Figure 7 shows that the 

relationship specifics depend on the frequencies and covariates in question.  In addition, 

plots in Figure 7 indicate that sympathoexcitatory response to the handgrip exercise alters 

these relationships in a specific manner, only shifting the timing of some and only 

affecting the strength of the others. 

Another way to assess the spikes-covariate relationship at different frequencies is 

coherence; it denotes a magnitude of linear relationship between the two signals at a 

specific frequency.  Figure 8 displays values of spikes-DAP and spikes-respiration 

coherence for frequencies in the [0, 0.6] Hz range. 

The left plot shows the spikes/DAP coherence along with its 95% confidence 

interval.  Coherence for both baseline and IHE is statistically significant in two frequency 

bands:  [0.05, 0.11] Hz (LF) and [0.21, 0.28] Hz (HF).  These bands also are nearly 

identical to the high-coherence bands that we automatically detected for this subject 

(shown in red):  [0.05, 0.13] Hz (LF) and [0.2, 0.28] Hz (HF) respectively.  The cross-
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subject means of the automatically detected LF and HF coherent bands were 0.092 

(S.E.=0.006) and 0.245 (S.E.=0.012).  The centers of these bands lie close to the centers 

of the low- and respiratory-frequency bands that were previously reported to have 

physiological significance [96].  Note also that the spikes/DAP coherence values at LF 

are similar during both rest and sympathoexcitatory stimulation, but HF spikes/DAP 

coherence is higher at rest.  This suggests that the linear relationship between the spikes 

and the diastolic pressure is not changed by the IHE-induced sympathoexcitation at LF, 

but it weakens at HF.  The situation for spikes/respiratory coherence is similar, 

suggesting that sympathoexcitation might reduce the mutual effects that hemodynamic 

variables and sympathetic outflow have on each other at respiratory frequencies while 

leaving those effects unchanged for low-frequency bands. 

 

 

Figure 8.  Multitaper estimates of magnitude-squared coherence between diastolic arterial pressure 
(DAP), respiration, and spikes.  Left plot: coherence between multifiber sympathetic spike trains and 
diastolic arterial pressure for baseline (black) and IHE (green) conditions.  Right plot:  coherence 
between spike trains and respiratory signals for baseline (black) and IHE (green).  Shaded regions 
represent 95% confidence intervals.  Red indicates low-frequency (LF) and respiratory-frequency 
(HF) bands.  Note statistically significant spikes/DAP coherence at LF (0.05 to 0.13 Hz) and HF (0.2 
to 0.28 Hz) in both conditions.  Significant spikes/respiratory coherence is only present at the HF 
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band in both conditions.  In addition, both the spikes/DAP and spikes/respiration coherence is lower 
at HF during IHE, indicating the reduction of the association strength between spiking and the two 
signals at respiratory frequency during IHE.   

3.2.2  Modeling Results 

Here we introduce the results of modeling the sympathetic spiking using (2), 

which explains the variability of the MSNA spiking as a function of the covariates.  We 

start with describing the dependence of the spiking on the instantaneous DAP and 

respiratory phase at low (LF) and respiratory (HF) frequency bands.  For each 

instantaneous phase and frequency band, the results are described using two parameters:  

preferred phase, representing a part of the signal cycle that is predicted to have maximal 

spiking, and magnitude identifying the strength of the modulation.  These parameters 

across the subject population are shown in Figures 4 and 5 as well as in Table 3.   

 

Figure 9.  Preferred phase model parameters for all covariates, subjects, and experimental 
conditions.  Left-hand-side panel depicts low-frequency (LF) results; panels on the right show results 
at respiratory frequency (HF).  Top panel shows respiratory signal preferred phase, bottom panels 
describe diastolic arterial pressure (DAP) preferred phase.  Error bars are 95% confidence intervals; 
note that, because phase is circular, some confidence bounds wrap around either 0 or 360 degrees.  
Several things are worth noting.  First, the consistency of LF DAP phases (bottom left) indicates that 
for all subjects the maximal spiking occurs at lowest values of DAP; this arrangement is also 
extremely consistent across subjects.  Coupled with very small confidence intervals, this tight 
organization indicates that a large amount of LF MSNA variability is explained by the diastolic 
pressure.  Second, the respiratory preferred phases for HF band (right top) also exhibit pronounced 
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organization:  all (save two) the preferred phases fall within the interval [0, 150] degrees.  Moreover, 
the preferred phases shift consistently later from baseline to IHE (the shift is statistically significant).  
Coupled with the lack of distinct organization and much larger confidence intervals of HF DAP 
preferred phases, the organization suggests that the majority of the MSNA variability in the HF 
band is explained by the variability in respiratory signal.  Importantly, preferred phase shift 
indicates that while respiration still accounts for a large portion of the HF MSNA variability during 
IHE-induced sympathoexcitation, the MSNA/respiratory relationship  changes with exercise onset. 

Figure 9 displays the DAP and respiratory preferred phases.  Bottom left plot is 

the most notable because of the consistency of LF DAP preferred phases for both 

baseline and IHE experimental conditions.  For all subjects they are aligned at about 180 

degrees (cross-subject mean 178.77, S.E.=7.07 degrees), which indicates a point of 

minimum DAP for each LF period.  This is not surprising because a persistent negative 

correlation between MSNA and blood pressure was shown to exist during rest and other 

conditions [59, 105].  Surprising was the small degree of preferred phase variation across 

subjects.  The standard deviation for baseline preferred phases was only 23.14 degrees, 

which using an average LF period of 8.7 seconds, converted to only 0.559 seconds!  

Moreover, handgrip did not change the precision of the tuning:  cross-subject LF 

preferred phase standard deviation during IHE was mere 0.5861 seconds.  Such small 

differences in MSNA relationship to LF DAP component across subjects and conditions 

is remarkable and suggest that there is a common underlying mechanism responsible for 

relating LF DAP to MSNA activation is extremely reliable and its function is unaffected 

by the sympathoexcitatory drive during the handgrip exercise. 

Small confidence intervals for LF DAP phase (Figure 9 bottom left plot) indicate 

that tuning to phase is unambiguous and is likely strong.  Indeed, Figure 10 shows that 

the tuning magnitudes for LF DAP are larger than those for HF DAP (LF DAP: 0.397 
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S.E.=0.295; HF DAP: 0.239, S.E.=0.508), indicating that DAP is the dominant covariate 

for the low-frequency and that it explains most of the LF spiking variability.   

 

Figure 10.  Modulation magnitude model parameter for all covariates, subjects, and experimental 
conditions.  Left panel depicts low-frequency (LF) results; right panels show high-frequency (HF) 
values.  Top panels describe respiratory signal magnitudes; bottom panels portray diastolic arterial 
pressure (DAP) magnitudes.  Black markers indicate baseline values, and gray markers are isometric 
handgrip exercise (IHE) magnitudes; error bars identify 95% confidence intervals.  This figure 
illustrates three interesting points.  First, respiratory tuning magnitude at HF is higher for baseline 
than for IHE, but clear and consistent cross-conditional population changes are lacking for other 
covariate/frequency combinations.  Second, DAP magnitudes are generally larger for LF than for HF 
independent of the experimental condition.  Third, respiration is a dominant covariate for baseline 
condition at HF; dominance at HF during IHE is harder to identify.  

Handgrip changes how much HF spiking variability each covariate explains.  

Specifically, it removes the dominance of respiration over DAP that is present at baseline 

and equates the explanatory power of the two covariates.  This change is observed by 

comparing the respiration and DAP magnitude means:  R
HF  is significantly larger than 

DAP
HF  at baseline, but they are statistically equal at IHE.  The change can be attributed to 

the reduction of the respiratory tuning from Baseline to handgrip:  mean R
HF  is 

significantly larger at Baseline as it is during IHE. 
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One of the simplest and most effective ways to show the very slow spike train 

variability is to convolve the spikes with a wide-bandwidth Gaussian kernel.  The 

convolution produces a slow-varying trace that detects the global trends in the frequency 

of spike occurrence.  Thick lines in Figure 11 depict this slow variability.  They also 

show that our model is successful at capturing those long-term trends:  the red thick lines 

run almost on top of the blue and black thick lines.  Our model picks up both the 

stationarity of the baseline sympathetic output as well as the progressive time-dependent 

increase induced by subjects performing the isometric exercise. 

MAGNITUDE PARAMETERS (unitless) 

 

Baseline IHE 

LF HF LF HF 

DAP Resp DAP DAP Resp DAP 

Means 0.370 0.372 0.203 0.385 0.227 0.258 

Stdevs 0.170 0.148 0.190 0.162 0.088 0.307 

p-vals vs. IHE 0.4312 0.0036 0.3092    

p-vals vs. DAP  0.0080   0.3723  

p-vals vs. HF 0.0408   0.1501   
Table 4.  Cross-subject statistics for magnitude model coefficient κ across all conditions and 
frequency bands.  p-values in shaded cells are <0.05; they quantify comparisons of the covariates’ 
predictive power across experimental conditions, within and across individual frequency bands.  
First, magnitude does not change from one condition to another; the only exception is a decrease in 
high-frequency (HF) respiration magnitude during IHE (a lone shaded cell in “p-vals vs. IHE” row).  

Second, DAP
HF

R
HF κκ   at baseline, but the statistical significance is lost at IHE.  Similarly, DAP

LFκ  is 

significantly larger than DAP
HFκ  at baseline, but no during IHE.  Overall, these differences in tuning 

magnitudes suggest complex interactions between the spiking and the hemodynamic variables both 
within and across frequency bands. 
 

By reducing the bandwidth of the kernel used for smoothing, additional variability 

can be picked up (see section 3.1.8 for kernel widths), as shown by thin lines in Figure 

11, which even picked up the sympathetic bursts within individual cardiac cycles.  More 

variable rates also expose our model's inability to capture some of the variability present 

in the spike trains.  While accounting for large number of bursts that original rates 
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exhibit, the red thin traces fail to correctly capture the height of those bursts.  This is 

unlikely to be an artifact of the kernel smoothing because identical kernel widths were 

used to produce rates from the original and modeled spikes.  The more likely explanation 

is that the model cannot capture some proportion of the overall variance present in the 

sympathetic spiking.  For instance, the sudden jumps in average burst rates highlighted 

by Figure 2 in Chapter 2 are likely unaccounted for by the phases of DAP and respiratory 

covariates we used in (2).  Moreover, as we see in Chapter 2, the tuning of spikes to the 

cardiac cycle phase changes with time.  We do not account for this change here, which 

can lead to improperly estimated burst heights.  

 

Figure 11.  Comparison of nonparametric spiking rates computed from the original MSNA spike 
train and from spikes obtained from the model fit.  Top plot shows baseline rates (black), bottom plot 
shows IHE rates (blue).  Red denotes modeled rates on both plots.  Each plot shows a rate produced 
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by a wide- and small-bandwidth kernel from the same spike trains.  Note that the baseline wide-
bandwidth rate remains steady, while the IHE wide-bandwidth rate climbs, reflecting the IHE-
induced progressive increase in MSNA output.  Also note that narrow-kernel rates capture 
substantial additional variability in the spiking, including individual cardiac cycle bursts.  The model 
detects some of the higher-frequency variability, but fails to correctly pick up variation magnitude 
(red bursts are shorter than blue/black ones), indicating that some variability of the spike train 
remains unaccounted for. 

We also quantified the proportion of the spike train variance that our model and 

its different covariate classes explain (see section 3.1.8 for methodological details).  

Figure 12 depicts the means of these percentages computed across the subject population.  

Notably, the cardiac cycle phase explains the most variance of all covariate classes, 

which is not surprising given the strong cardiac cycle dependence of MSNA.  Recording 

time explains the smallest amount of variance, particularly for baseline, where spike 

trains are stationary.  Note, however, that despite being small, the variance explained 

value for the baseline "Time" data point is statistically significant for 5 out of 7 subjects.  

The values for all other covariate classes and conditions are statistically significant save 

"Time" covariate class for subject 5.  Also note that full model (2) explains on average 

less than 10% of the overall spike train variance.  The large residual unexplained variance 

is a likely cause of the poor spike rate peak estimation in Figure 11. 
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Figure 12.  Proportion of spike train variance explained by different covariate classes from (2).  Dots are means 
across subjects, whiskers are one standard deviation in length.  Baseline (black) is shown in top plot, IHE (blue) 
on the bottom.  "Time" represents time of the recording, "Inst. phase" denotes instantaneous phase of the DAP 
and respiratory signal at LF and HF bands.  CC phase signifies cardiac cycle phase. Variance percentage is 
computed as in section 3.1.8.  Note that recording time explains the smallest proportion of spike train variance, 
instantaneous phase covariates explain the next largest proportion, and the cardiac cycle dependence explains 
the largest proportion of spike train variance.  The full model (2) explains under 10% of the total variance of the 
spike train.  All deviance changes were statistically significant, except for two baseline and one IHE recordings.  
Deviance reduction used to compute the variance explained is significant for all subjects and covariate classes 
except the "Time" class for subjects 1 and 5 at baseline and subject 5 at IHE. 

Overall, our results suggest that including many covariates from various 

frequency bands is a beneficial strategy in attempting to explain and model the very high 

variability present in the sympathetic spiking.  For instance, our deviance analysis 

suggests that even when the dominant cardiac cycle effects are included, the others, 

operating on hte slower time scales have considerable importance.  However, those, 

operating on the time scale of the recording only gain substantial explanatory power if a 

stimulus directly effecting MSNA on that scale is applied.  Within Mayer wave and 

respiratory frequency bands (the only ones we analyzed in detail), our data suggest that 
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each band has a dominant covariate that can predict a large part of the spike train 

variability within these bands.  IHE perturbs this arrangement only slightly:  LF tuning 

remains nearly identical, while the respiratory signal loses its predictive power with 

sympathoexcitation.  The differential effect of IHE suggests that the physiological 

mechanisms responsible for associating the sympathetic output with the hemodynamic 

variables in humans might be different for different frequency bands. 

3.3  DISCUSSION 

In this Chapter we created a model that successfully captured some of the 

sympathetic spiking variability present in all physiologically relevant frequency bands.  

We described the slow trends in MSNA output that span the entire recording, we assessed 

the variations in spiking at the respiration and Mayer wave frequencies as well as at the 

frequencies of the heart rate and above.  To our knowledge this is the first study that 

summarized the characteristics of the sympathetic output across that many frequency 

bands.  The inclusion of the entire physiologically relevant frequency spectrum as well as 

the identification and explicit modeling of individual band's variability allowed us to 

disassociate the within- from the cross-frequency effects.  Here we focused on within-

frequency spiking/covariate relationships, identifying the effects several covariates have 

on the levels of MSNA output.  Importantly, we disambiguated the effects of multiple 

covariates within a single frequency band and assessed how they differ with 

symapthoexcitation.  In addition, we quantified the total proportion of variance present in 

the MSNA spike train that our model was able to capture. 
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Prior studies are inconclusive about how sympathoexcitation affects the 

relationship between MSNA output and the concurrently collected hemodynamic 

variables within individual frequency bands.  The results vary based on which 

sympathoexcitatory maneuver is performed.  For lower-body negative pressure (LBNP) 

Ryan et al. found that LF DAP/MSNA coherence increases during some pressures (45 

and 80 mmHg), but not others [103].  Furlan et al. [43] and Kamiya et al. [73] showed 

that during heads-up tilt LF coherence between MSNA and arterial pressure consistently 

increases.  Our results indicate that the spiking/covariate relationship is not only affected 

by the handgrip exercise, but the effect size changes depending on the frequency band of 

interest.  First of all, we found that spike/DAP coherence was not affected by the IHE 

Mayer wave frequency (LF).  Moreover, both the magnitude of the DAP phase influence 

on spiking and the DAP phase where maximal spiking occurs do not change.  Therefore, 

our results strengthen the hypotheses that the effects of hemodynamic variables on the 

MSNA output are highly dependent on the exact stimulus used to produce 

sympathoexcitation.   

The relationship between MSNA and covariates at respiratory frequency (HF) has 

also been shown to be experiment-dependent.  For instance, both Furlan et al. [43] and 

Kamiya et al. [73] found that head-up tilt does not affect the values of HF coherence 

between blood pressure and sympathetic activity.  Our results show that spiking/DAP 

coherence at HF decreases with IHE.  However, because we used DAP and respiration 

signal as two separate covariates in our model, we can take this result one step further 

and disambiguate their relative contribution to HF variability within the spike trains.  
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Figure 10 and Table 4 show that IHE affects DAP and respiratory contribution to HF 

spiking differently.  In particular, DAP magnitude parameter stays the same, indicating 

that DAP contribution is unaffected by IHE.  The respiratory magnitude coefficient is 

diminished by IHE, indicating that respiratory signal loses some of its effects on spiking 

during exercise.  These relative changes suggest a (at least partial) disassociation of the 

respiratory drive from the arterial pressure during the activation of the exercise stressor 

reflex. 

Our work differs from the studies by Furlan et al. and Kamiya et al. in one more 

important aspect.  In addition to using coherence, which is a frequency-specific 

descriptive method, we used a single model to capture the spike train variability at 

different frequencies.  This allows us to compare the frequency specific model 

parameters and their relative changes across conditions.  Table 4 shows one such change 

for the DAP magnitude parameter.  In particular, the LF DAP magnitude parameter value 

is significantly higher than HF DAP magnitude at baseline.  The statistical significance is 

lost during IHE.  While the mean parameter values do not change that much from 

baseline to IHE (none of the differences are statistically significant), the loss of 

significance prompts further probing by, for example, explicit inclusion of the interaction 

parameters into the model. 

It is well-known that lung volume is one of the primary causes of MSNA 

fluctuations at the respiratory frequency [27].  The origin of Mayer waves is not as clear.  

One theory states that LF MSNA variability is produced by a central nervous system 

oscillator that is independent of the baroreflex [67].  Under this theory, any changes that 
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IHE introduces to how baroreflex operates should not affect the MSNA activity at LF.  

Our results confirm this:  neither the magnitude nor the preferred phase model parameters 

exhibit statistically significant changes at LF between baseline and IHE experimental 

conditions.  The second theory is that LF variability represents a transient reverberation 

within the feedback loop of the baroreflex [67].  Under this theory, any changes to 

baroreflex that are introduced by IHE should be reflected in the strength (and potentially 

preferred phase) parameters of the model.  We know that IHE dramatically changes the 

heart rate, altering the frequency of the cardiac cycle baroreflex feedback connections.  

This change would lead to altered reverberation frequencies and a decrease in the 

spiking/DAP association strength at LF, which does not change from baseline to IHE.  

We do not observe such a change, and, therefore, conclude that our results do not support 

the reverberation theory of Mayer wave generation.  

3.3.1  Limitations 

We use different respiratory signals for different subjects in our study.  Five 

subjects use tidal flow, and two subjects use respiratory bellows signals.  This places a 

potential limitation on our ability to interpret our results across the subject population.  

However, we believe that because of the covariates that we use in modeling and because 

of how we compare parameter values comparisons subsequent to the model fit, any 

adverse effects are minimized.  Here is why.  First, the phases of two signals correlate 

extremely well: signal peaks for both signals indicate top inhalation.  Magnitude 

differences between the two signal types are irrelevant because we do not use that 

information in our modeling.  Second, the top inhalation peak is flatter for the tidal flow, 
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which leads to a slight ambiguity in the identification of the precise maximal inhalation 

point.  This ambiguity, in turn, can lead to a small shift in the instantaneous phase signal 

that we extract and use in our modeling.  We do not believe that the phase shift impacts 

our analysis because we never directly compare HF preferred respiratory phase 

parameters across the population.  We do compare magnitude parameter values, which 

would be unaffected by the instantaneous phase shift.  So overall, we expect the usage of 

different respiratory signals to have negligible effect on the interpretability of our results 

across the population as long as we do not directly compare the respiratory phases 

extracted from the different respiratory source signals. 
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4  MARGINALIZED PARTICLE FILTERS 

State space representation is a mathematical model of a physical system that uses 

latent state variables to describe how the system evolves in time and employs observation 

variables to represent the output of the system.  In the statistical setting, both the state of 

the system and its output are random variables.  The modeling is often done in discrete 

time by using difference equations to represent the system’s temporal dynamics, with the 

system’s output at each time step described by some function of state variables’ values.  

If the state and observation equations are linear and the random variables are Gaussian, 

analytic solution is available in the form of a Kalman filter [69].  For more general 

systems, which are often nonlinear and non-Gaussian, analytic solutions do not exist.  

Differentiable state transition and observation functions that are mildly nonlinear can be 

linearized; Extended Kalman filter and its variants are based on such linearization [44].  

For severe nonlinearities, sample-based approximation methods such as Gaussian Sum 

filter, Gaussian Quadrature filter, and Unscented Kalman filter are employed  [2], [62], 

[68].  A major shortcoming of these models is a requirement that a probability density of 

the system state given the observations (posterior probability density function) remain 

unimodal [18].  More general techniques that deal with multimodal distributions were 

developed based on the Monte Carlo random sampling of the posterior [55, 54].  Particle 

filters (also termed Sequential Monte Carlo estimation) fall into this category of 

techniques.  The main idea behind a particle filter (PF) is to create weighted random 

samples (particles) of the posterior distribution that accurately describe the state of the 
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dynamical system and to sequentially adjust them based on the incoming observations, all 

while maintaining the descriptive accuracy of the samples [46]. 

Numerous variations on the particle filter idea exist (see [18] for an excellent 

review).  We will focus here on one specific modification that exploits an existing 

substructure within the dynamical system model; specifically, a division of the state 

random variables into a marginally nonlinear and a conditionally linear subsets.  If such 

separation is possible, the nonlinear dimensions are marginalized out and estimated using 

standard particle filter techniques.  The remaining linear dimensions are then conditioned 

on the nonlinear estimate, their noise is assumed to be Gaussian, and Kalman filter is 

applied to compute linear conditional estimate.  This technique is called marginalization 

[116] or Rao-Blackwellization [21].  Marginalized particle filters (MPF) have been 

successfully applied to problems in aircraft [94] and underwater navigation [74], 

communications [22, 132], nonlinear system identification [79, 50], as well as audio 

source separation [5].  Some systems separate into linear/nonlinear components naturally.  

For instance, concurrent parameter and state estimation is often performed by adding 

parameters to the state vector, increasing its dimension.  The estimation then proceeds as 

usual, but with the new, larger-dimensional, state vector.  In order to allow reweighting 

and resampling to alter their values, the parameters are often modeled as a random walk 

with a small amount of Gaussian noise added at every time step [46, 77].  This is 

different from the usually nonlinear state transition functions, and such separation lends 

itself to the application of the marginalized particle filters, which have been extensively 

used in that setting [79, 80].   
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The separation of the posterior distribution into a marginal nonlinear and a 

conditional linear probability densities confers marginalized particle filters with several 

advantages over their standard counterparts.  First, the overall variance of the particle 

filter estimator is reduced by the marginalization procedure.  Specifically, when the PF 

estimate of the posterior density inference functions (e.g. mean, mode) is compared to its 

MPF estimate obtained by combining marginal nonlinear and conditional linear densities, 

the variance of the latter is smaller or equal to the variance of the former [33, 94].  

Second, MPFs are likely to be more accurate than regular particle filters for the same 

number of particles.  This is true because a) the nonlinear space necessarily has smaller 

number of dimensions than the total state space of the system, and b) the MPF particles 

live in the nonlinear dimension only, leading to its denser representation and higher 

quality inferences in the MPF case.  Additionally, Kalman filter is the mean squared error 

optimal filter for linear Gaussian systems, so the estimation error within the linear 

dimensions is smaller for Kalman filters when compared to PF estimates.  The third 

advantage is a performance increase that MPFs offer over some of their regular 

counterparts.  These increases, however, need to be evaluated on a case-by-case basis 

because marginalizing as many states as possible will not necessarily produce 

performance gains.  For instance, increasing the number of marginalized states for a large 

(7- to 9-dimensional) dynamical system produces only moderate gains in efficiency, and 

actually decreases performance at a certain point [75].  However, for both the smaller 

systems (3-6 total dimensions) and for the systems where observations do not explicitly 

depend on the linear states, increasing the number of marginalized states always led to 
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improved performance [75].  Notwithstanding the performance issues, marginalization 

remains for some large dimensional problems the only way to practically use particle-

based estimation methods.  For example, PF estimates of the integrated navigation system 

in the Swedish fighter aircraft Gripen, consisting of 27 total states, are too slow to be 

included in the on-board electronics.  MPFs implemented in hardware, however, were 

successfully used because only three states are highly nonlinear [94, 116], which led to 

substantial performance improvement.  Consequently, the variance reduction, more 

accurate estimation, and the performance gains make marginalization a highly successful 

addition to the sample-based estimation framework. 

One common way to observe neural activity is to record the electrical signals 

produced by neurons and to extract individual spikes from the voltage trace.  Because 

spike trains constitute discrete identical events, they can be modeled by point processes 

and used as observations in the state space estimation framework.  Point processes 

necessitate highly nonlinear and non-Gaussian observation model, preventing the use of 

Kalman filters.  Its analog for point process observations has been developed by Eden et 

al. [35] by using a Gaussian approximation to the posterior density.  For multimodal 

posteriors a Gaussian approximation can lead to performance degradation, and methods 

that place no a priori assumptions on distributions should be used instead.  Particle filters 

with point process observations (PFPPs) are an obvious choice; they have successfully 

been employed to estimate a variety of state processes from recorded spike train 

observations.  For instance, the hand position, velocity, and acceleration traces were 

recovered from rhesus monkeys' premotor cortical activity [13] as well as from a 
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combination of premotor and somatosensory cortical recordings [134].  Cortical plasticity 

issues were addressed by using PFPPs to decode the temporal changes in the receptive 

field of hippocampal neurons from those neurons' spike train recordings [37].  In a novel 

application of PFPP, Meng et al. [89] estimated the static parameters of several 

biophysical models from the spiking data the models produced.   

Real-life biological systems with point process observations present a challenge 

for sample-based dynamic estimation methods.  The number of particles required for 

accurate estimation grows quickly with the increase in the system dimensionality.  For 

instance, Wang et al. [133] used 100 particles to get as accurate PFPP estimates as she 

obtained with a state point process filter (SSPPF) [35] for a two-dimensional state.  In 

order to get a 3-fold mean integrated squared error decrease from the optimal linear 

estimation, Brockwell et al. [13] had to use 2500 particles on a six-dimensional system.  

Wang et al. [134] used 1000 particles to improve SSPPF estimate by 15% for a seven-

dimensional state vector.  All of the examples above used simple zero-mean Gaussian 

random walk models to describe the evolution of the state variables through time.  

Realistic biophysical models are known to have highly nonlinear step-to-step transitions, 

which increase the complexity of the estimation problem.  For instance, the Izhikevich 

neuron features a two-dimensional nonlinear dynamical system [63].  Neurons of 

FitzHugh-Nagumo type [93] are also small in dimensionality, but employ highly 

nonlinear transition functions.  The well-known Hodgkin-Huxley system, detailing the 

cross-membrane currents that generate action potentials, consists of four coupled 

differential equations that account for membrane potential dynamics as well as time- and 
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voltage-dependent ion channels’ gating variables.  Using spikes to accurately estimate the 

state variables for such complex set of equations requires a very large number of 

particles, substantially increasing the computational burden. Indeed, for a full Hodgkin-

Huxley+parameters system (a total of 6 dimensions) it took Meng et al. 10,000 particles 

to ensure that post-convergence voltage estimate lied entirely within the estimator's 95% 

confidence interval and that the particles for the concurrently estimated model parameters 

fully spanned their respective state spaces [89]. 

In this chapter, we aim to reduce the computational complexity and the number of 

particles required to produce accurate particle-based estimates of realistic biophysical 

systems.  To achieve that goal, we expand the point process state space estimation 

framework to take advantage of the marginalization technique and define the 

marginalized particle filter with point process observations (MPFPP) algorithm.  In the 

Methods section we describe the theory of particle-based estimation methods and of the 

marginalization procedure, as well as develop the marginalized particle filter 

methodology for models with point process observations.  In the Results section, we 

apply the MPFPP estimation method to two models, a two-dimensional example with a 

switching nonlinear component and a full biophysical model of membrane potential.  

Restricting the first model to two dimensions allows us to easily visualize and study the 

probability densities arising during estimation.  The abrupt switches between two 

nonlinear regimes also make it a hard decoding problem.  The full biophysical model 

showcases some of the advantages of MPFPPs in terms of computational efficiency and 

estimation accuracy when compared with regular particle filtering.  We then discuss the 
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implications of the marginalized filtering applied to point process observations in terms 

of variance reduction, estimation accuracy, and computational complexity topics 

discussed in the literature for the standard MPF.  We will also mention the utility of the 

MPFPP method in tackling a problem of parameter estimation in complex biophysical 

models. 

4.1  METHODS 

We structure this section in a manner of a tutorial.  We will first briefly cover the 

general theory of dynamic estimation and show where particle filtering fits within that 

theory.  We will then describe how the particle filters can be augmented to take 

advantage of the linear substructure in the state transition model to produce marginalized 

particle filters for continuous state observations.  We will then translate these ideas to 

point process observations and show that the theoretical leap between the two is rather 

simple. 

4.1.1  Regular Particle Filter 

The state-space estimation problem refers to methodology for approximating a 

continuous latent random process given a series of observations related to this process.  

In discrete time, the problem can be formulated as follows: 
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where xk is the state variable and yk is the observation value in a discrete time bin k, x
k  is 

the process noise, y
k  is the observation noise, and functions f and h are arbitrary. The 



 

 

85

noise densities )( x
kp   and )( y

kp   are independent and assumed to be known.  The state 

and observation variables at each time step are distributed as )|(~ :011 kkk xxpx   and 

)|(~ kkk xypy   respectively.  We define the state trajectory to be a set of state variables 

),,,( 10:0 kk xxxx  , and observation trajectory to be a set of observations 

),,,( 21:1 kk yyyy  .  x0 is the initialization value for the states.  The goal is to estimate 

the latent state trajectory x1:k from the observed trajectory y1:k.  This can be done by 

recursively computing the posterior density p(xk | y1:k ) at each time step k=1, …, K: 
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(4)  

For the Gaussian noise terms and linear functions f and h, Kalman filter provides an 

analytic solution to the posterior density at each time step.  No analytic solution, 

however, exists for the nonlinear functions of state.  Several computational methods have 

been developed to deal with this issue; extended Kalman filter [65] and particle filter [46] 

are two of the most prominent ones.   

Here we briefly describe the general principles behind the particle filter; various 

refinements are discussed in [18].  A particle filter (also known as Sequential Monte 

Carlo estimation) seeks to approximate the posterior distribution in (4) at each time step k 

with a set of values (called particles) )(i
kx  sampled from that distribution.  The particles 

are directly used to perform inference, calculate quantiles, etc. [31].  As the number of 

particles grows, the approximation becomes progressively more accurate.  It is often not 

possible to sample from the posterior directly, so the particles can be sampled from 
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another distribution, called a proposal (or importance, or instrumental) density.  To 

correct the discrepancy between the proposal and the posterior densities, a weight )(i
kw  is 

associated with each particle )(i
kx .  The joint set  

Mi

i
k

i
k wx

1

)()( , of particles and weights is 

then propagated from time step k to k+1 by passing the particles through a state transition 

function and updating each particle’s weight to account for the likelihood of observing 

the data given the particles’ state value.  Further details are available in the Algorithm 

section below.  

There are several ways to select the proposal distribution; here we use the state 

transition probability )|( 1kk xxp .  This selection makes our algorithm a bootstrap filter 

[46, 31].  It also simplifies the weight update, which becomes directly dependent on the 

observation likelihood:  

Intuitively, the relative weight of each particle is increased or decreased dependent upon 

the relative size of the observation likelihood. 

 Due to their iterative nature, particle filters are susceptible to weight degeneracy.  

To deal with this issue, resampling was introduced by Gordon, Salmond, and Smith [46] 

to make the first operationally effective version of the particle filter.  Here, we use a 

variant of the sampling importance resampling method from [101, 102] called residual 

resampling [80].  During residual resampling, the particles with large weight are 

reproduced, and particles with small weights either survive or die off with a certain 

probability; both the number of copies and survival probability depend on the particle’s 
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weight.  Mathematically, let M be the number of particles used.  We retain  )(i
ki MwM   

copies of particle i, where    indicates rounding down to the nearest integer, and then 

obtain  i iMM  i.i.d. draws from a set of particles  Mix i
k ,,1;)(   with the 

probabilities proportional to i
i

k MMw )( .  After resampling, the weights of each particle 

are reset to 1/M. 

4.1.2  Marginalized Particle Filter 

Frequently, systems in need of estimation are not entirely nonlinear and non-

Gaussian; that is, there exists a subset of the state vector both linear and Gaussian 

conditioned on other states.  Marginalization (also called Rao-Blackwellization) 

technique allows processing of such parts using standard optimal Gaussian filtering [116] 

while the remaining dimensions of the state vector are processed with a regular particle 

filter.  We go over the basic principles of the marginalization technique below and then 

apply them to point process observations in the next section.   

The main idea behind the marginalized particle filter is to take advantage of the 

conditional linear Gaussian substructure within the model and process the nonlinear and 

linear state subspaces separately.  If a linear substructure exists, it can be marginalized 

out to obtain a marginal nonlinear posterior density as follows: 
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k xdyxxpyxp :0:1:0:0:1:0 )|,()|(  . This integral cannot be evaluated explicitly because 

we do not know the analytic expression for the joint posterior density.  Instead, we use 

the regular particle filter to obtain estimates of the marginal nonlinear posterior; i.e. we 

restrict the set of particles and their corresponding weights  
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nonlinear dimension only, allowing us to make inferences from this density's particle-

based estimator.  Once we obtain the marginal nonlinear estimate n
kx :0

ˆ , we can use it to 

estimate the conditional linear posterior density as a random Gaussian mixture 
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:1:0:0 ,|),|( , using the normalized nonlinear particle 

weights )(i
kw .  Each particle’s linear conditional density  k
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l
k yxxp :1

)(,
:0 ,|  is computed 

using standard Kalman filter recursions.  The joint density then becomes the product of 

the nonlinear marginal posterior and the linear conditional posterior: 
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The joint density is seldom used, however, as the full state estimate can be reconstructed 

using the linear and nonlinear densities separately as follows: 
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(7)  

kkP |
ˆ  here is an estimate of the conditional linear posterior variance.  Here, we expect the 

variance of estimators (7) to decrease as a function of increasing number of particles.  We 

place O(1/M) as a lower bound on the rate of decrease (see variance discussion in section 

3.1 of [34] and in [33]. 

The details of the marginalized particle filter estimation can be found in several 

publications, including [22], section IV of [32], as well as [6] and [116].  In the next 
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section we will develop the estimation details as they apply to filters with the point 

process observations. 

4.1.3  Marginalized Particle Filter with Point Process Observations 

Marginalized particle filters with point process observations (MPFPPs) differ 

conceptually very little from the regular MPFs:  MPFPP observation density becomes 

Poisson to account for the point nature of observed events, a change that necessitates 

updates to the likelihood and linear estimation equations.  Therefore, we will first define 

point processes mathematically so we can present the updated observation likelihood 

equation.  We will then connect these mathematical descriptions to the filtering theory 

developed in the previous sections and provide a complete set of estimation equations 

and an algorithm, which together can be used to easily replicate the filtering procedure.  

A point process is a type of random process describing a set of discrete isolated 

identical events, the timing of which is stochastic.  Point processes are modeled by a 

parameterized instantaneous rate also known as conditional intensity function (CIF).  

Mathematically, let T be total observation time, during which J events occur at times 

]...0( 21 Tuuu J  .  Also let ],0( Tt  , and let N(t) describe a total number of 

events up to t.  Allow N0:t to record precise event occurrence times ]...0( 1 tuu j  , 

and let it be called event history.  Also define ],,,[ 21 P   to represent a set of P 

parameters describing the process generating the events, and xt to denote covariates that 

event arrivals might depend on.  Then the conditional intensity function is defined as 
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where xt denotes the values of covariates and Θt are values of parameter at time t.  Note 

that defining CIF in this way grants us the flexibility of conditioning our instantaneous 

rate model on extraneous covariates, parameters, which might be dynamically changing, 

and event arrival history. 

In order to model a point process, it is helpful to represent it in discrete time.  To 

do so, we subdivide our time interval (0, T] into K time bins each spanning a time interval 

],)1((  kk  that contains ΔNk events.  We constrain ΔNk to be at most 1 for all bins 

k=1, …, K by selecting a very large K.  We also define event history up to (but not 

including) bin k to be N1:k, a discrete equivalent of N0:t.  In order to make notation less 

cumbersome, we define λk to denote the discrete version of covariate-, parameter-, and 

history-dependent λ(t | xt, Θt, N0:t) in (8). 

From the CIF definition above, we obtain an expression for probability of 

observing an event in a time bin k: 

    )(1),|(
1




oxNp kk N

k

N

kkkk  , 

where o(Δ) refers to higher-order terms with respect to Δ.  For Δ small, this Bernoulli 

probability expression is well approximated as [15]: 

   
 kexNp

Nk

kkkk
),|( . 

(9)  

As we mentioned earlier, MPFPPs take advantage of the linear substructure 

within the dynamical system model in (1).  For the most general case we can formalize 

the separation of the linear and nonlinear parts of the model as follows [116]: 
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(10)  

where xn and xl are linear and nonlinear components of the state vector respectively, 

functions n
kf  and l

kf  are nonlinear, n
kA , l

kA , n
kG , and l

kG  are appropriately sized 

matrices that can depend on xn, and the noise terms are Gaussian: 
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The linear prior probability is also Gaussian:  000 ,~ PxNxl ; the density of nx0  is 

arbitrary, but assumed known.   

The observations in our case are spikes, so observation random variables are 

Poisson-distributed (9):  

 
 ,)()(exp

),(~
l
k

n
kk

n
kkk

kk

xxCxh

Poisy








 

(11)  

where kh  is a nonlinear function, and Ck is an appropriately sized matrix. 

As in the regular marginalized particle filter, the idea is to compute nonlinear 

marginal and the linear conditional posterior densities (6) separately for each time step.  

This is accomplished in two stages: prediction and update.  Prediction step takes a guess 

at what the marginal nonlinear and conditional linear posteriors look like based on state 

transition functions only; the update step corrects this prediction based on the observed 

data.  We’ll focus on nonlinear particles first.  To make a prediction from step k to step 

k+1, samples (nonlinear particles) from )|( :1:0 k
n

k yxp  are passed through the nonlinear 

transition function (10), which produces samples of marginal nonlinear one-step 



 

 

92

prediction density )|( :11:0 k
n

k yxp  .  Particle weights are then updated to incorporate 

information about the observation at step k+1 by computing a marginal nonlinear 

likelihood of seeing a spike as in (9):  
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(12) 

This likelihood is a Poisson-distributed random variable with a new nonlinear rate n
k 1  

that has been adjusted to account for likelihood's independence of the linear state 

dimensions.  Updated weights make the correction step possible:  the weighted samples 

now estimate the nonlinear marginal posterior )|( 1:11:0  k
n

k yxp  and allow computation of 

point-mass estimates of the inference functions on that distribution.  Alternatively, a 

shape of the marginal nonlinear posterior distribution can now be estimated/visualized 

using resampled particles.  See sections II.A and II.B of [18] for a more thorough 

treatment of resampling. 

Once the nonlinear estimates are obtained at either prediction or correction stages, 

the linear conditional densities for that step can be computed.  For time step k+1, the 

conditional linear one-step prediction density ),|( :1
),(
1:01 k

in
k

l
k yxxp   for each particle i=1, …, 

M is a Gaussian with mean  )(,
|1

ˆ il
kkx   and covariance )(

|1
i

kkP  .  For a general system in (10) they 

are computed using Kalman filter-based recursion [116]: 
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where  
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and  

 
   

    .

,

ln1ln

),(1),(ln),(),(),(

k
n
k

T

k
l
k

l
k

in
k

n
k

in
k

T

k
il

k
il

k
il

k

QQQQQ

AQGQGAA







 

(15)  

n
kx 1  is a random variable defined in (10). Here we will estimate its value by using a one-

step predictor )(,
|1
in
kkx   computed in step 2a of the 4.1.4 algorithm for each particle.  The 

terms that differentiate (13)-(15) from the standard Kalman filter one-step prediction 

equations deal with the decorrelation of the linear and nonlinear state components; see 

Appendix I in [116] for details. 

The conditional linear posterior density ),|( :1:0 k
n

k
l
k yxxp  for step k is no longer 

Gaussian because of its dependence on the likelihood (12) of observing a spike.  We, 

therefore, approximate it using a Gaussian based on the Stochastic State Point Process 

Filter (SSPPF) methodology developed in [35].  The conditional posterior mean )(,
|

ˆ il
kkx  and 

covariance )(
|
i
kkP  of the Gaussian approximation become: 
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4.1.4  Algorithm 

The following is the proposed algorithm. 

1) Initialization.  Initialize each particle’s one-step prediction value by sampling the 

prior distribution: )(~ 0
)(,

0
nin xpx . Set the one-step prediction mean/variance of each 

particle to the initial values:     00
)(

0|0
),(

0|0 ,, PxPx liil  . 

2) Prediction. 

a) Estimate nonlinear one-step prediction density  1:01:0 ,|  k
n

k
n
k yxxp  by evaluating 

the state transition function for each particle xn in (10). 

b) Estimate mean/covariance of the linear one-step prediction density 

 1:0
),(

:0
),( ,| k

in
k

il
k yxxp  for each particle with (13)-(15). 

3) Evaluate nonlinear importance weights for all i=1…M particles: 

 1:0
)(,
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1

)( ,|~
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i
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i
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
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)()()( ~/~ . 

4) Resample M nonlinear particles (and their corresponding SSPPFs) with replacement 

so that the probability of particle’s selection is proportional to its normalized weight: 

  )()(,
1|

)(,
|Pr j

k
jn

kk
in

kk wxx   .  Set weights Mw i
k /1)(   for i=1,…,M. 

5) Use (10) to compute mean/covariance of the conditional linear posterior density for 

each surviving particle  k
in

k
il

k yxxp :0
),(

:0
),( ,| . 

6) Compute inference functions on linear/nonlinear states.  Go to step 2. 

Please note that resampling can be skipped for any step; we perform resampling at spike 

times for all spikes in the recording.  Also, any of the available resampling schemes can 
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be used in step 4 (see [18] for suggestions); we use residual resampling described above.  

In addition, our use of weight update equation (5) in step 3 means that the proposal 

density equals the one-step prediction distribution, making our algorithm a bootstrap 

filter.  Also note that the algorithm requires tracking of one linear estimate for each 

particle, a total of M SSPPFs.  Importantly, if steps 2b and 5 are omitted, the MPFPP 

turns into a regular particle filter with point process observations. 

4.2  RESULTS 

In this section we apply the estimation procedures to two classes of models.  In 

each case we first use the particle filter with point process observations (PFPP) to 

estimate the latent state variables from the observed spike trains.  We then break up the 

state variables into nonlinear and linear components and estimate both using the 

marginalized particle filter with point process observations (MPFPP).  We then assess the 

latent variable estimates in several ways.  First, we visually compare estimates to the 

“true” values used to simulate the spike trains.  Second, we quantitatively assess how 

well our estimation procedure does by computing the total mean squared error (MSE) for 

both linear and nonlinear estimated traces.  Third, we look at the scatter plots of the 

estimated vs. the actual latent variable values and by compute the coefficient of 

determination R2 in order to assess how much of the actual variability in the latent 

variable traces did our estimates capture.  For Model 2 we additionally discuss the 

implications of applying different algorithms to estimation of the the static maximal 

conductance model parameters.  We compare the MPFPP estimation quality metrics to 
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those of PFPP and show that the MPFPP accuracy improvements depend on the model 

type used in estimation. 

4.2.1  Model 1 

The first model class features a two-dimensional state vector x with one linear and 

one non-linear component and a direct dependence of the observation equation (18) on 

both components.  The state transition functions have the following form: 

 
l
k

l
k

l
k

n
k

l
k

n
k

n
k

xx

xxx













98.0

20.0)arctan(5.1

1

1
, (17)  

where εs are the following Gaussian noise terms:  )10. ,0(~ Nn
k  and )050. ,0(~ Nl

k .  

The following are the function and matrices from the general form of the algorithm in 

(8):  )arctan(5.1)( n
k

n
k

n
k xxf  , 20.0)( n

k
n
k xA , and 98.0)( n

k
l
k xA . 

Note that the linear component in (17) is constrained to within the [-4, 4] interval.  

The arctan function forces the nonlinear component into one of the two operating 

regimes: it either is approximately -2 or is approximately 2.  The regime switch occurs 

when the linear component changes signs, pushing xn into a different quadrant of the 

arctan function.  The state vector components were initialized to values drawn from the 

following priors: )1 ,0(~0 Nxn  and  6
0 01  ,0~ Nxl .   

The conditional intensity function linking the observed spike train to the state 

variables in (17) has the following form: 
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The squaring of the nonlinear term weighs the CIF towards xn, making it operate in a 

roughly two-regime mode as well.  The coefficients b and a were set to 0.25 and 2.6 

respectively to ensure that firing rate ranged between 5 and 30 Hz.  The following are the 

derivatives that stochastic state point process filter (SSPPF) uses in its calculations [35]: 
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The estimation equations for this model are as follows:  
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(19)  

Note that we chose to use )(,
|1

ˆ in
kkx  , the one-step prediction estimator for a particle i of the 

random variable n
kx 1  in (10). 

Figure 13 displays the nonlinear (top panel) and linear (bottom panel) state 

estimates along with the "true" value of the state variables used to simulate the spike 

trains.  The left panels display the PFPP estimates; the right show the MPFPP traces.  

Both algorithms are able to trace the "true" state values reasonably well throughout both 

positive and negative nonlinear regimes and through some regime transitions.  The 95% 

confidence intervals of the estimates, shown in gray, decrease where the spike rate is 
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highest for both algorithms, while the lack of spiking increases uncertainty in the 

estimate.  This is observed by comparing the width of the gray area at low spiking (e.g. 

100 msec) to the confidence interval size at peak spiking (e.g. 250-300 msec).   

The uncertainty of the estimates increased around the nonlinear state variables' 

regime switches.  For instance, the confidence interval of the PFPP nonlinear estimate 

grew at 370 msec.  In this example the uncertainty growth can be attributed to some 

particles switching from a positive to a negative regime, increasing the overall variance 

of the marginal nonlinear posterior density and, therefore, the uncertainty of the estimate.  

Similar situation develops for the MPFPP nonlinear estimate at 100 msec.  In both cases, 

the estimates of the linear state variable was driving the nonlinear regime changes, and 

therefore, it was expected that a more accurate MPFPP linear estimate has helped reduce 

the total MPFPP error for whole nonlinear the trajectory. 

 

Figure 13.  The juxtaposition of the state variables used to simulate the spike trains (actual, black 
solid line) and their estimates computed from the observed spikes (predicted, gray dash-dot line) 
using 10 particles.  The shaded region surrounding the predicted values represents 95% confidence 
interval.  Spike times are represented by dots at ordinate 0.  PFPP stands for particle filter with point 
process observations; MPFPP is its marginalized variant.  Note that the actual nonlinear trace 
abruptly switches between negative and positive regimes, increasing the difficulty of this dynamic 
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estimation problem.  Neither PFPP nor MPFPP technique is capable of accurately estimating all the 
switches using such a small number of particles (e.g. see erroneous positive switch by both models at 
100 msec).  The erroneous regime switches highlight differences in algorithms; for instance, the one 
at 100 msec is correlated with the upward spikes in linear component estimates.  By using random 
mixture of Gaussians, MPFPP is able to quickly bring the linear estimate in line with the actual 
trace, while PFPP continues its deflection from the actual trace, sustaining the erroneous positive 
regime.  Similar situation occurs at 350 msec, where PFPP fails to perform the necessary switch 
because its linear component does not follow the actual trace, but MPFPP switches modes 
successfully because of better estimated linear component. 

The difference between the quality of PFPP and MPFPP linear estimates is better 

described by plotting the estimated vs. the actual values of the state variables.  Bottom 

panels of Figure 14 show such scatterplots.  The bottom right plot shows that MPFPP 

does a good job at tracking the actual linear state variables throughout the entire range of 

values.  To the contrary, PFPP suffers from not estimating well the values on the range 

edges; see, for example, the lack of dots in the [-3, -2] corner of the lower left plot.  

Quantitative assessment of the linear state variables estimation quality corroborates the 

conclusions above: the correlation between actual and estimated linear variable values for 

this simulation is 0.75 for MPFPP and 0.61 for PFPP (see Table 5). 
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Figure 14.  Scatter plots of predicted vs. actual state variable values for Model 1.  Two left-hand-side 
plots feature nonlinear and linear state variable values predicted by the particle filter with point 
process observations (PFPP); right plots -- by the marginalized particle filter with point process 
observations (MPFPP).  Top plots show nonlinear variables; bottom plots display linear variables.  
Here, scatter plots visualize the quality of the fit by plotting the values predicted by the model (y-axis, 
estimated) as a function of the state values used in simulating the observation spike trains (x-axis, 
actual); a perfect fit lies on a diagonal 45-degree line.  The fact that we use a nonlinear model that 
switches between positive and negative values brings about off-diagonal clustering in the top plots.  
These clusters indicate a switch in the estimated state trajectory that is not matched by a switch in 
the simulated state trace.  Note that off-diagonal PFPP clusters are more dense than those of MPFPP, 
suggesting that MPFPP performs smaller number of the mismatched jumps.  Also note that the 
shape of a linear MPFPP point cloud is slimmer and extends more along the diagonal than does the 
PFPP point cloud.  This suggests that MPFPP predictions are better correlated to the actual linear 
trace than those of PFPP.  See text for the discussion of state variable correlation and its quantitative 
assessment.  Nonliner and linear PFPP correlations are respectively 0.5240 and 0.6072.  MPFPP: 
0.6381 and 0.7449. 

Table 5 shows that marginalized filter does better in nonlinear estimation as well:  

the MPFPP nonlinear correlation coefficient is higher at 0.64 than PFPP one at 0.52.  Top 

panels of Figure 14 show why:  the timely regime switches for the MPFPP estimator are 

key.  The off-diagonal clusters of points are much less pronounced for marginalized 

filter, while the PFPP cluster centered at [-2, 1] has lead to substantial decrease in the 

estimation quality. 

  ρ R
2
 

 Nonlin. Linear Nonlin. Linear 

PFPP 0.524 0.6072 0.2745 0.3687 

MPFPP 0.6381 0.7449 0.4072 0.5549 

 
Table 5.  Correlation coefficients and coefficient of determination for a single estimation run of 

Model 1. 
 

So overall, the assessment of the estimated and the actual state variable traces 

suggests that the marginalized filter excels through a combination of two properties.  

First, a random mixture of Gaussians is a more accurate estimator of linear state variables 

than is a small number of particles (10 were used to produce Figures 13-14 and Table 4).  

Second, a better estimate of the linear component values leads to a more accurate 
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detection of the nonlinear regime switches, which manifests in a higher accuracy of the 

nonlinear estimation by the MPFPP. 

This superior linear/nonlinear component interplay is highlighted by Figure 15 

that displays the joint posterior densities and the estimation particles for a single time 

step.  Left panel displays actual posterior, computed by numerically integrating (4) on a 

70-by-70 grid.  It features the curved linear/nonlinear relationship, indicative of the 

arctan function in (17).  It is also slim in the nonlinear dimension indicating heightened 

sensitivity of probability mass regions to changes in nonlinear dimension given a specific 

linear value.   

The majority of MPFPP particles are in the negative nonlinear regime, matching 

the probability mass distribution of the numerically computed posterior.  The particles 

that retained positive nonlinear values align themselves along a "flow corridor" (at the 

linear value of approximately -1) that will eventually push them into the negative regime.  

It is important to note that the formation of such "corridors" is possible because a linear 

value of each particle is in fact a mean of this particle's conditional linear posterior 

Gaussian density ),|( :1
)(,

:0
)(,

k
in

k
il

k yxxp .  These means can be compactly organized along a 

linear dimension because each mean's variance contributes to the total dispersion of the 

joint posterior isocontours along the linear dimension.  This allows efficient channeling 

by the MPFPP of the nonlinear values between the positive and negative operating 

regimes, leading to faster transitions and better overall estimation.  Contrast that with the 

PFPP particles in the left plot, which are much more spread out and are late making the 

nonlinear regime switch.  The fact that PFPP particles are sampled from a two-
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dimensional posterior further impedes their efficient travel between regimes, leading to a 

decrease in performance when compared to the MPFPP, where nonlinear particle space is 

one-dimensional. 

 

Figure 15.  Numerically computed joint posterior densities juxtaposed with the estimation particles 
for the two state dimensions of Model 1.  The plots depict densities at a single time step with no 
spikes.  X-axis represents a nonlinear dimension; y-axis represents a linear dimension.  Left panel: 
PFPP, right panel: MPFPP.  Estimates were computed using 100 particles.  Notice that the majority 
of the numerical probability mass has transferred from positive to negative nonlinear regime.  
MPFPP particles on the left reflect that transition (there are more negative nonlinear particles than 
positive ones).  The majority of PFPP nonlinear particles, however, are still positive, indicating PFPP 
nonlinear state estimate is lagging behind the transition.  Also note the compression of the MPFPP 
particles when compared to the wider dispersion of PFPP particles in the linear dimension.  This 
occurs because MPFPP particles represent means of Gaussian distribution in the linear dimension; 
the weighted linear combination of these Gaussians matches the dispersion of the numerically 
computed joint posterior in the linear dimension. 

Figure 16 depicts the comparison of mean squared error across different number 

of particles used in regular and marginalized particle filters.  For each data point we fixed 

a number of particles and then ran each algorithm on 100 simulated spike trains.  We then 

computed MSE for each state vector dimension across 100 trials and reported its mean 

along with the 95% confidence interval.  We see that for small number of particles, the 

MPFPP improves the accuracy of the nonlinear component estimation (Figure 16, top 

plot).  This occurs because the same number of particles that cover the entire space 
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during PFPP estimation need to only cover nonlinear subspace during MPFPP estimation.  

The linear component estimation error (Figure 15, bottom panel) also decreases during 

MPFPP estimation.  The error decrease is larger for small number of particles, indicating 

that the random mixture of a small number of Gaussians is a substantially better estimator 

of state linear variables than a small set of random samples.  The nonlinear improvement 

is relatively constant across the number of particles, indicating that the error reduction 

comes from the same mechanism, likely the reduction of dimensionality by the MPFPP.   

 

Figure 16.  The average mean square error (MSE) taken across 100 estimation runs of Model 1 
plotted as a function of the number of particles used in estimation.  The top plot lists nonlinear 
component errors; bottom plot shows linear errors.  Error bars represent 95% confidence intervals.  
Note that the estimation accuracy for both regular (PFPP) and marginalized (MPFPP) particle filters 
increases as the number of particles grows; this is expected, as a large sample size provides a better 
estimate of the posterior distribution than the small sample size.  Also note that the difference in 
accuracy between nonlinear PFPP and nonlinear MPFPP prediction remains roughly constant as 
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number of particles rises; however it shrinks for linear predictions.  Indeed, the bottom plot shows 
that the MPFPP linear prediction for 10 particles is more accurate than the PFPP linear prediction 
for 20 particles.  Compare that to the top plot, where a 10-particle nonlinear MPF prediction is as 
accurate as a 20-particle nonlinear PF prediction.  This suggests MPF as a tool of choice for 
estimation problems where the allowable computational load (through the total number of particles 
or total system dimensionality) is restricted, and where linear components are of primary interest.  
Moreover, if one is to choose MPFPP with the smaller number of particles over PFPP with the larger 
number of particles, the loss of nonlinear accuracy due to particle reduction is mitigated by the 
smaller MPF estimation error. 

The plot also highlights the utility of the MPFPP estimation when compared to 

regular particle filters.  MPFPP with only 20 particles does better than PFPP with 30 and 

40 particles.  Only when the number of PFPP particles reaches 50, do we observe similar 

performance.  This suggests that MPFPP can be readily substituted for PFPP, leading to 

shorter estimator running times without loss of accuracy. 

4.2.2  Model 2 

We also used a realistic biophysical system to test the marginalized particle filter with 

point process observations (MPFPP) algorithm.  We chose Hodgkin-Huxley system 

because of its ability to accurately describe the dynamics of the membrane potential for a 

large variety of neuron types.  The original system is expressed as a set of coupled 

differential equations [57]:  
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(21)  

The equations describe the propagation of current through the neuron as a 

function of membrane potential V, membrane capacitance C, and three different ion 

currents: sodium (Na), potassium (K), and leak (L) currents.  I represents applied current.  

Each ion channel may be characterized by its maximal conductance g.  The sodium and 

potassium channels are modeled explicitly, and their time- and voltage-dependent 

behavior is specified by the gating variables n, m, and h.  Leak channel is simplified by 

only having a voltage-independent maximal conductance variable gL. 

 The following parameter values from [57] were used both to simulate and to 

estimate the latent variables:  EK=–12 mV, ENa=120 mV, EL=10.6 mV, I=10 μA/cm2, 

C=1.0 μF/cm2.  The maximal conductance of the leak channel was kept constant at 

gL=0.3 mS/cm2.  The maximal conductances of the voltage-dependent channels were 

simulated as a random walk (22) with initial values gK,0=36 mS/cm2 and gNa,0=120 

mS/cm2 [57].  Please note that if any parameter values are not explicitly mentioned here, 

they are exactly as in [57]. 

In order to test the MPFPP algorithm, we first simulated the trajectory of the 

membrane potential for 300 msec.  In order to avoid model misspecification, we 
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simulated and estimated the state trajectories using a standard particle filter technique of 

combining the static parameters and latent variables outlined in [80].  Specifically, we 

varied the static parameters a little with time and appended them to the state variables, 

producing a six-dimensional state latent vector T
NaK gghmnV ],,,,,[ .  The following 

discretized version of the Hodgkin-Huxley system was used to simulate the membrane 

potential variables as well maximal conductance model parameters:  
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(22)  

The step size was set to Δ=0.2 msec.  ε's are uncorrelated noise terms with the following 

variances:  22 005.0V , 100222 10 hmn  , and  222 005.0NaK  .  αs and βs 

remained as in (21) above.  Noise terms with extremely small variances were added to the 

gating variables n, m, and h in order to ensure that covariance matrices remain full rank 

throughout the estimation procedure.  Noise variances of other variables were selected to 

ensure that variability did not interfere with the dynamical system and that consistent 

spiking was maintained for the majority of simulated trajectory. 

After the membrane potential trace was simulated, we identified the trajectory's 

depolarization peaks and designated those as spike times, producing spike train 

observations.   
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Upon simulating the state and observation trajectories, we applied the PFPP 

algorithm to estimate the latent state variables' trace from the generated spike train 

observations.  The system in (22) was used to model the temporal evolution of state 

variables with the following exception:  the variance of the maximal conductance noise 

terms were increased to  222 5.0NaK  . 

In order to relate the continuous state to the spike train observation variables, we 

defined a conditional intensity function as 
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 (23)  

The following parameter values are used (from [89]):  η=1.622, v=0.1, p=0.9, Vth=80 mV. 

This formulation of the spike probability model depends on the past as well as 

future membrane potential values.  Because we only resample particles at spike times, 

this probability model increases the spike likelihood for particles that have recently 

spiked or will spike in the near future, smoothing the likelihood landscape and increasing 

relevant particles' survival probability during resampling.  For more details on this spike 

likelihood model formulation see section 2.3 of [89]. 

Here, the sigmoid function )(g  reflects the effect of increasing voltage values on 

the spike intensity, in which parameter v controls the growth rate of the function and 

parameter η sets the upper limit; Vth is a voltage threshold, above which the probability of 

spiking rapidly increases.  The function )(f  is a weighting function, which measures the 

effect of the voltage at time bins away from time bin k; p is a constant less than 1.   
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Each particle was initialized as follows:  initial membrane potential V0 was 

sampled from a uniform distribution on an interval [–5, 55] mV.  The activation 

parameter initial value n0 was computed from V0 using the following “resting state” 

equation ([57], page 507):  )/( 0000 nnnn   , where αn and βn are specified by (21).  

Initial values m0 and h0 were calculated similarly (see Eq. 17, 18 in [57]).  The initial 

conductance values gK and gNa were uniformly distributed on an interval [0, 100] and [0, 

300] mS/cm2 respectively.  The estimation then proceeded as described in section 4.1.1 

and 4.1.4. 

We then estimated the latent variable trajectories using MPFPP and compared the 

results to those obtained with the regular particle filter.  To apply MPFPP, we separated 

the difference equations into a linear and a nonlinear dimensions and put them in the 

general form specified by (10), where Tn hmnVx ],,,[  is a nonlinear and 

T
NaK

l ggx ],[  is a linear component.  We restate the system in (22) as:  
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 (24)  

Here, the appropriate functions and matrices from (10) are as follows: 
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The uncorrelated nonlinear and linear noise terms are 
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The parameter values, spike probability model, and initialization procedures were 

identical to the PFPP ones described above.  The prior distribution on the linear 

component was a Gaussian with the following mean/covariance: 
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We used the spike probability model (23) to relate spike train observations to 

MPFPP state components.  Note that because of its dependence solely on membrane 

potential V, this formulation of the spike probability model fits into the general 

framework (12) with 
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Algorithm defined in section 4.1.4 has then been applied.  Because the spike 

probability model (23) depends on voltage only, the derivatives of its logarithm with 

respect to the linear component are 0.  This allows us to write both the time update and 

observation correction steps as a single set of equations:  
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where Qn is defined in (26).  Note that we chose to use )(,
|1

ˆ in
kkx  , the one-step prediction 

estimator for a particle i of the value n
kx 1  in (19).  Also, the computation of weights 

requires computing a new rate )(
1

n
k .  Because 0kC , we use the rate 1

)(
1   k

n
k   from 

(23) in MPFPP weight computations.  

The PFPP and MPFPP compute estimates of both linear and nonlinear state 

variables.  Here we are primarily interested in the membrane potential and maximal 

conductance estimates because the former combines the effects that all state variables 

have on spike production, and the latter describe the biophysical properties of the ion 

channels.  Figure 17 juxtaposes the simulated and the estimated traces of these variables.  

Both PFPP and MPFPP estimates reproduce the general outline of the voltage trace, 

including periods of depolarization that constitute action potentials (Figure 17, top plot).  

Note that initially spikes are estimated prematurely, indicating a large number of particles 

spiking early.  Subsequently, as maximal conductance values move closer to the 
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simulated ones, the large premature spikes disappear.  However, the variability in 

depolarizaiton timing is not gone entirely; Figure 18 (top plot) zoom in on the last 50 

msec of the recording and depicts the remaining estimation discrepancies.  Despite these 

discrepancies, the 500-particle estimator captured an average of 47% (S.E.=1.8%) of the 

variance of the simulated voltage across 100 runs.  Note also that, by eliminating particles 

that are unlikely to spike in the near future, resampling at spike times eliminates false 

positive action potentials that are late relative to the actual spikes and increases the 

overall estimation accuracy.  

 

Figure 17.  The estimates of membrane potential (top plot) and maximal conductance values (two 
bottom plots) computed by regular (green) and marginalized (blue) particle filter algorithms using 
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500 particles.  Black trace denotes “true” simulated voltage.  Large dots indicate the final estimate at 
the time of the last spike.  Note that both PFPP and MPFPP track the general contour of the 
simulated voltage trace.  Both estimates fail to accurately predict sharp depolarizations forming the 
action potentials, making the final predictions biased downwards (see voltage dots).  Both algorithms 
trace the overall maximal conductance trends (downwards for gK and horizontal for gNa), but, as 
expected, fail to accurately decode the "true" values for each individual time step.  Also note that 
spikes seem to carry more information for MPFPP than for PFPP as indicated by larger magnitude 
jumps in the blue trace at spike times.   

The bottom plot of Figure 17 shows the estimated trajectories of maximal 

conductances gK and gNa (green and blue).  They follow the overall trend of the simulated 

conductance trace (black), but fail to faithfully reproduce the values at individual time 

points.  This occurs for two reasons.  First, the confidence intervals of the MPFPP 

conductance estimators are wide.  For instance, the variance of the gNa parameter 

estimated by MPFPP at the time of the last spike (blue dot in Figures 17, 18) is 16.01, 

while the sample variance of the entire simulated gNa trace is 5.33.  Given the large 

uncertainty about the estimate, we do not expect it to capture the local variability of the 

simulated trace well.  Second, the value of the estimate changes drastically during 

resampling, increasing the overall variance of the estimate.  For example, the estimated 

trace shown in Figure 18 captures an average of %232 KR   (S.E.=2.2%) and %182 NaR  

(S.E.=1.9%) of total variance of the simulated trace for the same period (averages are 

taken across the 100 estimation runs).  None of this is surprising because we only use 500 

particles in this simulation experiment (compare that to 10,000 used in [89]).   

It is also worth noting that our primary interest here lies not in capturing the step-

to-step conductance variability, but in convergence of the overall estimate to the true 

values.  Figure 17 shows that this is the case, with the overall trends of the simulated 

conductance trends being followed.  Better trend estimation with tighter confidence 
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intervals are possible with increasing the number of particles used to simulate the state 

variables and with increasing the length of the simulations. 

 

Figure 18.  A detailed view of the trailing 50 milliseconds of the estimation traces from Figure 17.  
The shaded blue areas are MPFPP 95% confidence intervals; the remaining traces are as in Figure 
17.  Note that while both PFPP and MPFPP capture the voltage increases during  action potentials, 
the estimates (blue, green traces) fail to account for the very tops of each peak.  However, the peaks 
of the action potentials are within the MPFPP estimator's 95% confidence intervals.  Also note that 
some action potentials are estimated to occur early, but none are estimated late.  In addition, the 
local variability of maximal conductances gK and gNa is not captured by the estimates.  For example, 
simulated gK trace is convex between 260 and 270 msec, while the estimates are concave. 

Figure 19 depicts the estimates of the maximal conductance parameters in the 

Hodgkin-Huxley model along with the particles that were used to compute those 

estimates.  Note that the “true” (gNa,0, gK,0) conductance value (22) lies within the 



 

 

114

estimator confidence bounds.  Also note that the 95% confidence interval for the MPFPP 

estimator is slimmer and lies along the constant-spike-rate manifold (black trace in Figure 

19). 

 

Figure 19.  Estimates of maximum conductance parameters for the Hodgkin-Huxley model.  Each 
dot in the left panel indicates a position of a single PF particle in the gNa/gK space after a 300 msec 
recording is processed.  Each dot in the right panel represents an estimate of where a linear 
components of the state vector (gK and gNa in this case) lie in the gNa/gK space. Large black dot is a 
true “experimental” value used to simulate the data.  The black diagonal curves represents an 
estimate of a manifold within the gNa/gK space that produces the same spiking rate that we get with 
gNa and gK values used to simulate the model. 

We also compare the estimation accuracy of the regular and marginalized particle 

filters using the root mean squared error (RMSE) measure between the state variable 

values used to simulate the spike trains and the values that were estimated from the 

observed spiking.  For the cross-membrane potential and maximal conductance 

trajectories, this corresponds to comparing traces in Figure 17 (top plot).   

Figure 20 shows the RMSE values and highlights several important points.  First, 

both algorithms do remarkably well given the complexity of the underlying state 

dynamical system and the limited amount of information that binary spike train provides 
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about the continuous state variables.  Second, MPFPP voltage estimation does 

significantly better than its PFPP estimation for both 100 and 300 particles.  In fact, the 

100-particle MPFPP estimate does not significantly differ from the 300-particle PFPP 

estimate.  This was surprising given the complexity and the structure of the system.  And 

third, the RMSE values do not inform us very much about the difference in quality of the 

maximal conductance estimation between algorithms.  Specifically, for gK estimates there 

is no statistical difference between PFPP and MPFPP errors for any number of particles 

we used.  MPFPP estimator of gNa does better than PFPP estimator for 100 particles, but 

fails to improve at 300 and 500 particles.   

 

Figure 20.  Root mean square error (RMSE) measures for cross-membrane potential and maximal 
conductance estimates computed by PFPP and MPFPP estimators for Model 2.  RMSEs are 
computed across 100 runs and shown as a function of a number of particles used during each 
estimation.  Top plot depicts RMSE values between the simulated and the estimated cross-membrane 
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potential traces.  Middle plot shows RMSEs between simulated and estimated potassium maximum 
conductance values.  Bottom plot shows the same for sodium maximal conductance.  Note that 
MPFPP does better for the cross-membrane potential for any number of particles (top plot).  For 100 
and 300 particles, the voltage RMSE difference is statistically significant.  To the contrary, the 
conductance estimation quality is similar between the two estimators.  For example, the 100-particle 
MPFPP estimate of gNa is better than that by PFPP estimate, but 100-particle gK estimates are 
statistically indistinguishable (and continue to be for any number of particles). 

While the estimation quality of the membrane potential dynamics is important, the 

estimation of the static values of the maximal conductance parameters of the model 

constitutes a more physiologically relevant problem.  Here, we used gK and gNa values 

computed by (7) at the last spike time of the dataset as a static parameter estimate.  The 

time of the last spike was chosen because resampling improves the estimation quality at 

that point (e.g. see the adjustment of voltage trace at ever spike time in Figure 17).  

Figure 21 shows the distributions of the static estimates as a function of the number of 

particles used in estimation. 

The juxtaposition of PFPP (green) and MPFPP (blue) static estimate distributions 

in Figure 21 reveals that their structure is different for the two estimators.  The MPFPP 

distributions are often more dispersed (e.g. gNa 300- and 500-particle distributions).  

However, they are also more consistent.  In particular, the parameter values estimated by 

Hodgkin and Huxley in their original paper (gK,0=36 mS/cm2 and gNa,0=120 mS/cm2) [57] 

and that were used to initialize the simulation (black horizontal line in Figure 21) has 

always ended up within the 95% confidence interval of the MPFPP estimate's median 

(the notch in the box plot).  That is not the case for the distributions of PFPP estimates.  

This indicates that the MPFPP estimates are more reliable on average than the PFPP ones 

are, but that they can also sometimes produce values that are wildly different from the 

"true" simulated values. 
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Also note that the final voltage estimates are biased downwards for both 

algorithms.  This suggests the inability of the two estimators to correctly represent the 

fast depolarization of action potentials.  Figures 17 and 18 show these undershoots in 

more detail.  It is worth mentioning, however, that the action potential peaks are 

contained within the 95% confidence intervals of both estimators (see Figure 18). 

 

Figure 21.  Box plots of the voltage and maximal conductance estimates taken at the time of the last 
spike in the recording (green denotes PFPP; blue marks MPFPP).  Distributions are taken over 100 
estimation runs.  Box plot whiskers denote 2.5 and 97.5 percentiles; top and bottom box boundaries 
represent 75 and 25 percentiles respectively; horizontal line in the middle of the box is the sample 
median, and notches represent its 95% confidence interval.  Black horizontal lines are mean 
simulated values for each variable.  MPFPP sample median for maximal conductances is a better 
estimator of "true" values (black lines): it's perfect for 300 and 500 gNa particles and within sample 
median's 95% confidence for all others.  PFPP estimates of both gK and gNa is shifted for all particles.  
Note that voltage distributions are shifted downwards, indicating underestimation of the sharp peak 
of action potentials by both algorithms. 
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Last, but not least, it is important to note that a model of spike production during 

simulation and a spike likelihood model used during the state estimation do not match for 

Model 2.  Specifically, no explicit probability model was used for simulating the spike 

trains:  spike times were generated by noting where the peaks of the action potentials 

generated by the voltage equation (22) lie.  During estimation, however, an explicit spike 

probability model (23) was used.  We do not expect this model misspecification to 

substantially affect the results we reported because (23) affords high probability of spike 

occurrence only to voltage values higher than Vth=80 mV, which is at the very top of the 

depolarization voltage peak.  Using (23) does increase variability of spike time relative to 

the very top of the action potential peak, but because we weigh this probability by the 

past and future voltage values, the effect of this variability on the particle weights should 

remain minimal.   

4.2.3  Conclusions 

Overall, we were able to show that MPFPP estimator is on average more accurate 

than PFPP for two types of models and a variety of goodness-of-fit assessment metrics.  

Specifically, the observations in Model 1 depend on both linear and nonlinear 

components, and for this model class the increase in MPFPP linear and nonlinear 

accuracy is obtained for all particle amounts that we tested.  In contrast, the observation 

model (23) of the Hodgkin-Huxley system is independent of the linear components, and 

we were not able to obtain the decrease in linear RMSE error we saw in Model 1.  But, 

using the distribution of linear static estimates across multiple estimation runs, we 

showed that MPFPP for that model type is more consistent in estimating the mean 
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parameter values used in data simulation.  This suggests that the MPFPP algorithm is 

robust to model classes and constitutes a powerful tool for employing spike trains 

recorded from individual neurons to study these neurons' biophysical properties. 

4.3  DISCUSSION 

The primary purpose of this chapter is to expand the point process state-space 

filtering framework by developing and testing a joint linear/nonlinear dynamic estimation 

algorithm called marginalized particle filter with point process observations (MPFPP).  

Above we developed the MPFPP theory and compared the algorithm performance to the 

standard particle filter with point process observations (PFPP) on two classes of models.  

First, we used a model with a direct dependence of observations on the linear state 

variables and showed that MPFPP estimates both linear and nonlinear variables more 

accurately than PFPP does in this setting.  Then we applied MPFPP to a biophysical 

Hodgkin-Huxley model where observations were independent of the linear component.  

We demonstrated that MPFPP is well-suited for the simultaneous estimation of state 

variables and model parameters and that it is more accurate than PFPP in estimating the 

nonlinear components for this model class.  We also used simulations to show that an 

MPFPP linear variable estimates taken at a last spike time are more consistent than those 

produced by PFPP.  

Marginalization is not a new idea; it has previously been applied to dynamic 

estimation of continuous signals.  In particular, Schön et al. showed that marginalized 

particle filter for continuous observations increased the estimation accuracy of state 

variables [50].  The authors used observation model that is independent of linear state 
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components to decrease the linear root mean square error (RMSE) (nonlinear one 

remained the same). Using marginalization, Gustafsson et al. [49] improved the 

estimation accuracy of both linear and nonlinear state variables; he used a nonlinear-only 

observation model.  Our Model 2, which also features nonlinear-only observation model 

dependence, have failed to improve the linear estimate accuracy (Figure 19), but did 

reduce RMSE for the nonlinear component.   The reason is likely a dependence of our 

observation model on a lone nonlinear variable out of four available.  This setup 

accurately represents the likelihood of spike production because in real neurons the 

membrane potential is the primary observed signal that aggregates the effects of the 

multiple ion channels represented by the other three gating variables in the Hodgkin-

Huxley dynamical system.  But such setup might impede the MPFPP from utilizing its 

advantages to the fullest as we discuss in detail below. 

The estimation accuracy improvement that Model 2 showed differed from that of 

Model 1 in the following manner:  Model 2 only bettered the nonlinear estimates (Figure 

19), while Model 1 showed a statistically significant decrease in the RMSE measures for 

both linear and nonlinear state variables for different amounts of particles (Figure 16).  

The reason for this is likely two-fold.  First, Model 2's )( n
k

n
k xA  in (25) has row rank 1, 

eliminating the direct influence of the nonlinear gating variables n, m, h on the linear 

components and leaving voltage as the only nonlinear variables directly contributing to 

the estimates )(,ˆ il
kx  of the linear mean.  The voltage-only influence limits the mobility of 

the linear mean estimators in the gK/gNa plane to trajectories perpendicular to the 

constant-spike-rate manifold in Figure 18.  In the absence of resampling, this prevents 
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mean estimators )(,ˆ il
kx  from effectively covering all of the manifold, increases particle 

clustering, and decreases the linear estimation accuracy.  Model 1, in contrast, does not 

have this problem as )( n
k

n
k xA  is a constant. 

The second discrepancy between the Models 1 and 2 that likely contributes to the 

accuracy of the linear component estimation is the form of the observation probability 

model (11).  Conditional intensity function (CIF) for Model 1 (18) retains both xl and xn 

terms.  This ensures that linear posterior estimates in (16) are adjusted up the spike rate 

gradient at every time step.  Instantaneous spiking rate for the Hodgkin-Huxley model 

(23) lacks linear term dependence and only includes on membrane potential V (23).  This 

eliminates the posterior adjustment of the linear estimates, decreases the amount 

nonlinear information that linear estimator utilizes, and diminishes its accuracy.  

Estimation accuracy improvements shown in Figure 16 make a compelling case 

for applying MPFPP in situations where a limitation exists on the computational 

resources.  For instance, applying MPFPP can reduce the number of particles required to 

accurately estimate the state variables, reducing computation time.  In most situations, a 

reduction in the number of computations for the same number of particles is also possible 

[75].  This is very useful for complex biophysical systems because substantial number of 

particles is usually required to dynamically track the unobserved state variables even for 

simple all-linear Gaussian random walk dynamics:  1000 particles for a 7-dimensional 

system [134], 2500 particles for a 6-dimensional system [13], and 10000 particles for a 

10-dimensional system [37].  However, the formulation of the state transition and 

observation models become extremely important.  For instance, the observation equation 
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must depend on both linear and nonlinear terms to increase estimation accuracy for all 

state variables.  In general, our results suggest that MPFPP exhibits a trade-off between 

model complexity and estimation accuracy.  It manifests itself here as an increase in the 

linear RMSE resulting from a decrease in the observation model complexity (by dropping 

a linear term).  However, because marginalized particle filter for continuous observations 

does not seem to exhibit such trade-off [49, 50], further work is necessary to verify that 

this is something indicative of MPFPP that was brought on by using point observations. 

The power and utility of MPFPP and care that needs to be taken in its application 

show the direction for future work.  For example, we can use a different linear/nonlinear 

subdivision for the Hodgkin-Huxley model.  Instead of limiting the linear components to 

only sodium and potassium maximal conductances we can include maximal leak 

conductance as well as some or all of the Nernst equilibrium potentials into the linear 

components.  This would change the linear/nonlinear interdependence within the model 

that we believe has contributed to our inability to improve the nonlinear dimension 

accuracy in Model 2, and increase our chances of success.  Alternatively, we can use a 

different type of neuronal current model (e.g. FitzHugh-Nagumo and its extensions) to 

see if we can improve accuracy for both linear and nonlinear components. 

4.4  GENERAL MPFPP EQUATIONS 

Below are included the generic equation which characterize all models.  Specific 
instances are discussed in section 4.2.  Their source code can be found at the following 
URLs: 
 http://cns.bu.edu/~ezaydens/data/soft/mpfpp_m1.zip 
 http://cns.bu.edu/~ezaydens/data/soft/mpfpp_m2hh.zip 
 
Marginalized Particle Filter with Point Process observations system 
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5  CONCLUSIONS 

This thesis developed point process methodologies for human peripheral nervous 

system research and applied them to the recordings of muscle sympathetic nerve activity.  

The point process paradigm operates using the stereotypical neuronal electrical events 

called action potentials or spikes.  The thick tungsten microelectrodes that percutaneously 

record human peripheral nerve activity produce signals that are corrupted with high levels 

of noise, and the identification of individual action potentials buried in these noisy signals 

has only recently become available.   

The advent of the new spike extraction techniques provided answers to some of 

the longstanding peripheral nervous system researchers questions.  For example, 

traditional analysis showed that muscle sympathetic nerve activity contains pulse-

synchronous bursts, but the temporal smoothing inherent in the analysis procedure 

prevented the internal structure of these bursts from being examined.  Once spikes 

became available, their distributions were computed, the individual action potential 

shapes were classified, and a specific recruitment order of the individual muscle 

sympathetic nerve fibers was suggested.   

Other research problems remained unaddressed.  For example, the sympathetic 

activity occurring between bursts has not been assessed.  The physiological mechanisms 

guiding the recruitment of fibers, the timing of spikes, and the overall regulation of the 

burst structure are still unknown.  To answer these questions, a thorough analysis of both 

the structure of the peripheral nervous system spike trains and their relationship to the 

hemodynamic variables is necessary.   



 

 

126

Point process modeling and analysis framework handles both.  Structurally, very 

few limitations exist on the types of spike trains point process models can handle; models 

were successfully constructed for very sparse spiking as well as for the very high-

frequency firing.  This is important for analyzing the peripheral nervous system data 

because individual fibers can fire as rarely as once in several seconds, but the multifiber 

firing rates can reach into hundreds of spikes/sec.  In fact, the model we construct in 

Chapter 2 utilizes this versatility of the point process methodology to relate the fast to the 

slow spiking within a single sympathetic recording.   

Point process framework also offers a structured and statistically rigorous 

approach to describing the relationship between nerve activity and the putative 

covariates.  Both explanatory and predictive models can be constructed.  The former 

quantifies the information that spike trains contain about the covariates, while the latter 

predicts covariate values directly from the spike trains.  Ability to construct both types of 

models is crucial for the peripheral nervous system analysis because many physiological 

functions involve feedback.  For instance, a baroreflex negative feedback loop is vital to 

the ability of the muscle sympathetic nerve activity to maintain cardiovascular 

homeostasis.  Moreover, point processes framework allows dynamic estimation of  

covariates from the observed spike trains; an important faculty in modeling transient 

changes to spiking-covariate relationships induced by some experimental conditions 

5.1  Review of Thesis Results 

Chapter 1 showed that previous research into characterizing neural spiking 

activity using point processes was highly fruitful.  The work presented in this thesis 
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expands the types of neural systems that point process modeling and estimation 

framework is applied to and improves the theoretical component of the framework to 

handle the complexities encountered in the human peripheral nervous system data.   

In Chapters 2 and 3 we successfully characterized and modeled the high-

frequency spike trains representing the muscle sympathetic nerve activity (MSNA).  

Point process analysis framework allowed us to approach it in two steps.  First, we 

focused on the local variability of the spike trains, describing the distribution of spikes 

within individual cardiac cycles and modeling this distribution as a function of the low-

frequency variability in the spike trains.  In the second step we characterized the 

sympathetic spike train variability across multiple frequency bands using three broad 

classes of covariates: recording duration, instantaneous phases of hemodynamic 

variables, and cardiac cycle phase.  We showed that the sympathetic spike train 

variability is very high:  we only were able to capture about 10% of it on average despite 

our covariates spanning the entire physiologically relevant frequency spectrum. 

We also developed an algorithm that uses random samples to estimate the 

trajectory of a random process from the spike train output the process has produced.  The 

algorithm leveraged the known substructure within the process model in order to break its 

posterior probability into a linear and nonlinear components.  Those were then estimated 

separately; the methods best suited for each one were used, increasing accuracy and 

reducing computational load.  We used the new algorithm to concurrently estimate both 

the membrane dynamics and the maximal conductance parameters for a simulated 

Hodgkin-Huxley biophysical model. 
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5.2  Future Research Directions 

The signal used to analyze human peripheral nerve activity has traditionally had 

low temporal resolution.  Therefore, access to the millisecond-scale information 

contained in the spike trains created abundant opportunities for exciting new work.  First, 

some of the questions addressed with the traditional methods could now be studied using 

spike trains.  For instance, the description of the multifiber MSNA bursts that consisted 

merely of start and peak times as well as height and total area can now be substantially 

expanded to include multifiber spike distributions as well as individual fibers' action 

potential placement.  Additionally, work on examining and characterizing the sizes, 

types, and activation patterns of individual nerves can also now begin.  Some early steps 

have already been taken by Salmanpour, Steinback, and others [122, 110, 111, 108], but 

the identification of physiological mechanisms that turn on and regulate different neuron 

types across experimental conditions remains an important unsolved problem.  

Point process modeling framework is well-suited to address these challenges.  

Methods for recording the activity of many neurons simultaneously have been developed 

[30].  To analyze these data, techniques were devised that modeled the individual 

neurons' probability of spike emission as a function of the spiking history by the entire 

ensemble of neurons [126].  Recently, point process models were extended to study 

functional connectivity within neuronal networks and applied to the recording of rat 

hippocampal place cells [95].  The ability to identify cells that communicate with each 

other solely from the cells' output is invaluable to the human peripheral nervous system 

researchers because they cannot record directly from the individual nerve fibers.  
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Applying these techniques to the newly identified sympathetic fiber types will deepen our 

understanding of interactivity patterns and suggest physiologies responsible for this 

function. 

Instead of predicting the spikes, we can use individual neuron’s history of firing, 

the activity of neuronal ensembles, and other stimulus signals to predict the subjects' 

behavioral patterns and physiological processes.  This method, called neural decoding, is 

ubiquitous in computational neuroscience, most notably in brain-machine interface and 

prosthetics research, where decoders control a wide range of peripheral devices.  Point 

process models were also successful in this setting, using spike trains recorded from the 

sensory, pre-motor, and motor cortices to predict the position, velocity, and acceleration 

trajectories of various robotic actuators.  Decoding can serve a multitude of useful 

functions in the peripheral nervous system research.  For example, vascular transduction 

properties of the muscle sympathetic nerves can be studied by decoding their effective 

control of the arterial blood pressure.  The response properties of sensory nerves can be 

researched by predicting the stimulus intensity from, for example, the skin sympathetic 

nerve activity. 

Point processes have also been used to perform decoding dynamically, estimating 

for example, the internal currents of an individual neuron from the spikes the neuron 

produced.  Access to the peripheral nervous system spike trains now allows direct 

application of this technique to studying the physiology of individual nerve types within 

the multifiber nerve bundles.  Constructing accurate models of cross-membrane currents 

will help link the known anatomy of the human peripheral nerves (sizes, capacitances, 
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etc.) to their physiology and function.  These can then be compared to similar studies in 

other mammals, illuminating the in vivo functionality of various nerve branches.  

Marginalized particle filters with point process observations that we developed will be 

helpful in these studies as they can reduce the computational complexity of some 

estimation problems as well as increase the accuracy of the estimates when compared 

with other techniques. 

The marginalized particle filter with point process observations can be further 

customized to fit the properties of the signals that occur in peripheral nervous system 

research.  In this thesis we separated the conditionally linear and the marginally nonlinear 

posterior densities, applying a Gaussian approximation to the former and using particles 

to approximate the latter.  Other ways of processing linear and nonlinear components can 

be envisioned.  For instance, the nonlinear observation model can be linearized using 

extended or unscented Kalman filter.  Moreover, if the nonlinearities in the state 

transition functions are not severe, one can linearize those as well and eliminate the 

random samples altogether.  This combination of filters would significantly increase the 

computational speed, but is likely to reduce accuracy.  Additionally, point process 

analogues of the recursive least squares and of the steepest descent filters [56] can be 

used for systems with favorable properties.  

In this thesis we used marginalization to help us estimate the state variables from 

past and present spike train observations.  However, marginalizing the filtering 

distribution is just one of the many available modifications that the state-space paradigm 

for point process observations allows.  For example, future spike train observations can 
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be used to compute the marginalized smoothing distribution and to improve estimation 

accuracy even further.  Additionally, a wide array of other signal processing techniques 

can be incorporated into the point process dynamical estimation schemes either together 

with the marginalization or separate from it.  Jump Markov linear systems [33], 

dependent noise processes [104], and fine-tuning the importance distribution [116] are 

just a few that come to mind. 
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signal regions for analysis, to manually enhance automatic peak detection, and to 
segment images by hand.  

 Implemented agglomerative clustering algorithm for short time series overcoming 
limitations of Matlab and R.  

 Constructed a classifier exploration applet for a 2-D/3-class problem.  Maintained and 
enhanced the host website. 

Environment details:  MATLAB, C/C++, Java, PHP, R, MySQL, Windows, Linux. 
 
July 2005 – August 2005 Los Alamos National Lab., Los Alamos, NM 
Summer Intern 
 Designed and implemented command-line tools for statistical analysis of neuronal time 

series data.  Specifically, calculated probability distributions, joint entropy, and mutual 
information from binary spike trains. 

 Collaborated with senior scientists on data interpretation and requirements, research 
strategy.  

Environment details:  C/C++, FORTRAN, Gnuplot, bash scripting, Unix. 
 
October 2002 – November 2003 Fujitsu Consulting, Edison, NJ 
Software Engineer  

 Participated in all aspects of software development cycle for a variety of projects.  
Duties included:  software design and implementation, database management and data 
migration, product verification and quality assurance. 
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 Designed and prototyped the Connector software linking a document management 
platform to other applications.  

Environment details:  Java, J2EE, Documentum, Oracle, Tomcat, Windows. 
 
October 2000 – October 2002 Burntsand, Inc., Iselin, NJ 
Software Engineer  

 Planned, implemented, and performed quality assurance for automated document 
management systems.  Coded architecture, added auxiliary data structures, wrote MS 
Excel macros, managed databases and data migration. 

 Worked with clients to ensure smooth product delivery and timely bug reports and 
fixes. 
Environment details:  Java, J2EE, C/C++, VB Script, Oracle/SQL Server, Tomcat/JBoss, 
Windows/Unix/Linux, Documentum. 
 
February 2000 – October 2000 Hamilton Scientific, Ltd., Roseland, NJ 
Software Developer  

 Contributed to the design and implementation of secure online patient chart system.  
Built Swing GUI components for patient information display, applet/servlet pair for 
encrypted data transfers, Oracle communication module. 

 
Education  
 
December, 1999 Rutgers University, New Brunswick, NJ 
B.S. Computer Science, B.S. Mathematics 
Course Work:  mathematical models in sociology and biology, data structures, 
programming languages, graph theory, numerical analysis, linear optimization, 
combinatorics. 
September 2008 Boston University, Boston, MA 
M.A. Cognitive and Neural Systems 
Course Work:  principles of neural modeling in audition, vision, and memory; probability 
and statistics: stochastic processes, point processes, generalized linear models, estimation 
theory; theory of ordinary differential equations. 
May 2014 Boston University, Boston, MA 
Ph.D. Cognitive and Neural Systems. Dissertation:  Advanced in Point Process Filters 
and Their Application to Sympathetic Neural Activity. 
 
Awards and Achievements  
 
 Integrated Graduate Education and Research Traineeship (IGERT). 
 Computational and Systems Neuroscience (COSYNE) conference travel award. 
 Boston University Research Assistantship. 


