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ABSTRACT

In an effort to make more spectrum available, recent initiatives by the FCC let

mobile providers offer spot service of their licensed spectrum to secondary users, hence

paving the way to dynamic secondary spectrum markets. This dissertation investi-

gates secondary spectrum markets under different regulatory regimes by identifying

profitability conditions and possible competitive outcomes in an oligopoly model. We

consider pricing in a market where multiple providers compete for secondary demand.

First, we analyze the market outcomes when providers adopt a coordinated ac-

cess policy, where, besides pricing, a provider can elect to apply admission control

on secondary users based on the state of its network. We next consider a compe-

tition when providers implement an uncoordinated access policy (i.e., no admission

control). Through our analysis, we identify profitability conditions and fundamen-

tal price thresholds, including break-even and market sharing prices. We prove that

regardless of the specific form of the secondary demand function, competition under

coordinated access always leads to a price war outcome. In contrast, under uncoor-

dinated access, market sharing becomes a viable market outcome if the intervals of

vii



prices for which the providers are willing to share the market overlap.

We then turn our attention to how a network provider use carrier (spectrum) ag-

gregation in order to lower its break-even price and gain an edge over its competition.

To this end, we determine the optimal (minimum) level of carrier aggregation that

a smaller provider needs. Under a quality-driven (QD) regime, we establish an effi-

cient way of numerically calculating the optimal carrier aggregation and derive scaling

laws. We extend the results to delay-related metrics and show their applications to

profitable pricing in secondary spectrum markets.

Finally, we consider the problem of profitability over a spatial topology, where

identifying system behavior suffers from the curse of dimensionality. Hence, we pro-

pose an approximation model that captures system behavior to the first-order and

provide an expression to calculate the break-even price at each network location and

provide simulation results for accuracy comparison. All of our results hold for general

forms of demand, thus avoid restricting assumptions of customer preferences and the

valuation of the spectrum.
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Chapter 1

Introduction and Motivation

When the first AM radios were built, surely no one envisioned that the spectrum on

which these electromagnetic waves propagate would become a scarce resource that

would auction for values exceeding a billion dollars in today’s market. Yet, it is a

reality of the modern information age where mobile phones, tablets and computers

are a part of our daily lives, all of which heavily use the same wireless spectrum. As

a highlight to the value of wireless spectrum today, the highly publicized auction of

the 700 MHz band brought in $19.52 billion alone to the federal government (Federal

Communications Commission, 2008).

With the proliferation of smart devices that drive the demand for data, wireless

spectrum is more valuable than ever. There is a need to rethink the way in which the

wireless spectrum is being managed. Under the legacy regulatory framework license

holders (e.g., network providers) can deliver only predetermined services and cannot

transfer spectrum access rights in any form. Removing the existing inefficiencies in

the way spectrum is allocated to license holders is one possible solution to increase

its availability.

To address spectrum scarcity issues, reallocation of government held spectrum is

pursued all around the globe,(e.g., switching from analog to digital broadcast in the

US and utilizing TV White Spaces). In July 2012, the President’s Council of Advisors

on Science and Technology (PCAST) published a report identifying the need for better

1
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spectrum management methods and proposed spectrum sharing as the end goal in

envisioning better spectrum utilization (President’s Council of Advisors on Science

and Technology, 2012).

As a step in this direction, recent initiatives by governmental agencies extend the

reach of spectrum management policies that license holders (e.g., network providers)

are entitled to pursue (Akyildiz et al., 2006; Bae et al., 2008; Bykowsky, 2003;

Bykowsky et al., 2010; Chapin and Lehr, 2007; Mayo and Wallsten, 2010). In re-

cent years, the U.S. Federal Communications Commission (FCC) has made stringent

efforts to clear spectrum bands and reallocate them for more efficient use. The main

goal of this dissertation is to provide insight into the possible outcomes of these ini-

tiatives as well as studying their economic feasibility and ability to foster secondary

spectrum market. We are specifically motivated by two recent rulings: i) private

commons (Federal Communications Commission, 2003) and ii) reserved spectrum in

auctions (Federal Communications Commission, 2004), which are explained in further

detail in Chapter 2.

Realizing the potential of spectrum markets entails a number of challenges for

a spectrum provider. One such challenge concerns strategic pricing of secondary

spectrum access in the face of uncertainty of the demand function at every adver-

tised price: Providing secondary access at a charge returns an immediate revenue for

the provider, but it also incurs an opportunity cost due to lost primary revenue as

spectrum is fundamentally a finite resource. The balance between these two effects

determines the profitability of secondary spectrum provisioning, and it may possibly

depend not only on the secondary price but also on the secondary demand. The re-

lationship between secondary price and demand, however, is difficult to characterize

explicitly and it may also be time-varying. Therefore obtaining results that hold for

general forms of demand provides applicable and realistic insight to any price analysis.
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Provider 1 Provider 2 

Primary Users 

Secondary Users 

Primary Users 

Figure 1·1: Illustration of provider competition over the secondary
users in a private commons setting.

This issue is further aggravated in competitive situations in which multiple spec-

trum providers compete for the same pool of secondary demand. In such situations a

provider may opt to beat the price of competitors thereby winning entire secondary

market, or may opt to match competitors’ price thereby serving part of the market

but at a higher price. It is not readily clear which alternative is favorable, especially

under the alluded uncertainty in the price-demand relationship.

Finally, the provider faces the decision to implement admission control on the

secondary demand. In a coordinated access implementation the provider grants ad-

mission to secondary demand only under certain favorable conditions. Alternatively,

the provider can opt for an uncoordinated access regime where no distinction between

primary and secondary access requests is made, except for pricing. The implemen-

tation of either policy will have an impact on the pricing strategy and the market

outcome.

As one can conclude from the discussion above, the problem can quickly take a

complex form with several layers. The main goal of this dissertation is to provide

insight into profitable pricing of secondary spectrum access and the possible compe-

tition outcomes of different access policies in markets that involve multiple providers
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as illustrated in Fig 1·1.

In Chapters 3 and 4 of this dissertation we consider a single geographic loca-

tion where the providers are aiming to maximize their revenues collected form the

secondary users who access the network spectrum opportunistically. We consider a

game theoretic setting and identify equilibrium prices in term of Nash equilibria. In

particular we seek to answer the question whether a single provider will win the entire

secondary market or several providers will choose to share the market.

In Chapter 3, we consider an optimal coordinated access policy implemented by

the participating providers, which is a occupancy based policy that admits secondary

access requests if the network is serving a number of users less than certain threshold

value at the time and rejects it otherwise. We adopt a model that explicitly cap-

tures the random nature of spectrum access requests of both primary and secondary

users. Our conclusions make no assumptions on the secondary demand function, and

therefore hold for arbitrary price-demand relations.

First, we prove the existence of a break-even price for each provider, which guaran-

tees profitability as long as the provider sets its price above or equal to this value. We

explicitly characterizes the break-even price, which is independent of the parameters

of other providers and possesses the fundamental property of being insensitive to the

specific shape of the demand function of secondary users. The analysis further reveals

that the break-even price directly relates to the fraction of lost primary users (in the

absence of secondary users), which can be expressed using the well-studied Erlang-B

function. The break-even price therefore inherits all the mathematical properties of

that function.

Our next contribution is to show that, under an optimal coordinated access policy,

market sharing between providers is not an equilibrium outcome. Thus, a provider

that employs optimal coordinated access opts to beat the price of its competitors,
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leading to a price war. Furthermore this property holds irrespective of the specific

relation between the secondary price and the secondary demand. We formally estab-

lish the dominating strategy of each provider and list all possible market outcomes

(i.e., Nash equilibria), which this price war can lead to. We demonstrate that the

provider with the lowest break-even price wins the market. If multiple providers have

the same break-even price, they are coerced into an equilibrium in which no provider

makes a profit.

In Chapter 4, we revisit the same model except one where providers implement

uncoordinated access policies instead of coordinated access.

Under uncoordinated access, we show that market equilibria may be drastically

different than those under coordinated access. Through a numerical study, we il-

lustrate that depending on the shape of the secondary demand function, market

equilibria may reflect a situation wherein providers share the market by matching

each other’s price strictly above their respective break-even prices.

Theoretical analysis of the uncoordinated case is more complex because results are

highly dependent on the specific shape of the demand function. Therefore, we relax

the stochastic nature of traffic and assume a fluid model. Under this fluid relaxation,

we obtain results once again for general demand functions satisfying mild technical

conditions.

We prove the existence of a unique break-even price pBE for any given secondary

demand, for which we provide an explicit expression. However, unlike the coordinated

access case, the break-even price depends on the specific secondary demand function.

Unique to the uncoordinated access setting, we derive another unique threshold

price, called market sharing price pMS, below which a provider finds it desirable

to share secondary demand with another provider (i.e., its revenue increases). We

demonstrate that the market sharing price is strictly greater than the break-even



6

 

Break-even 
 price: 𝑝𝐵𝐸  

Profitable, 
sharing 

 

Profitable, 
no sharing Unprofitable 

Market sharing 
 price: 𝑝𝑀𝑆 

0 price 

Figure 1·2: Illustration of profitability and market sharing price in-
tervals under uncoordinated access

price, regardless of the demand function. This leads to the conclusion that there

always exists a price interval in which a network provider would choose to reduce its

secondary demand and maintain profitability as illustrated in Fig. 1·2.

Next, under the same fluid model, we analyze a duopoly competition where net-

work providers make pricing decisions to maximize their revenues. We formally es-

tablish the best response strategy of each provider and use them to identify the two

possible market outcomes in the form of Nash equilibria: i) if the market sharing

intervals overlap, then the providers end up sharing the market; ii) if the market

sharing intervals do not overlap, then the provider with the lower break-even price

captures the entire market, which reflects the result of a price war. The equilibria

prices under the first case are possibly much higher than the break-even prices of each

provider, while under the second case the equilibrium price is slightly less than the

higher break-even price.

Having investigated the secondary spectrum markets from a pricing point of view,

in Chapter 5 we turn our attention to the possibility of providers sizing their capacity

in an effort to lower their break-even and market sharing prices. Thus, we consider

a market where providers have the freedom to acquire larger bandwidths in an effort

to drive their costs down. We are particularly motivated by the FCC ruling that

decided to set aside 30 MHz of spectrum for service providers that hold less than
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a third of the spectrum in a specific market (Federal Communications Commission,

2014a; Federal Communications Commission, 2014b).

We determine the optimal (minimum) level of carrier aggregation that a smaller

provider needs to bring its quality of service in line with a larger provider operating

in the same market. Furthermore, we aim to provide insight into the relationships

between the optimal level of carrier aggregation and fundamental network parameters,

such as the traffic load and capacity.

Towards this end we make several contributions. First, we propose an asymptot-

ically exact approximation of the Erlang-B blocking formula under a quality-driven

(QD) regime that holds for large traffic and network capacities (Borst et al., 2004).

Since the Erlang-B formula does not easily yield itself to mathematical analysis, the

QD formula is useful to provide more explicit insight into the impact of network

parameters.

Using the QD formula, we identify the optimal carrier aggregation decision for the

smaller provider through which the market outcome becomes favorable. We provide

an efficient method for numerically calculating the optimal level of carrier aggregation.

We also derive scaling laws on optimal carrier aggregation with respect to the scaling

factor, i.e. the ratio of the capacity of the larger provider to that of the smaller

provider, and establish a sub-linear relationship. We prove that while the level of

carrier aggregation needed increases with the scaling factor, it decreases when the

initial traffic load of the providers gets higher.

We extend our results to delay-related metrics (i.e., based on the Erlang-C for-

mula) and discuss the application of our results to the profitable pricing of secondary

users in a dynamic spectrum sharing scenario as discussed in Chapters 3 and 4.

As a final contribution of this dissertation, we consider the secondary spectrum

markets under a larger network topology subject to spatial interference between access
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points (APs). We seek to expand the profitable pricing analysis presented in Chapters

3 and 4 where we establish the break-even price for a single AP.

In Chapter 6, we identify necessary pricing of secondary access to ensure prof-

itability in a network consisting of multiple access points (APs) some of which are

in interference with each other. In our calculations we adopt a first-order approx-

imation model based on the Erlang fixed point model that explicitly captures the

random nature of spectrum access requests of both primary and secondary users and

is asymptotically optimal in a system where the demand and service capacities are

proportionally scaled up. Once again our conclusions make no assumptions on the

secondary demand function, and therefore hold for arbitrary price-demand relations.

First, we show that in a network where individual APs experience a low level of

blocking and interference, it is possible to decouple the steady state behavior of APs

by using a first-order fixed point approximation formula. This approximation allows

us to characterize the opportunity cost incurred at each AP due to the admission of

secondary users to the network separately from its neighboring APs.

Our next contribution is to characterize and provide an expression to calculate the

break-even price for at each AP. This break-even price is the lower limit to the price

values for which a provider’s profitability is guaranteed. The chapter characterizes the

break-even price (under the first-order approximation), which is independent of the

parameters of other providers and is insensitive to the specific shape of the demand

function of secondary users.

In summary, in this dissertation:

• We investigate price thresholds and market outcomes in secondary spectrum

markets both for coordinated and uncoordinated access. We show that uncoor-

dinated access might lead to market sharing in contrast to coordinated access
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that always results in a price war..

• We investigate how a network provider can utilize carrier aggregation in order

to gain a competitive edge over its competitors and provide scaling laws.

• We consider the profitable admission secondary demand in a network with a

spatial topology subject to interference. We provide a first order refinement

of the Erlang fixed point approximation to decouple interference between the

neighboring cells and use it to determine profitable pricing of secondary access

in the network.

The rest of this dissertation is organized as follows. We start by providing background

on regulatory initiatives and surveying related work in Chapter 2. In Chapter 3 we

consider the implementation of a coordinated access policy in a private commons

setting and present the resulting market equilibrium. We determine the optimal co-

ordinated access policy and derive the break-even price for each provider. Next, in

Chapter 4 we turn our attention to the implementation of uncoordinated access in

private commons and revisit the profitability conditions and the market outcomes. In

Chapter 5, we determine the impact of reserving spectrum for smaller providers and

how this can be implemented using carrier aggregation. We consider the problem of

optimal carrier aggregation and investigate its relationship with respect to network

and market parameters. In Chapter 6 we revisit the question of profitability of sec-

ondary spectrum access in a network topology under spatial interference constraints.

We conclude the dissertation in Chapter 7.



Chapter 2

Background and Related Work

In this chapter, we first provide a detailed overview of FCC policies relevant to this

dissertation. Then, we survey related work on competition and spectrum pricing for

secondary markets and highlight the differing contributions of our research. The re-

lated work is categorized as following: In Section 2.2 we provide a literature survey on

work that consider provider competition in private commons. In Section 2.3, we dis-

cuss related work on carrier aggregation and many-server approximations, specifically

the Quality-Driven (QD) approximation in two separate subsections. In Section 2.4,

we discuss related work that consider larger network topologies consisting of multiple

access points subject to interference and their profitability.

2.1 Survey of FCC Policies

Private Commons. The FCC introduced a spectrum access policy model known as

Private Commons, which is deemed both “commercially viable and technologically

feasible” (Federal Communications Commission, 2003; Buddhikot, 2007). This new

model supports spectrum transactions, where ownership of spectrum remains with the

license holder providing service to its primary users, but this provider may also provide

spectrum access to secondary users for a fee. As pointed out in FCC’s report on

secondary spectrum markets, private commons is a framework of spectrum ownership

where license holders can grant secondary access to their spectrum band at their own

10
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discretion. Control of secondary access in private commons can be implemented in

several different ways (Federal Communications Commission, 2004). In particular,

access to the spectrum by secondary users may be coordinated by the provider, via

signals that determine when or how such access is allowed (Buddhikot, 2007). A

notable coordinated policy is the so-called threshold (reservation) policy, whereby

secondary spectrum access is permitted as long as the number of channels occupied

in a given spectrum band is below a certain threshold. Threshold (reservation) policies

have the distinct advantage of requiring only the current number of customers present

in the system to make an admission decision. Theoretical properties of the threshold

policy, including optimality in certain settings, have been extensively studied in the

literature (cf. (Miller, 1969; Key, 1990; Ramjee et al., 1997; Mutlu et al., 2009; Mutlu

et al., 2010) and references therein). Access to a band may also be uncoordinated, in

which case primary and secondary users share access to the band on an equal basis, in

a way similar to ISM bands (Buddhikot, 2007). Uncoordinated access policies have

the advantage that they are simple to implement with no to little extra operating

costs and it can be argued that they are the most egalitarian access policy. The

access policy is arguably the most commonly used and important (besides price) way

a service provider can influence customer behavior within its network.

Private commons bear significant potential to increase spectrum utilization since

cellular networks are generally over-provisioned to cope with short-term spikes in

their loads. For instance, a measurement based study of close to 20,000 GSM

base stations deployed in Germany indicates that the majority of base station in

crowded areas, such as city centers, remain under-loaded by its contracted users at

all times (Michalopoulou et al., 2011). Another study conducted in the Common-

wealth of Virginia indicates that the US market is no exception to the case with

maximum network occupancy levels around 45% (Shared Spectrum Company, ). A
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measurement based study by Kone et. al. (Kone et al., 2012) indicates that con-

servative policies that minimize interference to primary users (such as one proposed

by Jung and Liu (Jung and Liu, 2012)) result in spectrum inefficiencies, where only

20-30% of the available spectrum is extracted for secondary use. Such studies suggest

that providing spot-on service to secondary users could increase spectrum utilization

levels and thus translate into increased revenue rates.

To capture the entire spectrum of the provider competition one needs to take into

account a global perceptive where the best interests of firms and customers are taken

into account while trying to move the system to a desirable point from a regulatory

perspective. Furthermore, since radio spectrum has a spatial component as well as a

temporal once, one needs to consider the competition at a variety of locations, each of

which might exhibit unique characteristics, such as the different telecommunications

patterns observed in intense traffic load situations at dense urban centers such as

New York and Chicago and sparsely populated rural areas where spectrum is under

a light load.

Spectrum Reservation. To preserve the competitive landscape of the wireless

industry, the FCC has decided to set aside 30 MHz of spectrum for service providers

that hold less than a third of the spectrum in a specific market (Federal Communi-

cations Commission, 2014a; Federal Communications Commission, 2004). With the

600 MHz spectrum auction on the horizon, this ruling is poised to have a significant

impact on the industry (Wall Street Journal, 2014). The ruling has already caused

some controversy in the market as it restricts the amount of spectrum larger providers

have access to (Reuters, 2014), though some public interest groups are asking for it

to be increased to 40 MHz (Fierce Wireless, 2015).

The policy ruling is facilitated by a central feature of LTE-Advanced networks (as

defined in 3GPP Release 10 and beyond) called carrier aggregation (Iwamura et al.,
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2010; Wang et al., 2010; Yuan et al., 2010; Doyle et al., 2012). Carrier aggregation

allows service providers to aggregate contiguous or non-contiguous component carriers

up to 100 MHz total bandwidth. This significantly improves the performance of the

network compared to LTE specifications defined in Release 8 (3GPP, 2012), where

the maximum supported bandwidth is 20 MHz.

A significant challenge associated with the ruling is to identify how much ad-

ditional spectrum a smaller provider needs to improve its service to the level of a

larger provider, which initially holds a competitive advantage in the market due to

economies of scale. If this criterion is met, the spectrum reservation policy effectively

fosters a competitive market. Otherwise, the policy inherently risks wasting highly

valuable spectrum. We study this question in Chapter 5.

The problems considered in this dissertation exist in the wider literature of cognitive

radios and dynamic spectrum sharing technologies. The literature includes proposed

methods of utilizing TV white spaces to the deployment of small cells in an effort to

better utilize the existing spectrum, all enabled by the emergence of cognitive radios

(Nekovee, 2009),(Chandrasekhar et al., 2008). While some papers investigate these

problems from a technical point of view there also exists a large literature concern-

ing the economic analysis of the implementation of said technologies. Within the

proposed methods of spectrum sharing and the different analytical approaches, our

contributions sit in the techno-economic analysis of secondary spectrum markets, im-

plemented in the form of private commons, where both the traffic characteristics of

the resulting wireless networks and their economic interpretation through profitabil-

ity analysis and equilibrium concepts are being investigated. We present the related

work in the subsequent subsections.
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2.2 Competition in Private Commons

Network providers in spectrum markets may face competition at two different levels.

The first level consists of competition between secondary network providers to lease

spectrum from a primary provider (or the government) that holds a spectrum license.

The second level of competition arises after the said leasing of the spectrum, and is

among providers, which hold a license or lease, competing to offer their services to

the end-users.

Many papers in the literature consider the first level of competition, while our

research is positioned to addresses the second one. For instance, in the works by

Jagannathan (Jagannathan et al., 2012), Kasbekar (Kasbekar and Sarkar, 2012a),

Duan (Duan et al., 2010), Ren (Ren et al., 2011), Niyato and Hossain (Niyato and

Hossain, 2008), Sengupta and Chatterjee (Sengupta and Chatterjee, 2009) and Xing

(Xing et al., 2007), game theoretic approaches to spectrum auctioning and leasing are

analyzed. The set-up of all these papers (i.e., competition between providers to lease

spectrum) is different from what we consider (i.e., competition between providers to

lure users).

Several papers study the problem of ensuring profitability in secondary spectrum

markets. Niyato and Hossain (Niyato and Hossain, 2008) derives market equilibria

pricing by taking into consideration the demand and supply dynamics of spectrum

auctions. However, the model uses a very specific secondary demand based on the

utility from owning the spectrum and how much it costs to lease the spectrum. On the

other hand, our results hold for general demand functions. Drawing conclusions under

general demand functions generally requires a more elaborate analysis, as illustrated

by several papers (Allon and Gurvich, 2010; Andrews et al., 2013; Besbes and Zeevi,

2009). Also, secondary users have the option to lease parts of their spectrum from
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different spectrum owners.

On the end-user side, Alanyali et al. (Alanyali et al., 2011) establishes a pricing

policy which guarantees profitability for the network provider as long as a demand

is generated. However, this paper assumes a monopolistic framework, while ours

considers an oligopolistic one. Furthermore, (Alanyali et al., 2011) considers a multi-

cell setting with a single frequency band in each cell, while in the related chapters we

focus on an isolated cell offering multiple frequency bands.

Mutlu et al. (Mutlu et al., 2009) also consider a monopolistic framework and

derive an optimal coordinated access policy under which revenue from secondary

users is maximized. The results of that paper show that a threshold policy is optimal

for coordinated access in an isolated cell, assuming that a provider advertises a fixed

price (i.e., the price does not depend on the instantaneous channel occupancy). These

results are leveraged for the analysis in our work.

In a work by Ileri et al. (Ileri et al., 2005), a comprehensive model including both

the auction and the end-user sides of the competition is studied. Different from our

work, this model focuses on the auctioning side of the competition where the revenue

generated by secondary users is used to compensate for the costs of auctioning. In

our model, we assume that providers own spectrum and need only to consider the

revenue brought in by the primary and secondary users.

The works by Maille and Tuffin (Maille and Tuffin, 2010) and Maille et al. (Maille

et al., 2011) use a model where both the auction side and the service side of the com-

petition are considered. The work in (Maille and Tuffin, 2010) specifically focuses on

the competition between two different but substitute technologies while (Maille et al.,

2011) models a three level competition, where spectrum owners, lessees and users each

make their own separate decisions. These decisions include the use of different tech-

nologies. In our model, we assume that providers offer the same type of services
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and therefore cannot influence the secondary users’ preferences beside the price ad-

vertised. A related work by Ren et al. (Ren et al., 2011) studies and compares the

market outcome achieved by respectively enforcing cooperation or competition among

providers. While such external interventions might be useful in analyzing hypothet-

ical outcomes, our model refrains from such enforcements as it aims to characterize

the outcomes of a natural competition. In a work by Kim et al. (Kim et al., 2011),

competition between two providers is analyzed where network pre-emption allows for

primary users to evict secondary users from the system. Unlike ours, the network

model is not a finite capacity multichannel network but rather a spatial distribution

of channels that turn on and off, and the analysis relies on an approximation. In

one recent study by Korcak et. al. (Korcak et al., 2012), the possibility of collusion

between several wireless network providers is considered. This collusion is based on a

coalition game model. In contrast, in our model, network providers do not communi-

cate with each other about their intentions (i.e., it is a non-cooperative game). Thus,

the possibility of market sharing between the providers is purely a result of market

dynamics.

A paper by Fortetsanakis et. al. (Fortetsanakis et al., 2012) considers the second

level of competition, where providers offer what the authors call the Flex Service. The

simulation based results indicate that the welfare of the market increases through the

use of a central database which collects information about pricing and quality of

service. This work relies on explicit demand and utility functions. Our results hold

without making such assumptions.

None of the previous work surveyed here considers competition among network

providers implementing either coordinated or uncoordinated access and facing sec-

ondary demand governed by a general demand function. The characterization of the

market equilibrium and demonstration of a price war won by the provider(s) with the
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lowest break-even price as well as the possibility of market sharing equilibria under

uncoordinated access policies are unique contributions of this work.

2.3 Carrier Aggregation in LTE-Advanced

In this section, we survey previous work on many-server approximations of queuing

systems and on carrier aggregation.

2.3.1 Many-Server Approximations

The many-server approximation that forms the basis of the QD regime was first

introduced in Iglehart’s work (Iglehart, 1965). The paper considers a setting where

the arrival rate and the number of servers both become very large and the ratio of the

arrival rate to the service rate (i.e., the traffic load) is a constant that is strictly smaller

than one. Under proper statistical assumptions, the process describing the evolution

of the queue occupancy converges to a Ornstein-Uhlenbeck diffusion process. Halfin

and Whitt (Halfin and Whitt, 1981) provide another many-server approximation that

characterizes queues in a quality-and-efficiency driven (QED) regime, i.e., where the

arrival rate and the number of servers both become very large and the traffic load

approaches one. The work of Zeltyn and Mandelbaum (Zeltyn, 2004) provides an

overview of different types of many-server approximations and is useful as a general

reference. In our work, we utilize the QD regime approximations that allow us to

analyze the quality of service experienced by voice calls and data flows in cellular

networks.

Scaling laws in wireless and wired networks have been studied in various con-

texts (Bolcskei et al., 2006; Gupta and Kumar, 2000; Xie and Kumar, 2004; Ozgur

et al., 2007). The work of Bolcskei et al., for example, focuses on the gains realized

by increasing the number of antennas in a MIMO relay network. This work falls
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under the broad category of papers that analyze the dimensioning of telecommuni-

cations networks. Such papers are crucial in providing a better understanding of

the relationship between resource allocation and system performance, allowing policy

makers to look past the current state of the market. Another example is the work

by Xie and Kumar (Xie and Kumar, 2004), where this time the focus is on the ca-

pacity achieved by cooperation between the nodes of a wireless network. The scaling

question has been raised once again but this time for ad hoc networks by Ozgur and

Leveque (Ozgur et al., 2007).

2.3.2 Carrier Aggregation

Carrier aggregation has been gaining significant attention since it has been introduced

in 3GPP Release 10 on LTE-Advanced in 2011. Several papers in the literature ex-

plain practical considerations to achieve desired performance levels in networks, such

as deployment options, implementation frameworks, and challenges in the physical

layer (Iwamura et al., 2010; Wang et al., 2010; Yuan et al., 2010). The work by Shen

et al. (Shen et al., 2012) provides an overview on all layers, while also underlining

the interest of several major U.S. providers in the technology. Alotaibi and Sirbu

provide a comprehensive cost benefit analysis of spectrum aggregation in (Alotaibi

and Sirbu, 2011) and how it impacts network performance in (Alotaibi and Sirbu,

2015). A recent paper by Doyle et al. (Doyle et al., 2012) introduces an interesting

application of carrier aggregation. The authors consider the possible uses of carrier

aggregation in a dynamic spectrum access, such as dynamically aggregating carriers

to address coverage or congestion issues. They also propose a regulatory framework

that supports this enhanced form of carrier aggregation.

Fungibility of the aggregated spectrum is considered in (Weiss et al., 2012), where

the authors seek to identify whether all spectrum bands provide the same perfor-
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mance. For example, low frequency spectrum, such as the 600 MHz band considered

in Chapter 5, is generally viewed as more desirable than higher frequencies because

of its propagation properties.

Considering the impact of spectrum reservation for smaller providers on the com-

petitiveness of a wireless market is beyond the scope of the previous work surveyed

here. The identification of the optimal carrier aggregation and the scaling laws pro-

vided thereunto, as well as simple methods of calculating it, are the unique contribu-

tions of this chapter.

2.4 Analysis of Multicell Networks under Spatial Interfer-

ence

Modeling multi-cell networks with interference has been vastly studied in the liter-

ature. Perhaps the best known work in the area of modeling large networks is the

seminal work of Kelly (Kelly, 1991; Kelly, 1986) where the fixed point methods are

used to study loss networks with different routing schemes. Kelly established the so-

called Erlang fixed-point approximation as an asymptotically exact (with respect to

network size) and unique solution to obtain the loss probabilities in larger networks.

Al Daoud et al. (Al Daoud et al., 2010) make use of this fixed point approximation to

identify the price admission decision in a wireless network setting with interferences.

That work, however, considers optimal pricing where the network provider leases a

part of its network to a third party instead of identifying the minimum profitable

price under the coexistence of both types of user in the same network which is our

focus.

Several papers study the problem of pricing spectrum in a spatial network. The

work Alanyali et. al. (Alanyali et al., 2011), which was also discussed in section 2.2,

establish a pricing policy in a multi-cell setting which guarantees profitability for the
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network provider as long as a demand is generated. However, (Alanyali et al., 2011)

considers a single frequency band in each cell, while our focus is on cells each offering

multiple frequency bands. Kasberkar and Sarkar (Kasbekar and Sarkar, 2012b) study

the pricing competition between network providers where spatial reuse of available

bandwidth is taken into consideration. The model resembles that in (Alanyali et al.,

2011), as they are mainly concerned with conflict graphs which determine whether

spectrum can be used in neighboring cells. It, however, does not consider the question

of profitable pricing and the possibility of co-existence in neighboring cells under

limited interference.

In section 2.2 we mentioned that Mutlu et al. (Mutlu et al., 2009) derive an

optimal coordinated access policy under which revenue from secondary users is max-

imized and showed that, for an isolated cell, a threshold policy was optimal. The

results of this work are leveraged for the analysis of multiple cells as well. Specifi-

cally, by decoupling the spatial interference effects of the network, the optimal policy

for an isolated cell becomes the optimal policy for the decoupled network as well.

None of the previous work surveyed here considers the profitable pricing of sec-

ondary users in a multi-cell network with interference, where the provider is facing

secondary demand governed by a general demand function. The use of the fixed point

methods to decouple the cells in the network and thus obtaining the break-even price

under the secondary demand are the unique contributions of this dissertation on the

subject.



Chapter 3

Coordinated Access

In this chapter we consider the profitable pricing of secondary access and competition

between network providers under the implementation of coordinated access by the

participants. We first provide a detailed description of the model under consideration.

Next, we establish the optimal coordinated access policy and identify profitability

conditions. We then demonstrate that the best response behavior of coordinated

access leads to a price war, which gives the market outcome.

3.1 Network Model

In this section we introduce the network and market models considered and the

accompanying notation. For convenience of exposition we present here a model with

two providers, and later extend it to an arbitrary number of competing providers:

Each provider i = 1, 2 has a finite number of channels Ci, and a dedicated primary-

user base whose traffic generation rate (i.e., the average number of requests per unit

time) is represented with λi > 0. For each primary user serviced, provider i collects

a reward of Ki units.

The providers compete for an additional secondary demand, which is raised

through offering secondary service at a fixed access price for the duration of a con-

tract period. The contract period is long enough (relative to inter-arrival and holding

Results presented in this chapter appear in part in (Kavurmacioglu et al., 2012a),(Kavurmacioglu
et al., 2012b),(Kavurmacioglu et al., 2014a)

21
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Figure 3·1: Market model: Two providers each with a capacity
Ci, i = 1, 2, and a dedicated (primary) demand λi compete for sec-
ondary demand.

times of calls) to allow an equilibrium analysis. In the course of the contract period,

neither the pricing nor the users preferences change.

If provider i charges pi units per secondary access then the intensity of secondary

demand is σ(pi). Here σ(·) is the well-known demand function and it is assumed to

be continuous and non-increasing. We denote the maximum value of the secondary

demand by σmax = σ(0).

We shall assume that each demand type (primary and secondary) consists of a

random sequence of request arrivals that occur according to independent Poisson

processes. We also assume that, if granted, each request holds a single channel for a

random duration that is generally distributed with unit mean, independently of other

requests and arrival times. We shall assume that the channel holding statistics are

identical for primary and secondary requests. Such an assumption is valid when both

types of traffic are generated by similar applications.

The general form of aggregate secondary demand σ(p) captures the heterogene-

ity of customer preferences. Indeed, the demand function implicitly represents the

fraction of users (user types) that find each price value acceptable. The generality
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of the demand function allows consideration of different user types. The separation

between primary and secondary users and the random nature of service times capture

additional levels of heterogeneity in our model.

Secondary demand is assumed to be attracted to the provider charging the lowest

price. This behavior can be explained by price aversion, a concept employed in

marketing management (Tellis and Gaeth, 1990). When both providers charge the

same price, the resulting secondary demand splits between the two providers according

to a static probability vector [α1, α2] such that α1 + α2 = 1 and α1, α2 > 0. Namely,

each provider i receives a secondary demand of volume αiσ(pi) every time market

prices are equal.

Each provider i also has the choice of admitting or rejecting secondary requests

according to an access policy, which we denote by Ai. We assume that actions taken

by Ai depend only on the number of each class of users (primary and secondary)

in the system. Thus, Ai belongs to the class of occupancy-based policies, the per-

formance of which are insensitive to the call length distribution except through the

mean (Mutlu et al., 2010). Hence, without loss of generality, we can assume ex-

ponentially distributed service times for the purpose of analysis in the rest of this

chapter.

Since providers have a finite number of channels to provide service with, they

cannot accommodate new requests if all of the channels are occupied. This results in

some requests being blocked. We define Bi,j(λi, σ, Ai) as the blocking probability for

class j users (j = 1 for primary and 2 for secondary) when secondary demand is σ

and the access policy is Ai.

The goal of each provider is to maximize the total revenue collected. The revenue

rate of provider i when it services secondary demand of σ units is given by:
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Wi(pi, σ, Ai) = (1−Bi,2(λi, σ, Ai))σpi + (1−Bi,1(λi, σ, Ai))λiKi. (3.1)

Here the first and the second terms are respectively the revenue generated by pri-

mary and secondary requests that are admitted by the provider. Each term represents

the expected long time rates per unit time.

Since the secondary demand a provider receives depends on prices of both

providers, so does the revenue of the provider. We define the reward Ri(pi, p−i)

of provider i as its revenue when provider i and its competitor −i charge secondary

access pi and p−i units respectively. Namely,

Ri(pi, p−i) =


Wi(pi, σ(pi), Ai) if pi < p−i
Wi(pi, αiσ(pi), Ai) if pi = p−i
Wi(pi, 0, Ai) if pi > p−i.

(3.2)

Hence the reward is affected by the amount of secondary demand provider i captures

through the relationship between its own price pi and the price of the other provider

p−i. Once the prices determine the secondary demand for each provider, the rewards

are further shaped by the providers’ access policies. Each provider has full infor-

mation on its own network parameters and can observe the prices advertised by its

competitors.

3.2 Optimal Coordinated Access Policy and Profitability

For a given secondary demand σ and secondary price p, let A∗(p, σ) denote a coor-

dinated access policy that maximizes the revenue rate for a provider (for analyses in

which we consider a single provider, we will drop index i from our notation for the

sake of simplicity). We refer to A∗(p, σ) as the optimal coordinated access policy. We

represent the resulting maximal revenue W ∗(p, σ) as follows:

W ∗(p, σ) = W (p, σ, A∗(p, σ)) = max
A

W (p, σ, A). (3.3)



25

One can formulate the provider’s optimization problem using a Markov decision

process (MDP), where the state is the total number of users in the network. Note

that primary and secondary users have identical channel holding statistics, hence

once admitted to the network they are indistinguishable. At every state, the provider

needs to make a decision whether to admit or reject a secondary user arrival in order

to maximize its expected revenue. MDPs can be solved with dynamic programming

(DP) techniques (Bertsekas, 1976). Under the given assumptions, it is well-known

that the coordinated access policy that yields the optimal solution to our DP problem

is a threshold (reservation) policy: Secondary users are admitted by a provider when

the channel occupancy of the provider is below a threshold T ≥ 0 and they are

blocked otherwise (Key, 1990; Miller, 1969; Mutlu et al., 2010; Ramjee et al., 1997).

The optimal threshold value depends on all parameters of the provider including

intensity of the secondary demand. We let the notation A = T correspond to the

implementation of a threshold policy with the specific threshold value being equal to

T .

In the competitive setting considered in this chapter it will be important to identify

conditions under which an optimal policy A∗(p, σ) ever accepts a secondary request.

Under such conditions the secondary price-demand pair (p, σ) yields profit relative

to serving primary demand only; in turn (p, σ) represents an economically viable

situation for a provider. The issue is closely related with the opportunity cost of

accepting a secondary request: On the one hand such a request brings an immediate

revenue of p, on the other hand it may cause rejecting future requests, possibly with

higher immediate revenue, due to the channel that it holds temporally. To identify the

profitability of admitting a secondary user, we utilize a policy improvement technique

based on (Alanyali et al., 2011; Key, 1990). Specifically, we identify a price condition

for which there exists a policy that yields a better revenue than a policy that flatly
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rejects all secondary arrivals. This determines the sign of the balance in the trade-off

when making a control decision to admit a secondary user or not. We state our main

result on this profitability condition in the following theorem:

Theorem 3.2.1 For σ > 0 there exists a break-even price pBE given by:

pBE = KE(λ,C), (3.4)

where E(λ,C) =
λC/C!∑C
k=0 λ

k/k!
is the Erlang-B formula. such that:

(a) W ∗(p, σ) > W ∗(p, 0) if p > pBE,

(b) W ∗(p, σ) = W ∗(p, 0) if p ≤ pBE.

Proof. In order to calculate for which prices it is profitable to admit secondary

users, we model the optimization problem as an MDP. Thus, we set up an infinite

horizon average cost dynamic programming problem and identify the prices at which

the optimal policy allows for the admission of secondary users into the network at

some states. To do so, we take the total number of users in the network (i.e., occu-

pancy) denoted by y as the state of the system, J̄ as the time-average reward and

h(y) as the differential reward function (Bertsekas, 1976). J̄ can be interpreted as the

average reward collected from incoming arrivals over a period of time which length

goes to infinity, whereas the differential reward function h(y) characterizes the ex-

pected difference when we start the process from a particular state y instead of an

arbitrary state y′ which we take as the reference such that h(y′) = 0. In our case,

and without any loss of generality, we set y′ = 0.

We uniformize the process with the maximum possible transition rate out of any

state, which we denote by ν , λ+ σ +C. Since the service rate is the same for both

primary and secondary users, they are indistinguishable once in the system. Following
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this observation, at state {y : 0 ≤ y ≤ C} a user (either primary or secondary) will

leave the system with probability y
ν
. With probability λ

ν
a primary user will arrive,

with probability σ
ν

a secondary user will arrive, and with probability C−y
ν

the state will

remain the same (i.e., nothing happens). Note that an arrival of either kind to a full

network is not admitted and thus no reward is collected. Then the well established

Bellman equations for the average reward problem can be formulated as follows:

J̄ + h∗(y) =
1

ν
{ yh∗(y − 1) + (C − y)h∗(y)

+ λ(K + h∗(y + 1))

+ σmax (p+ h∗(y + 1), h∗(y))}, (3.5)

for 0 < y ≤ C − 1. The last term on the right hand side of the equation reflects the

admission choice to be made, that is either admit an incoming secondary user and

collect a reward of p while increment the state or reject the arrival and preserve the

state.

We also consider the two special cases, first when the network is full:

J̄ + h∗(C) =
1

ν
{Ch∗(C − 1) + (λ+ σ)h∗(C)},

and next when the network is empty:

J̄ + h∗(0) =
1

ν
{Ch∗(0) + λ(K + h∗(1)) + σmax (p+ h∗(1), h∗(0))}.

Let us define the lock-out policy as an access policy where all secondary users

are rejected, regardless of network occupancy. We will approach this pricing decision

problem by determining when the lock-out policy on secondary users stops being op-

timal. Assuming a lock-out policy, which we denote by the use of the superscript LO,
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Eq. (3.5) reduces to:

J̄ + hLO(y) =
1

ν
{ yhLO(y − 1) + (C − y)hLO(y)

+ λ(K + hLO(y + 1)) + σhLO(y)}. (3.6)

From the last argument of Eq. (3.5), it is clear that when the state of the network is

y, a lock-out policy is optimal if and only if max
(
p+ hLO(y + 1), hLO(y)

)
= hLO(y)

or:

p ≤ hLO(y)− hLO(y + 1). (3.7)

Therefore if p ≥ hLO(y) − hLO(y + 1), a lock-out policy is no longer optimal, which

is equivalent to starting to admit some secondary users. We shall next obtain an

analytical expression of the quantity H(y) , hLO(y)− hLO(y + 1).

Writing Eq. (3.6) for every state y and taking the difference between every two

consecutive states yields the following set of equations:

(λ+ 1)H(0) = λH(1)
...

...
...

(λ+ y)H(y − 1) = λH(y) + (y − 1)H(y − 2)
...

...
...

(λ+ C)H(C − 1) = λK + (C − 1)H(C − 2)

The solution to this set of equations is

H(y) = K
E(λ,C)

E(λ, y)
for 0 ≤ y ≤ C − 1. (3.8)

Since we are specifically interested in finding the price p at which it is optimal to

admit at least one secondary user into the network, through Eq. (3.7), we know that

this price must be greater than or equal to

min
0≤y≤C−1

H(y) = min
0≤y≤C−1

(
hLO(y)− hLO(y + 1)

)
.
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By observing how Eq. (3.8) changes with respect to y, one can come to the conclusion

that H(y) is increasing in y, the minimum value such a price p can take is:

pBE , H(0) = K
E(λ,C)

E(λ, 0)
= KE(λ,C). (3.9)

Therefore, as long as the price is greater than pBE, there exists at least one state

y (i.e., when the system is empty) at which admitting secondary customers yields a

better revenue rate than the revenue rate under a lock-out policy. �

Theorem 3.2.1(a) states that if the price exceeds pBE then serving secondary de-

mand yields strictly higher revenue for a provider than not serving it. Conversely, part

(b) of the theorem states that secondary demand does not lead to any revenue im-

provement otherwise, implying that rejecting the entire secondary demand is optimal

for such prices. In effect, at pBE the immediate revenue balances the opportunity cost

of a secondary request. We therefore coin pBE as the break-even price of a provider.

It is striking that the break-even price expression (3.9) does not depend on the

secondary demand. Namely, any price above pBE strictly improves the revenue of a

provider regardless of how much secondary demand it generates. This result can be

intuitively understood as follows: The size of secondary demand does not play a role

in profitability, for any positive secondary demand can be thinned down arbitrarily

by the coordinated access policy. We have shown that at the break-even price the

lock-out policy stops being optimal, which is equivalent to stating that secondary

access is profitable when the network is empty. Since the profitability of the first

admitted secondary user depends on a network where there are no other secondary

users, secondary demand does not affect the break-even price.

Figures 3·2(a) and 3·2(b) illustrate how the normalized break-even price (i.e.,

pBE/K) changes with respect to relevant network parameters, namely the system
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Figure 3·2: Behavior of break-even price as a function of network
parameters.

capacity C and the network load λ/C. The normalized price is given by the Erlang-B

function, which has been well studied in teletraffic theory. In particular upper and

lower bounds are obtained in (Harel, 1988; Janssen et al., 2008), and it is demon-

strated in (Jagers and Doorn, 1986) that for a given arrival load λ, the Erlang-B

function (hence, the break-even price) is a convex function of the capacity C, as can

be observed from Figure 3·2(a). It is also worth noting that as the network capacity

increases, the value of the break-even price at the critical load where λ = C decreases

as demonstrated in Figure 3·2(b).

Figure 3·2(b) shows that for an over-provisioned network (in which primary load λ

is below the capacity C by a significant margin), the break-even price is substantially

lower than the primary price. We observe that for C = 16 the normalized break-even

price is negligible compared to the primary price for network loads below 40%, a

number close to the network utilization measurements reported in (Shared Spectrum

Company, ). As the network capacity increases, it takes even higher network loads to

observe the slightest increase in the break-even price, almost as high as 80% when the
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capacity is increased to C = 128. This result suggests that, in an over-provisioned

network, spectrum sharing at secondary prices that are low relative to primary reward

would result in net profit, regardless of the secondary demand.

3.3 Best Response under Coordinated Access

In competing for and serving secondary demand, a provider’s action consists of an

advertised price for secondary access and an access policy to coordinate secondary

access. For any price, and for any demand the price raises, each provider’s revenue

is highest under optimal coordination. Hence optimal coordination is a dominating

choice uniformly for all situations. In this section we will assume all providers im-

plement optimal coordinated access. With this assumption each provider’s strategic

action reduces to a pricing decision.

In the next theorem, we state that the best response of a provider is to set its price

slightly lower than the competition in order to capture all of the secondary demand

rather than sharing the secondary demand at that price. This can be formalized as

follows:

Theorem 3.3.1 If p > pBE, for any given α ∈ [0, 1] there exists a price p′ ∈ (pBE, p)

such that:

W ∗(p′, σ(p′)) > W ∗(p, ασ(p)). (3.10)

Before we prove Theorem 3.3.1, it is beneficial to establish the strictly dominated

strategies for both providers under optimal coordinated access. This allows for the

characterization of provider i’s best response strategy for any price it’s competitor

chooses. To do so we introduce two lemmas. In the first lemma for two given sec-

ondary demand values of σ1 and σ2 such that σ1 > σ2, we will demonstrate that the

revenue rate when facing higher secondary demand σ1 is never less than the revenue

rate when facing lower secondary demand σ2 (i.e., W ∗(pi, σ1) ≥ W ∗(pi, σ2)).
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Lemma 3.3.1 Let p > 0. For any σ1, σ2 such that σ1 > σ2:

W ∗(p, σ1) ≥ W ∗(p, σ2).

Proof. Consider the optimal access policy A∗(p, σ2) which yields a revenue rate of

W ∗(p, σ2) for demand σ2. Now consider a policy Â(p, σ1) for demand σ1, which does

a random thinning of the secondary demand and brings it to σ2 (i.e., Â(p, σ1) accepts

each arrival with probability σ2/σ1. Note that the thinned arrival process is still

Poisson (Key, 1990). Once the secondary demand is reduced, access policy A∗(p, σ2)

is implemented. Hence Â(p, σ1) and A∗(p, σ2) generate the same revenue rate, i.e.,

W (p, σ1, Â) = W ∗(p, σ2).

Since by definition A∗(p, σ1) is the optimal coordinated access policy when sec-

ondary demand is σ1, we know that it does not generate a revenue less than the

revenue generated by the policy we have just described. We can formulate this con-

clusion as:

W ∗(p, σ1) ≥ W (p, σ1, Â) = W ∗(p, σ2). (3.11)

�

In the previous lemma, we have demonstrated that an increase in secondary de-

mand does not result in a decrease in the revenue rate of a provider. In the second

lemma we will build on the previous lemma to show that when the price is set above

the break-even price, an increase in secondary demand translates into strict increase

in the revenue rate.

Lemma 3.3.2 Let p > pBE. For any σ1, σ2 such that σ1 > σ2: W ∗(p, σ1) >

W ∗(p, σ2).

Proof. We know that when the price is greater than the break-even price (i.e.,

p > pBE), an optimal admission policy will never choose the threshold value T = 0.
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Since in this lemma we only consider such prices, we can formalize this result through

the formulation

max
0≤T≤C

W (p, σ, T ) = max
1≤T≤C

W (p, σ, T ).

In Mutlu et al.’s work (Mutlu et al., 2009), it is shown that for a fixed admission

threshold value T > 0, W (p, σ, T ) is a unimodal function with respect to σ for any p.

In other words, W (p, σ, T ) is strictly increasing until is reaches a certain maximum

and strictly decreasing afterwards. We define the value of σ at which W (p, σ, T )

attains its maximum value over the interval [0, σmax] for an admission control policy

with fixed threshold T by:

σT = argmax
σ∈[0,σmax]

W (p, σ, T ). (3.12)

We define d to be the minimum of the distances between any two distinct maxima of

W (p, σ, T ) for different values of T so that

d = inf
m,n∈1,2,...,C

|σm − σn|, σm 6= σn.

Since there are a finite number of possible threshold policies, the infimum is

achieved (i.e., inf = min) and d > 0. Having defined the minimum distance be-

tween distinct maxima of two different threshold revenue functions, we will prove the

lemma by first showing that

W ∗(p, x+ ε) > W ∗(p, x), ∀x ∈ [0, σmax] and ε < d,

where ε is a constant the value of which does not depend on the secondary demand

x.

It should be noted that the value of ε does not depend on x. From the way ε has

been chosen, there can be at most one distinct maximum over the interval [x, x+ ε].
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(a) Case 1: σT̂ /∈ [x, x+ ε)

 

(b) Case 2: σT̂ ∈ [x, x+ ε)

Figure 3·3: Illustration of the two cases considered in the proof of
Lemma 3.3.2

In the rest of this proof, let T̂ denote the optimal threshold value at x (if there are

more than one we can choose any). We will complete our proof by distinguishing

between two cases, as illustrated in Fig. 3·3:

Case 1: σT̂ /∈ [x, x+ ε).

Given the unimodality of W (p, σ, T̂ ), this function must be either decreasing or

increasing with respect to σ in the interval [x, x+ε]. Furthermore, it must also be true

that x < σT̂ . Otherwise, if x ≥ σT̂ , through the way we have defined σT̂ in Eq. (3.12)

we would have W ∗(p, x) = W (p, x, T̂ ) < W (p, σT̂ , T̂ ), which is a contradiction to
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Lemma 3.3.1, which we can rewrite in the following form:

W ∗(p, x) ≥ W (p, σT̂ , T̂ ), ∀x ≥ σT̂ .

Thus W (p, σ, T̂ ) cannot be decreasing but must be increasing in σ over the interval

[x, x+ ε). By definition of optimality:

W ∗(p, x+ ε) ≥ W (p, x+ ε, T̂ ) > W (p, x, T̂ ) = W ∗(p, x).

Case 2: σT̂ ∈ [x, x+ ε).

W (p, σ, T̂ ) attains its maximum value over [x, x+ε) at σT̂ . Given the unimodality

ofW (p, σ, T̂ ) with respect to σ, the revenue function must be increasing on the interval

[x, σT̂ ]. Next we show that the revenue must remain increasing over [σT̂ , x + ε) for

at least one other fixed threshold policy, which we prove by contradiction. Suppose

that at σ = σT̂ there exists no threshold policy under which the revenue rate is both

increasing and greater than or equal to W (p, σ, T̂ ). Then, the revenue function under

the optimal policy must be decreasing right after σT̂ as it is continuous in σ (see also

proof of Theorem 3.3.1). This contradicts Lemma 3.3.1. Hence, there must exist at

least one other threshold policy A = T ′ such that the revenue rate under this new

threshold value W (p, σT̂ , T
′) is increasing and satisfies W (p, σT̂ , T

′) ≥ W (p, σT̂ , T̂ ).

Since the interval [x, x+ ε) contains at most one distinct maximum, W (p, x, T ′) must

remain increasing over the interval [σT̂ , x+ ε). Then we can conclude

W ∗(p, x+ ε) ≥ W (p, x+ ε, T ′) > W (p, σT̂ , T
′)

≥ W (p, σT̂ , T̂ ) > W (p, x, T̂ ) = W ∗(p, x).

Having shown that W ∗(p, x + ε) > W ∗(p, x) for ε < d under both cases, we can

finally proceed with making the connection between our proof and the lemma by first
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stating:

W ∗(p, σ1) > W ∗(p, σ1 − ε) > W ∗(p, σ1 − 2ε) > . . . > W ∗(p, σ1 − kε), (3.13)

where k is the largest integer such that σ1 − kε > σ2. Since we can take any ε < d,

we can choose one final ε′ = σ1 − kε− σ2 < d, such that:

W ∗(p, σ1 − kε) = W ∗(p, σ2 + ε′) > W ∗(p, σ2). (3.14)

Combining Eqs. (3.13) and (3.14) gets us:

W ∗(p, σ1) > W ∗(p, σ2).

�

Proceeding with the proof of our theorem, we show that as long as the price

is lowered by less than a certain amount, the relationship established in the Lemma

3.3.2 can be extended to different prices such that W ∗(p′, σ(p′)) > W ∗(p, ασ(p)) where

p′ < p.

Proof of Theorem 3.3.1 Through Lemma 3.3.2 we know that the following

inequality holds:

W ∗(p, σ(p)) > W ∗(p, ασ(p)). (3.15)

For a fixed threshold value T , the revenue takes the form:

W (p, σ(p), T ) = (1−B2(λ, σ(p), T ))σ(p)p+ (1−B1(λ, σ(p), T ))λK, (3.16)

where

B1(λ, σ(p), T ) =
(λ+σ(p))TλC−T

C!∑T−1
n=0

(λ+σ(p))n

n!
+ (λ+ σ(p))T

∑C
n=T

λn−T

n!

,
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and

B2(λ, σ(p), T ) =
(λ+ σ(p))T

∑C
n=T

λn−T

n!∑T−1
n=0

(λ+σ(p))n

n!
+ (λ+ σ(p))T

∑C
n=T

λn−T

n!

,

the derivation of which is given in (Mutlu et al., 2009). Since the respective blocking

probabilities of primary secondary users B1(·) and B2(·) are a function of p through

σ(p), which is assumed to be continuous in p, we conclude from Eq. (3.16) that

W (p, σ(p), T ) is also continuous in p.

From the way we have defined the optimal access policy in Eq. (3.3), W ∗(p, σ(p))

is also continuous in p as we consider a finite set of possible values which T can take

(Kaczor and Nowak, 2001, pp. 11&135).

First let us assume that there exists a p̂ ∈ (pBE, p) such that

W ∗(p̂, σ(p̂)) ≥ W ∗(p, σ(p)).

Then it follows by Eq. (3.15) that

W ∗(p̂, σ(p̂)) > W ∗(p, ασ(p))

and p′ can be set equal to p̂. On the other hand, assume that there exists no such

price p̂ < p for which

W ∗(p̂, σ(p̂)) ≥ W ∗(p, σ(p)).

This implies that the revenue is monotonically increasing for all p̂ < p such that:

W ∗(p̂, σ(p̂)) < W ∗(p, σ(p)). (3.17)

Then by continuity, the following can be stated for W ∗(p, σ(p)): ∀ε > 0, ∃δ(ε, p) > 0
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s.t. if |p− p̂| < δ then

|W ∗(p, σ(p))−W ∗(p̂, σ(p̂))| < ε.

Making use of Eq. (3.17) and our assumption that p̂ < p, we can remove the absolute

value from the previous equation and simplify it to:

W ∗(p, σ(p))−W ∗(p̂, σ(p̂)) < ε. (3.18)

Taking ε = W ∗(p, σ(p))−W ∗(p, ασ(p)) and cancelling the terms W ∗(p, σ(p)) on both

sides of the inequality (3.18) we obtain −W ∗(p̂, σ(p̂)) < −W ∗(p, ασ(p)). Multiplying

both sides by −1, the equation finally takes the form W ∗(p̂, σ(p̂)) > W ∗(p, ασ(p))

and p′ can be set equal to p̂. �

Theorem 3.3.1 states that if a provider profits at a given price, obtaining the

entire secondary demand at that price is strictly more profitable than obtaining part

of the demand at a slightly higher price. This property reflects an incentive for each

provider to unilaterally deviate from offering the same price as its opponent, provided

that the price is strictly above its break-even price. This best response dynamics is

illustrated in Figure 3·4 and the resulting market equilibrium is formally analyzed in

the next section.

3.4 Market Equilibrium

Having identified the best response of a network provider under coordinated access

in Theorem 3.3.1 in the previous section, we now proceed to establish the market

equilibrium. Given initial prices p1 and p2 such that pi > pBEi , i = 1, 2, the two

providers will lower their prices in turn. This process continues until the market price

drops so low that the provider with the higher break-even price finds himself unable
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Figure 3·4: Representation of a price war as a result of best response
dynamics under coordinated access.

to lower its price any further without incurring a net loss.

We start with a characterization for competitive equilibria in the considered sce-

nario. However, before we do that, it is important to recall the formal definition of a

Nash equilibrium.

Definition 3.4.1 A pricing strategy profile (p1, p2) is a Nash equilibrium for rewards

Ri(p1, p2) if and only if

R1(p1, p2) = max
p
R1(p, p2)

and

R2(p1, p2) = max
p
R2(p1, p).

Next, we provide a theorem which identifies possible market outcomes in terms of

Nash equilibria.

The first part of the theorem is concerned with the case when one provider (with-

out loss of generality provider 1) has strictly lower break-even price than the other

provider. In the theorem, we show that the provider with the lower break-even price

captures the entire market by pricing below its competitor’s break-even price. How-

ever, when the price is continuous, it is impossible to provide an exact price that
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achieves this best response. Hence, following a well-known approach used in game

theory to address this technicality (Osbourne, 2004, pages 64-67), we assume that

each provider’s price is a multiple of a sufficiently small discretization step ε.

Additionally, the exact value of the equilibrium price p1 depends on where provider

1’s revenue is maximized over the interval [pBE1 , pBE2 − ε]. We formally define this

maximum as the following:

W
∗
1 = max

p∈[pBE1 ,pBE2 −ε]
W ∗

1 (p, σ(p)). (3.19)

Note that the revenue may attain this maximum at several prices on the interval,

which we denote by the following set:

P = argmax
p∈[pBE1 ,pBE2 −ε]

W ∗
1 (p, σ(p)). (3.20)

The other provider is unable to underbid its competition in a profitable fashion.

Hence it opts for any price that doesn’t capture the secondary demand. In the

equilibrium this price must also not give an incentive to the winner to deviate to a

higher price. We next define the lowest price provider 2 can choose for which there

exists an incentive for provider 1 to deviate from P :

pmax , arginf
p̂≥pBE2

{
max

p∈[pBE1 ,p̂]
W ∗

1 (p, σ(p)) > W
∗
1

}
. (3.21)

If no such price exists, then we simply set pmax = ∞. Then this price effectively

limits the price choice of provider 2 from above. Setting any price above pmax creates

an incentive for provider 1 to deviate, thus disturbing the equilibrium. If provider

2 were to choose a price p2 > pmax, then what follows is that provider 1 raises its

price to this new maximizing price. However, provider 2 would then respond with

underbidding provider 1 as a result of Theorem 3.3.1.
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The second part of the theorem concerns the symmetric case when both providers

have the same break-even price. In that case the unique Nash equilibrium outcome

is defined by both providers charging their break-even prices, unable to capture the

entire market due to profitability constraints.

Theorem 3.4.1 (Nash Equilibria)

(a) If pBE1 < pBE2 then one or more Nash equilibria exist and have the strategy profile

(p1, p2) where

p1 ∈ P

p2 ∈ (p1, p
max),

where P is as given by Eq. (3.20) and pmax by Eq. (3.21).

(b) If pBE1 = pBE2 then there exists a unique Nash Equilibrium given by the strategy

profile (p1, p2) such that

p1 = p2 = pBE1 .

Proof. We will prove the the two parts of Theorem 3.4.1 separately, first when

pBE1 < pBE2 and second when pBE1 = pBE2 . Under each case, we will demonstrate

that the price pairs described in the theorem give the Nash equilibria by proving that

neither provider i = 1, 2 can increase its reward Ri(p1, p2) by employing any other

strategy profile.

Part 1 - pBE1 < pBE2 In a given Nash equilibrium the pricing strategy each provider

chooses is given by:

p1 ∈ P

and

p2 ∈ (p1, p
max). (3.22)
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Under these strategies provider 1’s reward is

R1(p1, p2) = W
∗
1 > W ∗

1 (p1, 0),

where W
∗
1 is given by Eq. (3.19) and W ∗

1 (p1, 0) represents the base revenue rate

provider 1 collects from the primary users in the absence of secondary users. Thus

provider 1 collects a positive revenue from capturing the entire secondary market

above its break-even price. On the other hand, provider 2 is unable to attract any

secondary demand and faces the reward:

R2(p1, p2) = W ∗
2 (p2, 0).

We first analyze the possible increases in reward when provider 2 chooses other price

strategies.

Suppose provider 2 chooses any price p′2 < p1. Then provider 2 captures the

secondary demand but since p′2 < p1 < pBE2 this is a non-profitable price. Hence

provider 2 choose to implement a lock-out policy which is reflected in the reward:

R2(p1, p
′
2) = W ∗

2 (p′2, σ(p′2)) = W ∗
2 (p2, 0),

by Theorem 3.2.1. Therefore R2(p1, p
′
2) = R2(p1, p2).

Now suppose provider 2 chooses any price p′2 ≥ pmax, which we have previously

defined in Eq. (3.21). This action does not change the reward of provider 2 as it

remains in a position where it capture no secondary demand. Hence, R1(p1, p
′
2) =

R1(p1, p2).

Having proven provider 2 has no incentive to deviate, we shift our focus to provider

1.

If provider 1 chooses a price p′1 > p2, this results in the loss of the secondary
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demand and its reward becomes R1(p
′
1, p2) = W ∗

1 (p′1, 0) = W ∗
1 (p1, 0) < R1(p1, p2).

If provider 1 chooses a price p′1 = p2, it shares the secondary demand with provider

2 and its reward becomes R1(p
′
1, p2) = W ∗

1 (p2, α1σ(p2)). By Theorem 3.3.1 there exists

an ε > 0 such that:

W ∗
1 (p2, α1σ(p2)) < W ∗

1 (p2 − ε, σ(p2 − ε)),

hence R1(p
′
1, p2) < R1(p1, p2).

If provider 1 chooses a price pBE2 ≤ p′1 < p2, this implies through Eq. (3.22) that

p′1 < pmax. By the definition of pmax in Eq. (3.21), for any price p′1 < pmax we have:

W ∗
1 (p′1, σ(p′1)) ≤ W

∗
1.

Hence R1(p
′
1, p2) = W ∗

1 (p′1, σ(p′1)) < R1(p1, p2).

If provider 1 chooses a price p′1 < pBE1 , it serves secondary demand at a non-

profitable price and hence faces the reward R1(p
′
1, p2) = W ∗

1 (p′1, σ(p′1)) = W ∗
1 (p1, 0) <

R1(p1, p2).

Finally, if provider 1 chooses a price p′1 ∈ [pBE1 , pBE2 − ε] but p1 /∈ P , from the

way P is defined, the new reward is R1(p
′
1, p2) = W ∗

1 (p′1, σ(p′1)) < W
∗
1. Therefore

R1(p
′
1, p2) < R1(p1, p2).

Part 2 - pBE1 = pBE2 Since both providers are identical, we will only consider

provider 1. Also, for the sake of notational simplicity we will drop the index on the

break-even price and denote it by pBE. Provider 1, when at the Nash equilibrium,

chooses the price strategy p1 = pBE and faces the reward R1(p1, p2) = W ∗
1 (p1, 0).

We fix provider 2’s strategy to p2 = pBE and demonstrate that provider 1’s reward

does not improve by choosing any other action pair.
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If provider 1 chooses a pricing strategy p′1 > pBE, it faces a reward R1(p
′
1, p2) =

W ∗
1 (p1, 0) = R1(p1, p2).

If provider 1 chooses any pricing strategy p′1 < pBE, by definition of pBE it faces

a reward R1(p
′
1, p2) = W ∗

1 (p1, σ(p1)) = W ∗
1 (p1, 0) = R1(p1, p2).

Because of provider symmetry, the same proof follows for player 2.

Therefore the only Nash equilibrium is given by the price pair pBE1 = pBE2 , from

which uniqueness also follows since the break-even price of each provider is unique.

Having shown that under both cases Nash equilibria exist and can not be different

from what is stated in Theorem 3.4.1, we conclude our proof. �

The following two examples aim to illustrate that qualitative differences in the

placement of Nash equilibria are governed by the secondary demand function σ(p).

These examples are based on demand functions commonly used in the economics lit-

erature that are respectively exponentially and linearly decreasing with price (Talluri

and Ryzin, 2004).

Example 3.4.1 Suppose that the secondary demand function follows a negative

exponential demand σ(p) = 10e−0.2p, which indicates sufficiently low price elasticity

of demand so that the revenue rate remains increasing with price. We set the network

parameters for both providers as:

(λ1, C1, K1) = (1, 2, 20), (λ2, C2, K2) = (10, 5, 35),

which, through Eq. (3.9), yield pBE1 = 4.00, pBE2 = 19.74. Figure 3·5(a) demonstrates

the low-elasticity property of provider 1’s revenue rate function, W ∗
1 (p1, σ(p1)). The

revenue rate is clearly maximized when the price is p1 = 19.74− ε, at a price slightly

below the other provider’s break-even price.

Example 3.4.2 In this example we consider a linear demand function σ(p) = 10−
0.5p. The network parameters and thus the break-even price are the same as in the

previous example, which we omit. Under this new and faster decreasing demand
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Figure 3·5: Different reward maximizing prices as provided in Exam-
ples 3.4.1 and 3.4.2.

function, we plot the revenue rate in Figure 3·5(b). The revenue rate achieves its

maximum at p1 = 15.76 after which it demonstrates high-elasticity and starts to

decrease with price. This results in the revenue maximizing price being less than

pBE2 = 19.74. Therefore, facing such demand provider 1 would lower its price further

below even though its competitor cannot match it without incurring a net loss, which

demonstrates our result stated in Theorem 3.4.1(b).

Comparison with classical Bertrand duopoly. Theorem 3.4.1 essentially asserts

that the equilibrium outcome of competition for secondary demand is a price war.

Price wars are also typical outcomes in the classical Bertrand duopoly, hence it is

worthwhile to put the two settings in perspective. In the Bertrand game, for a given

price, both the revenue and the cost are linear functions of demand. In contrast, in the

present setting neither revenue nor cost of secondary service are linear in secondary

demand, primarily because both quantities rely heavily on blocking probabilities that

are highly nonlinear in the demand. In addition, the Bertrand model precludes any

capacity constraints and assumes that all demand can be satisfied, whereas the model
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of this chapter is centered on a fundamental limitation in capacity. Yet, interestingly,

the equilibrium of the present game resembles (and, depending on the secondary

demand function, may be identical to) the outcome of a Bertrand game in which

marginal cost is constant and equal to the break-even price.

This similarity is a consequence of two nontrivial properties established in the

present chapter: (i) insensitivity of break-even price against secondary demand, and

(ii) Theorem 3.3.1, which indicates that having more secondary demand is always

more favorable provided that secondary service is priced above break-even price. Both

properties, however, rely on the assumption of optimal coordination of secondary

access and does not necessarily extend to arbitrary access policies, as illustrated in

the sequel.

Extension to multiple providers. Equilibrium strategy profiles given in Theo-

rem 3.4.1 can be generalized to an arbitrary number of providers competing for the

secondary demand, each with their own primary users, capacities and primary user

rewards: Consider N such providers and let pBEi continue to represent the break-even

price of provider i. Without any loss of generality, let us re-index the providers if

necessary so that: pBE1 ≤ pBE2 ≤ pBE3 ≤ . . . ≤ pBEN .

Further we define n = max{i : pBEi = pBE1 }. Hence n is the number of providers

that share the lowest break-even price. We generalize the two cases presented in

Theorem 3.4.1:

• If n > 1 then any price profile (p1, p2, · · · , pN) such that

pi = pBE1 for i = 1, 2, · · · , n

and

pi > pBE1 for i = n+ 1, n+ 2, · · · , N.
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is a Nash equilibrium. In each such equilibrium providers 1, 2, · · · , n service the

secondary demand at their break-even prices thereby generating no additional

profit. The secondary demand is split among these providers according to an

arbitrary probability vector [α1, α2, ..., αn−1, αn] where
∑n

i αi = 1, αi > 0, which

has no bearing on equilibrium prices. The remaining N −n providers are not able

to capture any secondary demand.

• If n = 1 then there is a single provider whose break-even price is lower than all

the rest. In equilibrium this provider captures the entire secondary demand at

a strictly profitable price, while the remaining N − 1 providers cannot serve any

secondary demand. In particular Nash equilibria have the form:

p1 ∈ P ,

and

pi ≥ pBEi for i = 2, · · · , N,

and at least one provider j 6= 1 chooses a price such that pj < pmax, where pmax is

defined as in Eq. (3.21), so that there is no incentive for provider 1 to deviate from

P .

Quality of Service. QoS plays an important role wireless services. In this chapter,

QoS is implicitly captured through the implementation of a coordinated access policy.

Under this policy, the QoS experienced by primary users will naturally be higher than

that experienced by secondary users, since the provider reserves a certain part of its

network capacity for the exclusive use of primary users. A possible refinement of the

model is through the introduction of penalties. Specifically, whenever a provider is

unable to accommodate a service request of an incoming user, it would compensate

the blocked user by paying a fee (or giving a discount). If the penalty is imposed only
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when primary users are blocked (secondary access is opportunistic, and therefore has

no associated penalties when blocked), then our results still hold through a similar

analysis.

3.5 Summary

In this chapter we analyzed the implementation of coordinated access, for which we

demonstrated that the optimal access policy is of threshold type. We showed that

each provider has a unique break-even price, above which profitability is guaranteed

regardless of the secondary user demand response. We provided an explicit analytical

formula for the break-even price, thus establishing its relationship with the system

parameters (i.e., the primary load, primary reward, and system capacity). The break-

even price of each provider is independent of the system parameters of other providers.

Interestingly, the break-even price is, in general, significantly smaller than the primary

reward. Thus, the break-even price is less than 1% of the primary reward if the

primary load is below 68% and the number of channels C exceeds 32. Even at the

critical load where the primary load is equal to the system capacity (i.e., λ = C), the

break-even price remains below 20% of the primary reward for C ≥ 16.

Next, using the notion of Nash equilibrium, we formalized the possible outcomes

resulting from a non-cooperative game in which optimal coordinated access is im-

plemented by two or more network providers. We explained how the best response

dynamics of each provider reflect a price war, in which each provider is driven into

advertising a price slightly below that of its competitors as long as this price is above

the break-even price. This price war leads to a single provider (that with the lowest

break-even price) capturing the entire secondary spectrum market. Although the de-

mand function does not play a role in determining the identity of the winning provider,
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we showed that is does affects the revenue-maximizing price for that provider and the

placement of the Nash equilibria. In the case of multiple providers sharing the same

lowest break-even price, the game results in a market equilibrium in which none of

the providers make profits.



Chapter 4

Uncoordinated Access

In this chapter we reconsider the question profitable pricing of secondary access and

competition between network providers under an uncoordinated access setting. We

first consider the implementation of such a policy under the stochastic nature of

network traffic which was utilized in the previous chapter. Under the stochastic

model we demonstrate that the break-even price and market outcomes, unlike in the

coordinated access case, highly depend on the specific shape of the secondary demand

function and therefore an analysis is difficult to conduct. We therefore present a

fluid approximation to model network traffic. Using this approximation model, we

establish profitability conditions and equilibrium outcomes. In addition to the break-

even price, uncoordinated access results in a market-sharing price which is a measure

of providers’ willingness to share the secondary demand in equilibrium. We start the

chapter with the uncoordinated access under stochastic traffic.

4.1 Uncoordinated Access with Stochastic Traffic

In this section we consider equilibrium regimes that arise when competing providers

grant uncoordinated access to secondary demand. We shall argue that such equilibria

can be drastically different than those under an optimal coordinated access.

Under uncoordinated access, a provider does not differentiate between primary and

Results presented in this chapter appear in part in (Kavurmacioglu et al., 2014a),(Kavurmacioglu
et al., 2014b),(Kavurmacioglu et al., 2014c).

50
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secondary users in granting spectrum access requests. In turn, both types of users

experience the same blocking probability. This probability depends on the aggregate

demand and system capacity, and can be computed using standard techniques in

teletraffic. Namely, when provider i serves secondary demand σ, the two blocking

probabilities are

Bi,2(λi, σ, Ai) = Bi,1(λi, σ, Ai) = E(λi + σ,Ci),

where E(λi + σ,C) is the Erlang-B formula.

The revenue rate of provider i, when serving secondary demand σ by charging pi

per admitted request, is then given by

Ŵi(pi, σ) = (1− E(λi + σ,Ci))σpi + (1− E(λi + σ,Ci))λiKi, (4.1)

where the first term corresponds to the reward rate collected from secondary users that

gain admission to the network, while the second term corresponds to the reward rate

collected from the serviced primary users. (Here and in the rest of this section we will

consistently use the symbolˆto indicate the quantities associated with uncoordinated

access.) Once again, for analyses in which we consider a single provider, we will drop

index i from our notation for the sake of simplicity.

4.1.1 Profitability

We recognize Ŵ (p, 0) as the revenue rate of a provider when it does not serve any

secondary demand. Similar to the profitability conditions for the optimal coordinated

access case stated in Theorem 3.2.1, note that

Ŵ (p, σ(p)) ≥ Ŵ (p, 0) (4.2)
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Figure 4·1: Revenue rates under optimal coordinated and uncoordi-
nated access versus secondary demand - network parameters: pi = 30,
λi = 13, Ci = 20 and Ki = 50.

if and only if p ≥ p̂BE, where p̂BE satisfies:

p̂BE =
(E(λ+ σ(p̂BE), C)− E(λ,C))λK

(1− E(λ+ σ(p̂BE), C))σ(p̂BE)
. (4.3)

Hence the provider incurs loss and has no incentive to serve the secondary de-

mand at a price below p̂BE. In turn p̂BE is the break-even price of a provider under

uncoordinated access.

It is instructive to compare the break-even prices under uncoordinated access and

optimal coordinated access. Firstly, p̂BE ≥ pBE because if the optimal admission

policy does not yield positive profit from secondary demand then neither does any

other policy. For typical parameters this inequality is strict. Consequently, providers

need to charge a higher price to secondary users in order to avoid a net loss, which

results in the tendency to bid higher prices under uncoordinated access. Secondly,

in contrast to pBE, the break-even price p̂BE for uncoordinated access is given by an

implicit equation that depends on the secondary demand σ(p).
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4.1.2 Market Sharing

While we established in Lemma 3.3.1 that market sharing is not favorable under

optimal coordinated access, these results do not necessarily extend to a case when

uncoordinated access is implemented. As a matter of fact, under an uncoordinated

access implementation, whether the revenue rate increases or decreases by sharing

secondary demand depends on another critical parameter we shall establish later.

Before we get into our analysis, it is insightful to compare how the revenue rates

Ŵ (p, σ) and W ∗(p, σ) behave under uncoordinated and optimal coordinated access

strategies. Figure 4·1 illustrates the two revenue rates for a range of secondary de-

mand σ ,when all other parameters are fixed. When plotting both revenue rates,

the secondary price p is chosen above both break-even prices so that the optimal

revenue rate W ∗(p, σ) is strictly increasing in σ. As a by-product of optimality,

W ∗(p, σ) ≥ Ŵ (p, σ) under all circumstances.

However, Ŵ (p, σ) has an important qualitative difference relative to its optimal

counterpart: It increases for a range of secondary demand σ and decreases afterwards.

This happens because for small σ, secondary users enhance revenue by using the

leftover capacity from primary users, but as σ increases secondary access occurs at an

increasing expense of primary access and that leads to a decline in revenue if primary

users are more valuable (that is, if p < K). This property opens the possibility

that Ŵ (p, ασ) > Ŵ (p, σ), in which case a provider has incentive to share secondary

demand at prices higher than break-even. Consequently, it has a profound impact on

the outcome of a competitive setting.

To formalize this intuition let us define pMS as the solution to the following:

p =
(E(λ+ σ(p), C)− E(λ+ ασ(p), C))λK

(1− E(λ+ σ(p), C))σ(p)− (1− E(λ+ ασ(p)))ασ(p)
. (4.4)
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It can be verified directly from Eq. (4.1) that:

Ŵ (p, ασ(p))


> Ŵ (p, σ(p)) for p < pMS

≤ Ŵ (p, σ(p)) for p ≥ pMS.

(4.5)

Thus, only up to the price value pMS, any provider would benefit from a reduction

in its secondary demand. The price pMS can be interpreted as a market sharing

threshold for the provider: Any price above this threshold renders secondary demand

too valuable to share and warrants a price war. Below this threshold, the provider

has an incentive to remain at an equilibrium that reflects market sharing, provided

the price satisfies the initial profitability condition in Eq. (4.2), which translates to

being above the break-even price p̂BE.

4.1.3 Profitable Sharing Interval

In this section, we seek to determine the relationship between the maximum market

sharing price pMS and the break-even price p̂BE. In particular, if one can show that

one price is always greater than the other, this can greatly simplify the results by

ruling out or strictly establishing a preference to share the secondary market before

making a negative profit. We present our results in the next theorem for the special

case of fixed demand (we later present numerical evidence that similar results should

hold for elastic demand):

Lemma 4.1.1 For a fixed secondary demand such that σ(p) = σ, the following price

relationships always hold under an uncoordinated access policy:

p̂BE ≤ pMS < K. (4.6)

Proof.
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a) First, we prove p̂BE ≤ pMS. Through Eqs. (4.3) and (4.4) we can rewrite this

inequality in the following form:

1− E(λ+ σ(p), C)

E(λ+ σ(p), C)− E(λ,C)
· E(λ+ σ(p), C)− E(λ+ ασ(p), C)

1− E(λ+ σ(p), C)− α− αE(λ+ ασ(p), C)
≥1. (4.7)

Next, using the well-known recursive equation of the Erlang-B formula (Krishnan,

Sep):

E(λ,C) =
λE(λ,C − 1)

C + λE(λ,C − 1)
,

we can expand Eq. (4.7) and after some algebra and regrouping of the terms, we can

show that the inequality p̂BE ≤ pMS is equivalent to demonstrating that:

α(λ+ σ)E(λ+ σ,C − 1) + (1− α)λE(λ,C − 1) ≥ (λ+ ασ)E(λ+ ασ,C − 1).

(4.8)

Define gC−1(λ) = λ·E(λ,C−1), which represents the traffic loss rate when the arrival

process is Poisson with rate λ. For Eq. (4.8) to hold we need:

αgC−1(λ+ σ) + (1− α)gC−1(λ) ≥ gC−1(λ+ ασ). (4.9)

Once can observe that Eq. (4.9) is by definition the convexity condition on the

traffic loss as a function of the arrival rate, which is proven in (Krishnan, Sep).

Therefore, p̂BE ≤ pMS.

b) We now show that the market sharing price is always less than the primary

reward, i.e., pMS < K. Recalling Eq. (4.4), this is equivalent to the following:

(E(λ+ σ,C)− E(λ+ ασ,Ci))λ

(1− E(λ+ σ,C))σ − (1− E(λ+ ασ))ασ
< 1.

After some rearrangement of the terms and substituting gC(λ) for λ ·E(λ,C), the

inequality takes the form:
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gC(λ+ σ)− gC(λ+ ασ) < σ(1− α).

Upon careful observation, this inequality condition holds if one can show that:

g′C(λ) =
dgC(λ)

dλ
< 1. (4.10)

In the paper (Krishnan, Sep), it has been demonstrated that g′C(λ) ≤ 1 for C ≥ 0.

The equality condition stems from the fact that the induction proof starts from C = 0,

for which gC(λ) = λ and hence g′C(λ) = 1. If one would start the induction from

C = 1, using the following recursive formulation of gC(λ)

gC(λ) =
λgC−1(λ)

C + λgC−1
, (4.11)

provided in (Krishnan, Sep), one can show that g1(λ) = λ2/1 +λ. Taking the deriva-

tive with respect to λ,

g′1(λ) =
λ2 + 2λ

λ2 + 2λ+ 1
< 1. (4.12)

Then following the same steps as in (Krishnan, Sep) one can show that g′C(λ) < 1 for

C ≥ 1, which establishes Eq. (4.10). �

Lemma 4.1.1 establishes a fundamental relationship between the break-even and

market sharing prices and the primary reward K, thus proving the existence of a

profitable market sharing price interval. This interval plays a critical role in defining

the market outcomes, as we shall demonstrate in the next section.

4.1.4 Equilibrium

Competitive equilibria under uncoordinated access can now be determined depending

on the critical price values p̂BEi and pMS
i of all providers i. Figure 4·2 illustrates a

particular placement of these parameters for two providers. In the illustrated setting,
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Figure 4·2: Point (A) represents the Nash equilibrium under optimal
coordinated access, and the continuum of points in (B) is the set of
Nash equilibria under uncoordinated access.

the market sharing intervals [p̂BE1 , pMS
1 ] and [p̂BE2 , pMS

2 ] have a non-empty intersec-

tion; therefore there exist common price values that are above break-even values and

acceptable for market sharing for both providers. In turn, there is a continuum of

equilibria strictly above the break-even prices.

We conclude this section with a numerical example concerning a symmetric set-

ting.

Example 4.1.1 We consider two network providers with identical parameters: Pri-

mary arrival rate λi = 13, capacity Ci = 20, and revenue collected per serviced

primary user Ki = 50. We continue to assume inelastic secondary demand whose

value is chosen to be σ = 20. We assume that secondary demand splits equally in the

case of equal prices, that is, α1 = α2 = 0.5.

The break-even price for coordinated access is computed as 0.91; hence by The-

orem 3.4.1 the unique price equilibrium under coordinated access is p1 = p2 = 0.91

and no provider profits from secondary demand.

The break-even price for uncoordinated access is p̂BEi = 23.46 and the market

sharing threshold is pMS
i = 34.11. Hence, any price profile (p, p) where p lies in the

interval [23.46, 34.11] constitutes a competitive equilibrium. For example, if provider
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Access Policy Equilibrium price Equilibrium profit
Coordinated p1 = p2 = 0.91 P1 = P2 = 0

Uncoordinated 23.46 ≤ p̂1 = p̂2 ≤ 34.11 0 ≤ P̂1 = P̂2 ≤ 121.54

Table 4.1: Equilibrium prices and resulting profits for the setting
considered in Example 4.1.1.

−i adopts the secondary price p−i = 30 then

Ri(p1, p2) =

 Ŵi(pi, σ) = 74.66 if pi = 29.99
Ŵi(pi, 0.5σ) = 90.01 if pi = 30
Ŵi(pi, 0) = 0 if pi > 30,

In particular pi = 30 is the best response of provider i; and so the price profile

(30, 30) is a Nash equilibrium. A comparison of possible equilibria and associated

profits under both access strategies is given in Table 4.1. It is worth noting that in

the coordinated access policy, the price war drives the profits of both provider to zero

by lowering the prices to the break-even price, which is the same for each provider.

On the other hand, uncoordinated access gives a range of prices yielding positive

profits in the sharing interval. Note that profit from primary users is not included in

either case.

Interestingly, an uncoordinated access policy, which is sub-optimal to implement

for a provider in isolation, results in competitive equilibria in which all providers are

strictly better off than resorting to their optimal individual policies.

Example 4.1.2 This time, we consider an elastic demand to demonstrate that our

results extend beyond inelastic secondary demand. Once again there are two network

providers with identical parameters: Primary arrival rate λi = 30, capacity Ci = 50,

and revenue collected per serviced primary user Ki = 50. We assume a secondary

demand that is exponentially decreasing with the price σ(p) = 80e−0.02p. We assume

that secondary demand splits equally in the case of equal prices, that is, α1 = α2 =

0.5.

The break-even price for coordinated access is computed as 0.01; hence by The-

orem 3.4.1 the unique price equilibrium under coordinated access is p1 = p2 = 0.01

and no provider profits from secondary demand.

The break-even price for uncoordinated access is p̂BEi = 20.06 and the market
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sharing threshold is pMS
i = 33.39. Hence, any price profile (p, p) where p lies in the

interval [20.06, 33.39] constitutes a competitive equilibrium. The same arguments

discussed within Example 4.1.1 also apply here.

4.2 Fluid Approximation Model

In the previous section we have shown that the analysis of profitability and market

equilibrium under stochastic traffic is highly dependent on the shape of the secondary

demand function. In this section we relax the stochastic nature of the traffic and

assume a fluid approximation model. We start with the description of the fluid

model.

Consider two spectrum providers, where each provider i has a capacity Ci and

a primary demand of volume λi, which generates a revenue of Ki units per service.

These providers compete for a stream of secondary demand, whose volume depends

of their pricing of secondary service as illustrated in Figure 4·31. We assume a traffic

model where if provider i receives a total demand of volume λi, then it can accommo-

date the volume min(Ci, λi). The excess demand max(λi − Ci, 0) does not generate

any revenue for the provider.

The total demand for provider i consists of its primary demand λi and, depending

on its pricing and the pricing of its competitor, a secondary demand σi. We shall

assume that the two demand types access the capacity in an uncoordinated fashion,

as suggested by documentation on private commons (Buddhikot, 2007)2. In this

context, primary users could be viewed as high paying legacy users rather than users

with higher priority. Specifically, the two types of demand share capacity on equal

1In order to keep the model generic, we shall not adopt a particular choice of units for capacity
and demand at this point. Rather, we provide a discussion of possible choices at the end of this
section.

2While the model considered in this chapter is applicable in Private Commons, it does not
necessarily represent the only way to implement it.
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Figure 4·3: Market model: Two providers i = 1, 2, each with capac-
ity Ci and fixed primary demand λi, compete for secondary demand
stipulated by a general function of price p, σ(p).

basis, such that if the demand of provider i is composed of two types with respective

volumes λi and σi, then the overflow volume of each type is proportional to the

intensity of demand of that type. That is, in view of our previous assumption, a

fraction min
(

1, Ci
λi+σi

)
of each type of demand is actually accommodated. The steady-

state primary and secondary demands, λi and σi, and the overflow assumption are

consistent with fluid models. Such models have widely been used in the literature to

characterize network traffic at the flow level (Kelly and Williams, 2004).

We denote the price that provider i charges per unit of serviced secondary demand

by pi. The volume of the secondary demand is assumed to be determined by the

minimum price min(p1, p2) stipulated by the two providers. Specifically, the volume of

secondary demand is σ(min(p1, p2)), where σ(·) is the demand function. We make the

mild assumption that this function is differentiable and non-increasing ( ∂
∂p
σ(p) ≤ 0).

We shall also assume that there exists a positive demand when the service is offered

for free (σ(0) > 0) and the demand eventually becomes zero as the price becomes

arbitrarily high ( lim
p→∞

σ(p) = 0).

It is assumed that the secondary demand is attracted to the provider that charges
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the lowest price. This behavior can be explained by price aversion, a concept em-

ployed in marketing management (Tellis and Gaeth, 1990). In the case when both

providers charge the same price, the resulting secondary demand splits between the

two providers according to an arbitrary but fixed probability vector α = [α1, α2] such

that α1 +α2 = 1 and αi > 0, i = 1, 2 . Namely, in that case, each provider i receives a

secondary demand of volume αiσ(pi). We will relax this assumption in Section 4.2.3,

where instead of being randomly assigned the secondary demand will be split between

the providers according to the accommodation levels.

If provider i receives a secondary demand of volume σ(pi), its overall revenue is

given by:

Wi(pi, σ(pi))
4
= piσ(pi) min

1,
Ci

λi + σ(pi)

+Kiλi min

1,
Ci

λi + σ(pi)

 . (4.13)

In this case, the secondary profit (i.e., increment in revenue from secondary access)

of the provider is:

Πi(pi, σ(pi))
4
= Wi(pi, σ(pi))−Wi(0, 0). (4.14)

Since the secondary demand that a provider receives depends on the prices of

both providers, so does the profit of the provider. We define the reward Ri(pi, p−i) of

provider i as its profit when it charges secondary access pi and its competitor charges

p−i units. Namely,

Ri(pi, p−i)
4
=


Πi(pi, σ(pi)) if pi < p−i
Πi(pi, αiσ(pi)) if pi = p−i
Πi(pi, 0) if pi > p−i.

In the interest of space, the discussion of the fluid model in this dissertation is

limited to the case when each provider’s network is underloaded prior to inclusion

of any secondary demand, that is λi < Ci, but can be overloaded for low enough
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prices, that is λi+σ(0) > Ci. Though the omitted cases warrant their own respective

analyses, those are arguably less challenging and practical. For instance, consider the

case when the maximum possible total demand does not exceed the network capacity

(i.e., λi + σ(0) ≤ Ci). Since we assume that the secondary demand is non-increasing

with price pi advertised by the provider, the maximum secondary demand is given

by σ(0). If the maximum secondary demand generated by a zero price value does

not exceed provider i’s capacity such that λi + σ(0) ≤ Ci then it is also true that

λi + σ(pi) ≤ Ci for all price values pi ≥ 0. Then the network can accommodate

the entire secondary demand at any price without losing any revenue collected from

primary traffic.

On the other hand, if the primary demand already exceeds the capacity (i.e.,

λi ≥ Ci), the network provider is already having difficulties in serving the primary

traffic and is incurring an opportunity cost of the unserviced traffic volume. Then the

revenue brought in by secondary demand would need to match or exceed the revenue

per serviced primary demand (i.e., pi ≥ Ki) in order to have the network provider

profitably replace some of its original traffic.

Discussion We provide next a possible interpretation of our model. The service

capacity Ci can represent the number of sub-carriers in an OFDM modulation scheme

used in LTE or the number of radio channels3 available for assignment for voice

or data traffic in common 3G standards (Paul et al., 2011). The steady primary

and secondary demands, λi and σ(p), and the overflow assumption are consistent

with fluid models (Anick et al., 1982). Such models have widely been used in the

literature to characterize network traffic at the flow level (Fred et al., 2001; Kelly and

Williams, 2004; Hassidim et al., 2013). This assumption is substantiated by traffic

3This radio channel refers to any radio resource allocated to the user such as code, frequency or
time slot.
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measurements in cellular networks, which show that mean arrival rates do not show

significant variations over the course of an hour (Paul et al., 2011; Willkomm et al.,

2008). Obviously, specific values of λi and σ(p) depend on the hour of the day or day

of the week.

4.2.1 Characteristic Prices and Market Sharing Interval

In this section we present two characteristic prices and demand-invariant price rela-

tionships in a secondary spectrum markets. This section focuses on the viewpoint of

a single provider. Therefore for simplicity, we omit the use of index i from of our

notation throughout this section.

We define the break-even price pBE(α) as the price at which the profit of a

provider is zero when it attracts a fraction 0 < α ≤ 1 of the total demand, namely

Π(pBE, ασ(pBE)) = 0. We start off by providing a formal definition of a break-even

price:

Definition 4.2.1 (Break-Even Price) A price pBE(α) ≥ 0 is called a break-even

price if it satisfies the following conditions:

Π(pBE, ασ(pBE)) = 0 and ασ(pBE) > 0.

Note that the latter condition in the above definition is to rule out any price that

does not generate any secondary demand.

We next define the market sharing price pMS(α), that asserts whether a provider

finds it desirable to share the secondary demand or not. Specifically, let

∆W (p) , W (p, ασ(p))−W (p, σ(p)).

Definition 4.2.2 (Market Sharing Price) A price pMS(α) ≥ 0 is called a market
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sharing price if the following is true:

∆W (p) = 0 for p = pMS(α).

These two prices characterize two important incentives for a network provider. We

will show that the break-even price determines provider profitability, where any price

set greater is guaranteed to result in a positive profit. We will also establish that,

analogous to the relationship between the break-even price and provider profitability,

a provider finds it undesirable to share the secondary demand at prices above the

market sharing price, whereas the opposite is true for prices below the market sharing

price. Having defined the break-even and market sharing prices, we can proceed with

stating our main results in the following theorem:

Theorem 4.2.1 (Market Sharing Interval) For any secondary demand function,

satisfying the assumptions described in Section 4.2 and for all values of α : 0 < α ≤ 1,

there exists a price interval

(P) ≡ (pBE(α), pMS(α)),

such that for all p ∈ (P):

1. Π(p, σ(p)) > 0,

2. Π(p, ασ(p)) > Π(p, σ(p)).

Theorem 4.2.1 states that no matter the specific shape of a secondary demand

function, the existence of the price interval (P) at which a network provider is prof-

itable and finds it preferable to share the secondary demand is guaranteed. In order

to prove Theorem 4.2.1 we will first provide formulations for break-even and market

sharing prices in Sections 4.2.1 and 4.2.1 respectively. Afterwards, we bring the proof

of Theorem 4.2.1 in Section 4.2.1.
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Profitability and Break-Even Price

In this section we seek to analyze a provider’s profit and the resulting break-even

price. Our result applies both to the cases when a network provider serves the entire

secondary demand (i.e., α = 1) and when it shares the market with another provider

(i.e, α < 1).

Since a break-even price is a measure of a provider’s competitive ability in a price

war, characterizing this price is important. The following lemma restricts the price

interval on which a break-even price when the provider captures the entire secondary

demand (i.e., monopoly) lies:

Lemma 4.2.1 For a given α such that λ+ασ(0) > C, there exists a price p̄α, which

is the minimum price that satisfies ασ(p) = C−λ. Then, any break-even price pBE(α)

satisfies the following inequality:

1. pBE(α) ≤ p̄α for any demand function σ(p).

2.

λ+ ασ(pBE(α)) ≥ C. (4.15)

Proof.The existence of p̄α follows from the assumption λ + ασ(0) > C and that

the demand is non-increasing with the limit lim
p→∞

σ(p) = 0.

(1) Let p′ be such a price that ασ(p′) + λ ≤ C. Since we know that secondary

demand is non-increasing in p it also follows that p′ must satisfy the following in-

equality: p′ ≥ p̄α. We know that setting price equal to p′ results in a non-negative

profit since by Eq.’s (4.13) and (4.14) we have that:

Π(p′, ασ(p′)) = ασ(p′)p′ ≥ 0.

Given that any price greater than or equal p̄α yields a non-negative profit for a

provider, we can conclude that p̄α is an upper bound on the break-even price pBE(α)
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(i.e., pBE(α) ≤ p̄α).

(2) From part 1 of our proof we know that:

pBE(α) ≤ p̄α.

Then, through our assumption that the secondary demand is non-increasing in p, the

following is also true:

ασ(pBE(α)) ≥ ασ(p̄α). (4.16)

Thus, from Eq. (4.16) and the definition of p̄α we obtain: λ+ ασ(pBE(α)) ≥ C. �

An intuitive explanation to Lemma 4.2.1 is that for all prices p such that λ +

ασ(p) < C, the overflow of either type of demand is zero. Thus, there is no associated

penalty with serving additional secondary demand. However, once the excess demand

becomes positive, a provider observes a trade-off between the revenue brought in by

the secondary demand versus the potential revenue lost from the unserviced primary

demand. The break-even price reflects the price at which both sides of this trade-off

are equal.

Lemma 4.2.1 demonstrates that for all such values of α, including the monopolistic

case when α = 1, we can limit our analysis to those prices that satisfy (4.15). At these

prices the fraction of both types of demand being accommodated is C/(λ + ασ(p)).

Then, we can remove the min operators from Eq. (4.13) and simplify Eq. (4.14) for

the profit as follows:

Π(p, ασ(p)) = ασ(p)p · C

λ+ ασ(p)
+ λK

(
C

λ+ ασ(p)
− 1

)
. (4.17)

The following theorem, leveraging our previous results from Lemma 4.2.1 and

Eq. (4.17), provides an equation that allows the computation of the break-even price

pBE(α) for the aforementioned values of α. The theorem also establishes the unique-
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ness of this price and the region of profitable prices.

Theorem 4.2.2 (Break-Even Price)

1. For a given 0 < α ≤ 1, such that λ+ ασ(0) > C:

(a) A break-even price pBE(α) is a solution to the following equation4:

p =
(ασ(p) + λ− C)λK

Cασ(p)
. (4.18)

(b) The break-even price pBE(α) is unique.

(c) The profit of a provider is such that:

Π(p, ασ(p)) > 0 if p > pBE(α)

Π(p, ασ(p)) < 0 if p < pBE(α).

2. For a given 0 < α < 1, such that λ + ασ(0) ≤ C, the break-even price pBE(α)

is 0.

Proof. (1) (a) We know that at a break-even price the profit is given by Eq.

(4.17). In order to ensure Π(p, ασ(p)) = 0, it can be verified through simple algebra

that a price p needs to satisfy the following equation:

p =
(ασ(p) + λ− C)λK

Cασ(p)
.

Furthermore, we know that at price pBE(α), secondary demand will be positive

by combining inequality (4.16) and the fact that λ < C:

σ(pBE(α)) ≥ σ(p̄) = C − λ > 0.

(b) We will proceed by demonstrating that the left hand side of Eq. (4.18) is

strictly increasing with respect to p and the right hand side is non-increasing with

4This implicit equation can be solved with well-established fixed point iterations, such as Newton’s
Method.
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respect to p, hence meaning that this equality only holds at a single value of p. Since

the left hand side of Eq. (4.18) is p itself, we only need to prove that the right hand

side is non-increasing. Under the assumption that σ(p) is a differentiable and non-

increasing function of p, taking the derivative of the right hand side with respect to

p yields:

∂

∂p

(
(ασ(p) + λ− C)λK

Cασ(p)

)
=

(
1

ασ(p)
− λ+ ασ(p)− C

α2σ2(p)

)
ασ′(p)

(
λK

C

)
=

(
C − λ
α2σ2(p)

)
ασ′(p)

(
λK

C

)
≤ 0. (4.19)

Eq. (4.19) holds because λ < C and σ′(pBE(α)) ≤ 0.

We also know that the lhs of Eq. (4.18) is continuous in p, which follows from the

differentiability of the secondary demand σ(p). Therefore, there can only be at most

one solution for pBE(α) that satisfies Eq. (4.18).

(c) From Eq. (4.17), it can verified that in order for Π(p, ασ(p)) > 0 to hold, p

needs to satisfy the following inequality:

p >
(ασ(p) + λ− C)λK

Cασ(p)
.

In part (b) of our proof, we have demonstrated that the right hand side of Eq. (4.18)

is non-increasing with respect to p. Therefore for p′ > pBE(α):

(ασ(pBE(α)) + λ− C)λK

Cασ(pBE(α))
≥ (ασ(p′) + λ− C)λK

Cασ(p′)
.

Then, since pBE(α) is the only value that satisfies Eq. (4.18),

p′ > pBE(α) =
(ασ(pBE(α)) + λ− C)λK

Cασ(pBE(α))
≥ (ασ(p′) + λ− C)λK

Cασ(′p)
.

To show that Π(p′, ασ(p′)) < 0 when p′ < pBE(α), the same argument follows in the
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reverse direction.

(2) For a given 0 < α < 1, such that λ + ασ(0) ≤ C, Eq. (4.14) simplifies to the

following:

Π(p, ασ(p)) = pασ(p).

Since σ(0) > 0 by assumption, the only price that satisfies both equations provided

Definition 4.2.1 is p = 0. �

In the next lemma, we establish a useful bound on the break-even price pBE(1).

Lemma 4.2.2 The break-even price when not sharing the secondary demand ( i.e.,

α = 1) is strictly smaller than the revenue generated by primary demand:

pBE(1) < K.

Proof. We can check this claim by taking a look at the right hand side of Eq.

(4.18):
(σ(p) + λ− C)λK

Cσ(p)
.

In order for the claim to hold, we need (σ(p) + λ− C)λ < Cσ(p), which can be

rewritten as: λ(λ + σ(p)) < C(λ + σ(p)). This is true under our initial assumption

λ < C. �

In general, there is no explicit expression for the break-even price for general

demand functions. However, it allows us to characterize two distinct price regimes by

identifying whether or not a price p generates a profit for the provider for any amount

of secondary demand. We next provide an example with a simple demand function,

where obtaining an explicit expression is rather straightforward.

Example 4.2.1 We illustrate the relationship between the break-even price when α =

1 (i.e., one provider captures the entire secondary demand) and network parameters

under a constant elasticity secondary demand function, σ(p) = σ0
p
, where σ0 > 0 is a

constant.
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Figure 4·4: Market sharing revenue change regions in Theorem 4.2.3
with respect to the market sharing price pMS(α).

Under this given demand we can simplify Eq. (4.18) and obtain the following

explicit formula:

pBE(1) =
σ0λK

Cσ0 + λK(C − λ)
. (4.20)

We have effectively formulated and characterized the unique break-even price

that determines a network provider’s profitability. However, profitability alone is

not enough to determine a market outcome. As was explained in the network model

section, matching prices affects the reward a provider faces in a non-linear fashion.

In the next section, we take into account the results of a provider choosing to share

the market.

Market Sharing

We now turn our attention to the effects market sharing has on a provider’s revenue.

In the next theorem, we present our result on how market sharing affects a provider’s

profit. The theorem establishes the existence and uniqueness of the market sharing

price pMS(α) and provides an implicit equation to compute it. It also states that

increased profit is achieved if and only if p < pMS(α).

Theorem 4.2.3 (Market Sharing Price) For any network provider there exists

a unique market sharing price pMS(α), which satisfies the following:
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1. If λ+ ασ(K) ≤ C, pMS(α) is the solution to:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (4.21)

2. If λ+ ασ(K) > C,

pMS(α) = K. (4.22)

and for any given pMS(α) the following is true:

∆W (p) > 0 for p < pMS(α), (4.23)

∆W (p) < 0 for p > pMS(α). (4.24)

Before we prove Theorem 4.2.3, we first establish several useful results that will

later facilitate our proof. Since the general revenue function of a provider involves

min operators, we need to make use of some auxiliary prices that will simplify the

expressions of W (p, σ(p)) and W (p, ασ(p)). In Lemma 4.2.1 we had already defined

p̄α to be an auxiliary price that satisfies the equality λ+ ασ(p̄α) = C. In this section

we provide another such auxiliary price to simplify our analysis. We let p̄ denote the

price that satisfies the following equation:

λ+ σ(p̄) = C. (4.25)

Since we assume that the secondary demand σ(p) is non-increasing in p for all 0 <

α < 1 it follows that p̄α < p̄, which is illustrated for a generic demand function in

Figure 4·5.

By defining these prices we have effectively divided prices into three separate

regions, i.e. [0, p̄α), [p̄α, p̄), [p̄,∞), in each of which we have a simplified revenue

function. Now, we can start our analysis on how the revenue changes depending on

which region a given price value p falls in.
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a) We first consider the price region {p : p ≥ p̄}. Note that the price inequality

corresponds to when the total demand under price p does not exceed the provider’s

service capacity. In the following lemma we establish that in this region, it is never

optimal for a provider to choose market sharing.

Lemma 4.2.3 Assume p ≥ p̄, then

∆W (p) < 0. (4.26)

Proof. Note that our assumption p ≥ p̄ is equivalent to stating that λ+σ(p) < C.

Since p̄ > p̄α, it is also true that p > p̄α. Then, the total arrival under market

sharing is also less than provider i capacity (i.e., λ+ασ(p) < C). Simplifying Eq.

(4.13) under these assumptions, we get:

∆W = W (p, ασ(p))−W (p, σ(p))

=

(
ασ(p)p+ λK

)
−
(
σ(p)p+ λK

)
= ασ(p)p− σ(p)p < 0.

Therefore we conclude that Eq. (4.26) holds. �

b) Next, we cover the price region {p : p < p̄α}. Since price values need to be non-

negative, we do not consider the case p̄α = 0. In this price interval, there are two

cases two consider. If the value of K happens to be in this region, then the revenue

change is positive for price values below K and negative for price values above K.

If K does not fall in this price interval, then the revenue change is always positive

and thus a provider will always find it desirable to share the market. We formalize

these results in the following lemma:

Lemma 4.2.4 Assume p̄α > 0 and p < p̄α, then
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Figure 4·5: An illustration of the prices p̄ and p̄α under a generic
secondary demand.

(a) If p̄α ≥ K:

∆W (p) > 0 if p < K; (4.27)

∆W (p) = 0 if p = K; (4.28)

∆W (p) < 0 if p > K. (4.29)

(b) If p̄α < K:

∆W (p) > 0 ∀p < p̄α. (4.30)

Proof. Note that our assumption p < p̄α is equivalent to stating that:

λ+ ασ(p) ≥ C.

Since p̄α < p̄, it must also be true that p < p̄. Then the combined demand

without market sharing is greater than the provider’s capacity (i.e., λ+σ(p) ≥ C).

Simplifying Eq. (4.13) under these assumptions, we obtain:

∆W = W (p, ασ(p))−W (p, σ(p))

=
ασ(p)pC

ασ(p) + λ
+

λKC

ασ(p) + λ
− σ(p)pC

σ(p) + λ
− λKC

σ(p) + λ
.
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After rearrangement we get:

∆W =
(1− α)σ(p)λC

(ασ(p) + λ)(σ(p) + λ)
(K − p). (4.31)

Eq. (4.31) only takes on the value zero when p = K. Additionally for price values

p < K, ∆W is positive and for p > K, ∆W is negative. �

Remark 4.2.1 Lemma 4.2.4 considers prices for which the reduced secondary

demand, when combined with the primary demand, exceeds the capacity of a

provider. In that case, this provider can increase its revenue at prices up to K if

p̄α ≥ K or all prices p if p̄α < K, by choosing to share the market with another

provider. On the other hand, if p̄α ≥ K, choosing to share the market decreases

the revenue at prices greater than K.

c) Finally, we cover the price region between the regions covered in parts a) and b),

such that {p : p̄α ≤ p < p̄}. Note that these are price values such that the combined

demand of the primary and secondary types exceed the service capacity without

market sharing and do not exceed the service capacity with market sharing. Once

again, similar to the previous case, the revenue change depends on the relationship

between K and how this price interval is defined. If K ≥ p̄α, then the market

sharing price lies on this interval and the revenue change is negative for price

values above and positive for price values below. Otherwise, the revenue change is

always in the negative direction and market sharing is not desirable. We present

the following lemma in this light:

Lemma 4.2.5 Assume p̄α ≤ p < p̄. Then,

1) If p̄α ≤ K:

∆W (p) > 0 if p < pMS(α);

∆W (p) ≤ 0 if p ≥ pMS(α), (4.32)
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where pMS(α) denotes the solution to the following equation:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (4.33)

2) If p̄α > K:

∆W (p) < 0. (4.34)

Proof. Note that p̄α ≤ p < p̄ is equivalent to stating that λ + σ(p) > C and

λ+ ασ(p) ≤ C. Under these conditions the revenue change function becomes:

∆W (p) =

(
ασ(p)p+ λK

)
−
(
σ(p)p

C

λ+ σ(p)
+ λK

C

λ+ σ(p)

)
.

Regrouping yields:

∆W (p) =

(
α(λ+ σ(p))− C

λ+ σ(p)
σ(p)p

)
+

(
λ+ σ(p)− C
λ+ σ(p)

λK

)
.

(1) Noting that α(λ + σ(p)) < C, it can be verified that ∆W (p) = 0 is satisfied

by the solution of the following implicit equation:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (4.35)

Furthermore, one can check that Eq. (4.35) is satisfied by a unique price p. Mul-

tiplying both sides of Eq. (4.35) with the first term in the denominator we obtain:

(C − α(λ+ σ(p)))p =
(λ+ σ(p)− C)λK

σ(p)
. (4.36)

Taking the derivative of the left hand side of Eq. (4.36) we get:

∂

∂p
(C − α(λ+ σ(p)))p = (C − α(λ+ σ(p)))− ασ′(p)p > 0.
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Taking the derivative of the right hand of Eq. (4.36) side yields:

(λ+ σ(p)− C)λK

σ(p)
=

(
1

σ(p)
− λ+ σ(p)− C

σ2(p)

)
σ′(p)λK =

(
C − λ
σ2(p)

)
σ′(p)λK ≤ 0.

One side of the equation is strictly increasing with p, while the other is non-

increasing in p. Since both sides are continuous in p, we conclude that equality

(4.35) holds for a unique value of p.

If p̄α ≤ K, Lemma 4.2.4 states that ∆W (p) > 0 for price values p < p̄α. By Lemma

4.2.3 we have ∆W (p) < 0 for p ≥ p̄. Therefore, it must be that pMS(α) ∈ [p̄α, p̄).

Since ∆W (p) = 0 only when p = pMS(α), by continuity of revenue it follows that

∆W (p) > 0 for all p < pMS(α) and ∆W (p) < 0 for all p > pMS(α).

(2) In the previous part of our proof we have demonstrated that on the price

interval [p̄α, p̄], the only possible price that sets ∆W (p) = 0 is given by:

p =
(λ+ σ(p)− C)λK

(C − α(λ+ σ(p)))σ(p)
. (4.37)

We will show that if p̄α > K, the solution to Eq. (4.37) lies outside the price

interval [p̄α, p̄). Let p∗ denote a particular solution to Eq. (4.37). Assume p∗ ∈

[p̄α, p̄), which means that p∗ > K. Taking the ratio of p∗

K
and substituting the

right hand side of Eq. (4.37) for p∗ yields:

(λ+ σ(p∗)− C)λ

(C − α(λ+ σ(p∗)))σ(p∗)
> 1. (4.38)

After some rearrangement we get:

λ(λ+ σ(p∗)) > C(λ+ σ(p∗))− ασ(p∗)(λ+ σ(p∗)),

λ > C − ασ(p∗). (4.39)
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which is a contradiction to our initial assumption p∗ ∈ [p̄α, p̄]. Therefore, no value

of p yields ∆W (p) = 0 on the price interval [p̄α, p̄]. Additionally, since p̄α > K,

Lemma 4.2.4 states that ∆W (p̄α) < 0. Due to the continuity of the revenue W (p)

and the fact that there are no zero crossings in this interval, it must also be true

that ∆W (p) < 0 for p ∈ [p̄α, p̄]. �

Having analyzed how the revenue changes under market sharing for the three price

intervals we have defined, we can finally move on to proving Theorem 4.2.3:

Proof of Theorem 4.2.3

1. Case 1 - λ+ασ(K) ≤ C : By the way we have defined p̄α, this case is equivalent

to stating that p̄α ≤ K. Then by Lemma 4.2.3 and Lemma 4.2.4 we have that:

∆W (p) < 0 for p ≥ p̄, (4.40)

∆W (p) > 0 for p < p̄α. (4.41)

Therefore the market sharing price pMS(α) must lie on the price interval [p̄α, p̄).

Lemma 4.2.5 states that pMS(α) satisfies Eq. (4.33) such that ∆W (pMS(α)) = 0

and for p ∈ [p̄α, p̄):

∆W (p) < 0 if p > pMS(α), (4.42)

∆W (p) > 0 if p < pMS(α). (4.43)

Combining Eq.’s (4.40) to (4.43) we obtain the results stated in the proposition.

2. Case 2- λ+ασ(K) > C: By the way we have defined p̄α, this case is equivalent

to stating that p̄α > K. Then by Lemma 4.2.3 and Lemma 4.2.5 we have that:

∆W (p) < 0 for p ≥ p̄α. (4.44)
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Therefore the market sharing price pMS(α) must belong to the price interval

[0, p̄α). Lemma 4.2.4 states that the revenue change is equal to zero when

p = K, therefore we conclude that the market sharing price pMS(α) = K.

Additionally, we have that:

∆W (p) < 0 if p > pMS(α), (4.45)

∆W (p) > 0 if p < pMS(α). (4.46)

Combining Eq.’s (4.44) to (4.46) we obtain the results stated in the theorem.

�

Theorem 4.2.3 yields a rather non-straightforward result such that for any network

provider there exists a unique price which acts as a threshold value: market sharing at

all prices greater than this threshold results in a profit decrease, while at prices below

this threshold the network provider is guaranteed a profit increase by decreasing its

secondary demand. In this way, it serves a similar function to that of the break-even

price: It further divides the price ranges into two regimes but this time by identifying

when serving the reduced secondary demand generates more profit that serving the

full demand.

In the next lemma, we establish an upper bound on the market sharing price,

similar to what we did in Lemma 4.2.2.

Lemma 4.2.6 The market sharing price is less than or equal to the revenue generated

by primary demand:

pMS(α) ≤ K.

Proof. The inequality holds when pMS
i (α) = Ki. When pMS

i (α) is given by the

solution to the implicit equation in Eq. (4.33), we prove it by showing the following:

pMS
i =

(λi + σ(pMS
i (α))− Ci)λiKi

(Ci − αi(λi + σ(pMS
i (α))))σ(pMS

i (α))
≤ Ki.
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After some simple algebra and regrouping of terms we get:

λi ≤ Ci − αiσ(pMS
i (α)).

Note that if pMS
i (α) is given by the solution to the implicit equation in Eq. (4.33),

by Lemma 4.2.5 it also follows that pMS
i (α) ∈ [p̄αi , p̄i). From the way we have defined

p̄αi in Lemma 4.2.1 we conclude that λ+ ασ(pMS
i (α)) ≤ C. �

Example 4.2.2 We illustrate the relationship between the market sharing price and

network parameters under the same constant elasticity secondary demand function

we used before, σ(p) = σ0/p.

Under this given demand and assuming σ0 ≤ (C−λ)K/α such that λ+ασ(K) ≤
C, we obtain from Eq. (4.21) the following explicit formula for the market sharing

price:

pMS(α) =
λKσ0 + ασ2

0

σ0(C − αλ) + λK(C − λ)
. (4.47)

If σ0 > (C − λ)K/α, then pMS(α) = K by Eq. (4.22).

Theorems 4.2.2 and 4.2.3 provide implicit equations for the break-even price

pBE(α) and market sharing price pMS(α) that depend on the demand function σ(p).

Strikingly, one can show through careful analysis that the ratio of pBE(α) to pMS(α)

is strictly smaller than 1 for any demand function.

Proof of Theorem 4.2.1

(1) If pBE(α) > 0:

(a) Assume pMS(α) = K. In Lemma 4.2.2 we have established that pBE(1) < K.

Let us rearrange Eq. (4.18) as follows:

p =
λK

C
− λK(C − λ)

Cασ(p)

One can observe that the right hand side of Eq. (4.18) is increasing with α since
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λ < C. Therefore, the solution to the implicit equation that yields the break-even

price is increasing with α. Hence, we have

pBE(α) < pBE(1) ∀α ∈ [0, 1) (4.48)

Combining Eq. (4.48) with the results of Lemma 4.2.2 we conclude that pBE(α) < K.

(b) Assume pMS(α) is given by the solution to the implicit equation in Eq. (4.33).

We will prove the inequality by contradiction. Assume:

pMS(α) ≤ pBE(1).

Since secondary demand is non-increasing in p it follows that σ(pMS(α)) ≥ σ(pBE(1)).

Taking the ratio between Eq. (4.18) and Eq. (4.33) yields:

pBE(1)

pMS(α)
=

(σ(pBE(1)) + λ− C)σ(pMS(α))

(σ(pMS(α)) + λ− C)σ(pBE(1))
· (C − α(λ+ σ(pMS(α)))

C
. (4.49)

The first fraction in Eq. (4.49) is less than or equal to 1 while the second is strictly less

than 1. Furthermore, we know that both fractions must be positive since σ(pBE(1)) ≥

C − λ by Lemma 4.2.1 and pMS(α) < p̄. We have:

pBE(1) < pMS(α), (4.50)

which contradicts our initial assumption that pMS(α) ≤ pBE(1). Hence, it must be

true that pMS(α) > pBE(1). In Eq. (4.48) we have established that pBE(α) < pBE(1)

for α < 1. Hence it is true for all values of α ∈ (0, 1] that pMS(α) > pBE(α).

(2) If pBE(α) = 0, we can show that the market sharing price is strictly greater

than zero in both cases. pMS(α) = K is self-explanatory and by Eq. (4.33), we

conclude pMS(α) > 0 as σ(pMS(α)) + λ− C > 0.
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4.2.2 Duopoly Competition

In the previous sections we have identified a provider’s competitive ability in a price

war through establishing the break-even price and its incentive to share the market

through the market sharing price. However, spectrum markets do not consist of a

single provider, but rather several providers competing with each other. Therefore,

our previous results, while being important, are not enough to determine the outcome

of a secondary spectrum market. In this section, we consider the simplest oligopoly

possible, a duopoly where two providers compete to enhance their profits by first

capturing and then serving the secondary demand. To identify a market equilibrium,

we utilize the concept of Nash equilibrium (NE) from game theory. Since NE are

classically determined by best response functions, we will first seek to establish the best

response dynamics of provider i to a fixed competitor price p−i, where the notation

−i signifies the competing provider.

Definition 4.2.3 (Best Response) Given two providers, provider i’s best response

to competitor’s pricing decision p−i is the payoff maximizing strategy such that:

pBRi (p−i) = arg max
pi

Ri(pi, p−i). (4.51)

Definition 4.2.4 (Nash Equilibrium) A pricing strategy profile (p∗1, p
∗
2) is a Nash

equilibrium (NE) if and only if both prices are a best response to each other such that:

p∗1 = pBR1 (p∗2) and p∗2 = pBR2 (p∗1). (4.52)

Facing a competitor price p−i, the strategies available to provider i consist of either

matching this price and sharing the secondary demand or not matching it and trying

to capture all of the secondary demand. While setting the price below or above the

competitor’s price follows a rather straightforward approach, the case of matching

the competitor’s price requires a more detailed analysis due to the discontinuity in
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the profit function. The next lemma states that if it is possible to increase the profit

by capturing all of the secondary demand σ(pi) at a certain price pi, then it is also

desirable to capture the secondary demand at a slightly lower price p′i < pi. We will

then utilize this result in establishing provider i’s best response for prices pi > pMS
i (α).

Lemma 4.2.7 For any pi such that ∆Wi(pi) < 0 holds, there exists a price p′i such

that pMS
i (α) < p′i < pi and

Wi(p
′
i, σ(p′i)) > Wi(pi, αiσ(pi)). (4.53)

Proof. Since we know that Wi(x, σ(x)) is differentiable in x, we can always a

pick a price qi < pi such that on the interval [qi, pi), the function Wi(x, σ(x)) is either

monotonically increasing, constant or monotonically decreasing with respect to x5.

We break our proof into two cases:

(1) Assume that for a given qi such that qi < pi, the following is true for any p̂i ∈

[qi, pi):

Wi(p̂i, σ(p̂i)) ≥ Wi(pi, σ(pi)).

Then it follows by our assumption ∆Wi(pi) < 0 that Wi(p̂i, σ(p̂i)) > Wi(pi, αiσ(pi)),

and p′i = p̂i.

(2) Assume for a given qi such that qi < pi, the following is true for all p̂i ∈ [qi, pi):

Wi(p̂i, σ(p̂i)) < Wi(pi, σ(pi)). (4.54)

Then by the definition of continuity, the following can be stated for Wi(pi, σ(pi)):

∀ε > 0, ∃δ(ε, pi) > 0 s.t. if |pi − p̂i| < δ then

|Wi(pi, σ(pi))−Wi(p̂i, σ(p̂i))| < ε.

5It should be noted that differentiability is not a necessary condition for this statement; local
monotonocity of Wi(x, σ(x)) would suffice. However, as we need differentiability elsewhere in the
chapter, we simply use it here as well.
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Figure 4·6: Best response of network provider i: a) When the com-
petitor price is below pBEi , the provider sets its price to pBEi ; b) When
the competitor price is within the market sharing interval, the provider
matches the price; c) When the competitor price is above pMS

i , the
provider sets its price slightly lower.

Making use of Eq. (4.54) and our assumption that p̂i ∈ [qi, pi), we can remove the

absolute value from the previous equation and simplify it to:

Wi(pi, σ(pi))−Wi(p̂i, σ(p̂i)) < ε. (4.55)

Taking ε = Wi(pi, σ(pi)) −Wi(pi, αiσ(pi)) and cancelling the terms Wi(pi, σ(pi)) on

both sides of the inequality (4.55) we obtain:

−Wi(p̂i, σ(p̂i)) < −Wi(pi, αiσ(pi)),

Wi(p̂i, σ(p̂i)) > Wi(pi, αiσ(pi)),

and p′i = p̂. �



84

The next theorem presents provider i’s best response, which we shall utilize later

to determine NE.

Theorem 4.2.4 (Best Response) Provider i best response to its competing provid-

er’s pricing decision p−i is:

pBRi (p−i) =

{
pmi (p−i) for p−i > pMS

i (α)
p−i for pBEi (αi) ≤ p−i ≤ pMS

i (α)
pBEi for p−i < pBEi (αi),

where pmi (p−i) < p−i satisfies Eq. (4.53) in Lemma 4.2.7 to the optimality such that

Wi(p
m
i , σ(pmi )) = max

pi∈(pMS
i (α),p−i)

Wi(pi, σ(pi)). (4.56)

Remark 4.2.2 The exact value of pmi (p−i) depends on where the revenue is being

maximized over the interval (pMS
i (α), p−i). If the revenue is monotonically increasing

up until p−i, we can simplify Eq. (4.56) to the following:

pmi (p−i) = p−i − ε,

where ε is a sufficiently small discretization step, which is used when working with con-

tinuous prices. This assumption is a well-known approach used in game theory (Os-

bourne, 2004) because otherwise, a best response does not technically exist. On the

other hand, it is possible that provider i’s revenue attains a maximum at a lower price

point, in which case pmi (p−i) is as given in Eq. (4.56) and its exact value depends on

the price elasticity of secondary demand.

Proof. We will consider each price condition described in Theorem 4.2.3 sepa-

rately.

(1) In the first price condition, such that ∆Wi(p−i) < 0, provider i can either

choose to match, lower or increase its price. Lowering the price such that p′i < p−i is

clearly better than price matching (pi = p−i) since we have demonstrated in Lemma

4.2.7 that:

Wi(p
′
i, σ(p′i)) > Wi(p−i, αiσ(p−i)).
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Lowering the price to p′i is also better than increasing the price to pi > p−i since the

following is true:

Wi(p
′
i, σ(p′i)) > 0 = Wi(pi, p−i), for all pi > p−i.

Hence, lowering the price to p′i is the best response of provider i.

(2) In the second competitor price condition such that pBEi (αi) ≤ p−i ≤ pMS
i (α),

we know that the following holds:

∆Wi(p−i) = Wi(p−i, αiσ(p−i))−Wi(p−i, σ(p−i)) ≥ 0. (4.57)

Selecting a price above the competitor’s price such that pi > p−i does not attract any

secondary demand and therefore yields a profit of zero. Thus matching p−i is better

than increasing the price to pi > p−i:

Πi(pi, 0) = 0 ≤ Πi(p−i, αiσ(p−i)), ∀pi > p−i.

Next, we compare matching the price at p−i to lowering the price to any price

{pi : pi < p−i}. We seek to find the price that maximizes the revenue function

Wi(pi, σ(pi)) on the interval [0, p−i]. We know from Lemmas 4.2.4 and 4.2.5 that

pMS
i (α) < p̄. Hence any price p on the interval [0, p−i] where p−i < pMS

i (α) satisfies

λi + σ(p) > Ci. Simplifying Eq. (4.13) and by taking the derivative with respect to

pi we can show that:

∂

∂pi
Wi(pi, σ(pi)) =

∂

∂pi

(
σ(pi)pi

Ci
λi + σ(pi)

+ λiKi
Ci

λi + σ(pi)

)
= (σ(pi) + σ′(pi)pi)

Ci
λi + σ(pi)

− σ′(pi)σ(pi)pi
Ci

(λi + σ(pi))2

− σ′(pi)λiKi
Ci

(λi + σ(pi))2
.
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Regrouping the terms yields:

∂

∂pi
Wi(pi, σ(pi)) = σ(pi)

Ci
λi + σ(pi)

+ λiCiσ
′(pi)

pi −Ki

(λi + σ(pi))2
> 0,

for pi ≤ Ki since σ′(pi) ≤ 0.

We also know from Lemma 4.2.6 that pMS
i (α) ≤ Ki. Therefore, the revenue

maximizing price (which is also profit maximizing) is given by pi = p−i such that for

all 0 ≤ pi ≤ p−i:

Wi(p−i, σ(p−i)) ≥ Wi(pi, σ(pi)).

By Equation (4.57), it follows that for all pBEi (αi) ≤ pi ≤ p−i, which demonstrates

that matching the price at p−i is better than lowering it to any pi < p−i:

Wi(p−i, αiσ(p−i) ≥ Wi(pi, σ(pi)).

Hence, we conclude that pBRi (p−i) = pi.

(3) Lastly, we consider the case when p−i < pBEi . Fortunately, this case can be

quickly analyzed through the definition of the break-even price. If provider i chooses

to match or lower its price by definition of the break-even price we have that:

Πi(pi, p−i) < 0, for all pi ≤ p−i.

At any price pi > p−i provider i profit will be zero. However setting the price to pBEi

prevents the other provider from increasing its price further, thus we establish it as

the best response. �

Theorem 4.2.4 establishes that for any network provider, a price interval, in which

market sharing is the best response, is guaranteed to exist. Above this price inter-

val, a provider will lower its price below the competitor’s price, as in a typical price
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Figure 4·7: Illustration of the two possible types of market outcomes.

war. Below this price interval, profitability conditions from Section 4.2.1 are violated.

While this interval is guaranteed to exist, whether the market equilibrium is estab-

lished in this interval warrants further analysis. In the next theorem, we determine

the different market outcomes by providing the resulting NE from the best response

functions of the two providers.

Theorem 4.2.5 (Nash Equilibrium) In a market with two network providers, a

pricing strategy profile (p∗1, p
∗
2) is a NE such that:

1. If max(pBE1 (α1), p
BE
2 (α2)) ≤ min(pMS

1 , pMS
2 ), then p∗1 = p∗2, and for i = 1, 2

p∗i ∈[max(pBE1 (α1), p
BE
2 (α2)),min(pMS

1 (α1), p
MS
2 (α2))].

2. If max(pBE1 (α1), p
BE
2 (α2)) > min(pMS

1 (α1), p
MS
2 (α1)) and without loss of gener-

ality pBE2 (α2) < pBE1 (α1)

p∗1 = pBE1 (α1) and p∗2 = pm2 (pBE1 (α1)).

where pmi (p−i) < p−i is defined as in Theorem 4.2.4.
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Proof. (1) Without loss of generality, assume that pBE1 (α1) < pBE2 (α2). Now

suppose pMS
1 (α1) > pMS

2 (α2), such that we have the following relationship between

the break-even and market sharing prices:

pBE1 (α1) < pBE2 (α2) < pMS
2 (α2) < pMS

1 (α1).

We will establish NE by determining when p∗1 = pBR1 (pBR2 (p∗1)). In order to do so we

first give provider 2’s best response:

pBR2 (p∗1) =


pBE2 (α2) for p∗1 < pBE2 (α2)

p∗1 for pBE2 (α2) ≤ p∗1 ≤ pMS
2 (α2)

pm2 (p∗1) for p∗1 > pMS
2 (α2),

(4.58)

where pm2 (p∗1) satisies Eq. (4.56) in Theorem 4.2.4.

We can now formulate provider 1’s best response to provider 2’s best response:

pBR1 (pBR2 (p∗1)) =



pBE1 (α1) for p∗1 < pBE1 (α1)

pBE2 (α2) for pBE1 (α1) ≤ p∗1 < pBE2 (α2)

p∗1 for pBE2 (α2) ≤ p∗1 ≤ pMS
2 (α2)

pm2 (p∗1) for pMS
2 (α2) < p∗1 ≤ pMS

1 (α1)

pm1 (p∗2) for p∗1 > pMS
1 (α1).

(4.59)

Therefore the only price interval where

p∗1 = pBR1 (pBR2 (p∗1))

can be satisfied is [pBE2 (α2), p
MS
2 (α2)] and from Eq. (4.58) in this interval we have

that p∗2 = p∗1, hence giving us the NE. The other case where pMS
1 (α1) ≤ pMS

2 (α2) can
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be proven following the same argument.

(2) Suppose that pBE1 (α1) > pMS
2 (α2). Then, by Theorem 4.2.1, we also know

the following relationship between the break-even and market sharing prices of both

providers:

pBE2 (α2) < pMS
2 (α2) < pBE1 (α1) < pMS

1 (α1).

This time we will establish NE by determining when p∗2 = pBR2 (pBR1 (p∗2)). In order to

do so we first give provider 1’s best response:

pBR1 (p∗2) =


pBE1 (α1) for p∗1 < pBE1 (α1)

p∗2 for pBE1 (α1) ≤ p∗2 ≤ pMS
1 (α1)

pm1 (p∗2) for p∗2 > pMS
1 (α1).

(4.60)

We can now formulate provider 2’s best response to provider 1’s best response:

pBR2 (pBR1 (p∗2)) =



pBE2 (α2) for p∗2 < pBE2 (α2)

pBE1 (α1) for pBE2 (α2) ≤ p∗2 ≤ pMS
2 (α2)

pm2 (pBE1 (α1)) for pMS
2 (α2) < p∗2 < pBE1 (α1)

pm2 (p∗2) for pBE1 (α1) ≤ p∗2 ≤ pMS
1 (α1)

pm2 (pm1 (p∗2)) for p∗2 > pMS
1 (α1).

(4.61)

A careful look yields the result that the only time p∗2 = pBR2 (pBR1 (p∗2)) is possible when

p∗2 = pm2 (pBE1 (α1)), given in the third pricing interval in Eq. (4.61). From Eq. (4.60)

we have that

p∗1 = pBR1 (pm2 (pBE1 (α1))) = pBE1 (α1), (4.62)

thus completing the pricing strategy profile of the only NE possible in this case. Note

that since pBE1 (α1) > pMS
2 (α2), it follows from Theorem 4.2.1 that pBE1 (α1) > pBE2 (1).
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Since ε can be chosen arbitrarily small, we can extend this result to pBE1 (α1) − ε >

pBE2 (1), therefore provider 2 is profitable at this NE as a monopoly. We can use the

same argument to prove the case when pBE1 (α1) ≤ pMS
2 (α2). �

Next, we discuss the implications of Theorem 4.2.5 and provide examples that

illustrate our results:

Interpretation of the NE. As stated in Theorem 4.2.5, the exact price profiles

that give the NE depend on the relationship between the market sharing intervals of

the two providers. If two price intervals overlap, as illustrated in part (a) of Fig. 4·7,

any equal price pair in that interval will give us a NE. As a result, two providers share

the market and set their prices at a value above their respective break-even prices

but always less than the smaller of the two market sharing prices, a value which is

guaranteed to be no greater than Ki, the primary reward collected by provider i.

On the other hand, if the market sharing price intervals of the two providers do

not intersect, as illustrated in part (b) of Fig. 4·7, the market outcome is the same as

the result of a price war, where the provider with the lower break-even price captures

all of the secondary demand by pricing slightly below its competitor’s break-even

price. The losing provider cannot match this price without making a negative profit.

In this case, even though both providers find it desirable to go into market sharing as

the prices approach their break-even prices, the gap between the two market sharing

intervals does not allow them to converge to a market sharing point.

Examples. In the following two examples, we seek to illustrate different market

outcomes depending on the placement of the market sharing intervals on the price

line. In the first example, we will use a constant elasticity demand function as in our

previous examples. In the second example, we will use an exponentially decreasing de-
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mand to illustrate the fact that our results hold over general demand functions. Both

types of demand functions are commonly used in the economics literature (Talluri

and Ryzin, 2004).

Example 4.2.3 Suppose the secondary demand is given by σ(p) = 20/p. We con-

sider two network providers whose parameters are:

(λ1, C1, K1, α1) = (6, 10, 4, 0.5) and (λ2, C2, K2, α2) = (5, 10, 4, 0.5).

Given these parameters it follows that λi + αiσ(0) > Ci and λi + αiσ(K) < Ci for

i = 1, 2. Under these conditions, by making use of the explicit formulas provided

in Eqs. (4.20) (substituting σ(p) with ασ(p)) and (4.47), we obtain the following

break-even and market sharing prices of both providers:

pBE1 (0.5) = 1.225, pMS
1 (0.5) = 2.881,

pBE2 (0.5) = 1.000, pMS
2 (0.5) = 2.400.

Clearly pBE1 (0.5) > pBE2 (0.5) and pMS
2 (0.5) < pMS

1 (0.5). Furthermore, it is also true

that pBE1 (0.5) < pMS
2 (0.5). Therefore, both providers’ market sharing price intervals

are overlapping. Then, part one of Theorem 4.2.5 states that all NE price profiles

(p∗1, p
∗
2) have the form: p∗1 = p∗2 ∈ and lie in the price interval [1.225, 2.400].

Example 4.2.4 In this example we consider an exponentially decreasing secondary

demand given by σ(p) = 20e−0.2p. This time we consider two similarly loaded

providers with significantly different primary rewards. We choose the network pa-

rameters of these providers as such:

(λ1, C1, K1, α1) = (6, 10, 6, 0.5) and (λ2, C2, K2, α2) = (8, 10, 14, 0.5).

Notice that this time provider 2 has a higher primary demand and a higher associated

reward collected. Once again, network parameters and the secondary demand satisfy

λi + αiσ(0) > Ci and λi + αiσ(K) < Ci for i = 1, 2. Solving for the Eq. (4.18) in

Theorem 4.2.2 and Eq. (4.21) in Theorem 4.2.3, we obtain the following break-even
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and market sharing prices of both providers:

pBE1 (0.5) = 2.098, pMS
1 (0.5) = 4.984,

pBE2 (0.5) = 5.050, pMS
2 (0.5) = 9.241.

Clearly pBE1 (0.5) < pBE2 (0.5) and pMS
2 (0.5) > pMS

1 (0.5). However, this time

pBE2 (0.5) > pMS
1 (0.5). Therefore, the market sharing price intervals of the two

providers do not intersect. As a result, these two providers will go into a price war

and provider 1, having the lower break-even price will be the winner. In this light,

part 2 of Theorem 4.2.5 states that the NE is given byp∗1 = 5.050− ε and p∗2 = 5.050.

Best Response Dynamics. While Theorem 4.2.5 states that the NE exist and

gives the pricing profiles of such, depending on the initial conditions one might never

reach that equilibrium if best response dynamics change the prices in a different

direction. In our case, the convergence to the NE is guaranteed from the way best

response dynamics work. In both cases, for any price above the described NE prices,

the best response dynamics lowers the price as each provider tries to capture the

secondary demand by setting their price lower than the competitor’s. For any prices

below the NE, since this yields a negative profit for at least one provider, the best

response dynamics now work to increase the prices to the break-even price of each

provider, which in turn fall in the range of the NE given by Theorem 4.2.5.

Payoff Dominant Strategy Refinement. In part (1) of Theorem 4.2.5 we iden-

tified a price range in which all possible NE could lie. While all price pairs are viable

NE , it is desirable to be able to characterize the market outcome through a single

price pair. A possible refinement of the case when facing multiple NE is through the

consideration of Payoff Dominant Strategy (PDS) equilibrium:

Definition 4.2.5 Let S denote the set of price pairs {(p∗1, p∗2) : p∗1 = p∗2} that give the

NE in part (1) of Theorem 4.2.5. Then, the PDS equilibrium (pD1 , p
D
2 ) is a NE with
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the following refinement condition:

Ri(p
D
1 , p

D
2 ) = max

(p1,p2)∈S
Ri(p1, p2) for i = 1, 2,

In other words, when multiple NE are present, a PDS yields the maximum possible

payoff for both providers (Straub, 1995). Using this condition we can identify the PDS

equilibrium (pD1 , p
D
2 ) ∈ S. Since the prices in S are equal, we know from Eq. (3.2) that

the payoff is equal to the profit under reduced demand. (Ri(p1, p2) = Πi(pi, αiσ(pi))).

If σ′(p) < 0, let p̂ denote the solution to:

p = −σ(p)/σ′(p). (4.63)

Otherwise we set p̂ =∞. Note that Eq. (4.63) corresponds to the price elasticity of

demand. Through careful analysis, we can state the following:

Theorem 4.2.6 For relatively inelastic demand such that p̂ >

max(pMS
1 (α1), p

MS
2 (α2)), there exists a unique PDS equilibrium (pD1 , p

D
2 ) given

by:

pD1 = pD2 = min(pMS
1 (α1), p

MS
2 (α2)) (4.64)

Proof. Combining Lemmas 4.2.4, 4.2.5 and Theorem 4.2.3 we know the following:

(i) If pMS
i is given by Eq. (4.21), then p̄αii ≤ pMS

i (αi) < p̄i.

(ii) If pMS
i (αi) = Ki, then pMS

i < p̄αii .

Therefore, we need to consider two different formulations of the profit Πi(pi, αiσ(pi)).

One can observe from Eq. (4.14) that:

∂

∂pi
Wi(pi, αiσ(pi)) =

∂

∂pi
Πi(pi, αiσ(pi)).

Therefore, we will use the derivative of revenue with respect to price in our calculations

instead of profit.
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Case 1 - pi < p̄αii

The price condition is equivalent to stating that λi + αiσ(p) > Ci. Simplifying

Eq. (4.13) and by taking the derivative with respect to pi we can show that:

∂

∂pi
Wi(pi, αiσ(pi)) =

∂

∂pi

(
αiσ(pi)pi

Ci
λi + αiσ(pi)

+ λiKi
Ci

λi + αiσ(pi)

)
= αi(σ(pi) + σ′(pi)pi)

Ci
λi + αiσ(pi)

− αiσ(pi)pi
Ciαiσ

′(pi)

(λi + αiσ(pi))2

− λiKi
Ciαiσ

′(pi)

(λi + αiσ(pi))2
.

Regrouping the terms yields:

∂

∂pi
Wi(pi, αiσ(pi)) = αiσ(pi)

Ci
λi + αiσ(pi)

+ λiCiαiσ
′(pi)

pi −Ki

(λi + αiσ(pi))2
> 0, (4.65)

for pi ≤ Ki since σ′(pi) ≤ 0.

Case 2 - pi ≥ p̄αii

Simplifying Eq. (4.13) and by taking the derivative with respect to pi we can show

that:

∂

∂pi
Wi(pi, αiσ(pi)) =

∂

∂pi
(αiσ(pi)pi + λiKi)

= αi (σ(pi) + σ′(pi)pi) .

If σ′(pi) = 0, then ∂
∂pi
Wi(pi, αiσ(pi)) > 0 for all pi ≥ p̄αii . On the other hand, if

σ′(pi) < 0 we have the following:

∂

∂pi
Wi(pi, αiσ(pi))


> 0 if pi < p̂
= 0 if pi = p̂
< 0 if pi > p̂,

(4.66)

where p̂ denotes the solution to:

p = −σ(p)/σ′(p).
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Note that p̂ is the same for both providers. Now we consider the cases (pMS
1 (α1) =

K1, p
MS
2 (α2) = K2), (pMS

i (αi) = Ki, p
MS
−i = g−i(p−i)) and (pMS

1 = g1(p1), p
MS
2 =

g2(p2)) separately, where gi(pi) represents the right hand side of Eq. (4.21).

1. Assume pMS
1 (α1) = K1, p

MS
2 (α2) = K2. Recalling condition (ii) in the beginning

of our proof, we have:

pMS
i (αi) < p̄αii , for i = 1, 2. (4.67)

From Eq. (4.65) we know that for p < p̄αii the profit is increasing on the interval

[0, Ki]. Therefore, both providers obtain their maximum revenue rates at their

respective market sharing prices. Then, the PDS equilibrium is:

pD1 = pD2 = min(K1, K2) = min(pMS
1 (α1), p

MS
2 (α2)). (4.68)

2. Assume pMS
1 (α1) = K1, p

MS
2 (α2) = g2(p2). From Eq. (4.65) we know that

provider 1’s payoff is maximized at K1. Recalling condition (i), we have

pMS
2 (α2) > p̄α2

2 . Then from Eq. (4.66) we know that provider 2’s payoff is

increasing until p̂. Since we assume that p̂ > pMS
2 (α2), and we consider price

strategy profiles that are upper bounded by min(pMS
1 (α1), p

MS
2 (α2)), the PDS

equilibrium is given by:

pD1 = pD2 = min(pMS
1 (α1), p

MS
2 (α2)). (4.69)

3. pMS
1 (α1) = g1(p1), p

MS
2 (α2) = g2(p2). From Eq. (4.66) we conclude that both

providers’ profits are increasing until p̂. Once again recalling our assumption

that

p̂ > max(pMS
1 (α1), p

MS
2 (α2))
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and the upper bound min(pMS
1 (α1), p

MS
2 (α2)) on S, we conclude that the PDS

equilibrium is given by:

pD1 = pD2 = min(pMS
1 (α1), p

MS
2 (α2)). (4.70)

�

4.2.3 Quality of Service Extension

In our model we have made the assumption that secondary users always choose the

lowest price advertised and when the prices are the same arriving secondary traffic

randomly choose a provider. While we have argued that price aversion might be a

possible explanation for choosing the lower price, Quality of Service (QoS) might also

have an impact on the customer’s decision process. In this subsection we extend our

model to take QoS into consideration.

We consider a simple QoS performance metric: the acceptance rate of the incoming

traffic. Then we extend our model as follows: When both providers charge the same

price and the secondary demand at this price is sufficiently large that the total demand

in the market exceeds the total capacity (i.e., λ1 + λ2 + σ(p) > C1 + C2), secondary

demand is split between the two providers according to a vector α = [α1, α2] such

that α1 + α2 = 1, α1, α2 > 0 and satisfying the following equality:

C1

λ1 + α1σ(p)
=

C2

λ2 + α2σ(p)
. (4.71)

Namely, instead of randomly choosing a provider, secondary demand distributes it-

self in a fashion that the accommodation level it faces is homogeneous across both

providers. In the case of two providers, let α1 = α and α2 = 1 − α. Then we can
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obtain an explicit expression for α:

α =
C1(λ2 + σ(p))− C2λ1

(C1 + C2)σ(p)
. (4.72)

and substituting Eq. (4.72) for α in ασ(p) we obtain:

ασ(p) = β1 + γ1σ(p), (4.73)

where βi = Ciλ−i−C−iλi
Ci+C−i

and γi = Ci
Ci+C−i

for i = 1, 2.

Under this new model, the previous results stated in our theorems still hold. Since

we consider all values of α ∈ (0, 1], we can simply replace ασ(p) in our equations with

Eq. (4.73). We illustrate this result in the following example and extend our analysis

afterwards.

Example 4.2.5 Suppose the secondary demand is given by σ(p) = 30e−10p. We

consider two network providers whose parameters are:

(λ1, C1, K1) = (10, 20, 1) and (λ2, C2, K2) = (8, 10, 1).

Suppose that secondary demand is split between the providers in a way that satisfies

Eq. (4.71). Then, using Eq. (4.73), we have the following reduced demand functions:

α1σ(p) = 2σ(p)/3 + 2 and α2σ(p) = σ(p)/3− 2.

Observe that α1σ(p) + α2σ(p) = σ(p). We can check that λi + αiσ(0) > Ci and

λi + αiσ(K) < Ci for i = 1, 2. Under these conditions, we need to use Eq. (4.18)

for calculating the break-even price and (4.21) for the market sharing price for both

providers. Doing the necessary calculations, one finds:

pBE1 = 0.184, pMS
1 = 0.529,

pBE2 = 0.317, pMS
2 = 0.417.

Clearly pBE1 < pBE2 and pMS
1 > pMS

2 . Thus, providers 2’s market sharing interval is

a subset of provider 1’s. Then, part one of Theorem 4.2.5 states that all NE price

profiles (p∗1, p
∗
2) have the form p∗1 = p∗2 and lie in the price interval [0.162, 0.235].
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Previous results under Quality of Service (QoS) Extension. Here we revisit

our previous proofs for each theorem to demonstrate that they still hold under the

QoS extension we have provided.

Before we begin our proof of Theorem 4.2.2 we need to revisit the two prices we

have created before: p̄ and p̄α. By definition p̄ is the same, while substituting Eq.

(4.72) for α we get the new following relationship:

λ1 + α1σ(p̄α) = C1 ⇐⇒ λ1 + λ2 + σ(p̄α) = C1 + C2. (4.74)

Therefore, our previous result pBE(α) ≤ p̄α from Lemma 4.2.1 is equivalent to the

following:

λ1 + λ2 + σ(pBE(α)) ≥ C1 + C2 (4.75)

Proof of Theorem 4.2.2 revisited

Parts 1 & 3 of the proof remain unchanged. The following is a revision of part 2

in our proof:

(2) Let us rearrange the terms in Eq. (4.18) and reintroduce index i to get the

following:

Ci
λiK

p− 1 =
λi − Ci
αiσ(p)

. (4.76)

We will proceed by demonstrating that the left hand side of Eq. (4.76) is strictly

increasing with respect to p and the right hand side is non-increasing with respect to

p, hence meaning that this equality only holds at a single value of p. Since the left

hand side of Eq. (4.18) linearly increasing in p, we only need to prove that the right

hand side is non-increasing. Under the assumption that σ(p) is a differentiable and

non-increasing function of p, substituting

αiσ(p) = βi + γiσ(p), (4.77)



99

and taking the derivative of the right hand side with respect to p yields:

∂

∂p

(
λi − Ci

βi + γiσ(p)

)
= γi

Ci − λi
(βi + γiσ(p))2

σ′(p) ≤ 0. (4.78)

Eq. (4.78) holds because λi < Ci and σ′(p) ≤ 0. Therefore, there can only be at most

one solution for pBE(α) that satisfies Eq. (4.18). �

Before we revisit the proof of Theorem 4.2.3, we need to revisit the three lemmas

used in its proof. Observe that under the QoS extension, Lemmas 4.2.3 and 4.2.5

remain unchanged. However, we need to revisit the price values where p : p < p̄α,

and revise the corresponding Lemma 4.2.4 as follows:

Lemma 4.2.8 Assume p̄α > 0 and p < p̄α, then

1. If p̄α ≥ K:

∆Wi(p) > 0 if p < K; (4.79)

∆Wi(p) = 0 if p = K; (4.80)

∆Wi(p) < 0 if p > K. (4.81)

2. If p̄α < K:

∆W (p) > 0 ∀p < p̄α. (4.82)

Proof. Note that our assumption p < p̄α is equivalent to stating that:

λ1 + λ2 + σ(p) > C1 + C2

Since p̄α < p̄, it must also be true that p < p̄. Then the combined demand with-

out market sharing is greater than the provider’s capacity (i.e., λi + σ(p) ≥ Ci).

Simplifying Eq. (4.13) under these assumptions, we obtain:

∆Wi = Wi(p, αiσ(p))−Wi(p, σ(p))

=
αiσ(p)pCi
αiσ(p) + λi

+
λiKCi

αiσ(p) + λi
− σ(p)pCi
σ(p) + λi

− λiKCi
σ(p) + λi

.
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After rearrangement and substituting αiσ(p) with βi + γiσ(p) we get:

∆Wi =
(β−i + γ−i)σ(p))σ(p)λiCi

((βi + γi)σ(p) + λ)(σ(p) + λ)
(K − p). (4.83)

Eq. (4.83) only takes on the value zero when p = K. Additionally for price values

p < K, ∆Wi is positive and for p > K, ∆Wi is negative. �

Proof of Theorem 4.2.3 revisited.

From the way we have defined the new distribution vector α in Eq. (4.72), our

model does not extend to prices are greater than p̄α as the total demand does not

exceed the total market capacity, and can be fully accommodated. Therefore, we

keep our assumption of the random splitting of the secondary demand for these price

values.

We have observed that lemmas 4.2.3 and 4.2.5 remain unchanged while the results

of Lemma 4.2.8 and Lemma 4.2.4 are equivalent. As the proof of Theorem 4.2.3 fol-

lows from these three lemmas, we conclude it holds under the QoS extension as well. �

Having demonstrated that the main results stated in Theorems 4.2.2 and 4.2.3

hold under the extended model, we revisit Theorem 4.2.1.

Proof of Theorem 4.2.1 revisited.

The only part of the proof we need to revisit is for prices p < p̄α. If the market

sharing and the break-even prices are in the price range [0, p̄α), then from Lemma

4.2.4 we conclude that pMS(α) = K. Further, by substituting the right hand side

of Eq. (4.72) for α in Eq. (4.18), we can demonstrate that pBE(α) is given by the

solution to the following equation:

p =
(λ1 + λ2 + σ(p)− C1 − C2)λ1K

C1(λ2 + σ(p))− C2λ1
.
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Then we need to demonstrate that:

(λ1 + λ2 + σ(p)− C1 − C2)λ1K

C1(λ2 + σ(p))− C2λ1
< K.

After rearranging and collecting the terms we obtain the following:

λ1(λ1 + λ2 + σ(p))− C2λ1 < C1(λ1 + λ2 + σ(p))− C2λ1,

which is true for since λ1 < C1 in our initial assumptions. �

The results stated in the duopoly competition, once the break-even and market

sharing prices are determined, do not depend on the specific value αi takes. The

results stated Lemma 4.2.7 depends of continuity of the price pi and the sign of

the revenue change ∆Wi(pi). The proof Theorem 4.2.4 builds on Lemma 4.2.7 and

utilities the revenue rate without sharing (Wi(pi, σ(pi))). The proof of Theorem 4.2.5

is based on the game theoretic interpretation of the results stated in Theorem 4.2.4.

All of these results hold as long as αi takes on a value in the interval [0, 1), which our

extended model does not violate.

4.3 Summary

In this chapter, we showed that the market dynamics fundamentally differ when

providers implement uncoordinated access. We demonstrated that the break-even

price is no longer insensitive to the secondary demand and market sharing becomes a

possible best response. It is worth noting that even though a provider i might find it

desirable to share the market, it would still go into a price war for price values higher

than its market sharing price pMS
i , thus preventing convergence to an arbitrarily high

price for secondary access. The possible market outcomes under an uncoordinated

access policy become complex when the number of providers increases, but deserve
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further study, since they may result in a larger number of providers joining the market

and higher revenues than possible under an optimal coordinated access policy.

To address this complexity, we next focused on an uncoordinated access regime for

secondary spectrum detailed under private commons using a demand overflow model.

Similar to the previous part, using the notions of best response and Nash equilib-

rium, we show the emergence of two markedly different possible market outcomes,

depending on the secondary demand function σ(p) and the network parameters of

each provider (i.e, the service capacity C, primary demand λ, and primary reward

K).

If the market sharing price intervals of the two providers intersect, as described in

part one of Theorem 4.2.5, then the providers converge to a price profile where they

will share the market. All prices falling between the maximum break-even price and

minimum market sharing price among the two providers are possible Nash equilibria.

On the other hand, if the market sharing price intervals do not intersect, as described

in part two of Theorem 4.2.5, then the Nash equilibrium reflects a price war wherein

the winning provider sets its price slightly below the break-even price of its competitor

and gets all the profit.

Since market outcomes are determined by break-even and market sharing prices,

we carefully analyzed these two crucial parameters. We demonstrated existence and

uniqueness of these prices for each provider, under general demand functions. We

further provided implicit formulas to compute both of these prices as a function of

the system parameters.



Chapter 5

Carrier Aggregation

We now switch our focus from the pricing aspect of secondary spectrum markets

and consider the impact of how network capacity impacts the market equilibrium

presented in previous chapters. So far, our assumption has been that the primary

user traffic and the capacity with which a provider has been serving that customer pool

is fixed. This led to the formulation of different price thresholds which had a direct

impact on the outcome of the competition. Particularly, the break-even price under

a coordinated access regime is directly linked to the Erlang-B formula and this price

also determines who wins the price war between the providers. Therefore, increasing

network capacity is one strategy a network provider might follow in an effort to gain

an edge over its competition. In this chapter, instead of specifically consider secondary

spectrum markets we will first present a general framework for network dimensioning

and later demonstrate how it can be utilized to answer questions related to secondary

markets. We start with the description of the model:

5.1 Network Model

In this section, we introduce the network model considered and the accompanying

notation. We consider a small provider with a finite capacity C > 1, which consists

of the number of carriers in the spectrum owned by the provider. For example, in an

Results presented in this chapter appear in part in (Kavurmacioglu and Starobinski,
2015a),(Kavurmacioglu and Starobinski, 2015b).
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Figure 5·1: Illustration of sessions and flows. Each session consists of
one or more flows separated by idle periods.

LTE network configuration, these carriers could be interpreted as the resource blocks.

To realistically model network traffic, such as web browsing and streaming ap-

plications, we assume that the user demand consists of a sequence of independent

session arrivals that follow a Poisson process with rate λ > 0 (Bonald, 2006b). A

session consists of a combination of arbitrarily distributed and possibly correlated

flows, generated by the same user or application. Each session consists of “on” and

“off” periods within, where an “on” period means that a flow is generating traffic.

Figure 5·1 provides an illustration of sessions and flows. Without loss of generality,

we assume that the total “on” time within an individual session follows a general

probability distribution and has a mean equal to one, independently of other requests

and arrival times. Each flow has a peak rate that corresponds to the capacity of a

carrier. If an arriving flow finds all the carriers busy, it is lost, but the rest of the

session proceeds as normal. Note that standard voice calls are a special case of this

model, for which a session consists of a single flow.

Under the above statistical assumptions, the probability that a flow is lost

(blocked), is given by the Erlang-B formula (Bonald, 2006a)(p.279):

E(λ,C) =
λC/C!∑C
k=0 λ

k/k!
. (5.1)
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The above formula is insensitive to all traffic characteristics, except for the mean

number of session arrivals per time unit λ.

The provider finds itself in the same competitive spectrum market as a larger

network provider that has similar network parameters, but scaled by a multiplicative

factor n > 1 (i.e., its session arrival rate is λn and capacity Cn). We refer to the

parameter n as the scaling factor.

The objective of the smaller provider is to meet the quality of service (QoS) of the

larger provider, given by its Erlang blocking probability formula. This can be achieved

through making use of the spectrum set aside and implementing carrier aggregation.

Our goal is to identify the optimal level of carrier aggregation and investigate how it

changes with the network parameters λ and C and the scaling factor n.

5.2 Quality-Driven Approximation of Erlang-B Formula

The Erlang-B formula given by Eq. (5.1) does not easily yield itself to analysis due

to the summand and the factorial functions. Therefore, we seek an approximation

of the Erlang-B formula that is more tractable. One such approximation is obtained

through the consideration of a quality driven (QD) regime, characterized by C →∞,

λ→∞ and the following relationship:

C = λ(1 + γ), (5.2)

where γ > 0 is a constant representing the service grade. In a QD regime, the provider

positions itself in terms of capacity with respect to its load so that it offers a high

quality service (e.g., low probability of blocking or waiting).

The approximation that we will obtain under the QD regime works well for large

values of C. Moreover, the approximation is asymptotically exact since the underly-
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ing stochastic process, when properly normalized, weakly converges to an Ornstein-

Uhlenbeck diffusion process as C → ∞ (Iglehart, 1965). Before we establish the

QD approximation to the Erlang-B formula, it is beneficial to recall the following

fundamental inequality of the logarithm function:

x− 1 ≥ ln(x) ≥ 1− 1

x
, x > 0,

which we can rewrite as:

x ≥ ln(1 + x) ≥ x

1 + x
, x > 0. (5.3)

Under the QD regime we propose the following asymptotically exact approxima-

tion to the Erlang-B, which we will use in the rest of the chapter:

Lemma 5.2.1 Under a QD regime such that C = λ(1 + γ), the Erlang-B formula

satisfies:

lim
λ→∞

E(λ,C)(√
2ΠC(1 + γ)Ce−λγ

)−1 = 1.

Proof. We first establish a relationship between the delay probability formula

(Erlang-C) given by:

Ec(λ,C) =

λC

C!
C

C−λ∑C−1
k=0

λk

k!
+ λC

C!
C

C−λ

,

and the Erlang-B formula. From the relationship between Erlang-B and Erlang-C

provided in (Zeng, 2003), it can be shown that:

E(λ,C) =
(1− ρ)Ec(λ,C)

1− ρEc(λ,C)
, (5.4)

where ρ = λ/C = 1
1+γ

in a QD regime. Using the results provided in Section 16
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of (Zeltyn, 2004) for the analysis of queuing systems in the QD regime we obtain:

Ec(λ,C) =
eλγ + o(1/λ)√

2ΠCγ(1 + γ)C−1 + eλγ + o(1/λ)
. (5.5)

Substituting Eq. (5.5) for Ec(λ,C) and Eq. (5.2) for C into Eq. (5.4) we get:

E(λ,C) =
1 + o(1/λ)

g(λ, γ) + 1 + o(1/λ)
,

where g(λ, γ) =
√

2πλ(1 + γ)
(
(1 + γ)(1+γ)e−γ

)λ
.

Now we will show that g(λ, γ) is the dominating term in the denominator as λ

gets large. Observe that (1 + γ)(1+γ) ≥ eγ since taking the natural log of both sides

we obtain:

(1 + γ) ln(1 + γ) ≥ γ

ln(1 + γ) ≥ γ

1 + γ
,

which we know to be true from Eq. (5.3). Therefore g(λ, γ) gets arbitrarily large

with λ. We conclude that:

lim
λ→∞

1

g(λ, γ)
= 0.

Hence:

lim
λ→∞

E(λ,C)

g(λ, γ)−1
= lim

λ→∞

1 + o(1/λ)

g(λ, γ) + 1 + o(1/λ)

(g(λ, γ))−1
= 1.

Finally, we obtain g(λ, γ) =
√

2πC(1 + γ)Ce−λγ through Eq. (5.2). �

Lemma 5.2.1 states that the Erlang-B formula can be approximated by (and is

asymptotically equal to) the following expression, which we refer to as the QD for-
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mula:

E(λ,C) '
(√

2πC(1 + γ)Ce−λγ
)−1

. (5.6)

Figure 5·2 compares the Erlang-B and QD formulas, for carrier capacities typical

to an LTE network (Telesystem Innovations, 2010). Clearly, the values obtained

are almost indistinguishable. All of the results presented in the rest of this chapter

are based the QD formula. Numerical examples will be provided to confirm their

accuracy.

5.3 Optimal Carrier Aggregation

In this subsection, we define the problem of optimal carrier aggregation and provide

numerical methods on calculating the level needed. Smith and Whitt (Smith and
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Whitt, 1981) show that the Erlang-B formula is upwards scalable, that is:

E(λ,C) > E(λn,Cn). (5.7)

Thus, flows in a larger network experience a smaller blocking probability than that

in a smaller network operating under a similar traffic load ρ = λ/C. This result is

not surprising to teletraffic engineers, who know that combining two networks into a

larger network results in better performance due to statistical multiplexing.

Therefore, when two providers experience similar loads but differ in network sizes

in terms of the number of carriers they each possess, the larger provider initially

provides an improved service to its users. Hence the smaller provider is inherently at

a disadvantage in a competitive spectrum market.

We now turn our attention to the possibility of the smaller provider increasing

its capacity by carrier aggregation. This way, the smaller provider can decrease

the blocking probability experienced by its users. Let ψ∗(n) denote the minimum

(optimal) level of carrier aggregation the smaller provider needs to increase its network

capacity to a size that achieves the same blocking performance as the larger provider,

namely E(λ,Cψ∗(n)) = E(λn,Cn)1. Formally:

ψ∗(n) , min{ψ : E(λ,Cψ) ≤ E(λn,Cn)}. (5.8)

Using the QD formula given by Eq. (5.6), we get:

E(λ,Cψ) '
(√

2πCψ(1 + γ′)Cψe−λγ
′
)−1

, (5.9)

E(λn,Cn) '
(√

2πCn(1 + γ)Cne−λnγ
)−1

, (5.10)

1While Cψ must be an integer value when using Eq. (5.1), there exist continuous relaxations of
the Erlang-B formula (Jagerman, 1974). Furthermore, as the capacity tends to infinity in a QD
regime, ψ can be treated as continuous.
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provider with respect to scaling factor n for different initial traffic loads
ρ = λ/C. Solid lines are exact, markers are QD approximation, and
C = 50.

where Cψ = λ(1 + γ′) and hence (1 + γ′) = ψ(1 + γ). Then we can rewrite Eq. (5.8)

as:

ψ∗(n) , min

{
ψ :

√
ψ

n

(
(1 + γ)C

eλγ

)ψ−n
ψCψ

eλ(ψ−1)
≥ 1

}
. (5.11)

As the left hand side of the inequality in Eq. (5.11) is increasing in ψ, equivalently

ψ∗(n) is the solution of:√
ψ

n

(
(1 + γ)C

eλγ

)ψ−n
eλ
(
ψC

eλ

)ψ
= 1. (5.12)

Eq. (5.12) provides a fast way of numerically calculating the optimal level of carrier

aggregation needed, which can be achieved using a binary search procedure as the

left hand side is increasing in ψ. In Figure 5·3 we illustrate the calculated values of
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the optimal level of carrier aggregation using the QD formula and the exact Erlang-B

formula. One can observe that the calculations based on the QD formula work well:

even at a capacity as low as 50 carriers, the maximum percentage error2 between

the QD approximation and the actual Erlang-B calculation is 0.5714%, which occurs

when ρ = 0.9.

5.4 Structural Properties of Optimal Carrier Aggregation

In this section, we derive structural properties of optimal carrier aggregation. Specif-

ically, we analyze the asymptotic behavior of the optimal carrier aggregation with

respect to the scaling factor n. We also show that the amount of carrier aggrega-

tion needed diminishes when the initial traffic load at which the providers operate is

higher.

5.4.1 Scaling Laws

From Eq. (5.7), it follows that the difference between the blocking probabilities of the

two providers increases with the scaling factor n. Thus the disadvantaged provider

needs to aggregate more carriers as n gets larger. We next provide asymptotic lower

and upper bounds on the optimal level of carrier aggregation as a function of the

scaling factor n:

Theorem 5.4.1 (Capacity Scaling Law) Consider two providers differing by a

scaling factor of n. Then the optimal level of carrier aggregation with respect to the

scaling factor as n→∞ satisfies:

1. ψ∗(n) = o
(

n
log(n)

)
2. ψ∗(n) = ω (nα) , for any constant α < 1,

where o(·) and ω(·) are standard asymptotic notations respectively representing strict

upper and lower asymptotic limiting behavior of the functions within the parentheses.

2Calculated by

∣∣∣∣∣ψQD − ψErlang

ψErlang

∣∣∣∣∣ · 100, where ψQD is given by Eq. (5.6) and ψErlang is given by

Eq. (5.1).
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Proof of Theorem 5.4.1. Making use of Eq. (5.2), let us rearrange Eq. (5.12) to

obtain: √
ψaλψψλ(1+γ)ψ =

√
naλneλ(ψ−1),

where a =
(1 + γ)(1+γ)

eγ
. Taking the loga(·) (which we will simply denote by log(·) to

alleviate the notation) of both sides and dividing by λ yields:

log(ψ)

2λ
+ (1 + γ)ψ log(ψ) + ψ =

log(n)

2λ
+ n+ (ψ − 1) log(e). (5.13)

We will prove the upper and lower bounds separately.

1. Let us assume that ψ = n
loga(n)

. We will check the upper bound by substituting

for ψ in Eq. (5.13) and showing that as n→∞, the left hand side is strictly greater

than the right hand side. We get:

1

2λ
log

(
n

log(n)

)
+
n(1 + γ)

log(n)
log

(
n

log(n)

)
+

n

log(n)
>

log(n)

2λ
+ n+

n log(e)

log(n)

− log(e).

Canceling the common terms and rearranging, we can rewrite this relationship as:

γ log(n) + 1 +
log(e) log(n)

n
>

(
1 + γ +

log(n)

2λn

)
log(log(n)) + log(e),

which is true for sufficiently large n (as log(n) = o(n)). Thus, we have demonstrated

that when ψ = n
log(n)

and n is sufficiently large, the left hand side of Eq. (5.12) is

strictly greater than one. Since the left hand side of (5.12) is increasing in ψ, we

conclude that there must be some ψ′ < ψ = n
log(n)

that satisfies Eq. (5.12).

2. Assume that ψ = nα, α < 1. We will demonstrate that substituting for ψ in

Eq. (5.13) results in the left hand side being strictly smaller than the right hand side
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as n→∞. We get:

α log(n)

2λ
+ α(1 + γ)nα log(n) + nα < n+

log(n)

2λ
+ log(e)(nα − 1).

Dividing by nα and collecting and rearranging the terms we have:

α(1 + γ) log(n) + 1 +
log(e)

nα
< n1−α +

(1− α) log(n)

2λnα
+ log(e),

which, since n = ω(log(n)), holds as n gets large. Therefore, when ψ = nα, α < 1,

the left hand side of Eq. (5.12) is smaller than one. Hence, there must be another

ψ′ > ψ = nα that satisfies Eq. (5.12). �

Theorem 5.4.1 states that n/ log(n) and nα are asymptotic upper and lower bounds

on ψ∗(n) respectively. Therefore as the scaling factor increases, the level of optimal

carrier aggregation scales sub-linearly but also asymptotically approaches (though

never achieves) a linear relationship. This behavior can be observed in Figure 5·3.

5.4.2 Traffic Load

Having provided scaling laws on optimal carrier aggregation with respect to the scaling

factor n, we now turn our attention to the scaling with respect to the traffic load.

In the next theorem, we state that the optimal level of carrier aggregation needed

by the smaller provider is lower in a market where both providers experience a high

initial traffic load. Therefore, in high load markets it is easier for a smaller provider

to aggregate spectrum in order to compete.

Theorem 5.4.2 (Traffic Load Scaling Law) Let ρj denote the traffic load in a

market j, which consist of two providers that differ in size by a scale of n such that:

ρj =
λjn

Cn
=
λj
C

for j = 1, 2.

Further define ψ∗j (n) to be the optimal level of carrier aggregation for the smaller
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provider in the market characterized by load ρj. Then, for two given traffic loads,

such that ρ1 > ρ2,

ψ∗1(n) < ψ∗2(n).

The next two lemmas give inequalities that we will use in the proof of our theorem.

Lemma 5.4.1 For γ > 0 and n > 1:

(1 + nγ) ln(1 + nγ) > n(1 + γ) ln(1 + γ).

Proof. We start by exponentiating both sides of the equation to obtain:

(1 + nγ)(1+nγ) > (1 + γ)n(1+γ).

Observe that the lhs is equal to the rhs when n = 1. Taking the derivative of both

sides of the equation with respect to n we get:

∂(1 + nγ)(1+nγ)

∂n
= (1 + nγ)(1+nγ)γ(ln(1 + nγ) + 1)

∂(1 + γ)n(1+γ)

∂n
= (1 + γ)n(1+γ)(1 + γ) ln(1 + γ).

Using the inequality provided in Eq. (5.3) we can show that:

γ ln(1 + nγ) + γ > γ ln(1 + γ) + γ ≥ (1 + γ) ln(1 + γ).

Hence if (1 + nγ)(1+nγ) ≥ (1 + γ)n(1+γ),

∂(1 + nγ)(1+nγ)

∂n
>
∂(1 + γ)n(1+γ)

∂n
.

Now we will proceed with a contradiction argument. Let n′ > 1 denote the minimum

n which once again satisfies such that:

(1 + n′γ)(1+n
′γ) = (1 + γ)n

′(1+γ).
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By continuity, there must exist an n∗ < n′ such that

∂(1 + nγ)(1+nγ)

∂n

∣∣∣∣
n∗
<
∂(1 + γ)n(1+γ)

∂n

∣∣∣∣
n∗
.

However, by the way we have defined n′, it must be that:

(1 + n∗γ)(1+n
∗γ) > (1 + γ)n

∗(1+γ), (5.14)

which implies:

∂(1 + nγ)(1+nγ)

∂n

∣∣∣∣
n∗
>
∂(1 + γ)n(1+γ)

∂n

∣∣∣∣
n∗
.

�

Lemma 5.4.2 For γ > 0 and n ≥ 1:

ψ∗(n) < ρ+ (1− ρ)n.

Proof. Substituting ρ = λ/C = 1/(1+γ) from Eq. (5.2), this inequality is equivalent

to:

ψ∗(n) <
1 + nγ

1 + γ
. (5.15)

We will proceed to prove this inequality by showing that if ψ = 1+nγ
1+γ

, the lhs of

Eq. (5.12) is strictly greater than the rhs. Substituting ψ into the Eq. (5.12) we

obtain: √
1 + nγ

n+ nγ
(1 + γ)−λ(n−1)

(
1 + nγ

1 + γ

)λ(1+nγ)
> 1.

Taking the ln(·) of both sides, λ → ∞ and rearranging the terms, one gets the

equivalent condition:

(1 + nγ) ln(1 + nγ) > n(1 + γ) ln(1 + γ),

which we demonstrated in Lemma 5.4.1. By continuity there must be a ψ′ < 1+nγ1
1+γ1



116

that satisfies Eq.(5.12). �

Proof of Theorem 5.4.2. Assume that the different loads are caused by different

arrival rates such that λ1 > λ2 while the capacity is kept constant at C. Then we

have:

C = λ1(1 + γ1) = λ2(1 + γ2). (5.16)

It immediately follows that (1 + γ1) < (1 + γ2). Using Eq. (5.12), the following need

to be satisfied in optimality:√
ψ

n

(
(1 + γ1)

C

eλ1γ1

)ψ−n
ψCψ

eλ1(ψ−1)
= 1, (5.17)√

ψ

n

(
(1 + γ2)

C

eλ2γ2

)ψ−n
ψCψ

eλ2(ψ−1)
= 1. (5.18)

Suppose ψ∗2(n) = ψ and satisfies Eq. (5.18). Then we need to show that the left

hand side of Eq. (5.17) is strictly greater than one when ψ∗1(n) = ψ.

Let us rewrite the left hand side of Eq. (5.18) as the following:√
ψ

n

(
(1 + γ2)

C

eλ2γ2

)ψ−n
ψCψ

eλ2(ψ−1)
=

√
ψ

n

(
(1 + γ1)

C

eλ1γ1

)ψ−n
ψCψ

eλ1(ψ−1)
(λ1/λ2)

C(ψ−n)

e(λ1−λ2)(1−n)
.

Now we will demonstrate that:

e(λ1−λ2)(n−1) < (λ1/λ2)
C(n−ψ). (5.19)

Start by taking the ln(·) of both sides of (5.19) to get:

(λ1 − λ2)(n− 1) < C(n− ψ) ln(λ1/λ2).

Since ln(λ1/λ2) ≥ λ1−λ2
λ1

by inequality (5.3) and C = λ1(1 + γ1):

C(n− ψ) ln(λ1/λ2) ≥ (1 + γ1)(n− ψ)(λ1 − λ2). (5.20)
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From Lemma 5.4.2 we have that ψ < ρ+(1−ρ)n, which by substituting ρ = 1/(1+γ1)

and rearranging the terms, can be rewritten as:

(1 + γ1)(n− ψ) > (n− 1). (5.21)

Combining Eqs. (5.20) and (5.21), we get to the inequality in (5.19). Then we can

claim that:√
ψ

n

(
(1 + γ1)

C

eλ1γ1

)ψ−n
ψCψ

eλ1(ψ−1)
>

√
ψ

n

(
(1 + γ2)

C

eλ2γ2

)ψ−n
ψCψ

eλ2(ψ−1)
= 1.

Therefore, by continuity and the fact that the left hand side of (5.17) is increasing in

ψ, there must be another

ψ′ < ψ = ψ∗2(n)

that satisfies Eq. (5.17). Hence, ψ∗1(n) < ψ∗2(n). �

Theorem 5.4.2 states that the level of carrier aggregation needed to provide a

service level that can compete with the larger provider in the market is higher (lower)

under a low (high) traffic load, which is also illustrated in Figure 5·3. This implies

that the marginal benefit of aggregating spectrum is higher when the providers are

operating under a higher load.

5.5 General Bounds

In this section, we seek to establish an upper bound that holds for all possible values

of the scaling factor n. We will first establish that optimal carrier aggregation ψ∗(n)

is concave in n:

Lemma 5.5.1 (Concavity) For 1 ≤ n1 < n2,

ψ′∗(n1) < ψ′∗(n2).
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Figure 5·4: Linear upper bound on the optimal level of carrier aggre-
gation ψ∗(n) provided in Theorem 5.5.1, with C = 50 and ρ = 0.5.

Proof. Let n1 = n and n2 = n + x, where x ∈ R+. We know that ψ∗(n) satisfies

Eq. (5.12). Taking the derivative of the both sides of Eq. (5.12) and rearranging the

terms one can obtain the following:

ψ′∗(n) =
1
2n

+ C ln(1 + γ)− λγ
1

2ψ∗(n)
+ C ln(1 + γ) + C ln(ψ∗(n))

. (5.22)

Note that the derivative depends on the exact value of ψ∗(n). In order to show that

ψ′∗(n) < ψ′∗(n+ x),

we must know something about ψ∗(n) and ψ∗(n + x). One can observe through

Eq. (5.12) that when n is incremented by a constant x > 0, ψ∗(n) increases by an

amount smaller than x such that:

ψ∗(n+ x) < ψ∗(n) + x.
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Let ψ∗(n+ x) = ψ∗(n) + δ where δ ∈ (0, x). Further define ξ = C ln(1 + γ). Then we

can make the following statement:

ψ′∗(n+ x) =
1

2n+2x
+ ξ − λγ

1
2ψ∗(n+x)

+ ξ + C ln(ψ∗(n+ x))

=
1

2n+2x
+ ξ − λγ

1
2ψ∗(n)+2δ

+ ξ + C ln(ψ∗(n) + δ)
.

Using the expressions we have obtained for ψ′∗(n) and ψ′∗(n+x), we need to show:

1
2n

+ ξ − λγ
1

2ψ∗(n)
+ ξ + C ln(ψ∗(n))

>
1

2n+2x
+ ξ − λγ

1
2ψ∗(n)+2δ

+ ξ + C ln(ψ∗(n) + δ)
. (5.23)

Rearranging the terms in Eq. (5.23) we obtain:

x
2n(n+x)

+ 1
2n+2x

+ ξ − λγ
δ

2ψ∗(n)(ψ∗(n)+δ)
+ 1

2ψ∗(n)+2δ
+ b+ C ln(ψ∗(n))

>
1

2n+2x
+ ξ − λγ

1
2ψ∗(n)+2δ

+ b+ C ln(ψ∗(n) + δ)
.

(5.24)

Since x
2n(n+x)

> 0 if we can show that:

1
2n+2x

+ ξ − λγ
δ

2ψ∗(n)(ψ∗(n)+δ)
+ 1

2ψ∗(n)+2δ
+ b+ C ln(ψ∗(n))

>
1

2n+2x
+ ξ − λγ

1
2ψ∗(n)+2δ

+ b+ C ln(ψ∗(n) + δ)
,

Eq. (5.24) also holds. We can rewrite the last inequality in the following fashion:

C ln(
ψ∗(n) + δ

ψ∗(n)
) >

δ

2ψ∗(n)(ψ∗(n) + δ)
. (5.25)

By Eq. (5.3),

C ln

(
ψ∗(n) + δ

ψ∗(n)

)
≥ Cδ

ψ∗(n) + δ
. (5.26)

Furthermore,

Cδ

ψ∗(n) + δ
>

δ

2ψ∗(n)(ψ∗(n) + δ)
(5.27)
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since C ≥ 1 and ψ∗(n) ≥ 1. Combining Eqs. (5.26) and (5.27), we obtain Eq. (5.25),

thus confirming Eq. (5.23). �

Given the derivative of ψ∗(n) is decreasing in n, we next establish the tightest

possible linear upper bound on ψ∗(n):

Theorem 5.5.1 (Linear Upper Bound) For γ > 0 and n ≥ 1:

ψ∗(n) ≤ (1− f(ρ)) + f(ρ)n, (5.28)

where f(ρ) = 1−
1− ρ

1
2C

+ ln (1/ρ)
.

Proof of Theorem 5.5.1. We will start our proof by providing a linear function of

the form g(n) = a + bn, where a and b are constants, that is equal to ψ∗(n) when

n = 1 and has the same derivative at that point. From the way we defined ψ∗(n) in

Eq. (5.8), it follows that ψ∗(1) = 1. Then g(n) = (1− b) + bn in order to satisfy this

inequality.

Taking the derivative of the both sides of Eq. (5.12) and rearranging the terms

one can obtain the following:

ψ′∗(n) =
1
2n

+ C ln(1 + γ)− λγ
1

2ψ∗(n)
+ C ln(1 + γ) + C ln(ψ∗(n))

. (5.29)

Note that Eq. (5.29) depends on the exact value of ψ∗(n). Evaluating this expression

at ψ∗(1) = 1 yields:

dψ∗(n)

dn

∣∣∣∣
n=1,ψ∗(1)=1

=
1
2

+ C ln(1 + γ)− λγ
1
2

+ C ln(1 + γ)
. (5.30)

Rearranging the terms in Eq. (5.30) and substituting ρ for 1
1+γ

, we obtain:

dψ∗(n)

dn

∣∣∣∣
n=1,ψ∗(1)=1

= 1−
1− ρ

1
2C

+ ln (1/ρ)
.
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Then b = 1−
1− ρ

1
2C

+ ln (1/ρ)
and

g(n) =
1− ρ

1
2C

+ ln (1/ρ)
+

1−
1− ρ

1
2C

+ ln (1/ρ)

n.

Now we will show that g(n) ≥ ψ∗(n) for n ≥ 1. Observe that g(1) = ψ∗(1). In

Lemma 5.5.1 we have established that the derivative of optimal carrier aggregation

with respect to the scaling factor n is decreasing in n. Then we can state that

dg(n)

dn
≥ dψ∗(n)

dn
for any n ≥ 1.

Let h(n) = g(n)− ψ∗(n). Taking the derivative with respect to n we get:

dh(n)

dn
=
dg(n)

dn
− dψ∗(n)

dn
≥ 0.

By the mean value theorem there exists an n0 such that:

dh(n0)

dn
=
h(n)− h(1)

n− 1
=
g(n)− ψ∗(n)

n− 1
≥ 0.

Since n ≥ 1 we conclude that g(n) ≥ ψ∗(n). �

Theorem 5.5.1 provides a way to quickly calculate an upper bound on the optimal

carrier aggregation, which is rather tight for small values of the scaling factor n

as illustrated in Figure 5·4. However, since ψ∗(n) is concave, as the scaling factor

increases, the linear upper bound diverges from the actual value. The strength of the

linear upper bound that we provide lies in its ability to provide simple insight on the

impact of network parameters on optimal carrier aggregation.

As a possible solution to the divergence of the linear upper bound, one could seek

to obtain a piece-wise linear upper bound expression on ψ∗(n) by using the results
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provided in Lemma 5.5.1 and Theorem 5.5.1. Starting at ψ∗(1) = 1, one can use the

linear bound provided in Eq. (5.28) to approximate the value of ψ∗(n) at a larger value

of n, which can then be used to obtain the derivative ψ′(n) provided in Eq. (5.29).

The derivative value can then be assumed to be the linear slope of ψ∗(n), and the

calculation procedure starts over.

Algorithm 1 Piecewise Upper Bound Calculation

procedure Bound(ψ, Scale, StepSize)
Initialize: ψ ← 1, n← 1
Set counter: State← 1
EvaluationPoints← Floor(Scale/StepSize)
while EvaluationPoints ≥ State do

n← n+ StepSize
ψ ← (1− f(ρ)) + f(ρ)n

f(ρ)← ψ′∗(n)

∣∣∣∣
ψ

State← State+ 1

return Bound

Next, we propose a simple algorithmic procedure to compute a piece-wise linear

bound on ψ∗(n) (see Algorithm 1). The algorithm takes as input the scaling factor n,

referred to as Scale, as well as the step size, referred to as StepSize, that defines the

distance between points at which the slope of the bound is recalculated. The proce-

dure starts from the known point of ψ∗(1) = 1 and uses the linear bound established

to calculate the bound on ψ∗ at every evaluation point determined by the step size

until the target scaling factor is reached.

Using Algorithm 1, if the step size is chosen small enough, the bound on ψ∗(n)

will approach the real value. Therefore, one can obtain a relatively tight piecewise

linear upper bound on ψ∗(n), which is illustrated in Figure 5·5 for several different

traffic loads, with a step size of 1.
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Figure 5·5: C = 50 - Piecewise linear upper bounds on the optimal
level of carrier aggregation ψ∗(n) obtained by the initial linear upper
bound provided in Theorem 5.5.1, the slope of which is then adjusted
at integer values of the scaling factor n using the derivative expression
provided in Eq. (5.29).

5.6 Numerical Examples

In this section, we provide numerical examples, where we calculate how much spec-

trum needs to be aggregated to preserve competition in different markets.

Consider two providers in a spectrum market with network parameters given as

follows:

(λ1, C1) = (90, 150) and (λ2, C2) = (60, 100).
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Bandwidth 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz
Resource Blocks 6 15 25 50 75 100

Table 5.1: LTE bandwidth configurations and associated number of
resource blocks as specified in 3GPP Release 8 (3GPP, 2012).

The capacity numbers provided here are in line with the spectrum holdings of Verizon

and T-Mobile in the New York City area, which respectively are 30 MHz and 20 MHz

(translated into the number of resource blocks from Table 5.1), according to the FCC’s

Spectrum Dashboard (Federal Communications Commission, ). In this example, the

scaling factor is n = 150/100 = 1.5 and both providers are in a moderately loaded

market with ρ = 90/150 = 60/100 = 0.60. Using Equation (5.12), we obtain the

carrier aggregation needed by the smaller provider: ψ∗(1.5) = 1.102.

This result tells us that in order to provide the same level of service as the larger

provider, the smaller provider needs to increase its capacity at least by 1.102 times

its current value. Therefore, d100 × 0.102e = 11 additional carriers are needed to

bring the smaller provider’s service level in line with that of the larger provider.

Taking a single carrier to be a resource block in an LTE deployment, the smallest

LTE bandwidth that matches this requirement has a bandwidth of 3 MHz from Table

5.1. This is the amount of spectrum that the smaller provider needs to aggregate in

order to guarantee its ability to compete with the larger provider.

Next, we consider two different markets: (i) a market where the spectrum holdings

of the providers have the same scaling factor but the traffic load ρ is higher and (ii)

a market where there is an increase in the scaling factor n while the traffic load ρ is

the same.

(i) Consider a market where the scaling factor is n = 1.5 while the traffic load

of the market increases to ρ = 0.9. The parameters of the two providers are now as
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follows:

(λ1, C1) = (135, 150) and (λ2, C2) = (90, 100).

Under the new load, the carrier aggregation needed by the smaller provider becomes

ψ∗(1.5) = 1.037.

Thus, d100 × 0.037e = 4 additional carriers are needed by the smaller provider,

fewer than the number of carriers calculated before and in line with Theorem 5.4.2.

Under the same LTE scenario considered previously, Table 5.1 indicates that aggre-

gating a minimum of 1.4 MHz of spectrum in the market with a higher traffic load is

enough to achieve the same goal.

(ii) This time, we consider a market where the scaling factor is increased to n = 6

but the traffic load is the same as the first market (i.e., ρ = 0.6). The parameters of

the providers are given as follows:

(λ1, C1) = (90, 150) and (λ2, C2) = (15, 25).

These numbers are in line with the spectrum holdings of Verizon and T-Mobile in

Logan County, IL, which respectively are 30 MHz and 5 MHz (translated into the

number of resource blocks from Table 5.1), according the FCC’s Spectrum Dash-

board (Federal Communications Commission, ). In this case, the carrier aggregation

needed by the smaller provider is ψ∗(6) = 1.719.

This time, the smaller provider needs an additional d100 × 0.719e = 72 carriers.

Notice that the increase in the total capacity needed is smaller than the increase in

the scaling factor since:

ψ∗(6)/ψ∗(1.5) = 1.559 < 6/1.5 = 4.

Under the same LTE scenario considered previously, Table 5.1 indicates that aggre-
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gating a minimum of 15 MHz of spectrum is needed to achieve the same goal, as the

scaling factor increases to 6.

5.7 Extension to Delay Systems

In Section 5.2, we presented a QD regime approximation of the Erlang-B formula

through Lemma 5.2.1. The assumption was that if all the carriers are busy upon the

arrival of a flow, then the flow is lost. This is referred to as a loss system.

Our results can easily be extended to a delay system. In such a system, all active

flows share the entire network capacity. If the number of flows exceeds C, then the

flows can still be transmitted but at a rate below their peak rate. In that case, the

flows will experience congestion and additional delay. The probability that an arrival

flow experiences congestion is given by the Erlang-C formula:

Ec(λ,C) =

λC

C!
C

C−λ∑C−1
k=0

λk

k!
+ λC

C!
C

C−λ

.

This equation holds for the same general traffic model as presented in Sec-

tion 5.1 (Bonald and Roberts, 2012).

Using the results of (Zeltyn, 2004) for the analysis of queuing systems in the QD

regime we have:

Ec(λ,C) '
(√

2πCγ(1 + γ)C−1eλγ
)−1

. (5.31)

Through following similar steps as in Section 5.3 and replacing the QD formula of

Erlang-B with Eq. (5.31), it is possible to show that the optimal carrier aggregation

in a delay system is given by:

ψ∗c (n) = min

{
ψ :

√
ψ

n

(
(1 + γ)C

eλγ

)ψ−n
ψCψ

eλ(ψ−1)

(
1 +

ψ − 1

ψγ

)
≥ 1

}
. (5.32)
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Figure 5·6: Comparison of optimal carrier aggregation under loss and
delay systems, with C = 50 and ρ = 0.7.

As the left hand side of the inequality in Eq. (5.11) is increasing in ψ, equivalently

ψ∗c (n) is the solution of:√
ψ

n

(
(1 + γ)C

eλγ

)ψ−n
ψCψ

eλ(ψ−1)

(
1 +

ψ − 1

ψγ

)
= 1. (5.33)

Note that Eq. (5.33) is the same as Eq. (5.12) except for the 1 + ψ−1
ψγ

term at the

end. Since 1 + ψ−1
ψγ

> 1 for ψ > 1, one quickly concludes that the left hand side

of Eq. (5.33) is always strictly greater than the left hand side of Eq. (5.12). In other

words, for the same system parameters, the level of optimal carrier aggregation under

the Erlang-C delay model is always smaller than that under the Erlang-B loss model:

ψ∗c (n) < ψ∗(n)

Figure 5·6 illustrates this relationship. By replacing Eq. (5.12) with Eq. (5.33) and

following a similar analysis, the same structural properties given in Theorems 5.4.1
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and 5.4.2 also hold for the QD Erlang-C formula. To give an example, we revisit

Theorem 5.4.1 here:

Theorem 5.7.1 (Erlang-C Capacity Scaling Law) Consider two providers dif-

fering by a scaling factor of n. Then the optimal level of carrier aggregation with

respect to the scaling factor n satisfies:

1. ψ∗c (n) = o
(

n
log(n)

)
2. ψ∗c (n) = ω (nα) , for any α < 1,

where o(·) and ω(·) respectively represent strict upper and lower asymptotic limiting

behavior on the function within the parentheses.

Proof of Theorem 5.7.1. Let us rearrange Eq. (5.33) to obtain:√
ψ

n

(
(1 + γ)C

eλγ

)ψ−n
ψCψ

eλ(ψ−1)
=

ψγ

ψ(1 + γ)− 1
. (5.34)

We will prove that n/log(n) and nα are still asymptotic upper and lower bounds

by showing that the term ψγ
ψ(1+γ)−1 converges to a constant and thus does not affect

the asymptotic relationships.

1. Assume that ψ = n
log(n)

. Then replacing ψ in the right hand side term of

Eq. (5.34) we obtain:

ψγ

ψ(1 + γ)− 1
=

nγ
log(n)

n
log(n)

(γ + 1)− 1
,

and:

lim
n→∞

nγ
log(n)

n
log(n)

(γ + 1)− 1
=

γ

1 + γ
= (1− ρ).

2. This time, assume that ψ = nα, α < 1. Then replacing ψ in the right hand side

term of Eq. (5.34) we obtain:

ψγ

ψ(1 + γ)− 1
=

nαγ

nα(1 + γ)− 1
,
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and

lim
n→∞

nαγ

nα(1 + γ)− 1
=

γ

1 + γ
= (1− ρ).

�

5.8 Applications to Secondary Spectrum Markets

We next discuss how our results on carrier aggregation apply to pricing games in

secondary spectrum markets. In Chapter 3, we identified the minimum (break-even)

price at which it is profitable for a provider implementing a coordinated access policy

to start admitting secondary users. The break-even price pBE is directly linked to the

Erlang-B formula:

pBE = KE(λ,C). (5.35)

The break-even price plays a critical role in determining the Nash equilibrium of a

game where two providers compete in prices to attract secondary demand. Without

loss of generality, suppose that the break-even price of provider 1 is lower than that of

provider 2. Recall that Theorem 3.4.1 provided in Chapter 3 states the competition

results in a price war that is won by provider 1 (i.e., provider 1 captures the entire

market). One concludes that the outcome of the pricing game is directly related to

the break-even prices, which in turn relate to the Erlang-B formula.

Hence, the level of optimal carrier aggregation acts as an identifier of necessary

network provisioning to obtain a competitive price advantage in a secondary spectrum

market. All of our previous results, such as the structural properties with respect to

scaling factors and traffic loads and the established general bounds can be readily

applied to the question of how to strategically implement carrier aggregation in a

secondary spectrum market.
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5.9 Summary

In this chapter of the dissertation, we investigated the impact adding additional ca-

pacity to a network provider through carrier aggregation. We accomplished this by

providing computational methods, scaling laws, and bounds on the optimal carrier

aggregation. Under a QD regime, we derived an approximation of the Erlang-B for-

mula. This approximation is highly accurate as long as the number of carriers is large

enough (e.g., above 50) and the spectrum utilization does not approach 100% (e.g.,

90% or below), an assumption that is consistent with measurement studies (Valenta

et al., 2010).

Using the QD formula, we investigated optimal carrier aggregation by proving

two scaling laws: (i) with respect to the scaling factor n and (ii) with respect to the

traffic load. Specifically, we obtained sub-linear (though close to linear) asymptotic

upper and lower bounds in the form ψ∗(n) = o (n/ log(n)) and ψ∗(n) = ω (nα) for

any α < 1. Then, we demonstrated that if the traffic load under which each provider

operates increases, then the level of carrier aggregation required is reduced. This

result indicates that the marginal benefit of carrier aggregation in a heavily loaded

network is higher than that in a lightly loaded network.

Next, we derived an upper bound on ψ∗(n) that applies to any value of n and

is provably the tightest possible. This upper bound explicitly relates to the network

parameters and can provide regulators and market players with useful guidelines. We

also provided a method of improving it to a piece-wise linear bound by iteratively

approximating ψ′(n).

We explained how the results derived for loss systems, based on the Erlang-B for-

mula, extend to delay systems based on the Erlang-C formula. We proved that for the

same network parameters, the optimal level of carrier aggregation in a delay system
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is always smaller than in a loss system. Finally, we provided a relationship between

the profitable pricing of users in secondary spectrum markets and the Erlang-B for-

mula for which our results apply. Hence, the results on optimal carrier aggregation

presented in this chapter are directly applicable to pricing strategies in secondary

spectrum markets, where providers can aggregate spectrum to lower their prices in a

possible price war.



Chapter 6

Networks with Spatial Interferences

In the previous chapters we have limited our analysis to a single access point (AP) in a

wireless landscape. However, in reality wireless networks consist of many APs covering

different geographical areas and depending of their distance some of these APs will

be subject to interference. Therefore, to accurately model wireless network behavior

it is important to consider the spatial aspect of wireless spectrum. In this chapter we

extend on our previous analysis of profitability for a single AP presented in Chapters 3

and 4 to a network consisting of many APs and experiences interference. We describe

the spatial model being considered and propose a decoupling method to characterize

the stochastic behavior of APs under interference. Using this approximated model we

then identify the profitability conditions for admitting secondary users into a network

under the coordinated access policy described in Chapter 3.

6.1 Spatial Model

In this section we introduce the network model considered and the accompanying

notation. Consider a cellular provider whose network is given by the graph G = (I, E)

where |I| = n. Each vertex i ∈ I represents a cell which has a dedicated primary-user

base whose traffic arrivals form a Poisson process with rate λi > 0 (i.e., the average

number of requests per unit time), and a finite number of spectrum bands Ci on

which these arrivals are serviced. For each served primary user, provider i collects a

132
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Figure 6·1: A Hexagonal Lattice Topology Network. Cells that are in
the interference neighborhood of the black cell are colored red.

reward of K units. The primary users occupy a single unit of capacity for a duration

that is generally distributed with mean µ, which we assume to be 1, without loss of

generality, independently of other requests and arrival times.

In addition to the primary arrivals, the provider at a single cell i faces a possible

independent secondary arrival process with rate σi that is also Poisson. The intensity

of secondary arrivals is a function of the price p charged per access, denoted by

σ(p). Here σ(·) is the demand function, which is assumed to be continuous and

non-increasing. We assume that the secondary users have the same channel holding

statistics as the primary users. This assumption is valid when both types of traffic

are generated by similar applications.

Let xi ∈ {0, 1, 2, . . . , Ci} denote the occupancy level of cell i. Each cell i has

a certain number of neighboring cells denoted by the set N(i) = {j | (j, i) ∈ E},

which consists of the cells that share an edge with cell i. Let wij denote the level of

interference of a call arrival at cell i with cell j, such that in the duration of the call
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wij units of resources are also occupied at cell j. We assume that the interference

is symmetric such that wij = wji. Self interference is allowed such that wii = 1. A

network occupancy is feasible if for all cells i ∈ I:

xi +
∑
j∈N(i)

wjixj ≤ Ci. (6.1)

Figure 6·2 illustrates the model being considered on a hexagonal topology common

to cellular networks.

We define λ, C, and x as the corresponding vectors containing the individual

parameters of all cells in the network G. Further, let wi = [wi1, wi2, ..., wiI ] denote

the interference vector of cell i in the network.

The provider uses an admission policy to decides whether to admit or reject a

secondary arrival to its network, which we denote by Ai. We assume that Ai depends

only on the number of each class of users (primary and secondary) in the system and

belongs to the class of occupancy-based policies. The performance of occupancy-based

policies are insensitive to the call length distribution except through the mean (Mutlu

et al., 2010). Hence, without loss of generality, we can assume exponentially dis-

tributed service times for the purpose of analysis in the rest of the chapter.

Since network cells have a finite number of channels, they cannot accommodate

new requests if all of the channels are occupied. This results in some requests being

blocked. We define Bi,k(λ, σi, Ai) to be the blocking probability for class k users

(k = 1 for primary and 2 for secondary) when secondary demand given by σi is

admitted at cell i and the access policy implemented for secondary users in cell is Ai.

The goal of the provider is to maximize the total revenue collected. The revenue

rate of cell i when the network services secondary demand of σi units at cell i is given
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by:

Rii(p, σi, Aj) = (1−Bi,2(λ, σi, Ai))σip+ (1−Bi,1(λ, σi, Ai))λiK

whereas the revenue rate of cell j 6= i is given by:

Rij(p, σi, Aj) = (1−Bj,1(λ, σi, Ai))λjK.

For cell i, the first and the second terms are respectively the revenue generated

by secondary and primary requests being serviced. For cells other than i, the only

revenue is that collected from the primary users. Each term represents the expected

long time rates per unit time. The total reveue rate of the network is given by the

summation of the revenue rates over all cells in the network G:

R(p, σi, Ai) = (1−Bi,2(λ, σi, Ai))σip+
∑
j∈I

(1−Bj,1(λ, σi, Ai))λjK. (6.2)

6.2 First-order Erlang Fixed Point Approximation

In this section we will consider a network in the absence of secondary users and provide

a decomposition model that effectively removes interference between the cell while still

capturing its impact of interference on the network. We start by providing a quick

explanation of Kelly’s work on loss network where he introduced the use of Erlang

Fixed Point Approximation (EFPA) to approximate the blocking probabilities (Kelly,

1991; Kelly, 1986).

For a single cell the probability that an arriving call will be blocked is given by

the well-established Erlang-B formula:

E(λ,C) =
λC

C!∑C
k=0

λk

k!

. (6.3)
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In a network setting, however, where a call arrival uses resources in multiple cells,

the Erlang-B formula is no longer valid. Kelly in (Kelly, 1986) provides the well-

studied Erlang Fixed Point Approximation formula that yields the loss probabilities

in a network. The approximation assumes that each cell blocking is independent from

the rest of the network and the call arrivals are thinned accordingly. Al Daoud et. al.

provide the EFPA formula in (Al Daoud et al., 2007), which is given by the following

set of equations:

bi = E

(
(1− bi)−1

∑
j∈I

wijλj
∏
k∈I

(1− bk)wjk , Ci

)
for i = 1, 2, 3, · · · , n. (6.4)

If a call arrival to cell i is blocked with probability bi and assuming that such events are

independent, the effective load at cell i is given by
∑

j wijλj
∏

k(1− bk)wjk . Eq. (6.4)

states that the blocking probability at cell i is consistent with the load it faces. The

set of equations (6.4) has a unique solution (Kelly, 1991); hence the approximation is

well defined.

The loss probability of a call arriving in cell i is simply the probability of not

being able to accommodate the call at all cells which are being affected by its arrival.

This probability is given by the following:

Bi(λ,C) = 1−
∏
j∈I

(1− bj)wij . (6.5)

Kelly has shown in (Kelly, 1991) that when both the arrival rates and capacities

at the network are increased in line with the other, i.e.,

lim
n→∞

1

n
λi(n) = λ and lim

n→∞

1

n
Ci(n) = C.

the blocking probabilities calculated by the approximation in Eq. (6.5) converge to
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Figure 6·2: A symmetric hexagonal network - Red cells are in the
interference neighborhood of the white cell, where a call arrival to the
white cell will also occupy w units capacity in the red cells.

their exact values since it has been demonstrated in (Kelly, 1991) that:

1−Bi(λ,C) =
∏
j∈I

(1− bj)wij + o(n−1/2). (6.6)

For small interference values wij, making use of the binomial series expansion, we

can make the following approximation:

1−Bi(λ,C) =
∏
j∈I

(1− bj)wij ≈
∏
j∈I

(1− wijbj). (6.7)

Now we consider only the first iteration of Eq. (6.4) in an effort to remove the

coupling between the cells in the network, which then allows us to treat each cell as

an independent queue. For relatively low blocking regimes such that almost all of the
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arrivals to the network are accepted, Eq. (6.4) is well approximated by:

b̂i = E

(∑
j∈I

wijλj, Ci

)
= E

λi +
∑
j∈N(i)

wijλj, Ci

 (6.8)

Therefore it is as if the total arrival rate at cell i is the sum of its own arrival rate

and its neighbors’ arrival rates multiplied by the respective probability of interference

at each neighbor cell. Let

λ′i = λi + λN(i), (6.9)

where λ′i is the effective load at cell i and λN(i) =
∑

j∈N(i)wijλj is the effective

interfering arrival rate from the neighboring cells. Hence, the blocking at cell i in the

first-order approximation is given by the Erlang-B formula under the effective load:

b̂i = E(λ′i, Ci). (6.10)

In the next lemma we will show that as the network is scaled up with the load

(λ/C) kept constant, the Erlang-B formula tends to zero.

Lemma 6.2.1 For λ < C,

lim
n→∞

E(λn,Cn) = 0. (6.11)

Proof. Smith and Whitt’s work (Smith and Whitt, 1981) (page 54) has shown that

we can express the Erlang-B formula in the following form:

E(λn,Cn)−1 =

∞∫
0

e−x
(
n+ x/λ

n

)Cn
dx. (6.12)

To determine the limit, we first need to determine:

lim
n→∞

(
n+ x/λ

n

)Cn
. (6.13)
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We can rewrite Eq. (6.13) in the following form:

lim
n→∞

(
n+ x/λ

n

)Cn
= elimn→∞ Cn log(n+x/λn ).

Taking t = 1/n, we obtain:

lim
n→∞

Cn log

(
n+ x/λ

n

)
= lim

t→0
C

log(1 + tx/λ)

t
.

Using L’Hospital’s rule:

lim
t→0

C
log(1 + tx/λ)

t
= lim

t→0
C

d log(1+tx/λ)
dt
dt
dt

= lim
t→0

C
x/λ

1 + tx/λ
= Cx/λ.

Now we can take the limit:

lim
n→∞

E(λn,Cn)−1 = lim
n→∞

∞∫
0

e−x
(
n+ x/λ

n

)Cn
dx

=

∞∫
0

e−xeCx/λdx =∞

for λ < C which implies limn→∞E(λn,Cn) = 0. �

Now we present our first theorem, which establishes that the first-order approx-

imation to the EFPA is also asymptotically exact as the cell arrivals and capacities

increase proportionally.

Theorem 6.2.1 Let b = (b1, b2, ..., bI) denote the solution to EFPA given in

Eq. (6.4). Then in a network where
∑

j∈I wijλj < Ci for all i:
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w=0.05, λ=8 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7
Bi (simulated) 2.9319e-3 9.8786e-4 9.7598e-4 9.8269e-4 9.8703e-4 9.7383e-41 9.8934e-4

B̂i (approximated) 2.9823e-3 9.9993e-4 9.9993e-4 9.9993e-4 9.9993e-4 9.9993e-4 9.9993e-4
b̂i (approximated) 2.7477e-3 7.8410e-4 7.8410e-4 7.8410e-4 7.8410e-4 7.8410e-4 7.8410e-4

Error (%) 1.72 1.22 2.45 1.75 1.31 2.68 1.07
w=0.15, λ=5 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7
Bi (simulated) 1.1394e-3 2.2178e-4 2.2042e-4 2.2218e-4 2.2131e-4 2.2196e-4 2.2113e-4

B̂i (approximated) 1.1461e-3 2.2674e-4 2.2674e-4 2.2674e-4 2.2674e-4 2.2674e-4 2.2674e-4
b̂i (approximated) 1.1039e-3 4.6991e-5 4.6991e-5 4.6991e-5 4.6991e-5 4.6991e-5 4.6991e-5

Error (%) 0.59 2.23 2.86 2.05 2.45 2.15 2.53

Table 6.1: Blocking probabilities of a symmetric hexagonal network
given in Figure 6·2 with two different configurations. Bi is the block-
ing probability obtained from the simulation of the exact system. B̂i

and b̂i represent the approximations made in Eq.’s (6.5) and (6.10),
respectively. The error percentages are between the simulated and ap-
proximated call blocking probabilities (Bi and B̂i). All cells have a
capacity of C = 20. The interference weights are the same and wij = w
for all i,j.

lim
n→∞

E

(
(1− bi)−1

∑
j∈I

wijλjn
∏
k∈I

(1− bk)wjk , Cin

)

E

(∑
j∈I

wijλjn,Cin

) = 1 (6.14)

Proof. In the proof of Lemma 6.2.1 we have stated that the Erlang-B formula

can be expressed in the following form:

E(λn,Cn)−1 =

∞∫
0

e−x
(
n+ x/λ

n

)Cn
dx.

Rewriting the ratio in Eq. (6.14) using the integral form we get:

lim
n→∞

∫∞
0
e−x

(
n+x/

∑
j∈I

wijλj

n

)Cin

dx

∫∞
0
e−x

(
n+x/(1−bi)−1

∑
j∈I

wijλj
∏
k∈I

(1−bk)
wjk

n

)Cin

dx

. (6.15)

Using Lebesgue’s dominated convergence theorem (Rudin, 1964, pp. 321), we can

take the limit inside the integral, to show the ratio of these two expressions is equal
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to one, it is sufficient to show that:

lim
n→∞

(
n+x/

∑
j∈I

wijλj

n

)Cin

(
n+x/(1−bi)−1

∑
j∈I

wijλj
∏
k∈I

(1−bk)
wjk

n

)Cin
= 1, (6.16)

Now assume that limn→∞ bi = 0 for all i. Taking the limit of Eq. (6.16) then yields:

e
Cix/

∑
j∈I

wijλj

e
Cix/

∑
j∈I

wijλj
= 1.

Finally, we need to check our assumption that limn→∞ bi = 0. We consider the

right hand side of Eq. (6.4). Using the integral notation provided in Eq. (6.12), if the

assumption holds, we have just shown that in the limit it is given by the expression: ∞∫
0

e
x(Ci/

∑
j∈I

wijλj−1)
dx

−1

which goes to zero for
∑

j∈I wijλj < Ci following from the results in Lemma 6.2.1.

Hence our initial assumption holds and is a solution to the EFPA. Since we know

that the solution of the EFPA is unique, there can be no other solution that satisfies

Eq. (6.4). �

Theorem 6.2.1 states that as the network size increases, the blocking probabilities

calculated by the EFPA and the first-order calculation proposed in Eq. (6.8) are the

same in the limit. Therefore one can conclude that for large networks, the blocking

probability of an individual cell can be well approximated by modeling it as a single

cell in isolation as long as the load increase due to its neighbors are accounted for.

In Table 6.1 we provide the results of a computer simulation of a hexagonal network

topology shown in Figure 6·2. Even at low values of λ and C, the approximation is
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Figure 6·3: The auxillary model to of the symmetric hexagonal net-
work provided in Figure 6·2

very close to the simulation results. Naturally, one can expect the approximation to

be worse at these values if the interference given by wij had been higher. However,

for relatively low levels of interference one can conclude that the EFPA is sufficiently

close to the real value and hence in the rest of the chapter we shall assume that

b̂j = bj.

6.3 Profitability of Secondary Demand

In this section we seek to establish profitability conditions on secondary demand

where admitting secondary users into the network at a single cell site results in an

improved revenue for the network provider.

For a given secondary demand σ admitted at cell i for secondary price p, let

A∗i (p, σ) denote an access policy that maximizes the revenue rate for a provider. We

refer to A∗i (p, σ) as the optimal coordinated access policy. We represent the resulting
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maximal revenue R∗i (p, σ) as follows:

R∗i (p, σ) = Ri(p, σ, A
∗
i (p, σ)) = max

Ai
Ri(p, σ, Ai). (6.17)

Now, consider a policy that admits secondary users only when the occupancy

(i.e., the number of users being served) in a node drops below a constant Ti ∈ [0, Ci],

which we term the admisssion threshold. We denote the implementation of a threshold

policy with the notation Ai(σ, p) = Ti. Let T ∗i denote the optimal threshold value

that maximizes the revenue of the provider such that:

T ∗i = arg max
Ti=0,...,Ci

Ri(p, σ, Ti) (6.18)

The optimal threshold value depends on all parameters of the provider including

intensity of the secondary demand. It is well-known that the optimal threshold policy

is also the optimal admission policy for a network consisting of a single AP (Key, 1990;

Miller, 1969; Ramjee et al., 1997).

It is important for a network provider to identify conditions it makes sense from

a revenue perspective to ever accept a secondary request at a single cell i. If the

secondary price-demand pair (p, σ) yields profit relative to serving primary demand

only, (p, σ) represents an economically viable situation for a provider. The issue is

closely related with the opportunity cost of accepting a secondary request: On the

one hand such a request brings an immediate revenue of p, on the other hand it may

cause rejecting future requests, possibly with higher immediate revenue, due to the

channel that it holds temporally.

Definition 6.3.1 Let pBEi (Ai) denote the break-even price that determines the prof-
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itability of the admission of secondary users in node i under policy Ai such that:

Ri(p, σ, Ai) ≥ Ri(p, 0, Ai) if p ≥ pBEi (Ai)

Ri(p, σ, Ai) < Ri(p, 0, Ai) if p < pBEi (Ai)

Following from our definition, pBEi (A∗i ) denotes the break-even price under the op-

timal admission policy, which we name the general optimal break-even price; whereas

pBEi (T ∗i ) denotes the break-even price under the optimal threshold policy, which we

name the threshold break-even price. It has been previously demonstrated that the

optimal break-even price is insensitive to the shape or the intensity of the secondary

demand (Al Daoud et al., 2012).

In Al Daoud et. al.’s work (Al Daoud et al., 2012) it has been established that

pBEi (A∗i ) does not depend on the value of the secondary demand σ. Hence the value

of the optimal break-even price does not change whether we set σ =∞ or a constant

σ′. We will next derive an expression for the break-even price under threshold policies

and infinite secondary demand, assuming this type of policies are optimal. Once we

establish this price, we will show that this gives us the tightest upper bound among

the threshold break-even prices on the general optimal break-even price if the optimal

policy is not of threshold type.

Assume that the optimal admission policy is of threshold type such that A∗i = T ∗i .

Since the optimal admission policy is insensitive to secondary demand, we will identify

the break-even price by setting σ =∞ and thus considering a network where all states

below the threshold value are always occupied by secondary users. Specifically, we

identify a price condition that yields a better revenue under any threshold policy

than the revenue generated by a policy that flatly rejects all secondary arrivals. This

determines the sign of the balance in the trade-off when making a control decision to

admit a secondary user or not. We state our main result on this profitability condition



145

in the following theorem:

Theorem 6.3.1 The break-even price pBEi (A∗i ) is given by the following expression:

pBEi (A∗i ) = min
T

K

πo(T )
∏

j∈N(i)(1− wij b̃j)

(
λi
λ′i

(∏
j∈I

(1− wijbj)− (1− πo(C))
∏

j∈N(i)

(1− wij b̃j)
)

+
∑
k∈N(i)

(
λk
λ′i

∏
j∈I

(1− wkjbj)− (1− wkiπo(C))
∏

j∈N(i)

(1− wkj b̃j)
))

. (6.19)

where

πo(k) =

{
(λ′i)

k/k!

Go
for k = T + 1, T + 2, . . . , Ci

0 otherwise,

b̂i = E(λ′i, Ci),

b̃j = E(λ′j + wij(T + 1)πio(T + 1), Cj),

and Go =
∑Ci

k=T+1
(λ′i)

k

k!
is a normalizing constant, λ′i is the effective load given in

Eq. (6.9).

Proof. Let T be the maximum state of cell i at which secondary arrivals are

admitted. If we set σ =∞, then T +1 channels at cell i will always be occupied, since

upon a departure at occupancy level T + 1 a new secondary request is immediately

admitted to the system. Therefore, the state space of cell i reduces to T + 1, T +

2, ..., Ci. The occupancy process of cell i under such a policy is illustrated in Figure 6·4

and has the following equilibrium distribution:

πo =

{
(λ′i)

k/k!

Gio
for k = T + 1, T + 2, . . . , Ci

0 otherwise,
(6.20)

where Go =
∑Ci

k=T+1
(λ′i)

k

k!
is a normalizing constant.

Before considering the impact on a neighboring cell j, we first calculate the effec-
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Figure 6·4: Occupancy process of cell i when the secondary demand
is set to ∞ and the threshold value is T . T + 1 channels are always
occupied by secondary users.

tive secondary demand that is the result of the threshold policy in cell i. Secondary

demand is generated when a secondary arrival is admitted immediately after a de-

parture from cell i where T + 1 channels are busy. Since secondary users have unit

holding time, T+1 secondary arrivals are served on average in a unit time, which then

translates into an effective secondary demand with a rate of (T +1)πo(T +1) at cell i.

The effective load at the neighboring cell j is now given by λ′j +wij(T + 1)πo(T + 1)

and the blocking becomes:

b̃j = E(λ′j + wij(T + 1)πo(T + 1), Cj). (6.21)

The secondary revenue generated at cell i is given by σeff ·p = (T+1)πio(T+1) ·p.

On the other hand, a primary request is admitted when less than Ci channels are

occupied, the revenue rate of which is then given by λiK(1 − πio(Ci)) at cell i and

λjK(1 − πjo(Cj)) for all j ∈ N(i). These revenue rates are then subjected to the

blocking of the neighboring nodes. The policy is profitable if the revenue rate we



147

formulated exceeds the revenue rate in the absence of secondary users, i.e.,

(T + 1)πo(T + 1) p
∏

j∈N(i)

(1− wij b̃j) + λiK(1− πo(C))
∏

j∈N(i)

(1− wij b̃j) (6.22)

+
∑
k∈N(i)

λkK(1− wkiπo(C))
∏

j∈N(i)

(1− wkj b̃j) >

λiK
∏
j∈I

(1− wijbj) +
∑
k∈N(i)

λkK
∏
j∈I

(1− wkjbj).

Algebraic manipulation of this inequality yields:

p >
K

πo(T )
∏

j∈N(i)(1− wij b̃j)

(
λi
λ′i

(∏
j∈I

(1− wijbj)− (1− πo(C))
∏

j∈N(i)

(1− wij b̃j)
)

+
∑
k∈N(i)

(
λk
λ′i

∏
j∈I

(1− wkjbj)− (1− wkiπo(C))
∏

j∈N(i)

(1− wkj b̃j)
))

. (6.23)

The value of T that minimizes the right hand side of Eq. (6.23) yields the form in

Eq. (6.19). �

Now consider the case when the optimal policy is not threshold type, i.e.,

A∗i (p, σ) 6= T ∗i . Then the property of being insensitive to secondary demand does

not apply for the threshold type policy we have just considered and under which we

derived the break-even price. To avoid confusion, let us expand our notation and let

T ∗i (σ) denote the optimal threshold under secondary demand σ. Thus the break-even

price derived in Theorem 6.3.1 becomes pBEi (A∗i ) = pBEi (T ∗i (∞)). In the following the-

orem, we will establish that this break-even price gives us the tightest upper bound

that can be established on the optimal break-even price among all threshold type

policies regardless of the secondary demand.

Theorem 6.3.2 The threshold break-even price established under infinite secondary

demand is a lower bound on all other threshold break-even prices such that for any
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secondary demand σ′ <∞:

pBEi (T ∗i (∞)) ≤ pBEi (T ∗i (σ′))

Proof. We will demonstrate the inequality in the theorem by establishing that

setting the price equal to the threshold break-even price under a finite secondary

demand yields a positive revenue under infinite demand, i.e.,

Ri(p
BE
i (T ∗i (σ′)),∞, T ∗i (∞)) ≥ Ri(p

BE
i (T ∗i (σ′)), σ′, T ∗i (σ′)).

Consider a policy Â(p,∞) that does a random thinning of the secondary demand and

brings it to σ′ by setting an initial threshold value. It then implements the threshold

policy T ∗i (σ′). Hence the policy Â(p,∞) generates the same revenue as the policy

T ∗i (σ′):

Ri(p,∞, Â(p,∞)) = Ri(p, σ
′, T ∗i (σ′)). (6.24)

Since T ∗i (∞) represents the optimal threshold policy when the secondary demand is

infinite, we have:

Ri(p,∞, T ∗i (∞)) ≥ Ri(p,∞, Â(p,∞)). (6.25)

Combining Eq.’s (6.24) and (6.25) gives us the desired inequality:

Ri(p,∞, T ∗i (∞)) ≥ Ri(p, σ
′, T ∗i (σ′)). (6.26)

�

6.3.1 Numerical Results

In this section we present numerical results on the break-even price expression we

provided in Theorem 6.3.1. Although the expression we provided in Eq. (6.19) does

not state which threshold value T minimizes the break-even price, based on previous
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Figure 6·5: The break-even price and the optimal threshold value
that minimizes it as provided in Eq. (6.19) for a network with 7 cells,
each with a capacity of C = 30 and the interferences are as shown in
Figure 6·2 with w = 0.1. (K=100)

results obtained in Chapter 3 and numerical analysis, we conjecture that the optimal

threshold value is zero. Figure 6·5 illustrates this where we calculate the optimal

threshold value over a range of primary arrival rates that maintain low blocking

within the network.

In other words, the break-even price derived in Theorem 6.3.1 is obtained when

the network provider admits secondary users into the network only when the cell at

which they are admitted into the network is empty. This has the following intuitive

explanation: The impact secondary users have on the network is two-fold. First, they

occupy a channel at the cell where they are being admitted. Secondly, they increase

the likelihood that the call arrivals in the neighborhood of cell i will be blocked. Both

of these effects result in an opportunity cost for the provider in terms of the primary

revenue lost. Due to the stochastic nature of the call arrival departure process at

each cell, this risk is minimized when cell i is completely empty.

We then turn our attention to the accuracy of approximation of the break-even

price. In order to do so we have simulated the revenue rate of the network with

a hexagonal topology as illustrated in Figure 6·2 under a lock-out (no secondary
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Figure 6·6: The simulated profit of a network provider shown in Fig-
ure 6·2 for different prices. The error bars indicate 95% confidence
intervals. (w=0.05, C=5, λ=3, K=100). The results are obtained
after 10 million primary arrivals at each cells and over 60 simulations.

admission) and the T = 0 threshold policy. Figure 6·6 illustrates the increase in

profits when secondary users are admitted to an empty network. One can observe

from the figure that the break-even price is approximately given by pBE = 18, with a

possible range of [16.2, 19.5] due to the confidence interval provided. Using Eq. (6.19)

we obtain pBE = 20.4 which indicates a 10% error between the simulated result

and our approximation. A possible explanation for this discrepancy is that for the

network values of λ = 3 and C = 5 there is significant amount of blocking in the

network where our first order approximation is not very accurate. While it would

be desirable to simulate the same network with low blocking values, simulating the

network becomes more time intensive in order to stay within the same confidence

intervals. This because the difference in revenues are essentially generated whenever

the network is full or the network is empty both of which become very rare events as

the capacity is increased.
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6.4 Summary

In this chapter we have presented a framework to determine the profitable admission of

secondary users in a multicell network that is subject to spatial interference. We have

first provided a method to decouple the behavior in the individual cells from the rest

of the network using a first order approximation to Erlang fixed point methods. Then,

using the provided decoupling we have identified profitability conditions of secondary

user admission at a single cell and provided the corresponding price expression in

terms of the network parameters.



Chapter 7

Concluding Remarks and Future

Directions

In the dissertation, we have investigated the profitability and the competitive behavior

of oligopolies in secondary spectrum markets, which can be formed as a result of

dynamic spectrum sharing in wireless communications. We have been motivated by

the initiatives of the FCC in this direction, encouraging the formation of such markets

as a possible way to improve spectrum utilization compared to the current situation.

In Chapters 3 and 4 of this dissertation we have focused on the pricing of secondary

users in a possible secondary market modeled after FCC’s private commons. We have

investigated competitive behavior and the market outcomes it leads to between the

market participants in an attempt to collect revenues from secondary users at a

profitable price.

In Chapter 3, we focused on the first of the two proposed regimes for secondary

spectrum access, namely coordinated access under private commons. Such an inves-

tigation can help provide important guidance to a firm’s strategic decision process,

by explicitly determining the parameters on which market success depends. To ac-

complish this goal, we formulated the problem as a non-cooperative game, in which

providers with finite network capacities are making strategic pricing and access con-

trol decisions with respect to secondary users.

We analyzed the implementation of coordinated access, for which we demonstrated

152
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that the optimal access policy is of threshold type. We showed that each provider

has a unique break-even price, above which profitability is guaranteed regardless of

the secondary user demand response. Next, using the notion of Nash equilibrium,

we formalized the possible outcomes resulting from a non-cooperative game in which

optimal coordinated access is implemented by two or more network providers. We

explained how the best response dynamics of each provider reflect a price war, which

leads to a single provider (that with the lowest break-even price) capturing the entire

secondary spectrum market.

In Chapter 4, we considered the same private commons competition however this

time under an uncoordinated access policy. Under uncoordinated access, the break-

even price is no longer insensitive to the secondary demand and market sharing be-

tween providers becomes a possible best response. The possible market outcomes

under an uncoordinated access policy are highly dependent on the specific shape of

the secondary demand function, the analysis of which can become very complex.

To address this complexity, we next focused on an uncoordinated access regime for

secondary spectrum detailed under private commons using a demand overflow model.

Once again using the notions of best response and Nash equilibrium, we show

the emergence of two markedly different possible market outcomes, depending on

the secondary demand function σ(p) and the network parameters of each provider.

We established the existence market sharing price intervals and showed that if they

intersect, then the providers converge to a price profile where they will share the

market. On the other hand, if the market sharing price intervals do not intersect,

the Nash equilibrium reflects a price war wherein the winning provider sets its price

slightly below the break-even price of its competitor and gets all the profit.

Next, in Chapter 5 we shifted our focus from the pricing and competition in private

commons to the question of aggregating more spectrum in an effort to improve a
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network providers ability to compete in secondary spectrum markets. Motivated by

the recent FCC ruling regarding reserved spectrum in auctions and added capability

of carrier aggregation by LTE-Advanced, we sought to investigate the possibility of

a single small provider increasing its spectrum holdings to be able to compete with

larger providers.

First, we derived a many server approximation for the Erlang-B formula under a

quality driven (QD) regime. Using this QD approximation, we identified an optimal

level of carrier aggregation. We investigated the scaling behavior of optimal carrier

aggregation two-fold: (i) with respect to the scaling factor n and (ii) with respect to

the traffic load. We obtained sub-linear (though close to linear) asymptotic upper

and lower bounds. Then, we demonstrated that if the traffic load under which each

provider operates increases, then the level of carrier aggregation required is reduced.

This result indicates that the marginal benefit of carrier aggregation in a heavily

loaded network is higher than that in a lightly loaded network. Finally, we provided a

relationship between the profitable pricing of users in secondary spectrum markets and

the Erlang-B formula for which our results apply. Hence, the results on optimal carrier

aggregation presented in the chapter are directly applicable to pricing strategies in

secondary spectrum markets, where providers can aggregate spectrum to lower their

prices in a possible price war.

Finally, in Chapter 6, we reconsidered the problem of profitable pricing of sec-

ondary users in a spatial topology, in contrast to the single cell setting of in previous

chapters. We presented a framework to determine the profitable admission of sec-

ondary users in a multicell network that is subject to spatial interference. We used

the Erlang fixed point approximation (EFPA), which works well for low blocking

regimes, to obtain a better understanding of the total revenue a multicell network

generates. Through the EFPA we decoupled the blocking and revenue generation of
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each cell from the rest of the network. Then, using the provided decoupling we identi-

fied profitability conditions of secondary user admission at a single cell and provided

the corresponding price expression in terms of the network parameters.

In our analysis, we have made some simplifying assumptions that can be gradually

removed to include more general topologies and traffic patterns in the future works.

Specifically, the EFPA works well in network that experience low levels of blocking.

While it can be expected that commercially deployed networks will be operating in or

near this level of performance, the cases where usage peaks should also be considered

separately. Also, we only considered the existence of secondary users in a single cell

in the network and provided a specific break-even price for this type of admission.

However, in reality secondary users can be expected to be present at all cell sites at

different density levels. Admitting secondary users at multiple locations is a larger

problem that deserves its own investigation. However, we also note that the break-

even price provided in Chapter 6 considers when should the first secondary user be

admitted to the network and hence should be applicable when further admission

scenarios are considered.

In summary, with this dissertation we shed light into regulatory impact of the

formation of healthy oligopolies in secondary spectrum markets. We accomplished

this by considering the nature of provider competition in private commons under

coordinated and uncoordinated access and its subtle outcomes. Future work could

focus on extending the model by taking into account spillover, quality of service and

spatial distribution factors in bringing the competition closer to reality and analyzing

the impact of each layer of additional complexity on the market outcomes.

A self-evident line of future work is the price competition analysis of the multicell

network setting given profitable pricing conditions. For example, once the break-

even price for every cell is calculated using the methodology provided in Chapter 6,
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where should the provider choose to open its spectrum for secondary access? If this

provider is facing competition from one or more providers who also have cell cites

at the same geographic area, what would be the market equilibrium? Would every

provider choose to isolate their secondary service areas in an effort to prevent price

wars and maximize profits or would they choose to compete over cell sites that are

particularly profitable or desirable? Many questions such as these remain open and

provide rich directions for future work.
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