
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

Fluigi: an end-to-end software
workflow for microfluidic design

https://hdl.handle.net/2144/14628
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

FLUIGI: AN END-TO-END SOFTWARE WORKFLOW

FOR MICROFLUIDIC DESIGN

by

HAIYAO HUANG

M.Eng., Massachusetts Institute of Technology, 2007

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

c© 2016 by
HAIYAO HUANG
All rights reserved except for Chapter 2 which is
c©2014 by The Royal Society of Chemistry and

Section 3.3 which c©2014 ACM, Inc. Reprinted
with permission.

Approved by

First Reader

Douglas Densmore, PhD
Associate Professor of Electrical and Computer Engineering

Second Reader

Ayse Coskun, PhD
Associate Professor of Electrical and Computer Engineering

Third Reader

Ahmad S. Khalil, PhD
Assistant Professor of Biomedical Engineering

Fourth Reader

Martin Herbordt, PhD
Professor of Electrical and Computer Engineering

Acknowledgments

I would like thank my advisor Douglas Densmore for giving me the chance to con-

tinue working in synthetic biology after I had a minor crisis of conscience working in

industry. The last four years have been a wonderful experience.

I would like to thank Professor Ahmad Khalil for letting me borrow his lab space

and equipment for making and testing microfluidics, and for the initial ideas of ex-

ploring the space of automating microfluidic design; and his graduate students Ali

Beyzavi and Brandon Wong for teaching me how to fabricate molds in the clean room.

I’d like to thank Professor Ayse Coskun and Professor Martin Herbordt for being

on my committee and providing valuable feedback during the prospectus.

I’d like to thank Swapnil Bhatia for his assistance with the early ideas on using

biological circuits in microfluidics and Ernst Oberortner for his assistance working

with ANTLR. I’d also like to thank Traci Haddock for keeping peace in the lab and

during lab meetings and preventing the members of the computational side of things

from damaging themselves and their experiments in the wet lab.

I’d like to thank my labmates in the CIDAR lab, most notably Ryan Silva, Sonya

Iverson, and Aaron Heuckroth, for getting the Fluigi project off the ground, and for

some unforgettable memories of white elephant gift swaps and that one trip to Maine.

Finally, I’d like to thank my husband Jim Waldrop for his continued moral sup-

port during my time as a graduate student and the household felines for keeping me

company while I coded.

iv

FLUIGI: AN END-TO-END SOFTWARE WORKFLOW

FOR MICROFLUIDIC DESIGN

HAIYAO HUANG

Boston University, College of Engineering, 2016

Major Professor: Douglas M. Densmore, PhD
Associate Professor of Electrical and Computer
Engineering

ABSTRACT

One goal of synthetic biology is to design and build genetic circuits in living

cells for a range of applications with implications in health, materials, and sensing.

Computational design methodologies allow for increased performance and reliability

of these circuits. Major challenges that remain include increasing the scalability

and robustness of engineered biological systems and streamlining and automating the

synthetic biology workflow of specify-design-build-test.

I summarize the advances in microfluidic technology, particularly microfluidic

large scale integration, that can be used to address the challenges facing each step

of the synthetic biology workflow for genetic circuits. Microfluidic technologies allow

precise control over the flow of biological content within microscale devices, and thus

may provide more reliable and scalable construction of synthetic biological systems.

However, adoption of microfluidics for synthetic biology has been slow due to the

expert knowledge and equipment needed to fabricate and control devices. I present

an end-to-end workflow for a computer-aided-design (CAD) tool, Fluigi, for designing

microfluidic devices and for integrating biological Boolean genetic circuits with mi-

v

crofluidics. The workflow starts with a “netlist” input describing the connectivity of

microfluidic device to be designed, and proceeds through placement, routing, and de-

sign rule checking in a process analogous to electronic computer aided design (CAD).

The output is an image of the device for printing as a mask for photolithography or

for computer numerical control (CNC) machining. I also introduced a second work-

flow to allocate biological circuits to microfluidic devices and to generate the valve

control scheme to enable biological computation on the device.

I used the CAD workflow to generate 15 designs including gradient generators,

rotary pumps, and devices for housing biological circuits. I fabricated two designs, a

gradient generator with CNC machining and a device for computing a biological XOR

function with multilayer soft lithography, and verified their functions with dye. My

efforts here show a first end-to-end demonstration of an extensible and foundational

microfluidic CAD tool from design concept to fabricated device. This work provides a

platform that when completed will automatically synthesize high level functional and

performance specifications into fully realized microfluidic hardware, control software,

and synthetic biological wetware.

vi

Contents

1 Introduction 1

2 Background 5

2.1 Engineering biology . 6

2.1.1 Boolean logic in biological devices 8

2.1.2 Memory and state in biological devices 9

2.1.3 Specify-Design-Assemble-Verify workflow 9

2.2 Microfluidics . 11

2.2.1 Device physics . 12

2.2.2 Design and fabrication . 13

2.2.3 Microfluidic large scale integration 15

2.3 Using microfluidics to solve challenges in synthetic biology 16

2.3.1 Specification . 19

2.3.2 Design . 24

2.3.3 Assembly . 29

2.3.4 Verification . 33

2.4 Hastening adoption of microfluidics 35

2.4.1 Design automation in microfluidics 36

2.4.2 An end-to-end automated workflow for microfluidic design . . 38

3 First forays into microfluidic CAD 40

3.1 Motivation . 40

3.2 First iteration . 44

vii

3.2.1 Architecture . 44

3.2.2 Workflow . 46

3.2.3 Results . 50

3.2.4 Flaws . 55

3.3 Second iteration . 55

3.3.1 Architecture . 55

3.3.2 Workflow . 57

3.3.3 Results . 64

3.3.4 Benchmark circuits . 64

3.3.5 Example circuits . 66

3.3.6 Flaws . 68

4 Design architecture 70

4.1 Device model . 70

4.2 Implementation . 71

4.3 Netlist rules . 72

4.3.1 Device declaration . 73

4.3.2 Primitives . 75

4.3.3 Channel . 80

4.3.4 Modules . 82

4.3.5 3D structures . 91

5 Software workflow 94

5.1 Initialization . 95

5.2 Parsing the netlist file . 97

5.3 Placement . 98

5.3.1 Simulated annealing . 98

5.3.2 Pre-routing layout cleanup . 102

viii

5.4 Routing . 102

5.4.1 Channel routing . 103

5.4.2 Net routing . 105

5.5 Design rule checking . 105

5.5.1 Channel intersection checking 106

5.5.2 Space constraint checking . 108

5.6 Photomask generation . 110

5.6.1 Masks for photolithography 111

5.6.2 Designs for CNC milling . 111

5.7 Adding biology . 112

5.7.1 Generating controls . 114

6 Results 116

6.1 Example designs . 116

6.1.1 Designs for multilayer soft lithography 116

6.1.2 Designs for CNC machining 121

6.2 Algorithm runtimes . 121

6.3 Demonstration of workflow . 123

6.4 Replication of XOR experiment . 124

6.4.1 Fabrication process . 125

6.4.2 Device controls . 126

6.4.3 Device testing . 127

7 Conclusion and future works 132

A Java libraries 136

B Device Netlists 137

B.1 Device A . 137

ix

B.2 Device B . 137

B.3 Device C . 138

B.4 Device D . 139

B.5 Device E . 140

B.6 Device F . 141

B.7 Device G . 142

B.8 Device H . 144

B.9 Device I . 146

B.10 Device J . 148

B.11 Device K . 151

B.12 Device txtl . 162

B.13 Device transposer-cells . 163

B.14 Device transposer-web . 164

B.15 Device mixer-3d . 164

C Photolithography procedure 166

C.1 Setup . 166

C.2 Control layer . 166

C.3 Flow layer . 167

D PDMS molding 169

D.1 Control layer . 169

D.2 Flow layer . 169

D.3 Bonding to glass . 170

References 171

Curriculum Vitae 186

x

List of Tables

2.1 Key microfluidic technologies for investigation of challenges present in

the synthetic biology workflow . 18

2.2 Comparison of current CAD tools for microfluidics 38

3.1 Results of Fluigi for two-input benchmark circuits 51

3.2 Results of Fluigi for three-input benchmark circuits 51

3.3 Results of Fluigi for example circuits 51

3.4 Definition of terms . 57

3.5 Flow layer and control layer layout parameters 58

3.6 Three-input Boolean logic functions 65

3.7 Example circuits . 67

4.1 Syntax for statements declaring primitives 76

4.2 Syntax for statements declaring channels and nets 81

4.3 Syntax for statements declaring modules 83

4.4 Syntax for statements declaring 3D structures 91

5.1 Default design rule parameters . 96

5.2 Default place-and-route parameters 97

5.3 Channel length penalty calculations 100

5.4 Control pattern operations . 114

6.1 Examples of devices for multilayer soft lithography 117

6.2 Examples of devices for CNC machining 121

xi

6.3 Algorithm runtimes for devices . 124

6.4 Valve states for fluid paths between chambers 129

A.1 Additional Java libraries . 136

xii

List of Figures

2·1 Biological NOR gate . 6

2·2 Multilayer soft lithography . 13

2·3 Synthetic biology workflow . 17

2·4 Microfluidic devices for specification 20

2·5 Microfluidic devices for design . 27

2·6 Microfluidic devices for synthesis . 29

2·7 Microfluidic devices for verification 32

3·1 Uses for biological Boolean logic . 42

3·2 Uses for microfluidics in biological computation 45

3·3 Hypothetical chip structure . 47

3·4 First iteration of workflow . 48

3·5 Sample devices with tile architecture 52

3·6 Second iteration of workflow . 59

3·7 Negotiated congestion routing . 62

3·8 Layout of selected combinatorial logic circuits 66

3·9 Layout of selected non-combinatorial circuits 69

4·1 Class diagram of architecture model 71

4·2 Lexical rules for the netlist grammar 72

4·3 Netlist example . 73

4·4 Syntax for netlist grammar . 74

4·5 Syntax for layer declarations . 75

xiii

4·6 Port and Node . 76

4·7 CellTrapL . 78

4·8 CellTrapS . 78

4·9 Mixer . 79

4·10 Valve . 80

4·11 Channel . 81

4·12 Net . 82

4·13 Bank . 84

4·14 CellTrapBank . 85

4·15 Mux . 86

4·16 Tree . 86

4·17 LogicArray . 87

4·18 GradientGenerator . 88

4·19 TDroplet . 89

4·20 FFDroplet . 90

4·21 Rotary . 90

4·22 3DValve . 91

4·23 Via . 92

4·24 Transposer . 93

5·1 Software workflow . 95

5·2 Simulated annealing pseudocode . 99

5·3 Hadlock’s routing . 104

5·4 Intersection search . 107

5·5 Interval search . 108

5·6 Photomasks . 110

5·7 Small alignment marks . 112

xiv

5·8 Large alignment marks . 112

6·1 Device designs A-D . 118

6·2 Device designs E-G . 119

6·3 Device designs H and I . 120

6·4 Device designs J and K . 120

6·5 Device designs for CNC machining 122

6·6 Device designs to test runtime . 123

6·7 CNC milled mixer . 125

6·8 Photomask for fabrication . 126

6·9 PDMS device . 127

6·10 Microfluidic multiplexor in action . 128

6·11 Valve and chamber numbering . 129

6·12 Fluid paths . 130

7·1 Long-term workflow . 134

xv

List of Abbreviations

BST Binary Search Tree
CAD Computer-Aided Design
CNC Computer Numerical Control
DNA Deoxyribonucleic Acid
FPGA Field Programmable Gate Array
GFP Green Fluorescent Protein
MAGE Multiplex Automated Genome Engineering
mLSI Microfluidic Large Scale Integration
mRNA Messenger Ribonucleic Acid
PDMS Polydimethylsiloxane
ORF Open Reading Frame
SBOL Synthetic Biology Open Language
TLFM Time-Lapse Fluorescent Microscopy
VLSI Very Large Scale Integration

xvi

Chapter 1

Introduction

Synthetic biology as a field has the potential to offer game-changing breakthroughs

in the fields of alternative energy, drug discovery, customized medicine, and alterna-

tive computing. The main challenges facing scientists, particularly those working in

micro-organisms such as E. coli or yeast, are scaling up the number of experiments

and the ability to quickly and accurately reproduce previous experiments. Microflu-

idics, particularly continuous flow based systems and microfluidic large scale inte-

gration, provides a technology platform for chemical and biological experiments that

can greatly benefit the synthetic biology community. Specific details and examples of

using microfluidics in the synthetic biology workflow of specify-design-assemble-verify

are described in Chapter 2.

Currently, the majority of synthetic biology labs do not adopt microfluidics for

the simple reason that microfluidics are hard to both design and manufacture. Few

synthetic biology labs have personnel with detailed knowledge of fluid dynamics.

The process to design a microfluidic device involves drawing every device feature

and channel by hand in a graphics program such as Adobe Illustrator or AutoCAD.

The designer also has to keep track of and adjust all the required spacing between

elements and between layers of the device. The design process can take from several

days for a simple device to several weeks for a complex device. Small changes such as

altering the size of elements or spacing between elements may mean redrawing large

sections of the design to account for the overall design requirements. For microfluidic

1

2

large scale integration, devices can contain thousands of elements, making layout by

hand increasingly time-consuming and error-prone. In addition, the equipment and

cleanroom space needed for device manufacturing is beyond the purview for many

labs. With the current manufacturing process of multi-layer soft lithography, it takes

approximately 7-10 days to make a device once a design has been finalized and a

photomask printed. Repeated iterations of device designs would take weeks or months

with current technologies, making it vital that the device designs are error-free before

fabrication.

The goal now is to reduce the difficulty of designing and fabricating microfluidic

devices so more synthetic biology labs will take advantage of the technology for their

experiments. This thesis focuses on removing some of the barriers to microfluidic de-

sign by introducing a CAD tool for an end-to-end workflow from a textual description

of a microfluidic device to the generation of a photomask. The scope of the project

is limited to continous flow based systems as those systems are the most amenable

to the cell growth and monitoring experiments commonly used in synthetic biology.

The workflow captures and formalizes the design parameters that would otherwise be

derived from trial and error and allows lab-specific design choices to be easily shared

in the form of initialization files. This ensures that expert knowledge is retained and

reduces the learning curve of new designers.

The end-to-end workflow begins with a new netlist format for describing the fea-

tures on microfluidic devices and the connections between the features. The netlist

format contains commonly used microfluidic design elements such as ports, mixers,

cell chambers, and multiplexers, and can be easily extended to describe additional

features. The full specification for the netlist format is in Chapter 4.

The netlist is converted to a graph representation of the microfluidic device, and

the device undergoes automated layout and design rule checking. Algorithms for

3

placement and routing from electronic design automation were adapted to work with

the design constraints of microfluidic devices. Simulated annealing is used for place-

ment, and Hadlock’s variation of maze routing is used for routing. Design rule check-

ing is performed with a search of intersections between device features that reduces

to a 1-D interval search. These processes are described in detail in Chapter 5. The

result of this is a vector graphics file of the design for manufacturing.

This workflow was used to build and test a prototype device for solving one of

the challenges facing synthetic biology: the lack of non-interferring genetic parts in

large genetic networks. Microfluidics could allow reuse of existing genetic parts by

separating the parts both spatially and temporally. Previous attempts at solving

this challenge are described in Chapter 3. A four chamber device that allowed fluid

routing between any two chambers was designed with this workflow. The photomask

generated by this workflow was used to fabricate the device through multilayer soft

lithography, and the device was tested with dye. An alternative method of fabrication

with a desktop computer numerical controlled (CNC) mill was also explored. Where

it would take a week to fabricated a device with multilayer soft lithography, a CNC

mill can be used to fabricated devices in less than an hour. The workflow was used

to generate the design for a gradient generator, and the final device was fabricated

with the CNC mill and tested with dye. The results of these two experiments are

described in Chapter 6.

The contributions of this work to the fields of synthetic biology, microfluidics,

and design automation are two-fold. First, I provide the first end-to-end workflow

for microfluidic design automation that includes a new netlist format for describ-

ing microfluidic devices, automated layout through place-and-route, and design rule

checking. Second, I provide a prototype device built with the workflow for directing

communications between different cell populations that may increase the scalability

4

of biological computation. This work has to potential to unlock a paradigm shift in

both microfluidic design and synthetic biology by harnessing the capabilities of design

automation.

Chapter 2

Background

(This chapter was originally published as Huang, H. and Densmore, D. (2014). Inte-

gration of microfluidics into the synthetic biology design flow. Lab Chip, 14:3459 -

3474. (Huang and Densmore, 2014b).)

Over the last decade, synthetic biology has emerged as a field with potential ap-

plications in diverse fields including pharmaceuticals, biofuels, and materials. The

engineering of a microbial production pathway for artemisinic acid (a precursor for

antimalarial drugs) (Ro et al., 2006) has lowered the production costs of those drugs

from $2.40 to $0.40 per dose, expanding the number of patients who can afford the

treatment for a disease that kills millions (Densmore and Hassoun, 2012). Several

companies from around the world (Gevo in Englewood, Colorado, Butamax in Wilm-

ington, Delaware, and Butalco in Fuerigen, Switzerland) have all developed methods

to increase the yield of isobutanol or butanol for commercial biofuels using various

strains of yeast (Peralta-Yahya et al., 2012), while Amyris has adapted the meval-

onate and deoxyxyulose phosphate metabolic pathways in yeast to ferment farnesene

(Westfall and Gardner, 2011). Engineered bacteriophages (viruses targeting bacteria)

have been used to destroy biofilms (Lu and Collins, 2007) and resensitize otherwise

antibiotic-resistant strains of bacteria (Lu and Collins, 2009), which could extend

the effectiveness of current drug therapies in the face of rising antibiotic resistance.

However, despite these success stories, the field of synthetic biology faces challenges

in workflow acceleration and automation as it seeks to scale from single prototypes

5

6

tf1

tf2 pro1 pro2

ip1 ip2 rp1rbs1 rbs2
cds1 cds2

t1 t2

tf1 tf2 pro1 pro2

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

Figure 2·1: A genetic NOR gate, and accompanying truth table. The presence of
transcription factors tf1 or tf2 activate the inducible promoters ip1 and ip2 respec-
tively and allow for production of pro1, coded for by cds1. The protein pro1 acts
as a transcription factor on repressible promoter rp1 and blocks production of pro2,
coded for by cds1. The final output, pro2 is only produced when both transcriptional
factors tf1 or tf2 are absent.

to commercial enterprises. The field of microfluidics has proved successful in a wide

range of applications in biology and has the potential to address these challenges.

2.1 Engineering biology

Synthetic biology seeks to manipulate the structure and functions of deoxyribonucleic

acid (DNA) to create new biological systems according to engineering principles.

The primary paradigm in the field is to identify biological primitives involved in the

transformation of DNA to a protein and encapsulate these individual DNA sequences

as “parts”(Voigt, 2006). Synthetic biology has taken advantage of the modularity

in the structure of bacterial open reading frames (ORFs) to abstract portions of the

sequence as “parts”. These “parts” include sequences for promoters, ribosome binding

sites, coding regions, and terminators, and can be combined to create functional

“devices” which can be introduced into living organisms such as bacteria, yeast, or

mammalian cells (Canton et al., 2008; Khalil et al., 2012; Carr and Church, 2009).

As logical frameworks such as repressible systems exhibiting the behavior of inverters

already exist in gene expression systems, synthetic biology seeks to harness and re-

7

engineer these natural logic systems for other applications.

A genetic device that implements the Boolean NOR function and the correspond-

ing truth table are shown in Figure 2·1. This device is designed to function in prokary-

otic systems. In this circuit, the inputs are the transcription factors tf1 and tf2, which

control the inducible promoters ip1 and ip2 such that transcription only takes place

when one or both of the transcription factors are present. Transcription continues

until terminator t1, and the resulting messenger RNA (mRNA) is translated into the

protein pro1 (coded for by the coding region cds1). The protein pro1 acts as a tran-

scription factor for the repressible promoter rp1, preventing transcription starting at

rp1 if it is present. The output of this system is the protein pro2 (coded for by

the coding region cds2), which is only expressed if neither tf1 or tf2 are present. In

the absence of tf1 and tf2, pro1 is not expressed. Transcription starts at rp1 and

continues through t2, allowing pro2 to be expressed. This behavior of this device

emulates that of the Boolean NOR function, in which the output is true if and only

if both inputs are false. NOR and NAND functions are functionally complete and

can be used to build all other Boolean logic functions, thus allowing these devices to

be the basis for biological computation. As such, many different implementations of

these functions exist in synthetic biology (Goñi-Moreno and Amos, 2012; Wang et al.,

2011; Bonnet et al., 2013).

While many different classes of biological devices such as oscillators (Purcell et al.,

2010), filters (Sohka et al., 2009), noise generators (Lu et al., 2008), and the beginnings

of analog computation (Daniel et al., 2013) exist, I focus here instead on the biological

devices implementing Boolean logic (Brophy and Voigt, 2014) and other extensions

of the digital abstraction found in electronics. I use the digital abstraction not to

replicate silicon-based computing, but as a method for designing robust biological

circuits that are insensitive to noise and can be tuned to specific input conditions.

8

Additionally, the digital abstraction is well understood, and numerous techniques

have been developed for its description, synthesis, and verification. The introduction

of Boolean logic and memory devices into biological systems leads to new applications

and potential methods of computation for solving otherwise computationally intensive

and complex problems (Haynes et al., 2008; Baumgardner et al., 2009).

2.1.1 Boolean logic in biological devices

Biological logic devices can be used to detect specific combinations of chemical or

environmental triggers for targeted pharmaceutical and biotechnology applications

(Tamsir et al., 2011; Gupta et al., 2013). One application for biological logic circuits

is in the field of cancer research (Ruder et al., 2011; Shankar and Pillai, 2011), where

the use of digital logic provides the necessary specificity for targeting strains of cancer

cells while leaving other cells unharmed (Anderson et al., 2006; Xie et al., 2011).

Nissim et al. (Nissim and Bar-Ziv, 2010) introduce a tunable dual promoter system

that implements the Boolean function AND to target cancer cells while ignoring

premalignant cells.

While devices implementing two-input Boolean logic functions are useful in syn-

thetic biology, more complex computation would allow for applications such as the

biological sensing of multiple chemical species in the same device, the identifica-

tion of specific genetic markers, and environmentally tailored drug dosage responses

(Purnick and Weiss, 2009). One way of constructing more complex functions is to

increase the layers of logic in the genetic device. This method was used by Moon et

al. to create a four input transcriptional AND gate (Moon et al., 2012) with eleven

orthogonal (non-interfering) regulatory proteins made from two layers of two-input

AND gates. Another tactic is to separate the larger function into smaller functions

and place devices implementing the smaller functions into different cells. These cells

then communicate with each other through intercellular signaling pathways. All six-

9

teen two-input functions have been built from E. coli cells containing NOR gates

that communicate through the quorum sensing pathway (Tamsir et al., 2011). Dis-

tributed computing (Maćıa et al., 2012) has also been implemented in yeast with the

development of both a 2-to-1 multiplexer and a basic addition circuit (Regot et al.,

2011).

2.1.2 Memory and state in biological devices

The next step in increasing complexity of computation is to generate the concept of

memory or “state”, such that the cell remembers what has previously happened and

takes that into account in new calculations. One approach is to use recombinases,

enzymes used by bacteriophages to manipulate their host’s genome, to turn specific

DNA sequences on and off by switching the orientation of the DNA (Khalil and

Collins, 2010). Memory devices and counters have been integrated into cells through

the use of recombinase-based circuits (Ham et al., 2008; Friedland et al., 2009). The

use of recombinase has also provided synthetic biologists with a form of rewrite-able

and addressable data storage capable of information storage through over 100 cell

divisions and through repeated switching without losing performance (Bonnet et al.,

2012). More recently, Siuti et al. have used recombinase-based circuits to implement

all 16 two-input Boolean logic functions with stable DNA-encoded memory of events

in E. coli without requiring cascades of multiple gates (Siuti et al., 2013).

2.1.3 Specify-Design-Assemble-Verify workflow

The practice of synthetic biology typically follows an iterative process of specification,

design, assembly, and verification. The process begins with the specification of the

function of the novel genetic device either by hand or with one of the new description

languages such as Eugene (Bilitchenko et al., 2011a; Bilitchenko et al., 2011b), GEC

(Pedersen and Phillips, 2009), or Proto (Beal et al., 2011). In the design phase, bio-

10

logical parts are selected from repositories to implement the specified function. Tools

such as GenoCAD (Cai et al., 2010), j5 (Hillson et al., 2012), or Clotho (Xia et al.,

2011) may aid the design process. Assembly of a novel genetic device starts with ob-

taining the parts of interest either by isolating segments of DNA from natural sources

or by de novo synthesis through companies such as DNA2.0, GeneArt (Densmore

and Hassoun, 2012), or Gen9 (Goldberg, 2013). Parts are assembled into devices

by joining the segments of DNA together using restriction enzymes (proteins that

cut DNA at certain sequences) and ligases (proteins that create new bonds between

DNA bases). Common assembly techniques, including BioBrick (Shetty et al., 2008),

BglBrick (Anderson et al., 2010), Gibson (Gibson et al., 2009), GoldenGate (Engler

et al., 2008), the Modular Overlap-Directed Assembly with Linkers (MODAL) (Casini

et al., 2014), and modular cloning (MoClo) (Weber et al., 2011), are reviewed in detail

elsewhere (Ellis et al., 2011). Software tools are being developed to automate and

optimize the assembly process (Densmore et al., 2010; Appleton et al., 2014).

The completed device is then inserted into a host organism, commonly E. coli for

prokaryotic systems and yeast (Saccharomyces cerevisiae, a model organism for eu-

karyotic studies) for eukaryotic systems, and the organism is grown under a variety of

conditions to test the function of the device as compared to the original specifications.

For verification purposes, fluorescent proteins are often used as a substitute for the

gene of interest as their expression is more easily measured through flow cytometry to

determine the efficiency of the device under test. The fluorescent protein is replaced

by the protein of interest in the final application. At this stage, the genetic device

may be further refined based on the gathered data, or the host cells may be grown

for harvesting more copies of the device.

As new techniques in synthetic biology generate large libraries of thousands of part

variations and combinatoric devices, increased throughput and automation are needed

11

to test and characterize these constructs to allow the acceleration of the specify-

design-assemble-verify development cycle for synthetic biology. To lower the barrier

of entry into the field, synthetic biology needs to take advantage of the improvement

in automation and computer-aided design tools. Software tools for synthetic biol-

ogy have grown in the past years to encompass a variety from rules-based constraint

languages to gene designers to basic simulators. Standards such as the Synthetic

Biology Open Language (SBOL) (Galdzicki et al., 2012) are being developed to fa-

cilitate information exchange between various tools in the toolchain and will be vital

in building end-to-end workflows (Beal et al., 2012) in synthetic biology from high

level languages to compilation from the language to biological parts to DNA assem-

bly. While the available tools are still lagging behind the current state of the art

of biological research, the development of these tools helps with refining the rules of

genetic design for future applications (Lux et al., 2012).

2.2 Microfluidics

Microfluidics is comprised of the analytical systems and tools for the study and ma-

nipulation of small volumes of liquids, typically at micro and nano liter scales. The

advantages of microfluidics come from the decrease in scale, which allows for more

predictable fluid flow, decreasing the amount of reagents needed for reactions, and

smaller devices and experiment setups. Microfluidics have been used for chemical

analysis (Whitesides, 2006) and PCR (Zhang et al., 2006) as well as a variety of ap-

plications in molecular biology (Hamon and Hong, 2013), systems biology (Breslauer

et al., 2006), stem cell studies (Gupta et al., 2010; Zhang and Austin, 2012), tissue

engineering (Inamdar and Borenstein, 2011), point-of-care diagnostics (Lei, 2012),

pathogen detection (Foudeh et al., 2012), and systematic toxicity studies (Sung and

Shuler, 2010).

12

Recently, synthetic biologists have been developing and using microfluidics to

study synthetic gene networks and network dynamics (Bennett and Hasty, 2009).

Due to the potential in microfluidic systems for the precise control over input stimuli

(Wang et al., 2012; Dertinger et al., 2001) and the ability to track single cells (Ferry

et al., 2011), there has been an increased interest in microfluidic platforms to further

synthetic biology (Lin and Levchenko, 2012). I present the list of challenges facing

synthetic biology as the field matures and describe how microfluidics could be used to

find solutions to those challenges as well as potential future applications for systems

and workflows integrating both synthetic biology and microfluidics.

The field of microfluidics covers a wide range of technologies such as lateral flow

tests, linear actuated devices, pressure driven laminar flow, microfluidic large scale

integration, segmented flow microfluidics, centrifugal microfluidics, electrokinetics,

electrowetting, surface acoustic waves, and dedicated systems for massively parallel

analysis (Haeberle and Zengerle, 2007; Mark et al., 2010). For the purposes of this

project, I will focus on the subset of microfluidics that offer the most relevance to

current problems in the synthetic biology workflow, particularly in spatial and tempo-

ral gradient generation, microfluidic large scale integration (mLSI) high-throughput

screening, DNA synthesis, and cell culture.

2.2.1 Device physics

In pressure-driven systems, the reduced scale of microfluidic devices results in deter-

ministic fluid flow. The low Reynolds number (a comparison of the forces acting on

the flow) of the flow means that the nonlinear and chaotic effects due to turbulence

caused by inertial forces are removed, and the flow is restricted to the laminar region.

In this flow regime, the behavior of the fluids can be predicted by the size of the

fluid channel and the viscosity of the fluid in a manner analogous to Ohm’s Law in

electrical engineering (Oh et al., 2012), making it easier to simulate and verify the

13

Photoresist

Si wafer

Mask

UV

1. Apply photoresist to silicon wafer

2. Place mask and expose to UV

3. Develop photoresist

PDMS

4. Replica mold with PDMS

Glass
5. Bond finished chip to glass slide

Flow
Channel

Control
Channel

Flow
Channel

Control
Channel

Push up Valve

a) open

Push down Valve

a) open b) closed

b) closed

0

0

1

0

1

0

1

1 2 3 4 5 6 7

Bit 2 = 1

Bit 1 = 0

Bit 0 = 1

101 = 5

A B

C

Figure 2·2: (A) Fabrication process for soft lithography (adapted from (Zhang and
Austin, 2012)). (B) Two possible structures (push-up or push-down) for valves in
multilayer soft lithography (adapted from (Melin and Quake, 2007)). (C) Multiplexer
for selection of 8 possible fluid lines, using 6 control lines to represent the 3-bit binary
number of the selected line (adapted from Ref. (Thorsen et al., 2002)).

function of the device. The mixing of parallel flows is dominated by diffusion instead

of convection, so that the flows only interact at their boundary. This effect can be

exploited to generate spatial gradients of chemicals of interest (Dertinger et al., 2001).

Mixers (Chou et al., 2001; Stroock et al., 2002) can be used to speed up integration of

flows. A detailed synopsis of the physics and fluid mechanics specific to microfluidic

devices may be found elsewhere (Squires and Quake, 2005; Kirby, 2010).

2.2.2 Design and fabrication

A widely used fabrication material for microfluidic devices is polydimethylsiloxane

(PDMS). The properties of PDMS make it well suited for use in biological appli-

cations as it offers flexibility for fabrication, scalability, and potential for long-term

growth and monitoring of cells (Balaban et al., 2004). PDMS is optically transpar-

ent, chemically inert, impermeable to water but permeable to gases, and non-toxic

14

to cells (Sia and Whitesides, 2003). The cost of the raw material is around $0.05 per

cm3 (Unger et al., 2000; Sollier et al., 2011), making it suitable for rapid prototyping

and quick design iteration. PDMS-based microfluidics have been used for a variety of

purposes in recent years, including as an alternative platform for computation (Thies

et al., 2008). Development of the microchemostat (Balagaddé et al., 2005) has allowed

for cells to be grown in microfluidic chips for long periods of time, thus allowing for

more complex, long-term experiments. However, the low elastic modulus of PDMS

makes it unsuitable for high pressure applications as high pressure causes channel

deformation in PDMS-based devices (Sollier et al., 2011).

Microfluidic chips are fabricated from PDMS through soft lithography. As many

detailed reviews of the process exist (Duffy et al., 1998; Sia and Whitesides, 2003;

Weibel et al., 2007), I will only provide a brief description. Photoresist (typically

SU-8) is spun out over a substrate of silicon, and a transparency with the chip design

is placed over it as a mask. The sandwich of mask, photoresist, and substrate is then

exposed to UV light. The mask is removed, and the photoresist washed in developing

agent to obtain the master mold. PDMS layers are cast from the master through

replica molding. The channels are then sealed against a substrate suitable for imaging

and connected to input and control structures. A summary of the process is shown

in Figure 2·2A. The entire fabrication process, from the creation of the photomask

to the molding of the chip, takes no more than a few days including the turnaround

time for printing the photomask. This process does require the experimenter to have

access to a high quality cleanroom and purchase specialized fabrication equipment

for soft lithography (Elveflow, 2015), or else contract out the fabrication process to a

dedicated microfluidic foundry.

15

2.2.3 Microfluidic large scale integration

An extension of soft lithography, multilayer soft lithography, allows devices to be built

of multiple layers of PDMS, typically with one layer as a fluid flow layer and another

layer as a control layer with channels pressurized by external actuators (Unger et al.,

2000). Fluid flow is controlled by strategic placement of valves in the control layer,

which restrict fluid flow when pressurized by causing the PDMS to deform and create

a seal across the channel to impede fluid flow (Amin et al., 2009). Two types of

valves described by Melin and Quake (Melin and Quake, 2007), push up and push

down, are shown in Figure 2·2B. For work with cells, push down valves are preferred

as they allow for easier cleaning of the flow channels and chip reuse (Cheong et al.,

2009b). Multiple valves may be be controlled by the same pressurized control line,

and the optimization problem lies in minimizing the number of control lines needed

to operate a chip.

The interaction of the control and flow layer through valves form the basic building

block of microfluidic large scale integration (mLSI). As devices made from multilayer

soft lithography grow more complicated, an increased number of external pressure

lines are needed to control fluid flow. Microfluidic multiplexers, developed by Quake

and colleagues (Thorsen et al., 2002), contain combinatorial arrays of binary valve

patterns and allow increased fluid manipulation with a minimal number of control

inputs such that only 2 log2 n control lines are needed to access the valves to select

from one of n fluid channels. This makes them very suitable for high-throughput

applications that require manipulation of hundreds or thousands of fluid elements.

The multiplexer shown in Figure 2·2 uses 6 control lines to represent the 3-bit binary

number for selecting the fluid channel. Recent advancements in mLSI architecture

focus on increasing the number of control elements on the chip through component

miniaturization or additional layers, decreasing the reliance on external pneumatic

16

lines through on-chip logic, and increasing reusability through programmable chips

(Araci and Brisk, 2014). Work has also been done on reducing contamination and

back flow through the use of a microfluidic serial digital-to-analog pressure converter

(Yu et al., 2013).

While CAD and automation have been primarily focused on droplet based digital

microfluidics (Su and Chakrabarty, 2005; Su et al., 2006; Chakrabarty and Zeng, 2005;

Chakrabarty, 2010) rather than mLSI, a new subset of tools are being developed for

layout and optimization of mLSI devices. Earlier tools for mLSI include Biostream, a

tool for designing GUIs and control valves for multilayer devices (Thies et al., 2008;

Urbanski et al., 2006) (freely available at (Thies et al., 2009)) and Micado (Amin

et al., 2009), which automate control valve placement and routing for a given flow

layer. Extensions of that work have led to developments in a microfluidic description

language similar to hardware description languages used in electronics (McDaniel

et al., 2013), algorithms for laying out the flow layer based on a high level description

of chip function (Minhass et al., 2012), and better algorithms for valve placement and

control routing (Minhass et al., 2013; Tseng et al., 2013).

2.3 Using microfluidics to solve challenges in synthetic biology

Introducing complex engineered systems into cells presents numerous challenges at

different levels of the synthetic biology workflow. I present in Figure 2·3 a sampling

of the current challenges in synthetic biology and the microfluidic technologies most

applicable to solving those challenges. I begin with the problems facing accurate

specification of the function of novel genetic devices as the specification is only as

useful as the understanding of the underlying biological behavior. A major challenge

when designing new biological devices is that synthetic biology still suffers from a

lack of well-characterized parts that do not interfere with each other when used to-

17

...
Part Promoter(sequence, str);
Part RBS(sequence, efficiency);
Part CDS(sequence, degradation_rate);
Part Terminator(sequence, efficiency);
%%Generate library
Promoter p1.str = ????
RBS r1.eff = ????
...
Foreach(Promoter){
 If (Promoter.str > 20){
 Device d(Promoter, r1, gfp, B0015)
 }
}

SPECIFICATION

Not enough data to
fully specify parts

Challenge:
Lack of well characterized
and well understood parts

Solution:
Characterization of parts
under wide range of
conditions using microfluidics
for spatial and temporal
control of inputs

Can't design
devices based on
part properties

DESIGN

Challenges:
Multiple parts interacting with
the same small molecules
causing interference with
device function.

Solutions:
Screen for new orthogonal
parts with microfluidic high
throughput screening
platforms

Interference

ASSEMBLY

Challenges:
Fast, accurate, repeatable,
and easily automatable
assembly methods with error
control

Solutions:
De novo synthesis of parts and
devices and DNA assembly on
microfluidic platforms,
microfluidic platforms for error
control

VERIFICATION

Challenges:
Measuring static and
dynamic behavior, stability
and robustness

Solutions:
Long term monitoring of
population and single cell
gene expression in
microfluidic cell traps and
microchemostats

Figure 2·3: The synthetic biology workflow of specification-design-assembly-
verification, and the challenges at each step in the workflow. The use of microfluidics
in environmental control, high throughput screening, DNA synthesis, and cell cul-
ture may be used to augment current work in synthetic biology and address these
challenges.

gether to construct larger systems. Important factors in the assembly of a device

include potential unintended changes in function introduced when joining two seg-

ments of DNA and the time and cost efficiency of the currently available assembly

methods. Verification of device function and stability requires accurate monitoring

and measurement of protein expression at both the population and single cell level for

extended periods of time. Microfluidics technologies in environmental control, high

throughput assays, DNA synthesis, and cell culture can be used to augment and sup-

plement existing work in synthetic biology to address these challenges. I present in

Table 2.1 a summary of the current challenges facing synthetic biology as it matures

18

Workflow
Domain

Challenge Potential
Solution

Applicable
Microfluidic
Technology

References

Specification Accurate and
standardized
models of parts
needed for
composition
of devices and
prediction of
device behavior
in simulations

Characterization
of parts and de-
vices over wide
range of en-
vironments
and operating
conditions

Large scale
spatial and
temporal fine-
grained control
over chemi-
cal inputs in
microfluidic
devices

(Dertinger
et al., 2001;
Lin et al., 2004;
Bennett et al.,
2008; Wang
et al., 2012;
Cooksey et al.,
2009)

Design Small number
of available
orthogonal
parts result
in unwanted
molecular inter-
actions in large
devices

Engineering
large libraries
of new parts or
reuse of existing
parts

Microfluidic
large scale
integration for
high throughput
screening assays
for new parts
and controlling
intercellular
signaling for
distributed
biological com-
puting

(Thorsen et al.,
2002; Taylor
et al., 2009;
Dénervaud
et al., 2013;
Gómez-Sjöberg
et al., 2007;
Cheong et al.,
2009b; Liu
et al., 2010;
Fidalgo and
Maerkl, 2011)

Assembly Fast, accurate,
repeatable con-
struction of
large genetic
devices with
minimal in-
terference of
part/device
function

De novo syn-
thesis of genetic
parts and de-
vices

Microfluidic
DNA synthesis
and assembly

(Carr and
Church, 2009;
Kong et al.,
2007; Lee et al.,
2010; Huang
et al., 2009;
Kosuri et al.,
2010; Kersaudy-
Kerhoas et al.,
2014)

Verification Accurate mea-
surements of
gene expression
at population
and single cell
level for multi-
ple generations

Long term
monitoring of
single cells for
part/device
stability

Microchemostats
and cell traps
supporting long
term cell growth
and single cell
monitoring

(Balagaddé
et al., 2005;
Ferry et al.,
2011; Long
et al., 2013;
Danino et al.,
2010; Locke and
Elowitz, 2009)

Table 2.1: Key microfluidic technologies for investigation of challenges present in the
synthetic biology workflow

as an engineering field and the most applicable microfluidic technologies that may be

used to address those challenges.

19

2.3.1 Specification

Accurate specification of biological device function requires prediction of future be-

havior of combinations of biological parts and a standardized input/output model to

share behavioral data across different designs. However, with the exception of some

well studied systems such as the quorum sensing system (Collins et al., 2006), not

all biological behavior in synthetic biological parts is well understood or predictable.

In many cases, a device that performs well in one host system fails to perform when

transplanted into a different host. In addition, different parts are characterized with

different experimental methods such that there is no one standard of input/output

measurement to specify interfaces between devices. As a result, many new devices

fail to function without extensive trial-and-error, which is costly in both time and

materials. To build more predictable systems, better characterization of part behav-

ior over a wide range of environmental conditions is required to achieve the necessary

understanding to build the correct models.

Challenges

In electrical engineering, simulation is used to predict device behavior and debug

potential design flaws without spending time and resources in the lab. Whereas there

is a solid understanding of semiconductor device physics and the ability to create

accurate models for electronic parts for simulations, similar knowledge needed to

create models of biological parts is still being developed. Chen et al. characterized

terminator efficiency for 582 natural and synthetic transcriptional terminators and

from that data generated a predictive model of terminator behavior given the sequence

(Chen et al., 2013). Similar models have been generated for ribosome binding sites

(Salis et al., 2009), but these sequence based models alone cannot predict the behavior

of combinations of parts in a biological system. Likewise, new software tools developed

20

A B

BDC

Figure 2·4: (A) Resistance network used to generate complex spatial gradients in
fluid channels. (Reprinted with permission from S.K.Dertinger, D.T.Chiu, N.L.Jeon
and G.M.Whitesides, Analytical Chemistry, 2001, 73, 1240–1246. Copyright (2001)
American Chemical Society.”). (B) Microfluidic chip for multipurpose testing using
a combination of 16 inputs and outputs to generate spatial gradients in the central
test chamber. (Reproduced from Ref. (Cooksey et al., 2009) with permission from
The Royal Society of Chemistry.) (C) Dial-a-Wave device for generation of temporal
stimuli via adjustment of flow interface for study of synthetic oscillators. (Used with
permission from (Baumgartner et al., 2011). Copyright 2011 Buamgartner et al..)
(D) Microfluidic function generator using valves to control flow through a T junction.
(Used with permission from (Wang et al., 2012).)

21

for simulating synthetic biological systems (Jang et al., 2012; Madsen et al., 2012)

are based on models of the biological processes of cell growth, diffusion, and protein

interactions and degradation but may not take into account the details of part function

based on DNA sequence.

Datasheets for electronic parts contain the information needed to create accurate

behavioral models of those parts for use in simulations, including the valid input and

output ranges, the switching characteristics, and frequency response for noise analy-

sis. Canton et al. (Canton et al., 2008) postulated the creation of similar datasheets

for biological parts and produced a datasheet for BioBrick BBa F2620, a device that

produces the transcription factor LuxR and is controlled by a regulated operator.

Datasheets for biological parts must include different information than their electri-

cal engineering counterparts due to issues such as host context and degradation rate of

inputs and outputs that have no electronic parallels. Biological parts need to be char-

acterized for orthogonality and multi-component behavior as well as the more usual

single-component behavior. The long-term behavior of a part depends on such factors

as the strain and growth stage of the host cell, the mutation rate, and environmental

conditions such as temperature, pH, and culture media. For example, degradation

rate of acylhomoserine lactone (AHL), the key signaling molecule in the popular and

commonly used bacterial quorum sensing system, varies with both pH and tempera-

ture, making devices using this system sensitive to environmental changes (Kittleson

et al., 2012). The addition of biological parts and devices into the host cell introduces

large amounts of foreign DNA that may impact host cell metabolism (Klumpp et al.,

2009). To produce useful datasheets and models for simulation would require massive

amounts of characterization data. The spatial and temporal environmental control

that microfluidics provides, combined with high-throughput cell culture assays (de-

scribed in Section 2.3.2 could be used to develop characterization and test platforms

22

for synthetic biology devices.

Current solutions

Static analysis of biological devices involves determining the valid input and output

ranges and generating the input-output curve that shows the range of outputs for

any given input. Inputs to a biological device are transcription factors at various

concentrations, and outputs are often fluorescent reporter proteins (Canton et al.,

2008). A wide range of inputs is applied to the device under test to generate the full

range of outputs. Additional characterization includes testing for interactions with

other similar transcription factors and testing the effects of simultaneously applied

multiple inputs.

Microfluidic resistance networks for generating complex spatial and temporal gra-

dients (Figure 2·4A) (Dertinger et al., 2001; Lin et al., 2004) are well suited to

generating the input ranges needed to characterize basic device behavior. Combining

these networks with the ability to select multiple inputs through multiplexing allows

for testing interoperatiblity and orthogonality (Lu, 2010). This technique has been

used for combinatorial drug screening (Kim et al., 2012). The microfluidics chip by

Cooksey et al. (Figure 2·4B) provides the ability to generate complex spatial gra-

dients in a central chamber from combinations of up to 16 unique inputs by using

segments of high fluid resistance and outlets to control flow (Cooksey et al., 2009).

Dynamic characterization requires the ability to trigger inputs on and off at a

given frequency and measure the delay between the change in input and change in

output as both valid and invalid inputs require time to propagate through the system.

Faults may occur in a system when inputs are changed before the output is stable,

when unstable outputs are used in a downstream function, or when the outputs of

unstable inputs are used. Determining these timing characteristics of a biological part

requires precise temporal control over the inputs to that system.

23

Wang et al. used valves to control inputs through a T junction to create square

waves and ramp functions (Figure 2·4C) to characterize the dynamic signaling behav-

ior of the social amoeba Dictyostelium discoideum as it transitions from a single-celled

to a multicellular form during its life cycle (Wang et al., 2012). A different method

of function generation uses laminar interface guidance to direct the laminar interface

between input flows by adjusting the ratio of input flows (Bennett et al., 2008). Fur-

ther refinement of this method led to the development of the ‘Dial-a-Wave’ device

(Figure 2·4D) used to study the dynamics of environmental effects on the galactose

metabolism network in yeast (Baumgartner et al., 2011). These microfluidic function

generators can be also used for frequency domain analysis, which allows for applica-

tions of control theory techniques (Lu, 2010) such as block modeling and provides

additional insights on noise and stability in biological devices (Cox et al., 2006; Simp-

son et al., 2003). Advances in microfluidic fabrication means that on-chip microfluidic

oscillators (Mosadegh et al., 2010; Duncan et al., 2013) could also be used to gener-

ate complex input stimuli waveforms for device characterization while relying less on

external hardware.

Future work

Currently, part characterization experiments for static and dynamic behavior are car-

ried out individually, and as such, are costly in both time and reagents. The expense

of these experiments no doubt contributes to the lack of available characterization

data. As a next step in the progression of designs useful for part characterization, I

suggest a microfluidics platform for multi-dimensional characterization of biological

parts. Such a device would allow for simultaneous experiments and data collection of

the input/output dose-response behavior, timing characteristics, and noise analysis

through measuring single cell gene expression (Lu, 2010).

A starting point for such a platform could begin with a design similar to the

24

gradient generator by Cooksey et al. (shown in Figure 2·4B). A number of cell traps

or microchemostats could be placed in the central chamber for monitoring cell growth

and gene expression at the single cell level. A full discussion of single cell analysis in

microfluidics is provided elsewhere (Yin and Marshall, 2012), while some of the key

microfluidic devices in single cell trapping and cell culture are described in Section

2.3.4. The input to the central chamber could then be switched between a gradient

generator and a waveform generator to allow for multiple types of experiments on the

same device. Ideally, multiple experiments could be run on the same biological part

simultaneously with the same microfluidics setup on this device.

For example, the biological part in this microfluidics device could be subjected to

a gradient of inputs to measure the dose response. The inputs could be turned on and

off at will to generate the temporal waveforms needed to measure the timing char-

acteristics. Finally, as the cell traps could support single cell analysis, noise analysis

could be performed on the part. Being able to perform many different experiments

using one setup could allow for rapid characterization of new biological parts and

devices.

2.3.2 Design

The nature of biology and evolution results in many homologous biological parts and

pathways. Using homologous parts in a device leads to unwanted molecular interac-

tions in the cell and interferes with the intended function of the device. These un-

wanted interactions are referred to as biological crosstalk. The likelihood of crosstalk

increases as biological devices grow more complex and involve more regulatory net-

works (Voigt, 2006). The use of orthogonal parts (parts that do not interfere with each

other) reduces crosstalk, but there is a lack of these parts in the current repertoire

of synthetic biology. To increase the scalability of biological devices, new orthogonal

parts and regulatory systems (Stanton et al., 2014) must be found or the currently

25

available parts and systems (Tamsir et al., 2011) must be reused.

Challenges

New orthogonal parts can be discovered by surveying known genomes for novel reg-

ulatory networks. By mining the genomic database at the European Bioinformatics

Institute, Stanton et al. curated a collection of 73 homologs to TetR (a commonly

used gene comprising of a repressible promoter and the repressor protein), and from

those homologs, screened and isolated 16 orthogonal promoter-repressor pairs for use

in new genetic devices (Stanton et al., 2014). The limiting step in this process is

the final screening of pairwise interactions as over 5000 individual experiments were

required to screen the homolog library. Microfluidic high throughput screening plat-

forms would allow for hundreds, if not thousands, of parallel experiments and reduce

the time needed to discover novel orthogonal parts.

New parts may also be obtained through directed evolution, a method of applying

selective pressure to a library of variants to engineer for specific functions without

prior knowledge of the system (Cobb et al., 2012). Conventional methods for cycles of

mutation, cell growth, and selection require frequent human intervention and several

days per cycle, but new automation techniques such as Multiplex Automated Genome

Engineering (MAGE) (Wang et al., 2009) reduce both time and human attention

required to generate large libraries. Using MAGE to optimize the pathway in E.

coli that produced isoprenoid lycopene required screening approximately 105 colonies

after 5-35 evolution cycles. The scale of microfluidic devices is too small to screen for

the level of diversity produced by MAGE, but perhaps may be used as a secondary

screening platform on a subset of the optimized colonies.

One method of part reuse, as demonstrated by Tamsir et al., is to separate large

circuits into smaller circuits, each in a different cell colony, which communicate with

each other through intercellular signaling chemicals. Using this technique, they built

26

all possible two-input Boolean functions from biological NOR gates. The colonies

are spatially separated on a plate by hand, with the intercellular signaling chemicals

spreading through diffusion. However, the diffusion of these signals is not directed

towards specific colonies and may reach unintended targets to cause crosstalk between

circuits. Microfluidics could be used to physically isolate each colony and restrict

intercellular signaling to specific colonies by controlling media flow to reduce crosstalk.

Current solutions

An early device by Gómez-Sjöberg et al. contained 96 cell culture chambers, each

with the capability for unique culture conditions, for automated screening and assays

(Figure 2·5A). This device was used to study the effects of transient stimulation on

human stem cells (Gómez-Sjöberg et al., 2007). Increased miniaturization of compo-

nents and a focus on single cell imaging have led to higher density screening platforms.

A device by Cheong et al. (Figure 2·5C) allows high throughput analysis of single

cell signaling dynamics in 32 cultures (Cheong et al., 2009b; Cheong et al., 2009a).

Taylor et al. developed a device with 2048 cell culture chambers capable of con-

ducting 256 simultaneous screening experiments (Figure 2·5B) for studying mating

hormone responses in yeast (Taylor et al., 2009) while Denervaud et al. developed a

parallel microchemostat array for growing and observing 1152 strains of yeast-GFP

strains (Dénervaud et al., 2013). These devices could be adapted for the screening

and observation of part libraries developed through genomic mining and directed

evolution.

An example of using microfluidics to control intercellular signaling is described

by Liu et al. (Liu et al., 2010) with a four chamber network connected by thin

channels for communications which could be opened or closed with valves (Figure

2·5D) used to study the response of NIH 3T3 fibroblasts to soluble signals from

27

A

B

C

E

MLSI

D

Figure 2·5: (A) 96 chamber cell culture device that allows for individual conditions
in each chamber. (“Reprinted with permission from R. Gómez-Sjöberg, A. A. Leyrat,
D. M. Pirone, C. S. Chen and S. R. Quake, Analytical chemistry, 2007, 79, 8557–
8563. Copyright 2007 American Chemical Society.”) (B) High throughput screening
device capable of 256 simultaneous screening experiments. (Used with permission
from (Taylor et al., 2009). Copyright 2009 Taylor et al.) (C) High content cell
screening device used to study cell signaling. (Used with permission from (Cheong
et al., 2009a). Copyright 2009 Cheong et al..) (D) Device for control and monitoring
of intercellular communications. (Reproduced from Ref. (Liu et al., 2010) with
permission from The Royal Society of Chemistry.) (E) Programmable general purpose
microfluidic architecture with 64 nodes for reactions and liquid storage. Insets show
the array of nodes and the valves surrounding each node. (Reproduced from Ref.
(Fidalgo and Maerkl, 2011) with permission from The Royal Society of Chemistry.)

28

hepatocellular carcinoma cells. A network similar to this could be used to isolate

cells and control signaling in biological distributed computing. A general purpose

software-programmable architecture of an array of nodes surrounded by individually

addressable valves similar to the one developed by Fidalgo et al. (Figure 2·5E) could

be used to increase the size of circuits used in distributed biological computation.

Incorporating basic Boolean logic directly into the chip through the use of pressure

gain valves (Nguyen et al., 2012; Weaver et al., 2010; Devaraju and Unger, 2012)

could allow further scaling of the microfluidic architecture by reducing the number

of external control lines needed for larger experimental setups. Preliminary work

has also been done on integrating microfluidic devices with liquid handling robots to

increase automation and decrease the reliance on external control lines (Waldbaur

et al., 2013).

Future work

The idea of distributed biological computing (Tamsir et al., 2011; Regot et al., 2011;

Maćıa et al., 2012) can be expanded upon with high-throughput arrays and control of

intercellular signaling through valves to produce a hypothetical platform for biological

computing. This platform might leverage technologies already present in electrical

engineering and digital design to further biological circuit design in synthetic biology.

The architecture for this platform may contain both the microfluidic architecture and

the software for integrating biological circuit design with microfluidic valve controls.

The microfluidics architecture for this hypothetical platform could contain banks

of ports for inputs and outputs and an array of microchemostats to house the cells

used for computing. Each port and microchemostat could be individually accessible

through the use of multiplexing, and each microchemostat could house a cell colony

containing a biological device for the basic unit of computation in the larger biological

circuit. Chemical signals could be passed from one stage of computation to the next

29

A B

Figure 2·6: (A) Microfluidic chip capable of 4 parallel 500nL synthesis reactions,
with the gene synthesis chamber shown on the left in yellow and green and the fluid
channel and valve overlay on the right in blue and red. (Kong, David S, Carr, Peter
A, Chen, Lu, Zhang, Shuguang and Jacobson, Joseph M, “Parallel gene synthesis in a
microfluidic device”, Nucleic acids research, 2007, 35, 8, e61, by permission of Oxford
University Press) (B) 16 column microfluidic DNA synthesizer comprising of the
reagent controller, a herringbone mixer, and a reaction column array. (Lee, Cheng-
Chung, Snyder, Thomas M, and Quake, Stephen R, “A microfluidic oligonucleotide
synthesizer”, Nucleic acids research, 2010, 38, 8, 2514-21, by permission of Oxford
University Press).

through the opening and closing of specific valves. An extra isolated microchemostat

housing a biological oscillator circuit could be used to synchronize the other biological

devices on the chip if the quorum sensing system is used for intercellular communi-

cations (Prindle et al., 2012). Synchronization could prevent logic faults caused by

timing such as incorrect inputs being used in calculations or incorrect outputs being

read.

2.3.3 Assembly

A vital part of synthetic biology is the technology used to assemble individual DNA

parts into complex devices. The ideal DNA assembly method would allow for ar-

rangement of parts in a specific sequence without scarring that would interfere with

device function, easy generation of combinatorial libraries of constructs, and automa-

30

tion of the process (Cheng and Lu, 2012). However, modern assembly methods still

fall short of the ideal.

Challenges

BioBrick Standard Assembly and its variants BglBricks and 2ab assembly (Leguia

et al., 2013) depend on standardized flanking restriction enzyme cut sites for pair-

wise assembly of parts and create constructs with 8 base pair (bp) scars between

parts. This class of methods is time-intensive for large constructs as each reaction

requires several days, and automation has been limited by the sequential nature of

the assembly process (Ellis et al., 2011). More promising are the one pot reactions

such as GoldenGate (Engler et al., 2008), GoldenBraid (Engler et al., 2009), and

MoClo (Weber et al., 2011), which allow for combination of multiple parts in a single

reaction with smaller scar sites. However, both types of assembly methods use re-

striction enzymes to cut and join parts, so all parts used in these methods must first

have all internal restriction enzyme sites removed through targeted mutations (Ma

et al., 2012). This adds another step and another point of potential failure in the

construction of large devices. De novo synthesis of complete devices could eliminate

the problems with DNA assembly, but the price point of current DNA synthesis at

$0.40 to $1.00 per base pair (Kosuri et al., 2010), with an increase in price to dollars

per base pair for large constructs of thousands of base pairs (Goldberg, 2013), and in-

consistent turn-around time (Shetty, 2013) makes the technology unsuitable for large

devices. In addition, the price of DNA synthesis has plateaued at approximately $0.40

per base pair, and is unlikely to decrease further without a a drastic improvement in

technology (Goldberg, 2013).

31

Current solutions

As most of the price of conventional DNA synthesis comes from on reagent use and

sample handling (Kong et al., 2007), the reduction in scale provided by microfluidic

chips could lower the price of DNA synthesis to be viable for de novo synthesis of de-

vices. An early example by Kong et al. (Figure 2·6A) consists of four 500nL parallel

reactors, each capable of synthesizing genes of up to 1 kilobase (kb) in length from

starting concentrations two orders of magnitude lower than conventional reactions. A

similar device by Lee et al. (Lee et al., 2010) (Figure 2·6B) provides up to a 100 fold

reduction in reagent use while producing 16 oligonucleotides in parallel at concen-

trations that did not require amplification before assembly. Combining this with the

technology for the mass production of oligonucleotides in microarrays (Kosuri et al.,

2010) and the development of microfluidic chips for two-step gene synthesis (Huang

et al., 2009) could lead to an decrease in price of DNA synthesis to under $0.05 per

base pair, and reach the point where synthesis of large constructs becomes viable. Mi-

crofluidic devices have also been developed for purifying synthesized oligonucleotides,

which increases the fidelity of the final product (Kersaudy-Kerhoas et al., 2014).

Future work

While much work has been done in DNA sequencing and amplification (Hamon and

Hong, 2013), little literature exists on importing existing DNA assembly techniques

used in synthetic biology to microfluidic devices. Implementing processes such as Bio-

Brick or MoClo assembly on microfluidic platforms would increase throughput and

automation and decrease reagent use. Chang et al. (Chang et al., 2012) have pro-

posed and patented a flexible microfluidic system for both pairwise and one-pot DNA

assembly based on existing procedures for DNA ligation and amplification and cell

transformation (Hong et al., 2006) in microfluidic systems. The company Genabler

32

A

C D

B

Figure 2·7: (A) Microchemostat for long-term study of E. coli. (Used with permis-
sion from (Balagaddé et al., 2005).) (B) Donut cell trap for study of yeast regulatory
networks. (Used with permission from (Baumgartner et al., 2011). Copyright 2011
Baumgartner et al..) (C) Microchemostat that forces cell growth in lines for obser-
vation of single cell dynamics. (Reproduced from (Long et al., 2013) with permission
from The Royal Society of Chemistry.) (D) Cell trap array for the study of synchro-
nizing synthetic oscillators. (Reprinted by permission from Macmillan Publishers
Ltd: Nature. (Prindle et al., 2012), copyright 2013)

has also developed a proprietary one-pot assembly method for use with a modular

microfluidic system (Schmidt et al., 2013). However, little to no literature exists

on the efficiency of commonly used DNA assembly techniques when performed in

microfluidic devices.

33

2.3.4 Verification

The goal of verification is to compare the performance of the assembled device to the

previously written specification, and from that comparison, determine the modifica-

tions needed to refine the design rules and models used in the initial specification.

This requires subjecting the new device to a set of testing conditions and monitoring

the expression of proteins of interest under those conditions. Whereas the behavior

of individuals parts is the focus in previous sections, here the focus is on the analysis

of systemwide behavior. The microfluidic devices described in Section 2.3.1 can be

easily used to test the dynamics of novel biological devices and systems in addition

to testing biological parts.

Challenges

One factor affecting the long term performance and reliability of biological devices not

present in electronic devices is the natural mutation rate present in the host cell (Kit-

tleson et al., 2012). Long term monitoring of biological devices via microchemostats

and other similar cell culture setups is essential for characterization of the effects of

mutation rate on the stability and robustness of novel biological circuits. Cell traps in

these devices must allow for easy loading of cells and media, distribution of nutrients

under high cell density, growing of cells in defined patterns to assist with tracking

for single cell observations, and removal of cells without clogging the device (Ferry

et al., 2011). Data at both the single cell level and the population level is required as

important variations in single cells may be masked by the population data (Lecault

et al., 2012). Monitoring device behavior at the single cell level also provides data

on noise in the biological devices caused by random timing of biochemical reactions

and discrete molecules, which is important for accurate modeling of circuit dynamics

(Bennett and Hasty, 2009; Yin and Marshall, 2012).

34

Microfluidic platforms are well suited for and have been used in a variety of single

cell studies (Zare and Kim, 2010), including investigating the mystery of antibiotic

persistence in bacteria (Balaban et al., 2004). Behavior of the cells in these devices are

monitored through time-lapse fluorescent microscopy (TLMF), and images of the cells

are processed with segmentation algorithms to track cell lineage and gene expression

at the single cell level(Locke and Elowitz, 2009).

Current solutions

Hasty et al. pioneered the use of microfluidics in the study of the dynamics of synthetic

biological circuits and the synchronization and entrainment of genetic oscillators in

E. coli (Danino et al., 2010; Mondragón-Palomino et al., 2011; Prindle et al., 2012).

The main device used in these studies (Figure 2·7D) consists of a main feeding chan-

nel flanked by rectangular trapping chambers that are sized for the ideal distribution

of cell density, nutrients, and signaling enzymes for intercellular oscillators (Danino

et al., 2010) and allows for exponential growth of a colony for up to 4 days. Growing

cells are pushed outside the chambers and swept away to the waste ports. For yeast

studies, the Hasty lab has developed a microchemostat with a doughnut trap to con-

trol cell growth and the Dial-a-Wave junction (as described in Section 2.3.1) to control

input flow (Figure 2·7B) that allowed cell growth for up to several days under various

input conditions (Baumgartner et al., 2011). The construction of both this device

and the version designed to optimize resource use with 8 parallel microchemostats

capable of running individual experiments are described in detail as a case study of

using microfluidics to study synthetic systems (Ferry et al., 2011).

The microfluidic bioreactor chip (Figure 2·7A) developed by Balagadde et al. was

designed to inhibit biofilm formation and allow for long-term continuous cell growth in

six 16nL microchemostats. This device was used to study the long term growth of E.

coli programmed with a genetic kill switch regulated by cell density through quorum

35

sensing and the dynamics of a synthetic E. coli predator-prey system (Balagaddé

et al., 2005). A microchemostat for constraining cell growth in lines for easy tracking

(Figure 2·7C) developed by Long et al. consists of 600 sub-micron growth chambers

connected to two feeding channels that trap E. coli and was used to observe growth

rate and GFP expression at the single cell level (Long et al., 2013). These microfluidic

chips, combined with complex input generation schemes and multiplexing, can be used

to develop sophisticated setups for characterization of long-term static and dynamic

behavior of biological parts and devices

Future work

One unexplored avenue in using microfluidics to study dynamics of gene expression is

using feedback to influence and control the device of interest. Feedback may be used

to stabilize device behavior, remove non-linearities, or account for system fluctuations,

all of which would enhance the understanding of novel biological systems. Feedback

systems already exist in microfluidic devices in the form of on-chip oscillators, and

in silico feedback combined with optogenetics (Toettcher et al., 2011b) have been

used to implement feedback systems regulating intracellular signaling in fibroblasts

(Toettcher et al., 2011a) and gene expression in yeast (Milias-Argeitis et al., 2011). A

new system combining in silico feedback with microfluidic control of gene expression

could be useful in characterizing and studying system-level behavior of biological

devices.

2.4 Hastening adoption of microfluidics

Despite these many applications for microfluidics in augmenting the synthetic biology

workflow, adoption of microfluidics as a potential experimental and test platform has

been slow in the synthetic biology community at large. Araci and Brisk. describe in

a recent review on mLSI microfluidics the current shortcomings of the mLSI design

36

process that contribute to a lack of adoption of the technology (Araci and Brisk,

2014) . Chief among these are a lack of flexibility in the programming of devices

and a lack of automated design tools. The majority of synthetic biologists lack both

the expertise in fluid dynamics and microfluidic design and the expensive capital

equipment for microfluidic fabrication. Layout of microfluidic designs by hand is both

time consuming and error prone. In addition, experiments involving mLSI require a

complex control platform including both software and hardware for valve control and

fluid manipulation. Such setups are frequently customized for the application at

hand and may be difficult to claim for future reuse. Improvements in automation for

microfluidic device design and readily available open source software and hardware

for control platforms could increase the speed of adoption of microfluidic technologies

by synthetic biologists. This work seeks to remove the some of the barriers associated

with microfluidics by improving automation of device design.

2.4.1 Design automation in microfluidics

Previously, CAD and automation have been primarily focused on droplet based digi-

tal microfluidics (Chakrabarty, 2010) rather than microfluidic large scale integration

(mLSI). A new subset of tools are now being developed for layout and optimization

of mLSI devices. The workflow for CAD for mLSI can be broken down as follows:

• A top level description language for both device design and function

• Placement of flow components

• Placement of control components

• Routing of flow and control components

• Optimization of control components, including minimization of the number of

control pins, valve placement, and generation of control sequences

37

• Design rule checking and verification

• Output to a format usable for fabrication, i.e. vector graphics for photomask

printing or 3D modeling file for 3D printing or machining

Earlier tools for mLSI include Biostream, a software tool for designing GUIs and

control valves for multilayer devices (Thies et al., 2008; Urbanski et al., 2006) and

Micado (Amin et al., 2009), which automated control valve placement and routing

for a given flow layer. Recent developments have included a description language for

microfluidic devices (MHDL) (McDaniel et al., 2013) which provides a framework for

describing both the components of a device and rough guidelines for spacing.

For the placement of the flow layer, the simulated annealing algorithm (first used

for VLSI placement) has been modified by several groups (Minhass et al., 2012; Mc-

Daniel et al., 2014) for use with microfluidic designs. Minhass et al. (Minhass et al.,

2012) focused on schematic design and component allocation given a library of com-

ponents and a functional description of the device while McDaniel et al. (McDaniel

et al., 2014) focused on refinement of the simulated annealing algorithm for microflu-

idics. In particular, they described the effects of fixed placement of IO components

and altering minimum spacing allotted around each component on both device design

and algorithmic performance.

Similar to the placement algorithms, channel routing algorithms have also been

derived from previous work on grid-based maze routers found in VLSI. Amin et al.

(Amin et al., 2009) used an advanced min-cut max-flow algorithm for control channel

routing while Minhass et al. (Minhass et al., 2012) and Hu et al. (Hu et al., 2014) used

simpler maze routers based on Hadlock’s algorithm and Lee’s algorithm respectively.

The problem of control optimization was first discussed in Amin et al. (Amin

et al., 2009), and expanded upon by both Minhass et al. (Minhass et al., 2013) and

Hu et al. (Hu et al., 2014). Amin et al. inferred the placement of the valves from

38

Feature Micado MHDL Minhass
et al.
2012

McDaniel
et al.
2014

Hu et al.
2014

Fluigi

Microfluidic
Netlist Specifi-
cation

no yes no no no yes

Flow layer
placement and
routing

no no yes yes no yes

Control layer
placement and
routing

yes no yes yes yes yes

Automated con-
trol generation

yes no yes yes yes yes

Design run
checking

no no no no no yes

End to end
workflow

yes no no no no yes

Open source yes no no no no yes
Compatibility
with novel
manufacturing
methods

no no no no no yes

Table 2.2: Comparison of current CAD tools for microfluidics

a description of the fluid flow in the device and routed valves to an optimized set

of control ports, but the control ports had to be placed by hand. Minhass et al.

further this by using a more advanced algorithm for control port minimization and

automated placement of control ports. Hu et al. advance this further by optimizing

control routing based on pressure propagation times and using a novel method of

inferring valve placement.

Thus far, no automated tools for microfluidic design have touched on design rule

checking and layout verification. It is assumed that the design parameters introduced

during the placement and routing phases will prevent the layouts from violating es-

tablished design rules.

2.4.2 An end-to-end automated workflow for microfluidic design

While there has been work on each step of the workflow for a comprehensive tool for

microfluidic design, there has yet to be a program that produces a physical device

39

given an initial design specification. I present now a software tool, Fluigi, for the first

end-to-end implementation of microfluidic design automation, from an inital design

in the form of a microfluidic netlist to a fabricated microfludic device. Fluigi is an

open source tool that provides automated placement and routing of both the flow

layer and control layer given an initial list of components and their connections. For

certain subsets of biological experiments focusing on using genetic devices to imple-

ment Boolean logic functions, Fluigi provides both automated device generation and

automated control generation for the experiment. Finally, output designs from Fluigi

may be used for both traditional photolithography and novel manufacturing methods

such as 3D printing. Table 2.2 summarizes the capabilities of Fluigi as compared to

currently available CAD tools for microfluidic design. Of note in particular is the

fact that Fluigi is the only tool that provides design rule checking and interfaces to

next-generation manufacturing methods.

Chapter 3

First forays into microfluidic CAD

I give in this chapter an overview of my earlier work on implementing a microfluidic

CAD workflow. My earlier work focused primarily on using microfluidics to solve the

problem of the lack of orthogonal parts in synthetic biology (Lu, 2010) rather than

as a general purpose tool for designing microfluidic devices. The biggest changes

between the two versions is the change in device architecture, which is further refined

and formalized in the final version. As the initial concept was meant to be a dedicated

platform for conducting biological computation in a microfluidic devices, the test cases

focused on implementing biological Boolean functions of 2 and 3 inputs. Specifically,

I used the 3-input XOR, 4-input AND, 8-3 encoder, and half adder as case studies. I

also explored the possibility of designing microfluidic devices to implement all possible

2 and 3-input biological Boolean circuits with my workflow.

3.1 Motivation

Since logical frameworks such as repressible systems exhibiting the behavior of Boolean

inverters already exist in gene expression systems, these frameworks may be repur-

posed to detect specific combinations of chemical or environmental triggers for tar-

geted pharmaceutical and biotechnology applications (Tamsir et al., 2011). A sum-

mary of the various classes of genetic circuits for implementing Boolean logic functions

in biology and their respective advantages and challenges is found elsewhere (Brophy

and Voigt, 2014). I use the digital abstraction not to replicate silicon based com-

40

41

puting, but as an alternative method for designing robust biological circuits that

are insensitive to noise and can be tuned to specific input conditions. The digital

abstraction is well understood, and numerous techniques have been developed for

its description (Micheli, 1994), synthesis (Weste and Harris, 2011), and verification

(Hassoun and Sasao, 2002).

One application for biological logic circuits is in the field of cancer research, where

the use of digital logic provides the necessary specificity for targeting strains of cancer

cells while leaving other cells unharmed (Ruder et al., 2011; Shankar and Pillai, 2011).

I show in Figure 3·1 a genetic AND gate in the cancer detection system described by

Nissim and Bar-Ziv (Nissim and Bar-Ziv, 2010). This system uses two transcriptional

start sites that are highly active only in cancer cells to detect the differences between

tumor cells and premalignant cells. These two sites were chosen from the follow-

ing: the chromatin structural protein histone-H2A1 promoter, the synovial sarcoma

X-breakpoint protein-1 SSX1 promoter, and the inflammatory chemokine CXCL1

promoter. A targeting cell containing a logic circuit would be able to determine ma-

lignancy and deliver a payload of drugs or otherwise induce cell death only in tumor

cells.

While devices implementing two-input Boolean logic functions are useful in syn-

thetic biology, more complex computations involving more inputs would allow for

applications such as the differentiation of molecular species, the identification of spe-

cific genetic markers, and environmentally tailored drug dosage responses (Purnick

and Weiss, 2009). More complex functions may be constructed by increasing the lev-

els of logic in the genetic device. A four-input transcriptional AND gate (Moon et al.,

2012) with 11 orthogonal (non-interfering) regulatory proteins was constructed with

this method from two levels of two-input AND gates. However, introducing complex

systems such as this into a cell presents numerous challenges.

42

Premalignant cell
expressing only SSX1

Premalignant cell
expressing only CXCL1

Premalignant cell
expressing neither

SSX1 or CXCL1

Tumor cell
expressing both

SSX1 and CXCL1

CXCL1

SSX1

Targeting cell containing AND gate

Figure 3·1: Two proteins highly expressed in tumor cells but not premalignant
cells are the synovial sarcoma X-breakpoint protein-1 (SSX1) and the inflammatory
chemokine (CXCL1) (Nissim and Bar-Ziv, 2010). A biological circuit implement-
ing a Boolean AND gate was used to differentiate malignant and non-malignant cells
based on their protein expression by only targeting cells that express both SSX1 and
CXCL1.

A fundamental problem in building more complex biological systems lies in the

lack of orthogonal parts and signaling molecules available (Moon et al., 2012) and

the difficulty of engineering new orthogonal parts. Using non-orthogonal parts in the

same system will result in unwanted molecular interactions in the cell which may

interfere with the intended function of the system. These unwanted interactions are

referred to as biological “crosstalk”. As the number of unique regulatory proteins in

the system increases, the number of factors to consider in the analysis and debugging

of the system grows exponentially (Lu, 2010). In addition, the production of these

regulatory proteins may also adversely affect cell metabolism (Klumpp et al., 2009).

These issues may be mitigated by distributing the computational load across many

cells and separating large circuits into smaller circuits, each in a different cell colony,

43

that communicate with each other through intercellular signaling chemicals (Tamsir

et al., 2011; Regot et al., 2011; Maćıa et al., 2012). Tamsir et al. built all possible

two-input Boolean functions from biological NOR gates in this manner. The colonies

are spatially separated on a plate by hand, with the intercellular signaling chemicals

spreading through diffusion. However, the diffusion of these signals is not directed to-

wards specific colonies and may reach unintended targets and cause crosstalk between

circuits. Increasing the number of intercelluar signals to use in these systems does not

fully address the problem of scalability as there is a lack of orthogonal intercellular

signaling systems. I expand on the idea of distributed biological computing by using

microfluidics to physically isolate each colony and restrict intercellular signaling to

specific colonies via controlling the media flow to reduce this crosstalk.

The first step in creating a microfluidic platform for distributed biological compu-

tation is to build the necessary framework and tools to allow for easy iteration and

refinement of my microfluidic design while taking into account the biological compo-

nents. While rudimentary CAD tools for both microfluidic chips based on multilayer

soft lithography (Amin et al., 2009; Minhass et al., 2012; Minhass et al., 2013) and

synthetic biology circuit design (Xia et al., 2011; Cai et al., 2010; Chandran et al.,

2009) exist, there are currently no CAD tools that combine, formalize, and optimize

the two processes. This thesis presents a microfluidic design framework which allows

for simple cellular synthetic biological systems to communicate in a controlled fashion

while keeping the cell types physically separated. By abstracting the biological de-

tails ((Endy, 2005; Andrianantoandro et al., 2006)) I focus primarily on basic Boolean

algebraic biological computing elements and an intercellular signaling fluid. Assum-

ing that individual genetic circuits representing Boolean algebraic functions can be

put into cellular systems (Moon et al., 2012; Tamsir et al., 2011; Daniel et al., 2013;

Brophy and Voigt, 2014) and that intercellular communication mechanisms can be

44

combined with these systems (Bonnet et al., 2012; Basu et al., 2005) challenges still

remain in using these systems on a large scale. A summary of some of the challenges

and potential solutions are shown in Figure 3·2.

A strength of this approach is that I can use existing paradigms in the electronic

design automation community and apply them to microfluidics. My results show

that large sets of Boolean algebraic functionality can be realized with an automated

software workflow using primitive genetic gates organized on a generic microfluidic

valve-based fabric. These systems should prove effective at removing the described

crosstalk issues, which will allow for more formally engineered systems. This will also

allow me to leverage existing CAD infrastructure and tools. This paper focuses on

describing how a design synthesis workflow, starting from a high level description of

desired functionality, can be used to place the biological components in a microfluidic

system, route the signaling fluid, control the valve network, and simulate the expected

control system behavior.

3.2 First iteration

In my first attempt, I attempted to model a microfluidic device architecture using

an infrastructure influenced heavily by FPGA design as a starting point. my basic

architecture consisted of a grid of standardized ‘tiles’ that would house biological

components and a border of input/output ports. Unfortunately, this proved to be a

too simplistic and naive view of both biology and microfluidics as I failed to consider

the problems of control layer routing and the upkeep of biological circuits.

3.2.1 Architecture

I begin by defining M to be a set of biological signaling molecules, C to be the set of

available biological circuits, and G to be the set of all 2 input Boolean functions.

45

SSX1

CXCL1

OUTPUT

(a)

SSX1

CXCL1

(b)
SSX1

CXCL1

(c)

SSX1

CXCL1

(d)

Figure 3·2: Figure 3·2a shows an AND circuit made of NOT and NOR gates and Fig-
ure 3·2b shows the same function implemented by genetic circuits in a single cell.
Bent arrows represent transcriptional start sites, and blue arrowed boxes represent
genes. Black arcs indicate repression of the transcriptional start sites by the proteins
produced while red arcs indicate potential crosstalk sites between the proteins. Sepa-
rating the circuits into multiple cells will lessen the metabolic impact of the circuit on
the host cell, but only shifts the problems arising from crosstalk to the intercellular
signals (3·2c). The use of microfluidic chambers and valves to physically separate
the genetic circuits (3·2d) eliminates crosstalk and allows the precise application of
external control molecules.

I define a VALVE as a double (Ms, s) where Ms ⊂ M is the set of signals I expect

to pass through this valve and state s ∈ {OPEN, CLOSE} is the current state of the

valve.

I define a CHAMBER as a quintuple (C0,Mi,Mo, Vi, Vo) where

• Co ⊂ C is the set of biological circuits present in the chamber

• Mi ⊂M is the set of input signaling molecules

• Mo ⊂M is the set of output signaling molecules

• Vi is the set of input valves to the chamber

46

• Vo is the set of output valves from the chamber

From those two definitions, I define a NETWORK as a non-empty set of valves V

and a non-empty set of chambers H with the property such that each valve in the

network must connect to some chamber in the network. I implement a network as a

directed acyclical graph where the set of vertices is the set of valves V and the set of

edges can be mapped to the set of chambers H where each chamber in H represents

the set of edges between the valves in the set Vi and the valves in the set Vo.

I then define a TILE as a triple (n, g, c) where n is a NETWORK, gate g ∈ G is the

Boolean function that the tile implements, and c is a double (x, y) where x and y are

non-negative integers that describe the location of the tile.

Finally, I define a CHIP as a directed acyclical graph where the set of vertices is

a finite non-empty set of tiles T . I implement a chip as a grid of n x m tiles where

each tile is referenced by its position in the chip by a double (x, y). Within a chip, I

declare the set of input tiles Ti as the set of border tiles on the left, top, and bottom,

and the set of output tiles To as the set of border tiles on the right. I assume all tiles

in T and not in Ti have identical networks. An image of a hypothetical chip and its

abstraction levels is show in Figure 3·3.

3.2.2 Workflow

The design flow begins with an input file, which is then converted to a Boolean

algebraic canonical form such as a binary decision diagram or a truth table. The logic

functions are minimized, and mapped to gates of the selected technology. Genetic

circuits are selected to implement the functionality of the gates. The gates are mapped

to the tiles of the chip, and genetic circuits are assigned to the chamber networks in

the tiles. The chip is then routed, and the sequence of valve controls is generated from

this layout. Fluigi also generates code to interface the valve controls to the existing

47

Figure 3·3: Hypothetical chip structure for “Fluigi”. The chip C is composed of
some set of tiles T . Input tiles Ti are highlighted in green, and output tiles To are
highlighted in red. A tile t ∈ T has a network n of a set of valves V and a set of
chambers H.

microfluidics control software. Finally Fluigi creates an image of the chip layout that

may be used as a photomask for microfluidic chip fabrication.

Fluigi extracts the Boolean functions from an input file and converts that function

to a canonical form. It then minimizes the logic functions if appropriate and maps the

functions to a selected technology. This can be done with a program such as Espresso

(Hayes, 1993) or the Cadence Encounter design software starting from a Verilog file.

At this stage, I select a subset of gates Gm ∈ G and represent the input functions

as functions composed entirely of gates g in Gm. I construct a graph of the input

functions R with gates g as the vertices and the connections between the gates as

edges. Fluigi supports technology mapping to three subsets of G:

• GNOR = {NOR, NOT}

• GNAND = {NAND, NOT}

48

Figure 3·4: Proposed design flow for Fluigi starting with an input file and ending
with an interface to existing microfluidic control software and chip simulation.

• GMULTI = {NOR, NOT, NAND, AND, OR}

For each gate in Gm, I select a genetic circuit c in C that implements the function-

ality of that gate. Gates are duplicated to reduce fanout as molecular signals from

biological components may not be concentrated enough to drive more than one input

at a time.

Once I have a graph of gates R, I map the gates in R to tiles T in the chip C.

When a gate g is mapped to a tile t, I place the genetic circuit selected for g in the

chambers of the network of tile t. I first place the input and output gates in the

appropriate tiles on the border of the chip and then randomly place the remaining

gates in tiles in the center of the chip. I then create an edge between tiles in T for

49

each edge that exists in R. After the initial placement is complete, I calculate a score

of the placement as the sum of the Manhattan distance between all connected gates.

I minimize the score by pairwise swapping of gates in each region of the chip and

then attempt to route the tiles in the chip using Lee’s algorithm for maze routing. If

the routing fails, I generate another possible placement and iterate the process until

a viable routing is found.

From the routing, I generate code needed to control the chip with the existing

microfluidics control software suite. As the existing control setup only has 48 available

control lines for opening and closing valves, I first minimize the number of control

lines my chip needs by pipelining both the tiles in the chip and the chamber network

in the tiles to generate a mapping of valves to control lines. I then generate a set

of four Java files required to interface to the existing microfluidics CAD platform

BioStream, developed to design GUIs and control valves for multilayer devices (Amin

et al., 2009; Thies et al., 2008; Urbanski et al., 2006) (freely available at (Thies et al.,

2009)), and an image of the chip layout which may be used to generate a photomask

for fabrication.

I separate the chip into pipeline stages of tiles by running breadth-first search

starting at the output tiles and and saving the tiles at the same depth in a list such

that I end with a list of lists of tiles. I next separate the network in a tile into pipeline

stages in a similar manner by running breath-first search starting at the output valve.

In this case, I also take into account the order that valves in the same stage must be

opened as defined by the genetic circuit in the network of the tile. When I add new

valves to a pipeline stage, I sort those valves in the partial order they must be opened.

Valves with dependencies are shifted to other stages to preserve those dependencies.

I create a valve pipeline for each different network I have in the system.

I generate the final mapping of valves to control lines by going through the pipeline

50

of tiles, and for each stage, getting the list of tiles in that stage. I then go through

the pipeline of valves for those tiles and assign all valves in those tiles at the same

stage of the valve pipeline to the same control line. I repeat this for all stages in the

tile pipeline.

3.2.3 Results

I describe now two simple test tiles I used to demonstrate the features of Fluigi. The

input tile consists of one valve and a reservoir of some input signal. Opening the

valve allows the input signal to flow to the rest of the chip. The base tile, as shown

earlier in Figure 3·3, consists of five valves and three chambers. At this time, I only

consider control lines for the data path and not for flow of media or waste. I define

that chambers h1 with input valve v1 and output valve v3 and chamber h2 with input

valve v2 and output valve v4 contain buffer circuits used to amplify the incoming

signal. Chamber h3, with input valves v3 and v4 and output valve v5, contains a

synthetic biological circuit of a NOR gate such as the one described in (Tamsir et al.,

2011). To prevent signal crosstalk, only one of v3 or v4 may be open at a time. My

chip is then a grid composed of these two tiles. I assume a naive assignment of control

lines to be one in which each valve is assigned its own control line such that n tiles a

naive assignment have 5n control lines

I test the functionality of Fluigi with two sets of benchmarks. The first is all

two-input Boolean logic functions, and the second is all three input Boolean logic

functions. Two-input Boolean logic functions are a mainstay in synthetic biology as

they provide the basic building blocks to more complex functions. Genetic circuits for

these functions have been built and tested (Tamsir et al., 2011) and can be obtained.

The second set of benchmarks demonstrates the generalized functionality of Fluigi on

more complex functions. In addition, I test Fluigi on four specific example circuits:

1) the 4-input AND gate, the genetic circuit of which is described in (Moon et al.,

51

Table 3.1: Results of Fluigi for two-input benchmark circuits
Chip
Size
(tiles x
tiles)

Number of
Two Input
Circuits

Average
Tile Usage
(%)

Average Un-
optimized
Control Lines

Average
Optimized
Lines

Average Line
Reduction
(%)

4x4 4 23.44 10.75 8 25.89
5x5 4 21.00 18.25 12 33.76
6x6 2 27.78 34 17 50.00

Table 3.2: Results of Fluigi for three-input benchmark circuits
Chip
Size
(tiles x
tiles)

Number
of Three
Input Cir-
cuits

Average
Tile Usage
(%)

Average Un-
optimized
Control Lines

Average
Optimized
Lines

Average Line
Reduction
(%)

4x4 12 23.44 10.75 8.00 25.89
5x5 49 27.59 23.24 15.02 35.03
6x6 125 34.53 43.18 20.81 51.09
7x7 57 41.28 72.05 28.86 59.45
8x8 5 42.50 100.00 29.80 70.22

Table 3.3: Results of Fluigi for example circuits
Circuit Chip

Size
(tiles
x
tiles)

Gates
Used

%
Us-
age

IO
Used

%
Us-
age

Control
Lines

Optimized
Control
Lines

%
Line
Re-
duc-
tion

Average
Chan-
nel
Length
(px)

Variation
(px)

AND4 6x6 11 36.11 5 25.00 44 17 61.36 176 96
HALF
ADDER

6x6 15 41.67 8 40.00 51 17 75 244 144

XOR3 7x7 26 53.06 11 45.83 90 29 67.78 219 120
8-
3ENC

8x8 30 46.88 15 53.57 102 17 83.33 227 156

2012), 2) the half adder, a simpler version of the genetic circuit described in (Beal

et al., 2012), 3) a 3-input XOR gate, as a representative of the three-input Boolean

logic function benchmarks, and 4) an 8-to-3 encoder, the genetic circuit of which is

being developed in the Densmore lab.

Benchmark circuits

The results of Fluigi on the benchmark circuits are shown in Tables 3.1 and 3.2,

with results for two-input Boolean functions shown in Table 3.1, and the results for

three-input Boolean functions shown in Table 3.2. When running the benchmarks,

52

(a) AND4 (b) HALF ADDER

(c) XOR3 (d) 8 to 3 Encoder

Figure 3·5: Routing of selected circuits as generated by Fluigi. These images serve as
the GUI for simulation of high level chip behavior and may be used to generate the
photomask for chip fabrication. Solid blue rectangles are input wells. Blue lines are
channels and chambers, and red rectangles are valves. Valves highlighted in green in
a chip are a set of valves that is activated by the same control line.

I ignored any obvious circuits with 0 or 1 inputs as those circuits are not useful

for demonstrating the capabilities of Fluigi. I ran Fluigi on a total of 10 two-input

Boolean functions and a total of 248 three-input Boolean functions.

All two-input Boolean functions could be placed on a chip of 6x6 tiles, and all

53

three-input Boolean functions could be placed on a chip of 8x8 tiles, 75% of which fit

on a chip of 6x6 tiles. The average percent usage of the chip for all two-input Boolean

functions was 23.33% while the average percent usage for all three-input Boolean

functions was 34.33%. In both cases, the chip was underutilized due a combination

of an unoptimized place-and-route algorithm and the restriction of input and output

tiles to the border tiles. As all the benchmark functions only have one output, the

majority of the output tiles were not used. Discounting the superfluous output tiles

results in an average usage of 28.00% for two-input Boolean functions and 39.85% for

three-input Boolean functions. Usage rates can be increased further through the use

of a more sophisticated place and route algorithm, and underutilization can be fixed

with function-driven masks.

Example circuits

I selected four circuits, the four-input AND gate, the three-input XOR gate, the half

adder, and the 8 to 3 encoder, to describe and examine in further detail. For these

four circuits, I compiled the code Fluigi generated and successfully ran chip-level

behavior simulations of these circuits using existing microfluidics control software.

The layouts for these four circuits as generated by Fluigi are shown in Figure 3·5,

and the statistics for these are shown in Table 3.3.

In these layout diagrams, I draw the fluid chambers and channels in blue and the

valves in red. Length of the channels is currently measured in pixels, which I can then

convert to physical distance based on manufacturing technology for fabrication. I do

not draw the control lines as my program does not yet take into account the routing

of control lines. The valves highlighted in green in each chip are a set of valves tied

to the same control line. In all four chips, the total number of optimized control lines

needed for each chip is less than the maximum capacity of the control hardware.

Figure 3·5a shows the microfluidic version of the AND4, which uses 11 tiles, with

54

four input tiles and one output tile, and requires 17 control lines. Of the four example

circuits, it has the shortest average channel length (176px) and lowest channel length

variation (96px). Figure 3·5c is shown here as an example of a three-input Boolean

function used previously as a benchmark circuit. This circuit required 26 tiles, with

10 input tiles and one output tile. Like the AND4, it is a well balanced circuit with

comparatively low variation in channel length.

Figures 3·5b and 3·5d show Fluigi’s ability to place and route logic functions with

more than one output. Both circuits were successfully routed, the half adder on a chip

of size 6x6 and the encoder on a chip of size 8x8. The half adder is a simpler version

of the genetic arithmetic circuits first described in (Beal et al., 2012). It is composed

of two smaller circuits, an AND2 gate and an XOR2 gate. In my implementation it

requires 15 tiles, of which six are input tiles and two are output tiles. The number of

optimized control lines for the circuit is 17, a 75% reduction for the original 51. The

half adder has the highest average channel length due to the suboptimal placement

of the tiles in the carry subcircuit.

The encoder consists of three identical four-input OR gates, requiring 30 tiles with

12 input tiles and 3 output tiles. Since the three subcircuits have the same structure,

control line optimization is highly effective here, resulting in an 83.33% reduction in

required control lines from 102 to 17. However, suboptimal placement of gates in tiles

has led to this circuit having the highest variation of channel length. This can be

fixed by altering the placement algorithm to minimize channel length variation as an

additional constraint.

These layouts represent a good first approximation for photomasks for microflu-

idic chip fabrication. However, two key optimizations will increase the likelihood of

creating viable photomasks. In this version, my place-and-route algorithm does not

take into account the number of bends in each channel or the variation in channel

55

length. The algorithm will be improved by adding a bend penalty during routing

and by altering the scoring function during placement to take into account average

channel length.

3.2.4 Flaws

The biggest flaw with this architecture was the naive view of both microfluidics and

biology it incorporated. The tile design did not leave room for introduction of media

or the removal of waste to ensure growth of the cells containing biological circuits. In

addition, I did not take into account the physical structures needed to control all the

valves in a tile, and the architecture lacked both space for routing control channels

and placement of control ports. While this demonstrated a first pass at a proof-of-

concept workflow, more work remained to define an architecture that would result in

a viable microfluidic device.

3.3 Second iteration

(This section originally published as (Huang and Densmore, 2014a).)

After some thought, I revised the architecture to represent a microfluidic device as

a set of graphs, where each graph in the set represented a different layer in the device.

This allowed me to automate the generation of photomasks for a set of devices for

biological computation. However, the exact design was generated heuristically, and

the design process was not easily extensible to a wider range of microfluidic structures

as I limited the set of microfluidic features to ports, valves, channels, and cell traps.

3.3.1 Architecture

I define a GATE to be a group of cells that perform a specific function and have some

number n of inputs and one output. For the examples shown in this paper, n = 1 or

56

n = 2. The top level function I am trying to implement can then be defined as GATEs

connected in a directed graph.

I define a CHIP as having two elements, a flow layer and a control layer. The flow

layer represents the paths fluids can travel on the chip, and the control layer represents

the valves used to manipulate fluid flow and the connections between them. The flow

layer can be represented as a directed graph and the control layer as an undirected

graph. I assume both these graphs are sparsely connected. A hypothetical flow layer

graph and control layer graph for a sample chip is shown in Figure 3·6a.

For the flow layer, I define a vertex in the graph to be a NODE and an edge in the

graph to be a CHANNEL. A CHANNEL represents a segment along which air, fluid, or cells

may travel. A subset of channels are CELL TRAPs, where GATEs may be placed in the

chip. A NODE has one or more channels entering or exiting it, and must be connected

to at least one channel. A subset of NODEs are FLOW PORTs, which represent locations

where the chip interfaces with the outside world. Flow ports may be sources, which

have no incoming channels or sinks, which have no outgoing channels. Fluids enter

the chip through source ports and exit the chip through sink ports.

For the control layer, I define a vertex in the graph to be a VALVE and an edge in the

graph to also be a CHANNEL. A VALVE is a location on the control layer that intersects

a channel in the flow layer with the intention of manipulating flow in the channel.

Each valve is associated with a channel in the flow layer. A subset of valves are the

CONTROL PORTs, which are locations where air enters and exits the chip. Unlike flow

ports, air may enter and exit the same control port. Each valve must be connected

to a control port through a channel, and each control port must be connected to at

least one valve. A summary of these definitions is found in Table 3.4.

57

Table 3.4: Definition of terms
Term Symbol Definition
CHIP H {FLOW LAYER, CONTROL LAYER}

FLOW LAYER GFL directed graph GFL = (N,C), with N , a set of
NODEs, as vertices and C, a set of CHANNELs, as
edges

CONTROL LAYER GCL undirected graph GCL = (V,C), with V , a set of
VALVEs, as vertices and C, a set of CHANNELs, as
edges

NODE n vertex in GFL, physical location on the FLOW

LAYER where one or more channels start or ter-
minate

FLOW PORT np set of FLOW PORTs Np ⊂ N , physical location
where flow channels interface to locations off-chip

VALVE v vertex in GCL, physical location where a control
channel can be pressurized to create a seal over a
flow channel

CONTROL PORT vp set of CONTROL PORTs Vp ⊂ V , physical location
where control channels interface to locations off-
chip

CHANNEL c edge in GFL and GCL
CELL TRAP ct set of CELL TRAPs Ct ⊂ C, physical location on a

chip where cells may be placed
GATE g cells computing a function with n > 0 inputs and

1 output

3.3.2 Workflow

The basic unit of architecture is the flow stage, which has a single signal input node,

one cell sample and one media input source port, one block of cell traps, a waste

output sink port, and a single signal output node. A diagram of this is shown in

Figure 3·6a, and the diagram for the control layer graph and flow layer graph for such

a chip is shown in Figure 3·6a. The full physical design process from flow layer layout

to control layer routing is shown from Figure 3·6b to Figure 3·6d. I use the cell trap

design described in (Prindle et al., 2012) for my cell trap block. The flow stage unit

may be expanded to contain more cell types by increasing the number of cell trap

blocks and cell sample inputs. Flow stages may be linked together by connecting the

output node of one stage to the input node of the next stage. This architecture gives

58

Table 3.5: Flow layer and control layer layout parameters
Parameter Length (µm)
Flow channel width 100
Control channel width 50
Max. control channel width when crossing flow channel 20
Flow Port Radius 100
Control Port Radius 100
Valve width 2*Flow channel width
Valve length Flow channel width
Min. distance between ports 1000
Min. distance between port and channel 400
Min. distance between port and valve 1000
Min. distance between channels 25
Min. distance between valve and channel 25

me the flexibility to make arbitrary-sized multi-stage circuits.

I assign valves such that each cell trap, source port, and sink port may be accessed

individually and that each stage may operate independently. By connecting the

cell traps and ports to be accessed in a binary tree (Thorsen et al., 2002), I can

reduce the number of control lines needed to individually access those features. Using

multiplexing, only 2 log2 n control lines are needed to access n samples. I apply

multiplexing when the number of samples to be accessed is greater than or equal to

four. Otherwise, I assign control lines individually.

During layout, I use the parameters shown in Table 3.5 to determine physical

layout constraints (Amin et al., 2009) with the most important constraints being the

minimum distance required around ports and the minimum spacing around channels

and valves. Control valves are sized such that they can form complete seals across

the channels they are meant to cover. I generate a routing grid that represents the

minimum spacing needed to prevent features from violating these layout constraints

and use this grid to route the channels connecting the valves and ports on the control

layer.

59

port_1

port_2 port_3

port_4

port_5node_1 node_2

cport_1

cport_2 valve_2 cport_3 valve_3

cport_4

valve_4

cport_5

cport_6

valve_6

valve_1 valve_5 Cell Traps

Waste Port

Output

Input

Cell and Media

Inputs5

(a) Graph representation and flow layer layout of sample chip

(b) Placement
of control
valves

(c) Placement
of control ports

(d) Routing of
control layer

(e) Photomasks for flow layer, control layer and cell trap layer

Figure 3·6: Figure 3·6a shows the graph abstraction of the sample chip. Figures
3·6a through 3·6d show the physical design process from laying out the flow layer
through routing of the control layer. The main features of the primary unit of the
chip architecture are the ’stage’ as shown in Figure 3·6a. The flow layer (3·6a) is laid
out based on the connections present in the flow layer graph, and valves (3·6b) and
ports (3·6c) in the control layer are placed to minimize routing problems. Channels
on the control layer are routed with the negotiated congestion algorithm. Figure 3·6e
shows the photomasks generated for the sample chip for the flow, control, and cell
trap layers.

Flow layer layout

I convert the graph of gates to the graph representation of the flow layer going from

the signal outputs to signal inputs. The signal flow will be from left to right, and the

60

media and cell sample flow will be from top to bottom. I create a sink port in the flow

layer for each output and then expand leftward to create the logic stages. For each

stage, I create and connect the set of cell traps, and connect the cell traps to their

associated ports and the signal input and output nodes for the stage. The input node

for one stage becomes the output node for the stage that precedes it. This continues

until I reach the signal inputs. Here I generate a bank of cell traps for the biological

sensors meant to convert the signal of interest into the intercellular signaling chemical

and the cell sample and media source ports for those cell traps. Input source ports

and output sink ports are arranged vertically while the media and cell sample source

ports are arranged horizontally. The nodes in the flow layer are assigned preliminary

coordinates that comply with the layout constraints, which are then converted to the

nearest routing grid coordinates. The flow layer of a single stage is shown in Figure

3·6a. I can convert the graph of gates to the graph of the flow layer in O(n) time

where n is the number of gates needed in the original logic function.

Control valve and port placement

In general, valves on flow channels are placed near the target node in the direction

of fluid flow. For flow channels that begin or terminate at a flow port, I place the

valve at least the minimum allowed distance away from the port. For multiplexers,

I stagger the valve placement such that valves assigned to the same control line are

arranged in a horizontal or vertical line depending on the flow direction of the binary

tree flow channel structure. The valve placement for the sample chip is shown in

Figure 3·6b.

Control ports are placed to maximized routablility of the control layer. I split

control port placement for multiplexers so that each line of valves has unimpeded

routing access to a control port. Control ports for multiplexers containing flow ports

are placed flanking those flow ports, with half the control ports on each side. For

61

cell trap multiplexers, I align half the control ports above the cell traps and half to

the below them. For single valves controlling a single flow port, I place the control

port for that valve a minimum distance below the flow port. Control ports for single

valves with no other associated structure are placed the minimum safe distance below

the valve. The control port placement for the sample chip is shown in Figure 3·6c.

Control layer routing

The routing algorithm is based on the negotiated congestion routing (Ebeling et al.,

1995; Betz and Rose, 1997). Each location on the routing grid where a control channel

may be placed is a routing resource. As the control layer is only a single layer, the

channels may not cross, and each routing resource may only be used once. The

algorithm takes as an input the control layer graph and produces the list of routing

resources used for each path. Each edge in the control layer graph represents a signal

that must be routed. Control channels must start and end at a valve or control port,

and may not otherwise intersect those features. While control channels may cross flow

channels, they should only do when there is no other path, and no control channel

should directly overlay a flow channel. The width of a control channel is reduced

when it crosses a flow channel to lessen the chance that it would obstruct the flow.

Control channels are not allowed within the minimum safe distance of any control or

flow port other than the one they connect to.

There are two phases to the routing, the global routing and the individual signal

routing. The signal router uses A* search to find the best path between the source and

the target of the signal being routed while the global router handles the allocation of

shared routing resources. In the signal router, I assess penalties for the path crossing

flow channels and for having multiple bends as channels with few bends are easier to

fabricate. In the first pass of the global router, paths are routed without regard to

shared resources so that more than one path can use the same resource. Once all the

62

1: while shared resources exist do
2: for each edge e in the control layer graph do
3: Find start and end routing resources
4: if path p exists between start and end resources and path p contains a shared

resource then
5: Clear contents of path p
6: end if
7: Find path p from start resource to end resource with A* search
8: for resource n in path p do
9: Update penalty pn and resource cost cn

10: end for
11: end for
12: check for shared resources
13: Update historical penalty hn for all nodes
14: end while

Figure 3·7: Negotiated Congestion Routing, cn = (bn + hn) ∗ pn where bn is the base
cost, hn is the history of congestion on n in previous cycles, and pn is related to the
number of other paths using routing resource n currently.

paths have been routed, I check which paths use a resource that is used by another

path. All such paths that share resources are then removed. The cost of using any

routing resource that was shared on the previous iteration is then increased, and the

paths that have been removed are then rerouted. This continues until there are no

more shared resources. The pseudocode for this algorithm is shown in Figure 3·7,

and the routed control layer for the sample chip is shown in Figure 3·6d.

Microfluidic valve control generation

I generate Java files to interface to the existing control software BioStream, which

was developed to design GUIs and control valves for multilayer devices (Thies et al.,

2008; Amin et al., 2009; Urbanski et al., 2006) (freely available at (Thies et al.,

2009)). These files map each control line to one of the 48 physical ports on the

control apparatus and define the mechanisms for opening and closing a port and for

closing or opening all the ports on the chip.

I generate control patterns by first defining the default state of the chip, when it

63

has media flow through all cell traps to the waste ports with each stage operating

independently from other stages. Valves allowing such behavior are set to the OPEN

state, and all other valves are set to the CLOSED state. For all other control patterns,

any valve that does not have its state set will be in the default state. I next define a set

of flow paths for four possible operations in a single flow stage: loading cells and media

to each cell trap individually, flushing media through all cell traps simultaneously,

flushing the contents of each cell trap to the output node, and applying the inputs to

each appropriate cell trap.

The number of total operations defined is based on the number of cell traps present

in the flow layer. I estimate this as the number of nodes in the flow layer in the worst

case. For each operation, I find the path through the control layer graph from the

source port or input node to the waste port or output node for each cell trap. Each

edge in the path is a channel that must remain open. If that channel has a valve

placed on it, then the valve’s state is set to OPEN. Path searches can be performed in

O(n) time with breadth-first search, where n is the number of nodes in the flow layer

graph. The total time to find all flow paths is then O(n2). I convert these flow paths

to valve instructions in BioStream and output those instructions.

Photomask generation

I create photomasks for manufacturing of the chip based on the layout parameters

and the flow and control layer graphs. Photomasks are used to created the master

mold for the flow layer and control layer in multilayer soft lithography (Duffy et al.,

1998; Sia and Whitesides, 2003). For each channel in the flow layer and control layer,

I draw the channel based on the coordinates of its source and target nodes. The cell

traps are drawn on a different layer than the flow channels as the cell traps will be

a different depth than the channels. For the sample chip I described, I generate the

three photomasks shown in Figure 3·6e, as well as reference image of the three layers

64

overlaid on each other. The reference image is used as the base for the chip level

simulation.

3.3.3 Results

I tested the functionality of Fluigi with two sets of benchmarks. I first constructed all

the possible two and three-input Boolean logic benchmark functions using exclusively

NOR gates. Those with 0 inputs were ignored as those are not useful for demonstrating

the capabilities of Fluigi. The results of Fluigi on the 14 two-input Boolean functions

and 254 three-input Boolean functions using only NOR gates are shown in Table 3.6.

The second set of benchmarks demonstrated the generalized functionality of Fluigi

on more complex functions. I also tested Fluigi on four specific example circuits: 1)

a 4 input AND gate, the genetic circuit of which is described in (Moon et al., 2012),

2) a 3 input XOR gate, as a representative of the three-input Boolean logic function

benchmarks, 3) the half adder, a simpler version of the genetic circuit described in

(Beal et al., 2011), and 4) an 8 to 3 encoder, the genetic circuit of which is being

developed in the Densmore lab. In addition, I adapted Fluigi to describe two non-

combinatorial functions, the first a microfluidic chip for constructing the repressilator

(Elowitz and Leibler, 2000) using three stages and a feedback channel and the second

a three stage assay similar to a neural net.

3.3.4 Benchmark circuits

Under these constraints, all 14 two-input Boolean functions could be constructed

using 5 stages of logic, counting the stage of input buffers used to translate the input

signal to an intercellular communications signal, the two most complicated ones being

the 2 input XOR and NXOR functions. These circuits were too small for multiplexing

to reduce the number of control lines.

For three-input Boolean logic functions constructed with only NOR gates, the most

65

Table 3.6: Three-input Boolean logic functions
Number
of
Stages

Number
of
Circuits

Average
Unoptimized
Control Lines

Average
Optimized
Control
Lines

Average
Control
Line
Reduction

% of Circuits
Compatible
with Control
Setup

Built with NOR Gates
1 3 6 6 0.00% 100
2 6 12.50 12.50 0.00% 100
3 12 20.25 20.25 0.00% 100
4 22 27.73 27.73 0.00% 100
5 74 37.45 37.45 0.00% 100
6 26 46.65 46.65 0.00% 100
7 69 58.14 58.14 0.00% 0
8 20 71.75 69.55 3.02% 0
9 22 85.95 81.95 4.54% 0

Built with AND, OR, and NOT Gates
1 3 6 6 0.00% 100
2 15 13.4 13.4 0.00% 100
3 53 23.37 23.37 0.00% 100
4 109 34.18 34.18 0.00% 100
5 75 49.32 48.21 1.97% 61.3

complicated functions took 9 stages of logic, including input buffers, to carry out.

Only the largest circuits with 8 or 9 stages showed any benefit of control line op-

timization. With these three-input functions, I also notice that chips containing

functions of 7 stages or more require more than 48 control lines to fully operate. Of

the 254 benchmark functions, only 143 can be controlled by my existing hardware.

This complication is due to the minimum number of control lines needed to operate

a stage. The smallest functions requiring a single stage still require six control lines

to operate, which limits me to a maximum of 8 stages of single gates. Increasing the

number of gates in a stage will only increase the number of control lines used from

the minimum.

To mitigate this problem, I ran all three-input benchmark circuits through Fluigi,

and allowed the use of AND, OR, and NOT gates instead of relying exclusively on NOR

gates. The new results for three-input benchmark functions are also shown in Table

3.6. Allowing the use of additional gates simplifies the circuits from a maximum of 9

66

36mm

1
3
.4
m
m

(a) AND4: 3 stages, 4 inputs, 1
output, 26 control lines

60mm

2
0
.8
m
m

(b) XOR3: 5 stages, 3 inputs, 1
output, 48 control lines

50.4mm

1
3
.2
m
m

(c) Half Adder: 4 stages, 2 inputs,
2 outputs, 41 control lines

48mm

2
0
.8
m
m

(d) 8-3 Encoder: 3 stages, 7 in-
puts, 3 outputs, 41 control lines

Figure 3·8: Layout of selected combinatorial logic circuits as generated by Fluigi.
These may be used to generate the photomasks for chip fabrication. Blue represents
the flow layer and red represents the control layer. Dimensions are provided for each
design.

stages to a maximum of 5 stages. As previously, the reduction in control lines was only

apparent with more complex functions. However, there still remained 29 functions

that required over 48 control lines to operate. To reduce the number of control lines

needed even further I would need to look at either reducing the minimum number of

control lines needed in each stage, sharing control lines across stages, or better logic

minimization to reduce the number of stages needed.

3.3.5 Example circuits

I selected four circuits, the four-input AND gate, the three-input XOR gate, the half

adder, and the 8 to 3 encoder, to describe and examine in further detail. Based on

my results with the three-input benchmark functions, I use a combination of AND,

OR and NOT gates to construct these circuits to reduce the number of logic stages

67

Table 3.7: Example circuits
Circuit Number

of
Stages

Average
Unoptimized
Control
Lines

Average
Optimized
Control
Lines

Average
Control
Line
Reduction

Length
(mm)

Width
(mm)

Logic Functions
AND4 3 26 26 0.00% 36.0 13.4
XOR3 5 54 48 11.11% 60.0 20.8
ADDER 4 41 41 0.00% 50.4 13.2
8-3 ENC3 3 48 41 14.58% 48.0 20.8
XOR4 7 97 77 20.62% 89.4 24.0

Non-combinatorial Logic Functions
Oscillator 3 17 17 0.00% 29.4 8.8
Assay 3 49 46 6.12% 54.8 17.4

needed. For these four circuits, I compiled the valve control code Fluigi generated

and successfully ran chip level behavior simulations of these circuits using existing

microfluidics control software. The layouts for these four circuits as generated by

Fluigi are shown in Figure 3·8, and the statistics for these are shown in Table 3.7.

Figures 3·8c and 3·8d show Fluigi’s ability to layout and generate controls for

logic functions with more than one output. The half adder is a simpler version of

the genetic arithmetic circuits first described in (Beal et al., 2011) and is comprised

of two smaller circuits, an AND2 gate and an XOR2 gate. Of the four sample circuits,

only the three-input XOR gate and 8-to-3 decoder showed any benefit of multiplexing

for control line optimization for relative optimization rates of 11.11% and 14.58%

respectively. I also ran Fluigi on a 4-input XOR gate, which is a circuit larger than

the biggest logic circuit constructed in synthetic biology thus far. The 4-input XOR

gate is also large enough that multiplexing produces a 20.62% reduction in control

line usage. However, it would still require 77 control lines to operate, and is outside

the capabilities of my current hardware control system.

The benefits of multiplexing decrease as the number of cell trap blocks in each

stage decreases, so multiplexing provides no benefit in later stages for circuits that

68

only have one output. With this in mind, I then created an alternate version of input

specification for Fluigi to maximize the benefits of multiplexing. I constrain Fluigi to

only creating three flow stages, but allow the user to specify the number of cell trap

blocks per stage. The number of inputs into the system is the number of cell trap

blocks in the first stage, and the number of outputs of the system is the number of

cell trap blocks in the last stage. I assume for now that each cell trap block contains

a different cell strain. With this input specification type, I also allow feedback from

later stages to earlier stages. I created two functions, a three-stage oscillator shown

in Figure 3·9a and a 3-stage assay shown in Figure 3·9b, with this alternate input

specification to demonstrate that Fluigi is not limited to laying out logic functions.

The results for these two chips are also shown in Table 3.3.

The oscillator demonstrates that my software is capable of creating feedback loops

in the flow channel. In this system, each cell trap block will be loaded with a cell

with a sensor for some input chemical that produces both a fluorescent protein and

a chemical to inhibit the sensor in the cell in the following stage. The chip for this

system has 17 control lines, with one control line per valve. As each stage already

has the minimum possible number of control lines, no further optimization can be

performed. The assay design is similar to designs of neural networks, with an input

layer, a hidden/processing layer, and an output layer. Since this design has multiple

cell trap blocks in each layer, multiplexing allows savings of 6.12% in control line

usage.

3.3.6 Flaws

The biggest flaws in this iteration of the workflow were the limited application of the

proposed device design and the reliance on heuristics when generating a device design.

Ideally, the workflow would apply to a wider range of problems than simply testing

biological Boolean logic. To do so, I would need more flexibility in the architecture for

69

29.4mm

8
.8
m
m

(a) 3 stage oscillator based on the repressilator

54.8mm

1
7
.4
m
m

(b) 3 stage assay of 4 samples, 8 samples and 4 samples

Figure 3·9: Layout of selected non-combinatorial circuits as generated by Fluigi.
These images serve as the GUI for simulation of high level chip behavior and may be
used to generate the photomask for chip fabrication. The sections in blue represent
the flow layer and the sections in red represent the control layer. The chip dimensions
are provided for each chip.

describing microfluidic structures rather than the limited set used for implementing

testbeds for biological Boolean logic. Ideally, the change in architecture would allow

me to move away from using heuristically generated layouts.

Chapter 4

Design architecture

In this chapter, I discuss the model I use to represent a microfluidic device, the

implementation of the model, and the rules of the netlist file format used to describe

microfluidic devices. Sample netlists for microfluidic devices are included in Appendix

B.

4.1 Device model

I represent a microfluidic device d by a graph G(V,E). Each vertex v ∈ V repre-

sents a microfluidic component such as but not limited to an input/output port, a

valve, a serpentine mixer, a cell trap, or another basic structure commonly found in

microfluidic devices. Each edge e ∈ E represents a microfluidic channel connecting

two components. For each vertex v ∈ V , ∃ a set L of points p = px, py that represent

coordinates of the input/output terminals of the component. The degree of vertex

vi ∈ V may not be greater than the size of set Li. For each degree of vi, ∃ channel

e ∈ E that has its source or target at those coordinates.

The flow layer and control layer can be represented by the subgraphs F ∈ G and

C ∈ G respectively. For more complex but commonly used microfluidic structures

such as multiplexers or rotary pumps with components on multiple layers, I define a

module m as a subgraph of G that can contain elements from both F and C. I define

the set of modules m1 . . .mn ∈ G as M . I represent a set of channels that must be

routed together as as a net n ⊂ E, and N as the set of nets n1 . . . nn ∈ G.

70

71

Component	 Composite	

Primi-ve	 Module	 Device	

Layer	

Graph	 Channel	

1..*

0..*

0..*

Net	

1..*

0..*

0..*

Figure 4·1: Class diagram of architecture model. A microfluidic device is represented
as a Device object which contains multiple Layer objects, and the features and
connections on each Layer are represented by a Graph of Component objects as ver-
tices and Channel objects as edges. The Component interface is implemented by two
classes, Primitive and Module. A Primitive represents a basic feature of a microflu-
idic device, and a Module is a collection of multiple Primitive objects that perform
a more complex function. Dashed lines represent interfaces to be implemented. Solid
arrows represent subclasses. Diamonds represent collections.

4.2 Implementation

I implemented the device model in Java using the class diagram shown in Figure 4·1.

The most important piece in the diagram is the Component interface, which represents

the physical characteristics of a microfluidic structure, including its location on a 2-D

plane with the origin at the upper left, the minimum boundary space around it, and

the number and location of its terminals. The x, y location of all components is

referenced by the coordinates of the upper left corner of the component. Two classes,

Primitive and Module, implement this interface. Here, I consider a Primitive object

to describe the most basic microfluidic structure that can be used to build larger

structures. Primitive objects in my architecture include ports, cell traps, valves,

serpentine mixers, and nodes, which are locations where channels may intersect.

72

Figure 4·2: Lexical rules for the netlist grammar. The lexer has two rules, ID and
INT. An ID may be any combination of upper and lower case letters and numbers,
but must start with an upper or lower case letter. An INT may be any combination
of numbers, and does not include decimal points. The lexer ignores white space.

I introduce the Composite class for describing more complex microfluidic struc-

tures that may span multiple layers. A Composite contains one or more Layer

objects, and each Layer contains a Graph of Component objects as vertices and

Channel objects as edges. Both the Module class and the Device class are sub-

classes of Composite. As Module implements the Component interface, it is possible

for a Device or Module to contain other Module objects.

The Channel class represents a physical connection between two Components, and

exists as an edge in a Graph. In addition to its source and target in the graph, a

Channel also contains the source terminal and target terminal it connects at and

their respective coordinates. The Net class represents a set of channels with the same

source component and the same source terminals. All Channels in a Net are treated

as one object for the purposes of the place-and-route tool, and are routed at the same

time.

4.3 Netlist rules

In this section I give the detailed syntax of my microfluidic netlist format, and the

grammar rules for it. I used ANTLR3.5.2 to write my grammar and associated lexer

and parser. I have two rules for the lexer, the definition of ID as component names

and the definition of INT as numbers, as shown in Figure 4·2. An ID may be any

combination of upper and lower case letters and numbers, but must start with an

73

DEVICE test01

LAYER FLOW
PORT p1, p2, p3 r=500;
NODE n1;
H LONG CELL TRAP ct1 numChambers=10 chamberWidth=500
chamberLength=500 chamberSpacing=100 channelWidth=500;

CHANNEL c1 from p1 3 to n1 1 w=500;
CHANNEL c2 from p2 1 to n1 3 w=500;
CHANNEL c3 from n1 2 to ct1 1 w=500;
CHANNEL c4 from ct1 2 to p3 4 w=500;
END LAYER

LAYER CONTROL
PORT cp1, cp2 r=500;
VALVE v1 on c1 w=1000 l=500;
VALVE v2 on c2 w=1000 l=500;
CHANNEL c5 from cp1 2 to v1 4 w=500;
CHANNEL c6 from cp2 2 to v2 4 w=500;

END LAYER

Figure 4·3: Netlist example. The netlist describes a simple device with three ports
and a cell trap on the flow layer and two valves and ports on the control layer. The
name of the device is given in the first line. The features and connections on the flow
layer are described first, followed by those on the control layer. The design described
in the netlist is shown on the right.

upper or lower case letter. An INT may be any combination of numbers, but does

not include decimal points. I assume that all numerical parameters are in microns.

White space is ignored by the lexer.

4.3.1 Device declaration

A simple microfluidic device and netlist for describing it are shown in Figure 4·3. The

basic structure of the netlist as follows:

1. Declare the type of device and the device name.

2. Declare each layer present in the device.

3. Within each layer declare the components and channels on that layer.

4. Within each layer, set the position of the components in that layer.

Figure 4·4A and B shows the parser rules for the structure of the netlist. The

first line of the netlist file is the header statement that includes the type of device

74

A

B

C

D

E

Figure 4·4: Syntax for netlist grammar. The netlist is broken up into the header, the
flowBlock, and the optional controlBlock, and ends with a newline. The header

contains the device name, and the device fabrication method in optional 3D flag. The
flowBlock contains the declarations of all the features on the flow layer, and the
controlBlock contains the declarations of all the features on the control layer. The
explicit position of a feature may be set by the setCoordStat statement inside the
flowBlock or the controlBlock.

and the device name. Using the optional 3D tag declares the netlist to describe a

device meant to be manufactured by 3D printing or a computer numerical control

(CNC) milling platform (Duncan et al., 2015). If this option is used, the device will

be marked with the 3D flag. This flag allows usage of the structures 3DVALVE, VIA,

and TRANSPOSER but block the usage of the structures MUX, ROTARY MIXER, and LOGIC

ARRAY as those modules have not been adapted to use 3D Valves. See Section 4.3.5

for more information about 3D structures.

I limit the device to a maximum of two layers, a flow layer and a control layer.

The control layer is optional, as there are many devices that only have a flow layer.

The syntax for layer statements is shown in Figure 4·4C and D. Figure 4·5 shows

the valid statements in each layer. All modules are declared on the flow layer, even

those that span both layers. The position of a component on a layer may be set with

the setCoordStat shown in Figure 4·4E. In this statement, ID is the name of the

component, and the component is moved so its upper left corner is at the position

75

Figure 4·5: Syntax for layer declarations. Cell traps, mixers, and modules with
features on both flow and control layers may only be declared on the flow layer.
Valves and nets may only be declared on the control layer. Ports, port banks, nodes,
and channels may be declared on any layer.

referenced.

4.3.2 Primitives

I show in Table 4.1 the syntax for declaring each type of Primitive. Subclasses of

Primitive include Port, Node, CellTrap, Mixer, and Valve.

76

Table 4.1: Syntax for statements declaring primitives
Primitive Syntax
Port ‘PORT’ ID (‘,’ ID)* (‘r=’ INT)? ‘;’
Node ‘NODE’ ID (‘,’ ID)* ‘;’
Long Cell Trap (‘V’ |‘H’) ‘LONG CELL TRAP’ ID (‘,’ ID)* ‘numCham-

bers=’ INT ‘chamberWidth=’ INT ‘chamberLength=’
INT ‘chamberSpacing=’ INT ‘channelWidth=’ INT ‘;’

Square Cell Trap ‘SQUARE CELL TRAP’ ID (‘,’ ID)* ‘chamberWidth=’
INT ‘chamberLength=’ INT ‘chamberSpacing=’ INT

‘channelWidth=’ INT ‘;’
Mixer (‘V’ |‘H’) ‘MIXER’ ID ‘numBends=’ INT ‘bendSpac-

ing=’ INT ‘bendLength=’ INT ‘channelWidth=’ INT ‘;’
Valve ‘VALVE’ ID ‘on’ ID ‘w=’ INT ‘l=’ INT ‘;’

r

1

3

2 4

PORT <string> r=<int>;

1

3

2 4

NODE <string>;

A B

Figure 4·6: The diagram of parameters and terminal numbering for Port is shown
in A. A Port represents a location on the device where fluid or air may enter and
leave and has a radius defined in microns. The diagram of parameters and terminal
numbering for Node is shown in B. A Node represents a location on the device where
up to four channels on the same layer may intersect.

Port

A Port represents a location on the device where fluid or air may enter and leave. Port

objects may be declared on both the flow and control layer. It has one parameter, the

radius, which must be given in microns. A diagram of the parameters and numbering

and location of the terminals is shown in Figure 4·6A. The syntax is shown in Table

4.1. Multiple ports may be declared in the same statement provided they have the

same radius.

77

Node

A Node represents a location on the device where up to four channels on the same

layer may intersect. It has no parameters, and its size is determined by the widths

of the channels connecting to it. A diagram of the numbering and locations of the

terminals is shown in Figure 4·6B. The syntax is shown in Table 4.1. Multiple nodes

may be declared in the statement.

Cell trap

A CellTrap represents a structure for growing cells for microscopy. I based this

structure on the cell trap design from the Hasty Lab (Prindle et al., 2012; Danino

et al., 2010). It has multiple small chambers flanking a wider and deeper channel,

all of which is treated as one structure. A separate photomask is generated for the

chambers of the cell trap as they are a different height than the flow channels.

Figure 4·7 and Figure 4·8 show the parameters and terminal numbering for the

two cell trap subclasses. Key parameters for a CellTrap are the length and width

of chambers, distance between chambers, width of the flow channel, and the total

number of chambers. A CellTrap may only be declared on the flow layer. The

syntax for this statement is shown in Table 4.1. Multiple cell traps may be declared

in the same statement provided they are of the same subclass and have the same

parameters.

A long cell trap, CellTrapL, may be horizontal or vertical and has two terminals

numbered as shown in Figure 4·7. It may contain an arbitrary number of chambers.

A square cell trap, CellTrapS, contains 4 chambers at a 4 way junction. It has

4 terminals numbered as shown in figure Figure 4·8. The size of chambers may vary,

but this structure is restricted to 4 chambers only.

78

1

2

1 2

channelWidth

chamberSpacing

chamberWidth

chamberLength

H LONG CELL TRAP <name> numChambers=<int>
chamberWidth=<int> chamberLength=<int>
chamberSpacing=<int> channelWidth=<int>

V LONG CELL TRAP <name> numChambers=<int>
chamberWidth=<int> chamberLength=<int>
chamberSpacing=<int> channelWidth=<int>

Figure 4·7: Diagram of parameters and terminal numbering for CellTrapL. The long
cell trap has chambers for cell growth flanking a wider and deeper channel. The size
of the chambers and the spacing between the chambers affects the performance of the
cell trap.

1

3

2 4

channelWidth

chamberWidth

chamberLength

SQUARE CELL TRAP <name>
chamberWidth=<int>
chamberLength=<int>
channelWidth=<int>;

Figure 4·8: Diagram of parameters and terminal numbering for CellTrapS. The
square cell trap contains 4 chambers at a 4 way junction of channels.

Mixer

A Mixer represents a serpentine mixer used for mixing two fluids. The details of

the fluid mechanics of this structure are given by Squires and Quake (Squires and

79

1

2

1 2

numBends

channelWidth

bendSpacing

bendLength

H MIXER <string> numBends=<int>
bendSpacing=<int> bendLength=<int>
channelWidth=<int>;

V MIXER <string> numBends=<int>
bendSpacing=<int> bendLength=<int>
channelWidth=<int>;

Figure 4·9: Diagram of parameters and terminal numbering for Mixer. A Mixer

represents a serpentine mixer used for mixing two fluids. The details of the fluid
mechanics of this structure are given by Squires and Quake (Squires and Quake,
2005).

Quake, 2005). The key parameters are the number of bends, the spacing distance

between bends, the length of bend, and the width of the channel. This structure may

be horizontal or vertical and has two terminals. It may only be declared in the flow

layer. The parameters and terminal numbering are diagrammed in Figure 4·9. The

syntax for this statement is shown in Table 4.1.

Valve

A Valve represents a location on the control layer that may be distended through

application of pneumatic pressure to form a seal on the flow layer. The full mechanics

of this is described by Thorsen et al. (Thorsen et al., 2002). This may only be declared

on the control layer. The parameters for a valve are the length, the width, and the

flow channel the valve controls. The channel must exist on the flow layer in order for

80

w

l

Channel

w

l

Channel

VALVE <string> on <channel>
w=<int> l=<int>;

Figure 4·10: Diagram of parameters and terminal numbering for Valve. A Valve

represents a location on the control layer that may be distended through application
of pneumatic pressure to form a seal on the flow layer. The full mechanics of this is
described by Thorsen and Quake (Thorsen et al., 2002).

the valve to be created. For a horizontal flow channel, the valve width is 1.5 times

channel width, and the valve length is 3 times channel width. For a vertical flow

channel, the valve width is 3 times channel width, and the valve length is 1.5 times

channel width. The parameters and terminal numbering are shown in Figure 4·10.

The syntax for this statement is shown in in Table 4.1.

As an application note, if the valve is placed on a horizontal channel, control

layer connections should not be made to terminals 1 and 3. Likewise, if the valve

is placed on a vertical flow channel, control layer connections should not made to

terminals 2 and 4. Doing so would cause a control channel to be physically on top

of a flow channel, which would violate design rules for multilayer soft lithography.

This structure is valid for valves made with multilayer soft lithography. Section 4.3.5

covers valve designs for alternative fabrication methods.

4.3.3 Channel

A Channel represents a connection between two structures on a microfluidic device.

A channel goes from a terminal on a source component to a terminal on a target

component. The key parameter of a channel is the width and is diagrammed in

81

Table 4.2: Syntax for statements declaring channels and nets
Statement Syntax
Channel ‘CHANNEL’ ID ‘from’ ID INT ‘to’ ID INT ‘w=’ INT ‘;’
Net ‘NET’ ID ‘from’ ID INT ‘to’ ID INT (‘,’ ID INT)+ ‘chan-

nelWidth=’ INT ‘;’

1

3

2 4 4

1

2

3

w

Terminal

Component 1 Component 2

CHANNEL <string> from <Component 1> <terminal>
to <Component 2> <terminal> w=INT;

Figure 4·11: Diagram of parameters and terminal numbering for Channel. A Channel

represents a connection between two structures on a microfluidic device. A channel
goes from a terminal on a source component to a terminal on a target component.

Figure 4·11. The syntax for declaring a Channel is shown in Table 4.2. Both the

source and target components must have already been declared in the device, and

both components must have a valid terminal. Channels only go between two terminals

and may only connect at 90 degree angles.

Net

A Net represents a set of channels originating from a single source. All channels in

a net share the same source component and the same source terminal. A Net may

only be declared on the control layer at this time. Figure 4·12 shows the usage of the

net statement. The syntax is shown in Table 4.2. When declaring a net, the target

closest to the source must be first in the list of targets.

82

source

target 1 target 2 target 3 ...target n

channelWidth

NET <string> from <source> <terminal> to
<target 1> <terminal>,... <target n> <terminal>
channelWidth=<int>;

1

3

2 4

1

3

2 4

1

3

2 4

1

3

2 4

1

3

2 4

Figure 4·12: Diagram of parameters and terminal numbering for Net. A Net repre-
sents a set of channels originating from a single source. All channels in a net share
the same source component and the same source terminal.

4.3.4 Modules

A Module represents commonly used complex structures found in microfluidic devices

and contains elements on both the flow layer and the control layer. Components

and channels contained in modules do not undergo the place-and-route as the entire

module is treated as one component for the purposes of place-and-route. This allows

modules to contain some structures involving channels at angles that would otherwise

violate my architecture model. Table 4.3 shows the syntax for all module declarations.

All modules with elements in the flow layer must be declared in the flow layer. The

only module that can be declared in the control layer is a PortBank.

Bank

A Bank represents a set of repeated components with the same parameters placed

a fixed distance from each other either vertically or horizontally. Key parameters

include the number of components, the distance between terminals, and the width of

the channels connecting to the components on each layer. Spacing contraints between

83

Table 4.3: Syntax for statements declaring modules
Statement Syntax
Port Bank ‘V’ ‘BANK’ ID ‘of’ INT ‘PORT’ ‘r=’ INT ‘dir=’

(‘RIGHT’ |‘LEFT’) ‘spacing=’ INT ‘channelWidth=’
INT ‘;’
‘H’ ‘BANK’ ID ‘of’ INT ‘PORT’ ‘r=’ INT ‘dir=’ (‘UP’
|‘DOWN’) ‘spacing=’ INT ‘channelWidth=’ INT ‘;’

Cell Trap Bank (‘V’ |‘H’) ‘BANK’ ID ‘of’ INT ‘CELL TRAP’ ‘num-
Chambers=’ INT ‘chamberWidth=’ INT ‘chamber-
Length=’ INT ‘chamberSpacing=’ INT ‘spacing=’ INT

‘channelWidth=’ INT ‘;’
Mux (‘V’ |‘H’) ‘MUX’ ID INT ‘to’ INT ‘spacing=’ INT

‘flowChannelWidth=’ INT ‘controlChannelWidth=’ INT
‘;’

Tree (‘V’ |‘H’) ‘TREE’ ID INT ‘to’ INT ‘spacing=’ INT

‘flowChannelWidth=’ INT ‘;’
Logic Array ‘LOGIC ARRAY’ ID ‘flowChannelWidth=’ INT ‘con-

trolChannelWidth=’ INT ‘chamberLength=’ INT ‘cham-
berWidth=’ INT ‘r=’ INT ’;’

Gradient Generator (‘V’ |‘H’) ‘GRADIENT GENERATOR’ ID INT ‘to’ INT
‘numBends=’ INT ‘bendSpacing=’ INT ‘bendLength=’
INT ‘channelWidth=’ INT ‘;’

T Droplet Generator (‘V’ |‘H’) ’DROPLET GENERATOR’ ‘T’ ID ‘radius=’
INT ‘oilChannelWidth=’ INT ‘waterChannelWidth=’
INT ‘;’

Flow Focusing
Droplet Generator

(‘V’ |‘H’) ‘DROPLET GENERATOR’ ‘FLOW FOCUS’
ID ‘radius=’ INT ‘oilChannelWidth=’ INT ‘waterChan-
nelWidth=’ INT ‘angle=’ INT ‘length=’ INT ‘;’

Rotary Pump (‘V’ |‘H’) ‘ROTARY PUMP’ ID ‘radius=’ INT

‘flowChannelWidth=’ INT ‘controlChannelWidth=’ INT
‘;’

adjacent components in each Bank are maintained. The two subclasses of Bank are

PortBank for repeated ports and CellTrapBank for repeated long cell traps.

Additional parameters for PortBank are the radius of the ports in the bank and

the direction that the connections are made from the ports. Figure 4·13 shows the

parameters and terminal numbering. The syntax for declaring a port bank is shown

in Table 4.3. PortBank is the only module that may be declared on both the flow

layer and the control layer.

84

1 2 3 4

1 2 3 4

1

2

3

4

spacing

channelWidth

V BANK <string> of
<int> PORT r=<int>
dir=RIGHT spacing=<int>
channelWidth=<int>;

H BANK <string> of <int>
PORT r=<int> dir=DOWN
spacing=<int>
channelWidth=<int>;

H BANK <string> of <int>
PORT r=<int> dir=UP
spacing=<int>
channelWidth=<int>;

V BANK <string> of
<int> PORT r=<int>
dir=LEFT spacing=<int>
channelWidth=<int>;

1

2

3

4

Figure 4·13: Diagram of parameters and terminal numbering for PortBank. A
PortBank is a set of repeated ports with the same radius placed a fixed distance
from each other.

Additional parameters for CellTrapBank are the parameters for defining the struc-

ture of each cell trap as seen in Figure 4·7, including number of chambers, the chamber

size, and the spacing between chambers. All cell traps in a CellTrapBank have the

same parameters. Figure 4·14 shows the terminal numbering, and the syntax for the

statement is shown in Table 4.3.

Mux

A Mux represents the microfluidic multiplexer as described by Thorsen et al. (Thorsen

et al., 2002). It uses 2 log2 n control lines to select one of n flow channels. The

parameters for declaring a Mux include number of flow lines to be selected from (1

to n or n to 1), the orientation (vertical or horizontal), the flow channel width, the

control channel width, and the spacing between the terminals. Spacing between the

85

1 2 3 4

5 6 7 8 1

2

3

4

5

6

7

8

spacing

H BANK <string> of <int> CELL TRAP
numChambers=<int> chamberWidth=<int>
chamberLength=<int> chamberSpacing=<int>
spacing=<int> channelWidth=<int>;

V BANK <string> of <int> CELL TRAP
numChambers=<int> chamberWidth=<int>
chamberLength=<int> chamberSpacing=<int>
spacing=<int> channelWidth=<int>;

Figure 4·14: Diagram of parameters and terminal numbering for CellTrapBank. A
CellTrapBank is a set of repeated cell traps with the same chamber size, chamber
spacing, and channel width placed a fixed distance from each other.

channels is constrained to a minimum of the spacing required by the given design

rule parameters (see Table 5.1. Valves are sized according to flow channel width,

with the larger dimension being 3 times the flow channel width and the smaller

dimension being 1.5 times the flow channel width. Figure 4·15 shows the parameters

and terminal numbering for an 8 to 1 Mux and a 1 to 8 Mux. The syntax for this

declaration is shown in Table 4.3.

Tree

The structure of a Tree is that of a Mux without the control layer. A Tree has all

the parameters of a Mux except the control channel width. Figure 4·16 shows the

parameters and the terminal numbering, and the syntax is given in Table 4.3.

86

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8

9

10

12

14

11

13

15

H MUX <string> <int> to 1
spacing=<int> flowChannelWidth=<int>
controlChannelWidth=<int>;

flowChannelWidth

spacing

V MUX <string> <int> to 1
spacing=<int> flowChannelWidth=<int>
controlChannelWidth=<int>;

controlChannelWidth

(a) n to 1 Multiplexers

2

3

4

5

6

7

8

9

1

2 3 4 5 6 7 8 9

1

10 12 14

11 13 15

11

13

15

10

12

14

H MUX <string> 1 to <int>
spacing=<int> flowChannelWidth=<int>
controlChannelWidth=<int>;

flowChannelWidth

spacing

V MUX <string> 1 to <int>
spacing=<int> flowChannelWidth=<int>
controlChannelWidth=<int>;

controlChannelWidth

(b) 1 to n Multiplexers

Figure 4·15: Diagram of parameters and terminal numbering for Mux. A Mux rep-
resents the microfluidic multiplexer as described by Thorsen et al. (Thorsen et al.,
2002). It uses 2 log2 n control lines to select one of n flow channels.

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

9

flowChannelWidth

spacing

H TREE <string> <int> to 1
spacing=<int> flowChannelWidth=<int>;

V TREE <string> <int> to 1
spacing=<int> flowChannelWidth=<int>;

(a) n to 1 Tree

2

3

4

5

6

7

8

9

1

2 3 4 5 6 7 8 9

1

spacing

flowChannelWidth

H TREE <string> 1 to <int>
spacing=<int> flowChannelWidth=<int>;

V TREE <string> 1 to <int>
spacing=<int> flowChannelWidth=<int>;

(b) 1 to n Tree

Figure 4·16: Diagram of parameters and terminal numbering for Tree. A Tree shares
the same flow layer structure as a Mux and is used to combine multiple flows or split
a single flow.

Logic array

The LogicArray is a structure for controlling flows between four square cell traps and

an input. The cell traps are meant to contain biological Boolean logic. Each valve

is controlled individually, and the structure can direct flow between any two or more

cell traps. The key parameters include the length and width of the cell traps, the

flow channel width, the control channel width, and the radius for the four internal

87

flowChannelWidth

controlChannelWidth

1

2

3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

26

24 25

LOGIC ARRAY <string>
flowChannelWidth=<int>
controlChannelWidth=<int>
chamberLength=<int>
chamberWidth=<int>
r=<int>;

Figure 4·17: Diagram of parameters and terminal numbering for LogicArray. The
LogicArray is a structure for controlling flows between four square cell traps and an
input. The cell traps are meant to contain biological Boolean logic. Each valve is
controlled individually, and the structure can direct flow between any two or more
cell traps.

ports. The size of the valves will depend on the flow channel width. Parameters and

terminal numbering are shown in Figure 4·17, and the syntax is given in Table 4.3.

Gradient Generator

The GradientGenerator is based on the design by Dertinger et al. (Dertinger et al.,

2001). The arrangement of serpentine mixers generates a gradient of concentrations

at the output channel. This is one of three modules that contain internal structures

that would otherwise violate the architecture model. This structure contains a node

that may have more than 4 connections with channels that do not connect at right

angles.

Key parameters are the number of mixers at the input, the number of mixers

at the output, and the channel width. The output channel width will be 3 times

the channel width. Additional parameters used to define the structure of each mixer

include bend length, number of bends, and the spacing between bends as shown in

88

H GRADIENT GENERATOR <string>
<int (mixers in first column)> to
<int (mixers in last column)>
numBends=<int> bendSpacing=<int>
bendLength=<int>
channelWidth=<int>

V GRADIENT GENERATOR <string>
<int (mixers in first row)> to
<int (mixers in last row)>
numBends=<int> bendSpacing=<int>
bendLength=<int>
channelWidth=<int>

1 2 3

4

4

1

2

3

Figure 4·18: Diagram of parameters and terminal numbering for GradientGenerator.
The GradientGenerator is based on the design by Dertinger et al. (Dertinger et al.,
2001) and has an arrangement of serpentine mixers that generate a gradient of con-
centrations at the output channel.

Figure 4·9. Terminal numbering is shown in Figure 4·18, and the syntax is given in

Table 4.3.

Droplet generator

Droplet generators are used to create droplets of water emulsified in oil for droplet or

digital flow-based microfluidic experiments, the details of which are given by Squires

and Quake (Squires and Quake, 2005). The two subclasses of droplet generators are

flow-focusing droplet generators and T-shaped droplet generators. The syntax for

declaring a droplet generator is given in Table 4.3. The key parameters are the width

of the water flow channel, the width of the oil flow channel, and the radius of the

internal ports. The width of the water channel should be at most 1/5 of that of the

oil channel. The terminal numbering for a T-shaped droplet generator, TDroplet is

89

H DROPLET GENERATOR T <string>
radius=<int> oilChannelWidth=<int>
waterChannelWidth=<int>;

waterChannelWidth

oilChannelWidth

oilChannelWidth

waterChannelWidth

V DROPLET GENERATOR T <string>
radius=<int> oilChannelWidth=<int>
waterChannelWidth=<int>;

1

1

Figure 4·19: Diagram of parameters and terminal numbering for TDroplet. Droplets
of the water from the narrow water channel are introduced to a stream of oil in the
wider oil channel to form droplets. The width of the water channel should be at most
1/5 of that of the oil channel.

shown in Figure 4·19.

Additional parameters for the flow-focusing droplet generator, FFDroplet, include

the angle of the connection between the water and oil flow channels and the length

of the water flow channel as shown in Figure 4·20. This is one of the modules with

an internal structure that would otherwise violate the architecture model as it allows

channels to connect at angles other than right angles.

Rotary pump

The RotaryPump represents an active mixing structure as described in Urbanski et

al. (Urbanski et al., 2006) where actuated valves around a ring mix the fluid inside

the ring. The key parameters are the radius of the ring, the flow channel width,

and the control channel width. The valves are sized according to the flow channel

width. Parameters and terminal numbering are shown in Figure 4·21. The syntax for

declaring a rotary pump is given in Table 4.3.

90

H DROPLET GENERATOR FLOW FOCUS <string>
radius=<int> oilChannelWidth=<int>
waterChannelWidth=<int>
angle=<int> length=<int>;

waterChannelWidth

oilChannelWidth

waterChannelWidth

oilChannelWidth

angle

angle

length

length
V DROPLET GENERATOR FLOW FOCUS <string>
radius=<int> oilChannelWidth=<int>
waterChannelWidth=<int>
angle=<int> length=<int>;

1

1

Figure 4·20: Diagram of parameters and terminal numbering for FFDroplet. Droplets
of water are sandwiched between two flows of oil. Performance of the droplet generator
is dependent on the angle at which the channels meet. The width of the water channel
should be at most 1/5 of that of the oil channel.

1

2

1

2

3

4 5

6 7

3

4

5 6

7

H ROTARY PUMP <string> radius=<int>
flowChannelWidth=<int>
controlChannelWidth=<int>;

controlChannelWidth

radius

V ROTARY PUMP <string> radius=<int>
flowChannelWidth=<int>
controlChannelWidth=<int>;

flowChannel
Width

Figure 4·21: Diagram of parameters and terminal numbering for RotaryPump. The
RotaryPump represents an active mixing structure as described in Urbanski et al.
(Urbanski et al., 2006) where actuated valves around a ring mix the fluid inside the
ring.

91

Table 4.4: Syntax for statements declaring 3D structures
Statement Syntax
3D Valve (‘V’ |‘H’) ‘3DVALVE’ ID ‘radius=’ INT ‘gap=’ INT ‘;’
Via ‘VIA’ ID (‘,’ ID)* ‘;’
Transposer ‘TRANSPOSER’ ID ‘valveRadius=’ INT ‘valveGap=’

INT ‘flowChannelWidth=’ INT ‘controlChannelWidth=’
INT ‘;’

1

3

2 4

2 4

1

3
gap

radius

H 3DVALVE <string>
radius=<int> gap=<int>;

V 3DVALVE <string>
radius=<int> gap=<int>;

Figure 4·22: Diagram of parameters and terminal numbering for Valve3D. A layer
of two-sided tape is used as the flexible membrane between the layers. The valve is
closed normally, preventing flow. Negative pressure on the control layer causes the
valve to open.

4.3.5 3D structures

The structures described in this section are for use with devices meant to be fabricated

with a CNC milling platform or a method other than multilayer soft lithography. They

may only be used in a device that has the 3D flag. I represent these structures as

modules as they span multiple layers. As such, they must be declared on the flow

layer. Table 4.4 shows the syntax for declaring these structures in a device.

3D valve

The pneumatic valve structure for machined microfluidic devices, Valve3D, has a

structure drastically different from that of valves for devices fabricated from multilayer

soft lithograph. An overview of the mechanics of this valve is given in the following:

(Duncan et al., 2015; Zhang et al., 2009; Becker and Gärtner, 2008).

92

1

3

2 4

5

7

6 8

VIA <string>

Figure 4·23: Diagram of parameters and terminal numbering for Via. The Via is a
structure that allows channels on the flow layer to connect to channels on the control
layer.

A layer of two-sided tape is used as the flexible membrane between the layers.

The valve is closed normally, preventing flow. Negative pressure on the control layer

causes the valve to open. The key parameters are the valve radius and the gap in the

flow layer. The parameters and terminal numbering are shown in Figure 4·22. The

syntax is given in Table 4.4.

Via

The Via is a structure that allows channels on the flow layer to connect to channels

on the control layer. The terminal numbering is given in Figure 4·23, and the syntax

is given in Table 4.4B. Multiple vias may be declared in the same statement.

Transposer

The Transposer is a structure designed to reconfigure flows between two inputs.

When valves v2, v3, v4, v5 are closed, and valves v1 and v6 are open, the input at

in1 connects to out1, and the input at in2 connects to out2. By opening v2, v3, v4,

v5 and closing v1 and v6, in1 is redirected to out2 and in2 is redirected to out1.

This structure moves the microfluidic design one step closer to the goal of a fully

reconfigurable microfluidic device. The key parameters are the valve radius, the valve

gap, the flow channel width, and the control channel width. Figure 4·24 shows the

parameters and the terminal numbering. The syntax is given in Table 4.4C.

93

1 3

2 4

Flow Layer Control Layer

controlChannelWidth

flowChannelWidth

TRANSPOSER <string> valveRadius=<int>
valveGap=<int> flowChannelWidth=<int>
controlChannelWidth=<int>;

v1

v2 v3

v6

v4 v5

in1

in2

out1

out2

Figure 4·24: Diagram of parameters and terminal numbering for Transposer. The
Transposer is a structure designed to reconfigure flows between two inputs. When
valves v2, v3, v4, v5 are closed, and valves v1 and v6 are open, the input at in1
connects to out1, and the input at in2 connects to out2. By opening v2, v3, v4, v5
and closing v1 and v6, in1 is redirected to out2 and in2 is redirected to out1.

Chapter 5

Software workflow

In this chapter, I describe the software workflow as shown in Figure 5·1, including

the input options, the algorithms for placement, routing, and design rule checking,

and the output options. I will also discuss the current structure for adding biological

function to microfluidic devices.

My workflow begins with two files, a microfluidic netlist file (as described in Chap-

ter 4) and an initialization file with parameters for both microfluidic design rules. A

layout is generated from the netlist after placement and routing. Design rules viola-

tions are noted by the design rule checker. The layout of the microfluidic device is

output as either an EPS or SVG image file. An alternative workflow, similar to the

ones described in Chapter 3, begins with the definition of a logic function in a hard-

ware description language such as Verilog. The logic function is compiled by Cello

(Vaidyanathan et al., 2015) into a set of biological logic in the form of a biological

netlist. My workflow then generates a microfluidic device to house the biological logic

and the control signals necessary to implement the function. The integration of the

alternative test flow with Cello is still incomplete.

The program is written in Java 1.7 and compiled with Netbeans 8.0.1. Additional

external libraries used by this program are listed in Appendix A.

94

95

	
Microfludic	
Netlist	

Placement:	
Simulated	 Annealing	

	
Verilog	

Rou9ng:	
Hadlock’s	 Rou9ng	

Design	 Rule	 Checking:	
Interval	 Search	

Biological	 Gate	
Placement	

	
Biological	
Netlist	

Valve	 Control	

Valve	 Behavior	
Simulator	

Cello Interface

Device Control

Physical Design Front End GUI
	

Microfludic	 Data	
Exchange	 Format	

+	
Layout	 Constraints	

Photomask	
Genera9on	

Device	 Fabrica9on	

Manufacturing

3D	 Model	

3D	 Prin9ng	

Figure 5·1: The workflow for Fluigi, from physical design to manufacturing and device
controls. A device is represented as a data structure where each layer is a graph of
channels and components such as ports, valves, and cell traps. A layout is generated
from a set of physical constraints and a netlist describing the connections in the
device using simulated annealing for placement (Betz and Rose, 1997) and Hadlock’s
algorithm (Hadlock, 1977) for routing. If given a set of biological devices that perform
a function, Fluigi will generate a design of a device to house the biological devices and
a set of valve control patterns to allow intercellular communications between them.

5.1 Initialization

I provide only a command line interface to run the software tool. The syntax for the

command line is as follows:

java -jar fluigi filename [-i parameterFile] [-o output]

where filename is the name of the microfluidic netlist file including the extension

of .uf, parameterFile is the name of the optional initiation file with the extension

of .ini, and output is the output file format, either eps or svg. The default input

parameters for Fluigi when no initialization file is used are shown in Tables 5.1 and

5.2. The default output file format is eps. The program will exit if either the input

96

Table 5.1: Default design rule parameters

Parameter Name
Soft Lithog-
raphy (µm)

CNC (mm) Description

minResolution 10 0.1
Minimum resolution of device fea-
tures. Must be first parameter in
file.

maxDeviceWidth 76800 500 Maximum width of finished device
maxDeviceLength 76800 500 Maximum length of finished device

routingSpacing 100 1
Space to reserve around components
for channel routing

portSpacing 1000 1
Minimum space between adjacent
ports and between ports and other
device features

channelSpacing 40 0.1
Minimum spacing between two par-
allel channels. Channels may be on
different layers.

valveSpacing 100 1
Minimum spacing between valves
and any other device feature.

componentSpacing 100 1
Minimum spacing between all other
components and any other device
feature.

file or the parameters file, if it is used, does not exist. The initialization file also

includes the output directory for designs. The default output directory is the current

directory the program resides in.

Table 5.1 shows the default design rule parameters for devices manufactured with

both traditional multilayer soft lithography and CNC milling. The parameters for

soft lithography were derived from experimentation using the guidelines provided in

Amin et al. (Amin et al., 2009). I define here the minimum feature resolution λ

which I use as a scaling factor to determine the number of grid squares needed in grid

routing. The default design rule parameters for CNC milled devices require further

investigation for optimal results.

Table 5.2 shows the default settings for the placement and routing algorithms used

in the workflow. Adjusting these settings will affect the likelihood of a design being

successfully placed and routed. The placement and routing parameters do not differ

based on manufacturing method as the design rule parameters do.

97

Table 5.2: Default place-and-route parameters
Parameter Name Value Description

iterations 20

Number of unsuccessful Place and
Route iterations before program ex-
its.

enableDRC true

Enables design rule checking. De-
sign rule failures return as failed
place and route.

numMovesPerTempPerComponent 250

Number of times each component is
moved at each temperature during
simulated annealing.

overlapCost 10000
Factor to bias against component
overlaps in simulated annealing.

areaCost 0
Factor to bias against devices with
large area in simulated annealing.

channelLengthCost 1

Factor to bias against devices with
long channels lengths in simulated
annealing.

bendPenalty 2
Additional cost for bends in chan-
nels in grid routing.

spacingPenalty 5
Additional cost for violating spacing
constraints in grid routing.

occupiedPenalty 10

Additional cost for using a grid
square that is used in a previous
layer.

5.2 Parsing the netlist file

The microfluidic netlist file is parsed by a parser and lexer generated from the netlist

grammar file via ANTLR3. All measurements in the netlist file are given in µm, and

are scaled by 1/λ during parsing. A Device object is generated at the end of parsing.

Every Component has its location set to the point (0, 0) unless the location of a

Component has otherwise been set in the netlist file. A log file is then generated for

the device which contains the detailed placement, routing, and design rule checking

reporting.

98

5.3 Placement

I use a modified version of the simulated annealing algorithm as presented in (Betz

and Rose, 1997) to generate a layout for the microfluidic device described by the

netlist. I refer back to the definition of a Device as a graph G(V,E) where each

vertex v ∈ V is a Component, and each edge e ∈ E is a Channel. Graphs FVf , Ef and

CVc, Ec where Vf , Vc ⊂ V and Ef , Ec ⊂ E, representing the flow and control layers

respectively, are subgraphs of G which are disconnected from each other. A Module

m is a subgraph of G, and m1 . . .mn ∈M is the set of Modules in G. Let Vm be the

set of all the Component in M , and Em be the set of all Channel in M .

I add additional edges in G such that it is connected. More specifically, for every

Valve c ∈ Vc, I find the source s and target t of the flow Channel f ∈ Ef , and add

two edges in E to connect c to s and t. This ensures that valves specified on the

control layer will be placed on the proper channel in the flow layer. Let Ncomponents

be the number of Component, including Module, v ∈ V ∧ /∈ Vm.

5.3.1 Simulated annealing

I calculate the initial temperature by making a random placement, where ∀v ∈ V ,

v.x = random(0, 1)∗maxDeviceWidth and v.y = random(0, 1)∗maxDeviceLength,

and perturbing the placement randomly a number of times, and set the initial tem-

perature to 20 times the average cost of randomized placements. I use the cooling

schedule described in (Betz and Rose, 1997) and stop the process when the temper-

ature is a fraction of the average cost of a perturbation. The pseudocode for my

simulated annealing process is shown in Figure 5·2.

I attempt to minimize the cost function

channelPenalty + overlapPenalty + areaPenalty

99

1: Calculate initial temperature: temp
2: Calculate initial cost: cost
3: rangeX = maxDeviceWidth
4: rangeY = maxDeviceLength
5: while temp > 0.005∗cost/Ncomponents ∧ temp > 2 do
6: for i = 0 to Ncomponents ∗ numMovesPerTempPerComponent do
7: select new Component c or Module m
8: if random(-1,1) > 0 then
9: c.x = c.x + random(-1, 1) * rangeX

10: else
11: c.y = c.y + random(-1, 1) * rangeX
12: end if
13: calculate new cost of placement
14: if new cost < old cost then
15: accept move
16: end if
17: if new cost > old cost then
18: if random(0,1] < e(old cost - new cost)/temp then
19: accept move
20: else
21: undo move
22: end if
23: end if
24: end for
25: rateAccept = % of moves accepted
26: if rateAccept > 0.96 then
27: temp = temp * 0.5
28: end if
29: if 0.8 < rateAccept ≤ 0.96 then
30: temp = temp * 0.9
31: end if
32: if 0.15 < rateAccept ≤ 0.8 then
33: temp = temp * 0.95
34: end if
35: if rateAccept ≤ 0.15 then
36: temp = temp * 0.8
37: end if
38: rangeX = rangeX * (1.0 - 0.44 + rateAccept)
39: rangeY = rangeY * (1.0 - 0.44 + rateAccept)
40: end while

Figure 5·2: Pseudocode for the simulated annealing algorithm. The temperature is
updated according to the cooling schedule in (Betz and Rose, 1997).

100

Table 5.3: Channel length penalty calculations
Location of se Location of te Penalty if
top bottom se.y > te.y
bottom top se.y < te.y
right left se.x > te.x
left right se.x < te.x

channelPenalty = channelLength ∗ channelCost+ numPenalty ∗ overlapCost

areaPenalty = area ∗ areaCost

overlapPenalty = overlapArea ∗ overlapCost

where channelLength is the sum of the half-perimeter length of all channels e ∈

E∧ /∈ Em, area is the total area of the device, and overlapArea is the total overlap

area of all components v ∈ V ∧ /∈ Vm. I currently ignore the area of the device

(areaCost = 0) and bias heavily against overlaps (overlapCost = 10000) such that

the length of all channels e ∈ E∧ /∈Me are minimized. In the default scenarios, I set

channelCost = 2. For the purposes of calculating the cost function, I treat all nets

as a single channel between the source and the first target.

I calculate channelLength with the following:

For channel e ∈ E∧ /∈ Em, let se be the source terminal and te be the target

terminal of channel e. Let ps = xs, ys be the coordinates of the source terminal and

pt = xt, yt be the coordinates of the target terminal.

e.length = abs(xs − xt) + abs(yx − yt)

I add a penalty to each channel where the relative positions of se and te will likely

cause routing problems. A terminal can be located on the top, bottom, left, or right

of a component. The cases where the terminals are positioned such that routing will

likely have to go around one or more components are shown in Table 5.3.

For calculating both area and overlap, I included the required spacing around each

101

component (spacing) and spacing allotted for routing (routingSpacing) as described

in Table 5.1.

For Component v1 . . . vn ∈ V ∧ /∈ Vm, n = Ncomponents:

vi.left = vi.x− vi.spacing − routingSpacing

vi.right = vi.x+ vi.width+ vi.spacing + routingSpacing

vi.top = vi.y − vi.spacing − routingSpacing

vi.bottom = vi.y + vi.length+ vi.spacing + routingSpacing

The area of the device layout is calculated by the following:

area = (max(vi.right)−min(vi.left)) ∗ (max(vi.bottom)−min(vi.top))

I consider two components va and vb to overlap if:

va.left ≤ vb.right∧

va.right ≥ vb.left∧

va.bottom ≤ vb.top∧

va.top ≥ vb.bottom

The overlap area between va and vb, should they overlap, would be:

overlapArea = overlapX ∗ overlapY

overlapX = (min(va.right, vb.right)−max(va.left, vb.left))

overlapY = (min(va.bottom, vb.bottom)−max(va.top, vb.top))

I then find in the layout all instances of overlaps and calculate the total overlap

102

area.

5.3.2 Pre-routing layout cleanup

I adjust the postions of the components after simulated annealing to align terminals

of components to ensure minimal bends in channels during routing. To straighten

channels, I adjust the source and target of each channel such that the channel is

straight if possible. To minimize bends in channels between two modules, I center

modules with each other to align the terminals. I find all channels between the two

modules and calculate the average (x, y) coordinates of the source terminals on one

module and all of the target terminals on the other module. If all the connections are

horizontal, I move the modules such that that source.ycenter = target.ycenter. If all the

connections are vertical, I move the modules such that source.xcenter = target.xcenter.

Finally I move all flow and control ports not in a bank to the edges of the device to

allow better access during manufacturing and test. Ports are moved to the nearest

edge of the device based on which direction the port is connected. For example, ports

with a connection on the top are moved to the bottom edge. For all the above cases,

no moves are made if they cause any overlaps.

5.4 Routing

After placement, I route all channels and nets with Hadlock’s algorithm (Hadlock,

1977), a grid based maze router. I based my implementation on the source code

for Grid.java and GridPoint.java found at http://workbench.lafayette.edu/

~nestorj/cadapplets/HadlockRouter/HadlockRouter.html (Nestor, 2007). The

pseudocode is shown in Figure 5·3. I set the length and width of each grid square

to be λ, and generate a routing grid the size of the layout after placement with an

additional border of extra space for routing, the size of which is given by the parameter

routingBorder. At initialization, each grid square is assigned one of four values for

103

its base cost:

• Empty and available for routing: cost = 1

• Within minimum spacing of a channel or component: cost = spacingCost;

• Occupied by a channel or component on a different layer: cost = occupiedCost;

• Blocked by a channel or component on the current layer being routed: cost = −1

When routing, I treat all grid squares with a cost of −1 as obstacles to route around. I

also introduce a bend penalty to the routing cost calculation to minimize the number

of bends in the path for a channel.

The flow layer is routed first, followed by the control layer. On each layer, I first

route all nets, followed by all channels not in nets. Currently, nets may only be

declared on the control layer.

5.4.1 Channel routing

For each channel to be routed, I find the grid location of the source and target

terminals. I then identify the grid square closest to the target terminal that is not

within the spacing requirement of the component, and designate that grid square as

an intermediate target. This lessens the chance of violating the spacing requirement

of the target component. I use Hadlock’s algorithm with the added bend penalty and

the aforementioned grid square costs to find a lowest cost path between the source

and the intermediate target, and between the intermediate target and the final target.

As each new grid square is encountered, it is updated with the cost of the path to

reach itself and which direction (up, down, left, or right) the expansion to reach it

took place. I use this information to backtrack a path from the target terminal to

the source.

104

1: Input: grid of M x N with initial obstructions marked, list of channels to be routed in
each layer

2: Output: grid with all channels routed, if possible
3: for layer in device do
4: for channel in list of channels to be routed do
5: current = channel.sourceTerm
6: target = channel.targetTerm
7: minPriorityQueue = ∅
8: currentDetourCost = 0, currentPathCost = 0
9: minPriorityQueue.add(current)

10: while current 6= target and minPriorityQueue 6= ∅ do
11: current = minPriorityQueue.pop
12: for neighbors of current do
13: detourCost = currentDetourCost + ManhattanDistance(neighbor, target)
14: if neighbor causes bend in path then
15: pathCost = currentPathCost + neighbor.baseCost + bendCost
16: else
17: pathCost = currentPathCost + neighbor.baseCost
18: end if
19: if neighbor is not expanded and neighbor.cost ≤ current.cost then
20: minPriorityQueue.add(neighbor)
21: end if
22: end for
23: end while
24: if target is found then
25: Backtrack to source via lowest cost path
26: end if
27: Clear all cell costs
28: end for
29: end for

Figure 5·3: Pseudocode for Hadlock’s routing algorithm with added bend penalty.

When routing to or from a Node I first set the grid locations of any previously

routed channels connected to the node to cost = 1. I use nodes to substitute for

nets on the flow layer, and this allows me to mimic the behavior of multiterminal net

routing.

Routing fails if the target terminal cannot be reached. In that case, the program

will clear the routing grid and the layout used to generate the grid, and begin with

a new placement. As Hadlock’s algorithm degenerates to exhaustive search in the

105

worst case scenario, a path between the source terminal and target terminal will be

found if it exists.

After a channel is successfully routed, I go through the path and reduce it to only

the points where a direction change occurs. I then modify the routing grid to include

the location of the channel. All grid squares in the path and within channelWidth/2

of the path are set to cost = −1. All grid squares between channelWidth/2 and

channelWidth/2 + channelSpacing of the path are set to cost = spacingCost.

Once all channels on a layer have been routed, I set the locations of those channels

on the routing grid to cost = occupiedCost before routing the next layer. As my

defintion of channel previously did not include changes of direction or bends within

the path of a channel, I decompose each channel with bends into a set of channels

and nodes, with the bends occurring at the nodes. I remove the orignal channel from

the device and add the new channels and nodes.

5.4.2 Net routing

For each net to be routed, I proceed as I do with channel routing between the source

terminal and the first terminal in the list of target terminals. For all other terminals,

I set the source for the expansion not as the source terminal but as the previously

routed path. All else proceeds as in channel routing, including decomposing the path

into individual channels once routing is successful.

5.5 Design rule checking

I perform two types of design rule checking after a device has been successfully routed.

If the device does not have the 3D flag, I check for all overlaps between channels on the

flow layer and channels on the control layer. For every control channel that crosses

a flow channel, I narrow the width of the control channel to 20µm where it crosses

the flow channel. This is to prevent the control channel from forming a seal across

106

the flow channel when it is not supposed to. This operation is not needed for device

with the 3D flag due to differences in valve construction between devices fabricated

with multilayer soft lithography and with CNC milling.

For all devices, I verify that all design rule parameters as specified in the initiation

file are met. Devices that violate design rule parameters are treated as having failed

routing and go through further iterations of placement and routing until all design

rule checks are successful.

5.5.1 Channel intersection checking

I use a 1-D range check algorithm (Sedgewick and Wayne, 2015; Berg et al., 2008) to

search for intersections between flow channels and control channels. The pseudocode

for this is shown in Figure 5·4. I check for intersections between horizontal flow chan-

nels and vertical control channels and between vertical flow channels and horizontal

control channels. If an intersection is found, I add to the control channel the location

of the crossing. This is taken into consideration when the control channel is being

rendered, and the control channel will be narrowed to 20µm at the intersection for the

width of the flow channel plus extra space on either side equal to channelSpacing.

I first sort all channels by the x coordinate of their leftmost end point. I define an

Event to have a time and a Channel, where time is the x coordinate of the end point

of a channel. For each horizontal channel, I add two Events to the EventQueue for

the left and right end points of the Channel. The EventQueue is implemented with

a priority queue that sorts by time in descending order from smallest to largest. For

each vertical channel, I add one Event to the EventQueue.

At the same time, I create a Binary Search Tree (BST) RangeSearch (http://

algs4.cs.princeton.edu/93intersection/RangeSearch.java.html). The BST

is sorted based on the y-coordinate EventQueue is polled until it is empty. For each

Event that maps to the left end point of a horizontal channel, I add the channel to

107

1: eventQueue = ∅
2: for channel in device do
3: if horizontal channel then
4: eventQueue.add(channel.minX, channel)
5: eventQueue.add(channel.maxX, channel)
6: else
7: eventQueue.add(channel.x, channel)
8: end if
9: end for

10: setBST = ∅
11: while eventQueue 6= ∅ do
12: event = eventQueue.getMin
13: sweep = event.x
14: segment = event.channel
15: if sweep = segment.minX then
16: setBST.add(segment)
17: end if
18: if sweep = segment.maxX then
19: setBST.remove(segment)
20: end if
21: if vertical segment then
22: line 1 from (-∞, segment.minY) to (∞, segment.minY)
23: line 2 from (-∞, segment.maxY) to (∞, segment.maxY)
24: for channel in setBST.range(line 1, line 2) do
25: intersection with segment
26: end for
27: end if
28: end while

Figure 5·4: Pseudocode for 2D intersection search algorithm.

the BST. For each Event that maps to the right end point for a horizontal channel,

I remove the channel from the BST. For each Event that maps to a vertical channel,

I search the BST for all horizontal channels with a y-coordinate that falls between

the end points of the vertical channel. I then mark all intersections and add those

intersections to the appropriate control channel.

108

1: eventQueue = ∅
2: for element in device do
3: eventQueue.add(element.minX, channel)
4: eventQueue.add(element.maxX, channel)
5: end for
6: intervalBST = ∅
7: while eventQueue 6= ∅ do
8: event = eventQueue.getMin
9: sweep = event.x

10: segment = event.element
11: if sweep = element.minX then
12: intervalBST.findAllIntersections(interval(element.minY, element.maxY))
13: for intersection found do
14: verify spacing
15: end for
16: intervalBST.add(interval(element.minY, element.maxY))
17: end if
18: if sweep = element.maxX then
19: intervalBST.remove(interval(element.minY, element.maxY))
20: end if
21: end while

Figure 5·5: Pseudocode for spacing verification interval search algorithm.

5.5.2 Space constraint checking

I ensure all design rules for spacing contraints around features (components and chan-

nels) in a device are enforced. A design rule violation manifests as an intersection

between two features. To find all intersections between features, I compare the loca-

tion of each feature, including the minimum and maximum x and y coordinates, with

every other feature to find any violations in spacing. For a device G(E, V) with E

channels and V components, an exhaustive search would take O((E+V)2). I instead

reduce the problem of finding 2-D intersections to a 1-D interval search (Sedgewick

and Wayne, 2015; Berg et al., 2008). The pseudocode for this is shown in Figure 5·5.

To accomplish this, I create an interface Element that both Component and

Channel implement. This interface accesses the minimum and maximum x and y

109

coordinates of a Component or a Channel defined as:

minX = element.x− element.spacing

maxX = element.x+ element.width+ element.spacing

minY = element.y − element.spacing

maxY = element.y + element.length+ element.spacing

I sort all elements by first by minX, then by maxX and by minY . For each

element, I create an Interval from minY to maxY . Here, I define an Event to have

an Element, an Interval, and a time. For each element f , I create two Event, one

at time f.minX and one at f.maxX. I add each event to the EventQueue, a priority

queue sorted by time in descending order.

To find potential intersections, I poll the EventQueue. If the event has a time

equal to f.minX, I add the interval to the interval search tree. The interval search

tree is a modified BST where each node stores an interval as the key. The intervals

in the tree are sorted by minY , and each node also stores the maximum minY value

of its subtrees. I based my implementation on the interval search tree code at http:

//algs4.cs.princeton.edu/93intersection/IntervalST.java.html. When an

interval is added to the interval tree, I search the tree for any overlaps with intervals

already stored in the tree, and return the list of overlaps.

For each overlap between two elements fa and fb, I check to see if the overlap

results in a design rule violation. The overlap is not a design rule violation if:

• The overlap between fa and fb is less than max(ea.spacing, eb.spacing).

• fa and fb are a component and a channel connected to that component

• fa and fb are a control channel and flow channel that overlap, and that overlap

110

Figure 5·6: The final rendered photomasks for a design made with Fluigi with three
layers, the flow layer, the ‘cell’ layer for feature heights on the flow layer, and the
control layer. Large alignment marks are on the top and bottom masks for flow and
cell layers, and small alignment marks are on all layers in the corners of each device.

has been accounted for during channel intersection checking.

• fa and fb are a valve and a flow channel that valve is associated with

I output in the log file a list of all design rule violations in the device, including the

amount of overlap in each violation. Devices with design rule violations are treated

as having failed routing, and go through further place-and-route iterations unless the

enforceDRC parameter is set to false.

5.6 Photomask generation

Once design rule checking is complete and returns with no violations, I render the

design of the device in either an EPS or SVG file. I assume that designs rendered as

EPS are used as photomasks for multilayer soft lithography, and designs rendered as

SVG are used for CNC milling.

111

5.6.1 Masks for photolithography

When rendering the design into EPS, I render the flow layer, which may have two

photomasks for different feature heights, and the control layer in the same image file.

I add a buffer zone of 1mm around each device, and then calculate the maximum

number of devices that will fit into a 4 inch wafer and tile the designs. Guidelines for

cutting are drawn between each tile. An example of a set of photomasks with three

masks for the flow layer, additional feature heights in the flow layer, and the control

layer is shown in Figure 5·6. In addition, I add alignment marks to the corners of

each tile, as shown in Figure 5·7, such that the flow layer and control layer may be

aligned during fabrication. Larger alignment marks, a closeup of which is shown in

Figure 5·8, will be added to the top and bottom of the flow layer photomasks for

mask aligning when making the flow layer mold.

The control layer uses a negative photoresist, and the mask is drawn with white

features on a black background. The flow layer uses a positive photoresist, and the

mask is drawn with black features on a white background. Additional flow layer

masks for different feature heights use negative photoresists and are drawn like the

control layer. All masks are drawn as a horizontal reflection. The text ‘THIS SIDE

UP’ is added to the top of each mask to ensure masks are loaded into the mask aligner

appropriately. All masks are drawn in the same file.

5.6.2 Designs for CNC milling

Each layer is drawn in a separate file. The control layer is reflected horizontally, but

the flow layer is not. No alignment marks are needed.

112

Figure 5·7: A closeup of the small device alignment marks. Dark blue marks are on
the flow layer. Red marks are on the control layer. Cyan marks are on the flow layer
for different feature heights. Each alignment square is 0.5mm by 0.5mm. Each device
has 4 sets of small alignment marks.

Positive Wafer Alignment Marks

Negative Wafer Alignment Marks

A B

A B

Figure 5·8: A closeup of the large alignment marks. The A marks have 4 rectangles of
3mm by 0.4mm, 8 rectangles of 0.85mm by 0.35mm, and 8 rectangles of 0.43mm by
0.25mm. The B marks have 4 rectangles of 3mm by 0.9mm, 8 rectangles of 0.43mm
by 0.18mm, and 8 rectangles of 0.21mm by 0.12mm

5.7 Adding biology

In addition to the design flow from microfluidic netlist through photomask generation,

I incorporate an additional design flow from the description of a Boolean logic function

in a hardware description language to a device that can house the biological network

that performs that function. This design flow is still incomplete as it does not interface

to the program Cello (Vaidyanathan et al., 2015) that converts the hardware design

113

language to a biological network. I assume from this point forward that the program

will receive as input a biological network that can be described as a directed acyclical

graph B(V,E) where vertices are cells that embody a particular logic function or

input and output signals, and edges are extracellular signals used by the cells to

communicate or other small signalling molecules. In addition, the work presented in

this section is only applicable to devices made from multilayer soft lithography.

I modify my existing model for microfluidic components to include additional

methods for components that can house cells or signals. I create an interface Fluid

to represent cells, media, signalling modules, or other liquids, which is implemented

by two classes, Gate and Signal. The class Gate represents one colony of cells

that perform a specific logic function. A Gate has a name, a two-input logic function

represented as a string (AND, OR, NOR, NAND, NOT), and a cell type, as it may be possible

to have multiple colonies from one type of cell or multiple cell types implementing the

same logic function. At the moment, I represent cell types, media, waste, and small

signalling molecules with Signal. I also create an interface Chamber, implemented

by Port, CellTrapL, and CellTrapS, which associates a Fluid with a microfluidic

component designed to house it.

If the biological network contains four gates or fewer, I use a device centered

around the logic array (Chapter 4.3.4) to house the network. Otherwise, I refer to

the design paradigm introduced in Chapter 3.3.2 to generate a microfluidic device to

house the biological function. In both cases, I assign an input port to every different

cell type, and input signal, and a cell trap to every Gate. I also assign media and

waste ports to each Gate. Let g be a Gate with a function f , a cell type of cell, input

signals a and b, output signal c. I will refer to the cell trap housing g as ctgate. Port

pcell contains the cell type, and ports pa and pb contain the input signals. Port pmedia

and pwaste provide media and remove waste from ctgate respectively.

114

Table 5.4: Control pattern operations
Operation Path
Load cells pcell to ctgate to pwaste

Load input input to ctgate to pwaste

Grow cells pmedia to ctgate to pwaste

Flush output pmedia to ctgate to output

5.7.1 Generating controls

I determine the number of ports on the control layer, and the number of valves

connected to each port. I assume that all valves are by default closed (pressure being

applied), blocking flow. For every Gate in the function to be implemented, I find the

following paths in the device :

• pcell to ctgate

• pmedia to ctgate

• ctgate to pwaste

In conjunction with graph B(V,E), I also find paths from chambers housing in-

puts of g to ctgate and from ctgate to chambers housing outputs of g. Pathfinding is

accomplished with Djikstra’s shortest path, and returns the list of channels forming

the shortest path. For the logic array, I have modified the weights of some channels

to prevent paths from passing through additional cell traps.

I define the following operations and paths for each gate:

For each channel in a path, I determine if a valve exists to control the channel.

I open all valves in a path when each operation is performed. The timing of the

opening and closing of the valves depends on the specifics of each cell type.

To initialize the experiment, I open all the valves in the device and fill the device

with a buffer solution. I then close all the valves. Next, I load cells in each cell trap,

and grow them. For each pipelined stage of the logic function, I apply inputs to the

115

gates in that stage, grow the cells until the logic is processed, and flush the output

to the next stage in the computation.

I generate Java files to interface to the existing control software BioStream, which

was developed to design GUIs and control valves for multilayer devices (Thies et al.,

2008; Amin et al., 2009; Urbanski et al., 2006) (freely available at (Thies et al.,

2009)). These files map each control line to one of the 48 physical ports on the

control apparatus and define the mechanisms for opening and closing a port and for

closing or opening all the ports on the chip.

Chapter 6

Results

In this chapter, I show a selection of designs generated by my software and discuss

the runtime and efficiency of the workflow I presented in Chapter 5. I also show two

examples of the end-to-end workflow, one resulting in a CNC machined device, and

one resulting in a multilayer soft lithography device.

6.1 Example designs

I use the netlist format described in Chapter 4 and the software workflow to generate

a selection of microfluidic device designs. Each feature described in the netlist is

shown in at least one of these devices. The full netlists for these devices are shown

in Appendix B. In figures of the device designs, all the layers are overlaid, with blue

representing the channels and ports on the flow layer, cyan representing features of

a different height on the flow layer, and red representing the features on the control

layer.

6.1.1 Designs for multilayer soft lithography

Table 6.1 shows the device sizes and runtimes of the 11 devices, from least complex to

most complex, for use with traditional fabrication methods. The devices themselves

are shown in Figures 6·1 - 6·4. For these devices, I used the default initialization

and place-and-route parameters as shown in Tables 5.1 and 5.2. In particular, the

minimum resolution λ was set to 10 µm, and the number of moves per component

116

117

Table 6.1: Examples of devices for multilayer soft lithography
Name Number

of Compo-
nents

Number
of Chan-
nels

Nets Total
Ele-
ments

Runtime
(hr:min:sec)

Device
Width
(cm)

Device
Length
(cm)

A (Figure
6·1)

4 3 0 7 0:00:05 0.99 1.2

B (Figure
6·1)

9 6 0 15 0:00:07 1.27 1.13

C (Figure
6·1)

9 8 0 17 0:00:10 1.77 1.91

D (Figure
6·1)

9 17 0 26 0:00:37 4.24 1.31

E (Figure
6·2)

16 16 0 32 0:00:25 2.79 1.52

F (Figure
6·2)

10 23 0 33 0:00:22 2.69 1.06

G (Figure
6·2)

13 28 0 41 0:00:56 3.64 1.63

H (Figure
6·3)

9 41 0 50 0:01:34 3.58 2.18

I (Figure 6·3) 11 55 0 66 0:02:41 3.36 2.93
J (Figure
6·4)

61 67 2 130 0:02:47 2.3 2.76

K (Figure
6·4)

183 194 8 385 0:12:49 2.02 3.5

per temperature was set at 500.

I characterize the complexity of these devices based on the total number of fea-

tures, including the number of components, the number of channels, and the number

of nets. Modules (as described in Chapter 4.3.4), are treated as a single component.

The number of elements ranges from 7 to 385, and the runtimes range from 5 seconds

to 12:49. The runtime appears to be O(n2) where n is the total number of features

on a device. Runtime is affected by the physical size of devices as well as the number

of elements, as channels on larger devices take longer to route.

Devices A, B, C and D from Table 6.1 are shown in Figure 6·1. These are the least

complex devices I made using my tool. Device A contains a flow focusing droplet gen-

erator that connects to a section of channel with a reduced channel width. However,

I was not able to specify the exact length of channel with my current netlist format.

Device B has a cell trap with two inputs, each controlled with a valve, and device C

118

A B

D

C

Figure 6·1: Device A is an example of a flow focusing device. Device B is a simple
device that allows switching of two inputs into a cell trap. Device C has a cell trap that
switches between two t-shaped droplet generators. Device D has a gradient generator
whose output can be directed to any of four cell traps. The statistics and runtimes
for these devices are shown in Table 6.1.

has a cell trap that can switch between two droplet generators as inputs. Device D

has a gradient generator connected to a bank of 4 cell traps. It has a longer runtime

than device E (shown in Figure 6·2) despite being less complex because the range

of component sizes (from 100µm by 100 µm to 2cm by 0.6 cm, spanning 2 orders

of magnitude) in device D is suboptimal for the collision detection hash table used

during placement.

Device E has one central square cell trap with a choice of 4 inputs, 2 of which come

from mixers. Device F is based on the microfluidic device used to test oscillations in

gene expression of E. coli (Prindle et al., 2012) and has a large bank of closely placed

cell traps. Control of fluid flow is achieved through pressure differentials instead of

valving. Device G has a rotary pump with up to 4 different inputs which can be

connected to any of four cell traps.

Device H is based on the logic array module and has 8 inputs, each of which can

119

E
F

G

Figure 6·2: Device E has one large cell trap with a choice of four different inputs.
Device F is a modified version of the cell grids from the Hasty lab (Prindle et al.,
2012). Device G has a rotary with four potential inputs whose output can be directed
to any of four cell traps. The statistics and runtimes for these devices are shown in
Table 6.1.

be directed to any of the chambers, and device J has a rotary pump that can switch

between any of 16 inputs and 16 outputs. Both these devices depend heavily on

the use of modules, which is why they have comparatively fewer components than

channels. I use device H as a potential microfluidic device for replicating the NOR gate

experiment conducted by the Voigt lab (Tamsir et al., 2011).

Devices J and K both have large numbers of cell traps and inputs to allow for

multiple experiments on the same device. In device J, each cell trap can be exposed to

three different inputs to produce various outputs while in device K, each column of cell

traps can be isolated from the rest with valving. These are the two most complicated

devices presented in this section, with 130 and 385 components respectively.

120

H
I

Figure 6·3: Device H is based on the logic array module with 8 inputs. Device I is
a rotary pump with 16 inputs and 16 outputs. The statistics and runtimes for these
devices are shown in Table 6.1.

J
K

Figure 6·4: Device J has 8 cell traps, with the selection of 3 different inputs for each
cell trap. Inputs may be applied simultaneously or individually. Device K has a grid
of 64 cell traps and 8 possible inputs. The statistics and runtimes for these devices
are shown in Table 6.1.

121

Table 6.2: Examples of devices for CNC machining
Name Number of

Components
Number of
Channels

Total
Elements

Runtime
(hr:min:sec)

Device
Width
(cm)

Device
Length
(cm)

transposer-
web

5 6 11 0:00:20 14.82 7.8

txtl 7 6 13 0:00:06 2.97 4.24
transposer-
mixer

7 10 17 0:00:12 10.31 4.42

mixer-3d 9 11 20 0:00:14 5.12 14.61

6.1.2 Designs for CNC machining

I also generated 4 designs for use with CNC milling instead of photolithography. As

with the previous devices, I used the default parameters for initialization and place-

and-route. For these devices, I set the minimum resolution to 100 µm instead of 10 as

the CNC mill cannot provide the same level of feature resolution as photolithography.

The statistics and runtimes for these devices are shown in Table 6.2, and the device

designs are shown in Figure 6·5. As the resolution is larger, I can generate much

bigger devices without sacrificing runtime.

The first of the devices (txtl) is a mixer connected two ports, each controlled

by a valve. This was a theoretical device used to test the ability to mix cell free

transcription/translation solution. Devices transposer web and transposer mixer

show some of the potential configuration for connecting transposers with other com-

ponents. Finally, the device mixer 3d consists of a gradient generator connected to

three inputs, where each input is controlled by a valve. This device was used as a

test case for the CNC mill fabrication workflow.

6.2 Algorithm runtimes

To test the efficiency and runtimes of the software, I wrote a Python script to generate

netlists of square cell traps and valves connected in a grid pattern. Examples of these

grid devices (4x4, 8x8, and 15x15 grids of cell traps) are shown in Figure 6·6. I

122

A: txtl B: transposer_mix

C: transposer_web
D: mixer_3d

Figure 6·5: Device A shows a device used to mix cell-free transcription/translation
solution. Device B shows a transposer connected to two mixers. Device C shows a
connected web of 5 transposers that would allow switching between 4 different input
flows. Device D shows a gradient generator with three selectable inputs. The statistics
and runtimes for these devices is shown in Table 6.2.

generated netlists for 13 test devices, from a 4x4 grid to a 16x16 grid, and ran my

software on those netlists. The results and runtimes are shown in Table 6.3. I used

the default initialization and place-and-route paratemters with one exception. The

number of moves per component per temperature step was set to 250 instead of 500.

The number of components ranges from 96 in the 4x4 grid to 1510 in the 16x16

grid. The runtimes range from forty-nine seconds to two hours twenty-five minutes

and twelve seconds. Closer examination of runtimes show it to be between O(n2) and

O(n3) where n is the number of features in the device. As the number of components

123

Grid 4x4

Grid 8x8

Grid 15x15

Figure 6·6: Three examples of the grid device (4x4, 8x8, and 15x15) used to test
runtimes. The 4x4 grid device contains 96 elements and had a runtime of 49 seconds.
The 8x8 grid device contains 376 elements and had a runtime of 7 minutes 16 seconds.
Finally, the 15x15 grid device contains 1326 elements and had a runtime of 1 hour 30
minutes and 35 seconds.

in the device increased, I also needed to increase the number of moves per component

at each temperature step during simulated annealing to achieve a good placement for

routing, which contributes to the increase in runtime. The most computationally in-

tensive portions of the workflow reside in the place-and-route algorithms. Refinement

of the placement algorithm to allow swapping component locations and rotation of

components as well as using more sophisticated non-grid based routing algorithms

may decrease runtime.

6.3 Demonstration of workflow

I next demonstrate the ability to fabricate devices from the designs generated by

Fluigi. I ran Fluigi on the netlist for device mixer-3d to produce svg files for both

124

Table 6.3: Algorithm runtimes for devices
Name Number

of Com-
ponents

Number
of Chan-
nels

Nets Total
Ele-
ments

Moves Runtime
(hr:min:sec)

Device
Width
(cm)

Device
Length
(cm)

4x4 Grid 46 46 4 96 250 0:00:49 1.49 2.09
5x5 Grid 71 72 5 148 250 0:01:50 1.59 2.62
6x6 Grid 102 104 6 212 250 0:03:13 1.73 2.79
7x7 Grid 139 142 7 288 250 0:04:48 1.87 2.93
8x8 Grid 182 186 8 376 250 0:07:16 1.98 3.11
9x9 Grid 231 236 9 476 250 0:10:54 2.12 3.39
10x10
Grid

286 292 10 588 250 0:16:31 2.23 3.53

11x11
Grid

345 354 11 710 250 0:20:14 2.37 3.71

12x12
Grid

412 422 12 846 250 0:29:50 2.51 3.71

13x13
Grid

485 496 13 984 300 0:43:36 2.62 4.03

14x14
Grid

564 576 14 1154 400 1:04:53 2.72 4.20

15x15
Grid

649 662 15 1326 500 1:30:35 2.86 4.31

16x16
Grid

740 754 16 1510 750 2:25:21 3.00 4.45

the flow layer and the control layer. These files were processed by the program

otherplan to produce gcode to control the CNC mill (othermill ver 2). Additional

information needed that was not provided by Fluigi included the depth of the features

on each layer and the placement of the acrylic stock on the spoilboard of the mill.

Due to an error in calibration, the gaps in the valves were too small to be machined

properly and were left out of the final device. Red and blue dye were injected into

the device to show that it could mix the liquids. The device design and the final

fabricated device are shown in Figure 6·7.

6.4 Replication of XOR experiment

Finally, I went through the process of fabricating and testing a device design by Fluigi

using multilayer soft lithography. I chose design H (shown in Figure 6·4) as I wanted

to test the feasibility of conducting the Voigt NOR gate experiment in a microfluidic

device. Testing of the device functionality was conducted with colored dye.

125

Figure 6·7: 3 input mixer manufactured through CNC milling from a Fluigi generated
design. The top image shows the design as generated though Fluigi, and the bottom
shows the completed device with red and blue dye mixing in it.

6.4.1 Fabrication process

I sent out the photomask template in eps format as generated by Fluigi for device

H to CADArt Services to be printed on a 8”x10” transparency. The print resolution

was 20000dpi, for a minimum feature resolution of 10 µm. Polarity and orientation

of the photomask was unchanged from the template file, shown in Figure 6·8.

The full procedure for the photolithography process is explained in Appendix C.

The mold for the control layer was made by spinning SU-8 10 at 1000RPM for 60sec,

and exposing the photoresist with hard contact for 8 seconds before being developed.

The mold for the flow layer was made in two parts, with a different photoresist for

each feature height. The height of the cell traps was 3 µm, and the height for the

flow channels was 10 µm. For the cell traps, I spun SU-8 2 at 1800RPM for 60sec to

126

Figure 6·8: Photomask for device H used in fabrication. The polarity and orientation
of the photomask is identical to the template generated by Fluigi. Six devices can fit
onto one 4” wafer. Small alignment marks are in the corner of every device on each
mask. The masks for the flow layer and the cell traps show large alignment marks at
the top and bottom as they must be aligned on the same wafer.

achieve a 3µm layer height. The photoresist was exposed for 8 seconds under hard

contact and developed for one minute. Then a second photoresist A24629 was spun

over the same wafer at 3400RPM for 60sec. The flow channel mask was aligned with

the existing pattern on the wafer and exposed for 20 seconds under hard contact. I

casted the devices with PDMS, the full procedure being shown in Appendix D, and

bonded the completed devices to glass cover slips. The completed device is shown in

Figure 6·9.

6.4.2 Device controls

I also used this device to test the ability of Fluigi to generate control patterns given a

simple logic function comprised of 4 gates. As the interface to Cello is incomplete, I

hard coded a test case of 4 connected biological NOR gates (labeled nor1, nor2, nor3,

and nor4 with the small signalling molecules aTc and ara as inputs based on the

biological XOR gate presented by the Voigt lab (Tamsir et al., 2011). A diagram of

127

Figure 6·9: Completed 2 layer PDMS device made from the photomask in Figure 6·8.
The device has 29 control ports and 12 flow ports.

this function and the breakdown of each logic stage is shown in Figure 6·10A. I used

Fluigi to then generate both a microfluidic design that would house the biological

circuit and the valve controls needed for circuit functionality. This design, shown in

Figure 6·10B, differs slightly from the device H in that it has 7 input ports (4 cell

inputs, 2 small signal inputs, and 1 media input) where device H has 8. The small

difference in port numbers will not affect the ability to use these control patterns with

device H as the extra port will never be accessed by the generated patterns.

The logic function was divided into three stages, as shown in Figure 6·10A. For

each stage, Fluigi generated the control patterns for the following actions: applying

inputs to the gate(s) either from the input ports or from the previous stage and

growing up cells for the current stage. The device is initiated by loading cells into

each of the four chambers from the input ports. These controls are output as a set of

4 Java files and a png image of the device for use with the Biostream GUI and valve

controller.

6.4.3 Device testing

I tested the operation of the device with colored dye. I consider the device to be

successfully working if liquid can be directed from every chamber to every other

128

Ara

aTc

nor2

nor3

nor1 nor4

1 2 3

A B

Figure 6·10: The left image shows the biological function used to generate a microflu-
idic device, and the right image shows the resulting device design. The biological
function is divided into three stages of operation, with red lines representing actions
in stage 1, green lines in stage 2, and purple lines in stage 3.

chamber. Due to limitations in the experimental setup, I could only actuate 16

valves at a time. As such, I tested the chambers in pairs. For each pair of chambers, I

show that fluid can flow to each chamber individually and that fluid can flow between

the chambers. I label the chambers and valves as shown in Figure 6·11. The valve

patterns for each action is shown in Table 6.4. An “x” represents a closed valve, an

“o” represents an open valve, and a “-” represents a valve that can be either state.

I loaded chamber 1 with red dye, chamber 2 with yellow dye, chamber 3 with green

dye and chamber 4 with blue dye, and ran the valve patterns listed for each path.

The results from the test runs are shown in Figure 6·12.

For each path, I first ran dye from the input to the first chamber to the waste

port of that chamber. Dye was introduced into the device with a hand-held syringe.

I then adjusted the valves such that the flow of the dye was redirected from the first

chamber to the second chamber. The valves were controlled through the use of the

BUTest Biostream GUI provided by the Khalil lab. The first image of each pair in

Figure 6·12 shows the dye flowing to the waste port, and the second image shows the

129

c1 c2

c3 c4

v1

v2

v3 v4

v5

v6

v7
v8

v9

v10 v11

v12

v13 v14
v15

v16

v17

v18 v19
v20

v21

Figure 6·11: The valves and chambers in the test device are numbered as shown.
These numbers are referred to in Table 6.4 when determining flow paths between
chambers.

Table 6.4: Valve states for fluid paths between chambers
Path v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
c1 to c2 x o o o x o x x x x -
c1 to c3 - - - x x o - - o x -
c1 to c4 - - - x x o x x o x o
c2 to c1 o x o o o x x x x x -
c2 to c3 o x o x - - x o - x x
c2 to c4 o x x - - - o - - x x
c3 to c1 - - - x o x - - o x -
c3 to c2 x o o x - - x o - x x
c3 to c4 - - - - - - - - - x -
c4 to c1 - - - x o x x x o x o
c4 to c2 x o x - - - o - - x x
c4 to c3 - - - - - - - - - x -
Path v12 v13 v14 v15 v16 v17 v18 v19 v20 v21
c1 to c2 - - - - - - - - - -
c1 to c3 x - - o - - - x o x
c1 to c4 o o x x x o x - - -
c2 to c1 - - - - - - - - - -
c2 to c3 x - o x - - x o o x
c2 to c4 - o - - x o x - - -
c3 to c1 x - - o - - - x x o
c3 to c2 x - o x - - x o x o
c3 to c4 - x x x x o o o x o
c4 to c1 o o x x o x x - - -
c4 to c2 - o - - o x x - - -
c4 to c3 - x x x o x o o o x

130

Chamber 1

Chamber 2

Chamber 1 to 2 Chamber 1 to 3 Chamber 1 to 4

Chamber 2 to 1 Chamber 2 to 3 Chamber 2 to 4

Chamber 3

Chamber 2 to 1 Chamber 2 to 3 Chamber 2 to 4

Chamber 4

Chamber 4 to 1 Chamber 4 to 2 Chamber 4 to 3

Figure 6·12: Each chamber was loaded with colored dye, and the valves for each flow
path were activated. The device was cleared with DI water between runs. The first
image in each pair shows the default flow from the input to the chamber to the waste
port. The second image shows the flow being directed to a different part of the device.

dye flowing to the second chamber. I flushed the device with water between runs to

clear out the dye.

I have shown that I can successfully route fluids between chambers with this

device. However, the design must be updated to work reliably with cells or with cell-

free tx-tl mix. While fluid can be directed between chambers, the chamber design

should be updated to allow the input to mix with the fluid or cells already in the

chamber. In addition, the channels to each of the chambers should be balanced for

131

length, which is not currently the case. For ease of use and to limit potential cracking

of the PDMS, the distances between the control ports should be expanded to 2mm.

Chapter 7

Conclusion and future works

The goal of synthetic biology is to use naturally existing logical constructs in biology

(such as repressible and inducible genes) for novel applications in biosensing, thera-

peutics, and biomaterials. Microfluidics provides reduction in reagent use, increase in

high-throughput and automation, and precise control over the spatial and temporal

environment necessary increase the scale and robustness of synthetic biology. The

integration of microfluidics and synthetic biology has the capability to increase the

scale of engineered biological systems for applications in cell-based therapeutics and

biosensors, expand on the idea of distributed biological computation, and produce

new rapid prototyping platforms for the characterization of genetic devices.

Adoption of microfluidics as an experimental platform in synthetic biology labs

has been hindered by the difficulty in designing and fabricating a microfluidic device.

Many labs lack both the background in fluid dynamics and the capital equipment

needed to fabricate and test microfluidic devices. Design automation tools for mi-

crofluidics could reduce the time needed to design and layout devices, and hasten the

adoption process.

I have presented here an end-to-end CAD workflow, Fluigi, for designing mi-

crofluidic devices. My tool takes as input a microfluidic netlist, and from that netlist,

arranges the microfluidic components and connects them in such a way to comply

with existing design rules. I used simulated annealing for the placement algorithm

and Hadlock’s variation on maze routing for the routing algorithm. In addition, I

132

133

perform design rule checking on the generated design. My workflow also extends to

generating a microfluidic device given a biological function. However, this secondary

flow has not been fully integrated into the toolchain. From my workflow, I have

fabricated and tested two devices, one made from CNC milling and one made by

traditional multilayer soft lithography.

My long-term goal is to develop Fluigi into a fully integrated hardware-software

platform for designing and operating microfluidic devices. I show in Figure 7·1 the

main blocks of that workflow. Fluigi will incorporate electronic sensors and heaters

as part of the device design process, and integrate those controls with the valve

controller. There will be real-time feedback from the sensors to the valve controller

to close the loop on experimental control and allow dynamic reconfiguration of the

microfluidic device. Fluigi will provide the CAD workflow of place-and-route and

design rule checking that I have previously described and provide a GUI for users who

prefer graphical to textual inputs. Ideally, the inputs will be expanded to include a

language for describing experiments, and from that description, Fluigi will synthesize

a microfluidic device and the controls to operate the device. To reach that goal,

the following improvements should be made to the existing architecture and software

workflow.

The current netlist input format and underlying device description should be

updated to expand the flexibility of Fluigi. The main flaw in the current netlist format

is the inability to define exact spacing between components, including specifying

channel lengths as well as widths. One potential solution is to generate rules about

the positions of components and their relationships, and evaluate those rules on the

device as part of the place-and-route flow. In addition, the netlist grammar should

be expanded to include defining modules in the netlist instead of relying on pre-built

and pre-defined structures. The netlist should also be expanded to take into account

134

Microfluidic	 Synthesis	 Electronic	 Hardware	

GUI	

Microfluidic	
Layout	

constraints	

Electronic	
Sensors	

constraints	 Biological	 Gate	
Network	

Valve	 Controls	

Physical	 	
Constraints	

Sensor	 	
interface	

uF	 layout	

2D	 photomask	 CNC	 milling	

Test	 Device	

Valve	 Controller	
+	 Sensors	 Run	 Experiment	

Electronic	
Controls	

Verilog/	
HDL	

Cello	

Figure 7·1: The longterm workflow of Fluigi, which includes hardware control and
chip interfaces, microfluidic CAD, and rendering and fabricating of molds for mi-
crofluidic devices. Highlighted in blue are sections that have been completed, which
includes synthesis of a microfluidic layout from design constraints and an input netlist
through device fabrication. Future work will integrate a GUI for module design, lay-
out constraints for electronic sensors, and accept biological gate networks as inputs.

more fabrication technologies, and with that, allow the definition of diagonal channels

and more primitives such as generic round and rectangular chambers. Ultimately, I

would like to describe experiments, and infer device architecture from the description.

More sophisticated algorithms are necessary for Fluigi to handle larger and more

complex device structures. A partition and floorplanning step should be introduced

prior to placement. The placement algorithms should be updated to include swaps

135

between components and rotation of components to achieve better layouts. Previously

rejected layouts should be remembered and tracked to find better final placements. I

may also wish to investigate alternative placement algorithms such as force directed

placement.

The routing algorithm needs to be able to incorporate the ability to route diagonal

channels. To ensure equal flow rates into the device, flow channel length balancing

should be introduced as part of design rule checking. Finally, compaction algorithms

should be implemented to reduce the amount of white space in device designs while

retaining some amount of buffer necessary to accomodate human error in the fabri-

cation process.

My results show that an end-to-end workflow for microfluidic design for synthetic

biology is possible. The integration of microfluidics and synthetic biology has the ca-

pability to increase the scale of engineered biological systems for applications in DNA

assembly, biosensors, and screening assays for novel orthogonal genetic parts. Fluigi

and the functions it provides represent an important step towards this integration.

Appendix A

Java libraries

Table A.1: Additional Java libraries
Library Description Location
jgrapht graph library http://jgrapht.org/
antlr-3.5.2 ANTLR parser/lexer http://www.antlr3.org/
epsgraphics-1.4 output eps formal http://www.abeel.be/wiki/

EPSGraphics
jfreesvg-3.0 output svg format http://www.jfree.org/

jfreesvg/
algs4 utilities for design rule checking http://algs4.cs.princeton.

edu/code/

136

Appendix B

Device Netlists

B.1 Device A

DEVICE flow_focus

LAYER FLOW

V DROPLET GENERATOR FLOW FOCUS ff radius=100 oilChannelWidth=100

waterChannelWidth=40 angle=30 length=500;

PORT p r=100;

NODE n1;

NODE n2;

CHANNEL c1 from ff 1 to n1 1 w=100;

CHANNEL c2 from n1 3 to n2 1 w=20;

CHANNEL c3 from n2 3 to p 1 w=100;

END LAYER

B.2 Device B

DEVICE simple

LAYER FLOW

PORT p1, p2, p3 r=100;

NODE n1;

H LONG CELL TRAP ct1 numChambers=10 chamberWidth=100 chamberLength=100

chamberSpacing=50 channelWidth=100 ;

CHANNEL c1 from p1 3 to n1 1 w=100;

137

138

CHANNEL c2 from p2 1 to n1 3 w=100;

CHANNEL c3 from n1 2 to ct1 1 w=100;

CHANNEL c4 from ct1 2 to p3 4 w=100;

END LAYER

LAYER CONTROL

PORT cp1, cp2 r=100;

VALVE v1 on c1 w=300 l=100;

VALVE v2 on c2 w=300 l=100;

CHANNEL c5 from cp1 2 to v1 4 w=50;

CHANNEL c6 from cp2 2 to v2 4 w=50;

END LAYER

B.3 Device C

DEVICE tdroplet

LAYER FLOW

H DROPLET GENERATOR T t1 radius=100 oilChannelWidth=100 waterChannelWidth

=20;

H MIXER x1 numBends=5 bendSpacing=50 bendLength=1000 channelWidth=100;

H DROPLET GENERATOR T t2 radius=100 oilChannelWidth=100 waterChannelWidth

=20;

H MIXER x2 numBends=5 bendSpacing=50 bendLength=1000 channelWidth=100;

V MUX m1 2 to 1 spacing=4000 flowChannelWidth=100 controlChannelWidth=50;

H LONG CELL TRAP ct1 numChambers=10 chamberWidth=100 chamberLength=100

chamberSpacing=50 channelWidth=100 ;

PORT p1 r=100;

CHANNEL c1 from t1 1 to x1 1 w=100;

CHANNEL c2 from x1 2 to m1 1 w=100;

CHANNEL c3 from t2 1 to x2 1 w=100;

CHANNEL c4 from x2 2 to m1 2 w=100;

CHANNEL c5 from m1 3 to ct1 1 w=100;

CHANNEL c6 from ct1 2 to p1 4 w=100;

139

END LAYER

LAYER CONTROL

PORT cp1, cp2 r=100;

CHANNEL cc1 from cp1 3 to m1 4 w=100;

CHANNEL cc2 from cp2 1 to m1 5 w=100;

END LAYER

B.4 Device D

DEVICE grad_cells

LAYER FLOW

V BANK pb1 of 2 PORT r=100 dir=RIGHT spacing=1200 channelWidth=100;

PORT p1 r=100;

NODE n1;

H GRADIENT GENERATOR g 1 to 4 numBends=10 bendSpacing=100 bendLength=500

channelWidth=100;

V MUX m1 1 to 4 spacing=500 flowChannelWidth=100 controlChannelWidth=50;

V TREE t1 4 to 1 spacing=500 flowChannelWidth=100;

V BANK ctb of 4 CELL TRAP numChambers=20 chamberWidth=100 chamberLength=100

chamberSpacing=30 spacing=500 channelWidth=100;

CHANNEL c1 from pb1 1 to n1 1 w=100;

CHANNEL c2 from pb1 2 to n1 3 w=100;

CHANNEL c3 from n1 2 to g 1 w=100;

CHANNEL c4 from g 2 to m1 1 w=100;

CHANNEL c5 from m1 2 to ctb 1 w=100;

CHANNEL c6 from m1 3 to ctb 2 w=100;

CHANNEL c7 from m1 4 to ctb 3 w=100;

CHANNEL c8 from m1 5 to ctb 4 w=100;

CHANNEL c9 from ctb 5 to t1 1 w=100;

CHANNEL c10 from ctb 6 to t1 2 w=100;

CHANNEL c11 from ctb 7 to t1 3 w=100;

CHANNEL c12 from ctb 8 to t1 4 w=100;

CHANNEL c13 from t1 5 to p1 4 w=100;

140

END LAYER

LAYER CONTROL

H BANK cpb1 of 2 PORT r=100 dir=DOWN spacing=1200 channelWidth=50;

H BANK cpb2 of 2 PORT r=100 dir=UP spacing=1200 channelWidth=50;

CHANNEL cc1 from cpb1 1 to m1 7 w=50;

CHANNEL cc2 from cpb1 2 to m1 9 w=50;

CHANNEL cc3 from cpb2 1 to m1 6 w=50;

CHANNEL cc4 from cpb2 2 to m1 8 w=50;

END LAYER

B.5 Device E

DEVICE multi_input

LAYER FLOW

H BANK pb1 of 2 PORT r=100 dir=DOWN spacing=1200 channelWidth=100;

V BANK pb2 of 2 PORT r=100 dir=RIGHT spacing=1200 channelWidth=100;

V BANK pb3 of 2 PORT r=100 dir=LEFT spacing=1200 channelWidth=100;

H MUX m1 2 to 1 spacing=1200 flowChannelWidth=100 controlChannelWidth=50;

V TREE t1 2 to 1 spacing=1200 flowChannelWidth=100;

V TREE t2 1 to 2 spacing=1200 flowChannelWidth=100;

H MIXER x1 numBends=10 bendSpacing=100 bendLength=1000 channelWidth=100;

H MIXER x2 numBends=10 bendSpacing=100 bendLength=1000 channelWidth=100;

PORT p1 r=100;

SQUARE CELL TRAP ct1 chamberWidth=500 chamberLength=500 channelWidth=100;

CHANNEL c1 from pb1 1 to m1 1 w=100;

CHANNEL c2 from pb1 2 to m1 2 w=100;

CHANNEL c3 from m1 3 to ct1 1 w=100;

CHANNEL c4 from pb2 1 to t1 1 w=100;

CHANNEL c5 from pb2 2 to t1 2 w=100;

CHANNEL c6 from t1 3 to x1 1 w=100;

CHANNEL c7 from x1 2 to ct1 4 w=100;

CHANNEL c8 from pb3 1 to t2 2 w=100;

CHANNEL c9 from pb3 2 to t2 3 w=100;

141

CHANNEL c10 from t2 1 to x2 2 w=100;

CHANNEL c11 from x2 1 to ct1 2 w=100;

CHANNEL c12 from ct1 3 to p1 1 w=100;

END LAYER

LAYER CONTROL

PORT cp1, cp2, cp3, cp4 r=100;

CHANNEL cc1 from cp1 3 to m1 4 w=50;

CHANNEL cc2 from cp2 3 to m1 5 w=50;

VALVE v1 on c7 w=150 l=300;

VALVE v2 on c11 w=150 l=300;

CHANNEL cc3 from cp3 2 to v1 3 w=50;

CHANNEL cc4 from cp4 4 to v2 3 w=50;

END LAYER

B.6 Device F

DEVICE hasty

LAYER FLOW

PORT p1, p2, p3, p4, p5 r=100;

NODE n1, n2;

V TREE t1 1 to 8 spacing=500 flowChannelWidth=100;

V TREE t2 8 to 1 spacing=500 flowChannelWidth=100;

V BANK b1 of 8 CELL TRAP numChambers=100 chamberWidth=100 chamberLength=100

chamberSpacing=30 spacing=500 channelWidth=100;

CHANNEL c1 from p1 3 to n1 1 w=100;

CHANNEL c2 from p2 2 to n1 4 w=100;

CHANNEL c3 from p3 1 to n1 3 w=100;

CHANNEL c4 from n1 2 to t1 1 w=100;

CHANNEL c5 from t1 2 to b1 1 w=100;

CHANNEL c6 from t1 3 to b1 2 w=100;

142

CHANNEL c7 from t1 4 to b1 3 w=100;

CHANNEL c8 from t1 5 to b1 4 w=100;

CHANNEL c9 from t1 6 to b1 5 w=100;

CHANNEL c10 from t1 7 to b1 6 w=100;

CHANNEL c11 from t1 8 to b1 7 w=100;

CHANNEL c12 from t1 9 to b1 8 w=100;

CHANNEL c13 from t2 1 to b1 9 w=100;

CHANNEL c14 from t2 2 to b1 10 w=100;

CHANNEL c15 from t2 3 to b1 11 w=100;

CHANNEL c16 from t2 4 to b1 12 w=100;

CHANNEL c17 from t2 5 to b1 13 w=100;

CHANNEL c18 from t2 6 to b1 14 w=100;

CHANNEL c19 from t2 7 to b1 15 w=100;

CHANNEL c20 from t2 8 to b1 16 w=100;

CHANNEL c21 from t2 9 to n2 4 w=100;

CHANNEL c22 from n2 1 to p4 3 w=100;

CHANNEL c23 from n2 3 to p5 1 w=100;

END LAYER

B.7 Device G

DEVICE rotary_cells

LAYER FLOW

V MUX m1 4 to 1 spacing=1200 flowChannelWidth=100 controlChannelWidth=50;

V MUX m2 1 to 4 spacing=500 flowChannelWidth=100 controlChannelWidth=50;

V BANK pb1 of 4 PORT r=100 dir=RIGHT spacing=1200 channelWidth=100;

H ROTARY PUMP rp radius=1000 flowChannelWidth=100 controlChannelWidth=50;

V BANK b1 of 4 CELL TRAP numChambers=100 chamberWidth=100 chamberLength=100

chamberSpacing=30 spacing=500 channelWidth=100;

V TREE t1 4 to 1 spacing=500 flowChannelWidth=100;

PORT p1 r=100;

CHANNEL c1 from pb1 1 to m1 1 w=100;

CHANNEL c2 from pb1 2 to m1 2 w=100;

CHANNEL c3 from pb1 3 to m1 3 w=100;

143

CHANNEL c4 from pb1 4 to m1 4 w=100;

CHANNEL c5 from m1 5 to rp 1 w=100;

CHANNEL c6 from rp 2 to m2 1 w=100;

CHANNEL c7 from m2 2 to b1 1 w=100;

CHANNEL c8 from m2 3 to b1 2 w=100;

CHANNEL c9 from m2 4 to b1 3 w=100;

CHANNEL c10 from m2 5 to b1 4 w=100;

CHANNEL c11 from b1 5 to t1 1 w=100;

CHANNEL c12 from b1 6 to t1 2 w=100;

CHANNEL c13 from b1 7 to t1 3 w=100;

CHANNEL c14 from b1 8 to t1 4 w=100;

CHANNEL c15 from t1 5 to p1 4 w=100;

END LAYER

LAYER CONTROL

H BANK cb1 of 2 PORT r=100 dir=DOWN spacing=1200 channelWidth=50;

H BANK cb2 of 2 PORT r=100 dir=UP spacing=1200 channelWidth=50;

H BANK cb3 of 3 PORT r=100 dir=DOWN spacing=1200 channelWidth=50;

H BANK cb4 of 2 PORT r=100 dir=UP spacing=1200 channelWidth=50;

H BANK cb5 of 2 PORT r=100 dir=DOWN spacing=1200 channelWidth=50;

H BANK cb6 of 2 PORT r=100 dir=UP spacing=1200 channelWidth=50;

CHANNEL cc1 from m1 6 to cb1 1 w=50;

CHANNEL cc2 from m1 8 to cb1 2 w=50;

CHANNEL cc3 from rp 3 to cb3 1 w=50;

CHANNEL cc4 from rp 6 to cb3 2 w=50;

CHANNEL cc5 from rp 7 to cb3 3 w=50;

CHANNEL cc6 from m2 7 to cb5 1 w=50;

CHANNEL cc7 from m2 9 to cb5 2 w=50;

CHANNEL cc8 from m1 7 to cb2 1 w=50;

CHANNEL cc9 from m1 9 to cb2 2 w=50;

CHANNEL cc10 from rp 4 to cb4 1 w=50;

CHANNEL cc11 from rp 5 to cb4 2 w=50;

CHANNEL cc12 from m2 6 to cb6 1 w=50;

CHANNEL cc13 from m2 8 to cb6 2 w=50;

144

END LAYER

B.8 Device H

DEVICE logic04

LAYER FLOW

LOGIC ARRAY la flowChannelWidth=100 controlChannelWidth=50 chamberLength

=100 chamberWidth=100 r=100;

V BANK b0 of 8 PORT r=100 dir=RIGHT spacing=1500 channelWidth=100;

V MUX m1 8 to 1 spacing=1500 flowChannelWidth=100 controlChannelWidth=50;

NODE n1;

CHANNEL c0 from m1 9 to n1 4 w=100;

CHANNEL c1 from n1 2 to la 3 w=100;

CHANNEL c2 from n1 3 to la 2 w=100;

CHANNEL c3 from la 1 to n1 1 w=100;

CHANNEL c4 from b0 1 to m1 1 w=100;

CHANNEL c5 from b0 2 to m1 2 w=100;

CHANNEL c6 from b0 3 to m1 3 w=100;

CHANNEL c7 from b0 4 to m1 4 w=100;

CHANNEL c8 from b0 5 to m1 5 w=100;

CHANNEL c9 from b0 6 to m1 6 w=100;

CHANNEL c10 from b0 7 to m1 7 w=100;

CHANNEL c11 from b0 8 to m1 8 w=100;

END LAYER

LAYER CONTROL

H BANK b4 of 5 PORT r=100 dir=DOWN spacing=1200 channelWidth=50;

H BANK b5 of 4 PORT r=100 dir=UP spacing=1200 channelWidth=50;

CHANNEL cc21 from m1 10 to b4 1 w=50;

CHANNEL cc22 from m1 11 to b5 1 w=50;

CHANNEL cc23 from m1 12 to b4 2 w=50;

CHANNEL cc24 from m1 13 to b5 2 w=50;

145

CHANNEL cc25 from m1 14 to b4 3w=50;

CHANNEL cc26 from m1 15 to b5 3 w=50;

CHANNEL cca from la 24 to b4 4 w=50;

CHANNEL ccb from la 25 to b4 5 w=50;

CHANNEL ccc from la 26 to b5 4 w=50;

H BANK b1 of 5 PORT r=100 dir=DOWN spacing=1200 channelWidth=50;

H BANK b3 of 5 PORT r=100 dir=UP spacing=1200 channelWidth=50;

V BANK b2 of 10 PORT r=100 dir=LEFT spacing=1200 channelWidth=50;

CHANNEL cc10 from la 13 to b2 5 w=50;

CHANNEL cc11 from la 14 to b2 6 w=50;

CHANNEL cc9 from la 12 to b2 4 w=50;

CHANNEL cc12 from la 15 to b2 7 w=50;

CHANNEL cc8 from la 11 to b2 3 w=50;

CHANNEL cc13 from la 16 to b2 8 w=50;

CHANNEL cc7 from la 10 to b2 2 w=50;

CHANNEL cc14 from la 17 to b2 9 w=50;

CHANNEL cc6 from la 9 to b2 1 w=50;

CHANNEL cc15 from la 18 to b2 10 w=50;

CHANNEL cc1 from b1 1 to la 4 w=50;

CHANNEL cc5 from b1 5 to la 8 w=50;

CHANNEL cc2 from b1 2 to la 5 w=50;

CHANNEL cc4 from b1 4 to la 7 w=50;

CHANNEL cc3 from b1 3 to la 6 w=50;

CHANNEL cc16 from b3 1 to la 19 w=50;

CHANNEL cc17 from b3 2 to la 20 w=50;

CHANNEL cc18 from b3 3 to la 21 w=50;

CHANNEL cc19 from b3 4 to la 22 w=50;

CHANNEL cc20 from b3 5 to la 23 w=50;

END LAYER

146

B.9 Device I

DEVICE rotary16

LAYER FLOW

H BANK pb1 of 16 PORT r=100 dir=DOWN spacing=1200 channelWidth=100;

H MUX m1 16 to 1 spacing=1200 flowChannelWidth=100 controlChannelWidth=50;

V ROTARY PUMP rp radius=1000 flowChannelWidth=100 controlChannelWidth=50;

H BANK pb2 of 16 PORT r=100 dir=UP spacing=1200 channelWidth=100;

H MUX m2 1 to 16 spacing=1200 flowChannelWidth=100 controlChannelWidth=50;

CHANNEL c1 from pb1 1 to m1 1 w=100;

CHANNEL c2 from pb1 2 to m1 2 w=100;

CHANNEL c3 from pb1 3 to m1 3 w=100;

CHANNEL c4 from pb1 4 to m1 4 w=100;

CHANNEL c5 from pb1 5 to m1 5 w=100;

CHANNEL c6 from pb1 6 to m1 6 w=100;

CHANNEL c7 from pb1 7 to m1 7 w=100;

CHANNEL c8 from pb1 8 to m1 8 w=100;

CHANNEL c9 from pb1 9 to m1 9 w=100;

CHANNEL c10 from pb1 10 to m1 10 w=100;

CHANNEL c11 from pb1 11 to m1 11 w=100;

CHANNEL c12 from pb1 12 to m1 12 w=100;

CHANNEL c13 from pb1 13 to m1 13 w=100;

CHANNEL c14 from pb1 14 to m1 14 w=100;

CHANNEL c15 from pb1 15 to m1 15 w=100;

CHANNEL c16 from pb1 16 to m1 16 w=100;

CHANNEL c17 from m1 17 to rp 1 w=100;

CHANNEL c18 from rp 2 to m2 1 w=100;

CHANNEL c19 from m2 2 to pb2 1 w=100;

CHANNEL c20 from m2 3 to pb2 2 w=100;

CHANNEL c21 from m2 4 to pb2 3 w=100;

CHANNEL c22 from m2 5 to pb2 4 w=100;

CHANNEL c23 from m2 6 to pb2 5 w=100;

CHANNEL c24 from m2 7 to pb2 6 w=100;

147

CHANNEL c25 from m2 8 to pb2 7 w=100;

CHANNEL c26 from m2 9 to pb2 8 w=100;

CHANNEL c27 from m2 10 to pb2 9 w=100;

CHANNEL c28 from m2 11 to pb2 10 w=100;

CHANNEL c29 from m2 12 to pb2 11 w=100;

CHANNEL c30 from m2 13 to pb2 12 w=100;

CHANNEL c31 from m2 14 to pb2 13 w=100;

CHANNEL c32 from m2 15 to pb2 14 w=100;

CHANNEL c33 from m2 16 to pb2 15 w=100;

CHANNEL c34 from m2 17 to pb2 16 w=100;

END LAYER

LAYER CONTROL

V BANK cpb1 of 4 PORT r=100 dir=RIGHT spacing=1200 channelWidth=100;

V BANK cpb2 of 4 PORT r=100 dir=LEFT spacing=1200 channelWidth=100;

V BANK cpb3 of 2 PORT r=100 dir=RIGHT spacing=1200 channelWidth=100;

V BANK cpb4 of 3 PORT r=100 dir=LEFT spacing=1200 channelWidth=100;

V BANK cpb5 of 4 PORT r=100 dir=RIGHT spacing=1200 channelWidth=100;

V BANK cpb6 of 4 PORT r=100 dir=LEFT spacing=1200 channelWidth=100;

CHANNEL cc1 from m1 18 to cpb1 1 w=50;

CHANNEL cc2 from m1 20 to cpb1 2 w=50;

CHANNEL cc3 from m1 22 to cpb1 3 w=50;

CHANNEL cc4 from m1 24 to cpb1 4 w=50;

CHANNEL cc5 from m1 19 to cpb2 1 w=50;

CHANNEL cc6 from m1 21 to cpb2 2 w=50;

CHANNEL cc7 from m1 23 to cpb2 3 w=50;

CHANNEL cc8 from m1 25 to cpb2 4 w=50;

CHANNEL cc9 from m2 18 to cpb6 1 w=50;

CHANNEL cc10 from m2 20 to cpb6 2 w=50;

CHANNEL cc11 from m2 22 to cpb6 3 w=50;

CHANNEL cc12 from m2 24 to cpb6 4 w=50;

CHANNEL cc13 from m2 19 to cpb5 1 w=50;

CHANNEL cc14 from m2 21 to cpb5 2 w=50;

CHANNEL cc15 from m2 23 to cpb5 3 w=50;

CHANNEL cc16 from m2 25 to cpb5 4 w=50;

148

CHANNEL cc17 from rp 4 to cpb3 1 w=50;

CHANNEL cc18 from rp 5 to cpb3 2 w=50;

CHANNEL cc19 from rp 3 to cpb4 1 w=50;

CHANNEL cc20 from rp 6 to cpb4 2 w=50;

CHANNEL cc21 from rp 7 to cpb4 3 w=50;

END LAYER

B.10 Device J

DEVICE net_mux

LAYER FLOW

V BANK b1 of 8 PORT r=100 dir=RIGHT spacing=1500 channelWidth=100;

V BANK b2 of 8 CELL TRAP numChambers=10 chamberWidth=100 chamberLength=100

chamberSpacing=30 spacing=1500 channelWidth=100;

V TREE m1 8 to 1 spacing=1500 flowChannelWidth=100;

H MUX m2 2 to 1 spacing=1500 flowChannelWidth=100 controlChannelWidth=50;

H BANK b3 of 2 PORT r=100 dir=DOWN spacing=1500 channelWidth=100;

PORT p1, p2 r=100;

NODE n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12, n13, n14, n15, n16;

CHANNEL c1 from b1 1 to n1 4 w=100;

CHANNEL c2 from b1 2 to n2 4 w=100;

CHANNEL c3 from b1 3 to n3 4 w=100;

CHANNEL c4 from b1 4 to n4 4 w=100;

CHANNEL c5 from b1 5 to n5 4 w=100;

CHANNEL c6 from b1 6 to n6 4 w=100;

CHANNEL c7 from b1 7 to n7 4 w=100;

CHANNEL c8 from b1 8 to n8 4 w=100;

CHANNEL c9 from n1 3 to n2 1 w=100;

CHANNEL c10 from n2 3 to n3 1 w=100;

CHANNEL c11 from n3 3 to n4 1 w=100;

CHANNEL c12 from n4 3 to n5 1 w=100;

CHANNEL c13 from n5 3 to n6 1 w=100;

CHANNEL c14 from n6 3 to n7 1 w=100;

CHANNEL c15 from n7 3 to n8 1 w=100;

149

CHANNEL c16 from n1 2 to b2 1 w=100;

CHANNEL c17 from n2 2 to b2 2 w=100;

CHANNEL c18 from n3 2 to b2 3 w=100;

CHANNEL c19 from n4 2 to b2 4 w=100;

CHANNEL c20 from n5 2 to b2 5 w=100;

CHANNEL c21 from n6 2 to b2 6 w=100;

CHANNEL c22 from n7 2 to b2 7 w=100;

CHANNEL c23 from n8 2 to b2 8 w=100;

CHANNEL c24 from b2 9 to n9 4 w=100;

CHANNEL c25 from b2 10 to n10 4 w=100;

CHANNEL c26 from b2 11 to n11 4 w=100;

CHANNEL c27 from b2 12 to n12 4 w=100;

CHANNEL c28 from b2 13 to n13 4 w=100;

CHANNEL c29 from b2 14 to n14 4 w=100;

CHANNEL c30 from b2 15 to n15 4 w=100;

CHANNEL c31 from b2 16 to n16 4 w=100;

CHANNEL c32 from n9 3 to n10 1 w=100;

CHANNEL c33 from n10 3 to n11 1 w=100;

CHANNEL c34 from n11 3 to n12 1 w=100;

CHANNEL c35 from n12 3 to n13 1 w=100;

CHANNEL c36 from n13 3 to n14 1 w=100;

CHANNEL c37 from n14 3 to n15 1 w=100;

CHANNEL c38 from n15 3 to n16 1 w=100;

CHANNEL c39 from n16 3 to p1 1 w=100;

CHANNEL c40 from n9 2 to m1 1 w=100;

CHANNEL c41 from n10 2 to m1 2 w=100;

CHANNEL c42 from n11 2 to m1 3 w=100;

CHANNEL c43 from n12 2 to m1 4 w=100;

CHANNEL c44 from n13 2 to m1 5 w=100;

CHANNEL c45 from n14 2 to m1 6 w=100;

CHANNEL c46 from n15 2 to m1 7 w=100;

CHANNEL c47 from n16 2 to m1 8 w=100;

CHANNEL c48 from m1 9 to p2 4 w=100;

150

CHANNEL c49 from n1 1 to m2 3 w=100;

CHANNEL c50 from b3 1 to m2 1 w=100;

CHANNEL c51 from b3 2 to m2 2 w=100;

END LAYER

LAYER CONTROL

PORT cp1, cp2, cp3, cp4, cp5, cp6 r=100;

CHANNEL cm1 from cp1 2 to m2 4 w=50;

CHANNEL cm2 from cp2 3 to m2 5 w=50;

VALVE v1 on c1 w=150 l=300;

VALVE v2 on c2 w=150 l=300;

VALVE v3 on c3 w=150 l=300;

VALVE v4 on c4 w=150 l=300;

VALVE v5 on c5 w=150 l=300;

VALVE v6 on c6 w=150 l=300;

VALVE v7 on c7 w=150 l=300;

VALVE v8 on c8 w=150 l=300;

CHANNEL cc1 from v1 3 to v2 1 w=50;

CHANNEL cc2 from v2 3 to v3 1 w=50;

CHANNEL cc3 from v3 3 to v4 1 w=50;

CHANNEL cc4 from v4 3 to v5 1 w=50;

CHANNEL cc5 from v5 3 to v6 1 w=50;

CHANNEL cc6 from v6 3 to v7 1 w=50;

CHANNEL cc7 from v7 3 to v8 1 w=50;

CHANNEL cc8 from v8 3 to cp3 1 w=50;

VALVE v9 on c49 w=300 l=150;

VALVE v10 on c9 w=300 l=150;

VALVE v11 on c10 w=300 l=150;

VALVE v12 on c11 w=300 l=150;

VALVE v13 on c12 w=300 l=150;

VALVE v14 on c13 w=300 l=150;

VALVE v15 on c14 w=300 l=150;

151

VALVE v16 on c15 w=300 l=150;

NET n1 from cp4 1 to v16 4, v10 4, v11 4, v12 4, v13 4, v14 4, v15 4, v9 4

channelWidth=50;

VALVE v17 on c32 w=300 l=150;

VALVE v18 on c33 w=300 l=150;

VALVE v19 on c34 w=300 l=150;

VALVE v20 on c35 w=300 l=150;

VALVE v21 on c36 w=300 l=150;

VALVE v22 on c37 w=300 l=150;

VALVE v23 on c38 w=300 l=150;

VALVE v24 on c39 w=300 l=150;

VALVE v25 on c40 w=150 l=300;

VALVE v26 on c41 w=150 l=300;

VALVE v27 on c42 w=150 l=300;

VALVE v28 on c43 w=150 l=300;

VALVE v29 on c44 w=150 l=300;

VALVE v30 on c45 w=150 l=300;

VALVE v31 on c46 w=150 l=300;

VALVE v32 on c47 w=150 l=300;

CHANNEL cc41 from v25 3 to v26 1 w=50;

CHANNEL cc42 from v26 3 to v27 1 w=50;

CHANNEL cc43 from v27 3 to v28 1 w=50;

CHANNEL cc44 from v28 3 to v29 1 w=50;

CHANNEL cc45 from v29 3 to v30 1 w=50;

CHANNEL cc46 from v30 3 to v31 1 w=50;

CHANNEL cc47 from v31 3 to v32 1 w=50;

CHANNEL cc48 from v25 1 to cp6 4 w=50;

NET n2 from cp5 1 to v24 2, v18 2, v19 2, v20 2, v21 2, v22 2, v23 2, v17 2

channelWidth=50;

END LAYER

B.11 Device K

DEVICE grid_8

152

LAYER FLOW

H BANK b1 of 8 PORT r=100 dir=DOWN spacing=1200 channelWidth=100;

H MUX m0 8 to 1 spacing=1200 flowChannelWidth=100 controlChannelWidth=50;

H TREE m1 1 to 8 spacing=1200 flowChannelWidth=100;

H TREE m2 8 to 1 spacing=1200 flowChannelWidth=100;

PORT p2 r=100;

SQUARE CELL TRAP ct1, ct2, ct3, ct4, ct5, ct6, ct7, ct8, ct9, ct10, ct11,

ct12, ct13, ct14, ct15, ct16, ct17, ct18, ct19, ct20, ct21, ct22, ct23,

ct24, ct25, ct26, ct27, ct28, ct29, ct30, ct31, ct32, ct33, ct34, ct35

, ct36, ct37, ct38, ct39, ct40, ct41, ct42, ct43, ct44, ct45, ct46,

ct47, ct48, ct49, ct50, ct51, ct52, ct53, ct54, ct55, ct56, ct57, ct58,

ct59, ct60, ct61, ct62, ct63, ct64 chamberWidth=100 chamberLength=100

channelWidth=100;

CHANNEL ca from b1 1 to m0 1 w=100;

CHANNEL cb from b1 2 to m0 2 w=100;

CHANNEL cc from b1 3 to m0 3 w=100;

CHANNEL cd from b1 4 to m0 4 w=100;

CHANNEL ce from b1 5 to m0 5 w=100;

CHANNEL cf from b1 6 to m0 6 w=100;

CHANNEL cg from b1 7 to m0 7 w=100;

CHANNEL ch from b1 8 to m0 8 w=100;

CHANNEL c1 from m0 9 to m1 1 w=100;

CHANNEL c2 from m1 2 to ct1 1 w=100;

CHANNEL c3 from m1 3 to ct2 1 w=100;

CHANNEL c4 from m1 4 to ct3 1 w=100;

CHANNEL c5 from m1 5 to ct4 1 w=100;

CHANNEL c6 from m1 6 to ct5 1 w=100;

CHANNEL c7 from m1 7 to ct6 1 w=100;

CHANNEL c8 from m1 8 to ct7 1 w=100;

CHANNEL c9 from m1 9 to ct8 1 w=100;

CHANNEL c10 from ct1 2 to ct2 4 w=100;

CHANNEL c11 from ct2 2 to ct3 4 w=100;

CHANNEL c12 from ct3 2 to ct4 4 w=100;

CHANNEL c13 from ct4 2 to ct5 4 w=100;

153

CHANNEL c14 from ct5 2 to ct6 4 w=100;

CHANNEL c15 from ct6 2 to ct7 4 w=100;

CHANNEL c16 from ct7 2 to ct8 4 w=100;

CHANNEL c17 from ct1 3 to ct9 1 w=100;

CHANNEL c18 from ct2 3 to ct10 1 w=100;

CHANNEL c19 from ct3 3 to ct11 1 w=100;

CHANNEL c20 from ct4 3 to ct12 1 w=100;

CHANNEL c21 from ct5 3 to ct13 1 w=100;

CHANNEL c22 from ct6 3 to ct14 1 w=100;

CHANNEL c23 from ct7 3 to ct15 1 w=100;

CHANNEL c24 from ct8 3 to ct16 1 w=100;

CHANNEL c25 from ct9 2 to ct10 4 w=100;

CHANNEL c26 from ct10 2 to ct11 4 w=100;

CHANNEL c27 from ct11 2 to ct12 4 w=100;

CHANNEL c28 from ct12 2 to ct13 4 w=100;

CHANNEL c29 from ct13 2 to ct14 4 w=100;

CHANNEL c30 from ct14 2 to ct15 4 w=100;

CHANNEL c31 from ct15 2 to ct16 4 w=100;

CHANNEL c32 from ct9 3 to ct17 1 w=100;

CHANNEL c33 from ct10 3 to ct18 1 w=100;

CHANNEL c34 from ct11 3 to ct19 1 w=100;

CHANNEL c35 from ct12 3 to ct20 1 w=100;

CHANNEL c36 from ct13 3 to ct21 1 w=100;

CHANNEL c37 from ct14 3 to ct22 1 w=100;

CHANNEL c38 from ct15 3 to ct23 1 w=100;

CHANNEL c39 from ct16 3 to ct24 1 w=100;

CHANNEL c40 from ct17 2 to ct18 4 w=100;

CHANNEL c41 from ct18 2 to ct19 4 w=100;

CHANNEL c42 from ct19 2 to ct20 4 w=100;

CHANNEL c43 from ct20 2 to ct21 4 w=100;

CHANNEL c44 from ct21 2 to ct22 4 w=100;

CHANNEL c45 from ct22 2 to ct23 4 w=100;

CHANNEL c46 from ct23 2 to ct24 4 w=100;

154

CHANNEL c47 from ct17 3 to ct25 1 w=100;

CHANNEL c48 from ct18 3 to ct26 1 w=100;

CHANNEL c49 from ct19 3 to ct27 1 w=100;

CHANNEL c50 from ct20 3 to ct28 1 w=100;

CHANNEL c51 from ct21 3 to ct29 1 w=100;

CHANNEL c52 from ct22 3 to ct30 1 w=100;

CHANNEL c53 from ct23 3 to ct31 1 w=100;

CHANNEL c54 from ct24 3 to ct32 1 w=100;

CHANNEL c55 from ct25 2 to ct26 4 w=100;

CHANNEL c56 from ct26 2 to ct27 4 w=100;

CHANNEL c57 from ct27 2 to ct28 4 w=100;

CHANNEL c58 from ct28 2 to ct29 4 w=100;

CHANNEL c59 from ct29 2 to ct30 4 w=100;

CHANNEL c60 from ct30 2 to ct31 4 w=100;

CHANNEL c61 from ct31 2 to ct32 4 w=100;

CHANNEL c62 from ct25 3 to ct33 1 w=100;

CHANNEL c63 from ct26 3 to ct34 1 w=100;

CHANNEL c64 from ct27 3 to ct35 1 w=100;

CHANNEL c65 from ct28 3 to ct36 1 w=100;

CHANNEL c66 from ct29 3 to ct37 1 w=100;

CHANNEL c67 from ct30 3 to ct38 1 w=100;

CHANNEL c68 from ct31 3 to ct39 1 w=100;

CHANNEL c69 from ct32 3 to ct40 1 w=100;

CHANNEL c70 from ct33 2 to ct34 4 w=100;

CHANNEL c71 from ct34 2 to ct35 4 w=100;

CHANNEL c72 from ct35 2 to ct36 4 w=100;

CHANNEL c73 from ct36 2 to ct37 4 w=100;

CHANNEL c74 from ct37 2 to ct38 4 w=100;

CHANNEL c75 from ct38 2 to ct39 4 w=100;

CHANNEL c76 from ct39 2 to ct40 4 w=100;

CHANNEL c77 from ct33 3 to ct41 1 w=100;

CHANNEL c78 from ct34 3 to ct42 1 w=100;

155

CHANNEL c79 from ct35 3 to ct43 1 w=100;

CHANNEL c80 from ct36 3 to ct44 1 w=100;

CHANNEL c81 from ct37 3 to ct45 1 w=100;

CHANNEL c82 from ct38 3 to ct46 1 w=100;

CHANNEL c83 from ct39 3 to ct47 1 w=100;

CHANNEL c84 from ct40 3 to ct48 1 w=100;

CHANNEL c85 from ct41 2 to ct42 4 w=100;

CHANNEL c86 from ct42 2 to ct43 4 w=100;

CHANNEL c87 from ct43 2 to ct44 4 w=100;

CHANNEL c88 from ct44 2 to ct45 4 w=100;

CHANNEL c89 from ct45 2 to ct46 4 w=100;

CHANNEL c90 from ct46 2 to ct47 4 w=100;

CHANNEL c91 from ct47 2 to ct48 4 w=100;

CHANNEL c92 from ct41 3 to ct49 1 w=100;

CHANNEL c93 from ct42 3 to ct50 1 w=100;

CHANNEL c94 from ct43 3 to ct51 1 w=100;

CHANNEL c95 from ct44 3 to ct52 1 w=100;

CHANNEL c96 from ct45 3 to ct53 1 w=100;

CHANNEL c97 from ct46 3 to ct54 1 w=100;

CHANNEL c98 from ct47 3 to ct55 1 w=100;

CHANNEL c99 from ct48 3 to ct56 1 w=100;

CHANNEL c100 from ct49 2 to ct50 4 w=100;

CHANNEL c101 from ct50 2 to ct51 4 w=100;

CHANNEL c102 from ct51 2 to ct52 4 w=100;

CHANNEL c103 from ct52 2 to ct53 4 w=100;

CHANNEL c104 from ct53 2 to ct54 4 w=100;

CHANNEL c105 from ct54 2 to ct55 4 w=100;

CHANNEL c106 from ct55 2 to ct56 4 w=100;

CHANNEL c107 from ct49 3 to ct57 1 w=100;

CHANNEL c108 from ct50 3 to ct58 1 w=100;

CHANNEL c109 from ct51 3 to ct59 1 w=100;

CHANNEL c110 from ct52 3 to ct60 1 w=100;

CHANNEL c111 from ct53 3 to ct61 1 w=100;

156

CHANNEL c112 from ct54 3 to ct62 1 w=100;

CHANNEL c113 from ct55 3 to ct63 1 w=100;

CHANNEL c114 from ct56 3 to ct64 1 w=100;

CHANNEL c115 from ct57 2 to ct58 4 w=100;

CHANNEL c116 from ct58 2 to ct59 4 w=100;

CHANNEL c117 from ct59 2 to ct60 4 w=100;

CHANNEL c118 from ct60 2 to ct61 4 w=100;

CHANNEL c119 from ct61 2 to ct62 4 w=100;

CHANNEL c120 from ct62 2 to ct63 4 w=100;

CHANNEL c121 from ct63 2 to ct64 4 w=100;

CHANNEL c122 from ct57 3 to m2 1 w=100;

CHANNEL c123 from ct58 3 to m2 2 w=100;

CHANNEL c124 from ct59 3 to m2 3 w=100;

CHANNEL c125 from ct60 3 to m2 4 w=100;

CHANNEL c126 from ct61 3 to m2 5 w=100;

CHANNEL c127 from ct62 3 to m2 6 w=100;

CHANNEL c128 from ct63 3 to m2 7 w=100;

CHANNEL c129 from ct64 3 to m2 8 w=100;

CHANNEL c130 from m2 9 to p2 1 w=100;

END LAYER

LAYER CONTROL

V BANK cpb1 of 8 PORT r=100 dir=RIGHT spacing=1500 channelWidth=50;

V BANK cpb2 of 7 PORT r=100 dir=LEFT spacing=1500 channelWidth=50;

VALVE v1 on c10 w=100 l=300;

VALVE v2 on c11 w=100 l=300;

VALVE v3 on c12 w=100 l=300;

VALVE v4 on c13 w=100 l=300;

VALVE v5 on c14 w=100 l=300;

VALVE v6 on c15 w=100 l=300;

VALVE v7 on c16 w=100 l=300;

NET n1 from cpb1 1 to v1 3, v2 3, v3 3, v4 3, v5 3, v6 3, v7 3 channelWidth

=50;

157

VALVE v8 on c17 w=300 l=100;

VALVE v9 on c18 w=300 l=100;

VALVE v10 on c19 w=300 l=100;

VALVE v11 on c20 w=300 l=100;

VALVE v12 on c21 w=300 l=100;

VALVE v13 on c22 w=300 l=100;

VALVE v14 on c23 w=300 l=100;

VALVE v15 on c24 w=300 l=100;

CHANNEL cc1 from v8 2 to v9 4 w=50;

CHANNEL cc2 from v9 2 to v10 4 w=50;

CHANNEL cc3 from v10 2 to v11 4 w=50;

CHANNEL cc4 from v11 2 to v12 4 w=50;

CHANNEL cc5 from v12 2 to v13 4 w=50;

CHANNEL cc6 from v13 2 to v14 4 w=50;

CHANNEL cc7 from v14 2 to v15 4 w=50;

CHANNEL cc8 from v15 2 to cpb2 1 w=50;

VALVE v16 on c25 w=100 l=300;

VALVE v17 on c26 w=100 l=300;

VALVE v18 on c27 w=100 l=300;

VALVE v19 on c28 w=100 l=300;

VALVE v20 on c29 w=100 l=300;

VALVE v21 on c30 w=100 l=300;

VALVE v22 on c31 w=100 l=300;

NET n2 from cpb1 2 to v16 3, v17 3, v18 3, v19 3, v20 3, v21 3, v22 3

channelWidth=50;

VALVE v23 on c32 w=300 l=100;

VALVE v24 on c33 w=300 l=100;

VALVE v25 on c34 w=300 l=100;

VALVE v26 on c35 w=300 l=100;

VALVE v27 on c36 w=300 l=100;

VALVE v28 on c37 w=300 l=100;

VALVE v29 on c38 w=300 l=100;

158

VALVE v30 on c39 w=300 l=100;

CHANNEL cc9 from v23 2 to v24 4 w=50;

CHANNEL cc10 from v24 2 to v25 4 w=50;

CHANNEL cc11 from v25 2 to v26 4 w=50;

CHANNEL cc12 from v26 2 to v27 4 w=50;

CHANNEL cc13 from v27 2 to v28 4 w=50;

CHANNEL cc14 from v28 2 to v29 4 w=50;

CHANNEL cc15 from v29 2 to v30 4 w=50;

CHANNEL cc16 from v30 2 to cpb2 2 w=50;

VALVE v31 on c40 w=100 l=300;

VALVE v32 on c41 w=100 l=300;

VALVE v33 on c42 w=100 l=300;

VALVE v34 on c43 w=100 l=300;

VALVE v35 on c44 w=100 l=300;

VALVE v36 on c45 w=100 l=300;

VALVE v37 on c46 w=100 l=300;

NET n3 from cpb1 3 to v31 3, v32 3, v33 3, v34 3, v35 3, v36 3, v37 3

channelWidth=50;

VALVE v38 on c47 w=300 l=100;

VALVE v39 on c48 w=300 l=100;

VALVE v40 on c49 w=300 l=100;

VALVE v41 on c50 w=300 l=100;

VALVE v42 on c51 w=300 l=100;

VALVE v43 on c52 w=300 l=100;

VALVE v44 on c53 w=300 l=100;

VALVE v45 on c54 w=300 l=100;

CHANNEL cc17 from v38 2 to v39 4 w=50;

CHANNEL cc18 from v39 2 to v40 4 w=50;

CHANNEL cc19 from v40 2 to v41 4 w=50;

CHANNEL cc20 from v41 2 to v42 4 w=50;

CHANNEL cc21 from v42 2 to v43 4 w=50;

CHANNEL cc22 from v43 2 to v44 4 w=50;

159

CHANNEL cc23 from v44 2 to v45 4 w=50;

CHANNEL cc24 from v45 2 to cpb2 3 w=50;

VALVE v46 on c55 w=100 l=300;

VALVE v47 on c56 w=100 l=300;

VALVE v48 on c57 w=100 l=300;

VALVE v49 on c58 w=100 l=300;

VALVE v50 on c59 w=100 l=300;

VALVE v51 on c60 w=100 l=300;

VALVE v52 on c61 w=100 l=300;

NET n4 from cpb1 4 to v46 3, v47 3, v48 3, v49 3, v50 3, v51 3, v52 3

channelWidth=50;

VALVE v53 on c62 w=300 l=100;

VALVE v54 on c63 w=300 l=100;

VALVE v55 on c64 w=300 l=100;

VALVE v56 on c65 w=300 l=100;

VALVE v57 on c66 w=300 l=100;

VALVE v58 on c67 w=300 l=100;

VALVE v59 on c68 w=300 l=100;

VALVE v60 on c69 w=300 l=100;

CHANNEL cc25 from v53 2 to v54 4 w=50;

CHANNEL cc26 from v54 2 to v55 4 w=50;

CHANNEL cc27 from v55 2 to v56 4 w=50;

CHANNEL cc28 from v56 2 to v57 4 w=50;

CHANNEL cc29 from v57 2 to v58 4 w=50;

CHANNEL cc30 from v58 2 to v59 4 w=50;

CHANNEL cc31 from v59 2 to v60 4 w=50;

CHANNEL cc32 from v60 2 to cpb2 4 w=50;

VALVE v61 on c70 w=100 l=300;

VALVE v62 on c71 w=100 l=300;

VALVE v63 on c72 w=100 l=300;

VALVE v64 on c73 w=100 l=300;

VALVE v65 on c74 w=100 l=300;

160

VALVE v66 on c75 w=100 l=300;

VALVE v67 on c76 w=100 l=300;

NET n5 from cpb1 5 to v61 3, v62 3, v63 3, v64 3, v65 3, v66 3, v67 3

channelWidth=50;

VALVE v68 on c77 w=300 l=100;

VALVE v69 on c78 w=300 l=100;

VALVE v70 on c79 w=300 l=100;

VALVE v71 on c80 w=300 l=100;

VALVE v72 on c81 w=300 l=100;

VALVE v73 on c82 w=300 l=100;

VALVE v74 on c83 w=300 l=100;

VALVE v75 on c84 w=300 l=100;

CHANNEL cc33 from v68 2 to v69 4 w=50;

CHANNEL cc34 from v69 2 to v70 4 w=50;

CHANNEL cc35 from v70 2 to v71 4 w=50;

CHANNEL cc36 from v71 2 to v72 4 w=50;

CHANNEL cc37 from v72 2 to v73 4 w=50;

CHANNEL cc38 from v73 2 to v74 4 w=50;

CHANNEL cc39 from v74 2 to v75 4 w=50;

CHANNEL cc40 from v75 2 to cpb2 5 w=50;

VALVE v76 on c85 w=100 l=300;

VALVE v77 on c86 w=100 l=300;

VALVE v78 on c87 w=100 l=300;

VALVE v79 on c88 w=100 l=300;

VALVE v80 on c89 w=100 l=300;

VALVE v81 on c90 w=100 l=300;

VALVE v82 on c91 w=100 l=300;

NET n6 from cpb1 6 to v76 3, v77 3, v78 3, v79 3, v80 3, v81 3, v82 3

channelWidth=50;

VALVE v83 on c92 w=300 l=100;

VALVE v84 on c93 w=300 l=100;

161

VALVE v85 on c94 w=300 l=100;

VALVE v86 on c95 w=300 l=100;

VALVE v87 on c96 w=300 l=100;

VALVE v88 on c97 w=300 l=100;

VALVE v89 on c98 w=300 l=100;

VALVE v90 on c99 w=300 l=100;

CHANNEL cc41 from v83 2 to v84 4 w=50;

CHANNEL cc42 from v84 2 to v85 4 w=50;

CHANNEL cc43 from v85 2 to v86 4 w=50;

CHANNEL cc44 from v86 2 to v87 4 w=50;

CHANNEL cc45 from v87 2 to v88 4 w=50;

CHANNEL cc46 from v88 2 to v89 4 w=50;

CHANNEL cc47 from v89 2 to v90 4 w=50;

CHANNEL cc48 from v90 2 to cpb2 6 w=50;

VALVE v91 on c100 w=100 l=300;

VALVE v92 on c101 w=100 l=300;

VALVE v93 on c102 w=100 l=300;

VALVE v94 on c103 w=100 l=300;

VALVE v95 on c104 w=100 l=300;

VALVE v96 on c105 w=100 l=300;

VALVE v97 on c106 w=100 l=300;

NET n7 from cpb1 7 to v91 3, v92 3, v93 3, v94 3, v95 3, v96 3, v97 3

channelWidth=50;

VALVE v98 on c107 w=300 l=100;

VALVE v99 on c108 w=300 l=100;

VALVE v100 on c109 w=300 l=100;

VALVE v101 on c110 w=300 l=100;

VALVE v102 on c111 w=300 l=100;

VALVE v103 on c112 w=300 l=100;

VALVE v104 on c113 w=300 l=100;

VALVE v105 on c114 w=300 l=100;

CHANNEL cc49 from v98 2 to v99 4 w=50;

162

CHANNEL cc50 from v99 2 to v100 4 w=50;

CHANNEL cc51 from v100 2 to v101 4 w=50;

CHANNEL cc52 from v101 2 to v102 4 w=50;

CHANNEL cc53 from v102 2 to v103 4 w=50;

CHANNEL cc54 from v103 2 to v104 4 w=50;

CHANNEL cc55 from v104 2 to v105 4 w=50;

CHANNEL cc56 from v105 2 to cpb2 7 w=50;

VALVE v106 on c115 w=100 l=300;

VALVE v107 on c116 w=100 l=300;

VALVE v108 on c117 w=100 l=300;

VALVE v109 on c118 w=100 l=300;

VALVE v110 on c119 w=100 l=300;

VALVE v111 on c120 w=100 l=300;

VALVE v112 on c121 w=100 l=300;

NET n8 from cpb1 8 to v106 3, v107 3, v108 3, v109 3, v110 3, v111 3, v112

3 channelWidth=50;

V BANK cb3 of 3 PORT r=100 dir=RIGHT spacing=1200 channelWidth=50;

V BANK cb4 of 3 PORT r=100 dir=LEFT spacing=1200 channelWidth=50;

CHANNEL cc57 from m0 10 to cb3 1 w=50;

CHANNEL cc58 from m0 12 to cb3 2 w=50;

CHANNEL cc59 from m0 14 to cb3 3 w=50;

CHANNEL cc60 from m0 11 to cb4 1 w=50;

CHANNEL cc61 from m0 13 to cb4 2 w=50;

CHANNEL cc62 from m0 15 to cb4 3 w=50;

END LAYER

B.12 Device txtl

3D DEVICE txtl

LAYER FLOW

PORT p1 r=400;

PORT p2 r=400;

PORT p3 r=400;

NODE n1;

163

V MIXER m1 numBends=10 bendSpacing=500 bendLength=20000 channelWidth=400;

H 3DVALVE v1 radius=500 gap=600;

H 3DVALVE v2 radius=500 gap=600;

CHANNEL c1 from p1 2 to v1 4 w=400;

CHANNEL c2 from v1 2 to n1 4 w=400;

CHANNEL c3 from p2 4 to v2 2 w=400;

CHANNEL c4 from v2 4 to n1 2 w=400;

CHANNEL c5 from n1 3 to m1 1 w=400;

CHANNEL c6 from m1 2 to p3 1 w=400;

END LAYER

B.13 Device transposer-cells

3D DEVICE transposer_cells

LAYER FLOW

TRANSPOSER r1 valveRadius=1000 valveGap=400 flowChannelWidth=800

controlChannelWidth=800;

PORT p1, p2 r=800;

V BANK b1 of 4 PORT r=800 dir=RIGHT spacing=9000 channelWidth=800;

V TREE t1 2 to 1 spacing=9000 flowChannelWidth=800;

V TREE t2 2 to 1 spacing=9000 flowChannelWidth=800;

H MIXER x1 numBends=5 bendSpacing=400 bendLength=10000 channelWidth=800;

H MIXER x2 numBends=5 bendSpacing=400 bendLength=10000 channelWidth=800;

CHANNEL c1 from b1 1 to t1 1 w=800;

CHANNEL c2 from b1 2 to t1 2 w=800;

CHANNEL c3 from b1 3 to t2 1 w=800;

CHANNEL c4 from b1 4 to t2 2 w=800;

CHANNEL c5 from t1 3 to x1 1 w=800;

CHANNEL c6 from t2 3 to x2 1 w=800;

CHANNEL c7 from x1 2 to r1 1 w=800;

CHANNEL c8 from x2 2 to r1 2 w=800;

164

CHANNEL c9 from r1 3 to p1 4 w=800;

CHANNEL c10 from r1 4 to p2 4 w=800;

END LAYER

B.14 Device transposer-web

3D DEVICE transposer_web

LAYER FLOW

TRANSPOSER t1 valveRadius=1000 valveGap=400 flowChannelWidth=800

controlChannelWidth=800;

TRANSPOSER t2 valveRadius=1000 valveGap=400 flowChannelWidth=800

controlChannelWidth=800;

TRANSPOSER t3 valveRadius=1000 valveGap=400 flowChannelWidth=800

controlChannelWidth=800;

TRANSPOSER t4 valveRadius=1000 valveGap=400 flowChannelWidth=800

controlChannelWidth=800;

TRANSPOSER t5 valveRadius=1000 valveGap=400 flowChannelWidth=800

controlChannelWidth=800;

CHANNEL c1 from t1 3 to t2 1 w=800;

CHANNEL c2 from t1 4 to t3 1 w=800;

CHANNEL c3 from t3 3 to t2 2 w=800;

CHANNEL c4 from t4 3 to t3 2 w=800;

CHANNEL c5 from t3 4 to t5 1 w=800;

CHANNEL c6 from t4 4 to t5 2 w=800;

END LAYER

B.15 Device mixer-3d

3D DEVICE mixer_3d

LAYER FLOW

H BANK pb1 of 3 PORT r=600 dir=DOWN spacing=10000 channelWidth=800;

NODE n1, n2, n3;

PORT p1 r=600;

V GRADIENT GENERATOR g1 2 to 6 numBends=5 bendSpacing=500 bendLength=2000

165

channelWidth=800;

V 3DVALVE v1 radius=1000 gap=400;

V 3DVALVE v2 radius=1000 gap=400;

V 3DVALVE v3 radius=1000 gap=400;

CHANNEL c1 from pb1 1 to v1 1 w=800;

CHANNEL c2 from pb1 2 to v2 1 w=800;

CHANNEL c3 from pb1 3 to v3 1 w=800;

CHANNEL c4 from v1 3 to n1 4 w=800;

CHANNEL c5 from v2 3 to n2 1 w=800;

CHANNEL c6 from v3 3 to n3 2 w=800;

CHANNEL c7 from n1 2 to n2 4 w=800;

CHANNEL c8 from n2 2 to n3 4 w=800;

CHANNEL c9 from n1 3 to g1 1 w=800;

CHANNEL c10 from n3 3 to g1 2 w=800;

CHANNEL c11 from g1 3 to p1 1 w=2400;

END LAYER

Appendix C

Photolithography procedure

C.1 Setup

1. Set hot plates to 75C and 103C.

2. Wash wafers with the following. Hold wafer with flat tweezers, never with

hands.

(a) Acetone

(b) Isopropanol

(c) Ethyl Alcohol

(d) Acetone

(e) DI water

3. Air gun to dry.

4. Place in oven at 120C. Hard bake 10-15 minutes to fully dry.

5. Cut mask transparencies down to size, and tape transparencies to glass slides.

6. Oxygen plasma treatment: power=150, flow=300, time=3 minutes.

C.2 Control layer

1. Load mask into mask aligner with alignment gap of 30 µm.

166

167

2. Spin SU-8 10 at 1000RPM for 60 seconds.

3. Bake 2.5 minutes at 65C followed by 6 minutes at 95C.

4. Expose hard contact for 8 seconds.

5. Post exposure bake for 1 minute 65C, 2.5 minutes at 95C.

6. Develop for 2-4 minutes Check by eye to keep from overdeveloping.

7. Hard bake for 15-20 minutes at 120-180C.

C.3 Flow layer

1. Load mask for cell traps into mask aligner with alignment gap of 30 µm.

2. Spin coat with SU-8 2. The height of the cell traps depends on the spin speed.

(a) 750RPM for 60 seconds: h=4.2 µm

(b) 820RPM for 60 seconds: h=3.8 µm

(c) 900RPM for 60 seconds: h=3.5 µm

(d) 1800RPM for 60 seconds: h=3 µm

3. Bake for 1 minute at 65C, then 3 minutes at 95C.

4. Expose hard contact for 8 seconds.

5. Post exposure bake for 1 minute at 65C then 1 minute at 95C.

6. Develop for 1 minute or more.

7. Spin coat with HDMS (surface adhesion promoter) at 1000RPM for 60 seconds.

8. Bake at 95C for 12 minutes.

168

9. Spin coat A24629 (photoresist) at 3400RPM for 60 seconds.

10. Bake at 90C for 10 minutes.

11. Expose hard contact for 20 seconds.

12. Develop for 8 minutes or more. Use diluted 1:4 developer.

13. Bake at 150C for 1 minute to reflow channels.

Appendix D

PDMS molding

D.1 Control layer

1. Mix 60g gel and 6g curing agent for at least 3 minutes.

2. Pour in plate over wafer.

3. Place cap lightly over plate, leaving a small gap.

4. Place in vacuum for 5 minutes before releasing vacuum. Wait until all bubbles

have dispersed. Repeat as needed.

5. Place in oven at 80C for 3-4 hours.

6. Cut along guide lines, and punch holes.

D.2 Flow layer

1. Place wafer in a glass plate on top of supports.

2. Apply 50 µL of silane to wafer by placing it at the edge of the glass plate.

3. Close lid of plate and wait 10 minutes for silane to coat wafer.

4. Open lid and wait 3 minutes.

5. Mix 20g gel with 2g curing agent for at least 3 minutes and degas.

6. Place wafer in spin coater.

169

170

7. Pour PDMS over wafer, and spin at 3500RPM for 1 minute to coat.

8. Place in oven at 80C for 10-12 minutes.

9. Pull wafer out of the oven while the PDMS is still sticky.

10. Align cut control layer with flow layer by eye under microscope.

11. Place in oven for 3-4 hours.

12. Cut along guide lines, and punch holes in flow layer.

D.3 Bonding to glass

1. Clean device with scotch tape.

2. Wash glass cover slide.

3. Open the compressed O2 valve on your tank and make sure the flow through

the UVO cleaner is 0.4 - 0.6 scfm.

4. Warm up the UVO cleaner, by running it for 5 minutes.

5. Once the warm up is done, open the loading tray, there should be a faint smell

of ozone.

6. Place the chips with feature side up and coverslips onto the tray.

7. Close the tray and run the bonder for 3 minutes. The chamber should appear

magenta through the holes.

8. Carefully place device feature side down on glass and remove all air bubbles.

9. Place in oven at 80C overnight.

References

Amin, N., Thies, W., and Amarasinghe, S. (2009). Computer-aided design for mi-
crofluidic chips based on multilayer soft lithography. In IEEE International Con-
ference on Computer Design, 2009. ICCD 2009., pages 2–9. IEEE.

Anderson, J., Dueber, J. E., Leguia, M., Wu, G. C., Goler, J. A., Arkin, A. P., and
Keasling, J. D. (2010). Bglbricks: A flexible standard for biological part assembly.
Journal of biological engineering, 4(1):1–12.

Anderson, J. C., Clarke, E. J., Arkin, A. P., and Voigt, C. A. (2006). Environmentally
controlled invasion of cancer cells by engineered bacteria. Journal of molecular
biology, 355(4):619–627.

Andrianantoandro, E., Basu, S., Karig, D. K., and Weiss, R. (2006). Synthetic
biology: new engineering rules for an emerging discipline. Molecular systems
biology, 2(1):2006.0028.

Appleton, E., Tao, J., Haddock, T., and Densmore, D. (2014). Interactive assembly
algorithms for molecular cloning. Nature methods, 11:657–662.

Araci, I. E. and Brisk, P. (2014). Recent developments in microfluidic large scale
integration. Current Opinion in Biotechnology, 25:60–68.

Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. (2004). Bacterial
persistence as a phenotypic switch. Science, 305(5690):1622–1625.

Balagaddé, F. K., You, L., Hansen, C. L., Arnold, F. H., and Quake, S. R. (2005).
Long-term monitoring of bacteria undergoing programmed population control in a
microchemostat. Science, 309(5731):137–140.

Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss, R. (2005). A
synthetic multicellular system for programmed pattern formation.
Nature, 434(7037):1130–1134.

Baumgardner, J., Acker, K., Adefuye, O., Crowley, S. T., DeLoache, W., Dickson,
J. O., Heard, L., Martens, A. T., Morton, N., Ritter, M., et al. (2009). Solv-
ing a hamiltonian path problem with a bacterial computer. Journal of biological
engineering, 3(11):1–11.

171

172

Baumgartner, B. L., Bennett, M. R., Ferry, M., Johnson, T. L., Tsimring, L. S., and
Hasty, J. (2011). Antagonistic gene transcripts regulate adaptation to new growth
environments. Proceedings of the National Academy of Sciences, 108(52):21087–
21092.

Beal, J., Lu, T., and Weiss, R. (2011). Automatic compilation from high-level
biologically-oriented programming language to genetic regulatory networks. PLoS
One, 6(8):e22490.

Beal, J., Weiss, R., Densmore, D., Adler, A., Appleton, E., Babb, J., Bhatia, S.,
Davidsohn, N., Haddock, T., Loyall, J., et al. (2012). An end-to-end workflow
for engineering of biological networks from high-level specifications. ACS synthetic
biology, 1(8):317–331.

Becker, H. and Gärtner, C. (2008). Polymer microfabrication technologies for mi-
crofluidic systems. Analytical and bioanalytical chemistry, 390(1):89–111.

Bennett, M. R. and Hasty, J. (2009). Microfluidic devices for measuring gene network
dynamics in single cells. Nature Reviews Genetics, 10(9):628–638.

Bennett, M. R., Pang, W. L., Ostroff, N. A., Baumgartner, B. L., Nayak, S., Tsimring,
L. S., and Hasty, J. (2008). Metabolic gene regulation in a dynamically changing
environment. Nature, 454(7208):1119–1122.

Berg, M. d., Cheong, O., Kreveld, M. v., and Overmars, M. (2008). Computational
Geometry: Algorithms and Applications. Springer-Verlag TELOS, Santa Clara,
CA, USA, 3rd ed. edition.

Betz, V. and Rose, J. (1997). VPR: A new packing, placement, and routing tool
for fpga research. In International Workshop on Field Programmable Logic and
Appliation.

Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson,
J. C., and Densmore, D. (2011a). Eugene–a domain specific language for specify-
ing and constraining synthetic biological parts, devices, and systems. PLoS one,
6(4):e18882.

Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson,
J. C., and Densmore, D. (2011b). Eugene–a domain specific language for specify-
ing and constraining synthetic biological parts, devices, and systems. PLoS one,
6(4):e18882.

Bonnet, J., Subsoontorn, P., and Endy, D. (2012). Rewritable digital data storage in
live cells via engineered control of recombination directionality. Proceedings of the
National Academy of Sciences, 109(23):8884–8889.

173

Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P., and Endy, D. (2013). Amplifying
genetic logic gates. Science, 340(6132):599–603.

Breslauer, D. N., Lee, P. J., and Lee, L. P. (2006). Microfluidics-based systems
biology. Molecular Biosystems, 2(2):97–112.

Brophy, J. A. and Voigt, C. A. (2014). Principles of genetic circuit design. Nature
methods, 11(5):508–520.

Cai, Y., Wilson, M. L., and Peccoud, J. (2010). Genocad for igem: a grammatical
approach to the design of standard-compliant constructs. Nucleic acids research,
38(8):2637–2644.

Canton, B., Labno, A., and Endy, D. (2008). Refinement and standardization of
synthetic biological parts and devices. Nature biotechnology, 26(7):787–793.

Carr, P. A. and Church, G. M. (2009). Genome engineering. Nature biotechnology,
27(12):1151–1162.

Casini, A., MacDonald, J. T., De Jonghe, J., Christodoulou, G., Freemont, P. S.,
Baldwin, G. S., and Ellis, T. (2014). One-pot dna construction for synthetic biol-
ogy: the modular overlap-directed assembly with linkers (modal) strategy. Nucleic
acids research, 42(1):e7–e7.

Chakrabarty, K. (2010). Design automation and test solutions for digital microfluidic
biochips. Circuits and Systems I: Regular Papers, IEEE Transactions on, 57(1):4–
17.

Chakrabarty, K. and Zeng, J. (2005). Design automation for microfluidics-based
biochips. ACM Journal on Emerging Technologies in Computing Systems (JETC),
1(3):186–223.

Chandran, D., Bergmann, F. T., Sauro, H. M., et al. (2009). Tinkercell: modular
cad tool for synthetic biology. Journal of biological engineering, 3(1):19.

Chang, C., Bharadwaj, R., Singh, A., Chandrasekaran, A., and Hillson, N. (2012).
Microfluidic platform for synthetic biology applications. US Patent App. 13/437,727.

Chen, Y.-J., Liu, P., Nielsen, A. A., Brophy, J. A., Clancy, K., Peterson, T., and
Voigt, C. A. (2013). Characterization of 582 natural and synthetic terminators
and quantification of their design constraints. Nature methods, 10(7):659–664.

Cheng, A. A. and Lu, T. K. (2012). Synthetic biology: an emerging engineering
discipline. Annual review of biomedical engineering, 14:155–178.

Cheong, R., Wang, C. J., and Levchenko, A. (2009a). High content cell screening in
a microfluidic device. Molecular & Cellular Proteomics, 8(3):433–442.

174

Cheong, R., Wang, C. J., and Levchenko, A. (2009b). Using a microfluidic device for
high-content analysis of cell signaling. Science signaling, 2(75):pl2.

Chou, H.-P., Unger, M. A., and Quake, S. R. (2001). A microfabricated rotary pump.
Biomedical Microdevices, 3(4):323–330.

Cobb, R. E., Si, T., and Zhao, H. (2012). Directed evolution: an evolving and
enabling synthetic biology tool. Current opinion in chemical biology, 16(3):285–
291.

Collins, C. H., Leadbetter, J. R., and Arnold, F. H. (2006). Dual selection enhances
the signaling specificity of a variant of the quorum-sensing transcriptional activator
luxr. Nature biotechnology, 24(6):708–712.

Cooksey, G. A., Sip, C. G., and Folch, A. (2009). A multi-purpose microfluidic
perfusion system with combinatorial choice of inputs, mixtures, gradient patterns,
and flow rates. Lab on a Chip, 9(3):417–426.

Cox, C. D., McCollum, J. M., Austin, D. W., Allen, M. S., Dar, R. D., and Simpson,
M. L. (2006). Frequency domain analysis of noise in simple gene circuits. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 16(2):026102.

Daniel, R., Rubens, J. R., Sarpeshkar, R., and Lu, T. K. (2013). Synthetic analog
computation in living cells. Nature, 497:619–623.

Danino, T., Mondragón-Palomino, O., Tsimring, L., and Hasty, J. (2010). A syn-
chronized quorum of genetic clocks. Nature, 463(7279):326–330.

Dénervaud, N., Becker, J., Delgado-Gonzalo, R., Damay, P., Rajkumar, A. S., Unser,
M., Shore, D., Naef, F., and Maerkl, S. J. (2013). A chemostat array enables
the spatio-temporal analysis of the yeast proteome. Proceedings of the National
Academy of Sciences, 110(39):15842–15847.

Densmore, D. and Hassoun, S. (2012). Design automation for synthetic biological
systems. IEEE Design and Test of Computers, 29(3):7–20.

Densmore, D., Hsiau, T. H.-C., Kittleson, J. T., DeLoache, W., Batten, C., and
Anderson, J. C. (2010). Algorithms for automated dna assembly. Nucleic acids
research, 38(8):2607–2616.

Dertinger, S. K., Chiu, D. T., Jeon, N. L., and Whitesides, G. M. (2001). Gener-
ation of gradients having complex shapes using microfluidic networks. Analytical
Chemistry, 73(6):1240–1246.

Devaraju, N. S. G. K. and Unger, M. A. (2012). Pressure driven digital logic in
pdms based microfluidic devices fabricated by multilayer soft lithography. Lab on
a Chip, 12(22):4809–4815.

175

Duffy, D. C., McDonald, J. C., Schueller, O. J., and Whitesides, G. M. (1998). Rapid
prototyping of microfluidic systems in poly (dimethylsiloxane). Analytical chem-
istry, 70(23):4974–4984.

Duncan, P. N., Ahrar, S., and Hui, E. E. (2015). Scaling of pneumatic digital logic
circuits. Lab on a Chip, 15(5):1360–1365.

Duncan, P. N., Nguyen, T. V., and Hui, E. E. (2013). Pneumatic oscillator circuits
for timing and control of integrated microfluidics. Proceedings of the National
Academy of Sciences, 110(45):18104–18109.

Ebeling, C., McMurchie, L., Hauck, S. A., and Burns, S. (1995). Placement and
routing tools for the triptych FPGA. IEEE Transactions on VLSI Systems, pages
473 – 482.

Ellis, T., Adie, T., and Baldwin, G. S. (2011). Dna assembly for synthetic biology:
from parts to pathways and beyond. Integrative Biology, 3(2):109–118.

Elowitz, M. B. and Leibler, S. (2000). A synthetic oscillatory network of transcrip-
tional regulators. Nature, 403(6767):335–338.

Elveflow (2015). Elveflow. http://www.elveflow.com/. Accessed: 2014-06-17.

Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067):449–453.

Engler, C., Gruetzner, R., Kandzia, R., and Marillonnet, S. (2009). Golden gate
shuffling: a one-pot dna shuffling method based on type iis restriction enzymes.
PLoS one, 4(5):e5553.

Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision
cloning method with high throughput capability. PLoS one, 3(11):e3647.

Ferry, M., Razinkov, I., and Hasty, J. (2011). Microfluidics for synthetic biology from
design to execution. Methods in enzymology, 497:295.

Fidalgo, L. M. and Maerkl, S. J. (2011). A software-programmable microfluidic
device for automated biology. Lab on a Chip, 11(9):1612–1619.

Foudeh, A. M., Didar, T. F., Veres, T., and Tabrizian, M. (2012). Microfluidic designs
and techniques using lab-on-a-chip devices for pathogen detection for point-of-care
diagnostics. Lab on a Chip, 12(18):3249–3266.

Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., and Collins, J. J. (2009).
Synthetic gene networks that count. Science, 324(5931):1199–1202.

176

Galdzicki, M., Wilson, M., Rodriguez, C. A., Pocock, M. R., Oberortner, E., Adam,
L., Adler, A., Anderson, J. C., Beal, J., Cai, Y., et al. (2012). Synthetic biology
open language (sbol) version 1.1. 0. http://dspace.mit.edu/handle/1721.1/

73909. Accessed: 2014-06-17.

Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., and
Smith, H. O. (2009). Enzymatic assembly of dna molecules up to several hundred
kilobases. Nature methods, 6(5):343–345.

Goldberg, M. (2013). Biofab: Applying moore’s law to dna synthesis. Industrial
Biotechnology, 9(1):10–12.

Gómez-Sjöberg, R., Leyrat, A. A., Pirone, D. M., Chen, C. S., and Quake, S. R.
(2007). Versatile, fully automated, microfluidic cell culture system. Analytical
chemistry, 79(22):8557–8563.

Goñi-Moreno, A. and Amos, M. (2012). A reconfigurable nand/nor genetic logic
gate. BMC systems biology, 6(1):126.

Gupta, K., Kim, D.-H., Ellison, D., Smith, C., Kundu, A., Tuan, J., Suh, K.-Y., and
Levchenko, A. (2010). Lab-on-a-chip devices as an emerging platform for stem cell
biology. Lab on a Chip, 10(16):2019–2031.

Gupta, S., Bram, E. E., and Weiss, R. (2013). Genetically programmable pathogen
sense and destroy. ACS synthetic biology, 2(12):715–723.

Hadlock, F. (1977). A shortest path algorithm for grid graphs. Networks, 7(4):323–
334.

Haeberle, S. and Zengerle, R. (2007). Microfluidic platforms for lab-on-a-chip appli-
cations. Lab on a Chip, 7(9):1094–1110.

Ham, T. S., Lee, S. K., Keasling, J. D., and Arkin, A. P. (2008). Design and
construction of a double inversion recombination switch for heritable sequential
genetic memory. PLoS One, 3(7):e2815.

Hamon, M. and Hong, J. W. (2013). New tools and new biology: Recent miniaturized
systems for molecular and cellular biology. Molecules and cells, 36(6):485–506.

Hassoun, S. and Sasao, T. (2002). Logic Synthesis and Verification. The Springer
International Series in Engineering and Computer Science. Springer US.

Hayes, J. P. (1993). Digital Logic Design. Addison Wesley.

177

Haynes, K. A., Broderick, M. L., Brown, A. D., Butner, T. L., Dickson, J. O., Harden,
W. L., Heard, L. H., Jessen, E. L., Malloy, K. J., Ogden, B. J., et al. (2008).
Engineering bacteria to solve the burnt pancake problem. Journal of biological
engineering, 2(8):1–12.

Hillson, N. J., Rosengarten, R. D., and Keasling, J. D. (2012). j5 dna assembly
design automation software. ACS synthetic biology, 1(1):14–21.

Hong, J. W., Chen, Y., Anderson, W. F., and Quake, S. R. (2006). Molecular biology
on a microfluidic chip. Journal of Physics: Condensed Matter, 18(18):S691.

Hu, K., Dinh, T. A., Ho, T.-Y., and Chakrabarty, K. (2014). Control-layer optimiza-
tion for flow-based mvlsi microfluidic biochips. In IEEE 2014 International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems (CASES),,
pages 1–10.

Huang, H. and Densmore, D. (2014a). Fluigi: Microfluidic device synthesis for
synthetic biology. ACM journal on emerging technologies in computing systems,
11(3):26:1–26:19.

Huang, H. and Densmore, D. (2014b). Integration of microfluidics into the synthetic
biology design flow. Lab Chip, 14:3459–3474.

Huang, M. C., Ye, H., Kuan, Y. K., Li, M.-H., and Ying, J. Y. (2009). Integrated
two-step gene synthesis in a microfluidic device. Lab on a Chip, 9(2):276–285.

Inamdar, N. K. and Borenstein, J. T. (2011). Microfluidic cell culture models for
tissue engineering. Current opinion in biotechnology, 22(5):681–689.

Jang, S. S., Oishi, K. T., Egbert, R. G., and Klavins, E. (2012). Specification and
simulation of synthetic multicelled behaviors. ACS synthetic biology, 1(8):365–374.

Kersaudy-Kerhoas, M., Amalou, F., Che, A., Kelly, J., Liu, Y., Desmulliez, M.,
and Shu, W. (2014). Validation of a fully integrated platform and disposable
microfluidic chips enabling parallel purification of genome segments for assembly.
Biotechnology and bioengineering, 111(8):1627–1637.

Khalil, A. S. and Collins, J. J. (2010). Synthetic biology: applications come of age.
Nature Reviews Genetics, 11(5):367–379.

Khalil, A. S., Lu, T. K., Bashor, C. J., Ramirez, C. L., Pyenson, N. C., Joung,
J. K., and Collins, J. J. (2012). A synthetic biology framework for programming
eukaryotic transcription functions. Cell, 150(3):647–658.

Kim, J., Taylor, D., Agrawal, N., Wang, H., Kim, H., Han, A., Rege, K., and Jayara-
man, A. (2012). A programmable microfluidic cell array for combinatorial drug
screening. Lab on a chip, 12(10):1813–1822.

178

Kirby, B. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic
Devices. Cambridge University Press.

Kittleson, J. T., Wu, G. C., and Anderson, J. C. (2012). Successes and failures in
modular genetic engineering. Current opinion in chemical biology, 16(3):329–336.

Klumpp, S., Zhang, Z., and Hwa, T. (2009). Growth rate-dependent global effects
on gene expression in bacteria. Cell, 139(7):1366–1375.

Kong, D. S., Carr, P. A., Chen, L., Zhang, S., and Jacobson, J. M. (2007). Parallel
gene synthesis in a microfluidic device. Nucleic acids research, 35(8):e61.

Kosuri, S., Eroshenko, N., LeProust, E., Super, M., Way, J., Li, J. B., and Church,
G. M. (2010). A scalable gene synthesis platform using high-fidelity dna mi-
crochips. Nature biotechnology, 28(12):1295.

Lecault, V., White, A. K., Singhal, A., and Hansen, C. L. (2012). Microfluidic
single cell analysis: from promise to practice. Current opinion in chemical biology,
16(3):381–390.

Lee, C.-C., Snyder, T. M., and Quake, S. R. (2010). A microfluidic oligonucleotide
synthesizer. Nucleic acids research, 38(8):2514–2521.

Leguia, M., Brophy, J. A., Densmore, D., Asante, A., and Anderson, J. C. (2013). 2ab
assembly: a methodology for automatable, high-throughput assembly of standard
biological parts. Journal of biological engineering, 7(1):1–16.

Lei, K. F. (2012). Microfluidic systems for diagnostic applications a review. Journal
of laboratory automation, 17(5):330–347.

Lin, B. and Levchenko, A. (2012). Microfluidic technologies for studying synthetic
circuits. Current opinion in chemical biology, 16(3):307–317.

Lin, F., Saadi, W., Rhee, S. W., Wang, S.-J., Mittal, S., and Jeon, N. L. (2004). Gen-
eration of dynamic temporal and spatial concentration gradients using microfluidic
devices. Lab on a Chip, 4(3):164–167.

Liu, W., Li, L., Wang, X., Ren, L., Wang, X., Wang, J., Tu, Q., Huang, X., and Wang,
J. (2010). An integrated microfluidic system for studying cell-microenvironmental
interactions versatilely and dynamically. Lab on a Chip, 10(13):1717–1724.

Locke, J. C. and Elowitz, M. B. (2009). Using movies to analyse gene circuit dynamics
in single cells. Nature Reviews Microbiology, 7(5):383–392.

Long, Z., Nugent, E., Javer, A., Cicuta, P., Sclavi, B., Lagomarsino, M. C., and
Dorfman, K. D. (2013). Microfluidic chemostat for measuring single cell dynamics
in bacteria. Lab on a Chip, 13(5):947–954.

179

Lu, T., Ferry, M., Weiss, R., and Hasty, J. (2008). A molecular noise generator.
Physical biology, 5(3):036006.

Lu, T. K. (2010). Engineering scalable biological systems. Bioengineered bugs,
1(6):378–384.

Lu, T. K. and Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic
bacteriophage. Proceedings of the National Academy of Sciences, 104(27):11197–
11202.

Lu, T. K. and Collins, J. J. (2009). Engineered bacteriophage targeting gene net-
works as adjuvants for antibiotic therapy. Proceedings of the National Academy of
Sciences, 106(12):4629–4634.

Lux, M. W., Bramlett, B. W., Ball, D. A., and Peccoud, J. (2012). Genetic design
automation: engineering fantasy or scientific renewal? Trends in biotechnology,
30(2):120–126.

Ma, S., Tang, N., and Tian, J. (2012). Dna synthesis, assembly and applications in
synthetic biology. Current opinion in chemical biology, 16(3):260–267.

Maćıa, J., Posas, F., and Solé, R. V. (2012). Distributed computation: the new wave
of synthetic biology devices. Trends in biotechnology, 30(6):342–349.

Madsen, C., Myers, C. J., Patterson, T., Roehner, N., Stevens, J. T., and Winstead,
C. (2012). Design and test of genetic circuits using ibiosim. IEEE Design & Test
of Computers, 29(3):32–39.

Mark, D., Haeberle, S., Roth, G., von Stetten, F., and Zengerle, R. (2010). Mi-
crofluidic lab-on-a-chip platforms: requirements, characteristics and applications.
Chemical Society Reviews, 39(3):1153–1182.

McDaniel, J., Baez, A., Crites, B., Tammewar, A., and Brisk, P. (2013). Design
and verification tools for continuous fluid flow-based microfluidic devices. In 18th
Asia and South Pacific Design Automation Conference (ASP-DAC 2013), pages
219–224.

McDaniel, J., Parker, B., and Brisk, P. (2014). Simulated annealing-based place-
ment for microfluidic large scale integration (mlsi) chips. In IEEE 2014 22nd
International Conference on Very Large Scale Integration (VLSI-SoC),, pages 1–6.

Melin, J. and Quake, S. R. (2007). Microfluidic large-scale integration: the evolu-
tion of design rules for biological automation. Annual review of biophysics and
biomolecular structure, 36:213–231.

Micheli, G. D. (1994). Synthesis and optimization of digital circuits. McGraw-Hill
Higher Education.

180

Milias-Argeitis, A., Summers, S., Stewart-Ornstein, J., Zuleta, I., Pincus, D., El-
Samad, H., Khammash, M., and Lygeros, J. (2011). In silico feedback for in vivo
regulation of a gene expression circuit. Nature biotechnology, 29(12):1114–1116.

Minhass, W. H., Pop, P., Madsen, J., and Blaga, F. S. (2012). Architectural syn-
thesis of flow-based microfluidic large-scale integration biochips. In Proceedings
of the 2012 international conference on Compilers, architectures and synthesis for
embedded systems, pages 181–190. ACM.

Minhass, W. H., Pop, P., Madsen, J., and Ho, T.-Y. (2013). Control synthesis for
the flow-based microfluidic large-scale integration biochips. In 18th Asia and South
Pacific Design Automation Conference (ASP-DAC 2013), pages 205–212.

Mondragón-Palomino, O., Danino, T., Selimkhanov, J., Tsimring, L., and Hasty, J.
(2011). Entrainment of a population of synthetic genetic oscillators. Science,
333(6047):1315–1319.

Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C., and Voigt, C. A. (2012). Genetic
programs constructed from layered logic gates in single cells. Nature, 491(7423):249–
253.

Mosadegh, B., Kuo, C.-H., Tung, Y.-C., Torisawa, Y.-s., Bersano-Begey, T., Tavana,
H., and Takayama, S. (2010). Integrated elastomeric components for autonomous
regulation of sequential and oscillatory flow switching in microfluidic devices. Na-
ture physics, 6(6):433–437.

Nestor, J. (2007). Cadapplets animations of vlsi cad algorithms. http://workbench.

lafayette.edu/~nestorj/cadapplets. Accessed: 2015-10-24.

Nguyen, T. V., Duncan, P. N., Ahrar, S., and Hui, E. E. (2012). Semi-autonomous
liquid handling via on-chip pneumatic digital logic. Lab on a Chip, 12(20):3991–
3994.

Nissim, L. and Bar-Ziv, R. H. (2010). A tunable dual-promoter integrator for tar-
geting of cancer cells. Molecular systems biology, 6(1):444.

Oh, K. W., Lee, K., Ahn, B., and Furlani, E. P. (2012). Design of pressure-driven
microfluidic networks using electric circuit analogy. Lab on a Chip, 12(3):515–545.

Pedersen, M. and Phillips, A. (2009). Towards programming languages for genetic
engineering of living cells. Journal of the Royal Society Interface, 6(Suppl 4):S437–
S450.

Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B., and Keasling, J. D. (2012). Mi-
crobial engineering for the production of advanced biofuels. Nature, 488(7411):320–
328.

181

Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L. S., and Hasty,
J. (2012). A sensing array of radically coupled genetic ‘biopixels’. Nature,
481(7379):39–44.

Purcell, O., Savery, N. J., Grierson, C. S., and di Bernardo, M. (2010). A comparative
analysis of synthetic genetic oscillators. Journal of The Royal Society Interface,
7(52):1503–1524.

Purnick, P. E. and Weiss, R. (2009). The second wave of synthetic biology: from
modules to systems. Nature reviews. Molecular cell biology, 10(6):410–422.

Regot, S., Macia, J., Conde, N., Furukawa, K., Kjellén, J., Peeters, T., Hohmann, S.,
de Nadal, E., Posas, F., and Solé, R. (2011). Distributed biological computation
with multicellular engineered networks. Nature, 469(7329):207–211.

Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu,
J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., et al. (2006). Production
of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature,
440(7086):940–943.

Ruder, W. C., Lu, T., and Collins, J. J. (2011). Synthetic biology moving into the
clinic. Science, 333(6047):1248–1252.

Salis, H. M., Mirsky, E. A., and Voigt, C. A. (2009). Automated design of syn-
thetic ribosome binding sites to control protein expression. Nature biotechnology,
27(10):946–950.

Schmidt, M.-J., Gasiūnaitė, L., French, C., Hale, A., and Gallagher, T. (2013). Mul-
tiplex dna assmembly technology.
http://www.genabler.com/media/1353/postersb60 genabler 3-07-13.pdf.

Sedgewick, R. and Wayne, K. (2015). Geometric intersections. http://algs4.cs.

princeton.edu/93intersection/. Accessed: 2015-10-24.

Shankar, S. and Pillai, M. R. (2011). Translating cancer research by synthetic biology.
Molecular BioSystems, 7(6):1802–1810.

Shetty, R. (2013). The latency of gene synthesis - 2013 update.
http://blog.ginkgobioworks.com/2013/08/17/gene-synthesis-latency/.

Shetty, R. P., Endy, D., and Knight Jr, T. F. (2008). Engineering biobrick vectors
from biobrick parts. Journal of biological engineering, 2(1):1–12.

Sia, S. K. and Whitesides, G. M. (2003). Microfluidic devices fabricated in poly
(dimethylsiloxane) for biological studies. Electrophoresis, 24(21):3563–3576.

182

Simpson, M. L., Cox, C. D., and Sayler, G. S. (2003). Frequency domain analysis
of noise in autoregulated gene circuits. Proceedings of the National Academy of
Sciences, 100(8):4551–4556.

Siuti, P., Yazbek, J., and Lu, T. K. (2013). Synthetic circuits integrating logic and
memory in living cells. Nature biotechnology, 31(5):448–452.

Sohka, T., Heins, R. A., Phelan, R. M., Greisler, J. M., Townsend, C. A., and Oster-
meier, M. (2009). An externally tunable bacterial band-pass filter. Proceedings of
the National Academy of Sciences, 106(25):10135–10140.

Sollier, E., Murray, C., Maoddi, P., and Di Carlo, D. (2011). Rapid prototyping
polymers for microfluidic devices and high pressure injections. Lab on a Chip,
11(22):3752–3765.

Squires, T. M. and Quake, S. R. (2005). Microfluidics: Fluid physics at the nanoliter
scale. Reviews of modern physics, 77(3):977.

Stanton, B. C., Nielsen, A. A., Tamsir, A., Clancy, K., Peterson, T., and Voigt,
C. A. (2014). Genomic mining of prokaryotic repressors for orthogonal logic gates.
Nature chemical biology, 10(2):99–105.

Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezić, I., Stone, H. A., and Whitesides,
G. M. (2002). Chaotic mixer for microchannels. Science, 295(5555):647–651.

Su, F. and Chakrabarty, K. (2005). Design of fault-tolerant and dynamically-
reconfigurable microfluidic biochips. In IEEE Proceedings on Design, Automation
and Test in Europe, 2005., pages 1202–1207. IEEE.

Su, F., Chakrabarty, K., and Fair, R. B. (2006). Microfluidics-based biochips:
technology issues, implementation platforms, and design-automation challenges.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
25(2):211–223.

Sung, J. H. and Shuler, M. L. (2010). In vitro microscale systems for systematic drug
toxicity study. Bioprocess and biosystems engineering, 33(1):5–19.

Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011). Robust multicellular computing
using genetically encoded nor gates and chemical/wires/’. Nature, 469(7329):212–
215.

Taylor, R., Falconnet, D., Niemistö, A., Ramsey, S., Prinz, S., Shmulevich, I., Gal-
itski, T., and Hansen, C. (2009). Dynamic analysis of mapk signaling using a
high-throughput microfluidic single-cell imaging platform. Proceedings of the Na-
tional Academy of Sciences, 106(10):3758–3763.

183

Thies, W., Urbanski, J. P., Thorsen, T., and Amarasinghe, S. (2008). Abstraction
layers for scalable microfluidic biocomputing. Natural Computing, 7(2):255–275.

Thies, W., Urbanski, J. P., Thorsen, T., and Amarasinghe, S. (2009). Program-
able microfluidics. http://groups.csail.mit.edu/cag/biostream/. Accessed:
2014-06-17.

Thorsen, T., Maerkl, S. J., and Quake, S. R. (2002). Microfluidic large-scale integra-
tion. Science, 298(5593):580–584.

Toettcher, J. E., Gong, D., Lim, W. A., and Weiner, O. D. (2011a). Light-based feed-
back for controlling intracellular signaling dynamics. Nature methods, 8(10):837–
839.

Toettcher, J. E., Voigt, C. A., Weiner, O. D., and Lim, W. A. (2011b). The promise
of optogenetics in cell biology: interrogating molecular circuits in space and time.
Nature methods, 8(1):35–38.

Tseng, K.-H., You, S.-C., Liou, J.-Y., and Ho, T.-Y. (2013). A top-down synthesis
methodology for flow-based microfluidic biochips considering valve-switching min-
imization. In Proceedings of the 2013 ACM international symposium on physical
design, pages 123–129. ACM.

Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., and Quake, S. R. (2000). Mono-
lithic microfabricated valves and pumps by multilayer soft lithography. Science,
288(5463):113–116.

Urbanski, J. P., Thies, W., Rhodes, C., Amarasinghe, S., and Thorsen, T. (2006).
Digital microfluidics using soft lithography. Lab on a Chip, 6(1):96–104.

Vaidyanathan, P., Der, B., Bhatia, S., Roehner, N., Silva, R., Voigt, C., and Dens-
more, D. (2015). A framework for genetic logic synthesis. Proceedings of the IEEE,
PP(99):1–12.

Voigt, C. A. (2006). Genetic parts to program bacteria. Current opinion in biotech-
nology, 17(5):548–557.

Waldbaur, A., Kittelmann, J., Radtke, C. P., Hubbuch, J., and Rapp, B. E. (2013).
Microfluidics on liquid handling stations (µf-on-lhs): an industry compatible chip
interface between microfluidics and automated liquid handling stations. Lab on a
Chip, 13(12):2337–2343.

Wang, B., Kitney, R. I., Joly, N., and Buck, M. (2011). Engineering modular and
orthogonal genetic logic gates for robust digital-like synthetic biology. Nature
communications, 2:508.

184

Wang, C. J., Bergmann, A., Lin, B., Kim, K., and Levchenko, A. (2012). Diverse
sensitivity thresholds in dynamic signaling responses by social amoebae. Science
signaling, 5(213):ra17.

Wang, H. H., Isaacs, F. J., Carr, P. A., Sun, Z. Z., Xu, G., Forest, C. R., and Church,
G. M. (2009). Programming cells by multiplex genome engineering and accelerated
evolution. Nature, 460(7257):894–898.

Weaver, J. A., Melin, J., Stark, D., Quake, S. R., and Horowitz, M. A. (2010). Static
control logic for microfluidic devices using pressure-gain valves. Nature Physics,
6(3):218–223.

Weber, E., Engler, C., Gruetzner, R., Werner, S., and Marillonnet, S. (2011). A
modular cloning system for standardized assembly of multigene constructs. PLoS
one, 6(2):e16765.

Weibel, D. B., DiLuzio, W. R., and Whitesides, G. M. (2007). Microfabrication
meets microbiology. Nature Reviews Microbiology, 5(3):209–218.

Weste, N. and Harris, D. (2011). CMOS VLSI Design: A Circuits and Systems
Perspective. Addison Wesley Publishing Company Incorporated.

Westfall, P. J. and Gardner, T. S. (2011). Industrial fermentation of renewable diesel
fuels. Current opinion in biotechnology, 22(3):344–350.

Whitesides, G. M. (2006). The origins and the future of microfluidics. Nature,
442(7101):368–373.

Xia, B., Bhatia, S., Bubenheim, B., Dadgar, M., Densmore, D., and Anderson, J. C.
(2011). Developers and users guide to clotho v2. 0 a software platform for the
creation of synthetic biological systems. Methods in enzymology, 498:97–135.

Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R., and Benenson, Y. (2011). Multi-
input rnai-based logic circuit for identification of specific cancer cells. Science,
333(6047):1307–1311.

Yin, H. and Marshall, D. (2012). Microfluidics for single cell analysis. Current
opinion in biotechnology, 23(1):110–119.

Yu, F., Horowitz, M. A., and Quake, S. R. (2013). Microfluidic serial digital to
analog pressure converter for arbitrary pressure generation and contamination-free
flow control. Lab on a Chip, 13(10):1911–1918.

Zare, R. N. and Kim, S. (2010). Microfluidic platforms for single-cell analysis. An-
nual review of biomedical engineering, 12:187–201.

185

Zhang, C., Xu, J., Ma, W., and Zheng, W. (2006). Pcr microfluidic devices for dna
amplification. Biotechnology advances, 24(3):243–284.

Zhang, Q. and Austin, R. H. (2012). Applications of microfluidics in stem cell biology.
BioNanoScience, 2(4):277–286.

Zhang, W., Lin, S., Wang, C., Hu, J., Li, C., Zhuang, Z., Zhou, Y., Mathies, R. A.,
and Yang, C. J. (2009). Pmma/pdms valves and pumps for disposable microflu-
idics. Lab on a Chip, 9(21):3088–3094.

186

187

