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ABSTRACT 

As a physical system, a cell interacts with its environment through physical and 

chemical processes. The cell can change these interactions through modification of its 

environment or its own composition. This dissertation presents the overarching 

hypothesis that both biochemical regulation of intercellular adhesion and physical 

interaction between cells are required to account for the emergence of cluster migration 

and collective dynamics observed in epithelial cells. 

Collective migration is defined as the displacement of a group of cells with 

transient or permanent cell-cell contacts. One mode, cluster migration, plays an important 

role during embryonic development and in cancer metastasis. Despite its importance, 

collective migration is a slow process and hard to visualize, and therefore it has not been 

thoroughly studied in three dimensions (3D). 

Based on known information about cluster migration from 2D studies of epithelial 

sheets and 3D single cell migration, this dissertation presents theoretical and 

experimental techniques to assess the independent contribution of physical and 
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biochemical factors to 3D cluster migration. It first develops two computational models 

that explore the interaction between cells and the ECM and epithelial discohesion. These 

discrete mechanistic models reveal the need to account for intracellular regulation of 

adherens junctions in space and time within a cluster. Consequently, a differential 

algebraic model is developed that accounts for cross-reactivity of three pathways in a 

regulatory biochemical network: Wnt/β-catenin signaling, protein N-glycosylation, and 

E-cadherin adhesion. The model is tested by matching predictions to Wnt/β-catenin 

inhibition in MDCK cells. The model is then incorporated into a self-propelled particle 

(SPP) model, creating the first SPP model for study of adhesive mammalian cellular 

systems. 

MDCK cell clusters with fluorescent nuclei are grown, seeded, and tracked in 3D 

collagen gels using confocal microscopy. They provide data on individual cell dynamics 

within clusters. Borrowed from the field of complex systems, normalized velocity is used 

to quantify the order of both in vitro and simulated clusters. An analysis of sensitivity of 

cluster dynamics on factors describing physical and biochemical processes provides new 

quantitative insights into mechanisms underlying collective cell migration and explains 

temporal and spatial heterogeneity of cluster behavior. 
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CHAPTER 1.  Introduction 

1.1  Problem Statement 

Collective cell migration is a pervasive process in life. From slime mold  coming 

together as a collective to follow the folic acid trail secreted by its prey (1) to human 

development where cell collectives form the tracheal and mammary ducts in the 

embryonic stage (2), a group of cells can distance itself from its neighbors to accomplish 

a myriad of objectives. Its pervasiveness in such distinct cell types demonstrates its 

relevance to sustain life, but also its complexity as cells communicate and navigate very 

different surroundings encompassing different physical and, in some cases, biochemical 

cues. 

Complex motion patterns are also observed in simpler systems such as colloidal 

solutions and ferromagnetic spins (3, 4). Separating the contributions of physical 

interactions from the biochemical response by the individual cells is essential to 

understanding mechanisms central to our existence such as embryonic development, 

organ morphogenesis, emergence of tissue architecture, and wound healing. It is also 

important to understand when collective cell migration does not occur properly as in 

malformation diseases or cancer metastasis (5). 

This dissertation focuses on collective migration of mammalian epithelial cells. 

After stroke and ischemic heart disease, cancers of the trachea, bronchus, and lung have 

the highest mortality rate in high-income countries (6). In 85-90% of cases, cancer in 

these structures occurs as carcinoma, cancer of the epithelium (7). Many epithelial and 
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cancer cell lines, both non-metastatic and metastatic, have been developed to study 

multiple aspects of epithelial cell behavior, including migration. This led to the 

development of in vitro and in vivo techniques to investigate pathways relevant to 

proliferation, invasion, and migration (2, 8, 9). 

Furthermore, computational approaches have also been increasingly applied to 

study both tumor growth in the epithelium and dynamics of collective systems (10–12). 

Different scales define the architecture of the epithelial environment, including tissue, 

cellular, and molecular (intracellular and extracellular). Experimentally, these scales have 

been explored independently and some attempts have been made at probing two scales 

simultaneously (13, 14), but a comprehensive understanding is challenging due to 

technical limitations. Whereas computational approaches have been recognized as 

suitable to integrate experimental findings into a unifying model, the existing 

computational approaches do not fully acknowledge the contribution or impact of 

biological networks (13, 15). 

Common to all instances of collective migration is the persistent physical and 

functional connection among cells (5). To study collective migration, bonds between 

cells must be considered. These bonds are also regulated by both physical and 

biochemical processes that regulate the force exerted between cells while their stability is 

determined by expression of regulatory proteins (16–18). This dissertation considers the 

internal biochemical regulation of cell adhesion molecules via a regulatory network of 

multiple pathways and the subsequent effect of molecular interactions between adhesion 

molecules in neighboring cells. By incorporating kinetics of regulatory biochemical 
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networks into existing computational models studying dynamics of multiple particle 

systems, this study provides a method to theoretically separate the contributions of 

physical and biochemical interactions to collective cell migration. 

1.2 Hypothesis and Questions Addressed 

This dissertation presents the overarching hypothesis that both biochemical 

regulation of intercellular adhesion and physical interaction between cells are required to 

account for the emergence of cluster migration and collective dynamics observed in 

epithelial cells 

Specifically, the thesis addresses the following questions:  

(i) Does the geometry of a cell collective play a role in its interaction with the 

surroundings? – Epithelial cells are found in a matrix of secreted extracellular molecules 

collectively known as the extracellular matrix (ECM). Because of the heterogeneous 

composition of the ECM, it interacts with cells in a dynamic manner and undergoes 

remodeling in response to physiological and environmental cues. By accounting for both 

chemical degradation of the matrix and changing physical interaction with changing 

cluster geometry, this work looks at the relative dependence of collective migration on 

these two factors through a mechanical numerical model. 

(ii) What drives the formation of cellular clusters? – During physiological or pathological 

events, epithelial cells are first organized in stratified epithelium or in a tumor mass 

respectively. For the formation of clusters, cells have to disrupt these conformations by 

either detaching together or have collectives form from detached individuals. This work 

describes agent based simulations in 3D where cells are placed in a sheet and conditions 
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varied to study the emergence of invading cells and formation of clusters. 

(iii) Does post-translational modification of junctional proteins have a direct impact on 

regulation of cell-cell interactions in migrating clusters? – Despite the extensive number 

of regulatory reactions taking place inside the cell, a small set of proteins are 

evolutionarily conserved. These proteins act in multiple pathways and play important 

roles in cells. One post-translational modification in particular, N-glycosylation, has been 

associated with epithelial discohesion and shown to add oligosaccharides to junctional 

proteins. In this dissertation the network dynamics of the N-glycosylation pathway in 

epithelial cells are explored using a system of differential algebraic equations and tested 

in cell culture through immunoblotting. 

(iv) Does regulation of junctional proteins affect specific physical characteristics and 

migrating dynamics? – Local cell density, cluster displacement, and average cellular 

velocity are examples of quantities that can be used to characterize different clusters 

observed in vitro. To date, few studies look at migrating clusters in a 3D environment; 

this work presents a method to look at migrating clusters of epithelial cells and calculate 

these quantities. By using a multi-scale model that integrates agent-based particle 

modeling with pathway modeling, experimental results are used to correlate cluster 

dynamics with regulation of junctional proteins. 

1.3 Structure of Thesis 

Two background sections (Chapter 2) provide information on the biology of cell-

cell junctions, the biology of the extracellular environment, the process of cell migration, 

and cancer, as well as, the background on computational approaches used to date to 
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explore systems of multiple cells. Next, a detailed description of the experimental 

methods and computational projects addressing the questions listed above along with the 

results is presented (Chapters 3-6). Finally, a last chapter summarizes conclusions of this 

study and potential directions for future work (Chapter 7). 
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CHAPTER 2.  Background 

2.1  Biological Background 

As a physical system, a cell’s interaction with its environment is dictated by 

physical and chemical reactions of the different components in the cell.  In the process of 

signal transduction, a cell converts an external signal in the form of a chemical ligand or 

mechanical stimulus into a cellular response (17, 19, 20). The response in turns affects 

interaction of the cell with the outside through a feedback mechanism. This response can 

affect many different aspects of cell behavior such as proliferation, migration, 

differentiation, and cell death based on protein expression (21). Knowledge of cellular 

mechanisms describing cytoskeletal mechanics, cell-matrix interactions, and cell-cell 

interactions are necessary to form a comprehensive picture of collective cell migration 

and understand how theoretical models studying this phenomenon have been conceived. 

2.1.1 Cell-Matrix Interactions 

In the organism, most cells are found in a scaffold of proteins and polysaccharides 

known as the extracellular matrix (ECM). It is heterogeneous in composition, and its 

function ranges from providing structural integrity and aiding in tissue organization to 

signaling, guiding cell proliferation, differentiation, and survival (22). 

The primary structural components of the ECM are collagen and elastin. 

Collagen, the more abundant of the two, is a protein that self-assembles triple-helical 

molecules into thicker fibrils (23). It is an adhesive component of the ECM, meaning 

cells can attach to it through formation of membrane complexes. Non-structural adhesive 
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components include the glycoproteins fibronectin, laminin, and vitronectin (23). The 

space in between the multiple proteins is occupied by hydrophilic glycosaminoglycans 

(GAGs) and water; however, the exact composition of the ECM is tissue-dependent. 

Based on its composition, mechanical properties change, providing a series of binding 

sites and a barrier to free diffusion of signaling molecules, such as growth factors (24). 

These soluble factors can be released upon local ECM degradation, creating 

concentration gradients important in cell signaling (24). This creates a gradient of 

morphogens that is used during developmental processes (24). In the process known as 

chemotaxis, cells move in the direction of a chemical gradient in the substrate. 

Integrins constitute the principal cell surface adhesion molecule (22). In the cell 

membrane, an integrin receptor is active as a heterodimer, formed by selective pairing of 

one of 18 known α-subunits and one of 8 known β-subunits, producing 24 distinct 

receptors (23, 25). Named aptly, these receptors integrate the intracellular and 

extracellular environments by binding the cytoskeleton and the ECM and provide a bi-

directional signaling path (22). The resulting transmembrane macromolecular complex is 

known as a focal adhesion (FA) (26). In a state of constant flux, focal adhesions recruit 

intracellular signaling kinases and promote cell polarization acting as constant sensors. 

Integrins bind specific amino acid sequences in adhesive components (e.g. R-G-D motif 

in fibronectin) (26). This sensing mechanism is necessary for cellular migration along the 

ECM. 
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2.1.2 Collective Cell Migration 

Migration of animal cells has been observed in culture, where cells are exposed, 

and in the organism, through fluorescent tagging and two-photon microscopy (27). 

Different cell types have been found to migrate under different conditions and stimuli. 

Factors such as composition, structure, and dimensions of surroundings influence cellular 

migratory behavior, with a cell utilizing distinct molecular machinery (28). Thus, cell 

migration is a complex and heterogeneous phenomenon that has to be studied at different 

scales and in different systems. For most cells, including epithelial cells, migration is 

confined to morphogenesis and ends with differentiation. It can occur in later stages, 

however, when developmental pathways are reactivated in tissue regeneration or 

dysregulated, as is the case in cancer metastasis (5, 9). 

The study of cell migration began with the observation of single cells and then 

cell sheets in 2D; extensive studies now exist on these systems (21, 29–31). The first 

study of an isolated collective was performed in 2D culture of poecelid fish melanoma 

(32), and similar clusters have been observed in 3D in vivo (27). Only until very recently 

have systematic tools to study 3D collective migration have been developed (33), and 

little is known about collective migration. In contrast, single cell migration has been well 

characterized. Given the heterogeneous character of the phenomenon, migration modes 

were originally classified based on morphology of migration patterns (28). This 

classification was later refined when molecular characteristics of the migrating cells were 

discerned, such as cytoskeletal organization, nature of cell-matrix interactions, and 

modification of surroundings. Two recurrent types of single cell migration are 
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mesenchymal and amoeboid; more recently migration modes that would fit within these 

categories have been induced and better characterized in vitro by engineering particular 

environments (34, 35). Cells have also been found to switch between migration modes. 

This switch is dependent on multiple factors, including ECM density, composition, and 

fiber orientation (36). 

Mesenchymal migration is often described as a cyclical process consisting of 

distinct steps (37). Cells first become polarized forming actin-polymerization-driven 

membrane extension of the cell edge, known as the lamellipodium, in the direction of 

motion; this leading edge is formed by smaller protruding fibrillar actin spines, or 

filopodia, with  a high concentration of FAs (38). The cell then contracts the network 

formed by fibers along the filopodia and its cell cortex, a network of actin, myosin, and 

associated proteins that lies under the plasma membrane (39). This contraction, 

performed through myosin-actin interactions, results in disassembly of FAs at the trailing 

edge, moving the cell body forward (24). Finally, free adhesion receptors in the rear can 

move towards the leading edge starting another migration cycle. While mesenchymal 

migration requires polarization, amoeboid migration is characterized by the lack of stress 

fibers and either weak or non-existent contacts to the surrounding matrix. Cell shape 

undergoes a non-adhesive conformational adaptation to the matrix, matching the path of 

least resistance. Then, displacement is achieved by propulsive squeezing pushing the 

cytoplasm through openings in the ECM (40). 

Collective migration occurs when cells remain physically and functionally 

connected to each other during movement, either transiently or permanently. 
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Additionally, there is a supracellular organization of the actin cytoskeleton (5). Similar to 

single cell migration, it has been observed in 2D and 3D contexts (41). In vivo, collective 

migration has been found to serve mutually exclusive roles with single cell migration; 

collective migration is essential in building complex tissues, including epithelia, while 

single cells cover distances and integrate into already formed tissues (28). Similar to 

single cell migration, collective migration is classified according to the morphology of 

the collective: chain, detached cluster, keratocyte-like, and luminar migration are some 

examples (5). 

Whether in single cell mesenchymal or collective migration modes, the migration 

process requires cells to navigate the ECM. This entails a dynamic deposition, 

rearrangement, cleavage, and degradation of components in the matrix. Deposition is 

performed not just by migrating cells but in some cases auxiliary cells such as fibroblasts 

(42). Degradation is performed by proteases, including matrix metalloproteinases 

(MMPs) (43). This family of functionally related zinc endopeptidases has been found to 

be involved in migration in vivo and in vitro (44). Focalized proteolysis is of particular 

importance in collective cell migration, in which migration is more space consuming 

within a tissue (45). In the case of migration in cancer, cells have been found to use 

surface localized as well as secreted MMPs, serine endopeptidases, and cathepsins to 

cleave ECM components, including collagen, laminin, and fibronectin (46, 47). 

2.1.3 Intercellular Adhesion 

Different types of multiprotein complexes constituting cell-cell adhesions exist in 

tissues with differing degree of strength and communication based on its components. 
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These include adherens junctions (AJs), desmosomes, gap junctions, and tight junctions 

(48). While gap and tight junctions provide communication for chemical and osmotic 

regulation of the intracellular environment, AJs and desmosomes anchor cells and 

provide mechanical communication. Further, desmosomes form patches that link cell-cell 

junctions to intermediate filaments, while AJs exist along the cell-cell boundary and bind 

to the actin cytoskeleton to form adhesion belts. In both AJs and desmosomes, members 

of the cadherin protein family bind to each other on opposing cells, forming homotypic 

bonds (49). 

In collective migration, with transient cell-cell bonds and changing boundaries, 

AJs constitute the principal link between cells. Based on tissue type, different members 

of the cadherin family are found. This family includes N-cadherin, common in neural 

tissues, P-cadherin, originally found in the placenta but increasingly in other tissues, VE-

cadherin in endothelial cells, and E-cadherin in epithelium (2, 50). 

In epithelial tissue, E-cadherin structure consists of a cytoplasmic domain, a 

transmembrane domain, and an extracellular region  comprised of five ectodomains 

(ECs) (51). Along with E-cadherin, AJs also include catenin molecules (52, 53). Catenin 

molecules are the link between AJs with the cytoskeleton. The individual or joint 

presence of the different catenin molecules in AJs indicates stability and maturity of 

junctions (54). β-catenin, γ-catenin, and p120 catenin can bind E-cadherin, with γ-catenin 

substituting β-catenin as a junction matures. α-catenin in turn binds either β-catenin or γ-

catenin and the membrane-cytoskeletal protein vinculin, which in turns binds actin (54). 

AJs are dynamic structures, and regulation of their composition is determined by 



 

12 

different processes in the cell, including Wnt/β-catenin signaling, N-glycosylation of E-

cadherin and other cellular components, and the transport of E-cadherin between different 

cellular pools (9, 55). 

The Wnt/β-catenin signaling pathway is a key regulator of development and cell 

fate. First discovered in Drosophila melanogaster, this pathway is highly conserved in 

mammalian systems where it determines the patterning of the embryo and contributes to 

renewal of adult epithelium and stem cell homeostasis (56–60). Upon activation, the 

pathway upregulates the levels of the cytoplasmic non-E-cadherin-associated pool of β-

catenin. This form of non-phosphorylated β-catenin is referred to as active β-catenin 

(ABC). In particular, the canonical Wnt ligand, Wnt3a, binds to the trans-membrane co-

receptors lipoprotein receptor-related proteins 5 or 6 (LRP5/6) and the Frizzled receptors. 

Upon Wnt3a binding, β-catenin accumulates in the cytoplasm and moves to the nucleus 

where it acts as a transcriptional co-activator along with T-cell factor (TCF) to induce 

multiple Wnt target genes. It has been proposed that in the absence of Wnt3a, a β-catenin 

destruction complex (BDC) comprising Axin, adenomatous polyposis coli (APC), and 

glycogen synthase kinase 3β (GSK-3β) is free in the cytoplasm to phosphorylate β-

catenin leading to its degradation. Instead, when Wnt3a is present and Wnt/β-catenin 

signaling activated, the destruction complex is sequestered in the membrane (61). 

The number and complexity of N-glycans (i.e. oligosaccharides attached to 

asparagine (N) residues) in the ECs of E-cadherin modulate the force sensing ability and 

stability of AJs (62). Protein N-glycosylation, like Wnt/β-catenin signaling, has been 

identified as a fundamental process to eukaryotic life (63). This process consists of 
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synthesis of a lipid-linked oligosaccharide (LLO) precursor, its co-translational transfer 

in the ER to the polypeptide within the Asn-X-Ser/Thr consensus sequence, and further 

modification of the glycan through branching or addition of complex carbohydrates in the 

Golgi (64–67). There are four possible sites available for N-glycosylation along the ECs, 

although this may vary depending on species (68).  Multiple glycosyltransferases have 

been identified in the N-glycosylation pathway; some are competing and have opposing 

effects on E-cadherin function (e.g. GnT-III, GnT-V) (63). Despite complexity of the 

pathway, early stages of N-glycan biosynthesis are highly conserved in eukaryotes. This 

suggests that mature LLOs play an important role in proper N-glycosylation, protein 

folding, and transport from the ER (67, 69). The first glycosyltransferase acting in the 

pathway is dolichol-P-dependent N-acetylglucosamine-1-phosphate-transferase (GPT), 

encoded by the gene DPAGT1. As expected, dysregulation of DPAGT1 has been 

observed to affect organization and assembly of AJs (16, 62, 70). 

As a Wnt target gene, DPAGT1 acts as a common node between N-glycosylation 

and Wnt/β-catenin signaling. N-glycosylation of Wnt components impacts Wnt signaling 

as measured by the abundance of ABC. The extent of N-glycosylation regulates the 

strength of the Wnt signal as both Wnt3a and LRP5/6 are only efficiently secreted and 

positioned at the cell membrane, respectively, if properly N-glycosylated (62). 

By affecting stability of AJs, N-glycosylation also affects E-cadherin recycling 

between cytoplasm and cell membrane. When unstable, AJs may disassemble and E-

cadherin is internalized in endocytic recycling compartments (ERC), where it is either 

sent to a lysosome for degradation or sent back to the membrane where it can form new 
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AJs (55, 71). In this way, cell-cell adhesion is regulated by a regulatory cell network 

comprising different cross regulating pathways. 

2.1.4 Cancer 

While cancer can develop in many different tissues and subtypes recognized by 

diverse molecular footprints, it is a precise term that describes uncontrolled cell growth; 

the rules that govern the transformation into malignant cells are dictated by a small 

number of molecular, biochemical, and cellular traits shared by most cancers (72). In 

what is believed to be a process analogous to Darwinian evolution, cells become 

malignant by accumulating mutations that grant the growth advantages that eventually 

lead to death. 

Tumorigenesis is the process by which uncontrolled proliferation and increased 

cell survival begins at a primary site, leading to formation of a tumor. Next, a subset of 

cells in the tumor gains the ability to invade neighboring stroma. When these cells 

migrate into the lymphatic or blood vessels, they can be quickly transported to distant 

sites where they can start secondary lesions, a process known as metastasis. Once 

metastasized, a series of secondary tumors cause organ dysfunction and eventually death 

(73). 

To form a tumor, cells must evade apoptosis and gain self-sufficiency in growth 

signals, insensitivity to anti-growth signals, limitless replicative potential, and sustained 

angiogenesis (72). The first four of these capabilities acquired by malignant cells allow 

the tumor mass to form. Sustained angiogenesis, the formation of blood vessels from 

existing vessels, is required to maintain it and allows further growth of the tumor (74). 
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Angiogenesis is needed to prevent death of the tumor cells from hypoxia and lack of 

nutrients due to the difficulty in diffusion in a dense tumor mass. The size and shape of 

tumors are thus closely associated with angiogenesis. 

Growth and structure of the tumor, and eventual exodus of invasive cells, are all 

dependent on the participation of auxiliary cells. Self-sufficiency of growth signals is 

achieved by malignant cells not only by generating their own, but by promoting release 

of signals by neighboring stromal cells (75). Intravasation, the process by with a cancer 

cell enters a lymphatic or blood vessel, has been seen to be aided in some cases by 

macrophages (76). 

Because invasion is a crucial part of the evolution of cancer, the study of cell 

migration has at many points been tied to the study of cancer (77–80). Degradation of the 

ECM, for example, is a mechanism intrinsic to cell migration that is dysregulated in 

cancer. Overexpression of proteases, including MMPs, ADAMs, and ADAMTS is 

common to metastasis; this helps create an environment suitable for invasion (44). 

Additionally, cellular pathways important to development, specifically to migration 

during tissue formation, are deactivated after morphogenesis only to be reactivated in 

malignant cells (16, 81). Cancer has become a relevant model to study migration where 

cell migration occurs in the form of single cells, 3D invasive strands, or detached clusters 

from the transformed tissue. In carcinomas, disruption of the tissue occurs through a 

process known as epithelial to mesenchymal transition (EMT) (82, 83). The disrupted 

epithelium breaks up, giving rise to either single cells with mesenchymal phenotype or 

detached clusters (84). 
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In EMT, polarized cells undergo a transformation characterized by the loss of 

cell-cell junctions and increased migratory activity into dedifferentiated invasive cells 

(84). EMT was first identified in neural crest delamination, the developmental process by 

which cells at the interphase between nascent neural epithelium and ectoderm separate to 

migrate throughout the embryo and differentiate (85). It has been observed in other 

cellular processes of high physiological significance such as wound healing and 

gastrulation, were it is a temporary and reversible phenomenon (84, 85). In human 

cancers, evidence of EMT is seen in molecular signatures, such as the upregulation of 

proteins Ctgf, vimentin, and N-cadherin and simultaneous downregulation of E-cadherin 

(86–88). Yet, the molecular processes underlying the observed cellular change to a 

mesenchymal phenotype remain poorly understood. 

2.2 Computational Background 

The study of biological systems through computational modeling allows for easy 

quantification of parameters that are technically difficult to measure experimentally. 

Also, experiments that are financially prohibitive can be simulated repeatedly, and slight 

modifications on the reference experiment are easy. Specifically, computational modeling 

is widely applied in the study of mechanosensing and mechanotransduction in cell 

migration; it has been used to characterize mechanotaxis, durotaxis, and tensotaxis (89–

92). Similarly, models of chemically induced migration (e.g. haptotaxis and chemotaxis) 

also exist (93, 94). 

Efforts to model cell migration computationally can be broadly classified as either 

mechanistic or phenomenological. The first set looks to use biomechanistic interactions 
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of the different components of the cell and ECM to explain the system’s behavior (e.g. 

migratory speed, direction) (95, 96). Because the molecular mechanisms behind single 

migration are understood, models addressing single cell migration usually belong to the 

mechanistic category. They tend to be detailed at the molecular scale. They have now, 

however, moved on to look at dynamics at the subcellular scale (97). Phenomenological 

models instead replicate the behavior of the whole cell to make conjectures on the 

mechanisms inside them (e.g. cytoskeletal dynamics) (98). 

2.2.1 Cell Migration Models 

The first model of single cell migration, DiMalli et al., was based on the distinct 

steps describing mesenchymal migration. Using a Newtonian force-based approach, this 

model describes a two-dimensional cell in terms of cell-ECM interactions, polarization of 

adhesion receptors, and the resulting traction forces in the front and rear of the cell (96). 

On a cell modeled as a two-dimensional rectangle, adhesion receptor dynamics 

are described as a reaction-diffusion problem that determines the distribution of cell 

adhesion receptors on the cell surface. Translocation occurs in opposition to the traction 

force that is determined based on the equilibrium FA concentration during sequential 

periods of lamellipodial extension, cytoskeletal contraction, and relaxation; the model 

accounts for endocytosis of unbound receptors and diffusion along the cell surface. A 

viscoelastic-solid model is used to describe force generation and distribution along the 

FAs. This modeled revealed a biphasic relationship between cell adhesion to the 

substratum and speed; a cell cannot move if too lightly or too strongly attached to the 

substratum. By also suggesting a relationship between cellular speed and cell stiffness for 
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a wide range of stiffness values, this model demonstrates the advantages of modeling 

systems where experimental measurements would be technically difficult. 

The first model of cell migration in three-dimensional environments, Zaman et al., 

was similar to the two-dimensional rectangle model. To scale to 3D, it incorporated the 

viscosity of the ECM and density of ligands along the cellular path (99). It was then 

expanded to include degradation of the surrounding matrix (14). Rather than calculate 

translocation as the response to traction, a drag force is included and the cell’s forces are 

assumed to be balanced. More simplistic in its approach than the 2D rectangle model, 

instead of having freely diffusive receptors on the cell surface, receptor number was only 

considered at the leading and trailing edges of the cell, with separate functions 

determining the two concentrations. Also, the cell is modeled as a sphere, so the Stokes-

Einstein equation is used to calculate speed and thus displacement of the cell (14). This 

model tested the implications of two experimentally supported relationships between 

MMPs and ECM ligands, helping discern the bidirectional coupling of cell-ECM 

adhesion and matrix degradation. 

Currently, single cell models have expanded to include both time and spatial 

dynamics within the cell as well as the effect of biochemical rates of intracellular 

signaling networks in migration. By using partial differential equations (PDEs), these 

models explore intracellular pathways regulating cytoskeletal dynamics, including 

processes of protein diffusion and advection within the cytoplasm, actin polymerization, 

fiber crosslinking, and actin-myosin contraction, diffusion of proteins along the 

membrane, and formation of FA spatially along 2D representation of the cell (97, 100). 
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Other models have been developed studying not the effect of dynamics inside the cell but 

outside of it. A model focusing on cell-ECM interactions considers the effect of contact 

guidance and matrix remodeling, taking into account matrix stiffness and architecture 

(101). 

Other models recreate specific phenomena of cell migration that occur in specific 

conditions and only in certain parts of the cell. Not all single cell models are mechanistic; 

some models explain migration by phenomenologically accounting for changing shape. 

This is the case of cellular Potts models (CPMs), in which cells are represented by 

multiple lattice based units, pixels or voxels base on dimensionality (102, 103). The 

boundaries of these units are grouped to represent a single cell and updated based on an 

energy minimization equation; each unit is assigned a spin. Factors relevant to cell 

migration, such as adhesion and cortical tension, are represented by a membrane tension 

parameter in terms of energy per unit length. Cell area or volume is constrained to a 

reference volume and compressibility. In this way, CPMs can distinguish between 

favorable and unfavorable cell configurations based on energy calculations. These 

models have effectively captured global features of tissue rearrangement but not capture 

its dynamics. 

No models of collective migration exist, because the phenomenon is not as well 

understood as single cell migration. There are, nonetheless, models that look at multiple 

cells simultaneously. As with single cell migration, models of cell populations look at 

cancer as a model system. Tumor growth models, belonging to the phenomenological 

category, represent a wide portion of existing models (104–106). 
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2.2.2 Tumor Growth Models 

Tumor growth models can be classified into agent-based models (or discrete) and 

continuum models. Much focus has been placed on the effect of proliferation, and the 

effect of nutrient availability, on tumor growth. By changing parameter values the models 

simulate different potential malignant phenotypes and assess the impact of the parameters 

on tumor growth rate, size, shape, and invasive potential. 

Agent-based models treat cells as individual units interacting according to a set of 

rules. They are phenomenological and have been used to explain phenomena such as 

organ morphogenesis in addition to tumor growth (106, 107). Cells are represented in 

multiple manners, either as points, agglomerations of spatial units (e.g. CPM), elastic 

circles or spheres, or irregular partitioning of space (i.e. tessellation) (15, 107, 108). 

Agent-based models often include stochastic decisions, such as migration direction or 

daughter cell orientation upon cell division (15); a migration step of each cell is either 

taken or not based on a probability and availability of the destination volume. The 

volume occupied by cells was originally represented by lattice points, but lattice free 

models were later developed. CPM models are an example or lattice-free agent-based 

models;  they are capable of recreating the phenomenon of cell streaming out of the 

tumor mass, probing the question of leadership in collective migration (103, 109). By 

simulating homotypic and heterotypic adhesion, these models have been able to simulate 

cluster detachment from tumor mass; however, they fail to account for dynamic 

regulation of adhesion at the single cell level (110). 

Continuum models are deterministic in nature, often defined by a set of analytic 
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equations. They are historically inspired in models from ecology, describing the 

population of cancer cells using population growth models (111). Shape change is 

modeled as a flux of cells within the cell mass (112). Similarly, the use of diffusion-

reaction equations simultaneously accounts for spatial variation in multiple factors 

external to the cell, including ECM components, MMPs, nutrients, growth factors, and 

oxygen (113, 114). Treating cell populations as a unit, continuum models have the ability 

to represent larger systems in a computationally efficient manner. They fail, nonetheless, 

to effectively take into account changing intercellular interactions (15). For instance, cell 

populations modeled as a continuum lack the ability to breakup or combine into new 

groups; crucial elements to collective migration, such as cell-cell adhesion, are not 

accounted for. 

Hybrid approaches, combining agent-based and continuum models also exist 

(115). In these, a lattice free agent-based representation of cells is superposed on a lattice 

used for diffusion of soluble factors. The concentration of these factors at points outside 

the lattice, where cells are found, can be interpolated. The lattice is updated in between 

migration steps by an extrapolation. These approaches have the advantages of both types 

of models, but are more computationally intensive. 

2.2.3 Self-propelled Particle (SPP) Models 

Studies with phenomenological models of cell collectives have focused on 

recreating the extent of invasion; however, a few have raised the question about the 

existence of pioneer cells leading the way (116). With this question at the forefront, 
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researchers have sought to understand the dynamics cells in collectives (117). This 

endeavor, however, belongs to the realm of collective behavior.  

Collective behavior can be defined as the emergence of complex migration 

patterns in scales larger than that of the individual elements forming the system (118). 

Observed naturally in swarms of fish or birds, for example, it can be simulated by 

restricting motion of a few particles with a small set of rules. This is demonstrated 

through self-propelled particle (SPP) models. SPP models are a specific class of agent-

based model that, in its simplest form, consist of restricting the velocity of particles along 

a line with periodic boundary conditions to the average velocity of all other particles 

within a radius (119). This simple one-dimensional model shows that given this simple 

setup alignment can be reached by all particles. With increasing noise, the direction of the 

motion can be reversed. 

Later expanded by others to two and three dimensions, SPP models have been 

widely used to study emergent complex behavior of multiple particle systems, including 

biological systems (12, 120). Parameters influencing dynamics include particle density, 

noise, and radius of interactions between particles. Analogous to phase transitions in 

physical systems, alignment of particles shows sharp transitions in parameter space (121). 

The behavior of the particles is also reminiscent of phase transitions with its sharp 

changes in internal diffusion, appearing to transition between states similar to crystal 

solids and fluids (12). 

These models can also be made more intricate and used to model more complex 

biological systems, such as locusts and birds as well as streaming in mammalian cell 
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monolayers (120, 122). SPP models are highly flexible due to their simplicity and have 

been made more sophisticated by adding attraction and repulsion forces to simulate 

volume exclusion, restricting the radial range over which particles influence its 

neighbors, or making the scaling of velocity highly parametric (12, 120, 123). More 

recently, SPP models have been used to simulate dynamics in groups of eight hundred 

cells with two different adhesion capabilities on a 2D surface. This showed evolution of 

the system towards segregation of the two distinct populations (124). 

2.3 Conclusion 

The evolution of SPP models is representative of a trend observed in modeling of 

cell migration; with increasing understanding of both physical and biological 

mechanisms, modeling of cellular systems evolves from being descriptive towards 

mechanistic. This dissertation presents a further step in this direction, using knowledge 

gained about regulation of intercellular adhesion along with physical studies of cell-ECM 

interactions, to elucidate the contribution of physical and biological factors to collective 

cell migration. 
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CHAPTER 3.  Rigid Cluster Model 

This chapter presents a first forced-based dynamics computer model of a cell 

cluster moving collectively in a three-dimensional environment mimicking the ECM. 

Derived from forced based mechanistic models of single cell migration (14, 95), this 

model of five cells joined in a cluster was developed taking into consideration the impact 

of three major factors: ligand concentration, matrix metalloproteinase activity, and cluster 

geometry. 

Existing efforts to quantify collective migration focus on groups of cells that arise 

from larger aggregates, as in tumors (110). There has been no effort, however, to quantify 

migration ability of detached groups of a few cells. This is the first attempt at doing so. 

This is a model of a rigid cluster in the sense that the geometry is fixed for each 

migration step. In between steps, however, the cells constituting the cluster may 

rearrange to one of seven possible configurations. Each configuration affects differently 

the way the cluster interacts with its surrounding environment. The velocity profiles of 

different migration simulations were recorded and analyzed. In particular seven different 

profiles are observed based on different participation of ligands, proteinases, and 

mechanical forces involved. The model is successful in showing potential effects of 

altering single parameters describing internal and external factors in a migrating cell 

collective. 

3.1 Introduction 

Collective cell migration is a relevant part of the mechanisms for tissue repair, 

morphogenesis, and cancer invasion (125). Particularly in cancer, invasion occurs 
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through multicellular 3D strands as well as collective cell clusters (126). Because cancer 

is a slow process, these clusters have not been observed in detail. The prevalence of this 

migration mechanism, however, makes it a target for study.  

Indeed the mechanism by which a cluster forms is unknown; it is suspected to 

require a polarization of multiple cells and physical coupling between the cells (126). 

Polarization occurs in the form of a leading edge similar to the lamellipodia in single 

cells, but that extends along multiple cells. This is evidenced by the formation a 

supracellular actin structure (5). Similarly, multiple cells also form a trailing edge. In 

contrast to single cell motion, where the back of the cell binds the substrate, the back of a 

cluster appears to be simply trailing the cells involved in protrusion. These characteristics 

are incorporated into the developed model to include their role in collective motion. Then 

the migration process additionally involves regulation of growth factor and chemokine 

expression, and formation of FAs (126). Accounting for all factors simultaneously is a 

challenging task that makes assessment of the influence of individual factors difficult. 

For this reason, this first model chooses to focus on polarization of forces for a fixed 

geometry during each migration step and degradation of the surrounding ECM. The latter 

is particularly important as this model broadens the understanding of cell migration 

specifically in three-dimensional environments. 

While experiments exploring migration on two-dimensional substrates have 

provided a valuable foundation for migration studies in three dimensions, a more 

thorough understanding of invasion in morphogenesis, tissue regeneration, and cancer 

metastasis require studies exclusively looking at the effect of factors only existing in a 
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three-dimensional environment. In contrast to 2D migration, where cells are exposed on 

top of a substrate that does not necessarily require remodeling, 3D migration implies 

navigation through a dense surrounding matrix. Experiments in 2D and 3D have yielded 

different results; this indicates that different mechanisms may become active or inactive 

based on the dimensions of the substrate. The composition of FAs also varies based on 

whether a cell is in a 2D or 3D environment (127, 128). 

Invasion by detached cell clusters has been observed in breast and colon 

carcinoma, prostate cancer, and melanoma. These cells retain high or intermediate levels 

of differentiation and are unlikely to disperse as individual cells (129). This has led to a 

hypothesis that cells move collectively because it provides mechanistic advantages such 

as maintaining high autocrine concentrations of pro-migratory factors, protecting inner 

cells from immunological assault, and allowing cells in a group to have different 

specialized functions advantageous to an invading body (129). Further understanding of 

this mechanism would provide new information on the molecular processes involved, and 

would be useful in characterizing more thoroughly all mechanisms of cell motion. 

3.2  Model Formulation 

3.2.1 Cluster Size and Geometry 

Because little is known about collective migration of cellular clusters, the size of 

the clusters remains unknown. A cluster of five cells is chosen to develop a 

computationally tractable model based on observations in other systems of collective cell 

motion and 2D studies (32, 33, 130). This is small enough to keep the model versatile for 
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further changes based on desired complexity while allowing enough distinct geometries 

to draw meaningful conclusions from the simulations. The number of cells is kept 

constant because it has been observed that a cluster will keep its integrity for hours at a 

time (32). Similarly, simulated cells are spherical; the radius can be found in Table 3-1. 

Simple constraints are used to determine the possible geometries: 1) Each cell can 

only be attached to a maximum of three cells. 2) Cells cannot come in contact unless they 

are connected (i.e. cluster is rigid). 3) There is a single trailing cell for each geometry, the 

cell at the end of the cluster along its longest dimension. While these assumptions may 

seem simple, they correspond to experimental observations on cluster geometry and size 

often seen in development and tumor growth and metastasis
 
(32, 125, 130). Using these 

constraints, six distinct planar geometries are defined: These are designated as linear 

geometries. Two clusters are considered distinct if they cannot be superposed taking in 

consideration the identity of the trailing cell. A seventh geometry, free of the first 

constraint, is also considered which consists of placing the five cells in the vertices of the 

polyhedron formed by joining two tetrahedrons by one face. The length of the sides of the 

geometry was twice the radius of the cells. This is designated as tetrahedral geometry. 

The seven resulting cluster geometries are displayed in Figure 3-1. The center of mass is 

calculated for each cluster geometry. 

Similar to previous work, each time step simulates the motion of the cell cluster 

over a large time step (~600s) to capture a complete migration cycle. After each 

migration step, based on a probability, the cluster either remains in the same geometry or 

changes to a geometry that would arise from formation or dissolution of a direct contact 
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between two cells. The change between geometries at every step is managed through a 

randomly selected probability based on the structural similarities of the chosen 

geometries; Table 3-2 contains the probability values used. An exception is the transition 

to the tetrahedral geometry, where two connections would have to be formed. No attempt 

at modeling cell-cell junction dynamics was made at this stage; however, it is assumed 

the probability of remaining in the same geometry is higher than that of changing 
16

. 

3.2.2 Forces Acting on the Cluster 

The model takes into consideration the distinct steps defining mesenchymal cell 

migration: polarization, contraction and resulting generation of traction forces, and 

retraction of the cell body (37). What this model introduces is the consideration that upon 

having multiple cells moving, these three major phases are modulated differently in 

different parts of the cluster (i.e. in different cells based on position within a cluster). The 

cluster geometry selected at each step determines how the forces acting on the body are 

defined. 

The net force acting on the cluster is described by Equation 3-1: 

 

Fdrag + Ftraction + Fprotrusion = 0   (3-1) 

 

where Fprotrusion is the sum of all the protrusion forces generated by each cell, Ftraction is 

the opposing traction force generated by summing the traction force generated by each 

cell at both its front and back upon cytoskeletal contraction, and Fdrag is the drag force 

experienced by the cluster as it retracts from the balance of protrusion and traction. The 
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protrusion and traction forces oppose each other in orientation. The traction force for 

each cell occurs due to the cytoskeletal contractile forces exerted against the adhesion 

sites; it is modeled as a fixed force scaled by a scaling factor defined as adhesivity (β), 

dependent on the number of ligands in the ECM and receptors on the cell membrane. A 

more thorough description of this force can be found in the work by Zaman et al. (99). 

Adhesivity is taken to be different in the front and the back of the cell to account for cell 

polarization. Adhesivity is defined in Equations 3-2 and 3-3: 

 

βf = k1 × nf × [Lf]     (3-2) 

 

βb = k2 × nb × [Lb]     (3-3) 

 

where k1 and k2 are the binding constants for binding of integrin molecules in the front 

and back of the cell respectively, nf and nb the total number of receptors (e.g. integrins) 

available in the front and back of the cell respectively, and [Lf] and [Lb] the 

concentrations of ligand molecules in both the front and back of the cell respectively (e.g. 

peptides in the ECM that can be bound by integrins). In the present model 95% of the 

receptors were considered to be in the front of the cell and only 5% in the back. The 

binding constant for integrin was considered the same for molecules in the front and back 

of the cell. The initial value of the ligand concentration and the value of the binding 

constant for integrin can be found in Table 3-1. 

These protrusion forces corresponding to each cell are added, as well as the 
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traction forces, forming a general force term for the whole cluster. This term is then set 

equal to the negative of the drag force for the whole cluster accordingly with Equation 3-

1. In this case, the drag force for the whole cluster is then used to calculate the velocity 

using Equation 3-4: 

 

|Fdrag | = ½ ρ × |v |
2
 × CD × A    (3-4) 

 

where ρ is the density of the surrounding medium, v is the velocity of the cluster, CD is 

the dimensionless drag coefficient dependent on geometry, and A is the reference area 

(projected frontal area of the cluster in the direction of motion). Table 3-1 contains the 

values used for CD and ρ. How these quantities are approximated is briefly discussed in 

the next section. 

Equation 3-4 describes the drag experienced by an object immersed in a fluid. For 

the case where the Reynolds number is very small (what is known as “creeping flow”) 

and the geometry is simple, the body drag can be computed. This was the case in 

previous models, where the drag force had been calculated through the Stokes-Einstein 

equation since a single cell was being modeled as a sphere (14, 99). In general for 

“creeping flow”, the drag coefficient if proportional to the Reynolds number, which when 

substituted into Equation 3-4 along with the known body drag simplifies the relationship, 

usually resulting in a proportional relationship between body drag and velocity. The 

proposed model, however, includes a varying geometry along with a changing 

environment which complicates calculation of the body drag. For this reason the more 
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general form of the drag equation was used, and an additional constant scaling factor was 

included to account for any shortcomings that arise for the unknown physical factors. 

3.2.3 Force Modulation 

As indicated previously, each of the main forces acting on every cell during 

motion is modulated based on the role of the specific cell in the cluster. These roles are 

not fully understood and subject to debate; some findings suggest this depends on the cell 

type from which the cluster originates and the tissue being transmigrated (126). For this 

reason, a series of assumptions based on observations on 2D and 3D in vitro experiments 

are used to define how forces are modulated in each cell in the cluster. This force 

modulation is intended to represent how forces, polarity, and adhesion affect cluster 

motion. 

A cluster of cells behaves similarly to a single cell in that it has a polarity that 

defines the direction of protrusion and maintains a general direction. In the case of 2D 

motion, cells facing the direction of motion form a leading edge, in which most lamellae 

are found (32). Nonetheless, cells on the periphery of this edge also have some protrusion 

activity (131). Meanwhile, trailing cells are simply pulled in the direction of motion 

(131). Their role appears to be to create a force perpendicular to that of cluster motion to 

maintain certain firmness of the whole structure. They are maintained perpendicular to 

the direction of motion by the lamellipodia of cells at the edges surrounding the back part 

of the cluster. It is as if these border cells attempt to leave the cluster but are kept due to 

their junctions with trailing cells. It has been observed that trailing cells maintain their 

role throughout the life time of the cluster; they have an elongated shape which does not 
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allow them to generate protrusions of their own
 
(32). The first assumption, based on these 

considerations, is that every cell that is not a trailing cell is taken to contribute to the 

protrusion force. Thus the ligand concentration and receptor number are of importance in 

the calculation of forces for every cell, not just the leader cell. The number of ligands and 

receptors will change for a cell with proteolytic activity, explained in section 3.2.4. 

In a second assumption, the cell that acts as the leader is allowed to change with 

each migration step. This cell is selected based on the direction of the protrusion force in 

that step. A constant value was used for the protrusion force for the leader cell, and its 

direction was randomly selected from the center of mass of the cluster. Any cell except 

for the trailing cell can be selected as the leader cell. Similarly, a single trailing cell was 

selected in each geometry. Unlike the leader cell, which changes based on direction of 

motion, the trailing cell is never changed (Figure 3-1). 

The model considers the possibility that every cell not acting as the leader has the 

potential to move within the cluster in each step, changing positions. This assumption 

accounts for the change of cell role within a cluster. For the case of five cell cluster, there 

are two pairs of cells that could exchange positions. For each pair there is a 10% 

probability of an exchange occurring. If an exchange occurs, then for each exchange 

event occurring, one less cell will be contributing to the protrusion force within the 

cluster since cells have been shown to translocate actively instead of passively within a 

cell collective (126). 

When calculating Fprotrusion, the contribution of each non-trailing cell is scaled 

based on the role of cells within the cluster in each specific step. Every non-trailing cell 
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different from the leader contributes with 25% of the magnitude of the protrusive force 

exerted by the leader cell; this force is exerted in the direction of motion. This percentage 

of contribution was selected arbitrarily based on the approximate area of the cell surface 

exposed to the environment. When calculating Ftraction, only the non-trailing cells that do 

not change places within the cluster were considered to contribute to the force. Unlike the 

protrusion force, the traction force is not scaled based on whether the non-trailing cell is a 

leader cell or not because it does not depend on a membrane exposure criterion (i.e. 

filopodia extension), and receptor density along the cell membrane can itself be regulated 

by the cell. 

Finally, calculation of the velocity (Equation 3-4) does not depend on the cell 

composition of the cluster but on the cluster geometry, because the drag coefficient and 

reference area are geometry dependent. In the model, the reference area was made to be a 

function of the direction at which the protrusion force acted on the cluster. This value was 

purposely made variant in order to counterbalance the rigidity of the cluster geometries 

and provide a more gradual change in the force values between geometries as would be 

expected for an actual cell cluster.  More specifically, the reference area was made a 

function of the angle between the direction of motion and the line formed by joining the 

centers of two cells farthest apart from each other in each geometry; the reference area 

was calculated in each step based on the new randomly selected direction of cluster 

motion. For the drag coefficient the value selected was judged to be approximate to the 

average of the possible values that could arise for the different geometries. 
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3.2.4 Proteolytic Activity 

Although the importance of proteolysis in collective cell migration is apparent, 

contact structures in three-dimensional movement remain poorly defined. This motivated 

the addition of proteolytic activity into the model. 

From the different proteolytic species known, only the action of matrix 

metalloproteinases was considered because certain MMPs (i.e. MT1-MMP/MMP14) 

have been identified as the rate-limiting collagenases, and interference with their action 

prevents efficient motion in vitro (132). In accordance with the positive results of 

previous work, both soluble and membrane-bound MMPs were simulated using a single 

generic active MMP term (14). Proteolytic activity is effectively awarded to a single cell 

because force generation and ECM degradation are spatially separated for single moving 

cells, and different cells have different functions in a cluster (133). For this cell with 

proteolytic activity, the generic MMP concentration term [M] affects the ligand 

concentration and the number of receptors, thus affecting adhesivity and in both ways 

affecting the traction force contribution of that particular cell. The relationship between 

these quantities is described in Equations 3-5 and 3-6: 

 

[Lf2] = [Lf] – [M]     (3-5) 

 

n = r × [M] × 10
6
      (3-6) 

 

where [Lf2] is the ligand concentration at the front of the cell with MMP activity, r is the 
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fixed total number of receptors expressed on a cell, and n is used to define both nf and nb 

in Equations 3-1 and 3-2. For cells without proteolytic activity, n is constant throughout 

the simulation and n is equal to the total number of receptors on the cell (Table 3-1). 

3.2.5 Ligand concentration 

The biphasic effect of adhesion on velocity is extended in this model to cluster 

migration. To match the relation between speed and adhesion, ligand concentration is 

lowered with each step such that eventually the cluster comes to a stop. Equation 3-7 

describes this decay in ligand concentration: 

 

[Lf]s+1 = [Lf]s – (5×10
-8

× [Lf]s×10
-16.5

 (s×10
5
+1))   (3-7) 

 

In this equation s represents the step in the simulation. This amounts to a change in ligand 

concentration from the initial value of 10
-5

 M, as seen in Table 3-1, to 10
-9

 M after 100 

steps of the simulation. Since [Lb] is equal to [Lf], this equation describes the decay in 

ligand concentration in the front and the back of each cell. 

3.2.6 Model Implementation and Simulated Conditions 

Computations were performed using Mathematica 7 software (Wolfram Research, 

Champaign, IL). Each simulation was run for 100 steps, and in each step the position of 

the center of mass and velocity were recorded. Due to the nature of the model, no 

singularities were observed. 

Two sets of simulations were run. In the first set, only the tetrahedral geometry is 
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used with no reconfiguration of cluster geometry in between migration steps. This 

presents a preliminary or reference case for cluster migration. In the second set, both 

linear and tetrahedral geometries are used. 

Initial implementations of the model resulted in the velocity becoming unbound 

due to the dynamic way in which ligand concentration and MMP concentration were 

defined (Equations 3-5 and 3-6). MMP activity overpowers the decay in ligand 

concentration and the force contribution of the cell with MMP activity would define the 

cluster behavior. This occurrence was addressed in multiple ways, providing the basis for 

different simulated conditions: 

1) Lowered MMP concentration: Reduction of the initial concentration of MMP to 

maintain this concentration lower than that of the ligand throughout the simulation. Initial 

MMP concentration was reduced from 10
-7

 (as specified in Table 3-1) to 10
-12

 M; then 

MMP concentration was increased by 10% in each step, making the final concentration 

10
-8

 M. 

2) Increased initial ligand concentration: The initial ligand concentration was set to 5 M 

instead of 10
-5

 M. This value may seem high, but it is chosen such that it does not conflict 

with the changing MMP concentration. Additionally, the ligand concentration decreases 

in each step based on Equation 3-7. 

3) Modified traction force:  Changing the adhesivity proportionality constants (k1 and k2 

in Equations 3-2 and 3-3) for the cell with MMP activity. The value of these constants 

was changed from 1 to 10
-6

. Even if this condition does not correspond to a physiological 

state (e.g. change in [M] or [L]), it was still implemented because the contribution of each 
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cell to traction of a whole cluster has not been characterized and open to exploration. 

4) Complete localized ECM degradation: Ignoring traction component of cell with MMP 

activity once overpowering occurs. 

3.3 Results 

3.3.1 Tetrahedral Cluster Has Widely Varying Speeds 

Figure 3-2 displays the resulting velocity profiles in time corresponding to each of 

the four conditions simulated only using the tetrahedral geometry. It can be observed how 

a dual behavior is observed with the magnitudes for the speeds alternating between 

values differing by one order of magnitude. This may give the appearance of two separate 

lines being observed in Figure 3-2; however, all points in these plots correspond to a 

single simulation (i.e. velocities correspond to motion of a single tetrahedral cluster). 

This duality is expected for this geometry since the drag is calculated based on only two 

possible orientations of the cluster (i.e. only two constant reference areas); as opposed to, 

when using seven cluster geometries, where orientation is defined as a function of the 

direction of the protrusion forces. This significant difference in speed based on selection 

of the leader cell is reflected in the trajectory of the cluster (not shown). The trajectory is 

very straight because speed is greatest when the leader cell is that opposite edge of the 

cluster to the trailing cell and much lower when any other cell acts as leader. It is 

important to note that both sets of velocities appear to follow the same trend throughout 

the simulation. This would lead to believe that other than the orientation, other factors 

such as ligand density, adhesivity, MMP concentration, etc. are play a significant role in 
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determining the motion of a cell cluster. 

Another important observation in the first set of simulations is that resulting 

velocities range between 0-0.5 μm/h for three sets of simulation conditions: Lowered 

MMP concentration (Figure 3-2a), modified traction force for cell with MMP activity 

(Figure 3-2c), and complete localized ECM degradation (Figure 3-2d). Meanwhile, the 

condition corresponding to an increased initial ligand concentration (Figure 3-2b) has 

significantly higher velocities ranging between 0-400 μm/h. The former are lower than 

the velocities expected for a cluster of five cells; the latter are higher than expected and 

closer to that of single cells. Although no in vivo recordings of the velocity of cell 

clusters in cancer exist, a cluster of around 15-30 cells is expected to move at 

approximately 66 μm/h (125). The velocity of single cells of the same type as those in the 

tumor was recorded to be approximately 193 μm/h. Although larger clusters of cells were 

recorded to move slower, there appears to be no proportionality between cluster size and 

velocity (32, 125). This model attempted to account for this as can be seen from Equation 

3-4, in which the only term affected by the number of cells is the drag force, dependent 

on traction and protrusion forces, both a consequence of the sum of forces exerted by the 

number of non-trailing cells. However the parameters reference area and drag coefficient 

are dependent on geometry which has a more complicated relation to cell number. The 

values recorded were satisfactory, being these the upper and lower bounds of velocity 

observed in cells. These values are expected to change if the contribution of each cell to 

cluster motion is known and adjusted accordingly in the model. Overall, the velocity 

profiles presented in Figure 3-2 are relevant as they are preserved in the second set of 
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simulations with multiple cluster geometries. These trends may indicate how a cell 

cluster responds to each of the four changes or premises to the system, which can 

potentially be explored experimentally. 

Additional simulations were run implementing two of the different conditions 

simultaneously. An exception was made for complete localized ECM degradation, since 

all other conditions imply active proteolysis. Any attempt to implement this condition 

simultaneously with any other would yield the velocity profile found in Figure 3-2d. 

Instead lowered MMP concentration was coupled first with increased initial ligand 

concentration (Figure 3-3a) and then with modified traction force (Figure 3-3b). Finally, 

another simulation was run with increased initial ligand concentration and modified 

traction force (Figure 3-3c). 

The velocity profile for simultaneous lowering of MMP concentration and 

increased initial ligand concentration is significantly different from the profiles obtained 

when implementing the same conditions separately. This indicates that both proteinase 

activity and ligand presence significantly affect cluster motion to a similar degree. 

The maximum velocity during the simulation is achieved relatively early, as is the 

case when only MMP concentration is altered. This is so because by that point in the 

simulation the increased ligand concentration has prevented MMP activity from 

significantly altering the force balance of the cells. However, the drop in velocity when 

including an increase in the initial ligand concentration is more drastic: This was 

expected since both concentrations are being altered, intensifying the lack of traction in 

the cell (MMP concentration although lower is still increasing). Interestingly, the profile 
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for a simultaneous increase in ligand concentration and altered participation of traction 

force for cell with MMP activity appears identical to that in which the two concentrations 

were changed. This can be explained by observing the profiles in Figure 3-2 for a 

lowered MMP concentration (Figure 3-2a) and a modified traction force applied 

individually (Figure 3-2c). The profiles are almost identical, except for a slight rise close 

to the end of the simulation in the second case. This suggests that the effect of changing 

the contribution of the traction force is equivalent to decreasing the MMP concentration. 

This also explains why the profile for lowered MMP concentration and modified traction 

force for cell with MMP activity (Figure 3-3b) is almost identical to that observed for 

each solution separately in Figures 3-2a and 3-2c. This is relevant because it shows the 

degree in which these quantities need to be changed to affect motility similarly. 

3.3.2 Dynamic Clusters Are More Aimless 

The second set of simulations is performed with a dynamic cluster that can 

potentially change geometries in every step; the cluster can adopt any of the seven 

geometries considered (linear and tetrahedral). Each of the four conditions considered to 

prevent the velocity from becoming unbound, along with the combinations of these, are 

implemented. Examples of the results for individual simulations for two conditions 

implemented individually can be observed in Figure 3-4. An average of the resulting 

velocity profiles over 100 simulations can be found for all conditions implemented 

individually (Figure 3-5) and of two conditions implemented simultaneously (Figure 3-

6). The same pairs of conditions were implemented together as in the simulations with a 

single tetrahedral cluster geometry. 
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The trajectories followed by the clusters in this second set of simulations are not 

straight, compared to those using a single tetrahedral geometry (not shown). Instead the 

clusters moved with some directionality while having periods in which movement 

resembled a random walk. This can be attributed to the fact that the probability of 

remaining in the same geometry between steps is higher than that of changing into each 

of another possible one. Also, from one step to the next the geometries adopted are close 

to each other since they are based on formation of a single connection between two cells 

as explained in section 3.2.1. These trajectories are not meant to be realistic since choice 

of leader cell was performed based on a randomly selected direction of the protrusion 

force. In the future, directionality persistence can be analyzed in a model in which 

chemical or other environmental cues are used to define direction of this force. 

As expected from the results of the first set of simulations (with a single 

tetrahedral geometry), the points are more scattered for each of the four simulations when 

using multiple geometries. This is evidenced by the non-smooth curves observed in 

Figure 3-4. This is explained because there are more possible configurations with 

respective reference areas defining the drag the cluster experiences. However, the same 

trends in the velocity graphs can be observed when comparing the corresponding graphs 

for the same solution in the two sets of simulations. To demonstrate this, simulations 

implementing each solution were run 100 times and the values for the cell cluster velocity 

at each step were averaged (Figures 3-5 and 3-6).  
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3.4 Discussion 

Collectively, the results suggest that velocity is more dependent on cluster 

geometry and less on external conditions to which the cluster is exposed (e.g. ligand 

concentration) and other factors such as MMP activity. In comparing the velocity profiles 

obtained for simulations with a single geometry and a changing geometry, it can be 

observed that the latter are higher. This is so because the recorded values are averages, 

including velocities that may differ even by one order of magnitude as shown in Figure 3-

2. Nonetheless, there is a significant difference in cluster speed between simulations with 

lowered MMP concentration (Fig. 3-5a), modified traction force (Fig. 3-5c), and 

complete localized ECM degradation (Fig. 3-5d) and the speed in the simulation with 

increased initial ligand concentration (Fig. 3-5b). The values are closer to those observed 

for cells in vitro for the former group (32): The velocity varied between 1-10 μm/h. For 

the simulations with increased initial ligand concentration (Fig. 3-5b) the velocity ranged 

between 1000-8000 μm/h. The velocity increases by the same factor as in simulations 

implementing the other three conditions compared to the simulations with only one 

geometry; however, these values are unreal. This occurs due to the very high, also unreal, 

ligand concentration used. 

With the development of force traction microscopy (FTM) as well as super 

resolution microscopy, it has become possible to measure the different protrusion and 

traction forces in migrating single cells or cells collectives in 2D (134). With these 

techniques displacement of labeled elements by the cells can be converted into forces and 

resulting stresses. Recently, efforts have been made to expand this technique into either 
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setups that mimic a 3D environment, by exposing cells to ligands from top and bottom, or 

embed cells in actual 3D matrices (135, 136). These attempts simplify the conversion of 

displacement into stresses, but provide, nonetheless, a spatial map of protrusion and 

traction by cells. The knowledge gained from these studies can be implemented in the 

rigid cluster model to refine polarization of the cluster. The model currently shows the 

importance of geometry and leader cell selection; it does this by yielding very discrete 

migration steps that change direction and speed drastically. This is very revealing, but 

should be addressed if using this model further. Most recently, a first attempt at 

quantifying tensile forces in collective migration seeded mouse mammary epithelial cells 

in designed micrometer-scale cavities in type I collagen (137). With this approach, the 

authors tracked only protrusions of the cluster as the clusters themselves do not move. By 

designing the geometry of the cavity, the protrusions resulting from geometry and 

surrounding ECM can be used to refine how protrusion forces are modeled and possibly 

how leadership is first established. 

With a constantly changing geometry also changes the probability of each cell 

being the leader cell, the reference area, and consequently the drag force experienced by 

the cluster. Even with so many variables affected by geometry of the cluster, the velocity 

profiles with changing environment or expression of receptors observed in the two sets of 

simulations are comparable if not equal in both shape and relative magnitude (compare 

Figures 3-2 and 3-5 or Figures 3-3 and 3-6). Independent of how speed is scaled, external 

parameters affect the cluster equally in all its conformations. This can play a role 

physiologically, where cells are many times forced to change or maintain a shape based 
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on the architecture of the surrounding tissue while still persisting in their movement. In 

this way, too the rigid cluster model is successful in creating cells with variable states that 

still present steady velocity profiles thus elucidating the relative importance of different 

environmental factors affecting cell locomotion. 

In general, the comparison between the two sets of simulations and the results for 

each of the implemented conditions show that altering a single parameter (or physical 

condition) will result in a different plausible cell cluster behavior. The model is 

successful in showing potential effects of altering single variables in a system of cells in 

motion in a complex 3D environment. Changes in a single measurable parameter led to 

significantly different velocity profiles. Sometimes similar to each other, varying 

biochemical factors may have similar physical effects on a cell cluster. 
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3.5 Tables 

 

Cell radius 25 μm 

Density of ECM 1.5 kg/m
3
 

Drag coefficient 0.65 

MMP concentration 10
-7

 M 

Ligand concentration 10
-5

 M 

Number of receptors (r) 10
7
 receptors/cell 

Binding constant for integrin 10
8
 M

-1
 

 

Table 3-1: Order of magnitude estimate of model parameters  
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GEOMETRY A B C D E F G 

a 0.4 0.2 0.2 0.2 0 0 0 

b 0.3 0.4 0 0 0.3 0 0 

c 0.3 0 0.4 0 0 0.3 0 

d 0.4 0 0 0.4 0 0 0.2 

e 0 0.4 0 0 0.4 0 0.2 

f 0 0 0.4 0 0 0.4 0.2 

g 0 0 0 0.2 0.2 0.2 0.4 

 

Table 3-2: Probabilities of changing cluster geometry between migration steps  

Geometries are denominated as in Figure 3-1. Lower and upper case symbolize initial and 

final geometries respectively. 
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3.6 Figures 

 

 

Figure 3-1: Schematic representation of the cluster geometries 

Each circle represents a spherical cell. a-f represent the "linear geometries", g the 

"tetrahedral geometry." The shaded circle in each geometry represents the trailing cell. 

The double-sided arrows between geometries represent the possible transitions that may 

occur between steps in the simulation. 
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Figure 3-2:  Velocity profiles implementing individual conditions 

Simulations were run using a tetrahedral geometry. Each graph represents a different 

simulation in which each of four different conditions to address overpowering of ligand 

presence by MMP activity: a) Lowered MMP concentration. b) Increased initial ligand 

concentration. c) Modified traction force for cell with MMP activity. d) Complete 

localized ECM degradation.  
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Figure 3-3: Velocity profiles implementing two conditions 

Simulations were run using a tetrahedral geometry. Each graph represents a different 

simulation in which two conditions to address overpowering of ligand presence by MMP 

activity were simultaneously implemented: a) Lowered MMP and increased initial ligand 

concentrations. b) Lowered MMP concentration and modified traction force. c) Increased 

initial ligand concentration and modified traction force.  
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Figure 3-4: Sample simulations using multiple cluster geometries 

Each run implements one of two of the four conditions (individually) used to address 

overpowering of ligand presence by MMP activity: a) Lowered MMP concentration. b) 

Increased initial ligand concentration.  
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Figure 3-5: Average velocities for simulations implementing individual conditions for 

multiple cluster geometries  

The simulations implement each of four different conditions to address overpowering of 

ligand presence by MMP activity: a) Lowered MMP concentration. b) Increased initial 

ligand concentration. c) Changing participation of traction force for cell with MMP 

activity. d) Complete localized ECM degradation. Averages are taken over 100 runs. 
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Figure 3-6: Average velocities for simulations implementing two conditions for multiple 

cluster geometries 

Each graph represents a different simulation in which two solutions to address 

overpowering of ligand presence by MMP activity were simultaneously implemented: a) 

Lowered MMP and increased ligand concentrations. b) Lowered MMP concentration and 

complete localized ECM degradation. c) Increased initial ligand concentration and 

modified traction force for cell with MMP activity. Averages are taken over 100 runs.  



 

53 

CHAPTER 4. Epithelial to Mesenchymal Transition (EMT) Model 

This chapter presents an agent-based model of the epithelial to mesenchymal 

transition (EMT), the process by which a whole epithelium loses its integrity and gives 

way to highly migrating cells or groups of cells (84). Characterized by the loss of cell-cell 

junctions and increased migratory activity, this process has not been fully described 

molecularly and the term is descriptive for epithelial discohesion; nonetheless, it is 

believed to occur in physiological process during development, such as in neural crest 

delamination, and the disruption of epithelium in carcinomas is indicative of a similar 

process (86, 87, 138). 

Most experimental studies on EMT search for molecular markers indicating an 

epithelial or mesenchymal conformation, they focus on afferent signaling pathways 

received by cells undergoing this transformation; however, these approaches are unable 

to track mechanical changes in the cell and the possible role this plays in EMT (88). In 

order to address this gap in our understanding, a quantitative approach is developed to 

study population level effects of single cell changes typically occurring during EMT. 

Similar to existing tumor growth computational models of cancer, the model 

presented in this chapter partitions space to define a cell and uses an elastic core to ensure 

volume exclusion. Cells are setup in a two-dimensional sheet over a discrete 

representation of the ECM. EMT is modeled by allowing cells to interact with each other 

and ECM fibers, dynamically forming cell-cell and cell-matrix adhesion complexes. By 

modulating the strength of cell protrusive force and different cell-cell adhesion dynamics, 
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the model reveals the impact of these factors on epithelial integrity and invasive capacity 

in EMT. 

4.1 Introduction 

During development of an organism or repair of many tissues, the ability of cells 

to change their behavior is crucial; cells can differentiate and dedifferentiate based on 

environmental cues to fulfill different tasks at different times. Although, both 

differentiation and migration are well known and studied processes, the exact quantitative 

nature of their relationship remains elusive. EMT is an example of an instance where 

modulation of this relationship can lead to very different and impactful outcomes. In 

EMT, polarized cells in the epithelium can undergo a transformation characterized by the 

loss of cell-cell junctions and increased migratory activity into non-polarized invasive 

cells (84). 

The complexity of the changes that a cell must undergo to alter its phenotype 

reveal how difficult it is to define EMT specifically. One of the more characteristic 

changes cells undergo during EMT is the reduction of cell-cell adhesions (139, 140). 

Cells undergo what is known as the cadherin switch; in the epithelium, cell typically 

express E-cadherin, whereas mesenchymal cells express N-cadherin. This switch can be 

induced by either intrinsic or extrinsic signals (84). This step is believed necessary for 

epithelial coherence to be lost. Because cadherin molecules through catenin molecules 

are connected to the cytoskeleton, including F-actin, it is believed that changes in 

adhesion can activate pro migratory pathways. Specifically, p120-catenin represses the 

activity of RhoA and activates Rac1; both actions aide cell migration by contributing to 
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the formation of migratory membrane protrusions (141). Additionally, movement of β-

catenin into the nucleus is associated with increased migration by modulating the 

expression of molecules such as L1-CAM, matrix-metalloproteases (MMP), and fascin 

(13). 

Changes in cells during EMT affect mechanical properties of the cytoskeleton, 

cell-ECM, and cell-cell signaling, as well as genetic regulation. Furthermore, these are 

highly interrelated aspects of cellular life, governed by complicated quantitative 

relationships. It is for these reasons that a computational study may provide an avenue for 

investigating EMT. Until now, little has been done to study EMT from a computational 

perspective. Among the few studies reported, Ramis-Conde et al. present briefly an 

application of an agent-based model of tumor growth in the context of EMT. They model 

the kinetics of the E-cadherin and β-catenin binding and track waves of a rise in 

intracellular β-catenin concentration across cellular populations in a sheet (13). When 

briefly applying their model to a migratory population, the potential for disruption of the 

epithelial layer is shown, but they abstain from quantifying their results in this regard. 

The model presented in this chapter take advantage of both single cell migratory models 

and agent-based cell population models to explore molecular processes that coordinate 

and affect cellular behavior and interactions during EMT. The model was developed 

along with Dr. Oliver Bates and published in Cells Tissues Organs (142). 
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4.2  Model Formulation 

4.2.1 Mechanical Representation of Cells and ECM 

Similar to existing agent-based models, this model keeps track of individual cells 

using a Delaunay triangulation to partition space and track neighboring relations among 

cells (108, 143). Each cell is modeled as a sphere with an elastic spherical core with a 

radius of 75% of the total cell radius. This allows cells to come into contact while 

guaranteeing volume exclusion through repulsion forces that emerge when the elastic 

cores come together; corresponding area of interaction is approximated based on 

spherical contacts. 

In addition to the position of the center of the elastic sphere, each cell is defined 

by its radius and concentration of cell membrane receptors (crec) and integrin 

concentration (cint). crec and cint are normalized relative to a maximum concentration, and 

therefore vary from 0 to 1. crec represents the relative presence of generic receptors for 

cell-cell interaction; crec can be taken to be the E-cadherin concentration in the 

simulations here presented. cint represents the relative concentration of generic integrins 

that interact with the extracellular matrix (ECM) for cellular migration. Cell proliferation 

is ignored in these simulations to isolate the effects of a limited set of cellular properties. 

The ECM is modeled as a set of discrete fibers, a novel approach compared to 

other studies where ECM is modeled as a continuum. The fiber network is created by first 

connecting all points of a cubic lattice with cylinders; the positions of the lattice points 

are shifted in a random direction by the same distance, and then each fiber is potentially 

cut based on a probability. The radius of each fiber is kept constant because the area of 
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interaction between cells and fibers is important in determining cellular traction forces.  

Each fiber has a quantity clig associated with it; this represents the concentration of 

peptides to which cells can attach through integrins. This quantity is normalized relative 

to a maximal value and kept constant for all fibers. Fibers do not move or change 

throughout the simulations. 

4.2.2 Force Calculation and Migration 

A force-based dynamics approach, similar that outlined in Chapter 3 for a cell 

cluster, was used to define motion of the cells. Each time step simulates the motion of 

each cell over 30s, during which all forces acting on the cell are summed. The sum of the 

forces is described by Equation 4-1: 

 

𝑭𝑡𝑜𝑡 = 𝑭𝑝𝑟𝑜𝑡  +  𝑭𝑒𝑙 + 𝑭𝑓𝑖𝑏  +  𝑭𝑑𝑒𝑡    (4-1) 

 

Fprot results from the sum of protrusion forces due to lamellipodial extension and traction 

forces generated by each cell due to its attachments to the ECM fibers. Its initial direction 

is chosen at random at the beginning of each step. Because this force would only lead to 

movement if there is a substrate for the cell to exert force on, it is broken down into 

components by projecting the force onto the planes of each ECM fiber in contact with the 

cell (Fpproj). At each point where force is exerted, a traction force opposing it is 

generated, so the projections are scaled based on two factors affecting traction:  The first 

factor (Ar) is the ratio of the cell surface area of interaction with a particular attachment 

point over the area of interaction with all fibers. The second factor (β) is an adhesivity 
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parameter similar to that presented in Chapter 3 defined as the product of ligand 

concentration on the fiber and integrin concentration on the cell. Once scaled, the 

resulting forces are added to obtain the final protrusion force acting on the cell. Equations 

4-2 and 4-3 display how this force is calculated for each cell; the subscript f is used to 

describe the identity of a specific fiber in contact with the cell: 

 

𝑭𝑝𝑟𝑜𝑡 =∑ 𝛽𝑓𝐴𝑟,𝑓𝑭𝑝𝑝𝑟𝑜𝑗 𝑓
𝑁

𝑓=1
    (4-2) 

 

𝛽𝑓 = 𝑐𝑖𝑛𝑡𝑐𝑙𝑖𝑔,𝑓      (4-3) 

 

Fel represents the elastic repulsion forces that come into action if two cells come too close 

together. Equation 4-4, from contact mechanics, has been used in cell models (143) and 

describes the magnitude of the elastic repulsion force for two spheres i and j (in this case 

two cells): 

 

| 𝑭𝑒𝑙| =
ℎ𝑖𝑗
3/2

3

4
 (
1− 𝜐𝑖

2

𝐸𝑖
+
1− 𝜐𝑗

2

𝐸𝑗
 )√

1

𝑅𝑖
+ 

1

𝑅𝑗

    (4-4) 

 

where hij represents the maximum overlap sphere i and j would have if they penetrate 

each other instead of deforming, E is the Young’s modulus of the elastic mini-sphere, υ is 

the Poisson ratio, and R is the radius. Similarly, Ffib represents the elastic repulsion force 
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that comes into action if a cell and a fiber come to close together. Unlike cells, fibers are 

considered to be all rigid (no elastic core) and have a higher Young’s modulus. This force 

prevents cells from moving across fibers. Its magnitude was approximated by calculating 

it with Equation 4 without using an elastic core for the fiber but using the actual radius of 

the fiber for R. 

Finally, Fdet is a small force acting on each cell pushing it towards all fibers with 

which it is in contact. Its magnitude is 10% of the projection of Fprot in the cell-fiber 

direction (closest distance); it is also scaled based on Ar and β. This force, with its small 

magnitude, is meant to compliment the pulling force moving each cell along a fiber since 

a cell cannot move along a fiber without attaching to it and changing shape. This force 

also prevented cells from becoming detached from the ECM in cases where elastic 

repulsion is high. 

The displacement of each cell is calculated based on the total force acting on the 

cell. By taking into account that the Reynolds numbers for cellular motion in tissue are 

very small, an overdamped approximation is used, and the total force felt by the cell is 

related to the displacement �̇� by Equation 4-5, where r is cell position (14, 99, 143). 

 

�̇� =
𝑭𝑡𝑜𝑡

𝛾𝑡𝑜𝑡
     (4-5) 

 

γtot represents the friction experienced by the cells upon motion. This term is a sum of 

multiple friction terms because hindrance in motion can be attributed to cell-cell 

attachments (γcell), cell-fiber attachments (γfib), and viscosity of the environment (γvisc) 
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due to extracellular fluid, hyaluronic acid, other glycosaminoglycans, and smaller fibrilar 

components of the ECM. These are defined in Equation 4-6, 4-7, and 4-8 for a cell i, 

where j and f are subindices to indicate adjacent cells and touching fibers respectively: 

 

𝛾𝑐𝑒𝑙𝑙 𝑖 = 𝛾𝑚𝑎𝑥∑ 𝐴𝑠,𝑖𝑗
1

2
(1 − 

𝑭𝒕𝒐𝒕 𝒊 · 𝒏𝒊𝒋

|𝑭𝒕𝒐𝒕 𝒊|
)

𝑁

𝑗=1
(𝑐𝑟𝑒𝑐,𝑖𝑐𝑟𝑒𝑐,𝑗)  (4-6) 

 

 𝛾𝑓𝑖𝑏 𝑖 =∑ 𝜑𝐴𝑟,𝑓
𝑁

𝑓=1
𝑐𝑖𝑛𝑡,𝑖𝑐𝑙𝑖𝑔,𝑓    (4-7) 

 

 𝛾𝑣𝑖𝑠𝑐 = 6𝜋𝜂𝑟0      (4-8) 

 

Equation 4-6 was taken from the work by Schaller et al. (143); here As,ij is the 

contact surface area of the two spheres i and j, γmax is a friction parameter, and nij is the 

vector from the center of cell i to cell j. In Equation 4-7, φ is a parameter representing the 

contribution to friction by each ligand-integrin bond. Following the Stokes-Einstein 

equation, because cells are modeled partly by spheres, Equation 4-8 uses the viscous 

resistance of the ECM, η. 

A check is in place before finalizing the migration step for each cell. This check 

ensures that the cell would potentially be able to move from the new position, specifically 

whether a fiber would be close enough for the cell to reach it with its protrusions. If no 

fiber is within the cell radius, then the movement is recalculated without the protrusion 
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force; that is only the elastic forces with respect to other cells and fibers are taken into 

account. This part of the simulation makes the assumption that a cell moves no more than 

as far as it could prod with its membrane projections; this is particularly true when the 

time step chosen (30s) is equivalent to a fraction of the cell’s total migration cycle 

(~600s). 

4.2.3 Model Implementation and Simulated Conditions 

The system is initialized by creating a sheet of cells representing the epithelial 

layer over a dense set of fibers representing the ECM underneath the epithelium. In the 

plane of the sheet (referred to as xy-plane), cells are placed in a hexagonal lattice initially 

equidistant from each other. The cells have a radius of r0 = 4.9 µm, and each cell is 

placed at 0.98×r0×√3 µm from each other and then moved randomly in both the x- and y-

positions by a randomized fraction of the distance 0.5µm. Similarly their z-position is 

randomized within 1µm of the plane. It is the initial z-position before randomization of 

the cells that is used to track invasion of the invasive cells leaving the layer into the 

ECM. The layer is formed by 418 cells and is close to squared; cells at the edge of the 

sheet are not allowed to move. This initial configuration was chosen such that cells would 

all start tightly packed to prevent the sheet from losing its shape by expanding its 

boundaries. 

The fiber network was initialized at the beginning of every simulation as well. 

Figure 4-1 depicts this initial configuration. The lattice points defining the fiber network 

were positioned 11 µm from each other and displaced by 9 µm. There was a 30% chance 

of each fiber being cut. These numbers were chosen such that the resulting fiber network 
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would have an approximate average fiber length of 15 µm as was found by confocal 

reflectance microscopy in collagen gels used in in vitro cell migration studies (144). This 

resulted in approximately 8000 fibers in a space of approximately 5×10
-3

 mm
3
. The 

extent of the matrix in x- and y- directions was the same as the epithelial layer, and it was 

200 µm in the z-direction (arbitrary choice such that no cell would migrate to the end of 

the matrix in this direction). The radius of the fibers was chosen to be 0.5 µm. 

Each simulation consisted in setting up the epithelial layer over the ECM and 

letting the cells move for equivalent to 3 days (8640 steps). Two different parameters 

were changed in the different simulations: First, magnitude of Fprot and, secondly, the 

mechanism by which E-cadherin concentration is controlled. Two different constant 

values of the protrusion force magnitude were used, defined from now on as the low 

force and high force: Low value is |Fprot| = 0.0025 µN, and the high value is |Fprot| = 

0.005 µN. These values were chosen heuristically; the low magnitude represents the 

lowest protrusion value with which a cell may detach from a cell mass (e.g. tumor or cell 

sheet), and the high magnitude represents the highest possible force with which cells 

move without causing high repulsion elastic forces with fibers. 

The E-cadherin concentration was either left constant at crec = 1.0 or allowed to 

vary for each cell moved based on the changing surface area of interaction with all 

neighboring cells as described by Equation 4-9. These settings will be referred to from 

here on as constant cadherin concentration (CC) and dynamic cadherin concentration 

(DC), respectively. 
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𝛥𝑐𝑟𝑒𝑐 = √
 𝛥𝐴𝑠 

4𝜋𝑟0
2      (4-9) 

 

where ΔAs is the change in area of interaction with all neighboring cells at each step. 

4πr0
2
 represents the maximum change in area of interaction (i.e. surface area of the cell). 

By considering all combinations of the protrusion force magnitude and E-cadherin 

concentration regulatory mechanisms, four different conditions are simulated. Each 

condition is run ten times and three quantities measured every 2880 steps (1 day): 1) 

Number of cells that leave the layer, defined as number detached cells at least at three 

cell radii distance from the initial z-position. 2) Percentage of initial number of cells that 

remain in layer, defined as percentage of cells within 2 μm from initial layer z-position. 

This is meant as an approximate measure of epithelial layer disruption. 3) Average depth 

of penetration of invasive cells. 

4.3 Results 

4.3.1 Intercellular Adhesion Impacts Invasion More than Membrane Protrusion 

First, the number of cells that detached from the cell sheet are quantified in the 

different conditions. Figure 4-2 shows the number of cells that detach from the epithelial 

layer and make it a distance of at least three cell radii from the initial position into the 

fiber network (i.e. in the z-direction). 

These results show how having a high protrusion force or being able to reduce, 

even temporarily, cell-cell attachments is enough to cause a cell to leave the epithelial 

layer; Figure 4-2 shows how individually these characteristics are enough to trigger 
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cellular exodus. No cell left the layer in the CC/LF condition. Also, in all simulations 

implementing the CC/HF condition, only a single cell left the epithelial sheet in a single 

simulation. This suggests that a cell losing its cadherin junctions is more relevant to EMT 

than increased migration activity; however, the average number of invasive cells, taking 

into account variance of the results, is close in the CC/HF and DC/LF conditions. 

4.3.2 Epithelial Disruption Occurs Soon After Dysregulation 

The results also suggest that there is no significant increase in the number of 

invasive cells as a function of time; most cells leave the epithelial sheet in the first day. 

The progression of epithelial sheet deformation reveals a possible reason for this 

observation. Figure 4-3 shows images of the system at day 3 for each of the four 

conditions used in the simulations. The epithelial sheet breaks up into cell clusters as a 

function of time. The progression of cell detachment with time suggests that a cell is 

more likely to detach from a single-cell layer than a circular cluster. 

This is explained by the difference in total contact area between cells in a sheet 

versus in a bulb shaped cluster. This result may be a model-specific observation that does 

not hold true if cells are not modeled as elastic spheres. Progressive clustering of cells in 

the sheet seems to be more drastic in the simulations where cells move with the high 

protrusion force (HF) and especially with the CC/HF condition (Figure 4-3b). When the 

protrusion force is high, but cells still have strong cell-cell junctions, it may be more 

likely for cells to move towards other cells than away into the ECM. 
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4.3.3 Epithelial Sheet Disruption Evolves Independently of Cadherin Regulation 

Figure 4-4 shows the average fraction of cell remaining in the epithelial sheet for 

each condition and characterizes the sheet’s shape change for all simulations. This is a 

metric inversely related to membrane disruption. Membrane disruption seems to advance 

at the same rate independently of the method of cadherin regulation. Taking into account 

the observed clustering, it is not immediately apparent that at every checkpoint (i.e. each 

day), the average values of the fraction remaining in the sheet are practically equal for 

simulations where cells have the same protrusion force independently of cadherin 

regulation. This suggests it may be the high protrusion force that causes the clusters to 

grow in the z-direction away from the ECM and pushes cells off the plane even when a 

high and constant cadherin expression leads to clustering. Additionally, there is less layer 

disruption in the conditions where cells move with the low protrusion force (LF). This 

occurs because it would be less likely for cells to return to the layer if the cell sheet itself 

has not clustered reaching deeper into the fiber network. 

Membrane disruption due to single cell migration into the ECM appears to be 

minimal. Even in cases where a relatively high number of cells leave the sheet it is 

merely ~2% of all cells; most of the disruption is due to cell rearrangement within the 

sheet. While Figure 4-2 shows no significant change at each checkpoint after day 1, 

Figure 4-4 shows a steady decline for all conditions in the average fraction of cells 

remaining in the layer. 

This steady decline confirms that while cells are active all throughout the 

simulation they can only escape the sheet in the first part of it. It is much harder for a cell 
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to leave a cluster than a sheet because the part of its surface area that interacts with other 

cells is much higher than when in a sheet. This new position within the cell collective 

hinders its motion due to the increased cell-cell attachments as well as the more limited 

access to fibers. Nonetheless, even if cells cannot move as easily individually, those at 

the edges of a cluster do impart force and, due to volume exclusion, the repulsion forces 

continue to push the cluster away from the fiber network causing the progressive drop of 

the fraction remaining in the sheet. 

4.3.4 Hindered Transport Plays a Role in Single Cell Migration 

Finally, the depth of migration of cells into the fiber network is quantified. Figure 

4-5 shows the average penetration depth for all cells along with the maximal penetration 

observed during all simulations for the four conditions considered. Most surprising is that 

the average invasion depth for simulations with the DC/LF condition was comparable to 

the two conditions where cells attempted to move with the high protrusion force (CC/HF 

and DC/HF). This can be attributed to the phenomenon of hindered transport, previously 

observed in studies of motion of spherical particles in fibrous media; this phenomenon 

consists of a deeper penetration by the particles in question when there are fewer other 

particles in its surroundings to collide hindering each other’s movements (145).  

4.4 Discussion 

The EMT model suggests cell clustering is important in epithelial sheet 

disruption. It demonstrates the ability to probe the impact of cell-cell adhesion and 

protrusive forces in epithelial integrity. Specifically, it shows how cell-cell adhesion 
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impacts invasion more than the strength of the membrane protrusion force. More 

importantly, it shows that both physical and biochemical regulation of interactions in cell 

collectives can account for the rise of collectivity. This is a difficult relationship to 

discern experimentally in 3D. Recent work placing collagen matrices between 

microfluidic channels, has provided a way to measure to effect of chemotaxis in 3D 

(146). This work has revealed the effect of growth factor concentration gradients on a 

brain cancer cell line (U87MG). By using coupled convection-diffusion equations solved 

with commercial finite element solvers, it shows how the spread of factors can be 

modelled in collagen type I gels. These same methods could be applied to our EMT 

model to study the combined effects of paracrine signaling, MMP secretion, and 

chemotaxis on epithelial cell invasion. 

Evidence that hindered transport plays a role in single cell migration 

demonstrates the importance of accounting for physical phenomena when studying cells. 

In the simulations analyzed in this chapter, although the ECM was randomized in every 

simulation, the distribution of fiber length and diameter always matched in vitro 

measurements. Additional factors not considered, such as matrix remodeling, are 

examples of biochemical contributions not exclusively physical, that define the cellular 

environment that certainly impact cell migration. Measurements done with confocal 

reflectance microscopy have revealed the change in fibril fraction and pore size in 

collagen gels with the presence of cells (144). These measurements can be used to model 

matrix remodeling realistically; however, such an effort should take into account the 

mechanical effect of remodeling. Cells sense their environment and reorient based on 
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mechanical stretch (147). Remodeling of the environment will affect strain of the 

fibrillary structures of the ECM, which in turn will affect the behavior of the epithelial 

cells. Calculating the change in stresses that come with remodeling of the ECM is a 

difficult tax given the heterogeneous nature of the ECM. Such models looking at the 

change in mechanical properties of a fibrillary network have been developed for 2D 

systems (148). Their expansion to 3D would be rewarding given that metastatic cells are 

known to migrate down density gradients (149). Inclusion of these considerations in the 

EMT model would provide a way to spatially monitor the relation between ECM density, 

ECM remodeling, and cell migration. Currently, only well-defined interphases between 

different environments have been studied experimentally. The model here presented has 

the potential to look at migration in a simulated environment accounting for the dynamic 

nature of the ECM. 

The results displayed in Figure 4-4 raise the question as to whether or not EMT 

causes an epithelial layer disruption, since most of the disruption occurs due to cell 

rearrangement within the sheet. Boyden chamber experiments analyzing the genetic 

expression of factors associated with EMT in the more migratory cells (i.e. snail and 

slug) have helped characterize what characteristics make epithelial cell more invasive, 

confirming the downregulation of E-cadherin in invasive cells (150). The results obtained 

in our simulations suggest that epithelial sheet disruption can evolve independently of 

cadherin regulation; however, there is little invasion unless cell-cell junctions are broken 

and then reformed.  

Collectively, the observations presented in this chapter show that the EMT model 
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can provide insight into epithelial dysregulation, but similar to the rigid cluster model 

presented in Chapter 3, it lacks a more realistic description of cell-cell junctional 

regulation, necessary for the emergence of cell collectives. Nonetheless, the EMT model 

is computationally intensive, with its demanding partitioning of space and discrete ECM. 

To exclusively describe collective motion, a computational model could focus on 

intracellular regulation of cell-cell adhesion rather than cell-matrix interactions.  
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4.5 Tables 

 

Parameter Value Units Reference 

Integrin concentration on cell, cint 1.0 No. Fixed 

Ligand concentration on fiber, clig 0.5 No. Fixed 

Cellular (mini sphere) Young’s modulus, E 5×10
-3

 MPa (151) 

Fibrilar Young’s modulus, E 1×10
-2

 MPa Assumption 

Cellular (mini sphere) Poisson ratio, υ 0.5 No. Assumption 

Fibrilar Poisson ratio, υ 0.5 No. Assumption 

Cell-cell friction parameter, γmax 5×10
-3

 kg / μm
2
 / s Estimated 

Ligand-integrin friction per bond, φ 1.0 kg / s (99) 

Viscosity of ECM, η 1×10
-3

 kg / μm / s (151) 

 

Table 4-1: Parameter values for force calculation in EMT model 
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4.6 Figures 

 

 

Figure 4-1: Initial configuration of EMT simulation 

Cells, shown in red, in a hexagonal lattice forming a sheet (left) over discrete fibers, 

shown in cyan, representing the ECM (right). 
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Figure 4-2: Number of cells leaving epithelial layer 

Values recorded at 1, 2, and 3 days for the four different conditions. CC = constant 

cadherin concentration, DC = dynamic cadherin concentration, LF = low protrusion force 

magnitude, HF = high protrusion force magnitude. Average was calculated over ten 

simulations; error bars represent one standard deviation. 
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Figure 4-3: Final conformation of the cell sheet in EMT simulations 

Each image shows a sample conformation at day 3 for the four different conditions used 

in the simulations: a) Constant cadherin and low protrusion force (CC/LF). b) Constant 

cadherin and high protrusion force (CC/HF). c) Dynamic cadherin and low protrusion 

force (DC/LF). d) Dynamic cadherin and high protrusion force (DC/HF). Red cells are 

under tension above a certain value (1 Pa) and less likely to become loose than green 

cells, with tension below this value.  
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Figure 4-4: Cells maintaining epithelial integrity 

Values correspond to cells within 2 μm from initial layer z-position at 1, 2, and 3 days for 

the four different conditions. CC = constant cadherin concentration, DC = dynamic 

cadherin concentration, LF = low protrusion force magnitude, HF = high protrusion force 

magnitude. Average was calculated over ten simulations; error bars represent one 

standard deviation. 
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Figure 4-5: Cellular invasion into ECM 

Values correspond to average invasion depth of cells that left the epithelial layer into 

fiber network at 1, 2, and 3 days for the four different conditions (top) and maximum 

invasion depth for all simulations at 1, 2, and 3 days for the four different conditions 

(bottom). CC = constant cadherin concentration, DC = dynamic cadherin concentration, 

LF = low protrusion force magnitude, HF = high protrusion force magnitude. For top 

graph, average was made over ten simulations; error bars represent one standard 

deviation.  
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CHAPTER 5. Intracellular Regulation of Intercellular Adhesion 

This chapter presents a first numerical model of the network composed of the 

evolutionarily conserved Wnt/β-catenin signaling pathway, protein N-glycosylation, and 

E-cadherin-mediated intercellular adhesion. This regulatory cell network (RCN) plays 

pivotal roles in determining the balance between proliferation and adhesion during 

development and in maintaining homeostasis in differentiated tissues (56, 58).  The 

different pathways have been studied independently; however, little insight has been 

gained about the dynamics of their interaction. 

Considering the large number of molecules involved and their changing levels of 

expression with time, the wide range of plausible cellular states are evident. Thus, the 

study of the network merits use of mathematical modeling, allowing for quantification of 

any molecule included in the model.  A system of ordinary differential equations (ODEs) 

was used to describe the reactions using kinetic reaction rates obtained from literature. 

Activation of the Wnt/β-catenin pathway with Wnt3a was simulated to determine the 

resulting fold-change in the molecular concentrations at multiple time points. 

Local sensitivity analysis (LSA), performed on the mathematical description of 

the network, reveals the importance of N-glycosylation in the regulatory network, 

confirms the importance of the molecule axin in β-catenin degradation, and provides a 

measure of the relative importance of the component pathways. The model’s predictions 

are validated by inhibiting β-catenin co-activation of DPAGT1 in MDCK cells with a 

small molecule inhibitor. Notably, the model predicts the relative change in stability of 

cell-cell junctions with inhibition. Through this numerical exploration of the dynamic 
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regulation of AJs in epithelial cells, the model can be further used to gain insight into 

intercellular interactions in cell collectives. 

5.1 Introduction 

Many cellular processes are highly conserved in evolution with a small set of 

proteins constituting a regulatory skeleton of cellular control (152). These regulatory 

proteins have been shown to exhibit pathway fidelity; however, due to their limited 

number, it is increasingly clear that different pathways form intricate regulatory networks 

that share these proteins. Understanding these regulatory mechanisms is likely to provide 

important new insights into interactions among multiple pathways in physiological and 

pathological processes. Here focus is placed one such RCN formed by the pathways: 

Wnt/β-catenin signaling, protein N-glycosylation, and E-cadherin-mediated adhesion. 

Study of this network is critical because of its functions in building and preserving tissue, 

and when awry, it has been associated with detachment of cells from the epithelium and 

increased cellular migration (16, 153). 

Figure 5-1 provides a broad representation of the relation between the pathways 

constituting the network (9, 16). This representation is insufficient to predict cellular 

behavior when we consider the large number of interacting molecules, their spatial 

organization, and the extensive crosstalk. Furthermore, rather than considering the effect 

of one pathway on another static, the varying molecular concentrations in time can cause 

the pathways to affect each other in contradictory ways at different times. For this reason, 

study of the network merits use of mathematical modeling allowing quantification of any 

reaction and molecule in the RCN. In a first model of the Wnt/β-catenin signaling 
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pathway, the Lee model, reaction kinetics were used to describe the concentration and 

effective half-life of ABC (154). This RCN model is based on the Lee model and 

“descendant models” and has been expanded to explore the feedback loops in the 

network; it is the first cellular network numerical model to take into account the cross-

talk between Wnt/β-catenin signaling and N-glycosylation. The effect of this cross-talk 

on E-cadherin mediated intercellular adhesion is analyzed and used to predict the effect 

of inhibiting β-catenin co-activation of DPAGT1. Agreement between simulated and 

experimental responses to activation with Wnt3a provides confidence about the 

predictive capability of the model. 

5.2  Model Formulation 

A reaction scheme was designed according to the current understanding of 

pathways comprising the RCN (Figure 5-2). The entire scheme comprises 26 processes. 

In broad terms, the reactions can be classified as those pertaining to Wnt/β-catenin 

signaling and β-catenin regulation (reactions 1-10), genetic activation of DPAGT1 and N-

glycosylation (reactions 11-19), and E-cadherin recycling and AJ formation (reactions 

20-26). 

Reactions 1-10 are a simplified version of the Lee model (154), differing in its 

simplification based on results obtained by Benary et al. from a minimal model (155). 

Additionally, the RCN model differs from the Lee model in two ways: First, whereas the 

Lee model uses Wnt3a presence as a switch that when “ON” it activates the protein 

Dishevelled, which  facilitates the interaction between axin and LRP5/6 (156), the  

proposed scheme  assumes a direct interaction between Wnt3a, LRP5/6, and the BDC 
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(157). Second, the RCN model includes another source of β-catenin accounting for early 

association of β-catenin and E-cadherin in the ER (55, 158, 159). To ensure that these 

changes did not affect the output of the model, the steady state concentrations of the 

shared variables in the Lee and the RCN models in the presence and absence of Wnt3a 

were compared. No major discrepancies were observed (Table 5-1). 

The reaction scheme was first represented mathematically as a set of ODEs with 

kinetic rates derived from literature (55, 154, 155, 158–161). When the system is solved 

with these parameter values, it is said to be in the reference condition. The complex 

formed by β-catenin and TCF was assumed to function as a transcription factor complex, 

driving the expression of GPT: Transcriptional induction was modeled as a Hill-type 

activation. This has been demonstrated to be appropriate for this system (155). The 

transport of E-cadherin between the cellular pools was modeled with fixed rates. A list of 

the ODEs can be found in section 5.7.1. 

The rates at which membrane E-cadherin/β-catenin complexes can assemble into 

or disassemble from AJs were made functions of an adhesivity factor (σ) for the pools of 

E-cadherin in the membrane and AJs, respectively. This time-dependent factor is 

calculated for E-cadherin pool in the ER upon synthesis as a function of GPT 

concentration and updated for other pools based on E-cadherin transport rates. This value 

is normalized to the maximum concentration of N-glycosylated E-cadherin that can be 

synthesized in a single step (heuristically determined). The value is 0 when E-cadherin is 

the least adhesive, and it is 1 when the most adhesive. A detailed explanation about this 

factor can be found in section 5.7.1. 
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To reduce the number of parameters, the ODEs were simplified into a system of 

differential algebraic equations (DAEs) based on two assumptions: rapid equilibrium 

approximation for reactions 1, 2, 6, 8, and 11 (Figure 5-2) and conservation of 

constitutive molecules (i.e. Wnt3a, APC, TCF, Axin/GSK-3β complex). The system of 

DAEs consists of 15 ODEs and 9 algebraic equations with 15 independent variables and 

9 dependent variables and can be found in section 5.7.3. The dynamics are described by 

35 parameters; a complete list of parameter values along with their sources is included in 

Table 5-2. For further explanation of how parameter values were chosen, see section 

5.7.4. 

5.3 Numerical Analysis 

With a mathematical description of the system, robustness to variations in 

parameters is tested. The different values correspond to different cellular conditions. 

Fold-change in the levels of β-catenin, rather than absolute abundance, determines the 

extent of Wnt/β-catenin signaling activation and its effects on downstream targets (155, 

162); for this reason, fold-change was used to test system response to different 

conditions. Fold-change is defined as the ratio of the concentration for the molecule after 

stimulation with Wnt3a (Wnt “ON” state) to the equilibrium concentration for the 

molecule before stimulation (Wnt “OFF” state). 

System sensitivity was tested by performing a LSA. This consists in varying 

kinetic parameter values independently for Wnt “ON” and Wnt “OFF” states. The system 

of DAEs was solved for specific time points after activation with Wnt3a, and the 

corresponding fold-change values were calculated. This approach finds which reactions 
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in the scheme are the most relevant in determining the fold-change response of individual 

molecules in the RCN. Two parameters were excluded from LSA: total amount of Wnt3a 

(WNT
0
) and the Hill coefficient describing binding of the co-transcription factors to 

DPAGT1. The former was excluded because it is used to define fold-change, the metric 

used for analysis. The latter was excluded because as a power term, it significantly 

complicates analysis, and because Benary et al. showed the relative insensitivity of the 

system to this parameter (155). 

Individual parameter values were varied over two orders of magnitude in a 

uniform logarithmic distribution, one above and one below the physiological value. For 

this variation, sensitivity of each variable to change in a parameter was defined by 

Equation 5-1 (163): 

𝑆𝑖𝑗(𝑡) =

(𝑋𝑊𝑛𝑡/𝑋0 )𝑖𝑗

(𝑋𝑊𝑛𝑡/𝑋0 )
𝑖 𝑝

 − 1

𝐹 −1
    (5-1) 

 

where X
Wnt

/X
0

ij is the fold-change in variable X (defined as the ratio of the value of X in 

the Wnt “ON”case to the value of X in the Wnt “OFF” state) calculated for variation in 

the ith parameter over j values. F is the factor by which the physiological parameter value 

(j = p) has been multiplied to get the jth parameter value. To reach a single value of 

sensitivity of a variable to a single parameter, the values of Sij are averaged over all j. 

Steady-state concentrations for both Wnt “OFF” and “ON” conditions were calculated 

using a numerical solver in Mathematica 10.2 (Wolfram Research, Champaign, IL). 
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5.4 Experimental Validation 

5.4.1 Cell Culture, Transfections, and Lysing 

For protein quantification, MDCK cells (NBL-2, ATCC) were plated at 

3x10
4
cells/cm

2
 in DMEM media (Gibco) supplemented with 10% fetal bovine serum 

(FBS) and 1% penicillin/streptomycin. To determine the effect of activating Wnt/β-

catenin signaling, cells were serum starved (1% serum) for 24h then grown in two 

separate states: a constitutive state with endogenous Wnt3a expression and an activated 

state with added Wnt3a in the form of conditioned media. The constitutive state implied 

using 50% conditioned medium isolated from either L-mouse fibroblasts (control 

conditioned media or CCM), while the activated state implied using 50% conditioned 

medium from L-mouse fibroblasts stably expressing Wnt3a cDNA (Wnt3a conditioned 

media or WCM) (ATCC). These conditions are equivalent to the simulated Wnt “OFF” 

and Wnt “ON” states, respectively, in the numerical simulations. 

To determine the effect of dysregulation of the RCN, cells were either treated with 

25 μM ICG-001 in 0.05% DMSO (Selleck Chemicals, Houston, TX) or only DMSO as a 

control. ICG-001 is a Wnt/β-catenin inhibitor that acts by binding cyclic AMP response 

element binding protein (CBP) antagonizing β-catenin/TCF-mediated transcription; by 

binding CBP, ICG-001 prevents its binding to β-catenin (164).  When cells reached no 

more than 30% confluency (3 days), cells were processed for preparation of total cell 

lysates (TCLs). 

For assessment of the effect of DPAGT1 upregulation on ABC expression to fit 

parameters from the N-glycosylation pathway, MDCK cells (NBL-2, ATCC) expressing 
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recombinant DPAGT1, were obtained by transfection of passage 2 cells with DPAGT1 

cDNA (Refseq NM_001382, Origene) at 80–90% confluence using Lipofectamine 2000. 

Controls included untransfected cells and cells transfected with a control pCMV6-Entry 

vector. After 14 h, the media were changed, and cells were divided into several plates. 

Media were changed every 2–3 days and supplemented with G418. After two weeks, 

cells were processed for RNA isolation and preparation of TCLs. 

To record collective migration dynamics, MDCK cells (II-G) with green 

fluorescent protein (GFP) conjugated E-cadherin (gift of James Nelson, Stanford 

University) were plated at 6x10
4
cells/cm

2
 in a 24-well plate. Cells were kept in DMEM 

media supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were serum 

starved (1% serum) for 24h then grown in the presence of 50% conditioned medium 

(controlled conditioned media or Wnt3a conditioned media) (ATCC). To determine the 

effect of a perturbation in the RCN, cells were either treated with 10 μM ICG-001 in 

0.1% DMSO (Selleck Chemicals, Houston, TX) or only DMSO as a control. When cells 

became confluent (3 days), the scratch-wound assay was performed. 

5.4.2 Immunoprecipitation 

Aliquots of TCLs containing 250μg of protein were used for each 

immunoprecipitation reaction. First aliquots were precleared with protein A/G PLUS-

agarose beads (Santa Cruz Biotechnology) and anti-fibronectin antibody (BD 

Biosciences, mouse monoclonal) for 30 min at 4°C. Next, 2μg anti-E-cadherin antibody 

(BD Biosciences, mouse) was used for immunoprecipitation (2h at 4°C) followed by 

adsorption to protein A/G PLUS-agarose beads (1h at 4°C). The immunoprecipitate was 
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recovered via centrifugation (12,000×G), then washed thrice with 1X-PBS, and then 

boiled twice in 25μL 2X-SDS sample buffer. Elutions for each sample were combined 

and saved for immunoblot. 

5.4.3 Immunoblots 

TCLs were fractionated on 4-20% gradient SDS-PAGE, transferred onto PVDF 

membranes and processed as described (70). The following antibodies were used: anti-E-

cadherin (Millipore, rabbit polyclonal), anti-α-catenin (BD, mouse monoclonal), anti-

ABC (Millipore, mouse monoclonal), and anti-GAPDH (Novus Biologicals, mouse 

monoclonal). 

5.4.4 Scratch-wound and Imaging 

When cells were confluent, approximately 3 days after exposure to conditioned 

media and ICG-001, the cell monolayer was scratched with a 200μL pipette tip. 

Immediately following this, cells were washed with media with same contents of 

conditioned media and ICG-001 to clear debris before replenishing media. Cells are 

placed on a stage incubator and imaged every 30 minutes for 15 hours. The field of view 

(FOV) was chosen such that the wound split the FOV in half. Bright field and fluorescent 

images are acquired with a DMI600B Microscope (Leica, Solms, Germany) and ImagEM 

EM-CCD Camera (Hamamatsu Photonics, Hamamatsu, Japan) using a spinning disk 

confocal setup (Yokogawa, Tokyo, Japan). Micro-Manager 1.4 Software 

(http://www.micro-manager.org) employs a 10X 0.3 NA objective lens to image multiple 

~576 × 576 µm
2
 FOV. 
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For leading edge speed quantification, the fluorescent images of the wound edge 

are analyzed using a custom script developed in MATLAB (Mathworks, Natick MA): 

The leading front is defined as the average foremost detected fluorescence along the 

wound. Leading edge speed is calculated by looking at the time it takes for the average 

front to reach the end of the FOV. 

5.4.5 Particle Image Velocimetry 

PIV analysis is performed on bright field images. The displacement field (optic 

flow) was calculated using an ImageJ plugin (165). This PIV code uses an iterative 

scheme; in three subsequent iterations, the displacement is calculated by a normalized 

correlation coefficient algorithm that compares displacement in an individual 

interrogation window with a larger searching window. This method avoids a false 

correlation peak due to insufficient features (166). 

5.5 Results 

5.5.1 LSA and Processes Ranking 

Focus is placed on the fold-change in ABC, GPT, AJ, and the adhesivity factor (σ) 

for different values of the parameter describing the binding between β-catenin and TCF 

(reaction 11, Figure 5-2). These four variables were chosen because they represent 

common nodes to the different component pathways of the RCN. Fold-change was 

calculated at multiple time points after activation with Wnt3a: every 100min from 1-

900min and every 12h between 24-72h. Figure 5-3 shows the resulting fold-change 

values. In the reference condition (i.e. parameter values derived from literature and 
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corresponding to physiological values), the system reached steady-state at t=35h. 

Analyses at 48h and 72h are included because the time it takes for the system to reach a 

steady-state is not measured for the different parameter values tested. 

Sensitivity of these molecules to changes in all other reaction kinetics were 

calculated at steady-state and shown as bar graphs in Figure 5-3. For corresponding 

results for all other variables see Figure 5-4. These relative sensitivity values of a 

molecule to a single process can be averaged over all molecules to provide a global 

ranking of the robustness of the RCN to each process. This ranking can be found in Table 

5-3. The network is the least robust to changes the processes with the highest sensitivities 

and most robust against changes in processes with the lowest sensitivities. Figure 5-5 

classifies processes as either having a high or low impact on each variable based on 

whether the corresponding relative sensitivity values were twice as high or half as the 

average over all processes, respectively. Along with Table 5-3, it provides a more global 

depiction of the system’s sensitivity to perturbations. 

5.5.2 Wnt3a Elicits Increase in ABC and Decrease in AJ Stability 

Fold-change in ABC and AJs were measured in TCLs, and quantifying the 

difference of expression in the different conditions through immunoblot (IB) or 

immunoprecipitation (IP). Because α-catenin is recruited to mature junctional complexes, 

the stability of AJs was measured through the ratio of α-catenin to E-cadherin in E-

cadherin immunoprecipitates. This provides the response of the system to activation with 

Wnt3a at the reference condition (i.e. without perturbation of individual processes in the 

system). 
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The abundance of ABC increased on average by 3.08 fold in the activated state 

compared to the constitutive state. An increase in the concentration of ABC was expected 

based both on the simulation predictions (Figure 5-3) and reports in the literature (154). 

Meanwhile, the ratio of α-catenin to E-cadherin dropped to 0.61 in the activated state 

compared to the constitutive state. This means that treatment with Wnt3a caused 

intercellular adhesion to drop as expected from the numerical simulations (Figure 5-3). 

Blots and quantification can be seen in Figure 5-6. 

5.5.3 ICG-001 Counteracts Effect of Wnt3a on RCN 

To obtain the fold-change values in a dysregulated condition (i.e. with perturbed 

reaction rates) and test the effectiveness of the RCN model, constitutive and activated 

states were treated additionally with the small molecule inhibitor ICG-001. Addition of 

ICG-001 can be simulated as an increase in the equilibrium constant that describes the 

binding equilibrium between β-catenin and TCF (reaction 11, Figure 5-2). 

In the presence of ICG-001, the abundance of ABC dropped to 0.22 fold in the 

activated state compared to the constitutive state. This is consistent with the simulations 

in that there is no longer an increase in ABC abundance with Wnt3a; however, 

simulations predicted no change in ABC abundance instead of the observed drop (Figure 

5-3). Experimental results matched simulated predictions for abundance of α-catenin in 

E-cadherin immunoprecipitates, which only dropped to 0.83 of the constitutive 

abundance compared to 0.6 in the reference condition. This indicates that in the with 

ICG-001 treatment, Wnt3a reduces the change in stability of AJs with Wnt3a. This 

matches theoretical predictions (Figure 5-3). Representative blots and average 
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quantification for multiple experiments are shown in Figure 5-6. 

5.5.4 β-catenin Confirmed as Key Node in RCN 

Table 5-3 indicates that β-catenin synthesis, TCF expression, and affinity of β-

catenin to the BDC are the main regulatory processes in the RCN. This confirms the 

importance of β-catenin as a key node in the network. As such, it makes sense for β-

catenin to be one of the few molecules whose concentration is robust to changes in 

kinetics of these three processes (Figure 5-3); given that that these processes directly 

involve β-catenin and they regulate most of the RCN dynamics, then the β-catenin with 

Wnt3a should be regulated independently. Instead β-catenin fold-change is most sensitive 

the processes directly related to N-glycosylation, specifically the degradation rates of 

DPAGT1 mRNA and GPT. 

While our model differs from others accounting for co-synthesis of β-catenin with 

E-cadherin (reaction 20, Figure 5-2) and two separate fates for β-catenin once dissociated 

from AJs (reactions 25 and 26), this additional pool of β-catenin does not impact cellular 

response to Wnt3a activation. LSA suggests that degradation via the BDC is the only 

process by which β-catenin can be effectively degraded. Although still debated, many 

models have used β-catenin released from AJs as a determining factor in determining 

cellular response and regulating cell-cell adhesion (13, 159). 

Simultaneously, our studies suggest that processes that affect the system the least 

include those describing non Axin-dependent β-catenin degradation (reaction 10, Figure 

5-2), APC availability and BDC assembly dynamics (reactions 3 and 8), and E-cadherin 

transport to the membrane (reactions 20-23, 25-26). Looking at the process ranking 
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(Table 5-3), Wnt/β-catenin signaling is the most influential pathway in the regulatory 

network, followed by N-glycosylation; E-cadherin-mediated adhesion, meanwhile, is the 

least influential. 

5.5.5 Adhesion is Regulated by Multiple Pathways Alike 

Analysis reveals that regulation of adhesion through Wnt/β-catenin signaling 

occurs via complex interactions of multiple pathways rather than through direct control of 

E-cadherin synthesis. In the case of AJs, analysis shows that AJs are very sensitive to 

changes in Wnt/β-catenin signaling. Regarding N-glycosylation, AJs are sensitive to the 

efficiency with which DPAGT1 is transcribed (reaction 12, Figure 5-2) and the rate of E-

cadherin N-glycosylation (i.e. parameter Vmaxt/Gmax, see section 5.7.1). This is in 

accordance with the overexpression of DPAGT1 and increased N-glycosylation observed 

together with epithelial discohesion in cell samples collected from oral tumors in oral 

squamous cell carcinoma (9, 16). 

Adhesivity (σ) appears to be slightly less sensitive than AJs to dysregulation of 

the RCN. Figure 5-3 shows how adhesivity responds in a similar but more attenuated 

manner to changes in β-catenin/TCF binding. Adhesivity appears to be only highly 

sensitive to changes in TCF total abundance, the efficiency with which DPAGT1 is 

transcribed, and the rate of N-glycosylation, but not to changes in Wnt/β-catenin 

signaling. Overall, the sensitivity values for AJ were higher than those for adhesivity, 

meaning N-glycosylation regulates adhesion through the number of cellular junctions 

rather than stability of junctions. 

Figure 5-3 also indicates that AJs and adhesivity reach equilibrium at different 



 

90 

times after activation with Wnt3a; AJ reaches a steady-state faster than adhesivity in both 

the reference and dysregulated conditions. This means that cells regulate the number of 

contacts much faster, and it is later that the stability of these contacts is determined with a 

period of hours in between the two events. The slower regulation of adhesivity compared 

to AJ coincides with in vitro observations where cells will become less N-glycosylated 

with time as density of cultures increases and boundaries exist for longer (153, 167). 

Despite the similarities in the curves for AJs and adhesivity in Figure 5-3, the minimum 

value in fold-change does not correspond to the same parameter value (i.e. extent of 

dysregulation). By shifting the equilibrium between β-catenin and TCF towards 

unbinding, the drop in AJs is sharper and occurs first; however, if further dysregulation 

occurs, recovery of junctions begins with decreased N-glycosylation before restoring AJs. 

This suggests that in dysregulated epithelium, regulation of E-cadherin N-glycosylation 

can act against discohesion. 

5.5.6 RCN is Insensitive to E-cadherin Recycling 

Despite considering the additional process β-catenin co-synthesis with E-cadherin 

(compared to other models), AJs and adhesivity were independent of most processes 

involving E-cadherin. In general, all molecular concentrations were robust to changes in 

E-cadherin recycling (reactions 21-25, Figure 5-2) with the exception of E-cadherin/β-

catenin complexes in the membrane and ERC. These two E-cadherin pools were sensitive 

to changes in the rate at which membrane E-cadherin is internalized (reaction 22). 

Sensitivity to this process is still significantly lower than to those corresponding to 

Wnt/β-catenin signaling and protein N-glycosylation (Figure 5-4). 
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Insight into why this may be the case physiologically could come from the 

difference in response by AJs and adhesivity with dysregulation (Figure 5-3). The drastic 

fold-change in AJs and adhesivity with Wnt3a is enough to regulated adhesion as it is 

independent of the concentration of E-cadherin in the membrane remaining constant. We 

see evidence of this when no difference is seen in E-cadherin localization within the cells 

in the scratch-wound assay despite the observed significant differences in speed (not 

shown). 

5.5.7 Model Predicts Response to RCN Dysregulation 

Validation of a mathematical model of a cellular system is challenging because 

measurements of cellular concentrations in time and space are difficult. The use of the 

small molecule inhibitor ICG-001 provides a way to perturb the system in a controlled 

way by targeting a single process; we recreated the simulated condition in which the 

equilibrium binding between β-catenin and TCF was shifted away from formation of the 

protein complex.  

Figure 5-3 shows how the equilibrium binding between TCF and β-catenin plays a 

role in determining fold-change of GPT, AJs, and E-cadherin adhesivity (σ). A 

perturbation of the equilibrium in any direction implies an immediate change in response 

to Wnt/β-catenin activation. There is a significant fold-change in both AJ and adhesivity 

only for perturbations around the reference value; for extreme values the fold-change are 

1. This suggests that AJ and adhesivity are responsive to β-catenin translocation to the 

nucleus only within a certain range. In contrast, fold-change in ABC is sensitive to the 

shift in the direction of unbinding of β-catenin and TCF but insensitive when equilibrium 
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shifts towards formation of a stable complex. 

In general, the immunoblots reveal that experimental findings support the model’s 

predictions, other than the drop in ABC when treating with Wnt3a in the dysregulated 

condition. Relative to the constitutive state (no additional Wnt3a) in reference condition, 

addition of ICG-001 elicits no significant change in ABC abundance. The increase in 

ABC abundance with addition of ICG-001 in the constitutive state (Figure 5-6) indicates 

that another pathway may be playing a role in regulation of β-catenin. With the addition 

of ICG-001, CBP is inhibited from interacting with β-catenin; however, β-catenin can 

still interact with the CBP homolog p300 causing transcription of different Wnt target 

genes. A switch to use p300 is associated with changes in cell potency and initiation of 

differentiation (168). Another factor making assessment of effectiveness of the prediction 

difficult is the biphasic response to changes in the parameter value of the fold-change 

curves for GPT, AJ, and adhesivity (Figure 5-3). Nonetheless, treatment with ICG-001 is 

expected to only shift parameter value slightly, as any drastic change would probably 

result in cell death. It is likely, that in reality the reference condition would be better 

described by scaling the parameter by a factor of approximately 2 in Figure 5-3. If 

treatment with ICG-001 is simulated as multiplying the parameter by a factor ~2, then IB 

results match the decrease in fold-change in ABC and increase in fold-change in AJs with 

ICG-001 treatment. 

5.5.8 Wnt3a Inhibition Hinders Collective Migration 

The effects of dysregulation of the RCN were noticeable at the population level; 

measurements of cellular speed in epithelial cell layers changed significantly with ICG-
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001 treatment. A scratch-wound assay provided a measure of collective speed, and PIV 

was used to look at the optic flow within the cell sheet. 

In the reference condition, both speed of the leading edge and optic flow dropped 

upon activation with Wnt3a. The drop was more dramatic within the cell sheet than at the 

wound edge. Speed dropped by 33% within the cell sheet, while in the dysregulated 

condition it was only 14%. Table 5-4 displays the speed of the leading edge and the 

average optic flow speed for constitutive and activated states both in the presence (i.e. 

dysregulated condition) and absence (i.e. reference condition) of ICG-001. Figure 5-7 

shows the corresponding plot of magnitude of optic flow. 

5.5.9 AJ Stability and Cell Speed Respond Analogously to ICG-001 

RCN regulation of cellular speed may be indirect through the effect on adhesion, 

but a significant change in speed with Wnt3a and ICG-001 treatment demonstrates the 

importance of the RCN to tissue architecture. Analysis of cellular speed through PIV in 

the scratch-wound assay reveals two things: First, the change in speed due to ICG-001 

treatment matches the changes in AJ stability. Second, the speed of the leading edge does 

not match speed of cells within the sheet. 

Comparing the graphic in Figure 5-6b with Figure 5-7, the analogous trend in AJ 

stability and cellular speed within the sheet is evident. This indicates that less attached 

cells move slower within the cell sheet. In the presence of the same substrate, it is 

possible that highly migratory cells need adhesion to guide each other and reach higher 

speeds. This is in accordance with findings in MCF10A epithelial sheets showing that 

cell-cell adhesion is necessary to relay information about substrate stiffness by cells on 
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the edge to cells further back and promote migration (169). The drop in speed with ICG-

001 in the conditions with no Wnt3a, indicate that adhesion is reduced by ICG-001 alone. 

This supports the idea that adhesion is necessary for faster migration within the sheet; by 

preventing β-catenin/TCF binding, ICG-001 could promote DPAGT1 transcription and 

AJs with more N-glycosylated E-cadherin would be less adhesive and thus slower. 

Table 5-4 reports how in the reference condition, Wnt3a treatment caused only a 

slight change in speed of the leading edge (9.1%), but a significant change speed within 

the sheet (33.2%). In the dysregulated case, there is no evident change in speed in either 

the wound edge or behind it. A possible explanation for this discrepancy is that despite 

the drop in general speed caused by the drop in adhesion, the cells can still move 

coordinately to keep the leading edge speed high. This hypothesis was tested by 

measuring the correlation length in the monolayer; however, no significant difference 

was observed (not shown). This drop in speed can be associated with the potential 

differentiation triggered by exposure to ICG-001 and the switch to use p300 in β-catenin 

mediated transcription. This decrease in potency is associated with changes in motility, 

proliferation, and survival which would all affect speed. 

5.6 Discussion 

This chapter examines the cross-talk among Wnt/β-catenin signaling, protein N-

glycosylation, and E-cadherin mediated adhesion by expanding previous models of 

Wnt/β-catenin signaling. In addition to identifying key nodes in the RCN, the model 

provides potential answers to questions that remain in the field. Many models have used 

β-catenin released from AJs as a determining factor in determining cellular response and 
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regulating cell-cell adhesion (13, 159), despite no direct observation. We show that given 

our understanding of the transport of E-cadherin within the cell and E-cadherin/β-catenin 

association, dissociation of β-catenin from E-cadherin upon AJ disassembly will not 

impact Wnt/β-catenin signaling. Similarly we explore the relative importance of two 

molecules that make part of the BDC, axin and APC. Experimental studies have 

suggested that APC dysregulation is important in epithelial discohesion, particularly in 

cancer (16, 170–175). Our results raise the question if this is a response to other changes 

that are directly responsible for disruption of cell-cell contacts. Meanwhile, we show that 

Axin availability is crucial in determining the regulation of AJs, DPAGT1 transcription, 

and expression of the enzyme GPT. 

Because this network playing a central role in development, we put the results of 

our theoretical analysis in the context of cell collectives and think about its implications 

to cell-cell adhesion and cell migration. The model matches the drop in adhesion 

expected of Wnt/β-catenin activation, but also predicts how this drop changes with 

specific changes in the network. Going beyond describing the change in AJ formation, 

the adhesivity factor is defined to account for the effect of N-glycosylation of E-cadherin 

on adhesion at the molecular level. To date this has been studied experimentally in single 

molecule force spectroscopy studies that isolate E-cadherin molecules from the rest of the 

junctional complex (62).  

In our protein quantification experiments, despite being performed days after 

perturbation of the system, it cannot be assumed that cells were at equilibrium. Many 

processes remain unaccounted for when looking at pathways within a single cell 
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compared to a cell population. Further, the abundance of different components in the 

network varies among cells.  For this reason, protein quantification and sheet migration 

experiments were not expected to reveal the dynamics of the RCN, but together provide a 

window into the cross-reactivity of the component pathways. The observed change in 

speed, though, corroborate that a change in a key node in the RCN will lead to significant 

changes in cell-cell interactions. 

The concerted effect of Wnt/β-catenin signaling, protein N-glycosylation, and E-

cadherin-mediated adhesion on the is complex, but with a theoretical representation in 

place, we can predict changes in abundance of the key regulatory molecules that affect 

how a cell behaves in physiological and pathological conditions. With this description of 

such a regulatory network in place, we can easily simulate the response of healthy and 

diseased cells to specific treatments. It can be used a framework to choose therapeutics 

based on predicted effectiveness of promotion or inhibition of specific processes that may 

be used to prevent problems during development or prevent invasion of the neighboring 

stroma in carcinomas. This model can be integrated into agent-based models to account 

for the complex dynamics that arise from the intersection of three essential pathways 

during collective processes such as morphogenesis. 

5.7 Mathematical Description and Simplification of RCN 

5.7.1 Network Description as Set of ODEs 

In the set of ODEs, binding and dissociation processes are described by the rate 

equations: ki·X·Y – k-i·(X/Y) where X and Y denote the free concentrations of the binding 
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partners, (X/Y) the concentration of the complex, and ki and k-i the association and 

dissociation rates respectively of the complexes formed by the proteins (i denotes the 

reaction number as specified in Figure 5-2). Syntheses of proteins are described by 

constant rates (vi). Phosphorylation and dephosphorylation processes are described by 

linear rate equations (ki·X). All rate constants along with their sources are included in 

Table 5-2. 

The following are the variables in the system: 

X1   - Wnt3a 

X2   - (Wnt3a/LRP^) 

X3   - (Wnt3a/LRP^/APC/Axin/GSK3) 

X4   - (APC/Axin/GSK3) 

X5   - (APC*/Axin*/GSK3) 

X6   - (Axin/GSK3) 

X7   - APC 

X8   - (β-cat/APC) 

X9   - (β-cat/APC*/Axin*/GSK3) 

X10 - β-cat 

X11 - TCF 

X12 - (β-cat/TCF) 

X13 – DPAGT1 mRNA 

X14 – GPT 

X15 - LRP 
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X16 - LRP^ 

X17    – (E-cad/ β-cat)ER 

X18    – (E-cad/ β-cat)M 

X19    – (E-cad/ β-cat) ERC 

X20    – AJ 

σER   - Adhesivity of E-cadherin in ER 

σM     - Adhesivity of E-cadherin in M 

σERC  - Adhesivity of E-cadherin in ERC 

σAJ     - Adhesivity of E-cadherin in AJ 

Transcriptional activation by a single activator (i.e. (β-cat/TCF) or X12) is modeled 

as a Hill-type activation. This has been demonstrated to be appropriate for this system, 

recreating published experimental data (155, 176). This is shown in Equation 5-2: 

 

  𝜑(𝑋12, 𝐾𝑇𝑚𝑅𝑁𝐴, 𝜈)  =  
𝑋12
𝜈

(𝐾𝑇𝑚𝑅𝑁𝐴
𝜈 + 𝑋12

𝜈 )
     (5-2) 

 

where KTmRNA is the activator concentration at which transcription proceeds at half of its 

maximal rate and ν describes the degree of nonlinearity in the activation (cooperativity or 

Hill coefficient). Subsequent translation of the resulting DPAGT1 mRNA is modeled 

with enzyme synthesis being determined by the amount of mRNA (X13) and a maximum 

rate of translation (Pmax). Equation 5-3 describes their relation: 

 

𝜒(𝑋13, 𝑃𝑚𝑎𝑥)  =  𝑃𝑚𝑎𝑥  𝑋13      (5-3) 
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For the N-glycosylation of LRP (X15), it is assumed that binding of GPT (X14) and 

LRP is non-reversible and conversion into N-glycosylated LRP or LRP^ (X16) occurs 

much faster than the binding between substrate and enzyme. This results in Equation 5-4: 

 

𝜓(𝑋14, 𝑋15, 𝑘17) =  𝑘17𝑋14 𝑋15    (5-4) 

 

Enzymatic activity of GPT on E-cadherin was modeled differently, because the 

extent of N-glycosylation of E-cadherin modulates homotypic binding of E-cadherin 

rather than determine whether it will be transported to the membrane or not (as with 

LRP5/6). To model this effect an adhesivity factor was introduced (σ): This value is 

normalized to the maximum concentration of N-glycosylated E-cadherin that can be 

synthesized in a single step (heuristically determined); when σ = 0, the E-cadherin is 

completely non-adhesive, and when σ = 1, it is the most adhesive.  This time varying 

factor is calculated for each of the four pools included in the reaction scheme: 

endoplasmic reticulum (ER), membrane (M), endocytic recycling compartment (ERC), 

and adherens junctions (AJ). The change over time in E-cadherin adhesivity for each pool 

is calculated based on the fraction of incoming E-cadherin to the new total concentration 

of E-cadherin in the pool (fgain) and the adhesivity of the incoming and receiving E-

cadherin, σsource and σdestination respectively. This change is described by Equation 5-5: 

 

𝑑𝜎𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

𝑑𝑡
= (𝑓𝑔𝑎𝑖𝑛)(𝜎𝑠𝑜𝑢𝑟𝑐𝑒 − 𝜎𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)   (5-5) 
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Because E-cadherin in the ER pool is synthesized and not transported from a 

source pool, σER is dependent on the concentration of GPT at the time of synthesis. The 

rate at which E-cadherin in the ER is N-glycosylated is calculated assuming Michaelis-

Menten kinetics of GPT with no cooperativity. 

Starting with the Michaelis-Menten equation (Equation 5-6): 

 

𝜈 =  
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑀+[𝑆]
      (5-6) 

 

Because the substrate to GPT is a LLO and cells are not being modeled under a 

shortage of carbohydrates, it is assumed that it is the availability of enzyme and not the 

substrate what determines the kinetics of the reaction. In this case, to adapt Michaelis-

Menten kinetics to this system, two assumptions are made: First, a quasi-steady state of 

the substrate (i.e. the concentration of the substrate/product changes much more slowly 

than that of the enzyme). Second, the substrate (i.e. N-glycans) is unlimited. 

Both sides of Equation 5-6 are multiplied by time (t) to get the amount of product 

on the LHS and divide by Gmax (the maximum possible concentration of N-glycosylated 

E-cadherin in the ER) to normalize the amount of product. Because E-cadherin is more 

adhesive when extent of N-glycosylation is low, and vice versa, the ratio of product is 

subtracted from 1 to define σ at the time of synthesis (Equation 5-7): 

 

𝜎𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 =  1 − 
𝑣𝑡

𝐺𝑚𝑎𝑥
=  1 − 

𝑡

𝐺𝑚𝑎𝑥

𝑉𝑚𝑎𝑥[𝐺𝑃𝑇]

𝐾𝑀+[𝐺𝑃𝑇]
   (5-7) 
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Thus the change in σER over time is given by Equation 5-8: 

 

𝑑𝜎𝐸𝑅

𝑑𝑡
= (𝑓𝑔𝑎𝑖𝑛)[(1 −

𝑉𝑚𝑎𝑥𝑡

𝐺𝑚𝑎𝑥

𝑋14

𝐾𝑀+𝑋14
) − 𝜎𝐸𝑅]    (5-8) 

 

Vmax represents the maximum rate of N-glycosylation of E-cadherin by GPT in the ER. 

KM represents the GPT concentration at which enzymatic activity is half-maximal. 

To describe the dependence of the rate of AJ formation (k24) on σM, a simple linear 

relation was chosen due to the difficulty in defining this relation experimentally as 

cellular environment is believed to be highly variable and influential to this relation. 

Similarly, an inverse linear relation was chosen for the dependence of the rate of AJ 

dissociation (k-24) on σAJ. Equations 5-9 and 5-10 describe these relations: 

 

𝑘24(𝜎𝑀) = 𝑘𝑎𝑗  𝜎𝑀      (5-9) 

 

𝑘−24(𝜎𝐴𝐽) =  −𝑘𝑑𝑎𝑗  𝜎𝐴𝐽 + 𝑘𝑀𝑑𝑎𝑗      (5-10) 

 

kaj represents the fastest possible rate of AJ formation (when σM = 1), kdaj is the drop in 

rate of AJ disruption when going from minimal to maximal E-cadherin adhesivity, and 

kMdaj is the fastest possible rate of AJ disruption (set equal to kdaj in model for reported 

results). 

The complete system of ODEs is presented below in Equations 5-11 through 5-34: 
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𝑑𝑋1

𝑑𝑡
= 𝑘−1𝑋2 − 𝑘1𝑋1𝑋16    (5-11) 

 

𝑑𝑋2

𝑑𝑡
= 𝑘1𝑋1𝑋16 − 𝑘−1𝑋2 + 𝑘−2𝑋3 − 𝑘2𝑋2𝑋4   (5-12) 

 

𝑑𝑋3

𝑑𝑡
= 𝑘2𝑋2𝑋4 − 𝑘−2𝑋3    (5-13) 

 

𝑑𝑋4

𝑑𝑡
= 𝑘−2𝑋3 − 𝑘2𝑋2𝑋4 − 𝑘4𝑋4 + 𝑘5𝑋5 + 𝑘3𝑋6𝑋7 − 𝑘−3𝑋4  (5-14) 

 

𝑑𝑋5

𝑑𝑡
= 𝑘4𝑋4 − 𝑘5𝑋5 + 𝑘7𝑋9 + 𝑘−6𝑋9 − 𝑘6𝑋5𝑋10   (5-15) 

 

𝑑𝑋6

𝑑𝑡
= 𝑘−3𝑋4  −  𝑘3𝑋6𝑋7    (5-16) 

 

𝑑𝑋7

𝑑𝑡
= 𝑘−3𝑋4 − 𝑘3𝑋6𝑋7 + 𝑘−8𝑋8 − 𝑘8𝑋7𝑋10   (5-17) 

 

𝑑𝑋8

𝑑𝑡
= 𝑘8𝑋7𝑋10 − 𝑘−8𝑋8    (5-18) 

 

𝑑𝑋9

𝑑𝑡
= 𝑘6𝑋5𝑋10 − 𝑘−6𝑋9 − 𝑘7𝑋9    (5-19) 

 

𝑑𝑋10
𝑑𝑡

=  𝜈9 + 𝑘−6𝑋9 − 𝑘6𝑋5𝑋10 + 𝑘−8𝑋8 − 𝑘8𝑋7𝑋10 + 𝑘−11𝑋12 − 𝑘11𝑋10𝑋11 + 𝑘25𝑋19 − 𝑘10  

(5-20) 
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𝑑𝑋11

𝑑𝑡
= 𝑘−11𝑋12 − 𝑘11𝑋10𝑋11  (5-21) 

 

𝑑𝑋12

𝑑𝑡
= 𝑘11𝑋10𝑋11 − 𝑘−11𝑋12  (5-22) 

 

𝑑𝑋13

𝑑𝑡
= 𝑇𝑚𝑎𝑥  [ 

𝑋12
𝜈

(𝐾𝑇𝑚𝑅𝑁𝐴
𝜈 + 𝑋12

𝜈 )
 ]  −  𝑘13 𝑋13   (5-23) 

 

𝑑𝑋14

𝑑𝑡
= 𝑃𝑚𝑎𝑥  𝑋13  − 𝑘19 𝑋14    (5-24) 

 

𝑑𝑋15

𝑑𝑡
= 𝑣15  −  𝑘17 𝑋14 𝑋15 − 𝑘16𝑋15   (5-25) 

 

𝑑𝑋16

𝑑𝑡
= 𝑘17𝑋14 𝑋15 − 𝑘18𝑋16 + 𝑘−1𝑋2 − 𝑘1𝑋1𝑋16   (5-26) 

 

𝑑𝑋17

𝑑𝑡
= 𝑣20  −  𝑘21𝑋17    (5-27) 

 

𝑑𝑋18

𝑑𝑡
= 𝑘21 𝑋17 − 𝑘22𝑋18 + 𝑘23𝑋19 + 𝑘−24(𝜎𝐴𝐽) 𝑋20 − 𝑘24(𝜎𝑀) 𝑋20 (5-28) 

 

𝑑𝑋19

𝑑𝑡
= 𝑘22𝑋18 − 𝑘23𝑋19 − 𝑘25𝑋19 − 𝑘26𝑋19  (5-29) 

 

𝑑𝑋20

𝑑𝑡
= 𝑘24(𝜎𝑀)𝑋18 − 𝑘−24(𝜎𝐴𝐽) 𝑋20   (5-30) 
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𝑑𝜎𝐸𝑅

𝑑𝑡
= (

𝜈20

𝑋17
) [(1 −

𝑉𝑚𝑎𝑥𝑡

𝐺𝑚𝑎𝑥

𝑋14

𝐾𝑀+𝑋14
) − 𝜎𝐸𝑅]   (5-31) 

 

𝑑𝜎𝑀

𝑑𝑡
= (

𝑘21𝑋17

𝑋18
) (𝜎𝐸𝑅 − 𝜎𝑀) + (

𝑘23𝑋19

𝑋18
) (𝜎𝐸𝑅𝐶 − 𝜎𝑀) + (

𝑘−24(𝜎𝐴𝐽)𝑋20

𝑋18
)(𝜎𝐴𝐽 − 𝜎𝑀)   (5-32) 

 

𝑑𝜎𝐸𝑅𝐶

𝑑𝑡
= (

𝑘22𝑋18

𝑋19
) (𝜎𝑀 − 𝜎𝐸𝑅𝐶)   (5-33) 

 

𝑑𝜎𝐴𝐽

𝑑𝑡
= (

𝑘24(𝜎𝑀)𝑋18

𝑋20
) (𝜎𝑀 − 𝜎𝐴𝐽)   (5-34) 

 

5.7.2 From ODEs to DAEs 

Two assumptions were used to simplify the system from a system of ODEs to a 

system of DAEs. First, a fast equilibrium approximation was used for reactions i = 1, 2, 

6, 8. Their equilibrium constants can be described algebraically by Equation 5-35:  

 

𝐾𝑖 =
𝑘−𝑖

𝑘𝑖
=

𝑋·𝑌

(𝑋/𝑌)
          (5-35) 

 

The resulting equations are shown as Equations 5-36 through 5-40: 

 

𝑋2 = 
𝑋1 𝑋16

𝐾1
      (5-36) 

 

𝑋3 = 
𝑋2 𝑋4

𝐾2
     (5-37) 
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𝑋9 = 
𝑋5 𝑋10

𝐾6
     (5-38) 

 

𝑋8 =
𝑋7 𝑋10

𝐾8
     (5-39) 

 

𝑋12 = 
𝑋10 𝑋11

𝐾11
     (5-40) 

 

 

The individual forward and backward rates, ki and k-i, were removed from the 

ODEs by linearly combining equations with these rate constants, reducing the number of 

parameters needed to describe these reactions from two to one. More specifically, the 

following linear combinations of ODEs were performed: 

 

− 
𝑑𝑋1

𝑑𝑡
+ 

𝑑𝑋3

𝑑𝑡
+
𝑑𝑋4

𝑑𝑡
+
𝑑𝑋16

𝑑𝑡
= ⋯   (5-41) 

 

− 
𝑑𝑋5

𝑑𝑡
+ 

𝑑𝑋8

𝑑𝑡
 +  

𝑑𝑋10

𝑑𝑡
+ 

𝑑𝑋12

𝑑𝑡
= ⋯   (5-42) 

 

𝑑𝑋5

𝑑𝑡
+
𝑑𝑋9

𝑑𝑡
= ⋯    (5-43) 

 

𝑑𝑋7

𝑑𝑡
+
𝑑𝑋8

𝑑𝑡
= ⋯    (5-44) 
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The second assumption was the conservation of a set of molecules assumed to be 

expressed constitutively in cells. These molecules were Wnt3a, APC, TCF, and 

(Axin/GSK3). Their total concentration was represented by the parameters WNT
0
, APC

0
, 

TCF
0
, and (Axin/GSK3)

0
, respectively. The resulting conservation equations are presented 

as Equations 5-45 through 5-48: 

 

𝑋1 + 𝑋2 + 𝑋3 = 𝑊𝑁𝑇
0   (5-45) 

 

𝑋3 + 𝑋4 + 𝑋5 + 𝑋7 + 𝑋8 + 𝑋9 = 𝐴𝑃𝐶0  (5-46) 

 

𝑋3 + 𝑋4 + 𝑋5 + 𝑋6 + 𝑋9 = (𝐴𝑥𝑖𝑛/𝐺𝑆𝐾3)
0  (5-47) 

 

𝑋11 + 𝑋12 = 𝑇𝐶𝐹
0    (5-48) 

 

Given that APC
0
  >> (Axin/GSK3)

0
, Equation 5-46 was simplified to Equation 5-49: 

 

𝑋7 + 𝑋8 = 𝐴𝑃𝐶0     (5-49) 

 

5.7.3 Network Description as Set of DAEs 

The system of DAEs can be classified into algebraic equations (Equations 5-50 

through 5-58), differential equations (Equations 5-59 through 5-70), and implicit 

differential equations (Equations 5-71 through 5-73): 
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𝑋1 = 
𝑊𝑁𝑇0𝐾1𝐾2

𝐾1𝐾2+𝐾2𝑋16+𝑋4𝑋16
    (5-50) 

 

𝑋2 = 
𝑊𝑁𝑇0𝐾2𝑋16

𝐾1𝐾2+𝐾2𝑋16+𝑋4𝑋16
    (5-51) 

 

𝑋3 = 
𝑊𝑁𝑇0𝑋4𝑋16

𝐾1𝐾2+𝐾2𝑋16+𝑋4𝑋16
    (5-52) 

 

𝑋6 = (𝐴𝑥𝑖𝑛/𝐺𝑆𝐾3)0 − (1 +
𝑊𝑁𝑇0𝑋16

𝐾1𝐾2+(𝐾2+𝑋4)𝑋16
)𝑋4 − (1 +

𝑋10

𝐾6
)𝑋5  (5-53) 

 

𝑋7 =
𝐴𝑃𝐶0

1+
𝑋10
𝐾8

     (5-54) 

 

𝑋8 =
𝑋7 𝑋10

𝐾8
     (5-55) 

 

𝑋9 = 
𝑋5 𝑋10

𝐾6
     (5-56) 

 

𝑋11 = 
𝑇𝐶𝐹0𝐾11

𝐾11+𝑋10
     (5-57) 

 

𝑋12 = 
𝑇𝐶𝐹0𝑋10

𝐾11+𝑋10
     (5-58) 
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𝑑𝑋6

𝑑𝑡
= 𝑘−3𝑋4  −  𝑘3𝑋6𝑋7    (5-59) 

 

𝑑𝑋13

𝑑𝑡
= 𝑇𝑚𝑎𝑥  [ 

𝑋12
𝜈

(𝐾𝑇𝑚𝑅𝑁𝐴
𝜈 + 𝑋12

𝜈 )
 ]  −  𝑘13 𝑋13   (5-60) 

 

𝑑𝑋14

𝑑𝑡
= 𝑃𝑚𝑎𝑥  𝑋13  − 𝑘19 𝑋14    (5-61) 

 

𝑑𝑋15

𝑑𝑡
= 𝑣15  −  𝑘17 𝑋14 𝑋15 − 𝑘16𝑋15   (5-62) 

 

𝑑𝑋17

𝑑𝑡
= 𝑣20  −  𝑘21𝑋17    (5-63) 

 

𝑑𝑋18

𝑑𝑡
= 𝑘21 𝑋17 − 𝑘22𝑋18 + 𝑘23𝑋19 + 𝑘−24(𝜎𝐴𝐽) 𝑋20 − 𝑘24(𝜎𝑀) 𝑋18  (5-64) 

 

𝑑𝑋19

𝑑𝑡
= 𝑘22𝑋18 − 𝑘23𝑋19 − 𝑘25𝑋19 − 𝑘26𝑋19    (5-65) 

 

𝑑𝑋20

𝑑𝑡
= 𝑘24(𝜎𝑀)𝑋18 − 𝑘−24(𝜎𝐴𝐽) 𝑋20   (5-66) 

 

𝑑𝜎𝐸𝑅

𝑑𝑡
= (

𝜈20

𝑋17
) [(1 −

𝑉𝑚𝑎𝑥𝑡

𝐺𝑚𝑎𝑥

𝑋14

𝐾𝑀+𝑋14
) − 𝜎𝐸𝑅]    (5-67) 
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𝑑𝜎𝑀

𝑑𝑡
= (

𝑘21𝑋17

𝑋18
) (𝜎𝐸𝑅 − 𝜎𝑀) + (

𝑘23𝑋19

𝑋18
) (𝜎𝐸𝑅𝐶 − 𝜎𝑀) + (

𝑘−24(𝜎𝐴𝐽)𝑋20

𝑋18
)(𝜎𝐴𝐽 − 𝜎𝑀)  

 (5-68) 

 

𝑑𝜎𝐸𝑅𝐶

𝑑𝑡
= (

𝑘22𝑋18

𝑋19
) (𝜎𝑀 − 𝜎𝐸𝑅𝐶)   (5-69) 

 

𝑑𝜎𝐴𝐽

𝑑𝑡
= (

𝑘24(𝜎𝑀)𝑋18

𝑋20
) (𝜎𝑀 − 𝜎𝐴𝐽)   (5-70) 

 

−
𝑑𝑋5

𝑑𝑡
+
𝑑𝑋10

𝑑𝑡
[
𝛿𝑋8

𝛿𝑋10
+
𝛿𝑋12

𝛿𝑋10
+ 1] = −𝑘4𝑋4 + 𝑘5𝑋5 − 𝑘7𝑋9 + 𝜈9 + 𝑘25𝑋19 − 𝑘10 (5-71) 

 

𝑑𝑋5

𝑑𝑡
[
𝛿𝑋9

𝛿𝑋5
+ 1] +

𝑑𝑋10

𝑑𝑡
[
𝛿𝑋9

𝛿𝑋10
] = 𝑘4𝑋4 − 𝑘5𝑋5   (5-72) 

 

𝑑𝑋4

𝑑𝑡
[−

𝛿𝑋1

𝛿𝑋4
+
𝛿𝑋3

𝛿𝑋4
+ 1] +

𝑑𝑋16

𝑑𝑡
[−

𝛿𝑋1

𝛿𝑋16
+

𝛿𝑋3

𝛿𝑋16
+ 1] = 𝑘17𝑋14𝑋15 − 𝑘18𝑋16 − 𝑘4𝑋4 +

𝑘5𝑋5 + 𝑘3𝑋6𝑋7 − 𝑘−3𝑋4 (5-73) 

 

5.7.4 Parameter Value Selection and Estimation 

The values for the multiple parameters in the DAEs were chosen based on 

experimental findings in the literature or estimation in related models. Additional 

parameter values were estimated by setting constraints between parameters or between 

steady-state variable values and parameters (based on observations in the literature). 

Parameters for which no measurement or approximation was found, remained “free” and 
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were estimated by varying them over a wide range and choosing the value that would fit 

experimental findings. 

This was done in steps: First, focusing on parameters describing Wnt/β-catenin 

signaling and β-catenin regulation. Next, focusing on parameters describing E-cadherin 

recycling. Lastly, parameters describing DPAGT1 expression its effect on ABC 

concentration and AJ formation were approximated. 

Regarding parameters describing Wnt/β-catenin signaling and β-catenin 

regulation: Parameter values describing the dynamics of reactions 3-11 (Figure 5-2) were 

either taken from the Lee and minimal models or taken to maintain steady-state values of 

molecules considered in these studies (154, 155). Table 5-1 shows how steady-state 

concentration of the all variables for Wnt “ON” and Wnt “OFF” cases compare in our 

study to the Lee model. 

It can be observed in Table 5-2 that of all parameters taken from the Lee model, 

only K6 and ν9 were changed. K6 was reduced from 120 to 100 nM, which is still the same 

order of magnitude and had been estimated rather than measured by Lee et al. It was 

changed such that the total amount of β-catenin when there was no Wnt3a present would 

be 35 nM, which is measured and conserved in the RCN model. 

ν9 was changed because the RCN model has two sources of β-catenin: reactions 9 

and 20 (Figure 5-2). There is an ongoing debate as to whether once dissociated from E-

cadherin, β-catenin can then feed into Wnt/β-catenin signaling (159). However, as long as 

ν9 >> ν20, the results of the Lee model were recreated by the RCN model. It was the ratio 

of the rates that was changed to obtain the expected concentrations of E-cadherin in the 
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system. The resulting values of ν9 and ν20 were thus 0.6 nM/min and 0.6 × (0.006/100) 

nM/min, respectively, suggesting that as little as 0.006% of synthesized β-catenin with E-

cadherin.  

  The value of K1, which represents the affinity between Wnt3a and membrane 

receptor in general, was approximated from surface plasmon resonance studies on 

secreted Frizzled-related proteins (sFRPs) (177). Although in the RCN model Wnt3a 

binds to LRP5/6, this is meant to represent the Frizzled LRP5/6 co-receptor. 

Additionally, the paper looks at affinity of Wnt3a with secreted FRPs, not membrane 

bound Frizzled receptors. However, this was the only study found looking at affinity of 

Wnt3a with a receptor involved in Wnt/β-catenin signaling. The study revealed that the 

equilibrium constant for binding of these two molecules ranges from 4.1-11.2 nM. The 

value of 6 nM was chosen for the RCN model as it recreated the results of the Lee model. 

Regarding parameters describing E-cadherin recycling: The E-cadherin recycling 

pathway in the RCN network is described by reaction 20-26. First, the following rates 

and concentration were taken directly from experimental studies: 

  

𝑘21 = 
1

60
     (5-74) 

 

𝑘22 =  0.00231𝑚𝑖𝑛−1    (5-75) 

 

𝑘26 = 
0.6

225
     (5-76) 
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𝑋18𝑠𝑠 =  0.0695 𝑛𝑀     (5-77) 

 

Equation 5-74 is based on the observation by Shore et al. that newly synthesized E-

cadherin was maximally detected at the cell surface after a chase period of approximately 

60 min (161). The value of k22 was preliminarily calculated from the observations by 

Chen et al. that the half-life of E-cadherin from membrane to lysosome is of < 5h (158). 

Equation 5-76 is based on the observation by Chen et al. that 60% of E-cadherin is 

degraded in 225 min via lysosome from the ERC (158). The steady-state concentration of 

E-cadherin at the membrane (X18) was approximated from findings by McCrea et al. 

when identifying and isolating β-catenin in MDCK cells confluent monolayers (178). 

Next, two constraints were considered based on observations reported in the 

literature: 

 

0.47 =  
𝑋18𝑠𝑠

𝑋17𝑠𝑠+ 𝑋18𝑠𝑠+ 𝑋19𝑠𝑠
    (5-78) 

 

𝑘23 + 𝑘25  +  𝑘26  =  
1

15
    (5-79) 

 

Equation 5-78 is based on the observation by Le et al. that in confluent MDCK cells 

approximately 47% of all E-cadherin in the cell was biotinylated on the cell surface (55). 

Meanwhile, Equation 5-79 is based on the observation that internalized E-cadherin 

accumulated at a cold temperature gradually disappeared from the internal pool over 15 

min once the cell was placed in regular conditions (55). 
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Finally, the system of DAEs used to define the RCN (section 5.7.3) was 

considered. Equation 5-80 through 5-82 describe rate of change of E-cadherin at the ER 

(X17) and the membrane (X18) and adherens junctions (X20) at steady-state: 

 

𝑑𝑋17

𝑑𝑡
= 0 = 𝑣20  −  𝑘21𝑋17𝑠𝑠    (5-80) 

 

𝑑𝑋18

𝑑𝑡
=  0 = 𝑘21 𝑋17𝑠𝑠 − 𝑘22𝑋18𝑠𝑠 + 𝑘23𝑋19𝑠𝑠 + 𝑘−24(𝜎𝐴𝐽𝑠𝑠) 𝑋20𝑠𝑠 − 𝑘24(𝜎𝑀𝑠𝑠) 𝑋18𝑠𝑠 

 (5-81) 

 

𝑑𝑋20

𝑑𝑡
= 0 = 𝑘24(𝜎𝑀𝑠𝑠)𝑋18𝑠𝑠 − 𝑘−24(𝜎𝐴𝐽𝑠𝑠) 𝑋20𝑠𝑠  (5-82) 

 

Since the rate of E-cadherin co-synthesis with β-catenin was already estimated, and 

Equation 5-82 can be substituted into Equation 5-81 to avoid considering reaction 24 and 

AJs, Equations 5-74 through 5-82 form a system of linear equations from which most 

missing parameters (i.e. k23, k25, k26) can be approximated. 

Some of the parameter values used at the reference condition (i.e. values leading 

to normal physiological concentrations), reported in Table 5-2, vary from those 

calculated above. This is because a series of perturbation studies were performed to 

ensure that not only the steady-state concentration of molecules involved in E-cadherin 

recycling would match experimental data, but also their change of concentration in time. 

For this purpose the kinetics of E-cadherin degradation in MDCK cells reported by Shore 
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et al. were recreated by varying the values of k22 and k25 without changing the order of 

magnitude (161). 

The value of the parameters describing dynamics of reaction 24 (AJ formation by 

membrane E-cadherin and AJs dissociation) were then approximated to fit the dynamics 

of E-cadherin degradation. As presented in section 5.7.1, these rates were made 

dependent on an adhesiveness factor (σ), itself dependent on the extent of N-

glycosylation. Equations 5-9 and 5-10 describe these relations. 

  Based on observations made by Kam et al. in which AJs began to disintegrate 

between 30-90 min after treatment of cells with LPA (159), Relation 5-83 is used for an 

initial estimation of kdaj:  

 

1

90
 <  𝑘𝑑𝑎𝑗 < 

1

30
    (5-83) 

 

The value of kdaj was estimated to be 0.02 min
-1

 to fit dynamics of E-cadherin 

degradation. Observations made by Kam et al. also suggest that reconstruction of AJ after 

disruption with LPA treatment take twice as long as disruption, hence the value of and kaj 

was set as half that of kdaj, as shown in Equation 5-84: 

 

𝑘𝑎𝑗 = 
𝑘𝑑𝑎𝑗

2
     (5-84) 

 

Regarding parameters describing DPAGT1 expression its effect on ABC 

concentration and AJ formation: No kinetic studies were found on the N-glycosylation of 
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LRP5/6. Also, the RCN model is the first numerical model to look at the interaction 

between Wnt/β-catenin signaling and N-glycosylation. For this reason, no prior 

estimation exists of how DPAGT1 expression affects N-glycosylation of LRP5/6 and E-

cadherin, or how this modulates Wnt3a binding and AJ formation respectively. 

Parameters representing DPAGT1 transcription and translation (i.e. Tmax, KTmRNA, Pmax. 

k13), LRP5/6 N-glycosylation (i.e. ν15, k16-k19), and GPT activity on E-cadherin (i.e. 

Vmaxt/Gmax, KM) had to be estimated. 

Values were chosen heuristically to recreate measured fold-change in protein 

expression of selected molecules in MDCK cells upon causing known perturbations in 

DPAGT1 expression (Table 5-5). In the case of DPAGT1 downregulation, details on 

perturbation experiments can be found in the literature (70, 153). In the case of DPAGT1 

upregulation, resulting blots and quantification can be found in Figure 5-8. 

By solving for the steady-state of σER, it can be seen that the dependence of σERss 

on the steady-state of GPT (X14ss) is given by Equation 5-85:  

 

𝜎𝐸𝑅𝑠𝑠 =  1 −
𝑉𝑚𝑎𝑥𝑡

𝐺𝑚𝑎𝑥

𝑋14𝑠𝑠

𝐾𝑀+𝑋14𝑠𝑠
    (5-85) 

 

The values of Vmaxt/Gmax and KM were chosen such that a 4.5 fold increase in X14ss leads 

to a corresponding change in σMss from 0.4424 → 0.09529 (at steady-state adhesivity (σ) 

has the same value for all E-cadherin pools), which recreates the 3 fold increase 

measured experimentally in the steady-state concentration of AJs (X20ss). 
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5.8 Tables 

Molecule/Variable 
 Wnt “OFF” Wnt “ON” 

 Lee model RCN model Lee model     RCN model 

Wnt3a  N/A 

 

0 N/A 

 

26.7565 

(Wnt3a/LRP^)  N/A 

 

0 N/A 

 

1.2912 

(Wnt3a/LRP^/APC/*Axin/GSK3)  N/A 

 

0 N/A 

 

0.01427 

(APC/Axin/GSK3)  0.00483 

 

0.005525 0.000729 

 

0.0009212 

(APC*/Axin*/GSK3)  0.00966 

 

0.01105 0.00146 

 

0.001842 

(Axin/GSK3)  N/A 

 

0.0005668 N/A 

 

0.0001064 

APC  98 

 

97.4809 88.7 

 

86.5796 

(β-cat/APC)  2.05 

 

2.519 11.3 

 

13.4204 

(β-cat/APC*/Axin*/GSK3)  0.00202 

 

0.002855 0.00186 

 

0.002855 

β-cat  25.1 

 

25.8418 153 

 

155.006 

TCF  8.17 

 

8.0584 2.46 

 

2.4323 

(β-cat/TCF)  6.83 

 

6.94152 12.5 

 

12.5676 

β-cat0  35 

 

35.3053 178 

 

180.997 

DPAGT1 mRNA  N/A 

 

0.01265 N/A 

 

0.03356 

GPT  N/A 

 

0.003422 N/A 

 

0.00908 

LRP  N/A 

 

4.9158 N/A 

 

4.7828 

LRP^  N/A 

 

0.1121 N/A 

 

0.2895 

(E-cad^/β-cat)ER  N/A 

 

0.3742 N/A 

 

0.3742 

(E-cad^/β-cat)M  N/A 

 

0.2597 N/A 

 

0.2597 

(E-cad^/β-cat)ERC  N/A 

 

0.096 N/A 

 

0.096 

AJ  N/A 

 

0.294 N/A 

 

0.1034 

σER, σM, σERC, σAJ  N/A 

 

0.6936 N/A 

 

0.4434 

Table 5-1: Comparison of steady-state values from Lee model and RCN model  

All values reported refer to concentrations and have units of nM, except for those for the 

adhesivity parameter (σ) for E-cadherin in endoplasmic reticulum (ER), membrane (M), 

and endocytic recycling compartment (ERC) pools. This parameter is dimensionless and 

has a value between (0,1). N/A is used for entries of molecules non-existent in the Lee 

model. For RCN model, Wnt “ON” condition corresponds to a total concentration of 

Wnta of WNT0 = 28.062 nM. 
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Parameter Value Units Source Cell type 

WNT0 
0 (off), 28.062 

(on) 
nM estimated  

APC0 100 nM Lee et al. Xenopus oocyte 

TCF0 15 nM Lee et al. Xenopus oocyte 

(Axin/GSK3)0 0.02 nM Lee et al. Xenopus oocyte 

β-cat0 35 (off) nM Lee et al. Xenopus oocyte 

K1 6 nM Wawrzak et al. purified protein 

K2 1/12 nM estimated  

k4 0.26 min-1 Lee et al. (estimated)  

k5 0.13 min-1 Lee et al. (estimated)  

k3 0.091 nM-1 min-1 Lee et al. (estimated)  

k-3 0.91 min-1 Lee et al. (estimated)  

K6 100 nM estimated  

k7 210 min-1 Lee et al. (estimated)  

K8 10 K6 nM Salic et al. Xenopus oocyte 

v9 0.6 nM min-1 estimated  

k10 0.00026 min-1 Lee et al. Xenopus oocyte 

K11 30 nM Lee et al. (estimated)  

Tmax 0.005946 nM min-1 estimated  

KTmRNA 10 nM estimated  

ν 3 
 

Benary et al. Xenopus, zebrafish 

Pmax 0.025 min-1 estimated  

k13 0.11781 min-1 estimated  

v15 0.1 nM-1 min-1 estimated  

k16 0.02 min-1 estimated  

k17 0.1 nM-1 min-1 estimated  

k18 0.015 min-1 estimated  

k19 0.0924 min-1 estimated  

v20 0.000036 nM min-1 estimated  

k21 1/60 min-1 Chen et al. MDCK 

k22 0.0123 min-1 Kam et al., Shore et al. MDCK 

k23 0.0005 min- 
Chen et al., Shore et al., 

Le et al.  
MDCK 

k25 0.02 min-1 Chen et al., Le et al. MDCK 

k26 0.01 min-1 estimated  

Vmaxt/Gmax 1.1 
 

estimated  

KM 0.00887 nM estimated  

kaj 0.01 min-1 Kam et al. A431 

kdaj 0.02 min-1 Kam et al. A431 
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Table 5-2: Parameter values and sources for RCN model 

Parameters are grouped in the following categories from top to bottom: constitutive 

protein concentrations, Wnt3a binding, active β-catenin regulation, DPAGT1 expression, 

N-glycosylation, E-cadherin recycling, and AJ formation/dissociation. Values in bold are 

those measured experimentally. Those with a reference for source but not in bold were 

estimated based on an experimental relation contained thereof. Those with corresponding 

source “estimated” and a reference were estimated for a model contained thereof. Those 

with corresponding source “estimated” and no reference were estimated in this model: 

Details about this estimation process can be found in section 5.7.4. 
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Rank 
Reaction 

number 
Parameter 

Avg. 

sensitivity 
Rank 

Reaction 

number 
Parameter 

Avg. 

sensitivity 

1 ) 9 ν9 0.6 17 ) 4 k4 0.26 

2 ) 0 (b) TCF
0
 0.59 18 ) 18 k18 0.26 

3 ) 6 K6 0.53 19 ) 16 k16 0.26 

4 ) 12 (b) KTmRNA 0.45 20 ) 20 (b) Vmax t/Gmax 0.14 

5 ) 0 (c) (Axin/GSK3)
0
 0.43 21 ) 20 (c) KM 0.06 

6 ) 7 k7 0.43 22 ) 3 (a) k3 0.03 

7 ) 12 (a) Tmax 0.42 23 ) 0 (a) APC
0
 0.03 

8 ) 14 Pmax 0.42 24 ) 8 K8 0.02 

9 ) 15 ν15 0.37 25 ) 3 (b) k-3 0.02 

10 ) 17 k17 0.36 26 ) 20 (a) ν20 0.0017 

11 ) 5 k5 0.35 27 ) 22 k22 0.0016 

12 ) 11 K11 0.31 28 ) 25 k25 0.0006 

13 ) 13 k13 0.3 29 ) 26 k26 0.0005 

14 ) 19 k19 0.3 30 ) 10 k10 0.0002 

15 ) 2 K2 0.29 31 ) 21 K21 0 

16 ) 1 K1 0.26 32 ) 23 k23 0 

 

Table 5-3: Ranking of processes of RCN 

Ranking of parameters based on average relative sensitivity values over all variables. 

Reaction number refers to the numbering scheme used in Figure 2 to describe all 

processes of the RCN: “0” is used to label parameters describing total amount of 

conserved molecules, while letters are used to differentiate between parameters that 

describe a single processes. 
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Condition 

Leading edge speed 

[µm/h] 

 Optic flow magnitude 

[µm/h] 

DMSO / CCM 20.39 ± 6.78 10.92 ± 1.62 

DMSO / WCM 18.53 ± 3.60   7.30 ± 2.34 

ICG-001 / CCM   4.53 ± 4.14   6.56 ± 1.48 

ICG-001 / WCM   8.86 ± 4.23   5.67 ± 1.27 

 

Table 5-4: Speed of MDCK monolayers 

Leading edge speed values correspond to average and standard deviation of 

measurements made in three independent experiments (N=3). Optic flow magnitude 

values correspond to average and standard deviation of measurements made in three 

independent experiments for 27 time points in each (N=81). CCM stands for Control 

Conditioned Media (constitutive condition) and WCM for Wnt3a Conditioned Media 

(activated condition). No inhibitor condition has DMSO (0.1% V/V); ICG-001 is added 

at 10µM. 
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Molecule measured / Variable 

calculated 

Recreated 

condition 
Experimental Theoretical source 

α-catenin / (E-cad^/β-cat)M + AJ 
Reducing GPT 

by 0.4 
1.8 1.48 Nita-Lazar et al. 

γ-catenin / AJ 
Reducing GPT 

by 0.4 
2.5 2.66 Sengupta et al. 

ABC / ABC 
Reducing GPT 

by 0.45 
0.4 0.56 

Sengupta et al., 

Nita-Lazar et al. 

β-catenin /  

(β-cat/APC) + (β-cat /DC*) +  

(β-cat/TCF) + β-cat 

Reducing GPT 

by 0.45 
0.65 0.59 

Sengupta et al., 

Nita-Lazar et al. 

β-catenin /  

(β-cat/APC) + (β-cat /DC*) +  

(β-cat/TCF) + β-cat 

Increasing GPT 

by 4.5 
3 2.86 Sengupta et al. 

ABC / ABC 
Increasing GPT 

by 4.5 
3 3 Figure 5-8 

 

Table 5-5: Matching experimental and theoretical results for parameter estimation 

Values correspond to fold-change in steady-state concentrations upon downregulation or 

upregulation of DPAGT1 expression. Experimental results were obtained through 

Western blots or immunoprecipitation. Theoretical results correspond to steady-state 

solutions to RCN model. *denotes a phosphorylated species. ^ denotes an N-glycosylated 

species. All theoretical predictions were carried out for activated Wnt/β-catenin signaling 

(i.e. WNT
0
 = 28.062 nM). Not all concentrations measured experimentally correspond to 

a simulated node in the network; the model cannot include all molecules in the cell. For 

example, experimental concentration of AJs was considered to be indicated by γ-catenin, 

a catenin associated with mature junctions [1]. 
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5.9 Figures 

 

 

Figure 5-1:  Schematic of general relationship between component pathways 

Image adapted from (54). 
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Figure 5-2: Reaction scheme 

Protein complexes are enclosed in () with their components separated by /. Processes are 

numbered 1-26. Reactions 1-10 represent steps of Wnt/β-catenin signaling involved in 

active β-catenin regulation in the absence of Wnt3a. Reactions 11-19 represent regulation 

of Wnt3a binding by both genetic regulation of DPAGT1 and N-glycosylation. Reactions 

20-26 represent E-cadherin dynamics and AJ formation. The abbreviations used are: 

APC, adenomatous polyposis coli; β-cat, β-catenin; E-cad, E-cadherin; ER, endoplasmic 

reticulum; ERC, endocytic recycling compartment; GSK3, glycogen synthase kinase 3β; 

LRP, lipoprotein receptor-related proteins; M, membrane; TCF, T-cell factor.  Image 

partly adapted from (154). 
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Figure 5-3: Sensitivities for select molecules in RCN 

(LEFT) Sensitivity to changes in individual reactions of fold-change (upon activation of 

Wnt/β-catenin signaling) in ABC, DPAGT1 mRNA and GPT, AJ, and E-cadherin adhesivity 

at steady-state.  Reaction labels refer to numbering used in Figure 5-2; repeated numbers 

used for processes described by more than one parameter. Reaction labels along the 

horizontal axis are organized from left to right in order of decreasing impact on network 

concentrations. (RIGHT) Dependence of fold-change in chosen molecules in time to changes 

in reaction 11 (i.e. binding equilibrium of β-catenin and TCF). The horizontal axis represents 

the factor by which the parameter describing binding dynamics is scaled.  
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Figure 5-4: Relative sensitivity of all other molecules 

Sensitivity of fold-change at steady-state to changes in individual reactions (upon 

activation with Wnt3a), except ABC, DPAGT1 mRNA and GPT, AJ, and E-cadherin 

adhesivity (Figure 5-3).  Reaction labels refer to numbering used in Figure 5-2; repeated 

numbers used for processes described by more than one parameter. Reaction labels along 

the horizontal axis are organized from left to right in order of decreasing impact on 

network concentrations. 
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Figure 5-5: Parameters with most and least impact on each RCN molecule 

Red signifies a relative sensitivity to a parameter (column) of fold-change in a variable (row), which is half of the average 

sensitivity of the variable to all parameters; green signifies a relative sensitivity to a parameter, which is half of the average to 

all parameters.  Average sensitivities values in bottom row are the average relative sensitivity values of fold-change in all 

variables to a single parameter. All fold-change values are calculated based on concentrations at steady-state. 
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Figure 5-6: Representative immunoblots 

MDCK cells were treated with: Either CCM or WCM, and either no inhibitor (DMSO) or ICG-001. a) Representative IBs of ABC in 

total cell lysates (TCLs). Quantified intensity values are averages; error bars represent standard error of the mean (N=4). b) 

Representative IBs of α-catenin and E-cadherin in precipitate from IP of E-cadherin from TCLs. Quantified intensity values are 

averages; error bars represent standard error of the mean (N=2). Blots were quantified and resulting values normalized to the 

DMSO/CCM condition. * represents statistically significant difference, p<0.05. 
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Figure 5-7: Average speed in an MDCK cell sheet 

Average cellular speed in migrating MDCK cell sheets for cultures treated with: Either 

conditioned media with (WCM) or without (CCM) Wnt3a, and either no inhibitor 

(DMSO) or ICG-001.Values are the average (errors bars represent standard error of the 

mean) of three independent experiments for 27 time points in each (N=81). * represents 

statistically significant difference, p<0.05. 
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Figure 5-8: Blots displaying effects of DPAGT1 upregulation 

IBs of total cell lysates (TCLs) of MDCK cells transfected with an empty vector (E) or a 

DPAGT1 transcript. A) Shows GPT levels and B) ABC levels. Blots were quantified and 

normalized to E condition. ** represents statistically significant difference, p<0.01. 
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CHAPTER 6. Multiscale Modeling of Collective Migration 

Chapters 3 and 4 examined how migration relates to cluster-ECM interactions and 

epithelial disruption; however, dynamics of cells within clusters and the evolution of cell-

cell junctions were left unaddressed. This chapter presents a multiscale model of cell 

clusters that incorporates a regulatory cell network (RCN) to account for variability in 

cellular speed in collective migration in 3D. 

The resulting multiscale model is developed in parallel with an in vitro technique 

to create and observe mammalian epithelial cell clusters. By comparing the simulated 

dynamics to experimental measurements, the model provides insight into the independent 

contributions of physical forces and biochemical regulation to cellular cluster invasion. 

By recording cellular positions in time, and matching average nuclear 

displacement and cluster size (i.e. number of cells) to simulated conditions, the model 

provides information on the physical interactions between neighboring cells. Further 

analysis on migration dynamics and simulated adherens junction (AJ) expression, reveals 

the relation between cluster shape, directionality, degree of collectivity, and adhesion. 

6.1 Introduction 

Cellular clusters of a few cells have been observed, in vitro and in vivo, to play a 

role during fetal development as well as in cancer metastasis (125, 126). Two defining 

characteristics of collective migration are sustained temporary or permanent cell-cell 

junctions and supracellular polarity (5). The nature of cell-cell junctions and cytoskeletal 

organization has been studied in two-dimensional in vitro models; phalloidin staining 

reveals the cytoskeletal arrangement, while force traction microscopy and PIV studies 
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provide insight into the contribution of adhesion and traction to collective behavior (21, 

29, 30, 134). 

In cluster migration specifically, given the dynamic nature of cell-cell boundaries, 

AJs are the principal link between cells. AJs constitute a protein complex, which has a 

cadherin molecule as the transmembrane protein binding to similar proteins on the 

membrane of neighboring cells. Particularly in epithelial tissues, E-cadherin forms 

homotypic bonds between cells (51). Only until recently have studies of 2D cell 

collectives looked beyond mechanotransduction and migration of the whole. E-cadherin 

expression at the membrane and the stability of AJs are shown to be dependent on 

regulation of gene expression and a related network of biochemical pathways (16, 54). 

This has not been studied in cell clusters in three-dimensional environments. 

Most studies on collective dynamics in 3D have been performed either 

theoretically or on bacterial colonies or animal collectives (120, 179, 180). Despite the 

evident differences in the nature of units of these collectives, there are similarities in the 

observed patterns. This has led to the belief that these diverse systems can be described 

with common physical laws. SPP models have been successful in describing dynamics of 

bird and fish populations (120, 179, 180). SPP models, a subtype of agent-based models, 

restrict either direction of a particle, velocity, or both based on motion of neighboring 

particles (181). Recently, a SPP model was used to simulate the dynamics of a system of 

two distinct cell types on a two-dimensional surface (124). Nevertheless, no 3D SPP 

model has explored mammalian cell dynamics. 
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This chapter presents a first model of 3D mammalian cell clusters using SPP 

modeling. The model scales speed of the particles representing cells based on their degree 

of adhesion. By varying parameters representing influence of cells on their neighbors’ 

preferred direction and mechanical attraction of repulsion between cells in contact, the 

model shows the influence of physical interactions between cells in cluster density, 

shape, and migration methods. These are quantities that have not been characterized for 

cell collectives in 3D and may be very revealing of invasive dynamics. In the case of 

density, for example, there are reports of crowding in 2D influencing collective motion 

(118). 

By using an in vitro method for generation and observation of single cells in 

epithelial clusters in 3D, the multiscale model can be optimized to recreate cellular 

behavior. By incorporating a time regulation of formation of AJs, the model can then 

predict what is occurring in terms of cell-cell adhesion throughout the emergence of 

collective behavior. The experimental results reported in this chapter were obtained 

jointly with Dr. Yasha Sharma and reported in Integrative Biology (33). 

6.2  Model Formulation 

6.2.1 Self-propelled Particle (SPP) Model in 3D 

Traditionally, SPP models assign a constant speed to a number N of particles 

initially placed at random in space. The direction of each particle is updated at every step 

based on an average of its neighbors’ directions. This update rule is presented in Equation 

6-1: 
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𝜃𝑝
𝑡+1 = 𝑎𝑟𝑔[𝛼 ∑ 𝒗𝑞𝑝~𝑞 + 𝛽∑ 𝒇𝑝𝑞𝑝~𝑞 +𝑁𝑝𝜂𝒖𝑝

𝑡 ]   (6-1) 

 

where θ
t+1

 is the direction, v is the velocity, q are all neighbors within a specified radius 

of attraction, and η is a noise term. α and β are scaling factors taken from the work by 

Grégoire et al. (12); α scales the influence of the neighbors’ velocities on the particle’s 

preferred direction, while β scales the attraction or repulsion force (fpq) exerted on a 

particle p due to proximity to its neighbors q to ensure volume exclusion. Np is the 

number of neighbors that influence a noise term η, a factor that scales a random unit 

vector u. 

The number of neighbors (Np) is defined as number of particles within an 

equilibrium distance re = 20 µm. This value was selected because it is roughly equivalent 

to 1 cell diameter in 3D. The Np value is set at a maximum of 12, which corresponds to 

maximal packing number assuming perfect spheres.  

The model was adapted to 3D by making position, velocity, force, and noise 

vectors three-dimensional. The particles are seeded randomly onto positions of a 3D cube 

of dimensions L
3
 with periodic boundaries. Each particle is assigned an initial direction 

by random assignment of a direction vector (θ,φ), where θ is the direction in the xy-plane, 

and φ is the angle from the z-axis. The range of these quantities is the following: θ ∈ [-π 

π] and φ ∈ [0 π]. The direction vector (θ,φ) of any particle p at time step (t+1) can be 

converted to Cartesian coordinates (Cp (Cx,p , Cy,p , Cz,p)) by Equations 6-2 and 6-3: 

 

𝜃𝑝
𝑡+1 = 𝑎𝑟𝑔(𝐶𝑥,𝑝

𝑡+1 + 𝑖𝐶𝑦,𝑝
𝑡+1)     (6-2) 



 

135 

𝜑𝑝
𝑡+1 = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝐶𝑧,𝑝
𝑡+1

√(𝐶𝑥,𝑝
𝑡+1)

2
+(𝐶𝑦,𝑝

𝑡+1)
2
+(𝐶𝑧,𝑝

𝑡+1)
22
)    (6-3) 

 

Equation 6-4 display the components of Cp: 

 

[

𝐶𝑥,𝑝
𝑡+1 = 𝛼∑ 𝑣𝑞,𝑥𝑝~𝑞 + 𝛽∑ 𝑓𝑝𝑞,𝑥𝑝~𝑞 + 𝑁𝑝𝜂 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑

𝐶𝑦,𝑝
𝑡+1 = 𝛼∑ 𝑣𝑞,𝑦𝑝~𝑞 + 𝛽∑ 𝑓𝑝𝑞,𝑦𝑝~𝑞 + 𝑁𝑝𝜂 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑

𝐶𝑧,𝑝
𝑡+1 = 𝛼∑ 𝑣𝑞,𝑧𝑝~𝑞 + 𝛽∑ 𝑓𝑝𝑞,𝑧𝑝~𝑞 +𝑁𝑝𝜂 𝑐𝑜𝑠 𝜑

]  (6-4) 

 

The attraction/repulsion force term fpq , is described in Equation 6-5. This is 

essentially a modified Lennard-Jones potential:  

 

𝒇𝑝𝑞 = 𝒆𝑝𝑞

{
 
 

 
 
−∞ 𝑖𝑓 𝑟𝑝𝑞 < 𝑟𝑐

1

4

𝑟𝑝𝑞−𝑟𝑒

𝑟𝑎−𝑟𝑒
𝑖𝑓 𝑟𝑐 < 𝑟𝑝𝑞 < 𝑟𝑎

1 
0

𝑖𝑓 𝑟𝑎 < 𝑟𝑝𝑞 < 𝑟0
𝑖𝑓 𝑟𝑝𝑞 > 𝑟0

   (6-5) 

 

where epq is the unit vector along the direction between the two particles. This piecewise 

function assigns a magnitude to the force between neighboring particles based on the 

distance between them (rpq). The different radii determining the limits of the different 

interactions are: rc is the core repulsion radius, below which the force is repulsive. ra is 

the attraction radius. r0 is the limit of interaction, above which particles do not affect 

each other. 
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6.2.2 Scaling Parameters and Cell Speed Based on Adhesion 

To emulate cellular systems the distances defining particle interactions and speed 

of the particles were scaled proportionally to experimental observations. To define the 

attraction and repulsion forces (Equation 6-5): rc was set to 8 μm, a typical nucleus 

diameter; ra was set to 32 μm, approximately 1.5 times a cell diameter; r0 was set to 36 

μm. 

Taking each SPP step (i.e. simulation step) to correspond to 10min in real time, 

the maximum displacement in a single step was set to 2 μm. This means the maximum 

speed of the particles if they are not interacting with any other particle is 0.2 μm/min. 

Because cells in collectives have been seen to move slower than single cells in 2D 

(125), the assumption was made that in 3D cluster migration cell-cell adhesion prevents 

cells from moving as fast as they would individually. Based on this, the migration step 

for each step is scaled based on each cell’s expression of AJs. A linear scaling is chosen 

because of its simplicity and justified with the fact that each step corresponds to 10 

minutes, an interval significantly larger than single E-cadherin bond lifetime (18); 

homotypic E-cadherin bonds are persistent and do not vary in strength based on 

intercellular forces. This relation is displayed in Equation 6-6: 

 

|𝒗𝑝| =  [
−0.14

〈𝐴𝐽𝑒𝑞〉
𝐴𝐽𝑝 + 1] 𝑣𝑚𝑎𝑥    (6-6) 

 

The magnitude of the speed for a particle p (vp), is determined by scaling the 

maximum possible speed vmax = 0.2 μm/min by the scaling factor contained in straight 
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brackets. AJp stands for the AJ expression by particle p, while <AJeq> is the approximate 

expression of AJs at equilibrium. The value of <AJeq> is 1.43×10
-4

 nM, and it is 

determined from the RCN model presented in Chapter 5. The value -0.14 was chosen 

because the average cellular speed for cells in epithelial clusters was observed to be 0.172 

μm/min, that is a 14% drop compared to vmax. 

6.2.3 Integration of Regulatory Cell Network (RCN) 

To combine both the cellular and intracellular scales in a multiscale model, the 

RCN model was incorporated into the modified SPP model in 3D. This consists in 

solving the RCN model within each SPP step with a shorter time step (i.e. RCN step). 

While the SPP step corresponds to 10 min of real time, the RCN step corresponds to 1 

min. This means that for each SPP step, the RCN system is solved for ten steps. 

After updating the direction of the simulated cells (i.e. particles in SPP model) 

according to Equations 6-2 and 6-3, the RCN is solved discounting formation and 

disassembly of AJs to determine the number of E-cadherin/β-catenin complexes 

expressed by each cell on the membrane. This requires a calculation of all neighboring 

relations. Then, based on E-cadherin/β-catenin expression for each pair of cells and 

adhesivity, as defined by degree of N-glycosylation (see Chapter 5), the number of AJs 

formed is determined for each pair of cells. The formed AJs with each neighbor are 

averaged (AJp) and the velocity is scaled as specified in Equation 6-6. 

With the direction and speed determined, the position of each cell is updated. 

Before carrying on with the subsequent SPP step, AJs and adhesivity are updated for each 

cell given the new neighboring relations after displacement. This updates the 
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concentration of free membrane E-cadherin/β-catenin complexes (i.e. not forming AJs) 

available for recycling; in this way the SPP step affects what occurs inside the cell as 

well. A schematic of this relationship is presented as Figure 6-1. 

6.2.4 Model Implementation and Simulated Conditions 

The model is implemented in MATLAB (Mathworks, Natick MA). In between 

SPP steps, the differential algebraic equations (DAEs) describing the RCN are solved 

using the implicit solver ode15i. The system of equations is solved sequentially for 

groups of N/Nnode cells; each group is addressed simultaneously by using MATLAB’s 

parallel computing toolbox. Each simulation is run in a computer cluster with Nnode nodes 

per core. A parfor (i.e. parallel for loop) structure is used to do this. 

  In order to quantify the impact of adding adhesion to a SPP model, two separate 

setups are implemented. First, the scaled SPP model is ran without integration of the 

RCN. A different setup consists of the multiscale SPP model, also referred to as the 

variable speed SPP model, because of scaling of particle speed as specified in Equation 

6-6. 

In the case of the first setup (i.e. scaled SPP model with no RCN), the system is 

initialized with N = 512 cells in a space of L = 1280 μm.  Periodic boundaries are 

implemented. The simulations are run for 20,000 SPP steps. A single simulation was run 

for all possible combinations of the two following sets of α and β values: α-range (0, 

0.01, 0.03, 0.05, 0.07, 0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7, 10) and β-range (0, 0.01, 0.03, 0.05, 

0.07, 0.1, 0.3, 0.5, 0.7, 1, 3, 5, 7, 10). 

For the second setup (i.e. variable speed SPP model), the system is initialized with 
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N = 100 cells in a space of L = 743 μm; the particle density (i.e. N/L) is the same in both 

setups.  Periodic boundaries are implemented. The simulations are run for 100,000 SPP 

steps, because more time is needed for AJ concentration to reach equilibrium. A single 

simulation was run for all possible combinations of the two following sets of α and β 

values: α-range (0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10) and β-range (1, 2, 3, 6, 10, 20, 30, 60, 

100). η, in Equation 6-1 and 6-4, is set to a value of 1 for most simulations, but varied for 

selected conditions deemed representative of behavior observed in vitro. 

6.3 Experimental Validation 

6.3.1 In vitro 3D Model of Epithelial Cell Clusters 

MDCK Type II epithelial cells are grown on tissue culture treated plastic at 37°C, 

5% CO2, and 70% humidity. Cells are cultured in DMEM media supplemented with 10% 

FBS and 1% penicillin/streptomycin. Cells are stably transfected to express nuclear 

localization signal (NLS) bound to GFP. Transfection is accomplished by a GFP-NLS 

plasmid (Clontech, Takara Bio, Japan) inserted with Lipofectamine 2000 (Invitrogen, 

Life Technologies, Grand Island, NY). To maintain high fluorescence in the cell 

population, cells with the plasmid are selected by adding 0.5 mg/ml G418 (Fisher 

Scientific, Pittsburgh, PA) to the media. Fluorescence activated cell sorting (FACS) 

selects for the brightest 1% of cells. 

Clusters are formed by growing cells in suspension. Cells are trypsinized 

(Trypsin-EDTA solution, Sigma Aldrich, Saint Louis MO), passed through a 40 µm cell 

strainer (BD Biosciences, San Jose, CA) to be grown as single cells when seeded onto a 
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10 cm diameter Ultra Low Attachment Dish (Corning, Corning NY) in 10 ml media. 

After ~48 hours, clusters are extracted by passing the solution through either a 100 µm or 

a 70 µm cell strainer followed by a 40 µm cell strainer to select for clusters of 10-20 

cells. These are re-suspended and centrifuged at 800 rpm, and then immersed in a 2 

mg/ml collagen solution for 3D culture and imaging.  

The 2 mg/ml collagen solution is prepared by mixing equal volumes of Type I 

collagen stock solution (BD Biosciences, San Jose, CA) and neutralizing buffer (100mM 

Hepes in 2× PBS, pH 7.3). Cell clusters are added to the 2 mg/ml collagen solution; 500 

µl of this cluster-collagen suspension is seeded onto each well of a 24-well plate 

(MatTek, Ashland MA). The plates are incubated at 37°C, 5% CO2 and ~ 70% humidity 

for 2 hours until the collagen has polymerized, after which ~1-2 ml of growth media is 

added to each well. 

6.3.2 Image Acquisition 

Images are acquired using a DMI600B Microscope (Leica, Solms, Germany) and 

ImagEM EM-CCD Camera (Hamamatsu Photonics, Hamamatsu, Japan) using a Spinning 

disk confocal setup (Yokogawa, Tokyo, Japan). Micro-Manager 1.4 Software (182) 

employs a 10× 0.3 NA objective lens to image multiple ~560 × 560 × 100 µm
3
 fields of 

view. 3D stacks are acquired in the xy-plane with a z-step of 4 µm. Images of each FOV 

are taken every 10 minutes for 48-72 hours. Acquisition and analysis is restricted to cells 

clusters located at >100 µm from the glass bottom; this excludes cells that can sense the 

substrate beneath the 3D matrix behaving differently and proliferating as on a 2D 

substrate (183). 
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6.4 Quantifying Emergent Collective Dynamics 

6.4.1 Cell Tracking 

The raw data capturing the fluorescent nuclei are identified by using a 3D feature 

finding algorithm designed for concentrated fluorescent spheres in colloidal systems 

(184). The different parameters controlling the algorithm are optimized for nucleus 

tracking such that the number of features detected (NF) matches visual examination and 

does output is not dependent on parameter. This last criterion is described by Equation 6-

7: 

 

𝑑𝑁𝐹

𝑑𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
 ≅  0     (6-7) 

 

Within the range of values explored, changing either expected nuclear diameter in 

the xy-plane or Z-direction did not alter NF by more than 10% for an xy-diameter of 8 μm 

and z-diameter of 5 μm. The mask value is significantly larger and set at 13 μm for xy 

and 7 μm for z. The algorithm automatically discriminates between features separated by 

a minimum distance of half a diameter. 

After identifying the features at individual FOVs at a single point in time, the 

different nuclei are associated in time, effectively tracking nuclei in space. The tracking 

algorithm searches for nearest neighbors at the subsequent image in time to find the 

feature that most likely represents the next position in the trajectory of a nucleus. Two 

input parameters optimized for are: minimum track duration min(Ttrack) and the maximum 
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distance traveled between consecutive time points max(dcons). The most features were 

retained for a min(Ttrack) value of 6 μm and a max(dcons) value of 5 μm (not shown). 

Therefore these values are established for the tracking algorithm. Features are retained in 

a track if they are missing for up to 3 time frames (half the minimal track duration). 

Next, a de-drifting algorithm is implemented on the resulting tracks from the 

tracking algorithm; this de-drifting removes any motion common to all features in the 

frame (185). Drift is eliminated over 1 hour because externally induced stage drift occurs 

over a period of few hours. 

In a last step before finalizing the nuclear tracks, a linear interpolation is used to 

fill in missing positions (i.e. gaps in time). This is not expected to affect analysis since 

features are only considered the same if gaps are no longer than 3 time steps. 

6.4.2 Cluster Identification 

With the tracks in place, the next step is the grouping of cells into clusters. For 

this a clustering algorithm developed by Sharma et al. is used (33). This algorithm uses a 

recursive function that labels cells with a cluster ID based on distance between cell 

nuclei. A radius of interaction (ri) is used as the limit below which cells are considered 

part of the same cluster. It was determined heuristically that a values of ri = 30 µm leads 

to proper cluster identification. 

A cluster’s identity also has to be assigned properly across time points. This 

cluster correlation algorithm assigns clusters that are believed to be the same in 

consecutive with the same cluster ID by maximizing cell retention (33). This algorithm 

handles events where two or more clusters merge. 
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6.4.3 Order Parameter 

The degree of collectivity can be quantified through order parameters, 

determining the relative order of a system. These are system variables that change 

significantly marking phase transitions, they describe the degree of symmetry of the 

system (186). Mathematically, an order parameter adopts a value of 0 is the system is 

disordered, and a non-zero value in a different phase. For collective motion, a natural 

choice for the order parameter is normalized velocity (φ). Normalized velocity is defined 

in Equation 6-8: 

 

𝜙(𝑡) =  
|∑ 𝒗𝑝(𝑡)
𝑁
𝑝=1 |

∑ |𝒗𝑝(𝑡) |
𝑁
𝑝=1

     (6-8) 

 

where p is an individual cells in a system, N the total number of cells, and vp(t) is the 

velocity at time t. 

6.4.4 Inertia Tensor 

In addition to quantifying the order of the system, the change in shape is also 

analyzed. This is done by calculating the inertia tensor as if each nucleus corresponded to 

a rigid sphere in a body of multiple spherical units, and using the evolution in time of the 

eigenvector of the tensor to characterize orientation. The inertia tensor is described by 

Equation 6-9: 
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�̿� =  ∑𝑚((𝒓𝑝 ∙ 𝒓𝑝)𝐼 ̿ −  𝒓𝑝⊗𝒓𝑝)

𝑁

𝑝=1

 

 

where �̿� is the inertia tensor, p is a unit, N the total number of units, m is a mass of each 

unit (taken to be 1 for all units, as all cells are considered equal), 𝐼 ̿is the identity tensor, 

rp is the position vector of particle p, and ⊗ is the tensor product. 

Mathematically, the small eigenvector corresponds to the axis of the object along 

which most units are closest (i.e. the long axis); this is the axis with the least torque 

making rotation of the rigid body along this axis in particular more difficult. As a cell 

cluster is not a rigid body, this is only an approximation, but nonetheless, change in angle 

is indicative of change in orientation. 

Change in shape is measured by calculating the average distance of cells in a 

cluster to the center of mass (CoM) of the cluster. Actual mass distribution for each cell 

is unknown, but similarly to calculation of the inertia tensor, the approximation is done 

by assuming the nuclei represent the position of the mass of the cell. This quantity does 

not represent shape directly, as it linearly increases with number of cells. 

6.4.5 Interval Selection 

In order to narrow down the periods at which the cluster migration is analyzed as 

well as removing any subjectivity to the analysis of collective behavior, the cell 

displacement was used to isolate the time periods over which clusters displayed collective 

behavior (i.e. motility events) as opposed to random motion. 
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Cell displacement was quantified as the average cellular speed over one hour; this 

quantity was squared to highlight instances of high motility. For selection of intervals of 

analysis, the median of the average speed for all cells in the cluster was used; this 

quantity is referred to as squared displacement median (SDM). Peaks in SDM were 

identified by first using MATLAB’s peak finding algorithm, next merging peaks based 

on proximity to identify isolated motility events, and finally, using a threshold to isolate 

significant events. The details of this selection process can be found in Sharma et al. (33). 

A sample set displacement data from an MDCK cluster with the different steps in interval 

selection highlighted is presented in Figure 6-2. 

6.5 Results 

6.5.1 MDCK Clusters Display Temporal Heterogeneity 

A total of twelve clusters found in two different collagen gels and five 

independent FOVs were tracked. These clusters were composed of 4-31 cells. Clusters 

were dynamic and exhibit spatial and temporal heterogeneity. An example of the total 

displacement observed over 48h for multiple clusters is presented in the planar 

projections and three-dimensional renderings of five clusters in two FOVs (Figure 6-3). 

Recorded displacements are in the order of 10-20 μm; these would not be considered 

relevant in two-dimensional studies but are in 3D. 

This heterogeneity in motion was seen in that behavior included seemingly 

random movement, collective rotation, and collective translation. For cells translating 

collectively, the order parameter (i.e. normalized velocity) is high and close to 1. Instead, 
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for cells rotating collectively this parameter is low, ranging between 0 and 0.5: When 

rotating about an axis in the center of the cohort, the order parameter is 0, while for 

clusters rotating about an off-center axis, the order parameter is higher. In this way the 

order parameter is used to classify the different motility events identified according to the 

method presented in section 6.4.5. 

Heterogeneity in collective motion is also evident from the different number of 

motility events that occurred in the 48-hour interval in which the cells were tracked. The 

SDM and order parameter for six clusters in the same gel are presented in Figure 6-4; the 

number of motility events varies between 3 and 11 for clusters found in the same 

environment.  Rotation events seems to occur in short bursts, with a duration <2 hours. 

Meanwhile, translation events occur for up to 6 hours. 

This behavior seems to be independent of external driving agents, as experiments 

were conducted under no externally imposed stimuli, such as a nutrient gradient. No 

internal gradient is believed to be imposed as the observed movement of clusters seems to 

occur at random. Figure 6-3 (panels C and D) presents a case of two clusters merging; 

however, there are examples of other similarly sized clusters that move in opposite 

directions (not shown). 

6.5.2 SPP Models Can Recreate Mammalian Cell Cluster Dynamics 

The scaled SPP model (without incorporating RCN dynamics) produced a wide 

ranging set of behaviors in the simulated clusters with varying values of parameters α and 

β. Figure 6-5 shows the end configurations of the system for select pairs of α and β 

values. This figure shows how behaviors ranged from random migration of all cells as 
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individuals (e.g. Figure 5-1a), through globular clusters similar to those observed in vitro 

(e.g. Figure 5-1e), to highly organized chain migration (e.g. Figure 5-1i). 

It is apparent that for low values of α and β few clusters are formed. For high 

value of either α or β multiple clusters are formed, but some cells remain detached from 

any others throughout the whole simulation. In the case of both high α and high β, chain 

migration is observed. 

A set of criteria was used to select conditions within the αβ-parameter space that 

may recreate cluster migration as observed in epithelial cell clusters. Three criteria were 

used: First, a median cluster size between 4-31 cells; second, a relatively high (i.e. 

between 0.6 and 1) average median order parameter (φ) over 1 hour; third, a median net 

cellular displacement between 3-7 μm over 1 hour. Table 6-1 shows what conditions in 

the αβ-parameter space met these criteria. 

These results suggest that for the scaled SPP model the simulations with an α–

range of (0.1, 1) and a β–range of (1, 10) can potentially emulate clusters observed in 

vitro. 

The corresponding analysis of the variable speed SPP model with the same three 

criteria is presented in Table 6-2. In contrast to the simpler scaled SPP model, fewer 

conditions could emulate epithelial clusters. Specifically, (α,β)-pairs  that meet all criteria 

are (3,20), (3,30), (3,100), and (10,60). This indicates that variable speed creates a finer 

balance between the need for attraction and guidance in cellular clusters. All values of 

both α and β are outside the range obtained from the simpler scaled SPP model. This 

indicates that by slowing down cells with adhesion both higher influence from neighbors 



 

148 

and attraction between cells is required for clusters to form. 

Having further narrowed the area in αβ-parameter space, the effect of noise (η) 

was explored. This parameter was varied over two orders of magnitude, one below and 

one above the reference value η = 1. The resulting cellular configurations were parsed 

using the same criteria as in other simulations. The classification of simulated output is 

presented in Table 6-3. Specifically, (α,β,η)-sets  that meet all criteria are (1, 1, 0.2), (3, 

3, 0.1), (3, 20, 0.5), (3, 20, 1), (10, 60, 0.2), (10, 60, 1), and (10, 60, 5). This increased the 

number of cases that emulated in vitro clusters. This suggests a stochastic component is 

an important part of cluster formation in cellular systems. Specifically, lowering the noise 

lowered the value of β for which simulations emulated experiments; with less noise, 

attraction is not as important. Meanwhile, increasing the noise had little effect in getting 

more conditions that emulate in vitro clusters. Table 6-3 indicates that above a certain 

level, noise causes the displacement to no longer match with experimentally observed 

values, meaning the change in direction is no longer realistic. 

Additionally, the number of clusters and the median size of the clusters (i.e. 

number of cells) were quantified for the different conditions in both scaled SPP and 

variable speed SPP simulations. The resulting plots displaying the values as colors on a 

plane covering the whole αβ-parameter space are called phase plots, due to their 

similarity with phase plots displaying phase transitions in physical systems. The phase 

plots for cluster number and size are displayed in Figure 6-6. 

In the scaled SPP model, number of clusters has a biphasic relationship when α 

and β rise together; first the number of clusters rises and then drops. A balance of high α 
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with low β or alternatively, low α with high β, will lead to cluster formation. At low 

values of both parameters, the system remains as single cells, while at high values of both 

all cells will come together into very few chains. This suggests that to form clusters cells 

must find a balance between attraction and cues causing leader-follower relations to arise.

 For the variable speed SPP model, phase plots for cluster number and size are also 

displayed in Figure 6-6. The dependence of these quantities on α and β is similar but less 

clear than in the scaled SPP model; variable speed adds stochasticity that seems 

characteristic of in vitro cellular migration. 

6.5.3 α Determines Rise of Collectivity While β Determines Transition Dynamics 

The order parameter was calculated for each individual cluster formed for the 

different conditions defined by choice of α and β, and the median was retrieved. The 

resulting phase plots are displayed in Figure 6-7. Comparison of normalized velocity 

calculations for all cells in the system and only for cells within each cluster, demonstrates 

the resulting heterogeneity that can arise with each condition. 

These results show how a high value of α is enough to increase normalized 

velocity, indicating high collectivity independent of β. The system seems to undergo a 

phase transition with increasing α. This phase transition changes from what resembles a 

first order (i.e. displaying a discontinuity in φ) at high β values to a second order with 

decreasing β. 

This is particularly true in the case of the scaled SPP model, where velocity is 

constant. Figure 6-7b indicates that a disordered system only occurs in the area of low α 

and high β; in this region, it is likely that with the contribution of neighbors’ velocities 
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being negligible, cells may collide and repel each other. The attraction force is 

insufficient to counteract the constant velocity, especially if cells may move at random 

and more frequently away from each other compared to a condition with higher α. 

Comparing Figures 6-7b and 6-7d, suggests that this is true for the variable speed SPP 

model as well; however, after the increase in normalized velocity with α, there is a sharp 

drop when β > 20. This can be attributed to the high repulsion felt once the cells come too 

close due to increased α values. The difference with the simpler scaled SPP model is that 

the variable speed causes the attached cells to slow down, increasing the likelihood of 

them experiencing repulsion. 

Adding dynamic regulation of adhesion makes the transition into an ordered phase 

more difficult. This explains the reduction in number of motility events that meet all the 

criteria determining whether the model emulates the behavior observed in epithelial 

clusters in vitro. 

6.5.4 Adherent Cells Form Clusters with a Dense Core and Shifting Orientation 

Figure 6-5 is a reminder of the diversity of cluster geometries that resulted from 

the different combinations of α and β. After looking at collectivity, the next step in 

characterization is to look at shape, orientation, and internal diffusion (i.e. movement of 

cells within a cluster). 

Figure 6-8 displays the distance to the CoM for each cluster averaged over all 

existing clusters for each condition. As expected, the values are larger for the scaled SPP 

model compared to the variable speed SPP model, since more cells were included in the 

first setup. This highlights the necessity to take into account the size of the clusters when 
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looking at this metric. Despite the fact that clusters in the scaled SPP model relative to 

the multiscale model are twice as large (Figure 6-6), the distance to the CoM is five times 

as large. Further analysis of density will show that this is evidence of more tight packing 

inside the clusters with variable speed. 

The phase plots showing distance to the CoM in Figure 6-8 appear monotonic; 

this means that this metric cannot be used to define clear phases. Chain migration, 

however, shows as peaks in the plots. Table 6-4 contains the measurements of distance to 

the CoM in MDCK clusters; the average distance was 20 ± 7 μm; this supports the choice 

of the conditions defined by (α,β) pairs (3,20) and (10, 60), excluding those with η ≠ 1 as 

they are not shown in Figure 6-8c, as those best emulating in vivo clusters. 

Next the orientation of the clusters in the different conditions was analyzed by 

looking at the change in angle in consecutive time points for the shortest principal 

eigenvector of the inertia tensor. The results are presented in Figure 6-8. The angle ranges 

between ~0.1 and ~1.5 rad in both the scaled SPP and variable speed SPP models. Some 

relations between shape and angle are expected; for example, chain migration displays 

the lowest changes in orientation. In contrast, conditions defined by low α and low β 

values, where clusters are transiently formed by very few cells that randomly collide, are 

characterized by the largest angles. 

The more interesting are the low α / high β conditions and high α / low β 

conditions; both show a large change in orientation. Low α / high β conditions have high 

changes in orientation due to the strong repulsion and attraction forces, causing constant 

fluctuations in shape. High α / low β conditions, instead, change orientation due to cluster 



 

152 

size; with a few cells, there is less resistance to a change in orientation. Without a large 

value of β, however, it is less likely repulsion or attraction will cause the cluster to 

change orientation. This explains why for variable speed SPP, the change in orientation 

between these two sets of conditions is more similar than in the scaled SPP model. 

The angle between consecutive eigenvectors as a metric did not help directly 

compare MDCK clusters with specific simulated conditions; in vitro clusters have a 

change in orientation of 1 ± 1 rad, as shown in Table 6-4. This is a wide range that 

includes all simulated values. 

In addition to change in orientation and average distance to CoM, the number of 

neighbors at the center and edge of each cluster were quantified. The center and edge of 

cluster were defined as the cells in the cluster that are closest and farthest from the CoM 

respectively. Additionally, if the same cell remained in either position in consecutive time 

points, the identities of the neighbors were checked to see how many neighboring 

relations were kept in time for the different conditions defined by α and β. Figure 6-9 

shows these results for the scaled SPP model, and Figure 6-10 shows them for the 

variable speed SPP model. 

Figure 6-9 shows no evident difference in number of neighbors in the center and 

the edge of the cluster. Meanwhile, Figure 6-10 shows how with variable speed, the 

number of neighbors at the edge is lower. This indicates that the cluster is denser near its 

center in the variable speed case. There is little dependence of number of neighbors on α 

and β; similarities between phase plots for median cluster size (Figure 6-6) and number of 

neighbors show that the latter is probably dependent on size. 
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Regarding conservation of neighbors as indicative of internal diffusion, 

comparison of Figures 6-9 and 6-10 reveals the reversal of trend between center and edge 

between scaled SPP and variable speed SPP models. While in the scaled SPP model more 

neighbors are conserved at the edge, in the variable speed SPP model more neighbors are 

conserved at the center. This can be attributed to adhesion causing cells to slow down 

once attached, delaying any internal diffusion. Also, increased density of the cluster near 

the center will make movement more difficult given that the model incorporates volume 

exclusion. 

Number of neighbors and conserved neighbors at the center and edge for MDCK 

clusters are reported in Table 6-5. Number of neighbors is lower in in vitro clusters than 

in simulated clusters. This is partly because of the size of the clusters; MDCK clusters 

ranged from 4-31 cells, and simulated clusters with comparable normalized velocity were 

larger. Another factor determining this is that cells in fibrous environments have log 

extensions that create more interactions with cells despite apparent distance. 

Nonetheless, there are similarities between experimental and simulated results. 

Simulated results from the scaled SPP model match experimental observations in the 

equal number of neighbors at the edge in comparison to the center of the cluster. Also, 

simulated results from the variable speed SPP model match experimental observations in 

the lower number of conserved neighbors at the edge in comparison to the center of the 

cluster. Together, these similarities indicate that adhesion may be properly scaling speed, 

but the attraction/repulsion force could be scaled differently to prevent a denser core from 

forming in simulated clusters while maintaining realistic neighboring relations. 
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6.5.5 Decreased Cell-cell Adhesion Occurs During Motility Events 

In the multiscale model, or variable speed SPP model, AJs were used to nominally 

quantify adhesion and, more importantly, scale speed. Average AJ expression for each 

cluster formed was calculated, then averaged for the clusters in each condition, and 

displayed in Figure 6-11. 

A comparison with Figure 6-7d, presenting the median order for the same 

conditions, shows some similarity. Most disordered clusters appear to have low adhesion. 

This explains why AJ expression seems to increase with α, at least up to α < 3. Increased 

collectivity gives cells a chance to stay together and form junctions. There is a significant 

difference between phase plots for median order and AJ expression; at high α of and low 

β values AJ expression is low despite the high degree of collectivity. This, in turn, is 

explained by the low number of conserved neighbors (Figure 6-10d). 

In cases with relatively high β values, repulsion plays a significant role in 

emerging dynamics. This exemplifies how the non-equilibrium nature of SPP systems 

(i.e. input of energy at every SPP step with migration) will cause this repulsion to prevent 

stable AJ formation. Nevertheless, for all explored β values, with increasing α value the 

average expression of AJs increases before dropping. 

AJ distribution was tracked during motility events for conditions that are believed 

to most closely emulate MDCK clusters. The median concentration and upper and lower 

quartiles are displayed in Figure 6-12. Despite increasing adhesion with continued cell-

cell contacts, a drop in AJ expression is observed in the four motility events analyzed in 

Figure 6-12. This suggests that reduced adhesion contributes to emergence of collective 
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migration in variable speed SPP systems. 

Simultaneously, the distribution of active β-catenin (ABC) was also tracked, 

along with other molecules revealed as relevant to E-cadherin mediated adhesion in 

Chapter 5 (not shown). There was no significant change in expression with changing 

values of α and β. This is explained by the results of the analysis on the RCN performed 

in Chapter 5 revealing that the RCN is insensitive to E-cadherin recycling (Section 5.5.6). 

Given that no protein concentration is changed inside the simulated cells, the only change 

in concentration occurs at the cell surface. 

6.6 Discussion 

The study of collective migration is important to the understanding of many 

biological processes. The diversity of environments through which cells move present 

both a challenge to understanding migration, but also provide insight into the 

mechanisms involved. The occurrence of cluster migration through EMT in development 

and metastasis suggest that it can occur regardless of some environmental cue. The 

techniques presented in this chapter provide not only a model in vitro system that 

consistently displays epithelial cluster migration but also permit probing of collective 

dynamics. These dynamics are compared to theoretical studies, to discern between 

physical and biological contributions to collective invasion in 3D. 

Here, theoretical studies include a traditional SPP model expanded to 3D and a 

multiscale model that takes into account protein bonding dynamics describing the 

formation of AJs. Analysis of real and simulated clusters showed that displacement of the 

cluster can be emulated by the SPP models. The stochastic motion that is characteristic of 
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cellular migration, in both 2D and 3D, was recreated and quantified. The models 

demonstrate that two major physical parameters are enough to recreate multiple 

migration modes: single cell, globular cluster, and chain migration. The two factors were 

effect of neighbors on direction (i.e. α) and attraction-repulsion strength (i.e. β). With 

normalized velocity as the chosen order parameter, change in alpha was found to cause a 

phase transition. Similarly, measurements of neighboring relationships within clusters 

also show dependence of transition order on this parameter. Comparing the standard SPP 

model with a variable speed one intended to model adhesive cellular systems showed that 

biological factors contribute to the emergent dynamics observed in real cellular systems 

in 3D. 

The linear equation (Equation 6-6) chosen to describe the relation between 

velocity and adhesion is representative of a biological component. It represents regulation 

of velocity of each cell based on recent history of adhesion. This factor narrowed down 

the conditions for which simulated clusters resembled real clusters. Further inclusion of 

biological factors such as adhesion regulation through the RCN, presented in Chapter 5, 

can potentially play a role given external stimuli such as changing extracellular ligand 

availability. As discussed in Chapter 4, a diffusion-based gradient can be implemented to 

test the effects of paracrine signaling. Additionally, the behavior of a cluster in a 

pathological condition can also be modeled with the multiscale SPP model here 

presented; this would correspond to simulation of a dysregulated intracellular network as 

presented in Chapter 5. 
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6.7 Tables 

 

Table 6-1: Scaled SPP simulations compared with in vitro clusters 

Simulated conditions in the αβ-parameter space compared to in vitro cluster migration: 

Black checkmark indicates a median cluster size between 4-31 cells. Blue checkmark 

indicates a relatively high (i.e. between 0.6 and 1) average median order parameter (φ) 

over 1 hour. Red checkmark indicates a median net cellular displacement between 3-7 

μm over 1 hour.  

↓α/β→

0  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓   ✓   ✓   ✓   ✓  

0.01  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓   ✓   ✓   ✓   ✓  

0.03  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓   ✓   ✓ ✓  ✓ ✓

0.05  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓   ✓   ✓   ✓   ✓  

0.07  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓   ✓ ✓  ✓ ✓  ✓ ✓

0.1  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓   ✓   ✓   ✓   ✓ ✓

0.3  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓ ✓

0.5  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

0.7  ✓ ✓   ✓   ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3   ✓   ✓   ✓   ✓   ✓   ✓   ✓ ✓  ✓   ✓   ✓   ✓   ✓  ✓ ✓ ✓  ✓

5   ✓   ✓   ✓   ✓   ✓ ✓  ✓ ✓  ✓   ✓   ✓   ✓ ✓  ✓   ✓ ✓  ✓   ✓

7   ✓   ✓   ✓ ✓  ✓ ✓  ✓ ✓  ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓

10   ✓   ✓   ✓ ✓  ✓ ✓  ✓   ✓   ✓   ✓ ✓  ✓   ✓   ✓ ✓  ✓   ✓   ✓

7 100.3 0.5 0.7 1 3 50 0.01 0.03 0.05 0.07 0.1
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Table 6-2: Variable speed SPP simulations compared with in vitro clusters 

Simulated conditions in the αβ-parameter space compared to in vitro cluster migration: 

Black checkmark indicates a median cluster size between 4-31 cells. Blue checkmark 

indicates a relatively high (i.e. between 0.6 and 1) average median order parameter (φ) 

over 1 hour. Red checkmark indicates a median net cellular displacement between 3-7 

μm over 1 hour.  

↓α/β→

0 ✓ ✓  ✓   ✓      ✓   ✓   ✓   ✓      

0.01 ✓ ✓  ✓   ✓   ✓   ✓   ✓   ✓         

0.03 ✓ ✓  ✓   ✓   ✓   ✓   ✓   ✓   ✓      

0.1 ✓ ✓  ✓   ✓   ✓   ✓   ✓   ✓   ✓      

0.3 ✓ ✓  ✓   ✓   ✓   ✓   ✓   ✓   ✓   ✓   

1 ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓ ✓  ✓

3  ✓ ✓ ✓  ✓ ✓  ✓  ✓   ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓

10   ✓   ✓   ✓  ✓ ✓  ✓ ✓ ✓  ✓  ✓  ✓ ✓ ✓ ✓ ✓  

30 60 1001 2 3 6 10 20
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Table 6-3: Effect of noise on variable speed SPP simulations 

Simulated conditions in the αβ-parameter space compared to in vitro cluster migration: 

Black checkmark indicates a median cluster size between 4-31 cells. Blue checkmark 

indicates a relatively high (i.e. between 0.6 and 1) average median order parameter (φ) 

over 1 hour. Red checkmark indicates a median net cellular displacement between 3-7 

μm over 1 hour. 

  

α ↓β/ η→

1 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

10 60 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3 1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 2 5 100.1 0.2 0.5
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Cluster distance to CoM (µm) Δangle eigenvector 

Gel I FOV 1 C1 20.9 ± 7.1 0.5 ± 0.9 

Gel I FOV 1 C2 22 ± 8 1 ± 1 

Gel I FOV 1 C3 20.5 ± 7.1 1.1 ± 1.4 

Gel II FOV 1 C1 15.54 ± 5.27 0.9 ± 1.3 

Gel II FOV 1 C2 22 ± 8 1 ± 1 

Average ± SD 20 ± 7 1 ± 1 

 

Table 6-4: Distance to center of mass and change in orientation in MDCK clusters 

Distance to center of mass (CoM) approximated from nuclear positions. Angle values (in 

radians) correspond to change between consecutive time points for smallest principal 

eigenvector. Average values and standard deviation for MDCK clusters calculated for 

measurements every 10 min for 48 hours (N = 288). 
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Cluster 

Number in 

center 

Number in 

edge 

Conserved in 

center 

Conserved in 

edge 

Gel I FOV 1 C1 5.2 ± 1.9 5.1 ± 2.1 5.1 ± 1.5 4.3 ± 1.7 

Gel I FOV 1 C2 5 ± 2 5 ± 2 4 ± 2 3 ± 2 

Gel I FOV 1 C3 3.7 ± 1.7 3.9 ± 2.1 3 ± 1.5 2.7 ± 0.8 

Gel II FOV 1 C1 2.5 ± 0.9 2.5 ± 0.9 2.5 ± 0.8 1.7 ± 0.5 

Gel II FOV 1 C2 4 ± 1 4 ± 1 3 ± 2 3 ± 1 

Average ± SD 4 ± 2 4 ± 2 4 ± 2 3 ± 1 

 

Table 6-5: Number of neighbors in MDCK clusters 

Second and third columns contain number of neighbors to cell closest and farthest from 

the CoM for each cluster, respectively. Fourth and fifth columns contain number of 

neighbors of cells closest and farthest from CoM, respectively, conserved between 

consecutive time points for each cluster. Average values and standard deviation for 

MDCK clusters calculated for measurements every 10 min for 48 hours (N = 288). 
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6.8 Figures 

 

Figure 6-1: Schematic of integration of multiple scales



 

 

1
6
3

 

 

Figure 6-2: Interval selection algorithm 

SDM data vs. time for a single MDCK cluster tracked over 48 h. SDM is depicted in all four panels representing the stages in the interval 

selection algorithm: A) All peaks (red dots) and their borders (blue) identified by MATLAB’s peak finding algorithm. B) Peaks remaining 

after merging step. C) Peaks remaining after applying a threshold on the magnitude. D) Final identified motility events are shaded in 

green. 
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Figure 6-3: Examples of MDCK cluster migration over 48h 

Panels A and C show z-projections of two FOVs from the same 3D collagen gel at 0 h 

(red), 24 h (green) and 48 h (blue). Panels B and D are 3D renderings of nuclear tracking 

corresponding to Panel A and C respectively. The numbers in white indicate cohort 

number as determined by a clustering algorithm. Image taken from Sharma et al. (33).  

A  

C  

B  

D  
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Figure 6-4: Motility events for individual clusters in the same gel 

The left vertical axis, correponding to the black lines in plots, mark the SDM. The right 

verticl axis, corresponding to blue lines in the plots, mark the order parameter (φ). Green 

shaded regions mark identified motility events. Each plot is for an individual cellular 

cluster. 

A B 

C D 

E F 
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Figure 6-5: Visualization of scaled SPP model for select (α,β) values 

Endpoint (t = 20,000 steps) positions for scaled SPP simulations for select (α,β) values. 

Simulated cells belonging to a single cluster are assigned the same color different from 

black; black represents single cells. 
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G H I 



 

 167 

 

Figure 6-6: Simulated number of clusters and median cluster size 

Number of clusters and median cluster size (i.e. number of cells) averaged over the last 

288 time steps (i.e. 48h in real time) for the different conditions defined by αβ-parameter 

values. Panels A and B display results for scaled SPP model; simulations are run with N 

= 512 cells. Panels C and D display results for variable speed SPP model; simulations are 

run with N = 100 cells. 

  

C D 

A B 
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Figure 6-7: Order parameter for SPP models 

The order parameter (i.e. normalized velocity) is calculated for all cells in the system as 

well as for each individual cluster per condition defined by αβ-parameter values. The 

median is reported for all clusters in each condition. Panels A and B display results for 

scaled SPP model; simulations are run with N = 512 cells. Panels C and D display results 

for variable speed SPP model; simulations are run with N = 100 cells. Boxes left white 

occur when clusters either do not exist.  

  

A B 

D C 
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Figure 6-8: Shape and orientation in simulated clusters 

Distance of cells to the CoM of each cluster (approximated by average nuclear position) 

and angle between principal eigenvector of inertia tensor between consecutive time 

points; both quantities are averaged over the last 288 time steps (i.e. 48h in real time) for 

the different conditions defined by αβ-parameter values. Panels A and B display results 

for scaled SPP model; simulations are run with N = 512 cells. Panels C and D display 

results for variable speed SPP model; simulations are run with N = 100 cells.  

A B 

C D 
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Figure 6-9: Number of neighbors in clusters in scaled SPP model 

Results for scaled SPP model; simulations are run with N = 512 cells. Panels A and C 

display number of neighbors to cell closest (i.e. cluster center) and farthest (i.e. edge) 

from the CoM for each cluster, respectively. Panels B and D display number of neighbors 

of cells closest and farthest from CoM, respectively, conserved between consecutive time 

points for each cluster. Both quantities are averaged over the last 288 time steps (i.e. 48h 

in real time) for the different conditions defined by αβ-parameter values.   

A B 

C D 
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Figure 6-10: Number of neighbors in clusters in variable speed SPP model 

Results for variable speed SPP model; simulations are run with N = 100 cells. Panels A 

and C display number of neighbors to cell closest (i.e. cluster center) and farthest (i.e. 

edge) from the CoM for each cluster, respectively. Panels B and D display number of 

neighbors of cells closest and farthest from CoM, respectively, conserved between 

consecutive time points for each cluster. Both quantities are averaged over the last 288 

time steps (i.e. 48h in real time) for the different conditions defined by αβ-parameter 

values.   

A B 

C D 
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Figure 6-11: Adhesion in simulated clusters 

Adherens junction (AJ) expression is averaged for all cells in each cluster formed in each 

simulation. AJ values are taken at the last time point (i.e. t = 48h). In turn, AJ values are 

averaged for clusters formed in each condition as defined by αβ-parameter values.  



 

 173 

 

Figure 6-12: Adherens junction expression during motility events 

The black lines indicate the median AJ concentration for cells in the cluster for clusters 

simulated with the variable speed SPP model during motility events. The blue dotted 

lines indicate the upper and median quantiles of the AJ distribution. Time intervals 

selected flank motility events with ~2 hours on each side.  

A B 

C D 
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CHAPTER 7. Conclusions 

7.1 Effect of Cluster Shape and Environment 

7.1.1 Scientific Contributions 

Regarding the question: Does the geometry of a cell collective play a role in its 

interaction with the surroundings?- This dissertation presents evidence that shape can 

drastically affect speed due to influence of the environment; therefore, this effect can be 

overcome by affecting the environment. 

The rigid cluster model presented in Chapter 3 explored the effect of shape of a 

cluster in its velocity and interaction with the ECM, particularly through MMPs. This 

model does raise questions pertaining to the contributions of physical factors to migration 

such as: What percentage of the protrusion force is exerted by the leader cell?  

Physical constrains of the cluster by the environment affects collective migration. 

These results demonstrate that the changing shape of a collective must be accounted for 

to characterize collective migration. This contributes to the field by justifying the use of a 

more flexible representation of cell collectives, which can be achieved through agent-

based modeling. 

7.1.2 Future Investigations 

In the simulations described in Chapter 3, only ligand concentration, MMP 

activity, and force modulation (i.e. proportionality constants) were altered. However, 

parameters such as cell number, cluster geometry, number of trailing cells, number of 

leader cells, and cluster division could also be used to make additional predictions. 
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Although the effect of cell number and geometry was already more effectively studied 

with the SPP models in 3D presented in Chapter 6, the work presented may be better 

utilized to add MMP degradation to the agent based models presented in Chapters 4 or 6. 

7.2 Epithelial Disruption and Transitioning into a Cluster 

7.2.1 Scientific Contributions 

Regarding the question: What drives the formation of cellular clusters? - The 

EMT model presented in Chapter 4 weighed the contributions of regulation of cell-cell 

adhesion and cell protrusive force in epithelial membrane disruption and cellular 

invasion. This model demonstrates that the increase in migratory phenotype has a much 

larger impact on overall layer disruption compared to cell detachment. This can create 

tumor like cell agglomerations, but clusters can only arise if cell-cell junctions are lost. 

This model shows how the process of cluster formation is gradual requires increased cell-

cell attachment after a detachment phase. Together with the SPP models presented in 

Chapter 6, this work contributes by suggesting the possibility that a cluster a cluster 

recruits rather than detach. 

This work also contributes to the knowledge about EMT by presenting theoretical 

evidence that either mutating towards a more migratory phenotype or undergoing the 

cadherin switch is enough for EMT to occur, but that both occurring together act to 

amplify the total effect.  It also gives reason to ask whether the cadherin switch is more 

fundamental to EMT step in than an acquired aggressive migratory phenotype. This 

works complements existing in vitro and in vivo models in developing a quantitative, 
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rigorous and multi-scale understanding of complex EMT related processes in cancer 

metastasis, neural crest delamination, and other developmental processes. 

7.2.2 Future Investigations 

The EMT model motivated inclusion of more complex regulation of cell-cell 

adhesion in collective models. It is because of the results presented in Chapter 4 that the 

study of the RCN was done. It is only natural to incorporate the RCN in the EMT model 

in a way similar to how it was incorporated in an SPP model in Chapter 6. 

Even before expansion of the model, it can be used to answer remaining 

questions. Chapter 4 mostly concerns itself with quantifying single cell behavior in terms 

of speed and penetration depth into the ECM. The model can be used to study collective 

behavior in the context of epithelial sheets. Some of the metrics presented in Chapter 6, 

such as order parameter and conserved neighbor number, can also apply to this in silico 

system.  

The EMT model has the potential for using a grid in space as a continuum to track 

the diffusion of substances in the intercellular space because diffusion of small particles 

is much faster than cellular motion. Concentrations of extrinsic signals that trigger EMT, 

such as transforming growth factor β (TGFβ) or members of epidermal growth factor 

(EGF) family could be included in the model. 

Finally, the EMT model is the first model that uses a discrete ECM for 

simulations of such a large number of cells. Future work on how ECM orientation and 

organization affects EMT would be valuable. The model can also be expanded to account 

nearby migrating endothelial cells can communicating through mechanical signals across 
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a stiff ECM, a phenomenon reported by Reinhart-King et al (187). The novel notion of 

modeling a discrete ECM can be used to track the effect of cells on each other when 

coming in contact with the same fiber. 

7.3 Dynamic Regulation of Adherens Junctions 

7.3.1 Scientific Contributions 

Chapter 5 contains the most complete model of Wnt/β-catenin signaling to date. 

In an effort to capture the complex behavior observed in many different biological studies 

on epithelial discohesion in cancer and development, the RCN model spans three 

biological scales: molecular, cellular, and multicellular. The model contributes to the 

body of knowledge on Wnt/β-catenin signaling by providing a quantitative relation to N-

glycosylation. By using a numerical approach, it provides a way to simulate 

dysregulation of a single process, something rare in a biological system, thus revealing 

the relative importance of the different processes and consequently the corresponding 

component pathways. Although the predictions performed by the model are not validated 

in their entirety, the framework is in place to formulate experiments that can provide 

conclusive evidence of significant effects downstream of Wnt target genes. 

Regarding the question: Does post-translational modification of junctional 

proteins have a direct impact on regulation of cell-cell interactions in migrating 

clusters?- The RCN model predicts a significant change in intercellular adhesion with 

inhibition of N-glycosylation. Given the indirect link between adhesion and migration, it 

cannot be stated that this dissertation conclusively solves this question. This dissertation 
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does, however, provide a mechanism by which N-glycosylation (i.e. a post-translational 

modification) can affect adhesion and shows evidence of its effect by tracking migration 

in a cell sheet in populations treated with an inhibitor shown to decrease adhesion. 

7.3.2 Future Investigations 

In Chapter 5, when exploring the dynamics of the network formed by the multiple 

pathways, the study focused on adhesion. There are many other molecules in the network 

that have significant effect on other aspects of cell behavior, such as proliferation. 

DPAGT1 expression can be studied not only through an IP assay, but gene expression 

could be measured through use of fluorescent genetic reporters or real-time polymerase 

chain reaction (qPCR). 

The mathematical model also needs further refinement in terms of parameter 

estimation. Parameters were estimated based on studies performed on different cell types 

and organisms. The mathematical model provides a flexible way to estimate parameter 

values based on measured results on different experimental systems. The results obtained 

in this dissertation are enough to refine the equilibrium constant used for binding of β-

catenin and TCF in MDCK cells specifically. 

Experiments on cell sheets looking at speed together with results on network 

dynamics provided a window into the cross-reactivity of the component pathways. This 

relation between network dynamics and population behavior can be further explored. In 

the future, experiments with fewer cells and live fluorescent reporters can be used to test 

the time evolution of the RCN. 
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7.4  Cluster Dynamics 

7.4.1 Scientific Contributions 

This work as whole outlines the path to the single goal of dissecting a cellular 

cluster and putting it back together in a way that it will still migrate. The task is difficult 

given the emergent nature of collective behavior. Chapter 6 presents the most complete 

attempt, in which isolated clusters in in vitro are studies and their behavior recreated with 

a certain degree of success. 

Two major contributions of this work to the study of cluster dynamics are: First, 

the development of consistent methods to study and analyze mammalian clusters in vitro 

consistently (33). Second, formulation of the first variable speed SPP model in 3D. 

With the development of an in vitro system for the study of cell collectives in 3D, 

the field can move on to implement techniques that have been successful in 2D such as 

traction force microscopy and correlation studies. 

Regarding the question: Does regulation of junctional proteins affect specific 

physical characteristics and migrating dynamics?- This question was addressed by this 

dissertation in its comparison of the scaled SPP model and the variable speed SPP model, 

both presented in Chapter 6. The latter model just differs from the former in its 

consideration of cell-cell adhesion; the parallel comparisons of internal diffusion, cluster 

density, and normalized velocity show that just this regulation does affect migrating 

dynamics. 
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7.4.2 Future Investigations 

The analysis of cluster dynamics was very revealing but incomplete. No temporal 

studies other than duration of motility events were performed. Sharma et al. have looked 

at time correlation studies beginning to probe the question of leadership within the 

clusters (33). The computational model can be used to extend these studies to include 

adhesion and migration. 

Integration of the RCN to the SPP model (i.e. multiscale model) can also provide 

additional information beyond AJ expression during cluster migration. By changing 

specific parameters, physiological and pathological conditions can be modeled. 

Additionally, the multiscale model can be used to model cell sheets and contribute to the 

existing body of knowledge about 2D monolayer migration and collective dynamics. 

Experimentally, predictions of relation between migration and adhesion will have 

to be validated. This could be achieved through real-time E-cadherin visualization in 

clusters. The effect of specific changes in RCN dynamics could also be tackled 

experimentally through the use of inducible cell lines, transfection, calcium chelators, 

small molecule inhibitors (e.g. ICG-001). 
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