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“We can’t stop here. This is bat country.” 

     --Raoul Duke 
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ABSTRACT 

Critical to our understanding of wildlife diseases is the recovery phase, a period 

during which individuals clear infections and return to normal patterns of behavior and 

physiology. Most research on effects of white nose syndrome (WNS), an emerging fungal 

disease in bats, has focused on the pathophysiology of winter mortality and the effects of 

WNS on hibernating populations. The period immediately following emergence from 

hibernation has received little attention, but is a critically important time for survivors of 

the disease. During this time, survivors face significant physical and physiological 

challenges as they migrate to summer habitats, potentially begin gestation in the case of 

reproductive females, and begin to recover from wing damage caused by the fungus, 

which can be extensive and may greatly increase the energetic cost of flight. In this study, 

I (1) test the hypothesis that free-ranging bats heal from WNS-induced wing damage, (2) 

determine how WNS-induced wing damage changes skin surface lipid profiles on free-

ranging bats, and (3) describe the temporal process of disease recovery in a colony of 

captive bats, including analyses of body mass, wing damage, pathogen load, skin surface 

lipid profiles, and histopathological metrics of WNS. I find that bats can quickly heal 

from wing damage in the wild and appear healthy as early as mid-July in New England. 
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Analysis of skin surface lipids does not reveal any striking differences between bats with 

wing damage and those without, although there are trends towards lower total surface 

lipids and increased levels of cutaneous cholesterol in bats with severe wing damage. 

Finally, I show that within 40 days of emerging from hibernation, bats quickly clear the 

fungal infection and gain body mass, undergoing rapid healing of wing damage and 

changes in skin surface lipid composition. Bats depend on their wings for a variety of 

vital processes including physiological regulation, locomotion and feeding. To fully 

understand the consequences of WNS and develop actionable management strategies, it is 

important to consider the long-term effects of this disease. My study helps fill critical 

knowledge gaps and will aid in the future conservation and management of affected bat 

species. 
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1 

INTRODUCTION 

Emerging infectious diseases represent one of the greatest modern threats to 

biodiversity. In particular, novel fungal diseases appear to have become more prevalent in 

recent years (Fisher et al. 2012), affecting a wide range of hosts including invertebrates 

(Kim and Harvell 2004), reptiles (Allender et al. 2015; Guthrie et al. 2015), amphibians 

(Rosenblum et al. 2010; Voyles et al. 2009; Weldon et al. 2004), and mammals, including 

humans (Blehert et al. 2009; Fisher et al. 2012). While scientists have made great strides 

in understanding the mechanisms of many new diseases, the broader, ecological impacts 

of disease are not well understood due to the challenges of such studies. In particular, 

sub-lethal effects of disease represent an understudied component of disease cycles. 

Much of what is known about sub-lethal effects is from predator-prey interaction 

literature. In particular, trophic cascades can result from behaviorally induced sub-lethal 

effects in which prey foraging ability is reduced dramatically by reduced foraging 

efficacy of predators, or perceived predation threats (Bowerman et al. 2010; Peckarsky et 

al. 1993; Sheriff et al. 2009).  

From its initial observation in New York State during the winter of 2007, white 

nose syndrome (WNS) has spread throughout karst areas of eastern North America 

(Blehert et al. 2009; Gargas et al. 2009). WNS has been confirmed in 9 species of bats in 

26 states and 5 Canadian provinces. The causative agent of WNS, a psychrophilic fungus 

Pseudogymnoascus destructans (Pd), is endemic to Eurasia, where it infects several 

species of hibernating bats (Leopardi et al. 2015; Puechmaille et al. 2010; Wibbelt et al. 

2010; J. Hoyt, pers. comm.). However, European bats do not appear to suffer ill effects 
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from infection, an intriguing contrast to the severe effects observed in some North 

American species (Puechmaille et al. 2012). The most heavily impacted species is the 

once common little brown bat (Myotis lucifugus) (Frick et al. 2010; Langwig et al. 2012), 

which is the focus of this dissertation. Populations of this once nearly ubiquitous species 

have declined approximately 70% in areas affected by WNS for more than three years 

(Brooks 2011; Dzal et al. 2010; Turner et al. 2011).  

When WNS first appeared, it was unclear whether mass die offs observed in caves 

in New York State were isolated incidents or a widespread phenomenon, but the disease 

quickly spread to neighboring caves in New England (Blehert et al. 2009). In each case, 

mass mortality or unexplained population declines in hibernacula were associated with a 

white fungus growing on the exposed skin surfaces of hibernating bats (Meteyer et al. 

2009). Researchers determined that dead or dying bats at the cave entrance were 

emaciated and dehydrated, two symptoms that suggested bats were losing fat stores at a 

faster than usual rate (Reeder et al. 2012). Pioneering research using body temperature 

loggers then determined that bats with WNS were in fact arousing from hibernation three 

to five times more often than bats in unaffected hibernacula (Reeder et al. 2012).  

Not all species of bat are equally susceptible to WNS. Little brown bats are the most 

heavily impacted species based on total mortality (Frick et al. 2010; Langwig et al. 2012; 

Turner et al. 2011; Turner and Reeder 2009), but this species shares hibernacula with a 

number of other hibernating bat species including endangered species such as Indiana 

bats (Myotis sodalis), grey bats (Myotis grisescens), and Virginia big-eared bats 

(Corynorhinus townsendii virginianus), and other more common species including the 
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northern long-eared bat (Myotis septentrionalis), the eastern small footed bat (Myotis 

leibii), and the big brown bat (Eptesicus fuscus). While Pd has been found on all of these 

species, only some suffer significant mortality due to WNS (M. septentrionalis, M. 

sodalis), whereas others (E. fuscus, M. leibii, M. grisescens) experience lower relative 

mortality while still being exposed to Pd (Langwig et al. 2012). A number of studies have 

sought to determine the nature of these differential effects, including analysis of surface 

lipid profile differences among species (Frank et al. 2014), investigations cutaneous 

proteins that may alter the ability of the fungus to proliferate (M. Moore, pers. comm.), or 

studies examining differences in hibernation microclimates between species (Langwig et 

al. 2012; Langwig et al. 2015; Langwig et al. 2015). Many of these research efforts are 

ongoing. 

What drives increased arousal frequency in WNS bats is unknown; however, 

some hypotheses have been offered. Early suggestions focused on environmental 

contaminants that may have blocked bats from gaining sufficient energy stores for 

hibernation, or reduced insect populations in a way that prevented bats from getting 

enough of the right kinds of fat (e.g. polyunsaturated fatty acids) to survive hibernation 

(C. Frank, pers.comm). While mercury contamination is common in bats, it was not 

apparently connected to WNS mortality (Yates et al. 2014). Early thinking also suggested 

that affected bats were being infected by an opportunistic pathogens due to an already 

weakened state or lacked sufficient fat to survive hibernation (J. Reichard, pers. comm.). 

Overall, these hypotheses suggested that bats were suffering from ill effects caused by 

changes to their environment.  
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Research aimed at determining the cause of WNS did not support the 

environmental contaminant hypothesis. Rather, it became apparent that a new pathogen 

was the cause of WNS. Studies showed that fat stores in bats entering hibernation in 

WNS affected hibernacula were the same as in bats from the same sites prior to WNS (J 

Reichard pers. comm). Moreover, histopathological studies revealed that affected bats 

had widespread lesions on exposed skin surfaces, presumably caused by fungal activity 

(Cryan et al. 2010; Lorch et al. 2011; Meteyer et al. 2009; Reichard and Kunz 2009). 

Finally, studies demonstrated that WNS was caused by Pd infection and that a genetically 

similar fungus had been found associated with bats in Europe (Leopardi et al. 2015; 

Lorch et al. 2011; Puechmaille et al. 2010).   

That researchers determined the ultimate cause of mortality (i.e., identification of 

a novel pathogen) does not mean that the proximate causes (i.e., the mechanisms of 

disease), and thus the potential targets for intervention, have been uncovered. However, 

recent studies have offered new approaches to this question by examining the 

pathophysiology of WNS. Cryan et al. (2010) were the first to suggest that changes in 

hibernation physiology could be the main driver of mortality. They postulate that the 

extensive distribution of wing lesions caused by Pd alter affected bats’ ability to regulate 

evaporative water loss. Extensive erosion of the wing membranes and perhaps even 

wicking action by fungal hyphae drawing moisture from wing tissue, combined with 

naturally high levels of evaporative water loss, could result in a state of dehydration in 

hibernating bats (Cryan et al. 2010). The need to balance body water has been suggested 

to be one of the main reasons why hibernating mammals arouse from hibernation 
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(Thomas and Cloutier 1992). In fact, studies have shown that when hibernating 

mammals, including bats, are treated with diuretics it causes an increase in arousal 

frequency (Ben-Hamo et al. 2013; Cryan et al. 2013; Nemeth et al. 2010). An alternative 

but related hypothesis suggests that hibernation metabolic rate is increased by some 

mechanism related to Pd infection (Verant et al. 2014; L.P. McGuire, unpublished data). 

Higher metabolic rates result in greater energy consumption and higher CO2 production; 

however, because of the unique metabolic conditions of hibernation, bats are unable to 

expel excess CO2, which builds and causes acidosis and thus more frequent arousals 

(Verant et al. 2014). Such a cascade establishes a positive feedback of greater energy 

consumption due to frequent arousals, and increased water loss, which may lead to 

dehydration. Whatever the mechanism, it is becoming apparent that physiological 

disruption typifies WNS and drives premature consumption of energy stores and 

ultimately death. (Lorch et al. 2011; Reeder et al. 2012; Verant et al. 2014; Warnecke et 

al. 2012; Willis 2015; Willis et al. 2011). 

Survivors of the disease, however, are also likely to be infected with Pd. In the 

weeks following arousal from hibernation, wings of affected bats develop additional wing 

damage that is not present during hibernation (Meteyer et al. 2012; Meteyer et al. 2011). 

Injuries can be minimal, resulting in small areas of discoloration, or can be as serious as 

large scale membrane loss or wing perforations. However, the dominant type of damage 

from WNS is areas of inflammatory crusting and flaking and subsequent wound 

contraction and scarring, which may affect wing membrane flexibility, and thus may 

cause changes to flight ability (Meteyer et al. 2012). Bat wings are highly elastic and 
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pliable, which is vital to proper wing function (Cheney et al. 2015; Findley et al. 1972; 

Studier 1972). Depending on the extent and location of damaged areas, flapping 

mechanics and aerodynamic cleanliness (a measure of airfoil efficiency) could be altered 

due to reduced membrane flexibility and reduced smoothness of flight surfaces (Bullen 

and McKenzie 2009; Bullen and McKenzie 2008). In addition, in areas where Pd has 

deeply eroded wing tissue, small wing hairs, which provide bats with important flight 

information (speed, direction of airflow, etc.) could be lost or made nonfunctional 

(Marshall et al. 2015; Sterbing-D'Angelo et al. 2011).  

To fully grasp how WNS could lead to broader ecological effects, it is important 

that we build our understanding in three key areas. First, we need to establish the role of 

bats in an ecosystem. This information can be inferred from the decades of research on 

bat roosting and feeding ecology. Overall, however, our knowledge is lacking and should 

be the focus of future research. Second, we must develop robust population models that 

allow us to estimate how many bats have been lost to WNS. Such estimations have been 

made, and population decline and/or recovery models exist (Frick et al. 2010; Frick et al. 

2015; Thogmartin et al. 2012; Thogmartin et al. 2013). However, these models are likely 

inadequate because the starting population of bats before WNS was never rigorously 

measured. Last, we need to understand in sufficient detail the individual-level processes 

and sub-lethal effects on surviving bats.  number of researchers have looked into these 

matters, including healing and recovery studies (Fuller et al. 2011; Meteyer et al. 2011), 

documentation of interannual survival (Dobony et al. 2011; Reichard et al. 2014), multi-

season disease monitoring (Langwig et al. 2012; Langwig et al. 2015; Langwig et al. 
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2015), disease modeling (Frick et al. 2010; Wilder et al. 2011), immunological studies 

(Moore et al. 2013; Moore et al. 2011), and behavioral studies (Reeder et al. 2012; T. 

Lilley, pers. comm). 

The goal of my dissertation is to advance our understanding of recovery following 

WNS. In this study, I (1) test the hypothesis that free-ranging bats heal from WNS-

induced wing damage, (2) determine how WNS-induced wing damage changes skin 

surface lipid profiles on free-ranging bats, and (3) describe the temporal process of 

disease recovery in a colony of captive bats, including analyses of body mass, wing 

damage, pathogen load, skin surface lipid profiles, and histopathological metrics of 

WNS. I find that bats can quickly heal from wing damage in the wild and appear healthy 

as early as mid-July in New England. Analysis of skin surface lipids does not reveal any 

striking differences between bats with wing damage and those without, although there are 

trends towards lower total surface lipids and increased levels of cutaneous cholesterol in 

bats with severe wing damage. Finally, I show that within 40 days of emerging from 

hibernation, bats quickly clear the fungal infection and gain body mass, undergoing rapid 

healing of wing damage and changes in skin surface lipid composition. Bats depend on 

their wings for a variety of vital processes including physiological regulation, locomotion 

and feeding. To fully understand the consequences of WNS and develop actionable 

management strategies, it is important to consider the long-term effects of this disease. 

My study helps fill critical knowledge gaps and will aid in the future conservation and 

management of affected bat species. 
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CHAPTER ONE 

FREE-RANGING LITTLE BROWN MYOTIS (MYOTIS LUCIFUGUS) HEAL 

FROM WING DAMAGE ASSOCIATED WITH WHITE-NOSE SYNDROME. 

ABSTRACT 

White-nose syndrome (WNS) is having an unprecedented impact on hibernating bat 

populations in the eastern United States. While most studies have focused on widespread 

mortality observed at winter hibernacula, few have examined the consequences of wing 

damage that has been observed among those bats that survive hibernation. Given that 

WNS-related wing damage may lead to life-threatening changes in wing function, we 

tested the hypothesis that the reduced relative abundance of little brown myotis (Myotis 

lucifugus) observed with severe wing damage, as the summer progresses, is due to 

healing of wing tissue. Initial photographs of captured and recaptured adult females were 

examined for total damage and healing rates were calculated for each category of wing 

damage index (WDI = 0-3). We found that bats with severe wing damage were able to 

heal to a lower WDI score within a time period as short as two weeks. Bats with more 

severe wing damage, and thus more wing area to heal, had higher healing rates than did 

individuals with less damage. We also found a significant relationship between body 

condition and WDI for adult female bats captured in the early weeks of the active season. 

Our results support the hypothesis that some bats can heal from severe wing damage, and 

thus may not experience increased mortality during the active season associated with 

reduced functions of damaged wings. We urge researchers and wildlife managers to use 
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caution when interpreting WDI data, especially during the latter months of the active 

season.  

INTRODUCTION 

The normal structure and function of wings is vital to the survival of bats. Not 

only do bats rely on their wings for flight and feeding, but these thin, highly vascularized 

structures also facilitate physiological functions such as gas exchange (Herreid et al. 

1968; Makanya and Mortola 2007), water balance (Kallen 1964; Bassett 1980; Thomas 

and Cloutier 1992), and thermoregulation (Reichard et al. 2010). It is suspected that 

white-nose syndrome (WNS), an emerging fungal disease of hibernating bats (Blehert et 

al. 2009), is responsible for some wing damage in bats from the northeastern U.S. 

Because bats depend on their wings for aerial locomotion (dispersal, foraging, and 

migration), predator avoidance, and homeostatic regulation of temperature and water 

balance, it is important to understand whether these structures are able to heal and regain 

their normal functions following severe damage. 

Histopathological examination of wing tissue from bats affected by WNS 

indicates that skin lesions are associated with a psychrophilic fungus, Pseudogymnoascus 

destructans (Pd), the putative causative agent of WNS (Gargas et al. 2009). The hyphae 

of Pd invade hair follicles as well as sweat and sebaceous glands, which may become 

filled with the proliferating hyphae and conidia (Charturvedi et al 2011). The fungus can 

then further invade the underlying connective tissue and capillary beds, severely eroding 

this tissue and causing infarctions (Meteyer et al. 2009; Cryan et al 2010). The resulting 
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necrotic tissue is prone to tearing or may slough, resulting in loss of wing surface area 

(Reichard and Kunz 2009). 

When WNS emerged in the northeastern U.S. in 2006 researchers began to record 

evidence of abnormal wing damage in bats with and without symptoms of WNS, 

including perforations, scarring, and necrosis (Figure 1.1; Reichard and Kunz 2009). 

Interestingly, the prevalence of severe wing damage declines as the active season 

progresses, raising questions about the ultimate fate of bats with extensive wing damage 

(Reichard and Kunz 2009). Some of these bats could be dying because of complications 

resulting from poor wing condition. Alternatively, others could undergo intensive healing 

of their wing membranes, reducing the likelihood that severe wing damage will be 

observed later in the season.  

Current understanding of healing in wing membranes is based on only two studies 

of free-ranging bats (Davis 1972; Weaver et al. 2009), although other studies have 

focused on wing healing in captive bats subjected to experimental damage (Church and 

Warren 1968; Iverson et al 1974; Faure et al. 2009). Free-ranging bats naturally incur 

damage through interactions with objects in the environment or as a consequence of 

failed predation attempts (Davis 1968). Despite the sometimes severe nature of initial 

wounding, most injuries to wing tissue will heal given sufficient time. For example, free-

ranging pallid bats (Antrozous pallidus) healed from relatively large 15 mm2 wounds to 1 

mm2 wounds in less than 33 days (Davis 1972). Both captive and free-ranging bats may 

be subjected to human-induced wing damage resulting from wing biopsies collected by 

researchers for genetic studies (e.g. Worthington-Wilmer and Barratt 1996; Turmelle et 
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al. 2011), dietary analysis (e.g. Sullivan et al. 2006; Cryan and Diehl 2009), or from 

injuries associated with marking bats (Kunz and Weise 2009). However, there is 

convincing evidence that bats exhibit an ability to recover from such injuries with minor 

negative impact on survivorship (Worthington-Wilmer and Barratt 1996; Faure et al. 

2009; Weaver et al. 2009).  

The primary objective of the present study was to test the hypothesis that bats are 

capable of healing following severe wing damage that is associated with WNS. We 

predicted that recaptured bats would show signs of recovery, with greater healing rates 

among individuals with more damage and thus more area to heal. A secondary objective 

was to evaluate the relationship between body condition and WDI. We tested this 

relationship in very early pregnancy, before a noticeable fetus is present, to remove a 

potential bias that could be introduced by body mass gained by females during 

pregnancy. This sampling protocol also provides an opportunity to assess how this 

relationship might vary with time following the appearance of Pd in a new region. We 

predicted that bats with high WDI would be in poorer body condition, based on derived 

body mass indices (BMI = length of forearm/mass).  

 

METHODS 

Study site  

This study was conducted between 13 May and 10 August of 2009 at two maternity 

colonies of M. lucifugus in New England (Framingham, Massachusetts and Milford, New 

Hampshire). These maternity colonies are located in barns that are used to shelter 
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livestock and to store hay and varied household items. Myotis lucifugus is the most 

common species at these locations along with small numbers of Eptesicus fuscus, M. 

septentrionalis, and Perimyotis subflavus. The surrounding habitat is mixed hardwood 

forest, light residential and some agriculture. Both sites are located near wetlands and 

waterways (Sudbury River in Framingham, MA and Nashua River in Milford, NH). In 

both colonies, M. lucifugus females and pups form clusters during the day along the 

ridgepole of the barn and depart and return through the main doors or from openings 

between side-boards and eaves. These are the same colonies sampled by Reichard and 

Kunz (2009) in the development of the WDI, and thus are ideal for investigating the 

dynamics of wing healing within the affected range of WNS.  

 

Trapping and field measurements 

Each colony was trapped at bi-weekly intervals using two portable, double frame harp 

traps (0.9 m wide by 1.0 m high or 1.5 m wide by 1.9 m high). The traps were placed side 

by side in front one of the main open doors of the barns, while the second main entrances 

were closed and other large passageways were obstructed by plywood or cotton sheets to 

encourage bats to depart from a single portal (Kunz et al. 2009). Traps were left standing 

for approximately one hour or until no bats were captured over a ten-minute period. Each 

captured bat was placed into a clean, individually marked cotton bag and placed inside a 

heated holding container for later processing. Only adult bats were used in this study; 

juveniles were sexed and noted in the total number captured but were immediately 

released outside the building.  
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Sex, age, reproductive condition, length of forearm and body mass were recorded 

(Brunet-Rossinni and Wilkinson 2009; Racey 2009). Bats were banded with 2.9 mm, 

individually numbered, lipped alloy bands (Porzana Ltd, UK; Kunz and Weise 2009). 

Wings and uropatagia were transilluminated using a portable light box (GloBox 

Lightbox, Artograph, Inc., Delano MN) and assigned a WDI score following methods 

described by Reichard and Kunz (2009; Figure 1.1).  

 

Quantifying recovery of wings  

Both wings and the uropatagium of each bat were transilluminated and photographed 

with a digital camera (Fujifilm FinePix S700) by extending the wing and leg away from 

the body so that the leg was fully extended in its natural position and the forearm and 

propatagium were perpendicular to the axis of the body. Photographs were taken with the 

camera’s automatic macro setting and no flash. A metric ruler or another object of known 

dimensions was included in each image for scale (Figure 1.1).  

 

All photographs were characterized for the proportion of total damaged wing area using 

ImageJ (v. 1.43u, National Institutes of Health). First, the scale of each photograph was 

established using a scaling item (i.e. metric ruler or the radius of a US penny). Next, the 

entire pixel area of each wing was established by outlining the visible wing area. When 

part of the total wing area was occluded by the handler, we estimated this area and 

included it in the total. Wing area for each wing was summed for each bat (total wing 
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area). Finally, the damaged area was outlined and the total damaged area for each wing 

was summed for each bat (total damaged area of wings). We considered damage as one 

or more of the following conditions: discoloration (i.e. white areas, abnormal brown 

areas, black spots, red areas), tears, holes, flaking, necrosis, receded wing margins, and 

missing tissue (Figures 1.1 and 1.2). Healing was defined as a reduction in total damaged 

area between initial capture and recapture date, and was usually identified as a change 

from the above criteria to uniformly colored and structured tissue. Healing rate was 

calculated by dividing the total area of wing tissue that healed by the number of days 

between initial capture and recapture. 

 

Statistical analyses  

Statistical analyses of healing rate required that some of the recaptured bats be removed 

due to lack of photographs, or poor quality images that could not be used in our analysis. 

Of 37 recaptured bats, 29 were included in the analysis of healing rate. Groupings by 

wing damage were based on the initial WDI and resulted in the following sample sizes: n 

= 5 for WDI = 0; n = 10 for WDI = 1; n = 12 for WDI = 2; and n = 2 for WDI = 3. 

Average healing rates among WDI cohorts were compared using nonparametric statistical 

analyses. 

 

The relationship between BMI and WDI was calculated using a subset of the total 

sample. To account for the effect of reproductive condition (i.e. body mass gained during 

pregnancy) on BMI, only female bats that were captured between 13 May 2009 and 27 
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May 2009 were included in this analysis. This time period was selected to avoid 

confounding effects of growing fetuses in pregnant bats; colonies first consisted of 

palpably pregnant bats on 27 May. We assumed that most females captured were 

pregnant between 13 May and 27 May, and that the small fetus during this period did not 

have a measurable effect on body mass or BMI. All statistical analyses were performed 

using JMP v. 9.0.0 (SAS Institute Inc., S. Cary, NC).   

 

RESULTS 

We captured a total of 324 bats (including 71 that had been banded in previous years) and 

recaptured 37. Many of the recaptured adult females were observed in lactation after 9 

June. The greatest occurrence of pregnant females was on 27 May at the Massachusetts 

site (n = 46) and on 3 June at the New Hampshire site (n = 19). Throughout our study, 

only ten adult females showed no apparent signs of reproduction. Among these 

individuals, seven had BMI values that were lower than the average for all individuals 

captured between 13 May and 27 May (average BMI = 0.21). The relative abundance of 

adult females with different WDI scores varied with time (Pearson’s 2 = 96.4, p < 0.001, 

N = 291; Figure 1.3). The relative abundance of the most severe wing damage (WDI = 2 

or 3) was higher in early summer (13 May – 10 June) than late summer (18 June – 6 

August). In May, the relative abundance of bats with WDI = 2 and 3 was almost 50% of 

the total number captured. After 4 June, the relative abundance of bats with WDI = 2 was 

less than 0.25 and after 10 July no bats were observed with WDI = 3 or 2, except for one 

individual on August 6. The abundance of moderate to severe wing damage was greatest 
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during the time period coinciding with early to late pregnancy (13 May – 27 May; Figure 

1.2). 

Body Mass Index (BMI) varied among bats with different WDI scores (Kruskal-

Wallis test, χ2 = 11.66, d.f. = 3, p = 0.0086) captured between 13 May 2009 and 27 May 

2009 (Figure 1.4). Bats with WDI = 3 or 2 had significantly lower BMI than bats with 

WDI = 0 or 1 (pairwise comparisons using Wilcoxon Method). 

Healing rate among recaptured bats varied within the grouped WDI measures 

(Figure 1.5). Healing rates among bats with moderate to severe wing damage (WDI = 2 

or 3) were significantly greater than in bats with lesser damage (WDI = 0 or 1; Kruskal-

Wallis test, χ2 = 16.729, d. f. = 2, p = 0.0002). Bats with an initial capture WDI of 0 (n = 

5) had an average healing rate of 0.010 cm2/day. Bats with an initial WDI score of 1 (n = 

10) healed at an average rate of 0.232 cm2/day. Half of these individuals healed to level 

0. The group containing bats with an initial score of 2 (n = 12) had an average healing 

rate of 0.750 cm2/day. Of these, eight individuals healed to level 1 and four healed to 

level 0. Due to the small sample size of bats with WDI = 3 and unusual healing patterns 

within this group, an average healing rate could not be calculated and compared. 

However, both of the individuals in this group showed extensive healing, reaching levels 

2 and 1. The maximum healing rate observed in this study was 1.293 cm2/day in a bat 

that repaired 37.498 cm2 of damaged tissue in 29 days, transitioning from level 2 to level 

0 (Figure 1.6).  

 

Discussion  
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Healing, reproducing and surviving with damaged wings  

We offer evidence that some bats are capable of rapid healing of their wing membranes 

and may in fact survive the effects of WNS-associated wing damage. We demonstrate 

healing among 29 of 37 (78%) recaptured bats. Of the remaining eight bats that were 

recaptured, four showed a decline in WDI, but we were unable to document these 

changes due to lack of digital images. The remaining four bats that showed no evidence 

of healing had low initial WDI scores (0 or 1). Our study demonstrates the value of mark-

recapture data and thus reveals unexpected resilience to wing injuries among free-ranging 

M. lucifugus subjected to damage associated with WNS.  

A hypothesis posited by Reichard and Kunz (2009) states that the reduction in 

relative abundance of moderate to severe wing damage late in the active season was due 

to increased mortality from predation or starvation resulting from reduced flight 

maneuverability and foraging efficiency of these individuals. In support of this 

hypothesis, they reported only two recaptured bats during the summer of 2008 that had 

improved wing conditions and observed numerous dead bats in and nearby their study 

colonies. While we offer evidence to the contrary, we cannot fully reject this hypothesis. 

Recapture rates for the present study were similar to that of past studies on M. lucifugus 

(0.10 – 0.35; Frick et al. 2010b), but were low (~0.10). Thus, we cannot account for bats 

that were not recaptured, and it is possible that some or all of these bats did not survive.  

We observed a faster healing rate among bats with moderate to severe wing 

damage (WDI = 2 or 3) than in bats with lesser damage (WDI = 0 or 1). This result 

matches previous studies of wing healing studies in free-ranging and captive bats (Church 
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and Warren 1968; Iverson et al 1974; Davis 1972; Faure et al 2009; Weaver et al. 2009) 

and patterns of mammalian wound healing in general (Singer and Clark 1999). Cutaneous 

wound healing generally progresses as follows: clotting, inflammation, 

reepithelialization, wound contraction, and angiogenisis (Singer and Clark 1999). Within 

each step there is a complex interaction of gene regulation, cell migration, and cytokine 

secretions (i.e. epidermal growth factors) that promotes cell proliferation, microbial 

clearing, and tissue restructuring (Martin 1997). The accelerated healing we observed in 

bats with severely damaged wing tissues likely represents rapid epithelialization paired 

with wound contraction (Mannik et al 2010). However, bats with lighter damage, 

including spotting and lack of pigmentation, had most likely progressed past 

epithelialization since their membranes were generally intact. In these individuals, we 

were most likely documenting changes due to melanocyte repopulation, a process that 

happens in the final stages of wound healing (Cox et al 1989).  

The cellular mechanisms of wing-membrane healing in bats are not known, nor is 

there information on whether wings of bats undergo full regeneration, such as what has 

been observed in ear tissue of other mammals (Williams-Boyce and Daniel 1985). 

Whether bats regenerate wing tissue completely, including replacement of hair follicles 

and sebaceous glands, as reported for skin tissue of mice and rabbits (Breedis 1954; Lu 

and Ghazizadeh 2005; Mannik et al 2010), is an important component to our 

understanding of how wing damage affects the physiology of bats during hibernation 

(Cryan et al. 2010). If bat wings do not regenerate completely, leaving them with poorly 

functioning skin features (e.g., hair follicles, sebaceoous glands, and sweat glands), then 
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survivors of one hibernation season may suffer progressively reduced fitness as their 

wings become more compromised with each successive winter of damage followed by 

intensive healing in the active season.  

In addition to the direct effects of wing damage on flight aerodynamics and wing 

physiology, rapid wing tissue healing may reflect a greater allocation of nutrients to 

wound healing in those bats that have severe wing damage. Rapid healing of small 

wounds in bats is likely an adaptive process and is usually beneficial, considering that 

bats regularly incur minor injuries (Davis 1968). However, the level of damage that 

occurs in WNS-affected regions is uncommon in free-ranging bats (Davis 1968) and 

there has likely been little selective pressure on bats to develop a healing response to 

severe wing damage. While healing to this degree increases the probability of short-term 

survival by facilitating flight, long-term fitness may be compromised when individuals 

allocate more nutrients to healing than they normally would. Wound healing is 

energetically expensive to mammals and depends considerably upon the status of the 

immune system (Lee 2006). Thus, bats may experience energetic trade-offs by allocating 

more energy to regenerating lost tissue rather than to other important processes such as 

reproducing, mounting an immune response to challenges other than wound healing, or 

migration (Bernardo and Agosta 2005). A trade-off between reproduction and immune 

function has been shown in a number of vertebrate taxa (French et al. 2007; French et al. 

2009) and was also recently identified in vespertilionid bats (M.S. Moore pers. comm). If 

limited energy resources are allocated to repairing wing tissue, then bats may face 

increased risks to survival and reproduction during the early weeks of the active season, a 



 

 

29 

trade-off that might be exacerbated by low ambient temperatures (increasing 

thermoregulatory costs) and reduced insect availability during the spring in New England 

(Hoying and Kunz 1998). 

Our results suggest that WNS-associated wing damage to M. lucifugus may not 

overtly impact reproductive success during the post-partum period. Most of the adult 

female bats that we captured after the parturition period showed signs of lactation, 

although offspring of these individuals were not identified. Some individuals, including 

the bat with the worst wounding pattern observed in this study (Figure 1.2), transitioned 

into lactation and post-lactation between initial capture and recapture, suggesting that 

their pups were likely carried to term. The bat illustrated in Figure 1.2 also reached stages 

of lactation and post-lactation at the same time as many of the other females captured 

from the same colony during the present study. Overall, the females comprising this 

colony reached lactation and post-lactation during the same period that is typical of M. 

lucifugus for this region, although reproductive timing varies latitudinally and  is highly 

dependent on precipitation (Frick et al 2010b). Alternatively, individuals whose offspring 

do not thrive may also be observed in a post-lactating state after the death of a pup. It is 

unknown if the pups in question developed normally and survived until weaning and 

beyond. Further research is needed to assess the impact of WNS on the reproductive 

success of M. lucifugus, including the timing of reproduction, sex ratio of offspring, post-

natal growth rates of pups, and long-term survival of individuals born to mothers with 

badly damaged wings. 
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While we were unable to directly assess how wing damage affects post-natal 

growth and survival of pups, we can make suggestions about the effect of wing damage 

on adult females during pregnancy. A female little brown myotis during late pregnancy 

carries a fetus that can weigh up to 25% of her own mass immediately before the onset of 

parturition and is not particularly effective at capturing prey, presumably because of 

increased wing loading (measured as the mass carried per unit of wing area) and 

decreased flight maneuverability (Kurta and Kunz 1987). Thus, a pregnant female’s net 

energy intake during late stages of pregnancy is low and can increase significantly after 

parturition and during lactation (O'Farrell and Studier 1976; Anthony and Kunz 1977; 

Kurta et al. 1989). The loss of overall surface area and flexibility of wing tissue damaged 

by WNS during hibernation will further increase wing loading by affecting total surface 

area of healthy tissue, thus altering flight aerodynamics and reducing overall 

maneuverability. Pregnant bats with heavy wing damage may suffer more negative 

consequences (i.e. declining body condition, decreased thermoregulatory capacity, and 

impaired water balance) from wing damage than non-pregnant females or adult males.  

  

Implications for WNS research 

WNS is having an unprecedented impact on hibernating bat populations in the eastern 

United States (Frick et al. 2010a) and the actual mechanism of mortality remains elusive. 

However, a hypothesis recently proposed by Cryan et al. (2010) suggests that damaged 

wing membranes may play a significant role in the death of these bats during hibernation. 

As the hyphae of Pd invade and erode wing tissue, specifically the sebaceous glands that 
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produce secretions that aid in waterproofing, wings may lose their ability to regulate 

water balance. Consequently, affected bats may be forced to arouse from torpor more 

frequently because of their need to replenish body water that is lost to the environment 

(Cryan et al. 2010, Nementh et al 2010). If this postulated mechanism is indeed the cause 

of mortality among bats with WNS, then healing of wing tissue during the active season 

represents a life-saving process to the few bats that survive hibernation after being 

infected with Pd. Additional research is needed to understand the physiology of healthy 

and damaged wing tissue during the hibernation and active season. 

Records of WDI are invaluable in establishing a baseline level of wing damage in 

a region and may also be used to assess the lasting impact of WNS into the active season. 

For example, large-scale studies offer the potential to determine the relationship between 

the occurrence of wing damage and regions of Pd infection (Francl et al 2011). It is 

tempting, however, to diagnose “confirmed presence” of WNS in a region where a higher 

frequency of wing damage from Pd is observed, but wing condition alone is not a 

diagnostic tool to confirm WNS (Meteyer et al. 2009; Reichard and Kunz 2009). Until a 

temporal model of wing membrane healing and a reliable field test of Pd presence are 

developed, factors such as date of observation must be considered before attempting to 

correlate wing damage with WNS. We note that very little damage was discernable on 

most individuals by mid- to late-summer (i.e. during post lactation; Figure 1.2); any 

damage observed in or after late July should be carefully scrutinized for cause.  
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Researchers may attempt to correlate intensity of Pd infection (i.e. fungal load) with 

degree of wing damage. Again, some evidence supports this hypothesis, but these 

observations must be validated with histopathological analysis to demonstrate fungal 

penetration of wing tissue (Meteyer et al. 2009). Given the fragility of wing tissue and the 

gregarious nature of most hibernating bats, a number of other sources of wing damage 

could be misinterpreted as damage from Pd. Assessing baseline occurrence of WDI in 

geographic regions that are unaffected by WNS will permit researchers to identify new 

patterns of wing damage in bat populations that incur wing damage more regularly. For 

example, gleaning bats in the southwestern US frequently encounter cactus spines while 

foraging and it is not uncommon for their wings to incur significant tears from these 

interactions (Davis 1968).  

 

Limitations 

One trend revealed from comparing the 2008 study (Reichard and Kunz 2009) and our 

2009 findings is the notable decrease in total captures in 2009. We offer two possible 

explanations for this pattern. First, the hibernating populations at the two major known 

hibernacula closest to these colonies (Aeolus Cave, East Dorset, VT and Chester Mine, 

Chester, MA) incurred large-scale mortality due to WNS. The hibernating population at 

Chester Mine before the winter of 2008/2009 was estimated to be 8,000-10,000 

individuals, but has since declined to just 116 bats by mid winter in 2009/2010 (T. 

French, pers. comm.). The population at Aeolus Cave before it was infected with Pd may 

have been as high as 300,000 individuals (Trombulak et al. 2001) but the majority of the 
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bats hibernating in the accessible portions of this site had died by late January 2009 (S. 

Darling, pers. comm.). Second, the decline in some summer maternity colonies between 

2008 and 2009 may be the result of disturbance from previous research that was 

conducted at these sites (Zhao et al. 2004; Schulz et al. 2006; Townsend et al. 2008). Bats 

tend to avoid or abandon colonies that are trapped too often (Kunz et al. 2009) and thus 

may have largely abandoned these sites in the summer of 2009 following previous 

capture efforts. We can further illustrate the decline at these colonies using the Schnabel 

Method (Schnabel 1938) for estimating population size based on mark-recapture data of 

adult female bats. Using Reichard and Kunz’s (2009) data for summer of 2008, we 

calculated total occupancy of bats in the MA site to be 4570 individuals, while the total at 

the NH site was 657 individuals. Unfortunately, these numbers appear to be greatly 

inflated compared to direct emergence counts at these colonies. Notwithstanding, these 

values illustrate the point that bats were sufficiently numerous in 2008 that the 

probability of recapturing an individual bat was extremely low, which will bias Schnabel 

estimations. In the summer of 2009, we calculated the population of bats in the MA site 

to be 281 individuals and 41 individuals in the NH site using the same trapping and 

population estimation procedures. Although this value may still overestimate colony size 

because of inherit limitations and assumptions of mark-recapture methods (O’Shea et al. 

2004), the difference between years is striking, showing a nearly 94% population decline 

at each colony. 

Limitations in our study are common among other investigations of bat ecology. 

First, we sampled only a subset of the population by trapping at two M. lucifugus 
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maternity colonies in New England. Because male bats tend to use alternate and often 

unidentified summer roosts, our sampling protocol does not account for male bats that 

were affected by WNS during hibernation. Second, as is common in most mark-recapture 

studies, recapture rates were low (~0.10; O'Shea et al. 2004). This trend raises questions 

regarding the ultimate fate of the individuals banded early in the season when wing and 

body conditions were poorest. Lastly, the measure used for assessing BMI did not 

compensate for body mass gained during very early pregnancy (i.e. prior to 13 May). Our 

criteria for excluding bats from BMI analysis attempted to eliminate this factor, yet 

females in the early stages of pregnancy may have contributed to slightly higher average 

BMI compared to nonreproductive individuals.  

 

CONCLUSION 

This study represents important evidence that some bats that incur wing damage during 

hibernation (presumably from exposure to WNS, in this instance) are able to heal rapidly 

and may also successfully reproduce in spite of such damage. However, while this 

evidence is a positive note among mostly negative trends in WNS research, it is 

important that conservation efforts for bats focus on year-round strategies both during 

hibernation and throughout the active season. With the severe declines in summer 

populations observed in this and other studies (Dzal et al. 2010; Brooks 2011), and the 

prediction of regional extinction of M. lucifugus within 16-20 years (Frick et al. 2010a), 

the few maternity colonies that remain represent vital islands of reproduction and genetic 

variation. If human interventions, such as increased utility-scale wind-energy 
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development (Kunz et al. 2007; Arnett et al. 2008) and “pest control” practices threaten 

the viability of these colonies, then local extinction of populations of M. lucifugus may 

occur sooner than predicted. Further research is needed to assess the long-term impacts of 

WNS on summer colonies of bats in the northeastern U.S. and the effect of wing damage 

on their reproductive success, foraging ability, flight maneuverability, physiological 

functions of wings, and energetic costs of healing. 
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Figure 1.1. Wing damage was defined following Reichard and Kunz (2009) and included 

the following criteria: discoloration, tears, holes, flaking, necrosis, receded wing margins, 

and missing tissue.  
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Figure 1.2. Photograph of a transilluminated wing of a little brown myotis showing the 

most extensive healing recorded in this study. The highlighted region shows an area of 

lost wing tissue that healed over a period of time extending from 10 June 2009 (A) to 6 

August (B) 2009 (57 days). This particular bat was captured in lactation on 23 June 2009 

and was observed in post-lactation on 6 August 2009. 
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Figure 1.3. Relative proportion of adult female M. lucifugus with various degrees of 

wing damage recorded at two summer maternity colonies in New England. Trapping 

events that yielded fewer than 5 individuals were excluded from this analysis.  
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Figure 1.4. Mean BMI [BMI = Mb (g) / length of forearm (mm)] of adult female Myotis 

lucifugus with different wing damage index (WDI) scores at summer maternity colonies 

in northeastern US from 13 May to 27 May 2009. BMI was calculated before visibly or 

palpably pregnant females were observed at study colonies to control for gain in body 

mass during pregnancy. Bars labeled with similar letters are not significantly different. 

Error bars are standard errors. 
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Figure 1.5. Average healing rates (cm2 per day) of wings of adult female M. lucifugus at 

two summer maternity colonies in New England.  Bars labeled with similar letters are not 

significantly different. Error bars are standard errors. 
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Figure 1.6. Healing rates of adult female M. lucifugus. Each connected pair of points 

represents an individual bat. A. Healing rates of each recaptured bat that was included in 

photographic wing analysis. Markers represent month of initial capture. May = open 

diamonds, June = closed squares, July = shaded triangles. B. Healing rates of bats that 

were initially captured between 13 May 2009 and 27 May 2009.
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CHAPTER TWO 

 
SURFACE LIPID PROFILES OF BATS WITH WING DAMAGE CAUSED BY 

WHITE NOSE SYNDROME 

 
 

ABSTRACT 

 White nose syndrome (WNS) is a cutaneous fungal disease of hibernating bats 

that causes severe wing membrane damage. In surviving individuals, skin damage may 

change skin surface lipid (SSL) chemical composition or abundance. As SSL are the first 

barrier against infectious microbes, they function as part of the innate immune system. 

Thus structural damage may impair immune function and decrease integumentary 

suppleness and elasticity. Given the extent of wing damage in some bats affected by 

WNS, we tested the hypothesis that bats with severe wing damage have altered SSL 

profiles compared to bats with visibly undamaged wing tissue. During the early active 

season (May to early June) of 2012, we used SebuTape® indicators to collect SSL 

from Myotis lucifugus with and without wing damage. We used high performance thin 

layer chromatography, gas chromatography/mass spectrometry, and a fluorescent sterol 

assay to determine SSL composition and broad lipid class ratios for each wing damage 

category. We found trends of greater free sterol but fewer free fatty acids in wing 

damaged tissue, but results were not statistically significant. These preliminary results are 

the first test of sub lethal WNS effects on damaged wing tissue function from wild 

populations and represent valuable efforts for WNS disease biomarker identification. 
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While these results do not clarify wing damage roles from WNS in SSL profiles, our 

study suggests interesting trends for further studies in laboratory infected captive 

individuals. 

INTRODUCTION 

Emerging infectious diseases are among the greatest modern threats to 

biodiversity, causing range reductions and population declines in affected species 

(Daszak et al. 2000). Among emerging wildlife diseases, pathogenic fungi are among the 

most devastating and are becoming increasingly prevalent (Fisher et al. 2012). One 

example is white nose syndrome (WNS), a fungal disease of hibernating bats in North 

America (Blehert et al. 2009; Lorch et al. 2011). The disease is caused by a fungal 

pathogen Pseudogymnoascus destructans (Pd), which  causes a cutaneous infection on 

wings and other exposed skin surfaces of hibernating bats (Minnis and Lindner 2013). 

Mortality at affected winter colonies are often above 70% and summer populations are 

correspondingly reduced, as shown by acoustic surveys and evidence from summer 

maternity roosts (Brooks 2011; Dzal et al. 2011; Reichard et al. 2014). While mortality at 

hibernacula is quite high, small proportions of affected bats survive. There is little 

evidence that survivors suffer mortality after arriving at summer maternity sites (Fuller et 

al. 2011).  Instead, surviving bats captured at summer maternity roosts show evidence of 

WNS (i.e., poor body condition and wing damage) but recover quickly from injuries 

(Fuller et al. 2011; Meteyer et al. 2011; Reichard and Kunz 2009).  

Histopathological studies and visual examination reveals damage caused by Pd 

infection can be quite extensive, thus affecting physiology and the maintenance of 
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homeostasis (Cryan et al. 2010). Fungal hyphae grow across integumentary surfaces and 

gather in diffuse foci where the fungus erodes epidermal tissue and infiltrates the dermis, 

leading to deep wounds on wing surfaces (Meteyer et al. 2009). While pilosebaceous 

units are not specifically targeted during hyphal invasion, evidence suggests skin 

appendages (e.g., hair follicles or sebaceous glands) may facilitate dermal infiltration by 

providing a point of entry into the skin. Epidermal wounds may disrupt the cutaneous 

water barrier by damaging the lipid rich stratum corneum. Such disruption could result in 

increased evaporative water loss, which is thought to be directly linked to WNS mortality 

(Cryan et al. 2010; Warnecke et al. 2013; Willis et al. 2011). While the role of wing 

lesions as a contributor to WNS mortality has garnered much attention, sub lethal wing 

damage effects have received little focused study. Wing damage has been shown to 

negatively affect flight behavior of birds (Swaddle and Witter 1997; Swaddle et al. 1996), 

insects (Dukas and Dukas 2011; Higginson and Barnard 2004), and is thought to have a 

similar effects in bats (Voigt 2013). However, subtle changes in physiological function of 

wings during healing have not been studied. Specifically, changes in skin surface lipid 

(SSL) profiles during wound healing remain to be elucidated. 

SSLs are a complex mixture of molecules comprised of sebaceous gland 

secretions, epidermal cellular lipids, and their products from microbial or environmental 

decomposition. SSLs are the initial external barrier against infectious microbes, thus 

functioning as part of the primary innate immune response (Grice and Segre 2011). SSLs 

also lubricate hair and integumentary surfaces aiding in skin elasticity and suppleness. 

Changes to SSL composition may lead to epidermal pathologies, such as scarring 
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alopecia, folliculitis, and seborrheic dermatitis (Ro and Dawson 2005). Epidermal and 

cuticular lipid profiles have been studied in many animal taxa, including insects 

(Gołębiowski et al. 2008), birds (Thomas et al. 2010), and mammals (Nicolaides et al. 

1968).  Among mammals, SSL profiles vary according to taxonomic grouping and 

ecological niche. 

Normal flexibility and elasticity of wing membrane is vital for proper 

aerodynamic functioning and flight kinematics. Changes in SSL composition associated 

with sub lethal wing damage may contribute to morphological changes in wing tissue, 

such as reducing flexibility and causing skin to peel and flake. Large patches of stiffened, 

flaky skin on wing surfaces reduces aerodynamic cleanliness, i.e. wing efficiency. A 

smooth airfoil (i.e., an undamaged bat wing) will experience low turbulence over its 

surface and thus produce lift more efficiently, whereas an airfoil with a non-uniform 

surface (i.e., a damaged bat wing) will produce vortices and eddies, generate lift poorly, 

and thus reduce flight efficiency (Bullen and McKenzie 2007). Such changes to flight 

aerodynamics and flapping kinematics could cause affected bats to expend additional 

energy during flight. During a period of low prey availability and existing high energetic 

costs, additional energetic demands may result in unsuccessful reproduction or additional 

mortality (Anthony and Kunz 1977). 

Bat SSL profiles have only recently been described.  Bat SSLs vary little among 

North American bat species but are highly unique among mammals (Nicolaides et al. 

1968; Pannkuk et al. 2014).  Bat SSLs are predominantly cholesterol, with moderate 

amounts of free fatty acids (FFAs), sterol esters (SEs), and wax esters (WEs) (Pannkuk et 
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al. 2013; Pannkuk et al. 2012).  Other lipid groups found in lower amounts include 

glycerolipids (e.g., triacylglycerides [TAGs]), squalene, ceramides, glycerophospholipids 

(GLPs), and sphingolipids (Pannkuk et al. 2013).   

Given the damage that Pd causes during infection, and that sebeacous glands are 

often filled with fungal hyphae, sebaceous glands on damaged wing tissue are likely 

nonfunctional. Specifically, WE and TAG output may be dramatically reduced during 

WNS infection due to sebaceous glands’ role as the primary source of these lipids. In 

addition, epidermal cholesterol synthesis increases when the cutaneous water barrier is 

disrupted (Wu-Pong et al. 1994). Thus, cholesterol synthesis should be stimulated by 

wing damage and wound healing.   

The purpose of this study was to characterize and compare SSL profiles in active 

season bats with badly damaged wing tissue (presumably from WNS) and healthy wing 

tissue. We hypothesized that wing damage due to WNS would stimulate the synthesis of 

cutaneous cholesterol, thus increasing the proportion of free sterol in SSL. We also 

expected to collect reduced amounts of WEs and TAGs from bats with severe damage 

due to loss of function of sebaceous glands. Finally, we hypothesized that FFA acid 

profiles would vary between bats with wing damage and those without. Understanding 

the changes in SSL profiles in bats with WNS aids in developing WNS disease 

‘signatures’, biomarker discoveries, and diagnostic advancements. Additionally, SSL 

profiles may predict species specificity or therapeutic targets, thus contributing to disease 

management strategies. 
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MATERIALS AND METHODS 

Field sites and bat capture 

Surface lipid samples were collected from 245 bats at two sites in Massachusetts 

(Pepperell and Princeton) and three sites in New Hampshire (Charlestown, Milford, and 

Peterborough). All roosts are man-made structures that have hosted substantial M. 

lucifugus colonies for at least 10 years. Harp traps were erected at the main exit portal or 

inside the roost prior to sunset. Bats were removed from the harp trap bag immediately 

after capture and placed into clean holding bags. Bagged bats were placed into a heated 

fabric cooler until processing to prevent torpor use and facilitate release. The cooler was 

heated by a medical heating pad set to medium heat. For each bat we recorded body mass 

(± 0.1 g), forearm length (± 0.1 mm), and reproductive condition. Both ventral wing 

surfaces of each bat were photographed using a digital camera (Sony Cybershot model 

DSC-H55; Sony Corporation, Tokyo, Japan) on automatic settings without flash. A white 

fluorescent light box was used to transilluminate wings, making damage more apparent. 

We recorded wing damage index (Reichard and Kunz 2009) and another wing assessment 

method (see below). Each bat was fitted with a uniquely numbered, lipped aluminum 

alloy band (Porzana Ltd, East Sussex, UK). Individuals typically were released within 

one hour of capture. Decontamination guidelines for WNS were strictly followed. 

Wing damage assessment 

The wing damage index (WDI) methodology developed by Reichard and Kunz 

(2009) is a rapid and effective means by which to describe wing damage, when used 

appropriately. However, it is less useful when applied to bats that are captured early in 
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the active season (throughout May and the first two weeks of June), which is when wing 

damage is most prevalent and severe, but is also not easily categorized by the WDI 

scaling metrics. For example, within the first week of the active season, wing damage is 

little more than small regions of discoloration, which correspond to microscopic lesions 

(see Chapter 4 of this dissertation and Turner et al. 2014). These regions, which are 

unaccounted for by WDI score, will become scabs or inflammatory crusts that will 

eventually form holes or white discoloration. Moreover, the current interpretation of WDI 

scoring includes a heavy bias toward white discoloration and holes because this is the 

most common kind of damage seen when the majority of bat field research is conducted. 

The resulting WDI score thus does not include much usable information about the extent 

of necrotic tissue.  To put it more simply, wing damage assessment using WDI is meant 

to be a “quick and dirty” field technique that describes wing damage of all kinds. For this 

chapter, a metric for WNS-specific wing damage and recovery was necessary. 

Bats were assigned a broad wing damage category based on WDI and a 

qualitative assessment of appearance. Bats with extensive crusting and flaking (broadly 

WDI = 2 and 3) were labeled as necrotic (NC; Figure 2.1A). Bats with less extensive but 

similar damage (mostly WDI = 2) were sub-necrotic (sNC; Figure 2.1B). Bats with 

discoloration, but overall normal wing structure (WDI = 1 and 2) were labeled as spotted 

(SP; Figure 2.1C). Bats with little to no wing damage (WDI = 0) were referred to as 

healthy (H; Figure 2.1D).  

Lipid Sampling  
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Surface lipids were collected as previously described (Pannkuk et al. In Review).  

Sebutape® Indicator Strips (cat# S232; CuDerm Corporation, Dallas, TX) were pressed 

onto the ventral portion of the plagiopatagium for 1 min to minimize stress to the animal 

(Pagnoni et al. 1994). Tape samples were placed into 3:2 chloroform:methanol (HPLC 

grade; Fisher Scientific, U.S.A.) with 0.5% butylated hydroxytoluene (to prevent 

oxidation of fatty acids) in a glass vial with a Teflon® lined cap (Law et al. 1995). 

Sebutape® was removed within 12 hrs to prevent tape polymer breakdown. Samples were 

stored in a -20°C freezer until they were shipped on dry ice overnight to the Arkansas 

Biosciences Institute (Jonesboro, AR), and stored at -20°C until analysis.    

Thin-layer Chromatography 

Solvent was evaporated under N2 and lipid residue was reconstituted in 50 µl 3:2 

chloroform:methanol for high performance thin-layer chromatography (HPTLC).  

HPTLC was performed using EMD (Darmstadt, Germany) silica gel plates (20 cm x 10 

cm x 200 µm).  Plates were washed with 3:2 chloroform:methanol and activated for 10 

min at 120°C.  Squalene, triolein, cholesteryl palmitate, and stearyl palmitate were used 

as standards (Nu-check Prep Inc., Elysian, MN).  Seventeen lanes were spotted as 8.0 

mm bands and 15.0 mm from the edge with a CAMAG Linomat 5 auto-applicator 

(Wilmington, NC).  Seven lanes were a standard serial dilution and the remaining 10 

lanes were experimental samples.  Non-polar lipids were separated with one run of 

isooctane:ethyl ether (95:5 v/v) to the top.  Plates were sprayed with 3% cupric acetate in 

8% sulfuric acid, charred for 20 min (180°C), imaged with a CAMAG TLC Scanner 3, 

and analyzed with winCAT scanner 3 software (#027.6315). 
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Gas Chromatography/Mass Spectrometry 

Free fatty acid analysis 

Fatty acids were analyzed by esterifying free fatty acids to fatty acid methyl esters 

(FAMEs). FAMEs were prepared by reconstituting in 0.2 ml toluene, 1.5 ml methanol, 

and 0.3 ml methanol-35% HCl.  Samples were mixed and heated overnight at 45°C to 

complete the transesterification.  The next morning, 1.0 ml ultrapure H2O and 1.0 ml 

hexane were added and tubes were vortexed for one minute.  The top organic layer (with 

FAMEs) was removed and evaporated under a stream of N2.  Remaining lipid residue 

was reconstituted in 50.0 µl hexane and placed in a GC vial with a 0.25 ml conical glass 

insert (Agilent cat.# 5183-2085).   

Major FAMEs  (i.e., >1% of total) were arcsin transformed and compared between NC 

and H samples using a Wilcoxon Rank Sum (Mann-Whitney U) test (JMP Pro ver. 11, 

SAS Institute Inc., Cary, NC).  

Lipid Derivatization for Cholesterol Trimethylsilyl (TMS) Ester Analysis 

Lipid samples were analyzed for cholesterol amount following previously 

described methods (Pannkuk et al. 2013).  Briefly, sample solvent was evaporated under 

N2 and dry lipid residue was heated at 60°C for 30 minutes with 200 µl 

hexamethyldisilazane (HMDS):trimethylchlorosilane (TMCS):pyridine (3:1:9 v/v/v, 

Sigma-Aldrich, St. Louis, MO, product # 33038).   

GC/MS Settings 

FAMEs and TMS cholesterol esters were analyzed on a Varian (Santa Clara, CA) 

450-Gas chromatograph (GC) unit equipped with Agilent Durabond HP-88 column (60 m 
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x 0.25 mm, with a 0.20 µm film thickness) and a Varian CP-8400 autosampler coupled to 

an ion trap (IT) Varian 240-MS/4000 Mass spectrometer (MS).  Operating conditions for 

GC injector temperatures, transfer line temperatures, EI-MS, manifold, transfer-line, and 

trap temperatures were performed as previously described (Pannkuk et al. 2014; Pannkuk 

et al. 2013). Oven temperature program for FAME analysis was 100°C for 1 min, then 

100°C to 200°C at 5°C/min; 200°C to 250°C at 20°C/min; and held at 250°C for 1 min.  

Oven temperature program for TMS esters was 140°C for 2 min, then 140°C to 250°C at 

2°C/min; and held at 250°C for 8 min.  Both samples were injected as 1.0 µl splitless 

injections (9.8 ml/min split flow, carrier gas helium, 0.7 ml/min flow rate, 24.0 psi initial 

pressure, 8.0 min solvent delay).  Data was acquired with Varian Workstation Software 

(version 6; Walnut Creek, CA).  Target peaks were identified by reference to an authentic 

standard and matching electron ionization spectra to the NIST/EPA/NIH Mass Spectral 

Library (NIST 11) and the NIST Mass Spectral Search Program (Version 2.0f) 

(Gaithersburg, MD). 

Free Sterol vs. Sterol Ester Ratio Assay 

Quantitative amounts of free sterol vs. esterified sterol between groups were 

detected by a fluorometric coupled enzyme assay according to the manufacturer’s 

instructions (Sigma # MAK043). 

 

RESULTS 

Capture results 
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 We captured 434 bats and collected lipids from 245 individuals. The majority of 

these bats were adult females. Some juveniles were sampled, but were not included in the 

analysis because of age-dependent differences in SSL profiles (cite). The number of bats 

assigned to each wing damage category are as follows: 29 NC, 14 sNC, 102 SP, and 100 

H. The severe classification were more prevalent during May and June, whereas the 

lower damage categories were common later in the season.  

 Due to the low volume of lipid collected by SebuTape® indicators, samples had to 

be split to adequately replicate each of the following analyses. Given that this study was 

partly an exploratory analysis of SSL profiles of bats with WNS, it was necessary to 

complete an array of analyses to build a more comprehensive picture of SSL profiles. 

Thin-layer Chromatography 

  Thin-layer chromatography of wing SSL showed different patterns from the two 

damage categories. Healthy tissue had higher amounts of total non-polar lipid than 

necrotic samples; however, the specific class remains to be elucidated.  Healthy tissue 

indicated presence of non-polar lipid; however, it was below the limit of quantification 

(LOQ) and scanning densitometry was unable to determine total lipid amount. Non-polar 

lipid from necrotic tissue was below the limit of detection (LOD) in the three of four 

samples.  One sample was slightly above the LOD. Both damage categories showed a 

band of unidentified lipid, which we hypothesize are likely wax diesters or triesters. The 

standard resulted in incomplete separation of the non-polar lipid (e.g., sterol esters, 

squalene, and wax esters) band (Fig. 2).Considering the LOD for SE and squalene is ~40 

ng and ~15 ng for wax esters it is likely all three compound classes contribute to the band 
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detected in experimental samples (CAMAG app. note #A-89.1).  Due to the low total 

lipid amounts collected by Sebutape® indicators, HPTLC was not sensitive enough to 

differentiate between lipid classes.   

Gas Chromatography/Mass Spectrometry 

Fatty Acid Methyl Ester Analysis 

There were no differences in the amount of free fatty acids from healthy and 

necrotic tissues. There were trends for reduced 16:0, 18:0, and 18:2, while 18:1 and 20:0 

increased, but no changes were significant (Table 1).  

Cholesterol Trimethylsilyl Esters 

Total lipid was derivatized as TMS esters and sterol amount was determined for 

healthy and necrotic tissue. There was no significant difference between sterol amounts 

from necrotic tissue (1.79±0.6 ng/µl) and healthy tissue (0.38±0.10 ng/µl).(z = 2.78, df = 

4, P=0.18). 

Free Sterol vs. Sterol Ester Ratio Assay 

Healthy tissue (n=9), spotted (n=10), subnecrotic (n=5), and necrotic (n=8) were 

assessed for total free sterol and SE with a fluorescent assay (Fig. 5).  Differences in 

amount of free sterol and SE were not statistically significant (Wilcoxon Rank Sum test; 

z = 5.316, df = 3, P = 0.15; z = 2.18, df = 3, P = 0.53, respectively).  

 

DISCUSSION  

This is the first field-based assessment of changes in wing SSL composition 

during the healing process after WNS infection. The goal of this study was to test the 
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hypothesis that wing damage from WNS affects post-hibernation SSL profiles on 

presumably infected free-ranging bats and to identify possible lipid biomarkers for 

assessment of wing damage associated with WNS. We found no support for our 

hypotheses. However, we have provided baseline information on SSL composition of 

WNS-affected bats. While significant differences were not detected in this study, possible 

diagnostic techniques were established for further study with higher sample sizes. Sample 

size was limited because our study was focused on the first month of the active season, a 

time when colony population sizes are small and sensitive to frequent trapping, but the 

only time when the most severe class of wing damage is observed (Kunz et al. 2009; 

Reichard and Kunz 2009).  

Given the existing evidence that skin damage can cause changes in SSL 

composition, it is slightly paradoxical that we did not observe highly significant SSL 

profile changes in this study. Lipid sampling technique may have played a role in our 

ability to detect SSL differences in damaged and healthy tissue. SebuTape® is an 

effective way to gather lipid samples for biochemical analysis, allowing for rapid sample 

collection without harsh solvent application directly to a target’s skin (Pannkuk et al. 

2013). This is important when sampling damaged tissue or thin skin membranes that can 

absorb harmful compounds. SebuTape® also allows for more consistent sampling as each 

indicator tab samples approximately 1 cm2. While we made every attempt to sample an 

area of damage that was similar in size to the indicator pad and representative of the 

overall pattern of wing damage on each individual, it is possible that damaged tissue and 

healthy tissue were sampled together, thus providing a non-representative SSL sample. In 
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addition, SebuTape® Indicator tabs are not adhesive and thus lipid absorption occurs 

slowly. Another product, SebuTape® Strips have an adhesive backing and thus collect 

much more of the FFA component from the target tissue (Chapter 4). 

Bats begin to heal WNS-damaged wing tissue within a day of emergence from 

hibernation (Fuller et al. 2011; Meteyer et al. 2011). In natural conditions, a hibernating 

bat colony takes several weeks to completely disperse from a hibernaculum. 

Additionally, maternity colonies are comprised of individuals that have come from 

several different hibernacula, sometimes from great distances (insert distance here), each 

of which with its own characteristics that can alter the timing of emergence (Norquay et 

al. 2013). The result is that a sample of bats emerging from a maternity roost on any 

given night will be comprised of individuals that have left hibernation at different times, 

and hence be at different stages of wing healing. While there are strong correlations 

between date and wing condition, with a distinct peak in wing damage in late May 

(Reichard and Kunz 2009), we cannot discount extensive healing that may have occurred 

between emergence from hibernation and capture at the maternity roost, and that some 

bats with what appears to be severe wing damage may be in the final stages of recovery.  

Our study suggests that wing SSL profiles may be altered during WNS infection. 

Such changes could have implications for bats in the early active season, such as 

increased energetic costs associated with flight and healing. We also provide the first 

study comparing SSL of bats with WNS wing damage to healthy bats. These data build 

our knowledge on possible disease biomarkers during WNS progression and may be 

useful for explaining species-specific disease patterns. Trends revealed by our sampling 
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of wing SSLs in post-WNS bats must be confirmed by further study. Ideally, a captive 

longitudinal study in which inoculated or naturally infected bats are monitored 

throughout the active season would further elucidate our results. Furthermore, broad lipid 

class contributing to FAME proportions should be determined.   
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Table 2.1. Comparisons of fatty acid methyl ester proportions of Myotis lucifugus 

with healthy (n=5) and severe (n=4) wing damage (Means and S.E.) 

Lipid 

Class 
Healthy Necrotic P-value Z-value 

16:0 0.30 ± 0.02 0.25 ± 0.03 0.33 -0.86 

18:0 0.44 ± 0.03 0.41 ± 0.04 0.62 -0.37 

18:1 0.06 ± 0.01 0.10 ± 0.04 0.54 0.61 

18:2 0.02 ± 0.01 0.01 ± <0.01 0.90 0.12 

20:0 0.17 ± 0.03 0.21 ± 0.09  1.00 0.00 
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Figure 2.1. Digital photographs of characteristic little brown bat (Myotis lucifugus) 

wing condition. For this study, wing damage was defined in broad damage 

categories. A. necrotic (NC); B. subnecrotic (sNC); C. spotted (SP); D. Healthy (H).  
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Figure 2.2. High performance thin-layer chromatogram of total lipid extracted from 

little brown bat (Myotis lucifugus) wing tissue (Std=standard, H=healthy, 

NC=necrotic). 
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Figure 2.3. Total ion current obtained for Myotis lucifugus healthy tissue sebaceous lipid 

and mass spectrum for 20:0 fatty acid methyl ester. 
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Figure 2.4. Total ion current obtained for Myotis lucifugus necrotic tissue sebaceous lipid 

and mass spectrum for 16:0 fatty acid methyl ester. 
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Figure 2.5. Total free vs. esterified sterol in little brown bat (Myotis lucifugus) wing 

tissue (H=healthy, SP=spotted, sNC=subnecrotic, NC=necrotic). 
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CHAPTER THREE 

CHARACTERIZATION OF HEALING PROCESSES IN A CAPTIVE COLONY 

OF LITTLE BROWN MYOTIS (MYOTIS LUCIFUGUS) RECOVERING FROM 

SUBLETHAL INJURY FROM WHITE NOSE SYNDROME 

ABSTRACT 

White nose syndrome (WNS) is thought to have killed at least 6 million bats since 2006 

and has spread halfway across North America. The most heavily impacted species is the 

little brown myotis (Myotis lucifugus), populations of which has declined precipitously in 

the last decade. While understanding population fluctuations and mortality resulting from 

WNS, it is equally important that researchers consider remnant bat populations, and what 

processes occur in surviving bats. I observed a captive colony of little brown myotis as 

they recovered from natural manifestations of WNS. Supportive care was provided to this 

colony, including food, water, electrolyte and vitamin supplements. I quantified recovery 

by monitoring the following morphological and physiological variables: body mass, body 

temperature, wing damage amount (number of lesions) and extent (total damaged area), 

skin surface lipid profiles, fungal load, and collected wing biopsies for histopathlogical 

analysis. I found that recovering bats gain body mass quickly after emerging from 

hibernation. Wing damage analysis revealed four visually distinct forms of wing damage. 

Wing damage visible with UV illumination is most widespread at the beginning of 

recovery, whereas wing damage visible under white fluorescent light illumination is not 

visually apparent until after bats have been euthermic for several days, and rises to peak 

levels several weeks later. Skin surface lipids, meanwhile, transition from a signal typical 
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of Pd (dominated by unsaturated fatty acids) to a signal more typical of bats (dominated 

by saturated fatty acids). Histopathology and qPCR analysis of fungal load reveal that 

fungus is rapidly cleared within a week from emergence, yet remains detectable on wing 

tissue for long periods after emergence from hibernation. I conclude that recovery is a 

complex process that may lead to increased energetic demands during the initial weeks of 

the active season due to changes in flight mechanics, wing aerodynamics, reduced 

foraging efficiency, and increased energetic investment in healing processes. I provide 

the first detailed description of recovery phase processes and discuss ways that recovery 

research may inform future research into the broader effects of WNS. 

 

INTRODUCTION 

From its initial observation in New York State during the winter of 2006/7, white nose 

syndrome (WNS) has spread throughout karst areas of eastern North America (Blehert et 

al. 2009; Gargas et al. 2009). WNS has been confirmed in 9 species of bats in 26 states 

and 5 Canadian provinces. The causative agent of WNS, a psychrophilic fungus 

Pseudogymnoascus destructans (Pd), is endemic to Eurasia, where it infects several 

species of hibernating bats during the winter (Leopardi et al. 2015; Puechmaille et al. 

2010; Wibbelt et al. 2010). However, European bats do not suffer ill effects from 

infection, an intriguing difference between North American bats and European bats 

(Puechmaille et al. 2012). The most heavily impacted species is the once common little 

brown bat (Myotis lucifugus) (Frick et al. 2010; Langwig et al. 2012), which is the focus 

of this chapter. Populations of this once nearly ubiquitous species have declined 
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approximately 70% in areas affected by WNS for more than 3 years (Brooks 2011; Dzal 

et al. 2010; Turner et al. 2011).  

Disruptions of normal physiological processes during hibernation, such as higher 

than usual evaporative water loss, are hypothesized to be the source of increased 

mortality associated with white nose syndrome (Cryan et al. 2010; Verant et al. 2014; 

Warnecke et al. 2013). During hibernation, Pd erodes wing tissue in susceptible species 

such as little brown myotis. Fungal DNA is detected on bats very soon after the start of 

hibernation, which implies that skin lesions appear soon after hibernation begins 

(Langwig et al. 2015). These lesions perforate the epidermis, and can cause damage to 

the underlying dermal layer (Meteyer et al. 2009).  Combined, such damage may disrupt 

the cutaneous water barrier, such that affected bats lose a relatively large volume of body 

water during periods of inactivity. As a result, bats may arouse from hibernation more 

often than normal to drink. However, water in caves most likely does not contain high 

concentrations of electrolytes or minerals and repeated consumption of unenriched water 

may result in hypotonic dehydration, which exacerbates the need to arouse and balance 

body chemistry.  An alternative but related hypothesis suggests that hibernation 

metabolic rate is increased by some mechanism related to Pd infection (Verant et al. 

2014; L.P. McGuire, unpublished data). Higher metabolic rates result in greater energy 

consumption and higher CO2 production; however, because of the unique metabolic 

conditions of hibernation, bats are unable to expel excess CO2, which builds and causes 

acidosis and thus more frequent arousals. Such a cascade establishes a positive feedback 

of greater energy consumption due to frequent arousals, and increased water loss, which 
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may lead to dehydration. Whatever the mechanism, it’s becoming apparent that 

physiological disruption typifies WNS and drives premature consumption of energy 

stores and ultimately death. (Lorch et al. 2011; Reeder et al. 2012; Verant et al. 2014; 

Warnecke et al. 2012; Willis 2015; Willis et al. 2011). 

While a majority of little brown bats with WNS die, a small proportion survive 

(Dobony et al. 2011; Fuller et al. 2011; Reichard and Kunz 2009; Reichard et al. 2014). It 

is currently unknown what traits contribute to the survival of these individuals. 

Hypotheses range from behavioral adaptations, to genetically conferred resistance, to 

luck. Survivors of the disease, however, are also likely to be infected with Pd. The 

majority of bats in affected hibernacula test positive for Pd (Langwig et al. 2015), and 

many individuals show signs of developing wing damage (Turner et al. 2014). In the 

weeks following arousal from hibernation, wings of affected bats develop additional wing 

damage that is not present during hibernation (Meteyer et al. 2012; Meteyer et al. 2011), 

such as flaky and necrotic spots. Some individuals have small holes in their flight 

membranes. Others show signs of large holes or dramatic loss of flight membranes 

(Fuller et al. 2011; Reichard and Kunz 2009).  

The effects of wing damage on an individual bat’s overall health will likely 

depend on the nature and extent of damage. While loss of flight membrane surface area is 

the most striking form of damage, extensive membrane loss from WNS is not common 

and can heal quite quickly (Church and Warren 1968; Davis 1968; Davis 1972; Fuller et 

al. 2011; Iversen et al. 1974; Meteyer et al. 2011; Pollock et al. 2015; Weaver et al. 

2009). Instead, the dominant type of damage from WNS is areas of inflammatory 
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crusting and flaking and subsequent wound contraction and scarring, which affect wing 

membrane flexibility, and thus may cause changes to flight (Meteyer et al. 2012). Bat 

wings are highly elastic and pliable, which is vital to proper wing function (Cheney et al. 

2015; Crowley and Hall 1994; Findley et al. 1972; Studier 1972; Swartz et al. 1996). 

Depending on the extent and location of damaged areas, flapping mechanics and 

aerodynamic cleanliness (a measure of airfoil efficiency) could be altered due to reduced 

membrane flexibility and reduced smoothness of flight surfaces (Bullen and McKenzie 

2009; Bullen and McKenzie 2008; Swartz and Konow 2015). In addition, in areas where 

Pd has deeply eroded wing tissue, small wing hairs that provide bats with important flight 

information (speed, direction of airflow, etc.) could be lost or made nonfunctional 

(Chadha et al. 2012; Dickinson 2010; Marshall et al. 2015; Sterbing-D'Angelo et al. 

2011). Skin glands that secrete lipids onto the skin surface are also vital to proper wing 

function because they lubricate and moisturize wing tissue. Non-functional wing glands 

may exacerbate the negative consequences of wing damage and delay healing. Past 

studies have shown that bats with WNS have surface lipid profiles that are dissimilar to 

those of healthy bats (Pannkuk et al. 2015). However, despite the likely fitness 

implications of these effects, they have not been subjected to detailed study.  

Much of the existing literature on non-lethal injury and recovery in free-ranging 

animals focuses on acute damage, such as limb loss, or autotomy, such as strategic tail 

loss. Such injuries are common in nature, and can be ecologically significant. For 

example, there is evidence that failed predation attempts may result in limb deformities in 

frogs (Bowerman et al. 2010). Such effects have long-term consequences for fitness and 
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survival due to reduced mobility. Studies on chronic, long-lasting injury often focus on 

irreparable injury, such as wing wear in bumblebees or feeding apparatus wear in insects 

(Arens 1990; Cartar 1992; Roitberg et al. 2005). Bats with WNS provide an interesting 

model through which to understand sub-lethal injuries. Wing damage is an acute injury in 

that it appears suddenly and increases in severity quickly. The effects of wing damage 

may be chronic, however, in that the healing process may take over a month, may not 

reach completion, and can recur each year that a bat hibernates within an infected 

hibernaculum.  

While wing damage may have direct effects on flight mechanics, additional 

consequences of WNS with negative fitness effects may also exist. WNS has been shown 

to alter levels of inflammatory promoter cytokines (Moore et al. 2013) that are known to 

induce sickness behaviors, such as anti-social behavior, anorexia, or lethargy (Johnson 

2002), which may play a role in the recovery and long-term survival of affected 

individuals. Upon emergence from hibernation, little brown bats make regional 

migrations that can cover Up to several hundred kilometers (Davis and Hitchcock 1965; 

Fenton 1969; Norquay et al. 2013). Few studies have explored these regional migrations, 

but there is little evidence that bats will cease migratory movements to feed (McGuire et 

al. 2012; J. Chenger, pers. comm.). Thus, migrations must be powered solely by stored 

fat reserves. Bats with WNS have little fat left by the end of hibernation (Reeder et al. 

2012), and this may either increase mortality for migrating individuals or perhaps 

preclude the normal post-hibernation migration. Those that survive until arrival at a 

summer roost must quickly gain fat during a time when ambient temperatures and insect 



 

 

83 

abundance may be low (Anthony and Kunz 1977). Sickness behaviors triggered by latent 

immune function may prevent bats from roosting normally or feeding effectively. A 

previous study on roosting ecology of tropical bats suggests that bats which roost in 

groups have stronger immune response than those that roost singly (Schneeberger et al. 

2013), likely because social animals such as bats are stressed when separated from 

roostmates. Thus, when bats exhibit sickness behaviors that cause them to roost alone 

rather than with other members of a colony, they may be less capable of clearing Pd 

infection or opportunistic infections by other microbes. In addition, roosting alone leads 

to increased thermoregulatory needs and potentially more torpor use, which can stunt 

immune responses.    

To better understand how bats recover from WNS, I characterized the healing 

process in wild caught bats that had been naturally infected with Pd and were thought to 

have experienced at least one hibernation season with WNS. Bats were captured in the 

field but rehabilitated in a controlled, captive setting and observed for 40 days post-

emergence from hibernation. I monitored changes in mass, wing damage, fungal load, 

and skin surface lipid profiles. I collected wing biopsies to monitor changes in lesion 

structure and infection through histopathological examination. Finally, I attached skin 

temperature loggers to each individual to determine activity levels and incidence of 

torpor during the recovery phase. This study seeks to further elucidate an understudied 

portion of bat life history, (i.e., what happens in the weeks immediately following 

hibernation) and provides critical information about an unknown phase of WNS that we 

must understand before comprehensive conservation efforts can be employed. The 
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primary goal was to describe changes in wing damage, mass, and signals of infection (Pd 

detected on skin and surface lipid profiles). I also sought to determine when bats appear 

to be free of effects from WNS following emergence from hibernation. 

 

Methods  

I collected male little brown bats (M. lucifugus) from sites in Canada that were WNS-

positive for 3-5 years. I collected from the Hunt Mine (Renfrew County, Ontario; Fenton 

1969; positive for WNS in 2010/2011), Laflèche Cave (Argenteuil County, Québec; 

positive for WNS in 2009/2010), and High Rock Cave (Québec; positive for WNS in 

2010-2011) at the end of hibernation (April 28, 29, 30, respectively) (Fig 1). Prior to 

collecting bats, a survey was conducted to establish a population estimate of each cave. 

As stipulated in our permitting agreements, no more than 10% of the total hibernating 

population was removed from each cave. This amounted to 50, 5, and 4 bats from Hunt 

Mine, Laflèche Cave and High Rock Cave, respectively. Of all bats handled, less than 1% 

were female, suggesting that most females had already departed from the hibernacula 

(Fenton 1969; van Schaik et al. 2015). Thus, my pre-collection surveys provided 

conservative estimates of hibernating population sizes.   

I removed torpid bats from their roost by hand, noting the size of the cluster in 

which the bat roosted. Female bats were immediately returned to their original cluster. I 

placed bats into new, individually numbered cloth holding bags and moved to the 

entrance of the hibernaculum to process the animals away from the hibernating colony to 

minimize disturbance. I collected the following measurements for all bats: mass (±0.1 g), 
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forearm length (±0.1 mm), wing damage index score (Reichard and Kunz 2009) 

(including a digital photograph of each wing), hibernating cluster size, and whether 

collected bats showed visual signs of Pd infection (i.e., white fungal growth on exposed 

skin surfaces of tail and wing membranes and ears). It is not possible to determine age at 

that time of year. To confirm Pd infection, I collected swabs for qPCR analysis (details 

below).  

Each bat was fitted with a uniquely numbered skin temperature data logger 

(iButton). Data loggers were removed from their original metal casings and coated in 

plastic to reduce mass (Reeder et al. 2012). I trimmed a small patch of fur in the 

intrascapular dorsal region and affixed the iButton with ostomy cement (Osto-Bond®, 

Montreal Ostomy Inc., Vaudreuil-Dorion, QC, Canada; Figure 2). I held the bat in a 

rolled cotton bag to allow the cement to set. My collaborator (LPM) calibrated iButtons 

by placing them in a temperature controlled cabinet and gradually decreasing the 

temperature in 5°C increments. For each increment, iButtons were allowed to equilibrate 

overnight and the temperature was changed the next morning. Recorded temperatures 

were compared to known cabinet temperatures and a standard curve was made for each 

iButton and individually applied as a correction. 

After I fully processed each bat, I placed two or three individuals in a uniquely 

labeled cotton bag. Bats are less stressed during transport when they are allowed to 

cluster with other individuals (C. Willis pers.comm). I placed the bags into biosecure, 

hepa-filtered animal carriers (Taconic Transit Cage™, Taconic Biosciences, Inc., 

Hudson, NY, USA) stored in a temperature and humidity controlled cabinet during 
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transport to the University of Winnipeg. Upon arrival at Winnipeg, bats were removed 

from their holding bags, weighed again, and banded. Bats lost 1.54 ± 0.42 g mass during 

transport. Twenty-five bats died during transport, likely due to stress related to long-

distance transport and an already weakened state due to WNS. Surviving bats were 

released into a flight chamber with a natural light cycle for the region (11:13 light:dark). 

The flight chamber (2.24m length, 1.01 m wide x 2.42 m high) was constructed of 

aluminum and fine mesh porch screening. The chamber contained a free-standing, 

wooden bat box (44 cm x 6.3 cm x 60 cm) containing an integrated heating coil, which 

maintained an inside temperature of 30°C. To provide a variety of roosting locations, a 

bundle of towels was suspended on the wall opposite from the bat box. Ambient 

conditions for the room were maintained at 18°C and 60% relative humidity. This 

arrangement allowed bats to use facultative daily torpor over a range of temperatures and 

roosting substrates. We also provided a heated environment to provide bats with an area 

in which Pd would not propagate (i.e., temperatures greater than 20°C, (Verant et al. 

2012)). During the initial days of the study, bats were hand fed mealworms, offered 

mealworms from petri dishes and offered water from droppers. Bats were also offered 

Pedialyte® (Abbott Nutrition, Abbott Park, Il, USA) and Nutrical® (Tomlyn Veterinary 

Science, Fort Worth, TX, USA) as supplements. I monitored consumption and hand 

feeding was reduced to facilitate the transition to self-feeding. Once the colony was self-

feeding, mealworms and water were provided ad libitum. An additional 17 bats died 

during the initial five days in captivity. Four bats died between Day 5 and the end of the 
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study. This mortality was likely due to latent effects of WNS, as bats were fed by hand 

and provided with food, water, and a heated roost.  

Monitoring and analysis 

We visually monitored bat health and condition daily. Various measurements and 

samples were taken at different intervals as follows and as detailed in Table 1: 

 

Body temperature 

iButton data loggers were removed from the bats 14 days into the study. Body 

temperature data were downloaded from functional iButtons using OneWire Viewer (ver. 

2.1, Maxim Integrated, San Jose, CA, USA). 

 

Body Mass 

I recorded body mass (±0.1g) twice daily during the first two weeks of captivity. These 

frequent measurements were made to ensure that bats were gaining or at least sustaining 

body mass and to inform interventions (e.g., increased monitoring, isolation, or 

euthanasia), if needed. Bats that lost mass were placed in isolation and hand fed until they 

began to gain mass. After this initial period, I recorded body mass every other day, 

allowing me to monitor recovery while also limiting disturbance. For data analysis and 

plotting I used the mean value on days with two body mass measurements. 

 

Wing photos 
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I captured digital photographs to document changes in wing damage during the recovery 

process. I photographed bats with white fluorescent illumination 15 times (Table 1) and 

with UV illumination 8 times (Table 1) following techniques established by Reichard and 

Kunz (2009), and modified by Fuller et al. (2011) for visible “white” light (approx. 390-

700 nm) and by Turner et al. (2014) for the ultraviolet (UV) spectrum (<400 nm). I held 

bats over the light source with wings outstretched and photographed the trans-illuminated 

ventral surface using a tripod-mounted digital camera (Sony Cybershot, model DSC-H55; 

Sony Corporation, Tokyo, Japan). A 2 s shutter delay was implemented to allow the 

camera to stabilize before each image was captured. Each photo contained a label 

identifying the bat and an object to provide scaling information (see Figures 3 and 4). For 

white fluorescent light, I used a segment of a ruler that was glued to the surface of the 

light box. For UV light, I used an object that would not fluoresce but could be easily seen 

and measured- a Canadian $1 coin (26.5 mm), a metal washer (38.1 mm), or a histology 

cassette sponge (25.0 mm).  

I documented four visually distinct kinds of damage based on photo analysis. 

Damage that was apparent using white fluorescent illumination was categorized as either 

black lesions or white spots (Figure 5). Illumination with UV light revealed areas of 

orange fluorescence and teal fluorescence (Figure 6). In some cases, the different types of 

lesions overlapped, Black, orange, and teal lesions were sometimes associated with one 

another; however this association was not necessarily robust. Orange lesions often existed 

unassociated with other lesions. Teal lesions were more often associated with black 

lesions, but this was not always the case. White damage, however, developed after black 
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lesions and often began to appear as a halo of discoloration before black lesions were no 

longer apparent. To determine the amount (number of lesions) and extent (total damaged 

area) of each type of wing damage, I used image analysis software (ImageJ, ver 1.47; 

United States National Institutes of Health; http://imagej.nih.gov/ij) following 

techniques established by Fuller et al. (2011). To maintain consistency among photos I 

assessed damage to the plagiopatagium, which was always well illuminated and not 

obscured by researcher fingers.  

I traced lesions manually using a Wacom Co, Ltd (Kazo, Saitama, Japan) Bamboo 

tablet and stylus (model CTH-460) and recorded results in ImageJ’s region of interest 

(ROI) manager. Wound tracing was done by a single observer (NWF) to maintain 

consistency in identifying and highlighting damage. I recorded the number of lesions and 

area of damage for each photo. I calculated the average damage from both wings for 

analysis, or used a single wing when image quality on the opposite wing was not 

sufficient for analysis.   

  Black, teal, and orange wing damage was typically associated with small point 

lesions that did not dramatically vary in size over time. Therefore analysis of black, teal, 

and orange damage was based on the number of lesions. White damage was associated 

with larger areas which grew over time and often ran together, making precise counting 

difficult. Therefore analysis of white damage was based on total area.   

 

qPCR measurement of fungal load 

http://imagej.nih.gov/ij
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To determine the number of infected individuals and to characterize fungal load (amount 

of pathogen), I collected six swabs from each bat for qPCR analysis of fungal DNA, once 

at capture and then five more times at subsequent time points (Table 1) coincident with 

histological sampling. I followed standard swabbing protocols e.g., (Janicki et al. 2015; 

Langwig et al. 2012) and stored swabs in RNA Later at -20°C. Swabs were sent to Dr. 

Jeff Foster at Northern Arizona University for qPCR analysis. Briefly, samples and 

standards were extracted using DNeasy Blood and Tissue extraction (Qiagen, Valencia, 

CA). The extraction was modified for fungal DNA by adding lyticase during lysis. Cycle 

threshold (Ct) values above 40 was considered a positive Pd detection. The mean fungal 

load from both replicates was used in all analyses (Muller et al. 2013; Shuey et al. 2014). 

Fungal load was calculated from a standard curve: 

(𝑓𝑢𝑛𝑔𝑎𝑙 𝑙𝑜𝑎𝑑 =  10
22.04942−𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐶𝑡 𝑣𝑎𝑙𝑢𝑒

3.34789 ) 

 

derived from a serial dilution of standard Pd isolate 20631-21. All samples were run in 

duplicate.  

 

Surface lipids 

I collected lipids following Pannkuk et al. (2014). Samples were collected five times 

from each individual (Table 1). Briefly, I selected a location on the plagiopatagium by 

targeting an area of UV fluorescence.  I affixed a strip of SebuTape® (CuDerm 

Corporation, Dallas, Texas, USA), a lipid-binding polymer that is used to collect and 

store surface lipid samples. The SebuTape® was left adhered to the wing for 1 minute 
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and then removed with forceps. I placed the strip into a 4 ml cryovial with a Teflon® 

lined cap (Fisher Scientific, Pittsburgh, PA, USA) containing approximately 2 ml of 3:2 

chloroform:methanol with 0.1% butylated hydroxytoluene (VWR International, Radnor, 

PA) to prevent oxidation of lipids. The vials were then held at -20°C for 12 h after which 

I removed the SebuTape® strips and stored the samples at -20°C for up to 30 days. 

Samples were shipped on dry ice overnight to the Arkansas Biosciences Institute 

(Jonesboro, AR), and stored at -20°C prior to analysis.  

Fatty acids were analyzed by esterifying free fatty acids to fatty acid methyl esters 

(FAMEs) by reconstituting in 0.2 ml toluene, 1.5 ml methanol, and 0.3 ml methanol-35% 

HCl. Samples were mixed and heated overnight at 45°C to complete the 

transesterification. The next morning, 1.0 ml ultrapure H2O and 1.0 ml hexane were 

added and tubes were vortexed for 1 min. The top organic layer (with FAMEs) was 

removed and evaporated under a stream of N2. Remaining lipid residue was reconstituted 

in 50.0 µl hexane and placed in a gas chromatography vial with a 0.25 ml conical glass 

insert (Agilent cat.# 5183-2085).   

FAMEs were quantified on a Varian (Santa Clara, CA) 450-Gas chromatograph 

(GC) unit equipped with an Agilent Durabond HP-88 column (60 m x 0.25 mm, with a 

0.20 µm film thickness) and a Varian CP-8400 autosampler coupled to an ion trap (IT) 

Varian 240-MS/4000 Mass spectrometer (MS).  Operating conditions for GC injector 

temperatures, transfer line temperatures, EI-MS, manifold, transfer-line, and trap 

temperatures were performed as previously described (Pannkuk et al. 2014; Pannkuk et 

al. 2013). The oven temperature program for FAME analysis was 100°C for 1 min, then 
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100°C to 200°C increasing at 5°C/min; 200°C to 250°C at 20°C/min; and then held at 

250°C for 1 min. Samples were injected as 1.0 µl splitless injections (9.8 ml/min split 

flow, carrier gas helium, 0.7 ml/min flow rate, 24.0 psi initial pressure, 8.0 min solvent 

delay). Data were acquired with Varian Workstation Software (version 6; Walnut Creek, 

CA). Target peaks were identified by reference to an authentic standard and matching 

electron ionization spectra to the NIST/EPA/NIH Mass Spectral Library (NIST 11) and 

the NIST Mass Spectral Search Program (Version 2.0f, Gaithersburg, MD). Proportions 

of major fatty acids (>1% of total) were arcsin square root transformed for analysis. 

  

Histopathology 

I developed a novel method to conduct histopathological analysis of wing tissue biopsies, 

rather than lethal sampling required for analysis of the full wing. I collected wing 

biopsies from each bat twice, once from each wing and at an interval of one to two weeks 

apart. For example, the left wing of individual 0809 was sampled on May 9 and the right 

wing on May 27. The subset of bats sampled on each sampling day was determined 

randomly. I located a suitable biopsy location by illuminating the wing with UV light 

from the dorsal side (Turner et al. 2014). I targeted bright areas of fluorescence (Fig 7). 

To prevent contraction of biopsied tissue, the dorsal side of the wing was lightly 

moistened with water using a cotton swab to adhere a small nitrocellulose filter (0.22 µm 

pore size; Millipore Corporation, cat# GSWP 013 00). The tissue was then excised using 

a 6 mm biopsy punch (Tru-PunchTM, Sklar Corp., West Chester, PA, USA) and placed 

into a round histology cassette containing histology sponges. A stainless steel washer in 
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the cassette caused the cassette to sink when placed in a vial containing 10% formalin. 

Biopsies were fixed in formalin for at least 48 h, but some remained in fixative for up to 

2 weeks. I dehydrated, cleared, and embedded biopsies with paraffin using standard 

procedures (Meteyer et al. 2009; Reeder et al. 2012; Warnecke et al. 2012). I aligned 

biopsies in embedding molds so that the resulting sections would be lateral transects of 

tissue. I sectioned samples in groups of four 7μm thickness sections at 100μm intervals 

until the remaining sample was too thin to provide meaningful sections. As sections were 

cut from the block, they were floated in warm water and picked up with a Fisherbrand™ 

SuperFrost™ Plus (Fisher Scientific, cat# 12-550-15) slide, using as many slides as 

necessary per sample. Slides were allowed to air dry before being placed onto a slide 

warmer overnight. I modified an established protocol for Periodic acid-Schiff (PAS) 

staining for Pd (Meteyer et al. 2009). Instead of hematoxylin and eosin counterstain as 

used in other studies, I counterstained with light green (Electron Microscopy Sciences, 

cat# 17920). Light green provides more contrast that makes the magenta coloration of 

PAS-positive regions more apparent.   

I used a compound light microscope (Model CM E, Leica Microsystems, Buffalo, 

NY, USA) to evaluate each slide for three variables: amount of fungus, number of 

cupping erosions, and proportion of inflammatory crust on the skin surface. From each 

set of 4 sections, I selected the most suitable (e.g. flatness, stain clarity, no air bubbles) 

for further evaluation. I determined amount of fungus by visually dividing the section 

into 10 roughly equal portions and counting the number that contained fungal hyphae. I 

counted the number of cupping erosions, a diagnostic feature of WNS (Meteyer et al. 
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2009; Meteyer et al. 2011), present on each section. Cupping erosions were defined by 

loss of epidermis and clear infiltration of fungal hyphae into the dermis, leading in some 

cases to perforations of the wing. I quantified inflammatory crusts by estimating the 

proportion of the section in which inflammatory crust was the major surface feature. 

Identification of these features following established methodology (Meteyer et al. 2009). 

Due to low sample sizes and zero-inflated data resulting from infrequent sampling of 

individuals, I did not perform statistical analyses on the histology data.  

 

Statistical analyses 

All statistical analyses were performed in R (ver. 3.1.1). Given non-linear relationships 

and violation of independence due to repeated measures, conventional statistical 

techniques (i.e., MANOVA or multiple regressions) were not appropriate. Thus, I used 

generalized additive models (GAMs) to describe patterns in my data, including individual 

as a random effect. In all cases, I included day of measurement (time) as the smoothing 

term. I attempted to add other terms to the models following an information theory 

approach to select the best model. For each variable (i.e., mass, black lesions, orange 

lesions, teal lesions, white damage, and fungal load), I added additional combinations of 

variables to examine the effect on model strength. These combinations included ‘base’ 

(all forms of wing damage plus fungal load and mass), ‘UV’ (orange and teal lesions), 

‘fungus’ (orange lesions and load), ‘early wing damage’ (orange, teal, and black lesions), 

‘late wing damage’ (white damage area), ‘mass’ (mass only), and ‘time’ (time only). The 

variable in question was removed from the model when necessary (e.g., orange lesions 
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were removed from ‘UV’ for the orange lesion model). In all cases, no models explained 

more variation than time, or suggested biologically irrelevant effects (e.g., surface lipids 

predicting body mass) and thus their inclusion in the models was not justified. Thus, time 

alone was used for all models. Furthermore, the goal of this study was to provide 

descriptive analysis of recovery events. Thus, complex statistical analyses to identify 

predictors of recovery are not needed. 

To determine differences between study days, I used pairwise Kruskal-Wallis 

tests. I compared all days to the initial measurement day for each variable. The initial 

measurement day was not the same for each variable; see Table 1 for starting days. I 

made these comparisons because this study is an exploratory examination of the WNS 

healing and recovery timeline, and comparing subsequent days to the initial day allowed 

me to determine times of peak damage quantitatively.  

I used principal component analysis (PCA) to elucidate the relative contributions 

of a number of variables to the temporal patterns revealed in my analysis. I used PCA in 

three different ways. First, I used PCA for data reduction in skin surface lipid profiles, 

including all lipids that comprised more than 1% of the total lipids for each sample. 

Similarly, I used PCA for data reduction of wing-damage variables. The four classes of 

wing damage (teal lesion count, orange lesion count, black lesion count, and white 

damage area) were included in this second PCA. The final PCA included body mass, Pd 

load, and the individual scores for principal components 1 and 2 for both the lipid and 

wing-damage PCAs. Including all raw data in a single PCA would result in over-
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emphasis of lipid variables (7 of 13 variables total) and wing damage variables (4 of 13 

variables). The final PCA can be considered an integrated measure of healing.  

 

RESULTS  

Body Temperature 

Data on body temperature are not reported because the iButton failure rate was greater 

than 50%, which resulted in only 5 usable data sets. Variation in individual body 

temperature profiles was high, thus no general conclusions about torpor use could be 

made.  

 

Mass 

Individuals gained body mass rapidly during the study and plateaued at approximately 9 

g on Day 24. Mean mass gain was 3.8 ± 0.77 g. Daily mass was significantly higher than 

arrival mass after Day 3 (Kruskal-Wallis Test, H = 8.0134, df = 1, p = 0.0046) of the 

study. On Day 17 a lighting malfunction, in which the flight chamber lights did not turn 

off overnight, resulted in bats not feeding normally for one evening and thus resulted in a 

loss approximately 1 g each (mean loss 1.3 ± 0.25 g). I modeled mass gain using 

generalized additive models, using time as a smoothing term. The smoothing term was 

highly significant (p < 0.0001) and explained 72.6% of the variation observed in mass 

increase (Fig 8). 

 

Wing damage 
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Each type of visually distinct wing damage had a unique temporal trend (Figs. 9 and 10). 

Black, orange, and teal lesions each began at high levels and declined by the end of the 

study. Peak abundance for orange and teal lesions was at the start of the study (Day 5), 

whereas black lesions were in low abundance at the start of the study, and rapidly 

increased to peak abundance two weeks into the study. White discoloration was not 

apparent at the start of the study and was not present in high abundance until after peak 

abundance of black lesions. This trend implies that white damage is a result of black 

lesions and healing processes related to black lesion clearance.  

For both orange and teal lesions, abundance of lesions was highest on the first day 

of the study, in this case Day 5. Orange lesion count on Day 5 was significantly higher 

than Day 7 – 40 (Kruskal-Wallis test, H = 7.0726, df = 1, p = 0.0078). Teal lesion count 

on Day 5 was not significantly different from Days 7 or 14 (Kruskal-Wallis test, H = 

0.0097, df = 1, p = 0.9214; H = 3.3901, df = 1, p 0.0656, respectively), but was 

significantly higher on Day 5 than on Day 16 (Kruskal-Wallis test, H = 6.244, df = 1, p = 

0.0125), and each day thereafter. The highest orange lesion count was 167 for individual 

0813 on Day 5. The lowest orange lesion count was zero for all bats on Day 40. Peak teal 

lesion count was 74 for individual 0812 on Day 5. Minimum teal lesion count was zero 

for all bats on Day 40 (Figure 9).   

Black lesions were common early in the study, but rapidly decreased in 

abundance after Day 25, whereas white damage was largely not present until Day 20 of 

the study and was most abundant a month into the study. Black lesion count on Day 5 

was significantly lower than Days 14 (Kruskal-Wallis test, H = 6.0636, df, = 1, p = 
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0.0138) and 16 (Kruskal-Wallis test, H = 9.7287, df = 1, p = 0.0018). Day 5 was not 

significantly different from Days 20 (Kruskal-Wallis test, H = 2.8038, df = 1, p = 

0.0940), 22 (Kruskal-Wallis test; H = 0.1304, df = 1, p = 0.718), and 24 (Kruskal-Wallis 

test, H = 0.7858, df = 1, p = 0.3754). Lesion count on Day 5 was significantly higher than 

Day 25 (Kruskal Wallis test, H = 6.4264, df = 1, p = 0.0112 and each day thereafter. 

Maximum black lesion count was 1232 from individual 0810 on Day 14. Minimum 

lesion count was 6.5 from the same individual on Day 40. White damage area on Day 5 

was significantly lower than all days except Days 7 (Kruskal-Wallis test, H = 2.1841, df 

= 1, p = 0.1394) and 40 (Kruskal-Wallis test, H = 0.7948, df = 1, p = 0.3726). Maximum 

white damage area was 10.16 cm2 on Day 30 from individual 0814. Minimum white 

damage area was zero for several individuals on Days 5 and 40 (Figure 9).  

Generalized additive models with time after emergence as a smoothing term were 

used to describe temporal patterns in wing damage. In all cases, the smoothing term was 

highly significant (p < 0.0001). However, the deviance explained by the model for teal 

(38.2%) and white wing lesions (32.7%) was lower than the deviance explained for black 

(65.1%) and orange lesions (57.2%) (Figs 9 and 10).  

Principal components 1 (PC1) and 2 (PC2) explained 72% of the total variance 

(47% and 25% respectively) in wing damage variables. The first principal component 

included black, teal, and orange lesion count, all of which loaded strongly negative, and 

white area, which loaded strongly positive. This component likely represents temporal 

trends in wing damage, such as black, teal, and orange lesion abundance occurring early 

during healing, and white lesions being more extensive during late healing. The second 
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principal component (PC2) had a strong negative loading for black lesion count, and 

positive loadings for teal and orange lesion counts, and white damage area. The 

remaining variation captured by PC2 is likely due to the nonlinear temporal pattern in 

black lesion abundance. Black lesions peak on Day 16, a time when other types of 

damage are near zero (Table 2).  

 

qPCR measurement of fungal load 

All bats captured for this study had visual signs of WNS at the capture site (e.g., white 

tufts of fungal growth on exposed skin surfaces such as muzzle, ears, and wing 

membranes and swabs taken at the time of capture tested positive for Pd based on a PCR 

test (Muller et al. 2013). PCR results indicate that most individuals remained infected 

throughout the study, albeit at considerably lower levels than at capture or within a week 

of emergence. Five days after emergence, and each day thereafter, the study colony’s 

mean infection intensity was significantly lower than at capture (Kruskal-Wallis test, H = 

8.1592, df = 1, p = 0.0042). By Day 14, infection intensity was essentially zero. A 

generalized additive model with time as a smoothing term was highly significant (p < 

0.0001) and explained 43.9% of the deviance (Figure 12).  

 

Surface lipids 

The most common skin surface FFAs were palmitic, stearic, oleic, and linoleic acid, 

which were present in varying proportions over time. PCA revealed patterns in temporal 

changes. Early in recovery, unsaturated FFAs (e.g., oleic, linoleic, α-linoleic, and gondoic 
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acids ) were more common, but they quickly declined. Within two weeks, unsaturated 

FFAs were replaced by saturated FFAs (e.g., palmitic and stearic fatty acids), a shift 

reflected in PC1 by positive loadings on saturated FFAs, and negative loadings for 

unsaturated FFAs. Concurrent with a shift from saturated to unsaturated FFAs, short 

chain surface lipids (e.g., mainly 18C fatty acids) dominated early on in recovery and 

gradually gave way to long chain FFAs (e.g.,20+ C chain fatty acids). This pattern was 

reflected in PC2; as chain length increased, factor loading increased from strongly 

negative to strongly positive. PC1 and PC2 explained 82% of the total variance in lipid 

changes (61% and 21%, respectively) (Table 3, Figure 13).   

 

Histopathology 

Histopathological examination revealed dramatic and rapid changes in tissue structure 

and presence of fungus over time. Presence of fungus closely matched results from qPCR 

of wing swabs. Fungus was widely present in all individuals at the time of capture. No 

bats were free of fungus. The amount of fungus gradually decreased over time, with some 

bats clear of visible fungus by day 25 and only one bat retaining fungus to day 40. 

Fungus was mainly present in diffuse patches on the epidermis. Later sections (e.g., Days 

25 and 40) showed small fungal foci that were not interconnected and sometimes 

included only a single hyphal fragment. Cupping erosions were not common in the 

samples I analyzed. No more than one cupping erosion was observed in a given sample, 

and no erosions were observed beyond day 14. This pattern is likely due to my sampling 

protocol that specifically targeted single points of fluorescence, which may have been 
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single cupping erosions (Turner et al. 2014) Inflammatory crusting was present on all but 

one individual until day 40. Crusts were less prevalent on day 7 than day 14 and 25. 

Crusts were often associated with or found to encase large foci of hyphae. Below the 

crusts, new epidermis formed in a manner resembling hyperkeratosis (Ginn et al. 2007). 

Wing perforations resulted from areas where hyphal clumps had formed erosions in the 

membrane, but were also rare and did not arise until after Day 25. Opposite sides of the 

perforation showed evidence of rapid cell proliferation and hyperkeratosis. I saw no 

evidence for specificity in fungal invasion; skin appendages such as glandular features 

and hair follicles did not appear to be particularly susceptible to the fungus (Figure 14). 

 

Integrated PCA 

Principal components 1 and 2 of the overall PCA explained 70% of total variance (46% 

and 24%, respectively). PC1 had high positive loadings on mass, damage timing (PC1 

from damage PCA), and FFA saturation (PC1 from lipid PCA). Fungal load as measured 

by qPCR was negatively loaded, along with black wing damage (PC2 of damage PCA). 

FFA chain length loaded at approximately zero. PC2 had strong negative loadings on 

black wing damage and FFA chain length (PC2 from damage and lipid PCAs, 

respectively). Damage timing and fungal load had equal negative loadings, while mass 

and FFA saturation were approximately zero. These results suggest that PC1 represents 

body size and other traits related to fungal infection that have a monotonic relationship 

with time, while PC2 explains additional, non-linear progression of healing  (Figure 15). 

This conclusion is supported by the clustering of individual data points by sampling day 
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in a plot of PC2 versus PC1 scores (Figure 16). Early in the study, there was more 

overlap between sampling days. Days 25 and 40 were not as discretely separated as the 

previous three sampling days (Table 4, fig 15 & 16).  

 

DISCUSSION 

By monitoring physical and physiological changes of Pd-infected bats for 40 days, I have 

shown that bats undergo rapid recovery from WNS. Body mass increased rapidly in the 

initial two weeks after emergence from hibernation before stabilizing. I identified four 

unique types of wing damage, all presumably the result of fungal activity. Wing damage 

visible under ultraviolet illumination is most widespread within 14 days of emergence but 

quickly dissipates. Wing damage that is visible with white fluorescent light follows two 

opposing patterns. Black lesions increased from Day 5 to a peak at Day 16, followed by a 

rapid decline. White discoloration was minimal during the initial two weeks after 

emergence but reached peak levels nearly one month after emergence. I also used qPCR 

to document infection intensity during the recovery period and showed that, while 

infection levels varied widely when bats were captured, all individuals were qPCR 

positive for fungal DNA. Fungal loads dropped to nearly undetectable levels within a 

week of emergence from hibernation. However, all individuals retained a background 

infection until day 40.  There were clear transitions in surface lipid profiles over time, 

shifting from unsaturated to saturated fatty acids, and with increasing fatty acid chain 

length over time. Histopathological examination of wing lesions showed evidence of 
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fungal infection in all individuals, but the most intense infections cleared quickly. 

Cupping erosions were not common, whereas inflammatory crusts were widespread.  

Principal components analysis suggested that recovery is characterized by parallel and 

likely interrelated changes in mass, fungal load, wing damage, and saturation of skin 

surface lipids. Concurrently, wing damage that was not visible during hibernation 

suddenly develops after bats have been out of hibernation for approximately one week, 

similar to past accounts (Meteyer et al. 2012; Meteyer et al. 2011). While I did not 

directly measure immune activation, past studies have shown a sudden increase in 

metabolic activity within one week of emergence (D. Reeder, pers. comm.). This spike is 

most likely the result of a sudden and exuberant immune response, which may be the 

source of WNS related wing damage (Meteyer et al. 2012). Without a direct 

measurement of immune function, such as bactericidal ability or white blood cell counts, 

it is not possible to determine immune response. However, my overall PCA, which could 

be considered an integrated measurement of recovery based on the variables measured in 

this study, points to evidence of such a spike in bat-mediated recovery processes (note the 

peak around Day 14 on Figure 16). Overall, it appears that ‘recovery’ from WNS is in 

reality a period in which affected bats experience a marked decline in health before 

returning to a more regular state of health.  

  

  

Mass gained and feeding behaviors  
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Bats gained mass at a steady pace during the initial captive period, stabilizing at a mean 

of ~9 g after day 20. Such rapid weight gain was likely due to several factors. First, bats 

were hand fed to satiation twice a day at the start of the study. For many bats, this 

approached 15 – 20 mealworms (~1.5 to 2 g) per feeding. Bats were then allowed to 

freely use the flight chamber, including a heated wooden artificial roost. Somewhat 

surprisingly, and especially in the initial two weeks of the study, many individuals 

roosted outside of the heated box, instead roosting behind a towel on the far side of the 

flight chamber, or between the side of the box and the screen of the flight chamber. Thus, 

while these individuals chose to roost in areas that were protected from open areas by a 

physical barrier, many individuals roosted in areas that were exposed to the ambient 

temperatures of the containment facility (~18 °C), rather than roosting in a relatively 

warmer roost (~30 °C). When handled, it was apparent that many individuals were 

regularly using daily torpor. Male little brown bats are known to use different summer 

roosts than female little brown bats (Kunz 1982). This is thought to be an energy 

conservation strategy. Indeed, because our study animals were provided food ad libitum, 

did not need to fly to forage each evening (most crawled to the food dish), and could eat 

to satiation, some bats became quite fat. Individual 0827, which began the study at a 

dangerously low mass, eventually grew to approximately 13 g, nearly twice the size of a 

free-ranging male little brown bat in this area (Fenton and Barclay 1980). It is possible, 

however, that bats recovering from WNS are using shallow torpor as an adaptive healing 

strategy. Evidence suggests that bats will mount an immune response to Pd while in 

hibernation (Field et al. 2015; Moore et al. 2013). While immune response of torpid bats 



 

 

105 

has not been measured, it is likely that immune activation following emergence would 

allow bats to mount a stronger immune response than during hibernation while reducing 

metabolic rate significantly. Thus, daily torpor usage could be an adaptive strategy in 

which sick bats can fight infection at lower energetic cost. 

Bats did not self-feed immediately at the start of this study. Self-feeding within 

the colony began between day 10 and 12 (with some individual variation). Such a pattern 

may explain rapid mass increase in most individuals around day 10 (Figure 8.). The 

overall trend (smoothing line in Figure 8), however, is more important than changes 

among individual days. Bats emerge from hibernation at approximately 5 – 6 g (mean of 

6.0 for this study) and immediately undertake a migration to roosting sites (). The 

energetic strategy that bats use during this time is unclear, but they may regularly use 

daily torpor and may go a day or more without feeding due to poor feeding conditions 

(rain storms, cold weather, low insect abundance, etc.) (Anthony and Kunz 1977). 

Eventually, improving spring conditions allow bats to feed freely each night. Thus, the 

feeding regime realized in the lab may be roughly representative of natural feeding 

habits, with the notable exception that bats were not required to fly and maneuver for 

food items. 

  

Wing damage 

This study identified four visually distinct of wing damage within our bat colony, visible 

under white fluorescent light and UV light. The types of wing damage familiar to most 

WNS researchers include wounds that are apparent under white fluorescent illumination 
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(black and white in this study) (Moore et al. 2013; Reichard and Kunz 2009). Additional 

forms of wing damage visible under UV illumination (teal and orange in this study) were 

recently detailed, yet it is more difficult to determine their cause. Wing damage visible 

under UV illumination is thought to be the result of an interaction between Pd and the 

host and often presents as a yellow-orange region (Turner et al. 2014). Past studies have 

shown that this fluorescence is closely associated with cupping erosions, and can be 

widespread (Turner et al. 2014). However, my study did not find a clear association 

between UV lesions and cupping erosions, nor were lesions as widespread. Both orange 

and teal lesions appeared in discrete clusters.  

The difference between my study and the past study on UV-visible wing damage 

may be explained by differences in timing between the two studies. Whereas the single 

published account of UV wing damage focused on bats in natural habitats during 

hibernation, when fungus is most active and bat-mediated processes are at their lowest 

levels, my study focused on the period after hibernation and on bats being given 

supportive care, when fungal action is at its lowest due to warm temperatures and bat-

mediated recovery processes, such as grooming and immune response, are likely at peak 

levels. Thus, orange lesions (bat-fungus interactions) in our study may have been 

uncommon because fungus was already nearly cleared from the wing surface by bat 

grooming and/or kept from growing by high ambient temperatures. I hypothesize that teal 

lesions, which are a novel observation from this study, are points of active inflammation 

or some other bat-mediated process that drives clearance of fungus and the initial phases 

of healing. Unfortunately, due to tissue processing needed for histopathology, it was not 
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possible to directly relate a teal lesion to corresponding wing microstructure, thus further 

study is needed to determine the origin of teal lesions found in my study. Alternatively, 

differences in coloration could be due to the level at which fungus has infected bat tissue. 

Infections by Pd manifest in two ways, as a cutaneous surface infection or as a deeper 

dermal infection. Thus, it is possible that orange wing damage represents surface 

infections where fungus is present in small amounts and has not penetrated into skin 

layers. Teal lesions, on the other hand, might become evident when fungus has penetrated 

more deeply into the skin and infiltrated the dermis. Historical works have shown that 

lymphatic nodes are widespread in bat wings and that lymphatic fluid quickly infiltrates 

wounds (Cliff and Nicoll 1970; Dongaonkar et al. 2009). It is possible, then, that teal 

lesions are evidence of lymphatic and inflammatory fluids infiltrating lesions (Meteyer et 

al. 2012). If this is indeed the mechanism causing fluorescence, then it may also mean 

that bats are still suffering increased fluid losses during recovery as lymph is no longer 

contained in lymphatic nodes.  

The differences in UV wing damage between my study and Turner et al. (2013) 

may also be explained by infection history at the study sites. Bats used in my study came 

from hibernacula that had been affected by WNS for 3 years. Anecdotal evidence and 

unpublished accounts suggest that winter mortality at WNS sites declines rapidly after 

three years of infection (C. Herzog pers. comm.; C. Butchowski pers. comm.). This 

suggests that prior experience with Pd may influence the effects of fungal infection on 

individual bats in subsequent years. It is possible that bats that have survived serial Pd 

infections ameliorate the effects of WNS by preventing widespread infection on wing 
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surfaces. Instead, infections occur in small, discrete pockets on the wing surface, thus 

expressing the patterns seen in this study 

Both orange and teal wing lesions declined rapidly with time. Prevalence of 

orange lesions closely resembled the time course of infection intensity, though there was 

some lag between reduced fungal loads and an associated drop in orange lesions. Teal 

wing damage was far more variable as compared to orange. While this type of damage 

also declined rapidly, there was significant variation among individuals. However, like 

orange, teal lesions were not apparent by the end of the study. 

Wing damage visible using white fluorescent illumination (i.e., black lesions and 

white areas) showed opposite patterns of prevalence. At the start of the study, black 

lesions were beginning to form on wing surfaces and increased in number and 

distribution over time. By the end of the study, black lesions were nearly cleared from all 

individuals. Black lesions are likely the remains of inflammatory cell proliferation at 

lesions caused by Pd (Meteyer et al. 2011). Indeed, histopathlogical examination of these 

lesions reveal areas that are PAS positive and show cell clusters. I suggest that the peak 

of black wing damage occurs after the most vigorous inflammatory response to fungal 

infection has subsided. This hypothesis implies that most inflammatory action occurs 

within the first 10 days after emergence from hibernation when bats are warmed and 

supportive care is provided in captivity. Evidence from field studies support the 

hypothesis that bats heal quickly from WNS damage. Fuller et al. (2011) found that bats 

could reduce the total area of wing damage by half in as little as two weeks. Field-based 

manipulations, in which wing biopsy healing was observed in a colony of bats, show that 
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closure of wing perforations occurs within a month of initial damage (Faure et al. 2009; 

Pollock et al. 2015; Weaver et al. 2009). However, no field studies have examined 

healing rates among bats in late spring, immediately following emergence from 

hibernation. Thus, it is difficult to infer exactly what healing patterns free-ranging bats 

will show. 

Black lesions may also reflect immune system processes for clearing fungus that 

has penetrated more deeply into tissue layers and that cannot be cleared by grooming. 

Histology from this study and others shows clumps of hyphae within black lesions 

(Meteyer et al. 2011). However, if fungus is cleared by this mechanism, it may then also 

serve as a mode of transmission from hibernacula to summer colonies or from infected 

hibernacula to uninfected hibernacula. Bats in this study would often shed skin tissue 

onto the floor and walls of the flight chamber likely due to bats grooming and scratching 

crusts from their wing surfaces. Evidence suggests that the reservoir for Pd is 

environmental, thus this process of broadcast transmission could play a major role in 

movement of the disease to susceptible individuals. A vital further study would be to 

collect crusts from healing bats and attempt to culture Pd from them, which would 

answer whether the fungus is viable after being encased by immune cells and remaining 

in the environment for some time. 

White damage is the most familiar variety of wing damage, as first reported 

Reichard and Kunz (2009). Reichard and Kunz’s (2009) wing damage index (WDI), 

which defines wing damage severity on a scale of 0 -3 based mostly on proportion of the 

wing membrane affected by damage, is heavily based on the prevalence of white 
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discoloration. At the start of the study, white discoloration was almost non-existent. Two 

weeks after hibernation ended, white discoloration became more prevalent, 

often/typically in association with black lesions, forming a halo of white around black 

lesions. As black lesions cleared from wing surfaces, or sometimes prior to black lesion 

clearance, white discoloration developed in these regions. White discoloration is likely 

the result of tissue contraction around wounds (Bonaccorso and Smythe 1972; Church 

and Warren 1968; Faure et al. 2009; Weaver et al. 2009); however it may also be the 

result of epidermal tissue, and thus skin pigment, being shed in response to a minor Pd 

infection. Thus, these areas of damage grow and combine with adjacent areas of 

discoloration, sometimes covering the majority of wing surface, as was seen in this study 

and others (Fuller et al. 2011; Reichard and Kunz 2009).  

This study and others show that wing damage patterns are nonlinear (Ceballos-

Vasquez 2014; Church and Warren 1968; Davis 1972; Faure et al. 2009; Fuller et al. 

2011; Pierce and Mark 2011; Pollock et al. 2015; Weaver et al. 2009). During 

hibernation, there was very little visible wing damage on affected bats, but wing damage 

became very apparent soon after hibernation, and increased dramatically before declining 

slowly. These patterns draw into question the appropriateness of using the WDI early in 

the recovery period. The index does not include criteria for evaluating sparsely 

distributed inflammatory crusts, instead taking into account larger areas of sloughing 

tissue, which has been assumed to represent necrotic tissue. If one were to use the WDI to 

evaluate wing damage on bats in late spring, many would be placed in the most severe 

category (WDI = 3) inappropriately because widely distributed black lesions would be 
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defined as necrotic tissue. Wing damage related to WNS on free-ranging bats is not 

apparent in most cases after mid-June (Fuller et al. 2011). Given that most WNS wing 

damage is seen when bats are captured in May and June, the time period phase in which 

white damage dominates, bats have already been recovering for several weeks by this 

point. My study suggests this switch point occurs among captive bats nearly three weeks 

after emergence from hibernation, however this period could be longer for free-ranging 

bats. Given these complications, I suggest that a more temporally sensitive wing damage 

scale, weighted by timing and types of damage, be developed to more accurately evaluate 

WNS-induced wing damage.  

Outside of hibernation, wing damage may have adverse effects on long-term 

individual survival and fitness. Given that flight is fundamental to bat survival, it follows 

that even low levels of wing damage could generate adverse effects. Few studies have 

examined the effects of wing damage on flying animals, and only one study has 

attempted to quantify how damage changes the energetic costs of flight in bats (Voigt 

2013).  Using stable isotope techniques, Voigt (2013) showed that energetic cost 

decreased in bats with wing damage. While this seems counterintuitive, the author 

suggested that reduced flight costs could result from adaptive behaviors in damaged bats, 

such as making fewer abrupt flight maneuvers (Voigt 2013). Wing damage could also 

disrupt the flow of important sensory information during flight. Bat wings have numerous 

sensory hairs (1 hair per mm2) which provide information on flight speed and direction 

(Chadha et al. 2012; Marshall et al. 2015; Sterbing-D'Angelo et al. 2011). When these 



 

 

112 

hairs are damaged or lost, flight patterns change; bats make wider turns and fly faster, 

thus increasing the energetic cost of flight (Sterbing-D'Angelo et al. 2011).  

Research on insects has shown that wing damage significantly impacts foraging 

and survivorship. For example, honeybees with damaged wings will undertake foraging 

bouts of longer duration but show a significant decline in food delivery rates (Dukas and 

Dukas 2011; Higginson and Barnard 2004; Higginson et al. 2011). These bees also 

experience higher mortality with increasing age. This suggests that wing damage reduces 

foraging success by hampering flight maneuverability, increasing energetic flight cost 

and predation risk. Thus, honeybees appear to compensate by limiting their time away 

from the hive at the cost of foraging profitability (Dukas and Dukas 2011; Higginson and 

Barnard 2004; Higginson et al. 2011). Studies using simulated primary feather molt in 

birds have shown that reduced wing area affects body mass and flight performance. Birds 

in mid-molt, when wing area is most greatly reduced and wing loading is highest, show 

significantly lower body mass than birds with complete feathers, which may be due to 

reduced foraging success or compensation for increased wing loading (Swaddle and 

Witter 1997; Swaddle et al. 1996). Molt also results in reduced flight maneuverability 

and slower takeoff speed, driven by a loss in kinetic energy gain per wingbeat (Swaddle 

1999). Reduced flight maneuverability and changes to takeoff dynamics likely cause 

birds to have lower foraging success and suffer greater mortality, as their burst flight 

abilities decline dramatically. When one considers the above examples in the context of 

WNS, it becomes apparent that wing damage from this disease may be having dramatic 

sub-lethal effects on bat flight aerodynamics and mechanics, which point to an increase in 
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the energetic cost of flight. Increased energetic demand immediately after hibernation, a 

time when bats are experiencing high energetic demands of thermoregulation and 

reproduction (for females), may increase mortality among bats who are least successful 

hunters or have especially low fat stores. The potential for such additional mortality is a 

topic that has received no attention from the WNS community, except for brief mentions 

as untested hypotheses (Meteyer et al. 2012). I argue that active season mortality is of 

equal importance as winter mortality and, while it may be difficult, should studied 

intensely. 

 

qPCR analysis of fungal load 

A qPCR-based measure of fungal load declined rapidly after hibernation ended. This 

pattern may be explained by extensive grooming by bats, thus removing detectable 

surface particles of the fungus. Fungal load declined rapidly in this captive colony. 

Fungal DNA was undetectable from three individuals on Day 7, while the remaining 

individuals had Ct scores near the threshold of detection (between 36.6 and 40). 

Following Day 7, all individuals retained consistently low fungal loads. However, in 

several cases, individuals would regain fungal loads after having undetectable levels 

(e.g., Day 14; Figure 12). This pattern could be explained by a number of factors. First, 

bats rotated roosting areas, rotating between the heated roost, an area beside the heated 

roost, and behind some towels that were hung on the wall of the flight chamber.. To 

determine whether bats could be contacting fungus from the environment, we collected 

environmental swab samples from inside the flight chamber in typical roosting areas. By 
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the end of the study, these roosting locations returned fungal loads of similar magnitude 

to swabs from bats during the first week of the study. Thus, bats may have been subjected 

to ongoing exposure to Pd from the environment. This mode of transmission is thought to 

be a major factor influencing infection probability and Pd persistence in hibernacula 

(Langwig et al. 2015; Lorch et al. 2013). 

Additional exposure to Pd might have been mediated by colony-mate interactions. 

After the first week, the bats mostly roosted as a colony in the bat box or in small groups 

in other locations around the flight chamber. However, there were some cases in which 

single individuals did not register as being infected, despite the rest of the colony 

carrying fungal DNA. For example, one bat carried no fungus on Days 14 and 25, but 

obtained fungus before sampling occurred on Day 40. These individuals may have been 

more effective groomers or simply did not encounter another individual or roost surface 

with fungal particles. I handled bats with clean gloves and they did not share cotton bags 

when they were being processed (e.g., mass measurements and wing photos), and all 

handling equipment was either discarded or cleaned with hydrogen peroxide solution 

after handling. Thus, these individuals must have gained fungus from its roostmate or an 

environmental source.  

Another possibility is that bats were continually shedding small amounts of 

fungus that had infiltrated tissue more deeply than fungus that was shed earlier in the 

study. Small islands of hyphae could have remained on wing surfaces, in addition to 

inflammatory crusts potentially containing hyphae, which may be viable in the right 

conditions. Indeed, comparisons with histopathology confirm that most bats had fungus 
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present on their wings, even at the end of 40 days. This conclusion would suggest that the 

qPCR protocol was adequately sensitive to the presence of fungus. However, these results 

may not necessarily mean bats are ‘infected’ by Pd because there is no means by which 

to determine whether the presence of fungal DNA infers viability of fungus. These results 

simply reveal whether fungus is present.  

 

Skin surface lipids 

I found that skin surface lipid profiles changed dramatically over time. Principal 

component analysis revealed that these changes were driven mostly by a transition from 

unsaturated free fatty acids to saturated free fatty acids, and by a shift from short chain to 

long chain free fatty acids. The profiles in this study closely matched those observed in 

previous studies that examined the surface lipid components of captive little brown bats 

with WNS, but did not address changes during recovery (Pannkuk et al. 2014; Pannkuk et 

al. 2013). These studies used portions of wing tissue that had been excised after 

termination of controlled Pd infection experiment. Thus, the profiles published therein 

reflect lipid profiles from hibernation more so than recovery, but are comparable, 

especially in the early period of my study. Early samples (Days 5 and 7) showed some 

difference from previous studies. Most notably, I detected higher amounts of unsaturated 

free fatty acids. Mammals cannot synthesize fatty acids with odd numbers of unsaturated 

carbons, thus these are considered essential fatty acids, oleic (18:1) and α-linoleic acids 

(18:3). Considering that these acids were present in high concentrations during the early 

time points, I suspect that their source was fungal tissue that was collected from skin 
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surfaces during lipid sampling. A comparison of GC/MS spectra from surface lipids of 

bats in this study to a published account of Pd lipid profile (Pannkuk et al. 2014), lends 

support to this hypothesis. Spectra from Pd show relatively high levels of 18:1, 18:2, and 

18:3 fatty acids, and lower levels of 16:0 and 18:0. Early samples from bats show 

similarly high levels of 18:1 and 18:2 fatty acids and high concentrations of 16:0 and 

18:0 fatty acids (Figure. 17). At the end of the study, fatty acid profiles had undergone 

pronounced change so that 18:0 was then the dominant free fatty acid (as is typical for 

bats), and unsaturated fatty acids had declined to lower levels. I hypothesize that this 

transition was driven by loss of a fungal signal in the lipid samples, which was due to 

effective grooming by the bats. 

Another explanation for the changes observed in lipid profiles is bats shifting to 

post-hibernation physiology. During hibernation, many processes are down regulated, 

including immune responses and glandular activity (Bouma et al. 2010; Sisk 1957). In a 

study of wing gland activity, Sisk (1957) found that glandular activity declined 

dramatically during the winter. In late summer and early fall, wing glands become filled 

with excess secretion, which is expelled during hibernation but not replenished until 

summer (Sisk 1957). Bat glandular secretions are comprised of many different free fatty 

acids and other compounds, such as proteinaceous secretions, enzymes, and glycogen 

(during hibernation), but are dominated by saturated free fatty acids (Pannkuk et al. 2014; 

Sisk 1957). Thus, more saturated fatty acid on the skin surface may signify reactivation 

of dormant sebaceous glands or healing/regeneration of damaged glands. In addition, 

microbial activity serves to convert saturated fatty acids to unsaturated fatty acids, and to 
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cleave long chain fatty acids into short chain fatty acids (Alford et al. 1964; Ward and 

Singh 2005). During hibernation, microbial activity may transform fatty acids at a faster 

rate than semi-dormant sebaceous glands replace them. Thus, short chain, unsaturated 

fatty acids may dominate hibernation lipid profiles, whereas post-hibernation profiles 

would be dominated by long chain, saturated fatty acids, similar to the patterns suggested 

by my principal component analysis (Table 3; Figure 13).  

Frank et al. (2014) suggest that surface lipids may be one driving factor for 

differential infection rates and mortality among affected bat species. The hypothesis is 

that since surface lipids are the initial line of defense against microbial infection, different 

concentrations of lipids could prevent Pd from infecting and infiltrating skin tissue. This 

is an intriguing idea, but it is not supported by field data. Frank et al. (2014) use 

laboratory conditions to test the antimicrobial activity of free fatty acids, using 

concentrations of lipid that would rarely if ever occur in a natural situation (Pannkuk et 

al. 2014; Pannkuk et al. 2013; Pannkuk et al. 2015; Pannkuk et al. 2013). Thus, while 

there may be some background antimicrobial activity in a natural scenario, these findings 

will not apply to natural systems because low concentrations of lipids will not have a 

similar effect as lipid concentrations that are much higher than natural cases. In addition, 

laboratory studies culture fungus on substrates that are enriched with the target free fatty 

acid. In a natural system, there are many more kinds of free fatty acids on the skin 

surface, plus a number of other compounds and microbes. Simply put, a petri dish in a 

laboratory is not an acceptable substitute for bat wings. Another hypothesis suggests that 

because bat surface lipid profiles vary interspecifically, it is possible that lipid profiles 
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may prevent exuberant infections on less susceptible species. Aside from the low 

concentration of lipid on skin surfaces, this argument is probably not the most 

parsimonious explanation for differential susceptibility. Given that all species roost in 

different climatic gradients, and Pd grows optimally in a small range of temperatures and 

humidity levels, the simplest answer is the interplay between roost environments and 

fungal growth preferences. Surface lipids likely have a small overall effect, and thus may 

serve better as biomarkers for disease and hibernation than as a WNS panacea.  

 

Histopathology 

Using a novel, non-lethal technique for histopathological examination, I also tracked the 

microscopic changes of WNS wing lesions over 40 days of recovery.  Histopathology is 

considered the standard for WNS diagnostics (Blehert et al. 2009; Cryan et al. 2010; 

Meteyer et al. 2009; Meteyer et al. 2012; Meteyer et al. 2009; Reeder et al. 2012; Turner 

et al. 2014). However, a drawback of using histopathology is that entire wings are 

needed, and thus bats must be euthanized. For a disease with more than 70% mortality at 

affected sites, sacrificing bats is not an ideal approach for diagnostics. Nonlethal 

diagnostic, techniques, such as examination of wings with UV light, have proven to be 

quite effective for diagnostics (Bandouchova et al. 2015; Turner et al. 2014). My 

technique is also an effective means by which to examine wing lesions in detail, as well 

as to examine other cutaneous features, without the need for euthanasia.   

In general, histopathology confirmed observations made using UV light 

examination and qPCR swab data. Fungus was visible in all samples, though by day 40 
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was present in low densities. Many areas of fluorescence were apparent on wings under 

UV illumination and some of these regions were revealed to be cupping erosions when 

examined with histology. However, cupping erosions were rare and were not widely 

apparent after the first sampling period. Black wing damage excised for histopathology 

was a clear indicator of crusted over inflammatory cells. One drawback of this technique 

was that cupping erosions were not found in great quantity on the wings I examined. UV 

examination showed widespread fluorescence, which Turner et al. (2014) suggest signal 

cupping erosions. However, none of my histpathology samples scored higher than one 

cupping erosion. This finding was likely due to my sampling protocol that targeted a 

single point of fluorescence, or because there were few areas to sample by the end of the 

study.. Thus, my non-lethal histopathology technique may not be appropriate if the goal 

is to examine the full distribution of cupping erosions and other forms of damage on wing 

surfaces. Thus, WNS severity cannot be quantified in a similar way to other studies, i.e., I 

did not quantify spatial spread of fungus, nor did I examine how widespread cupping 

erosions are. However, when combined with detailed wing damage photos using both UV 

and white fluorescent illumination, it may possible to infer severity 

 

IMPLICATIONS FOR WNS RESEARCH 

White nose syndrome is among the worst wildlife diseases in recorded history, and its 

continued spread across North America will put more bat species at risk. Already, 

mortality due to WNS has led to northern long-eared bats being listed as a threatened 

species under the Endangered Species Act, and there are similar petitions to list other 



 

 

120 

bats, including the once nearly ubiquitous little brown bat. While we have made progress 

toward understanding transmission dynamics and the mechanism of disease, our broader 

knowledge of potential long-term consequences of the disease is lacking. Only a small 

number of studies have examined the effects of WNS outside of hibernation. While 

hibernation is understandably an important phase to study, since it is when the majority 

of mortality occurs, post-hibernation recovery patterns should receive at least equal 

attention from the WNS research community because it is the surviving individuals that 

are most important to the potential recovery of affected populations.. I provide the first 

account of patterns of post-hibernation fungal load on recovering bats and how a fungal 

reservoir accumulates within a roost, potentially reinfecting individuals that had 

previously cleared infection. Such a pattern could have far-reaching implications for 

transmission of Pd to uninfected regions and individuals. I also provide the most detailed 

account of the temporal trends of the development of, and recovery from, wing damage 

following hibernation.  Combined, the results from this study provide the most detailed 

record of WNS recovery, and could be used to better understand the lingering effects of 

WNS on survivors. These few individuals represent the remaining vestiges of bat 

populations that must successfully reproduce to maintain, or someday increase, the 

populations of affected bat species. Current management practices and disease 

transmission models are inadequate because they do not emphasize the active summer 

phase. Results from this study show that late spring/early summer is a dynamic time for 

bats with WNS. While it is understandably difficult to target conservation efforts to 

summer habitats, given that bats are cryptic during this time, a paradigm shift in research 
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efforts toward understanding long-term effects on life history is needed to fully 

understand this disease. 
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Table 3.1. Timeline of sampling events. Body temperature loggers began to 

spontaneously release from some individuals at approximately day 10. During a 

larger sampling event on Day 14, remaining attached loggers were removed 

Study 

day 
Mass 

UV 

Photos 

White 

light 

photos 

Pd 

Swab 

Surface 

lipids 
Histopathology 

Body 

temperature 

Capture x  x x   x 

0 x      x 

1 x      x 

2 x      x 

3 x      x 

4 x      x 

5 x x x x x x x 

6 x      x 

7 x x x x x x x 

8 x      x 

9 x      (x) 

10 x      (x) 

11 x      (x) 

12 x      (x) 

14 x x x x x x (x) 

16 x x x     

17 x       

18 x       

20 x x x     

22 x x x     

24 x  x     

25  x x x x x  

26 x  x     

28 x  x     

30 x  x     

32 x  x     

34 x  x     

36 x  x     

38 x       

40 x x x x x x  

Total 

sampling 

events 

29 8 16 6 5 5 12 - 17 
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Table 3.2. Factor loadings of principal components 1 and 2 of wing damage patterns 

of recovering little brown bats. The first principal component is related to timing of 

damage (early vs. late), while the second reflects patterns in black lesions. 

Damage Type 
PC1 

(Timing) 

PC2 

(Black lesions) 

Black lesions -0.373 -0.747 

White area 0.504 0.317 

Teal lesions -0.566 0.304 

Orange lesions -0.535 0.409 

Proportion of total 

variance explained 
0.474 0.247 
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Table 3.3. Factor loadings of principal components 1 and 2 of free fatty acids (FFA) 

taken from the skin surface of recovering little brown bats. The first principal 

component represents FFA saturation, while the second reflects carbon chain length. 

Free Fatty Acid Type 
PC1 

(Saturation) 

PC2 

(Chain Length) 

Palmitic acid (16:0) 0.200 -0.607 

Stearic acid (18:0) 0.375 -0.285 

Oleic acid (18:1) -0.390 -0.094 

Linoleic acid (18:2) -0.413 0.051 

α-linoleic acid (18:3) -0.372 0.1685 

Arachidic acid (20:0) 0.341 0.254 

Gondoic acid (20:1) 0.021 0.561 

Heneicosylic acid (21:0) 0.345 0.258 

Lignoceric acid (24:0) 0.348 0.253 

Proportion of total 

variance explained 
0.618 0.206 
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Table 3.4. Factor loadings of principal components 1 and 2 of an integrated measure 

of WNS recovery. The first principal component likely represents timing of recovery 

events and rapid gains in body mass, while the second reflects processes related to 

immune response and wing healing. 

Recovery variable 
PC1 

 

PC2 

 

Mass 0.546 -0.094 

Infectious load -0.358 -0.193 

Damage timing (PC1) 0.491 -0.210 

Black lesions (PC2) -0.154 -0.658 

Saturation (PC1) 0.552 0.049 

Chain length (PC2) 0.062 -0.689 

Proportion of total 

variance explained 
0.462 0.235 
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Figure 3.1. An overview map of collection site locations 
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Figure 3.2. Handling and processing immediately after capture from study site. This 

photograph displays attachment of body temperature loggers. 
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Figure 3.3. A representative white fluorescent light illuminated wing photograph with 

scaling items. 



 

 

141 

 
Figure 3.4. A representative UV light illuminated wing photograph with scaling item 

(Canadian $1 coin).  
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Figure 3.5. A magnified photograph of wing damage illuminated with white fluorescent 

lighting detailing white damage (white arrowhead and bracket) and black lesions (black 

arrowhead and bracket).  
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Figure 3.6. A magnified photograph of wing damage illuminated with ultraviolet 

lighting, detailing teal lesions (teal arrowhead) and orange lesions (orange arrowhead).  
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Figure 3.7. An example of a tissue biopsy that was collected using UV illumination to 

target an appropriate location. Note the large area of teal fluorescence in the left-hand 

photograph that was excised before the right-hand photograph was taken.  
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Figure 3.8. Scatter plot of daily mean body mass of little brown bats recovering from 

WNS. The red points show a sudden decline in mass due to a lighting malfunction on day 

17, after which bats regained mass rapidly. The shaded gray box denotes the interquartile 

range of mass from Day 0. Bats gained mass so quickly that mean body mass was 

significantly higher than Day 0 by Day 3 (χ2 = 8.0135, d.f. = 1, p = 0.0046). The 

smoothing curve was determined using generalized additive modeling with time as a 

smoothing factor and individual ID as a random effect.  
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Figure 3.9. Scatter plot of count of wing lesions visible under ultraviolet illumination on 

little brown bats recovering from WNS. Orange lesion count was significantly lower on 

Day 7 than on Day 5 (χ2 = 7.0726, d.f. = 1, p = 0.0078). Teal lesion count was 

significantly lower on Day 16 than on Day 5 (χ2 = 6.244, d.f. = 1, p = 0.0125). The 

shaded gray boxes denote the interquartile ranges of lesion count from Day 5. Smoothing 

curves were determined using generalized additive modeling with time as a smoothing 

factor and individual ID as a random effect. 
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Figure 3.10. Scatter plot of count of wing lesions visible under white fluorescent light on 

little brown bats recovering from WNS. Black lesion count was significantly higher on 

Day 14 than on Day 5 (χ2 = 9.7287, d.f. = 1, p = 0.0138) and remained significantly 

higher until Day 20. Lesion count was then significantly lower than Day 5 on Day 25 (χ2 

= 6.4264, d.f. = 1, p = 0.0112). White damage area was significantly higher on Day 14 

than on Day 5 (χ2 = 6.3949, d.f. = 1, p = 0.0114). The shaded gray boxes denote the 

interquartile ranges of lesion count (black damage) and lesion area (white damage) from 

day 5. Smoothing curves were determined using generalized additive modeling with time 

as a smoothing factor and individual ID as a random effect. 
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Figure 3.11. The first two principal components wing damage patterns plotted over time. 

Smoothing curves were determined using generalized additive modeling with time as a 

smoothing factor and individual ID as a random effect. 
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Figure 3.12. Temporal plot of fungal load of Psuedogymnoascus destructans on little 

brown bats recovering from WNS. The shaded gray box denotes the interquartile range of 

infection intensity from Day 0 (capture). Fungal load was significantly lower than Day 0 

by Day 5. The smoothing curve was determined using generalized additive modeling 

with time as a smoothing factor and individual ID as a random effect.  
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Figure 3.13. The first two principal components of skin surface lipid patterns plotted 

over time. Smoothing curves were determined using generalized additive modeling with 

time as a smoothing factor and individual ID as a random effect. 
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Figure 14. Representative histopathology photos from each sampling event. During the 

early phases of recovery (A and B), fungus is clearly visible on wing surfaces (arrows). 

Later, perforations show evidence of rapid healing (C). By Day 40, wing skin appears 

structurally similar to normal bat wing skin (D). 
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Figure 3.15. The first two principal components of a principal components analysis using 

all variables from this study plotted temporally.   
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Figure 3.16. Biplot of PC1 and PC2 scores from the integrated PCA. Data points are 

color coded by sample day. Early samples clustered well by day. However, samples from 

later days did not cluster as tightly, which is consistent with my findings that bats from 

day 25 and day 40 have undergone significant recovery and may be indistinguishable 

based on measurements presented in this study. 
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Figure 3.17. Representative GC/MS spectra from Pd (A), and two recovering bats. Early 

recovery phase bats (B) showed surface lipid spectra that closely resembled signals from 

Pd. Later during the recovery phase, bats showed signals that were similar to recorded 

levels from past studies on bats regions without WNS (C).  
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CONCLUSIONS AND FUTURE DIRECTIONS  

My research is the first to characterize in detail the processes that recovering bats 

undergo immediately following emergence from hibernation. While the main focus of my 

study has been directed toward WNS, my research also sheds light on a period of bats’ 

lives that has received little focused study. The initial several weeks following emergence 

from hibernation are difficult to study because bats are transient during that time (Davis 

and Hitchcock 1965). However, this time period is valuable to study, especially in the 

context of WNS. Individuals that survive the winter with WNS must emerge in spring, 

travel to summer roosts and begin to recover at a time when ambient temperature is still 

cold and food is scarce (Anthony and Kunz 1977). They may also immediately face a 

rapidly re-mobilized immune response which may cause wing damage likely to reduce 

foraging ability and increase energetic costs (Bullen and McKenzie 2007; Bullen and 

McKenzie 2009; Meteyer, et al. 2012). This spring recovery bottleneck may be especially 

severe for females that are already energetically constrained because they depend on 

stored energy to initiate spring reproduction. Thus, it is critical that WNS researchers 

focus efforts to understand how such a secondary bottleneck can further harm dwindling 

bat populations and how those effects may be mitigated. 

The next steps in WNS research and funding are now moving toward 

development of treatments and ‘cures’ of WNS. However, this goal may prove to be 

extremely challenging. Fungal pathogens, by virtue of their complexity and close 

evolutionary relationships (compared to bacteria and viruses) to their hosts, are extremely 

hard to treat (Fisher, et al. 2012). When such limitations are confounded with the 
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difficulty of trapping wildlife reliably, most treatment options may eventually be ruled 

out due to impracticality. For example, it has been suggested that hibernacula should be 

treated with anti-fungal sprays (C. Cornelison, pers. comm). This treatment is 

inappropriate in two ways: 1) non-target spraying of sensitive cave ecosystems will have 

unknown impacts on native cave species, and 2) multiple applications of a spray will 

disrupt normal hibernation processes of bats. Other treatments call for applications of 

probiotics or other direct application treatments to hibernating clusters (T. Cheng, pers, 

comm; M. Vonhof, pers. comm.). However, such a treatment requires bats to be handled 

regularly for multiple applications. In the end, treatments may be a promising 

opportunity; however it seems most likely that WNS represents a dramatic selection 

event in which resistance may arise from the remnant populations of survivors. Historical 

records of bat populations in Europe suggest that bat species have not existed in the same 

densities as North American species (Puechmaille, et al. 2011). Such a pattern, coupled 

with the fact that European bats become infected by Pd but do not suffer mass mortality 

(Puechmaille, et al. 2012), may suggest that such a selection event could have occurred in 

Europe prior to written records on bat populations. Perhaps North America’s bat 

populations will come to reflect what is currently observed in Europe.  

Future studies should not only seek to further our understanding of the disease 

ecology of WNS, but also incorporate research into the sublethal effects of WNS. First, I 

would identify the specific effects of wing damage on flight, following the model of a 

series of papers on the effect of molt on bird flight, including navigation of obstacle fields 

and takeoff efficiency (Swaddle 1999). When birds lose flight feathers to molt, the 
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amount of power gained per wingbeat is reduced, which reduces the angle at which they 

leave the ground (Swaddle and Witter 1997). While bats do not take flight from the 

ground, they do pull out of freefall when leaving the roost. Thus, measuring time and 

angle to ‘recover’ from freefall (i.e., when vertical velocity is zero), can reveal some 

aspects of the aerodynamic effects of WNS. In addition, obstacle fields can reveal 

whether bats with wing damage have reduced ability to navigate narrow spaces and sharp 

angles effectively. Another experimental trial would be to examine turning maneuvers in 

bats with wing injuries and if their flight patterns resemble those found in previous 

studies of wing damage and wing hair removal (Cheney, et al. 2015; Sterbing-D'Angelo, 

et al. 2011).  

Second, more studies should be conducted to understand the energetic cost of 

wing damage for flying bats. One study has attempted to understand these effects, but did 

not specifically examine WNS, rather bats with large areas of missing wing membrane 

(Voigt 2013). To fully understand the energetic costs of flight, it will be important to 

recreate the conditions that bats with wing damage experience. Voigt’s study may show a 

greater effect of wing damage on energetic costs because that nature of wing damage that 

he studied (loss of membrane) would likely change wing aerodynamics and flapping 

mechanics. Wing damage from WNS may not show a large effect, given that wing 

surface area is not often drastically reduced, just altered. However, wings that are 

scabbed and dry may not be as flexible as normal wings and thus could dramatically alter 

flapping mechanics (Bullen and McKenzie 2002; Bullen and McKenzie 2007; Bullen and 

McKenzie 2009; S. Swartz. pers. comm.). 
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Third, to better understand the ecological impacts of WNS, the effect of wing 

damage on foraging range and efficiency should be determined. With the rapid 

advancements in the field of movement ecology, this question is quite tractable. Small 

GPS tags, passive monitoring stations, and satellite tracking have advanced to the point 

where researchers can track bats for an entire season (Fahr, et al. 2015; McGuire, et al. 

2012). Monitoring bats’ movements during the healing phase would uncover whether 

injured animals forage for longer periods and over longer distances. Information such as 

this, will also play into understanding the additional energetic costs that bats experience 

due to WNS.  

While the nature of scientific research into WNS falls more under largely 

exploratory, applied, and management questions, WNS has greatly advanced our 

knowledge of fungal diseases and bat hibernation physiology. I expect that research will 

continue on this trajectory, despite many researchers shifting efforts toward treatment 

strategies rather than the basic biology questions that remain unanswered. My suggestion 

for the future of WNS research is for funding agencies to dial back their efforts to 

develop a wide spectrum of potential cures, and instead focus on several promising 

options, while using the remaining funds to build our understanding of bat physiology, 

behavior, and ecology, as it pertains to WNS. 
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