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ABSTRACT 

 The MEF2 transcription factor is a central regulator of skeletal and cardiac muscle 

development. Recently, we showed that MEF2A regulates skeletal muscle regeneration 

through direct regulation of the Gtl2-Dio3 microRNA mega-cluster. In addition to their 

expression in skeletal muscle, temporal expression analysis of selected Gtl2-Dio3 

microRNAs revealed high enrichment in cardiac muscle. Therefore, I investigated the role 

of selected microRNAs from the Gtl2-Dio3 noncoding RNA locus in the heart. First, I 

found that Gtl2-Dio3 microRNAs are expressed at higher levels in perinatal hearts 

compared to adult, suggesting they function in cardiac maturation shortly after birth. I also 

demonstrated that these microRNAs are dependent on MEF2A in the perinatal heart and in 

neonatal cardiomyocytes. To determine the specific role in cardiac muscle, I overexpressed 

selected microRNA mimics in neonatal rat ventricular myocytes (NRVMs). My results 

showed that miR-410 and miR-495 stimulate cell cycle re-entry and proliferation of 

terminally differentiated NRVMs. Subsequent target prediction analyses revealed a 

number of candidate target genes known to function in the cell cycle and/or in cardiac 

muscle. One of these was Cited2, a cofactor required for proper cardiac development. 

Furthermore, I showed that Cited2 is a direct target of these microRNAs and that siRNA 
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knockdown of Cited2 in NRVMs resulted in robust cardiomyocyte proliferation. This 

phenotype was associated with reduced expression of Cdkn1c/p57/Kip2, a cell cycle 

inhibitor, and increased expression of Vegfa, a growth factor with proliferation-promoting 

effects. 

Given the exciting possibility of manipulating the expression of these microRNAs 

to repair the damaged heart by stimulating cardiomyocyte proliferation, I then investigated 

whether they were regulated in cardiac disease and function in pathological signaling. 

Toward this end, I examined expression of microRNAs miR-410, miR-495, and miR-433, 

as well as the long noncoding RNA (lncRNA) Gtl2 in various cardiomyopathies. 

Interestingly, the microRNAs and lncRNA were dynamically regulated in mouse models 

of cardiac disease including myocardial infarction and chronic angiotensin II stimulation. 

Furthermore, I showed for the first time that the Gtl2 lncRNA and microRNAs are 

differentially regulated in myocardial infarction, indicating that the complex regulation of 

the Gtl2-Dio3 noncoding RNA locus may be important for response to cardiac injury. 

Lastly, I showed that inhibiting select Gtl2-Dio3 microRNAs in pathological signaling 

attenuated cardiomyocyte hypertrophy in vitro. Therefore, differential targeting of the 

Gtl2-Dio3 noncoding RNAs could provide new therapeutic strategies to control the 

response of the heart to cardiac diseases with diverse etiologies. 
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CHAPTER ONE – INTRODUCTION 

1.1 Introduction 

This dissertation focuses on the role of the MEF2A-regulated Gtl2-Dio3 

microRNAs (miRNAs) in cardiac muscle. Mammalian cardiac muscle has a limited 

capacity for regeneration, making cardiac injury and disease the leading cause of death 

worldwide (Mozaffarian et al. 2015). Understanding cell cycle regulation in post-mitotic 

cardiomyocytes may lead to new therapeutic approaches to regenerate damaged cardiac 

tissue. The studies described herein highlight novel findings which characterize the 

MEF2A-regulated Gtl2-Dio3 miRNAs as important regulators of cardiac muscle. First, I 

demonstrate that MEF2A regulates the Gtl2-Dio3 miRNAs in cardiac muscle, in addition 

to in skeletal muscle as we previously demonstrated (Snyder et al. 2013). I show that these 

miRNAs are highly expressed in the perinatal heart compared to the adult heart, indicating 

a potential role for them during postnatal cardiac maturation. I show for the first time that 

overexpression of miR-410 and miR-495 robustly stimulates cardiomyocyte DNA 

synthesis and proliferation. I found that these miRNAs target Cited2, a transcriptional 

coactivator required for proper cardiac development. Consistent with miR-410 and miR-

495 overexpression, siRNA knockdown of Cited2 in neonatal cardiomyocytes resulted in 

increased proliferation. This phenotype is associated with reduced expression of 

Cdkn1c/p57/Kip2, a cell cycle inhibitor, and increased expression of VEGFA, a growth 

factor with proliferation-promoting effects. Thus, miR-410 and miR-495 are among a 

growing number of miRNAs that have the ability to potently stimulate neonatal 

cardiomyocyte proliferation. 
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In addition, I examined the expression of the Gtl2-Dio3 noncoding RNA locus in 

cardiomyopathy in vivo. I found that the Gtl2-Dio3 miRNAs miR-410, miR-495, and miR-

433 and the Gtl2 lncRNA were dynamically regulated in multiple models of 

cardiomyopathy, including mouse models of cardiac disease such as myocardial infarction 

and angiotensin II stimulation. Additionally, I show that the miRNAs and lncRNA are 

differentially regulated in myocardial infarction, indicating that the regulation of the Gtl2-

Dio3 noncoding RNA locus may be important for response to cardiac injury. Lastly, I 

demonstrate that knocking down miR-410, miR-495, and miR-433 in vitro results in a 

decreased hypertrophic response in cardiomyocytes. The scientific findings from this work 

will contribute to a greater understanding of the role of miRNAs in cardiac muscle, the 

potential for cardiac regeneration, and the therapeutic potential to reduce the impact of 

cardiac disease and injury. 

1.2 Striated Muscle 

1.2.1 Mammalian Myogenesis 

Myogenesis is the process of forming new muscle. The ectoderm, endoderm, and 

mesoderm germ layers form during the gastrulation stage of embryogenesis (Mok and 

Sweetman 2011). Striated muscle cells are derived from the mesoderm, which give rise to 

cardiac and skeletal muscle. (Pyle and Solaro 2004, Braun and Gautel 2011). Populations 

of cells from the lateral plate mesoderm, a discrete region within the mesoderm adjacent to 

the intermediate mesoderm, and neural crest cells are segregated to form the heart. Skeletal 

muscle forms from somites derived from the paraxial mesoderm, positioned next to the 
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neural tube (Buckingham et al. 2005, Gilbert 2006, van Weerd et al. 2011, Yokoyama and 

Asahara 2011). 

1.2.2 Cardiac Muscle Differentiation 

The heart is the first organ to form in mammals. The heart forms from two separate 

progenitor populations: the primary or first heart field (PHF/FHF) and the secondary heart 

field (SHF) (Harvey 2002, Black 2007). Cardiac development can be broken down into 

four main stages (Figure 1.1). Cardiac progenitor cells are first recognizable at mouse 

embryonic day 7.5 (E7.5) as a crescent-shaped epithelium, the cardiac crescent, shaped by 

signaling from bone morphogenic protein (BMP) and fibroblast growth factor 8 (FGF8). 

After the cardiac crescent has formed, several transcription factors involved in the cardiac 

program are activated including GATA zinc-finger family transcription factors 4, 5 and 6 

(GATA4, -5 and -6), NK2 homeodomain transcription factor-related locus 5 (Nkx2-5), 

myocyte enhancer factor 2b and 2c (MEF2B and -C), heart and neural derivatives 

expressed transcripts 1 and 2 (HAND1 and -2), and T-box 5 and 20 (TBX5 and -20). 

Dysregulation of these cardiac transcription factors during embryogenesis results in 

congenital heart disease (Pierpont et al. 2007, Bruneau 2008). The cardiac cells migrate to 

the midline around E8.5 and elongate to form a linear tube. The linear heart tube undergoes 

looping morphogenesis and begins to balloon outward by E9.5. By E10.5, distinct left and 

right ventricles and atria are formed. After E11.5, the heart continues to mature throughout 

embryogenesis (Harvey 2002, Buckingham et al. 2005, Bruneau 2008).  
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1.3 Myocyte Enhancer Factor-2 Transcription Factors 

1.3.1 Identification and Structure of MEF2 Factors 

Myocyte enhancer factor 2 (MEF2) proteins are key regulators of diverse gene 

programs in skeletal and cardiac muscle. MEF2 proteins belong to the MADS-box family 

of transcription factors, a family named for the first four members identified: yeast mating-

type selection factor MCM1, plant leaf identity homeodomain factors Agamous and 

Deficiens, and human serum response factor (SRF) (Black and Olson 1998). MEF2 was 

first identified as a muscle-specific nuclear factor capable of binding a conserved A/T-rich 

consensus site in the muscle creatine kinase (MCK) promoter and was shown to be 

expressed prior to MCK in differentiated myotubes, making MEF2 an early marker for 

activation of the muscle differentiation program (Gossett et al. 1989). The conserved A/T-

rich MEF2 binding site has since been found in the promoters of many muscle-specific 

genes (Black and Olson 1998). The MCK MEF2 binding site sequence was used in 

expression screening to identify subsequent family members (Pollock and Treisman 1991, 

Breitbart et al. 1993, Martin et al. 1993, Martin et al. 1994).  

Invertebrates such as Drosophila melanogaster, Caenorhabditis elegans and sea 

urchins each possess one Mef2 gene (Lilly et al. 1994, Black and Olson 1998, Gunthorpe 

et al. 1999, Dichoso et al. 2000). Yeast and Xenopus laevis both possess two MEF2 factors, 

Rlm1 and Smp1, and Xmef2a and Xmef2d, respectively (Chambers et al. 1992, Dodou and 

Treisman 1997). Vertebrates possess four Mef2 genes, designated Mef2a, -b, -c, and –d, 

each found on different chromosomes (Black and Olson 1998). The vertebrate MEF2 

proteins share approximately 50% amino acid identity overall and their amino acid identity 
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is 95% conserved in their MADS-box and MEF2 domains (Figure 1.2) (Black and Olson 

1998, Potthoff and Olson 2007). Each MEF2 factor contains a highly conserved N-terminal 

domain region, which includes a MADS-box, a 57-amino acid motif, and a MEF2 domain, 

a 29-amino acid extension, that together are required for DNA binding and dimerization 

and facilitate cofactor interactions (Molkentin et al. 1996, Santelli and Richmond 2000, 

McKinsey et al. 2002, Wu et al. 2010). The MEF2 binding site is highly conserved. 

Drosophila D-MEF2 is capable of binding vertebrate MEF2 consensus sequences (Lilly et 

al. 1994). There is little homology in the MEF2 C-terminal domains, which include the 

transactivation domain and are subject to complex alternative splicing (Martin et al. 1994, 

Yu 1996, Black and Olson 1998, Iida et al. 1999, Zhu et al. 2005).  

1.3.2 MEF2 Functions in Striated Muscle 

In mammals, MEF2 factors exhibit extremely similar binding specificities and 

transactivation potential in vitro, suggesting that these factors act redundantly (Pollock and 

Treisman 1991, Yu et al. 1992, Breitbart et al. 1993, Lilly et al. 1995, Ornatsky and 

McDermott 1996). Recently, however, we have shown that each mammalian MEF2 factor 

regulates an overlapping but largely distinct set of genes in skeletal muscle (Estrella et al. 

2015). Furthermore, murine knockout and overexpression models of each MEF2 isoform 

display different phenotypes, strongly suggesting unique roles for individual MEF2 factors 

in vivo. 

Mef2a-null mice exhibit perinatal lethality due to severe cardiac cyto-architectural 

defects including dilation of the right ventricles and myofibrillar fragmentation in over 

80% of mice between postnatal days 5 and 10 (P5-P10) (Figure 1.3). Microarray analysis 
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of RNA from hearts of 4-5 day old mice shows dysregulation of several structural proteins 

and stress-response genes. ANF and BNP, markers of cardiac hypertrophy, are also 

dysregulated (Naya et al. 2002). MEF2A regulates costamere gene expression in 

cardiomyocytes so this phenotype suggests that MEF2A plays a role in proper cardiac 

muscle differentiation (Ewen et al. 2011). Mutants that survive to adulthood exhibit 

mitochondrial deficiency and myofibrillar disorganization, but do not exhibit chamber 

dilation or cyto-architectural defects. These mice are subject to cardiac arrhythmias and 

sudden death (Naya et al. 2002).  

In contrast to cardiac development, skeletal muscle develops normally in MEF2A 

knockout mice. However, the differentiation of skeletal muscle C2C12 cells is impaired by 

the loss of MEF2A in vitro and, upon injury, Mef2a-null mice exhibit defects in skeletal 

muscle with widespread necrosis and impaired myofiber formation, resulting in delayed 

skeletal muscle regeneration (Figure 1.4). Importantly, MEF2A regulates a miRNA mega-

cluster, the Gtl2-Dio3 locus, the downregulation of which disrupts WNT signaling, 

resulting in impaired regeneration. Furthermore, overexpression of a subset of these 

miRNAs rescued the differentiation defect in MEF2A-deficient myoblasts (Figure 1.5) 

(Snyder et al. 2013). The Gtl2-Dio3 miRNA mega-cluster is described in detail in Chapter 

1.5.4. 

Mef2b-null mice are viable and display no obvious muscle defects, however 

detailed characterization of this knockout has not been published (Black and Olson 1998).  

Mef2c is the earliest MEF2 factor expressed in mouse embryonic development (Molkentin 

et al. 1996). Mef2c-null mice are embryonic lethal and display severe cardiac defects 
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including looping abnormalities (Lin et al. 1997, Lin et al. 1998, Potthoff and Olson 2007). 

Conditional knockout of Mef2c in the myocardium resulted in viable offspring, 

demonstrating that Mef2c is not required for the formation of the heart after cardiac looping 

morphogenesis (Vong et al. 2005). Together, these data indicate that Mef2c plays a critical 

role in early cardiac development but is not required after the heart has undergone looping 

morphogenesis, which may be due to the potential redundancy of MEF2 factors. Mef2d-

null mice are viable but display a blunted cardiac stress response. Fetal gene activation is 

also blunted in response to pressure overload, indicating that MEF2D is required for fetal 

cardiac and stress response gene activation. Indeed, cardiac-specific overexpression of 

MEF2D is sufficient for inducing cardiac remodeling with upregulation of fetal cardiac 

genes (Kim et al. 2008). Together, these data indicate that MEF2D plays a role in cardiac 

remodeling in response to stress. 

1.4. Cardiac Muscle Regeneration 

1.4.1 Cardiac Regeneration in Lower Vertebrates 

Cardiovascular disease is the leading cause of morbidity and mortality in the world 

(Mozaffarian et al. 2015). Improving cardiac function post-injury proves difficult because 

the underlying molecular mechanisms of cardiomyocyte differentiation and maturation are 

not well understood. Uncovering these mechanisms could unmask the regenerative 

potential of the adult mammalian heart.  

Lower vertebrates are capable of cardiac regeneration. One of the first models of 

heart regeneration was described in newts (Oberpriller and Oberpriller 1974). Newt 

ventricles fully regenerate within three weeks post-amputation. Pre-existing 
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cardiomyocytes re-enter the cell cycle and proliferate, causing this regenerative ability 

(Flink 2002). Zebrafish are also able to undergo cardiac regeneration. Removal of 20% of 

the ventricle by surgical resection results in complete regeneration of the heart within 60 

days post-injury (Poss 2007). Additionally, a hypoxia cardiac injury zebrafish model, 

which mimics ischemic injury in the mammalian heart, shows full regeneration with pre-

existing cardiomyocyte cell cycle re-entry (Jopling et al. 2012, Parente et al. 2013). 

Furthermore, genetic fate-mapping studies show proliferation of pre-existing 

cardiomyocytes form the regenerated cardiac tissue (Jopling et al. 2010, Kikuchi et al. 

2010). 

1.4.2 Neonatal Mammalian Cardiomyocyte Proliferation 

 In mammals, there is potential for cardiac regeneration shortly after birth. 

Interestingly, the removal of up to 15% of the left ventricle by apical resection surgery via 

lateral thoracotomy of 1 day old (P1) mice resulted in completely regenerated hearts within 

3 weeks. These mice showed no measurable fibrosis or cardiac dysfunction. Additionally, 

genetic fate-mapping in these mice confirmed the new cardiomyocytes were derived from 

proliferating pre-existing cardiomyocytes (Porrello et al. 2011). Furthermore, an ischemic 

injury mouse model shows a similar injury response. Ischemic myocardial infarction was 

induced by permanently ligating the left anterior descending (LAD) coronary artery of 1-

day old mice. Within three weeks, 95% of the myocardium was viable in these mice 

compared to 25% viable three days after injury (Porrello et al. 2013). 

 By P5-P7 cardiomyocytes exit the cell cycle and are terminally differentiated (Li 

et al. 1996, Walsh et al. 2010). P7 mice failed to regenerate ventricles and, in addition, 
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developed significant fibrosis (Porrello et al. 2011). Taken together, these studies indicate 

that neonatal cardiomyocytes have the ability to regenerate, but this ability is lost shortly 

after birth. 

1.4.3 Adult Mammalian Cardiomyocyte Proliferation 

Until recently, the mammalian heart was thought of as a terminally differentiated 

organ, unable to undergo mitosis. While the adult mammalian heart has limited 

cardiomyogenesis and it is insufficient to restore cardiac function post-injury, there is 

continuous turnover of cardiomyocytes. By measuring carbon-14 from nuclear bomb tests 

in genomic DNA of human cardiomyocytes, one group reported that approximately 1% of 

cardiomyocytes undergo turnover at age 20 and by age 75 this number reduces to 0.45% 

(Bergmann et al. 2009, Bergmann et al. 2012).   

Moreover, another study found the number of cardiomyocytes increases 3.4-fold 

from year 1 to year 20 in humans and concluded that adolescents may be able to regenerate 

myocardium. Furthermore, they found mitotic cardiomyocytes were detectable at the 

highest levels at 1 year, detectable 23% less between 10 and 20 years, and were detectable 

at low levels over 40 years (Mollova et al. 2013). These findings suggest the capacity for 

cardiomyocyte turnover is maintained throughout life and that manipulating the cell cycle 

activity of cardiomyocytes may have the potential to induce cardiac regeneration. 

1.4.4 Cardiac Regeneration Therapies 

1.4.4.1 Candidate Cells for Cardiac Regeneration 

 Cardiac regeneration research has focused on finding candidate cells for cardiac 

regeneration and inducing cardiac cells to proliferation. The first cells to be tested for 
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cardiac regeneration were skeletal myoblasts. Use of these cells in cardiac regeneration 

results in reduced fibrosis but has varying results because they form skeletal muscle fibers 

instead of cardiac muscle (Murry et al. 1996, Taylor et al. 1998). Bone marrow derived 

cells have also been used because they can transdifferentiate into skeletal muscle, heart, 

neuron, and endothelial cells. Additionally, adipose derived cells can replicate as 

undifferentiated cells and then differentiate into mesenchymal cell types (Doppler et al. 

2013, Sanganalmath and Bolli 2013, Pfister et al. 2014). Furthermore, resident cardiac stem 

cells have been proposed as a viable method to regenerate cardiac muscle. There is a small, 

resident cell population that can differentiate into cardiomyocytes in the heart (Hierlihy et 

al. 2002). These cells account for 9% of the cells in the neonatal mouse heart and 1% of 

cells in the adult heart (Pfister et al. 2014). Lastly, inducing multipotent stem cells, 

including embryonic stem cells and induced pluripotent stem cells, into cardiomyocytes is 

currently being tested (Doppler et al. 2013, Sanganalmath and Bolli 2013, Pfister et al. 

2014). To date, these methods have been minimally successful in regenerating the heart 

but are not efficient enough to induce cardiac regeneration in the adult heart. 

1.4.4.2 Inducing Cardiomyocyte Proliferation 

 In order to reactivate the cell cycle, studies have focused on forcing cardiomyocyte 

proliferation by suppressing cell cycle inactivators or overexpressing cell cycle activators 

(Brooks et al. 1998, Ahuja et al. 2007). For example, overexpressing cyclin A2 enhances 

cardiac function post-injury (Woo et al. 2006). Additionally, transgenic mice 

overexpressing cyclin D2 exhibit higher rates of cardiomyocyte proliferation and display 

infarct regression in response to injury (Pasumarthi et al. 2005). Interestingly, a bHLH 
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transcription factor, myeloid ecotropic viral integration site 1 homolog (Meis1), was shown 

to regulate postnatal cardiomyocyte cell cycle arrest. Deleting Meis1 is sufficient to 

reactivate mitosis in the adult heart (Mahmoud et al. 2013). Additionally, overexpression 

of yes-associated protein (Yap), a transcription factor that promotes embryonic 

cardiomyocyte proliferation, in the adult heart stimulated cardiac regeneration (Xin et al. 

2013). These findings provide evidence for the regenerative capacity of the adult 

mammalian heart and elucidating the underlying molecular mechanisms could uncover 

new therapeutic strategies to improve the quality of life after cardiac injury. 

1.5 MicroRNAs 

1.5.1 MicroRNAs and Gene Regulation 

Non-coding RNAs (ncRNAs) are functional RNA molecules that are not translated 

into proteins. MicroRNAs (miRNAs) are a subset of small (~22 nucleotide) ncRNAs that 

inhibit translation or promote mRNA degradation to fine-tune gene expression. MiRNAs 

comprise one of the most abundant gene regulator molecules in multicellular organisms 

(Bartel 2009). 

MiRNA biogenesis is summarized in Figure 1.6.  MiRNAs are transcribed as 200 

nucleotide long primary miRNAs (pri-miRNAs) which are processed into an 

approximately 70 nucleotide hairpin RNA or precursor miRNA (pre-miRNA) by the 

RNase III endonuclease Drosha and then exported into the cytoplasm by Exportin 5 

(Expo5), a Ran-GTP-dependent nucleo/cytoplasmic cargo transporter. Once in the 

cytoplasm, pre-miRNAs are cleaved by Dicer into a double-stranded RNA duplex 

(miRNA:miRNA*) that is 21-25 nucleotides long. The mature miRNA is incorporated into 
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ribonucleoprotein RNA-induced silencing complex (RISC) for mRNA target recognition. 

(Lee et al. 2002, Lee et al. 2003, He and Hannon 2004, Bernardo et al. 2012). A single 

miRNA can target hundreds of mRNA sequences, demonstrating the complexity of 

miRNA function and regulation in biological processes. 

1.5.2 MicroRNAs in Cardiac Disease 

Dicer, the RNase III endonuclease responsible for miRNA processing, is required 

for proper embryogenesis. Global Dicer knockout mice are embryonic lethal (Bernstein et 

al. 2003). Dicer is also required for proper cardiac development and function. Targeted 

deletion of Dicer in the heart leads to progressive dilated cardiomyopathy and heart failure 

(Chen et al. 2008). The requirement of Dicer for proper heart function demonstrates the 

importance of miRNAs and their roles in normal cardiac function.  

A number of miRNAs are firmly established, important modulators in cardiac 

development and stress remodeling pathways. For example, miR-1 and miR-133 regulate 

cardiomyocyte size and function. MiR-133 enhances myoblast proliferation and inhibits 

differentiation. Conversely, miR-1 acts as a repressor of cardiac growth and an activator of 

differentiation. (Chen et al. 2006, Liu et al. 2007, Zhao et al. 2007). These two miRNAs 

are downregulated in diseased human hearts and during cardiac hypertrophy (van Rooij et 

al. 2006). Additionally, miR-208 is exclusively cardiac tissue-specific and, although it is 

not required for cardiac development, it regulates cardiac stress-response genes for 

myocyte growth (van Rooij et al. 2007). MiR-208a knockout mice display reduced cardiac 

hypertrophy in response to stress. Moreover, inhibiting miR-208a suppresses cardiac 
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fibrosis and improves survival, indicating miR-208a is required for proper cardiac stress 

response (Callis et al. 2009). 

Several miRNAs have been implicated in cardiac disease. MiR-21 is upregulated 

during cardiac hypertrophy and knocking down miR-21 using antagomiRs restores 

function in severely injured hearts. Interestingly, miR-21 knockout mice show no 

restorative function in severely injured hearts in response to stress, indicating that miR-21 

may not be the only miRNA playing a role in this process (Thum et al. 2008). Moreover, 

miR-214 induces hypertrophy and in vivo silencing of miR-214 prevents hypertrophy 

(Yang et al. 2014). 

1.5.3 MicroRNAs in Cardiac Proliferation 

There is increasing evidence that miRNAs are also central regulators of mammalian 

cardiomyocyte proliferation. Deletion of the muscle-specific miR-1-2 resulted in cardiac 

defects associated with increased cardiomyocyte proliferation (Zhao et al. 2007). Knocking 

down members of the miR-15 family in neonatal mice is associated with an increase in 

mitotic cardiomyocytes and de-repression of checkpoint kinase 1, indicating there may be 

a role for this miRNA family in cardiac regeneration (Porrello et al. 2011, van Rooij and 

Olson 2012, van Rooij et al. 2012).  Furthermore, direct involvement of miRNAs in 

cardiomyocyte proliferation was demonstrated in a high throughput screen which identified 

over 200 miRNAs capable of promoting proliferation in cultured primary cardiomyocytes 

(Eulalio et al. 2012).  

Additional miRNAs have been shown to play a role in cardiomyocyte cell cycle 

regulation. miR-29a regulates cardiomyocyte cell cycle re-entry (Cao et al. 2013). miR-
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195, a member of the miR-15 family, regulates cell cycle genes and its inhibition resulted 

in an increased number of cardiomyocytes (Porrello et al. 2011). The miR-17-92 cluster 

regulates cardiomyocyte proliferation through miR-19’s modulation of phosphate and 

tensin homolog (PTEN) (Chen et al. 2013). Moreover, miR-302-367 was recently shown 

to promote cardiomyocyte proliferation through activation of the Hippo pathway (Tian et 

al. 2015). These findings make it clear that miRNAs regulate cardiomyocyte proliferation 

but do so by targeting a variety of pathways. Given their central roles in these cardiac 

pathways, identifying and investigating novel miRNAs in cardiomyocytes is essential to 

further our understanding of cardiac physiology and disease. 

1.5.4 The Gtl2-Dio3 microRNA Mega-Cluster 

1.5.4.1 Gtl2-Dio3 Identification, Structure, and Function 

The Gtl2-Dio3 miRNA mega-cluster, located on mouse chromosome 12 and human 

chromosome 14, represents the largest known mammalian miRNA cluster. This region is 

evolutionarily conserved in placental mammals beginning 100 million years ago and it 

appears to have originated from an ancestral repeat that was amplified over 250 times, 

leading to the cluster of miRNAs (Glazov et al. 2008). The Gtl2-Dio3 region was initially 

discovered when performing a human-ovine comparative analysis of the 250-kb region 

encompassing the skeletal muscle hypertrophy callipyge (clpg) mutation mapped in the 

sheep genome (Charlier et al. 2001). Through this and subsequent analysis, it has been 

shown that the Gtl2-Dio3 locus is an imprinted locus containing maternal and paternal 

imprinting and encodes both protein-coding and noncoding genes (Lin et al. 2003). This 
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locus contains areas of differential methylation and histone modification on paternally and 

maternally inherited alleles. An overview of the Gtl2-Dio3 locus is depicted in Figure 1.7. 

The paternally imprinted genes of this locus include the protein-coding genes Delta-

like 1 (Dlk1) and Type 3-iodothyronine deiodinase (Dio3). Dlk1 gene encodes a 

transmembrane protein that belongs to the epidermal growth factor (EGF)-like homeotic 

protein family. It plays important roles in cell differentiation, skeletal muscle development 

and regeneration, and adipogenesis (Laborda 2000, Schmidt et al. 2000, Takada et al. 2000, 

da Rocha et al. 2008, Waddell et al. 2010, Andersen et al. 2013). Dio3 encodes an enzyme 

that degrades thyroid hormone to regulate the amount of thyroid hormone the embryo 

receives in order for proper tissue development (Tsai et al. 2002, Yevtodiyenko et al. 2002). 

The retrotransposon Rtl1 is also a paternally imprinted region and is required for normal 

embryonic tissue development (Seitz et al. 2003, da Rocha et al. 2008). 

The maternally imprinted genes of this locus include the noncoding RNAs Gene 

trap locus 2 (Gtl2)/maternally expressed 3 (MEG3), C/D small nucleolar RNAs 

(snoRNAs), maternally expressed 8 (MEG8), and Mirg. Gtl2/MEG3 encodes a long 

noncoding RNA (lncRNA), the function of which remains poorly understood. This region 

is believed to be involved in physiological and pathological cellular processes and to 

possess tumor suppressor properties (Miyoshi et al. 2000, Schmidt et al. 2000). At least 

nine tandemly-repeated C/D snoRNAs are found in the Rian/MEG8 gene near Gtl2 

(Cavaille et al. 2002). Rian/MEG8 also harbors a lncRNA (Benetatos et al. 2013). Lastly, 

Mirg noncoding RNA is expressed in the central nervous system and skeletal muscle during 
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embryogenesis but further studies determining the function and mechanism have yet to be 

completed (Seitz et al. 2003, Han et al. 2012). 

 The Gtl2-Dio3 region is home to 54 miRNAs. The first miRNAs mapped to this 

locus were miR-136, -127, -154, and -134. These were the first miRNAs to show perfect 

complementarity to cellular mRNA in animals (Seitz et al. 2003). Subsequent research 

found an additional 40+ miRNAs clustered along this locus (Seitz et al. 2004). 

The regulation of the Gtl2-Dio3 locus is not yet fully understood. Interestingly, 

Gtl2 knockout mutant mice show a parental origin-dependent lethality with maternally 

inherited knockouts being lethal while paternally inherited knockouts show no 

abnormalities (Takahashi et al. 2009, Zhou et al. 2010). Further studies demonstrated that 

Gtl2 plays an important role in embryonic development and in regulating Dlk1-Gtl2 

imprinting. Deletion of the intergenic differentially methylated region (IG-DMR) upstream 

of Gtl2 resulted in severe defects in striated muscle development and differentiation (Lin 

et al. 2007, Zhou et al. 2010). Additionally, studies suggest that some Gtl2-Dio3 miRNAs 

are transcriptionally regulated as individual or smaller clusters (Song and Wang 2008, 

Fiore et al. 2009, Hagan et al. 2009). However, others suggest the entire Gtl2-Dio3 locus 

is coordinately transcribed (Tierling et al. 2006, Zhou et al. 2010), so it remains to be 

determined if the Gtl2-Dio3 miRNAs are transcribed individually or together as a single 

transcript. 

1.5.4.2 Gtl2-Dio3 microRNAs in Disease 

Many roles for individual Gtl2-Dio3 miRNAs have been described. The most 

prevalent role for Gtl2-Dio3 miRNAs is found in cancer. Gtl2-Dio3 miRNAs can be used 
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to diagnose multiple types of cancer including blood cancers such as acute myeloid 

leukemia (AML), esophageal squamous cell carcinoma (ESCC), colon, breast, and ovarian 

cancers (Bandres et al. 2006, Li et al. 2008, Zhang et al. 2010, Hwang-Verslues et al. 2011, 

Shih et al. 2011). These studies indicate the potential for miRNAs to serve as prognostic 

markers in cancer. 

 Gtl2-Dio3 miRNAs have also been implicated in central nervous system diseases. 

In human gliomas, miR-381 has been shown to interact with the glioma suppressor leucine-

rich repeat-containing protein 4 (LRRC4) (Tang et al. 2011). MiR-495 inhibits 

proliferation of glioblastoma multiforme by targeting cyclin-dependent kinase 6 (Chen et 

al. 2013). Additionally, multiple Gtl2-Dio3 miRNAs including miR-495, miR-543, miR-

770, miR-379, miR-487, miR-889, miR-382, miR-136, and miR-411 are all downregulated 

in glioblastomas (Skalsky and Cullen 2011). Gtl2-Dio3 miRNAs may be potential targets 

to improve and develop new therapies for patients with glioblastomas. 

 Furthermore, Gtl2-Dio3 miRNAs have been implicated in cardiac disease. 29 

miRNAs from the Dlk1-Dio3 genomic imprinted region are upregulated following 

myocardial infarction, suggesting that the regenerative process is initiated following 

cardiac injury but is not completed (Janssen et al. 2013). The miRNAs from this region 

could be targets to alter the regenerative capacity of the injured myocardium. Additionally, 

204 screened miRNA mimics, including 8 miRNAs from the Gtl2-Dio3 locus, increased 

neonatal cardiomyocyte proliferation 2-fold or higher. Multiple downregulated transcripts 

could be potential targets of miRNAs that result in increased cardiomyocyte proliferation 
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(Eulalio et al. 2012). Taken together, these studies point to a potential role for Gtl2-Dio3 

miRNAs in cardiac proliferation and the regenerative capacity of cardiac muscle. 

1.6 Cited2 

1.6.1 Cited2 Acts as a Transcriptional Co-Activator 

Cyclic adenosine monophosphate (cAMP)-response element binding protein 

(CREB)/p300-interacting transactivator with glutamic acid (Glu/E)/aspartic acid (Asp/D)-

rich carboxy terminal domain 2 (CITED2) is a transcriptional co-activator also known as 

melanocyte-specific gene-related gene 1 (MRG1) and p35srj. It has been shown to interact 

with a number of transcription factors including transcription factor AP-2 (TFAP2) and 

hypoxia inducible factor 1 α (HIF1- α) (Yin et al. 2002, Braganca et al. 2003, Du and Yang 

2012). Cited2 is required for TFAP2 to interact with p300 (Braganca et al. 2003). TFAP2 

is required for cardiac outflow tract formation (Brewer et al. 2002). Additionally, TFAP2 

mutations have also been linked to congenital heart disease activation (Lingaiah et al. 2011, 

Xiong et al. 2013). Whereas Cited2 functions to stimulate TFAP2 activity, it is a negative 

regulator of HIF1-α and HIF1-α is increased in Cited2 knockout mice (Yin et al. 2002, Du 

and Yang 2012). Knocking out HIF1-α resulted in embryonic lethality due to neural tube 

defects and cardiovascular malformations (Iyer et al. 1998). 

1.6.2 Cited2 in Cardiac Development 

 Cited2 is required for proper cardiac development. Cited2 is first expressed in pre-

cardiac mesoderm and is detected homogenously throughout the heart in early stage 

embryos (Dunwoodie et al. 1998). Additionally, Cited2 has been implicated in playing a 

role in cardiomyocyte differentiation (Li et al. 2012). Cited2 global knockout mice are 
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embryonic lethal due to cardiac defects in left-right patterning, septation, outflow tract, and 

aortic arch malformations (Bamforth et al. 2001, Bamforth et al. 2004, Weninger et al. 

2005). Cardiomyocyte-specific Cited2 knockout mice revealed a requirement specifically 

in cardiomyocytes with defects in normal myocardial thickening and ventricular septation 

(MacDonald et al. 2013). Furthermore, mutations in Cited2 are associated with congenital 

heart disease in humans and represent the most common congenital malformations in 

infants, pointing to an important role for this transcriptional co-activator in cardiac muscle 

(Sperling et al. 2005, Yang et al. 2010, Liu et al. 2014, Xu et al. 2014). 

1.6.3 Cited2 and Proliferation 

Regarding cell cycle control, Cited2 has been shown to play a role in regulating the 

cell cycle (Figure 1.8). Embryonic Stem (ES) cells can be maintained in an undifferentiated 

state when knocking down Cited2. Additionally, knocking out Cited2 specifically in 

cardiomyocytes resulted in a delay in cardiomyocyte differentiation (Li et al. 2012). 

Furthermore, Cited2 maintains quiescence of hematopoietic stem cells (HSCs) and 

knocking out Cited2 resulted in the loss of HSC quiescence (Du and Yang 2012). Cited2 

positively regulates p57 and negatively regulates Vegfa in HSCs (Du et al. 2012, Li et al. 

2012). 

1.6.3.1 CDKN1C/p57/Kip2 

Cited2 positively regulates the expression of the negative cell cycle inhibitor cyclin-

dependent kinase inhibitor 1C (CDKN1C)/p57/Kip2 in hematopoietic stem cells and p57 

levels are decreased in the Cited2 knockout mouse (Du et al. 2012, Du and Yang 2012). 

p57 is a cyclin dependent kinase inhibitor and its role in cell cycle arrest is well established. 
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p57 binds to G1 cyclin-CDK complexes, resulting in arrest of the cell cycle in G1 phase 

(Pateras et al. 2009). Inhibition of p57 results in increased cell cycle activity. EZH2, a 

histone methyltransferase, regulates p57 and leads to increased cell cycle activity (Yang et 

al. 2009, Guo et al. 2011). Additionally, TGFβ activity has been shown to induce 

degradation of p57 (Pateras et al. 2009). Furthermore, targeting p57 using shRNA-

mediated suppression promotes adult human β cell replication (Avrahami et al. 2014). 

Together these data indicate that p57 inhibits cell cycle activity and that inhibition of p57 

leads to increased cell cycle activity. 

1.6.3.2 VEGF 

Cited2 negatively regulates vascular endothelial growth factor A (Vegfa) by 

repressing the Vegfa promoter (Li et al. 2012). Mutations in CITED2 result in 

dysregulation of VEGF in humans (Li et al. 2012) and VEGF is upregulated in Cited2 null 

hearts (Yin et al. 2002). VEGF is an angiogenic growth factor that plays a role in 

angiogenesis and endothelial cell growth (Shibuya 2013). Additionally, VEGF has been 

shown to stimulate cell proliferation in a variety of tissue types including the brain (Sondell 

et al. 1999), kidney (Advani 2014), and lung (Brown et al. 2001), as well as in many cancers 

including leukemia, lymphomas, and malignant tumors (Delli Carpini et al. 2010, Kampen 

et al. 2013).  Interestingly, delivery of VEGF to cardiac cells post-injury has been shown 

to improve cardiomyocyte proliferation and function and to reduce myocardial infarct size 

(Ferrarini et al. 2006, Vera Janavel et al. 2006, Tao et al. 2011, Awada et al. 2015). 

Together these data indicate VEGF has pro-proliferative capabilities in a variety of cell 

types. 
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1.7 Statement of Thesis Rationale 

The goal of this study is to characterize the role of the MEF2A-regulated Gtl2-Dio3 

miRNAs in cardiac muscle. Previously, we showed that MEF2A directly regulates the 

Gtl2-Dio3 miRNA mega-cluster in skeletal muscle. A subset of these miRNAs target Sfrp2 

to modulate WNT signaling in skeletal muscle regeneration. Loss of these miRNAs results 

in impaired skeletal muscle regeneration (Snyder et al. 2013). Because the expression of 

Gtl2-Dio3 miRNAs parallels MEF2A expression, and they are highly expressed in cardiac 

muscle as well as skeletal muscle, I was interested in elucidating the role of these miRNAs 

in cardiac muscle. 

In the present study, I investigated the expression of selected miRNAs from the 

Gtl2-Dio3 locus in the heart. I found that the Gtl2-Dio3 miRNAs are expressed at higher 

levels in the perinatal heart compared to adult, suggesting they function in cardiac 

maturation shortly after birth. To determine their specific function in cardiac muscle, I 

overexpressed miRNA mimics miR-410 and miR-495 in neonatal rat ventricular myocytes 

(NRVMs) and found that overexpression of these miRs resulted in increased proliferation 

of terminally differentiated NRVMs. These miRNAs directly target Cited2, a 

transcriptional co-activator required for proper cardiac development.  Accordingly, I 

detected a decrease in Cited2 upon overexpressing miR-410 and miR-495 in NRVMs. 

Furthermore, consistent with the result that loss of MEF2A causes a reduction in miR-410 

and miR-495, I found that both Cited2 and p57 were upregulated, whereas Vegfa was 

significantly downregulated, in MEF2A-depleted NRVMs. Likewise, Cited2 and p57 were 

significantly upregulated in perinatal MEF2A knockout hearts. Collectively these studies 
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demonstrate a role for Gtl2-Dio3 miRNAs in cardiomyocyte proliferation and may be key 

to unlocking the regenerative capacity of adult cardiac muscle. 

 Because these miRNAs are able to stimulate cardiomyocyte proliferation in vitro, 

I was also interested in examining their expression in heart disease in vivo. I found the 

Gtl2-Dio3 miRNAs were upregulated in mouse models of cardiac stress including 

myocardial infarction and angiotensin-II treated mouse models as well as models of cardiac 

defects including the MEF2A adult knockout heart and two models of muscular dystrophy, 

the mdx dystrophin knockout mouse and the DyW laminin α2 knockout mouse. 

Interestingly, the Gtl2-Dio3 miRNAs were also upregulated in vitro in hypertrophic 

NRVMs treated with phenylephrine and angiotensin II. Furthermore, knockdown of these 

miRNAs in NRVMs resulted in decreased hypertrophy. Further studies investigating this 

pathway and their role in hypertrophy in vivo in diseased or injured hearts may lead to other 

potential therapies to treat cardiac disease. Delivery of the Gtl2-Dio3 miRNAs may be a 

potential therapeutic avenue to stimulate cardiomyocyte proliferation and reduce cardiac 

damage post-injury in the postnatal heart. 
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Figure 1.1 Early stages of mammalian heart development. At the earliest stages of heart 

formation (cardiac crescent), two pools of cardiac precursors exist. The first heart field 

(FHF) contributes to the left ventricle (LV), and the second heart field (SHF) contributes 

to the right ventricle (RV) and later to the outflow tract (OT), sinus venosus (SV), and left 

and right atria (LA and RA, respectively). V, ventricle (Adapted from (Bruneau 2008)). 
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Figure 1.2 Sequence conservation of MEF2. The percentage of amino acid identity 

among the MADS, MEF2, and transcriptional activation domains of MEF2 proteins 

relative to human MEF2A. hMEF2, human; D-MEF2, Drosophila, CeMEF2, C.elegans  

(Adapted from (Potthoff and Olson 2007)). 

 

 

 



 

 

25 

 

 

 

Figure 1.3 MEF2A knockout mice exhibit cardiac abnormalities.  Evidence of cardiac 

dysfunction in MEF2A knockout mice. Gross (top panel) and histological sections (middle 

panel) of hearts from wild-type (left) and Mef2a-/- (right) neonatal P5 mice show right 

ventricular dilation in Mef2a-/- hearts. Transmission electron micrographs (bottom panel) 

of cardiac muscle from wild-type (left) and Mef2a-/- (right) show myofibrillar 

disorganization and fragmentation in Mef2a-/- hearts. Right atria (ra), left atria (la), right 

ventricle (rv), left ventricle (lv), mitochondria (m), vacuolization (*) (Adapted from (Naya 

et al. 2002)). 
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Figure 1.4 MEF2A knockout mice exhibit delayed skeletal muscle regeneration post-

injury. A) Images of whole muscle and B) hematoxylin and eosin staining of tibialis 

anterior muscle from adult wild-type (WT) and Mef2a-/- (KO) mice post-cardiotoxin 

induced injury show KO mice exhibit impaired regenerative myogenesis. Arrows indicate 

areas of necrosis. Scale bars are 50 µm (Snyder et al. 2013). 
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Figure 1.5 MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate 

WNT signaling in skeletal muscle regeneration. A) Depiction of the Gtl2-Dio3 miRNA 

mega-cluster locus on mouse chromosome 12. Relative positions of the top downregulated 

miRNAs in Mef2a-/- mice are shown. B) The -39 MEF2 site upstream of Gtl2 is shown 

with the overlapping TATA box (gray). A luciferase reporter was generated containing the 

WT MEF2 site (-39 MEF2) and a mutant MEF2 site (-39 MUT). C) Luciferase analysis of 

the Gtl2 promoter showing muscle-specific activation of the reporter. D) Phase contrast 

images of C2C12 DIFF3 cells transduced with shlacZ or shMef2a, and transfected with 

40nM miR-NSC, miR-410, or miR-433 mimics demonstrate rescue of myogenic 

differentiation (Adapted from (Snyder et al. 2013)).  

A. A. 

C. B. 

D. 
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Figure 1.6 microRNA biogenesis. Nascent primary-miRNAs (pri-miRNAs) are processed 

by Drosha into precursor-miRNAs (pre-miRNAs). Pre-miRNAs are transported into the 

cytoplasm by Exportin 5 and are cleaved by Dicer into a miRNA:miRNA* duplex. The 

mature miRNA is incorporated into the RNA-Induced Silencing Complex (RISC) for 

mRNA targeting (Adapted from (van Rooij 2011)). 
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Figure 1.7 The Gtl2-Dio3 microRNA mega-cluster. A) Schematic representation of the 

1-Mb imprinted cluster on mouse chromosome 12. Maternally imprinted genes (top) 

include Gtl2/MEG3, Rian C/D snoRNAs, and Mirg. Paternally imprinted genes (bottom) 

include Dlk1, Rtl1, and Dio3 (adapted from (Lin et al. 2003)). B) Schematic representation 

of the location of many of the miRNAs in the locus. Paternal (blue), maternal (pink). 

(Adapted from (Kircher et al. 2008)). 
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Figure 1.8 Cited2 regulates cell proliferation. Cited2 is a positive regulator of p57 and a 

negative regulator of Vegfa. Knockdown of Cited2 results in decreased p57 and increased 

cell cycle activity. Knockdown of Cited2 results in increased Vegfa and increased cell 

cycle activity. 
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CHAPTER TWO – MATERIALS AND METHODS 

2.1 Cell Culture 

2.1.1 Cell Lines 

 COS1 and A293 cell lines were maintained in Dulbecco’s Modified Eagle Medium 

(DMEM, Invitrogen) supplemented with 10% fetal bovine serum (FBS, Atlanta 

Biologicals) and 1% Penicillin/Streptomycin/L-Glutamine (Invitrogen), referred to as 

growth medium. Cells were maintained in a 37°C humidified incubator with 5% CO2. At 

subconfluency, adherent cells were passaged by washing with 1X phosphate-buffered 

saline (PBS, Invitrogen), application of 2mL Trypsin-EDTA (Invitrogen) for 3 minutes, 

and resuspending cells in 8mL growth medium. Cells were passaged at a 1:10 or 1:20 

dilution for maintenance of cell lines. 

2.1.2 Neonatal Rat Ventricular Myocytes (NRVM) Isolation 

NRVMs were isolated from mixed sex 1-2 day old Sprague-Dawley rat pups 

(Charles River Laboratories). Typically, hearts were isolated from 9-11 neonatal rats. Rats 

were sacrificed using cervical dislocation for the harvesting of hearts. Hearts were removed 

and placed in chilled, sterile 1X Hanks’ Balanced Salt Solution (HBSS, Invitrogen) on ice 

until all the hearts were isolated. Once all the hearts were harvested, they were brought into 

the sterile tissue culture hood for dissection. The 1X HBSS was removed and hearts were 

placed into a clean 6cm tissue culture dish containing 5mL of fresh 1X HBSS. Ventricles 

were dissected from the atria and vessels and placed into a new 6cm dish containing 5mL 

fresh 1X HBSS. Ventricles were then dissected into 3-4 equal sized pieces and washed 3 

times with 1X HBSS. After the final wash, ventricles were placed into 25mL of a 1mg/mL 
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solution of Trypsin EDTA/1X HBSS (Invitrogen) overnight at 4°C. The next day, 10mL 

of pre-warmed 10% FBS growth medium was added and allowed to shake at 37°C in a 

shaking incubator at 100 RPM for 3 minutes. The trypsin/medium solution was removed 

and 10mL of pre-warmed 10mg/mL collagenase II (Worthington Biochemical) was added. 

Hearts were incubated in the collagenase II solution for 6 minutes at 37°C while shaking 

at 100 RPM. The supernatant containing individual cardiomyocytes was removed and put 

into a tube on ice. This step was repeated 7 times until only very small (~1mm) ventricle 

pieces remained. Once all cardiomyocytes were isolated, a total of two tubes containing 

40mL of cardiomyocytes/collagenase solution were centrifuged at 4000 RPM for 4 minutes 

to pellet the cells. The supernatant was removed and the cells were resuspended with 20mL 

of 10% FBS growth medium. The resuspended cells were centrifuged at 4000 RPM for 4 

minutes. The supernatant was removed and 10mL of fresh 10% FBS growth medium was 

added to resuspend the cells. The 20mL total of cardiomyocytes/growth medium were 

plated onto a 10cm tissue culture plate and incubated for 1 hour at 37°C in the tissue culture 

incubator to allow the cardiac fibroblasts to adhere first. After 1 hour, the solution was 

placed onto a new 10cm plate and incubated for another hour at 37°C, to reduce the number 

of cardiac fibroblasts in the final NRVM cultures. Cells were counted using a 

hemocytometer and plated at a density of 4x106 cells/10cm2, 1x106 cells/6cm2, or 3x105 

cells/well of 6-well gelatinized plates. After 12-20 hours in culture, the medium was 

removed and replaced with fresh 10% FBS growth medium. The next day, the medium was 

removed and replaced with 0.5X Nutridoma DMEM with no antibiotics (Roche), a low 

serum medium, and changed every day thereafter. For hypertrophy experiments, NRVMs 
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were treated with 20 µM phenylephrine (Sigma) or 50 µM angiotensin II (Sigma) for 48 

hours. 

2.2 Mouse Husbandry 

2.2.1 Mouse Strains 

Mouse strains derived from a mixed background of 192Sv and C57B6 (Jackson 

Laboratories) included wild type (WT) and MEF2A knockout (KO) mice (Naya et al. 

2002).  The mdx mouse strain is derived from a C57BL/10ScSn background (Jackson 

Laboratories). The MEF2A/mdx mouse was generated by crossing the MEF2A knockout 

mouse to the mdx mouse for multiple generations. Tissue samples from the myocardial 

infarction and angiotensin II mouse models were obtained from the Walsh Laboratory at 

the Whitaker Cardiovascular Institute, Boston University School of Medicine. Ligating the 

left coronary artery is a surgical technique that mimics myocardial infarction and leads to 

heart failure. Left anterior descending coronary artery (LAD) ligation was performed on 

these mice as previously described (Shibata et al. 2007, Araki et al. 2012). Angiotensin II 

is a hypertensive agonist drug that promotes myocardial damage (Kim and Iwao 2000). 

Angiotensin II promotes hypertrophy by activating the Angiotensin II type I (ATI) 

receptor, which stimulates multiple signal transduction pathways (Gray et al. 1998). 

Angiotensin II was administered via subcutaneous osmotic mini-pumps for 14 days 

(Shibata et al. 2004). Tissue samples from the DyW laminin-α2 knockout mouse model 

were obtained from the Girgenrath Laboratory at Sargent College, Boston University. 
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2.2.2 Genotyping 

Genomic DNA was isolated from mouse tail samples taken from mice at postnatal 

day 20, weaning age. Tail samples were digested in 200µL tail lysis buffer (10mM Tris-

HCl pH 8.5, 25mM EDTA pH 8.0, 1% SDS, 100mM NaCl, 0.2mg/mL Proteinase K (NEB) 

at 55°C overnight. 200µL of phenol:chloroform (1:1) was added to the tail solutions and 

mixed by vortexing. Samples were centrifuged at 13,000 RPM for 1 minute. The top 

aqueous layer was placed into a new microcentrifuge tube. 1mL cold 100% ethanol was 

added to each sample and centrifuged for 5 minutes. DNA pellets were washed with 200µL 

cold 70% ethanol, centrifuged for 1 minute, and allowed to air dry before resuspending in 

200uL sterile water. Genomic DNA was then used in genotyping PCRs set up in 25uL final 

volume: 1uL genomic DNA, 2.5µL 10X Thermopol Buffer (NEB), 2uL 2.5mM dNTPs 

(NEB), 1uL 25µM primer mix (1:2:1 ratio of 100µM forward primer: Baxter dH2O: 100µM 

reverse primer), 0.5-1.0µL Taq polymerase (NEB), and Baxter water. The thermocycler 

program for the PCR reactions was as follows: 94°C for 4 minutes, 94°C for 30 seconds, 

60°C for 30 seconds, 72°C for 30 seconds. Steps 2-4 were repeated 29 times for a total of 

30 cycles and a final extension was performed at 72°C for 10 minutes. Samples were held 

at 4°C until removed from the thermocycler. PCR products were electrophoresed on a 0.8% 

agarose gel containing ethidium bromide in a 1X TAE buffer at 120V for 20-30 minutes. 

Gels were imaged under UV light. Primer sets used for these reactions are listed in Table 

2.1. M2A and Neo: Mice with only a MEF2A band were considered wild type, mice with 

only a Neo band were considered MEF2A knockouts, and mice with both a MEF2A and 

Neo band were considered heterozygous for the MEF2A knockout allele. 



 

 

35 

2.2.3 Tissue Dissection 

Mice of mixed sexes were sacrificed by cervical dislocation. Hearts were harvested 

at perinatal time points (P3-P5) and adult (6-8 weeks) from wild type (N=5) and MEF2A 

knockout (N=5). Muscle was harvested for total protein, RNA isolation, or histology. For 

histology, muscle was placed in optimal temperature embedding compound (OCT), snap-

frozen in dry-ice-cooled isopentane and stored at -80°C. Transverse muscle sections 

(10uM) created with a Leica CM 1850 cryostat microtome at -80°C were then 

immunostained with protein-specific antibodies or stained with hematoxylin & eosin 

(H&E) for visualization of basic muscle morphology. 

2.3 Recombinant DNA Techniques 

2.3.1 Preparation of DH5α Cells 

The DH5α strain of Escherichia coli (E. coli) cells were made chemically 

competent for introduction of recombinant DNA for these studies using the following 

protocol. DH5α cells were streaked onto Luria Broth (LB) agar plates (10g/L casein 

peptone, 5g/L yeast extract, 5g/L NaCl, 15g/L agar) and incubated overnight at 37°C. A 

single colony was picked and used to inoculate a 3mL LB liquid culture (10g/L casein 

peptone, 5g/L yeast extract, 5g/L NaCl) and grown 18-24 hours in a shaking incubator at 

37°C. The 3mL culture was then used to inoculate a 200mL LB culture and grown to early 

log phase, shaking at 37°C for an additional 3 hours. Cells were pelleted by centrifugation 

at 4000 RPM for 5 minutes at 4°C. Pelleted cells were resuspended in 20mL pre-chilled 

10nM NaCl, then 80mL additional chilled 100mM CaCl2 was added for a final volume of 

100mL. Cells were incubated on ice for 30-60 minutes then centrifuged at 4000 RPM for 
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5 minutes at 4°C. The pellet was resuspended in 17mL filter-sterilized, pre-chilled 100mM 

CaCl2 with 3mL 100% glycerol. Resuspended DH5α E. coli were aliquoted in 100µL 

volumes into 1.7mL microcentrifuge tubes, snap frozen using liquid nitrogen, and stored 

at -80°C.  

2.3.2 Cloning 

For routine cloning, restriction endonuclease reactions were used to isolate DNA 

fragments of interest and to prepare vector DNA for subcloning. Generally, 1µL of DNA 

was digested for 1 hour at 37°C using appropriate restriction endonucleases and buffer 

(NEB). Following digestion, 6X loading dye (0.7% xylene cyanol, 0.5% bromophenol 

blue, and 60% glycerol in deionized water (dH2O)) to a final concentration of 1X was 

added and samples were electrophoresed on a 0.8% agarose gel (BioExpress) containing 

ethidium bromide in 1X TAE buffer (40mM Tris, 50mM sodium acetate, 1mM EDTA pH 

8.0) at 120V for 20-30 minutes. DNA digestion reactions were visualized and 

photographed under ultraviolet (UV) light. Appropriate DNA fragments were excised from 

the gel and purified on QIAquick columns using the QIAquick Gel Extraction Kit (Qiagen), 

according to the manufacturer’s instructions. Briefly, 600µL of buffer QG was added to 

the excised gel slices and incubated at 55°C for 10 minutes to dissolve the gel. 200µL of 

isopropanol was added and the solution was then added to a QIAquick column to bind the 

DNA and centrifuged at 14,000 RPM for 1 minute at room temperature. The flow-through 

was discarded and the sample was centrifuged again until the total volume had passed 

through the column. 750µL of Buffer PE was added to wash the column and the sample 

was centrifuged at 14,000 RPM for 1 minute at room temperature. Flow-through was 
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discarded and the column was centrifuged again at 14,000 RPM for 1 minute at room 

temperature to remove any remaining buffer. The QIAquick column was placed into a new 

1.7mL microcentrifuge tube and the DNA was eluted by adding 30µL of Buffer EB and 

centrifuged at 14,000 RPM for 1 minute at room temperature. The purified DNA in the 

elution buffer was then used for ligation reactions. Generally, ligations were performed 

using a 5:1 ratio of restriction enzyme-digested insert DNA to vector DNA: 15µL (~250ng) 

insert DNA, 1µL (~50ng) vector DNA, 2µL 10X T4 DNA ligase buffer, and 1µL T4 DNA 

ligase (NEB) in a 25µL total volume with dH2O. Ligations were incubated in a 

thermocycler for 4 hours at 16°C, prior to use in DH5α E. coli transformation reactions. 

2.3.3 Transformation of Competent DH5α Cells 

Frozen aliquots of chemically competent DH5α E. coli cells were thawed on ice. 

For transformation of ligation reactions, 50µL of cells were pre-incubated with half the 

ligation reaction (~100ng of DNA) for 10 minutes on ice. For other transformations, 10µL 

of cells were pre-incubated with 1µg plasmid DNA (1-2µL) for 10 minutes on ice. 

Competent cells were then “heat-shocked” in a 42°C water bath for 30 seconds to 

permeabilize the cell membranes and facilitate introduction of plasmid DNA into the cells. 

Fresh LB (250µL for cloning ligations) was added to transformed bacteria and cells were 

incubated on ice for 10 minutes, then allowed to recover for 1 hour in a 37°C shaking 

incubator. Transformed bacteria were plated on LB agar plates containing the appropriate 

antibiotic (Amp 100µg/mL, Kan 50ug/mL) to select for clones with the transformed 

plasmid. Plates were incubated overnight at 37°C. Single colonies were picked to inoculate 
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3mL LB liquid cultures with antibiotic. Liquid cultures were then used for DNA isolation 

and preparation (section 2.3.4). 

2.3.4 DNA Preparation 

2.3.4.1 Mini-Prep DNA Preparations 

For small-scale crude DNA preparation, mini-preparation was used. A single 

colony of bacteria was selected from an LB agar plate and placed into 3mL of LB broth 

containing appropriate antibiotics. The selected colony was grown overnight in a 37°C 

shaking incubator. The next day, 1.5mL of the 3mL overnight culture was centrifuged at 

13,000 RPM for 1 minute at room temperature. The pellet was resuspended in 100µL of 

Solution #1 (50mM glucose, 10mM EDTA pH 8.0, 25mM Tris) and then lysed in 200µL 

of Solution #2 (0.2M NaOH, 1% SDS). Cell lysis was stopped by adding 150µL of Solution 

#3 (3M potassium acetate, 11.5% glacial acetic acid). 400µL of phenol:chloroform (1:1) 

was added and the sample was mixed by vortexing. The upper aqueous layer containing 

nucleic acids was transferred to a new tube. DNA was precipitated by adding 800µL cold 

100% ethanol and samples were centrifuged at 13,000 RPM for 10 minutes at 4°C. DNA 

pellets were washed with 200µL 70% ethanol, centrifuged at 13,000 RPM for 1 minute, 

inverted and allowed to dry. Dried pellets were resuspended in 20µL Baxter water with 

0.1mg/mL RNase and incubated at 37°C for 15 minutes. 

2.3.4.2 MIDI-Prep DNA Preparations 

For large scale DNA preparation, MIDI-preparation was used. 100µL of cultured 

DH5α cells in LB liquid was incubated with 100mL of LB broth containing the appropriate 

concentration of antibiotic in a shaking 37°C incubator overnight.  Cells were pelleted by 
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centrifugation at 7,000 RPM for 5 minutes at 4°C. DNA isolation was performed using 

NucleoBond Plasmid Purification MIDI Prep System (BD Biosciences), according to the 

manufacturer’s instructions. Briefly, the bacteria was resuspended in 4mL buffer S1, lysed 

in 4mL buffer S2, and neutralized in 4mL buffer S3. The NucleoBond column was 

equilibrated with 2.5mL buffer N2 and the solution was passed through a folded filter onto 

the column. The column was washed three times with 10mL buffer N3 and the DNA was 

eluted with 5mL buffer N5. 3.5mL isopropanol was added to the eluted buffer and the 

solution was centrifuged at 9,000 RPM for 30 minutes at 4°C. The DNA pellet was washed 

with 2mL 70% ethanol, centrifuged at 9,000 RPM for 5 minutes at 4°C, allowed to dry, 

and resuspended in 200µL dH2O and stored at -20°C. 

2.3.4.3 DNA Sequencing 

DNA sequencing was performed by sending 10µL of 100ng/µL purified plasmid 

DNA and 10µL of 3µM primers to MWG Operon. 

2.4 Transfection Techniques 

2.4.1 General Plasmid Transfection 

General transfections of expression vectors in mammalian cell lines were 

performed through lipid-mediated plasma delivery for all experiments. Three types of 

lipid-mediated transfection reagents were used for plasmid transfections: FuGENE 

(Roche), Polyethylenimine (PEI, Polysciences, Inc.), and Trans-iT (Mirus Bio, LLC). 

Generally, cells were seeded on cell culture plates 24 hours prior to transfection so they 

would be 40-70% confluent at the time of transfection. FuGENE was used at a 3:1 ratio 

(µL FuGENE:µg plasmid DNA) in COS1 cells, PEI was used at a ratio of 6:1 for all cell 
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lines, and Trans-iT was used at a 1.5:1 ratio in COS1 cells. For all transfections, the 

transfection reagent was pre-warmed to room temperature and added to pre-warmed serum 

free DMEM (100µL sfDMEM per 1µg DNA) in a sterile Eppendorf tube and incubated at 

room temperature for 5 minutes. DNA to be transfected was added to the transfection 

reagent/sfDMEM mixture and incubated at room temperature for 15 minutes. Complexed 

DNA and transfection reagent in sfDMEM was then added dropwise to cells and incubated 

in a 37°C incubator for 36-48 hours before harvesting. 

2.4.2 microRNA Mimic and microRNA Inhibitor (Anti-miR) Transfections 

For miRNA mimic and inhibitor (anti-miR) (Dharmacon) transfections, lipid-

mediated transfections were performed using Lipofectamine 2000 transfection reagent 

(Invitrogen). For miRNA mimic transfections in NRVMs, the transfection reagent/DNA 

mixture was prepared directly in each well or tissue culture plate by adding 500µL 

OptiMEM medium (Invitrogen), 4µL Lipofectamine 2000, 10µM miRNA mimic (5µL for 

6-well plate and 12.5µL for 6cm plate) for a final concentration of 25nM. The transfection 

reagent/DNA mixture was incubated at room temperature for 20 minutes. NRVMs were 

resuspended in antibiotic-free medium (DMEM with 10% FBS) and 3x105 cells in 1.5mL 

total volume were plated per well of a 6-well plate containing the transfection mixture 

(2mL total final volume) or 2x106 cells in 4.5mL total volume were plated on a 6cm plate 

containing the transfection mixture (5mL total final volume). Wells were mixed by swirling 

and incubated at 37°C. 24 hours later, medium was switched to 0.5% Nutridoma (low 

serum medium). 36 hours post-transfection, RNA and/or protein was harvested (see section 

2.6.1 and 2.7.1). 
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For luciferase assays in COS1 cells and NRVMs, cells were reverse transfected at 

the time of plating. The transfection reagent/DNA mixture was prepared directly in each 

well of a 24-well cell culture plate by adding 100µL OptiMEM medium (Invitrogen), 1µL 

Lipofectamine 2000, 20ng pMIR-REPORT-3’UTR-Cited2, 200ng pMIR-REPORT-βgal 

(transfection control), and 7.5µL 10µM miRNA mimics (for a final concentration of 

150nM). The transfection reagent/DNA mixture was incubated at room temperature for 20 

minutes. COS1 cells were resuspended in antibiotic-free medium (DMEM with 10% FBS) 

and 40,000 cells in 400µL total volume were plated per well containing the transfection 

mixture (500µL total final volume). Wells were mixed by swirling and incubated at 37°C 

for 24-36 hours prior to harvesting the cells for luciferase assays. 

For MEF2A knockdown rescue experiments in NRVMs, NRVMs were seeded in 

antibiotic-free DMEM at a density of 300,000 cells per well on 6-well plates. 24 hours 

later, cells were transduced with shlacZ or shMef2a adenovirus at MOI 25. Cells were 

incubated for 24 hours at 37°C. Medium was then changed to 0.5X Nutridoma and 

transfected with miRNA mimics as follows: 500µL OptiMEM, 5µL 10µM miR mimic 

(25nM final concentration), and 4µL RNAiMAX were combined and incubated at room 

temperature for 30 minutes. For miR-410/495 combined transfections, 2.5µL of each 10µM 

miRNA mimic was added for a combined final concentration of 25nM. The transfection 

mixture was added dropwise to each well. All mimics were obtained from Dharmacon. 
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2.5 Cell-Based Assays 

2.5.1 Luciferase Assays 

Luciferase assays were performed 24-36 hours post-transfection using Luciferase 

Assay Reagent (LAR, Promega), and results were normalized using a β-galactosidase assay 

(section 2.5.2). 

Cells were harvested for luciferase assays by washing with 1X PBS and lysing in 

1X passive lysis buffer (Promega) by shaking for 15 minutes at room temperature. To 

measure luciferase activity in cells, 5µL of each cell lysate was placed into an Eppendorf 

tube. 30µL of LAR was added and 10 second measurements of the light absorbance was 

measured for firefly luciferase activity. To measure luciferase activity of the TOPflash 

plasmid in NRVMs, cell lysates were prepared in tubes as described above. Firefly 

luciferase activity was measured by adding 30µL LARII to each tube containing cell lysate, 

and performing 10 second measurements of the light absorbance in each tube. Following 

the first reading, 30µL of 1X Stop and Glo reagent (Promega) was added and Renilla 

luciferase measurements were taken. Firefly luciferase relative light unit (RLU) values 

were then normalized to Renilla RLU values and fold change in activity over reporter was 

calculated for each sample. 

For 3’UTR luciferase experiments in COS1 cells and NRVMs analyzing the 

effects of miRNA mimics on 3’UTR of Cited2, cells were reverse transfected at the time 

of plating. The transfection reagent/DNA mixture was prepared directly in each well of a 

24-well cell culture plate to be transfected by adding 100µL OptiMEM (commercial serum-

free medium, Invitrogen), 20ng pMIR-REPORT-3’UTR-CITED2, 200ng pMIR-
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REPORT-β-galactosidase (transfection control), 7.5µL of 10µM miRNA mimics (for a 

final concentration of 150nM), and 1µL RNAiMAX transfection reagent (Invitrogen). For 

miR-410/495 combined transfections, 3.25µL of each 10uM miRNA mimic were 

combined for a final concentration of 150nM. The transfection mixture was incubated for 

30 minutes at room temperature. Cells were resuspended in antibiotic-free medium 

(DMEM with 10% FBS only) and 40,000 cells in 400uL volumes were plated per well on 

top of the reaction mixture for 500µL total volume per well. Wells were incubated 36-48 

hours at 37°C and cells were harvested for luciferase assays. 

2.5.2 β-galactosidase Assays 

β-galactosidase (β-gal) assays were performed in 96-well plates to determine the 

transfection efficiency of each cell lysate sample. To measure β-gal activity, 15µL of cell 

lysates were added to 1.7mL microcentrifuge tubes and incubated with a sample reaction 

mixture containing 15µL 10X Z-buffer (100mM NaH2PO4, 10mM KCl, 1mM MgSO4), 

16.5µL 8mg/mL ONPG, 0.2µL β-mercaptoethanol, and 103.5µL dH2O. The mixture was 

incubated at 37°C in a water bath until a slight yellow color appeared. To stop the reaction, 

250µL of 1M Na2CO3 was added to each sample. The light absorbance of each well was 

measured at 415nm on a microplate reader (Model 550, Bio-Rad). β-gal readings were then 

used to normalize firefly luciferase readings using LAR. 

2.6 RNA Techniques 

2.6.1 RNA Isolation (Cell Culture) 

NRVM cells harvested for RNA were cultured according to 2.1.2. Cells were rinsed 

with 1X PBS and RNA was isolated using TRIzol Reagent (Invitrogen). The volume of 
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TRIzol Reagent was dependent on the surface area of the culturing dish (350µL for 6-well 

plate, 500µL for 6cm plate, and 1mL for 10cm plate). Cells harvested in TRIzol Reagent 

were then processed according to the manufacturer’s instructions. Briefly, 200µL of 

chloroform was added for every 1mL of TRIzol used. The mixture was mixed by vortexing 

for 30 seconds and was then centrifuged for 10 minutes at 13,000 RPM at 4°C. The upper 

phase containing the RNA was added to a new microcentrifuge tube containing an equal 

volume of 100% isopropanol and remained at room temperature for 10 minutes. RNA was 

precipitated by centrifugation at 13,000 RPM at 4°C for 10 minutes. The RNA pellet was 

washed with 1mL 70% ethanol for every 1mL TRIzol used and pellets were allowed to air 

dry. RNA pellets were resuspended in 15-40µL of Baxter water and stored at -80°C.  

2.6.2 RNA Isolation (Animal Tissue) 

Whole hearts were harvested and homogenized in 1-2mL TRIzol using the Polytron 

PT 10-35 homogenizer (Kinematics) for 30 seconds. Homogenate was placed in two 

microcentrifuge tubes and 200µL chloroform was added for every 1.0mL TRIzol. Samples 

were vortexed for 30 seconds and incubated at room temperature for 2-3 minutes. Samples 

were then centrifuged at 11.4K at 4°C for 10 minutes. The top phase was separated into a 

new tube and 500µL isopropanol was added and mixed. Samples were incubated at -20°C 

for 1 hour and then spun at 4°C at 11.4K for 30 minutes. Supernatant was removed and 

1.0mL 70% ethanol was added to the pellet. The sample was then centrifuged for 5 minutes 

at 4°C. Pellets were then allowed to dry for 5-15 minutes and resuspended in 40µL of RNA-

only water. The concentration of the RNA was taken using a nanodrop. Samples were 

stored at -80°C until use. 
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2.6.3 Reverse Transcription 

The concentration of extracted RNA (described in 2.6.1 and 2.6.2) was measured 

by spectrophotometry using a nanodrop. cDNA was generated from 2µg of RNA, which 

was reverse transcribed using M-MLV Reverse Transcription Reagents (Promega). 

Reverse transcription reactions were set up containing 2µg of RNA in 9.3µL total volume 

dH2O, 3µL 2.5mM dNTPs (NEB), and 3.35µL 15.4µM random hexamers (Promega). The 

solution was incubated at 65°C for 5 minutes, then on ice for 5 minutes. To each sample 

0.5µL of RNasin (Promega), 0.5µL M-MLV Reverse Transcriptase (Promega), and 3µL 

5X M-MLV RT Buffer (Promega) was added and the entire reaction was incubated at 37°C 

for 1 hour. Synthesized cDNA was stored at -20°C. 

2.6.4 Polymerase Chain Reaction (PCR) 

Polymerase chain reaction was performed for genotyping analyses (2.2.2), 

amplification of DNA fragments for cloning (2.3.2), and for gene expression analysis by 

semi-quantitative methods (2.6.6). To amplify DNA fragments from genomic or copy 

DNA (cDNA), the general protocol was as follows: 100ng-1µg DNA template, 2.5µL 

Thermo-Polymerase Buffer (NEB), 2µL 2.5mM dNTPs (NEB), 1µL 25µM gene specific 

primers, 0.5µL Taq polymerase (NEB), and 18.5µL dH2O. Each sample was mixed gently, 

centrifuged briefly, and subjected to a PCR program on a bench-top thermocycler (MJ 

Research). A typical PCR program was as follows: denature for 4 minutes at 94°C, 

followed by 23-30 cycles of 94°C for 30 seconds, 56-60°C for 30 seconds (temperature 

varies with primer Tm), and 68°C for 30 seconds, followed by a final extension for 10 
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minutes at 68°C. Samples were held at 4°C until removed from the thermocycler when 

they were then stored at -20°C. 

2.6.5 Site-Directed Mutagenesis 

Site-directed mutagenesis was performed using overlap extension PCR for the 

generation of expression plasmids containing mutated cDNA sequences. Two PCR 

products were generated from the cDNA template. One reaction used a primer mix of a 

forward universal primer and a reverse mutagenic primer and the other reaction used a 

reverse universal primer and a forward mutagenic primer. Both mutagenic primers 

hybridized to the same sequence and induced guanine mutations but were oppositely 

oriented to amplify different halves of the desired cDNA fragment. Each PCR reaction was 

as follows: 1µg template DNA, 2.5µL 10X Thermopol Buffer (NEB), 2µL 2.5mM dNTPs 

(NEB), and Baxter water to a final volume of 25µL. The PCR reactions were run on 

thermocycler programs. PCR products from these reactions were electrophoresed on a 

0.8% agarose gel containing ethidium bromide in 1X TAE buffer at 120V for 30 minutes. 

Gels were imaged under UV light and the appropriate size bands corresponding to the 

mutated cDNA fragment amplified were excised and gel extracted using the QIAquick Gel 

Extraction Kit as described previously. The extracted fragments were then used as template 

DNA sequences for subsequent overlap extension PCR. The reaction was as follows: 1µL 

fragment #1, 1µL fragment #2, 2.5µL 10X Thermopol Buffer (NEB), 2µL 2.5mM dNTPs 

(NEB), 1µL 25µM universal primer mix (1:2:1 ratio of 100µM forward universal 

primer:Baxter water:100µM reverse universal primer), 0.5-1.0µL Taq polymerase (NEB), 

and Baxter water to a final volume of 25µL. The thermocycler PCR program was run as 
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before and the appropriate size band was extracted using the QIAquick Gel Extraction Kit 

(NEB). The extracted fragment was digested with restriction endonucleases (NEB) prior 

to ligation into a destination vector. Mutations in cDNA sequences were confirmed after 

midiprep column purification through DNA sequencing (MGW Operon). 

2.6.6 Semi-Quantitative RT-PCR 

Semi-quantitative RT-PCR was performed in 25µL reaction volumes. Briefly, 1µL 

cDNA, 2.5µL 10X Thermopol buffer (NEB), 2µL 2.5mM dNTPs (NEB), 1µL primer mix 

(1:2:1 ratio of 100µM forward primer: Baxter dH2O: 100µM reverse primer), 0.25µL of 

Taq polymerase (NEB), and 18.25uL dH2O samples were subjected to a PCR program 

using a thermocycler with the general format: 94°C for 4 minutes, 94°C for 30 seconds, 

53-60°C for 30 seconds (temperature varies with Tm), and 72°C for 30 seconds. Steps 2-4 

were repeated 18-30 times and a final extension was performed at 72°C for 10 minutes. 

Samples were held at 4°C until removed from the thermocycler. Samples were then run on 

0.8% agarose gels with ethidium bromide to visualize PCR product bands. GAPDH or 18S 

rRNA PCR products were used as controls.  

2.6.7 Quantitative RT-PCR 

2.6.7.1 mRNA Expression Analysis 

 
qRT-PCR was performed using Power SYBR Green Master Mix (Invitrogen) using 

the ABI Prism 7900HT Sequence Detection System (Applied Biosystems). Each sample 

was run in triplicate on a 384-well plate (Applied Biosystems). For one reverse-transcribed 

cDNA and one primer set the protocol was as follows: 1µL cDNA, 15µL Power SYBR 

Green Master Mix, 6µL primer mix (5µL 100µM forward primer + 5µL 100µM reverse 
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primer + 190µL dH2O), 8uL dH2O. 8.5µL of each sample reaction was plated per well in 

triplicate. Plates were briefly centrifuged and subjected to thermocycling with the 

following amplification program: 50°C for 2 minutes, 95°C for 10 minutes, 95°C for 15 

seconds, 60°C for 1 minute; steps 3-4 were repeated 39 times for a total of 40 cycles.  Data 

was analyzed using SDS 2.2.4 software (Ambion) and CT values were compared between 

gene specific primers and controls. The CT value for each gene were averaged and 

subtracted from the average internal control (GAPDH, 18S rRNA or 5S rRNA) CT value 

to determine the gene ΔCT value. The ΔΔCT was calculated by subtracting the ΔCT of the 

condition from the ΔCT of the control sample set. Fold changes between samples were 

calculated using the formula FC=2-ΔΔCT. Differences in relative gene expression were 

analyzed for significance using a Student’s T-Test. A p-value of ≤0.05 was considered 

statistically significant. 

 Primers for qRT-PCR were designed or obtained from the Primer Bank Website 

(http://pga.mgh.harvard.edu/primerbank). Sequences can be found in Table 2.1. 

2.6.7.2 Stem-Loop RT-PCR for microRNA Expression Analysis 

Stem-loop qRT-PCR was performed for detection of mature miRNAs as described 

by Chen et al. (Chen et al. 2005). Stem-loop specific primers for 5S ribosomal RNAs and 

mature miRNAs (miR-410, miR-495, and miR-433) were used to reverse-transcribe pooled 

cardiac muscle or NRVMs using the TaqMan miRNA Reverse Transcriptase Kit (Applied 

Biosystems) according to the manufacturer’s instructions. Stem-loop primers can be found 

in Table 2.1. Briefly, the reaction was as follows: 0.15µL 100mM dNTPs, 1.5µL 10X 

reverse transcription buffer, 0.19µL RNasin, 0.75µL 1uM stem-loop specific primer, 500ng 
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RNA, 1µL (50U) Multiscribe reverse transcriptase, and nuclease-free dH2O to a final 

volume of 15µL. Reverse transcription reactions were performed on a thermocycler with 

the following program: 16°C for 30 minutes, 42°C for 30 minutes, 85°C for 5 minutes, 

cooled to 4°C and immediately stored at -20°C. 

MiRNAs and 5S rRNA sequences were amplified by qRT-PCR using a forward-

specific primer and a universal reverse primer with the following reaction: 2µL miRNA-

specific cDNA, 15µL Power SYBR Green Master Mix, 0.5µL 20uM miRNA-specific 

forward primer, 0.5µL 20uM universal reverse primer, 12µL dH2O. qRT-PCR was 

described as above (2.6.7.1) in triplicate in a 384-well plate on the 7900HT Sequence 

Detection System using a modified thermocycling program: 50°C for 2 minutes, 95°C for 

2 minutes, 95°C for 15 seconds, 60°C for 1 minute; steps 3-4 were repeated 39 times for a 

total of 40 cycles. CT values and fold change analysis were determined as described in 

2.6.7.1. 

2.7 Protein Techniques 

2.7.1 Protein Isolation (Cell Culture) 

For cultured cells, protein was isolated by first washing the cells with 1X PBS 

twice. Cells were scraped into 500µL 1X PBS using a Cell Lifter (Corning). Cells were 

centrifuged for 1 minute at 13,000 RPM at 4°C. The cell pellet was resuspended in 200µL 

cold ELB Buffer (50mM HEPES, 250mM NaCl, 5mM EDTA, 0.1% NP40, 1mM DTT, 

1mM PMSF, 1X Protease Inhibitors (Roche), dH2O) and dounce homogenized. 

Homogenized cells were incubated on ice for 10 minutes and centrifuged at 13,000 RPM 
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for 10 minutes at 4°C. Supernatant containing protein was transferred to a new Eppendorf 

tube and stored at -80°C until use.  

2.7.2 Protein Isolation (Animal Tissue) 

For mouse tissue samples, protein was harvested by homogenizing tissue in 1-2mL 

ELB Buffer (without 0.1% NP40) using the Polytron PT 10-35 homogenizer (Kinematics) 

for 30 seconds. Homogenized cells were centrifuged at 13,000 RPM for 10 minutes at 4°C. 

Protein extraction then followed the same steps as cell culture protein isolation, with the 

supernatant containing protein being saved in a new Eppendorf tube and stored at -80°C 

until use. 

2.7.3 Bradford Assay 

To determine protein concentrations of cell extracts, Bradford Assays were 

performed. Dilution stocks of bovine serum albumin (BSA) we made as standards for 

protein concentrations of 0.2µg, 0.5µg, 1.0µg, 2.5µg, 5µg, and 10µg. BSA standards and 

protein samples were aliquoted in 10µL volumes into individual wells of a 96-well plate. 

200µL 1X Bio-Rad Protein Assay Dye Reagent (Bio-Rad Laboratories) was added and 

absorbance was measured at 595nm on a microplate reader (Model 550, Bio-Rad) using 

Microplate Manager III software. The standard curve plot was created in Excel using the 

BSA standard dilutions. A best-fit linear trend line was assigned to the plot and the 

concentrations of the protein samples were extrapolated using the equation of the best-fit 

linear trend line, y=mx+b, where y=absorbance value, m=slope of the line, b=y-intercept, 

and x=unknown concentrations of the protein samples.  
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2.7.4 Western Blotting 

Protein extracts (COS1, NRVM, or cardiac muscle) were electrophoresed using 

SDS-PAGE according to the following protocol. 10-20µg protein extract was added to 

SDS-loading buffer (1.52% Tris base [w/v], 20% glycerol, 2% SDS [w/v], 0.1% 

bromophenol blue [w/v], 2% β-mercaptoethanol) to a 40µL final volume and were 

denatured at 95°C for 5 minutes. Protein samples were loaded onto a 10% polyacrylamide 

gel made up of a lower separating gel (1.7mL 30% acrylamide/0.8% bis-acrylamide, 1.3mL 

separation buffer (375mM Tris-HCl pH 8.8, 0.1% SDS [w/v]), 50uL 10% APS, 2µL 

TEMED, 1.9mL dH2O) and an upper stacking gel (0.5mL 30% acrylamide/0.8% bis-

acrylamide, 0.75mL stacking buffer (125mM Tris-HCl pH 6.8, 0.1% SDS [w/v]), 25µL 

10% APS, 3µL TEMED, 2.1mL dH2O) and electrophoresed in 1X SDS Running Buffer 

(25mM Tris-HCl, 190mM glycine, 0.1% SDS [w/v]) at 190V for 1 hour. After 

electrophoresis, the gel was washed for 10 minutes in 1X Transfer Buffer (20% methanol, 

20mM Tris, 150mM glycine) and proteins were transferred to an Immuno-blot PDVF 

membrane (Bio-Rad) at 200mAmps for 1 hour at 4°C or at 50mAmps overnight at 4°C. 

After transfer, the membrane was blocked in blotto solution (5% non-fat dry milk [w/v], 

30mL 1X TBS) for 1 hour at room temperature or overnight at 4°C. Blocked membranes 

were then incubated with primary antibody for 1 hour at room temperature or overnight at 

4°C. The membrane was then washed three times with 1X TBS/0.1% Tween for 5 minutes 

at room temperature and incubated with the appropriate HRP-conjugated secondary 

antibody for 30 minutes at room temperature. The membrane was then washed three times 

with 1X TBS/0.1% Tween for 5 minutes at room temperature. 300µL of a 1:1 solution of 
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Western Lightning Chemiluminescent Reagent (Perkin-Elmer) was added to the membrane 

for 1 minute at room temperature. Target protein-antibody complexes were visualized by 

exposing the reactive membranes to Blue Basic Autorad X-Ray Film (ISC BioExpress). 

2.8 Histology and Immunofluorescence 

 
2.8.1 Immunohistochemistry 

 
For NRVM experiments, NRVMs were seeded on 0.1% gelatin-coated coverslips 

in 6-well plates at a density of 500,000 cells per coverslip/dish. For miRNA mimic 

overexpression experiments, mimics were reverse transcribed on the day of seeding. For 

MEF2A knockdown experiments, the following day NRVMs were transduced with 

adenoviruses. 

For immunofluorescence analyses, cells were fixed on coverslips with 4% 

paraformaldehyde at room temperature for 20 minutes. Cells were then blocked in 3% BSA 

for 1 hour at room temperature. Cells were then incubated with primary antibody diluted 

in 200uL primary antibody dilution buffer (200µL 10X PBS, 1.8mL dH2O, 0.02g BSA, 

6µL TritonX-100) for 1 hour at room temperature protected from light or overnight at 4°C. 

Primary antibodies included: anti-α-actinin (1:200; Sigma), anti-Ki67 (1:500; Sigma). 

Primary antibody was removed and cells were washed 3X for 10 minutes in 1X PBS. 

Secondary antibody was then applied for 1 hour at room temperature. Secondary antibodies 

included: anti-mouse Alexa Fluor 488, anti-rabbit Alexa Fluor 488, anti-rabbit Alexa Fluor 

555 (Invitrogen). Excess secondary antibody was washed from cells as before and mounted 

in Vectashield mounting medium with DAPI (Vector Labs) on clean slides. Fluorescent 
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images were taken using an Olympus DSU Spinning Disk Confocal microscope or 

Olympus FV10i confocal imaging system. 

2.8.2 EdU Assay 

EdU assays were performed on NRVMs overexpressed with miRNA mimics using 

the Click-iT EdU Alexa Fluor 555 Imaging Kit (Molecular Probes). Cells were allowed to 

recover for 24 hours post-mimic reverse transfection. Medium was changed to 0.5X 

Nutridoma and 28 hours later EdU was added for a final concentration of 10uM per well. 

Cells were incubated for 20 hours with EdU. After incubation, medium was removed and 

cells were fixed in 4% paraformaldehyde for 15 minutes at room temperature. Fixative was 

removed and cells were washed twice with 3% BSA in PBS. 1mL TritonX-100 in PBS was 

added to each well and incubated at room temperature for 20 minutes. Permeabilization 

buffer was removed and cells were washed twice in 3% BSA in PBS. 500uL of Click-iT 

reaction cocktail was added to each coverslip (430µL 1X Click-iT reaction buffer, 20µL 

CuSO4, 1.2µL Alexa Fluor azide, 50µL reaction buffer additive). Plates were rocked gently 

to insure the reaction cocktail was distributed evenly over the coverslips. Plates were 

incubated at room temperature for 30 minutes protected from light. Reaction cocktail was 

removed and wells were washed with 1mL 3% BSA in PBS. Primary antibody staining 

was then performed as previously described. 

2.9 Statistical Analysis 

All numerical quantification is represented as the mean ± the standard error of the 

mean (S.E.M.) of at least three independently performed experiments. Statistically 

significant differences between two sets of data were determined using the student’s paired 
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t-test. Statistically significant differences between three or more sets of data were 

determined using analysis of variance (ANOVA). P-values of ≤ 0.05 were considered to 

be statistically significant. 
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 Table 2.1 Oligonucleotide Table. Oligonucleotide primer sequences used in all PCRs are 

shown. Underlined sequences refer to mutations incorporated into the primers. 

 

    qRT-PCR: 

    Oligo  Direction Sequence (5’ to 3’)  
 

    Gapdh  Forward TGGCAAAGTGGAGATTGTTGCC 

   Reverse AAGATGGTGATGGGCTTCCCG 

    Sfrp2  Forward CCCCTGTCTGTCTCGACGA 

   Reverse CTTCACACACCTTGGGAGCTT 

    Axin2  Forward TGACTCTCCTTCCAGATCCCA 

   Reverse TGCCCACACTAGGCTGACA 

    Cited2  Forward TGGGCGAGCACATACACTAC 

   Reverse GGGTGATGGTTGAAATACTGGT 

    Nr3c1  Forward TCTCAGGCAGATTCCAAGCA 

   Reverse TGGACAGTGAAACGGCTTTG 

    Errfi1  Forward GCACAATGTCAACAGCAGGA 

   Reverse TCCAGAGATGGGTCCTCAGA 

    Ppp1cb  Forward GAGTGTGCTAGCATCAACCG 

   Reverse GTCAAACTCGCCGCAGTAAT 

    Smad7  Forward AGCATCTTCTGTCCCTGCTT 

   Reverse CTCCTCGAATTCTGTGCACG 

    Rere   Forward TCATGTACTTGAGGGCAGCA 

   Reverse CACTTCTCGATCAGCTTGG 

    Stat3  Forward TCAGTGAGAGCAGCAAGGAA 

   Reverse TTTCCGAATGCCTCCTCCTT 

    Gad1  Forward ATGTGTGCAGGCTACCTCTT 

   Reverse TCGGAGGCTTTGTGGTATGT 

    Bim   Forward TCGTCCACCCAATGTCTGACTC 

   Reverse CTCCTGTCTTGCGATTCTGTCTGT  

    Cdkn1c/p57  Forward GACTGAGAGCAAGCGAACAG 

   Reverse CAGCGAGAAAGAAGGGAACG 

    Vegfa  Forward TTCCTGTAGACACACCCACC 

   Reverse TCCTCCCAACTCAAGTCCAC 

    Gtl2   Forward TGGAATAGGCCAACATCGTCA 

   Reverse AGGCTCTGTGTCCATGTGTCC 

    Nppa  Forward ACCTGCTAGACCACCTGGAGGAG 

   Reverse CCTTGGCTGTTATCTTCGGTACCGG 

    Nppb  Forward ATCTCCAGAAGGTGCTGCCCAG 

   Reverse CGCGGTCTTCCTAAAACAACCTCAG 
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    qRT-PCR microRNAs: 

    Oligo  Direction Sequence (5’ to 3’) 
 

    5S rRNA stem loop Forward GTTGGCTCTGGTGCAGGGTCCGAGGTATT- 
     CGCACCAGAGCCAACAAAGCC 
    miR-410 stem loop Forward GTTGGCTCTGGTGCAGGGTCCGAGGTATT- 

CGCACCAGAGCCAACACAGGC 
    miR-495 stem loop Forward GTTGGCTCTGGTGCAGGGTCCGAGGTATT- 

CGCACCAGAGCCAACAAGAAG 
    miR-433 stem loop Forward GTTGGCTCTGGTGCAGGGTCCGAGGTATT- 
     CGCACCAGAGCCAACACACCG 
    5S rRNA  Forward GAATACCGGGTGCTGTAGGC 
    miR-410  Forward CCGCCAATATAACACAGATGGCC 
    miR-495  Forward GCCAAACAAACATGGTGCACTT 
    miR-433  Forward ATCATGATGGGCTCCTCGGT 
    Universal  Reverse GTGCAGGGTCCGAGGT  
 
 

    Cloning: 

    Oligo   Direction Sequence (5’ to 3’) 

    Cited2 3’UTR  Forward AATTACTAGTCAGATCCTGAAAGG- 

GTTGAG 

    Reverse AATTACGCGTGCTTTCAACACAGT- 

AGTATC 

    Cited2 miR410 MUT Forward TGTGCTAATAGGGGGGGGCAGTAC- 

ATGA 

    Reverse TCATGTACTGCCCCCCCCTATTAGC- 

ACA 

    Cited2 miR495 MUT Forward TCTTTTTTGTGGGGGGGGTTTACTC- 

CTT 

    Reverse AAGGAGTAAACCCCCCCCACAAAA- 

AAGA 

 

    Genotyping: 

    Oligo  Direction Sequence (5’ to 3’) 

    Mef2a  Forward GCTAGCCAACATTTCACCTTTGAGATCT 

   Reverse CAACGATATCCGAGTTCGTCCTGCTTTC 

    Neo   Forward TTGGCTACCCGTGATATTGCTGAAGAGC 

    Mdx   Forward GCGCGAAACTCATCAAATATGCGTGTTA- 

GTGT 

   Reverse WT GATACGCTGCTTTAATGCCTTTAGTCACT- 

CAGATAGTTGAAGCCATTTG 

   Reverse mdx CGGCCTGTCACTCAGATAGTTGAAGCCA- 

TTTTA 
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CHAPTER THREE – MICRORNAS IN THE MEF2-REGULATED GTL2-DIO3 

NONCODING RNA LOCUS PROMOTE CARDIOMYOCYTE 

PROLIFERATION BY TARGETING THE TRANSCRIPTIONAL 

COACTIVATOR CITED2 

3.1 Introduction 

MEF2A is known to be an important transcription factor for cardiomyogenesis in 

mice. Approximately 80% of MEF2A knockout mice die perinatally due to right 

ventricular dilation and myofibrillar fragmentation (Naya et al. 2002). We recently showed 

that although skeletal muscle develops normally in these mice, there is a delay in skeletal 

muscle regeneration. MEF2A mediates the Gtl2-Dio3 miRNA cluster in skeletal muscle. 

Members of this cluster, specifically miRNA-410 and miRNA-433, target Sfrp2, an 

inhibitor of Wnt signaling. Downregulation of this cluster in MEF2A knockout mice results 

in impaired Wnt signaling, leading to impaired regeneration (Snyder et al. 2013).  

To determine if this miRNA cluster plays a role in cardiac muscle, I first examined 

the expression of the Gtl2 promoter in cardiomyocytes. I showed that the Gtl2 promoter is 

active in cardiomyocytes via a reporter assay, and this activity is lost when MEF2A is 

knocked down in vitro. Additionally, the expression of the Gtl2-Dio3 miRNAs in vivo was 

significantly higher in perinatal wild type mice compared to adult. Furthermore, 

knockdown of MEF2A in vitro and loss of MEF2A in vivo results in the downregulation 

of the Gtl2-Dio3 miRNAs.  

To investigate the specific role of the MEF2A-regulated Gtl2-Dio3 miRNAs in 

cardiac muscle, I initially overexpressed miR-410 and miR-495 using miRNA mimics in 
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NRVMs and observed a dramatic increase in cardiomyocyte proliferation. Target 

prediction analysis of miR-410 and miR-495 found that they commonly target and repress 

Cited2, a transcriptional coactivator. Significantly, its inhibition also triggered 

cardiomyocyte proliferation. Proliferation induced by miRNA overexpression or Cited2 

knockdown was associated with reduced expression of the cell cycle inhibitor 

Cdkn1c/p57/Kip2 and elevated VEGFA. These studies reveal a novel miRNA-

transcriptional coactivator pathway in the control of cardiomyocyte proliferation.  

3.2 miRNA-410 and miRNA-495 are Expressed in the Heart and Downregulated 

in MEF2A-Deficient Cardiomyocytes 

We previously reported that expression of the MEF2-regulated Gtl2-Dio3 miRNAs 

is enriched in the brain, skeletal muscle, and heart (Snyder et al. 2013). Given their 

expression in the heart and the established role of MEF2 in cardiac development and 

disease, I aimed to investigate the MEF2-Gtl2-Dio3 miRNA pathway in this tissue. I chose 

to focus on a subset of Gtl2-Dio3 miRNAs that we have shown to modulate the activity of 

the WNT signaling pathway (Snyder et al. 2013). Initially, I examined the cardiac 

expression of two of these Gtl2-Dio3 miRNAs, miR-410 and miR-495, in perinatal and 

adult hearts to determine if there was a temporal expression pattern for the Gtl2-Dio3 

miRNAs. Our prior studies have revealed low but detectable expression levels of several 

Gtl2-Dio3 miRNAs in the adult mouse heart. As shown in Figure 3.1, miR-410 and miR-

495 are expressed in both the perinatal and adult heart, but their expression was 

significantly higher in perinatal hearts, suggesting a role in perinatal cardiac function. 
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Moreover, the temporal expression pattern of these Gtl2-Dio3 miRNAs is consistent with 

MEF2 transcriptional activity in the postnatal heart (Naya et al. 1999). 

Given the above result, I then examined miR-410 and miR-495 expression in 

perinatal MEF2A knockout hearts. The majority of MEF2A knockout mice die in the 

perinatal period with severe structural abnormalities in cardiomyocytes (Naya et al. 2002). 

I found that miR-410 and miR-495 are significantly downregulated in perinatal MEF2A 

knockout hearts (Figure 3.2). To determine whether miR-410 and miR-495 are specifically 

downregulated in cardiac muscle and are dependent on MEF2A, I examined their 

expression in NRVMs in which I had depleted MEF2A using shRNA adenovirus (Ewen et 

al. 2011). shRNA-mediated knockdown of MEF2A in NRVMs resulted in a significant 

decrease in miR-410 and miR-495 expression (Figure 3.3). 

To determine whether transcription of this locus is dependent on MEF2, I analyzed 

the activity of the Gtl2 promoter in NRVMs. Previously, we demonstrated that the proximal 

promoter region of the Gtl2-Dio3 locus is directly regulated by MEF2 in skeletal muscle 

and required for proper expression of miRNAs encoded by this locus (Snyder et al. 2013). 

Similar to our results in C2C12 skeletal myoblasts, the wild type Gtl2 promoter was active 

in NRVMs. A mutation in the MEF2 binding site in the Gtl2 promoter significantly reduced 

its activity, demonstrating that transcription of the Gtl2-Dio3 locus is dependent on 

endogenous MEF2 in cardiomyocytes (Figure 3.4). Moreover, activity of the Gtl2 promoter 

was significantly reduced in MEF2A-deficient NRVMs (Figure 3.5). Together, these 

results indicate that the Gtl2-Dio3 noncoding RNA locus is dependent on MEF2, 

particularly MEF2A, activity in perinatal cardiac muscle. 
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Based on the established role of MEF2 in regulating the muscle cytoarchitecture, I 

was interested in determining whether expression of sarcomere genes is dependent on these 

Gtl2-Dio3 miRNAs (Estrella and Naya 2014). As expected, acute knockdown of MEF2A 

in NRVMs resulted in significant downregulation of sarcomere genes (Figure 3.6). Using 

hairpin inhibitors (anti-miRs), I knocked down miR-410 and miR-495 in NRVMs. Similar 

to MEF2A depletion, knockdown of miR-495, but not miR-410, caused a significant 

reduction in sarcomere gene expression (Figure 3.7). Although sarcomere genes were 

downregulated, transient knockdown of either miR-410 or miR-495 or a combination of 

the two did not cause an overt morphological phenotype. Finally, to determine whether 

these miRNAs are involved in the structural and cell death phenotype in MEF2A-deficient 

NRVMs (Ewen et al. 2011), I overexpressed miR-410 and miR-495 in MEF2A-depleted 

NRVMs. As shown in Figure 3.8, overexpression of these miRNAs resulted in a modest 

but significant upregulation of sarcomere gene expression compared to MEF2A-depleted 

NRVMs alone. Furthermore, upregulation of BIM expression, a pro-apoptotic gene, was 

significantly reduced compared to MEF2A-depleted NRVMs alone. Taken together, these 

results strongly suggest that the Gtl2-Dio3 noncoding RNAs function downstream of 

MEF2A and play a role in cardiomyocyte differentiation and/or maturation. 

3.3 Overexpression of Gtl2-Dio3 miRNA-410 and miRNA-495 Promotes 

Cardiomyocyte Proliferation 

 Given the expression of miR-410 and miR-495 in NRVMs and perinatal hearts and 

the effect of miR-495 knockdown on sarcomere genes, I asked whether overexpression of 

these miRNAs alters cardiomyocyte maturation and growth. Toward this end, I 
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overexpressed miR-410 and miR-495 in NRVMs using miRNA mimic oligonucleotides. 

Upon overexpression of these miR-410 or miR-495 mimics, I noticed an abundance of 

cardiomyocytes compared to the control mimic (Figure 3.9). The apparent increase in 

cardiomyocyte number suggested an effect on proliferation. To determine whether these 

miRNAs were inducing cell cycle activity in cardiomyocytes, I performed Ki67 

immunostaining on NRVMs in which I overexpressed miR-410 or miR-495 mimics. 

Quantification of Ki67+ NRVMs revealed a significant 3-fold increase in Ki67 

immunofluorescence upon addition of miR-410 or miR-495 mimics (Figure 3.10). 

In a complementary set of experiments, I asked whether increased cell cycle activity 

was associated with increased DNA synthesis. I performed an EdU incorporation assay and 

found that overexpression of miR-410 or miR-495 caused a noticeable increase in EdU 

immunofluorescence in NRVMs. Quantification revealed a 2.5-fold increase in EdU+ 

NRVMs upon addition of miR-410 or miR-495 (Figure 3.11). Furthermore, as an 

independent means of verifying the increase in DNA synthesis, I examined the expression 

of proliferating cell nuclear antigen (PCNA), an essential cofactor in DNA replication. 

Western blot analysis revealed a 2.0-fold or greater increase in PCNA upon overexpression 

of miR-410 or miR-495 (Figure 3.12). Taken together, these results indicate a role for miR-

410 and miR-495 in promoting neonatal cardiomyocyte proliferation. 

3.4 WNT Activity is Not Dysregulated in NRVMs Depleted of MEF2A or 

Overexpressing miRNA-410 and miRNA-495 

We previously showed that in skeletal muscle both of these MEF2-regulated 

miRNAs were predicted to target Sfrp2, an inhibitor in the wingless (WNT) signaling 
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pathway, and subsequently showed that miR-410 directly repressed Sfrp2 expression. We 

also demonstrated impaired WNT signaling in MEF2A-deficient skeletal muscle. Loss of 

MEF2A, and therefore a reduction in expression of these miRNAs, results in an increase 

in Sfrp2, resulting in attenuated WNT signaling, causing in a delay in skeletal muscle 

regeneration (Snyder et al. 2013). Therefore, I was interested in determining whether 

MEF2A and miR-410 and miR-495 modulate WNT signaling in cardiomyocytes and 

whether the WNT pathway is involved in proliferation induced by these miRNAs. Initially, 

to determine whether WNT signaling was also affected in MEF2A-deficient 

cardiomyocytes, I examined expression of Sfrp2 and Axin2, a WNT responsive target gene. 

I found no significant dysregulation of these WNT signaling components in MEF2A-

depleted NRVMs (Figure 3.13). Moreover, I found no significant difference in TOPflash 

activity, a WNT-sensitive luciferase reporter, in MEF2A-depleted NRVMs (Figure 3.14). 

Subsequently, I asked whether WNT signaling is perturbed upon overexpression of miR-

410 or miR-495. Overexpression of miR-410 or miR-495 significantly repressed Sfrp2 

expression (Figure 3.15A), but did not affect the expression of Axin2 (Figure 3.15B). 

Additionally, I found no increase in TOPflash activity when overexpressing miR-410, miR-

495, or a combination of both miR-410 and miR-495 (Figure 3.16). These results indicate 

that while Sfrp2 expression is downregulated by these Gtl2-Dio3 miRNAs in 

cardiomyocytes, unlike in skeletal muscle, reduction of Sfrp2 expression is not sufficient 

to attenuate WNT activity in neonatal cardiomyocytes. Taken together, these results 

suggest that WNT signaling is not a major pathway through which miR-410 and miR-495 

stimulate proliferation in neonatal cardiomyocytes. 
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3.5  Identification and Validation of Predicted Target Genes of miRNA-410 and 

miRNA-495 

 To determine the pathway potentially targeted by these miRNAs, I subjected miR-

410 and miR-495 sequences to messenger RNA (mRNA) target prediction algorithms 

(miRANDA, TargetScan, miRDB). Because miRANDA generated thousands of predicted 

targets, I only analyzed targets with a miRNA support vector regression (mirSVR) score 

of -1.00 or higher. The mirSVR score is algorithm that indicates the likelihood of the 

predicted target being a good target based on secondary structure and binding site 

accessibility and a cutoff of -1.00 indicates the top 7% of targets (Betel et al. 2010). This 

resulted in 746 and 1,388 predicted targets for miR-410 and miR-495, respectively (Figure 

3.17). Then I compared these predicted targets across all three prediction algorithms and 

this comparative analysis resulted in a total of 64 and 148 overlapping predicted targets for 

miR-410 and miR-495, respectively (Figure 3.17). Because this was still a relatively large 

number of potential targets for each miRNA, I further narrowed down this list by looking 

for genes that were in common in the miR-410 and miR-495 target prediction sets and 

involved in either cell proliferation or cardiac muscle. Using this approach, I identified and 

selected ten genes that fulfilled these criteria (Table 3.1) (Edelhoff et al. 1993, Wick et al. 

1995, Fiorentino et al. 2000, Tsai et al. 2000, Bamforth et al. 2001, Takakura et al. 2001, 

Waerner et al. 2001, Yoshida et al. 2002, Bamforth et al. 2004, Kobayashi et al. 2005, Otte 

et al. 2010, Hashimoto et al. 2013, Feng et al. 2015). To validate these predictions, I 

examined expression of eight of these candidate target genes in NRVMs overexpressing 

miR-410 or miR-495. As shown in Figure 3.18, the majority of the eight predicted common 
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targets were significantly downregulated in NRVMs overexpressing either miR-410 or 

miR-495. 

3.6 miRNA-410 and miRNA-495 Directly Target the 3’UTR of Cited2 

Of the validated candidate target genes, I chose to focus on Cited2. Cited2 interacts 

with the CBP/p300 coactivator and its deficiency in mice results in cardiac septal defects 

and other cardiac morphological abnormalities (Bamforth et al. 2001, Bamforth et al. 2004, 

MacDonald et al. 2013). To determine whether miR-410 and miR-495 could directly 

repress Cited2, I examined their seed sequences and the target sequence in Cited2. The 

seed sequences of miR-410 and miR-495 and their target sequences in Cited2 are conserved 

between human, mouse, and rat (Figure 3.19). I cloned the 3’UTR of Cited2 into the pMIR-

REPORT vector (Ambion) and used this construct in transient transfection assays to 

examine the ability of these miRNAs to repress this reporter. Co-transfection of the pMIR-

REPORT-3’UTR-CITED2 with either miR-410 or miR-495 mimics resulted in significant 

inhibition of the reporter (Figure 3.20). Mutation of the binding site for miRNA-410 or 

miRNA-495 in Cited2 reduced the ability of these miRNAs to repress the reporter, 

resulting in no significant difference between the wild type (WT) and miRNA-410 mutant 

or miRNA-495 mutant (MUT) reporters, respectively (Figure 3.20). These results 

demonstrate that miRNA-410 and miRNA-495 are capable of directly inhibiting Cited2 in 

cardiomyocytes. 
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3.7 Dysregulated Expression of p57 and Vegfa is Associated with miRNA-Induced 

Neonatal Cardiomyocyte Proliferation 

To better understand the mechanism by which miR-410 and miR-495 promote 

cardiomyocyte proliferation, I reasoned that target genes of Cited2 would be misregulated 

in this process. Specifically, I searched for Cited2 target genes that have been linked to 

cellular proliferation. Cdkn1c/p57/Kip2, a cell cycle inhibitor, has been shown to be 

positively regulated by Cited2 in hematopoietic stem cells (Du et al. 2012, Du and Yang 

2012). On the basis of the reduction in Cited2 expression, we would expect downregulation 

of Cdkn1c/p57/Kip2 expression in NRVMs overexpressing miR-410 or miR-495 mimics. 

To test this hypothesis, I examined expression of Cdkn1c/p57/Kip2 in NRVMs 

overexpressing miR-410 or miR-495 mimics and, as expected, observed a significant 

downregulation (Figure 3.21A). To reinforce these observations, I then examined the 

expression of an established Cited2 target gene negatively regulated by this coactivator. 

Previous studies have shown that the Vegf promoter is repressed by Cited2 (Li et al. 2012). 

In addition, delivery of VEGF to the injured heart has been shown to induce cardiomyocyte 

proliferation (Ferrarini et al. 2006, Tao et al. 2011). As shown in Figure 3.21B, 

overexpression of both miR-410 and miR-495 resulted in a significant increase in Vegfa. 

3.8 miRNA-410, miRNA-495, and Cited2 Function in the Same Pathway to 

Promote Neonatal Cardiomyocyte Proliferation 

To confirm that knockdown of Cited2 is capable of promoting cardiomyocyte 

proliferation, I inhibited Cited2 in NRVMs. NRVMs transfected with siCited2 resulted in 

a significant increase in EdU incorporation, similar to levels observed in miR-410 and miR-
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495 overexpression experiments (Figure 3.22). Additionally, transfection of siCited2 

resulted in a modest but significant decrease in p57 and increase in Vegfa levels, similar to 

the effect observed upon miR-410 and miR-495 overexpression (Figure 3.23).  

To demonstrate that miR-410 and miR-495 function in the same genetic pathway 

as Cited2 and that this gene is a relevant physiological target in cardiomyocytes, I co-

silenced miR-410 and miR-495 along with Cited2. As shown in Figure 3.24, this 

combinatorial knockdown prevented NRVMs from proliferating. This result demonstrates 

that loss of Cited2 is likely responsible for the miR-410- and miR-495-induced 

cardiomyocyte proliferation. 

3.9 Dysregulated Expression of p57 and Vegfa in MEF2A-Deficient 

Cardiomyocytes 

Because the Gtl2-Dio3 miRNAs function downstream of MEF2A in 

cardiomyocytes, I asked whether the genes dysregulated in miR-410 and miR-495 

overexpression were also affected in MEF2A deficiency. Consistent with my results that 

loss of MEF2A causes a reduction in miR-410 and miR-495, I found that both Cited2 and 

p57 were upregulated, whereas Vegfa was significantly downregulated in MEF2A-depleted 

NRVMs (Figure 3.25A). In a similar fashion, Cited2 and p57 were significantly 

upregulated in perinatal MEF2A knockout hearts (Figure 3.25B). The above gene 

expression pattern is contrary to that observed in miR-410- and miR-495-induced 

cardiomyocyte proliferation but entirely consistent with the downregulation of these 

miRNAs in MEF2A deficiency. Collectively, these data strongly support the notion that 
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the MEF2-Gtl2-Dio3 noncoding RNA pathway regulates proper neonatal cardiomyocyte 

growth and survival. 

3.10 Discussion 

Molecularly defining the mechanisms by which differentiated cardiomyocytes can 

be induced to proliferate remains an important endeavor given the possibilities of 

translating this knowledge to stimulate repair of damaged cardiac tissue. In this chapter, I 

demonstrate that miR-410 and miR-495, miRNAs transcribed from the Gtl2-Dio3 

noncoding RNA locus, effectively promote proliferation in neonatal cardiomyocytes. My 

results also show that expression of miR-410 and miR-495 and regulation of the Gtl2 

promoter in cardiomyocytes are dependent on the MEF2A transcription factor. Previously, 

we reported that miR-410 and miR-495 belong to a subset of miRNAs in the Gtl2-Dio3 

locus that modulate WNT signaling in skeletal muscle differentiation and regeneration 

(Snyder et al. 2013). By contrast, these miRNAs and MEF2A do not significantly modulate 

WNT activity in cardiomyocytes. Instead, miR-410 and miR-495 regulate the expression 

of the transcriptional coactivator Cited2, whose downregulation induces cardiomyocyte 

proliferation. 

Recently, miRNAs have emerged as key regulators of cardiomyocyte proliferation 

(Xin et al. 2013, Zacchigna and Giacca 2014). These small regulatory RNAs have been 

shown to modulate proliferation in either a positive or negative manner, indicating that 

cardiomyocytes employ these molecules to tightly control the cell cycle. Indeed, a high 

throughput overexpression screen revealed that miR-199a and miR-590 stimulated 

proliferation of post-mitotic, neonatal and adult cardiomyocytes (Eulalio et al. 2012). 
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Interestingly, this study listed miR-495 among a cohort of miRNAs capable of stimulating 

cardiomyocyte proliferation. However, this miRNA was not molecularly characterized, 

and the mechanism by which it promotes proliferation was not investigated. 

MiRNAs encoded by the Gtl2-Dio3 noncoding RNA locus have been linked to 

cancer, tumor formation, and central nervous system diseases (Bandres et al. 2006, Li et 

al. 2008, Chen et al. 2009, Zhang et al. 2010, Hwang-Verslues et al. 2011, Shih et al. 2011, 

Skalsky and Cullen 2011, Tang et al. 2011). Regarding the individual function of miR-410 

and miR-495, the vast majority of reports have linked both of these miRNAs to oncogenic 

pathways. Some studies have suggested a tumor suppressor role for these miRNAs (Chen 

et al. 2012, Chu et al. 2014, Wang et al. 2014), whereas others have indicated a pro-

proliferative effect on tumor growth. Along these lines, miR-410 was shown to be 

upregulated in liver cancer and enhanced tumor cell growth (Wang et al. 2014). MiR-495 

has been shown to stimulate proliferation of human umbilical vein endothelial cells (Liu et 

al. 2015). Taken together, these findings provide strong evidence that miR-410 and miR-

495 have the ability to regulate cell cycle activity and that this function has been conserved 

in cardiomyocytes. 

It is intriguing that Cited2 emerged as a top predicted target for both miR-410 and 

miR-495 since this transcriptional coactivator has been linked to important developmental 

processes in the heart. Cited2 global knockout mice are embryonic lethal because of defects 

in left-right patterning, ventricular septation, outflow tract and aortic arch malformation 

(Bamforth et al. 2001, Bamforth et al. 2004). Cardiomyocyte-specific Cited2 knockout 

mice revealed a requirement specifically in cardiomyocytes with defects in normal 
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myocardial thickening and ventricular septation (MacDonald et al. 2013). Furthermore, 

mutations in Cited2 are associated with congenital heart disease in humans, pointing to an 

important role for this transcriptional coactivator in cardiac muscle (Sperling et al. 2005, 

Xu et al. 2014). 

Cited2 interacts with a number of transcription factors including TFAP2 and HIF1-

α (Yin et al. 2002, Braganca et al. 2003). Interestingly, TFAP2 mutations have also been 

linked to congenital heart disease (Zhao et al. 2001, Mani et al. 2005). Cited2 has also been 

shown to regulate the expression of the cell cycle inhibitor p57 in hematopoietic stem cells 

and p57 levels are decreased in the Cited2 knockout mouse (Bamforth et al. 2001, 

Bamforth et al. 2004). Furthermore, TFAP2 overexpression results in increased p57 

expression (Jonckheere et al. 2009). Consistent with the above findings, I showed that loss 

of Cited2 resulted in a decrease in p57 expression, leading to increased cell cycle activity 

and cardiomyocyte proliferation. 

Whereas Cited2 functions to stimulate TFAP2 activity, it is a negative regulator of 

HIF1-α (Yin et al. 2002). Indeed, HIF1-α is increased in Cited2 knockout mice, resulting 

in the increase in HIF1-α-responsive genes, such as VEGF (Du et al. 2012). I show that 

increased cardiomyocyte proliferation is associated with increased expression of Vegfa. 

Curiously, delivery of VEGF to cardiac cells post-injury has been shown to improve 

cardiomyocyte proliferation and function and to reduce myocardial infarct size (Ferrarini 

et al. 2006, Vera Janavel et al. 2006, Tao et al. 2011, Awada et al. 2015). Interestingly, a 

recent study reported that miR-410 directly targets human VEGF in osteosarcoma cells 

(Zhao et al. 2015). These observations suggest that the proliferation phenotype in miR-410 
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overexpressing NRVMs may be due to a direct effect of this miR on Vegfa expression. 

Because Vegfa expression was upregulated upon miR-410 and miR-495 overexpression, it 

is unlikely that miR-410 is directly repressing Vegfa in this context and reinforces the 

notion that Vegfa is primarily regulated through Cited2 activity in cardiomyocytes. 

Therefore, the fine-tuning of Cited2 activity by miR-410 and miR-495 appears to be 

important for proper perinatal cardiomyocyte maturation and proliferation. 

This chapter clearly demonstrates a role for the Gtl2-Dio3 miRNAs in 

cardiomyocyte proliferation and the potential of these regulatory RNAs to induce 

regeneration of diseased cardiac muscle in vivo. Delivery of the Gtl2-Dio3 miRNAs may 

be a potential therapeutic target to stimulate cardiomyocyte proliferation and reduce 

cardiac damage post-injury in the postnatal heart.  
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Figure 3.1 Gtl2-Dio3 microRNA expression in wild-type cardiac muscle. Quantitative 

RT-PCR analysis of miR-410 and miR-495 in perinatal and adult wild-type cardiac muscle 

shows miRNAs are highly expressed in the perinatal heart compared to 5S rRNA control. 

miRNA expression values in adult tissue was normalized to one. Relative expression of 

miRNAs represents the fold change in expression in the perinatal time period compared to 

the adult. Error bars represent S.E.M. n≥3. *, p<0.05. 

  



 

 

72 

 

 

 

 

 

 

 

Figure 3.2 Gtl2-Dio3 microRNA expression in MEF2A knockout perinatal cardiac 

muscle. Quantitative RT-PCR analysis of miR-410 and miR-495 in perinatal wild-type 

(WT) and MEF2A knockout (KO) cardiac muscle shows decreased miRNA expression in 

MEF2A KO mice compared to 5S rRNA control. miRNA expression values in WT tissue 

was normalized to one. Relative expression of miRNAs represents the fold change in 

expression in KO tissue compared to WT tissue. Error bars represent S.E.M. n≥3. *, 

p<0.05; **, p<0.01. 
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Figure 3.3 Gtl2-Dio3 microRNA expression in MEF2A-deficient NRVMs. Quantitative 

RT-PCR analysis of miR-410 and miR-495 in control (shlacZ) and MEF2A-deficient 

(shMef2a) NRVMs shows decreased miRNA expression in MEF2A-deficient 

cardiomyocytes compared to 5S rRNA control. miRNA expression values in shlacZ 

NRVMs was normalized to one. Relative expression of miRNAs represents the fold change 

in expression in shMef2a NRVMs compared to shlacZ NRVMs. Error bars represent 

S.E.M. n≥3. *, p<0.05; **, p<0.01. 
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Figure 3.4 MEF2 regulates transcription of the Gtl2-Dio3 microRNAs in cardiac 

muscle. Luciferase assay analysis of pGL3 basic MEF2 site activation by MEF2A was 

performed by transient transfection in NRVMs. WT MEF2 site activation (WT) versus 

empty vector (pGL3 basic) showed increased activity of the Gtl2 promoter reporter. 

Mutation of the MEF2 site (MUT) significantly decreased luciferase activity relative to the 

wild type site. Error bars represent S.E.M. n≥3. *, p<0.05. 
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Figure 3.5 MEF2A directly regulates transcription of the Gtl2-Dio3 microRNAs in 

cardiac muscle. WT MEF2 site activation in control shlacZ versus shMef2a transduced 

NRVMs. MEF2A-deficient NRVMs show a significant decrease in luciferase reporter 

activity relative to the shlacZ control. Error bars represent S.E.M. n≥3. *, p<0.05. 

  



 

 

76 

 

 

 

 

 

 

 

 
 

 

 

Figure 3.6 Sarcomere gene expression is downregulated in MEF2A-depleted NRVMs. 

Quantitative RT-PCR analysis of cardiac sarcomere genes in control (shlacZ) and MEF2A 

knockdown (shMef2a) NRVMs compared to GAPDH. Gene expression values in shlacZ 

NRVMs were normalized to one. Relative expression represents the fold change in 

expression in shMef2a NRVMs compared to shlacZ NRVMs. Error bars represent S.E.M. 

n≥3. ***, p<0.001. 
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Figure 3.7 Sarcomere gene expression is downregulated in miRNA-495 knockdown 

NRVMs. Quantitative RT-PCR analysis of cardiac sarcomere genes in control (antimiR-

NC) and miR-495 knockdown (antimiR-495) NRVMs compared to GAPDH. Gene 

expression values in miR-NC knockdown NRVMs were normalized to one. Relative 

expression represents the fold change in expression in antimiR-495 knockdown NRVMs 

compared to antimiR-NC knockdown NRVMs Error bars represent S.E.M. n≥3. *, p<0.05; 

***, p<0.001.  
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Figure 3.8 Overexpression of miRNA-410 and miRNA-495 partially rescues the 

MEF2A-deficient downregulation of sarcomere genes and upregulation of apoptotic 

gene BIM. Overexpression of miR-410 and miR-495 in MEF2A-depleted NRVMs 

upregulates sarcomere gene expression and reduces BIM expression compared to GAPDH. 

Gene expression values in shlacZ NRVMs were normalized to one. Relative expression 

represents the fold change in expression in shMef2a and shMef2a+miR-410/495 NRVMs 

compared to shlacZ NRVMs Error bars represent S.E.M. n≥3. *, p<0.05; **, p<0.01; ***, 

p<0.001. 
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Figure 3.9 Overexpression of miRNA-410 and miRNA-495 results in increased cell 

number. Cell number upon overexpression of miR-NC, miR-410, or miR-495 compared 

to untransfected control NRVMs shows a 1.64-fold increase in cells upon overexpression 

of miR-410 and a 1.75-fold increase in cells upon overexpression of miR-495. Error bars 

represent S.E.M. n≥3. ***, p<0.001. 

 

 

 



 

 

80 

 

           

Figure 3.10 Overexpression of miRNA-410 or miRNA-495 results in increased Ki67 

immunostaining in NRVMs. A) Representative images of Ki67 immunostaining. miR-

NC#1 (top), miR-410 (middle), miR-495 (bottom). α-actinin staining in green, Ki67 

staining in red, DAPI staining in blue. B) Quantification of Ki67+ NRVMs. C) Relative 

fold change of Ki67+ NRVMs in miR-410 and miR-495 overexpression compared to miR-

NC#1. Arrows indicate Ki67+ NRVMs. For each miR mimic overexpression, a total of 

1500 cardiomyocytes were counted. Scale bars are 20 µm. Error bars represent S.E.M. n≥3. 

*, p<0.05; **, p<0.01.  
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Figure 3.11 Overexpression of miRNA-410 or miRNA-495 results in increased EdU 

incorporation in NRVMs. A) Representative images of EdU assay. miR-NC#1 (top), 

miR-410 (middle), miR-495 (bottom). α-actinin staining in green, EdU staining in red, 

DAPI staining in blue. B) Quantification of EdU+ NRVMs. C) Relative fold change of 

EdU+ NRVMs in miR-410 and miR-495 overexpression compared to miR-NC#1. Arrows 

indicate EdU+ NRVMs. For each miR mimic overexpression, a total of 1500 

cardiomyocytes were counted. Scale bars are 20 µm. Error bars represent S.E.M. n≥3. *, 

p<0.05; **, p<0.01.  
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Figure 3.12 Overexpression of miRNA-410 or miRNA-495 results in increased PCNA. 

A) Representative western blot analysis of proliferating cell nuclear antigen (PCNA) in 

NRVMs overexpressed with miR-NC#1, miR-410, and miR-495. B) Densitometry of 

PCNA western blot. Error bars represent S.E.M. n≥3. *, p<0.05. 

  

A.  B. 



 

 

83 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3.13 WNT signaling pathway members are not affected in MEF2A-deficient 

cardiomyocytes. Quantitative RT-PCR of WNT signaling members Sfrp2 and Axin2 show 

no significant change in MEF2A-deficient cardiomyocytes. Gene expression values in 

shlacZ NRVMs were normalized to one. Relative expression represents the fold change in 

expression in shMef2a NRVMs compared to shlacZ NRVMs. Error bars represent S.E.M. 

n≥3.  n.s. not significant. 
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Figure 3.14 TOPflash reporter indicates no dysregulation of WNT signaling in 

MEF2A-deficient NRVMs. TOPflash luciferase reporter activity shows no significant 

difference in activity when knocking down MEF2A (shMef2a) relative to shlacZ control. 

Error bars represent S.E.M. n≥3. n.s. not significant. 
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Figure 3.15 Overexpression of miRNA-410 or miRNA-495 does not alter WNT 

signaling in cardiomyocytes. A) Quantitative RT-PCR of Sfrp2 upon overexpression of 

miR-410 and miR-495 relative to miR-NC. B) Quantitative RT-PCR of Axin2 upon 

overexpression of miR-410 and miR-495 relative to miR-NC. Gene expression values in 

miR-NC NRVMs were normalized to one. Relative expression represents the fold change 

in expression in miR-410 NRVMs and miR-495 NRVMs compared to miR-NC NRVMs. 

Error bars represent S.E.M. n≥3. n.s. not significant; **, p<0.01; ***, p<0.001. 

A. 

B. 
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Figure 3.16 TOPflash reporter indicates no upregulation of WNT signaling in miRNA 

overexpression NRVMs. TOPflash luciferase reporter activity when overexpressing miR-

410, miR-495, and miR-410+miR-495 in NRVMs relative to miR-NC. Error bars represent 

S.E.M. n≥3. n.s. not significant; *, p<0.05. (A. Clark, unpublished data) 
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Figure 3.17 Predicted Targets of miRNA-410 and miRNA-495. Venn diagrams showing 

the predicted targets for miR-410 and miR-495 based on target prediction algorithms 

(miRANDA, miRDB, TargetScan). 
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Figure 3.18 Validation of Predicted Targets of miRNA-410 and miRNA-495. 

Quantitative RT-PCR of eight of the top 10 predicted targets for miR-410 and miR-495 in 

NRVMs transfected with miR-410 or miR-495 mimics relative to GAPDH. Gene 

expression values in miR-NC NRVMs were normalized to one. Relative expression 

represents the fold change in gene expression in miR-410 NRVMs and miR-495 NRVMs 

compared to miR-NC NRVMs. Error bars represent S.E.M. n≥3. n.s. = not significant; *, 

p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 3.19 miRNA-410 and miRNA-495 target sequences are evolutionarily 

conserved. Sequence alignments of miR-410 and miR-495 seed sequences and predicted 

3’UTR Cited2 target sites show 100% conservation between human, mouse, and rat. hsa, 

Homo sapiens; mmu, Mus musculus; rno, Rattus norvegicus.  
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Figure 3.20 miRNA-410 and miRNA-495 directly target Cited2. Luciferase analysis of 

pMIR-REPORT-3’UTR-Cited2 (WT) co-transfected with miR-410 and miR-495 mimics 

(150nM, Dharmacon) in NRVMs cells compared with a non-specific control (miR-NC#1). 

Luciferase analysis of miR-410 seed sequence mutant and miR-495 seed sequence mutant 

(MUT) co-transfected with miR-410 and miR-495 mimics (150nM, Dharmacon) in 

NRVMs compared with a non-specific control (miR-NC#1). Error bars represent S.E.M. 

n≥3. *, p<0.05; **, p<0.01; ***, p<0.001.  
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Figure 3.21 Overexpression of miRNA-410 or miRNA-495 results in decreased 

Cdkn1c/p57/Kip2 expression and increased Vegfa expression in NRVMs. A) 

Quantitative RT-PCR of Cdkn1c/p57/Kip2 expression levels when overexpressing miR-

410 or miR-495 results in 2.5-fold reduction in Cdkn1c/p57/Kip2. B) Quantitative RT-PCR 

of Vegfa expression levels when overexpressing miRNA-410 or miRNA-495 results in 2.0-

fold or greater increase in Vegfa. Gene expression values in miR-NC NRVMs were 

normalized to one. Relative expression represents the fold change in gene expression in 

miR-410 NRVMs and miR-495 NRVMs compared to miR-NC NRVMs. Error bars 

represent S.E.M. n≥3. *, p<0.05; **, p<0.01. 

A. 

B. 
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Figure 3.22 Cited2 knockdown results in increased cardiomyocyte proliferation.                        

Representative images of EdU assay. siControl (top), siCited2 (bottom). α-actinin staining 

in green, EdU staining in red, DAPI staining in blue. Quantification of EdU+ NRVMs. 

Relative fold change of EdU+ NRVMs in siCited2 compared to siControl. Arrows indicate 

EdU+ NRVMs. For each knockdown, a total of 1400 cardiomyocytes were counted. Scale 

bars are 20 µm. Error bars represent S.E.M. n≥3. *, p<0.05; **, p<0.01. 
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Figure 3.23 Knockdown of Cited2 results in decreased p57 expression and increased 

Vegfa expression in NRVMs. Quantitative RT-PCR of Cited2, p57, and Vegfa expression 

levels when knocking down Cited2 via siRNA. Gene expression values in siControl 

NRVMs were normalized to one. Relative fold change represents the fold change in 

expression in siCited2 NRVMs compared to siControl NRVMs. Error bars represent 

S.E.M. n≥3. *, p<0.05; ***, p<0.001. 
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Figure 3.24 Cotransfecting siCited2 and antimiRNA-410 or antimiRNA-495 returns 

proliferation to normal levels. Co-silencing Cited2, miR-410, and miR-495 prevent 

cardiomyocyte proliferation. Representative images of EdU incorporation assay. siControl 

(top), siCited2+antimiR-NC, siCited2+antimiR-410, siCited2+antimiR-495 (bottom). α-

actinin staining in green, EdU staining in red, DAPI staining in blue. Relative fold change 

of EdU+ NRVMs shows combinatorial knockdown of Cited2 and miR-410 and miR-495 

results in normal cardiomyocyte proliferation. Arrows indicate EdU+ NRVMs. For each 

knockdown, a total of 1000 cardiomyocytes were counted. Scale bars are 20 µm. Error bars 

represent S.E.M. n≥3. n.s., not significant; ***, p<0.001. 
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Figure 3.25 Dysregulated Cited2, p57, and Vegfa expression in MEF2A-deficient 

cardiomyocytes. A) Quantitative RT-PCR of Cited2, p57, and Vegfa expression levels in 

MEF2A-deficient NRVMs. B) Quantitative RT-PCR of Cited2, p57, and Vegfa expression 

levels in perinatal MEF2A knockout cardiac muscle. Error bars represent S.E.M. n≥3. n.s., 

not significant; *, p<0.05; **, p<0.01; ***, p<0.001. 
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Table 3.1 Top 10 Predicted Targets of miRNA-410 and miRNA-495. The top 10 

predicted targets of both miR-410 and miR-495 and their known roles in cardiac muscle 

and/or proliferation. 
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CHAPTER FOUR – GTL2-DIO3 NONCODING RNAS ARE DYNAMICALLY 

REGULATED IN DIVERSE CARDIOMYOPATHIES AND THEIR INHIBITION 

ATTENUATES PATHOLOGICAL HYPERTROPHY  

4.1 Introduction 

Cardiovascular disease is the leading cause of death and morbidity in the developed 

world (Mozaffarian et al. 2015). Elucidating the underlying gene regulatory mechanisms 

that lead to heart failure could uncover new ways to develop novel therapeutics for 

cardiovascular disease. Recently, miRNAs have been shown to play roles in cardiac 

hypertrophy and heart failure. Accumulating evidence suggests that manipulating miRNA 

expression is an effective therapeutic approach in the treatment of cardiovascular disease 

(van Rooij and Olson 2007, Thum et al. 2008, Small and Olson 2011, Neppl and Wang 

2014). 

The Gtl2-Dio3 noncoding RNA locus (described in detail in Chapter 1.5) generates 

more than 50 miRNAs and one or more long noncoding RNAs (lncRNAs) including Gtl2, 

which resides at the 5’-end of the putative, single (~200 kilobases) polycistronic transcript 

(da Rocha et al. 2008). Expression of the Gtl2-Dio3 locus has been shown to correlate with 

pluripotency in embryonic and induced pluripotent stem cells, and its dysregulation is 

associated with a number of human diseases (Liu et al. 2010, Benetatos et al. 2013). 

Moreover, the Gtl2 lncRNA has recently emerged as a key epigenetic factor in pluripotency 

by modulating the activity of Polycomb Repressive Complex 2 (PRC2) (Zhao et al. 2010, 

Kaneko et al. 2014). The regulation of PRC2 activity in cis by Gtl2 is required to maintain 
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proper and coordinated expression of the entire Gtl2-Dio3 noncoding RNA locus in ES 

cells (Das et al. 2015). 

Because of the ability of miR-410 and miR-495 to promote proliferation of post-

mitotic cardiomyocytes (described in Chapter 3) and the potential of harnessing this 

activity to promote cardiac regeneration, I was interested in examining their regulation in 

heart disease. Additionally, given that MEF2 is a key mediator of pathological remodeling 

of the heart, I was interested in determining whether misexpression of its noncoding RNA 

targets is capable of modulating the response to stress signaling in cardiomyocytes. 

Therefore, in this chapter, I examined expression of multiple noncoding RNAs throughout 

the Gtl2-Dio3 locus including the lncRNA Gtl2, miR-410, miR-495, and miR-433. 

In this chapter, I performed a comprehensive expression analysis of a subset of 

Gtl2-Dio3 miRNAs and the Gtl2 lncRNA in a mouse model of myocardial infarction (MI) 

as well as a model of pathological hypertrophy induced by administration of the 

hypertensive agonist angiotensin II (Ang II). Moreover, I examined cardiac expression of 

Gtl2-Dio3 noncoding RNAs in cardiomyopathies that result from genetic defects including 

dystrophic cardiomyopathies, such as the mdx mouse model of Duchenne Muscular 

Dystrophy (DMD) and the DyW mouse model of laminin-α2 deficient congenital muscular 

dystrophy type 1A (MDC1A), as well as the adult MEF2A knockout mouse and the 

MEF2A/mdx mouse. Although the aforementioned cardiac disease models have distinct 

etiologies, the miRNAs and Gtl2 lncRNA were upregulated in all cardiomyopathies. 

However, the Gtl2 lncRNA and miRNAs displayed dramatic differences in their temporal 

regulation in the progression of MI and in MEF2A knockout hearts. Finally, I show for the 



 

 

99 

first time that knockdown of the Gtl2-Dio3 miRNAs in cardiomyocytes subjected to stress 

signaling in vitro attenuates the maladaptive increase in cell size, indicating that the Gtl2-

Dio3 noncoding RNAs are essential mediators of pathological signaling in the heart. 

4.2 Gtl2-Dio3 Noncoding RNAs are Dynamically Regulated in Cardiac Injury and 

Hypertrophy Mouse Models 

 As explained in Chapter 3, two miRNAs in the Gtl2-Dio3 locus, miR-410 and miR-

495, are abundantly expressed in neonatal mouse hearts and their overexpression potently 

stimulates proliferation of neonatal cardiomyocytes in vitro (Clark and Naya 2015). By 

contrast, I found that these miRNAs were expressed at significantly lower levels in the 

adult heart, consistent with the permanent cell cycle withdrawal of adult cardiomyocytes. 

Because mature cardiomyocytes are unable to proliferate in the adult heart in response to 

damage or disease, I was interested in determining whether expression of the Gtl2-Dio3 

noncoding RNAs is regulated in pathological conditions by examining expression of Gtl2-

Dio3 noncoding RNAs in adult cardiomyopathies. 

 Initially, I examined expression of Gtl2-Dio3 noncoding RNAs in a heart injury 

model by surgically inducing myocardial infarction (MI) in mice (Shibata et al. 2007). I 

examined temporal expression of the Gtl2 lncRNA and the Gtl2-Dio3-encoded miRNAs 

miR-410, miR-495, and miR-433 in the progression of this cardiac injury at 1-, 3-, and 7-

days post-infarction. Moreover, I compared their spatial expression differences in remote 

uninjured or spared myocardium (RM) and infarcted area (IA) regions of the heart. As 

shown in Figure 4.1, one day after infarction there was a significant increase in the Gtl2 

lncRNA in both the RM and IA compared to sham-operated control hearts. I also noted a 
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lesser but significant upregulation of the miRNAs in the RM which was not observed in 

the IA (Figure 4.1). By 3 days post-injury, however, expression of these miRNAs was 

significantly upregulated in both the remote and infarcted areas of the heart, but to a 

significantly greater extent in the IA relative to the RM (Figure 4.2). On the other hand, at 

3 days post-infarction, expression of the Gtl2 lncRNA was significantly reduced in the RM 

but expression in the IA remained relatively unchanged. By 7 days post-infarct, expression 

of the Gtl2-Dio3 miRNAs in the RM remained significantly upregulated compared to sham 

and at levels comparable to those seen at day 3 (Figure 4.3). Notably, expression of the 

miRNAs in the IA was now 10-30-fold higher relative to the RM levels (Figure 4.3). In 

striking contrast, by 7 days post-infarction, expression of the Gtl2 lncRNA was 

downregulated to control levels (Figure 4.3). To my knowledge, these results reveal for the 

first time an uncoupling of the regulation of the Gtl2 lncRNA from the downstream 

miRNAs in the injured heart. 

 To determine whether the Gtl2-Dio3 noncoding RNAs are regulated in response to 

pathological cardiac hypertrophy, I also examined the expression of these transcripts  3-, 

7-, and 14-days after administration of Ang II, a potent cardiotoxic hormone that promotes 

extensive myocardial hypertrophy and fibrosis (Kim and Iwao 2000). Similar to the 

temporal expression differences observed in MI, the Gtl2 lncRNA was significantly 

upregulated in the early stages of Ang II-mediated hypertrophy at day 3, whereas two out 

of the three miRNAs were unaffected (Figure 4.4). However, after 7 days of chronic Ang 

II treatment, the lncRNA and miRNAs were significantly upregulated relative to sham 

controls and to day 3 levels. The Gtl2 lncRNA and miRNAs remained significantly 
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upregulated at 14 days post-angiotensin II treatment (Figure 4.4). Interestingly, the 

lncRNA showed a significant reduction in expression on day 14 compared to its levels on 

day 7 (Figure 4.4). These data indicate that the Gtl2-Dio3 noncoding RNAs are also 

dynamically regulated in response to pathological hypertrophy. 

4.3 Gtl2-Dio3 Noncoding RNAs are Upregulated in Cardiomyopathies from 

Genetic Defects 

 To determine whether the Gtl2-Dio3 noncoding RNAs are regulated in 

cardiomyopathies stemming from genetic structural mutations, I examined their expression 

in hearts from dystrophin- and laminin 2 (merosin)-deficient muscular dystrophy mice. 

Dystrophin-deficient mdx mice are the most commonly used mouse model of Duchenne 

Muscular Dystrophy (DMD) (Partridge 2013). While the major phenotype of DMD is 

skeletal muscle wasting, these patients often suffer from cardiomyopathy and often die due 

to cardiac complications (Duan 2006, Finsterer and Cripe 2014, McGreevy et al. 2015, van 

Westering et al. 2015). Mdx mice exhibit an aging-related cardiomyopathy but have been 

shown to display intolerance to cardiac stress between 1 and 3 months of age (Stuckey et 

al. 2012). I examined the expression of the Gtl2-Dio3 noncoding RNAs at 10 weeks and 

found them to be uniformly and significantly upregulated in the heart (Figure 4.5). I next 

examined Gtl2-Dio3 noncoding RNA expression in laminin-α2 (merosin)-deficient DyW 

mice, a model of Congenital Muscular Dystrophy (MDC1A). While mdx mice are capable 

of successful regeneration, laminin-α2-deficient mice have limited or no regenerative 

capacity (Kuang et al. 1999). Although cardiac failure in this muscular dystrophy is less 

common, moderate cardiac abnormalities have been reported (Spyrou et al. 1998, Carboni 
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et al. 2011). Similar to mdx hearts, expression of the Gtl2-Dio3 noncoding RNAs in 7 week 

old laminin-α2-deficient hearts was significantly upregulated (Figure 4.6). Together, these 

data indicate that the Gtl2-Dio3 noncoding RNAs are upregulated in cardiomyopathies 

arising from structural mutations. 

 Lastly, I examined the expression of the Gtl2-Dio3 noncoding RNAs in the adult 

MEF2A knockout heart. In Chapter 3, I showed that the Gtl2-Dio3 miRNAs are 

downregulated in perinatal MEF2A mutant hearts (Clark and Naya 2015). However, it is 

unknown whether this locus is dependent on this transcription factor in the adult heart. 

Moreover, a subset of MEF2A knockout mice survives and displays adult onset 

cardiomyopathy characterized by mitochondrial and conduction abnormalities (Naya et al. 

2002). Interestingly, these adult mutant hearts also show elevated MEF2 activity, likely 

due to the stress-induced activation of MEF2D, the other adult MEF2 isoform known to be 

required in pathological cardiac remodeling (Kim et al. 2008). In contrast to the 

downregulated expression of the Gtl2-Dio3 miRNAs in perinatal mutant hearts, these 

miRNAs were significantly upregulated in adult MEF2A knockout hearts (Figure 4.7). 

Unexpectedly, whereas the miRNAs were upregulated, there was a significant 

downregulation in Gtl2 lncRNA expression (Figure 4.7). This differential effect on the 

Gtl2-Dio3 locus in adult MEF2A mutant hearts is reminiscent of the uncoupled regulation 

observed between the lncRNA and miRNAs in the MI model described in Figure 4.3. 

Furthermore, I generated a MEF2A/mdx double mutant mouse and examined the 

expression of the Gtl2-Dio3 miRNAs. Interestingly, I found the double mutant resulted in 

an additive effect on the expression of the Gtl2-Dio3 miRNAs in the heart (Figure 4.8). 
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Together, these results support the notion that the Gtl2-Dio3 miRNAs are upregulated in 

response to genetic defects that result in cardiomyopathy. 

4.4 Gtl2-Dio3 Noncoding RNAs are Regulated by MEF2 in Cardiac Stress 

Signaling 

To determine whether the upregulation of the Gtl2-Dio3 noncoding RNAs in 

diseased hearts occurred in cardiomyocytes, I examined their expression in isolated 

cardiomyocytes subjected to stress stimuli. NRVMs were treated with Ang II or 

phenylephrine (PE), another hormonal cardiac stressor that promotes pathological cardiac 

hypertrophy. Both Ang II and PE induced cardiac hypertrophy, demonstrated by increased 

cardiomyocyte (CM) area (Figure 4.9) and Nppa, induced atrial natriuretic factor (ANF), 

and Nppb, brain natriuretic peptide (BNP), expression (Figure 4.10). Similar to my in vivo 

data, I found that the Gtl2-Dio3 lncRNA and miRNAs were significantly upregulated in 

response to both hypertrophic conditions (Figure 4.11).  

 The above results prompted me to investigate the molecular pathway leading to the 

induction of the Gtl2-Dio3 noncoding RNAs in stressed cardiomyocytes. For these studies, 

I examined the response of the Gtl2-Dio3 promoter to the above hypertrophic stimuli using 

a luciferase reporter assay. As shown in Figure 4.12, activity of the Gtl2 proximal promoter 

in PE- and Ang II-treated NRVMs was significantly increased in the presence of these 

stimuli. Given that Gtl2-Dio3 is a direct MEF2 target gene and that MEF2 is a key mediator 

of cardiac stress signaling, I next examined the activity of a mutant Gtl2 promoter 

harboring a mutation in the MEF2 site. Mutation of the MEF2 site significantly attenuated 
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the response of the Gtl2 promoter to both stimuli, demonstrating the requirement of MEF2 

in this response (Figure 4.12).  

4.5 Knockdown of Gtl2-Dio3 microRNAs Reduces Hypertrophic Growth in 

Cardiomyocytes 

In order to determine the requirement of Gtl2-Dio3 miRNAs in cardiomyocyte 

hypertrophy, their expression was inhibited in NRVMs treated with PE since this hormone 

induced the most robust effect. I first confirmed that addition of miRNA-specific antimiRs 

significantly decreased expression of miR-410, miR-495, and miR-433, respectively 

(Figure 4.13A-C). Knockdown of these miRNAs individually in PE-treated NRVMs 

resulted in significantly decreased cardiomyocyte area (Figure 4.14). Furthermore, 

expression of the hypertrophic marker genes Nppa (ANF) and Nppb (BNP) was 

significantly reduced (Figure 4.15). Together, these results indicate that inhibition of miR-

410, miR-495, and miR-433 individually is sufficient to attenuate the response of 

cardiomyocytes to stress signals, indicating a role for these noncoding RNAs in 

pathological cardiac remodeling. 

4.6 Discussion 

In this chapter, I demonstrate that the Gtl2-Dio3 noncoding RNA locus is 

dynamically regulated in cardiomyopathies with diverse etiologies and function as pro-

hypertrophic molecules in cardiomyocyte stress signaling. Expression analysis of the Gtl2 

lncRNA and the miRNAs (miR-410, miR-433, and miR-495) in acute MI and chronic Ang 

II administration revealed marked differences in their spatio-temporal regulation in 

response to these cardiac stressors. Furthermore, hypertrophic agonists potently activated 
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the Gtl2-Dio3 proximal promoter and induced expression of both the lncRNA and miRNAs 

in isolated cardiomyocytes. Consistent with their upregulation, inhibition of the miRNAs 

blunted cardiomyocyte hypertrophy. These data demonstrate the complex regulation of the 

Gtl2-Dio3 locus in cardiac diseases and how differential expression of its noncoding RNAs 

may be associated with distinct pathophysiological gene regulatory mechanisms. 

In this Chapter, I examined the spatio-temporal regulation of the Gtl2-Dio3 

lncRNA and miRNAs in the progression of myocardial infarction and Ang II-induced 

hypertrophy. While other studies have reported the dysregulation of Gtl2-Dio3 miRNAs in 

cardiomyopathy models including myocardial infarction (Ikeda et al. 2007, Thum et al. 

2007, Yang et al. 2012, Janssen et al. 2013), these studies did not analyze expression of 

these transcripts in disease progression. Moreover, comparative expression of both classes 

of noncoding RNAs (lncRNAs and miRNAs) in discrete regions of the injured heart, e.g. 

the remote myocardium and infarct area, whose pathological microenvironments are 

radically different, was not performed. 

The upregulation of these miRNAs in mdx and DyW hearts warrants further 

investigation. Currently, only treatments to alleviate symptoms of muscular dystrophy are 

available. Previously, the Gtl2-Dio3 miRNAs were reported to be upregulated in serum of 

the DMD mdx mouse model, the golden retriever dog model, as well as in humans 

(Jeanson-Leh et al. 2014). I show here that these miRNAs are upregulated in the cardiac 

muscle of these mice. Examining the expression of these miRNAs in older mdx and DyW 

mice as well as investigating the pathways they may be regulating may provide insight into 

other therapeutic treatment options for these diseases. 
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My detailed analyses revealed different expression profiles of the Gtl2-Dio3 

noncoding RNAs in a subset of the cardiac disease models. These differences were most 

evident in the MI model, which revealed contrasting spatio-temporal expression patterns 

of the Gtl2 lncRNA and miRNAs in the early and late stages of this cardiac injury. These 

differences may reflect the pathophysiology unique to this cardiomyopathy such that the 

distinct functional classes of noncoding RNAs processed from this locus are utilized for 

different aspects of genome reprogramming in cardiomyocytes that help drive pathological 

gene expression patterns. Indeed, the Gtl2 lncRNA has an epigenetic function and is 

required for recruitment of PRC2 to positively regulate the locus in cis in embryonic stem 

cells by preventing DNA methylation in an upstream distal enhancer (Das et al. 2015). To 

my knowledge, the miRNAs processed from the Gtl2-Dio3 locus regulate expression of 

target mRNAs and have not been shown to modulate chromatin structure. 

There is growing appreciation for the complex regulation of this maternally 

expressed, imprinted locus. Prior studies by us and others demonstrated coordinate 

dysregulated expression of the noncoding RNAs throughout the locus in mouse embryos 

and in cardiac and skeletal muscle (Zhou et al. 2010, Snyder et al. 2013, Das et al. 2015). 

In addition, our studies show that coordinate regulation is dependent on activation of the 

Gtl2 proximal promoter by MEF2 (Snyder et al. 2013, Clark and Naya 2015). Contrary to 

these findings, some reports have described enhancers neighboring discrete miRNA 

clusters within the 200kb Gtl2-Dio3 mega locus. One of these enhancers is located 

upstream of the miRNA cluster harboring miR-433, and the other is upstream of the cluster 

containing both miR-410 and miR-495 (Song and Wang 2008, Fiore et al. 2009, Hagan et 



 

 

107 

al. 2009). Adding to the complexity of Gtl2-Dio3 regulation are reports indicating either 

no significant change in expression or downregulation of some of its miRNAs, such as 

miR-495 in ischemic and dilated cardiomyopathies (Ikeda et al. 2007, Thum et al. 2007). 

Apart from possible technical differences in the analysis methods or severity of disease, 

these data suggest that differential expression of Gtl2-Dio3 noncoding RNAs depends on 

the specific cardiac pathology. Our data support the notion that the Gtl2-Dio3 noncoding 

RNAs, in addition to their coordinate regulation by the Gtl2 promoter, can be subject to 

alternative and separable regulation through the utilization of the various enhancers 

embedded in the locus or perhaps at the level of post-transcriptional processing in a cardiac 

disease-specific manner. 

Although overexpression of the Gtl2-Dio3 miRNAs is sufficient to promote 

proliferation of neonatal cardiomyocytes in vitro (Clark and Naya 2015), their upregulation 

in cardiac disease does not stimulate proliferation. One obvious explanation relates to 

potential differences between in vitro and in vivo environments. Alternatively, their levels, 

though elevated, may be insufficient to induce cardiomyocyte proliferation. Finally, 

counter-regulatory mechanisms in cardiac disease may activate pathways that prevent these 

noncoding RNAs from inducing proliferation. 

In conclusion, I demonstrate that the Gtl2-Dio3 noncoding RNAs are upregulated 

in multiple models of cardiac disease but display different spatio-temporal expression 

patterns. I also show that a subset of these miRNAs function as pro-hypertrophic molecules 

such that their inhibition in stressed cardiomyocytes attenuates the hypertrophic growth 

response. In the future, it will be of interest to examine the expression profile of the Gtl2-
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Dio3 locus in additional cardiomyopathies to determine whether each disease is associated 

with a unique expression signature of this locus. Additionally, determining the pathways 

regulated by the Gtl2-Dio3 noncoding RNAs in cardiomyopathies will lead to a broader 

understanding of the shared pathways in cardiac disease. Understanding the roles of the 

Gtl2 lncRNA and miRNAs from this dynamically regulated mega-locus in 

cardiomyopathies poses to be a challenging but potentially fruitful endeavor that may 

facilitate the development of strategies to target this locus in a disease-specific manner. 
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Figure 4.1 Gtl2-Dio3 noncoding RNA expression 1 day after myocardial infarction. 

Quantitative RT-PCR of Gtl2 lncRNA, miR-410, miR-495, and miR-433 expression 1 day 

post-myocardial infarct. Expression is relative to GAPDH and 5S rRNA internal controls. 

Gene expression values in CTL tissue were normalized to one. Relative expression 

represents the fold change in gene expression in RM and IA tissue compared to CTL tissue. 

Uninjured ventricle (CTL); Remote/uninjured ventricle (RM); Infarcted/injured ventricle 

(IA). Error bars represent S.E.M. n≥3. n.s., not significant; *, p<0.05, **, p<0.01; ***, 

p<0.001. 
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Figure 4.2 Gtl2-Dio3 noncoding RNA expression 3 days after myocardial infarction. 

Quantitative RT-PCR of Gtl2 lncRNA, miR-410, miR-495, and miR-433 expression 3 days 

post-myocardial infarct. Expression is relative to GAPDH and 5S rRNA internal controls. 

Gene expression values in CTL tissue were normalized to one. Relative expression 

represents the fold change in gene expression in RM and IA tissue compared to CTL tissue. 

Uninjured ventricle (CTL); Remote/uninjured ventricle (RM); Infarcted/injured ventricle 

(IA). Error bars represent S.E.M. n≥3. n.s., not significant; *, p<0.05, **, p<0.01; ***, 

p<0.001. 
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Figure 4.3 Gtl2-Dio3 noncoding RNA expression 7 days after myocardial infarction. 

Quantitative RT-PCR of Gtl2 lncRNA, miR-410, miR-495, and miR-433 expression 7 days 

post-myocardial infarct. Expression is relative to GAPDH and 5S rRNA internal controls. 

Gene expression values in CTL tissue were normalized to one. Relative expression 

represents the fold change in gene expression in RM and IA tissue compared to CTL tissue. 

Uninjured ventricle (CTL); Remote/uninjured ventricle (RM); Infarcted/injured ventricle 

(IA). Error bars represent S.E.M. n≥3. n.s., not significant; *, p<0.05, **, p<0.01; ***, 

p<0.001. 
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Figure 4.4 Gtl2-Dio3 noncoding RNA expression is upregulated in Angiotensin II-

treated cardiac muscle. Quantitative RT-PCR of Gtl2 lncRNA, miR-410, miR-495, and 

miR-433 expression 3-, 7-, and 14-days post-Angiotensin II treatment compared to 

uninjured control. Expression is relative to GAPDH and 5S rRNA internal controls. Gene 

expression values in CTL tissue were normalized to one. Relative expression represents 

the fold change in gene expression in Angiotensin II-administered tissue compared to CTL 

tissue. Error bars represent S.E.M. n≥3. n.s., not significant; *, p<0.05.  
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Figure 4.5 Gtl2-Dio3 noncoding RNA expression is upregulated in mdx cardiac 

muscle. Quantitative RT-PCR of Gtl2 lncRNA, miR-410, miR-495, and miR-433 

expression in the 10 week mdx hearts compared to wildtype hearts. Expression is relative 

to GAPDH and 5S rRNA internal controls. Gene expression values in wildtype tissue were 

normalized to one. Relative expression represents the fold change in gene expression in 

mdx tissue compared to wildtype tissue. Error bars represent S.E.M. n≥3. *, p<0.05; **, 

p<0.01; ***, p<0.001. 
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Figure 4.6 Gtl2-Dio3 noncoding RNA expression is upregulated in DyW cardiac 

muscle. Quantitative RT-PCR of Gtl2 lncRNA, miR-410, miR-495, and miR-433 

expression in the 7 week DyW hearts compared to wildtype hearts. Expression is relative 

to GAPDH and 5S rRNA internal controls. Gene expression values in wildtype tissue were 

normalized to one. Relative expression represents the fold change in gene expression in 

DyW tissue compared to wildtype tissue. Error bars represent S.E.M. n≥3. *, p<0.05; ***, 

p<0.001.  



 

 

115 

 

 

 

Figure 4.7 Gtl2-Dio3 microRNA expression is upregulated in adult MEF2A knockout 

cardiac muscle. Quantitative RT-PCR of Gtl2 lncRNA, miR-410, miR-495, and miR-433 

expression in adult MEF2A KO hearts compared to wildtype control. Expression is relative 

to GAPDH and 5S rRNA internal controls. Gene expression values in wildtype tissue were 

normalized to one. Relative expression represents the fold change in gene expression in 

MEF2A KO tissue compared to wildtype tissue. Error bars represent S.E.M. n≥3. *, 

p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 4.8 Gtl2-Dio3 microRNA expression is upregulated in adult MEF2A/mdx 

double mutant cardiac muscle. Quantitative RT-PCR miR-410, miR-495, and miR-433 

expression in adult MEF2A/mdx KO hearts compared to wildtype control. Expression is 

relative to 5S rRNA internal controls. Gene expression values in wildtype tissue were 

normalized to one. Relative expression represents the fold change in gene expression in 

MEF2A/mdx KO tissue compared to wildtype tissue. Error bars represent S.E.M. n≥3. ***, 

p<0.001. 
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Figure 4.9 Phenylephrine and Angiotensin II induce cardiomyocyte hypertrophy in 

vitro. A) Representative images of PBS, PE, and Ang II-treated NRVMs. Top, 

immunofluorescent images. α-actinin in green. DAPI in blue. Bottom, cardiomyocyte area 

analysis. B) Quantification of relative cardiomyocyte (CM) area in PBS-, PE-, and Ang II-

treated NRVMs. Computer generated area analysis for each cardiomyocyte was quantified 

for 100 cardiomyocytes. Average cardiomyocyte area relative to PBS control is shown for 

PE- and Ang II-treated NRVMs. Error bars represent S.E.M. n≥3. *, p<0.05; ***, p<0.001. 
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Figure 4.10 Phenylephrine and Angiotensin II induce hypertrophic marker genes in 

vitro. Quantitative RT-PCR of cardiac hypertrophy marker genes ANF (Nppa) and BNP 

(Nppb) in PE- and Ang II-treated NRVMs compared to PBS-treated control NRVMs 

(CTL). Expression is relative to GAPDH internal control. Gene expression values in CTL 

NRVMs were normalized to one. Relative expression represents the fold change in gene 

expression in PE- and Ang II-treated NRVMs compared to CTL NRVMs. Error bars 

represent S.E.M. n≥3. *, p<0.05. 
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Figure 4.11 Gtl2-Dio3 noncoding RNAs are upregulated in cardiomyocyte 

hypertrophy in vitro. Quantitative RT-PCR of Gtl2 lncRNA, miR-410, miR-495, and 

miR-433 expression in PE- and Ang II-treated NRVMs. Expression is relative to GAPDH 

and 5S rRNA internal controls. Expression values in CTL NRVMs were normalized to 

one. Relative expression represents the fold change in gene expression in PE- and Ang II-

treated NRVMs compared to CTL NRVMs. Error bars represent S.E.M. n≥3. *, p<0.05; 

**, p<0.01; ***, p<0.001. 
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Figure 4.12 Gtl2 promoter activity is increased in cardiomyocyte hypertrophy in vitro. 

Luciferase analysis of the Gtl2 promoter containing a wild type MEF2 site (WT) and a 

mutant MEF2 site (MUT) in PBS-, PE-, and Ang II-treated NRVMs compared to empty 

vector (EV) control. Error bars represent S.E.M. n≥3. *, p<0.05. 
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Figure 4.13 AntimiRs robustly knockdown expression of miRNA-410, -495, and -433, 

respectively. A) Quantitative RT-PCR of miR-410 upon addition of antimiR-NC (control) 

and antimiR-410. B) Quantitative RT-PCR of miR-495 upon addition of antimiR-NC 

(control) and antimiR-495. C) Quantitative RT-PCR of miR-433 upon addition of antimiR-

NC (control) and antimiR-433. Error bars represent S.E.M. n≥3. **, p<0.01; ***, p<0.001. 
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Figure 4.14 Knockdown of Gtl2-Dio3 miRNAs reduces hypertrophic growth in 

cardiomyocytes in vitro. A) Representative images of PE-treated NRVMs upon the 

addition of antimiR-NC, antimiR-410, antimiR-495, or antimiR-433. Top, 

immunofluorescent images. α-actinin in green. DAPI in blue. Bottom, cardiomyocyte area 

analysis. B) Quantification of relative cardiomyocyte (CM) area in PE-treated NRVMs 

upon the addition of antimiR-NC, antimiR-410, antimiR-495, or antimiR-433. Computer 

generated area analysis for each cardiomyocyte was quantified for 100 cardiomyocytes. 

Average cardiomyocyte area relative to miR-NC control is shown for antimiR-410, -495, 

and -433-treated NRVMs Error bars represent S.E.M. n≥3. **, p<0.01; ***, p<0.001. 

A. 

B. 
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Figure 4.15 Knocking down Gtl2-Dio3 miRNAs results in decreased expression of 

cardiac hypertrophy markers. Quantitative RT-PCR for markers of hypertrophy ANF 

(Nppa) and BNP (Nppb) in PE-treated NRVMs transfected with antimiR-410, antimiR-

495, or antimiR-433 compared to antimiR-NC control. Gene expression values in antimiR-

NC NRVMs were normalized to one. Relative expression represents the fold change in 

gene expression in antimiR-410, -495, and -433 NRVMs compared to antimiR-NC 

NRVMs. Nppa, ANF. Nppb, BNP. Expression is relative to GAPDH internal control. Error 

bars represent S.E.M. n≥3. *, p<0.05; **, p<0.01; ***, p<0.001. 

  



 

 

124 

CHAPTER FIVE – DISCUSSION 

5.1 Conclusions 

 Mature cardiomyocytes are post-mitotic, fully differentiated cells with a limited 

capacity to repair or replace cells from aging or injury. Improving cardiac function post-

injury proves difficult because the underlying molecular mechanisms that lead to neonatal 

cardiomyocyte cell cycle exit are not well understood. In this dissertation, I investigated 

the expression and role of the MEF2-regulated Gtl2-Dio3 miRNAs in cardiac muscle and 

disease. 

MEF2 is an important transcription factor for skeletal and cardiac muscle 

differentiation. We recently showed that MEF2A, one of four mammalian MEF2 isoforms, 

regulates the Gtl2-Dio3 miRNA mega-cluster in skeletal muscle and that a subset of these 

miRNAs target Sfrp2 to regulate WNT signaling in skeletal muscle regeneration (Snyder 

et al. 2013). Furthermore, in this dissertation I showed that MEF2A also regulates this 

miRNA cluster in cardiac muscle and elucidated a mechanism for these miRNAs in 

cardiomyocyte proliferation (Figure 5.1). In Chapter 3, I showed that the Gtl2-Dio3 

miRNAs are expressed at higher levels in the perinatal heart compared to adult, indicating 

they may play a role in cardiac maturation shortly after birth. I demonstrated that the Gtl2-

Dio3 miRNAs miR-410 and miR-495 promote neonatal cardiomyocyte proliferation. 

These miRNAs induce proliferation, in part by targeting the transcriptional co-activator 

Cited2. Furthermore, inhibition of Cited2 also stimulates neonatal cardiomyocyte 

proliferation. Proliferation induced by overexpressing miR-410 and miR-495 or 

knockdown of Cited2 was associated with reduced expression of the cell cycle inhibitor 
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p57 and increased expression of the pro-proliferative factor Vegfa. This chapter identified 

a novel miRNA-transcriptional co-activator pathway that induces cardiomyocyte 

proliferation. 

Recently, there has been considerable focus on knocking down miRNAs to alter the 

cell cycle in cardiac cells. Interestingly, overexpressing miR-21 immediately following 

myocardial infarction decreased myocardial infarct size (Dong et al. 2009). Furthermore, 

knocking down miR-21 in cardiac fibroblasts resulted in reduced fibrosis (Thum et al. 

2008). Knocking down members of the miR-15 family resulted in increased mitotic 

cardiomyocytes, indicating a potential role for this miR family in cardiac regeneration 

(Porrello et al. 2011, van Rooij et al. 2012, Porrello et al. 2013). Based on the above results, 

these miRNAs may be deemed potential therapeutic targets for cardiac injury. In the 

present study, I demonstrated that the Gtl2-Dio3 miRNAs may be prime therapeutic 

candidates for agonist drugs and that their overexpression may be beneficial for 

cardiomyocyte proliferation. 

In Chapter 4, I examined expression of the Gtl2-Dio3 noncoding RNAs in different 

models of cardiomyopathy. I found miR-410, miR-495, and miR-433 to be upregulated in 

mouse models of myocardial infarction and pathological hypertrophy induced by chronic 

administration of angiotensin II. Moreover, I found expression of the Gtl2-Dio3 miRNAs 

was upregulated in dystrophic cardiomyopathies such as the mdx and DyW mouse models. 

Lastly, I found these miRNAs to be upregulated in the adult MEF2A knockout heart, which 

display adult onset cardiomyopathy. The fact that these miRNAs are upregulated in diverse 

cardiomyopathy models indicates there may be a common pathway that is initiated upon 
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cardiac injury. Furthermore, I examined the expression of the Gtl2 lncRNA in these 

cardiomyopathies. Interestingly, I observed that the Gtl2 lncRNA and miRNAs were 

differentially regulated from each other both in the MI model and the MEF2A knockout 

heart. This is the first time the Gtl2-Dio3 locus has been shown to be dynamically regulated 

in the heart in the context of injury. Further investigations are needed to determine the 

complex regulation of the Gtl2-Dio3 noncoding RNA locus. 

Moreover, I showed that these Gtl2-Dio3 miRNAs are upregulated in response to 

hypertrophic stimuli in vitro and that their induction is dependent on MEF2 activating the 

proximal promoter. Additionally, silencing miR-410, miR-495, and miR-433 using anti-

miRs resulted in a decreased hypertrophic response in neonatal cardiomyocytes in vitro. 

Currently there are a number of therapeutic options to help relieve symptoms of heart 

disease but there is still no cure. Patients are often prescribed drug therapy and exercise in 

order to slow the progression of heart disease. These drug therapies include angiotensin-

converting enzyme (ACE) inhibitors, drugs that prevent the formation of angiotensin II, β-

blockers, which slow heart rate, as well as others including therapies that alter calcium 

handling, target β-adrenergic signaling, and inhibit histone deacetylases (HDACs) (Tham 

et al. 2015).  

The first miRNA-targeted drug is currently being used in clinical trials for hepatitis 

C. miR-122 has been shown to protect the hepatitis C virus from degradation. Miravirsen 

is a locked nucleic acid-modified antisense oligonucleotide that inhibits miR-122. 

Administration of miravirsen to patients with hepatitis C results in viral suppression 

(Janssen et al. 2013). This clinical trial gives hope to the potential for miRNA-based 
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therapies for cardiovascular disease. Understanding the molecular changes in the heart 

post-injury will allow for new therapeutic options for patients with cardiac disease. 

Determining the targets of the Gtl2-Dio3 lncRNA and miRNAs in the context of cardiac 

injury may provide novel viable therapeutic targets to reduce cardiac injury and improve 

cardiac function post-injury. 

5.2 Future Perspectives 

5.2.1 Determine the Cardiac Requirement for Gtl2-Dio3 miRNAs 

 In Chapter 3, I demonstrated that the Gtl2-Dio3 miRNAs are expressed in both the 

postnatal and adult heart and that they promote cardiomyocyte proliferation in neonatal 

cardiomyocytes. Since these miRNAs are capable of inducing cardiomyocyte proliferation 

after birth, it is possible that they may be required for embryonic cardiomyocyte 

proliferation. However, we do not have information regarding the temporal expression of 

these miRNAs in cardiac development.  

Therefore, it is worth determining when these miRNAs are first expressed in the 

developing heart. To do this, expression analyses should be performed at embryonic time 

points. In order to look at the spatial expression pattern in the heart, in situ hybridization 

for these miRNAs should also be performed to determine if they are expressed throughout 

the heart or if they are expressed in distinct regions of the developing heart. To identify 

areas of high Gtl2 activity in the developing embryo, we have generated a Gtl2-lacZ 

reporter construct. 0.4kb of the proximal promoter of Gtl2 harboring the MEF2 site was 

cloned upstream of the hsp68 lacZ reporter. This transgene can be directly injected into 

embryos and embryos can be collected at different time points and X-gal staining can be 
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performed for β-galactosidase to see when the Gtl2 promoter is active. Preliminarily, the 

Black Lab (UCSF) injected the Gtl2-LacZ construct and observed activation of this 

reporter in the heart and somites at E11.5 (Figure 5.2). While these preliminary results are 

consistent with our data, this experiment needs to be repeated and it will be interesting to 

determine exactly when the Gtl2 locus is first active in these areas. 

 Once we know when the Gtl2-Dio3 miRNAs are expressed in the developing heart, 

we can determine whether they are required for cardiac proliferation by knocking out the 

locus. Because the Gtl2-Dio3 noncoding region spans over 200 kilobases, it proves difficult 

to knock down. Additionally, because the Gtl2-Dio3 locus contains multiple noncoding 

RNAs, knocking out a portion may not be effective to knock down all the miRNAs. Based 

on the knowledge that the Gtl2-Dio3 miRNA cluster is coordinately transcribed (Zhou et 

al. 2010), knocking out the promoter of this locus would address the role of all of the 

noncoding RNAs throughout the locus.  

Initially, we hypothesized that designing a shRNA against the Gtl2 region would 

be sufficient to knock down the entire locus, since all the miRNAs are thought to be 

transcribed together. However, upon generating an adenoviral vector containing shGtl2, 

our results varied in vitro (Clark and Kontor, data not shown). The requirement of this 

locus in the heart could also be determined by conditionally knocking out the promoter of 

this locus in a cardiac-specific manner using the αMHC promoter in vivo. 

Furthermore, determining the requirement of the Gtl2 lncRNA remains to be 

determined. Knocking down the lncRNA may also disrupt the expression of the Gtl2-Dio3 

miRNAs. lncRNAs can be knocked down using GapmeRs, a technique similar to siRNA 
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(Stein et al. 2010). Moreover, the role of the Gtl2 lncRNA has yet to be investigated. 

Investigating the function of the Gtl2 lncRNA is another current project in our lab and will 

contribute to a greater understanding of the Gtl2-Dio3 locus in the heart. 

Based on my data from Chapter 4, the Gtl2-Dio3 noncoding RNAs may not be 

coordinately regulated and instead may display dynamic regulation in different contexts. 

Knockdown of individual miRNAs or multiple miRNAs may be sufficient to determine 

their requirement in the heart. Knockdown of individual miRNAs from the Gtl2-Dio3 

cluster in vitro, specifically miR-410 and miR-495, did not show an overt phenotype. 

However, combinatorial knockout of both miR-410 and miR-495 may show an overt 

phenotype and may indicate the requirement of these miRNAs for cardiac proliferation. 

Lastly, the potential role of the Gtl2-Dio3 noncoding RNAs in cardiomyocyte 

differentiation should be determined. Because these noncoding RNAs are expressed in 

pluripotent stem cells (Zhao et al. 2010, Kaneko et al. 2014), they may be required to 

specify a cell lineage. As shown in Chapter 3, overexpression of miR-495 was able to 

partially rescue the MEF2A-deficient phenotype and led to an increase in sarcomeric gene 

expression and a decrease in apoptosis. To determine the role of this locus in 

cardiomyocyte differentiation, it should be knocked down in embryonic stem (ES) cells. 

We can then induce cardiomyocyte differentiation and examine any changes in cardiogenic 

populations in vitro. Together, these data will indicate whether the Gtl2-Dio3 noncoding 

RNA locus is required for cardiomyocyte differentiation and proliferation. 
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5.2.2 Induce Adult Cardiomyocyte Proliferation by Overexpressing Gtl2-Dio3 

miRNAs 

In Chapter 3, I demonstrated that overexpressing miR-410 and miR-495 in neonatal 

cardiomyocytes induced proliferation. In order for this data to be relevant to human disease, 

it would be worthwhile to overexpress these miRNAs in older cardiomyocytes to see if 

proliferation is still able to be induced. Recently, one study demonstrated a slight increase 

in proliferation of adult rat cardiomyocytes in vitro upon overexpression of miR-495 

(Pandey and Ahmed 2015). However, this data was only shown in a table and no additional 

characterization was performed. 

In order to demonstrate that overexpression of miR-410 and miR-495 promotes 

cardiomyocyte proliferation in adult cardiomyocytes, miRNA mimics should be 

transfected into cardiomyocytes harvested from 7 day old rats as well as 8 week old rats. 

Based on the knowledge that the neonatal heart exits the cell cycle within one week 

(Porrello et al. 2011), it would be interesting to see whether there was a difference in the 

ability to promote proliferation at these two time points. BrdU, EdU, Aurora B kinase, 

and/or phospho histone H3 immunostaining should be performed to verify an increase in 

cardiomyocyte proliferation. 

Furthermore, these miRNAs should be overexpressed in neonatal and adult hearts 

in vivo. Adenoviral associated vectors (AAVs), specifically AAV9 for cardiac expression, 

would need to be generated for these miRNAs to be directly injected into hearts of neonatal 

and adult mice. I have already generated adenoviral vectors containing miR-410, miR-495, 

and miR-433 (data not shown). These would have to be cloned into the appropriate AAV 
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plasmid and purified according to the proper protocols but this could easily be 

accomplished using our current knowledge of adenoviral viruses and use of the reagents 

required. 

Lastly, a transgenic mouse overexpressing miR-410 and/or miR-495 in the heart 

could be generated to provide even more information. To do this, the αMHC promoter 

should be used because it is expressed specifically in cardiomyocytes throughout 

development and postnatally. Together, these studies would indicate whether these Gtl2-

Dio3 miRNAs are capable of promoting cardiomyocyte proliferation in adult hearts. 

5.2.3 Determine the Role of the Gtl2-Dio3 miRNAs in Cardiac Injury 

It is intriguing that the Gtl2-Dio3 miRNAs are upregulated in multiple models of 

cardiomyopathy as shown in Chapter 4. This is interesting because based on the data from 

Chapter 3, we would expect that overexpression of these miRNAs would have a positive 

effect, such as increased proliferation, on injured hearts. The misexpression of these 

miRNAs in injured hearts could mean a few different things. First, they could be 

upregulated in response to the cardiac stress of injury like many other fetal gene programs. 

Because we know these miRNAs are highly expressed in the neonatal heart, they may also 

be required for embryonic development. Information from Section 5.2.1 could verify that 

these miRNAs are part of a fetal gene program required for cardiomyocyte proliferation 

and development. If this is the case, the fact that they are upregulated post-injury in the 

adult heart indicates that they are upregulated in response to the injury but that their ability 

to induce proliferation is somehow blocked, perhaps by counter-regulatory mechanisms 

such as an increase in cell cycle inhibitor expression. Determining other molecular 
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pathways regulated by these miRNAs may uncover other therapeutic options for treating 

cardiac disease. 

Second, the Gtl2-Dio3 miRNAs may be regulating different downstream pathways 

in response to injury compared to their effect on proliferation in neonatal cardiomyocytes. 

To help identify the possible molecular pathways involved, a microarray or RNA 

sequencing (RNA-seq) should be performed to identify dysregulated genes when knocking 

down these miRNAs in vitro and inducing hypertrophy, as in Chapter 4. Because 

knockdown of these miRNAs resulted in a reduced hypertrophic response, candidate genes 

that are upregulated on the microarray may indicate new hypertrophic signaling pathways 

that can be altered to reduce hypertrophy. These candidate genes should be verified using 

qRT-PCR and their pathways should be confirmed using techniques such as target 

prediction algorithms and pMIR-REPORT luciferase reporter assays to confirm direct 

targeting by these miRNAs, as described in Chapter 3. 

Finally, the information gathered from this in vitro analysis can be applied to an in 

vivo cardiac injury model. It would be interesting to determine whether knockdown of these 

Gtl2-Dio3 miRNAs post-injury is able to reduce infarct size after myocardial infarction. 

To test this, miRNAs can be injected immediately after LAD coronary artery ligation in 

the myocardial infarction mouse model. The infarct can then be analyzed by histological 

and functional analyses. The size of the infarct should be quantified using histological 

methods as well as Mason’s trichrome staining, which indicates accumulation of fibrosis. 

Furthermore, electrocardiogram analysis of cardiac function should be performed to 

determine if function improves by knocking down these miRNAs.  
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Together, these studies will tell us whether the Gtl2-Dio3 miRNAs are required for 

embryonic cardiomyocyte proliferation and development and whether these miRNAs 

regulate different pathways in the adult heart and in response to cardiac stress and injury. 

Elucidating the molecular mechanisms that the Gtl2-Dio3 miRNAs regulate may provide 

important insight into new therapeutic targets to improve cardiac function post-injury.  
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Figure 5.1 Model for MEF2A-regulated Gtl2-Dio3 miRNAs in skeletal and cardiac 

muscle. MEF2A regulates the Gtl2-Dio3 miRNAs in skeletal and cardiac muscle. In 

skeletal muscle, a subset of the Gtl2-Dio3 miRNAs target Sfrp2, a WNT inhibitor, to 

modulate WNT signaling in skeletal muscle regeneration. In cardiac muscle, a subset of 

the Gtl2-Dio3 miRNAs target Cited2, a transcriptional co-activator, leading to an increase 

in cardiomyocyte proliferation. 
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Figure 5.2 Gtl2-LacZ enhancer activity at E11.5. Preliminary data indicating Gtl2 

activity in the somites and heart. 
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