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ABSTRACT

A primary challenge in the analysis of high-throughput biological data is the abundance

of correlated variables. A small change to a gene’s expression or a protein’s binding avail-

ability can cause significant downstream effects. The existence of such chain reactions

presents challenges in numerous areas of analysis. By leveraging knowledge of the network

interactions that underlie this type of data, we can often enable better understanding of bi-

ological phenomena. This dissertation will examine network-based statistical approaches to

the problems of mechanism-of-action inference, characterization of gene expression changes,

and prediction of drug response.

First, we develop a method for multi-target perturbation detection in multi-omics bi-

ological data. We estimate a joint Gaussian graphical model across multiple data types

using penalized regression, and filter for network effects. Next, we apply a set of likelihood

ratio tests to identify the most likely site of the original perturbation. We also present a

conditional testing procedure to allow for detection of secondary perturbations.

Second, we address the problem of characterization of cellular phenotypes via Bayesian

regression in the Gene Ontology (GO). In our model, we use the structure of the GO to as-

sign changes in gene expression to functional groups, and to model the covariance between

these groups. In addition to describing changes in expression, we use these functional ac-

tivity estimates to predict the expression of unobserved genes. We further determine when

vii



such predictions are likely to be inaccurate by identifying GO terms with poor agreement

to gene-level estimates. In a case study, we identify GO terms relevant to changes in the

growth rate of S. cerevisiae.

Lastly, we consider the prediction of drug sensitivity in cancer cell lines based on

pathway-level activity estimates from ASSIGN, a Bayesian factor analysis model. We

use penalized regression to predict response to various cancer treatments based on cancer

subtype, pathway activity, and 2-way interactions thereof. We also present network rep-

resentations of these interaction models and examine common patterns in their structure

across treatments.
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Chapter 1

Introduction

This dissertation examines several applications of network models to the biological prob-

lems of drug response prediction and mechanism-of-action inference. In Chapter 2, we

develop a method for perturbation detection in multi-omics biological data, using a condi-

tional Gaussian graphical model and a series of likelihood ratio tests in order to determine

the most likely perturbation site. Chapter 3 deals with characterization of cellular phe-

notypes via Bayesian regression in the Gene Ontology (GO; Ashburner et al., 2000). We

use the GO to map genes to interpretable functional groups, and the relationships in the

ontology to inform the covariance between these groups. Lastly, Chapter 4 describes pre-

diction of drug sensitivity in cancer cell lines based on pathway-level activity. We use a

penalized regression model informed by biological plausibility to predict response to cancer

treatments, and construct networks to show relationships between these drugs.

Chapter 2 deals with the problem of mechanism-of-action inference. Small perturba-

tions to a cell may propagate throughout a gene or protein interaction network, and can

have wide-ranging downstream effects. Given a snapshot of cellular activity, it can be dif-

ficult to tell where a disturbance originated. As a further challenge, scientists often collect

multiple forms of data in order to study a phenomenon from all angles, or to get the most

information out of a limited number of samples. While additional data can provide richer

detail, statistical methods and models available to cope with multiple data types are less

well-developed.

We approach the subproblem of perturbation detection by extending the notion of net-

work filtering (Cosgrove et al., 2008) to multi-attribute data. We first We construct a joint
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network combining all data types. For a single node in this network (all measurements

associated with one gene), we might have gene expression, methylation, and protein abun-

dance. We estimate a joint Gaussian graphical model across multiple data types using

block-penalized regression in control data (Kolar et al., 2014) under the assumption that

no external perturbations are present. We then use the corresponding estimated covariance

matrix to filter for network effects in the case data. To determine the most likely pertur-

bation site, we conduct a series of likelihood ratio tests, conditioning on the existence of

a single perturbation. In addition, we present a conditional testing procedure to allow for

detection of multiple perturbations. We demonstrate the efficacy of this method through

simulation studies, and an analysis of data from The Cancer Genome Atlas (TCGA; Cancer

Genome Atlas Network, 2012).

Chapter 3 uses a somewhat different type of network to characterize changes in gene

expression at a functional level. Instead of looking for changes at the gene level, where indi-

vidual measurements may be noisy or relevance poorly understood, we can aggregate genes

that have been identified as belonging to functional groups. In addition, we can leverage

the relationships between these functional groups through use of a network-informed prior

distribution for more accurate inference. Several models have been proposed in this vein,

but usually require harsh tradeoffs between predictive capabilities and interpretability of

resulting gene groups (Eisen et al., 1998; Troyanskaya et al., 2003; Friedman, 2004).

We propose a biological-function oriented regression framework based on the Gene

Ontology (GO; Ashburner et al., 2000), with the goal of characterizing biologically relevant

gene groups to cellular phenotypes. The GO provides information regarding the functional

role of these genes, both in terms of their particular function and the wider role that

they play in cellular regulation. We model the expression of sets of genes involved in

biological functions based on the the experimental setting (such as a gene knockouts or

limited nutrient access) and phenotypes, within a Bayesian hierarchical formulation. Linear

responses are combined according to membership in GO terms, the covariance of which

depend upon their relationship in the ontology. We apply this model to analyze cellular
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phenotypes in a structured experiment to determine drivers of cellular growth in yeast.

Agilent Yeast V2 microarray measurements were taken on 36 CEN.PK derived S. cerevisiae

chemostat cultures, grown in limiting quantities of glucose, nitrogen, phosphate, sulfur,

leucine, and uracil. Brauer et al. (2008) provide experimental details.

We consider two benchmarks for comparison: linear pooling and a hierarchical Dirichlet

process. In linear pooling, gene-level coefficients are estimated via simple linear regression

and averaged to obtain GO term-level inferences. By contrast, the hierarchical Dirichlet

process (Teh et al., 2006) clusters genes into groups based on the data. Similar models

have been proposed for this variety of study (Airoldi et al., 2009; Wang and Wang, 2013),

and comparison demonstrates the potential gains of a structured Bayesian regression over

nonparametric and simplified parametric models. The Bayesian regression framework we

have proposed also enables the prediction of expression for unobserved genes with GO

annotation. Furthermore, we find that the discrepancy between gene-level and expected

gene-level predictions (according to GO term coefficients) correlates well with the ability to

predict out-of-sample genes. As such, not only can we make predictions about unobserved

genes, but we can determine when these predictions are likely to be reliable.

Finally, we consider methods for predicting drug sensitivity in cancer cell lines in Chap-

ter 4. Several personalized medicine models have been proposed that utilize principal com-

ponents analysis or factor analysis to find gene expression signatures that correlate well

with drug response (see Saeys et al., 2007, for an overview). In practice, these models often

overfit the observed data, and may generate gene groups that are uninterpretable from a

biological standpoint.

We use results generated by the Adaptive Signature Selection and InteGratioN method

(ASSIGN; Shen et al., 2015) to predict drug response. ASSIGN seeks to improve on the

factor analysis model by including controlled experimental data. In these experiments,

cultured cells are transfected with adenoviruses that cause overexpression of particular

genes and begin a cascade of interactions. The gene expression pattern that results may be

considered a pathway activation signature. A series of these experiments is performed with
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4 genes (AKT, HER2, IGF1R, and BAD) to generate 4 signatures. Differential expression

from these experiments relative to control is used to inform a prior distribution for the

gene signatures.

For the data of interest (such as patient samples), we perform a Bayesian factor analy-

sis using the ASSIGN model to estimate posterior activation probabilities for each sample-

pathway combination. We then fit a logistic classifier for response status based on subtype,

pathway activations, and 2-way interactions thereof for 82 different drugs, using the penal-

ized regression of Bien et al. (2013). Our analyses suggest that using multiple pathways,

and modeling interactions between these pathways in the logistic model to predict drug

sensitivity offers better accuracy than single-pathway estimation, in particular for general

chemotherapy or DNA drugs. In addition, we construct network representations of the

drugs and cell lines under study.

The studies in this dissertation demonstrate the potential benefit of network models in

biological applications. For inferring mechanism of action, networks help us to clear away

the ripple effects to find the source of an initial perturbation. In the case of ontology-based

regression, we look to a different type of network to provide structure in our regression

and provide biologically meaningful results. Lastly, looking at pathway-level interactions

in cancer cell lines enables better predictions of drug sensitivity. By building models that

include network representations of complex biological phenomena, we can make better

inferences about mechanism of action, drivers of cellular phenotypes, and drug response.



Chapter 2

Detection of multiple perturbations in multi-omics

biological networks

2.1 Introduction

Activity within a cell is governed by a complex set of molecular interactions. In such an

intricate system, the introduction of a perturbation to a single element in the network

can have widespread effects throughout the system. For mechanism-of-action inference or

intervention targeting, it is a critical and difficult task to distinguish the site of the original

perturbation from the downstream ripple effects. For example, testing genes one-by-one in

an isolated manner, as in differential expression analyses, may be able to identify changes

between two states, but the site of the largest change is not necessarily the site of an original

disturbance. Our goal is to invert the process by which the effect propagates throughout

the network, and identify the site of the initial perturbation to the system.

Previous work demonstrates the importance of considering network effects in analysis of

gene expression data. di Bernardo et al. (2005) proposed mode-of-action by network identi-

fication (MNI), which used a large microarray compendium to construct a gene interaction

network, then “filtered” expression profiles to identify the direct gene targets of each per-

turbation. Later, Cosgrove et al. (2008) provided a more statistically principled approach,

SSEM-Lasso (sparse simultaneous equations model via lasso). This latter method consists

of network estimation using lasso estimation, followed by filtering for network effects using

the estimated regression parameters. Subsequently, genes are ranked as likely perturba-
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tion sites according to the magnitude of their residuals. The theoretical properties of this

method are explored in Yang and Kolaczyk (2010). Both of these methods were shown to

be capable of providing improved detection of perturbation sites over methods that did not

incorporate network structure, such as differential expression analysis. Other researchers

consider this problem at the level of pathways rather than individual genes. Pham et al.

(2011) build a pathway-level network based on differential expression and KEGG (Kane-

hisa and Goto, 2000) pathway membership in order to identify pathways of interest. Ma

and Zhao (2012) pursue joint modeling in a different way, using drug sensitivity data and

gene expression measurements in a Bayesian factor analysis to identify drug targets.

In addition to the difficulty of isolating the primary mover from the vast chain of trailing

interactions, the recent trend of data integration introduces further modelling complexity.

Researchers often collect measurements of multiple types on a single subject or sample,

quantifying phenomena like gene expression, methylation status, and protein abundance.

Recent efforts have established that examining a biological phenomenon from multiple

‘angles’ using multiple types of data can provide important additional mechanistic insight

(Bordbar et al., 2012; Zhang et al., 2012; MacNeil et al., 2015). For human studies, multiple

types of measurements may be taken in order to get the most information out of a limited

pool of subjects.

Though multiple measures are often collected now, the analytic techniques to cope si-

multaneously with multiple data types are still developing. In many studies, each data

type is analyzed separately and then subjected to some joint postprocessing, such as a

check for correlation, or annotation for proximity between sets of results (for example,

Fournier et al. 2010; Lee et al. 2011; Varambally et al. 2005; Tsavachidou-Fenner et al.

2010). Alternatively, one data type may be used as a discovery data set, while a second

is reserved for validation. Analyses of this variety assume that there should be some mir-

roring of effects between data types, but typically ignore the inherent dependency between

biological elements. For instance, the quantity of mRNA transcript is not independent of

the abundance of its protein product, nor of its own methylation status. Various methods



7

exist for inference of potential drug targets (for an overview, see Lecca and Priami 2013

and Csermely et al. 2013), but to our knowledge none have addressed the question of how

to jointly model multi-type data while explicitly filtering out effects due to network-based

propogation.

In this chapter, we present a strategy for identifying gene-level perturbation sites in

multi-type biological data. We construct a joint Gaussian graphical model incorporating all

data types. Next, we estimate network structure using a graphical lasso, informed by prior

data regarding gene-gene interactions. After then filtering for network effects, we develop

a ranking of likely primary perturbation sites based on a series of likelihood ratio tests. We

also offer an extension for inference of secondary sites. We demonstrate the efficacy of this

methodology in a simulation study, and in an application to joint methylation and gene

expression data from The Cancer Genome Atlas (TCGA; Cancer Genome Atlas Network

2012).

2.2 Joint Gaussian graphical model

In defining a framework to model cellular activity, we adopt a gene-centric perspective.

Specifically, we match attributes of K different types to form a joint gene-level “node.”

We then form a graph G = {V,E} of gene-wise interactions across these joint nodes.

For example, a node may be constructed with a gene’s K = 3 attributes of expression,

methylation status, and protein abundance. Since we expect biologically that cross-gene

interactions are relatively rare compared to interactions across measurement types, this

joint-node simplification facilitates estimation, reducing the number of potential edges in

G from pK(pK−1)
2 to p(p−1)

2 , for p genes.

In more detail, for a single node i ∈ {1, . . . , p}, we have K measurements Yi =

[Y
(1)
i , . . . , Y

(K)
i ]T . These nodes are are combined into a “stacked” vector Y by node, writ-

ing

Y = [Y
(1)

1 , Y
(2)

1 , . . . , Y
(K)

1 . . . , Y
(1)
p , Y

(2)
p , . . . , Y

(K)
p ]T . We then specify a conditional Gaus-
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sian graphical model, in which each element may be expressed as a linear combination of

its neighbors, plus some perturbation µ and error ε:

y
(k)
i |y(−i), y

(−k)
i = µ

(k)
i +

∑
l 6=k

b
(k,l)
ii y

(l)
i +

K∑
l=1

∑
i∼j

b
(k,l)
ij y

(l)
j + ε

(k)
i , (2.1)

with ε
(k)
i ∼ N(0, σ2). The additional term µ

(k)
i represents an external perturbation to Y

(k)
i

that results in a mean-shift, and is distinct from the effects of i’s neighbors. Taking all

nodes jointly, we can rewrite the model of Equation (2.1) as

Y ∼ N((I −B)−1µ, (I −B)−1σ2) (2.2)

Y ∼ N(Σµ,Σσ2) . (2.3)

Derivation of this formulation follows as in Cressie (1993). The matrix B is constructed

from coefficients in the conditional formulation, and so an entry b
(k,l)
ij = 0 indicates y

(l)
j

does not directly influence y
(k)
i , and results in a zero in the precision matrix Ω = Σ−1. The

vector of external perturbations µ is believed to be sparse, and our goal will be to identify

likely nonzero entries in µ, corresponding to perturbation sites.

In practice, we do not know Σ, and must estimate it from our data. If there are no

external perturbations to the network (µ = 0), then we have Y ∼ N(0,Σ), which allows

estimation of Σ. We define a perturbation as occurring relative to a control in case/treated

data. We assert µ = 0 holds in the control data, and estimate Σ with control samples only.

We will then use Σ̂ to make inferences about µ in case/treated samples.

As the number of entries in Σ far exceeds the available sample size, we apply a variant

on the regularization of Kolar et al. (2014) in estimation of Σ̂. For precision matrix Ω, we
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build a block matrix according to node membership.

Ω =



Ω11 Ω12 · · · Ω1p

Ω21 Ω22 · · · Ω2p

...
. . .

...

Ωp1 Ωp2 · · · Ωpp


(2.4)

In estimation of Ω̂, we apply a penalty to the Frobenius norms of these submatrices, and

optimize according to

Ω̂ = argminΩ�0

tr(SΩ)− log |Ω|+ λ
∑
a,b

w−1
ab ‖Ωab‖F

 (2.5)

Penalizing on the level of these submatrices encourages entire (K ×K) blocks in Ω̂ to

zero. As previously noted, if submatrix Ωab = 0K×K , then nodes a and b are conditionally

independent. This type of variable selection procedure is a variant of covariance selection

(Dempster, 1972). Further, a zero entry in the covariance matrix Σ = Ω−1 further indi-

cates a lack of indirect influence, meaning the nodes are in separate components of the

graph G. Building our network this way offers an attractive compromise between allowing

interactions across data types and limiting the number of edges that must be estimated.

Optimization based on Equation (2.5) proceeds according to approximate block-gradient

descent, with details in Kolar et al. (2014). We recommend selection of the tuning parame-

ter λ based on minimum extended Bayesian information criterion with γ = 0.5 (EBIC; Chen

and Chen, 2008), which we have found offers better network recovery than the Bayesian

information criterion (BIC) for small sample sizes.

In addition to the block structure, we allow an optional weight to increase the penalty

on biologically unlikely edges. In Equation (2.5), wab represents a plausibility score for

between-node interactions. This offers biologically reasonable interactions a lower barrier

to entry in the model. Such scores can be constructed using a database such as STRING
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(Szklarczyk et al., 2011), as we do in Section 4, or ENCODE (ENCODE Project Consor-

tium, 2004). The weights may also be left at a constant value if insufficient prior informa-

tion exists for the scenario at hand. This can facilitate estimation of larger networks with

relatively few samples.

2.3 Perturbation site identification

2.3.1 Multi-attribute testing procedure

Given an estimate Ω̂, we now proceed to our main problem of interest, i.e., inference on

perturbation site in case data, through inference on µ. Cosgrove et al. (2008) introduce the

method of using an estimate of the covariance matrix to invert the propagation of network

effects, which they called “network filtering.” We can extend this concept to multi-type data

by using a joint covariance matrix, obtained by the previously outlined method. In order

to ascertain which node has been perturbed, we propose the use of node-wise likelihood

ratio tests. Note that, as the material that follows in this section and the next do not

depend directly on the particular choice of estimator Ω̂ adopted in Section 2, we present

our proposed methodology in terms of known Ω (or Σ), and then address the question of

how estimation of Ω impacts the overall procedure through a general analysis.

For a given node i, we test the hypothesis that only the entries in µ corresponding

to node i (that is, µi = [µ
(1)
i , . . . , µ

(K)
i ]T ) are nonzero (µi 6= 0, µ(−i) = 0), against the

null hypothesis of an entirely zero mean-shift vector (µ = 0). This may be interpreted as

a test of whether a particular gene has been perturbed, conditional on it being the only

perturbation.

Without loss of generality, we consider a test at the first node, i.e., a test that µ1 6= 0.

We invert the network propagation and filter the data to obtain Z = ΩY ∼ N(µ,Ω).

That is, through ‘network filtering’ we produce an alternative representation of the data

with mean µ, rather than Σµ. In this parametrization, we obtain the maximum likelihood
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estimator for µ1 under the alternative hypothesis as

µ̂1 = z̄1 + Σ−1
11 Σ1·z̄· (2.6)

where z̄· indicates the mean of the filtered data not being presently tested (i.e., z̄(−1)), Σ··

indicates the corresponding submatrix in Σ, and so on. The resulting likelihood ratio test

may be written

T1 = n
(
z̄TΣz̄ − z̄T· (Σ·· − Σ·1Σ−1

11 Σ1·)z̄·
)
. (2.7)

Note that the precision of the filtered data is the covariance of the data on the original

scale, Σ. The formula for the conditional precision Z· given Z1 is Prec(Z·|Z1) = Σ·· −

Σ·1Σ−1
11 Σ1·. As such, the form of this test statistic is reminiscent of Hotelling’s T 2 statistic

on the filtered data (z̄TPrec(Z)z̄), less its portion deriving from the portion of µ that has

been assumed-zero (z̄T· Prec(Z·|Z1)z̄·). We perform this test for each node in turn, and then

rank their likelihood of being the true perturbation site by test statistics T1, T2, . . . , Tp.

Under the null hypothesis of µ = 0, Tj ∼ χ2
K(0) for all j. Under the alternative

hypothesis of µ 6= 0, each test statistic Tj has a noncentral chisquare distribution. For

example, for j = 1, this takes the general form

T1 ∼ χ2
K

µT
 Σ11 Σ1·

Σ·1 Σ·1Σ−1
11 Σ1·

µ

 . (2.8)

Suppose that the true perturbation is located at the first gene, i.e., that µ1 6= 0 and µ· = 0.

Comparing T1 with a test at another node j 6= 1, we obtain

T1 ∼ χ2
K(µT1 Σ11µ1) (2.9)

Tj ∼ χ2
K(µT1 Σ1jΣ

−1
jj Σj1µ1) . (2.10)
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Since Σ11−Σ1jΣ
−1
jj Σj1 is positive-definite, (µT1 Σ11µ1) > (µT1 Σ1jΣ

−1
jj Σj1µ1), and T1 stochas-

tically dominates Tj for any node j not containing a true perturbation.

While these derivations are shown here as a node-wise test, this test can be applied to

any predefined sets of nodes, of arbitrary size and overlap. In principle, testing could be

based on individual elements of µ, or on entire pathways. The test statistics T may not be

directly compared if groups of varying sizes are tested, but p-values may be calculated on

the basis of the chisquare distribution, with degrees of freedom equal to the total number

of nodes in the group being tested.

2.3.2 Sequential multi-target testing

We have so far considered the occurrence of a single perturbation, but this is not always

realistic. A treatment may have off-target effects, resulting in multiple interaction sites

(Afzal et al., 2014), or a disease may be caused by perturbations to more than one gene. In

such a case, interpretation of the previously described results becomes less straightforward.

Since each of our previously described tests assumes that all other nodes have zero mean,

we automatically perceive nodes near the truly perturbed node to be likely sites, so a near-

target effect may be confused with a distinct, off-target effect. Once we have identified a

primary perturbation site, we may wish to consider the most likely site for a secondary

perturbation, in a manner that accounts for the location of the first.

Nested likelihood ratio tests provide a natural framework for a sequential ranking. At

step s+1, we denote the sites already identified in steps 1, . . . , s as a set S. Having already

determined that that the subvector µS of µ contains nonzero entries, we can conduct a

likelihood ratio test on the remaining nodes to search for additional perturbations. Thus,

at step s+ 1, for node i, we test the hypothesis that an additional perturbation is located

at node i (µi 6= 0, µS 6= 0, µ−(S,i) = 0) against the null that no perturbations outside of S

exist (µS 6= 0, µ−(S) = 0). We perform this calculation for all nodes i not determined to

be perturbation sites in steps 1, . . . , s.

The resulting test statistic T
[s+1]
i may be written as a difference of unadjusted likelihood
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ratio test statistics:

T
[s+1]
i = T(i,S) − TS , (2.11)

where TS corresponds to testing µS 6= 0, µ−(S) = 0 against µ = 0, and T(i,S) corresponds to

testing µi 6= 0, µS 6= 0, µ−(i,S) = 0 against µ = 0, Inference can proceed on the conditional

sequence, or p-values can be calculated and adjusted to maintain an appropriate false

discovery rate across s using the method of Benjamini and Yekutieli (2001).

The magnitude and direction of the difference between this value and the original test

statistic depends upon the correlation between the node currently being tested and the

nodes already “found” by the sequential procedure. Theorems 2.1 and 2.2 establish some

properties relevant to the relative ranking of the adjusted test statistics.

Theorem 2.1 Given a set of nodes already found to have nonzero mean in steps 1, . . . s,

consider testing for a perturbation at an additional node i in step s+ 1. Denote the indices

in Z = ΩY corresponding to the nodes found in steps 1, . . . , s as S.

We can write the expected difference between the original test statistic and the test

statistic adjusted for perturbations in S as

E(Ti − T [s+1]
i ) = µTi (Σi,SΣS,i)µi + 2µTi (Σi,S)µS + µTS (ΣS,iΣi,S)µS .

In the special case that µi = 0,

E(Ti − T [s+1]
i |µi = 0) ≥ 0 .

As such, if no perturbation is truly present at node i, we expect its adjusted test statistic

to be no larger than the unadjusted statistic.

Theorem 2.2 Under the same conditions outlined in the general case of Theorem 2.1, if
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ΣS,i = 0, then

T
[s+1]
i = Ti .

The proofs of Theorems 2.1 and 2.2 are given in Appendix A.2. Taken together, these

facts give us insight into the way that secondary targets are identified. Suppose we test

for secondary perturbations at nodes i and j after finding an initial set of nodes S. When

i and S are not connected in our graph, the sequential test statistic for i is the same as

the unadjusted statistic. Simultaneously, a correlation between measurements on j and S

removes the near-target effects due to proximity to S, resulting in an expected decrease in

T
[s+1]
j compared to Tj by µTSΣS,jΣj,SµS . Since at any step s we are concerned with relative

ranking of test statistics, the decreased T
[s+1]
j relative to T

[s+1
i makes i a better candidate

for an additional perturbation than it was previously. Accordingly, this procedure has the

largest potential benefit when the two perturbations are completely separated in the graph.

For an illustration, see Figure 2.1. This simple network of n = 100 samples has only

p = 3 nodes, each with K = 2 attributes, and a single edge between nodes 1 and 2. In Ω, we

set the within-node partial correlation ρin, to 0.8 and the between-node partial correlation

ρout to 0.2. In Figure 2.1(a), only a single perturbation is present, at node 1, with signal-

to-noise ratio (the value of the perturbation size of µ relative to a diagonal element of Ω)

SNR = 1. Node 1 is ranked as the most likely perturbation site, followed by node 2.

This is desirable behavior in 2.1(a) – if we know that only one perturbation exists, then

node 2 is the next-best choice. In 2.1(b,c), we add a second perturbation at node 3 with

a weaker signal (SNR = 0.25). According to the initial multi-attribute network filtering

(NF) ranking shown in 2.1(b), node 2 is the runner-up due to its proximity to node 1.

However, if we condition on the presence of a perturbation at node 1 as in 2.1(c), then

node 3 is considered a more likely site for a second perturbation than node 2.

Performance of the sequential procedure is discussed in Section 2.4.2.
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Figure 2.1: A toy example illustrating the properties of the multi-attribute NF in a 3-node
network. Perturbed nodes are shown as squares, and node area is representative of test
statistic size. Nodes 1 and 2 are neighbors. (a) Node 1 is perturbed. As a neighbor to
the perturbed node, 2 is identified as the second most likely site for a perturbation if only
one exists. (b) Nodes 1 and 3 are perturbed, and multi-attribute network filtering (NF)
is applied. Node 2 is identified as the second most likely perturbation site because of the
shared edge with node 1. (c) As in (b), nodes 1 and 3 are perturbed, but the sequential
NF procedure is applied. After conditioning on node 1, node 3 is identified as the most
likely site for a second perturbation.

2.3.3 Accuracy

We have described our proposed procedure for detecting multiple perturbation sites in

multi-omics data as if the precision Ω (or covariance Σ) were known. In practice, of course,

to expect exact knowledge of Ω is unrealistic. Firstly, error in estimation may occur. In

addition, we take the network estimated in the control data to be representative of the

network in the case/treated data, but if the network itself is dysregulated, this may not

be an appropriate assumption. While a detailed practical examination of these various

sources of errors and their impact on our procedure is beyond the scope of this chapter,

we provide here a general characterization result.

Without loss of generality, let σ2 = 1 and consider the case of Tj for j = 1. Let

Ω̃ = Ω + ∆ be an erroneous version of the true Ω, and denote by T̃1 the corresponding

version of T1 resulting from using Ω̃ in place of Ω. Our interest will be on the distribution
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of the discrepancy T1 − T̃1. Towards that end, we define the K ×K matrix

D = Ω11 − Ω1·Ω
−1
·· Ω·1 −

(
Ω̃11 − Ω̃1·Ω̃

−1
·· Ω̃·1

)
.

Assume Σ11 is positive definite. For the product DΣ11, express its spectral decomposition

as

DΣ11 =
s∑

k=1

akEk ,

such that rank(Ek) = rk (corresponding to the multiplicity of the eigenvalue ak) and∑s
k=1 rk = K.

We then have the following result.

Theorem 2.3 Under the conditions above, the discrepancy T1− T̃1 is equal in distribution

to a linear combination of mutually independent, noncentral chisquare random variables,

s∑
k=1

akχ
2
rk

(δk) , (2.12)

where

δk = (n/2)µTΣ·1EkΣ
−1
11 Σ1·µ .

Accordingly,

E
[
T1 − T̃1

]
= tr (DΣ11) +

n

2
µTΣ·1DΣ1·µ (2.13)

and

Var
(
T1 − T̃1

)
= 2tr

(
(DΣ11)2

)
+ 2nµTΣ·1DΣ11DΣ1·µ . (2.14)

The proof of this theorem is given in Section A.3. The distributional result follows from

application of Baldessari (1967) Theorem 1, while the moment results follow from definition

of first second and moments of noncentral chisquare random variables. In the case that

Σ11 is not positive definite, more general results in Tan (1977) may be used, at the cost of

additional notation and conditions.
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Note that D in our results above, as a function of ∆ = Ω̃ − Ω, plays the key role of

capturing the impact of the discrepancy between Ω and Ω̃. A more relaxed – but arguably

more informative – statement of our moment results is the following, wherein the role of

∆ is made explicit.

Corollary 2.1 Let || · ||2 denote the spectral norm. Then

E
[
T1 − T̃1

]
= O (||∆||2) and Var

(
T1 − T̃1

)
= O

(
||∆||22

)
.

Hence, we see that for a given discrepancy ∆ between the true Ω and the value Ω̃, the

expected level of discrepancy between the corresponding statistics T1 and T̃1, as well as the

standard deviation, are both of magnitude on the order of the spectral norm of ∆. Proof

of the corollary may also be found in Section A.3.

2.4 Simulation

2.4.1 Single-target simulations

We want to consider two aspects of potential performance gains: (1) conducting a network-

aware analysis method, and (2) using multiple data sources. To our knowledge, no other

method has yet been proposed for joint modeling and detection of perturbations in this

multi-attribute setting. As such, we conduct comparisons in simulation against established

methods for single-type data, and a näıve extension of these methods to accommodate

multi-type data. To assess gains from network analysis, we compare our method with

simple differential expression (t-tests for single-attribute data, and Hotelling’s T 2 for multi-

attribute). To examine the benefit from considering multiple data sources, we consider the

improvement obtained from using K = 2 sources, versus a single data type. We also

perform SSEM-Lasso (Cosgrove et al., 2008) for the single-attribute case.

We simulate data across a range of network conditions, varying the strength of associa-

tions between data types and nodes. We construct a network of p = 20 nodes according to a
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stochastic block model (Holland et al., 1983), with n = 50 cases and controls. The network

is divided into two groups of nodes, where cross-block connections are more likely to occur

within a block (probability θwithin = 0.4) than between blocks (probability θacross = 0.2).

Network links are assigned −ρout in the precision matrix.

For each node with K = 2 attributes, we first assign all within-node correlations the

value −ρin in the precision matrix, creating a block-structure along the diagonal. A small

value is added to the diagonal of Ω until the minimum eigenvalue is at least 0.5 to ensure

invertibility, then the precision matrix is scaled to have diagonal 1. For each network

constructed, for node i to be perturbed means that a mean-shift µi is applied to its elements.

We simulate null data from N(0,Σ) and perturbed data with one nonzero node in µ from

N(Σµ,Σ), and perform the aforementioned estimation and testing procedure.

From the likelihood ratio tests, we obtain a ranked list of nodes, with our truly per-

turbed node sitting at rank r. For each of 100 simulated networks, we perturb each of the

p = 20 nodes in turn and observe their rank according to the multi-attribute network fil-

tering (NF) procedure. We average over the proportion of sites occurring in our ranked list

and construct receiver-operator characteristic (ROC) curves. These curves can be directly

related to an empirical CDF, with positions along the x-axis indicating the proportion of

total sites in a top k list. The y-axis, then, indicates the probability that the true pertur-

bation site was included in that list of k sites. Results for single-perturbation simulations

are shown in Figure 2.2. In addition, the probability that the top-ranked site correctly

identifies the perturbation is shown in Table 2.1.

Across a range of partial correlations, multi-attribute network filtering (NF) has most

successful recovery of the perturbed site with respect to AUC and the probability of select-

ing the true perturbation as the top-ranked site (an “ideal detection”). Multi-attribute NF

is followed by its single-attribute counterpart and SSEM-lasso. Hotelling’s T 2 follows, nar-

rowly but consistently outperforming standard differential expression on a single attribute.

Under all correlation settings considered here, the multi-attribute modeling strategy iden-

tifies the site correctly more than half of the time. On average, such ideal detections are
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Figure 2.2: Single-site recovery from a stochastic block model simulation with p = 20
nodes, n = 50 cases and controls, and SNR = 0.20. Along the x-axis, we consider the
proportion of all sites in a top k list, and along the y-axis, the probability that the truly
perturbed site is contained within that top k list. In each plot, the jump at the leftmost
edge of the graph corresponds to the probability of identifying the true perturbation as the
highest-ranked site (values in Table 2.1).
.

made 54.0% of the time for multi-attribute NF, 42.8% for its single-attribute counterpart.

By contrast, differential expression ranks the truly perturbed site first only 27.0% of the

time using either method. SSEM-lasso with a single attribute identifies the true perturba-

tion first 39.3% of the time, despite a comparable AUC to the single-attribute NF method,

as shown in Table 2.1.
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Table 2.1: Probability that the top-ranked site is the true perturbation site and (AUC)
for simulations shown in Figure 2.2. ρin indicates the strength of within-node partial
correlation, and ρout of cross-node partial correlations.

NF methods Differential expression SSEM-lasso
ρin ρout Multi-att. Single-att. Multi-att. Single-att. Single-att.

0.8 0.2 0.56 (0.90) 0.46 (0.84) 0.28 (0.76) 0.28 (0.72) 0.41 (0.84)
0.4 0.50 (0.90) 0.35 (0.84) 0.26 (0.77) 0.23 (0.73) 0.32 (0.84)
0.6 0.58 (0.92) 0.44 (0.83) 0.31 (0.80) 0.28 (0.76) 0.41 (0.83)

0.6 0.2 0.49 (0.89) 0.39 (0.84) 0.28 (0.76) 0.28 (0.73) 0.34 (0.83)
0.4 0.49 (0.89) 0.37 (0.84) 0.24 (0.73) 0.23 (0.70) 0.34 (0.84)
0.6 0.54 (0.90) 0.41 (0.84) 0.30 (0.79) 0.27 (0.76) 0.40 (0.83)

2.4.2 Multi-target simulations

We also wish to evaluate the performance of the sequential procedure when multiple per-

turbations are present. As previously noted, any advantage over simply taking the initial

rankings will depend upon the network structure and the distance between perturbations.

If two perturbations occur adjacent to one another, the near-target and off-target effects

will be aligned, and the ranking will not be substantively changed. However, if the pertur-

bations are far apart in the graph, this procedure may substantially improve the chances

of detecting both effects.

We extend our previous simulations study to include a second perturbation. In the

context of a stochastic block model, we simulate two perturbations: a nonzero node in the

first block with SNR = 0.20 as before, and a second, weaker perturbation in the second

block with SNR = 0.10. We then vary the probability of a cross-block edge (θacross) relative

to the probability of an edge within each block (θwithin) to demonstrate the role of distance

on the graph in the efficacy of the sequential procedure. We consider θacross/θwithin = 0.25

(slight separation), 0.125 (moderate separation), and 0 (complete separation). Table 2.2

shows the probability of ranking both true perturbations in the top two sites, and Figure 2.3

shows the ROC curves for identifying both perturbations. The sequential procedure out-

performs the initial ranking on both counts for cases shown, with gains increasing according
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to separation between the perturbations for probability of ideal identification.
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Figure 2.3: Simulations showing improvement of the sequentially restricted NF procedure
versus the standard multi-atrribute NF and Hotelling’s T 2 ranking when two perturbations
are present, located in different blocks in a stochastic block model. The expected distance
between these two perturbations are on the graph is determined by θacross = (0, 0.05, 0.1),
corresponding to complete, moderate, and slight separation between the two blocks, relative
to the within-block edge probability of 0.4. Benefits from the sequential procedure are
largest when the two perturbations are not connected in the graph (left).

Table 2.2: Probability of identifying the both truly perturbed sites in the first two ranked
positions and (AUC), considering only multi-attribute methods. Corresponding plots are
shown in Figure 2.3.

θacross/θwithin Sequential multi-att. NF Multi-att. NF Multi-att. diff. expr.

0.250 0.74 (0.93) 0.67 (0.92) 0.57 (0.85)
0.125 0.73 (0.93) 0.65 (0.91) 0.54 (0.84)
0.000 0.76 (0.93) 0.66 (0.91) 0.55 (0.84)

In certain circumstances, the sequential procedure may produce suboptimal results. For

example, suppose that the first identification is a false positive due to proximity to a true

perturbation. The truly perturbed site will have a lower ranking after conditioning for the

false positive site, as this procedure would adjust away some of that node’s own signal. This

is particularly likely to occur when signal-to-noise ratio is low, or when multiple perturba-

tions have common neighbors. As such, we recommend the use of this procedure when an
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unambiguous initial identification has been made, and suspected secondary perturbations

are not in close proximity to the initial site.

2.4.3 Comparison to post-analysis aggregation

While the multi-attribute NF method provides improved perturbation site detection over

single-attribute methods and multivariate differential expression, we wish to consider how

much is gained by considering cross-attribute relationships, as opposed to some compar-

atively simpler ‘aggregation’ of single-attribute results. This benchmark is of particular

interest given the popularity of network recovery methods by Guo et al. (2011) and Dana-

her et al. (2013) for simultaneous inference of multiple, related networks across data types,

but without cross-type interactions. Following the same simulation strategy as described

in Section 2.4.1, we consider the performance of a “separated” ranking procedure, in which

we estimate and filter for separate networks for each data type, then combine results into

a block-precision matrix to rank individual biological attributes, setting cross-type entries

to zero. This amounts to asserting independence between each data type. Results are

shown in Figure 2.4, and Table 2.3. Note that for the separated procedure, we look for the

probability that both attributes of the perturbed node are ranked highly.

Table 2.3: Probability that the top-ranked sites are the truly perturbed gene and (AUC)
for simulations shown in Figure 2.4. These simulations feature a single perturbation.

NF methods
ρin ρout Multi-att. Separated Single-att.

0.8 0.2 0.55 (0.90) 0.44 (0.86) 0.41 (0.84)
0.4 0.56 (0.90) 0.40 (0.84) 0.41 (0.84)
0.6 0.46 (0.92) 0.37 (0.85) 0.42 (0.83)

0.6 0.2 0.57 (0.89) 0.44 (0.85) 0.48 (0.84)
0.4 0.55 (0.89) 0.41 (0.83) 0.44 (0.84)
0.6 0.55 (0.90) 0.38 (0.84) 0.41 (0.84)

The multi-attribute NF performs best in terms of AUC and the probability of ideal

identification. Separated and single-attribute methods perform comparably to each other
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Figure 2.4: Comparison of network filtering methods in a single-perturbation setting. ROC
curves show perturbation site recovery from a stochastic block model simulation scheme
with p = 20 nodes, n = 50 cases and controls, and SNR = 0.20. “Separated NF” indicates
that the network estimation and filtering procedures were performed in isolation on each
data type and then combined for ranking.

by both of these metrics. This also holds if we rank according to the first appearance

of a gene’s measurements, rather than requiring top ranks for both. Given that a slightly

higher burden is imposed on the separated method than the single-attribute (two attributes

must be ranked highly rather than one), this is a slight advantage to the separated method

over analysis of a single attribute. Nevertheless, our results indicate that most benefits

attained from this type of data integration emerge from consideration of interaction between

attributes when such interactions are present in the underlying data. The design of our

model specifically exploits the existence of cross-type interactions, and is able to better

discover perturbation sites as a result.
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2.5 Analysis of TCGA breast cancer data

We apply this methodology in an analysis of breast cancer data from The Cancer Genome

Atlas (TCGA). We have gene expression and methylation data obtained from tumor sam-

ples of 60 patients with metastatic cancer and and 569 with nonmetastatic cancer. Both

the expression and methylation data were downloaded as Level 3 normalized data, and

then processed to achieve approximately Gaussian distributions. RNA-seq data was pre-

processed by TCGA using RSEM (RNASeq by Expectation Maximization; Li and Dewey,

2011) and MapSplice (Wang et al., 2010). Transcripts per million (TPM) were then trans-

formed via quantile normalization on log2(TPM+1). The 450k methylation array data was

preprocessed by TCGA using the ratio of the intensity of methylated probes to the total

probe intensity to produce β values (Du et al., 2010). We then transformed these values

according to log2

(
β

1−β

)
. For our analysis, we extracted measurements from 133 genes be-

longing to the WNT signaling pathway in KEGG (Kanehisa and Goto, 2000) from samples

with both transcript and methylation data. If more than one measurement was present

per gene attribute (multiple methylation sites or transcript segments), a 90% trimmed

mean was taken. Subjects were considered to have metastatic cancer if classified as such

at baseline or at any subsequent follow-up. Details of the data processing may be found in

Appendix A.

We first estimate the block-precision matrix of the network using the n = 569 tumor

samples from nonmetastatic cancers. Using our estimated precision matrix Ω̂, we filter for

network effects in the data from n = 60 metastatic cases, and perform gene-wise likelihood

ratio tests in order to ascertain which gene is the most perturbation candidate.

The top-ranked sites are shown in Table 2.4. The highest-ranked site is PP3CC (T =

14.35), which has previously been implicated in prostate cancer (Hornstein et al., 2008),

though it does not achieve group-wise significance (raw p = 0.00076). A drop-off in the

test statistic is visible after the 4th position (for WNT11, T = 8.69 while the next gene

WNT10A has T = 7.61). This difference is visible in the top panel of Figure 2.5. As such,
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we consider the top 4 genes in Table 2.4 to be the most plausible primary perturbation

sites.

For additional verification of our results, we perform cross-validation to assess the

predictive accuracy of the mean vector implied by each gene ranking. We divide metastatic

case data into 10 groups of approximately equal size. For each fold f , we use 90% of the data

to estimate µ̂1,f , . . . , µ̂p,f according to Equation 2.6. We then predict the mean of Y test for

each gene j by taking Σ̂[0, µ̂trainj,f , 0]T . Through this method we obtain mean-squared-error

MSEj,f =
1∑

i I(i ∈ f)

∑
i∈f

(Y test
i − Σ̂[0, µ̂trainj,f , 0]T )2 (2.15)

for each gene under each fold. We take the average of these errors to obtain a ranking

of predictive ability by cross-validation, with smallest MSE indicating the best accuracy.

Rankings obtained by this cross-validation procedure show agreement with rankings from

multi-attribute NF for the top-ranked site (Figure 2.5, bottom panel).

Table 2.4: Top-ranked genes from multi-attribute NF analysis of TCGA methylation and
gene expression data. The top 5 genes for each method are included.

Multi-att NF Sequential NF Diff. expr. Cross-val.
Gene Statistic Rank Statistic Rank Statistic Rank MSE Rank

PPP3CC 14.36 1 14.36 1 8.01 3 264.99 1
WNT7B 10.52 2 9.32 4 4.45 8 272.43 132
PRKACB 9.29 3 9.28 5 3.34 21 266.98 40
WNT11 8.69 4 10.47 3 4.43 9 275.74 133

WNT10A 7.62 5 7.77 7 2.14 34 267.69 121
NFATC2 7.59 6 12.34 2 7.85 4 270.39 128
SERPINF1 4.40 22 4.31 26 1.30 62 265.21 2
INVS 3.63 32 3.66 32 0.39 105 265.43 4
LRP5 3.33 36 3.24 39 0.77 90 265.40 3
FZD9 2.08 51 3.29 37 7.45 5 271.59 131
FBXW11 1.93 52 2.15 52 0.46 101 265.53 5
WNT10B 0.03 85 0.03 86 8.25 2 266.79 32
TCF7L2 0.03 87 0.03 88 12.31 1 266.90 34

We also show results from a joint differential expression analysis using Hotelling’s T 2
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test in Figure 2.5 and Table 2.4. While PPP3CC and the other top 6 multi-attribute NF

results are also ranked highly in differential expression results, some genes such as TCF7L2

show strong differential expression without strong network-filtered evidence. It is plausible

that differentially expressed genes are identified because of an accumulation of network

effects, rather than an external pressure applied to the system. Similarly, perturbation

sites may not necessarily exhibit differential expression; network effects may compensate

to restore the perturbed gene to normal levels.

Considering the possibility of multiple perturbations, we also performed the sequential

multi-attribute NF procedure as described in Section 2.3.2. At each step, the node with

the largest test statistic in the previous step is conditioned on as a nonzero portion of the

mean vector, and testing is performed to ascertain whether additional nodes are nonzero.

In the second panel of Figure 2.5, we see that after adjusting for the first perturbation at

PPP3CC, the most plausible site for a secondary perturbation is at NFATC2, which was

ranked the sixth most plausble primary perturbation site. NFATC2 has been implicated

in breast cancer cell invasion in a previous study by Yiu and Toker (2006).

2.6 Remarks

The multi-attribute network filtering methodology does suffer from some limitations. It

relies upon the assumption that the network structure encoded in Ω does not vary be-

tween the control data and the case data. As such, this method is likely best suited to

experimental settings in which it may be plausible to believe under investigator-limited

perturbations that the underlying network relationships are fairly similar between case

and control settings.

The framework here also depends upon multivariate Gaussian distributions for all data

types. An extension of this network filtering procedure to non-Gaussian distributions would

enable inclusion of additional phenotypes, such as SNP and CNV data. This extension

has not been undertaken even in the univariate case thus far, but semi-parametric copula
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methods (such as those by Liu et al., 2012) show promise for the network estimation portion

of this problem.

As is always a concern with large network models, computational costs in estimation of

Ω may be prohibitive. This is particularly the case in recovery of large, densely connected

networks. As noted by Kolar et al. (2014), the block gradient descent algorithm employed

here performs most efficiently when the graph can be separated into smaller connected

components (as a rough guide, we recommend use of this algorithm when the largest

connected component has fewer than 200 joint nodes). If estimation of the block-precision

matrix is infeasible, use of a separated estimation procedure with network filtering, such

as the joint graphical lasso (Guo et al., 2011; Danaher et al., 2013), may still be employed.

This is expected to yield a large performance improvement over differential expression

procedures, and potentially a smaller additional improvement over an analysis of a single

attribute.

Our work shows that if cross-attribute interactions are present in the data, benefits

from data integration are strongest when these interactions are explicitly modeled. Across

all tested network settings, the multi-attribute NF procedure provides better detection

of perturbation sites than any single-attribute method, or multi-attribute method that

ignored the network structure. In addition, we found that there were substantial gains

to be had from a network-filtering based ranking on a single attribute alone compared

with differential expression– it easily outperformed Hotelling’s T 2 statistic, and provided

a greater chance of an ideal identification than SSEM-lasso. The results in this chapter

underscore the need to take network effects into account when working with bioinformatic

data, and offers a statistically principled method for a truly integrative analysis of multi-

attribute data for better understanding cellular mechanism-of-action.
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Figure 2.5: Results from an analysis of data from TCGA. Rank according to the non-
sequential multi-attribute NF ranking is shown along the x-axis for all plots. Panels show
NF statistic, differential expression statistic, and cross-validation MSE. The top 4 results
shown in Table 2.4 are highlighted in red.
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Chapter 3

Characterizing cellular phenotypes via Bayesian

regression in the Gene Ontology

3.1 Introduction

A fundamental task in many bioinformatic studies is the explanation of phenotypic vari-

ance by differences in gene expression. Many approaches exist for this purpose, among

them regression and differential expression approaches, clustering methods, and database-

informed analyses. These vary in complexity from sophisticated machine learning models

to simple sets of gene-by-gene linear regressions. A principal challenge in analyses of this

type is finding an appropriate balance between interpretability and and predictive power.

Gene-by-gene analyses often fail to produce results that are either generalizable or

biologically interpretable. A typical differential expression analysis may result in a list of

genes that are significantly different between case and control, but it may be unclear what

underlying mechanism at work. Some methods, such as GSEA (Subramanian et al., 2005)

conduct group-based “enrichment” analyses. These strategies group genes according to

various databases, and then analyze whether the significant genes in those group are jointly

over- or under-expressed. These methods offer improved interpretability over single-gene

and cluster-based analyses, and may offer power improvements in certain circumstances.

Still, they typically do not capture the relationships that exist between these gene groups,

aside from genes which share membership (and sometimes not even then).

On the other end of the spectrum, clustering-based methods allow for data-driven
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groupings of genes. In recent years, methods as those described by Eisen et al. (1998),

Shamir and Sharan (2001), and Jiang et al. (2004) have gained in popularity. Cluster-

based models typically achieve good model fit according to residuals, but result in gene

sets that are not interpretable without significant biological investigation and expertise. In

addition, these models are completely unable to make predictions about genes not observed

in the training set, as they offer no information as to the cluster assignment of new genes.

In this paper, we propose ontological regression, which aims to strike a balance be-

tween the interpretability of database-organized methods and the flexibility of clustering

models. We perform a Bayesian hierarchical regression informed by the annotations and

structure of the Gene Ontology (GO). The GO aims to be “a structured, precisely defined,

common, controlled vocabulary for describing the roles of genes and gene products in any

organism” (Ashburner et al., 2000). The biological processes domain organizes cellular

functions into a directed acyclic graph, where the root of the tree is the general heading

of “biological processes” and subsequent branches make finer and finer distinctions be-

tween groups of processes. For example, beginning at the root node of biological process

(GO:0008150), we can take the branch of cellular process (GO:0009987), then metabolic

process (GO:0008152), then biosynthetic processes (GO:0009058), then cellular biosyn-

thetic process (GO:0044249), then membrane lipid biosynthetic process (GO:0046467),

and after four more steps, we finally arrive at the leaf node of lipid A biosynthetic process

(GO:0009245), which has no child nodes.

Each of these nodes in the ontology is referred to as a “GO term”. Genes are annotated

with one or more GO terms by experimental or computational evidence, or by curatorial

judgement. We use both the gene annotations and the tree structure of the ontology itself

in our regression, which models the expression of genes as mixtures of activity realized from

distributions at the GO term level. We demonstrate the abilities of this model in a case

study using data from a series of experiments studying gene expression in Saccharomyces

cerevisiae under different nutrient limitations (see Brauer et al., 2008; Airoldi et al., 2009,

for experimental details).
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3.2 Model

Brauer et al. (2008) describe a series of experiments on S. cerevisiae in a chemostat. Yeast

cells were restricted in of one of six nutrients (glucose, nitrogen, phosphate, sulfur, leucine,

or uracil) to control their growth rate to specific values. Each observation of the data

set consists of the restricted nutrient, the growth rate of the cells, and the resulting gene

expression. We construct a Bayesian regression to model gene expression by growth rate,

incorporating the natural structure of biological processes and the imposed structure of

the experiment itself.

As it has previously been found that “expression of more than one quarter of all yeast

genes is linearly correlated with growth rate, independent of the limiting nutrient” (Brauer

et al., 2008), we begin by assuming a linear relationship between the growth rate X and

each gene’s observed expression Y per restriction environment f . Next, we aggregate

condition-specific gene effects by their GO term annotations through a mapping matrix γ,

and model the activity of GO terms. Finally, we model a common prior distribution for

the activity of GO terms in each of these restriction environments. A diagram describing

our regression model is provided in Figure 3.1.

Structural information from the GO is encoded in two different places in this model:

the assignment matrix of genes to GO terms (γ) and in the prior for covariance between

GO terms (ΣMRCA). The assignment matrix is a row-normalized mapping of ng genes by

nt GO terms. That is, γij = I(gene i in term j)/
∑

k I(gene i in term k). A gene that is

annotated with many GO terms will have its influence divided evenly across all such terms,

in contrast to an enrichment-style analysis.

Relationships between GO terms are also incorporated into our ontological regression

model. In enrichment analyses, all GO terms with gene assignments are typically considered

to be candidates for enrichment, and no adjustments are made in consideration of the

relationships between GO terms. We encode these relationships as the scale matrix in

the prior distribution for the covariance between GO term activity. In the GO space, we
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αGO ∼ N(0, Iσ2
α,GO)

βGO ∼ N(0, Iσ2
β,GO)

For f = 1, . . . F conditions:

αGO−cond
f ∼ N(αGO,Σα;GO−cond)

βGO−cond
f ∼ N(βGO,Σβ;GO−cond)

αgene−condf ∼ N(γαGO−cond
f , Iσ2

α;gene)

βgene−condf ∼ N(γβGO−cond
f , Iσ2

β;gene)

For i = 1, . . . nf in condition f :

Yi ∼ N(αgene−condf + Xβgene−condf , Iσ2
obs)

σ2
α;GO ∼ IG(k, l)

σ2
β;GO ∼ IG(k, l)

Σα;GO−cond ∼ W−1(ΣMRCA, ν)

Σβ;GO−cond ∼ W−1(ΣMRCA, ν)

σ2
α,gene ∼ IG(k, l)

σ2
β,gene ∼ IG(k, l)

σ2
obs ∼ IG(k, l)

GO

GO-

condition

Gene-

condition

Observed

Figure 3.1: Generative model diagram for ontological regression. The model has four
levels: global gene ontology terms (GO), gene ontology terms by sample condition (GO-
condition), genes by sample environment (Gene-condition), and observed data (Observed).
Note that additional covariates beyond X may be included in a parallel manner. The
notation N(µ,Σ) indicates a multivariate normal with mean µ and covariance matrix Σ,
IG(k, l) indicates an inverse gamma distribution with shape parameter k and scale param-
eter l, and W−1(Σ, ν) indicates an inverse Wishart distribution with scale matrix Σ and
degrees of freedom ν.

posit that the root node has activity level distributed according to Z0 ∼ N(0, σ2
0). At each

step down the tree, children j of node k have activity levels distributed Zj ∼ N(Zk, σ
2
s).

Given this structure, we can approximate covariance between the activity of GO terms as

a function of the distances to their most recent common ancestor (abbreviated MRCA).

Denote A(i, j) to be the most recent common ancestor of i and j in the ontology, and

D(l,m) the distance between l and m. We can write the first-order approximation as

ΣMRCA(i,j) =
σ2

0√
D(A(i, j), i)σ2

s + σ2
0

√
D(A(i, j), j)σ2

s + σ2
0

. (3.1)

The details of posterior distributions are given in Appendix B.2. All priors are conjugate,

and inference is done via Gibbs sampling (for software details, see the link in Appendix B.1).

Since gene-by-condition coefficients have expectations that are a function of their GO-

by-condition coefficients and γ, we can calculate expected gene-level coefficients (and thus
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predict expression) for genes outside of our training set. This is in contrast to clustering-

based methods, which provide no guidance as to group membership for unobserved genes,

and list-based analyses, which at best suggest the sign of the coefficient for left-out genes.

By the same token, we can propagate errors at the gene level up to GO terms to analyze

their functional significance. This means that if we identify which genes we have little

ability to predict, and believe that those inadequacies stem from problems at the GO term

level, we can identify the GO terms responsible for these bad predictions.

We note that when we have more GO terms than genes (nt ≥ ng), an informative

ΣMRCA is required to ensure a positive-definite covariance matrix. The hyperparameters

σ2
0 and σ2

s may be manipulated to construct a near-diagonal scale matrix if a weaker prior

is preferred.

3.3 Results

3.3.1 Analysis of cell growth experiment

From a single run of the Gibbs sampler, we obtain Monte Carlo estimates of posterior means

for each gene-condition pairing, each GO term-condition pairing, and GO terms overall.

We compare results against two benchmarks: linear pooling and a hierarchical Dirichlet

process (HDP). For linear pooling, we merely average the coefficients from a series of linear

regressions by GO term in order to obtain a functional summary of activity. By contrast,

the HDP is a nonparametric model that clusters genes according to the data. Again,

gene-level coefficients are averaged in order to obtain interpretable biological groups.

The top five GO terms by each method are shown in Table 3.1, ranked by p-value or

Bayesian analogue. Note that directions of effect are consistent across all three methods

for these GO terms. The GO terms identified by ontological regression largely agree with

those identified by HDP, and in some cases by linear pooling. As this method effectively

compromises between these two extremes, it is encouraging to see this mixing borne out in

the top results. In addition, we note in particular that GO:0050896 (response to stimulus)
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and GO:0006950 (response to stress) are identified more readily by ontological regression

than the other two. These are two terms that we would certainly expect to appear for the

experiments of Brauer et al. (2008).

Ontoreg Linear Pooling HDP
GOID Term Rank Mean Rank Mean Rank Mean

GO:0050896 response to stimulus 1 -78.16 6 -93.85 2 -4.47
GO:0006950 response to stress 2 -61.35 9 -77.87 7 -3.30
GO:0006412 translation 3 50.80 2 126.29 3 3.90
GO:0044249 cellular biosynthetic process 4 50.78 21 56.48 1 4.85
GO:0044260 cellular macromolecule metabolic process 5 46.98 63 41.89 4 3.59
GO:0009059 macromolecule biosynthetic process 7 44.65 35 50.63 5 3.58
GO:0042254 ribosome biogenesis 11 35.05 1 129.44 12 2.26
GO:0006396 RNA processing 13 29.38 5 97.30 14 1.91
GO:0006364 rRNA processing 15 23.45 3 112.21 18 1.50
GO:0016072 rRNA metabolic process 16 23.40 4 108.12 17 1.52

Table 3.1: Top GO terms obtained by ontological regression, linear pooling, and HDP. GO
terms are ranked according to p-values or Bayesian analogue.

Figure 3.2 shows the densities of gene-condition slopes and 10-fold cross-validation resid-

uals to observed gene expression. Ontological regression shows a fatter-tailed distribution

of regression coefficients, a feature expected in such a Bayesian hierarchical regression. De-

spite the wider spread in coefficients, it shows cross-validated residuals that more closely

resemble those from simple linear regression (SLR) than HDP.

3.3.2 Predicting out-of-sample genes

As previously noted, the existence of GO-level activity estimates and the mapping matrix

γ allows us to predict the expression of genes that are not in our training set. Recall

E(βgene−cond) = γβGO−cond. To predict the expression of an unobserved gene, we merely

add a row to γ containing the assignments of the new gene and obtain γ+. To verify the

accuracy of these predictions, we compare the gene-condition coefficients from a full run

of the ontological regression (all genes included) against GO-derived predictions obtained

from a run with a fixed percentage of the genes removed.

We perform this procedure leaving out 10%, 20%, 30%, 40%, and 50% of all genes,

with 10 replicates per proportion left-out. Results are shown in Figure 3.3. With only

10% of genes removed, out-of-sample predictions are correlated with sampled estimates at
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Figure 3.2: Densities of gene-level coefficients and 10-fold cross-validation residuals by
method. HDP results in a spiky distribution of slopes (irregular features are more visible
in Supplementary Figure B.1), while linear pooling and ontological regression generate
smoother densities. The density of ontological regression coefficients is fatter-tailed, a
feature expected for a hierarchical model. We note that although ontological regression
results in a wider spread of coefficients, cross-validation residuals are nearly as small as
simple linear regression and significantly better than those achieved by HDP.

r = 0.78. This correlation decreases as higher percentages of genes are removed, with 50%

removal resulting in r = 0.61. The fact that such a strong correlation is maintained even

when only half of the genes are used to estimate coefficients speaks to the ability of the

Gene Ontology and this model to provide structured estimates of gene activity.

To confirm that these results are not due simply to the projection of gene-wise results

into a higher-dimensional space, we obtain a bootstrapped null distribution by resampling

the assignment of genes to GO terms and performing the same procedure. Results are

shown in Figure 3.4. Bands represent the 25% and 75% quantiles of correlation based

on replicates in each condition. A null mapping between genes and GO terms results

in effectively zero correlation between sampled coefficients and out-of-sample predicted

coefficients, indicating that the biological relevance of GO terms drives the correlation

demonstrated in Figure 3.3.



37

Figure 3.3: Correlation between out-of-sample gene-factor slope predictions based on GO-
condition coefficients and sampled gene-factor slopes from a run with all data.

3.3.3 Predicting model failure

Since we have demonstrated that ontological regression can predict the expression of out-

of-sample genes with reasonable accuracy, the next natural question would be how to know

when these predictions are reliable. We note that our model also contains an internal

measure of validity: the agreement (or lack thereof) between gene-condition estimates and

the expectation of those gene-condition coefficients implied by the GO-condition mean.

We quantify this as the predicted gene expression according to gene-condition estimates,

less the predicted gene expression according to GO-condition estimates. We compare the

absolute value of this in-sample residual against out-of-sample gene expression residuals

(actual gene expression less gene expression predicted by GO-condition estimates).

This measure of internal validity correlates with the error in residuals obtained from

the estimated gene-level coefficients, as shown in Figure 3.5. Again, we consider out-of-

sample predictions with 10%, 20%, 30%, 40%, and 50% of genes left out of the sampler.

The differene between out-of-sample predictions and fully sampled values is compared to

the average difference of in-sample prediction and sampled values. Absolute residuals are

again correlated most strongly when relatively few genes are omitted (r = 0.65 for the 10%

left out set, versus r = 0.41 for the 50% set). That is, if a large training set is available, it

is easier to determine whether out-of-sample predictions will be accurate.
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Figure 3.4: Correlation between sampled and out-of-sample predicted gene-condition slopes
from using the true mapping versus a bootstrapped null mapping between genes and GO
terms. An irrelevant mapping does not yield any substantial correlation between gene-
condition slopes and those predicted from GO-condition slopes.

In a scenario with truly unobserved genes, we would be unable to compare the in-

sample prediction residuals to calculate this measure directly, as we would not have any

gene-level coefficients to compare against. However, we can perform this in-sample residual

calculation for all genes in our training set, and determine which GO terms are are most

strongly associated with poor out-of-sample predictions. In the Brauer et al. (2008) data

set, the GO terms contributing most to model failure are shown in Table 3.2. Several

metabolic terms are contained in this list, including broad categories such as GO:0006521

(regulation of cellular amino acid metabolic process) and GO:0045763 (negative regulation

of cellular amino acid metabolic process). For out-of-sample genes for which we want to

predict expression, membership in one of these GO terms would indicate an increased

likelihood of inaccurate predictions.

3.4 Remarks

In this paper we have presented a Bayesian hierarchical model that leverages the Gene

Ontology for characterization of changes in gene expression based on functional groups.
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Figure 3.5: Correlation between absolute out-of-sample gene expression residuals (actual
gene expression less gene expression predicted by GO-condition estimates) and absolute
in-sample gene prediction disagreement (predicted gene expression according to gene-
condition estimates less predicted gene expression according to GO-condition estimates).

By using the GO to link genes to functional terms and to approximate covariance between

GO terms, we obtain biologically interpetable groups, and enable clearer attribution of

effects between GO terms (relative to list-based methods). Beyond simple descriptions of

relevant functional groups, we can predict the expression of genes not present in the set

of observed genes. Further, we can identify which GO terms are likely to lead to accurate

out-of-sample predictions by evaluating the reliability of gene-level estimates overall.

While this model does offer clear benefits over either a simple averaging-based model

or a nonparametric model such as HDP, it comes at a cost. The Gibbs sampler – which at

each iteration retains thousands of mean estimates and covariance matrix entries – requires

computational resources that may make this method infeasible for more complex organisms

with larger numbers of genes and GO terms. There are also many assumptions made in

the course of this model construction, and each provides an opportunity for error. That

said, we have limited informativeness of priors where feasible, and feel comfortable that

the model is providing reasonable results in our case study.

This work could be extended to non-Gaussian phenotypes at the GO level using a

generalized linear model framework for a fixed ΣMRCA. Additionally, it would be desirable

to allow uncertainty in assignment of genes to GO terms directly into the model, instead
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GOID Term Total residual

1 GO:0006521 regulation of cellular amino acid metabolic process 8058.87
2 GO:0045763 negative regulation of cellular amino acid metabolic process 8054.17
3 GO:0009896 positive regulation of catabolic process 7834.36
4 GO:0045913 positive regulation of carbohydrate metabolic process 7541.55
5 GO:0035065 regulation of histone acetylation 6847.11
6 GO:0042816 vitamin B6 metabolic process 6283.57
7 GO:0016239 positive regulation of macroautophagy 5644.11
8 GO:0031056 regulation of histone modification 5453.54
9 GO:0045732 positive regulation of protein catabolic process 4936.82

10 GO:0015936 coenzyme A metabolic process 4760.00

Table 3.2: GO terms most likely to yield poor out-of-sample predictions. The total residual
column indicates the error summed over all member genes (normalized by the number of
GO terms to which they belong).

of fixing it to a constant mapping.



Chapter 4

Prediction of drug sensitivity by gene signature

activation patterns

4.1 Introduction

Since the arrival of high-throughput gene expression measurement technology, many tech-

niques have been developed to construct gene expression signatures that may be used to

classify disease states and predict drug response. This approach is particularly prevalent

in cancer research, where disease drivers may vary between patients, between tumors, or

even within a single tumor (Gerlinger et al., 2012). As such, a great deal of methodological

research has been performed in search of methods that can accurately predict efficacy for

individual subjects (Golub et al., 1999; Saeys et al., 2007; Van De Vijver et al., 2002).

The construction of these expression signatures is usually performed via one of three

methods: (i) grouping genes according to database annotations, (ii) experimental gener-

ation of gene expression signatures (measured after some perturbation which activates or

deactivates a given pathway), or (iii) factor analysis methods. Database and experimen-

tally generated pathways have the advantage of providing biologically interpretable results,

but may be of limited relevance to the phenomenon currently under study. They may fail

to generalize across tissue types, or may be dependent upon unmeasured quantities, such

as methylation status. Factor analysis models typically offer better fit, but generate groups

that are not easily interpretable from a biological standpoint. In addition, these models

may overfit, and generated signatures often fail to replicate in subsequent analyses.
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Shen et al. (2015) recently published Adaptive Signature Selection and InteGratioN

(ASSIGN), a method which attempts a compromise between the experimental and factor

analysis strategies. ASSIGN incorporates information from lab experiments with a flexible

factor analysis that can adapt to multiple tissue types or other background conditions. Ex-

perimental signatures are input as prior information into a Bayesian factor analysis model,

which allows for some deviation between the experimental signature and the final pathway.

The model also includes a term for background adjustment that can vary by context (tissue,

cell line, etc). This has the advantage of allowing for adaptation when the patient samples

differ in disease state or tissue context from the cells in which the experimental signature

was generated. In addition, though experimental signatures are generated in isolation,

ASSIGN permits simultaneous inference of activations for the samples of interest. Shen

et al. (2015) examined the ability of these pathway activations to differentiate between

different cancer subtypes, and found that they individually offered better discrimination

than Bayesian Factor Regression Models (BFRM; Bernardo et al., 2003) and FacPad (Ma

and Zhao, 2012). As one of the stated advantages of ASSIGN over models like GSEA

(Subramanian et al., 2005) or BFRM is that it can infer multiple pathway activations si-

multaneously, we consider the ability these pathways to jointly predict drug response. This

paper proposes a simple method for predicting drug response based on ASSIGN pathway

activity estimates, and presents a case study in data from the Integrative Cancer Biology

Program (ICBP; Daemen et al., 2013).

4.2 Methods

Broadly speaking, we use ASSIGN to estimate pathway activations, and then predict drug

sensitivity via a penalized logistic regression model. The pathways and interactions to be

incorporated into the final prediction model will be determined through use of the lasso on

a 2-way interaction model by Bien et al. (2013).
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4.2.1 Pathway signatures

As previously noted, ASSIGN requires data from two different sources: experimental data

in which genes have been over- or under-expressed, and the patient/cell line samples for

which we want to know pathway activations.

We present a brief overview of the model here; details may be found in Shen et al.

(2015). The first stage of ASSIGN is the construction of a set of gene expression signatures.

Microarray or RNA-Seq measurements are taken on a set of cells both before and after

perturbations to particular genes/pathways, through methods such as gene knockdown

experiments or adenovirus transfection. The differential expression between these states

is then used to construct an informative prior on which genes should be included in a

signature of activity for that pathway. Next, the patient or cell line samples of interest are

assessed for activity in these pathways in a Bayesian factor analysis model.

For N patient/cell line samples on G genes and k experimentally perturbed pathways,

the ASSIGN factor model may be written

YG×N = BG×11′N×1 + SG×kAk×N + EG×N , (4.1)

where Y denotes the expression of genes in the patient or cell line samples, B is the

background expression level, S denotes the matrix containing the pathway signatures, and

A contains sample-specific activations of those signatures. Sample j’s expression follows

Y,j ∼ N(B + SA,j ,Σ), where Σ = diag(τ−1
1 , . . . , τ−1

G ). Precision for the error terms τg are

distributed Gamma(u, v), usually chosen to be non-informative. The background vector

is distributed B ∼ N(µB, SB), in which µB and SB are determined by the experimental

data.

The matrix S is constructed according to a spike-and-slab prior on the experimen-

tal data, where, Sg,k|δg,k ∼ (1 − δg,k)N(0, ω2
0) + δg,kN(0, ω2

1). In this equation, δg,k ∼

Bernoulli(πg,k), with πg,k determined by the probability of differential expression between

control and perturbed samples in the experimental data. ASSIGN takes ω2
1 = 1 and
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ω2
1 = 0.1. That is, when δg,k = 1, a diffuse prior on Sg,k is used, and gene g contributes

non-negligibly to the pathway k signature.

The matrix A is of primary interest for our application – for each sample, it contains the

activation scores of each pathway for each signal. We take the posterior means of entries

in A as predictors of drug sensitivity in a series of regression models. In the standard

ASSIGN model, the entries of A follow a modified spike-and-slab distribution to encourage

sparsity within columns (that is, an individual sample will exhibit only a limited number

of pathway activations):

Ak,j ∼ (1− γk,j)N(0, ω2
0) + γk,j

1
ω1
N(0, 1)

Φ( 1
ω1

)− Φ(0)
, (4.2)

where Φ is the cumulative distribution function of the standard normal. Typically γk,j ∼

Bernoulli(λk,j), with 0 < λk,j < 1. Since our response prediction procedure will incorporate

a selection procedure on the pathway activations, we do not wish to induce sparsity in A,

and instead effectively set λk,j = 1 for all j, k. This may be accomplished by setting the

parameter mixture beta=FALSE in the ASSIGN Bioconductor package from Shen et al.,

2013.

4.2.2 Drug response prediction

ASSIGN provides us with sample-specific estimates of pathway activation. We model

sensitivity according to a logistic regression model, allowing for main effects due to cancer

subtype and pathway activation. We also permit two-way interactions between subtype

and pathway activations, and between pathways. As subtypes are mutually exclusive,

subtype-subtype interactions are not considered.

Responsiveness to treatment is determined according to thresholding in GI50, the dose

required to result in a 50% inhibition in growth. These thresholds vary by drug; the cutoffs

for each of the 82 treatments we will consider later can be found in the supplementary

materials to Daemen et al. (2013).
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Denote Ri the (unobserved) probability that sample i has a GI50 indicative of sensitivity

to the drug under consideration, and S(i) the transcriptional subtype of sample i. Denote

the subtype indicator function

1s(S(i)) =

 0 S(i) 6= s

1 S(i) = s
. (4.3)

Our model may be written

logit(Ri) =
∑
s

αs1s(S(i)) +
∑
k

βkAk,i +
1

2

∑
s

∑
k

γs,kAk,i1s(S(i)) +
1

2

∑
j 6=k

θk,jAk,iAj,i .

(4.4)

We encourage sparsity in this model using an `1-norm penalty according to the model of

Bien et al. (2013), as implemented in the hierNet package in R (Bien and Tibshirani, 2014).

Write our coefficients ζ = (α, β), and Ψ =
(

0 Γ
ΓT Θ

)
. We impose a weak hierarchy on our

model, such that an interaction between two variables requires at least one of them to have

a nonzero main effect in the regression model. Given logit loss function q(ζ0, ζ
+ − ζ−,Ψ),

we can rewrite the form of Equation 4.4 as

logit(Ri) = ζ̂0 + (S(i)T , AT,i )(ζ
+ − ζ−) + (S(i)T , AT,i )Ψ(S(i), A,i) (4.5)

and optimize according to

min
ζ0∈R,ζ∈RP ,Ψ∈Rp×p

q(ζ0, ζ
+ − ζ−,Ψ) + λ1T (ζ+ + ζ−) +

λ

2
||Ψ||1 (4.6)

s.t.
||Ψj ||1 ≤ ζ+ + ζ−

ζ+
j ≥ 0, ζ− ≥ 0

 for j = 1, . . . , p . (4.7)

An additinal l2 penalty is optionally applied for stability. Details of this optimization and

additional model properties may be found in Bien et al. (2013).
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4.3 Results

4.3.1 Prediction of drug response

We apply ASSIGN to RNA-Seq from the Integrative Cancer Biology Program (ICBP; Dae-

men et al., 2013). We use data from a set of adenovirus transfection experiments to obtain

activation scores for 4 pathways: AKT, HER2, IGF1R, and BAD. First, cultured human

mammary epithelial cells are infected with adenoviruses that overexpress a particular gene.

After sufficient time is allowed for the cell to reach its new steady state, gene expression

is measured RNA-seq. This is effectively the inverse of the more familiar knockdown ex-

periment. The resulting gene signature prior is incorporated into the main ASSIGN factor

analysis. From this, we use the resulting activation matrix A and the strategy outlined in

Sections 4.2.1-4.2.2 to predict response to 82 drugs.

To evaluate performance of our logistic models of the form of Equation 4.4, for a single

treatment, we first construct a set of interaction model with all samples i = 1, . . . , n and

select the parameters (λ1, λ2) which minimize BIC. As recommended by Bien et al. (2013),

we take the elastic net parameter λ2 = 10−8λ1, which drastically reduces the size of the

search space, while still providing some stability in variable selection. We then fit the

model with (λ∗1, λ
∗
2) n times, each time omitting one sample from the data used to estimate

α, β, γ, and θ. We use the estimated model to predict the probability of response in the

left-out sample according to the fitted model. Using the predicted probabilities from the

leave-one-out procedure and the true response status, we calculate the AUC of each of

these models by comparing to the binary drug response data. This procedure is performed

for all 82 treatments for which we have drug response data.

We compare performance of the interaction models with regression models that feature

only main effects. These models fall into three classes: (i) subtype effects only, (ii) subtype

and a single pathway activation, and (iii) subtype and all pathway activations. No variable

selection procedures are included in fitting these models. It should be noted that previous

papers (Daemen et al., 2013; Shen et al., 2015) effectively consider only model classes (i)
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and (ii). We evaluate all of these on the basis of AUC generated from the same leave-one-

out procedure, where a model is fit n times, each with one observation excluded, whose

probability of response is predicted according to the fitted logistic model.

Model Mean AUC Mean improvement Count best model

Subtype only 0.70 0
Subtype and AKT 0.75 0.09 0
Subtype and BAD 0.73 0.07 2
Subtype and HER2 0.75 0.08 2
Subtype and IGF1R 0.74 0.08 0
Subtype and main effects 0.81 0.04 27
Full interaction lasso 0.85 0.10 51

Table 4.1: Summary of model class performance over all treatments. AUC is calculated
according to the leave-one-out procedure described in Section 4.2.2. Mean improvement is
relative to the next-simplest class of model (subtype and a single pathway show average
gains over subtype only, subtype and main effects show improvement over subtype and the
single best pathway, and the interaction model shows improvement over subtype and all
main effects), and only calculated for treatments in which AUC increases. The times that
the model has the highest AUC is also shown (out of all 82 treatments).

Figure 4.1 shows relative model performance according to AUC. Out of the 82 treat-

ments considered, 51 had improved performance from use of an interaction model over the

next-best method. 27 treatments showed the highest AUC in a model with subtype and all

main effects, while only 4 treatments performed best with subtype and a single pathway.

Of samples where the interaction model increased AUC over the next-best model, the inter-

action model offered an improvement of 0.10 on average. In 6 cases, the interaction model

led to perfect discrimination (leave-one-out AUC= 1.00) among our samples. Tables 4.1

and C.1 provide additional details.

While the interaction model clearly offers the best improvement in the majority of

treatments, it is also worth noting that the model including subtypes and all main effects

also offers a non-negligible improvement over single-pathway or subtype-only models. This

class of model achieves an average AUC of 0.81, and contributing a mean 0.04 improvement

over a single-pathway model. Out of the 31 cases in which the interaction model was not

the best performer, the main effects model prevailed in 27. This indicates that the current
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strategy of fitting all pathway activations simultaneously but only performing drug response

predictions one-at-a-time sells short the advantage of joint modeling.

4.3.2 Details of interaction models

When we examine the results of the interaction models, patterns of interactions can be

observed. Figure 4.2 shows a heatmap of these coefficients by treatment from models fit

on all observations. For example, an interaction of AKT and HER2 generally results in a

positive coefficient, corresponding to increased odds of response to these treatments when

both are active. By contrast, the interaction term between BAD and IGF1R is typically

negative, indicating decreased odds of response when both are active.

We can also examine the interactions between subtypes and pathways. The luminal

subtype interaction with HER2 is typically positive, meaning that luminal cancers are more

likely to respond to these treatments when HER2 is also active. The converse is true of

the basal subtype and HER2, which typically results in a negative interaction term.

These interactions may also be represented in a network diagram, as in Figure 4.3.

Nodes indicate the main effects present in the final interaction model, and edges the inter-

actions between these nodes. In this diagram, nodes and edges are color-coded according to

the direction of model coefficients (red denoting a negative value, and blue positive). The

intensity of the color indicates the magnitude of the coefficient. Figure 4.3a shows such a

diagram for treatment Glycyl H1152. Cell lines with luminal subtype are more likely to

respond to this drug, while the presence of AKT, BAD, or IGF1R activation negatively

affects the odds of response. Luminal subtype with IGF1R activation leads to lower odds

of response than would be expected from either the subtype or IGF1R activation individ-

ually. Diagrams for all treatments showing improvement from the interaction model are

shown in Appendix C.3.
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4.4 Remarks

Shen et al.’s ASSIGN algorithm offers an exciting step forward in terms of allowing the

flexibility of machine learning models and the interpretability of experimentally derived

pathways. We demonstrate here that the power of these signature activations to predict

drug response is actually greater than previously published. By using all available signa-

ture information to model sensitivity, we obtain more significantly improved predictions.

Because ASSIGN pathways have clearly defined origins, we can interpret the interactions

between subtypes and pathways in order to gain deeper insight into mechanisms at play.

Furthermore, we can examine the model coefficients for all treatments and look for common

patterns of response.

The overall method outlined in this paper bears with it the limitations of each of

its two main components: ASSIGN and lasso models. Both may produce misleading

results in the presence of collinearity between signatures, or when interactions between

pathways are strongly nonlinear. As such, we recommend this procedure only for situations

in which no more than 12 correlated pathways are included (as per Shen et al., 2015).

Additional diagnostics may be performed to ensure that this methodology is suitable,

such as examining trace plots and Gelman-Rubin convergence statistics for signs that the

ASSIGN factor analysis model has successfully converged (Gelman and Rubin, 1992).

The use of this style of interaction modeling represents only a first step in the use

of pathway activation to predict drug response. In particular, the penalty term in the

lasso model may be modified to accomodate prior information regarding the plausibililty

of biological interactions with respect to drug rsponse. Lu et al. (2013) used pathways

from the Kyoto encyclopedia of genes and genomes (KEGG; Kanehisa and Goto, 2000) in

this fashion to evaluate gene-gene interactions in GWAS of continuous traits. As has been

demonstrated here however, the ability to predict response based on pathway-level activity

can be greatly improved by even relatively unsophisticated joint modeling procedures.
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Figure 4.2: Coefficients from the interaction logistic model for treatments in which the
interaction model offers the best performance by leave-one-out AUC. Each coefficient x
may be converted to a multiplier on the odds of response by taking exp(x).
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Chapter 5

Conclusion

In this dissertation, we have presented several network-based approaches to biological data,

each using a different notion of a biological network.

Chapter 2 contained a method to detect perturbations in multi-omics biological data

based on a conditional Gaussian Graphical model. Likelihood ratio tests provide a formal

statistical framework for determining the most likely site for a perturbation for a given

network structure. If multiple perturbations are suspected, a procedure for sequential

inference is provided as well. The efficacy of this model compared to other inference

strategies is demonstrated in simulation studies and in an analysis of breast cancer data

from The Cancer Genome Atlas.

Chapter 3 used the network of the Gene Ontology to map genes to relevant functional

groups and to approximate covariance between these groups. Using a Bayesian hierarchical

regression, we obtain both gene- and GO term-level regression coefficients, which enable

us This method was demonstrated via a case study of gene expression in controlled exper-

iments of S. cerevisiae (Brauer et al., 2008). It produced biologically reasonble results in

terms of easily interpretable groups.

Chapter 4 considers a networks constructed of pathway-pathway and pathway-subtype

interactions as determined by a penalized regression model to predict drug response. Path-

way activations are first estimated by application of the ASSIGN algorithm (Shen et al.,

2015). Next, these activations are used with subtype in a penalized logistic model with

main effects and 2-way interactions to predict response status for 82 different drugs. The

resulting analysis showed a dramatic increase for most drugs in accuracy of response predic-
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tion based on interaction models. Visualization of these models through network diagrams

allows for ready interpretation, and can aid investigators in identifying relevant patterns.

Each of the methods discussed here has further room to grow as well. The perturbation

detection models of Chapter 2 could be extended to non-Gaussian phenotypes to allow for

the inclusion of a wider variety of data types. In addition, the decision to pursue gene-

level inferences is a simple first approach, but further work could be done to determine

optimal granularity and groupings for such tests. The Bayesian regression framework of

Chapter 3 may benefit from models that incorporate uncertainty in assignment of genes

to ontology terms. Chapter 4’s regressions may be modified to incorporate a interaction-

specific penalties based on prior biological data, similar to the gene-gene interaction models

developed by Lu et al. (2013).

Though these models vary greatly in the way that networks are used, they all show

the benefits of modeling complicated biological data within the context of the interactions

that define it. When identifying perturbations, the largest change is not always the site of

an initial disturbance. In describing genome-wide expression changes, better inference is

permitted by considering membership in multiple functional groups and the relationships

between those groups. Consideration of interactions between pathways and between path-

ways and subtypes can go beyond improving drug response prediction accuracy, but also

allows for better understanding of the models that achieve it. By allowing our models a

small measure of the interaction complexity inherent in high-throughput biological data,

we can achieve better understanding of the phenomena under study.



Appendix A

Supplementary materials: “Detection of multiple

perturbations in multi-omics biological networks”

A.1 Software

Supplementary files, including the simulation pipeline and TCGA scripts/processed data,

may be found at https://github.com/paulajgriffin/mapggm_supplemental.

An R package mapggm containing methods for multi-attribute network estimation

and perturbation detection is available at https://github.com/paulajgriffin/mapggm.

To use this package, install the devtools package from CRAN and run:

library(devtools)

install_github(’paulajgriffin/mapggm’)

A.2 Properties of sequential tests

We prove the following theorems, presented in Section 2.3.2.

Theorem A.1 Given a set of nodes already found to have nonzero mean in steps 1, . . . s,

consider testing for a perturbation at an additional node i in step s+ 1. Denote the indices

in Z = ΩY corresponding to the nodes found in steps 1, . . . , s as S.

We can write the expected difference between the original test statistic and the test

statistic adjusted for perturbations in S as

E(Ti − T [s+1]
i ) = µTi (Σi,sΣs,i)µi + 2µTi (Σi,s)µS + µTS (Σs,iΣi,s)µS .

https://github.com/paulajgriffin/mapggm_supplemental
https://github.com/paulajgriffin/mapggm
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In the special case that µi = 0,

E(Ti − T [s+1]
i |µi = 0) ≥ 0 .

Proof of Theorem A.1. First, recall the form of Tj , the unadjusted test statistic for

testing the alternative hypothesis that µj 6= 0 and µ(−j) = 0 against a null of µ = 0. We

can rewrite the test statistic in terms of the unfiltered data y and obtain

Tj = n
(
z̄TΣz̄ − z̄T(−j)

(
Σ(−j),(−j) − Σ(−j),jΣ

−1
j,jΣj,(−j)

)
z̄(−j)

)
= n

z̄TΣz̄ − z̄T

 0 0

0 Σ(−j),(−j) − Σ(−j),jΣ
−1
j,jΣj,(−j)

 z̄


= n

ȳTΩΣΩz̄ − ȳTΩ

 0 0

0 Ω−1
(−j),(−j)

Ωȳ


= n

ȳTΩz̄ − ȳT

 Ωj,(−j)Ω
−1
(−j),(−j)Ω(−j),j Ωj,(−j)

Ω(−j),j Ω(−j),(−j)

 ȳ


= n

ȳT
 Ωj,j − Ωj,(−j)Ω

−1
(−j),(−j)Ω(−j),j 0

0 0

 ȳ


= n

ȳT
 Σ−1

j,j 0

0 0

 ȳ

 .

The mean of the unfiltered data has distribution ȳ ∼ N(Σµ,Σ/n). Taking the expec-

tation of our test statistic Tj , we obtain

E(Tj) =nE(ȳ)T

 Σ−1
j,j 0

0 0

E(ȳ) + Tr


 Σ−1

j,j 0

0 0

Σ


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=n

 Σj,jµj + Σj,(−j)µ(−j)

Σ(−j),jµj + Σ(−j),(−j)µ(−j)


T  Σ−1

j,j 0

0 0


 Σj,jµj + Σj,(−j)µ(−j)

Σ(−j),jµj + Σ(−j),(−j)µ(−j)


+ Tr


 I Σ−1

j,jΣj,(−j)

0 0




=n
(
µTj Σj,jµj + 2µTj Σj,(−j)µ(−j) + µT(−j)Σ(−j),jΣj,(−j)µ(−j)

)
+ kj ,

where kj indicates the number of attributes for node j.

Denote the indices in Z = ΩY corresponding to the nodes found in steps 1, . . . , s as S,

and the indices corresponding to the node currently under consideration as i. Denote all

other indices X.

In the sequential testing procedure, we test the alternative hypothesis of µi 6= 0, µS 6= 0,

µX = 0 against the null that µS 6= 0, µi = 0, µX = 0. We can write the adjusted test

statistic T
[s+1]
i as the difference of two unadjusted test statistics

T
[s+1]
i = T(i,S) − TS . (A.1)

We are interested in E(Ti − T [s+1]
i ), the expected difference between the original and

adjusted test statistic.

E(Ti − T [s+1]
i ) = E(Ti) + E(TS)− E(T(i,S))

= n
(
µTi Σiiµi + 2µTi Σi,Sµs + 2µTi Σi,XµX +

µTSΣS,iΣi,SµS + µTXΣX,iΣi,XµX
)

+ ki

+n
(
µTSΣS,SµS + 2µTSΣS,iµi + 2µTSΣS,XµX + µTi Σi,SΣS,iµi+

µTXΣX,SΣS,XµX
)

+
∑
j∈S

kj

−n
(
µTi Σi,iµi + 2µTi Σi,SµS + µTSΣS,SµS + 2µTi Σi,XµX + 2µTSΣS,XµX
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+ µTXΣX,iΣi,XµX + µTXΣX,SΣS,Xµx
)

+

ki +
∑
j∈S

kj


By gathering common terms, we obtain

E(Ti − T [s+1]
i ) = µTi (Σi,SΣS,i)µi + 2µTi (Σi,S)µS + µTS (ΣS,iΣi,S)µS .

In the special case that µi = 0 (no perturbation exists at the node under consideration),

E(Ti − T [s+1]
i |µi = 0) = µTS (ΣS,iΣi,S)µS ≥ 0 ,

since (ΣS,iΣi,S) is by definition positive semi-definite.

Theorem A.2 Under the same conditions outlined in the general case of Theorem A.1, if

ΣS,i = 0, then

T
[s+1]
i = Ti .

Proof of Theorem A.2. Denote the indices in Z = ΩY corresponding to the nodes

found in steps 1, . . . , s as S, and the indices corresponding to the node currently under

consideration as i. Denote all other indices X.

For any ΣS,i we can write the test statistic Ti for the unconditional test as

Ti = n(z̄ − µ̂A)TΣ(z̄ − µ̂A)− n(z̄ − µ̂0)TΣ(z̄ − µ̂0)

= n ((z̄ − µ̂A)− (z̄ − µ̂0))T Σ ((z̄ − µ̂A) + (z̄ − µ̂0)) ,

where µ̂0 and µ̂A denote the maximum likelihood estimators for µ under the null and

alternative hypothesis, respectively. Without loss of generality, we reorder the filtered

data so that Z = (Z ′i, Z
′
S , Z

′
X)
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Following formula (7) in the main paper, for the unconditional test, we have

µ̂0 =


0

0

0

 ,

and

µ̂A =


z̄i − Σ−1

i,i Σi,(SX)z̄(SX)

0

0

 .

Similarly, a nested likelihood ratio test that conditions on the presence of nonzero mean

values for indices S has the form

T
[s+1]
i = n(z̄ − µ̂[s+1]

A )TΣ(z̄ − µ̂[s+1]
A )− n(z̄ − µ̂[s+1]

0 )TΣ(z̄ − µ̂[s+1]
0 )

= n
(

(z̄ − µ̂[s+1]
A )− (z̄ − µ̂[s+1]

0 )
)T

Σ
(

(z̄ − µ̂[s+1]
A ) + (z̄ − µ̂[s+1]

0 )
)
,

with restricted MLEs

µ̂
[s+1]
0 =


0

z̄S + Σ−1
S,SΣS,(iX)z̄(iX)

0

 , and

µ̂
[s+1]
A =

 z̄(iS) + Σ−1
(iS),(iS)Σ(iS),X z̄X

0

 .



60

Recall Σi,S = 0 by assumption. We may rewrite µ̂A, µ̂
[s+1]
0 , and µ̂

[s+1]
A as

µ̂A =


z̄i + Σ−1

i,i (Σi,S z̄S + Σi,X z̄X)

0

0



=


z̄i + Σ−1

i,i Σi,X z̄X

0

0



µ̂
[s+1]
0 =


0

z̄S + Σ−1
S,S(ΣS,iz̄i + ΣS,X z̄X)

0



=


0

z̄S + Σ−1
S,SΣSX z̄X

0


µ̂

[s+1]
A =

 z̄(iS) + Σ−1
(iS),(iS)Σ(iS),X z̄X

0



=


z̄i + Σ−1

i,i Σi,X z̄X

z̄S + Σ−1
S,SΣS,X z̄X

0

 .

Our unadjusted test yields

Ti = n



−Σ−1

i,i Σi,X z̄X

z̄S

z̄X

−


z̄i

z̄S

z̄X



T

Σ



−Σ−1

i,i Σi,X z̄X

z̄S

z̄X

+


z̄i

z̄S

z̄X



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= n


−z̄i − Σ−1

i,i Σi,X z̄X

0

0


T

Σ


z̄i − Σ−1

i,i Σi,X z̄X

2z̄S

2z̄X


By a similar process, the adjusted test statistic is

T
[s+1]
i = n


−z̄i − Σ−1

i,i Σi,X z̄X

0

0


T

Σ


z̄i − Σ−1

i,i Σi,X z̄X

2z̄S − 2Σ−1
S,SΣSX z̄X

2z̄X

 .

Note that both of these statistics have the form

T = nd′Σa

= n


di

dS

dX


T 

Σii 0 ΣiX

0 ΣSS ΣSX

ΣXi ΣXS ΣXX




ai

aS

aX


= dTi (Σiiai + ΣiXaX) + dTS (ΣSSaS + ΣSXaX) + dTX (ΣXiai + ΣXSaS + ΣXXaX)

= dTi (Σiiai + ΣiXaX) .

In both Ti and T
[s+1]
i , we have di = −z̄i−Σ−1

i,i Σi,X z̄X , ai = z̄i−Σ−1
i,i Σi,X z̄X , and aX = 2z̄x.

Therefore, T
[s+1]
i = Ti.

A.3 Bounds on error in test statistic

We prove the following theorem, presented in Section 2.3.3.

Theorem A.3 Under the conditions above, the discrepancy T1− T̃1 is equal in distribution

to a linear combination of mutually independent, noncentral chisquare random variables,

s∑
k=1

akχ
2
rk

(δk) , (A.2)
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where

δk = (n/2)µTΣ·1EkΣ
−1
11 Σ1·µ .

Accordingly,

E
[
T1 − T̃1

]
= tr (DΣ11) +

1

2
nµTΣ·1DΣ1·µ (A.3)

and

Var
(
T1 − T̃1

)
= 2tr

(
(DΣ11)2

)
+ 2nµTΣ·1DΣ11DΣ1·µ . (A.4)

Proof of Theorem A.3. Begin by noting that T1 − T̃1 = XTDX, where

D = Ω11 − Ω1·Ω
−1
·· Ω·1 −

(
Ω̃11 − Ω̃1·Ω̃

−1
·· Ω̃·1

)
,

as defined in the paper, andX is a multivariate normal random variable with mean n1/2Σ1·µ

and covariance Σ11. Since D is symmetric and Σ11 is symmetric and positive definite (the

latter by assumption), it follows from Lemma 1 of Baldessari (1967) that DΣ11 has spectral

decomposition

DΣ11 =
s∑

k=1

akEk ,

such that rank(Ek) = rk (corresponding to the multiplicity of the eigenvalue ak) and∑s
k=1 rk = K. By direct application of Theorem 1 of Baldessari (1967), the expression in

(A.2) then follows.

As for the mean and variance expressions in (A.3) and (A.4), we see that

E
[
T1 − T̃1

]
= E

[
s∑

k=1

akχ
2
rk

(δk)

]

=

s∑
k=1

ak(rk + δk)

=

s∑
k=1

akrk +

s∑
k=1

akδk

= tr(DΣ11) +
n

2
µTΣ·1DΣ1·µ ,
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and similarly,

Var
(
T1 − T̃1

)
= Var

(
s∑

k=1

akχ
2
rk

(δk)

)

=
s∑

k=1

a2
k(2rk + 4δk)

= 2
s∑

k=1

a2
krk + 4

s∑
k=1

a2
kδk

= 2tr
(
(DΣ11)2

)
+ 2nµTΣ·1DΣ11DΣ1·µ ,

where we have exploited independence among the chisquare random variables in both cases.

The following corollary was also provided in Section 3.3 of the paper.

Corollary A.1 Let || · ||2 denote the spectral norm. Then

E
[
T1 − T̃1

]
= O (||∆||2) and Var

(
T1 − T̃1

)
= O

(
||∆||22

)
.

Proof of Corollary A.1. The statements in this corollary follow through application

of bounds on the trace of matrix products and repeated application of Cauchy-Schwartz,

coupled with an appeal to the Lipschitz smoothness of the mapping between Ω and the ex-

pression Ω11−Ω1·Ω
−1
·· Ω·1. The latter follows from a straightforward Taylor series argument

and the continuity of matrix inversion.

In Wang et al. (1986) it is established that for two matricesM and N , withN symmetric

and positive semidefinite, that |tr(MN)| ≤ ||M ||2 tr(N). For the mean, therefore, we have

that tr(DΣ11) ≤ ||D||2 tr(Σ11). At the same time,

∣∣n
2
µTΣ·1DΣ1·µ

∣∣ ≤ n

2
||Σ1·µ||22||D||2 .

As a result, we find that E[T1 − T̃1] = O(||D||2).
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Similarly, for the variance

2tr
(
(DΣ11)2

)
≤ 2tr

(
D2Σ2

11

)
≤ 2||D2||2 tr(Σ2

11) ≤ 2||D||22 tr(Σ2
11) ,

where the first inequality follows from Theorem 1 of Chang (1999). Additionally,

|2nµTΣ·1DΣ11DΣ1·µ| ≤ 2n||Σ11µ||22||Σ11||2||D||22 .

Hence, Var(T1 − T̃1) = O(||D||22).

Recall that the quantity ||D||2 depends upon our choice of j = 1. In order to have a

general result, applicable to Tj− T̃j for all j, we prefer a bound in terms of the overall error

∆ = Ω̃ − Ω. Without loss of generality, define a function f(Ω) = Ω11 − Ω1·Ω
−1
·· Ω·1. That

this function is Lipschitz smooth is straightforward to show, as mentioned previously. As

a result,

||D||2 = ||f(Ω)− f(Ω̃)||2 ≤ K||Ω− Ω̃||2 = K||∆||2 .

The results of the corollary then follow.

A.4 Additional simulations

Additional simulations are provided to demonstrate predictive ability at lower signal-to-

noise (SNR) thresholds. Comparisons across values of ρin and ρout in the main paper were

shown with SNR = 0.20; these additional simulations show SNR = 0.10 and SNR = 0.05.
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Figure A.1: Single-site recovery from a stochastic block model simulation with p = 20
nodes, n = 50 cases and controls, and SNR = 0.05.

Table A.1: Probability that the top-ranked site is the true perturbation site and (AUC)
for simulations shown in Figure A.1. (SNR = 0.10)

LRT methods Differential expression SSEM-lasso
ρin ρout Multi-att. Single-att. Multi-att. Single-att. Single-att.

0.8 0.2 0.14 (0.61) 0.12 (0.61) 0.10 (0.58) 0.11 (0.55) 0.11 (0.60)
0.4 0.21 (0.65) 0.14 (0.63) 0.12 (0.59) 0.12 (0.57) 0.12 (0.62)
0.6 0.16 (0.68) 0.14 (0.63) 0.09 (0.58) 0.08 (0.55) 0.14 (0.62)

0.6 0.2 0.21 (0.70) 0.15 (0.65) 0.14 (0.64) 0.14 (0.58) 0.17 (0.65)
0.4 0.09 (0.64) 0.11 (0.64) 0.09 (0.58) 0.10 (0.57) 0.11 (0.63)
0.6 0.15 (0.67) 0.11 (0.64) 0.07 (0.55) 0.09 (0.55) 0.12 (0.63)
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Figure A.2: Single-site recovery from a stochastic block model simulation with p = 20
nodes, n = 50 cases and controls, and SNR = 0.05.

.

Table A.2: Probability that the top-ranked site is the true perturbation site and (AUC)
for simulations shown in Figure A.2. (SNR = 0.10)

LRT methods Differential expression SSEM-lasso
ρin ρout Multi-att. Single-att. Multi-att. Single-att. Single-att.

0.8 0.2 0.09 (0.52) 0.09 (0.51) 0.05 (0.52) 0.06 (0.52) 0.07 (0.51)
0.4 0.09 (0.55) 0.08 (0.55) 0.07 (0.54) 0.05 (0.55) 0.07 (0.54)
0.6 0.07 (0.55) 0.08 (0.54) 0.08 (0.48) 0.05 (0.48) 0.07 (0.54)

0.6 0.2 0.10 (0.56) 0.08 (0.57) 0.07 (0.52) 0.06 (0.52) 0.09 (0.56)
0.4 0.06 (0.55) 0.09 (0.52) 0.08 (0.54) 0.07 (0.56) 0.07 (0.52)
0.6 0.09 (0.56) 0.10 (0.53) 0.07 (0.52) 0.06 (0.52) 0.10 (0.54)



Appendix B

Supplementary materials: “Characterizing cellular

phenotypes via Bayesian regression in the Gene

Ontology”

B.1 Software

The ontoreg package implementing this model in R is available at is available at

https://github.com/paulajgriffin/ontoreg.

B.2 Posterior distributions

Conjugate priors have been used throughout, so all conditional posteriors have closed-form

solutions. As several of these updates follow the same form, we provide a template and

the substitutions necessary for each individual update.

B.2.1 Variance (scalar)

Prior distribution:

σ2 ∼ Inv. Gamma(k, l) (B.1)

p(σ2) =
lk

Γ(k)
(σ2)−k−1 exp

(
−l
σ2

)
(B.2)

https://github.com/paulajgriffin/ontoreg


68

Data distribution:

y1, . . . , yn|σ2 ∼ N(µ, σ2) (B.3)

p(y1, . . . , yn|σ2) =

(
1√

2πσ2

)n
exp

(
−
∑

i(yi − µ)2

2σ2

)
(B.4)

Posterior:

p(σ2|y1, . . . , yn) ∝ (σ2)−k−1−n/2 exp

(
−l
σ2

+
−
∑

i(yi − µ)2

2σ2

)
(B.5)

=⇒ σ2|y1, . . . , yn ∼ Inv. Gamma

(
k +

n

2
, l +

∑
i(yi − µ)2

2

)
(B.6)

Instances in which this substitution is used:

1. Observation-level error (σ2
obs)

• k = kobs

• l = lobs

• n = G× F
•
∑

i(yi − µ)2 =
∑

g,f (Yg,f − (αgene−condg,f + βgene−condg,f Xg,f ))2

2. Gene-condition level error (intercept error σ2
α;gene−cond)

• k = kgene

• l = lgene

• n = G× F
•
∑

i(yi − µ)2 =
∑

f (αgene−condf − γαGO−condf )2

3. Gene-condition level error (coefficient error σ2
β;gene−cond)

• k = kgene

• l = lgene

• n = G× F
•
∑

i(yi − µ)2 =
∑

f (βgene−condf − γβGO−condf )2

4. GO overall error (intercept error σ2
α;GO)
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• k = kGO

• l = lGO

• n = L

•
∑

i(yi − µ)2 =
∑

L(αGOL )2

5. GO overall error (coefficient error σ2
β;GO)

• k = kobs

• l = lobs

• n = L

•
∑

i(yi − µ)2 =
∑

L(βGOL )2

B.2.2 Covariance (matrix)

Prior distribution:

Σ ∼ Inv. Wishart(ν,Ψ) (B.7)

p(Σ) =
|Ψ|ν/2

2νp/2Γp(ν/2)
|Σ|(−ν+p+1)/2 exp

(
−1

2
tr(ΨΣ−1)

)
(B.8)

Data distribution:

y1, . . . ,yn|Σ ∼ N(µ,Σ) (B.9)

p(y1, . . . ,yn|Σ) =

(
1√

(2π)n|Σ|

)n
exp

(
−1

2

∑
i

(yi − µ)TΣ−1(yi − µ)

)
(B.10)

Posterior:

p(Σ|y1, . . . ,yn) ∝ |Σ|(−ν+p+1+n)/2 exp

(
−1

2
tr

(
ΨΣ−1 +

∑
i

(yi − µ)(yi − µ)TΣ−1

))
(B.11)

=⇒ Σ|y1, . . . ,yn ∼ Inv. Wishart

(
ν + n,Ψ +

∑
i

(yi − µ)(yi − µ)T

)
(B.12)

Instances in which this substitution is used:
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1. GO-condition covariance (intercept Σα;GO−cond)

• ν = νGO

• Ψ = ΣMRCA

• n = F

•
∑

i(yi − µ)(yi − µ)T =
∑

f (αGO−condf − αGO)(αGO−condf − αGO)T

2. GO-condition covariance (coefficient Σβ;GO−cond)

• ν = νGO

• Ψ = ΣMRCA

• n = F

•
∑

i(yi − µ)(yi − µ)T =
∑

f (βGO−condf − βGO)(βGO−condf − βGO)T

B.2.3 Mean (vector)

Prior distribution:

θ ∼ N(µ,Σθ) (B.13)

p(θ) =

(
1√

(2π)|Σθ|

)
exp

(
−1

2
(θ − µ)TΣ−1

θ (θ − µ)

)
(B.14)

Data distribution (A is a mapping matrix, constant):

x1, . . . , xn|θ ∼ N(Aθ,Σx) (B.15)

p(x1, . . . ,xn|θ) =

(
1√

(2π)|Σx|

)
exp

(
−1

2

∑
i

(xi −Aθ)TΣ−1
x (xi −Aθ)

)
(B.16)

Posterior:

p(θ|x1, . . . ,xn) ∝ exp

(
−1

2

(
θ − µ)TΣ−1

θ (θ − µ) +
∑
i

(xi −Aθ)TΣ−1
x (xi −Aθ)

))
(B.17)

=⇒ θ|x1, . . . , xn ∼ N
((

Σ−1
θ + nATΣ−1

X A
)−1 (

Σ−1
θ µ+ nATΣ−1

X x̄
)
,
(
Σ−1
θ + nATΣ−1

X A
)−1
)

(B.18)
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Instances in which this substitution is used:

1. Gene-condition means (combined vector; θ = [(αgene−condf )T , (βgene−condf )T ])

• µ =
[
(γαGO−condf )T , (γβGO−condf )T

]
• Σθ =

(
Iσ2
α;gene−cond 0

0 Iσ2
β;gene−cond

)
• n = F ×R
• A = [DX], where D is a design matrix that indicates the genes to which Y

corresponds

• Σx = diag(σ2
obs)

• xi = yi, the observed expression data

2. GO-condition means (intercept αGO−condf )

• µ = αGO

• Σθ = Σα;GO−cond

• n = 1

• A = γ

• Σx = Iσ2
α;gene−cond

• xi = αgene−condf

3. GO-condition means (coefficient βGO−condf )

• µ = βGO

• Σθ = Σβ;GO−cond

• n = 1

• A = γ

• Σx = Iσ2
β;gene−cond

• xi = βgene−condf

4. GO overall mean (intercept αGO)

• µ = 0

• Σθ = Iσ2
α,GO

• n = F

• A = I
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• Σx = Σα;GO−cond

• xi = αGO−condf

5. GO overall mean (coefficient βGO)

• µ = 0

• Σθ = Iσ2
βGO

• n = F

• A = I

• Σx = Σβ;GO−cond

• xi = βGO−condf

B.3 Additional model details & extended results

This section presents extended results for the ontological regression, linear pooling, and

HDP models described in the main paper.
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Figure B.1: Distribution of gene-by-factor slopes according to each of the three models,
and correlations between them. Correlation between methods indicates some consistency
between methods. Ontological regression results in a fatter-tailed distribution than linear
pooling, and both ontological regression and linear pooling result in smoother distributions
than HDP. An overlaid plot is given in Figure 3.2
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B.3.1 Ontological regression

Figure B.2: Out-of-sample predicted coefficients vs sampled coefficients (average across all
leave-out proportions; r = 0.22).

Figure B.3: In-sample predicted coefficients vs sampled coefficients (average across all
leave-out proportions; r = .56).
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GOID Term Mean coefficient

1 GO:0050896 response to stimulus -78.16
2 GO:0006950 response to stress -61.35
3 GO:0006412 translation 50.80
4 GO:0044249 cellular biosynthetic process 50.78
5 GO:0044260 cellular macromolecule metabolic process 46.98
6 GO:0044267 cellular protein metabolic process 46.32
7 GO:0009059 macromolecule biosynthetic process 44.65
8 GO:0043170 macromolecule metabolic process 40.29
9 GO:0019538 protein metabolic process 39.97

10 GO:0009056 catabolic process -37.66
11 GO:0042254 ribosome biogenesis 35.05
12 GO:0009987 cellular process -34.42
13 GO:0006396 RNA processing 29.38
14 GO:0044248 cellular catabolic process -27.59
15 GO:0006364 rRNA processing 23.45
16 GO:0016072 rRNA metabolic process 23.40
17 GO:0050794 regulation of cellular process -22.65
18 GO:0016070 RNA metabolic process 21.88
19 GO:0007154 cell communication -21.18
20 GO:0005975 carbohydrate metabolic process -18.97
21 GO:0042221 response to chemical -17.73
22 GO:0044262 cellular carbohydrate metabolic process -17.12
23 GO:0006810 transport -16.29
24 GO:0006508 proteolysis -15.67
25 GO:0006091 generation of precursor metabolites and energy -14.95

Table B.1: Top 25 GO terms by ontological regression.

B.3.2 Linear pooling

We use the term linear pooling to describe a process for summarizing the results of a series

of simple linear regressions.

1. Fit a series of regressions for f = 1, . . . , F conditions and g = 1, . . . , G genes, to obtain

(α̂f,g, β̂f,g), the ordinary least-squares estimators for the regression Yi = αf,g+βf,gxi.

2. For each term l = 1, . . . , L of the GO terms to which the genes have been mapped,

calculate the average θl of all β̂f,g across all conditions f and genes mapped to l.

3. Calculate p-values testing the hypothesis that θl 6= 0 against θl = 0
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GOID Term Mean coefficient

1 GO:0042254 ribosome biogenesis 135.23
2 GO:0006412 translation 156.20
3 GO:0006364 rRNA processing 96.53
4 GO:0016072 rRNA metabolic process 95.88
5 GO:0006396 RNA processing 117.40
6 GO:0050896 response to stimulus -174.21
7 GO:0042274 ribosomal small subunit biogenesis 55.44
8 GO:0030490 maturation of SSU-rRNA 49.28
9 GO:0006950 response to stress -127.13

10 GO:0009991 response to extracellular stimulus -48.15
11 GO:0009605 response to external stimulus -47.77
12 GO:0007154 cell communication -73.97
13 GO:0044262 cellular carbohydrate metabolic process -57.48
14 GO:0009056 catabolic process -125.09
15 GO:0042273 ribosomal large subunit biogenesis 36.74
16 GO:0006399 tRNA metabolic process 39.21
17 GO:0009451 RNA modification 26.55
18 GO:0044248 cellular catabolic process -99.01
19 GO:0006357 reg. of transcr. from RNA polymerase II promoter -61.65
20 GO:0044267 cellular protein metabolic process 124.54
21 GO:0044249 cellular biosynthetic process 138.23
22 GO:0042594 response to starvation -30.23
23 GO:0006091 generation of precursor metabolites and energy -44.70
24 GO:0015980 energy derivation by oxidation of organic compounds -42.05
25 GO:0042255 ribosome assembly 22.82

Table B.2: Top 25 GO terms by linear pooling analysis.

B.3.3 Hierarchical Dirichlet Process

The hierarchical Dirichlet process (HDP) offers a nonparametric approach to modeling this

data. The basic intuition behind this is that genes are grouped into clusters, from which

coefficients are drawn. The set of clusters is determined by a Dirichlet process.

The top 25 GO terms (summarized according to the same methodology as the linear

pooling results are shown in Table B.3. The BUGS model that demonstrates the structure

of this model is provided in Figure B.4
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GOID Term Mean coefficient

1 GO:0044249 cellular biosynthetic process 4.85
2 GO:0050896 response to stimulus -4.47
3 GO:0006412 translation 3.90
4 GO:0044260 cellular macromolecule metabolic process 3.59
5 GO:0009059 macromolecule biosynthetic process 3.58
6 GO:0044267 cellular protein metabolic process 3.52
7 GO:0006950 response to stress -3.30
8 GO:0043170 macromolecule metabolic process 3.18
9 GO:0019538 protein metabolic process 3.17

10 GO:0044237 cellular metabolic process 2.99
11 GO:0007005 mitochondrion organization 2.38
12 GO:0042254 ribosome biogenesis 2.26
13 GO:0009056 catabolic process -2.06
14 GO:0006396 RNA processing 1.91
15 GO:0044248 cellular catabolic process -1.71
16 GO:0016070 RNA metabolic process 1.55
17 GO:0016072 rRNA metabolic process 1.52
18 GO:0006364 rRNA processing 1.50
19 GO:0007154 cell communication -1.47
20 GO:0050794 regulation of cellular process -1.41
21 GO:0009987 cellular process 1.29
22 GO:0006807 nitrogen compound metabolic process 1.26
23 GO:0042221 response to chemical -1.23
24 GO:0006996 organelle organization 1.15
25 GO:0006508 proteolysis -1.12

Table B.3: Top 25 GO terms by HDP analysis.
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model{

#Data - Y, X

# Gene level Dirichlet Process prior (C is cutoff parameter)

# Precision Parameter

alpha ~ dexp(0.1)

# Constructive DPP (via stick breaking)

p[1] <- r[1]

for (j in 2 : C) {

p[j] <- r[j] * (1 - r[j - 1]) * p[j -1 ] / r[j - 1]

}

p.sum <- sum(p[])

for (j in 1:C){

taupri[j] ~ dexp(0.1)

for(k in 1:M){

theta[j,k,1] ~ dnorm(0,taupri[j])

theta[j,k,2] ~ dnorm(0,taupri[j])

}

r[j] ~ dbeta(1, alpha)

# Scaling to ensure sum to 1

pi[j] <- p[j] / p.sum

}

# Gene level

for( i in 1 : N ) {

# Draw from DPP.

S2[i] ~ dcat(pi[])

for(j in 1:M){

# Nutrient level

tau[i,j] ~ dgamma(5,0.1)

mu[i,j,1] <- theta[S2[i],j,1]

mu[i,j,2] <- theta[S2[i],j,2]

# Data

# mu[i,j,2] intercept

# mu[i,j,1] coefficient

for(k in 1:L){

pmean[i,j,k] <- X[i,j,k]*mu[i,j,1] + mu[i,j,2]

Y[i,j,k] ~ dnorm(pmean[i,j,k],tau[i,j])

}

}

}

}

Figure B.4: BUGS model code for the HDP.
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B.4 Sensitivity analysis

We perform additional analyses on the Brauer dataset to determine the sensitivity of our

results to the assignment of genes to GO terms. We randomly select 1%, 5%, and 10% of

gene-GO assignments and move the link to a different GO term. The scatterplots below

show the correlation between of the overall GO-level estimates αGO and βGO estimated

from the full data with the true γ, against those obtained from an altered assignment

matrix γ̃.

Figure B.5: Scatterplots showing average gene-condition coefficients from a correct map
according to GO against maps in which 1%, 5%, or 10% of connections have been altered
to have a different GO term endpoint. Correlation with the full model is fairly consistent
across percentages of edges altered, which suggests that this method is somewhat robust
to deviations in the GO map at these levels.



Appendix C

Supplementary materials: “Prediction of drug

sensitivity by gene signature activation patterns”

C.1 Software

Software to reproduce analyses and figures in this paper is available at is available at

https://github.com/paulajgriffin/drug_response_pathways.

C.2 Detailed AUC results

This section includes additional details of model performance.

Model \Comparison Subtype AKT BAD HER2 IGF1R Main Interact

Subtype only 13 15 16 21 1 8
Subtype and AKT 69 46 36 43 3 14
Subtype and BAD 65 35 30 37 3 14

Subtype and HER2 64 44 51 46 4 13
Subtype and IGF1R 61 36 41 34 4 11

Subtype and main effects 81 76 79 75 78 28
Full interaction lasso 74 67 67 69 71 52

Table C.1: Relative performance all models considered. Each entry in this table is the
number of times that the model on the row outperforms the model in the column. For
example, the subtype and AKT model outperforms a subtype-only model in 69 cases out
of a possible 82. Column names are shortened for brevity.

https://github.com/paulajgriffin/drug_response_pathways
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Figure C.1: AUC based on leave-one-out models for subtype-only models, subtype a sin-
gle pathway (best of AKT, BAD, HER2, and IGF1R shown by color), subtype and all
pathways, and the full interaction lasso. This is an extended version of Figure 4.1.
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Figure C.2: AUC based on leave-one-out models for subtype-only models, subtype a single
pathway (best of AKT, BAD, HER2, and IGF1R shown by color), subtype and all path-
ways, and the full interaction lasso. The horizontal line indicates the treatment for which
AUC is no longer improved by interaction modeling.
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C.3 Interaction model details

This section contains details of the interaction models described Chapter 4.

5: 5−FU
18: Doxorubicin (FD)
21: Oxaliplatin
11: CPT−11 (FD)
25: AG1478
15: Methotrexate
29: GSK1059868A
7: Velcade
20: Tamoxifen
30: GSK461364A
1: Glycyl H1152
2: Olomoucine II
10: Bortezomib
12: Cisplatin
17: Docetaxel
4: SKI−606 (Bosutinib)
3: Carboplatin
8: TCS2312 dihydrochloride
26: Erlotinib
28: Geldanamycin
13: MG−132
16: GSK2119563A
9: Oxamflatin
14: PF−4691502
19: Sunitinib Malate
6: ZM447439
24: MLN4924
22: Epirubicin
37: GSK2141795c
39: Everolimus
50: Rapamycin
33: Baicalein
46: Valproic acid
31: ICRF−193
23: API−2 (Triciribine)
34: Gemcitabine
27: Lestaurtinib (CEP−701)
49: 5−FdUR
41: Nutlin 3a
38: AZD6244
47: GSK1059615B
36: GSK1838705A (IGF1R)
44: Ibandronate sodium salt
43: TCS PIM−11
51: NSC663284
35: GSK650394A
48: PF−2341066
32: VX−680
42: Sorafenib
45: 17−AAG
40: Pemetrexed

01020
Euclidian distance between coefficient sets

Figure C.3: A tree produced by hierarchical clustering of interaction models for which
the interaction model provided superior performance. The number preceding each of the
treatment names indicates the rank of improvement obtained by the interaction model
(row number in Figure 4.1).
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Figure C.4: Coefficients from the interaction lasso model, showing all treatments. Treat-
ments below the dashed gray line performed worse under the interaction model than at
least one of the other model types (subtype only, subtype and one pathway, or subtype
and all pathways). This is an extended version of Figure 4.2.
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Figure C.5: Network representations of interaction models for response to treatments Gly-
cyl H1152, Olomoucine II, Carboplatin, SKI-606 (Bosutinib), 5-FU, and ZM447439.
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Figure C.6: Network representations of interaction models for response to treatments Vel-
cade, TCS2312 dihydrochloride, Oxamflatin, Bortezomib, CPT-11 (FD), and Cisplatin.
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Figure C.7: Network representations of interaction models for response to treatments MG-
132, PF-4691502, Methotrexate, GSK2119563A, Docetaxel, and Doxorubicin (FD).
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Figure C.8: Network representations of interaction models for response to treatments Suni-
tinib Malate, Tamoxifen, Oxaliplatin, Epirubicin, API-2 (Triciribine), and MLN4924.
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Figure C.9: Network representations of interaction models for response to treat-
ments AG1478, Erlotinib, Lestaurtinib (CEP-701), Geldanamycin, GSK1059868A, and
GSK461364A.
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Figure C.10: Network representations of interaction models for response to treatments
ICRF-193, VX-680, Baicalein, Gemcitabine, GSK650394A, and GSK1838705A (IGF1R).
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Figure C.11: Network representations of interaction models for response to treatments
GSK2141795c, AZD6244, Everolimus, Pemetrexed, Nutlin 3a, and Sorafenib.
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Figure C.12: Network representations of interaction models for response to treatments
Ibandronate sodium salt, TCS PIM-11, 17-AAG, Valproic acid, GSK1059615B, and PF-
2341066.
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Figure C.13: Network representations of interaction models for response to treatments
5-FdUR, Rapamycin, and NSC663284.



Bibliography

Afzal, A. M., Mussa, H. Y., Turner, R. E., Bender, A., and Glen, R. C. (2014). Target
fishing: A single-label or multi-label problem? arXiv preprint arXiv:1411.6285 .

Airoldi, E. M., Huttenhower, C., Gresham, D., Lu, C., Caudy, A. A., Dunham, M. J.,
Broach, J. R., Botstein, D., and Troyanskaya, O. G. (2009). Predicting cellular growth
from gene expression signatures. PLoS Computational Biology 5, e1000257.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis,
A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000). Gene ontology: tool for
the unification of biology. Nature Genetics 25, 25–29.

Baldessari, B. (1967). The distribution of a quadratic form of normal random variables.
The Annals of Mathematical Statistics pages 1700–1704.

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple
testing under dependency. Annals of Statistics pages 1165–1188.

Bernardo, J., Bayarri, M., Berger, J., Dawid, A., Heckerman, D., Smith, A., and West, M.
(2003). Bayesian factor regression models in the large p, small n paradigm. Bayesian
Statistics 7, 733–742.

Bien, J., Taylor, J., Tibshirani, R., et al. (2013). A lasso for hierarchical interactions. The
Annals of Statistics 41, 1111–1141.

Bien, J. and Tibshirani, R. (2014). hierNet: A Lasso for Hierarchical Interactions. R
package version 1.6.

Bordbar, A., Mo, M. L., Nakayasu, E. S., Schrimpe-Rutledge, A. C., Kim, Y.-M., Metz,
T. O., Jones, M. B., Frank, B. C., Smith, R. D., and Peterson, S. N. (2012). Model-
driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage
activation. Molecular Systems Biology 8, 558.

Brauer, M. J., Huttenhower, C., Airoldi, E. M., Rosenstein, R., Matese, J. C., Gresham,
D., Boer, V. M., Troyanskaya, O. G., and Botstein, D. (2008). Coordination of growth
rate, cell cycle, stress response, and metabolic activity in yeast. Molecular Biology of the
Cell 19, 352–367.

Cancer Genome Atlas Network (2012). Comprehensive molecular portraits of human breast
tumours. Nature 490, 61–70.

Chang, D.-W. (1999). A matrix trace inequality for products of Hermitian matrices. Jour-
nal of Mathematical Analysis and Applications 237, 721–725.



95

Chen, J. and Chen, Z. (2008). Extended Bayesian information criteria for model selection
with large model spaces. Biometrika 95, 759–771.

Cosgrove, E. J., Zhou, Y., Gardner, T. S., and Kolaczyk, E. D. (2008). Predicting gene
targets of perturbations via network-based filtering of mRNA expression compendia.
Bioinformatics 24, 2482–2490.

Cressie, N. (1993). Statistics for Spatial Data: Wiley Series in Probability and Statistics.
Wiley-Interscience New York.
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