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ABSTRACT 

Emissions of greenhouse gases from the combustion of fossil fuels, in particular 

carbon dioxide (CO2), are a major contributor to global climate change. In the 

United States 28% of carbon dioxide emissions from fossil fuel combustion are 

produced by road vehicles. This dissertation reports the results of three studies 

that improve on our knowledge of the spatial and temporal distribution of 

vehicle CO2 emissions in the U.S. over the last 35 years. Using bottom-up data 

assimilation techniques we produce several new high-resolution inventories of 

vehicle emissions, and use these new data products to analyze the relationships 

between emissions, population, employment, traffic congestion, and climate 
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change at multiple spatial and temporal scales across the U.S. We find that 

population density has a strong, non-linear effect on vehicle emissions, with 

increasing emissions in low density areas and decreasing emissions in high 

density areas. We identify large biases in estimates of vehicle CO2 emissions by 

the most commonly used national and global inventories, and highlight the 

susceptibility of spatially-downscaled inventories to local biases in urban areas. 

We also quantify emissions of several air pollutants regulated by the U.S. 

Environment Protection Agency, including carbon monoxide, nitrogen oxides 

and particulate matter, at hourly and roadway scales for the metropolitan area 

surrounding Boston, MA. Emissions of these pollutants show high emissions 

gradients across identifiable spatial hotspots, considerable diurnal and seasonal 

variations, and a high sensitivity to the presence or absence of heavy-duty truck 

traffic. We also find that the impact of traffic congestion on air pollution 

emissions across the region is minimal as a share of the total emissions. We show 

that policies that combine a reduction in the number of vehicles on the road with 

a focus on improving traffic speeds have greater success in reducing emissions of 

air pollutants and greenhouse gases than policies that focus solely on improving 

traffic speeds. Finally, we estimate that regional emissions of carbon monoxide 

will increase by 3% in 2050, but with numerous localized increases of 25-50%, 
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due to an expected rise in mean regional temperatures due to global climate 

change. 
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CHAPTER 1 – INTRODUCTION 

 

Emissions of greenhouse gases (GHGs) from the combustion of fossil fuels are 

a major contributor to global climate change (Solomon et al. 2008). In the United 

States, emissions of carbon dioxide (CO2), the major greenhouse gas, comprised 

over 82% by mass of the total anthropogenic GHG emissions in 2013 (U.S. 

Environmental Protection Agency 2014a). The dominant sources of CO2 

emissions in the U.S. are coal- and natural gas-fired electric power generation, 

motor gasoline and diesel combustion for road, rail and air transport, and 

localized combustion of natural gas and heating oil for residential and 

commercial space heating (USEPA 2014a). Since 1997 the share of total U.S. 

carbon emissions from industrial activities has declined as the U.S. economy has 

shifted away from manufacturing towards a services-oriented economy (Energy 

Information Administration 2007). In recent years, the rapid domestic expansion 

of hydraulically fractured natural gas extraction has driven a shift in the fuel 

profile of electric power generation away from coal towards gas (Lu et al. 2012). 

The transportation sector has witnessed steady improvements in vehicle fuel 

economy since the implementation of the Corporate Average Fuel Economy 



2 

 

 

 

regulations in 1975 (U.S. Department of Energy 2011). However, while the 

market penetration of hybrid-electric and full-electric vehicles has progressed at 

modest rates since the late 1990s, the vast majority of on-road vehicles still 

consume motor gasoline or diesel fuel. Emissions of carbon dioxide from road 

vehicles currently account for over 28% of total U.S. CO2 emissions, and present a 

major challenge to efforts to reduce greenhouse gas emissions in order to 

mitigate global climate change. U.S. on-road CO2 emissions have increased by 

16.4% since 1990, and as a share of total U.S. emissions has increased from 30.3% 

in 1990 to 32.8% in 2013 (USEPA 2014a). 

Our understanding of the spatial and temporal patterns and trends of carbon 

emissions from the on-road sector have improved from early estimates 

conducted at the national and state levels. Early inventories of U.S. GHG 

emissions produced estimates of emissions that were aggregated to national 

scales. These emissions inventories used a bookkeeping approach that quantified 

the amounts of various fossil fuels consumed by the economy combined with 

emission factors based on the carbon content and combustion properties of the 

fuel (USEPA 2014a). While these methods produced relatively accurate estimates 

of aggregate emissions at the scale of the country as a whole, they did not offer 
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any insight into how emissions were distributed within the country, region or 

states. Subsequent efforts to quantify emissions at increasingly finer spatial 

resolution employed a variety of statistical techniques to combine higher 

resolution data on the distribution of sources and related spatial proxies (such as 

population or road density) in order to downscale aggregated emission estimates 

to gridded data products with resolutions of 50-100 square kilometers (Andres et 

al. 1996; Brenkert et al. 1998). More recent work has continued to improve the 

spatial resolution of emissions inventories to provide a basis for local and 

regional analysis of the underlying drivers of these emissions (Gurney et al. 2009, 

Gately et al. 2013, Asefi-Najafabady 2014). 

Accurately quantifying the location and intensity of carbon emissions at fine 

spatial scales is also a prerequisite for the design and implementation of 

emissions mitigation policies, as well as for understanding the underlying 

drivers that shape patterns and trends in emissions. This dissertation reports the 

results of several research efforts that have provided substantial improvements 

to our knowledge and understanding of the processes that drive emissions of 

carbon dioxide and other GHG and non-GHG pollutants from the on-road sector 

in the United States. Using a variety of novel and existing datasets in conjunction 
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with newly developed data assimilation techniques, I have produced a collection 

of high-resolution, bottom-up inventories of vehicle greenhouse gas and air 

pollutant emissions. In Chapter 2, I develop a new inventory of Massachusetts 

on-road CO2 emissions that spans 1980 through 2008 at a 1 kilometer resolution. 

In Chapter 3, I extend the methodology from Chapter 2 to produce an inventory 

of annual on-road CO2 emissions that spans the coterminous U.S. for every year 

from 1980 to 2012, also at 1 kilometer spatial resolution. In Chapter 4, I focus on 

quantifying the localized emissions of both air pollutants and greenhouse gases 

across eastern Massachusetts for every hour of the year 2012.  

With each of these high resolution emissions inventories, I then examine the 

spatially explicit relationships between emissions and past and future trends in 

population, employment, transportation and public transit infrastructure, traffic 

congestion and future climate change at multiple spatial and temporal scales. 

The research in this dissertation focuses considerably on urban areas in the U.S., 

which were responsible for over 63% of vehicle CO2 emissions in 2012 (Gately et 

al. 2015). Urban areas continue to expand across the U.S. and the globe, and will 

continue to be a key nexus of the development and implementation of strategies 

to mitigate carbon emissions, improve local air quality, and adapt to future 
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climate change. A major contribution of this dissertation is the provision of new, 

highly detailed data products and urban-scale analyses that are both useful as 

well as accessible to policymakers at local, state, and national scales. 

This dissertation includes three core research articles. The first research 

chapter, Chapter 2, describes the development of a high-resolution inventory of 

on-road CO2 emissions for the state of Massachusetts and its application to the 

question of how population density influences travel behavior and vehicle 

emissions at local scales. The second research chapter, Chapter 3, presents an 

expanded and improved emissions inventory of on-road CO2 that covers the 

entire coterminous United States for the years 1980-2012. Analysis using this new 

inventory revealed large spatial biases in existing inventories, and provided for 

an expanded analysis of the impact of population, employment and income on 

the distribution of vehicle CO2 emissions in and around major urban areas in the 

U.S. The final research chapter, Chapter 4, consists of a detailed analysis of 

vehicle travel across the Boston metropolitan area based on cell phone data, and 

quantifies the impact of traffic congestion, vehicle fleet composition and future 

climate change on the emission of multiple air pollutants species as well as 

carbon dioxide. Results of this study indicate that the major sources of regional 
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air pollution are highly concentrated in space and time, and thus are amenable to 

targeted mitigation policies. It also quantifies the expected reductions in 

emissions under several traffic management scenarios aimed to reduce road 

congestion. Finally, the results of Chapter 4 also comprise a collection of 100m 

resolution, hourly estimates of vehicle emissions that will also be made 

publically available for download.  

Taken as a whole this dissertation presents a collection of new methodologies 

and new analytical results that considerably improve on the state of scientific 

knowledge concerning the spatial and temporal variation in greenhouse gas 

emissions and air pollutants from vehicle sources. With the high-resolution 

inventories developed herein, it was possible to perform explicit analyses of the 

multiple factors that drive trends in emissions across time and space, and to 

quantify the key relationships between emissions, population, and the built 

environment that continue to be the target of global, national and local policies to 

mitigate the contributions to global climate change from the on-road sector. 
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CHAPTER 2 – A BOTTOM UP APPROACH TO ON-ROAD CO2 EMISSIONS 

ESTIMATES: IMPROVED SPATIAL ACCURACY AND APPLICATIONS 

FOR REGIONAL PLANNING. 

 

On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 

emissions. Mapping vehicle emissions at regional scales is challenging due to 

data limitations. Existing emission inventories use spatial proxies such as 

population and road density to downscale national or state-level data. Such 

procedures introduce errors where the proxy variables and actual emissions are 

weakly correlated, and limit analysis of the relationship between emissions and 

demographic trends at local scales. We develop an on-road emission inventory 

product for Massachusetts based on roadway-level traffic data obtained from the 

Highway Performance Monitoring System (HPMS). We provide annual 

estimates of on-road CO2 emissions at a 1km x 1km grid scale for the years 1980 

through 2008. We compared our results with on-road emissions estimates from 

the Emissions Database for Global Atmospheric Research (EDGAR), with the 

Vulcan Product, and with estimates derived from state fuel consumption 

statistics reported by the Federal Highway Administration (FHWA). Our model 
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differs from FHWA estimates by less than 8.5% on average, and is within 5% of 

Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA 

by an average of 22.8%.  Panel regression analysis of per-mile CO2 emissions on 

population density at the town scale shows a statistically significant correlation 

that varies systematically in sign and magnitude as population density increases. 

Population density has a positive correlation with per-mile CO2 emissions for 

densities below 2,000 persons-km-2, above which increasing density correlates 

negatively with per-mile emissions.  

 

2.1 Introduction  

The transportation sector comprises 33% of U.S. greenhouse gas emissions 

(U.S. Environmental Protection Agency 2011).  On-road sources (i.e. excluding 

aviation and rail) account for 28% of total U.S. CO2 emissions (USEPA 2011). The 

largest component of vehicle greenhouse gas (GHG) emissions is CO2 generated 

by the combustion of motor gasoline and diesel fuel. CO2 emissions contribute to 

global climate change (Solomon et al. 2008), but the United States has yet to 

formulate a coherent national policy to mitigate domestic emissions of 

greenhouse gases. In the absence of national policy, states have pursued their 
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own abatement initiatives such as the Regional Greenhouse Gas Initiative (RGGI) 

and California’s Global Warming Solutions Act (California AB-32 2006). Both 

policies set emissions reduction targets for power plants and other point sources, 

but California’s also sets future fuel economy standards for vehicles. Regulating 

transportation sector carbon emissions presents a unique challenge, as sources’ 

mobility results in a change in the spatial distribution of emissions over time. A 

prerequisite for regulating mobile emissions is therefore accurate, spatially 

explicit emission inventories which serve to establish the baseline level of GHGs 

and validate the extent of sources’ compliance with abatement targets. This 

remains incomplete for the on-road sector, and is the contribution of this paper.  

In addition to their value for treaty and regulatory compliance, emissions 

inventories play a vital role in the calibration of general circulation models used 

to understand and predict global, national and regional climate and ecosystem 

dynamics. The temporal and spatial distribution of anthropogenic emissions is a 

fundamental input to most terrestrial carbon cycle models and is typically 

obtained from emissions inventories developed at a variety of scales using 

multiple data sources (Peters et al. 2007; Gregg et al. 2009). Reducing 

uncertainties in emission inventories remains an important challenge, and is 
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considered essential for improving the accuracy of regional carbon cycle models 

(Zhou and Gurney 2011; Ciais et al. 2010; Peylin et al. 2011; McKain et al. 2012; 

National Research Council 2010). 

Uncertainty in the spatial and temporal distribution of emissions can produce 

significant variations in estimates of carbon sequestration in the terrestrial 

biosphere. Schuh et al. (2012) compared the results of an atmospheric inversion 

model estimating net ecosystem carbon exchange (NEE) using the 10 km 

resolution Vulcan emissions product with results from the same model using a 1° 

resolution emissions product and found differences on the order of 100% in local 

estimates of NEE between the two models. This is on the same order as the 

uncertainty associated with CO2 emissions estimates based on directly measured 

CO2 concentrations from sampling towers (NRC 2010), unacceptably high given 

these models’ critical importance. Emissions inventories were initially developed 

as accounting exercises based on national fossil fuel consumption. Typically, 

national statistics on fossil fuel consumption are used to estimate carbon 

emissions and the results are downscaled to higher spatial resolution using 

proxies to distribute the emissions across a grid. For example, in the Emissions 

Database for Global Atmospheric Research (EDGAR) (European Commission, 
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Joint Research Center 2011a) on-road emissions are spatially allocated using road 

density as a proxy. A key limitation to this approach is its assumption of a fixed 

relationship between emissions and the proxy, whereas the correlation between 

road density and actual emissions is likely to vary widely across roadway types 

and between rural and urban areas. Vehicle miles travelled (VMT) has been 

observed to vary significantly across roadway types and VMT is highly 

correlated with CO2 emissions from vehicles (Federal Highway Administration 

1980-2012; USEPA 2011). Thus, while EDGAR offers a time series of emissions 

spanning 1975 to 2008, trends in its spatial distribution of on-road CO2 emissions 

may be biased by trends in the proxy variable that are weakly correlated with the 

true spatial pattern of vehicle emissions.  

The Vulcan Project produced a high-resolution map of hourly U.S. carbon 

emissions for the year 2002 (Gurney et al. 2009). Its on-road emissions are 

derived from mostly state-level estimates of VMT, which were downscaled to the 

county level and allocated to a GIS Road Atlas using a combination of population 

density and road density. This method allows for broad spatial coverage for the 

inventory, but does not account for variations in the spatial distribution of travel 

demand within counties. Using state-level source data greatly improves the 
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spatial accuracy of on-road emissions relative to EDGAR, but on-road emissions 

estimates from Vulcan are only available for a single year. Vulcan does report 

total emissions for the years 1999-2008 at the state/county level but does not 

break these out by sector. This temporal limitation precludes analysis of trends in 

the spatial distribution of emissions across time, and requires researchers to use 

scaling factors to back out emissions in subsequent years.  

Several researchers have made improvements to the spatial resolution of 

emissions estimates by incorporating local data sources. Brondfield et al. (2012) 

developed a model that used impervious surface area (ISA) and volume-

weighted road density to estimate CO2 emissions for eastern Massachusetts on a 

1km grid. They used linear regression to model the relationship between these 

scaling factors and emissions estimates generated at the scale of Traffic Analysis 

Zones (TAZ) by the regional Metropolitan Planning Organization. They also 

modeled emissions estimates from the Vulcan Product, and found that both TAZ 

and Vulcan emissions could be well represented by ISA and volume-weighted 

road density. By incorporating locally-sourced data, Brondfield et al. were able to 

construct a high resolution emissions inventory that avoided using coarser 
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spatial proxies, but their estimates were still limited by the spatial and temporal 

extent of both source and proxy data.  

Gurney et al. (2012) used a large database of local traffic data to downscale 

Vulcan on-road emissions for the City of Indianapolis to the level of individual 

roadways. By combining a high-resolution map of the local road network with 

traffic counts provided by the local MPO they were able to assign hourly carbon 

emissions to each road in the city. The use of local data on traffic flows to 

spatially allocate on-road emissions reduces the uncertainty associated with 

downscaling county or state level data to such high resolutions. Despite the 

richness of the local data, the control totals are still drawn from Vulcan’s 

downscaled state-level VMT (Gurney et al. 2012). Our premise is that uncertainty 

in spatial imputation of on-road emissions due to downscaling can be 

substantially reduced by using source data for VMT available at roadway scales. 

Unlike Vulcan, which uses downscaled state-level VMT from the National 

County Database (NCD) (Gurney et al. 2010), in this study we make use of 

roadway-level traffic volumes and road characteristics obtained from archived 

raw data of the Highway Performance Monitoring System HPMS (Federal 

Highway Administration 2009). We construct estimates of on-road CO2 
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emissions for the state of Massachusetts on a 1km grid for the years 1980-2008. 

We chose Massachusetts as an initial case study because it has per-capita on-road 

CO2 emissions similar to the national average, a recent state-wide greenhouse gas 

inventory is available for comparison (Massachusetts Department of 

Environmental Protection 2010), and the state has made freely available a GIS 

layer of the complete road network for mapping purposes (Massachusetts 

Department of Transportation 2009). 

 We also believe Massachusetts is a suitable example to demonstrate our 

methodology as it contains a wide range of land-use types, population densities 

and road network densities, all contained within a spatial extent that does not 

exceed reasonable computational requirements. As our plan is to extend our 

analysis to other states, we have kept our methodology as simple and as flexible 

as is reasonably possible, and limited our model’s data requirements to publicly 

available sources. We expect that the only modifications required to extend this 

work to other states will be the partitioning of the model domain to avoid 

exceeding available computational resources. 

The broad temporal scope of our data permitted the construction of a time 

series of emissions estimates at high spatial resolution, which allowed us to 
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analyze trends in on-road emissions across space and time, and to compare our 

results with other inventories. Since our estimates do not rely on spatial proxies 

such as population density or road density, we were able to conduct a full cross-

section/time-series panel regression of population density on vehicle emissions at 

the scale of local towns (for Massachusetts, approximately census tracts). Our 

analysis is valuable in the context of urban planning, as the intensity of emissions 

is likely to be strongly correlated with characteristics of the built environment 

such as household and population density, jobs-housing balance and the 

diversity of land uses (National Research Council 2009; Ewing and Cervero 

2010). To accurately quantify the relationship between these variables and 

emissions it is necessary to characterize vehicle emissions at the same spatial 

scale as the built environment while minimizing reliance on the variables of 

interest as proxies for spatially allocating the emissions estimates. By doing this, 

our method provides the wherewithal to investigate the co-evolution of 

emissions, population, income, and land uses.  

 

2.2 Methods and Data 
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We combined data on average daily traffic volumes with the distribution of 

vehicle miles travelled among different vehicle types to estimate average annual 

per-mile CO2 emissions for each roadway section in the state of Massachusetts. 

We summarize our methodology below. A full description is available in 

Appendix A. 

Our main data source is average daily traffic volumes reported for each road 

section in the Highway Performance Monitoring System (FHWA 2009). The 

HPMS is a roadway-scale national database managed by the Federal Highway 

Administration that contains data on annual average daily traffic volumes 

(AADT) and centerline mileage for all Federal-Aid roads and most other major 

and minor roads. For all road sections in the Massachusetts HPMS we calculated 

annual vehicle miles travelled (VMT) as the product of AADT and road length in 

miles, multiplied by 365. The AADT values in HPMS have already been adjusted 

to account for seasonal and day-of-the-week variations as per the submission 

requirements of HPMS (Federal Highway Administration 2005). 

The roadway-scale HPMS data does not include all of the VMT that occurred 

on local roads. To impute Massachusetts total VMT, it was necessary to use a 

partial downscaling approach only for local road VMT. We used state-level data 
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on minor and local road VMT from the Highway Statistics Series (FHWA 1980-

2012) and distributed it by county using each county’s fraction of total state VMT 

as calculated from the HPMS roadway-level dataset for each year. HPMS road 

sections are not explicitly geocoded, but do contain codes for county, urban/rural 

context and HPMS functional class (FHWA 2009). In order to assign our 

roadway-level VMT to a spatial location, we were therefore required to 

aggregate our data to the county level, partitioned by functional class and 

urban/rural context.  

Since vehicle emission rates are a function of fuel type (Energy Information 

Administration 2007), we estimated diesel and gasoline fuel consumption by 

functional class and urban/rural context within each county. Our first step was to 

distribute annual vehicle miles travelled amongst five different vehicle types: 

passenger cars, passenger trucks (includes SUVs, vans and pickup trucks), buses, 

single-unit trucks and combination trucks. State-level data on the distribution of 

VMT among different vehicle types is available for the years 1993 through 1999 

and for 2009 and 2010 (FHWA 1980-2012). For model years 1999 through 2008 we 

interpolated linearly between the state-level distributions for 1999 and 2009; for 

years prior to 1993, we applied the 1993 distribution for all years. Our vehicle 
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type distribution accounts for variation in the types of vehicles on different types 

of roads by assigning different distributions for six different functional classes of 

road, three rural and three urban (FHWA 1980-2012). This captures the variation 

in the composition of traffic on different classes of roads and between urban and 

rural areas. 

We used the national average fuel economy for each vehicle type for each year 

(FHWA 1980-2012) to estimate fuel consumption for each roadway functional 

class, county and year. Fuel consumption was calculated by dividing distance 

travelled by average fuel economy. Fuel consumption was converted to CO2 

emissions using the emission factors of 8.91 kg CO2 per gallon gasoline and 10.15 

kg CO2 per gallon diesel fuel (EIA 2007). Emissions from both fuels were 

aggregated to obtain total emissions for each functional class of road at the 

county scale.  

Emissions were assigned to a road network using the 2009 GIS Road Inventory 

provided by the Massachusetts Department of Transportation (2009). We 

calculated the total centerline mileage of each functional class of road in each 

county, and then divided our relevant CO2 emissions by this mileage to generate 

average per-mile CO2 emissions. These average per-mile emissions were then 
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assigned by functional class, urban/rural context and county to the road network 

for each year in the study period. 

For comparability with prior estimates, we aggregated our roadway-scale 

emissions to multiple scales: a 1km grid, a 0.1 degree grid, and summed to the 

level of local towns.  

 

2.3 Results and Discussion 

Using our HPMS data model, we produced on-road CO2 emissions estimates at 

the scale of towns, and at a 1 km and 0.1 degree grid for Massachusetts for the 

years 1980 through 2008. The 1 km gridded results show the strong influence on 

emissions of major urban areas as well as both urban and rural interstates and 

highways (Figure 2.1).  
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Figure 2.1. 1 km gridded on-road CO2 emissions (metric tons CO2) estimated 

by HPMS-based model for the year 2008.  

 

We compared our total state-wide estimates to the estimates produced by 

EDGAR, Vulcan, the Massachusetts Greenhouse Gas Emissions Inventory 

(MGGEI - Massachusetts DEP 2010), the National Emissions Inventory (USEPA 

2008), the EPA’s Motor Vehicle Emission Simulator (MOVES –  USEPA 2010a), 

and with emissions estimates derived by applying emissions factors (EIA 2007) 

to statewide fuel consumption reported by FHWA (1980-2012), (Figure 2.2). We 
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found that EDGAR emissions estimates significantly exceeded FHWA estimates, 

our model estimates, and most other inventory products. Since we assume the 

FHWA fuel consumption data to be the closest to actual “ground-truth” for 

statewide on-road CO2 emissions, it is of concern that EDGAR estimates exceed 

these values by as much as 9.3 million tons, or more than 33%, and systematically 

exceed FHWA estimates by an average of 22.8% across the study period. The 

EDGAR emissions are closest to the MGGEI. However, the discrepancy may be 

accounted for by the fact that the MGGEI emissions represent the entire 

transportation sector (Massachusetts DEP 2010), including emissions associated 

with rail and air transportation that are absent from other inventories. 
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Figure 2.2. Comparison of total Massachusetts on-road CO2 emissions 

estimates from our HPMS model with EDGAR, FHWA, MOVES, Vulcan, 

MGGEI and NEI inventories. Emissions for FHWA estimated using emissions 

factors for fuel combustion from Energy Information Administration (EIA 

2007). 

 

Our HPMS-based model is in better agreement with the FHWA estimates, but 

does show a systematic under-prediction. The best fit between our model and 

FHWA data is for the years that we used state-level data for distribution of VMT 

among vehicle types (1993-1999). In the years that we estimated this distribution, 

our model show larger deviations from FHWA, which suggests that our 

estimated distribution may underestimate the miles travelled by lower fuel 
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economy vehicles during those years. It is also possible that FHWA 

overestimates the amount of fuel that is consumed by drivers in the state, since 

state totals are derived from the volumes of fuel sold—but not necessarily 

consumed—within the state’s boundaries.  This discrepancy is likely to be larger 

in states such as Massachusetts, which have both a small areal extent and 

substantial cross-border traffic flows. 

Our model also exhibits generally good agreement with results generated by 

the EPA MOVES software for 1990 and 1999, but diverges in later years where 

MOVES estimates are observed to match the trend in FHWA estimates. We ran 

the MOVES software for the state of Massachusetts using the built-in default 

values for fleet age and vehicle type distribution. The trend in our estimates 

matches that in MOVES, which suggests that both models are capturing the same 

underlying processes that drive changes in emissions.   

The divergence of our estimates from EDGAR and FHWA are fundamentally 

explained by their underlying methodological differences. EDGAR’s use of a 

national emission control total in conjunction with road density as a downscaling 

proxy (EC/JRC 2011b), combined with the fact that Massachusetts has the third-

highest road density of all U.S. states (FHWA 1980-2012), tends to bias its 
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estimates upward. Symmetrically, for states with lower than average road 

densities EDGAR will tend to systematically under-predict emissions relative to 

inventories calibrated to state-level data. 

The EDGAR emissions product plays an important role in carbon cycle 

modeling, as many inverse atmospheric models, such as CarbonTracker (Peters 

et al. 2007), use EDGAR as an input term in the calculation of terrestrial carbon 

fluxes. Spatial misallocation of anthropogenic emissions introduces error to these 

models, and may bias estimates of carbon storage in terrestrial ecosystems 

(Schuh et al. 2010). A key implication of our results is that out of an abundance of 

caution, future U.S.-focused regional- or national-scale carbon-cycle modeling 

studies would be well advised to compare EDGAR’s regional estimates to 

FHWA’s state-wide fuel consumption estimates, which are available from 1980 to 

present, and provide a simple validation of on-road CO2 emissions at the 

regional scale. 

We next compared our results with on-road CO2 emissions estimated by Vulcan 

and the EDGAR inventory (Figure 2.3) for the year 2002, the only year for which 

all three inventories generate on-road CO2. When summed to total statewide 

emissions, we find good agreement between our model and Vulcan: 26,127,254 
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tons CO2 for HPMS and 24,838,683 tons CO2 for Vulcan, a difference of roughly 

5%. This is an improvement compared to the EDGAR product, which estimates 

total emissions of 37,942,510 tons CO2 in the year 2002, 45% greater than our 

HPMS estimates and 53% greater than Vulcan. We also calculated cell-by-cell 

differences between HPMS and Vulcan, which show a mean difference of 6,190 

tons. Difference maps and additional details are available in Appendix A. 
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Figure 2.3. Comparison of CO2 emission inventories for Massachusetts at 0.1 

degree grid scale. Panel A shows HPMS-based estimates, Panel B shows 

EDGAR Product estimates, Panel C shows Vulcan Product estimates. Panel D 

shows HPMS-based estimates at 1 km grid scale. Note the difference in the 

highest legend value for the 1km2 estimates versus the 0.1 degree estimates. 

This is a demonstration of how aggregation to the 0.1 degree scale masks the 

presence and location of the significantly higher emissions intensities that are 

present in the cores of urban areas. 

 

Despite the good aggregate correspondence between our results and Vulcan, 

we observed differences between all three models in the spatial allocation of 

emissions (Figure 2.3). The EDGAR product shows emissions declining relatively 
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sharply outside the densest urban areas in eastern Massachusetts and the 

Springfield Urbanized Area in the south-central part of the state. Vulcan shows 

the most gradual decline in emissions moving from dense urban areas to less 

dense suburban and rural areas, while our HPMS-based emissions inventory 

falls between EDGAR’s and Vulcan’s urban-rural emission gradients. Per our 

discussion above, EDGAR’s spatial distribution of emissions corresponds tightly 

to the spatial extent of the road network, but, crucially, its estimates do not 

distinguish either roads’ functional classes or their rural-urban context, both of 

which are predictors of traffic patterns. Vulcan partially addresses this issue by 

using a combination of population density, road density, and functional class to 

spatially allocate CO2 emissions. In urban areas Vulcan emissions correlate well 

with both our model and with the EDGAR product. However Vulcan distributes 

rural VMT by roadway class in each county using the county’s share of total state 

rural-area population (Gurney et al. 2010). Given that only five counties comprise 

nearly all of the predominantly rural western and central parts of Massachusetts, 

each spatial unit represents a sizeable share of total state rural population. And, 

since Vulcan assigns rural VMT uniformly across each road type within a county, 

it is likely that some areas are assigned VMT in excess of that actually occurring 
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on their constituent local roads. This explanation is consistent with Vulcan’s 

higher emission values in grid cells in the rural western areas of the state 

compared to non-population based techniques. Our 1km resolution estimates 

(Figure 2.3D) show clearly the underlying Massachusetts road network and the 

consequent sparseness of emissions in the western part of the state. For both our 

model and EDGAR, rural-area emissions only exceed 250 tons CO2 per km2 in 

areas that contain large freeway segments. To recapitulate, it seems likely that 

Vulcan over-allocates CO2 emissions to rural roads in Massachusetts, a result 

which is consistent with other recent findings (Gurney et al. 2009; Shu, Lam, and 

Reams 2010). 

 

2.4 Sources of Uncertainty 

We elaborate on two potentially significant sources of uncertainty in our HPMS 

model: uncertainty associated with the values of AADT reported by HPMS and 

uncertainty in our fuel economy estimates of each vehicle type. Uncertainty in 

the fuel economy of each vehicle type arises from variation in the average travel 

speed of each vehicle and from variations in vehicle age. Older model-year 

vehicles tend to have lower fuel economy than newer ones, due to tightening of 
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the Corporate Average Fuel Economy (CAFE) standards over the period of our 

sample (U.S. Department of Energy 2011). As well, fuel economy is substantially 

reduced by travel at lower speeds, as occurs when traffic flow is congested. This 

effect also varies by vehicle type (West et al. 1999). Our ability to account for 

local heterogeneity in fuel economy’s response to these regulatory changes is 

limited by our use of a national average fuel economy for each vehicle type, 

which is averaged across all vehicle ages, all road types, and all travel speeds 

(FHWA 1980-2012). Therefore to the extent that the age distribution of vehicles or 

the level of traffic congestion in Massachusetts diverges from the national 

average, our model’s fuel economy values will be biased. Although the 

uncertainty associated with the vehicle age distribution for Massachusetts is 

difficult to estimate without access to data on individual vehicle registrations, a 

recent study by Mendoza et al. (2013) estimated that the impact on fuel economy 

of variations in vehicle age to be less than 2% for most vehicle types. Data from 

the most recent Urban Mobility Report (Shrank, Lomax, and Eisele 2011) indicate 

that the major urban areas in Massachusetts have levels of congestion similar to 

the national average. However, given that, first, our model does not directly 

account for the effects of traffic congestion on fuel economy, and, second, we 
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under-predict FHWA fuel consumption by on average 8.5%, it is reasonable to 

suspect that some of this difference may be accounted for by this particular 

uncertainty. 

There are two types of uncertainty associated with AADT: uncertainty in actual 

traffic measurements and uncertainty in estimates of AADT that FHWA impute 

for roads that are not directly measured. The latter type of uncertainty stems 

from the practice of using seasonal and geographic factoring to assign AADT 

from permanent or portable automated traffic recorder stations (ATRs) to similar 

road links in the network that lack ATR data. Several researchers have used state 

data to estimate this uncertainty. Ritchie (1986) estimated uncertainties in 

factored AADT of 7-18 % for Washington State. Gadda et al. (2007) found 

average uncertainties of 12-14% for Minnesota and Florida roads. The FHWA 

Guidelines for Data Quality Measurement (Batelle Institute 2004) set uncertainty 

targets of less than 10% mean absolute error for most road classes in HPMS. 

Mendoza et al. (2013) use reported confidence interval and precision estimates 

from the HPMS Field Manual (FHWA 2005) to estimate one-sigma percent 

uncertainties for HPMS reported AADT that range from 3.04% to 7.8% 

depending on functional class. One-sigma uncertainties are roughly equivalent 
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to a 68.3% confidence interval. To evaluate the impact of AADT uncertainty on 

our model results, we calculated upper and lower bound estimates of AADT for 

each road section using both a one-sigma percent difference and a two-sigma 

percent difference. Two-sigma uncertainties (equivalent to a 95.4% confidence 

interval) were obtained by doubling the one-sigma values reported by Mendoza 

et al. (2013)  Using these higher and lower AADT values our model generated 

CO2 estimates that ranged from ±7.4% to ±7.6% for one-sigma differences in 

AADT and from ±14.7% to ±15.2% for two-sigma differences, relative to our 

original estimates. Both ranges are in general agreement with the micro-level 

studies cited above, and give us additional confidence in the veracity of our 

estimation procedure. As well, the upper boundary estimates encompass the 

values for FHWA emissions for most but not all of the years of this study. 

Further details are included in Appendix A. 

 

2.5 Analysis of On-road CO2 Emissions and Population Density 

A key issue in the debate over how to reduce on-road CO2 is the nature of the 

relationships between emissions and VMT, and between VMT and other features 

of the built environment such as the density of roads, residences and commercial 
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activity. These issues have been the subject of intensive study for several 

decades, with recent work focusing on the influence of road infrastructure 

(Noland 2001; Cervero and Hanson 2002; Duranton and Turner 2011), the effect 

of fuel prices and vehicle fuel economy (Small and Van Dender 2007; Hymel, 

Small, and Dender 2010) and the influence of land-use, population density and 

other demographic factors (Brownstone and Golob 2009; Cervero and Murakami 

2010; Glaeser and Kahn 2010; Kim and Brownstone 2013). A 2009 National 

Research Council investigation found that the majority of studies report an 

inverse relationship between VMT and population density, with VMT decreasing 

by 5% to 12% given a doubling of population density (NRC 2009). Quantifying 

the effect on VMT of changes in population density is important, as it informs 

policymakers considering planning policies such as infill development or lot-size 

restrictions that aim to reduce vehicle CO2 emissions by traffic in and around 

large urbanized areas.  

To accurately characterize the effects of population density on CO2 emissions, it 

is necessary to account for trends in these variables across both time and space. 

As our method for estimating emissions does not rely on population density as a 

spatial proxy, we were able to use the results of our emissions inventory to 
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conduct a cross-sectional time-series regression analysis of CO2 on population 

density at the scale of local towns. We used population data for each of the 351 

Massachusetts towns for the years 1980 through 2008 (Massachusetts 

Department of Revenue 2012). We aggregated our emissions estimates to the 

town scale and normalized CO2 emissions by dividing them by the total length of 

roads in each town. We ran a panel regression of CO2 mile-1 on population km-2, 

estimating town and year fixed effects for the whole dataset. The town fixed 

effects capture heterogeneous unmeasured influences on emissions that are 

unique to the spatial area covered by each town, such as the spatial structure of 

the road network or local zoning practices, but which are stable across time. The 

year fixed effects represent exogenous impacts that affect all towns in the sample 

but vary over time, such as changing demand for travel and VMT, and trends in 

unmeasured economic variables such as fuel prices and income. We employ a 

semi-parametric stratification of our estimates by population density to allow the 

marginal effect of population density on emissions to vary with different 

densities. Our model showed excellent goodness-of-fit with an R2 value of 0.93 

and a statistically significant negative correlation between population density 

and CO2 emissions per mile of roadway.  



34 

 

 

 

To evaluate whether the sign and magnitude of the relationship between 

emissions and population density changes across different levels of density, we 

pooled our population density data and used the estimated regression 

coefficients to predict CO2 emissions over the range of observed densities. The 

general functional form of the relationship is characterized as a sequence of 

linear splines, each with its own confidence interval (Figure 2.4).  As the data are 

pooled across all towns and years, each spline segment represents the common 

marginal impact of density in a collection of different towns in different years. 

The shape of the curve in Figure 2.4 reflects the effect of increasing population 

density on CO2 emissions, independent of the year- and town-fixed effects.  
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Figure 2.4. Plot of predicted CO2 emissions per mile vs. population density, 

with town and year fixed effects excluded. Observations are pooled across all 

towns and years. Grey area represents extent of 95% confidence intervals. 

 

Population density is positively correlated with vehicle emissions at densities 

less than 2000 persons-km-2. However, above this level the correlation becomes 

negative, and emissions decline slowly until densities exceed 4000 persons-km-2, 

and then more rapidly thereafter. These results suggest that it is only at the 

higher population densities associated with dense, urban-core towns that we 

would expect to see on-road emissions decline with rising density. For lower-

density towns, increasing population density is more likely to result in an 
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increase rather than a decrease in vehicle emissions occurring within the town. 

This result may be a consequence of adding new resident-drivers to the roads, or 

an indirect effect of denser development drawing more travelers into the area 

from neighboring towns. Since our emissions estimates only consider the 

emissions that occur within each town’s boundary, we cannot distinguish 

emissions emitted by residents of the town versus those emitted by drivers from 

other towns. 

Our estimates reflect emissions generated by four different categories of 

vehicle travel: (1) trips that occur entirely within the given town; (2) trips that 

originate in the town and terminate outside the town; (3) trips that originate 

outside the town and terminate within the town; and (4) trips which pass 

through the town, but start and end elsewhere. We would expect a town’s 

population density to have a stronger direct effect on emissions from categories 1 

and 2 and a weaker effect on emissions from categories 3 and 4. That is, higher 

local population density should reduce per capita vehicle emissions by reducing 

VMT by the residents of the town, both for trips within the town (category 1) and 

trips outside the town (category 2). This effect could be generated by increasing 

the availability of trip destinations such as employment or retail centers or by 
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induced shifts to alternative modes of travel such as walking, bicycling or public 

transit.  

Density’s impact on category-3 trips is less straightforward, as a town with 

high density may draw vehicle trips from neighboring towns if it contains 

destinations that attract these trips. Indeed in urban areas the availability of trip 

destinations has been shown to be a stronger predictor of VMT than population 

density (Ewing and Cervero 2010, Cervero and Murakami 2009). Across the state, 

we would expect this effect to vary depending on local relationships between 

population density and destination availability. Emissions from category-4 trips 

are probably influenced more strongly by the nature of the road network that 

transits the town than by the town’s population density. We expect this effect to 

be most pronounced in the rural towns containing sections of interstate highway 

in the western part of the state, and this is reflected in the higher marginal impact 

of density close to the origin in Figure 2.4. Disentangling the proportions of total 

emissions that originate from the four categories listed above requires a far more 

data-intensive process of conducting a full traffic assignment using origin and 

destination survey data for the entire road network, which is a task that we leave 

for future research. Nevertheless, our results still show clearly that population 
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density influences on-road emissions through a combination of direct and 

indirect pathways, with high density towns showing a decrease in per-mile CO2 

emissions relative to low density towns. That this decrease is only observed in 

towns above a relatively high density threshold highlights the potential 

magnitude of the indirect effects of density described in category 3, and suggests 

that at low to medium densities, the attraction of vehicle trips from surrounding 

towns may counteract the decline in per-capita emissions caused by increased 

local density.  

These results highlight the value of using an emissions inventory with high 

spatial and temporal resolution. At coarser spatial scales, much of the variation 

in population density and on-road emissions between towns is lost in the 

aggregation to larger grid cells. By preserving this local variation, and by 

generating emissions estimates that did not rely on population density as a proxy 

for spatial allocation, we were able to highlight the shape of the response surface 

between on-road CO2 emissions and population density at the scale of local 

municipalities in Massachusetts. Lastly, our finding of a highly nonlinear 

relationship between bottom-up emission estimates and a spatially-varying 
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proxy variable used in prior studies highlights the potential pitfalls of relying on 

linear predictors in the construction of downscaled emission inventories. 
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CHAPTER 3 – CITIES, TRAFFIC, AND CO2: A MULTI-DECADAL 

ASSESSMENT OF TRENDS, DRIVERS, AND SCALING RELATIONSHIPS 

 

Carbon dioxide emissions from road vehicles were 1.57 billion metric tons in 

2012, accounting for 28% of U.S. fossil fuel CO2 emissions, but the spatial 

distributions of these emissions are highly uncertain. We develop a new 

emissions inventory, DARTE (Database of Road Transportation Emissions), 

which estimates CO2 emitted by U.S. road transport at 1 km resolution annually 

for 1980-2012. DARTE reveals that urban areas are responsible for 80% of on-

road emissions growth since 1980, and 63% of total 2012 emissions. We observe 

nonlinearities between CO2 emissions and population density at broad 

spatial/temporal scales, with total on-road CO2 increasing non-linearly with 

population density, rapidly up to 1,650 persons-km-2 and slowly thereafter. Per-

capita emissions decline as density rises, but at markedly varying rates 

depending on existing densities.  

We make use of DARTE’s bottom-up construction to highlight the biases 

associated with the common practice of using population as a linear proxy for 

disaggregating national or state-scale emissions. Comparing DARTE with 
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existing downscaled inventories we find biases of 100% or more in the spatial 

distribution of urban and rural emissions, largely driven by mismatches between 

inventory downscaling proxies and the actual spatial patterns of vehicle activity 

at urban scales. Given cities’ dual importance as sources of CO2 and an emerging 

nexus of climate mitigation initiatives, high-resolution estimates such as DARTE 

are critical for both accurately quantifying surface carbon fluxes and for verifying 

the effectiveness of emissions mitigation efforts at urban scales. 

 

3.1 Significance 

We use roadway-level traffic data to construct a 33-year, high-resolution 

inventory of annual on-road CO2 emissions for the U.S. that differs markedly 

from other emissions estimates. We find a highly non-linear relationship between 

population density and emissions, and identify large biases in local and regional 

estimates of CO2 from inventories that rely on population as a linear predictor of 

vehicle activity. Geographic differences in the density-emissions relationship 

suggest that ‘smart growth’ policies to increase urban residential densities will 

have significantly different effects on emissions depending on local conditions, 

and may be most effective at low densities. Our results highlight the importance 
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of cities as sources of CO2 and the need for improved fine-scale inventories for 

monitoring and reporting of emissions. 

 

3.2 Introduction 

The United States, with 5% of the world’s population and 30% of the world’s 

automobiles, emits 45% of global transportation CO2 emissions (DeCicco, Fung 

and, An 2006). Nationally, the on-road sector represented 28% of total fossil fuel 

CO2 emissions in 2012, and is responsible for almost half of the growth in total 

U.S. emissions since 1990 (USEPA 2014). Despite being a substantial component 

of U.S. emissions, on-road CO2 remains poorly quantified at sub-state and urban 

scales. Reducing the uncertainty of on-road CO2 emissions at finer spatial scales 

is critical to better understanding the determinants of motor vehicle emissions 

(Gately et al. 2013), constraining carbon budgets (Andres et al. 2012), and 

supporting greenhouse gas emission monitoring and abatement verification 

(NRC 2010)—particularly at the scale of cities, which have emerged as hubs of 

climate change mitigation activity (Rosenzweig et al. 2012). 

Carbon cycle models now operate at resolutions much finer than U.S. states, 

and their reliance on gridded inventories for a priori estimates of the spatial 
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distribution of emissions (Schuh et al. 2010; McKain et al. 2012; Hutyra et al. 

2014) means that raw emissions data available at coarse spatial scales must be 

‘downscaled’ to match model grids. Increasing the spatial resolution of emission 

inventories has been shown to change modeled terrestrial carbon flux estimates 

by more than 50% (Schuh et al. 2010). The notion that population density is a 

robust predictor of CO2 emissions underpins most gridded global emissions 

estimates. Early studies used maps of population density to distribute national 

CO2 emissions on a global 1° grid, assuming uniform per capita emissions within 

each country (Andres et al. 1996; Brenkert et al. 1998). This assumption was 

shown to be invalid for the U.S., where per capita emissions vary by an order of 

magnitude across states (Blasing et al. 2005). Population becomes an even less 

reliable predictor of total CO2 emissions at finer scales, where local patterns of 

concentrated point and line sources dominate more diffuse area sources (Rayner 

et al. 2010; Gately et al. 2013). Used alone, population may be a valid predictor 

for residential and commercial sector emissions, but performs poorly when used 

to model emissions from power stations or the on-road sector (Rayner et al. 2010; 

Andres et al. 2012; Gately et al. 2013). Recent global inventories such as the Fossil 

Fuel Data Assimilation System partially correct for this by modeling power plant 
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emissions directly as point sources, although on-road emissions are still spatially 

allocated using population and luminosity data (Asefi-Najafabady 2014). The 

Emissions Database for Global Atmospheric Research (EDGAR v4.2) used a wide 

variety of sector-specific variables to allocate national CO2 emissions onto a 0.1° 

global grid (EC/JRC 2011a), but used only road density to spatially distribute 

emissions (EC/JRC 2011b). In the U.S. there is substantial variation in the 

intensity of vehicle activity per mile of roadway, as well as considerable 

differences in the fleet composition and fuel economy of vehicles that travel on 

different functional classes of roads (FHWA 1980-2012). 

A multivariate regression framework that broadens the number of proxies to 

incorporate demographic, socioeconomic and built-environment variables 

appears to improve the spatial accuracy of predicted emissions. Individuals’ 

vehicle travel was found to be best predicted by household income, vehicle 

ownership and commuting distance, and the estimated relationships have been 

used to impute on-road emissions at the zip-code level (Jones and Kammen 

2014). Directly-measured roadway CO2 concentrations have also been 

parsimoniously modeled using only the local fraction of impervious surface and 

a traffic-volume weighted road density index (Brondfield et al. 2012). In selected 
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U.S. states and cities local traffic count data and state-level fuel consumption has 

been used to downscale emissions to a 500 m grid (McDonald et al. 2014). 

Most of these studies relied on cross-sectional data, which means that the 

temporal stability of their results remains untested. This is important for 

addressing the enduring question in urban sustainability of how trends in urban 

sprawl and densification affect individuals’ travel behavior and related CO2 

emissions over time (Cervero and Kockelman 1999; Bento et al. 2005; Brownstone 

and Golob 2009). Population density is not thought to directly affect travel 

behavior, but proxies for less easily measured characteristics of the urban 

environment (e.g., public transit availability, walkability, amenity access – 

Cervero and Murakami 2009; Ewing and Cervero 2010), whose impacts on travel 

have long been a focus of regional and urban planning research. A classic 

example is the exponential decline in per capita transportation energy use with 

increasing population density that was observed in a large cross-section of cities 

worldwide (Newman and Kenworthy 1989). This relationship suggests that 

urban densification reduces per capita emissions, an idea that has gone on to 

influence urban development and sustainability initiatives worldwide. Despite 

recent advances in this area (NRC 2009; Duranton and Turner 2011), there 
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remains a fundamental simultaneity which confounds inferences about the 

density-emissions relationship: individuals’ travel behavior is affected by the 

built environment context of their place of residence, but their choice of 

residential location is simultaneously influenced by their travel preferences (Cao 

et al. 2009). 

To unravel the joint spatial and temporal co-variation between multiple 

predictors and emissions we constructed a new, dynamic, process-based 

emissions inventory. DARTE (Database of Road Transportation Emissions) is an 

annual 1km resolution CO2 emissions inventory for the U.S. on-road 

transportation sector, based on archived data of roadway-level vehicle traffic for 

the years 1980-2012. Raw vehicle activity data was obtained from the Federal 

Highway Administration’s (FHWA’s) Highway Performance Monitoring System 

(HPMS), a database of road-level traffic counts derived from annual reporting by 

all U.S. state transportation departments (FHWA 2009). The availability of source 

activity data at this resolution enabled us to directly estimate vehicle emissions at 

the scale of individual road segments without the need to downscale emissions 

using spatial predictors. We combined HPMS roadway-level VMT with year- 

and state-specific emissions factors for five vehicle types to calculate CO2 
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emissions from motor gasoline and diesel consumption on six classes of urban 

and rural roads. We then used DARTE to quantify the spatiotemporally-varying 

effects of population density, income, employment, and transit usage on on-road 

CO2 emissions across the U.S. We also characterize multi-decadal trends in 

emissions across all rural and urban road types, finding an increasing dominance 

of urban emissions across the U.S. Finally, we compared DARTE with several 

existing inventories of on-road CO2 emissions and identified large relative biases 

in emissions estimates, with differences that exceed 500% for several major U.S. 

metropolitan areas. 

 

3.3 Results 

DARTE highlights the large spatial variations in on-road CO2 emissions that exist 

across the coterminous U.S. (Figure 3.1). The 1km spatial resolution rectifies 

sharp gradients in emissions around freeways and expressways, particularly in 

major urban areas. Total U.S. on-road emissions increased by 50% from 1.04 Gt in 

1980 to 1.55 Gt in 2012, with 80% of this increase occurring in urban areas. Rural 

emissions were 556 Mt in 2012, an overall increase of 23% since 1980, but there 

has been a notable recent decline from the peak of 637 Mt in 2002. Following 
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2002, trends for diesel and gasoline vehicles diverged, with rural gasoline 

emissions declining steadily and rural diesel emissions continuing to rise until 

the global economic recession in 2008 (Figure 3.2). In contrast, urban area 

gasoline emissions rose steadily throughout the study period, despite the 

observed decline in overall emissions between 2008 and 2012.  

 

 

Figure 3.1. Map of 2012 on-road CO2 emissions for the coterminous U.S. and 

selected urban areas at 1 km resolution. Inset maps show details of metro 

areas surrounding: A) Seattle, WA; B) Los Angeles, CA; C) Houston, TX; D) 

Atlanta, GA; and E) Boston, MA. 
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Between 1980 and 2010, the U.S. urban population grew by 81 million people, 

an increase of 49%, while urban per-capita emissions of on-road CO2 grew by 

15% (Figure 3.3). While rural area population declined slightly from 1980 to 2010, 

rural per-capita emissions rose by 22% over that time. Nationally, per-capita 

emissions peaked in 2004, although rural and suburban per-capita emissions 

have begun to rise again since 2009 (Figure 3.3). The sustained decline in urban 

per-capita emissions is consistent with previous findings on the influence of 

residential density on vehicle travel (NRC 2009), however it is worth noting that 

prior to the peak in 2004, urban per-capita emissions rose 19% from 1980 levels, 

while average urban population density rose 30% over the same time period. 

This suggests that the future trajectory of per-capita on-road emissions may not 

be as strongly coupled with trends in urban densification as previously believed.  

A confounding factor in analyzing trends in ‘urban’ variables over time is that 

definitions of urban boundaries are not stable, as the U.S. Census Bureau revises 

urbanized area definitions with each decadal census. However, U.S. county 

boundaries have remained largely unchanged since 1980, as have the designated 

‘Central’ and ‘Outlying’ counties located at the cores and peripheries, 

respectively, of most urbanized areas. To avoid any spatio-temporal biases 
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induced by shifting urbanized area boundaries, we focused our further analysis 

on emissions at the county scale. 

 

Figure 3.2. Time series of U.S. on-road CO2 emissions. Urban roads accounted 

for 80% of total emissions growth since 1980. Rural road emissions have been 

declining since 2002. 
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Figure 3.3. Time series of U.S. per-capita on-road CO2 emissions by county, 

using Census 2000 Metropolitan Statistical Area (MSA) classification. Per-

capita emissions increased from 1980, both in urban and non-urban counties, 

with brief declines during the 1981-1982, 1990-1991, and 2007-2009 economic 

recessions. Since 2009 per-capita emissions in Non-MSA (Rural) and Outlying 

MSA (Suburban) counties have grown rapidly, while Central MSA (Urban) 

per-capita emissions have continued to decrease. 

 

To elucidate the drivers of on-road emissions we adopted a non-parametric, 

non-linear modeling approach that characterized the functional forms of the 

relationships between on-road CO2, income, employment and population 

density, while controlling for spatial and temporal fixed effects. A cross-

section/time-series generalized additive model (GAM) was used to model CO2 by 
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fitting non-parametric splines to population density, per-capita income, retail 

and non-retail job density, and a lagged population growth term as shown in 

equation 3.1: 

 

CO2 𝑖,𝑡
= 𝛼𝑖 + 𝜏𝑡 + Ψ1 [(

Population

density
)

𝑖,𝑡−1

] + Ψ2 [(
Per-capita

income
)

𝑖,𝑡−1
]

+ Ψ3 [(
Retail jobs

per km2 )
𝑖,𝑡−1

] + Ψ4 [(
Non-retail jobs

per km2 )
𝑖,𝑡−1

]

+ Ψ5 [(Population)
𝑖,𝑡−1

−  (Population)
𝑖,𝑡−2

] + 𝜀𝑖,𝑡                         (3.1) 

 

Here, 𝑖 and 𝑡 index counties and years, parameters 𝛼 and 𝜏 represent county 

fixed effects and year effects, respectively, and 𝜀 is a random disturbance term. 

The terms of interest, Ψ1-Ψ5, are non-linear spline functions defined over 

population density and statistical control variables, lagged one year to reduce 

simultaneity bias. The same model specification was also used to model per-

capita CO2 emissions. Model diagnostics and summary statistics are included in 

Appendix B. The adjusted R2 was 0.98 and 0.88 for the total and per-capita 

emissions models, respectively. The estimated density-emissions relationship 

(Ψ1) shows CO2 increasing rapidly with population density below 1,650 persons-
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km-2 before attaining a local maxima (Figure 3.4A1), consistent with previous 

findings for Massachusetts towns (3). This corresponds to the relatively slow 

decline in per-capita emissions with densities between 250 and 1,250 persons-km-

2. Per-capita emissions decrease more rapidly with density from 1,250 to 3,500 

persons-km-2, which results in a plateau in total emissions at these densities 

(Figure 3.4A2). Total emissions begin to rise again as density exceeds 4,000 

persons-km-2, and per-capita emissions cease to decline.  
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Figure 3.4. Plots of on-road emissions at multiple scales. Panels A1 and A2 

show the fitted spline Ψ1 for the partial prediction of total on-road CO2 and 

per-capita CO2, respectively, plotted against county population density. The 

rug plots in A1 and A2 show the distribution of U.S. counties pooled across all 

years. The values of Ψ1 are the model-estimated emissions relative to the 
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conditional mean of each county. Panel B shows decadal per-capita emissions 

vs. density for 14 U.S. cities. Movement in time is denoted by point size and 

arrows. Panel C shows per-capita on-road CO2 plotted vs. the share of 

residents who commute using public transit. Panel D shows the same cities as 

Panel B, overlaid on all U.S. Census Designated Places (grey points), for the 

year 2010. Dashed blue line in Panels A, B, and D identifies first local maxima 

of Ψ1 at 1,650 persons-km-2. 

 

The potential for stabilizing on-road CO2 emissions in the U.S. is limited by the 

fact that in 2012, only 46 counties (comprising 13% of the U.S. population) had a 

population density greater than 1,000 persons-km-2. For the remaining 87% of the 

U.S. population that lives in lower density counties our results indicate that the 

ongoing urban growth in these counties is likely to produce substantial increases 

in local on-road emissions, as the reductions in per capita emissions at lower 

levels of urban density will not be sufficient to stabilize the total emissions 

growth. Since 2000, the fastest 50 growing counties by population experienced 

average increases in total on-road emissions of roughly 15%, while their average 

per-capita emissions fell by only 12%. The average population density of these 

counties was only 350 persons-km-2 in 2012, well below the densities our model 

indicates are needed to stabilize total on-road emissions on a county scale. 

Nationally, urban growth and residential densification should continue to reduce 

total on-road emissions, but in many of the fastest growing urban areas, total on-
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road emissions are likely to continue their steady increase. This presents a 

potential tension between climate change policy at national and regional scales, 

as the reductions in national emissions provided by urbanization will not 

necessarily occur in the urban areas that are actually growing denser. From a 

regional planning perspective, it may make more sense for policy makers to 

focus on reducing local per-capita emissions, rather than total emissions, as most 

growing urban areas should expect total on-road emissions to continue to rise 

with population over the next decades. 

To expand our analysis beyond counties, and to test the stability of the 

density-emissions relationship, we reproduced per-capita emission – density 

plots for the selection of U.S. cities used by Newman and Kenworthy (1989), but 

expanded the cross-sectional panel by using DARTE to generate a decadal time-

series of emissions estimates for each city (Figure 3.4B,D). We used Census 

Designated Places (CDP) to define the boundaries of the core city areas, as these 

are the finest resolution spatial boundaries that have remained unchanged since 

1980. We found significantly different trends in the per-capita emissions-density 

relationship for cities whose densities fall above and below 1,650 persons-km-2. 

Cities such as Atlanta, Salt Lake City, and Phoenix experienced large increases in 

per-capita emissions despite minimal changes in population density between 
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1990 and 2010, while San Francisco and Boston exhibited declining emissions 

with rising density over the same time period (Figure 3.4B).  The divergence of 

trends in per-capita emissions for cities on either side of 1,650 persons-km-2 is 

consistent with the shape of Ψ1 in Figure 3.4A1, which shows increasing total 

emissions at densities below this threshold, and varying trends for densities 

between 1,650 and 4,000 persons-km-2. The results in Figure 3.4B provide 

evidence that the emissions-density relationships revealed in Figure 3.4A hold 

true at the smaller spatial scales.  

When the subset of cities in Figure 3.4B is overlaid on data from all other CDPs 

in the U.S., we see that the sample of major cities used in Newman and 

Kenworthy (1989) is a poor representation of the underlying emissions-density 

distribution across all CDPs.  We observed very large variation in per-capita 

emissions across the lower density CDPs, and considerable variation at higher 

densities as well. While there appears to be a generally decreasing trend between 

per-capita emissions and density, the spread of the data emphasizes the 

influence of additional covariates beyond population density on emissions at this 

spatial scale.  

The processes that generate road-sector emissions are influenced by multiple 

factors, of which population density is only one partial component.  We were 
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unable to directly evaluate the impact of other factors such as public transit 

usage in our regression model due to the unavailability of transit data through 

time at county scales. However, by plotting decadal census data on public transit 

usage for the same sample of cities as in Figure 3.4B we found that cities with 

large public transit usage shares do tend to have lower per-capita emissions 

(Figure 3.4C), although these trends were less consistent over time than trends in 

population density. Cities with high population density also tend to have higher 

per-capita transit shares. For the cities with lower population density and lower 

transit shares, we observed higher per-capita emissions in the more recent data 

(2000 and 2010). As with the plots of population density, the observed rise in per-

capita emissions over time in low density cities suggests that public transit 

ridership has not had a significant effect on emissions trends in these cities since 

1990. The only cities that show a clear correlation between increased transit share 

and decreased emissions are the cities with > 15% transit share of the overall 

population. San Francisco, Washington, DC and Boston all show noticeable 

decreases in per-capita CO2 emissions between 2000 and 2010, concurrent with 

increases in the transit usage share of their total population. With the limited 

sample size available, it is difficult to make conclusions about the large number 

of cities with lower population densities, and presumably lower shares of public 
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transit usage. The correlations between population density, employment density, 

income, and lagged population growth estimated by our model suggest that 

these factors may be sufficient to explain the majority of variance in on-road 

emissions at the county scale (See Appendix B - Figures B5-B6), but further 

research into the influence of urban typology and mobility patterns will be vital 

to understanding emissions trends at city and municipal scales. 

 

3.4 Inventory Bias and Spatial Proxies 

External validation of emission inventories is hampered by the lack of 

independent measurements of source activity (Andres et al. 2012), but it is 

informative to compare the effects of different model methodologies and proxy 

performance on the consistency of emissions estimates. Since DARTE estimates 

were not calculated using population or road density, we were able to evaluate 

the performance of these variables as spatial predictors by comparing DARTE 

with other well-known inventories. We aggregated DARTE’s roadway-scale 

emissions to match the native resolutions of EDGAR (EC/JRC 2011a) and the 

Vulcan Project (Gurney et al. 2009). EDGAR is a 0.1° gridded global emissions 

inventory product, with annual sector-level CO2 emissions reported through the 

year 2008. Vulcan reports hourly sector-level emissions on a 10km grid for the 
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U.S. for the year 2002. For on-road emissions, EDGAR uses road density as the 

sole spatial proxy to downscale national-level emissions (EC/JRC 2011b). On-

road emissions in Vulcan were derived from VMT from the EPA National 

County Database (NCD). The NCD contains state-level VMT that has been 

downscaled to counties using road and population density, with the exception of 

a small subset (5%) of counties that reported VMT directly (Gurney et al. 2010).  

National emission totals of Vulcan and EDGAR were similar to DARTE, but 

when compared on a cell-by-cell basis, large deviations in emissions were 

observed. EDGAR exceeded DARTE by as much as 500% in some urban centers, 

while Vulcan estimates exceeded DARTE by 50% or more in nearly 40% of grid 

cells (See Appendix B – Figures B1-B4). In contrast to EDGAR however, Vulcan 

showed large negative biases relative to DARTE in the cores of large cities, and 

positive biases as high as 100% in surrounding suburban and exurban areas. 

EDGAR’s use of road density as a sole proxy assumes a uniform emission factor 

per kilometer of road, resulting in over-allocation of emissions to low-traffic 

roads and under-allocation to high-traffic roads. Although many urban roads 

carry large amounts of traffic, and hence are responsible for the majority of 

emissions, urban areas also contain a substantial fraction of local roads which are 

comparatively lightly travelled.  EDGAR’s use of a constant emission factor 
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across road classes with very different activity levels would explain the positive 

bias in urban core areas with high road density and the negative bias in suburbs 

with sparser, but still highly travelled roads.  

For Vulcan, the relative biases may be explained by how the VMT activity data 

is downscaled in the NCD. In the NCD, urban non-highway VMT is re-

distributed from Census Urbanized Areas to counties using population shares, 

while rural non-highway VMT is downscaled from state totals, also using 

population. The results of our regression model (Figure 3.4) indicate that on-road 

emissions (and by implication VMT) do not vary linearly with population. The 

use of population to redistribute VMT from Urbanized Areas to counties will 

produce spatial biases, as population density, and therefore per-capita emissions 

rates, will vary substantially from the urban core to the suburban periphery 

(Figure 3.3). The fact that the aggregated emissions estimates of DARTE, EDGAR 

and Vulcan are in relative concordance, despite local differences of 500% or more 

for city-scale regions, underscores the risk in presuming that state-level VMT can 

be accurately downscaled to sub-county scales for the purpose of emissions 

modeling. 

 

3.5 Uncertainty in On-road Emissions 
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Uncertainty in the magnitude of on-road emissions at the national level is 

estimated to be on the order of 3-5% for developed countries (Andres et al. 2012; 

Mendoza et al. 2013), but at sub-national or state scales existing inventories 

disagree by as much as 40% (Gately et al. 2013), and at city scales uncertainty can 

be as large as 50-100% (Rayner et al. 2010). Direct quantification of the 

uncertainty in U.S. on-road emissions is made impossible by the absence of 

independent data sources against which to compare government estimates 

(Andres et al. 2012). Consequently, emissions uncertainty tends to be 

characterized in terms of the inherent variability of major data inputs to 

inventory construction: Traffic sensor measurements, spatial imputation of VMT 

to roads that lack permanent sensors, and emissions factors used to convert VMT 

to CO2. 

Traffic sensors are widely considered to measure total vehicle volumes with 

95%-99% accuracy (Batelle Institute 2004), therefore we focused on estimating the 

potential uncertainty associated with the spatial imputation of VMT and the 

emissions factors used by DARTE. We examined the former by calculating 

within-county coefficients of variation (CV) for VMT in each road class and year, 

and found that urban and rural freeways and urban non-freeway roads have 

consistently low variation in VMT, with CVs ranging from 0.4 to 1.1 on average. 
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Rural non-freeway VMT shows the most sub-county variation, with a mean CV 

of 2.4, and CVs as high as 14 in a handful of counties (See Appendix B - Figure 

B9). Rural road segments are typically the least-sampled roads in HPMS, and are 

held to lower standards of precision (FHWA 2005). Rural non-freeways also 

account for only 17% of total VMT, so while the spatial uncertainty of emissions 

from these roads is larger than other functional class roads, their contribution to 

the total uncertainty is modest. We calculated similar statistics for the within-

state, between-county variation of VMT to test the scale-dependence of variation 

in VMT. The within-state CV of urban VMT ranged from 0.5 to 4.0 across all 

states and years, while rural VMT ranged more narrowly from 0.75 to 1.75. This 

larger variation in urban VMT reflects the broader range of urban area sizes at 

state scales, as small and large cities have very different levels of vehicle activity.  

Within-state CVs of emissions intensity (CO2 / VMT) were found to be small, 

ranging from 0.1 – 0.2 on average. Low variation in emissions relative to VMT 

corroborates previous findings that uncertainty in vehicle fleet and fuel economy 

characteristics are a minor contributor to the overall uncertainty in emissions 

estimates from the on-road sector (Mendoza et al. 2013). The relatively low 

variation in roadway-level VMT suggests that the uncertainty associated with 

spatially aggregating VMT from the roadway to the county scale is relatively 
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small, so long as stratification by functional class is maintained. Greater variation 

in between-county urban VMT implies that downscaling VMT from state to 

county scales may result in a higher uncertainty associated with urban emissions, 

depending on the distribution of urban area size and local travel trends within 

the state. 

 

3.6 Implications 

Over the past 40 years global urban population rose from 1.51 to 3.91 billion 

people, and is expected to reach 6.3 billion by 2050 (United Nations 2014). CO2 

emissions from transportation comprised 23% of global fossil fuel carbon 

emissions in 2010 (Sims et al. 2014), with over 40% of those emissions produced 

by road travel in urban areas (International Energy Agency 2013). As the first 

nationally-consistent inventory of U.S. on-road CO2 emissions built from bottom-

up source activity data, DARTE not only establishes a national benchmark for the 

monitoring, reporting and verification of emissions that are vital to regulating 

GHGs, it yields novel insights into how key features of urban areas contribute to 

climate change. DARTE can provide valuable information to local and regional 

climate change mitigation initiatives (e.g. state and city climate action plans—

Rosenzweig 2012; California AB-32 2006; City of Boston 2010) whose success 
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turns on the ability to accurately assess both city-scale GHG emissions and their 

responsiveness to policy. 

 

3.7 Methods 

Our emissions estimation procedure is based on a comprehensive dataset of 

roadway-level traffic volumes recently made available by the HPMS. The raw 

data are average annualized daily traffic (AADT) on more than one million road 

segments measured annually by state departments of transportation. AADT is a 

measure of average daily traffic that takes account of seasonal and day-of-the-

week variation, such that annual vehicle miles travelled (VMT) for each segment 

can be directly obtained by multiplying AADT by the length of the segment and 

the days in the year. We aggregated VMT to by county and functional class of 

roadway for each year. HPMS records comprise roughly 80% of all VMT, but the 

records do not contain comprehensive traffic data for most minor and local roads 

at the roadway level. For these smaller road classes we used state-level VMT by 

functional class from FHWA’s Highway Statistics Series (FHWA 1980-2012) for 

rural and urban minor collectors and local roads, and allocated this VMT to each 

county in proportion to the county’s share of total state VMT as reported in the 

HPMS.  
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The resulting time series of VMT by county and functional class was quality 

controlled to identify and adjust any outliers or structural breaks. In some cases, 

an apparent structural break occurred when a county or state reclassified roads 

to a different functional class, thereby shifting a significant amount of VMT to 

that new class. In those cases, there was no observed break in the state’s time 

series for total VMT, so we performed no filtering and the data was preserved. 

To identify data quality issue, our algorithm identified large annual changes in 

VMT for a given county and functional class where there were no oppositely-

signed changes observed in other functional class roads for that county. Where 

the year-on-year difference between the reported value and both the previous 

year and following year was larger than twice the mean annual change in VMT 

for that time series of county and road, the observation was removed and 

replaced with an imputed value obtained by fitting a lowess curve to the full 

time series minus the removed value (see Appendix B). 

We used VMT to calculate fuel use and associated CO2 emissions. Fuel 

consumption per mile travelled varies substantially by type of vehicle, so VMT 

was partitioned across five vehicle classes and five road functional classes using 

data from Highway Statistics Series Table VM-4 (FHWA 1980-2012). Table VM-4 

provides state-level data on VMT by vehicle class, but the table is only available 
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for 1993-1997 and 2009-2012. For the remaining years we developed a calibration 

routine to impute state-level vehicle shares by functional class. We initialized the 

calibration using data on state-level fuel consumption and average vehicle fuel 

economy (FHWA 1980-2012), and the shares of gasoline and diesel fuel truck 

VMT (U.S. Census Bureau 1982-2002). The algorithm adjusted initial vehicle 

shares and fuel economies such that the calculated state-level gasoline and diesel 

consumption totals were within 5% of values reported in Highway Statistics 

Table MF-21. We used the calibrated fuel economies and VMT by vehicle type to 

calculate gallons of motor gasoline and diesel fuel consumed. Fuel consumption 

was then converted to CO2 emissions for each year, county, and road functional 

class using EPA emissions factors for motor gasoline and diesel (EIA 2007). 

We assigned emissions to a GIS layer of the U.S. road network obtained from 

the 2012 Census TIGER/Line geodatabase (U.S. Census Bureau 2012). To 

maintain a consistent spatial framework, the road network used is the same for 

all years. Urban roads were defined as any road link that intersected or was 

contained within the boundaries of the 2000 Census Urbanized Areas and Urban 

Clusters shapefile (U.S. Census Bureau 2002). In 2011 the HPMS changed to a 

GIS-based reporting format, with a subset of AADT now reported in a GIS road 

network geodatabase. To maintain consistency across all years in our study, we 



68 

 

 

extracted VMT from the 2011 and 2012 HPMS geodatabase and merged it with 

our 1980 – 2010 HPMS database. Roadway-level emissions were aggregated to a 

1 km grid, a 0.01 degree grid, a 10 km grid, and a 0.1 degree grid for comparison 

with the Vulcan and EDGAR inventories. The high resolution grids nest 

smoothly within the lower resolution Vulcan and EDGAR grid systems for ease 

of comparison and to allow for the combination of DARTE on-road emissions 

with other sector emissions from either of those inventories. 
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CHAPTER 4 – IMPACTS OF TRAFFIC CONGESTION ON VEHICLE 

EMISSIONS OF CRITERIA AIR POLLUTANTS AND GREENHOUSE 

GASES 

 

4.1 Introduction and Background 

Mobile sources are responsible for a large proportion of emissions of toxic air 

pollutants in the United States. Over 75% of carbon monoxide (CO), and 60% of 

Nitrogen Oxides (NOx) emissions in 2012 were from road and non-road vehicles 

(USEPA 2011b), and in large urban areas as much as 90% of CO emissions may 

be due to mobile sources (USEPA 2011c). Due to the variable nature of vehicle 

activity, local meteorology, and urban structure, human exposure to air 

pollutants is highly heterogeneous. The EPA estimates that over 45 million 

people, 14% of the U.S. population, currently live within 300 feet of a major road 

(USEPA 2014b). Ambient pollutant concentrations from mobile sources are 

highest in close proximity to major roads, and therefore it is those populations 

living close to roads that are most likely to suffer from the negative health 

impacts associated with exposure to fine particulate matter (PM2.5), CO, and NOx 

emissions from vehicles (EPA, 2014). Zhu et al. (2002) found that CO 

concentrations near a Los Angeles freeway decrease from 2.3ppm at a distance of 
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17m to 0.4 ppm at a distance of 150m. Zhu et al. also report that black carbon and 

ultra-fine particle concentrations declined by 60-80% when measured at a 

distance of 100 meters from the highway. However other pollutant 

concentrations may be less strongly influenced by the distance from a major 

road, as Zwack et al. (2011a) found that PM2..5 concentrations around two major 

highways in Brooklyn, NY declined by only 5-10% at a distance of 500 meters, 

relative to concentrations right at the roadway edge. In urban areas, the presence 

of large buildings surrounding roads on all sides can also result in ‘street canyon’ 

effects wherein the concentrations of ambient pollutants can rise significantly 

above background concentrations if the emissions from vehicles are not rapidly 

dispersed by atmospheric mixing (Zwack et al. 2011b). 

Ambient air pollution is correlated with several health impacts including 

chronic obstructive pulmonary disease, acute lower respiratory illness, ischemic 

heart disease, and lung cancer (Pope et al. 2002; Cohen et al. 2005; Russell and 

Brunekreef 2009; Gurjar et al. 2010). A recent study by Lelieveld et al. (2015) 

estimated that globally, outdoor air pollution is responsible for 3.3 million 

premature deaths per year, with the dominant sources in the U.S. being PM2.5 

from agriculture, power generation and land transportation. Other recent studies 

(Tuomisto et al. 2008; Thurston et al. 2013) suggest that the carbonaceous 
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component of PM2.5 is responsible for a much stronger exposure-response than 

the inorganic components of PM2.5. With revised exposure-response functions 

that weight carbonaceous PM2.5 more highly, Lelieveld et al. estimate that 36% of 

the premature mortality due to outdoor air pollution in the U.S. is due to 

emissions from the land transportation sector. Thus in order to accurately model 

the potential exposures of populations living in urban areas with large amounts 

of vehicle-derived air pollutant emissions, it is critical that emissions estimates be 

derived at the scale of individual roadways, and not estimated for larger 

aggregated regions. 

Previous inventories of vehicle emissions of air toxics have relied on 

aggregated estimates of pollutant emissions at the traffic analysis zone (TAZ) or 

county scale, and were based on either bulk calculations of fuel sales and 

consumption or on estimates of vehicle miles travelled that were then combined 

with emissions factors (Harley et al. 2001; Schifter et al. 2005; Zheng et al. 2009; 

Dallmann and Harley 2010; McDonald et al. 2012). However, the emissions 

factors are heavily dependent on several related factors including the makes and 

models of vehicles on the road, their on-board pollution control technologies, the 

drive-cycle (speed/acceleration profiles) of the vehicles, the composition of the 
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fuel they burn, ambient weather conditions, and the temporal and spatial 

variability of the traffic volumes in the area of interest (Parrish 2005).  

Quantifying all of these additional variables at high spatial and temporal 

resolutions is necessary for the accurate estimation of emissions at local scales. 

Without detailed local data, emissions estimates must be downscaled using 

generic spatial proxies such as population density or road density (EC/JRC 

2011b; Huang et al. 2011). In recent years, the availability of high temporal and 

spatial resolution data on vehicle activity and emissions has made it possible to 

accurately estimate vehicle emission fluxes at high resolution (1km or finer) 

without relying on extensive spatial downscaling (McDonald et al. 2014; Gately 

et al. 2015). However, roadway-level emissions inventories that are constructed 

from actual vehicle activity and fleet data are still relatively uncommon, as the 

large number of detailed, disparate data sources needed to fully capture the 

variability of vehicle emissions on sub-daily time scales at the level of individual 

road segments are often unavailable or difficult to obtain in unison for a 

significant regional extent. 

In this study we successfully integrate several novel datasets with existing 

regional databases to quantify mobile source emissions at an hourly time 

resolution for hundreds of thousands of individual road segments across the 
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Greater Boston metropolitan area for the year 2012. We develop a new data 

assimilation method that integrates multiple large databases of vehicle activity, 

fleet characteristics, road network characteristics and local meteorology, and use 

these assimilated data products to quantify emissions for different vehicle types, 

identify spatial hotspots of emissions, estimate the additional emissions 

generated solely due to traffic congestion, and quantify potential changes in 

future emissions under several traffic management policies as well as a forecast 

future climate scenario. 

As emission rates for different pollutants vary depending on the type of 

vehicle, its travel speed, and the ambient temperature, it is difficult to downscale 

aggregated emissions estimates without knowing how the local distribution of 

vehicle types and traffic intensity varies over time and space. Due to the nature 

of the internal combustion engines used by most vehicles, tailpipe emission rates 

tend to be much larger at low vehicle speeds than at higher speeds, although for 

some pollutants the emission factors are also higher when speeds become very 

high (>65 mph). The result is that on balance, significantly higher emissions 

fluxes occur when vehicles are in traffic compared to when they are traveling at 

typical ‘freeflow’ or cruising speeds (Sjodin et al. 1998; West et al. 1999; Kean et 

al. 2003). However, for this ‘congestion-effect’ to generate significant 
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enhancements in the typical emissions for a given area, the congestion must be 

both relatively severe and sustained, and must affect a relatively large number of 

vehicles. Short-lived congestion events will generate brief spikes in emissions 

fluxes, but in areas such as our study domain of eastern Massachusetts, typical 

‘background’ fluxes of vehicle emissions during non-congested conditions are 

already rather large.  

To quantify both the absolute and the relative impact of travel speeds and 

congestion on vehicle emissions in our domain, we utilize a very high-resolution 

dataset on vehicle speeds obtained from the traffic consultant firm INRIX, which 

aggregates real-time data from mobile phone and GPS sensors in tens of 

thousands of vehicles across our study domain. This highly detailed information 

on the actual movement of vehicles on the roads allowed us to the capture hour-

to-hour variations in traffic conditions that drive localized variations in 

emissions of air pollutant species, and it also allowed us to quantify the 

aggregate impact over the entire year and domain of these congestion-induced 

emissions from different vehicle types. We were then able to test alternative 

emissions scenarios by simulating a variety of traffic conditions in the absence of 

any congestion, in order to quantify the potential emissions improvements that 
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might be expected if policies to reduce traffic volumes and/or increase speeds 

were implemented across the region. 

This study produced several key results concerning the relationship between 

emissions, traffic congestion and local meteorology. Most notably, we find that 

the overall relative contribution of congestion to emissions of air pollutants and 

greenhouse gases is quite small across eastern Massachusetts. We show that 

improving vehicle speeds without reducing the number of vehicles on the road 

will at best reduce emissions by 3-5 % depending on the pollutant. A 

combination of reduced traffic volumes and reduced congestion can increase the 

potential emissions reductions to 5-8% below current levels, but only if the 

reductions in the number of vehicles are targeted specifically at roads with heavy 

congestion. We also find that for certain pollutants, localized emissions are 

dominated by the presence or absence of heavy trucks or other diesel vehicles. By 

identifying the locations of truck-dominated emissions hotspots, our database 

provides the benchmark data necessary to support targeted emissions reductions 

focused on specific vehicle corridors and travel patterns. Finally, we evaluate the 

future impact on vehicle emissions of rising regional temperatures due to global 

climate change, and show that for certain pollutants, notably carbon monoxide 
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(CO), warmer mean temperatures are likely to produce localized increases in 

emissions of 25% or more by the year 2050.  

Our results provide strong evidence that emissions of air pollutants and 

greenhouse gases from road vehicles are unlikely to be reduced in any significant 

fashion by policies that focus only on improving travel speed and reducing 

congestion. Even modest reductions in the number of vehicles on the road will 

not generate the significant improvements in emissions that are necessary to 

improve local air quality and mitigate the impact of greenhouse gas emissions on 

global and regional climate change. 

 

4.2 Data and Methods 

4.2.1 Input Data 

We construct a new database of emissions of CO, SO2, NOx, PM2.5, and CO2 

from vehicles travelling on the roughly 305,000 road segments that make up the 

public road network of eastern Massachusetts. We integrate several datasets with 

varying native spatial and temporal resolutions to produce hourly gridded 

surface fluxes of these emissions at a 100m grid scale. The main datasets used to 

develop this database are shown on the left and center of Figure 4.1, and include 

a large set of vehicle speed data purchased from the traffic consultant firm 
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INRIX, a GIS database of average daily traffic volumes (ADT) for all of the major 

roads in Massachusetts (Massachusetts Department of Transportation 2013), road 

network characteristics and vehicle fleet information from the Boston 

Metropolitan Planning Organization’s Travel Demand Model, hourly traffic 

counts from permanent traffic recorders (Massachusetts Department of 

Transportation 2014), hourly meteorology (temperature, atmospheric pressure 

and specific humidity) from the North American Land Data Assimilation System 

(Xia et al 2012), and vehicle emissions factors calculated by the EPA MOVES 

model (USEPA 2014b).  

 

Figure 4.1. Flowchart of data assimilation methodology. The four major input 

datasets are spatially merged to generate hourly traffic volumes for 4 vehicle 

types for each of the 305,137 road segments in the domain, coupled to the 

hourly ambient meteorology for each road. Travel speeds are assigned using 

INRIX data where available. For non-INRIX segments, speeds are calculated 

using a volume-delay function that relates speed to road volume and 
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capacity. Emissions of CO, CO2, NOx, SO2, and PM2.5 are calculated using the 

EPA MOVES2014 model for each vehicle type. 

 

The INRIX speed data is derived from thousands of mobile phone and vehicle 

GPS devices, which are then aggregated by INRIX to calculate average travel 

speed on over 60,000 road segments in our study area at a temporal resolution of 

5 minutes for the year 2012. The INRIX road network separates vehicle travel on 

each road segment by the direction of travel, to account for the variation in daily 

traffic patterns on roads that experience distinct directional patterns of traffic 

activity depending on the time of day. We joined the INRIX road network 

shapefile to the Massachusetts Road Inventory shapefile in a GIS using a 

proximity-based spatial join, as there was no direct crosswalk between the 

unique IDs of road segments in the two datasets. Manual validation of all major 

roads in the spatial join was performed by several staff of the Central 

Transportation Planning Staff (CTPS) of the Boston Metropolitan Planning 

Orgnization (MPO), and then completed for all remaining road segments by the 

authors. The Massachusetts Road Inventory road network forms the spatial basis 

for our emissions model.  

 

4.2.2 Traffic Volumes 
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The Road Inventory shapefile contains estimates of average daily traffic 

volumes for each road segment, as well as the number of lanes in the segment 

and the roadway functional class as defined by FHWA. Some road segments, 

mostly the local roads, were missing estimates of ADT. However, estimates of 

total vehicle-miles travelled on local roads in the Boston Urbanized Area are 

available from the FHWA Highway Statistics Series Table HM-71 (FHWA 1980-

2012). We used these aggregate totals to assign a mean ADT to each local road in 

the Boston Urbanized Area that was missing an ADT value in the Road 

Inventory file. We first subtract the total VMT from the local roads that do have a 

reported ADT from the total VMT in Table HM-71, and then divide the 

remaining VMT by the total length of all the local roads that are missing VMT in 

the Urbanized Area, and then divide again by 366 days, to get an average daily 

traffic volume for all local roads. 

 

4.2.3 Travel Demand Model 

We next joined the output from the CTPS Travel Demand Model base run for 

2012 to the attribute table of the Road Inventory. The CTPS Travel Demand 

Model is a traditional, four-step traffic assignment model calculated using the 

TransCAD traffic modeling software, and is continuously updated and 
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maintained by CTPS for modeling and forecasting of local and regional 

transportation demand.  The first two steps in the model use travel survey data, 

vehicle fleet data, and demographic information to estimate the number of daily 

trips taken in the eastern Massachusetts region (trip generation) and then to 

estimate the likely origins and destinations of each of these trips (trip 

distribution), aggregated to areas dubbed Traffic Analysis Zones (TAZs). The 

third and fourth steps in the model are mode choice, where each of the trips in 

the large origin-destination matrix created in the previous step is assigned to 

different travel modes (vehicle, public transit, bicycling, walking), followed by 

the route assignment step, which assigns each of these trips to individual links in 

the relevant transportation network (roads, heavy/light rail, cycling 

infrastructure, etc.) using optimization routines.  

The output of the model that we utilize consists of estimated vehicle travel for 

four periods of the day (AM peak from 6am to 10am, mid-day from 10am to 

3pm, PM peak from 3pm to 7pm, and night-time from 7pm to 6am), 

disaggregated by vehicle type and road segment direction. The model is 

designed to estimate travel on each road segment for an average weekday. The 

travel demand model also contains additional information on road segment 

characteristics including the capacity of the segment as well as the alpha (α) and 
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beta (β) coefficients used to estimate travel speed on the segment using a 

modified version of the Bureau of Public Roads volume-delay function (Equation 

4.1). 

𝑆𝑝𝑒𝑒𝑑𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
𝐹𝑟𝑒𝑒𝑓𝑙𝑜𝑤 𝑆𝑝𝑒𝑒𝑑

1+𝛼(
𝑉

𝐶
)

𝛽                    (4.1) 

For roads that do not have speeds available from the INRIX database, we utilize 

the relationships captured in Equation 4.1 to estimate vehicle speeds as described 

later in this section. 

We do not directly use the estimated traffic volumes from the CTPS model 

directly, since the output from the CTPS model does not cover all of the road 

segments in the Road Inventory file, and many of the local roads are excluded to 

maintain computational tractability of the traffic assignment calculations. To 

maintain consistency across the region we use the average daily traffic volumes 

contained in the Road Inventory file, and use the CTPS model output to 

disaggregate those volumes by time of day, travel direction, and vehicle type. We 

first aggregate the vehicle types in the CTPS output to the following five general 

classes: Passenger Cars, Passenger Trucks (SUVs and pickup trucks), Medium-

size Trucks (gasoline-powered), Medium-size Trucks (diesel-powered), and 

Heavy Trucks (diesel-powered). Both passenger vehicle classes are assumed to 
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be gasoline-powered. We then divide the CTPS model volume for each vehicle 

class in each of the four time periods by the total volume for each link (by 

direction) to get volume shares by vehicle class, direction, and time of day. These 

shares are then used to disaggregate the ADT volumes from the Road Inventory 

file. For road segments in the Road Inventory that are not present in the CTPS 

model, we assign them the characteristics of the nearest CTPS road segment of 

the same functional class. 

 

4.2.4 Hourly Time Structure 

 To temporally disaggregate the ADT data from the Road Inventory, we 

first use a large dataset of hourly traffic volumes obtained from 44 permanent 

traffic recorders (PTRs) distributed across the study region (Massachusetts 

Department of Transportation 2014). This data is obtained from inductive loop 

sensors embedded in the roadway surface that continuously monitor traffic 

volumes throughout the year. For each PTR station we calculate the aggregate 

total volume of vehicles for the whole year of 2012, and then divide each hourly 

volume by this total to get an hourly share. We assign each segment in the Road 

Inventory the hourly traffic profile of the nearest PTR to that segment. The 

hourly shares are then used to convert the road segments’ ADT values into 
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hourly traffic volumes by multiplying the segments’ ADT by the number of days 

in the year (366 for the year 2012) and then by the hourly share. 

Each hourly volume was then further divided into the respective volumes for 

each of the vehicle classes using the shares calculated from the CTPS travel 

demand model output, depending on time of day and travel direction of each 

road segment. The resulting output is an hourly estimate of traffic volume for 

each vehicle type on each road segment in the Road Inventory, partitioned by 

travel direction for the road segments with two-way travel.  

 

4.2.5 Speed Assignment 

 For all of the road segments that contain a matching INRIX segment, the 

average hourly speed for each hour of the year is assigned from the INRIX 

database. Although the raw data from INRIX is at a 5 minute time resolution, the 

mean speed across each hour was calculated and used in our analysis for the 

purposes of computational efficiency. For the road segments where INRIX 

speeds were not available, we used the volume-delay function described in 

Equation 4.1 to estimate hourly travel speeds on each segment. The main 

components of Equation 4.1 are the freeflow speed, the hourly volume (v), the 

hourly capacity (c), and the coefficients α and β. For freeflow speeds we use the 
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mean 85th percentile speed by functional class from all roads in the INRIX 

database, and assign these speeds by functional class to the Road Inventory 

segments that lack INRIX speeds. The hourly capacity and the coefficients α and 

β are obtained from the CTPS model output.  

 

4.2.6 Emissions Factors 

To calculate emissions for each road segment we utilize emissions factors 

calculated by a customized run of the EPA’s Motor Vehicle Emissions Simulator 

(MOVES) for eastern Massachusetts. MOVES is the successor to the MOBILE 

model, which was developed by EPA in the late 1970s to support modeling of 

vehicle emissions at the national, states and local scale. MOBILE was steadily 

improved and upgraded by EPA until 2010, when it was then overhauled and 

replaced by MOVES, which is currently the standard for quantifying vehicle 

emissions of 135 different pollutant species under a wide range of driving 

conditions. MOVES is widely used by states and regional planning organizations 

to evaluate compliance with the Clean Air Act, to forecast the air quality impacts 

of future development, and to quantify the impact of changing vehicle 

technologies and traffic management practices.  
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Although the MOVES software contains default values for many of the 

parameters used to determine emissions rates, EPA strongly recommends that 

users include as much local data as possible when running the model, so as to 

minimize biases created by any mismatch between the model default parameters 

and the actual local parameter values. The spatial resolution of MOVES is limited 

to county-scale estimates when the model is run in ‘inventory’ mode. In order to 

obtain finer resolution estimates of emissions, MOVES also allows the user to run 

it in ‘emission factor’ mode, which produces an output table of the emissions of a 

pollutant in grams per vehicle kilometer travelled (VKT) for the various vehicles 

and fuel types of interest.  

As these emissions factors are highly sensitive to changes in atmospheric 

conditions, fuel composition, vehicle make, model, and age, and to the average 

travel speed of the vehicle, the MOVES software requires an array of input files 

that characterize all of these variables for the domain of interest. Among other 

responsibilities, the staff of CTPS is responsible for modeling and forecasting the 

air quality impacts of regional transportation developments, and as such they 

have developed a customized set of input tables that quantify all of the relevant 

parameters that are specific to the eastern Massachusetts region. We make only 

one substitution to the custom MOVES input tables, and include a table that 
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covers the full range of meteorologic variables observed in the year 2012, as 

obtained from the NLDAS-2 grid that covers eastern Massachusetts. 

 

4.2.7 Meteorology  

The meteorological variables required by MOVES are ambient atmospheric 

temperature and relative humidity. The NLDAS-2 data product has a spatial 

resolution of 1/8° (~ 140 km2 grid cells), and reports hourly values of air 

temperature, air pressure, and specific humidity at an elevation of 2 meters 

above the land surface. We use the values of these three variables to calculate the 

relative humidity for each hour and grid cell using the Clausius-Clapeyron 

equation (See Appendix C). Each road segment was then assigned the hourly 

temperature and relative humidity of the NLDAS-2 grid cell within which it was 

located.  

The MOVES model output produced emission factors for CO, CO2, NOx, SO2, 

and PM2.5 in grams emitted per kilometer of vehicle travel, for all combinations of 

temperature, relative humidity, average vehicle speed, vehicle type, and road 

functional class. For computational efficiency we rounded all temperatures in 

both the MOVES data and the NLDAS-2 data to the nearest degree, and we 

rounded all relative humidity values to the nearest multiple of ten. We then 
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joined the MOVES output to the Road Inventory dataset, with emission factors 

assigned by the meteorology, day of week and functional class for each hourly 

traffic volume. The final output consists of hourly estimates of emissions of the 

five pollutants of interest for each of the five vehicle types, for each of the 

~305,000 road segments in the domain. Emissions were then aggregated to a 

100m x 100m grid for further processing and distribution. 

 

4.2.8 Policy Scenarios 

Next we estimated emissions under several policy scenarios using our base 

dataset as a reference. First, we estimated emissions for a scenario that assumes 

that all vehicle traffic was always traveling at the freeflow speed of the road 

segment. We use the 85th percentile speed of each road segment as obtained from 

the INRIX data as an estimate of free-flow speed, as this reduces the influence of 

high-speed outlier hours, which were observed on some roads during late-night 

or early morning hours. This scenario does not assume that vehicle volumes 

were actually reduced to the levels where these speeds would be physically 

realistic, but rather was designed to explore the consequences of a hypothetical 

expansion of the road network capacity to accommodate all of the present travel 

demand. This scenario also assumes that vehicle volumes remain at 2012 levels, 
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although the literature on ‘induced demand’ clearly indicates that this would be 

unlikely given an expansion in road capacity (Cervero and Kockelman 1999; 

Noland 2001, Cervero and Hansen 2002; Small and Van Dender 2007; Hymel et 

al. 2010). Nonetheless, this scenario provides an estimate of the fraction of 

emissions that could be reduced if vehicle traffic was free to travel at freeflow 

speeds. It also reveals the quantities of both emissions and fuel consumed during 

congested conditions, and allows us to estimate the monetary cost of traffic 

congestion with respect to motor fuel wasted. 

For a second scenario, we calculate the emissions if vehicle volumes were 

reduced to the levels required to actually obtain freeflow speeds throughout the 

road network at all times. To do this, we simply set the hourly traffic volume 

equal to the capacity of the road segment, for all of the hours where the actual 

2012 volumes exceeded the road segment’s capacity. For the hours where the 

hourly volume was below the capacity of the road segment, we make no 

changes. This scenario reflects the expected outcome of a policy that reduces the 

demand for vehicle travel on the roadways to the levels required to alleviate all 

traffic congestion on every road in the study area. The results of this scenario 

allow us to examine the marginal reductions in emissions with respect to 
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marginal reductions in vehicle traffic, and to quantify the total expected 

emissions benefits from a congestion-focused travel demand reduction strategy. 

 

4.2.9 Future Climate Scenario  

We simulate an additional scenario that calculates the changes to vehicle 

emissions due to future climate change, by running our model using the mean 

meteorological conditions forecast for the year 2050 under the SRES A2 scenario 

(IPCC 2000). We use the National Center for Atmospheric Research (NCAR) 

Community Climate System Model (CCSM) ensemble means of monthly mean 

air temperature, downscaled to a 4.5 km resolution grid for North America. For 

this scenario we make no adjustments to the relative humidity values in our 2012 

meteorology, but adjust each hourly temperature value in a given month by the 

difference between the forecast mean monthly temperature in 2050 and the mean 

monthly temperature in 2012 from NLDAS-2. We make no alterations to the 

vehicle activity part of the dataset, and calculate revised emission estimates 

using the appropriate MOVES emissions factors under the altered temperature 

conditions. 

 

4.2.10 Vehicle Cold-Starts 
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For the base scenario and for the climate change scenario we also estimate the 

emissions of all five pollutants of interest that occur due to passenger vehicle 

starts. While the majority of emissions from vehicles occur during running 

operations, a large amount of emissions also occur when a vehicle is started from 

a cold engine. To calculate the number of passenger vehicle starts per day, we 

use data from the 2010 Massachusetts Travel Survey (Massachusetts Department 

of Transportation 2012) combined with U.S. Census population and housing data 

for eastern Massachusetts (US Census Bureau 2010). Table MAPC-56 in the 

Travel Survey provides estimates of the mean number of vehicle trips per person 

and per household for the Metropolitan Area Planning Council Domain, which is 

essentially identical to the domain of our study. Table MAPC-57 further 

disaggregates trip rates per household as a function of household size.  

We use estimates of the population and number of households at the census 

block level to estimate the mean household size in each census block. The 

number of daily trips per block is then calculated using the values from Table 

MAPC-57 for all grid cells where the mean population per household was 

greater than one or less than 11. For census blocks with a population density 

greater than 10 per household, we use the average rate for individuals of 4.1 trips 

per day from Table MAPC-56. We then convert the total number of trips per day 
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into vehicle trips per day using the average mode share of trips by private 

vehicle of 57.9% reported in Table MAPC-60 of the Travel Survey. Total vehicle 

trips per census block were then scaled to our 100m x 100m grid and aggregated 

to annual trips.  

To estimate vehicle starts emissions from the trips in each grid cell, we used 

emission factors derived from the same runs of the MOVES2014 model that were 

used to generate running emissions factors, as MOVES also calculates the 

emissions per start for each vehicle type. Emission factors are again partitioned 

by vehicle type and ambient meteorology, and we assume that each personal 

vehicle trip in the domain includes one vehicle cold start located at the residence 

of the traveler. Due to the lack of information on trip destinations, we are unable 

to calculate the location of cold starts that may occur at the destination as part of 

the return leg for each trip. Thus our estimates of starts emissions from passenger 

vehicles should be considered a lower bound. We assume a passenger vehicle 

distribution that is 62.9% passenger cars and 37.1% SUVs/pickup trucks/vans, 

using values from Table MAPC-47 on vehicle ownership by vehicle body type.  

For ambient meteorology we use the mean values for temperature and 

relative humidity calculated for the hours between 6AM and 9PM on each day 

for each NLDAS-2 grid cell, under the assumption that the majority of trips and 
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vehicle starts occur between these hours. Annual emissions of the pollutants of 

interest are then calculated by multiplying the relevant emissions factors by the 

number of trips in each grid cell per day and then multiplying by 366 days. 

Figure C1 in Appendix C shows the results from our model of emissions from 

cold starts.  

 

4.3 Results and Discussion 

4.3.1 Spatial Patterns of Emissions 

We estimate total annual emissions for the domain of 139.9 Gg CO, 0.314 Gg 

SO2, 71.6 Gg NOx, 2.83 Gg PM2.5, and 22.21 Tg CO2 from running vehicle exhaust. 

Emissions from passenger vehicle starts were: 72.9 Gg CO, 0.012 Gg SO2, 5.53 Gg 

NOx, 0.12 Gg PM2.5, and 0.65 Tg CO2. With running and starts emissions 

combined, the mean fluxes for the domain are 14.54 g-m-2 CO, 0.02 g-m-2 SO2, 5.27 

g-m-2 NOx, 0.20 g-m-2 PM2.5, and 1561.8 g-m-2 CO2. For most pollutants the share of 

total emissions that arise from cold starts is relatively low (2% for CO2, 4% for 

PM2.5, 7% for NOx, and 3% for SO2). However, CO emissions from cold starts 

comprise just over 52% of total CO emissions in the domain, despite not 

including cold start emissions from non-passenger vehicles. CO emissions are 

high during cold starts and the early running phases of exhaust because low 
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temperatures of the oxidative catalyst in the vehicle’s catalytic converter 

significantly reduce the catalyst’s ability to oxidize CO. Once running 

temperatures have increased, the catalytic converter then begins to operate in its 

ideal temperature window and the CO emission rate declines significantly 

(USEPA 2010b). The high relative shares of CO from cold starts is a function of 

the large number of trips by passenger cars in our domain, and the short average 

trip distance due to the dense nature of the Boston metropolitan area. 

We compared our model results for CO2 with the output from DARTE for the 

same domain and found strong agreement between the two models (Figure 4.2). 

This is an encouraging finding, as the emissions estimates in DARTE rely on a 

much coarser dataset of vehicle type distribution, as well as using state-average 

fuel economies that were not directly tuned to account for the impacts of vehicle 

speeds and congestion. The main differences in the spatial distribution we see 

when comparing our current model to DARTE is the differences in the intensity 

of emissions in urban and rural areas. DARTE emissions in the urban core are 

higher on average than our current model, while the opposite is true for rural 

emissions. This is likely due to the nature of the data sources that underlie 

DARTE emissions estimates. The ADT data from HPMS that forms the basis for 

DARTE emissions was disaggregated from the county level by functional class. 
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As a result, there is a ‘smearing’ of emissions across the all of the roads in the 

urban counties with large amounts of vehicle traffic. In our current model, we 

are more likely to be capturing the actual spatial variation within each county, 

and within each functional class of road, since every road segment except for the 

local roads that we imputed data for, has a unique value for ADT that was 

estimated from local traffic counts. As a result, our 100m resolution inventory of 

CO2 emissions more accurately reflects the true spatial variability of emissions at 

a road-segment scale. 

Figure 4.2. Comparison of on-road CO2 running emissions between DARTE and 

our INRIX-based model for the year 2012. The spatial resolution of DARTE (left 

panel) is 1km x 1km. The spatial resolution of the INRIX-based model is 100m x 

100m. The total estimates for annual CO2 emissions are very similar, suggesting 

that DARTE captures the overall intensity of on-road emissions well, despite not 

directly accounting for variations in vehicle speeds. 
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4.3.2 Local Influence of Vehicle Types 

We next examine the spatial variation in emissions by looking at four subsets 

of the broader domain that represent a range of land use and road network 

characteristics. We summarize emissions of each pollutant, partitioned by vehicle 

type, for a square kilometer area over Arlington town center, a largely residential 

area with some small commercial activities on a main street-type road, an area in 

the town of Chelsea that contains a mix of residential, industrial and commercial 

activities surrounding two relatively large and busy arterial roads, an area over 

Kenmore square and Fenway Park in the Back Bay neighborhood of Boston, 

which contains residential and commercial buildings, the Fenway park stadium, 

several major arterial roads and a stretch of Interstate 90 that runs below grade 

through the area. The final area we examine is a square kilometer in the town of 

Milton, just south of Boston, which is wholly residential, but contains a long 

stretch of Interstate 93, one of the most heavily traveled and congested roads in 

the entire domain. We selected these four areal subsets to represent a range of 

urban and suburban forms of the built environment, in order to explore how 

localized variations in the types and intensities of vehicle traffic can influence 

overall emissions of different pollutants.  
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 Emissions of different pollutants are influenced by the dominance of 

different vehicle types in a clearly observable way (Figure 4.3). NOx and PM2.5 

emissions are dominated by heavy truck emissions, as diesel-burning engines 

produce much higher levels of these pollutants in their exhaust. Conversely, CO 

and SO2 emissions are more strongly driven by passenger car and passenger 

truck activities, as can be seen in all four areas (Figure 4.3). The pie chart insets in 

each panel of Figure 4.3 show the overall share of emissions by vehicle type 

calculated for a reduced area of the full domain that is bounded as shown in the 

upper left panel of the figure. We observe a broadly similar distribution of source 

apportionment by vehicle type across this moderate subset of the domain as we 

observe in each of the four smaller subset areas, which suggests that on average 

it is the overall intensity of vehicle traffic of each type of vehicle that determines 

the amount of emissions in a given location.  



97 

 

 

Figure 4.3. Spatial variation in the emissions of CO2, PM2.5, CO, NOx, and SO2 for 

four sample locations in the Boston metro area, disaggregated by vehicle type. 

There is a strong influence of heavy trucks on the emissions of PM2,5 and NOx, 

while passenger cars dominate emissions of SO2 and CO. The pie chart insets 
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show the vehicle shares of emissions for each pollutant with respect to the total 

emissions aggregated over the reduced domain shown in the upper left panel. 

 

4.3.3 Impact of Congestion on Emissions 

We simulate two hypothetical policy scenarios to explore the influence of 

traffic congestion, and the associated reductions in vehicle speeds, on running 

emissions. In the first scenario we assume that all traffic is able to flow at 

freeflow speeds at all times, without any changes to the number of vehicles on 

the road. This scenario represents a hypothetical expansion of road capacities to 

accommodate the current demand, but ignores any feedbacks to the demand 

such as increases in traffic volumes induced by the reduction in traffic and travel 

time. The difference between emissions in this scenario and actual emissions can 

be interpreted as the ‘surplus’ of emissions that occur solely due to traffic 

congestion. Although the aggregate totals that we calculate for these surplus 

emissions seem large in absolute terms, as a relative share of total emissions 

across the domain they are quite small. For CO, SO2, NOx, and PM2.5 the percent 

reduction in emissions under freeflow conditions are 2.1%, 5.1%, 3.2%, and 5.5%, 

respectively. For CO2 the reduction is 4.8%. We also calculate the volume of 

additional fuel burned by using the CO2 emissions to estimate gasoline and 

diesel consumption using the same emissions factors as in Chapters 2 and 3 (EIA 
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2007). We estimate that traffic congestion was responsible for 80.97 million 

gallons of gasoline and 32.84 million gallons of diesel fuel wasted in 2012. When 

aggregated to just the Boston Urbanized Area, our estimate of total fuel wasted is 

61 million gallons, which is similar to the estimate of 70 million gallons from the 

2012 Urban Mobility Report (Shrank, Lomax, and Eiselle 2012). At the average 

2012 prices for gasoline and diesel in Massachusetts of $3.53 / gallon and $3.93 / 

gallon, respectively, our estimate of the total volume of wasted fuel due to traffic 

congestion is equivalent to an additional $414,900,000 spent on vehicle fuel by 

drivers in our study domain over the year. 

Although the total amounts of fuel wasted and surplus emissions emitted 

seem very large in absolute terms, the relative amounts are modest. In 2012 the 

state of Massachusetts consumed over 3.2 billion gallons of fuel for use in motor 

vehicles. The wasted fuel due to traffic congestion in the eastern half of the state 

that is our study area was equivalent to roughly 3.5% of that statewide fuel 

consumption. So although policies that target congestion reduction through 

speed improvements may be able to make modest contributions to reducing the 

overall emissions of greenhouse gases from the on-road sector, the ceiling on 

these reductions appears to be rather low. We do observe larger relative 

reductions in emissions under this scenario in two particular locations: The 



100 

 

 

Interstate 90 toll plaza and on-ramp / off-ramp complex in the Allston 

neighborhood of Boston and the Interstate 93 corridor south of downtown 

Boston. Overall, a reduction in congestion sufficient to achieve freeflow speeds at 

the Allston tolls corridor would reduce emissions of CO2 by 35%, of CO by 34%, 

of SO2 by 37%, of NOx by 35%  and of PM2.5 by 43% relative to current levels over 

the course of the whole year. Congestion reductions where Interstate 93 meets 

State Route 3A could produce as much as 56% reductions in NOx, 52% reductions 

in CO, and 65% reductions in PM2.5 emissions relative to 2012 levels on that 

corridor.  

However, to actually achieve the traffic conditions necessary for travel speeds 

to remain at or near freeflow conditions on these heavily used roads would be 

challenging, if not impossible, considering the strict limitations on capacity 

expansions that exist due to the densely developed urban environment that 

surrounds these busy roads. Adding or widening lanes in these locations would 

be an expensive and potentially controversial prospect, especially in light of an 

extensive body of research showing that capacity expansions are typically 

followed by increased traffic volumes (Small and Van Dender 2007; Hymel et al. 

2010). Consequently, generating a sustainable reduction in congestion in these 

locations will ultimately require reductions in the volume of vehicles, in 
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particular during peak morning and evening periods when the majority of traffic 

congestion occurs. 

 

4.3.4 Impact of Reduced Traffic Volumes on Emissions 

To evaluate the impacts on emissions of a scenario where vehicle travel is 

reduced sufficiently for all roads to experience freeflow conditions at all times, 

we adjusted the hourly traffic volumes on each road segment during the hours 

when volumes exceeded capacity in our original model. With the maximum 

volume set at the level of each road segment’s capacity, the total amount of 

annual vehicle kilometers travelled would be reduced by 3.7% across the 

domain. This reduction would result in an annual decrease in emissions of CO, 

SO2, NOx, and PM2.5 of 5.7%, 8.5%, 6.5%, and 8.6% respectively, and a reduction 

of 8.1% in CO2 emissions. 

For each road segment where we adjusted hourly volumes such that the 

travel speed did not drop below freeflow speed, we compare the percent change 

in annual vehicle kilometers travelled that resulted from the sum of all of those 

volume reductions with the percent change in annual emissions on that road 

segment (Figures 4.4-4.8, upper panels). We fit a linear model to each plot using 

Ordinary Least Squares, and report the estimated parameters as in inset in each 
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figure. On average, there is a 1.02 – 1.13 percent reduction in pollutant emission 

for every one percent reduction in VKT on a road segment. This result does not 

reflect the maximum possible elasticity of emissions to VKT reductions, as we 

designed this scenario to prioritize congestion mitigation when adjusting traffic 

volumes downwards on each road segment. For certain road segments, and for 

certain pollutants, the relative reductions in emissions could be much larger if 

the VKT reductions were designed to target these goals. For example, for the 

same domain-wide reduction in VKT, a focus on reducing VMT on roads with 

heavy truck traffic would result in considerably higher reductions in total PM2.5 

and NOx, as these emissions of these pollutants are dominated by truck sources. 

One drawback to targeted interventions to reduce VKT in certain areas is that 

spillover effects may occur if drivers simply adjust their routes to alternative 

routes, leaving the overall level of vehicle travel unchanged. However, deliberate 

re-routing, in particular for heavy trucks, can be beneficial if the vehicles are 

redirected to higher speed roads or away from densely populated 

neighborhoods. For PM2.5 emissions in particular, the distance between the 

sources and potential exposure is highly variable over relatively small distances 

(Zwack et al. 2011a; 2011b). Since our model resolves emissions at such fine 

spatial scales, the output from our base scenario can provide local public health 
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and transportation policy makers with the specific data needed to develop 

targeted mitigation policies, as well as the ability to simulate the potential 

outcomes of multiple policy options. 

With the output from the VKT-reduction scenario we also evaluated the 

cumulative reduction in emissions as a function of the cumulative reduction in 

VKT across the whole domain (Figures 4.4-4.8, lower panels). Of note is that at 

very low reductions in VKT, we actually observe an increase in the emissions of 

CO, as the emission rate of CO is sensitive to increases in vehicle speeds at higher 

speed profiles. For the set of roadways where only small reductions in VKT are 

needed to allow vehicles to travel at freeflow speeds, there is thus an initial 

increase in total CO, despite the concurrent reduction in volumes. As the 

reduction in volumes increases (with the assumption being that travel speed 

does not continue to increase beyond the freeflow speed), the decreased VKT 

eventually produces reductions in total CO emissions (Figure 4.4). 

For all other pollutants, initial reductions in VKT produce relatively large 

reductions in emissions, followed by steady decreases thereafter. For CO, 

cumulative emissions reductions do not become positive until VKT reductions 

exceed ~ 300 million VKT, which is less than 0.5% of total 2012 VKT for the 

domain. When the VKT decrease reaches 1 billion VKT (1.6% cumulative 
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reduction), total CO emissions have decreased by 2.1 Gg, a reduction of roughly 

1.5% of total CO for the domain. However, once total VKT has been reduced by 2 

billion VKT (3.2% cumulative reduction), CO reductions exceed 6 Gg, equivalent 

to a 4.3 reduction in total CO. 

 For NOx, reductions in total VKT of 1 and 2 billion result in decreases of 1.6 

Gg and 3.7 Gg, respectively. In relative terms, this means that reductions in VKT 

of 1.6% and 3.2% result in decreases of 2.2% and 5.2% in NOx emissions. For 

other pollutants, the effects are similar. For SO2 the same reductions in VKT 

result in decreases of 10 Mg and 21 Mg, respectively, equivalent to 3.2% and 

6.7%, for PM2.5 the same reductions in VKT result in decreases of 116 Mg and 205 

Mg, respectively, equivalent to 4.1% and 7.2%, and for CO2 the same reductions 

in VKT result in decreases of 678 Gg and 1,428 Gg, respectively, equivalent to 

3.1% and 6.4%. 

 For CO2, SO2, and PM2.5 our results show that the reductions in emissions 

that arise from reduced VKT are roughly double the VKT reductions on a 

relative basis. For CO and NOx the relative effect is lower, but is still greater than 

a one-to-one ratio. This can be largely explained by the design of the VKT 

reduction scenario, which focuses on reducing traffic congestion and improving 

vehicle speeds. With the initial exception of CO, which is more sensitive to high-
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speed travel, improved vehicle speeds combined with reduced vehicle volumes 

considerably reduces the rate of emissions for the remaining vehicles on the 

roads, and results in higher relative reductions for a given decrease in VKT than 

if the VKT reductions were assigned randomly.  
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Figure 4.4. Estimated reduction in CO emissions in response to VKT reductions 

on congested road segments. Upper panel shows percent reduction in annual 

emissions of CO for each road segment versus the percent reduction in the road 

segment’s annual VKT required to maintain freeflow travel speeds at all times. 

Lower panel shows cumulative reduction in total emissions over the entire 

domain relative to the cumulative reduction in annual VKT for the domain. 
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Figure 4.5. Estimated reduction in CO2 emissions in response to VKT reductions 

on congested road segments. Upper panel shows percent reduction in annual 

emissions of CO2 for each road segment versus the percent reduction in the road 

segment’s annual VKT required to maintain freeflow travel speeds at all times. 

Lower panel shows cumulative reduction in total emissions over the entire 

domain relative to the cumulative reduction in annual VKT for the domain. 
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Figure 4.6. Estimated reduction in NOx emissions in response to VKT reductions 

on congested road segments. Upper panel shows percent reduction in annual 

emissions of NOx for each road segment versus the percent reduction in the road 

segment’s annual VKT required to maintain freeflow travel speeds at all times. 

Lower panel shows cumulative reduction in total emissions over the entire 

domain relative to the cumulative reduction in annual VKT for the domain. 
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Figure 4.7. Estimated reduction in PM2.5 emissions in response to VKT reductions 

on congested road segments. Upper panel shows percent reduction in annual 

emissions of PM2.5 for each road segment versus the percent reduction in the road 

segment’s annual VKT required to maintain freeflow travel speeds at all times. 

Lower panel shows cumulative reduction in total emissions over the entire 

domain relative to the cumulative reduction in annual VKT for the domain. 
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Figure 4.8. Estimated reduction in SO2 emissions in response to VKT reductions 

on congested road segments. Upper panel shows percent reduction in annual 

emissions of SO2 for each road segment versus the percent reduction in the road 

segment’s annual VKT required to maintain freeflow travel speeds at all times. 

Lower panel shows cumulative reduction in total emissions over the entire 

domain relative to the cumulative reduction in annual VKT for the domain. 
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4.3.5 Impact of Future Climate Change on Emissions 

For our final alternative scenario we examined the impact of rising mean air 

temperature on vehicle running emissions across the domain. We use forecast 

monthly mean temperatures for eastern Massachusetts in the year 2050 to adjust 

the 2012 hourly temperatures as described in the methods section of this chapter. 

VKT and all other parameters were unchanged in this scenario.  

The changes to emissions of SO2, NOx, and CO2 from both running and starts 

was found to be very small (<1% for most grid cells in the domain). For CO and 

for PM2.5 we observed larger changes in specific locations. Overall, CO emissions 

from running vehicles increased by 2.4% across the domain, with local increases 

of >25% in many locations (Figure 4.9). For PM2.5 the overall change in emissions 

is negative but small under the 2050 conditions, decreasing by 0.6% for the whole 

domain, although there are several hotspots where emissions increase by 2.5 – 

5% or more (Figure 4.10). 

The MOVES model does not adjust emissions rates from combustion for 

running exhaust for temperatures above 75 F (USEPA 2011b). However, it does 

account for the additional fuel consumption required to run the vehicle’s air 

conditioning system, and automatically includes the additional emissions 
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associated with this when temperatures and relative humidity are high. CO 

emissions are the most sensitive to this ‘air-conditioning’ effect in the MOVES 

model, increasing by a factor of 2 when the vehicle is accelerating or cruising, 

and by 13% when the vehicle is idling. These considerable increases in the 

emissions rate for CO under ‘air-conditioning conditions’ likely account for the 

majority of the increases in CO emissions predicted by our model for 2050. 

For PM2.5, there is a strong negative correlation between emission rates and 

temperature. Running exhaust emissions of PM2.5 increase by a factor of 3.5 – 5 at 

20F relative to 70F (USEPA 2011b), and cold starts PM2.5 emissions are higher by 

a factor of 7 to 11 times at 20F relative to 70F. As forecast changes in mean 

monthly temperature under SERS A2 are broadly positive across all months and 

across our whole domain, we expect to see the observed declines in PM2.5 

emissions from both cold starts and running exhaust as the higher temperatures 

are less conducive to the production of particulate matter precursors.  
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Figure 4.9. Change in emissions of CO due to change in atmospheric 

temperature forecast under the SRES A2 climate change scenario for the year 

2050. On a relative scale, modest increases of 2.5 – 5% are predicted to occur 

broadly over the study area. Larger increases of 10 – 25 % or more are 

predicted to occur in a large number of localized areas, and broadly in the 

more northern parts of the domain. Small areas are predicted to experience 

modest decreases in CO emissions of ~1-2%. 
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Figure 4.10. Change in emissions of PM2.5 due to change in atmospheric 

temperature forecast under the SRES A2 climate change scenario for the year 

2050. Our model predicts modest declines of 0 - 2.5% across most of the study 

area. PM2.5 emissions tend to be higher in cold conditions, so the predicted 

warming trend for 2050 tends to have a positive impact on emissions from a 

public health perspective. However we do predict localized large increases of 

10 – 25 % or more for a number of areas in the domain, in particular the 

northeast, where future temperature increases may be more variable. 
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4.4 Conclusion 

In this study we utilize a unique collection of highly detailed datasets to 

produce a high-resolution inventory of vehicle tailpipe emissions for eastern 

Massachusetts. Our approach merges data on vehicle speeds and volumes with 

detailed model outputs from EPA MOVES and the Central Transportation 

Planning Staff’s Travel Demand Model to estimate emissions of five major 

pollutants at the level of individual roads for every hour of the year 2012. Our 

emissions estimates fully incorporate data on actual travel speeds to quantify the 

impact of traffic congestion on emissions, and to separate the influence of 

different vehicle types on overall emissions profiles at different locations 

throughout the study area. We integrate data on ambient atmospheric conditions 

to control for variations in temperature across time and space, and to evaluate 

the sensitivity of emission rates of certain pollutants to changes in local climate 

over annual and multi-decadal scales.  

Our results identify spatial hotspots of CO2 emissions, highlight the dominant 

influence of heavy and medium diesel-powered trucks in driving NOx and PM2.5 

emissions, and quantify the elasticity of emissions to reductions in VKT across 

the domain. We find that the impact of congestion on emissions is relatively 

small when considered in the context of the very large amount of emissions that 
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are occurring in the domain even in the absence of congestion. It is clear that the 

sheer volume of vehicle traffic that travels the roads of eastern Massachusetts on 

a daily basis presents the major scaling driver of total emissions. The magnitude 

of total emissions is so large, that while traffic congestion can indeed generate 

localized, high-intensity emissions events, the potential contribution of any 

congestion-focused policy to reducing regional air pollution emissions is 

extremely limited. However, we do find that modest reductions in emissions can 

be achieved when vehicle volumes are reduced on roads that currently suffer 

heavy congestion, and that emission reductions of 5-8% can be achieved with 

traffic reductions of only 3.5%. While the regional reductions of 5-8% that we 

predict are relatively modest on an annual scale, the potential for targeted 

reductions that focus on key spatial and temporal hotspots or on heavy-duty 

vehicle corridors have the potential to produce much larger improvements in 

emissions and air quality, as we demonstrate in two areas near the core of the 

Boston metro area. 

Finally, in this study we also predict changes in future emissions in 2050 that 

would occur due to increasing regional temperatures from global climate change. 

We show that increases in vehicle air-conditioning usage due to rising summer 

temperatures is expected to increased fuel consumption as well as CO emissions 
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across the whole domain. However, we also find that warming winter 

temperatures are likely to result in small reductions in emissions of PM2.5 from 

both cold starts and running exhaust, although we observe numerous localized 

exceptions to this trend. Future research will continue to explore the spatial and 

temporal variability in emissions, with a focus on identifying the times and 

places where human exposure to air pollutant emissions is high due to the 

colocation of dense residential or commercial areas with high-intensity road 

segments, and the sensitivity of emissions intensity to variations in local 

meteorology on multiple time scales.  

Additional work is also ongoing to validate these new emissions inventories 

using direct- and remotely-sensed measurements of ambient concentrations of 

these pollutants. The influence of ambient meteorology on not only emission 

rates, but also on the production of additional pollutants due to secondary 

reactions in the atmosphere continues to be a focus of research, as future global 

climate change is expected to produce considerable increases in local 

temperatures for most parts of the world over this coming century. The impacts 

of rising temperatures on the secondary chemistry associated with production of 

low-level ozone and other respiratory irritants may add another harmful 
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consequence to the many others already predicted to arise due to global climate 

change (Steiner et al. 2006; Kinney 2008; Jacob and Winner 2009). 

Additional validation is currently underway in conjunction with the recently 

launched Orbital Carbon Observatory (OCO-2), the first space-based global-

coverage satellite dedicated to direct measurements of atmospheric CO2 

concentrations. The high-resolution emissions inventories produced in this 

dissertation will play a key role in validating the directly measured estimates of 

CO2 reported by OCO-2 and other ground-based sensors. By combining new 

sources of data on directly measured concentrations with local-scale emissions 

inventories, it will be possible to quantify temporal and spatial variations in 

emissions more accurately than ever before. With future improvements to the 

spatial and temporal resolution of DARTE and the other inventories described 

above, we can continue to improve on emissions benchmarking that supports the 

monitoring and mitigation of emissions across all scales, from small metropolitan 

areas, to megacities such as New York and Los Angeles.  
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CHAPTER 5 – CONCLUSION 

 

This dissertation reports on the results of several studies designed to improve 

the understanding of greenhouse gas emissions and other air pollutants from on-

road vehicle activity in the United States. The motivating goal of this research 

was to improve on the existing emissions inventory products that underpin 

much of the current research into the origins and impacts of fossil fuel CO2 

emissions. The development and implementation of the new, highly detailed 

inventories published herein has supported the analytical frameworks required 

to explore the relationships between emissions and the multitude of spatially and 

temporally correlated variables that contribute to the patterns and trends in fossil 

fuel CO2 emissions that we observe. The quantification of these relationships is 

vital to support policies for monitoring, reporting and verifying future emissions 

reductions under all types of policy frameworks – from the municipal climate 

action plans of Boston and New York, to state and regional legislation such as 

California’s AB-32, to the ongoing and future negotiations over the U.S. Climate 

Action Plan and international negotiations for a comprehensive global treaty.  

The development of new data assimilation techniques and the production 

and public sharing of the novel, high-resolution, spatially explicit data products 
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that made it possible to conduct the analyses in these studies are also a major 

contribution to the emissions research and carbon-cycle modeling communities. 

Current and future research will build on the methods and analyses presented 

above, and will aim to continue to improve our understanding of the coupled 

human and natural systems that comprise our world, to support development of 

sustainable and environmentally sensitive practices to address the impacts of 

global climate change, and to improve access to scientific data products and 

analysis for the academic community, the government and non-governmental 

sectors and the general public at large.  

With the recent launch of the Orbital Carbon Observatory (OCO-2), the first 

space-based global-coverage satellite dedicated to measuring concentrations of 

atmospheric CO2, the types of bottom-up, high-resolution emissions inventories 

produced in dissertation are now taking on a much more prominent role in the 

monitoring, reporting, and validation of emissions of greenhouse gases at larger 

scales. The combination of directly measured concentrations with source-based 

emissions inventories will allow us to understand the temporal and spatial 

variations in emissions more accurately than ever before. High resolution 

emissions inventories will continue to play a key role in the attribution of 

observed atmospheric CO2 to the wide variety of emissions sources. An accurate 
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and precise understanding of source attribution is a necessity for both the 

development of sector-specific emissions mitigation policies, and for monitoring 

the efficacy of those policies over time. An expansion of the work described in 

this dissertation to other types of emissions sources, and to other nations and 

regions across the globe will continue to be a critical avenue of research over the 

next decade, if we are to successfully inform and support the national and 

international policy frameworks necessary to deal with the impending impacts of 

global climate change. 
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APPENDIX A 

 

All figures and spatial data were projected using the NAD1983 State Plane 

Massachusetts Mainland FIPS 2001 Lambert Conformal Conic Projection. 

 

1. Detailed Methodology of HPMS-based on-road CO2 emissions model 

 

Calculate VMT by functional class and county 

The Highway Performance Management System (HPMS) is a national database 

managed by the Federal Highway Administration (FHWA) that contains data on 

annual average daily traffic volumes (AADT) and centerline mileage for all 

Federal-Aid roads and most other major and minor roads. We obtained annual 

VMT for each road section in the HPMS by multiplying the average daily traffic 

volume by the length of the road section in miles and then multiplied by 365 

days. The FHWA requires that the AADT values submitted by each state be 

adjusted prior to submission to take into account both weekday/weekend and 

seasonal variations in traffic volumes on the road section. Thus the AADT 

reported in the HPMS reflects an average daily traffic volume for any day in the 

calendar year, independent of day of the week or month of the year. While this 
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limits the use of the data for analyses at shorter time scales, it allows for a 

straightforward estimation of annual statistics for each road section without 

having to account for weekly and monthly variations.  

The road sections in the HPMS are not geo-coded, and consequently we were 

not able to assign our annual VMT estimates directly to a map of the road 

network. However, functional class and county were available for each road 

section, with each functional class identified as urban or rural depending on if 

the road section passes through a Census Bureau Urbanized Area or Urban 

Cluster. Therefore we chose to aggregate our roadway-scale VMT to the county 

scale, stratified by the 12 HPMS functional classes (FHWA 2005). Since our 

roadway-scale HPMS data does not include all of the VMT that occurred on local 

roads it was necessary to use a downscaling approach to account for emissions 

from these roads. We allocated state-level data from FHWA on VMT for Rural 

Minor Collectors and Rural and Urban Local roads to each county using the 

county’s fraction of total state VMT as calculated from the HPMS dataset for each 

year (FHWA 1980-2011; FHWA 2009).  

 

Disaggregate VMT by Vehicle Type 
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As on-road CO2 emissions are a product of fuel combustion, and the rate of 

emissions is a function of fuel type (EIA 2007), our intermediate goal was to 

estimate diesel and motor gasoline fuel consumption for each functional class 

and county. First we partitioned annual vehicle miles travelled amongst five 

different vehicle types: passenger cars, passenger trucks (which includes SUVs, 

vans and pickup trucks), buses, single-unit trucks and combination trucks. State-

level data on the distribution of VMT among different vehicle types is available 

for the years 1993 through 1999 and for 2009 and 2010 (FHWA 1980-2011). A 

comparable national average distribution for the years 1980 to present exists as 

well. However, when we compared the state and national distributions for 1993 

through 1999 we observed that Massachusetts had significantly lower fractions 

of passenger truck and heavy truck VMT across all road types relative to the 

national average (FHWA 1980-2011). Since this difference would strongly affect 

our fuel estimates, we chose to use the state-level data for the available years and 

to estimate values for the years prior to 1993 and after 1999. For our model years 

1999 through 2008 we interpolated linearly between the state-level distributions 

for 1999 and 2009; for years prior to 1993, we applied the 1993 distribution for all 

years.  
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Estimate fuel consumption by vehicle type, functional class, and county. 

We used the national average fuel economy for each vehicle type for each year 

(FHWA 1980-2011) to estimate fuel consumption for each roadway functional 

class, county and year. Fuel consumption was calculated as the quotient of 

distance travelled and average fuel economy. We assumed all fuel consumption 

by passenger cars and passenger trucks was motor gasoline, all fuel consumption 

by buses and combination trucks was diesel fuel, and that fuel consumption for 

single-unit trucks was 23% motor gasoline and 77% diesel fuel. The fuel shares 

for single-unit trucks were taken as an average value across the study period 

using reported fuel consumption by medium and heavy vehicles obtained from 

the 2010 Transportation Energy Data Book (USDOE 2011). 

 

Calculate CO2 emissions by functional class and county 

We used emissions factors to estimate the CO2 emissions produced by the fuel 

consumption for each vehicle type. Fuel consumption was converted to CO2 

emissions using the emission factors of 8.91 kg CO2 per gallon gasoline and 10.15 

kg CO2 per gallon diesel fuel (EIA 2007). We then aggregated CO2 emissions 

from both fuels to obtain total emissions for each functional class of road at the 

county scale.  
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Assign emissions to road network 

To assign emissions to a map of the road network we used the 2009 GIS Road 

Inventory (Massachusetts Department of Transportation 2009) which provides 

the length and functional class of almost every road section in the state. We 

recognize that the road network has changed in extent since 1980, but FHWA 

records for Massachusetts indicate that total centerline mileage increased only 

6.9%, from 33,777 in 1980 to 36,105 in 2008 (FHWA 1980-2011). We decided to use 

the Road Inventory for our analysis, as it is the only geo-referenced dataset that 

covers all Massachusetts roads. However, we note that the use of this dataset 

might introduce potential errors due to the allocation of historical emissions 

across the contemporary road network.  

To assign CO2 emissions to each road we calculated the total centerline mileage 

of each functional class of road in each county, and then divided our relevant 

CO2 emissions by this mileage to generate average per-mile CO2 emissions. These 

average per-mile emissions were then assigned by functional class and county to 

the road network for each year in the study period. 

 

Aggregate road-level emissions to other spatial scales 
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For comparability with other CO2 emissions inventories, we aggregated our 

roadway-scale emissions to multiple scales: a 1km x 1km grid, a 0.1 x 0.1 degree 

grid, and summed to the level of local towns. The 1km grid cells provided a 

high-resolution display of the emissions data in a gridded format.  The 0.1 degree 

grid aggregation provided for a direct comparison with the EDGAR and Vulcan 

inventory products. The town level data was used in regression analysis of the 

spatial and temporal correlations between emissions and population density, as 

population data for the full time series was only available at the town scale. All 

figures and spatial data were projected in ESRI ArcGIS 10.0, using the NAD1983 

State Plane Massachusetts Mainland FIPS 2001 Lambert Conformal Conic 

Projection. 

 

2. Cell-by-cell comparison of HPMS and Vulcan emissions for 2002 
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Figure A1.  Percent differences between HPMS model CO2 estimates and Vulcan 

Product estimates for the year 2002, at 0.1 degree grid scale. Values calculated as: 

(HPMS – Vulcan) / HPMS *100; positive values indicate grid cells where HPMS 

estimates exceed Vulcan estimates. White grid cells indicate cells where Vulcan 

reports zero emissions. This is a result of the re-gridding process used by Vulcan 

to transform the original 10km2 gridded results to the 0.1 degree grid (Gurney et 

al. 2010). Note that the HPMS model produces higher emissions estimates than 

Vulcan in urban areas, whereas the opposite is true in more rural or less 

populated areas. 
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Figure A2.  Absolute difference in estimates of tons CO2 per square kilometer 

between HPMS and Vulcan. Positive values indicate cells where our HPMS 

model predicts higher CO2 emissions than the Vulcan Product. The spatial 

distribution of raw difference between the two models is similar to that of the 

percent difference, with HPMS producing higher estimates in urban areas 

relative to Vulcan (north central, north eastern and south eastern areas), and 

Vulcan producing higher emissions estimates in rural areas (western regions and 

parts of south central and south eastern areas). 

 

Uncertainty Estimates 

 The uncertainty associated with annual average daily traffic (AADT) 

values reported in HPMS is characterized by the confidence intervals and 

precision levels reported in Chapter 6 of the HPMS Field Manual (FHWA 2005). 

These confidence intervals vary by functional class, and take the form of a 
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combined confidence interval and precision level in the form of A-B, where is A 

is the probability that the value falls within B percent of the true value. For 

example a reported uncertainty of 90-10 would mean that 90 percent of the time 

the reported value will be within 10% of the true value. 

 However, as each functional class of road has a different confidence 

interval and precision level associated with its AADT estimates, these cannot be 

directly combined into an overall estimate of the uncertainty in AADT for the 

whole HPMS data set. To standardize this uncertainty, Mendoza et al. (2013) 

converted each HPMS confidence interval / precision level into one-sigma 

percent uncertainties as quoted below: 

“…the stated confidence interval and precision level were combined into a single estimate 

of uncertainty as follows: 

Ux = Vx / Sx  

Where Ux is the uncertainty percent value associated with road type; Vx is the percent 

variation from the true value for road type (10 for 90-10); and Sx is the number of 

standard deviations within a normal distribution that is within variation of the true 

value for road type (“90” for 90-10).”  

Source: Mendoza et al. 2013 
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Using this method Mendoza et al. estimate one-sigma percent uncertainties for 

Rural Interstates and Rural Principal Arterials of ±3.04%, for Rural Minor 

Arterials of ±6.08%, and for all other functional classes of road of ±7.8%. These 

are one standard deviation percent uncertainties, which represent roughly a 

68.3% confidence interval. To estimate a broader confidence interval we also 

calculated a two-sigma uncertainty, equivalent to a 95.4% confidence interval. To 

do this, we doubled the one-sigma percent uncertainties reported in Mendoza et 

al. 2013. We used both the one-sigma and two-sigma percent differences to 

calculate upper and lower estimates of AADT for each road in our dataset. We 

then ran our model using these values to produce upper and lower estimates of 

CO2 emissions for each road section. The one-sigma shifted AADT produced 

emissions estimates that ranged from ±7.4% to ±7.6% relative to our original CO2 

estimates. The two-sigma shifted AADT produced emissions estimates that 

ranged from ±14.7% to ±15.2% relative to our original estimates. Both of these 

ranges correspond well with the empirical estimates of AADT uncertainty by 

Ritchie (1986) and Gadda et al. (2007), and suggest that the FHWA 

confidence/precision levels provide a reasonable basis for assessing the 

uncertainty of CO2 emission estimates generated from the AADT values reported 
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by HPMS. We report the upper and lower bound estimates of CO2 emissions 

from our HPMS model in Figure A3.  

Figure 

A3. Plot of CO2 estimates from HPMS, FHWA, EDGAR and Vulcan. Solid gray 

line shows upper and lower estimates from HPMS model run with two-sigma 

percent changes in AADT. Dashed gray line shows upper and lower estimates 

from one-sigma percent change in AADT. 
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Results of panel regression.  

Number of obs. 10150   
F(389,  9760)  1513.35 R-squared    0.933 
Prob. > F       0.0000 Root MSE       104.29 
    
Variable Coefficient Standard Error t 
pop / km2 -26.684 2.971 -8.980 
pop / km2 > 10 13.842 3.296 4.200 
pop / km2 > 50 10.577 1.531 6.910 
pop / km2 > 100 3.580 0.463 7.740 
pop / km2 > 200 0.036 0.197 0.180 
pop / km2 > 500 -0.418 0.100 -4.170 
pop / km2 > 1000 -0.713 0.095 -7.530 
pop / km2 > 2000 -0.346 0.082 -4.200 
pop / km2 > 3000 0.130 0.060 2.170 
pop / km2 > 4000 -0.243 0.073 -3.340 
pop / km2 > 5000 0.140 0.073 1.900 
pop / km2 > 6000 0.120 0.031 3.880 
constant 775.924 85.122 9.120 

 

Table A1. Results of panel regression analysis. Dependent variable is tons of CO2 

emissions per mile of road. Town and year fixed effects not shown.  
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APPENDIX B 

 

DARTE is available for download at http://dx.doi.org/10.3334/ORNLDAAC/1285 

or at dx.doi.org/10.7910/DVN/28999 

 

Data Sources and Methodology 

The Highway Performance Monitoring System (HPMS) is a traffic monitoring 

program overseen by the Federal Highway Administration. All U.S. states and 

the District of Columbia are required to submit annual estimates for a wide 

variety of traffic and highway condition data to HPMS in compliance with 

federal statute. This data has been archived in a digital tabular format since 1980, 

and was made available to us upon request. The data format is described in 

detail in the HPMS Field Manual (FHWA 2005), which has been published and 

revised on a roughly 5 year cycle since 1977. The HPMS underwent significant 

revisions in 2010, with the most notable change being the requirement that states 

submit data in a GIS shapefile format. The HPMS dataset used to generate the 

1980 – 2009 emissions estimates in DARTE is based on the old format of HPMS 

data, which is well described in the archived versions of the HPMS Field Manual 

(FHWA 2005). The raw HPMS data is unavailable for year 2010 due to issues 

http://dx.doi.org/10.3334/ORNLDAAC/1285
file:///C:/Users/cgately/Dropbox/Dissertation/dx.doi.org/10.7910/DVN/28999
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associated with the transition to the GIS format. We imputed this data using the 

HPMS data from neighboring years as described below. For 2011 and 2012 we 

obtained the new GIS shapefile formatted HPMS data from FHWA and extracted 

the feature data into a tabular format compatible with the 1980 – 2009 data series. 

Data from all years was then merged into a single database. 

The core data features of the HPMS are individual road segments that are 

defined by the state transportation departments. For each road segment HPMS 

reports the center-line length in miles, annual average daily traffic (AADT), 

functional class, urban/rural context, and county. AADT is a measure of the 

number of vehicles that traverse the road segment on an average day, adjusted 

for seasonal and day-of-week variation. Measurements of AADT are obtained 

from roads with permanent traffic recorders (PTRs) and from repeated short-

term (48-72 hour) traffic counts performed throughout the year on other roads in 

the network. Data from PTRs is used to develop monthly, weekly, and day-of-

week scaling factors that are then applied to short-term count data to obtain 

AADT values for neighboring roads that lack PTRs.  

We calculated annual vehicle miles travelled (VMT) on each road segment in 

HPMS by multiplying AADT by the length of the road segment and then by 365 

days. Since the individual road segments in HPMS were not explicitly geocoded 
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until 2011, we aggregated road-segment VMT to the lowest common level of 

geography. There are 12 roadway functional classes included in HPMS (Table 

B1), six for urban roads and six for rural roads. Urban roads are defined as any 

road segment that falls partially or entirely within the boundaries of a Census 

Urbanized Area or Urban Cluster. We aggregated the HPMS data to counties by 

using the reported functional classes and a geocoded road network for the U.S. 

that is also partitioned by these functional classes. 

 

 

Table B1. Highway Performance Monitoring System – Table of Roadway 

Functional Classification Definitions (FHWA 2005). 

 

Although road segments in the 2011 and 2012 HPMS are individually 

geocoded, we chose to preserve the consistency and continuity of our emissions 

time series by performing the same aggregation by functional class and county 

and then merging all years of data into a uniformly formatted database. With the 

transition of HPMS to the GIS submission model, a subset of states submitted 
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their 2009 HPMS data in the new GIS format. We performed a similar 

aggregation by functional class and county to this VMT, as was done with the 

2011 and 2012 data. For 2010, there was no archived data from HPMS available; 

we linearly interpolate VMT between the 2009 and 2011 values of the HPMS raw 

data for each combination of county and urban/rural functional class. 

The HPMS database does not include roadway-level data for many minor 

and local roads, as it was originally conceived as a highway-focused database. 

However, the archived data contains ‘Summary Files’ wherein states report VMT 

for rural and urban minor collectors, as well as urban local roads. State-level 

VMT for rural local roads is reported separately in Highway Statistics Table VM-

2 (FHWA 1980-2012). We integrate this state-level local road VMT data into our 

county-level database by allocating state totals by functional class to each county 

as shown in equations A.1 and A.2:  

 

𝑉𝑀𝑇𝑐,𝑓𝑢𝑟𝑏𝑎𝑛 𝑚𝑖𝑛𝑜𝑟/𝑙𝑜𝑐𝑎𝑙
= 𝑉𝑀𝑇𝑠,𝑓𝑢𝑟𝑏𝑎𝑛 𝑚𝑖𝑛𝑜𝑟/𝑙𝑜𝑐𝑎𝑙

𝑠𝑢𝑚𝑚𝑎𝑟𝑦
×  

∑ 𝑉𝑀𝑇𝑐,𝑓
ℎ𝑝𝑚𝑠

𝑓𝑢𝑟𝑏𝑎𝑛

∑ 𝑉𝑀𝑇𝑠,𝑓
ℎ𝑝𝑚𝑠

𝑓𝑢𝑟𝑏𝑎𝑛

                 (A.1) 

 

𝑉𝑀𝑇𝑐,𝑓𝑟𝑢𝑟𝑎𝑙 𝑚𝑖𝑛𝑜𝑟/𝑙𝑜𝑐𝑎𝑙
= 𝑉𝑀𝑇𝑠,𝑓𝑟𝑢𝑟𝑎𝑙 𝑚𝑖𝑛𝑜𝑟/𝑙𝑜𝑐𝑎𝑙

𝑠𝑢𝑚𝑚𝑎𝑟𝑦
×  

∑ 𝑉𝑀𝑇𝑐,𝑓
ℎ𝑝𝑚𝑠

𝑓𝑟𝑢𝑟𝑎𝑙

∑ 𝑉𝑀𝑇
𝑠,𝑓
ℎ𝑝𝑚𝑠

𝑓𝑟𝑢𝑟𝑎𝑙

                 (A.2) 
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Where: 

 𝑉𝑀𝑇𝑠,𝑓𝑢𝑟𝑏𝑎𝑛 𝑚𝑖𝑛𝑜𝑟/𝑙𝑜𝑐𝑎𝑙

𝑠𝑢𝑚𝑚𝑎𝑟𝑦
 is the total VMT for urban minor collectors or 

local roads in state S reported in the HPMS Summary Files 

 ∑ 𝑉𝑀𝑇𝑐,𝑓
ℎ𝑝𝑚𝑠

𝑓𝑢𝑟𝑏𝑎𝑛
 is the sum of all urban road VMT reported to 

HPMS for county C 

 ∑ 𝑉𝑀𝑇𝑠,𝑓
ℎ𝑝𝑚𝑠

𝑓𝑢𝑟𝑏𝑎𝑛
 is the sum of all urban road VMT reported to 

HPMS for state S that contains county C 

 𝑉𝑀𝑇𝑠,𝑓𝑟𝑢𝑟𝑎𝑙 𝑚𝑖𝑛𝑜𝑟/𝑙𝑜𝑐𝑎𝑙

𝑠𝑢𝑚𝑚𝑎𝑟𝑦
 is the total VMT for rural minor collectors or 

local roads in state S reported in the HPMS Summary Files or 

Highway Statistics Series Table VM-2, respectively 

 ∑ 𝑉𝑀𝑇𝑐,𝑓
ℎ𝑝𝑚𝑠

𝑓𝑟𝑢𝑟𝑎𝑙
 is the sum of all rural road VMT reported to HPMS 

for county C 

 ∑ 𝑉𝑀𝑇𝑠,𝑓
ℎ𝑝𝑚𝑠

𝑓𝑟𝑢𝑟𝑎𝑙
 is the sum of all rural road VMT reported to HPMS 

for state S that contains county C 

 

The resulting database contains a complete VMT time series for every functional 

class of road present in each county for the years 1980 – 2012. 
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Data Quality Assurance & Control 

We inspected the complete time series of VMT by county and functional class 

to identify potential outliers or structural breaks in the dataset. We developed a 

filtering algorithm that flagged any observation in an individual 

county/functional class time series if the magnitude of the year-on-year 

difference between an observation and adjacent years was greater than two 

standard deviations from the mean year-on-year difference of that time series. 

For these single points that deviated significantly from the trend of the series, we 

removed the value and replaced it with an imputed value obtained by fitting a 

lowess curve to the full time series minus the removed value.  

In some cases, we observed apparent structural breaks in a county/functional 

class time series when a county or state reclassified roads to a different functional 

class, thereby shifting a significant amount of VMT to that new class. This 

occurred most often in the years following a Decennial Census, when the 

boundaries of Urbanized Areas were revised and roads that were previously 

classified as rural were shifted to the urban equivalent of their previous 

functional class. In those cases, there was no observed break in the state’s time 

series for total VMT, and our algorithm did not generate a flag. However, visual 

inspection of the data noted the presence of a small number of genuine structural 
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breaks that could not be explained by road reclassification. These cases tended to 

be similar in style to the single outlier observations described above, but instead 

of a single errant observation we observed small clusters of 2-4 observations that 

were bookended by large, oppositely signed deviations from the main trend of 

the time series. The filtering algorithm identified these in the same manner as the 

single outliers, with the similar condition that no concurrent and complementary 

deviations were present on any other road classes in that county. These 

observations were similarly dropped and imputed using values from a lowess fit 

to the series minus the outlying cluster. Of the 761,759 observations in the 

dataset, roughly 10% were flagged and replaced by our filtering procedure. 

 

Partitioning VMT by vehicle type 

For each year, county, and functional class, we partitioned annual VMT from 

HPMS into the five vehicle types used by the Highway Statistics Series Table 

VM-4 (FHWA 1980-2012): Passenger cars, passenger trucks (SUV, pickups, mini-

vans), buses, single-unit trucks, and combination trucks. Motorcycle VMT was 

included with passenger cars. The values in Table VM-4 were estimated by state 

transportation departments based on vehicle classification studies, transit agency 

data, the number of registered vehicles of each type in the state, and data on 
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interstate freight travel. These vehicle type estimates can be used to calculate the 

total volume of fuel consumed by each vehicle class by dividing VMT by vehicle 

fuel economy. However, using the reported vehicle shares and the average fuel 

economies for each vehicle type (FHWA 1980-2012) produced gasoline and diesel 

consumption totals that did not match the values reported in Highway Statistics 

Table MF-21 (FHWA 1980-2012) for most states. As Table MF-21 is based on state 

tax revenue from fuel sales, we considered it to be the most reliable estimate of 

fuel consumption at the state level. To correct for this mismatch, we developed a 

calibration routine to make small adjustments to the reported vehicle shares and 

fuel economies for each state, such that the resulting calculations of gasoline and 

diesel consumption for each state were within ± 5% of the values reported in 

Table MF-21. This routine was developed and performed using the CONOPT 

optimization routine in the software package GAMS. 

 

Vehicle shares calibration routine 

The calibration routine is initialized using the reported values for vehicle 

shares taken from the Highway Statistics Series Table VM-4. For years prior to 

1993, initial values for vehicle shares of VMT are assigned the values reported in 

the 1993 Table VM-4, the first year that this table was published. Attempts were 
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made to initialize the model using national average vehicle shares reported in 

Highway Statistics Series Table VM-1, which are available for 1980-1993, but 

model convergence and calculations of fuel consumption was found to be 

extremely poor. Our review of state-level vehicle shares in Table VM-4 showed 

that there is significant variation about the national mean for vehicle shares, and 

therefore the national average is not a sufficiently precise representation of local 

vehicle fleet VMT distributions. We used the 1993 Table VM-4 values for each 

state for the years prior to 1993. For the years 1993-1997, we used vehicle shares 

reported in each year's Table VM-4. For the years 1998-2008, publication of Table 

VM-4 was temporarily suspended. Publication was then resumed in the year 

2009. For each state and functional class, we linearly interpolated vehicles shares 

between the 1997 and the 2009 and used those values to initialize the model for 

the intervening years. For years after 2009 we use the published VM-4 shares. 

National average fuel economies for each vehicle type were obtained from 

Highway Statistics Series Table VM-1 (FHWA 1980-2012). For passenger cars and 

passenger trucks we assumed all fuel consumption is motor gasoline. For buses 

and combination trucks we assumed all fuel consumption is diesel fuel. Single-

unit truck VMT was split into diesel and gasoline shares using data from the 

Vehicle Inventory and Use Survey (VIUS) conducted in the years 1982, 1987, 
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1992, 1997 and 2002 (U.S. Census Bureau 1982-2002). For the years prior to 1982, 

the 1982 share was used. For years between 1982 and 2002, we interpolated the 

shares linearly between each VIUS. Since VIUS was discontinued in 2002, for 

years after 2002 we used the value from the 2002 VIUS. 

Optimization of vehicle shares and fuel economies was performed annually, 

starting with 1980. The initial values for each year were provided as described 

above. The calibration routine used this initial data to calculate gasoline and 

diesel consumption for each vehicle type in each functional class for each state. 

Gas and diesel consumption was then summed to the state level for each year. 

For each year the model minimized the sums of squared deviations between 

initial and optimized values for vehicle fuel economies, gasoline and diesel 

consumption, and single-unit truck gas/diesel share, subject to the following 

constraints: 

 

1. Final calculated state totals of gas and diesel consumption must be within 

5% of state totals published in Highway Statistics Series Table MF-21. 

2. Fuel economy for each vehicle type must be within 3 miles per gallon of 

national average for that vehicle type. 
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3. Year-on-year changes to the share of VMT for any given vehicle type 

could not be more or less than 10% of previous year's share for that 

vehicle type. 

4. Total VMT by functional class in each state must match exactly the 

reported values from Highway Statistics Series Table VM-2. 

 

Fuel economies, vehicle shares, and single-unit truck gas/diesel split for each 

functional class of road in each state were adjusted from initial values by the 

routine, subject to the above constraints. State totals of VMT by functional class 

were not altered. This routine’s output included calibrated values for the vehicle 

shares of VMT for each functional class and state, the fuel economies for each 

vehicle type by functional class and state, and the single-unit truck gas/diesel 

split by state. We then applied these values to our full HPMS dataset of VMT at 

the county/functional class level.  

The HPMS dataset partitions VMT across 12 functional classes of road, but 

vehicle shares in Table VM-4 were reported only for a more aggregated set of 5 

functional classes. The output of the calibration routine was similarly partitioned 

by these 5 functional classes, and we used a crosswalk table (Table B2) to assign 

the calibrated vehicle shares and fuel economies to all county/functional class 
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pairs in the HPMS database. All counties within a state were assigned the same 

state-level vehicle shares and fuel economies by functional class for a given year. 

 

 

Table B2. Crosswalk table between functional classifications used for roads in 

Highway Statistics Series Tables VM-1 and VM-4 and the functional 

classifications system used in the Highway Performance Monitoring System. 

 

VMT for each county / functional class was partitioned across the five vehicle 

types, and motor gasoline and diesel fuel consumption was calculated using the 

fuel economies for each vehicle type. Single-unit truck VMT was further 

partitioned into gasoline and diesel shares, with fuel consumption calculated 

separately. The same fuel economy was used for both gasoline and diesel single-

unit trucks in a given state and functional class of road. Total gasoline and diesel 

consumption for each county and functional class was converted to emissions of 

Code Description Code Description

1  Rural Interstates and Freeways 1 Rural Principal Arterial - Interstate

2  Rural Principal Arterials 2 Rural Principal Arterial - Other

3  Rural Other Arterials 6 Rural Minor Arterial

3  Rural Other Arterials 7 Rural Major Collector

3  Rural Other Arterials 8 Rural Minor Collector

3  Rural Other Arterials 9 Rural Local Road

4  Urban Interstates and Freeways 11 Urban Principal Arterial - Interstate

4  Urban Interstates and Freeways 12 Urban Arterial - Other Freeways & Expressways

5  Urban Other Arterials 14 Urban Principal Arterial - Other

5  Urban Other Arterials 16 Urban Minor Arterial

5  Urban Other Arterials 17 Urban Collector

5  Urban Other Arterials 19 Urban Local Road

Highway Statistics Series Highway Performance Monitoring System
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CO2 using emissions factors of 8.91 kg CO2 gallon-1 gasoline and 10.15 kg CO2 

gallon-1 diesel (EIA 2007). Emissions from gasoline and diesel consumption were 

summed by county and functional class for assignment to the GIS road network. 

We used 2012 Census TIGER/Line road shapefiles for all states in the 

coterminous U.S. The TIGER road network classifies roads using only 3 

functional classes, and does not distinguish between urban and rural roads. We 

therefore intersected the TIGER road shapefile with a polygon shapefile of the 

Census 2000 Urbanized Areas and Urban Clusters to add an urban/rural 

classification to each TIGER road segment. Next we aggregated our HPMS-based 

emissions to the 3 urban and 3 rural functional classes of the TIGER road 

network as shown in Table B3. 

 

 

Table B3. Crosswalk table between functional classification systems of 

Census TIGER/Line road network and HPMS.  

 

MFCC Code Description Code Description

S1100 Primary Road 1 Rural Principal Arterial - Interstate

S1100 Primary Road 2 Rural Principal Arterial - Other

S1200 Secondary Road 6 Rural Minor Arterial

S1200 Secondary Road 7 Rural Major Collector

S1400 Local Road 8 Rural Minor Collector

S1400 Local Road 9 Rural Local Road

S1100 Primary Road 11 Urban Principal Arterial - Interstate

S1100 Primary Road 12 Urban Arterial - Other Freeways & Expressways

S1100 Primary Road 14 Urban Principal Arterial - Other

S1200 Secondary Road 16 Urban Minor Arterial

S1200 Secondary Road 17 Urban Collector

S1400 Local Road 19 Urban Local Road
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We calculated the total length in kilometers of each functional class of road in 

each county in the TIGER network, and divided our CO2 emissions by this length 

to obtain per-kilometer emissions for each year/county/functional class. These 

per-km emissions were then assigned to all segments in the TIGER road network. 

The road network was intersected with a 1 x 1 km grid and a 0.01 x 0.01 degree 

grid, and the new lengths of the road segments within each grid cell were 

calculated. Total emissions for each grid cell were obtained by multiplying the 

new road segment lengths by the per-kilometer emissions assigned to each 

segment and then summing by grid cell. 

Both the 1km and 0.01 degree DARTE grids were based on the grids used by 

the Vulcan (Gurney et al. 2009) and EDGAR (EC/JRC 2011a) emission 

inventories, respectively. The 1km grid has the same datum and geographic 

projection as the Vulcan grid, and is an even division of the Vulcan 10km grid 

cells, such that all cell boundaries overlap exactly. The same is the case with the 

0.01 degree grid with respect to the EDGAR 0.1 degree grid. This was done so 

that DARTE can be easily compared and combined with Vulcan and EDGAR 

emissions from other sectors without the need for re-gridding. 

 

Comparison of DARTE with EDGAR and Vulcan inventories 
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National on-road CO2 emissions totals for DARTE, the EDGAR and Vulcan 

inventories, the EPA national greenhouse gas inventory (USEPA 2014), and 

emissions calculated from FHWA state-level fuel consumption data (FHWA 

1980-2012) show broadly consistent patterns in time (Figure B1).  DARTE 

emissions are within 3% of EPA and FHWA values, while EDGAR emissions are 

systematically lower than DARTE, EPA, and FHWA, with an average annual 

deviation of 8%. 

 

 

Figure B1. Comparison of total national on-road CO2 emissions reported by 

DARTE with the EDGAR and Vulcan Inventories, the EPA national 

greenhouse gas inventory and emissions calculated from FHWA state-level 
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fuel consumption data. The spatial resolution of each inventory is shown 

parenthetically in the legend. 

 

 To examine the sub-national differences between EDGAR and DARTE 

emissions, DARTE was aggregated to the 0.1 degree EDGAR grid, and grid cells 

were classified based on the fraction of each cell’s overlap with the U.S. Census 

2000 Urbanized Areas and Urban Clusters. Although national emission totals 

were similar for DARTE and EDGAR (Figure B1), when they were compared on 

a cell-by-cell basis large deviations in emissions were observed, with EDGAR 

exceeding DARTE by as much as 500% in some locations (Figure B2). There was 

a systematic positive bias of EDGAR emissions in urban areas relative to DARTE, 

with over 30% of cells in the 75% urban category having EDGAR emissions that 

exceeded DARTE by more than 50%. For a full 25% of all grid cells EDGAR 

emissions exceeded DARTE by greater than 50%. The relative biases in EDGAR 

emissions for rural cells were similarly large, but less systematic: 40% of rural 

cells had EDGAR emissions 50% lower than DARTE and 29% of rural cells had 

EDGAR emissions 50% higher than DARTE.  

 EDGAR’s use of road density as a sole proxy assumes a uniform emission 

factor per kilometer of road, which causes CO2 to be over-allocated to low-traffic 

roads and under-allocated to high-traffic roads. This is most clearly visible across 
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the Midwest and the rural Southeast (Figure B3), where EDGAR emissions 

showed a large negative bias relative to DARTE in grid cells containing major 

interstate highways (green), and a positive bias in grid cells dominated by local 

rural roads (orange). These deviations demonstrate the mismatch between road 

extent and vehicle activity that occurs at this scale. Symmetrically, in large urban 

areas EDGAR’s estimates significantly exceeded DARTE in city centers while 

underestimating at the suburban and exurban fringes. Although many urban 

roads carry large amounts of traffic, and hence are responsible for the majority of 

emissions, urban areas also contain a large number of local roads which are 

comparatively lightly travelled.  EDGAR’s use of a constant emission factor 

across road classes with very different activity levels is likely the main source of 

the large spatial biases we observed relative to DARTE. Overall, the spatial 

structure of EDGAR on-road emissions does not appear to be consistent with the 

spatial patterns of the underlying emission-generating source activity.  

Aggregating DARTE’s 2002 CO2 estimates to Vulcan’s 10km grid revealed 

similarly large spatial differences in emissions, with Vulcan estimates exceeding 

DARTE by 50% or greater in nearly 40% of grid cells. However, in contrast to 

EDGAR, we found that Vulcan emissions showed large negative biases relative 

to DARTE in the cores of large cities, and large positive biases in the surrounding 
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suburban and exurban areas (Figure B2). Vulcan emissions in rural areas of the 

western United States show good agreement with DARTE on average, however, 

as with EDGAR, Vulcan displayed a large negative bias relative to DARTE on 

most of the rural interstate highway network (Figure B4). The differences 

between Vulcan and DARTE are most likely explained by how the VMT used by 

Vulcan to estimate on-road emissions was spatially downscaled from state and 

Urbanized Areas to counties in the NCD (see discussion in main text of Chapter 

2). 

 

Figure B2. Cell-by-cell comparison of DARTE with EDGAR v4.2 (0.1° grid)  

and Vulcan (10 km grid). Grid cells were classified by their percent area of 

overlap with U.S. Census Urbanized Areas or Urban Clusters. DARTE – 

EDGAR comparison is for year 2008 emissions. DARTE – Vulcan comparison 

is for year 2002 emissions. 
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Figure B3. Cell-by-cell difference between EDGAR and DARTE for the year 2008; 

2008 is the most recent year for which EDGAR v4.2 estimates are available. 

Resolution is 0.1o x 0.1o on the native EDGAR grid. Green areas indicate cells 

where EDGAR showed a negative bias relative to DARTE; orange and red areas 

show cells with a positive bias relative to DARTE. Differences are largest in the 

major urban areas. 
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Figure B4. Cell-by-cell difference between Vulcan and DARTE for the year 

2002. Green areas indicate cells where Vulcan under-allocated emissions 

relative to DARTE, orange and red cells show where Vulcan over-allocated 

emissions relative to DARTE.  

 

Generalized Additive Model 

We estimated two generalized additive models using on-road CO2 emissions 

from DARTE. In the first model, GAM1, we regressed total county-level on-road 

CO2 emissions on lagged values of population density, per-capita income (in 

constant 2009 dollars), retail job density, non-retail job density and annual 

change in population (the last term being defined as the county population in the 

previous year minus the population in the year before that). The second model, 
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GAM2, we regressed per-capita on-road CO2 emissions on the same variables. 

Non-retail jobs were calculated as the sum of all jobs in a county not classified as 

retail. All employment and income data were obtained from the Bureau of 

Economic Affairs Regional Data Tables 

(http://www.bea.gov/iTable/index_regional.cfm). 

 

GAM1:  

CO2 𝑖,𝑡
= 𝛼𝑖 + 𝜏𝑡 + Ψ1 [(

Population

density
)

𝑖,𝑡−1

] + Ψ2 [(
Per-capita

income
)

𝑖,𝑡−1
]

+ Ψ3 [(
Retail jobs

per km2 )
𝑖,𝑡−1

] + Ψ4 [(
Non-retail jobs

per km2 )
𝑖,𝑡−1

]

+ Ψ5 [(Population)
𝑖,𝑡−1

−  (Population)
𝑖,𝑡−2

] + 𝜀𝑖,𝑡    

 

GAM2: 

Per-capita CO
2 𝑖,𝑡

= 𝛼𝑖 + 𝜏𝑡 + Ψ1 [(
Population

density
)

𝑖,𝑡−1

] + Ψ2 [(
Per-capita

income
)

𝑖,𝑡−1
]

+ Ψ3 [(
Retail jobs

per km2 )
𝑖,𝑡−1

] + Ψ4 [(
Non-retail jobs

per km2 )
𝑖,𝑡−1

]

+ Ψ5 [(Population)
𝑖,𝑡−1

−  (Population)
𝑖,𝑡−2

] + 𝜀𝑖,𝑡 
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The fitted splines for the lagged population density component from each 

model across the full range of U.S. county population densities are shown in 

Figure B5. The fitted splines for the other independent variables in both models 

(Figure B6) and the summary statistics (Table B4) for each model are reported. 

The estimated splines are non-parametric estimates of the partial component of 

emissions explained by each independent variable, relative to the conditional 

mean. The shape of each spline describes the average within-county effect of the 

independent variable on total or per-capita emissions across all counties and 

years in the dataset. For total CO2 emissions we find that retail employment 

density is negatively correlated with emissions, and that non-retail employment 

density is positively correlated with emissions in all counties except New York 

City.. Non-retail employment and population density are the two largest 

contributors to total emissions as estimated by our model. Per-capita income has 

a small positive contribution to total emissions for incomes between $30,000 and 

$60,000, and a negative contribution at incomes greater than $60,000. The lagged 

annual population growth term shows a minimal influence on total emissions for 

most counties, but for fast-growing counties the effect is positive with lagged 

annual growth of 50,000 – 125,000, then becomes negative at higher levels. For 
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per-capita emissions, per-capita income initially has a negative effect at low 

incomes and then becomes a positive effect for incomes above $30,000. Retail 

employment density is positively associated with per-capita emissions, but the 

effect plateaus at ~400 retail jobs per km2. Non-retail employment density has a 

negative association with per-capita emissions, although the effect is largely 

stable across most counties at ~ -5 Tg-person-1-km-2. Lagged population growth 

had no statistically significant effect on per-capita emissions.  

 The rug plots along the x-axis in each panel in Figure B5 reveal the heavily 

skewed distribution of population density for U.S. counties. Despite increasing 

growth of large urban areas, in 2012, over 87% of the U.S. population still lived in 

counties with densities of less than 1,000 persons-km-2, a share that has not 

changed significantly since 1980 (Figure B7). Our results show that increasing 

density is associated with an increase in total county emissions of on-road CO2 

until densities exceed 1,650 persons-km-2, while the decreasing trend in per-

capita emissions with density appears to level out and stabilize once densities 

exceed 1,200 persons-km-2. Only at the high densities of the largest cities in the 

U.S. (2,000 – 4,000 persons-km-2) do we observe decreases in per-capita emissions 

large enough to offset increasing total CO2 emissions.  For low-density towns and 

counties that are attempting to reduce future on-road emissions by increasing 
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population densities in their urban areas, our results offer the caution that the 

per-capita decreases associated with densification may not provide the 

reductions in total vehicle travel that earlier research on this topic seemed to 

promise (Newman and Kenworthy 1989). 

 

Figure B5. Comparison of fitted splines for total emissions versus population 

density (Panel A) and per-capita emissions versus population density (Panel 

B), as estimated by the generalized additive models described in the main 

text. The increase in total emissions with density begins to plateau at 1,650 

persons-km-2, before rising sharply again at 4,000 persons-km-2. Per-capita 

emissions decrease rapidly for densities less than 250 persons-km-2, but then 
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decrease much more slowly between 250 and 1,200 persons-km-2. The rapid 

decrease resumes at 1,200 persons-km-2 and continues before flattening 

slightly at 2,000 persons-km-2 and then plateauing until 8,000 persons-km-2. 

The rug plot at the base of both graphs shows the pooled distribution of 

population density across all U.S. counties and years covered by DARTE. The 

red ticks in the rug plots denote counties that comprise parts of New York 

City, NY.  
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Figure B6.  Plot of smooth terms (Ψ2-Ψ5) in GAM1 (total emissions - left 

column, Panels 1-4), and GAM2 (per-capita emissions - right column, Panels 

5-8). Rug plots show distribution of county values for each independent 

variable, pooled over all years. Red tick marks in the rug plots represent the 

counties that comprise New York City, NY. 
 

 

Table B4.  Summary statistics for the smooth terms in each GAM model. 

 

 

GAM1 

Effective 

Degrees 

of 

Freedom 

Reference 

Degrees of 

Freedom 

p-value GAM2 

Effective 

Degrees 

of 

Freedom 

Reference 

Degrees of 

Freedom 

p-value 

Ψ1 8.987 9.000 < 2E-16 Ψ1 9.000 9.000 < 2E-16 

Ψ2 8.562 8.947 < 2E-16 Ψ2 7.792 8.640 < 2E-16 

Ψ3 8.881 8.994 < 2E-16 Ψ3 8.892 8.994 3.36E-13 

Ψ4 8.981 9.000 < 2E-16 Ψ4 8.048 8.710 4.73E-07 

Ψ5 8.929 8.999 < 2E-16 Ψ5 1.160 1.306 0.707 

Adj-R
2
 = 

0.98 

Generalized Cross Validation 

(GCV) = 3.29E10 

Adj-R
2
 = 

0.88 

Generalized Cross Validation 

(GCV) = 6.16 
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Figure B7. Cumulative population as share of U.S. total vs. population 

density for U.S. counties in 1980 (left) compared to in 2012 (right). Over 85% 

of the U.S. population resided in counties with densities less than 1,000 

persons-km-2 in 2012. Population growth in low-density counties in the South 

and Central U.S. has resulted in the urbanization of small- and medium-sized 

cities with population densities that are typically associated with high per-

capita transportation energy consumption and related carbon emissions. As a 

consequence, despite the overall growth in urban populations since 1980, the 

total distribution U.S. population by density has not substantially shifted 

towards the denser urban core counties. 

 

Public Transit and Emissions 

To investigate the potential influence of transit ridership on per-capita on-

road CO2 emissions we made use of decadal Census long-form survey responses 

on the percentage of workers who commute by private vehicle, carpool, public 

transit, or other modes (cycling, walking, motorcycle). For the years 1990, 2000 
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and 2010, this data is available at the Census Designated Place level of geography 

(U.S. Census Bureau 1990; U.S. Census Bureau 2010) (Figure B8 and Fig 8C in the 

main text). Trends in per-capita emissions as a function of transit commuters per 

person (Figure 8C) and the share of workers over the age of 16 who commute by 

public transit (Figure B8) show similar trends, although we observe differences 

in the magnitude of change in transit shares when we only consider the mode 

choice of commuter trips. Per-capita emissions appear to decrease somewhat 

slower with increasing transit use by commuters, however as commuting only 

comprises ~28% of national VMT on average (FHWA 2011), this is not surprising. 

Cities with high population density are also the cities with the highest per-capita 

transit mode share, and these cities tend to have lower per-capita on-road CO2 

emissions. For the cities with lower population density and lower transit mode 

share, we observed higher per-capita emissions in the more recent data (2000 and 

2010). The results in Figure 8C and Figure B8 provide evidence for a modest 

correlation between population density, public transit usage and per-capita 

emissions, and for cities that are already relatively dense the correlation appears 

be negative over time. However, due to the limited sample size available, it is 

difficult to rigorously quantify the transit-emissions relationship, particularly in 
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the low density cities and counties that have experienced the greatest amount of 

population growth across the past decade. 

 

 

 

Figure B8. Plot of on-road CO2 emissions per person vs. the share or workers 

over the age of 16 who commute by public transit, in 1990, 2000 and 2010 for a 

sample of U.S. cities.  

 

Note, we were not able to include data on ridership levels from different 

transit systems as part of our regression modeling analysis due to limitations in 
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data collection by public transit agencies across the United States.The National 

Transit Database maintained by the Federal Transit Administration is the best 

data source for systematic transit ridership, however the data is aggregated by 

agency and by Census Urbanized Area Disaggregating data from the Urbanized 

Area scale to the county scale would have introduced significant bias, as many 

transit systems in large cities span multiple counties, and there is no information 

available on the distribution of ridership across the system. 

 

8. Ranking of counties by emissions 

Over 50% of U.S. on-road CO2 emissions occur in just 7% of counties. In 2012 

the top 10 highest emitting counties were responsible for 10% of all national 

emissions (Table B5). Compared to the rest of the U.S., the top ten counties have 

lower per-capita emissions for both gasoline and diesel vehicle CO2, but have 

both higher road densities and higher emissions per kilometer of road than the 

rest of the country, offsetting the below-average per-capita emissions and 

contributing to their large total emission levels. With the exception of San 

Bernardino County, CA, all of these counties have population densities higher 

than the national average, and in most cases they contain large urban areas 

where population densities are even significantly higher. Despite the high 
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densities and below-average per-capita emissions rates, the sheer number of 

people residing and driving in these counties means that their total level of on-

road emissions is high.
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County Tons CO2 

Pop. 

Density 

(per 

km
2
) 

Road 

Density 

(km / km
2
) 

CO2 per capita  

(tons) 

CO2 per road-km  

(tons) 

CO2 per VMT 

(grams) 

  

 

 

Total Gasoline Diesel Total Gasoline Diesel Total Gasoline Diesel 

1. Los Angeles, CA 39,447,761 947.9 4.7 4.0 3.4 0.6 799.6 679.5 120.0 497.6 422.9 74.7 

2. Harris, TX 19,354,340 964.1 7.4 4.6 3.6 0.9 590.1 469.3 120.9 560.0 445.3 114.7 

3. Cook, IL 17,679,211 2,136.7 10.9 3.4 2.6 0.7 663.6 519.3 144.2 491.4 384.6 106.8 

4. Maricopa, AZ 16,179,572 165.4 1.9 4.1 3.4 0.7 358.7 295.8 62.9 480.7 396.4 84.3 

5. San Diego, CA 13,965,639 291.6 2.4 4.4 3.6 0.8 530.9 438.3 92.6 504.9 416.8 88.1 

6. Orange, CA 13,178,336 1509.2 7.6 4.3 3.7 0.6 842.9 723.8 119.1 495.3 425.3 70.0 

7. Dallas, TX 12,878,332 1087.4 7.8 5.2 4.2 1.1 727.6 580.3 147.3 559.3 446.0 113.3 

8. San Bernardino, CA 11,013,708 40.1 0.9 5.3 4.1 1.2 229.7 179.5 50.1 522.0 408.0 113.9 

9. Riverside, CA 10,548,353 121.6 1.4 4.6 3.7 1.0 393.5 312.7 80.9 517.0 410.8 106.2 

10. Miami-Dade, FL 9,071,230 527.2 3.0 3.5 3.0 0.5 617.3 535.5 81.9 452.4 392.4 60.0 

Rest of U.S. 1,386,722,431 99.7 1.8 8.2 5.5 2.7 125.4 92.8 32.6 550.2 389.8 160.4 

Table B5. Top ten highest-emitting counties in 2012. These counties also comprise 10% of the U.S. population, but have lower per-capita 
emissions and higher road and population densities than the average of the remaining 3,094 counties. Total and average emissions reflect 
contributions from both diesel and gasoline vehicles.  
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9. Uncertainty of VMT 

Vehicle miles travelled estimates in HPMS are derived from a combination of 

PTRs and short-term traffic counts conducted with portable sensors. PTRs 

provide year-round data on traffic activity and are considered to measure total 

volumes with 95%-99% accuracy (Batelle Institute 2004). These data are used to 

derive seasonal and day-of-week factors to convert short-term counts into 

annualized average daily traffic (AADT) values. For roads whose traffic is not 

directly measured, AADT is imputed from similar roads nearby that have been 

directly measured (FHWA 2005). FHWA requires all AADT estimates submitted 

to HPMS to meet precision and accuracy standards that vary by roadway 

functional class: Freeways and larger roads are required to be accurate within 

5%, while local rural road AADT must be within 15% (FHWA 2005).  

Total emissions for each road class in each county were assigned to the 

TIGER/Line road network by dividing the total emissions on functional class f, in 

county c, by the total length of roads of functional class f in county c, and then 

applying the resulting per-kilometer emissions factor to all roads of class f in 

county c. This procedure averaged out the local variation in per-kilometer 

emissions across roadway segments within each functional class. To estimate the 

potential uncertainty associated with this process we calculated the coefficient of 
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variation (CV) for VMT on each functional class within each county for each year 

using roadway-level VMT from the HPMS archive. We then averaged the annual 

CVs across all years in the dataset and plotted them on a national map (Figure 

B9). We found that for most U.S. counties, the within-county variation in VMT 

was low for rural freeways and for urban roads in general. The largest variation 

was seen on rural non-freeway road classes, with Indiana, Alabama, Vermont 

and Idaho showing the largest within-county variation on these roads. Rural 

non-freeway road segments are typically the least-sampled roads in HPMS, and 

are held to lower standards of precision according to the guidelines in the HPMS 

Field Manual (FHWA 2005). This would account for the overall larger values of 

CV on these roads, but there are also clear state-specific deviations that suggest 

data from certain states may be less precisely collected than in others. Rural non-

freeways only accounted for 17% of total VMT (and 17% of total CO2 emissions) 

in 2012, so while the spatial uncertainty of emissions from these roads is larger 

than other functional class roads, the overall contribution to total emissions 

uncertainty is relatively small.  
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Figure B9. Within-county coefficient of variation (CV) of vehicles miles 

travelled by functional class, averaged over all years in the HPMS database.  

 

At county and state scales the spatial imputation of AADT for roads that are 

not directly measured is another important source of uncertainty for VMT 

estimates. The imputation procedure consists of assigning traffic volumes to 

roads of similar functional class and urban/rural context using traffic counts 

measured on nearby roads. Large amounts of high resolution traffic data are 

needed to directly estimate the magnitude of this uncertainty. We calculated the 
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within-state (between-county) coefficients of variation of VMT as a proxy 

measure of this spatial uncertainty. The CV of urban VMT ranged from 0.5 to 4.0 

across all states and years, while rural VMT ranged more narrowly from 0.75 to 

1.75 (Figure B10).The large variation in the state-level CVs of urban VMT reflects 

the broader range of urban area sizes at state scales, as small and large cities with 

different levels of vehicle activity fall into the same category of ‘urban VMT’ 

despite their inherent differences. The within-state CVs of emissions intensity 

(CO2 / VMT) were small, ranging from 0.1 – 0.2 on average. Low variation in 

emissions relative to VMT is consistent with previous findings that uncertainty 

in vehicle fleet and fuel economy characteristics are a minor contributor to the 

overall uncertainty in emissions estimates from the on-road sector (Mendoza et 

al. 2013). 
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Figure B10. Coefficient of variation (CV) of intrastate VMT and emissions 

intensity (CO2 per VMT) by decade. Each boxplot represents the distribution 

of CVs across all states. The CV for each state was calculated on the 

distribution of values for VMT and emissions intensity across all urban or 

rural roads in a state over each decade.  
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APPENDIX C 

 

Calculating relative humidity 

To satisfy the format of the MOVES model emissions factors, we needed to 

obtain relative humidity values for the ambient atmospheric conditions on each 

road segment and for each hour of the year. The NLDAS-2 data fields do not 

contain estimates of relative humidity, but do contain values for air temperature, 

air pressure, and specific humidity at a height of 2m above the surface. We can 

use these variables to calculate relative humidity as shown below.  

Relative humidity is the ratio of the mass mixing ratios of water vapor at 

actual and saturation values, while specific humidity is the mass mixing ratio of 

water vapor in air, defined as: 

 

q ≡ mv / (mv+md) = w / (w+1) ≈ w 

 

Relative humidity can be expressed as the ratio of the water vapor mixing ratio 

to the saturation water vapor mixing ratio, w/ws, where: 

 

ws ≡ mvs / md = (es * Rd) / (Rv * (p−es)) ≈ 0.622 * es / p 

 

Using the Clausius-Clapeyron equation we can calculate the saturation vapor 

pressure (es) at temperature T: 

 

es(T) = es0 * exp[ (Lv(T) / Rv) * (1/T0−1/T) ] ≈ 611 * exp[ (17.67 * (T−T0) / (T−29.65) ] 
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Combining the above equations, relative humidity can then be expressed as: 

 

RH = 100 * w / ws ≈ 0.263 * p * q * [ exp(17.67*(T−T0)*T−29.65) ]−1 

 

Where: 

q is specific humidity or the mass mixing ratio of water vapor to total air 

(dimensionless) 

mv is specific mass of water vapor (kg) 

mvs is specific mass of water vapor at equilibrium (kg) 

md is specific mass of dry air (kg) 

w is mass mixing ratio of water vapor to dry air (dimensionless) 

ws is mass mixing ratio of water vapor to dry air at equilibrium 

(dimensionless) 

es(T) is saturation vapor pressure (Pa) 

es0 is saturation vapor pressure at T0 (Pa) 

Rd is specific gas constant for dry air (J kg−1 K−1) 

Rv is specific gas constant for water vapor (J kg−1 K−1) 

p is pressure (Pa) 

Lv(T) is specific enthalpy of vaporization (J kg−1) 

T is temperature (K) 

T0 is reference temperature (273.16 K) (K) 
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Figure C1. Annual emissions of CO, SO2, NOx, and PM2.5 from passenger vehicle 

cold starts. The spatial distribution of starts is determined by the average number 

of trips per household as reported by the 2010 Massachusetts Travel Survey 

(Massachusetts Department of Transportation 2012). 
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