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ABSTRACT

Understanding how genetic modifications, individual or in combination, affect organ-

ismal fitness or other phenotypes is a challenge common to several areas of biology,

including human health & genetics, metabolic engineering, and evolutionary biology.

The importance of a gene can be quantified by measuring the phenotypic impact

of its associated genetic perturbations “here and now”, e.g. the growth rate of a

mutant microbe. However, each gene also maintains a historical record of its cumu-

lative importance maintained throughout millions of years of natural selection in the

form of its degree of sequence conservation along phylogenetic branches. This thesis

focuses on whether and how the phenotypic and evolutionary importance of genes

are related to each other.

Towards this goal, I developed a new approach for characterizing the pheno-

typic consequences of genetic modifications in genome-scale biochemical networks

using constraint-based computational models of metabolism. In particular, I investi-

gated the impact of gene loss events on fitness in the model organism Saccharomyces

cerevisiae, and found that my new metric for estimating the cost of gene deletion

vi



correlates with gene evolutionary rate. I found that previous failures to uncover

this correlation using similar techniques may have been the result of an incorrect

assumption about how isoenzymes deletions affect the reaction they catalyze.

I next hypothesized that the improvement my metric showed in predicting the cost

of isoenzyme loss could translate into an improved capacity to predict the impact

of pairs of gene deletions involving isoenzymes. Studies of such pair-wise genetic

perturbations are important, because the extent to which a genetic perturbation

modifies any given phenotype is often dependent on the genetic background upon

which it has been performed. This lack of independence within sets of perturbations

is termed epistasis. My results showed that, indeed, the new metric displays an

increased capacity to predict epistatic interactions between pairs of genes.

In addition to shedding light on the relationship between the functional and

evolutionary importance of genes, further developments of our approach may lead

to better prediction of gene knockout phenotypes, with applications ranging from

metabolic engineering to the search for gene targets for therapeutic applications.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Genetic modifications represent a central and pervasive concept in the study of bi-

ological systems. In genetics and molecular biology, deletions or perturbations of a

gene are used as a fundamental tool for probing the gene’s function [1]. In metabolic

engineering and synthetic biology, genetic modifications are a key component of

strategies for designing new cellular functions with specific practical tasks, such as

the production of valuable molecular products [2, 3]. In evolutionary biology, ge-

netic modifications are the basis for the generation of variation during reproduction,

driving the process of natural selection.

Common to these different viewpoints in the study of genetic modifications in

biology is the mapping that governs the relationship between genotype and pheno-

type. The precise nature and extent to which an organism’s observable traits (the

phenotype) are informed by its genetic constitution (the genotype) is still the subject

of some debate [4, 5]. However, it is generally accepted that one can think of the

connection between genotype and phenotype as a complex mapping [6, 7]. Through

this mapping, whose mathematical formalization may be considered as one of the

goals of systems biology, one could in principle predict whether any given genetic

modifications is likely to result in phenotypic changes. The evaluation and improve-

ment of a specific mathematical schema for performing this mapping constitutes one

of the major outcomes of the work presented in this dissertation. In particular, I

will describe a derivation of the functional importance of a gene from the quantita-

tive impact its removal has on organism fitnes and establish that this formulation

of gene importance correlates with evolutionary importance as derived by genetic
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conservation.

To understand how conservation of a gene sequence conveys information about

its importance, it is useful to remind ourselves that evolutionary adaptation proceeds

through random mutation of genomes, which generates diversity of phenotypes in a

population. The subsequent survival of the most fit individuals, through the process

of natural selection, gives rise to a population which is increasingly adapted to its

environment [8]. Importantly, the randomness of mutations gives rise to a large

proportion of phenotypic changes that are deleterious or neutral. While deleterious

mutations are usually quickly purged from the population [9, 10], nothing prevents

the random accumulation of neutral alleles (genetic drift), which results in special

signatures of genetic variation within and between species, useful as a basic reference

for the study of the rate of evolution. In particular, by comparing genetic mutations

that do and do not (neutral) affect the corresponding protein sequence, it is possible

to estimate the degree of evolutionary pressure likely experienced by such gene. In

other words, this evolutionary analysis of genetic sequences (the details of which are

explained in more detail in Sub-Section 2.4.2) provides an estimate on the importance

of a gene in terms of its degree of conservation across clades.

In this chapter of the dissertation, I will expand further on the ideas presented

above. I will be providing an introduction to some of the specific areas relevant

to this work by exploring the history of study into these topics — but only insofar

as to provide a necessary background for the original work to be presented in the

following chapters. It is important to note that I focus my attention on the model

organism Saccharomyces cerevisiae (commonly known as baker’s yeast). This choice

of model organism is justified both by the long tradition of using this organism for

basic genetic and evolutionary studies, as well as by the fact that yeast is central to
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many biomedical and metabolic engineering studies, as we will see. The rest of this

introduction will briefly review recent milestones in the study of gene deletions in

yeast, and will provide an overview of genome-scale constraint-based mathematical

modeling approaches that are used extensively later on in my own work.

1.1 Functional Discovery from Genetic Modifications

Genetic modifications are incredibly powerful tools for functional discovery of genes

and other genetic sequences. By inducing genetic modifications in a controlled way

at specific sites, such as when a whole gene is deleted from a genome, one may infer

some aspects of the function of the missing gene from the altered phenotype that

results. Even before it was made possible to specify a particular perturbation site

with (relative) ease, functions could be annotated by genetic screening, a process

whereby mutants with a particular phenotype were isolated from a population and

the genetic differences which caused them subsequently identified [1]. Systematic

application of these methods have been in use for decades [11], and represent the

prototypical way by which molecular and systems biologists uncover the functional

role of genes [12].

Owing to its role as a model organism of particular interest [13], the history

of functional identification of genes in yeast dates back almost to the start of the

practice itself and many of the techniques used for this purpose were first pioneered

by their use in yeast [14, 15, 16]. Somewhat more recently, a concerted effort was

undertaken to functionally characterize the entire yeast genome [17, 18], from which

the first ever complete single-gene-deletion library (YKO or yeast knockout set) was

constructed. The result of this effort, as well as those from many other similar

studies (e.g. genetic screens using RNAi silencing [19]) have been collected online at
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the Saccharomyces Genome Database (SGD) [20, 21].

Functional annotation of genes also has implications for the study of human

health and disease. Obviously, it is no simple task to extrapolate from a phenotype

caused by gene loss in yeast to what happens when a similar event occurs in humans.

However, there are orthologs which are relatively well conserved between these two

organisms — as much or more than 34% of yeast genes have homologs in the human

genome [22], and as many as 17% of human disease genes are homologous to yeast

genes [23]. Indeed, many of these genes are so well conserved that it is possible to

replace several essential yeast genes with their human orthologs while maintaingin

cell viability [24]. Furthermore, the mapping of orthologous genes between eukaryotes

has been naturally extended to the concept of orthologous phenotypes (phenologs)

[25, 26], whereby seemingly diverse phenotypes in different species are related by

their shared association with overlapping sets of ortholgous genes. In this way,

human diseases such as epilepsy could be related to alternative yeast phenotypes

such as trichlormethine sensitivity. It is possible that by relating phenotypes across

species in this way, one could develop novel treatments for human diseases based on

induced “rescues” of wild-type yeast behaviors in mutants.

1.1.1 Unexpected Phenotypes Arising from Combinations of Perturbations

While individual genetic modifications are relevant in and of themselves, there is

something fundamental about how such perturbations affect a system when per-

formed in concert. These higher order effects are particularly important when the

phenotype caused by multiple perturbations is different from the one expected, based

on prior knowledge of the phenotypes caused by these same perturbations individ-

ually [27, 28]. Such deviation from expectation is generally referred to as epistasis.

http://www.yeastgenome.org/
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Two genes, alleles, or genetic modifications displaying epistasis are also said to have

a genetic interaction.

The reason epistasis is been increasingly studied in conjunction with systems bi-

ology is twofold. First, epistasis is fundamentally related to systems biology through

its very definition. The behavior of the system may be drastically uncharacteristic

of the behaviors of the individual components. To some extent, systems biology can

be seen as the study of epistasis, i.e., of nonlinear, unexpected system-level behav-

ior arising from combinations of components working together — the whole being

more, or less, than the sum of its parts. Second, the analytical and experimen-

tal high-throughput methods of systems biology are very helpful for understanding

epistasis at the cellular level. Some sophisticated high-throughput technologies have

been specifically designed for the purpose of systematically measuring epistasis be-

tween many genes. Charles Boone’s group pioneered the development of synthetic

genetic arrays (SGAs) [29, 30], an automated approach for generating large-scale

double-gene-deletion mutant libraries, which they then applied to three-quarters of

the entire yeast genome [31]. The general SGA approach was subsequently mod-

ified to work well with smaller, designed subsets of yeast genes, forming E-MAPs

(epistatic microarray profiles). These tools and their specific contributions to the

study of genetic interactions are described in more detail later in (Chapter 3).

Epistasis also plays a crucial role in evolutionary biology. An abundant literature

in population genetics has been dedicated to quantitatively understanding epistasis in

natural populations [32]. Epistasis affects the topology and jaggedness of the fitness

landscape [33, 34] and therefore the rate and properties of evolutionary adaptation.

Sexual reproduction, still a perplexing phenomenon in evolutionary biology, may

have evolved as a method to purge genomes of mutations through recombination
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[35] in response to strong deleterious epistasis between loci [36], though this idea has

been the subject of debate [37, 38].

Although different specific definitions and metrics for epistasis have been proposed

in different contexts [39, 40], the intuitive idea of epistasis as a deviation from a null

expected behavior is common to different fields, and constitutes an interesting bridge

between systems biology and evolutionary biology. Broadly speaking, the study of

genetic interactions represents a unique meeting point where biological organization

principles and practical applications converge (Figure 3.1), impacting fields as diverse

as functional genomics [30, 41, 31], drug development [42, 43, 44], and immunology

[45, 46].

1.2 Metabolism As a Model System for Studying Genetic

Perturbations

Metabolism is the network of all life-sustaining biochemical reactions that every living

organism uses to transform available nutrients into energy and the molecular matter

required for continued cellular maintenance and reproduction. Naturally, a system

so central to the idea of life has been the subject of intense study. It is difficult

to date with any precision the beginning of scientific investigation into metabolism,

precisely because it was recognized as topic of investigation even when it was widely

viewed to be a consequence of the so-called “vital force”, a soul-like aspect that was

thought to separate life from inanimate objects [47]. However, the modern study

of metabolism is generally recognized to have begun around the time of Eduard

Buchner’s nobel-prize worthy work on “cell-free fermentation” (translated) [48] and

the first formalization of the concept of enzymes, proteins that catalyze (accelerate)

metabolic processes, in around the turn of the 20th century. Today, there exist a
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number of online and open-source resources designed specifically around enzymes

(e.g. BRENDA [49, 50]), metabolic pathways (e.g. MetaCyc [51, 52] and Reactome

[53, 54]), and other aspects of metabolism (e.g. KEGG [55, 56], which includes

pathway maps, functional hierarchies, drug-interaction information and much more).

Metabolism is very well understood system, depsite all of its complexity, in part

because of its long history of study. This is not to say that metabolic networks

are are not diverse. Indeed, the individual metabolisms of organisms having been

shaped by historical adaptation of separate organisms to distinct ecological niches

for millenia. However, in general, metabolism as a whole is remarkably well con-

served [57, 58] relative to the rest of the genome. That is, some metabolic genes

and often entire pathways are identifiable as common to large swaths of the tree of

life. Even metabolic genes which are found only within more specific phylogenetic

clades tend to evolve slower than other genes in the genome. This is not to say that

these genes cannot undergo rapid genetic modification. In fact, one of the hypoth-

esized methods for how new metabolic functions can be gained is through so-called

“neosubfunctionalization” [59], whereby a gene duplication event results in the accu-

mulation of mutations in one or both paralogs (genes related by a duplication event)

resulting in new functionality (neofunctionalization [60]) and/or increased specificy

of the encoded enzymes (subfunctionalization [61]) to particular substrates.

1.2.1 Computational Models of Metabolism and Flux Balance Analysis

Alongside high-throughput experimental technologies, computational biology has de-

veloped several technologies which could be used to simulate large-scale biological

systems and their response(s) to perturbations. In particular, the advent of whole-

genome reconstructions of metabolic networks, such as the ones for Escherichia coli

http://www.brenda-enzymes.info/
http://metacyc.org/
http://www.reactome.org/
http://www.genome.jp/kegg/


8

[62, 63, 64] and S. cerevisiae [65, 66, 67], has made it possible to easily perform sys-

tematic and comprehensive computational screens of all possible single and double

metabolic enzyme gene deletion phenotypes.

One approach that has now been amply used in this context is the framework

of stoichiometric constraint-based models of metabolic networks, most notably flux

balance analysis (FBA). FBA is used to predict growth rate and metabolic fluxes

(steady state rates) within networks that encompass the whole set of metabolic

reactions known to be possible in a given organism (hence “genome-scale”) [68].

For a more comprehensive introduction to flux balance modeling, I refer the reader

to available literature (e.g., [69, 70, 68, 71]). However, I do wish to stress here the

fundamental assumptions behind FBA, as well as some of its limitations. FBA is

based on two key simplifying assumptions. The first is that the metabolic network

under study is at steady state, i.e., metabolite concentrations stay constant over

time. While this is not true for individual cells, it is often a sensible assumption

for populations of cells kept under stable conditions (e.g., bacteria or yeast in a

continuous flow bioreactor). The second main assumption of FBA is that the system

is operating close to a set of fluxes that makes it optimal for a given task (the objective

function). FBA is therefore implemented as an optimization problem that identifies

the optimal flux distribution, while obeying the mass-balance constraints of steady

state and the constraints imposed by the available nutrients. This problem can be

efficiently solved using linear programming. For microbial systems, the maximization

of biomass production has been often used as an objective function. FBA has been

used to adequately predict the growth rate and byproduct secretion rates in E. coli

[72, 73] as well as the essentiality of metabolic genes under several growth conditions

[74, 75]. Minimization of metabolic adjustment (MOMA), a variant of FBA, has
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been introduced to provide an alternative to the unrealistic assumption that mutant

strains should be able to maximize their growth rate upon the perturbation [71].

Instead, MOMA assumes that the internal control circuitry of the cell will tend to

maintain the cell as close as possible to the flux state of the wild type while remaining

compatible with the new constraints imposed by the deletion [65, 76].

Because of its high computational efficiency — a single FBA simulation may

take less than 0.1 second — both of these methods are widely used in large-scale

perturbation studies [77, 78, 79], including for predictions of phenotype in the pres-

ence of multiple simultaneous gene deletions [80] and/or across several environmental

conditions [76, 81]. Briefly, one can use FBA as the computational analogue of a high-

throughput growth-rate assay, by systematically computing the effects of single and

double gene deletions in a given model organism. Then, one can use Equation 3.1,

or variants thereof, to compute deviations from the multiplicative expectation. This

type of analysis has been performed first in S. cerevisiae, for which highly curated and

tested stoichiometric reconstructions have been published in recent years [82, 66, 83].

Finally, the present-day explosion in genomic [84] and metagenomic [85, 86] se-

quencing data has engendered even the high-throughput generation of such genome-

scale models of metabolism. Online resources, such as the Model SEED are capable

of automatically reconstructing a metabolic model from an assembled genome in

only a couple of days [87]. KBase, the Department of Energy Systems Biology

Knowledgebase, can do the same and even has applications which will perform the

assembly of the genome from raw sequencing data. Both platforms also currently

have some capacity to perform flux balance simulations. KBase also includes and

online environment where its programs can be setup to chain together in a work-

flow that users can annotate. In short, there now exists the capacity to cultivate

http://www.theseed.org/models/
http://kbase.us
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an entire microbial community, sequence and assemble the genomes of the members,

and automatically reconstruct metabolic models each in a matter of days. While the

validated performance of these generated models is obviously less than their hand-

curated counterparts, which have seen years of revisions and updates, these still

represents powerful tools for use in the field of systems and computational biology.

1.3 Overview of the Topics Discussed Later in This Dissertation

The work presented in this disseration is focused on the study of genetic modifi-

cations, and more specifically on seeking a link between the metrics used across

different areas of biology to quantify the effects of the loss of a gene in an organism.

In particular, in Chapter 2 (“A New Metric for Gene Dispensability Anticorrelates

with Evolutionary Rate”), I will use computational biology approaches to establish

a previously sought, but elusive correlative relationship between the functional im-

portance of a gene for the cell (e.g. the contribution to fitness) and the genomic

signals that encode information about the gene’s long-term evolutionary history. In

Chapter 3 (“Organization Principles in Genetic Interaction

Networks”), I will explore what we refer to as the “three main principles of orga-

nization in genetic interaction networks”, focusing on how it is that hierarchies of

organizational units arise naturally from these principles and what we can learn

about biological systems from their application and study.

What follows immediately in the sub-sections below are a pair of summaries of

each of the chapters at large, including a restatement of the chapter objective in the

context in which it will be presented and a very brief description of the ideas that

will be discussed in more detail therein.
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1.3.1 Synopsis of Chapter 2: Functional and Evolutionary Gene Importance

One way to estimate the contribution of any single gene to organism fitness is through

calculating it’s gene dispensability. In a similar vein, the evolutionary rate of a ge-

netic sequence represents something of a historical record of a gene’s dispensabilty,

as evidenced by the frequency and type of its accumulated mutations (or relative lack

thereof) over millions of years of evolution. Previous failure to identify a correlation

between these two metrics has been ascribed to a real biological gap between a gene’s

fitness contribution “here and now” and that same gene’s historical importance. In

this chapter I will introduce a new method for calculating the cost of a gene deletion

that I call “function-loss cost”, which calculates the cost of a gene deletion event as

the total potential functional impairment caused by the deletion. I demonstrate that

this new metric displays significant anticorrelation with evolutionary rate. I then

show that the improvement gained by using function-loss cost over gene-loss cost is

the outcome of eliminating the assumption that isoenzymes provide unlimited capac-

ity for backup. The relevance of function-loss cost of isoenzymes is also confirmed

by the fact that this new metric improves the capacity of the flux balance model to

predict epistatic interactions that include one or more isoenzymes. In addition to

suggesting that the gene-to-reaction mapping in genome-scale flux balance models

should be used with caution, our analysis provides new evidence that evolutionary

gene importance captures much more than strict essentiality.

1.3.2 Synopsis of Chapter 3: Organization Arising from Genetic Interactions

Understanding how genetic modifications, individual or in combinations, affect phe-

notypes is a challenge common to several areas of biology, including human genetics,

metabolic engineering, and evolutionary biology. Much of the complexity of how
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genetic modifications produce phenotypic outcomes has to do with the lack of inde-

pendence, or epistasis, between different perturbations: the phenotypic effect of one

perturbation depends, in general, on the genetic background of previously accumu-

lated modifications, i.e., on the network of interactions with other perturbations. In

recent years, an increasing number of high-throughput efforts, both experimental and

computational, have focused on trying to unravel these genetic interaction networks.

Here, I provide an overview of how systems biology approaches have contributed to,

and benefited from, the study of genetic interaction networks. I focus, in particular,

on results pertaining to the global multilevel properties of these networks, and the

connection between their modular architecture and their functional and evolutionary

significance.



CHAPTER 2

A NEW METRIC FOR GENE DISPENSABILITY

ANTICORRELATES WITH EVOLUTIONARY RATE

System-level metabolic network models enable the computation of growth and metab-

olic phenotypes from an organism’s genome. In particular, flux balance approaches

have been used to estimate the contribution of individual metabolic genes to or-

ganismal fitness, offering the opportunity to test whether such contributions carry

information about the evolutionary pressure on the corresponding genes. Previous

failure to identify the expected negative correlation between such computed gene-loss

cost and sequence-derived evolutionary rates in Saccharomyces cerevisiae has been

ascribed to a real biological gap between a gene’s fitness contribution to an organ-

ism “here and now” and the same gene’s historical importance as evidenced by its

accumulated mutations over millions of years of evolution. Here we show that this

negative correlation does exist, and can be exposed by revisiting a broadly employed

assumption of flux balance models. In particular, we introduce a new metric that

we call “function-loss cost”, which estimates the cost of a gene loss event as the

total potential functional impairment caused by that loss. This new metric displays

significant negative correlation with evolutionary rate, across several thousand mini-

mal environments. We demonstrate that the improvement gained using function-loss

cost over gene-loss cost is the outcome of eliminating the assumption that isoenzymes

provide unlimited capacity for backup. The relevance of function-loss cost of isoen-

zymes is also confirmed by the fact that our new metric improves the capacity of the

flux balance model to predict epistatic interactions that include one or more isoen-

zymes. In addition to suggesting that the gene-to-reaction mapping in genome-scale
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flux balance models should be used with caution, our analysis provides new evidence

that evolutionary gene importance captures much more than strict essentiality.

2.1 Introduction

Quantitatively assessing the contribution of each gene to the overall fitness of an

organism is an ongoing challenge in evolutionary and systems biology [88]. A clas-

sical, bioinformatics estimate of this contribution has been the evolutionary rate

of the gene in question, which is based on genetic sequence conservation patterns

amongst phylogenetically related genes [89, 90, 91, 92]. This evolutionary rate met-

ric serves as a historical record, providing a retrospective cumulative quantification

of the importance of a gene. In contrast, systems biology methods are able to specif-

ically quantify, for each gene, its current contribution to overall organism fitness by

directly measuring [17, 18] or estimating [77, 78] the fitness defect caused by the

removal of that gene. The natural question arises of whether the current contri-

bution of a given gene to organism fitness, i.e. its dispensability, correlates with

its historical importance. It is non-trivial whether such a relationship should exist,

because the dispensability of any one gene at any set time point may be influenced

by many complex factors, including the environmental condition(s) and its interac-

tions with any other genes within the genome, whose effects cannot be discerned

from evolutionary rate. This question has been previously addressed in the model

organism Saccharomyces cerevisiae (baker’s yeast) [93, 81], for which fitness defect

scores upon gene deletion have been experimentally measured in a systematic and

comprehensive way [17, 18, 94, 95]. Interestingly, a significant negative correlation

between gene evolutionary rate and experimentally measured gene dispensability is

detectable, although the signal is weak (Spearman’s ρ ≈ −0.2).
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In addition to the high-throughput experimental techniques used to quantify gene

dispensability at the genome scale, constraint-based modeling techniques — such as

flux balance analysis (FBA) [68] — may be used to efficiently generate such data in

silico [79]. Flux balance models have been shown to successfully recapitulate several

experimental observations, including growth phenotypes under various environmen-

tal conditions and gene essentiality in select lab conditions [75, 83, 96]. However, one

of the puzzling failures of FBA techniques has been precisely the lack of even mod-

erate correlation between predicted gene dispensability and evolutionary rate [81].

This lack of correlation has been ascribed to a number of possible reasons, including

lack of knowledge about the most relevant environmental conditions to be used in

simulations, and the complex condition-dependence of gene essentiality.

Here we present an alternative metric for measuring gene dispensability using

FBA, which we call “function-loss cost” (Figure 2.1, blue indicators). As opposed to

the standard “gene-loss cost” (Figure 2.1, red indicators), our new metric estimates

the total cost of a gene’s deletion by integrating the fitness costs of removing each

enzymatic function associated with that gene from the FBA model, even if alternative

isoenzymes exist for a given reaction. Surprisingly, by using function-loss cost as

our measure of gene dispensability, we are able to observe a negative correlation

between the impact of gene deletion and gene evolutionary rate (Figure 2.2A, blue

distribution).
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2.2 Results

2.2.1 Gene-Loss Cost and Evolutionary Rate Do Not Correlate in Minimal

Environments

In prior work, it was established that gene-loss cost, as estimated by flux balance

genome scale models of metabolism, correlates poorly with gene evolutionary rate

[81]. These prior calculations had been performed for a large number (∼ 104) of ran-

domly generated combinations of environmentally available metabolites, and using

different variants of the FBA objective function (including the standard maximiza-

tion of biomass production flux [68] and the minimization of metabolic adjustment

upon gene deletion [71]). We started by confirming these results, using a recently up-

dated stoichiometric reconstruction [96], a different strategy for choosing a large num-

ber of environmental conditions, and independently computed evolutionary rates.

In particular, to impose environmental constraints in our FBA calculations, we

generated 1,536 minimal media, each containing a nitrogen and a carbon source,

in all possible combinations (see Methods and for details and [97] for similar uses

of this strategy). Gene-loss costs were calculated across all metabolic enzyme genes

and environments, using the standard FBA protocol for gene knockouts (see Methods

and [98]). Evolutionary rates for S. cerevisiae metabolic genes were calculated using

a modified version of dN

dS
from orthologs in five related species spanning a phyloge-

netic timetable of roughly 10–100 million years (see Methods and [99]). Our results

(Figure 2.2A, red distribution) verify that gene-loss costs do not correlate with gene

evolutionary rate (Spearman’s ρ ranging between −.05 and 0.1).

Notably, in contrast to FBA calculations previously used for this type of analysis,

by limiting each minimal environment to a single source of carbon and a single source

of nitrogen, we are able to verify that no specific resources is significantly more likely
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to have been historically important in yeast metabolic adaptation. For example,

for one such fixed nitrogen source (ammonium), the total per-carbon distribution of

correlations spans only about 4 standard deviations of the total distribution across

all environments — from ρ = −0.027 (for the carbon source xanthosine) to ρ = 0.06

(for D-xylose), whereas the correlation for glucose is only ρ = 0.002. Thus no

individual carbon source stands out as historically much more relevant than the

average. Furthermore, at the model level, the use of minimal media strictly enforces

a kind of resource scarcity. In absence of this scarcity, the FBA model can reroute

metabolic fluxes to use alternate resources at no cost, masking the effect of blocking

individual pathways with a gene deletion.

2.2.2 A newly defined function-loss cost anticorrelates with evolutionary rate

Given the lack of correlation observed between FBA-computed gene-loss cost and

gene evolutionary rate, we asked ourselves whether any step in the FBA calculation

could potentially distort the estimation of the cost of gene deletion. We ended up

focusing our attention on the gene-to-reaction mapping, which, in the FBA knockout

calculation, translates the deletion of a gene into the corresponding flux constraints

that block (potentially multiple) reactions associated with that gene (Figure 2.1).

This mapping, expressed using simple Boolean logic, plays a particularly important

role for reactions are catalyzed by multiple enzymes (isoenzymes, Figure 2.1B) or

by enzyme protein complexes (Figure 2.1C). For two isoenymes catalyzing the same

reaction, for example, deletion of one the two enzymes has no effect on the corre-

sponding flux in a traditional FBA knockout calculation, because the other enzyme

is assumed to provide full backup functionality. However, abundant experimental

evidence suggests that this backup effect is often limited, or condition-dependent
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[100, 101, 102]. The cumulative effect of this discrepancy in genome scale calcula-

tions could be quite significant, given that almost one third of the metabolic enzymes

in S. cerevisiae are members of isoenzyme sets (and thus would end up incurring no

cost whatsoever under standard FBA knockout calculations). We thus hypothesize

that fixing this oversimplification in the assessment of gene-loss cost could have a

non-negligible effect on the above-mentioned correlation estimate.

In defining a new score for the functional cost incurred upon gene deletions,

we also wanted to take into account the fact that multi-functional enzymes (i.e.,

enzymes that catalyze multiple distinct reactions, Figure 2.1C) may be under more

evolutionary pressure to maintain their function(s) than genes performing only a

single function, especially if all such functions are essential.

These considerations led us to define a new metric predicting the impact of gene

deletions in genome-scale models. In particular, we define the function-loss cost of a

gene as the sum of all costs incurred by removing each individual reaction catalyzed

by the gene from the network (see also Methods and Figure 2.1), with the assumption

of zero backup capacity by isoenzymes. The distribution of the newly introduced

function-loss cost is substantially different from the distribution of gene-loss cost

computed before (Figure 2.2A, blue distribution). Notably, for any gene that does

not belong to the set of isoenzymes or to the set of multi-functional enzymes, the

function-loss cost is identical to the gene-loss cost. This set includes genes that

encode for proteins that are members of a complex (Figure 2.1A), or any gene which

participates in only a one-to-one mapping with a reaction (not shown).

Interestingly, using our new function-loss cost metric as the measure of gene

dispensability, we can rescue the expected negative correlation between this mea-

sure and gene evolutionary rate (Figure 2.2A, blue distribution). In fact, the mean
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anticorrelation between these data (ρ = −0.24) is even stronger than the anticorre-

lation observed between gene evolutionary rate and experimentally-measured gene

essentialities, even though strict gene essentiality prediction accuracy obtained using

function-loss cost is not improved relative to the accuracy obtained using gene-loss

cost (Table S2.2). Note that the distribution of correlations between function-loss

costs and evolutionary rates across different environments is similar (and similarly

narrow) relative to the distribution previously obtained for gene-loss cost, indicating

the recovery of anticorrelation obtained with the function-loss cost is not strongly

dependent on nutrient choice.

2.2.3 Isoenzymes play a special role in determining the anticorrelation with

evolutionary rate

As a next step in our analysis, we set out to examine the contributions from isoen-

zymes and multi-functional enzymes to the improved negative correlations. Since

very few genes belong both to the class of isoenzymes and to the class of multi-

functional enzymes, it was straightforward to separate out the contributions of each

of these two classes to the computation of function-loss cost. We thus recomputed

the impact of gene deletion in two variant ways. First (hybrid-loss score 1), we com-

puted the gene deletion impact using the gene-loss score (the old, traditional metric)

for all genes except the multi-functional enzyme genes, for which we use the new

function-loss score. Conversely, in a separate calculation (hybrid-loss score 2), we

computed the gene deletion impact using the gene-loss score for all genes except the

isoenzyme-associated genes, for which we use the new functional-loss score.

By recomputing the correlation between evolutionary rates and the hybrid scores

we found that hybrid-loss score 2 displays a negative correlation very similar observed
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with the full function-loss score (Figure S2.7, whereas hybrid-loss score 1 displays no

correlation (inferable from Figure S2.7, data not otherwise shown). This indicates

that incorrectly accounting for the effect of isoenzyme deletion has a prominent role

in the capacity to discern the relationship between the impact of gene deletion and

evolutionary rate. In turn, this suggests that deletion of an isoenzyme is costly,

corroborating previous arguments that true redundant functional backup is should

not be evolutionarily sustainable [103].

In order to gather further insight into the relationship between different enzymes

in an isoenzyme set, we tested the correlation between function-loss cost and evo-

lutionary rate for different specific choices of enzymes within each set. Specifically,

for each isoenzyme set, we identified the enzyme which is most conserved (slowest

evolutionary rate), and the one that is least conserved (fastest evolutionary rate).

Thus, across all isoenzyme pairs, we could collect a subset of all fast evolving and

slow evolving isoenzymes.

Notably, when computing the correlation between function-loss cost and evolu-

tionary rate with the inclusion of slow-evolving isoenzymes only, we found an average

correlation of ρ = 0.28. This correlation is even more negative than what found

for the whole set (Figure 2.2C). Conversely, we find that by similarly selecting for

the fasting-evolving isoenzyme from each isoenzyme set, the correlation distribution

does not significantly shift in any direction (Figure 2.2B). Prior work had long ago

established that different isoenzymes catalyzing the same reaction evolve at differ-

ent rates [104], and it has been observed more recently that asymetric evolutionary

rates between gene duplicates this could be interpreted as a signal of neosubfunc-

tionalization [105, 59]. Our analysis reveals for the first time that, in computing the

anticorrelation between function-loss score and evolutionary importance, once we
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exclude the fast-evolving isoenzymes, the correlation becomes even more negative.

This suggests that historical (long-term evolutionary) importance of slow-evolving

(i.e. highly conserved) genes carries more information about their experimentally

measurable essentiality relative to fast-evolving counterparts.

2.2.4 Function-loss cost improves predictions of epistatic interactions involving

isoenzymes

Given that our newly defined metric, function-loss cost, significantly affects the way

one evaluates the effects of single gene deletion, it is interesting to ask how such

new definition affects the ability to recapitulate the effects of multiple simultaneous

gene deletions. Whether the combined effect of pairs of genetic perturbations is

predictable from knowledge of each individual effect, constitutes a question with

broad implications. In fact, deviations from simple expectations (i.e. epistasis) can

significantly affect evolutionary processes [33], and can provide valuable functional

information about the underlying system [106]. Previous work has investigated the

capacity of FBA models to predict epistatsic interactions between metabolic enzyme

genes [107], largely motivated by the availability of extensive experimental datasets

of genetic interactions in S. cerevisiae [31]. Here, we test the efficacy of function-loss

cost in predicting epistasis between gene knockout pairs, using a slightly modified

to work with the multiplicative null model of epistasis used in studies such as these

(see Methods).

Interestingly, modified function-loss cost more accurately predicts the existence

of an epistatic interaction between gene pairs than gene-loss cost (Figure 2.3). The

sensitivity of the model nearly doubled with respect to each interaction category,

with the exception of non-interacting pairs, for which the model already presents
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very high sensitivity.

This is especially true of interactions involving an isoenzyme — in fact, every

correctly predicted interaction that was not correctly predicted by gene-loss cost

simulations involved an isoenzyme. The fact that isoenzymes are overrepresented

in this category is perhaps unsurprising, given than under standard gene-loss cost

protocols, an isoenzyme may only be predicted to exhibit epistasis under very nar-

row circumstances, namely (1) it must be one of isoenzyme pair, (2) the secondary

mutation must be the deletion of the partner isoenzyme, and (3) the reaction they

catalyze must incur a cost penalty when blocked.
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Figure 2.3: Comparison of correctly predicted epistatic interactions per gene.
Each row represents one of the two gene dispensability measures in comparison:
either function-loss cost (top) or standard gene-loss cost (bottom). Columns
represent experimental classification of an epistatic interaction: synergistic (left)
or antagonistic (right). The total number of these interactions are listed at the
top just below the headers. The pie chart in each quadrant represents the capacity
of FBA to predict these interactions. In each pie, the offset slices show the true
positives, while the other two slices show the false negatives (and which category
they were incorrectly assigned). The size of each chart is determined by the
number of interactions in each whole pie relative to the sum total number of
interactions in all both pies in the row (pie size is constant across rows). Not
shown, non-interactions (see Figure S2.8).
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2.3 Discussion

We have introduced function-loss cost, a new metric for quantifying the impact of

the deletion of a gene based on genome-scale models of metabolism. This metric

is similar to previously estimated gene-loss impacts, except for the modification of

some of the basic assumptions on how the deletion of a gene translates into reaction

flux constraints. The modification that ends up being responsible for recovering the

expected correlation between gene deletion impact and evolutionary rate is the as-

sumption on how isoenzyme deletion affects the corresponding reaction flux. While

previous calculations assume that each enzyme in a set of isoenzymes can uncondi-

tionally perform the function in the absence of the other isoenzymes, the algorithm

we use here assumes that deletion of each isoenzyme causes a complete loss of function

for the cell. Based also on multiple types of analyses and observations [100, 108, 102],

one would obviously expect the reality to be a complex combination of the above as-

sumptions: different isoenzymes may respond differently to different environmental

perturbations, and provide backup to each other to varying degrees. What our re-

sults indicate, however, is that on average the assumption that each isoenzyme fulfills

an essential metabolic role is more consistent with the evolutionary record than the

opposite assumption of isoenzymes being unconditionally, individually dispensable.

From the perspective of flux balance modeling, our analysis suggests that extra

caution should be used when applying the classical gene-to-reaction mapping rela-

tionships to estimate the effect of gene loss, especially when using these models to

understand evolutionary aspects of metabolism. As to whether our newly suggested

way to deal with isoenzyme deletion will be helpful in comparisons with experimental

gene deletion studies, this requires additional evaluations.

With respect to epistasis, we have shown that our approach makes it possible to
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use flux balance analysis to predict interactions between isoenzyme genes. In prior

calculations, using the standard gene-to-reaction mapping (Figure 2.1B), it would

have been possible to detect such interactions only between two isoenzymes that

are the only two catalysts for a given reaction. In any other case (e.g. interaction

involving a single isoenzyme and another arbitrary enzyme), the complete backup

assumption of isoenzyme sets would completely mask any possible interaction. One

should keep in mind, conversely, that our method naturally tends to overpredict

of such interactions. In the future, by integrating high throughput experimental

data (such as epistasis measurements) and network structure information, it may be

possible to rewrite reaction-specific gene-to-reaction relationship (using AND or OR)

further improve model prediction capacity.

This could prove to be a very important development for the use of constraint-

based models as tools in the future study of genetics, especially in the area of

biomedicine. Double gene deletions that result in cell death (synthetic lethal dele-

tions) are an important avenue of cancer research, where the ability to induce lethal-

ity only in a within subpopulation of cells that carry specific mutations already by

inducing a perturbation to the entire population is of obvious benefit. Similarly, re-

search into other metabolic diseases, such as fructose intolerance, could benefit from

increased ability to predict unexpected losses of some non-growth phenotypes due to

a double gene perturbation event.

2.4 Materials & Methods

2.4.1 Yeast metabolic model and genes used in this study

This study was conducted using the Yeast 6 metabolic model of Saccharomyces

cerevisiae metabolism [96], which may be obtained from (specifically, version 6.06).

http://yeast.sf.net
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This model specifies a metabolic network consisting of 1888 reactions between 1488

metabolites, a set of 904 enzyme-encoding genes, and a set of Boolean expressions

associating each reaction to all possible subsets of genes that are required for cataly-

sis (the gene-to-reaction mapping, as known as the gene-protein-reaction expression

map or GPR). We identified blocked reactions in the model (reactions incapable of

carrying flux) using a previously established method [109] and subsequently purged

all genes associated only with these reactions from our analyses. All subsequent

analyses presented in this section and the results presented in this paper were made

using this modified subset of 703 genes. For the specific cases of correlating gene-loss

cost and function-loss cost with evolutionary rate, restricting our analyses to a subset

of metabolic genes did not significantly impact the outcome (Figure S2.6).

2.4.2 Calculation of gene evolutionary rates

The evolutionary rates of all metabolic genes included in this study were derived

following the procedure described in [99]. Briefly, an adjusted dN

dS
[91] ratio (hereafter

referred to simply as k) was calculated for each Saccharomyces cerevisiae model

gene from its corresponding ortholog in five related yeast species: Saccharomyces

bayanus, Saccharomyces castellii, Lachancea kluyveri (formerly S. kluyveri (28)),

Saccharomyces mikatae, and Saccharomyces paradoxus. This provides, for each gene

g, five separate strain-dependent measures of evolutionary rate (kS.bayanusg , kS.castelliig ,

etc.). To obtain a single representative rate for each gene k̂g, we first grouped all

values of k by strain, converted these sets to rank order, and then took the average

rank of each gene across these sets; that is, k̂g =< rank({kyg | y = x}) > where

x is a yeast strain. Some strains did not contain an appropriate ortholog for every

gene in our set, however, no gene was without at least one ortholog from which to
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derive a k. Note that throughout the paper we refer to the averaged evolutionary rate

rank scores as the evolutionary rates. Importantly, since all our correlations involving

evolutionary rates are rank-based measures, this does not affect the outcome of these

calculations.

2.4.3 Prediction of gene-loss costs for S. cerevisiae metabolic genes

The gene-loss cost of each gene is calculated as the relative loss in predicted fitness of

the gene-knockout mutant as compared to the predicted fitness of the wild-type yeast.

Fitness predictions for the wild type and all mutants were obtained using standard

flux balance analysis (FBA), which has been previously described in [68]. Briefly,

FBA calculates the rate of flow (i.e. flux) of metabolites through each reaction (vi)

in the metabolic network in such a way as to maximize the flux through a pseudo-

reaction describing organism growth (w = vbiomass). Constraints may be imposed on

each reaction, such that the minimum and/or maximum flux allowed through it is

bounded (αi ≤ vi ≤ βi). Gene deletions are translated, through the gene-to-reaction

mapping, to constraints on some number of reactions (possibly zero) which limit the

flux through these reactions to zero (αi = 0 ≤ vi ≤ βi = 0). With fitness taken to

be the flux through the biomass reaction, the normalized gene-loss cost of any gene

g can be expressed as:

cGLC
g =

ww.t.−w∆g

ww.t.
(2.1)

2.4.4 Prediction of function-loss costs for S. cerevisiae metabolic genes

The function-loss cost for each gene is calculated as the sum total of the individual

costs of removing each function (reaction) the gene is responsible for from the model

one-by-one, where an individual cost is represented by the fitness loss of the single-
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reaction knockout mutant relative to the wild type as predicted by FBA. For this

purpose, a gene g is said to be responsible for a reaction r if the gene appears

anywhere in that reaction’s associated GPR expression. This translates to a fairly

simple adaptation of the gene-loss cost metric, which can be expressed as:

cFLC
g =

∑
{r|〈r,g〉∈GPR}

Ww.t. −W∆r

Ww.t.

(2.2)

2.4.5 Generation of environmental conditions for gene-deletion impact simulations

Environmental conditions for flux balance simulations were generated by an adap-

tation of a previously defined heuristic for determining minimal media that support

growth [97]. First, an initial minimal medium was manually defined for the model,

such that each primary nutrient (e.g. carbon and nitrogen) was provided by only

a single metabolite. Our initial medium consisted of glucose, ammonium (NH4+),

inorganic phosphate and sulfate, oxygen, and minerals (Table S2.3). We then iden-

tified alternative carbon-providing metabolites by removing glucose from this ini-

tial medium and exhaustively testing all other metabolites for growth. Similarly,

nitrogen-providing metabolites were identified by the removal of ammonium and

subsequent testing of metabolites. Our final set of minimal media was constructed

by taking all pair-wise combinations of carbon-providing and nitrogen-providing

metabolites, together with the secondary metabolites listed previously, for which

the wild-type model predicted positive growth (Table S2.3).

Simulations were also conducted on several non-minimal environments represent-

ing common lab-growth media. Such, so-called “rich media” were defined manually

for YPD, YPLactate (both D- and L-Lactate), an SD complete and SD-His complete

media (Table S2.3). Maximum import rates were restricted based on the measured
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uptake rate of glucose by S. cerevisiae grown in YPD where this rate is limiting.

2.4.6 Calculation of epistasis

Epistatic interaction scores were calculated for each possible pair-wise interaction be-

tween genes using the standard method [110]. In these studies, epistasis (ε) between

any pair of genes i and j, is defined as

ε = Wij −Wi ·Wj (2.3)

where Wi and Wj represent the relative fitness of each single-gene deletion mutant

and Wij is the relative fitness of the double-gene deletion mutant. Our function-loss

cost metric had to be slightly modified to fit this definition of an epistatic interaction.

By default, the relative fitness of any mutant Wi may be derived from the cost of

gene deletion (ci) as Wi = W0 − ci, where W0 represents the wild type fitness. This

works well with standard gene-loss cost. However, in the case of multi-functional

enzymes, the function-loss cost of a knockout (cFLC
i ) may exceed one, which causes

problems with the expected fitness of the double knockout mutant (Wi ·Wj) under

the multiplicative model. For this reason, all function-loss costs were bounded to

a maximum value of one, such that the relative fitness of any mutant is bounded

between one and zero, inclusive (0 ≤ Wi ≤ 1).

2.4.7 Comparison of predicted epistasis with experimental data

In order to assess the validity of our predicted epistatic interaction scores, we com-

pared our predictions against a data set for which these scores have been computed

from experimentally observed fitness [31]. We limited our comparisons to genes for

which the experimentally observed fitness of deletion mutant was no greater than the
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fitness of the wild type, because FBA is incapable of predicting increases in fitness

due to gene deletions (in the absence of other types of perturbations). We started

by classifying all calculated epistasis scores, from both data sets, using the standard

method [110] based on the sign of ε. Each score implied either a synergistic inter-

action (negative ε), an antagonistic interaction (positive ε), or a non-interaction (ε

close to zero). Performance was measured by testing whether or not the epistatic

classification predicted using FBA techniques matched the experimental classifica-

tion.

2.5 Supplemental Figures and Tables
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Figure S2.1: Sampling of gene dispensability vs. evolutionary rate plots. These
plots show the specific function-loss cost vs. evolutionary rate (blue dots) and
gene-loss cost vs. evolutionary rate (red dots) plots. The four plots on the left
side of the figure compares the dot plot generated by function-loss cost and gene-
loss cost by testing in the same media. The plots were selected as the most
extreme ρ-generating media from both distributions (function-loss cost, top and
bottom; gene-loss cost top middle and bottom middle). The three plots on the
right show the dot plots for YPD rich media, the reference media (the default
carbon/nitrogen pair from which all other media were generated, see Table S2.3)
and the median ρ-producing media set.
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Table S2.1: List of blocked genes in the Yeast 6 consensus model. Blocked reactions
in flux balance analysis are those reactions in the netword which are incapable of
carrying flux. This is the list of all the gene which catalyze these blocked reactions.
Their calculated gene-loss cost and function-loss score must also be zero. Total of
201 genes.

Yeast 6 Blocked Genes

YAR073W YAR075W YBL013W YBL064C YBL076C YBR003W

YBR023C YBR026C YBR034C YBR038W YBR058C-A YBR121C

YBR127C YBR132C YBR149W YBR161W YBR199W YBR205W

YBR213W YBR265W YCL004W YCL069W YCR075C YDL015C

YDL040C YDL045C YDL078C YDL100C YDL103C YDL131W

YDL141W YDL142C YDL182W YDL185W YDL205C YDR023W

YDR037W YDR044W YDR047W YDR062W YDR072C YDR135C

YDR173C YDR204W YDR236C YDR242W YDR256C YDR268W

YDR294C YDR315C YDR341C YDR376W YDR483W YDR531W

YEL017C-A YEL027W YEL042W YEL051W YEL058W YER014W

YER015W YER061C YER087W YER119C YER141W YER175C

YFL001W YFL017C YFL022C YGL040C YGL063W YGL067W

YGL119W YGL184C YGL225W YGL245W YGR020C YGR065C

YGR094W YGR096W YGR143W YGR147C YGR171C YGR185C

YGR247W YGR255C YGR264C YGR267C YGR286C YHR011W

YHR019C YHR020W YHR026W YHR039C-A YHR043C YHR044C

YHR067W YHR068W YHR091C YIL078W YIL134W YIL164C

YIL168W YJL068C YJL071W YJL101C YJL126W YJL134W

YJL139C YJR066W YKL055C YKL080W YKL132C YKL140W

Table S2.1 continued on next page...
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...Table S2.1 continuation from previous page.

YKL194C YKL203C YKR053C YKR061W YKR069W YKR093W

YLL012W YLL018C YLL048C YLL057C YLL061W YLR060W

YLR109W YLR138W YLR151C YLR172C YLR189C YLR195C

YLR201C YLR240W YLR260W YLR285W YLR299W YLR305C

YLR307W YLR308W YLR351C YLR372W YLR382C YLR447C

YML086C YML110C YMR013C YMR054W YMR088C YMR113W

YMR207C YMR226C YMR272C YMR293C YMR296C YMR319C

YNL003C YNL009W YNL029C YNL073W YNL192W YNL247W

YNL267W YNL292W YNR041C YNR056C YNR057C YNR058W

YOL033W YOL049W YOL096C YOL097C YOR040W YOR099W

YOR125C YOR168W YOR171C YOR176W YOR221C YOR222W

YOR241W YOR270C YOR278W YOR332W YOR335C YPL040C

YPL053C YPL057C YPL069C YPL097W YPL104W YPL134C

YPL160W YPL172C YPL212C YPL234C YPL244C YPL252C

YPL268W YPR033C YPR036W YPR047W YPR081C YPR128C

YPR159W
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True Status

Essential Non-Essential Total

FBA Prediction

Essential
tp1 fn1 tp1 + fn1

tp2 fn1 tp2 + fn2

Non-Essential
fp1 tn1 fp1 + tn1

fp2 tn2 fp2 + tn2

Total
tp1 + fp1 fn1 + tn1 N1

tp2 + fp2 fn2 + tn2 N2

Table S2.2: Comparison of the gene dispensability metrics in predicting gene es-
sentiality. This table is a combined contingency table for function-loss cost (blue
numbers) and gene-loss cost (red numbers). The TPR for predicting essential genes
in S. cerevisiae



43

Relative Frequency

S
pe

ar
m

an
's

 r
a

nk
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

 (
ρ

)

-0
.3

-0
.2

-0
.1

0
0
.1

0

0
.0
4

0
.0
8

0
.1
2

0
.1
6

..
. ..

.

O
R

A
N
D

..
.

A
N
D

F
ig

u
re

S
2.

7:
C

om
p
ar

is
on

of
h
y
b
ri

d
-l

os
s

co
st

2
to

th
e

ot
h
er

ge
n
e

d
is

p
en

sa
b
il
it

y
m

ea
su

re
s.

In
th

is
p
lo

t
a

th
ir

d
,

p
u
rp

le
fr

eq
u
en

cy
d
is

tr
ib

u
ti

on
re

p
re

se
n
ti

n
g

h
y
b
ri

d
-l

os
s

co
st

2
is

ov
er

la
ye

d
on

th
e

fr
eq

u
en

cy
d
is

tr
ib

u
ti

on
s

p
re

se
tn

ed
in

F
ig

u
re

2.
2.

T
h
e

im
ag

e-
b
as

ed
le

ge
n
d

cl
ar

ifi
es

h
ow

ex
ac

tl
y

th
e

co
st

of
ge

n
e

d
el

et
io

n
is

m
ea

su
re

d
in

ea
ch

of
th

e
th

re
e

G
P

R
sc

en
ar

io
s

d
em

on
st

ra
te

d
in

F
ig

u
re

2.
1.

It
ca

n
b

e
se

en
fr

om
th

is
d
ia

gr
am

th
at

h
y
b
ri

d
-l

os
s

co
st

2
is

n
ea

rl
y

id
en

ti
ca

l
to

ge
n
e-

lo
ss

co
st

,
ex

ce
p
t

th
at

th
e

co
st

of
an

is
o
en

zy
m

es
d
el

et
io

n
s

is
ca

lc
u
la

te
d

ac
co

rd
in

g
to

th
e

p
ri

n
ci

p
le

s
of

fu
n
ct

io
n
-l

os
s

co
st

.
T

h
e

co
st

of
d
el

et
io

n
w

h
ic

h
m

ap
s

on
e-

to
-o

n
e

on
to

an
en

zy
m

e,
w

h
ic

h
is

n
ot

re
p
re

se
n
te

d
in

th
es

e
d
ia

gr
am

s
is

th
e

sa
m

e
ac

ro
ss

al
l

m
et

ri
cs

.



44

Table S2.3: List of metabolites used to simulate media sets. The first row specifies
the reference minimal media set that was used to generate all other minimal media
sets. The next two rows, labeled “Carbons” and “Nitrogens”, list all possible carbon
and nitrogen sources that could substitute for D-glucose and ammonium (NH4+) in
the reference minimal media set. The final columns provide a complete listing of the
metabolites within the rich media sets tested.

Media Set Metabolites

Reference mini-

mal media

Glucose, ammonia, water, potassium, sodium, phosphate (Pi),

sulfate, sodium, iron

Carbons (1→3)-β-D-glcan, 2-hydroxybutyrate, 4-aminobutanoate, ac-

etate, acetaldehyde, adenosine, 2-oxoglutarate, L-alanine, S-

adenosyl-L-methionine, L-arginine, L-asparagine, L-aspartate,

citrate, cytidine, ethanol, fuctose, fumarate, D-galactose, D-

glucosamine 6-phosphate, L-glutamine, L-glutamate, glycine,

glycerol, guanosine, inosine, D-lactose, L-lactose, L-malate,

maltose, D-mannose, melibiose, oxaloacetate, ornithine, adeno-

sine 3’,5’-bisphosphate, L-proline, pyruvate, D-ribose, D-

sorbitol, L-serine, succinate, sucrose, L-threonine, trehalose,

uridine, xanthosine, D-xylose, xylitol

Table S2.3 continued on next page...
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...Table S2.3 continuation from previous page.

Nitrogens 4-aminobutanoate, adenine, adenosine, L-alanine, allantoin, al-

lantoate, S-adenosyl-L-methionine, L-arginine, L-asparagine,

L-aspartate, cytosine, cytidine, deoxycytidine, D-glucosamine

6-phosphate, L-glutamine, L-glutamate, glycine, guanosine,

guanine, L-isoleucine, L-leucine, ornithine, adenosine 3’,5’-

bisphosphate, L-phenylalanine, L-proline, putrescine, L-serine,

spermidine, spermine, L-threonine, L-tryptophan, urea, L-

valine

YPD Oxygen, glucose, ammonia, Pi, sulfate, all 20 amino

acids (L chiral configuration), potassium, sodium, biotin,

choline, riboflavin, thiamine, inositol, thymidine, nicotinate, 4-

aminobenzoate, (R)-pantothenate, pyridoxine, uracil

YPLactate Same as YPD, less glucose, plus D-/L-lactate

SD Oxygen, glucose, ammonia, Pi, sulfate, all 20 amino acids (L

chiral configuration), potassium, sodium, biotin, choline, inosi-

tol, uracil

SD-His Same as SD, less L-histidine
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Figure S2.8: Comparison of correctly predicted epistatic interactions per gene
(continuation from previous page). Each row represents one of the two gene
dispensability measures in comparison: either function-loss cost (top) or standard
gene-loss cost (bottom). Columns represent experimental classification of an
epistatic interaction: synergistic (left) or antagonistic (right). The total number
of these interactions are listed at the top just below the headers. The pie chart
in each quadrant represents the capacity of FBA to predict these interactions.
In each pie, the offset slices show the true positives, while the other two slices
show the false negatives (and which category they were incorrectly assigned).
The size of each chart is determined by the number of interactions in each whole
pie relative to the sum total number of interactions in all both pies in the row.



CHAPTER 3

ORGANIZATION PRINCIPLES IN GENETIC INTERACTION

NETWORKS

The majority of text in this chapter has been adapted from sections within:

Jacobs C, Segrè D. Organization principles in genetic inter-
action networks. In: Soyer OS, editor. Evolutionary systems
biology. No. 751 in Advances in Experimental Medicine and Bi-
ology. New York: Springer New York; 2012. p. 53–78. EISBN:
978-1-4614-3567-9

I wish to emphasize from the start that this chapter is not meant to be a com-

prehensive overview of the history and importance of the concept of epistasis in

biology. For this purpose, the reader could consult several recent review articles

[111, 39, 40, 112, 113] and books [32], in addition to classical textbooks and lit-

erature. Rather, I will focus on a specific, relatively recent direction, namely the

interplay between the concept of epistasis and the approaches and viewpoints of

systems biology.

In the upcoming sections, I will explore in detail some of the concepts I outlined in

the introductory section on epistasis. First, I will provide an overview of how epistasis

may substantially differ depending on the types of perturbations performed, on the

phenotype observed, and on the environmental conditions of the experiment. Next,

I will illustrate a standard definition of epistasis in systems biology and the ensuing

types of interactions typically encountered. I will spend then a good portion of this

chapter describing how the organization of epistatic interaction networks relates to

functional classification of cellular components, and how this organization varies as

one monitors different phenotypes, with potential evolutionary implications. Finally,
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drawing from recent reports of epistasis in laboratory evolution, I will discuss how

one might bridge the gap between fitness-level epistasis and epistasis at lower trait

levels, perhaps heading toward a global view of the genotype–phenotype mapping

and its implications to evolutionary and systems biology.

3.1 Epistasis and Systems Biology

While the central concept of epistasis in systems biology — perturbations combining

in unexpected ways — is common to several studies (Figure 3.1), the embedding of

this concept in specific biological systems can take many different shapes. First of

all, a genetic perturbation may range from a single nucleotide polymorphism (SNP)

in the coding or regulatory region of a gene, to a complete deletion of the gene, or its

substitution by a different allele. Also, one can focus on either naturally occurring

mutations (e.g., beneficial mutations in evolutionary experiments or natural genetic

variation in a population) or artificially imposed genetic modifications (such as the

systematic deletion of individual genes in an organism or engineered point mutations

within a protein [28]). In systems biology, epistasis is typically assessed concurrently

for multiple pairs of alleles or perturbations, or, ideally, for all possible perturba-

tions of a certain type in a given system, e.g., the deletion of all gene pairs in a

microbial species. Hence, the study of genetic interactions often entails performing

high-throughput experiments or computer simulations. In turn, the type of data

generated with these approaches can be effectively visualized in the form of a net-

work, where epistatic interactions of a certain type and/or above a certain threshold

can be represented as links between nodes associated with individual genes.

It is important to emphasize that the response of an organism to individual per-

turbations carries in itself abundant biological information, e.g., about essentiality of
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Figure 3.1: Highlights of some of the research areas and questions at the interface
between epistasis and systems biology (continued on next page).
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Figure 3.1: Highlights of some of the research areas and questions at the interface
between epistasis and systems biology (continuation from previous page): (a) The
distribution of genetic interactions between several alleles has been the subject of sub-
stantial research, largely due to its possible evolutionary implications. The definition
and quantification of non-epistatic (black), synergistic (red), and antagonistic (blue)
effects depends in general on the null model used (e.g. multiplicative), on the type of
mutations (beneficial/deleterious) and on cutoffs in the distribution. (b) Laboratory
evolution experiments allow one to identify beneficial mutations occurring during
adaptation. Epistasis (in this case antagonistic, or diminishing returns) can then be
estimated by measuring fitness for all possible combinations of alleles (represented
here as 3-letter strings). (c) Epistasis can be measured or predicted relative to any
measurable trait. Hence, one can talk about multi-phenotype epistatic networks.
Networks obtained relative to different phenotypes can show different patterns of
antagonistic (blue) and synergistic (red) interactions. (d) Epistatic networks can be
analyzed using unsupervised clustering into monochromatically interacting modules,
i.e. such that all edges between any two clusters are all of the same color. (e) Epista-
sis can be studied between drugs, in addition to genetic perturbations. Combinations
of drugs in different doses give rise to drug–drug interaction landscapes. (f) Epista-
sis can be measured through high throughput assays, such as epistatic miniarrays,
through which vast numbers of single- and double-deletion mutant strains can be
grown in parallel, and assayed for colony size (yellow dots). (g) The approach of
minimal cut sets (MCS) can be used to find sets (rows) of metabolic network reac-
tions (columns) whose concurrent deletion will cause a drastic change in a specific
metabolic flux phenotype, giving rise to what has been named deep epistasis
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genes under specific conditions [77, 76]. In order to estimate epistasis, it is necessary

to perform all single and all double perturbations of the alleles under study, so that

the deviation between the behavior expected from two individual perturbations and

the phenotype of the double perturbation can be appropriately quantified. In addi-

tion to the most elementary instance of epistasis — pair-wise interactions between

perturbations — one could quantify epistasis for all possible sets of three, four, or k

perturbations. Even for small genomes, though, this quickly expands to a massive

undertaking. For example, to test all the possible pair-wise interactions between

deletions of the approximately 6,275 genes in yeast, even assuming that a pair-wise

interaction is not dependent on the order of perturbation, one would need to carry

out over 19.5 million knockout experiments. Extending such a study to include all

possible triplets would need on the order of 1.0× 1011 knockout experiments.

Another crucial parameter in the definition and quantification of epistasis is the

phenotype relative to which an interaction is detected. Classical work on gene dele-

tions, as described below, focuses on growth rate phenotype, partly because it is easily

measurable, and partly because of its close relationship to evolutionary fitness in mi-

crobial systems. However, this choice is somehow arbitrary, and it is legitimate to ask

whether two genes interact epistatically relative to any alternative, non-fitness phe-

notype. Mapping genetic influences relative to alternative phenotypes is especially

important for the study of human disease, where the reduced fitness of an individual

is often not readily apparent and/or is directly relatable to the expression of the

alternative phenotype. For example, the aberrant phenotype of Alzheimer’s disease,

a neurodegenerative disease causing dementia, usually only manifests in the elderly,

thus its impact on human fitness is not readily apparent until beyond the ages of

reproduction. Nevertheless, Combarros et al. were able to statistically investigate
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100 potential gene-pair epistatic interactions related to sporadic (i.e., non-Mendelian)

Alzheimer’s, eventually finding that 27 of these interactions were significantly related

to Alzheimer’s, including a few pairs which helped reduce the risk of onset of the

disease [114]. Such studies may prove to be extremely important to human health

in the future, as most traits are not under the control of a single locus [115], and

epistatic interactions contributing to susceptibility and resistance seem ubiquitous

throughout human disease [116].

In addition to considering multiple perturbations and multiple phenotypes, one

can ask how epistasis varies for multiple environmental conditions. Though the

environmental impact on human disease phenotypes has been studied for a long

time [116, 117, 114], only recently has the idea of environment dependency migrated

to epistatic networks in computational simulations and other investigations [118, 76,

119]. Most work in this area focuses on how epistasis depends on only one of the

three key variables mentioned (perturbations, phenotype, and environment), largely

because of the combinatorial explosion of possibilities, though some examples exist

of studies that address the interplay between different variables, e.g., perturbations

and environment [120], or perturbations and phenotypes [121]. The evolutionary

implications of the environmental dependence of mutational effects and epistasis

are in themselves a topic of high importance, recently addressed in RNA enzyme

adaptation experiments [122].

3.1.1 Measuring and Predicting Epistasis

For the majority of the lifetime of the term, epistasis was quantitatively deduced by

deviations from the expected relative frequencies of phenotype expression [40, 39,

28, 112]. A gene X would be epistatic to a gene Y if, the presence of the dominant
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allele of X (X written in italics) masked the effect of both alleles of gene Y (Y / y),

that is, the phenotypic expression of either Y or y is not observable in the presence

of dominant allele X, but is observable with allele x (xx only, in diploid organisms).

This was the definition of an epistatic interaction first described by Bateson and

Mendel [123]. Though Bateson’s definition of “epistatic” was unidirectional, it was

soon after modified slightly, to lose this constraint, such that two genes could be

epistatic to each other [39].

For the purpose of quantitative assessment and modeling of epistasis, it is essential

to define epistasis in a more formal way, beyond the identification of phenotype

masking effects. In particular, this is important for many modeling applications,

including epistasis in human disease where different alleles often lead not directly

to disease or immunity, but rather to increased susceptibility or resistance to the

disease. This requires agreeing on a definition of what it means for a gene to have

an effect on a particular trait and on assumptions about gene independence.

For quantitative traits, various mathematical/statistical models of epistasis have

been developed [124, 112]. As mentioned above, I will focus here on recent defini-

tions used in functional genomics, rather than other classical definitions found in the

population genetics literature. Epistasis, in this context, can be defined as the devi-

ation from a null model, corresponding to a multiplicative law for the combination

of individual effects. In mathematical terms words, epistasis is defined as:

εij = Wij −Wi ·Wj (3.1)

where Wij is a measure of the phenotype under consideration, typically fitness, and

the null expectation is then given by Wi ·Wj. All values are expressed assuming a

normalized wild-type fitness W0 = 1. A number of alternative metrics for measuring
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have been used throughout the literature, including (most notably) additive models

where the null expectation matches (Wi +Wj − 1), models of “minimal mathemati-

cal function” where the expectation of the double mutant is equal to the minimally

“fit” of the single mutants, according to some measure (usually fitness) [124, 112],

as well as many variations on the above, including heterogeneity models [39], and

scaled measures of ε [110] to name only a couple of examples (more examples may

be found in [112]).

An epistatic interaction may be classified as either synergistic or antagonistic.

Synergistic epistasis (sometimes aggravating epistasis) describes an interaction which

is more severe, i.e., larger in magnitude, than expected. For a combination of bene-

ficial mutations, this would mean that ε has a positive sign, i.e., the double mutant

is more fit than expected. However, combinations of deleterious mutations would

have negative ε: the double mutant is less fit than expected. Antagonistic epistasis

(sometimes buffering epistasis) describes the diminished effects of a genetic inter-

action, with an opposite trend relative to synergistic effects. One should be aware

that the terms positive and negative epistasis can be used with different meanings in

the literature. In some papers (mainly dealing with deleterious mutations), positive

and negative are used to indicate respectively antagonistic and synergistic epistasis

[36, 125], while others (considering mostly beneficial mutations) use positive and

negative in the opposite way [126, 127]. In other works positive vs. negative epista-

sis refers to the sign of ε, as defined in Equation 3.1, where negative ε would imply

antagonistic epistasis between beneficial mutations and synergistic epistasis between

deleterious ones. Due to this potential ambiguity, I will avoid as much as possible

the use of “positive” or “negative” epistasis throughout this chapter.

In addition to synergistic and antagonistic epistasis, it is possible to encounter
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cases in which not only the magnitude, but the sign (beneficial/deleterious) of a

mutation changes based on the genetic background. For example, one could have

deleterious effects for individual mutations (Wi < W0 , Wj < W0), but a beneficial

effect for the double mutation (Wij > W0). This type of epistasis, which has been

named sign epistasis [34], may play a particularly significant role in adaptation, be-

cause it is a necessary precondition to the multi-peaked fitness landscapes [33], which

force organisms to potentially go through decreased fitness (or wait for alternative

phenotype-altering environmental conditions) in order to reach higher peaks.

The availability of robotics and parallelization of experimental assays has made

it possible to measure the phenotypic effects for even larger numbers of perturba-

tions. Charles Boone’s group began the daunting task of mapping complete epistatic

interaction networks for an organism by focusing on a particular form of extreme

synergistic deleterious epistasis known as synthetic sick/lethal, or SSL in the model

organism Saccharomyces cerevisiae (baker’s yeast) [31]. SSL double mutants are

dead/nongrowing mutants resulting from the crossing of relatively healthy single

mutants. Tong et al. introduced a new experimental methodology called the syn-

thetic genetic array (SGA) to test SSL double mutants in a high-throughput manner

in their yeast strains [29, 30]. The SGA method was later expanded upon to form

E-MAPs (Figure 3.1F), epistatic miniarray profiles [41]. E-MAPs are advantageous

because they provide quantitative data on growth rate differences (based on colony

size), which in turn allow both antagonistic and synergistic interactions to be ob-

served, using a metric analogous to Equation 3.1.

In parallel to experimental high-throughput technologies for generating genenetic

modifications and measuring their phenotypic impact, computational biology has

been used to explore the patterns and nature of such perturbations using large-scale
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models of biological systems. Often, these endeavors venture into in silico studies at

the edge of, or beyond, experimental feasibility. A particular example of this type

of computational model, which has been used extensively for precisely these types of

simulated experiments is provided in Subsection 1.2.1 — flux balance analysis (FBA),

a mathematical model of organism metabolism. I will not reiterate the specific history

and applications of FBA here, but I do wish to emphasize its particular importance

as an efficient computational tool for perfoming large-scale perturbation studies in

metabolism such as with the generation of epistatic interaction maps [110, 128, 129,

121].

It is important to mention that while both experimental and computational stud-

ies can evaluate growth rates and epistasis based on the multiplicative null model,

a potentially thorny issue is the definition of the point beyond which a genetic in-

teraction deviates far enough from the null model to be classified as an epistatic

interaction. I will not delve into this issue in this chapter, but point the reader to

relevant discussions [124, 112].

3.2 Modularity in Interaction Networks

As is often the case, the analysis of complex biological networks poses difficult com-

putational and interpretational challenges. Genetic networks are no exception: they

form graphs containing hundreds or thousands of nodes (genes) and interactions

(epistatic links). One useful approach for understanding the biological significance of

complex networks has been to organize the nodes into appropriately defined modules

— self-contained units sharing common attributes — which underlie the functional

hierarchies of biology [130]. Note that a distinction has been suggested between

pathways, a (usually linear) chain of information flow through a network, and mod-
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ules, which do not necessarily imply a notion of information flow [131]. Despite

the name, genetic interactions are not real physical interactions between genes, but

rather conceptual links related to the way the system responds to their joint per-

turbation. Hence, according to the above definition, we expect genetic networks to

form modules rather than pathways.

Functional gene modules (or simply modules) in epistatic networks arise from

the idea that nodes (i.e. genes) have some functional relationship to one another

not only if they are directly interacting, but also if their patterns of interactions

with other genes display certain regularities (Figure 3.2), e.g. if they share common

neighbors. In this sense, epistatic networks can be clustered into modules using

criteria and approaches similar to those implemented for clustering protein–protein

interaction networks [132, 133]. Most notably, modules may be defined either as

a result of enrichment of edges between the member nodes (within-module) or as

a consequence of shared interactions between member nodes and nodes of distant

modules (between-module).

Based on the two principles of within-group and between-group clustering, several

researchers have proposed clustering schemes and applied them to different datasets

in order to understand the nature of modules in epistatic networks. The SSL inter-

action networks generated by Tong et al. were first clustered within-group by the

overlap of interactions between the first and second gene deletions [29, 30]. Segrè et al.

found that FBA-generated epistasis data formed hierarchies of pathway-related mod-

ules when clustered with respect to their between-group connectivity and monochro-

maticity, a concept will be explored further in the next section [110]. Costanzo et

al. expanded the work of the previous two studies by describing multiple types of

monochromaticity in the largest yeast epistasis dataset available so far [31, 134].
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M7

M4 M5 M6

M1 M2 M3

Figure 3.2: From metabolic pathways to epistatic modules. In this toy example
we show how genetic interaction modules (bottom) can be related to a segment of
a typical metabolic network (top), where either of two precursor metabolites (M1
and M4), but not both, are required for the production of a subsequent essential
metabolite (M7). Interactions within either of the parallel pathways are antago-
nistic (blue), because the loss of a single edge along the pathway is sufficient for
the entire pathway to become defunct, thus subsequent deletions have no further
impact on fitness. Interactions between pathways are synergistic (red) because
even though single deletions in either pathway may be only mildly deleterious,
the loss of both genes is lethal. Given that all edges between modules are of
a single color, this type of hierarchical organization is named “monochromatic
clustering” (see the section on monochromaticity for more details).
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Lehár et al. investigated the role of monochromaticity as an agent for selectivity

within drug–drug interaction networks [135]. Guo et al. combined previous data

on gene–gene interactions with gene–environment and gene–drug interaction data in

their description of a recursive expectation-maximization clustering algorithm they

ultimately use as a hypothesis-generating tool for investigations into the nature of

robustness in cellular processes [136]. In this section, we will first describe in some

detail the idea of monochromaticity in genetic networks, and then summarize some

large-scale epistasis measurement efforts that corroborated the relevance and utility

of this concept.

3.2.1 Hierarchies of Monochromatic Modules

One of the most surprising outcomes of the analysis of the genetic interaction net-

works predicted with flux balance modeling for yeast metabolism was the discovery

of monochromaticity [110] (see example in Figure 3.2). To understand the concept

of monochromaticity, it is useful to recall some aspects of how epistatic interaction

networks are computed through FBA. A very general property of the solutions to

an FBA problem (upon maximization of the biomass production flux) is that any

new constraint can only decrease the predicted growth rate. Hence, in FBA cal-

culations, all epistatic effects occur necessarily among deleterious mutations, and

synergism/antagonism refers to growth rates that are respectively smaller or larger

than expected based on individual perturbations. Hence, if we draw links between

epistatic gene pairs in a metabolic network and color-code them according to their

class (synergistic/antagonistic), the result is a network connected by edges of two

colors (conventionally red for synergistic, green for antagonistic). Upon performing

a standard agglomerative hierarchical clustering algorithm, the color of the edges
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can be taken into account by requiring that, at every step in the clustering process,

two genes (or sets of genes) can combine into a new set only if they do not interact

in different colors with any other node or sets of nodes (Figure 3.3). If this property

was satisfied for a genetic interaction network, this would imply that, at any level in

the hierarchy, modules would interact with each other with only one color. Indeed it

was found that for the metabolic network of S. cerevisiae [65], the FBA-computed

genetic network satisfies the property of monochromatic clusterability [110]. This

coherence (or monochromaticity) of interactions between modules allows one to de-

fine epistasis as a property of modules, in addition to a property of genes. Modules

in metabolic networks display stronger coherent types when epistatic interactions

match well against known metabolic pathways. For example, numerous genes be-

longing to the fermentatory pathway interact synergistically with genes belonging

to respiration. The interpretation, in this case, is that these two major energy-

transducing pathways play related functional roles and cannot be simultaneously

impaired without serious consequences for the cell.

It is interesting to observe that the monochromatic clusterability of the FBA-

produced genetic network is not easily satisfied by random networks. In fact, the

odds that a random network would be monochromatically clusterable are extremely

small. In a small network, it is enough to swap a single edge color to change a

monochromatically clusterable network into a non-clusterable network.

From this example of hierarchical modularity in yeast metabolism, we can see

how system level properties may arise naturally from interactions at the gene level,

which will be an important concept in the next sections.
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3.2.2 Modularity and Monochromaticity in Experimental Data

While FBA-based phenotype predictions for single gene deletions can reach sur-

prising accuracy, it is not obvious, a priori, whether properties of genetic networks

discovered in silico should be expected to hold also for experimentally measured net-

works. In other words, is monochromatic modularity simply a theoretical construct?

The idea that clustering methods would be useful to define modules of functionally

related genes was already present in the early work on mapping SSL interactions

in yeast [29]. The subsequent papers on SGA analysis and E-MAPs by Tong et al.

[30], Schuldiner et al. [41], and Collins et al. [137] had increased focus on clustering

the interaction networks resultant from their high-throughput experiments. These

works mostly focused on clustering around enrichment of epistatic interactions within

group. Beginning with the E-MAP data, the Boone and Weissmann groups and oth-

ers have increasingly examined the role of between-group interactions, including a

search for monochromaticity. Constazo et al. observed monochromatic modules of

interactions across several cellular processes [31, 134], e.g., metabolism and posttran-

scriptional modifications, and based on their observations, were able to suggest novel

functional annotations for some genes (e.g., for PAR32 and SGT2) and to explain

the relationship between the urmylation pathway (posttranslational modification)

and elongator complex (transcription). More recently, Szappanos et al. imposed

novel experimental knowledge on-top of FBA-derived epistatic interaction predic-

tions, whereupon they found that gene dispensability can be related to degree of

synergistic deleterious interactions participated in a property which itself is driven

by pleiotropy [107].

The broad concept of monochromatic clustering of genetic interactions is becom-

ing increasingly valuable as a tool for refining our understanding of cellular organiza-
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tion. For example, Bandyopadhyay et al. combined E-MAP data and computational

predictions of epistasis with TAP-MS (tandem affinity purification followed by mass

spectrometry) data, identifying proteins acting within complexes [138]. By doing so

they were able to improve predictions of functionally related proteins and protein

subunits, which they used to construct a functional map of 91 protein complexes

involved in chromosomal architecture. This map led to the discovery of several pre-

viously uncharacterized complexes and complex subunits.

Hierarchical modularity has also been applied to classifying drug–drug interac-

tions. Yeh et al. have applied the concept of hierarchical monochromatic clustering

to epistatic networks between pairs of drugs [43, 139]. These clusters also map well

into classes based on their putative functions, with the exception of drugs affecting

the two subunits of ribosomes, which form two classes of protein synthesis inhibitors

(PSIs). The separation of PSIs between functional classes was not something which

had been noted before, and indeed many of the class–class interactions between

drugs had not been well characterized. In related drug–drug interaction screens and

clustering, Lehár et al. showed how some combinations of drugs may increase their

selectivity [135], a reversal of what is commonly feared by prescribing multiple drugs.

These examples demonstrate how epistasis constitutes an organizing principle

for the hierarchy of biological networks, with important practical applications. A

fascinating, mostly unanswered question is how evolutionary adaptation gives rise

to this unique architecture, and — conversely — whether and how this hierarchical

modular organization imposes constraints on evolutionary trajectories.
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3.3 Epistasis and Robustness Relative to Multiple Quantitative Traits

Epistasis, in the context of systems biology and evolutionary biology of populations,

is often interpreted as the mutual dependence of genetic modifications in their impact

on fitness. Interestingly, however, in other contexts — most notably in the study

of human disease — researchers care about epistasis insofar as it affects alternative

(i.e. non-fitness) measurable traits, such as the predisposition to a genetic disease

[117, 140], or the level of metabolites in the blood, bone, etc. [141]. The effect

of epistasis on non-fitness phenotypes plays also an important role in metabolic

engineering, where the concurrent tinkering with multiple genes is aimed at increasing

a practically important phenotype, typically the production of specific industrially

or medically important molecules [142, 143, 144]. Might non-fitness phenotypes play

an important role also in systems and evolutionary biology?

Genes, and thus epistasis, ultimately act upon fitness by acting on the inter-

mediate phenotypes which comprise fitness. Hence, there are several reasons why

alternative phenotypes are relevant to systems and evolutionary biology: (1) Even

if one observes epistasis relative to fitness, it is unclear whether this is the result of

epistasis relative to some specific trait (e.g. nutrient uptake rate) propagating all the

way to fitness, or the outcome of interference amongst several traits; (2) Knowing

that two genes are interacting relative to fitness does not provide much information

on the underlying molecular mechanism for this interaction; (3) The existence of

epistasis relative to various intracellular traits (e.g. size of a given metabolite pool)

would imply that simultaneous changes in multiple genes could nonlinearly alter cel-

lular dynamics, posing new questions on the evolutionary and regulatory constraints

on cellular organization.

Research on polygenic quantitative trait loci (QTLs) has been concerned with
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epistasis relative to non-fitness phenotypes for many years. Such alternative pheno-

types may include any quantifiable trait, including metabolic abundance [145], pen-

etrance for disease [146, 147], and several plant-related traits including the two just

mentioned [148, 149, 150]. Most relevant to systems biology, largely because of the

high-throughput nature, are gene expression QTLs, also referred to as eQTLs. Map-

ping eQTLs in clonal yeast populations has removed some of the complexity in iden-

tifying causal loci, allowing Brem et al. to trace the global expression patterns of over

1,500 yeast genes to causative loci [151, 115]. Epistasis plays a major role in this study

as we will see below in the hyperref[subsection:epistasis:phenotyped:robustness]section

on on robustness.

Taking a system-level perspective, gene expression quantitative traits are one of

many possible phenotypes quantitatively measurable in the cell. However, outside of

fitness and expression, large datasets suitable for assessing the degree and nature of

epistasis relative to multiple quantitative phenotypes are not readily available. This

is why genome-scale models of biological networks can be helpful for a preliminary

assessment of such multi-phenotype maps.

3.3.1 Phenotype-Specific Epistasis in Metabolic Networks

In flux balance modeling, each calculation produces, in addition to growth rate, a

prediction of all the metabolic fluxes in the cell. This fact offers the opportunity to

utilize these fluxes as quantitative traits relative to which epistasis can be estimated.

Snitkin and Segrè used flux balance modeling (specifically, MOMA) to compute the

entire genetic interaction map for all double mutants in the yeast model with respect

to all metabolic flux phenotypes [121]. As before, interactions could be largely clas-

sified into antagonistic and synergistic relationships between gene pairs. It is worth
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mentioning that, in this case, sign epistasis could occur as well, due to the fact that

flux phenotypes may increase or decrease upon perturbations, whereas, in growth-

optimized FBA simulations, the growth rate can only decrease upon perturbation.

A key question one can ask about these genetic interaction networks is how similar

their connectivity is relative to different flux phenotypes. The model calculations

predict that these networks can be quite different, reflecting the fact that different

fluxes highlight different regions of the metabolic chart (see below). This can also be

expressed in terms of the number of new interactions that each phenotype highlights

relative to other phenotypes. Across all phenotypes, more than 2,200 unique epistatic

interactions were observed, far more than can be found for fitness or any of the

alternative phenotypes alone (see Figure 4 in [121]). Approximately 80 out of 300

different phenotypes are required to capture all unique epistatic interactions. One

should keep in mind that these numbers depend on the statistical cutoff used to

determine epistasis, and should not be interpreted necessarily as universal quantities.

A specific consequence of the diversity of epistatic maps relative to different phe-

notypes is that genes can change the sign of interaction depending on the phenotype

monitored. Similar to Equation 3.1, for a phenotype k, epistasis can be defined as

follows:

εkij = W k
ij −W k

i ·W k
j (3.2)

The phenotype-dependence of the sign of epistasis could then be expressed by

saying that a pair of gene knockouts (i, j) could have synergistic epistasis relative

to phenotypes {k1, k2, . . . , kq}, and antagonistic epistasis relative to phenotypes

{kq+1, kq+2, . . . , kh}. This is indeed abundantly observed in the computationally

generated flux balance predictions (see Figure 3.3 in [121]). These predicted mixed

interactions indicate that epistasis is not an absolute characteristic of gene-pairs,
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but should be contextualized by the phenotype being examined. To our knowledge

specific instances of this phenomenon have not been documented experimentally yet.

Since several metabolic fluxes (in particular uptake and secretion rates) are experi-

mentally measurable, it should be possible to directly test many of these predictions

in the future.

So far, we have mostly discussed the connectivity and phenotype-dependent sign

of epistasis in multi-phenotype interaction networks. Next, we want to illustrate the

biological insight that multiple phenotype maps can provide. One concept emerging

from flux balance predictions of these maps is that different phenotypic readouts

provide useful mechanistic insight about the interacting genes or processes, much

more than growth rate alone would do. While in growth-based interaction maps the

only way to relate genes to function is through clustering and modular organiza-

tion (two genes interacting may be inferred to have related functions, but there is

no information on what that function is), in multi-phenotype maps, knowing that

two gene interact relative to a specific metabolic phenotype is in itself informative

about the functional relationship between those genes. Two examples of predicted

epistatic interactions not visible relative to growth rate, reported by Snitkin et al.,

illustrate this point. The first example, a synergistic relationship between serine

biosynthesis and the genes comprising electron transport chain complex II, results in

unexpectedly large secretions of succinate (which in this case can be considered as

the observed phenotype). This occurs because the alternate predicted pathway for

serine biosynthesis includes succinate as an additional byproduct. A further synergis-

tic relationship between glutamate synthase and the electron transport chain results

in surprisingly large secretions of glycerol. Hence, similar to monochromatic mod-

ules [110], and to environment-dependent perturbations [108], also multi-phenotype
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interaction maps can in principle help annotate genes with unknown functions, and

infer relationships between processes.

The predicted existence of several epistatic interactions between different cellu-

lar processes relative to a multitude of metabolic phenotypes is yet to be directly

tested experimentally. However, it was found that genes highly interacting with

other genes through antagonistic interactions relative to multiple phenotypes tend

to evolve slower, providing indirect evidence for the value of these predictions, and

the importance of these networks from the adaptive standpoint [121].

3.3.2 Multi-Phenotype k-Robustness in Metabolism

One of the consequences of epistasis measured across multiple traits is evolved robust-

ness of cellular systems due to availability of alternative routes to many destinations.

Here we use the term robustness to indicate the constancy of a particular (quanti-

tative) trait in the face of large numbers of genetic perturbations. For example, one

can think of the entire metabolic network of yeast as being robust under rich growth

medium, because less than 20% of genes are essential for growth in YPD (yeast pep-

tone dextrose, a common growth medium) [17]. Such robustness is common across

several cellular subsystems [152, 153, 154, 155, 128]. It has been argued that this

type of robustness may be largely due to the existence of modules whose genes are

linked to each other by synergistic (i.e. aggravating) interactions [80, 155].

While throughout this chapter we have so far only dealt with pair-wise genetic

interactions, it has been shown that it is not uncommon for a larger number of genes

to be engaged in a single k-wise epistatic relationship. The manifestation of this

phenomenon, also known as deep epistasis, gives rise to k-robustness, where multiple

genes have to be deleted for a phenotypic change to be detectable [80]. One of the



70

problems with investigating k-robustness, is that one needs to perform all combi-

nations of k knockouts for large networks per phenotype examined. Although flux

balance modeling is very useful in this context, performing exhaustive calculations

beyond k = 4 becomes prohibitive, requiring other types of approaches to reveal the

abundant k-robustness shown to exist above this k value [80, 128, 129]. In particular,

the identification of k-robust models for larger values of k has been approached using

minimal cut sets (MCSs, Figure 3.1G). The idea of MCSs is to search efficiently for

gene sets of arbitrary size k whose removal will result in phenotype loss, while the

removal of any subset of such set would not. Initially applied to small biochemical

networks [156], this approach has been adapted to genome-scale metabolic networks

of E. coli [128] and human [129], relative to several different metabolic flux pheno-

types. Notably, in these investigations, and in similar studies using in silico yeast

models [80], the vast majority of k-robust modules discovered are of the highest car-

dinality investigated: for example, in the work of Imielinski and Belta [129], over

80% of (approximately 33,000 human) essential sets contain 9–10 redundant genes.

This general trend of several traits having a high cardinality of epistasis matches well

to experimental data in yeast [151, 115].

Deep epistasis and MCSs are another way in which modularity in genetic networks

can be used to infer the function of genes where single knockouts fail [157, 158]. The

removal of the an individual gene from a k-robust module provides context to the role

that gene plays in the overall network, both because of the functional annotation of

the other k−1 genes within the same module, and because the phenotype relative to

which it was observed is potentially informative. Another practical use proposed for

deep epistasis and robustness measures is the prediction of gene targets in pathogens,

especially multidrug resistant bacteria [159].
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3.4 Epistasis as an Organizing Principle

Computational predictions and analyses of epistasis using genome-scale models of

metabolism, as well as high throughput experiments, such as SGA and E-MAP have

provided snapshots of specific features of genetic interaction networks: hierarchical

modularity, monochromaticity, phenotype-dependence, k-robustness, just to mention

the ones discussed at length throughout this chapter. Several fundamental questions,

however, are still open. One very important challenge is the pursuit of further un-

derstanding of the role of epistasis in evolution. While a lot of the high throughput

work has been focused on the effects of epistasis between gene deletions, evolution

typically involves many different scales of perturbations, from single base mutations,

to whole chromosome duplication events. Another related challenge is piecing to-

gether these snapshots into a coherent view of the genotype–phenotype map, and

on how evolution may have influenced (and be influenced by) its architecture and

nonlinearities. In this section we will summarize some recent evidence of epistasis

in evolutionary adaptation experiments, and describe how some of the conclusions

drawn from these studies may suggest avenues for building an integrated model of

epistasis in biological networks.

3.4.1 Epistasis in Evolutionary Adaptation

The recent availability of inexpensive sequencing technologies makes it possible to

explore the outcome of adaptation in natural or laboratory evolution experiments.

Several authors have now documented in detail the occurrence of epistasis in different

settings, ranging from RNA viruses [160, 161], ribozymes [162, 122], to individual

proteins [163, 164][9, 111] and whole organisms [165, 166, 127, 167].

Two recent adaptive evolution experiments using Methylobacterium extorquens
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and E. coli demonstrated the emergence of antagonistic (diminishing returns) epis-

tasis between beneficial mutations arising during laboratory evolution [127, 167]. One

of these two works, by Chou et al., analyzed evolution of a metabolically impaired

M. extorquens strain, and identified four major beneficial mutations that provided

improved fitness in the evolved strain. By introducing all possible combinations of

beneficial mutations onto the ancestor’s background and measuring fitness of the en-

suing strains, Chou et al. were able to obtain a complete map of the fitness increase

of each mutation on the any background of any possible combination of the other

alleles [167]. This analysis highlighted an overall general trend of diminishing returns

epistasis, a form of antagonistic epistasis whereby the fitness advantage of a bene-

ficial mutation decreases on top of successively more fit backgrounds (Figure 3.1b),

which is well in agreement with analogous studies [168, 169, 127]. An intriguing the-

oretical consideration that emerged from this study is that such diminishing returns

epistasis at the level of fitness could be explained by expressing fitness (f = W growth)

as the difference between two other traits, a benefit (b) and a cost (c) [170]. For the

unperturbed system, fitness is then expressed as:

f0 = b0 − c0 (3.3)

The decomposition of fitness into benefit and cost in the Chou et al. system was

largely motivated by the observation that changes in enzyme levels could tune fluxes

affecting metabolic efficiency (benefit), and also alter the degree of morphological

defects caused by excessive protein expression (cost). The model proposed to explain

the diminishing returns trend assumes that any given mutation may independently

alter both the benefit and the cost. If, for a mutation i the benefit and the cost are

respectively modified by coefficients θi and λi (irrespective of previous mutations),
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then fitness upon an arbitrary number n of mutations can be expressed through the

following generalized equation:

fi,j,...,n = θiθj . . . θnb0 − λiλj . . . λnc0 (3.4)

Once b0, c0, and each θ and λ are inferred from the experimental data, this Equa-

tion 3.3 provides an excellent fit to all the fitness values for all possible combinations

of mutations, and recapitulates the experimentally observed diminishing returns ef-

fect. Importantly, this antagonistic epistasis emerges at the level of fitness, despite

the assumption that, relative to the benefit and cost traits, mutations combine mul-

tiplicatively, i.e. non-epistatically. This result underpins a fundamental property of

epistatic networks, i.e. that epistasis at “high-order” phenotypes could result natu-

rally from the interrelationship between two “low-order” phenotypes, in turn affected

non-epistatically by multiple mutations [171].

While in the work by Chou et al. the decomposition of fitness into simpler

traits takes the specific shape of a benefit-cost function, one should not necessarily

expect that the relationships between different phenotypic traits will be obvious or

intuitive. However, as explored next, we maintain that a hierarchical relationship

between traits, and the emergence of epistasis when transitioning from one level of

description to the one above, fit nicely with several other observations on genetic

networks discussed in the previous sections.

3.4.2 Towards a Hierarchical Genotype–Phenotype Map

Three main principles of organization can be distilled out of the above discussions: (i)

Monochromaticity: genetic interactions within and between modules tend to display

coherent patterns of synergistic/antagonistic links; (ii) Phenotype-specificity: the
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same pair of genes may interact with different types of interactions depending on the

phenotype or trait relative to which epistasis is evaluated; (iii) Emergence of epistasis

from coupling of traits: genes may display no epistasis relative to two simple traits,

but could become interacting relative to a more complex trait that can be expressed

as a function of the simpler traits [171]. In this final subsection we ask whether these

three principles fit into a coherent view of how epistatic networks are organized.

In Figure 3.4, we propose a possible connection between these three principles

that we think captures some important aspects of genetic network organization.

The two bottom panels of Figure 3.4 display two very different genetic interaction

networks resulting from measuring the two phenotypes X and Y, highlighting the

phenotype-specificity of epistasis (principle (ii)). Fitness in this toy model is an

arbitrary function f of the two traits X and Y. Principle (iii) suggests that it is

possible for two genes to have no interaction relative to individual traits (e.g. two

genes from sets SX and SY), but become epistatic relative to fitness, due to the

dependence of fitness on such traits, giving rise to the links between sets in the

top panel. In general, the transition from low to high level could also cause the

disappearance of specific epistatic links. Finally, genes that belong to sets highlighted

by specific phenotypes in the lower levels will tend to cluster monochromatically

(principle (i)), i.e. interact in a coherent fashion with genes that were responsive

relative to a different phenotype.
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Figure 3.4: Organizing principles of epistasis (continued on next page).
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Figure 3.4: Organizing principles of epistasis (continuation from previous page).
Each panel represents the complete epistasis interaction map for a toy genome
relative to the phenotypes X, Y and F. The set of genes SX is associated with
phenotype X and similarly SY are those genes associated with phenotype Y.
The fitness phenotype, F, is dependent on the phenotypes X and Y through a
function F = f(X,Y). The genetic interaction map of F includes monochromatic
epistasis between the sets SX and SY , which could not be detected relative to
either X or Y, and informs the functional relationship between X and Y.



CHAPTER 4

CONCLUSIONS AND OUTLOOK

4.1 Review and Additional Discussion Points

The major work of this dissertation focused on the implications of gene deletion stud-

ies in the model organism Saccharomyces cerevisiae. I used computational biology

methods to systematically estimate the cost effect of a gene loss event for both single

gene deletion and double gene deletion studies in yeast metabolism. I developed a

new quantitative measure of a gene loss event and showed that this new metric was

capable of bridging a conceptual gap between the functional importance of a gene

“here and now” and the same gene’s historical importance. I then demonstrated how

this metric could be expanded beyond studies in a single gene to the study of epistasis

between two genes. Finally, I explored the implications of the study epistatic inter-

actions in systems biology in general, and distilled from this examination a general

formulation for epistasis as an organizing principle in biological networks.

4.1.1 Open Questions in the Domain of Epistasis

The subtle complexity of the multilevel relationships between different proposed or-

ganizing principles of genetic networks leaves a lot of questions unanswered. First,

much of the evidence for these principles is based on partially tested computational

predictions. Known limitations of flux balance methods may influence our perspec-

tive of epistasis between metabolic enzyme genes. For example, predictions of phe-

notypic traits and genetic interactions may be affected by the choice of the objective

function [172, 76], by the presence of alternative optima in flux balance calculations
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[71, 173] or by the lack of explicit regulatory dynamics. Hence, we still do not re-

ally know how pervasive epistasis may end up being in real metabolic networks when

measured relative to different phenotypes. Given that several genetic diseases involve

the manifestation of aberrant phenotypes (typically other than fitness), the preva-

lence of epistasis relative to such phenotype could have important consequences on

the study of human biology and diseases. In addition to the potential relevance of

epistasis in genetic studies, a notable recent example of how epistasis can play a role

in fighting diseases is the model-mediated discovery of a cancer-specific gene deletion,

whose synthetic lethal interaction with a second perturbation makes it possible to

selectively target cancer cells without affecting normal ones [174, 175].

Second, if indeed so many internal degrees of freedom of a cell can be nonlinearly

affected by multiple minor-effect perturbation of other variables, how does the cell

cope? Have cells evolved, as part of their regulatory wiring, the capacity to dampen

these effects, avoiding uncontrollable chaos? Or, could biological systems have em-

braced these epistatic effects, and learned to master them in order to control some

portions of the network through subtle manipulation of more easily tunable param-

eters or genes? Third, it will be interesting to think whether it is possible to explain

the whole hierarchy of cellular functions through multi-level traits connected by a

complex, but structured web of genetic links. The existence of k-robustness points

to the necessity of expanding genetic interaction networks from pair-wise graphs

to more complex hypergraphs [176]. Particularly important will be to try and un-

derstand how these networks have evolved, and, in turn, how they affect the rate

and possibilities of evolutionary adaptation. For example, it would be interesting

to explore the relationship between the robustness of metabolism relative to genetic

perturbations and its robustness upon changes in environmental parameters, such as
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the availability of different nutrients. It is possible that the evolution of a network

towards robustness to environmental uncertainty also provides robustness to single

and multiple genetic perturbations under certain conditions.

Future research on epistasis will address some of the issues mentioned above

through increased computational power and enhanced high-throughput experimental

technologies. However, novel insights in the study of genetic interaction networks

will likely stem from newly rising research directions in systems biology as well.

For example, it will be interesting to explore whether nonlinearities detected at the

level of population averages hold also at the single cell level, where gene expression

and metabolism can be modulated by stochastic effects and cell individuality. From

the mathematical perspective, several groups have started looking beyond current

genome scale modeling methods, trying to incorporate thermodynamic constraints

(e.g. energy balance analysis [177]), or formulate detailed mass balance models that

take explicitly into account all possible macromolecules. Finally, both in the study

of human biology and of microbial dynamics and evolution, we expect that a lot of

new insight will come from studying the interplay of multiple cell types and microbial

species. There is no reason why the synergistic and antagonistic interactions observed

between genes and modules should not extend beyond the whole organism level.

Stoichiometric flux balance models are already being extended from genome-scale

to whole organism [178] and ecosystem level [97, 179, 180], suggesting indeed that

metabolic cross-talk may play an important role in the evolution and dynamics of

microbial diversity and multicellularity.
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4.2 Future Directions and Prospects

4.2.1 The Future Fuzzification of Flux Balance Analysis

In the discussion section at end of the second chapter, I highlighted a particular issue

within the GPR mapping of flux balance models, namely the Boolean logic that gov-

erns the gene-to-reaction map (GPR set). This simplified logic, specifically the OR

gates used to approximate isoenzymatic function, essentially lay at the root of the

major problem that was addressed by the function-loss cost metric in that chapter.

However, as I noted in that discussion, my proposed solution essentially overcor-

rects for this issue, effectively ignoring OR gates (isoenzymatic activity) entirely.

Unfortunately, the issue is not capable of being fixed by simply updating the each

isoenzymatic set to use the most appropriate logical function. The reality of when

and how isoenzymes are capable of providing backup for one another is a complex

function that depends on many complicating factors, including the extent of their

functional overlap, the current cellular regulatory schema, and even environmental

condition. This incredible complexity makes it difficult to assign any single Boolean

logic function to a set of isoenzymes to describe their behaviors, because even a “best

fit” approach will be in error a large percentage of the time. Even if one were to step

beyond the GPR set, to my knowledge there does not currently exist a formulation

of FBA which is capable of dealing with all of these complexities in a satisfactory

way.

The area of fuzzy logic may offer a way in which to address this problem or at

least make it more manageable. Fuzzy logic operates similarly to Boolean logic,

except that it is capable of working with partial truths or truths to which there may

be a degree function applied. A fuzzy GPR would start with a base Boolean logic

map and add to that a notion of gene levels in the inputs and the possibly in the
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protein output. One could also add inputs describing the environmental condition or

any other aspect you wish. In this way, the inputs in to the GPR can be gradated to

arbitrary degree, while the protein outputs may still assume a Boolean logic property

where desired (e.g. backup, no-backup, some backup). Compensatory fuzzy logic

allows for joining fuzzy logic systems using conjunction and/or disjunctions, which

also allows the GPR set to make use of rules subsets defined within itself to define

further mappings.

Fuzzy logic systems are already being put to practical use every day. Common

examples for this include washing machines, where the “dirtiness” of a load is gen-

erally not a Boolean value, and subway trains, where ride comfort may be controlled

by fuzzy logic inference on a plethora of information such as current train speed and

quality of the track. A fuzzy flux balance model would offer a few advantages over

FBA formulations that attempt to take advantage of expression data in order to

inform bounds on reaction fluxes. Most significantly, such models would not require

experimental measurements of expression levels, although they could also take ad-

vantage of this data in the inference step. In addition, there is the potential for the

speed of calculation to be close to or on-par with standard FBA linear programming.

4.2.2 Environment-Specific Epistasis Relative to Multiple Phenotypes

Chapter three devoted an entire section to the discussion of epistasis in non-fitness

phenotypes. However, I was only able to scratch the surface of what it is possible to

do with non-fitness epsitasis. Flux balance methods are high-throughput enough that

it is not infeasible to imagine computing entire genetic interaction maps for all double

mutants in a genome-scale model with respect to all metabolic flux phenotypes. In

the current version of the yeast consensus model [67], this would translate to over
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1 billion individual interaction scores. If we extrapolate from previous explorations

in this area using an older model [121] and assume an increased ability to predict

epistasis on par with that gained from using function-loss cost, performing such a

study in the yeast model alone would possibly result in up to an 8-fold increase in

the number of interactions identified, most of which would not be relative to the

fitess phenotype.

Provided with such a plethora of data, the nautral question arises what specifically

should be done with it and how it should be organized such that these ideas are best

realized. In general, it is possible to describe any epistatic interaction map (ε) as a

vector where every possible genetic interaction between pairs of n genes (gene pair

〈2, 1〉, gene pair 〈3, 2〉, 〈3, 1〉, ..., 〈n, n − 1〉) represents a feature for which we can

calculate a specific value:

ε = 〈ε2,1, ε3,2, ε3,1, . . . , εn,n−1〉 (4.1)

This formulation is simply and naturally expandable. A phenotype-specific map

would be expressed, thusly:

ϕk = 〈ε2,1,k, ε3,2,k, ε3,1,k, . . . , εn,n−1,k〉 (4.2)

where k represents the phenotype of interest. Of course, one of the major points of

emphasis in chapter three was that the measurable or predictable affect of a genetic

perturbation is altered by the environmental condition in which it was performed.

Similar to phenotype-specific epistasis, we can account for epistatic variation due to
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environmental conditions with:

ϑk = 〈ε2,1,k, ε3,2,k, ε3,1,k, . . . , εn,n−1,k〉 (4.3)

It is perhaps obvious that these metrics may be combined to produce genetic inter-

action maps relative to environment-phenotype pairs.

Using these mathematical definitions of epistatic maps would allow us to perform

comparative analysis on such data sets with relative ease. A metric to measure the

distance between phenotype- or environment-specific epistatic maps would be both

novel and incredibly useful. The obvious use for such a metric would be to relate

phenotypes to one another simply through their genetic interaction profiles. We

know that genes can be clustered into fucntionally-related modules based on their

interaction profiles relative to the fitness wildtype, but it remains to be seen to what

extent these modules persist across non-growth phenotypes. We can even expand

this idea to the level of epistatic profiles and ask the question: do phenotype-specific

genetic interaction maps cluster together to form modules of related phenotypes?

One could even ask whether or not certain phenotypic interaction maps resemble

certain environmental conditions. All of this eventually leads us back to the idea of

defining a functional relationship between epistatic profiles, further expounding on

one of the organization principles in genetic interaction networks (Figure 3.4).

4.3 Closing Remarks

In this dissertation I explored how genetic perturbations — a fundamental tool across

the field biology and a fundamentally simple concept — could be used in novel ways

to help the bridge a gap between some some aspects of biological study. I hope

the reader comes away from this with a greater understanding of how the tools of
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computational and systems biology can be used to address similar concerns in their

particular field of study.
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[71] Segrè D, Vitkup D, Church GM. Analysis of optimality in natural and per-
turbed metabolic networks. Proceedings of the National Academy of Sciences.
2002 Nov;99(23):15112–15117.

[72] Varma A, Palsson BØ. Stoichiometric flux balance models quantitatively pre-
dict growth and metabolic by-product secretion in wild-type Escherichia coli
W3110. Applied and Environmental Microbiology. 1994 Oct;60(10):3724–3731.

[73] Edwards JS, Ibarra RU, Palsson BØ. In silico predictions of Escherichia coli
metabolic capabilities are consistent with experimental data. Nature Biotech-
nology. 2001 Feb;19(2):125–130.

http://arxiv.org/abs/1304.2960


91

[74] Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A
genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that
accounts for 1260 ORFs and thermodynamic information. Molecular Systems
Biology. 2007;3:121.

[75] Kuepfer L, Sauer U, Blank LM. Metabolic functions of duplicate genes in
Saccharomyces cerevisiae. Genome Research. 2005 Oct;15(10):1421–1430.

[76] Snitkin ES, Dudley AM, Janse DM, Wong K, Church GM, Segrè D. Model-
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