
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2016

A design-build-test-learn tool for
synthetic biology

https://hdl.handle.net/2144/14503
Boston University

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

AND

COLLEGE OF ENGINEERING

Dissertation

A DESIGN-BUILD-TEST-LEARN TOOL FOR SYNTHETIC BIOLOGY

by

EVAN APPLETON

B.S. Biomedical Engineering, Boston University, 2010

M.S. Bioinformatics, Boston University, 2012

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2016

Reprinted (adapted) with permissions from ‘‘Beal, J. et al. (2012). An end-to-end

workflow for engineering of biological networks from high-level specifications. ACS

synthetic biology, 1:317--331". Copyright 2012 American Chemical Society.

Reprinted (adapted) with permissions from ‘‘Appleton, E. et al. (2014). Interactive

Assembly Algorithms for Molecular Cloning. Nature methods, 11(6):657--662".

Reprinted (adapted) with permissions from ‘‘Oye, K. et al. (2014). Regulating gene

drives. Science, 345(6197):626--628".

Reprinted (adapted) with permissions from ‘‘Appleton, E. et al. (2014). Owl: Electronic

datasheet generator. ACS synthetic biology, 3(12):966--968". Copyright 2014 American

Chemical Society.

Reprinted (adapted) with permissions from ‘‘McNamara, J. et al. (2014). Designing

Safety Policies to Meet Evolving Needs: iGEM as a Testbed for Proactive and Adaptive

Risk Management. ACS synthetic biology, 3(12):983--985". Copyright 2014 American

Chemical Society.

© Copyright by

EVAN APPLETON

2016

Approved by

First Reader
Douglas Densmore, Ph.D.
Associate Professor of Computer Engineering

Second Reader
Kenneth Oye, Ph.D.
Associate Professor of Political Science and Engineering Systems
Massachusetts Institute of Technology, Cambridge, MA

A DESIGN-BUILD-TEST-LEARN TOOL FOR SYNTHETIC BIOLOGY

(Order No.)

EVAN APPLETON

Boston University Graduate School of Arts and Sciences

and

College of Engineering 2016

Major Professor: Douglas Densmore, Ph.D., Associate Professor of Computer Engineering

ABSTRACT

Modern synthetic gene regulatory networks emerge from iterative design-build-test cy-

cles that encompass the decisions and actions necessary to design, build, and test target

genetic systems. Historically, such cycles have been performed manually, with limited

formal problem-definition and progress-tracking. In recent years, researchers have devoted

substantial effort to define and automate many sub-problems of these cycles and create

systems for data management and documentation that result in useful tools for solving

portions of certain workflows. However, biologists generally must still manually transfer

information between tools, a process that frequently results in information loss. Further-

more, since each tool applies to a different workflow, tools often will not fit together in a

closed-loop and, typically, additional outstanding sub-problems still require manual solu-

tions. This thesis describes an attempt to create a tool that harnesses many smaller tools to

automate a fully closed-loop decision-making process to design, build, and test synthetic

biology networks and use the outcomes to inform redesigns. This tool, called Phoenix,

inputs a performance-constrained signal-temporal-logic (STL) equation and an abstract ge-

netic-element structural description to specify a design and then returns iterative sets of

building and testing instructions. The user executes the instructions and returns the data

to Phoenix, which then processes it and uses it to parameterize models for simulation of

iv

the behavior of compositional designs. A model-checking algorithm then evaluates these

simulations, and returns to the user a new set of instructions for building and testing the next

set of constructs. In cases where experimental results disagree with simulations, Phoenix

uses grammars to determine where likely points of design failure might have occurred

and instructs the building and testing of an intermediate composition to test where failures

occurred. A design tree represents the design hierarchy displayed in the user interface

where progress can be tracked and electronic datasheets generated to review results. Users

can validate the computations performed by Phoenix by using them to create sets of classic

and novel temporal synthetic genetic regulatory functions in E. coli.

v

Acknowledgments

First and foremost, I would like to give special thank you to my adviser, Dr. Douglas

Densmore, for his support, mentoring, and, advising over the course of this dissertation

work. I would also like to give a big thank you to my other thesis committee members: Dr.

Gary Benson, Dr. Ahmad Khalil, Dr. Scott Mohr, Dr. Kenneth Oye, and Dr. Wilson Wong.

Their guidance and advice was invaluable in the completion of this work.

Next, I would like to acknowledge the funding sources of this work: National Science

Foundation (NSF) and The Office of Naval Research (ONR). Without this funding, this

work would not be possible. Additionally, I would like to thank the Boston University

Graduate Program in Bioinformatics, Boston University, and the Synthetic Biology Engi-

neering Research Center (Synberc) for various forms of support, including travel funding.

I would also like to thank Dr. Christopher Voigt, Dr. Timothy Lu, Dr. Roger Tsien, Dr.

Benjamin Glick, Dr. Oliver Griesbeck, and Addgene for generously sharing samples for the

experimental work presented in this thesis.

Finally, I would like to thank my primary collaborators and mentors. Namely, I would

like to give special thanks to Jenhan Tao, Prashant Vaidyanathan, Dr. Sonya Iverson,

Diego Cuerda, Kevin Costa, Dr. Ernst Oberortner, and Dr. Traci Haddock. Professional

interactions with these people greatly contributed to the quality of this work and my broader

education.

vi

A DESIGN-BUILD-TEST-LEARN TOOL FOR SYNTHETIC BIOLOGY

Contents

1 Introduction 1

1.1 Synthetic Biology . 1

1.2 Bio-Design Automation . 2

1.2.1 Design Specification . 3

1.2.2 DNA Assembly . 5

1.2.3 Strain Characterization . 7

1.2.4 Machine Learning . 8

1.3 Regulation and Biosecurity . 8

1.4 A Design-Build-Test-Learn Tool . 10

2 Regulatory Gaps and Biosecurity 12

2.1 Biosecurity . 13

2.1.1 iGEM Biosafety Screening Background 14

2.1.2 2013 Findings . 17

2.1.3 Future Considerations . 20

2.1.4 Continued Developments . 21

2.2 Risk Assessment and Regulatory Gaps . 22

2.2.1 RNA-Guided Gene Drives . 22

2.2.2 Technical Developments . 23

2.2.3 Environmental and Security Aspects 25

2.2.4 Toward Risk Management . 27

vii

2.2.5 Regulatory Gaps . 28

2.2.6 Conclusions . 31

2.3 Implications of Bio-Design Automation 31

3 Design Workflow Overview 33

4 Genetic Regulatory Network Design Specification 36

4.1 Grammars for Design Decomposition . 37

4.1.1 Signal Temporal Logic . 38

4.1.2 Abstract Genetic Regulatory Network Specification 39

4.2 Mechanistic Modeling of Genetic Regulation 41

4.3 Insertion of Testing Components . 42

4.4 Part Assignment . 44

5 Interactive DNA Assembly 46

5.1 DNA Assembly Background . 46

5.2 In silico assembly of thousands of constructs 52

5.3 Interactive Assembly of Genetic Constructs 54

5.4 Multiplex Assembly of Genetic Variants 57

5.5 Complexity Analysis . 59

5.5.1 Multi Goal Part Algorithm . 59

5.5.2 Overhang Assignment Algorithm 60

5.6 Eugene Rules for 1000+ Construct Sets 62

5.6.1 Counter constructs . 62

5.6.2 Toggle-switch constructs . 64

5.6.3 Repressilator constructs . 65

viii

5.6.4 Transcriptional NOR-Gate constructs 66

5.6.5 Invertase-based NOR-Gate constructs 67

5.7 Algorithm . 69

5.7.1 Algorithmic Flow . 69

5.7.2 Definitions . 70

5.7.3 Pseudocode . 71

5.7.4 Multi Goal Part Algorithm . 71

5.7.5 Multi Goal Part Algorithm Helper Methods 72

5.7.6 Overhang Assignment Algorithm 72

5.7.7 Overhang Assignment Algorithm Helper Methods 73

5.7.8 Modular Overhang Site Selection 73

5.8 In Silico Random Sampling Experimental Description 74

5.9 PCR Verification and Cloning Efficiency 76

5.10 Raven Assembly Plans . 76

5.10.1 Initial Plan . 76

5.10.2 Redesigned Plans . 83

5.10.3 Biased Plans Outside Core Heuristics 89

5.10.4 Efficiency-Optimized Plan . 93

5.10.5 Repressilator Constructs . 95

5.11 Raven Human-Readable Assembly Instructions 96

5.11.1 Initial Instructions for Counter Constructs 96

5.12 Interactive Assembly Summary . 124

6 Automated Data Analysis and Simulation 127

6.1 Data Acquisition . 127

ix

6.2 Data Analysis . 128

6.3 Simulation for Parameter Estimation and Compositional Designs 129

6.4 Structural Failure Mode Grammars . 130

7 Data Visualization, Documentation and Storage 131

7.1 Data Storage and Management . 131

7.2 Electronic Datasheet Generator for Data Visualization 132

7.2.1 An Electronic Datasheet Generator - Alpha Version 133

7.2.2 An Electronic Datasheet - Beta Version 136

7.3 Design Tree Visualization . 137

7.4 Data Visualization Summary . 138

8 Workflow Test Cases and Results 139

8.1 Unit testing of ‘Classic’ Networks . 139

8.2 Building Networks via ‘Brute Force’ . 141

8.3 Unit-testing Failure Modes . 142

9 Project Summary and Impact 143

9.1 Project Summary . 143

9.2 Impact of Work . 143

10 Methods 145

10.1 Computational . 145

10.2 Experimental . 145

10.2.1 Materials . 145

10.2.2 MoClo DNA Assembly . 145

10.2.3 Cloning Destination Vectors . 145

x

10.2.4 PCR Amplifying Level 0 Parts . 146

10.2.5 MoClo Cloning Protocol . 147

10.2.6 Primer Design . 147

xi

List of Tables

1 Highest chassis and part risk group level per team, presented by region and

in sum. ‘‘Other" refers to areas of unresolvable assignment uncertainties. . 19

2 Raven-optimized and average unoptimized assembly scores for construct-

ing plasmids from the literature. Number of constructs (no.) considered

in each set is shown. Numbers in each set of columns refer to cloning

stages, cloning steps and PCR steps, respectively. Unoptimized solutions

are represented by averages (top of each row) and s.d. (bottom of each

row). Raven solutions are reported (top), along with the probability, P(z),

of selecting this solution randomly using a statistical z-test (bottom). P

values are calculated assuming a normal distribution of assembly outcomes. 51

3 The single best un-optimized assembly scores for assembling constructs

from the literature discovered in the in silico experiments. Literature

datasets are described by number of constructs considered in each set. All

solutions are reported in a ‘Cloning Stages | Cloning steps | PCR steps’ format. 74

xii

List of Figures

1 Advancing the point of intervention in biosafety screening. In 2011 and

2012, the safety process was limited to screening after projects had been

completed (right); in 2013, the screening shifted closer to intervening dur-

ing the design-build-test cycle (middle). Future iterations aim to move

intervention further up the chain to maximize safety (left). 17

2 How endonuclease gene drives spread altered genes through populations.

(a) Altered genes (blue) normally have a 50% chance of being inherited

by offspring when crossed with a wild-type organism (gray). (b) Gene

drives can increase this chance to nearly 100% by cutting homologous

chromosomes lacking the alteration, which can cause the cell to copy the

altered gene and the drive when it fixes the damage. (c) By ensuring that the

gene is almost always inherited, the gene drive can spread the altered gene

through a population over many generations, even if the associated trait

reduces the reproductive fitness of each organism. The recently developed

CRISPR nuclease Cas9, now widely used for genome engineering, may

enable scientists to drive genomic changes that can be generated with Cas9

through sexually reproducing organisms (1). 24

3 Phoenix tool software architecture . 34

4 Specification of a ‘NOT gate’. The English language specification and STL

specification (left). An example of a NOT gate structure and illustration of

the temporal function (right). 38

xiii

5 Structural specification in Phoenix. An example miniEugene file with struc-

tural constraints (left). Three valid AGRNs from this structural specification

(right) . 39

6 (a) Grammar in Phoenix going from a functional non-terminal to a struc-

tural terminal (left). (b) A symbolic representation of an example design

decomposition. 40

7 As opposed to performing measurements to determine rate constants spe-

cific to single interactions for expression (a), Phoenix ‘black-boxes’ these

expression interactions into a single composite constant for expression. . . . 41

8 (a) The core models in Phoenix consider both expression and degradation

kinetics (b) Three example regulatory networks (c) Mass action kinetic

models for the three example networks with the Phoenix modeling approach. 42

9 (a) After design decomposition, testing components (blue) must be added

to the decomposed design components (black). (b) Once the position of

fluorescence-fused regulators is determined, a fluorescent protein must

be selected from a set of available fluorescent proteins with respect to a

particular measurement machine. 43

xiv

10 The graphic symbols are composed using Pigeon23

(http://www.pigeoncad.org/) from SBOL45 (http://www.sbolstandard.org/)

visual images to denote part types. (a) The repressilator. (b) Starting library

consists only of template DNA. (c) A plan for assembling the repressilator

given b requires 13 PCRs, 4 steps and 2 stages. Two steps fail (steps 2 and

3; red boxes), one step succeeds (step 1; green box) and the dependent step

in the second stage cannot be attempted (orange box). (d) The updated

library contains basic parts and intermediate parts with specific overhangs

from c. (e) An optimized plan, in which all steps succeed (green boxes), is

generated with no PCRs, three steps and two stages. 47

11 (a) SBOL visual representations of the DIC counter, invertase NOR gate,

repressilator, toggle switch and transcriptional NOR gate constructs, in-

dicating the number of parts we sampled at each position and the total

possible construct variants after application of Eugene rules. (b) Cloning

steps required for MoClo assembly of a 500-construct subset of each set

of 1,000 or more constructs from a. Asterisks represent the Raven solu-

tion; other points represent unoptimized cloning step solutions. (c) PCR

steps required for MoClo assembly given the cloning step solution in b.

Asterisks represent the Raven solution; other points represent random PCR

step solutions. (d) The fold improvement of Raven’s solution compared to

unoptimized solutions in b,c as a function of construct quantity. Raven’s

solutions improve as the number of constructs per assembly plan increases.

PCR steps (dashed) and cloning steps (solid) are shown separately. 54

xv

12 Interactive Assembly (a) An initial assembly plan in the Raven UI. (b)

A SpeI restriction analysis for Level 1 cloning intermediates (1-6) with

expected bands at 0.5kb, 1.7kb & 0.2kb, 2.1kb, 1.7kb, 1.5kb and 2kb, and

3.4kb, respectively, with a 2.1kb vector band. Incorrect bands seen for lanes

2 & 5. (c) In the Raven UI redesign tab, failure of these intermediates and

success of all other intermediates is reported and a new plan is generated.

(d) A PstI restriction analysis for the complete genetic counter constructs

should be 7kb, 4kb & 1.6kb . 56

13 (a) The number of sequences observed in sequence screening as a function

of the number of parts multiplexed. In all cases, the theoretical number of

colonies needed to encounter at least one of each sequence was screened. (b)

Functional diversity value as a function of the number of parts multiplexed

for the promoter, RBS, and terminator position. 58

xvi

14 Runtime complexity of Raven algorithms. Raven’s two main algorithmic

components are bound by n, the number of goal parts and m, the average

number of basic parts per goal part, which we show on the horizontal axis

as the ‘‘Number of Parts in All Goal Parts", nm. The vertical axis gives the

approximate number of calculations according to conventional complexity

analysis. Points are shown to give the approximate number of operations

required to calculate assembly plans for all of the constructs from the publi-

cations shown in Table 1 and the number of operations required to calculate

500 constructs of a design shown in Figure 2A. Separate curves are shown

for the hierarchical algorithm and the overhang assignment algorithm. Con-

structs from each publication and constructs from each design in Figure

2A were calculated individually and then averaged over all publications

and designs respectively, giving the time shown in the legend. Note that

the times shown are approximations of realtime performance as times are

machine and condition dependent (Intel Xeon 2 x 6 core cpu, 24 GB RAM

machine used to compute times). 78

xvii

15 Raven flow charts (a) A user inputs their DNA library and set of target con-

struct into Raven, which generates assembly instructions. These assembly

instructions are then implemented and some constructs will be completed

(yellow box) according to plan and some will not. These incomplete con-

structs are input back into Raven for assembly redesign. (b) In the Raven

UI, a user inputs a DNA library and set of target construct and selects an

assembly method with which to construct a subset of the target constructs.

Raven calculates an optimized assembly graph and oligonucleotide designs

necessary to execute the plan (black box) and generates human- or comput-

er-readable instruction files. (c) Raven optimizations are calculated in three

major sequential pieces: Hierarchical step optimization, overhang selection

optimization and finally primer designs for PCR steps. The sum of all these

optimizations is an assembly graph and set of oligonucleotides (black box). 79

xviii

16 The assembly algorithm is illustrated here as a set of two flowcharts. (A)

presents the initial function call to ‘‘createAsmGraph_mgp" (create assem-

bly graph multiple-goal-parts). Here a set of goal parts to be assembled is

presented {gP} along with a parts library {PL}. Once that set is empty #1

(all goal parts have been removed as their solutions are found), the function

returns (#2). Otherwise a low cost baseline is established (#3) and each

goal part is explored (#4, #6,#7). If a solution for a particular goal part

results in a lower cost than the baseline, it becomes the baseline (#8 and

#9). Eventually all goal parts have been explored. The goal part with the

lowest cost graph is removed from the goal part set and its graph is added

to the solutions (#5). The process repeats again with the goal part solu-

tions accumulating allowing their intermediate assemblies to be available

for subsequent solutions. The right hand side figure (B) illustrates the call

to ‘‘createAsmGraph_sgp" (create assembly graph single-goal-part). If the

goal part already has a solution the function returns (#10, #11). Otherwise

legal indices to partition the single part into subparts are set up in #12.

#13 and #14 demonstrate that once all parts per reaction (how many legal

subparts) are explored, the latest created graph is returned. #15, #16, and

#17 illustrate that subpart divisions are explored ultimately resulting in a

recursive call to this same function with each of the legal divisions of this

part (#18). #19 illustrates the subpart solutions must be combined and that

result compared with the lowest discovered graph so far for this goal part.

We refer the reader to both the pseudocode and the open source code for

more details. 80

xix

17 PCR products for basic parts. Expected sizes (Left to Right)

IR1_IR2_Term2|5|3* 178bp, loxP|1|3 62bp, flpe|3|m1 941bp, flpe|m1|5

392bp, IR1_IR2_Term2|0|3 178bp, cre|6|0 1093bp, pTet|7|0 112bp, T1|4|8

133bp, pA1LacO|1|2* 105bp, pBAD|7|0 314bp, FRT|0|2 62bp, gfp|6|m2

652bp, gfp|m2|0 93bp, loxP|0|1 62bp, FRT|3*|0 62bp, pBAD|2|1 314bp,

pBAD|1|2* 314bp, gfp|m2|4 93bp, gfp|2|m2 652bp 81

18 Average cloning efficiency as a function of parts per cloning reaction for

MoClo (BBF RFC 94). Measured average values marked with a triangle

and error bars represent one standard deviation. 81

19 Preliminary assembly plan for genetic counter constructs. 82

20 First redesigned assembly plan for genetic counter constructs. 84

21 Second redesigned assembly plan for genetic counter constructs. 86

22 Final redesigned assembly plan for genetic counter constructs. 88

23 MoClo assembly plan for genetic counter constructs discouraging all possi-

ble intermediates that could constitutively express a recombinase. 90

24 Efficiency-Optimized MoClo assembly plan for the four genetic counter

constructs based on measured efficiency from prior implemented plans. . . 94

xx

25 MoClo assembly plan for Repressilator Constructs. (a) Assembly plan for

six repressilators with shared parts. (b) The intermediate constructs re-

quired to build the six repressilators shown in (a). The green boxes indicate

a successful assembly. (c) Assembly plan for one repressilator using inter-

mediates shown in (b) with the green boxes indicating the assembly was a

success. (d) An agarose gel (1% TAE) showing a restriction map for the

repressilator shown in (c). Plasmid DNA (1000 ng) was digested with SpeI

enzyme (NEB). Lane M shows the molecular marker (2-log ladder from

NEB), lane 1 shows an empty Level 2 vector (2204bps), and lane 2 shows

the insert containing the repressilator (3304 bps; yellow box) cut out from

its Level 2 vector backbone (2204 bps). 95

26 The Owl UI sections for Basic Information, Designer Information, Design

Details, and Assembly Information. The input fields for each section are

outlined on the left with descriptions for the input information for each field.

The images on the right show the web interface UI from www.owlcad.org. . 135

27 Screenshot of a design tree created by decomposing an input design in Phoenix137

28 Preliminary data from expression tests for EXPRESSORs and degradation,

regulation, and small molecule tests for EXPRESSEEs. 140

29 Arrangements for two-transcriptional unit constructs that present different

common failure modes. (a) The linear arrangement is sensitive to transcrip-

tional red-through from the first transcriptional unit into the second. (b) The

alternating-strand transcriptional unit architecture introduce a supercoiling

failure mode created by adjacent promoters. (c) This arrangement exposes

the failure mode of transcriptional interference where polymerases on either

strand might collide during transcription and affect expression. 142

xxi

Abbreviations

AGRN Abstract Genetic Regulatory Network.

DURC Dual Use Research of Concern.

EPA U.S. Environmental Protection Agency.

FDA Food and Drug Administration.

iGEM International Genetically Engineered Machine Competition.

MEFL Molecules of Equivalent Fluorescein.

PoET Program on Emerging Technologies.

RBS Ribosome Binding Site.

SGI Synthetic Genomics, Inc..

STL Signal Temporal Logic.

xxii

1 Introduction

1.1 Synthetic Biology

The era of modern genetics began when Watson and Crick discovered the structure of

DNA in 195398, which laid the foundation for humans to understand heritable biological

information. After an additional twenty years of research focused on understanding the

mechanisms of nucleic acids, the first instance of genetic engineering was first reported32

in the literature. This breakthrough was enabled by development of techniques for cleaving

specific DNA strands with restriction enzymes93 and pasting cleaved strands back together

with DNA ligase100. This process of ‘DNA cut and paste’ paired with the technique of

DNA amplification via polymerase chain reactions (PCR)87 became the basis of modern

molecular cloning. The capabilities of molecular cloning technology have since developed

considerably to enable high-throughput DNA synthesis and custom DNA sequences for

modification.

At first, these molecular cloning techniques were largely used to clone single genes

or manipulate single genes of interest in a pre-existing natural genetic system. However,

around the turn of the millennium, multiple groups started exploring the idea of engineering

completely synthetic genetic systems from synthesized DNA. This materialized in the first

instances of synthetic transcriptional regulatory networks in E. coli40,47 and, consequently,

to the establishment of the field of synthetic biology. These first synthetic genetic reg-

ulatory networks galvanized many groups in the biology and biotechnology community

and inspired them to the create the first combinatorially-synthesized genetic networks49,

complex transcriptional-regulatory networks17,35,95,96 and RNA regulatory networks19,54.

Around this time, some of the first synthetic biology applications were also reported11,58,83

1

and the biotechnology industry began to build around novel applications enabled by syn-

thetic biolog.

Towards the end of the 2000’s, as the techniques for engineering DNA improved and the

demand for DNA synthesis grew, an emphasis was placed on developing methodologies for

increasing the speed and scale of DNA synthesis42,48,62,81,90,99. These newer methodolo-

gies could be used to build larger and more complicated constructs at a higher throughput.

Concurrently, the community’s interest grew in applying ideas from other fields of engineer-

ing (specifically electrical engineering) to build these systems, and some synthetic biology

groups started building synthetic biology ‘logic gates’12,97. The interest in cellular logic

has since grown26,69 and recently, DNA recombinases have also been adopted in many of

these systems as a means of creating digital logic and storing memory27,44,91.

1.2 Bio-Design Automation

In parallel with the developments in biochemical technologies, engineers and computer

scientists from other fields garnered interest in synthetic biology and began developing

computational tools for engineering these genetic systems. One of the first realizations of

scientists and engineers from this background was that there were few standards and little

documentation for engineering these systems. In response, multiple efforts began working

towards community standards15,29,41,46,57,94 for data models and data exchange. This effort

has recently gained more momentum45 and seen support and involvement from larger

government organizations50. Currently, some of the core requirements for representing

sequence information has been discussed at length and interest has shifted into establishing

standards for additional related sub-problems.

One of the foundations of other engineering fields is the definition and solving of

sub-problems in a large and complicated process. This ‘divide and conquer’ approach

2

allows for the solving of small parts of a larger problem one piece at a time and allows for

specialists to tackle specific narrow problems of which they have considerable expertise.

After all necessary pieces are defined and solved, solutions for sub-problem can be automated

and connected to solve a larger problem. The central conjecture of this approach to synthetic

biology is that the application of these core engineering concepts will accelerate synthetic

biology workflows and increase the scale of systems that can be successfully built. This

pursuit has recently been coined bio-design automation36.

The current bio-design automation landscape can be divided into four main areas: design

specification, DNA assembly planning and implementation, strain characterization and

analysis, and machine learning. ‘Design specification’ concerns a precise, formal definition

of the desired function and design of a target genetic system. ‘DNA assembly planning’

concerns the set of decisions needed to determine a plan for composing DNA constructs from

their elements using specific cloning methodologies and ‘DNA assembly implementation’

refers to the processes and decisions involved with physically implementing a DNA assembly

plan. ‘Strain characterization and analysis’ concerns the design and physical implementation

of experiments for characterizing engineered strains and the accompanying analysis and

interpretation of acquired data. ‘Machine learning’ concerns the automated revision of

design based upon processed experimental outcomes.

1.2.1 Design Specification

Design specification concerns can be broken down into at least the following six sub-

-problems: 1. Formal specification; 2. Data model and mathematical model definition;

3. Simulation and verification; 4. DNA library definition; 5. Part assignment; 6. De-

sign hierarchy. In recent years, a number of formal design specification tools have been

introduced.

3

Some tools focus on the structure and organizational aspects of design31,34,73,74,78,

which largely concentrates on part and device design in terms of organization and selection

of genetic elements. Other specification tools have put more emphasis on formal mathemat-

ically-defined functional specification20,103, although tools of this type have not yet been

explored in great depth.

Since every computational tool relies on a data model, several synthetic biology commu-

nity data model standards have been developed46,101 with notable differences. But, given the

community emphasis on standardization, converters between many data models have been

implemented. The scope of mathematical models for describing and simulating synthetic

genetic systems is much larger and extends beyond the field of synthetic biology66,68,72 to

systems biology, in which more standard tools exist for mathematical model specification56.

Numerous commercial and open source tools exist for building and editing custom DNA

sequences such as VectorNTI, Benchling, APE, and GenomeCompiler, but they generally

require users to upload specific DNA sequences as linear or circular fragments and cus-

tom-annotate them with sequence features. The most widely-adopted open-source format

for exchanging this data is GenBank, an open source format supported by NIH, although

other formats exist and have variable degrees of expressiveness. Since some features have

measurable parameters associated with them, they can be ported into simulation tools to

create simulated traces with a given mathematical model30,60. These traces can then be

used by model-checking tools to verify their function18,104.

The process of selecting features from feature libraries to apply to an abstracted genetic

regulatory network design (AGRN) is known as part assignment. Recent tools for part as-

signment topic have been developed88,102, but they do not tie in with verification tools. And,

with the vast options for AGRN design with numerous tools, there remain many unsolved

problems related to determining optimized part arrangements in AGRNs. Furthermore,

4

these selections are heavily based on the assumptions in the underlying mathematical model

and experimental design, which is often variable and can make these tools hard to apply.

Finally, although there are some tools that integrate the idea of hierarchical design and

grammars to verify the validity of designs34,78, there aren’t any existing tools that decompose

a large design into its functional and structural hierarchy and tie these breakdowns to

mathematical models. Such a tool could be useful in unifying and organizing many of these

concerns, since many of them overlap.

In summary, there has been significant thought and tool development on a variety of

design specification problems, but there aren’t any tools that unify all of these topics in a

cohesive, meaningful way. Although data exchange standards have been developed, many

tools were created before many aspects of the current community standard were agreed

upon and in many cases, the older tools are no longer maintained, making them unusable

under the newer standards.

1.2.2 DNA Assembly

Once a target design specification has been mapped to a set of target DNA constructs, a

plan for how to assemble them must be determined. This problem, called the DNA assembly

problem, has both design optimization and physical implementation aspects and can be

broken into at least these four sub-problems: 1. Cloning and synthesis method selection; 2.

Hierarchical assembly planning; 3. Primer design; 4. Physical implementation.

The set of all chemical reactions and flanking DNA sequence designs required to

assemble one or more DNA fragments into a replicating biological vector defines a cloning

method. Each cloning methods utilizes different enzymes, chemical reaction conditions,

and required flanking sequence regions around DNA fragments. In recent years, numerous

methods have been developed with variations in each of these categories42,48,62,81,89,90,99,

5

but all have the goal of scaling and modularizing cloning capabilities. Some methods

place a heavy emphasis on modularity99 and standardization90, while others place a heavier

emphasis on the scale of fragments that can be reliably assembled48.

Once an assembly method is selected for a set of target constructs, the design questions

relating to assembly can be separated into hierarchical assembly planning and primer

design for PCR. Hierarchical assembly planning refers to the choice of which fragments to

put together in parallel and in series. For large assemblies or large sets of assemblies, it

is desirable that fragment re-use is maximized and the number of cloning steps required is

minimized to optimize cloning time and material expense. Some prior work has been done

on this topic25,37, although it was restricted to older cloning methods and did not include

options to account for many experimental concerns in the cloning process.

Once a plan for hierarchical assembly is determined, flanking regions for each of these

fragments must be determined and primers must be designed for PCR such that the correct

flanking regions are added to each fragment. This problem has been explored for many

contemporary cloning methods52 and many commercial sequence editors (mentioned above)

have integrated tools for these decisions. Many of the decisions on this level are sensitive

to cloning method and DNA chemistry and efficiency can be heavily impacted by small

changes in flanking region design.

After this series of decisions is made, all decisions required for assembly planning

have been made, except for detailed chemical protocols. The design of these protocols,

namely PCR, DNA preparation, DNA transformation and organism growth conditions

still has to be defined. Some of the required chemical protocols are standardized by

the chemical manufacturer, but many cloning reaction reagents are not yet available in

the form of a standard master mix with standard thermal reaction cycles. The problem

of how to execute all necessary protocols efficiently is the protocol planning problem.

6

Some open-source63 and industrial tools have been created to address these problems and

automatically instruct liquid-handling robots to execute these tasks, removing the human

element from the assembly process in an effort to reduce human cost and improve protocol

reproducibility.

1.2.3 Strain Characterization

Physically-assembled DNA constructs must then be evaluated for function in the organ-

ism for which they were designed. The process of testing and evaluating synthetic DNA

constructs is called strain characterization. The characterization sub-problems include: 1.

Selection of measurement method and settings; 2. Definition of types of testing experiments

and associated context based on measurement method and settings; 3. Data analysis and

processing; 4. Data organization and visual representation.

In the bio-design automation field, the problem of formally selecting a measurement

method or set of methods and then defining standard testing experiment types and settings

is largely untouched and under-developed. This is likely due to the fact that bio-design

automation is relatively new and not widely known or accepted by experimentalists, and

even those who collaborate with pure experimental experts typically have little influence

over experimental design. Some groups have started to develop standard flow cytometry

protocols75, but this topic has not been explored in depth in the literature.

Analysis tools for experimental data are more numerous and mature. Specifically, the

synthetic biology community often uses single-cell fluorescence as the primary measure-

ment technique and there are a wide variety of open-source38,80 and industrial tools (BBN

Synbio Tools, FlowJo and BD FACSDiva) for analyzing single-cell fluorescence data. This

topic extends beyond the field of synthetic biology79,86 and principles and standards for this

type of data have been developed51,85.

7

The problem of how to use this processed data to create intelligible graphs and present

this and other design information to a human designer is another open problem in the

bio-design automation field. In electrical engineering, data related to physical components

is represented in the form of a datasheet. In the synthetic biology field, the necessary

information for datasheets has began to be explored15,29 and some groups are working on

electronic datasheets, but it has yet to be demonstrated how these can be used meaningfully

to help human designers refine their designs.

1.2.4 Machine Learning

Automatically using characterization data to revise designs produced from design spec-

ifications can be classified as machine learning. These machine learning sub-problems are

the least developed and least defined in the bio-design automation space. There have been

some recent efforts that use machine learning to revise design92, but this space remains

small due to the fact that the learning algorithms are heavily based upon a deep understand-

ing of the experimental design of characterization experiments which tend to be highly

variable as discussed in the prior section.

1.3 Regulation and Biosecurity

The field of synthetic biology and bio-design automation are rapidly growing55 and

broadening their accessibility to international audiences. A large contributor to this rapid

and sustained growth is the International Genetically Engineered Machine (iGEM) com-

petition94. The first iGEM at MIT in 2004 included 5 teams from 5 US universities, and

has been steadily growing to over 280 teams from over 30 countries in 2015. Additionally,

other government-funded initiatives and projects such as the Synthetic Biology Project at

the Woodrow Wilson Center for Scholars and the Synthetic Biology Engineering Research

8

Center Synberc have helped centralize the efforts of academic and industrial researchers,

social scientists and legal experts in the synthetic biology field, creating a small but diverse

and growing community.

This rapid growth has many positive impacts, namely building general excitement about

the positive aspects of synthetic biology technologies, building community, and creating

awareness of synthetic biology projects. However, with such fast growth of a field with a

small core and potentially revolutionary applications, the risks posed by synthetic biology

technologies and applications must be taken seriously. The broad adoption of personal

computing and internet technologies combined with the speed of the growth of the field has

enabled a massive amount of new information and capabilities to be very broadly accessible.

A substantial, rapid growth of powerful technologies poses a challenge to many regula-

tory agencies. Debating and creating legislation is a historically slow process and, currently,

the technological developments are greatly outpacing the regulatory framework. Recent

calls16,61,76 for regulatory agencies to get some of these technologies on their radar and

react to them quickly, but not irrationally, have began to open up the public forum on how to

address such issues. There is currently some pressure on international regulatory agencies

to begin thinking about these topics, but in many cases it is still unclear what risk is posed by

specific synthetic biology technologies, since very little risk-assessment research has been

funded in the field. Furthermore, given the diversity of sub-topics in synthetic biology and

the interdisciplinary nature of the field, there is still currently no widely adopted definition

of ‘synthetic biology’.

Although the bio-design automation sub-field is currently almost exclusively focused

on basic science research of the core basic research problems and not applications, the

long term vision is to automate many, if not all, of the decisions currently made to design

these systems and make it easier for people to engineering biology. This goal is noble

9

in the lens of a pure scientist, but there are implications of making an already powerful,

accessible, and rapidly growing technology even more powerful and accessible. The specific

consequences are hard to predict, but given that regulatory agencies are already behind the

pace of the research, accelerating it even more could prove problematic. On the other hand,

transitioning the decisions-making processes of biologists entirely into the digital realm

creates unprecedented opportunities for documenting and tracking designs of synthetic

biology projects. Given the growing world of computing and cyber-security, it is possible

that principles of cyber-security could be incorporated into design tools to defend against

possible harmful uses of synthetic biology.

1.4 A Design-Build-Test-Learn Tool

With the progress of the bio-design community in identifying and building tools to

automate many necessary sub-problems of a synthetic biology design and implementation

process, the fast growth of the broader synthetic biology community, and the possible

implications of enabling an even broader community of biologists, now is the time to

develop a software tool that integrates these design sub-problems into a closed-loop de-

sign-build-test-learn cycle. Recent prior work has made efforts to automate the full process

of these cycles21,39,84, but no tool has been able to harness all the pieces of the workflow in

an integrated manner and some of the necessary sub-problems of these cycle have not yet

been defined and automated.

In this thesis dissertation, I detail my work in creating a design-build-test-learn tool for

design decisions in a synthetic biology workflow for creating synthetic genetic regulatory

networks in E. coli. I accomplish this by re-using or modifying existing tools for solved

sub-problems and identifying important sub-problems that have not seen much focus in

prior work and creating working solutions for them. I preface the discussion of this work

10

with the discussion of additional biosecurity and biosafety work I did in collaboration with

the MIT PoET synthetic biology group and iGEM competition and analysis of regulatory

gaps and risk assessment posed by a possible synthetic biology application, RNA-guided

gene drives. It is my belief that these types of questions must be asked at the beginning

of technical research projects to inform the path of project development. It is my hope

that this body of work can both increase the scale and speed of synthetic biology and open

opportunities for applying solutions to broader problems that synthetic biology poses.

11

2 Regulatory Gaps and Biosecurity

Synthetic biology is a unique field in the way that a central goal of all synthetic biology

efforts is to produce an organism or genetic system with novel capabilities. This poses a

problem because there is generally no precedent for novel engineered organisms or novel

genetic systems and there exists minimal bench-marking or definition to use as a reference

for determining risk. Furthermore, in addition to having no working reference point for

assessing risk, there has been very little work to date to attempt to determine risks posed by

specific applications. This problem is further complicated by the fact that these organisms

and genetic systems are generally designed to self-replicate, which implies that any harm

created by a synthetic biology application would be self-propagating and difficult to control.

With the lack of these reference points for risk, it is difficult to form meaningful safety or

security regulations for synthetic biology-specific applications. Combined with the fast pace

of technical developments in synthetic biology relative to the pace of regulatory framework

development, most regulatory agencies are behind in the process of regulation formation for

synthetic biology-specific applications. This leaves the field in a state where although there

have yet to be any synthetic biology applications to cause major harm to consumers or the

environment, a problem could arise relatively quickly with any particular application and it

would be hard to predict or manage with the current sparse risk assessment and regulatory

infrastructure.

This under-developed infrastructure imposes both great power and great responsibility

to those people who are performing the technical work. Synthetic biologists have both

the power to develop potentially revolutionary technologies and applications to advance the

state of biotechnology and human health, and at the same time, the power to develop harmful

technologies either through either carelessness, malevolence, or inadequate methodologies

12

to assess risk.

These problems would lead a responsible synthetic biologist to ask the following ques-

tions: ‘‘Which synthetic biology applications should I develop? Which applications should

I not develop? And why? And who will these applications impact?" My colleagues and I

are of the opinion that these questions should be asked at the outset of synthetic biology

application selection and development. The following section describes recent work we

have done in this frame of mind in the sub-fields of biosafety and biosecurity screening,

and, risk definition and regulatory gap identification for a potentially impactful synthetic

biology application - RNA-guided gene drives.

2.1 Biosecurity

The largest current open community of synthetic biologists are the participants of the

annual iGEM competition - an international synthetic biology project competition. The

iGEM organization has spent the past decade encouraging teams to push their projects to the

frontiers of synthetic biology. However, as the number of projects and their sophistication

increases, so does the level of assumed risk. To manage this risk it would be useful to be

able to adopt an existing international framework for assessing this risk. However, there is

one major problem - no such framework currently exists.

In the absence of a coherent international framework for evaluating these risks in

synthetic biology, iGEM has recently engaged with the MIT Program on Emerging Tech-

nologies (PoET) to develop a progressive approach for handling questions of safety and

security. These two groups have worked together to create a rigorous screening program,

acknowledging that a strengthened set of iGEM safety policies ultimately serves to expand,

not contract, the universe of acceptable projects. This section reports on the policy process

evolution thus far, screening findings from the 2013 competition, and expectations for future

13

policy evolution.

Much like synthetic biology as a whole, iGEM has exploded in size, geographic scope,

and technical capabilities over the past ten years. While this growth is beneficial, it also

means that advancements have at times outpaced regulations. iGEM has reckoned with

this mismatch most directly on issues of biosafety and biosecurity. However, rather than

limiting projects’ scope to remain conservative in the face of uncertainty, iGEM has engaged

directly with safety challenges. Working with MIT (PoET), iGEM Headquarters has begun

a multiyear process of developing progressive safety policies. This paper considers the

motivations behind these changes, highlights the growth of key partnerships and collabora-

tions, summarizes the 2013 safety screening findings, and looks ahead at opportunities for

continued policy evolution.

2.1.1 iGEM Biosafety Screening Background

In 2011 and 2012, iGEM implemented a standardized screening system for teams

safety forms. Prior to 2011, there was not a systematic review process in place. The

new form consisted of questions prompting teams to (1) consider possible environmental,

health, and safety implications of their projects and (2) provide sufficient information

about their projects and procedures so that the Safety Committee could identify potential

concerns. Before regionals, the MIT PoET group reviewed the forms, and projects that

raised concerns were examined by the iGEM Safety Committee. Screening thresholds were

set with a deliberate bias toward generating false positives as opposed to false negatives.

Completion of the safety form was a requirement for participation.

Comprehensive project screening revealed a series of near misses in the 2011 and

2012 seasons. In iGEM, these apparent near misses were a consequence of inaccurate

reporting. For example, one team improperly understood their project, reporting that they

14

were using biological parts from an organism of concern in an insufficiently protective

laboratory environment. On further review, the Safety Committee determined that the team

had misclassified the biological parts with which they were working, and that the laboratory

was appropriate for the true level of risk associated with their project. Near misses can

serve as valuable sources of information for tracking potential weaknesses in a system, such

as here where the team had clearly been insufficiently informed as to how to differentiate

between safe and unsafe work.

The MIT PoET group used the results of two years of project screenings to propose

changes to the 2013 process. These revisions were the product of discussions with the Safety

Committee, faculty advisors, and iGEM Headquarters. The revisions aimed to shift the

point of intervention closer to the time when actual laboratory work was being performed,

such that potential hazards could be detected and prevented prior to a harmful event, rather

than after the high-risk work had already been completed (Figure 1).

In 2013, teams submitted forms describing safety procedures and project implications,

and also listed the chassis and parts used in their projects. If any parts or chassis were derived

from mammals or organisms above risk group level one, teams also completed more detailed

forms addressing areas of potential concern. Here, ‘‘chassis" refers to a host organism, such

as Escherichia coli or Bacillus subtilis, into which a synthetic device is placed, while a

genetic ‘‘part" is a component of the device, such as a promoter or terminator. Risk

group assignments are based on the relative risk of the originating organism, as assigned

by organizations such as the World Health Organization5 and the U.S. National Institutes

of Health Recombinant DNA Guidelines3. Assignment of organism-level risk group to its

component parts is a conservative approach, but currently a necessary starting point due to

the limited state of regulations. Developing an expedited screening protocol based on part

functionality rather than organism of origin is a near-term goal.

15

Deadlines were earlier than in previous years and forms were required to be updated to

reflect project changes, which facilitated intervention prior to teams conducting potentially

dangerous work. However, the 2013 update did not make the screening occur early enough,

as the majority of the process still took place beyond the point of maximum utility. This is a

policy priority for future years. The program succeeded more significantly on other fronts,

though, such as by instituting standardized data entry, requiring updated forms for relevant

project changes, and increasing the emphasis placed on consideration of parts’ functional

properties. The program also strived for increased participant engagement with safety

concerns and saw gains in the areas of more in-depth form reporting, team-driven shifts

in project scope due to safety concerns, and active participation with the Safety list-serve,

suggesting a desire to improve understanding rather than solely ticking check boxes.

Because of the process changes, participants had to be educated on risk group levels,

changes in risk due to genetic modifications, the relationship of part functions to risk group

assignments, and laboratory biosafety levels. However, as iGEM’s new policies outpaced

many international biosafety efforts, appropriate supporting educational documents had

yet to also evolve. Multiple stakeholders assisted iGEM in providing guidance. One

primary contributor was Public Health Canada, which aided in the development of the

updated screening criteria. Additionally, J. Christopher Anderson and Terry Johnson of

the University of California-Berkeley provided video instruction on traditional biological

risk assessments, as well as on understanding and defining responsible conduct in synthetic

biology.

2013 also marked the beginning of a collaboration between MIT PoET and iGEM with

Synthetic Genomics, Inc. (SGI). This partnership resulted in SGI applying its proprietary

screening tool, Archetype, to the entire iGEM Parts Registry. Archetype, which screens at a

higher level of detail than the International Gene Synthesis Consortium (IGSC) standards

16

Figure 1: Advancing the point of intervention in biosafety screening. In 2011 and 2012, the safety
process was limited to screening after projects had been completed (right); in 2013, the screening
shifted closer to intervening during the design-build-test cycle (middle). Future iterations aim to
move intervention further up the chain to maximize safety (left).

require, validated previous screening efforts by revealing no concerns that the Safety Com-

mittee had not already flagged. The results of this screening were also used to set terms of

access to iGEM parts, and are providing an empirical basis for evaluating national regula-

tions and international agreements governing parts safety and security. Continuation of this

partnership through an annual screening of all newly submitted parts would institutionalize

a vital secondary check within the overall safety system.

2.1.2 2013 Findings

The 2013 collegiate-level safety screening involved the review of 184 wet-lab teams

before the regional jamborees. In a continuation of recent trends, the 2013 competition

again witnessed increased project complexity and higher possible risk exposure. Here, the

primary factors of safety concern-chassis risk group and part risk group are characterized

by region and overall. Comments regarding laboratory biosafety levels are also included.

Chassis

The safety screen recorded the highest reported risk group level of chassis used per

17

project. For any efforts involving an organism above risk group level one, a Secondary

Form was also required. The vast majority of iGEM teams used chassis from the lowest

risk group level; across all competitors, 90% employed no higher than a risk group level

one chassis (Table 1).

18

chassis part
risk group level 1 2 3 other 1 2 3 other
North America 92% 6% 0% 2% 56% 37% 0% 8%

Europe 86% 12% 0% 2% 59% 27% 2% 12%
Asia 90% 8% 0% 2% 52% 31% 3% 15%

Latin America 91% 9% 0% 2% 55% 31% 2% 12%
total 90% 9% 0% 2% 55% 31% 2% 12%

Table 1: Highest chassis and part risk group level per team, presented by region and in sum. ‘‘Other"
refers to areas of unresolvable assignment uncertainties.

Parts

The 2013 iGEM safety screen also required information on any new or modified

coding regions that teams were using in their projects. A Secondary Safety Form was

required for any part sourced from a risk group two or higher organism, or from a

mammal. Parts from the 2013 Distribution Kit were exempted from review. Overall,

55% of iGEM teams reported no use of parts from higher than a risk group level one or-

ganism (Table 1). A further 31% reported use of parts from risk group level two organisms.

Teams’ detailed reporting in the Basic and Secondary Forms allowed for intervention

on all serious concerns prior to the Jamborees. Though not every safety concern was fully

resolved, there were no last-minute surprises in 2013. The quality of reporting was mixed,

with some teams providing exemplary responses and demonstrating deep consideration of

the relevant issues, while others were either cursory in their efforts, or were uninformed

about their universities’ or countries’ biosafety regulations.

The most troubling mistake found across multiple forms was teams incorrectly asserting

that their universities had no Institutional Biosafety Committee or equivalent group. Teams’

home universities hold the key responsibility for ensuring sound laboratory practices, so a

lack of understanding of these resources and requirements is cause for concern, and should

19

be a target for future educational efforts. The importance of home institutions serving

as the safety backbone of iGEM is reinforced by the self-reporting nature of the safety

policies. While standardized forms requesting specific data helped to improve reporting,

there remain no ready means for iGEM to ensure the veracity of statements provided.

Therefore, emphasizing compliance and consultation with home institutional biosafety

entities, which do have access to laboratories for verification purposes, helps to reduce

the uncertainty around responses provided. Further, planned improvements to guidance

documents will include better explanations of the intentions of various questions in the

coming year, and thus, the safety process should expect more informed responses.

2.1.3 Future Considerations

Changes made to the 2013 screening process marked an important step in the overall

evolution of safety policies within iGEM. However, improving safety at iGEM is an iterative

process, and lessons learned from 2013 will necessarily inform changes to the 2014 effort.

Of these modifications, the following are of top priority:

1. Pre-approval of projects exceeding certain risk thresholds. iGEM is striving to

attain points of intervention that optimize participant safety while maintaining project

flexibility (Figure 1). By requiring advance approval of plans to use organisms or

parts more likely to present hazards, iGEM aims to prevent situations such as those

in 2011-2013, in which teams worked with dangerous components before the safety

screeners were made aware of their plans and had an opportunity to act.

2. Improved clarity and guidance. Much remains unknown about how to assess risk

when organisms are broken down to component pieces. iGEM and collaborators have

attempted to provide guidance; however, significant room for improvement remains.

20

Guidance documents must be produced concomitant with policy evolution in order

to provide clarity in this area.

3. Increased advisor involvement. The iGEM safety process relies on teams’ home

universities, and thus, active advisor involvement is vital. The 2014 process will

continue to work on facilitating communication and engagement with the overseeing

parties. A strengthened set of iGEM safety policies ultimately serves to expand the

universe of acceptable projects. By understanding areas of concern, and knowing

how to address them responsibly, teams are capable of working safely along the

technology frontier. Safety policies are evolving in pursuit of this goal, and with this

aim, safety at iGEM is pointing toward the future.

2.1.4 Continued Developments

In 2014 and 2015, safety screening policies in iGEM followed the outlined future

considerations from 2013. iGEM headquarters hired a full-time employee to handle the

safety screening process and held safety and security-specific meetings at the 2014 and

2015 iGEM giant jamborees to discuss specific projects that exposed new security and

safety concerns. Additionally, the yearly screening of sequences in the Registry by SGI was

continued and flagged appropriate sequences of concern.

In summary, the safety screening process in iGEM represents one of the most thorough

long-term efforts to evaluate synthetic biology designs for both sequence, function and

design objective. Although iGEM shifted from volunteer screeners to a full-time employee

dedicated to screening projects, these projects do not represent all synthetic biology projects

and will not scale as the research field continues to increase in size. In the future, there will

need to be automated tools for evaluating and flagging designs with respect to safety and

security to supplement these screening efforts.

21

2.2 Risk Assessment and Regulatory Gaps

The iGEM safety screening process represents a methodology for identifying projects

that raise safety and security concerns. Once a project or application is identified, the risks

for that application must be assessed and it must be determined if the existing local and

global regulations are adequate for governing them.

Since many regulations that would be applied to synthetic biology applications were

created before the synthetic biology field existed, considerations for problems exposed by

synthetic biology technologies can be insufficient. In the case of RNA-guided gene drives

which strongly bias inheritance, my colleagues and I found this to be the case.

2.2.1 RNA-Guided Gene Drives

Genes in sexually reproducing organisms normally have, on average, a 50% chance

of being inherited, but some genes have a higher chance of being inherited. These genes

can increase in relative frequency in a population even if they reduce the odds that each

organism will reproduce. Aided by technological advances, scientists are investigating

how populations might be altered by adding, disrupting, or editing genes or suppressed by

propagating traits that reduce reproductive capacity28,43. Potential beneficial uses of such

‘‘gene drives" include reprogramming mosquito genomes to eliminate malaria, reversing the

development of pesticide and herbicide resistance, and locally eradicating invasive species.

However, drives may present environmental and security challenges as well as benefits.

Gene drives are subject to two fundamental limitations. First, drives will only function

in sexually reproducing species, so they cannot be used to engineer populations of viruses

or bacteria. Second, a newly released drive will typically take dozens of generations to

affect a substantial proportion of a target population, unless drive-containing organisms are

22

released in numbers constituting a substantial fraction of the population. The process may

require only a year or less for some invertebrates, but centuries for organisms with long

generation times.

Studies have evaluated the possibility of releasing transgenic mosquitoes to combat the

spread of malaria, dengue, and other mosquito-borne diseases, including requirements for

containment, testing, controlled release, and monitoring of mosquito gene drives. This

work will need to be replicated and extended for proposed gene drives seeking to alter other

species22,67. It is crucial that this rapidly developing technology continue to be evaluated

before its use outside the laboratory becomes a reality.

2.2.2 Technical Developments

One promising method for creating a gene drive uses targeted endonuclease enzymes to

cut a specific site in the DNA of the organism. In organisms that inherit one chromosome

with this enzyme’s gene and one without it, the endonuclease will cut the latter, inducing the

cell to copy the endonuclease and surrounding genes onto the chromosome that previously

lacked them (Figure 2). Ten years ago, Burt proposed using endonuclease drives to spread

traits that would control diseases borne by insect vectors28. He suggested that drives could

be designed to add or delete genes and suppress populations, potentially to the point of

extinction. However, no drive capable of spreading efficiently through a wild population

has yet been developed. A major reason has been the difficulty of programming drives to

cut desired sequences at high efficiency.

Scientists recently developed a powerful and efficient tool for genome engineering that

uses the CRISPR nuclease Cas9 to cut sequences specified by guide RNA molecules33,67.

This technique is in widespread use and has already engineered the genomes of more than

a dozen species. Cas9 may enable ‘‘RNA-guided gene drives" to edit nearly any gene in

23

Figure 2: How endonuclease gene drives spread altered genes through populations. (a) Altered
genes (blue) normally have a 50% chance of being inherited by offspring when crossed with a
wild-type organism (gray). (b) Gene drives can increase this chance to nearly 100% by cutting
homologous chromosomes lacking the alteration, which can cause the cell to copy the altered gene
and the drive when it fixes the damage. (c) By ensuring that the gene is almost always inherited,
the gene drive can spread the altered gene through a population over many generations, even if the
associated trait reduces the reproductive fitness of each organism. The recently developed CRISPR
nuclease Cas9, now widely used for genome engineering, may enable scientists to drive genomic
changes that can be generated with Cas9 through sexually reproducing organisms (1).

24

sexually reproducing populations43.

To reduce potential negative effects in advance of construction and testing, Esvelt et

al. have proposed several novel types of drives43. Precision drives could exclusively

affect particular species or subpopulations by targeting sequences unique to those groups.

Immunizing drives could block the spread of unwanted gene drives by preemptively altering

target sequences. Reversal drives could overwrite unwanted changes introduced by an

initial drive or by conventional genome engineering, even restoring the original sequence.

However, ecological effects would not necessarily be reversed. These and other RNA-guided

gene drives have yet to be demonstrated in the laboratory.

2.2.3 Environmental and Security Aspects

A recent workshop examined key questions concerning effects of development and use

of gene drives in varied species and contexts10,59.

Targeted wild organisms.

Scientists have minimal experience engineering biological systems for evolutionary

robustness. Drive-induced traits and altered population dynamics must be carefully

evaluated with explicit attention to stability. For example, a drive may move through only

part of a population before a mutation inactivates the engineered trait. In some cases,

preferred phenotypes might be maintained as long as new drives encoding updates are

periodically released. The effects of a strategy dependent on repeatedly releasing drives to

alter a population should be thoroughly assessed before use.

Nontargeted wild organisms.

In theory, precision drives could limit alterations to targeted populations, but the

25

reliability of these methods in preventing spread to non-target or related populations will

require assessment. To what extent and over what period of time might cross-breeding or

lateral gene transfer allow a drive to move beyond target populations? Might it subsequently

evolve to regain drive capabilities in populations not originally targeted? There may also

be unintended ecological side effects. Contained field trials should be performed before

releasing organisms bearing a drive that spreads the trait.

Crops and livestock.

A technology capable of editing mosquito populations to block disease transmission

could also be used to alter populations of agricultural plants or livestock by actors intent

on doing harm. However, doing so surreptitiously would be difficult because many

drive-containing organisms must be released to alter populations within a reasonable time

span. Moreover, drives are unlikely to spread undetected in contract seed production farms

and animal breeding facilities that test for the presence of trans-genes. It would thus be

difficult to use drives to affect food supplies in the United States and other countries that

rely on commercial seed production and artificial insemination. Developing countries that

do not use centralized seed production and artificial insemination could be more vulnerable.

Humans.

Gene drives will be ineffective at altering human populations because of our long

generation times. Furthermore, whole genome sequencing in medical diagnostics could

be used to detect the presence of drives. Drives are thus not a viable method for altering

human populations. Rare individuals might experience an allergic reaction to peptides in

the Cas9 protein if exposed to an affected organism. Thus, toxicological studies should be

conducted to confirm that proposed drive components are safe.

26

2.2.4 Toward Risk Management

We recommend the following steps toward integrated management of environmental

and security risks:

i Before any primary drive is released in the field, the efficacy of specific reversal drives

should be evaluated. Research should assess the extent to which the residual presence

of guide RNAs and/or Cas9 after reversal might affect the phenotype or fitness of a

population and the feasibility of reaching individual organisms altered by an initial

drive.

ii Long-term studies should evaluate the effects of gene drive use on genetic diversity

in target populations. Even if genome-level changes can be reversed, any population

reduced in numbers will have reduced genetic diversity and could be more vulnerable

to natural or anthropogenic pressures. Genome-editing applications may similarly have

lasting effects on populations owing to compensatory adaptations or other changes.

iii Investigations of drive function and safety should use multiple levels of molecular

containment to reduce the risk that drives will spread through wild populations during

testing. For example, drives should be designed to cut sequences absent from wild

populations, and drive components should be separated.

iv Initial tests of drives capable of spreading through wild populations should not be

conducted in geographic areas that harbor native populations of target species.

v All drives that might spread through wild populations should be constructed and tested

in tandem with corresponding immunization and reversal drives. These precautions

27

would allow accidental releases to be partially counteracted.

vi A network of multipurpose mesocosms and microcosms should be developed for testing

gene drives and other advanced biotechnologies in contained settings.

vii The presence and prevalence of drives should be monitored by targeted amplification

or metagenomic sequencing of environmental samples.

viii Because effects will mainly depend on the species and genomic change rather than the

drive mechanism, candidate gene drives should be evaluated on a case-by-case basis.

ix To assess potentially harmful uses of drives, multidisciplinary teams of experts should

be challenged to develop scenarios on deliberate misuse.

x Integrated benefit-risk assessments informed by the actions recommended above should

be conducted to determine whether and how to proceed with proposed gene drive

applications. Such assessments should be conducted with sensitivity to variations in

uncertainty across cases and to reductions in uncertainty over time.

2.2.5 Regulatory Gaps

The prospective development of drives highlights the need for regulatory reform.

Currently, U.S. regulations would treat drives as veterinary medicines or toxins. U.S.

policies and international security regimes rely on a listed-agent-and-toxin approach.

Neither addresses challenges posed by gene drives and other advanced biotechnologies.

U.S. environmental regulations

Responsibility for regulating animal applications of drives in the United States rests

with the Food and Drug Administration (FDA). An FDA guidance issued in 2009 states that

28

genetically engineered DNA constructs intended to affect the structure and function of an

animal, regardless of their use, meet the criteria for veterinary medicines and are regulated

as such. Developers are required to demonstrate that such constructs are safe for the animal.

Approval of new veterinary medicines is to be based on the traditional FDA criterion ‘‘that

it is safe and effective for its intended use"6. It is unclear whether these requirements

can be reconciled with projected uses of drives, including suppression of invasive species.

Nor is it clear how this guidance would apply to insects. The application of existing

U.S. Department of Agriculture (FDA) and U.S. Environmental Protection Agency (EPA)

regulations governing genetically modified organisms to gene drives is also ambiguous,

with jurisdictional overlaps across the Federal Insecticide, Fungicide, and Rodenticide

Act, the Toxic Substances Control Act, and the Animal and Plant Health Inspection Service8.

International environmental conventions

Existing international conventions cover international movements of gene drives,

but do not define standards for assessing effects, estimating damages, or mitigating

harms. International movements of living modified organisms are treated under the

2003 Cartagena Protocol on Biosafety, ratified by 167 nations not including the United

States and Canada. Article 17 of the Protocol obligates parties to notify an International

Biosafety Clearinghouse and affected nations of releases that may lead to movement of

living modified organisms with adverse effects on biological diversity or human health.

Other provisions empower nations to use border measures to limit international movements,

but these measures are not likely to control diffusion of drives. The 2010 Nagoya-Kuala

Lumpur Supplementary Protocol calls on Parties to adopt a process to define rules

governing liability and redress for damage from international movements. Neither the

process nor rules have been defined4.

29

U.S. security policies

The draft U.S. Government Policy on Dual Use Research of Concern (DURC) combines

a broad definition of concerns with a narrow definition of scope of oversight, the latter

focusing on experiments of concern on listed pathogens and toxins9. The listed-agent-toxins

approach is also used in the U.S. Select Agent Rule, USDA Select Agents/Toxins, and

Commerce Department export control regulations. Drives do not fall within the scope of

required oversight of DURC and other listed-agent-toxin-based policies.

International security conventions

The UN Biological Weapons Convention defines areas of concern in broad terms

with the intention of providing latitude to adapt to evolving technologies and threats.

Article 1 bans development, production, or stockpiling of all biological agents or toxins

that have no justification for prophylactic, protective, and other peaceful purposes and

weapons, equipment or means of delivery designed to use such agents or toxins for hostile

purposes1,2. However, national implementation measures defining operational oversight

and Australia Group Guidelines governing exports rely on narrow lists of organisms,

toxins, and associated experiments7. Gene drives and most other advanced applications of

genomic engineering do not use proscribed agents or create regulated toxins and hence fall

beyond the scope of operational regulations and agreements.

Filling the regulatory gaps

We recommend adopting a function-based approach that defines risk in terms of the

ability to influence any key biological component the loss of which would be sufficient to

cause harm to humans or other species of interest. The agents and targets of concern with

30

a functional approach could include DNA, RNA, proteins, metabolites, and any packages

thereof. Thus, suppression drives would be covered because they would cause loss of

reproductive capability in an animal population, whereas an experimental reversal drive

that could only spread through engineered laboratory populations could be freely developed.

Steps taken to mitigate environmental concerns will address security concerns and vice versa.

Regulatory authority for each proposed RNA-guided gene drive should be granted to the

agency with the expertise to evaluate the application in question. All relevant data should

be made publicly available and, ideally, subjected to peer review82.

2.2.6 Conclusions

For emerging technologies that affect the global commons, concepts and applications

should be published in advance of construction, testing, and release. This lead time enables

public discussion of environmental and security concerns, research into areas of uncertainty,

and development and testing of safety features. It allows adaptation of regulations and

conventions in light of emerging information on benefits, risks, and policy gaps. Most

important, lead time will allow for broadly inclusive and well-informed public discussion

to determine if, when, and how gene drives should be used.

2.3 Implications of Bio-Design Automation

As discussed in this chapter, there are some synthetic biology applications that expose

considerable regulatory gaps in both U.S. and international regulatory frameworks and

these applications require additional risk-assessment research. Moving forward, there will

need to be mechanisms for automatically flagging projects and applications with such

concerns. One such solution is to build software tools for automated risk assessment

of sequences and applications. Currently, the only known tool to solve this problem is

31

Synthetic Genomics’ Archetype tool. However, since it is a proprietary software, the way

in which it screens sequences is not clearly documented and there is no open-source tool

for evaluating sequences in an open community.

Since the bio-design automation field aims to accelerate the scale and pace of synthetic

biology, it important to begin developing tools for addressing biosecurity concerns. It

would also be useful to include metrics for risk assessment in future design tools, so that

designs that create risk are flagged for additional evaluation.

At its current scale and pace of development, considerable regulatory gaps are already

exposed by current synthetic biology applications and the number of projects with such

concerns will only increase as the pace of technological advance accelerates. Fortunately,

this also poses great potential for software developers to create tools to flag and document

risky designs or designs that raise biosecurity concerns. In coming years it will become

more and more important for synthetic biologists to ask themselves which projects they are

pursuing and why before the path of research is defined, as their design power increases

from bio-design automation tools.

32

3 Design Workflow Overview

Once a synthetic biologist has determined which application to develop and given due

consideration to the biosecurity and risk assessment aspects, they must form a plan for

developing the technology. In synthetic biology, this requires a full workflow that includes

creating genetic designs, physically assembling them, testing them, and using the outcomes

to refine designs, if necessary. This thesis is focused on building a tool to automate

decisions in each one of these areas for a workflow tailored to building transcriptional

regulatory networks in E. coli. To accomplish this task, we created a tool called Phoenix.

Phoenix combines seven existing software tools and introduces more than four additional

sub-problem definitions and solutions. A majority of these tools are not presented directly

to a user, but are used extensively on the back end.

Phoenix receives an input design specification and parts library and produces a design

hierarchy for the input design specification. It then returns a set of experimental instructions

for the lowest lever of the design hierarchy for the user to implement. After the user

completes the experiment, they return the collected data to Phoenix as per the experimental

instructions and, as additional phases of building and testing are necessary, Phoenix returns

new sets of building and testing instructions to the user for each level in the design hierarchy.

In instances where the acquired experimental results do not match the simulated predictions,

Phoenix instructs additional building and testing instructions to attempt to isolate design

failures.

This process starts with uploading of all DNA sequences features and plasmids into

a sequence editor tool (Benchling) and exporting annotated sequences into a multi-part

Genbank file. These file are then uploaded into Phoenix and saved into the user’s Clotho

database (Step 0). Phoenix is then idle until it receives a set of design specifications

33

Figure 3: Phoenix tool software architecture

from the user (Step 1) in the form of a performance-constrained signal temporal logic

equation (STL) (‘function’ and ‘performance’ specifications) and a constraint set used

to produce abstract genetic regulatory networks (AGRNs) using miniEugene (‘structural’

specification). These specifications are verified for validity and then decomposed using

structure- and function-based grammars within Phoenix (Step 2).

These decomposed genetic structures are then supplemented with temporary testing

parts and the first round of optimized part assignment is performed to determine the se-

quence-assigned constructs for the first testing phase (Step 3). These target parts and the

parts library are then exported into Raven14 to produce an optimized DNA assembly plan

(Step 4). At this point, the user is returned a file with instructions for DNA assembly,

oligos needed for assembly, and a ‘key file’ that represents the testing conditions required

for subsequent data analysis (Step 5) after building is complete.

The user then executes the building and testing instructions and returns cytometry data

34

and new multi-part GenBank files for the new plasmids back into Clotho via the sequence

editor and the annotated key file (Step 6). Raw cytometry data is processed by a data analysis

script using the Bioconductor library in R (Step 7) and the processed data is then mapped

to an SBML file, representative of the core Phoenix mechanistic model. An algorithm for

parameter estimation is applied from the COPASI toolbox to determine rate constants for

each construct from the input data (Step 8).

At this point, all parameters for the current stage of the design hierarchy are known and

can be used to simulate compositional behavior with COPASI (Step 9). Next, each sim-

ulation is model-checked with the decomposed functional specification for each construct

and those constructs which do not satisfy the specified performance are filtered out, and

those that satisfy the decomposed functional specification are rank-ordered for robustness

(Step 10). Then, the constructs that are predicted to most robustly meet the decomposed

functional specification are mapped back to parts and another round of part assignment

optimization (Step 11) is performed. Lastly, the results of both the simulated and observed

behavior can be viewed with electronic datasheets using Owl13 (Step 12).

In instances where there are mismatches between the simulated compositional behavior

and the data acquired upon building and testing, Phoenix uses grammars that define common

failure modes of transcriptional regulatory networks to instruct the building and testing of

additional intermediate networks to probe changes in the rate constants with respect to the

rate constants deduced from the first phase of testing.Steps 4-12 are repeated iteratively up

the design hierarchy determined by the Phoenix grammars (Step 2), but the user only ever

views building end testing instructions (Step 5), a graphical map of the design hierarchy

(Step 2) and results in the user interface (Step 12).

35

4 Genetic Regulatory Network Design Specification

The entry point to any design-build-test-learn cycle is the design specification. This rep-

resents the formal description of the desired outcome (i.e. ‘target’) of a project. In synthetic

biology projects, design specifications are typically defined informally as ‘design objectives’

that can range from a target yield of a small molecule produced by cells’ metabolism to a

target level of expression of a gene of interest. Design specifications can also be formal

mathematical descriptions of functional behavior. Other engineering fields rely on formal

specification tools and methods because they are well-defined, which allows for quantitative

reproducibility and can be analyzed to create more complex function. Furthermore, formal

specifications provide a strong foundation for compositional designs that rely on the defined

function of their components.

In synthetic biology, formal design specification has not been explored deeply, but many

formal specifications come in the form of boolean truth table. This is a powerful and simple

abstraction borrowed from electrical engineering that a digital output (1 or 0) for an arbitrary

number of digital inputs (also 1 or 0). Recent work has demonstrated sophisticated boolean

logic function for a variety of genetic network types. Boolean logic has been demonstrated

for transcriptional regulatory networks97, recombinase-based networks91, and RNA-based

networks65 and still currently serves as the inspiration for many synthetic biology projects.

While this abstraction has garnered a lot of excitement due to its importance in other

engineering fields and has recently been widely adopted in parts of the synthetic biology

community, there has yet to be a clear application of genetic logic used to solve a real-world

problem. From a technical perspective, boolean specifications are not time-dependent and

generally are not performance-constrained. For example, this type of specification cannot

be easily used to specify a genetic toggle switch47 or a genetic oscillator40,95. These

36

specifications also do not have easy ways for attaching quantitative performance metrics.

An ideal specification for synthetic biology applications would define the desired func-

tion and performance for a wide variety of synthetic genetic networks. Given the breadth

of platforms used in synthetic biology, it would also be useful and necessary to supply

a structure-based specification, or AGRN. Also considering this breadth of platforms, it

does not seem reasonable that a function alone can be used to determine what performance

should be required of any target network or which type of network platform would be best

for satisfying an particular function. For these reasons, in Phoenix, a user must enter a

specification that individually defines the desired structure, function and performance of

a target network. It would be desirable to create a design ‘language’ that can be used a

specification tools to create and validate designs.

4.1 Grammars for Design Decomposition

In computer science, an important abstraction for validating expressions a language is

grammars. Formal grammars are defined by four components: 1. Terminal symbols which

serve as the elemental building blocks; 2. A start symbol to represent a complete statement;

3. Non-terminal symbols which serve as intermediate symbols between terminals and

the start; and 4. Production rules for defining how terminal symbols can be combined to

produce non-terminals and ultimately a start. To give a non-technical example, consider

a sentence in English. A sentence would be the start symbol and the words would be the

terminals. Non-terminals would include clauses, phrases and participles which are made

from terminals and used to build a full sentence.

Grammars can be useful for generating sets of complete start symbols given a library

of terminals, but can also be used to decompose a start symbol into its terminals. This can

be useful for breaking very large expressions into it’s elements. In Phoenix, we apply this

37

abstraction to structural genetic design specifications to decompose these specifications into

abstract design trees.

4.1.1 Signal Temporal Logic

In systems engineering, there is a set of formal methods used for time-dependent

specifications called temporal logics. These logics are used for a variety of applications,

including robotics, and also include the set of all boolean expressions. One particular logic

in this family of specification languages, signal temporal logic STL, can specify a signal

over time with performance constraints. Me and my collaborators selected this language as

the form of function and performance specification in Phoenix.

Figure 4: Specification of a ‘NOT gate’. The English language specification and STL specification
(left). An example of a NOT gate structure and illustration of the temporal function (right).

This language has its own grammar to validate STL expressions independent of their

applications, but no current mechanism by which to decompose an STL function into its

sub-functions. Since this math does not yet exist, in Phoenix, we leverage another STL

variant, parameterized STL (PSTL) to compose to compose large specifications consisting

of the functional terminals: ‘NOT gate’, ‘toggle switch’ and ‘oscillator’.

38

4.1.2 Abstract Genetic Regulatory Network Specification

Each genetic platform has different structural genetic elements. Transcriptional GRNs

in textitE. coli can be defined as compositions of promoters, ribosome binding sites (RBSs),

regulator coding sequences, terminators and vectors with origins of replication and antibiotic

resistance. From these five elements, an infinite number of AGRNs can be created, but only

a subset of those AGRNs contain complete sets of transcriptional units arranged to express

all contained regulatory coding sequences.

Figure 5: Structural specification in Phoenix. An example miniEugene file with structural constraints
(left). Three valid AGRNs from this structural specification (right)

Phoenix, has a grammar for determining if a candidate AGRN contains complete sets

of transcriptional units, considering both the forward and reverse strands. Phoenix comes

pre-loaded with files that can be input into an AGRN-generation tool, miniEugene, and

define the set of all valid AGRNs for a transcriptional ‘NOT gate’, ‘toggle switch’ and

‘oscillator’. These AGRN outputs are considered the starts of the structural grammar and

map to the terminals of the STL grammar.

In Phoenix, we use this grammar to decompose genetic structures into abstract design

trees. The foundation of these grammars are the biochemical interactions involved in genetic

39

Figure 6: (a) Grammar in Phoenix going from a functional non-terminal to a structural terminal
(left). (b) A symbolic representation of an example design decomposition.

transcriptional regulation and the types of structural genetic elements that are required

for transcription, translation, and transcriptional regulation. Our grammars recognize

four types of genetic elements: transcriptional promoters, ribosome binding sites (RBSs),

coding sequences for transcription factors (CDSs) and transcriptional terminators. The

use of specialized RBSs, called BCDs71 is assumed throughout to shield the impact of

adjacent CDSs on expression. The grammar is used to identify sets of these genetic

elements on both strands and determine if candidate sets of these elements exclusively

produce 1 or more transcription factors (i.e. no partial production of bio-molecules is

allowed). Once it is determined that a set of genetic elements is valid, the grammar

identifies subsets of these structures that produce single transcriptional regulatory ‘arcs’

and identifies single transcriptional units within those structures. Finally, the grammar

40

identifies sets of components within a transcriptional unit that enable the expression of

a transcription factor (called EXPRESSORs) and the coding sequences that get expressed

as proteins (called EXPRESSEEs). The decomposition is done this way such that the

leaves of the tree (EXPRESSORs and EXPRESSEEs) represent sets of elements that are

responsible for independent measureable parameters in the enzymatic models for these

structures. Specifically, EXPRESSORs are the ordered sets of parts that contribute to

the expression parameter of a transcriptional unit and EXPRESSEEs are the elements are

ultimately translated into proteins in the cell which have a degradation, regulation parameter,

and sometimes a small molecule interaction parameter.

4.2 Mechanistic Modeling of Genetic Regulation

Figure 7: As opposed to performing measurements to determine rate constants specific to single
interactions for expression (a), Phoenix ‘black-boxes’ these expression interactions into a single
composite constant for expression.

The decomposition of transcriptional GRNs is informed by the modeling paradigm used

to understand the mechanistic interactions driving these networks. In Phoenix, a modeling

paradigm from other current work is adopted that black-boxes protein expression to one

rate constant that represents all reactions required to produce a protein. This includes

transcription initiation, elongation, and termination; translation initiation and elongation;

41

mRNA degradation; and DNA replication. This composite expression constant is the only

constant measured for EXPRESSORs.

Figure 8: (a) The core models in Phoenix consider both expression and degradation kinetics (b)
Three example regulatory networks (c) Mass action kinetic models for the three example networks
with the Phoenix modeling approach.

More individual reactions are measured for EXPRESSEEs: protein degradation; protein

expression of a promoter as a function of the quantity of its corresponding EXPRESSEE; and

the degree with which a small molecule inducer in the environment impacts this relationship.

Each one of these reactions are measured individually in the Phoenix environment with the

addition of standard testing components.

4.3 Insertion of Testing Components

Specifications decomposed with the Phoenix grammars result in a tree of genetic com-

ponents that are still not visible to any form of measurement. In the Phoenix tool, we

use single-cell fluorescence as the mechanism of functional measurement. Since this tech-

nology has single-cell resolution and can measure a large number of fluorescent reporters

simultaneously, it is an ideal choice to measure the signal produced by genetic regulatory

42

networks.

When using the production of fluorescent reporters as probes for the regulatory function,

there arises a question of how to position this probe in the construct being measured. There is

a variety of options for this probe including using a separate transcriptional unit driven by the

same promoter, bi-cistronic transcriptional unit designs, and fluorescent-fused regulators.

In Phoenix, fluorescence-fused regulators are the method of choice since they are the most

direct measurement of a regulator’s expression and share the same degradation properties

in a fused complex.

Figure 9: (a) After design decomposition, testing components (blue) must be added to the de-
composed design components (black). (b) Once the position of fluorescence-fused regulators is
determined, a fluorescent protein must be selected from a set of available fluorescent proteins with
respect to a particular measurement machine.

Phoenix applies this probing strategy throughout, but in cases where multiple fluores-

cence-fused regulators appear in one construct (which is true of all functional terminals and

thus also larger designs), it must be determined which fluorescent protein to use in each fu-

sion. Since there currently exist no algorithms for selecting sets of fluorescent proteins, we

developed an algorithm for selecting fluorescent proteins based upon minimizing spectral

43

overlap across fluorescence emission spectra.

Once the fluorescent proteins are selected for the construct at the functional root, these

selections are propagated down the design tree. For some constructs, all of the elements

necessary for expressing a fluorescent protein signal for measurement are not yet present.

Phoenix solves this problem by assigning default testing elements with pre-measured prop-

erties where necessary.

In the final set of operations for adding testing components, Phoenix instructs the cre-

ation of plasmids to be used as controls for measuring the properties of EXPRESSEEs. These

plasmids have two transcriptional units - one controlled by the EXPRESSEE’s promoter to

express a fluorescent protein and one to express a gene for the environmentally-inducible

control of the promoter driving the expression of the EXPRESSEE. This allows for control-

lable measurements of how an EXPRESSEE regulates its corresponding promoter.

4.4 Part Assignment

Upon the creation of the abstract design tree, the sub-structure of genetic elements at

each node is determined, but the DNA sequences of each element are not sequence-assigned.

The process of filling in this AGRN to create a sequence-complete GRN is called part

assignment.

There are some existing tools for part assignment102, but they are restricted to log-

ic-based abstractions and do not make considerations for AGRN arrangements, or default

testing sequences. Upon initial design decomposition and testing element addition, a partial

sequence assignment is performed for promoter-regulator pairs to assure that only orthog-

onal pairs of regulators and promoters are used in each functional terminal. In this initial

partial assignment step, RBSs, terminators and vectors are left unassigned. The user is

instructed to multiplex all of their eligible RBSs, terminators, and vectors in the terminal

44

testing constructs to maximize functional diversity. This is done because the functional di-

versity represents the ‘performance library’ for the target design and a larger library implies

more possible combinatorial compositional designs.

45

5 Interactive DNA Assembly

5.1 DNA Assembly Background

Once a full set of GRNs has been assigned, it must be determined how to clone the

designs efficiently. Cloning technology has increased in scale and complexity since it

was invented 40 years ago. In the past decade, a number of DNA assembly methods

have emerged42,48,62,81,89,99 that include restriction-ligationbased and homologous recom-

binationbased cloning systems, and many follow the design model of assembling genetic

’constructs’ from genetic ’parts’41. While the precise definitions of these terms have been

debated15, the consensus is that parts are DNA segments and constructs are ordered sets of

these parts. Given this design model, two fundamental questions arise: First, how should we

identify and select parts to create the desired functional genetic constructs? Second, once

these constructs have been selected, how do we physically assemble them? The following

work formalizes this second question and provides algorithms that address experimental

realities to improve the speed, modularity and experimental efficiency of this process for

state-of-the-art DNA cloning techniques.

Cloning-based assembly approaches can be broadly classified into binary assembly

techniques, where two DNA parts are assembled in one cloning step, and multi-way (one-pot)

assembly techniques, where two or more parts are assembled in one step. Generally

speaking, multi-way assembly methods are faster because they can minimize cloning steps

and can be exploited to leave no assembly artifacts in a completed construct, while binary

assembly methods typically require more cloning steps, but in some cases utilize specific

cloning sites to allow a simpler standardization of part composition and modularity.

Previous work25,37 detailed hierarchical assembly algorithms for binary assembly90 but

46

Figure 10: The graphic symbols are composed using Pigeon23 (http://www.pigeoncad.org/) from
SBOL45 (http://www.sbolstandard.org/) visual images to denote part types. (a) The repressilator.
(b) Starting library consists only of template DNA. (c) A plan for assembling the repressilator given
b requires 13 PCRs, 4 steps and 2 stages. Two steps fail (steps 2 and 3; red boxes), one step succeeds
(step 1; green box) and the dependent step in the second stage cannot be attempted (orange box). (d)
The updated library contains basic parts and intermediate parts with specific overhangs from c. (e)
An optimized plan, in which all steps succeed (green boxes), is generated with no PCRs, three steps
and two stages.

lacked formulation to address more modern multi-way assembly techniques. There are few

automated tools to exploit the high degrees of modularity and reuse for multi-way techniques,

and no tools for producing complete assembly plans. Some approaches52 detail the process

of automatically selecting oligonucleotides and analyze trade-offs between cloning and gene

synthesis for multi-way assembly; however, they do not optimize cloning steps and stages.

This section describes a method for performing optimizations on intermediate cloning

step selection and part junction selection for any number of target constructs while con-

sidering a library of existing parts for reuse. My collaborators and I show that for sets of

thousands of variants of multiple types of contemporary genetic constructs and a large set

of constructs from the literature26,27,44,64,69,91,96,97, our program outperforms unoptimized

47

solutions (P(z) < 0.001), and we then experimentally verify a small subset of these optimized

solutions by reconstructing ‘genetic counter’ and ‘repressilator’ constructs. This work also

details, to our knowledge, the first automated cloning workflow in which experimental

outcomes may be directly fed back into the software to recalculate an alternative assembly

plan.

The algorithms presented are housed in an online web application called Raven that

produces full assembly plans in human- and computer-readable instructions and graphical

Synthetic Biology Open Language (SBOL)-compatible images for each of the supported

assembly methods42,48,62,81,90,99.

In this work, I break the problem of assembling a set of DNA constructs with a selected

cloning technique into three main subproblems. First, the algorithms determine an opti-

mized hierarchical cloning plan for assembling a set of constructs. For this part, Raven uses

dynamic programming to reduce the computational time it takes to solve the large problem

of selecting intermediate cloning steps for a set of target constructs into smaller sub-prob-

lems. Because the heuristic scores for assembling a specific intermediate are assumed to

remain constant regardless of previous or future cloning steps, once an optimized heuristic

solution for an intermediate is found, the solution is reused if the candidate intermediate

step is encountered again. For constructs that share parts internally or share parts with other

target constructs, sharing of assembly intermediates can reduce the total step count consid-

erably, and, if many steps can be done in parallel, the number of cloning stages can also

be minimized. The cloning step solution comprising all the stages and steps necessary to

build the target constructs under consideration constitutes a hierarchical ‘assembly graph’.

Second, the algorithms determine an optimized set of part junctions (hereafter referred

to as ‘overhangs’) required to perform the selected cloning steps. Overhang assignment,

which aims to minimize overhang generation cost (hereafter ‘PCR steps’), is determined

48

in three steps. First, the requirements for overhang uniqueness based on the selected

assembly method are determined (for example, all parts must have unique pairs in each

individual cloning step). Second, for modular overhang assignment, overhang pair sharing

is maximized for all cloning steps where sharing can eliminate extra steps and the total

number of unique overhang sequences is minimized. The second step is skipped for some

assembly methods because it is assumed that all overhangs are either the same or all are

unique. Third, after all overhang pairs have been determined, the existing parts library

is used to map abstract overhangs to DNA sequences, maximizing library reuse with a

constrained Cartesian product (Figure 15).

Third, based on the cloning steps and their overhangs, oligonucleotides for PCR are

automatically designed (Figure 10a-c). For all PCR steps, primers are designed on the

basis of part, overhang sequence, direction (forward or reverse strand) and assembly method.

The primer designs are optimized for length and melting temperature, but other complex

optimizations are not considered. For more sophisticated primer designs, we provide

outputs compatible with existing state-of-the-art primer design software52. The summary

of all cloning steps, PCR steps and oligonucleotide designs constitutes a complete ‘assembly

plan’.

Following Raven’s assembly instructions, a user might encounter some assembly steps

that fail. The user can then mark each step in the plan as successful, failed or not attempted

(as a result of step failures in an earlier stage) (Figure 10c) to recalculate an alternative

assembly plan. The parts from the successful steps are added to the library and failed steps

are forbidden from appearing in a new plan (Figure 10d,e). The interactive refinement of

an assembly plan is meant to be independent of specific protocols and reaction conditions

and can complement troubleshooting specific reactions in a preliminary plan. This process

continues iteratively until all target parts are assembled. As this algorithm relies on heuristics

49

in many locations, we cannot make any claims that it is optimal. However, we can prove

that the solutions are correct in linear time as a function of the number of intermediates.

50

C
on

str
uc

tS
ou

rc
e

N
o.

U
n-

O
pt

im
iz

ed
So

lu
tio

ns
R

av
en

So
lu

tio
n

R
FC

10
R

FC
94

G
ib

so
n

R
FC

10
R

FC
94

G
ib

so
n

B
on

ne
te

ta
l.26

6
6.

09
|4

5.
7|

21
3.

83
|4

7.
7|

58
2.

67
|1

2.
3|

34
5|

43
|2

1
3|

39
|5

4
2|

8|
34

0.
80

|1
.2

4|
0

0.
56

|2
.0

7|
0

0.
59

|2
.0

5|
0

0.
08

|0
.0

2|
0.

5
0.

07
|<

0.
01

|0
0.

13
|0

.0
2|

0.
5

B
on

ne
te

ta
l.27

13
6.

81
|8

0.
9|

23
4.

41
|1

16
|1

27
3.

27
|3

2.
9|

55
5|

73
|2

3
3|

75
|1

04
2|

24
|5

5
0.

64
|2

.6
1|

0
0.

52
|4

.5
0|

0
0.

50
|2

.7
3|

0
<0

.0
1|

<0
.0

1|
0.

5
<0

.0
1|

<0
.0

1|
0

<0
.0

1|
<0

.0
1|

0.
5

Fr
ie

dl
an

d
et

al
.44

5
8.

97
|8

9.
7|

27
4.

99
|1

01
|1

25
4.

99
|3

3.
3|

50
6|

74
|2

7
3|

49
|6

2
2|

19
|5

0
0.

87
|3

.4
9|

0
0.

59
|4

.0
5|

0
0.

59
|2

.9
1|

0
<0

.0
1|

<0
.0

1|
0.

5
<0

.0
1|

<0
.0

1|
0

<0
.0

1|
<0

.0
1|

0.
5

Lo
u

et
al

.64
19

1
7.

81
|4

82
|9

0
6.

15
|8

69
|4

20
4.

13
|4

77
|4

49
5|

62
4|

90
3|

40
1|

26
6

2|
38

1|
44

9
0.

59
|2

3.
2|

0
0.

54
|3

4.
4|

0
0.

36
|1

0.
1|

0
<0

.0
1|

1*
|0

.5
<0

.0
1|

<0
.0

1|
0

<0
.0

1|
<0

.0
1|

0.
5

M
oo

n
et

al
.69

15
8.

70
|1

06
|3

7
4.

82
|1

35
|1

40
3.

66
|3

8.
0|

84
6|

10
2|

37
3|

71
|9

0
2|

22
|8

4
0.

99
|3

.0
3|

0
0.

58
|4

.8
7|

0
0.

60
|3

.6
2|

0
<0

.0
1|

0.
09

|0
.5

<0
.0

1|
<0

.0
1|

0
<0

.0
1|

<0
.0

1|
0.

5

Su
iti

et
al

.91
23

7.
39

|1
25

|1
9

4.
87

|2
24

|2
55

3.
60

|7
1.

4|
97

5|
12

1|
19

3|
17

1|
23

4
2|

55
|9

7
0.

63
|4

.3
8|

0
0.

48
|7

.5
1|

0
0.

59
|3

.9
9|

0
<0

.0
1|

0.
18

|0
.5

<0
.0

1|
<0

.0
1|

0
<0

.0
1|

<0
.0

1|
0.

5

Ta
bo

re
ta

l.96
6

7.
76

|4
9.

2|
12

4.
61

|7
6.

9|
98

3.
49

|2
3.

1|
26

5|
39

|1
2

3|
39

|5
1

2|
14

|2
6

0.
82

|3
.5

6|
0

0.
58

|3
.4

7|
0

0.
56

|2
.3

6|
0

<0
.0

1|
<0

.0
1|

0.
5

<0
.0

1|
<0

.0
1|

0
<0

.0
1|

<0
.0

1|
0.

5

Ta
m

si
re

ta
l.97

14
6.

30
|6

0.
6|

15
4.

24
|8

4.
1|

93
2.

89
|2

8.
8|

53
4|

56
|1

5
3|

59
|6

9
2|

21
|5

3
0.

53
|2

.2
7|

0
0.

50
|4

.2
4|

0
0.

52
|2

.7
1|

0
<0

.0
1|

0.
02

|0
.5

<0
.0

1|
<0

.0
1|

0
0.

04
|<

0.
01

|0
.5

A
LL

27
3

9.
28

|9
69

|2
04

6.
17

|1
56

6|
90

7
4.

36
|7

17
|8

44
6|

10
92

|2
04

3|
87

9|
79

7
2|

54
4|

84
4

0.
85

|2
3.

8|
0

0.
48

|2
4.

7|
0

0.
51

|1
3.

2|
0

<0
.0

1|
0.

99
*|

0.
5

<0
.0

1|
<0

.0
1|

0
<0

.0
1|

<0
.0

1|
0.

5

Ta
bl

e2
:

R
av

en
-o

pt
im

iz
ed

an
d

av
er

ag
e

un
op

tim
iz

ed
as

se
m

bl
y

sc
or

es
fo

rc
on

str
uc

tin
g

pl
as

m
id

sf
ro

m
th

e
lit

er
at

ur
e.

N
um

be
ro

fc
on

str
uc

ts
(n

o.
)

co
ns

id
er

ed
in

ea
ch

se
ti

ss
ho

w
n.

N
um

be
rs

in
ea

ch
se

to
fc

ol
um

ns
re

fe
rt

o
cl

on
in

g
sta

ge
s,

cl
on

in
g

ste
ps

an
d

PC
R

ste
ps

,r
es

pe
ct

iv
el

y.
U

no
pt

im
iz

ed
so

lu
tio

ns
ar

e
re

pr
es

en
te

d
by

av
er

ag
es

(to
p

of
ea

ch
ro

w
)a

nd
s.d

.
(b

ot
to

m
of

ea
ch

ro
w

).
R

av
en

so
lu

tio
ns

ar
e

re
po

rte
d

(to
p)

,
al

on
g

w
ith

th
e

pr
ob

ab
ili

ty
,P

(z
),

of
se

le
ct

in
g

th
is

so
lu

tio
n

ra
nd

om
ly

us
in

g
a

sta
tis

tic
al

z-
te

st
(b

ot
to

m
).

P
va

lu
es

ar
e

ca
lc

ul
at

ed
as

su
m

in
g

a
no

rm
al

di
str

ib
ut

io
n

of
as

se
m

bl
y

ou
tc

om
es

.

51

5.2 In silico assembly of thousands of constructs

To determine the quality of Raven’s assembly plans, me and my colleagues compared

our solutions against unoptimized solutions for each data set by randomly sampling the

assembly plan space for each set of constructs under consideration. For both unoptimized

solutions and Raven solutions, we assumed no preexisting library of parts except template

DNA and constrained our assembly calculations such that a maximum of six parts could

be assembled per reaction for one-pot assemblies, as reactions with more parts show low

efficiency.

First I considered several published sets of complex genetic constructs covering a variety

of sizes, types and architectures26,27,44,64,69,91,96,97. For each of these sets, we determined

optimized and unoptimized solutions for BioBricks (BioBricks Foundation request for

comments (BBF RFC) 10), MoClo (BBF RFC 94) and Gibson assembly methods.

Assembly solutions were scored in terms of cloning stages, cloning steps and PCR steps,

and the Raven solutions are compared to average unoptimized solutions (Table 2) and

the best unoptimized solutions (Table 3). Raven’s solutions were significantly better than

unoptimized solutions for assembly stages (P(z) < 0.01) for all three assembly methods for

nearly all construct sets. Raven’s MoClo solutions were significantly better for both cloning

steps and PCR steps (P(z) < 0.01). Raven’s solutions had significantly fewer cloning step

solutions for Gibson (P(z) < 0.01) for all construct sets, and in only one BioBricks solution

did the unoptimized plans result in fewer steps. However, as Raven’s strongest scoring

heuristic is cloning stages, when selecting the best assembly plan, Raven allows additional

steps in favor of fewer stages. Similarly, the summary of all sets has a better cloning-step

solution for BioBricks because of the inclusion of the aforementioned set, which contains

by far the greatest number of constructs of the considered construct sets. For BioBricks and

52

Gibson cloning, the number of PCRs is not optimized, so all Raven answers are equivalent

to those of the unoptimized solution.

Next, to demonstrate the power of Raven solutions on an even larger scale, I used

Eugene73 to generate a set of 1,000 or more variant constructs for five separate types of

constructs: DNA invertase cascade (DIC) counters, toggle switches, repressilators, tran-

scriptional NOR gates and invertase NOR gates (Figure 11a). Because it is common for

large constructs to need tuning to achieve function, these sets contain variants to represent

a spectrum of possible function and provide many opportunities to share intermediates.

To determine one unoptimized solution for each of these sets, a script randomly selected

500 constructs and calculated an unoptimized, one-pot hierarchical assembly graph. We

repeated this experiment 1,000 times for each of the five designs to get a distribution for

each type of design and found that Raven’s algorithms were able to select assembly graphs

that require significantly fewer cloning steps than the average unoptimized graphs for all

five designs (P(z) < 0.001) (Figure 11b). Because these data sets were made from com-

binatorial part substitutions, there exist many opportunities to share cloning intermediates

and assembly vectors using modular overhangs. My team observed that our modular over-

hang assignment solutions required significantly fewer PCRs than unoptimized solutions

for overhang assignment for each of the five design types (P(z) < 0.001) (Figure 11c).

Finally, I determined how Raven’s solutions performed as a function of the number of

constructs under consideration. We repeated the in silico experiments for the five design

types for variable numbers of constructs. I found that Raven’s solutions significantly outper-

formed the unoptimized solution spaces for both cloning steps and PCR steps (Figure 11d)

at a small scale of 5 constructs (P(z) < 0.001) as well as at a larger scale of 500 constructs

(P(z) < 0.001). As the number of constructs under consideration increases exponentially,

Raven’s solutions for both hierarchical assembly and overhang assignment also improve

53

Figure 11: (a) SBOL visual representations of the DIC counter, invertase NOR gate, repressilator,
toggle switch and transcriptional NOR gate constructs, indicating the number of parts we sampled
at each position and the total possible construct variants after application of Eugene rules. (b)
Cloning steps required for MoClo assembly of a 500-construct subset of each set of 1,000 or more
constructs from a. Asterisks represent the Raven solution; other points represent unoptimized
cloning step solutions. (c) PCR steps required for MoClo assembly given the cloning step solution
in b. Asterisks represent the Raven solution; other points represent random PCR step solutions. (d)
The fold improvement of Raven’s solution compared to unoptimized solutions in b,c as a function
of construct quantity. Raven’s solutions improve as the number of constructs per assembly plan
increases. PCR steps (dashed) and cloning steps (solid) are shown separately.

exponentially compared to unoptimized solutions (Figure 11d).

5.3 Interactive Assembly of Genetic Constructs

To highlight Raven’s ability to utilize an existing library of constructs, I used it to

calculate an assembly plan for six repressilator40 constructs using an existing library with

an existing overhang schema. The constructs were designed based on previously published

schema using the CIDAR (http://www.cidarlab.org/) MoClo library as a resource. Design

constraints allowed only up to four parts per cloning step, as opposed to six. The assembly

54

plan for these six constructs required 17 assembly steps, 2 assembly stages, 0 PCR reactions

and 23 shared parts, and we successfully constructed two constructs without modification

to this plan (Figure 25).

I then selected a subset of the constructs from Friedland et al.44 (representing some of

the largest and most complex constructs in the sets) and constructed them using Raven. I

used a MoClo assembly plan (BBF RFC 94) for the DIC counter constructs, assuming a

library of only template DNA and cloning vectors. The Raven-designed oligonucleotides

from the assembly plan were used to amplify parts using the original constructs as template

(Figure 17), overhang sites were chosen from a preselected set of 4-bp modular scars and it

was assumed that all cloning steps would have equivalent cloning efficiency. The assembly

plan for all four constructs required 29 steps, 3 stages and 34 PCR steps (Figure 12a, Fig-

ure 19). I implemented this preliminary assembly plan as specified by the human-readable

instructions that Raven generated, using standard reaction conditions (Figure 12a).

This initial plan was not successful. However, Raven has four primary mechanisms

for interactively modifying assembly plans to circumvent unsuccessful cloning steps. First,

Raven can detect undesirable restriction sites that can be removed with PCR. Second,

intermediate clones flagged for expressing undesirable genes (such as the flpe recombinase)

or other traits (Figure 12b) can be biased for or against appearing in an assembly plan

(Figure 23). Third, default cloning vectors assigned to each assembly stage based on each

assembly method may be substituted. Finally, cloning efficiency as a function of number

of parts assembled per cloning reaction may be modified from default equivalent-efficiency

values (Figure 24).

In cases where users have already started a large assembly but get stuck on unforeseen

challenges, they can use the Raven redesign feature (Figure 12c) to calculate a new plan.

When using this feature, Raven automatically adds the successful parts into the library and

55

Figure 12: Interactive Assembly (a) An initial assembly plan in the Raven UI. (b) A SpeI restriction
analysis for Level 1 cloning intermediates (1-6) with expected bands at 0.5kb, 1.7kb & 0.2kb, 2.1kb,
1.7kb, 1.5kb and 2kb, and 3.4kb, respectively, with a 2.1kb vector band. Incorrect bands seen for
lanes 2 & 5. (c) In the Raven UI redesign tab, failure of these intermediates and success of all other
intermediates is reported and a new plan is generated. (d) A PstI restriction analysis for the complete
genetic counter constructs should be 7kb, 4kb & 1.6kb

56

forbids failed intermediates from appearing in the alternative solution. When I got stuck on

the first plan for the counters, we used a redesigned solution, which required seven steps, two

stages and two PCR steps (Figure 20). This plan reused the four successful intermediates

from the initial plan and split up the two unsuccessful intermediates into smaller intermedi-

ates. One of these intermediates was also unsuccessful, so a second redesign with the same

cost was implemented that succeeded in the cloning of all intermediates (Figure 21).

This third plan, although successful for creating all intermediates, was not successful for

cloning the final constructs. This was because BBF RFC 94 assumes the use of high-copy

plasmids for all cloning steps. In this case, since it is critical that recombinases are not

expressed, it was problematic to clone the final counter constructs into high-copy plasmids

owing to leaky promoter behavior. To address this, I forced an extra cloning stage by

requiring the construction of larger intermediates and assigned a pBAC for the final cloning

stage (Figure 21).

Using this plan, all cloning intermediates were constructed and used to build the final

constructs successfully (Figure 12d). Several of the intermediates incurred mutations as a

result of cloning artifacts, but these were located at internal part junctions and the flanking

junctions needed for future steps remained unaltered. Therefore, Raven cannot guarantee

the production of an exact target sequence; in vivo recombination events are difficult to

predict and outside the scope of the assembly plan. Moreover, as long as the necessary

restriction sites and part junctions remain intact, the Raven plan remains valid.

5.4 Multiplex Assembly of Genetic Variants

The current paradigm in the cloning community is to define the complete sequence of

target constructs before assembly, and set up reactions with only one part in each cloning

position. However, in instances where function diversity of genetic constructs is desired, it

57

can be advantageous to perform cloning reactions where instead of putting single defined

sequences in each position of a target clone, a library of variants is used. This style of

cloning is called multiplexing cloning and can be used to create DNA construct variants.

In theory, if equimolar concentrations of all variants in a multiplex cloning reaction

are present, one should expect there to be equal representation of variants among the

screened clones. To confirm this for our cloning reactions, we performed experiments for a

transcriptional expression cassette, where we multiplexed functionally diverse variants for

the promoter, RBS, and terminator positions for up to 8 different variants. We then screened

the number of clones necessary to theoretically pick at least one of each variant assuming

an equal population. We found there to be no detectable bias for any particular sequence

among this set.

Figure 13: (a) The number of sequences observed in sequence screening as a function of the number
of parts multiplexed. In all cases, the theoretical number of colonies needed to encounter at least
one of each sequence was screened. (b) Functional diversity value as a function of the number of
parts multiplexed for the promoter, RBS, and terminator position.

Since we multiplex primarily to obtain diverse functional outcomes, it needed to be

determined if the expression profiles across clones produced diverse expression profiles.

58

To determine how functional richness was affected by the number of parts multiplexed, we

measured the expression profile of the variants from each multiplex reaction to measure the

functional richness70. We found that generally as the number of parts multiplexed increased,

the functional richness increased.

5.5 Complexity Analysis

The following complexity analysis shows that the algorithms me and my colleagues

developed for partitioning a goal part into intermediates and assigning overhangs to each

parts is both efficient and scalable (Figure 14).

5.5.1 Multi Goal Part Algorithm

This section describes the run time of the multi-goal-part algorithm. Here, I describe

the worst-case computational scenario for producing an assembly graph. We make no

assumptions about biologically informed compositional rules for genetic constructs, which

could reduce the computational cost of calculating an assembly graph - compositional rules

can be captured using required, recommended, discouraged, and forbidden parts, the use

of which is described in our online documentation at ravencad.org. The multi goal part

algorithm is an extension of the algorithm presented by Densmore et al.37 and uses a similar

dynamic programming scheme to reduce complexity. The worst case for run time is when

there are no parts in the library.

Let there be n goal parts in an assembly with each goal part consisting of an average

of m basic parts. The algorithm begins by making a call to the determineSlack() helper

routine, which calls createAsmGraph_sgp() once for each goal part to determine the size of

the largest graph, the slack.

The first step in createAsmGraph_sgp() is to determine how to partition a part. Suppos-

59

ing that a number of parts can be assembled in each reaction, then for a goal part of size m,

is assembled from ceil (m
a) number of intermediates.

If the number of intermediates required to assemble a larger intermediate of size b

exceeds a+1, then there would be at most, b choose a ways to partition the larger intermediate

into smaller intermediates. Exploring the full combinatorial space of the partitions exceeds

exponential in complexity. Using a least squares approach encapsulated in the getPartitions()

helper method, finding the appropriate partitions for any goal part or intermediate can be

done in constant time assuming a reasonable number of forbidden parts, that is the number

of forbidden parts is less than the Bell number for a set of size m.

Each of the smaller intermediates in turn, would need to be assembled ceil (m
a) interme-

diates in turn. And so createAsmGraph_sgp() would need to make log(m) recursive calls

to createAsmGraph_sgp() to create an increasingly smaller subgraph. The cost for these

recursive calls can be written in the form T (n) = a ∗T (m
a) + c, where c is the constant cost

of finding the partitions and combining several subgraphs, both of which are effectively

constant time operations. Assuming According to Master’s Theorem, these recursive calls

are O(m) in complexity.

And so in total, it costs on the order of nm operations to determine slack. Next, the

multi goal part algorithm makes n calls to createAsmGraph_sgp(), incurring yet another

nm operations. So overall, the multi goal part algorithm is O(mn) in complexity.

5.5.2 Overhang Assignment Algorithm

This section presents the run time analysis for MoClo overhang assignment. The

algorithm for overhang assignment uses a 3 pass, dynamic programming approach. In the

first pass, metadata is added to each node to enforce the MoClo overhang rules -parent

and child nodes, and adjacent nodes (the children of each node are ordered) have the same

60

overhang. The second step minimizes the number of overhangs used and the number of

vectors used. The final step maps overhangs assigned in the second step to overhangs that

exist in the library.

In first step of overhang assignment, a recursive helper method is called for each of

the n graphs, which each contain on average m leaf nodes. The helper method visits each

node once, storing metadata and assigning overhangs at each visit, expending n ∗∑logpm
i=0 pi

operations where p is the maximum number of parts that can be assembled in a single

assembly step operations. Next for each graph, every node is stored in a hash that stores the

maximum level that the node’s overhang impacts; it takes logpm operations to determine the

maximum level for each node. And so, the first step of our overhang assignment algorithm

costs n ∗ (
∑logpm

i=0 pi) + n ∗ m ∗ logpm operations.

The second step of the overhang assignment algorithm iterates over all basic part nodes

for each graph twice, once in the forward direction and once in the backwards direction,

costing m operations per graph. In each iteration, an incremented value is assigned to the

left and right overhang of a basic part. Depending on the type of the basic part, the assigned

values are set aside in typeOHHashLeft and typeOHHashRight for assignment to parts of

the same time. To ensure that the restored values give valid assignments, we iterate over the

neighbors of the basic parts, removing any overhangs that would give an invalid assignment,

requiring a total of m operations. So overall, the second step costs a total of nm2 operations.

The final step of the overhang assignment maps abstract overhangs to concrete overhangs

that exist in a user’s part library. In the third step of the overhang assignment, abstract

overhangs are first linked to all possible concrete overhangs; this requires iterating over

all basic part nodes in all graphs, as well as all parts in the library, l, adding up to

nm + l operations. Using this information, a constrained Cartesian product is performed

to determine the best assignment of concrete overhangs. In the worst case, no overhang

61

pairs are reused and overhangs are used just once, and so there would be 2mn overhangs

that need to be assigned. Given l parts in the library, each abstract overhang would

have roughly l
nm concrete options. The Cartesian product produces at most (l

nm)nm valid

solutions. The next iteration occurs over each valid solution to score for the best. A final

traversal is then necessary over all graphs to assign the overhangs to the graph. In total,

(nm + l) + (l
nm)nm + n ∗ (

∑logpm
i=0 pi) operations are required for the third step.

Summing the cost for all three steps, overhang assignment costs 2n ∗ (
∑logpm

i=0 pi) + nm ∗

logpm + 2nm2 + (nm + l) + (l
nm)nm operations. In most situations, l > m > n, and so the

overhang assignment algorithm has O(l
nm)nm complexity. However, in practice there are

rarely (l
nm)nm valid solutions in the third step, which would require that each basic part in an

assembly is unique within the assembly. Raven is designed suited for parallelized assembly

plans characteristic of pathway engineering experiments, in which case the number of basic

parts would be the main contributing factor, giving a practical complexity of O(nm2).

5.6 Eugene Rules for 1000+ Construct Sets

A permutation of all possible constructs in Figure 11 for a specific construct type yields

a combinatorially large space. For larger constructs, this space can exceed 1,000 constructs,

but not all constructs are functionally valid. Me and my colleagues wished to constrain

the construct sets to those which are qualitatively valid, so we use Eugene24 to limit this

combinatorial space for each type of construct. Below are the rules for each individual type

of construct.

5.6.1 Counter constructs

62

c o n s t r u c t DIC2 (Promoter , I n v e r t a s e S i t e , −Promoter , RBS , Gene

, Te rmina to r , − I n v e r t a s e S i t e , I n v e r t a s e S i t e , −Promoter ,

RBS , Gene , Te rmina to r , − I n v e r t a s e S i t e , RBS , Repo r t e r ,

T e rm ina t o r) ;

Rule r (

ON DIC :

/ / Matching I n v e r t a s e s i t e s

DIC [1] MATCHES DIC [6]

AND

DIC [7] MATCHES DIC [1 2]

AND

/ / D i f f e r e n t I n v e r t a s e s i t e s

FRT WITH loxP

AND

CONTAINS rb s1 AND CONTAINS rb s2 AND CONTAINS rb s3

) ;

c o n s t r u c t [] l s t = p r o d u c t (DIC , s t r i c t , 1000) ;

63

5.6.2 Toggle-switch constructs

c o n s t r u c t Togg leSwi t ch (−Termina to r , −Gene , −RBS , −Promoter ,

Promoter , RBS , Gene , RBS , Repo r t e r , T e rm ina t o r) ;

Rule r (

ON Togg leSwi t ch :

/ / Rule 1 and 2 : R e p r e s s i o n I n t e r a c t i o n s

Togg leSwi t ch [1] REPRESSES Togg leSwi t ch [4]

AND

Togg leSwi t ch [6] REPRESSES Togg leSwi t ch [3]

AND

/ / Rule 3 : D i f f e r e n t P romo te r s

Togg leSwi t ch [3] NOTEQUALS Togg leSwi t ch [4]

AND

/ / Rule 4 : We p r e f e r GFP as r e p o r t e r (o p t i o n a l r u l e)

CONTAINS GFP

) ;

c o n s t r u c t [] l s t = p r o d u c t (ToggleSwi tch , 1000) ;

64

5.6.3 Repressilator constructs

c o n s t r u c t R e p r e s s i l a t o r (Promoter , RBS , Gene , Te rmina to r ,

Promoter , RBS , Gene , Te rmina to r , Promoter , RBS , Gene ,

Te rm ina t o r) ;

Rule r (

ON R e p r e s s i l a t o r :

/ / REPRESSION r e l a t i o n s h i p s

R e p r e s s i l a t o r [2] REPRESSES R e p r e s s i l a t o r [4]

AND

R e p r e s s i l a t o r [6] REPRESSES R e p r e s s i l a t o r [8]

AND

R e p r e s s i l a t o r [1 0] REPRESSES R e p r e s s i l a t o r [0]

AND

pLux NOTMORETHAN 1

AND

pLtetO1 NOTMORETHAN 1

AND

lambdaPr NOTMORETHAN 1

AND

pLlacO1 NOTMORETHAN 1

65

AND

rbs1 WITH rb s2 AND rb s2 WITH rb s3

) ;

c o n s t r u c t [] l s t = p r o d u c t (R e p r e s s i l a t o r , s t r i c t , 1000) ;

5.6.4 Transcriptional NOR-Gate constructs

c o n s t r u c t R e p r e s s i n g c o n s t r u c t (Promoter , Promoter , RBS , Gene ,

Te rm ina t o r) ;

c o n s t r u c t R e p o r t i n g c o n s t r u c t (Promoter , RBS , Repo r t e r ,

T e rm ina t o r) ;

c o n s t r u c t NorGate (R e p r e s s i n g c o n s t r u c t , R e p o r t i n g c o n s t r u c t) ;

Rule r (

ON NorGate :

/ / REPRESSES r e l a t i o n s h i p

R e p r e s s i n g c o n s t r u c t . Gene REPRESSES

R e p o r t i n g c o n s t r u c t . P romote r

AND

/ / d i f f e r e n t RBSs

66

R e p r e s s i n g c o n s t r u c t . RBS NOTEQUALS R e p o r t i n g c o n s t r u c t

. RBS

AND

CONTAINS GFP

/ / d i f f e r e n t p r omo t e r s

AND

R e p r e s s i n g c o n s t r u c t [0] NOTEQUALS R e p r e s s i n g c o n s t r u c t

[1]

AND

R e p r e s s i n g c o n s t r u c t [1] NOTEQUALS R e p o r t i n g c o n s t r u c t .

P romote r

AND

/ / d i f f e r e n t T e r m i n a t o r s

CONTAINS T1 /∗∗AND CONTAINS T7 ∗∗ /

) ;

c o n s t r u c t [] l s t = p r o d u c t (NorGate , s t r i c t , 1000) ;

5.6.5 Invertase-based NOR-Gate constructs

c o n s t r u c t NorGate (Promoter , I n v e r t a s e S i t e , −Termina to r , −

67

I n v e r t a s e S i t e , I n v e r t a s e S i t e , −Termina to r , − I n v e r t a s e S i t e

, RBS , Repo r t e r , T e rm in a t o r) ;

Rule r (

ON NorGate :

NorGate [1] MATCHES NorGate [3]

AND

NorGate [4] MATCHES NorGate [6]

AND

Bxb1_at tB WITH ph iC31_a t tB

) ;

c o n s t r u c t [] l s t = p r o d u c t (NorGate , s t r i c t , 1000) ;

68

5.7 Algorithm

5.7.1 Algorithmic Flow

Users may interact with Raven at a variety of levels and degrees of complexity. At

the highest level, a user interacts with Raven by supplying a DNA parts library and a

set of constructs to be made from that library. Raven takes this input and produces a

set of assembly instructions which can be performed by either a human or computer user

(Figure 15a). After the plan has been attempted a number of times, some number of

the constructs and intermediates will be successfully cloned and some target constructions

might still be incomplete. The complete and incomplete constructs can be input back into

Raven, where a new plan with the updated library is generated. This cycle continues until

all target parts have been assembled.

At a lower level, the libraries and target constructs are uploaded into Raven and some

subset of the target constructs is selected to be assembled with one of the supported assembly

methods (Figure 15b). Raven calculates an optimized assembly plan for these constructs

using the selected method and produces assembly instructions in the form of an assembly

graph and oligonucleotides necessary to implement the assembly plan. These instructions

are given in either human-readable or computer-readable format. A user may calculate

assembly plans for parts without specifying part sequences, but the oligo designs will be

incomplete and these oligos will need to be designed manually.

The algorithms have three major components: hierarchical step optimizations, overhang

assignment optimization and oligo-nucleotide design. The hierarchical cloning step plan

is the input for the overhang assignment algorithms and the complete graph with assigned

overhangs is the input for oligo design (Figure 15c). Optimizations are broken into these

three chunks to reduce computational complexity and serve as modular peices of the code

69

base; the hierarchical step algorithms are common to all assembly methods, overhang

selection is common to some assembly methods and primer design is also common to some

methods.

Function 1 and Function 2 are illustrated in the flowchart presented in Figure 16.

Function 1 is concerned with creating the best single goal part solutions for all of the goal

parts in a loop adding the best solution to a growing list that is used to create the next best

solution until all graphs have been created. Function 2 deals with building the best single

goal part taking into account legal partitions of that goal part into subparts along with how

many of those subparts can be put together in any one reaction. This is a recursive calling

function where the single goal part is broken into these subparts with are themselves single

goal parts to solve. Functions minCostSlack, minCost, determineSlack, and combineGraphs

are helper functions for these two functions are not shown for clarity.

5.7.2 Definitions

- Let part P have an ID (string), composition(part)

- Let basicPart, bP, have composition.size() = 1

- Let goalPart, gP, have composition.size() > 1

- Each part in the composition of gP is a bP

- Given gP, an intermediatePart, iP, is any sequential subset of parts in the composition of

gP

- Given gP, there exists an optimal assemblyGraph aG, such that gP is assembled from bPs

to construct gP (and iPs)

- Given aG, all iPs within aG are assemblyIntermediates, aI

- aI are parts, iPs are not parts

- Given gP and aG, aI which must be in aG are requiredIntermediates, rqI

70

- Given gP and aG, aI which must not be in aG are fobiddenIntermediates, fbI

- Given gP and aG, aI which are biased to be in aG are recommendedIntermediates, rcI

5.7.3 Pseudocode

The pseudocode is broken into four pieces: Multi-Goal-Part Algorithm, Multi-

-Goal-Part Algorithm Helper Methods, Overhang Assignment Algorithm, and Over-

hang Assignment Algorithm Helper Methods. This pseudocode provides an ab-

stracted description of the Raven source-code and covers the most critical Raven al-

gorithms and subroutines. Source code for the algorithms are also available online

(https://github.com/CIDARLAB/raven-public). None of the Raven UI code is detailed

and oligonucleotide design pseudocode is omitted, as it completes template designs for

each assembly method and optimizes according to nearest-neighbor melting temperature

methods and desired homology length. More sophisticated and optimized primer designs

are detailed in other work52.

5.7.4 Multi Goal Part Algorithm

This section covers the primary methods used to determine optimized solutions for

cloning steps for any number of goal parts under consideration. The multi-goal-part algo-

rithm considers a set of target constructs and initially determines the maximum number of

stages with which all constructs can be assembled. This number restricts the number of

stages all constructs will be assembled in and allows smaller constructs to be assembled

in more stages if they can share intermediate steps and thus reduce the total cloning step

count. The algorithm then determines the single-goal part cost for each individual construct

and saves the solution for the construct which scores best according to the multi-goal part

algorithm heuristics. This part is removed from the goal-part set and this process is repeated

71

until all goal parts have optimized solutions.

The single-goal-part algorithm finds an optimized solution for assembling a construct

based upon our heuristic scores. This algorithm recursively explores the assembly space

for the construct in question by determining the cost of the intermediate constructs used to

assemble final constructs.

5.7.5 Multi Goal Part Algorithm Helper Methods

These helper methods describe the order of the scoring heuristics for the single-goal-part

algorithm and the way in which the space is explored. For each single goal part under

consideration, at least one solution for each allowed number of parts-per-reaction is explored

up to the specified upper limit, unless no such paths are possible. If specific intermediates

are forbidden, alternative paths are explored. Additional space is explored for parts in a

library which may be re-used that would not be considered on the default path.

5.7.6 Overhang Assignment Algorithm

Once the multi-goal-part algorithm has run and provided an optimized solution, this

graph is used as input for the overhang assignment algorithms. These algorithms vary across

assembly methods, but can be broken into three steps. In the first step, the rules of each

assembly method are applied. In most cases, this asserts that there can be no redundancy

of overhangs within a single cloning reaction - this would result in cloning reactions with

more than one selectable product. Once these restrictions are applied, all opportunities to

share overhangs in for all target constructs are optimized. For scarless assembly methods,

all overhangs are assumed to be unique unless a part is adjacent to the same two neighboring

parts in another instance and all parts are in the same orientation. For assembly methods

where all overhang regions are assumed to be the same, this step is also omitted. For

72

assembly methods where this can be leveraged, sharing is optimized based upon part type

and orientation. In the final step, a library of parts is considered and a partial Cartesian

product is performed in an attempt to re-use as many parts from the parts library as possible

without violating steps one and two.

5.7.7 Overhang Assignment Algorithm Helper Methods

In these methods, special considerations are taken to maximize the sharing of overhangs

based on part type and orientation. Specifically, overhang sharing is maximized to include

sharing opportunities for part types that appear both on the forward and reverse strand.

5.7.8 Modular Overhang Site Selection

Overhang sites used by Raven are selected through a combination of experimental results

and a number of computational heuristics. We begin by generating a list of all 256 possible

4bp overhang sequences. From the full list of possible sequences, 12 sequences were

experimentally validated, and thus ranked as the top 12 sequences in the list of overhang.

The remaining sequences were then iteratively selected by using a scoring scheme that

incorporates a number of heuristics as well as traditional alignment methods. We generate

a score matrix for all pairwise alignments between the possible sequences. When selecting

the next overhang sequence, we sum the scores of a potential overhang sequence aligned to

all the sequences already selected. Next we modulate the score of each potential sequence by

using heuristics to check for palindromes, monomeric runs, and GC content. The sequence

with the lowest score is selected. When a sequence is selected, its reverse complement

is also considered selected. In (Table 2), ‘‘*’’ indicates the reverse complement of a

sequence. Once this list is computed, it is stored as a static resource, which does not need

to be recomputed whenever Raven’s algorithms are used.

73

5.8 In Silico Random Sampling Experimental Description

Construct Source # Best Un-Optimized Solutions
RFC 10 RFC 94 Gibson

Bonnet et al.26 6 5 | 42 | 21 3 | 37 | 58 2 | 7 | 34
Bonnet et al.27 13 5 | 73 | 23 4 | 98 | 127 2 | 24 | 55
Friedland et al.44 5 7 | 79 | 27 4 | 90 | 125 3 | 25 | 50
Lou et al.64 191 7 | 440 | 90 5 | 751 | 420 3 | 447 | 449
Moon et al.69 15 7 | 97 | 37 4 | 98 | 140 3 | 28 | 84
Suiti et al.91 23 6 | 111 | 19 4 | 187 | 255 3 | 59 | 97
Tabor et al.96 6 6 | 37 | 12 4 | 59 | 98 2 | 16 | 26
Tamsir et al.97 14 5 | 54 | 15 3 | 68 | 93 2 | 21 | 53
ALL 273 7 | 930 | 204 5 | 1497 | 907 4 | 674 | 844

Table 3: The single best un-optimized assembly scores for assembling constructs from the literature
discovered in the in silico experiments. Literature datasets are described by number of constructs
considered in each set. All solutions are reported in a ‘Cloning Stages | Cloning steps | PCR steps’
format.

To assess the quality of Raven’s solutions, we randomly sampled the solution space for

both our part junction assignment algorithm and our hierarchical assembly step algorithm,

conducting 1000 trials for each data point shown in Figure 11. To ensure that our results

were not biased by designs of a particular composition or size, we used Eugene to generate

a total of 5000 designs. These 5000 designs were based upon five well studied designs

published in the literature: the toggle switch47, repressilator40, invertase NOR gate91,

transcriptional NOR gate27, and DIC counter44. Given constraints specified by Eugene

rules, Eugene performs a Cartesian product for all the possibilities for each part position in

each construct design. The Eugene rules used are given in the Eugene Rules section of the

supplement and the 5000 constructs generated (1000 for each of the five construct designs)

are available separately as CSV files in Raven format. For more details about Raven format,

please visit ravencad.org.

Sampling the hierarchical algorithm effectively reduces to randomly sampling the space

74

of partitioning each of the goal parts into cloning steps. For each experiment, we randomly

chose a subset of the 1000 constructs for each design (the number selected is shown on the

x-axis). For each of the randomly selected sets of goal parts, we partitioned it randomly,

pinning solutions so that part reuse can occur. Given that for a part of size n that can be

broken into m pieces, there would be
∑m

k=0

(
n
k

)
possible ways to partition the construct. And

so generating all possible partitions and then sampling from the set of all possible partitions

is computationally intractable. Instead, we used a geometric distribution to select the value.

The geometric distribution biases the selected number of partitions to favor a higher number;

this sampling behavior is appropriate given that one-pot reactions are frequently used to

assemble many parts at once. Once m is selected in constant time, the partition positions

can be generated in O(mn) time, which is trivial since m and n are usually fairly small.

The experiments for sampling the part junction assignment solution space followed a

procedure similar to the experiments for the hierarchical assembly step algorithm. For each

trial, the script again randomly select a subset of the 1000 constructs for each design. The

script constrained the number of steps and stages to be the same between each trial; the

hierarchical assembly step algorithm was used to determine the number of steps and stages.

After the number of steps and stages are computed, the part junction space was sampled. To

sample the part junction solution space, the first step of our overhang assignment algorithm

was reused, assigning abstract part junctions such that the assignment produced by random

sampling will be correct. Given n parts of roughly size m, there will be at most n(m+1)

different overhangs. For each and every partition junction, we enumerate from the first

possible assignment value until a valid assignment is reached, which we believe produces

the most intuitive naive assignment.

75

5.9 PCR Verification and Cloning Efficiency

Raven’s algorithms assume that all PCR steps will be successfully executed and in cases

where a basic part is cloned into a vector, it will also be achieved without need for assembly

plan redesign. We verify that Raven-generated oligos produce successful PCRs for MoClo

assembly (Figure 17) and report the observed efficiency for all attempted cloning reactions.

Here, efficiency is calculated as the percentage of white colonies divided by the total number

of colonies on a plate after transformation of a MoClo cloning reaction.

Single-part cloning steps yielded the highest average cloning efficiency (72%), with

nearly 6-fold greater efficiency than six-part reactions (Figure 18). Overall, the cloning

efficiency had an approximately negative linear relationship with the number of parts cloned

in a single reaction. Using the observed average cloning efficiencies and extrapolating

efficiency from a linear regression of this trend for 3- and 4-part reactions as parameters

for the assembly plan, Raven calculates a plan with 3 additional steps, and 3 additional

PCR steps at an increased average efficiency of 14.4% (Figure 24) per cloning step, using

the observed efficiency values. This is an example of a case where observed efficiency

information can be interactively used within Raven to produce plans with higher average

efficiency at the expense of additional steps.

5.10 Raven Assembly Plans

5.10.1 Initial Plan

Raven assembly graphs are shown in a hierarchical format, with library parts at the

top and target parts at the bottom. The assembly graphs are organized by stages and

automatically generated by graphviz, using auto-generated SBOL-compliant glyphs from

76

Pigeon (pigeoncad.org)23. The initial assembly plan (Figure 19) is generated assuming

equal efficiency for all reactions and a set of existing cloning vectors and template DNA.

Some existing vectors are used in the assembly plan.

77

Figure 14: Runtime complexity of Raven algorithms. Raven’s two main algorithmic components are
bound by n, the number of goal parts and m, the average number of basic parts per goal part, which
we show on the horizontal axis as the ‘‘Number of Parts in All Goal Parts", nm. The vertical axis
gives the approximate number of calculations according to conventional complexity analysis. Points
are shown to give the approximate number of operations required to calculate assembly plans for
all of the constructs from the publications shown in Table 1 and the number of operations required
to calculate 500 constructs of a design shown in Figure 2A. Separate curves are shown for the
hierarchical algorithm and the overhang assignment algorithm. Constructs from each publication
and constructs from each design in Figure 2A were calculated individually and then averaged over
all publications and designs respectively, giving the time shown in the legend. Note that the times
shown are approximations of realtime performance as times are machine and condition dependent
(Intel Xeon 2 x 6 core cpu, 24 GB RAM machine used to compute times).

78

Figure 15: Raven flow charts (a) A user inputs their DNA library and set of target construct into
Raven, which generates assembly instructions. These assembly instructions are then implemented
and some constructs will be completed (yellow box) according to plan and some will not. These
incomplete constructs are input back into Raven for assembly redesign. (b) In the Raven UI, a
user inputs a DNA library and set of target construct and selects an assembly method with which
to construct a subset of the target constructs. Raven calculates an optimized assembly graph
and oligonucleotide designs necessary to execute the plan (black box) and generates human- or
computer-readable instruction files. (c) Raven optimizations are calculated in three major sequential
pieces: Hierarchical step optimization, overhang selection optimization and finally primer designs
for PCR steps. The sum of all these optimizations is an assembly graph and set of oligonucleotides
(black box).

79

Figure 16: The assembly algorithm is illustrated here as a set of two flowcharts. (A) presents the
initial function call to ‘‘createAsmGraph_mgp" (create assembly graph multiple-goal-parts). Here
a set of goal parts to be assembled is presented {gP} along with a parts library {PL}. Once that
set is empty #1 (all goal parts have been removed as their solutions are found), the function returns
(#2). Otherwise a low cost baseline is established (#3) and each goal part is explored (#4, #6,#7). If
a solution for a particular goal part results in a lower cost than the baseline, it becomes the baseline
(#8 and #9). Eventually all goal parts have been explored. The goal part with the lowest cost graph is
removed from the goal part set and its graph is added to the solutions (#5). The process repeats again
with the goal part solutions accumulating allowing their intermediate assemblies to be available for
subsequent solutions. The right hand side figure (B) illustrates the call to ‘‘createAsmGraph_sgp"
(create assembly graph single-goal-part). If the goal part already has a solution the function returns
(#10, #11). Otherwise legal indices to partition the single part into subparts are set up in #12. #13
and #14 demonstrate that once all parts per reaction (how many legal subparts) are explored, the
latest created graph is returned. #15, #16, and #17 illustrate that subpart divisions are explored
ultimately resulting in a recursive call to this same function with each of the legal divisions of this
part (#18). #19 illustrates the subpart solutions must be combined and that result compared with the
lowest discovered graph so far for this goal part. We refer the reader to both the pseudocode and the
open source code for more details.

80

Figure 17: PCR products for basic parts. Expected sizes (Left to Right) IR1_IR2_Term2|5|3*
178bp, loxP|1|3 62bp, flpe|3|m1 941bp, flpe|m1|5 392bp, IR1_IR2_Term2|0|3 178bp, cre|6|0 1093bp,
pTet|7|0 112bp, T1|4|8 133bp, pA1LacO|1|2* 105bp, pBAD|7|0 314bp, FRT|0|2 62bp, gfp|6|m2
652bp, gfp|m2|0 93bp, loxP|0|1 62bp, FRT|3*|0 62bp, pBAD|2|1 314bp, pBAD|1|2* 314bp, gfp|m2|4
93bp, gfp|2|m2 652bp

Figure 18: Average cloning efficiency as a function of parts per cloning reaction for MoClo (BBF
RFC 94). Measured average values marked with a triangle and error bars represent one standard
deviation.

81

Fi
gu

re
19

:
Pr

el
im

in
ar

y
as

se
m

bl
y

pl
an

fo
rg

en
et

ic
co

un
te

rc
on

str
uc

ts
.

82

5.10.2 Redesigned Plans

Given the failed intermediates [pBAD|+, FRT|+, pBAD|-, rbs|+, flpe|+] and [pTet|+,

FRT|+, pBAD|-, rbs|+, flpe|+] in Figure 19 and the success of all other intermediate steps,

Raven can be leveraged to generate a new plan to complete the assembly of the target

constructs (Figure 24). In the calculation of this plan, all successful steps are added to the

library that can be used for assembly and the intermediates that failed are forbidden from

appearing in the redesigned solution. This revised solution required only 2 stages, 7 cloning

steps and 2 PCRs.

83

Fi
gu

re
20

:
Fi

rs
tr

ed
es

ig
ne

d
as

se
m

bl
y

pl
an

fo
rg

en
et

ic
co

un
te

rc
on

str
uc

ts
.

84

The first plan redesign was also unsuccessful. Intermediate [pBAD|+, FRT|+, pBAD|-]

was not successful, but the other two intermediates were constructed successfully. Although

this intermediate did not express any coding sequences, it was hypothesized that this plasmid

creates too much transcriptional activity in a high copy plasmid.

85

Fi
gu

re
21

:
Se

co
nd

re
de

si
gn

ed
as

se
m

bl
y

pl
an

fo
rg

en
et

ic
co

un
te

rc
on

str
uc

ts
.

86

This second redesign was capable of producing all desired intermediates, but was not

successful in assembling the final constructs. We hypothesized that this was due to high

expression of recombinases in a high copy plasmid, similar to the problems experienced

in cloning the intermediates. To circumvent this problem, all intermediates and a bac-

terial aritificial chromosome (pBAC) backbone were digested, gel-extracted, and ligated

independently. These ligations, however did not produce any successful clones.

87

Fi
gu

re
22

:
Fi

na
lr

ed
es

ig
ne

d
as

se
m

bl
y

pl
an

fo
rg

en
et

ic
co

un
te

rc
on

str
uc

ts
.

88

The final redesign forced the creation of intermediates 12, 13, and 14, that accounted

for the entirety of the final constructs’ compositions, except for the leading promoter that

drives each construct’s function. Requiring an extra stage to build these constructs allowed

for a change in antibiotic resistance, so that there was no need for independent digestion,

gel extraction and ligation steps and also decreased the number of parts to be cloned in into

the pBAC backbone in the final cloning steps.

5.10.3 Biased Plans Outside Core Heuristics

If certain intermediate constructs are known to cause cloning difficulties outside of the

core Raven heuristics, these intermediates can be biased against using the Raven ‘discour-

aged’ markings. Intermediates marked as discouraged will be scored worse than otherwise

equivalent solutions with no discouraged intermediates. Alternatively, if a user is aware of

certain types of intermediates that are desirable outside of the Raven core heuristics, specific

intermediates may be ‘recommended’ in the Raven UI. Solutions with more recommended

intermediates will be scored higher than otherwise equivalent solutions.

89

Fi
gu

re
23

:
M

oC
lo

as
se

m
bl

y
pl

an
fo

rg
en

et
ic

co
un

te
rc

on
str

uc
ts

di
sc

ou
ra

gi
ng

al
lp

os
si

bl
e

in
te

rm
ed

ia
te

st
ha

tc
ou

ld
co

ns
tit

ut
iv

el
y

ex
pr

es
s

a
re

co
m

bi
na

se
.

90

In the example of the genetic counter constructs, constitutive expression of recombinases

can cause significant difficulty in each cloning step. To avoid an assembly plan that contains

intermediates that might express recombinases, all such intermediates could be discouraged.

Specifically, the following intermediates can be explicitly discouraged in the Raven UI

to produce a MoClo solution for these constructs and these discouraged intermediates

(Figure 23):

-> pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+,

pBAD|-]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, gfp|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, gfp|+, IR1_IR2_TermT2|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, gfp|+, IR1_IR2_TermT2|+, loxP|-]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, gfp|+, IR1_IR2_TermT2|+, loxP|-, dicRBS|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, gfp|+, IR1_IR2_TermT2|+, loxP|-, dicRBS|+, gfp|+]

91

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, cre|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, cre|+, IR1_IR2_TermT2|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, cre|+, IR1_IR2_TermT2|+, loxP|-]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, cre|+, IR1_IR2_TermT2|+, loxP|-, dicRBS|+]

-> [pBAD|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pBAD|-,

dicRBS|+, cre|+, IR1_IR2_TermT2|+, loxP|-, dicRBS|+, gfp|+]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pA1lacO|-

]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pA1lacO|-

, dicRBS|+]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pA1lacO|-

, dicRBS|+, cre|+]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pA1lacO|-

, dicRBS|+, cre|+, IR1_IR2_TermT2|+]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pA1lacO|-

, dicRBS|+, cre|+, IR1_IR2_TermT2|+, loxP|-]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pA1lacO|-

92

, dicRBS|+, cre|+, IR1_IR2_TermT2|+, loxP|-, dicRBS|+]

-> [pTet|+, FRT|+, pBAD|-, dicRBS|+, flpe|+, IR1_IR2_TermT2|+, FRT|-, loxP|+, pA1lacO|-

, dicRBS|+, cre|+, IR1_IR2_TermT2|+, loxP|-, dicRBS|+, gfp|+]

This plan takes 3 stages, 28 cloning steps and 33 PCR steps. This plan is a 1-cloning

step and 1-PCR step decrease from the initial plan and includes no intermediates capable

of expressing recombinases. This serves as an example where using recommended or

discouraged intermediates results in an approximately equivalent-cost solution that does

not include problematic intermedaites.

5.10.4 Efficiency-Optimized Plan

Using the measured average efficiency values from the implemented plans as a function

of parts-per-reaction, an alternative assembly plan can be considered that has additional

steps compared to the initial plan (Figure 19), but at higher average efficiency (i.e. more

steps with higher expected efficiency).

93

Fi
gu

re
24

:
Effi

ci
en

cy
-O

pt
im

iz
ed

M
oC

lo
as

se
m

bl
y

pl
an

fo
rt

he
fo

ur
ge

ne
tic

co
un

te
rc

on
str

uc
ts

ba
se

d
on

m
ea

su
re

d
effi

ci
en

cy
fr

om
pr

io
r

im
pl

em
en

te
d

pl
an

s.

94

5.10.5 Repressilator Constructs

The repressilator MoClo assembly plan (Figure 25) is generated assuming equal ef-

ficiency for all reactions not exceeding 4 parts per reaction and a set of existing cloning

vectors and DNA parts. No new vectors or Level 0 parts are created in this assembly plan, so

there are 0 PCR steps required. This plan leverages the CIDAR MoClo Library, that already

contains each destination vector and Level 0 part required to create the repressilators.

Figure 25: MoClo assembly plan for Repressilator Constructs. (a) Assembly plan for six repressila-
tors with shared parts. (b) The intermediate constructs required to build the six repressilators shown
in (a). The green boxes indicate a successful assembly. (c) Assembly plan for one repressilator
using intermediates shown in (b) with the green boxes indicating the assembly was a success. (d) An
agarose gel (1% TAE) showing a restriction map for the repressilator shown in (c). Plasmid DNA
(1000 ng) was digested with SpeI enzyme (NEB). Lane M shows the molecular marker (2-log ladder
from NEB), lane 1 shows an empty Level 2 vector (2204bps), and lane 2 shows the insert containing
the repressilator (3304 bps; yellow box) cut out from its Level 2 vector backbone (2204 bps).

95

Raven detected two previously undetected BbsI recognition sites in the lacI gene (se-

quence cloned from BBa_C0012), so these reactions (which contain a BbsI site) yielded

lower efficiencies than expected when generating the final repressilators, which all contained

lacI. Despite this problem, two of the final six repressilators were assembled correctly.

While the lacI gene contains two BbsI sites, the 4 bps overhangs it produces do not match

the overhangs used in that cloning step so the final construct can still be generated, albeit at

a lower efficiency than normally observed for 4-part reactions (Figure 18).

5.11 Raven Human-Readable Assembly Instructions

Human-readable assembly instructions are generated automatically by Raven in an

output text-file format. The assembly files are organized by construct. For each construct,

the full set of assembly instructions is organized by stages. Assembly instructions tell the

user which overhangs each part is supposed to get and the direction of the parts within

each construct, intermediate and basic part. At the end of the file is all oligos that must be

ordered to construct all constructs in this selected assembly. These oligonucleotides are not

ordered by part or construct.

5.11.1 Initial Instructions for Counter Constructs

The following assembly file was used to implement the initial assembly plan for the

genetic counter constructs. The graphical plan associated with this plan is also shown

(Figure 19).

∗∗

Assembly I n s t r u c t i o n s f o r t a r g e t p a r t : Coun te r4

96

∗∗

−> Assemble Coun te r4 | 7 | 8 | [+ , + , − , + , + , + , − , + , − ,

+ , + , + , − , + , + , +] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : i n t e r m e d i a t e 2 | 7 | 5 | [+ , + , − , + ,

+] , i n t e r m e d i a t e 1 | 5 | 6 | [+ , − , + , − , +] , i n t e r m e d i a t e 3

| 6 | 8 | [+ , + , − , + , + , +] , DVL2 | 7 | 8

−> Assemble i n t e r m e d i a t e 5 | 7 | 5 | [+ , + , − , + , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : pTe t | 7 | 0 | [+] ,

FRT | 0 | 2 | [+] , pBAD | 2 | 1 | [−] , dicRBS | 1 | 3 | [+] , f l p e | 3 | 5 | [+] ,

DVL1 | 7 | 5

−> Assemble i n t e r m e d i a t e 1 | 5 | 6 | [+ , − , + , − , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2

| 5 | 3 ∗ | [+] , FRT | 3 ∗ | 0 | [−] , loxP | 0 | 1 | [+] , pBAD | 1 | 2 ∗ | [−] ,

dicRBS | 2 ∗ | 6 | [+] , DVL1 | 5 | 6

−> Assemble i n t e r m e d i a t e 3 | 6 | 8 | [+ , + , − , + , + , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : c r e | 6 | 0 | [+] ,

IR1_IR2_TermT2 | 0 | 3 | [+] , loxP | 3 | 1 | [−] , dicRBS | 1 | 2 | [+] , g fp

| 2 | 4 | [+] , T1 | 4 | 8 | [+] , DVL1 | 6 | 8

97

−> Assemble pBAD | 7 | 0 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 7 | 0 | [+] , DVL0 | 7 | 0

−> Assemble FRT | 0 | 2 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : FRT | 0 | 2 | [+] , DVL0 | 0 | 2

−> Assemble pBAD | 2 | 1 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 2 | 1 | [−] , DVL0 | 2 | 1

−> Assemble dicRBS | 1 | 3 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 1 | 3 | [+] , DVL0 | 1 | 3

−> Assemble f l p e | 3 | 5 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : f l p e | 3 | 5 | [+] , DVL0 | 3 | 5

−> Assemble IR1_IR2_TermT2 | 5 | 3 ∗ | [+] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2 | 5 | 3 ∗ | [+] , DVL0 | 5 | 3 ∗

−> Assemble FRT | 3 ∗ | 0 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : FRT | 3 ∗ | 0 | [−] , DVL0 | 3 ∗ | 0

−> Assemble loxP | 0 | 1 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : loxP | 0 | 1 | [+] , DVL0 | 0 | 1

98

−> Assemble pBAD | 1 | 2 ∗ | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 1 | 2 ∗ | [−] , DVL0 | 1 | 2 ∗

−> Assemble dicRBS | 2 ∗ | 6 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 2 ∗ | 6 | [+] , DVL0 | 2 ∗ | 6

−> Assemble c r e | 6 | 0 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : c r e | 6 | 0 | [+] , DVL0 | 6 | 0

−> Assemble IR1_IR2_TermT2 | 0 | 3 | [+] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2 | 0 | 3 | [+] , DVL0 | 0 | 3

−> Assemble loxP | 3 | 1 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : loxP | 3 | 1 | [−] , DVL0 | 3 | 1

−> Assemble dicRBS | 1 | 2 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 1 | 2 | [+] , DVL0 | 1 | 2

−> Assemble gfp | 2 | 4 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : g fp | 2 | 4 | [+] , DVL0 | 2 | 4

−> Assemble T1 | 4 | 8 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : T1 | 4 | 8 | [+] , DVL0 | 4 | 8

99

PCR loxP wi th o l i g o s : o l i g o 1 and o l i g o 2 t o g e t p a r t : loxP

| 3 | 1 | [−]

PCR IR1_IR2_TermT2 wi th o l i g o s : o l i g o 3 and o l i g o 4 t o g e t

p a r t : IR1_IR2_TermT2 | 0 | 3 | [+]

PCR loxP wi th o l i g o s : o l i g o 5 and o l i g o 6 t o g e t p a r t : loxP

| 0 | 1 | [+]

PCR FRT wi th o l i g o s : o l i g o 7 and o l i g o 8 t o g e t p a r t : FRT

| 0 | 2 | [+]

PCR c r e wi th o l i g o s : o l i g o 9 and o l i g o 1 0 t o g e t p a r t : c r e

| 6 | 0 | [+]

PCR IR1_IR2_TermT2 wi th o l i g o s : o l i g o 1 1 and o l i g o 1 2 t o g e t

p a r t : IR1_IR2_TermT2 | 5 | 3 ∗ | [+]

Anneal o l i g o s : o l i g o 1 3 and o l i g o 1 4 t o g e t p a r t : dicRBS

| 2 ∗ | 6 | [+]

PCR T1 wi th o l i g o s : o l i g o 1 5 and o l i g o 1 6 t o g e t p a r t : T1

| 4 | 8 | [+]

100

PCR gfp wi th o l i g o s : o l i g o 1 7 and o l i g o 1 8 t o g e t p a r t : g fp

| 2 | 4 | [+]

PCR pBAD wi th o l i g o s : o l i g o 1 9 and o l i g o 2 0 t o g e t p a r t : pBAD

| 2 | 1 | [−]

PCR pBAD wi th o l i g o s : o l i g o 2 1 and o l i g o 2 2 t o g e t p a r t : pBAD

| 1 | 2 ∗ | [−]

PCR f l p e wi th o l i g o s : o l i g o 2 3 and o l i g o 2 4 t o g e t p a r t : f l p e

| 3 | 5 | [+]

PCR FRT wi th o l i g o s : o l i g o 2 5 and o l i g o 2 6 t o g e t p a r t : FRT

| 3 ∗ | 0 | [−]

PCR pBAD wi th o l i g o s : o l i g o 2 7 and o l i g o 2 8 t o g e t p a r t : pBAD

| 7 | 0 | [+]

Anneal o l i g o s : o l i g o 2 9 and o l i g o 3 0 t o g e t p a r t : dicRBS

| 1 | 2 | [+]

Anneal o l i g o s : o l i g o 3 1 and o l i g o 3 2 t o g e t p a r t : dicRBS

| 1 | 3 | [+]

101

PCR lacZ wi th o l i g o s : o l i g o 3 3 and o l i g o 3 4 t o g e t v e c t o r :

DVL1 | 7 | 5

PCR lacZ wi th o l i g o s : o l i g o 3 5 and o l i g o 3 6 t o g e t v e c t o r :

DVL0 | 3 | 1

PCR lacZ wi th o l i g o s : o l i g o 3 7 and o l i g o 3 8 t o g e t v e c t o r :

DVL0 | 0 | 2

PCR lacZ wi th o l i g o s : o l i g o 3 9 and o l i g o 4 0 t o g e t v e c t o r :

DVL0 | 3 ∗ | 0

PCR lacZ wi th o l i g o s : o l i g o 4 1 and o l i g o 4 2 t o g e t v e c t o r :

DVL0 | 6 | 0

PCR lacZ wi th o l i g o s : o l i g o 4 3 and o l i g o 4 4 t o g e t v e c t o r :

DVL0 | 4 | 8

PCR lacZ wi th o l i g o s : o l i g o 4 5 and o l i g o 4 6 t o g e t v e c t o r :

DVL0 | 2 ∗ | 6

PCR lacZ wi th o l i g o s : o l i g o 4 7 and o l i g o 4 8 t o g e t v e c t o r :

DVL0 | 7 | 0

102

PCR lacZ wi th o l i g o s : o l i g o 4 9 and o l i g o 5 0 t o g e t v e c t o r :

DVL1 | 6 | 8

PCR lacZ wi th o l i g o s : o l i g o 5 1 and o l i g o 5 2 t o g e t v e c t o r :

DVL0 | 2 | 4

PCR lacZ wi th o l i g o s : o l i g o 5 3 and o l i g o 5 4 t o g e t v e c t o r :

DVL0 | 1 | 3

PCR lacZ wi th o l i g o s : o l i g o 5 5 and o l i g o 5 6 t o g e t v e c t o r :

DVL0 | 1 | 2 ∗

PCR lacZ wi th o l i g o s : o l i g o 5 7 and o l i g o 5 8 t o g e t v e c t o r :

DVL0 | 0 | 3

PCR lacZ wi th o l i g o s : o l i g o 5 9 and o l i g o 6 0 t o g e t v e c t o r :

DVL0 | 5 | 3 ∗

PCR lacZ wi th o l i g o s : o l i g o 6 1 and o l i g o 6 2 t o g e t v e c t o r :

DVL2 | 7 | 8

∗∗

Assembly I n s t r u c t i o n s f o r t a r g e t p a r t : Coun te r1

103

∗∗

−> Assemble Coun te r1 | 7 | 8 | [+ , + , − , + , + , + , − , + , − ,

+ , + , + , − , + , + , +] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : i n t e r m e d i a t e 2 | 7 | 5 | [+ , + , − , + ,

+] , i n t e r m e d i a t e 1 | 5 | 6 | [+ , − , + , − , +] , i n t e r m e d i a t e 4

| 6 | 8 | [+ , + , − , + , + , +] , DVL2 | 7 | 8

−> Assemble i n t e r m e d i a t e 2 | 7 | 5 | [+ , + , − , + , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : pBAD | 7 | 0 | [+] ,

FRT | 0 | 2 | [+] , pBAD | 2 | 1 | [−] , dicRBS | 1 | 3 | [+] , f l p e | 3 | 5 | [+] ,

DVL1 | 7 | 5

−> Assemble i n t e r m e d i a t e 1 | 5 | 6 | [+ , − , + , − , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2

| 5 | 3 ∗ | [+] , FRT | 3 ∗ | 0 | [−] , loxP | 0 | 1 | [+] , pBAD | 1 | 2 ∗ | [−] ,

dicRBS | 2 ∗ | 6 | [+] , DVL1 | 5 | 6

−> Assemble i n t e r m e d i a t e 4 | 6 | 8 | [+ , + , − , + , + , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : g fp | 6 | 0 | [+] ,

IR1_IR2_TermT2 | 0 | 3 | [+] , loxP | 3 | 1 | [−] , dicRBS | 1 | 2 | [+] , g fp

| 2 | 4 | [+] , T1 | 4 | 8 | [+] , DVL1 | 6 | 8

−> Assemble pBAD | 7 | 0 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 7 | 0 | [+] , DVL0 | 7 | 0

104

−> Assemble FRT | 0 | 2 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : FRT | 0 | 2 | [+] , DVL0 | 0 | 2

−> Assemble pBAD | 2 | 1 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 2 | 1 | [−] , DVL0 | 2 | 1

−> Assemble dicRBS | 1 | 3 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 1 | 3 | [+] , DVL0 | 1 | 3

−> Assemble f l p e | 3 | 5 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : f l p e | 3 | 5 | [+] , DVL0 | 3 | 5

−> Assemble IR1_IR2_TermT2 | 5 | 3 ∗ | [+] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2 | 5 | 3 ∗ | [+] , DVL0 | 5 | 3 ∗

−> Assemble FRT | 3 ∗ | 0 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : FRT | 3 ∗ | 0 | [−] , DVL0 | 3 ∗ | 0

−> Assemble loxP | 0 | 1 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : loxP | 0 | 1 | [+] , DVL0 | 0 | 1

−> Assemble pBAD | 1 | 2 ∗ | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 1 | 2 ∗ | [−] , DVL0 | 1 | 2 ∗

105

−> Assemble dicRBS | 2 ∗ | 6 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 2 ∗ | 6 | [+] , DVL0 | 2 ∗ | 6

−> Assemble gfp | 6 | 0 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : g fp | 6 | 0 | [+] , DVL0 | 6 | 0

−> Assemble IR1_IR2_TermT2 | 0 | 3 | [+] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2 | 0 | 3 | [+] , DVL0 | 0 | 3

−> Assemble loxP | 3 | 1 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : loxP | 3 | 1 | [−] , DVL0 | 3 | 1

−> Assemble dicRBS | 1 | 2 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 1 | 2 | [+] , DVL0 | 1 | 2

−> Assemble gfp | 2 | 4 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : g fp | 2 | 4 | [+] , DVL0 | 2 | 4

−> Assemble T1 | 4 | 8 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : T1 | 4 | 8 | [+] , DVL0 | 4 | 8

PCR loxP wi th o l i g o s : o l i g o 1 and o l i g o 2 t o g e t p a r t : loxP

| 3 | 1 | [−]

106

PCR IR1_IR2_TermT2 wi th o l i g o s : o l i g o 3 and o l i g o 4 t o g e t

p a r t : IR1_IR2_TermT2 | 0 | 3 | [+]

PCR gfp wi th o l i g o s : o l i g o 6 3 and o l i g o 6 4 t o g e t p a r t : g fp

| 6 | 0 | [+]

PCR loxP wi th o l i g o s : o l i g o 5 and o l i g o 6 t o g e t p a r t : loxP

| 0 | 1 | [+]

PCR FRT wi th o l i g o s : o l i g o 7 and o l i g o 8 t o g e t p a r t : FRT

| 0 | 2 | [+]

PCR IR1_IR2_TermT2 wi th o l i g o s : o l i g o 1 1 and o l i g o 1 2 t o g e t

p a r t : IR1_IR2_TermT2 | 5 | 3 ∗ | [+]

Anneal o l i g o s : o l i g o 1 3 and o l i g o 1 4 t o g e t p a r t : dicRBS

| 2 ∗ | 6 | [+]

PCR T1 wi th o l i g o s : o l i g o 1 5 and o l i g o 1 6 t o g e t p a r t : T1

| 4 | 8 | [+]

PCR gfp wi th o l i g o s : o l i g o 1 7 and o l i g o 1 8 t o g e t p a r t : g fp

| 2 | 4 | [+]

107

PCR pBAD wi th o l i g o s : o l i g o 1 9 and o l i g o 2 0 t o g e t p a r t : pBAD

| 2 | 1 | [−]

PCR pBAD wi th o l i g o s : o l i g o 2 1 and o l i g o 2 2 t o g e t p a r t : pBAD

| 1 | 2 ∗ | [−]

PCR f l p e wi th o l i g o s : o l i g o 2 3 and o l i g o 2 4 t o g e t p a r t : f l p e

| 3 | 5 | [+]

PCR FRT wi th o l i g o s : o l i g o 2 5 and o l i g o 2 6 t o g e t p a r t : FRT

| 3 ∗ | 0 | [−]

PCR pBAD wi th o l i g o s : o l i g o 2 7 and o l i g o 2 8 t o g e t p a r t : pBAD

| 7 | 0 | [+]

Anneal o l i g o s : o l i g o 2 9 and o l i g o 3 0 t o g e t p a r t : dicRBS

| 1 | 2 | [+]

Anneal o l i g o s : o l i g o 3 1 and o l i g o 3 2 t o g e t p a r t : dicRBS

| 1 | 3 | [+]

PCR lacZ wi th o l i g o s : o l i g o 4 9 and o l i g o 5 0 t o g e t v e c t o r :

DVL1 | 6 | 8

108

PCR lacZ wi th o l i g o s : o l i g o 4 1 and o l i g o 4 2 t o g e t v e c t o r :

DVL0 | 6 | 0

PCR lacZ wi th o l i g o s : o l i g o 3 3 and o l i g o 3 4 t o g e t v e c t o r :

DVL1 | 7 | 5

PCR lacZ wi th o l i g o s : o l i g o 3 5 and o l i g o 3 6 t o g e t v e c t o r :

DVL0 | 3 | 1

PCR lacZ wi th o l i g o s : o l i g o 3 7 and o l i g o 3 8 t o g e t v e c t o r :

DVL0 | 0 | 2

PCR lacZ wi th o l i g o s : o l i g o 3 9 and o l i g o 4 0 t o g e t v e c t o r :

DVL0 | 3 ∗ | 0

PCR lacZ wi th o l i g o s : o l i g o 6 1 and o l i g o 6 2 t o g e t v e c t o r :

DVL2 | 7 | 8

PCR lacZ wi th o l i g o s : o l i g o 4 3 and o l i g o 4 4 t o g e t v e c t o r :

DVL0 | 4 | 8

PCR lacZ wi th o l i g o s : o l i g o 4 5 and o l i g o 4 6 t o g e t v e c t o r :

DVL0 | 2 ∗ | 6

109

PCR lacZ wi th o l i g o s : o l i g o 4 7 and o l i g o 4 8 t o g e t v e c t o r :

DVL0 | 7 | 0

PCR lacZ wi th o l i g o s : o l i g o 5 1 and o l i g o 5 2 t o g e t v e c t o r :

DVL0 | 2 | 4

PCR lacZ wi th o l i g o s : o l i g o 5 3 and o l i g o 5 4 t o g e t v e c t o r :

DVL0 | 1 | 3

PCR lacZ wi th o l i g o s : o l i g o 5 5 and o l i g o 5 6 t o g e t v e c t o r :

DVL0 | 1 | 2 ∗

PCR lacZ wi th o l i g o s : o l i g o 5 7 and o l i g o 5 8 t o g e t v e c t o r :

DVL0 | 0 | 3

PCR lacZ wi th o l i g o s : o l i g o 5 9 and o l i g o 6 0 t o g e t v e c t o r :

DVL0 | 5 | 3 ∗

∗∗

Assembly I n s t r u c t i o n s f o r t a r g e t p a r t : Coun te r2

∗∗

110

−> Assemble Coun te r2 | 7 | 8 | [+ , + , − , + , + , + , − , + , − ,

+ , + , + , − , + , + , +] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : i n t e r m e d i a t e 5 | 7 | 5 | [+ , + , − , + ,

+] , i n t e r m e d i a t e 1 | 5 | 6 | [+ , − , + , − , +] , i n t e r m e d i a t e 4

| 6 | 8 | [+ , + , − , + , + , +] , DVL2 | 7 | 8

−> Assemble i n t e r m e d i a t e 5 | 7 | 5 | [+ , + , − , + , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : pTe t | 7 | 0 | [+] ,

FRT | 0 | 2 | [+] , pBAD | 2 | 1 | [−] , dicRBS | 1 | 3 | [+] , f l p e | 3 | 5 | [+] ,

DVL1 | 7 | 5

−> Assemble i n t e r m e d i a t e 1 | 5 | 6 | [+ , − , + , − , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2

| 5 | 3 ∗ | [+] , FRT | 3 ∗ | 0 | [−] , loxP | 0 | 1 | [+] , pBAD | 1 | 2 ∗ | [−] ,

dicRBS | 2 ∗ | 6 | [+] , DVL1 | 5 | 6

−> Assemble i n t e r m e d i a t e 4 | 6 | 8 | [+ , + , − , + , + , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : g fp | 6 | 0 | [+] ,

IR1_IR2_TermT2 | 0 | 3 | [+] , loxP | 3 | 1 | [−] , dicRBS | 1 | 2 | [+] , g fp

| 2 | 4 | [+] , T1 | 4 | 8 | [+] , DVL1 | 6 | 8

−> Assemble pBAD | 7 | 0 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 7 | 0 | [+] , DVL0 | 7 | 0

111

−> Assemble FRT | 0 | 2 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : FRT | 0 | 2 | [+] , DVL0 | 0 | 2

−> Assemble pBAD | 2 | 1 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 2 | 1 | [−] , DVL0 | 2 | 1

−> Assemble dicRBS | 1 | 3 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 1 | 3 | [+] , DVL0 | 1 | 3

−> Assemble f l p e | 3 | 5 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : f l p e | 3 | 5 | [+] , DVL0 | 3 | 5

−> Assemble IR1_IR2_TermT2 | 5 | 3 ∗ | [+] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2 | 5 | 3 ∗ | [+] , DVL0 | 5 | 3 ∗

−> Assemble FRT | 3 ∗ | 0 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : FRT | 3 ∗ | 0 | [−] , DVL0 | 3 ∗ | 0

−> Assemble loxP | 0 | 1 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : loxP | 0 | 1 | [+] , DVL0 | 0 | 1

−> Assemble pBAD | 1 | 2 ∗ | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 1 | 2 ∗ | [−] , DVL0 | 1 | 2 ∗

112

−> Assemble dicRBS | 2 ∗ | 6 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 2 ∗ | 6 | [+] , DVL0 | 2 ∗ | 6

−> Assemble gfp | 6 | 0 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : g fp | 6 | 0 | [+] , DVL0 | 6 | 0

−> Assemble IR1_IR2_TermT2 | 0 | 3 | [+] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2 | 0 | 3 | [+] , DVL0 | 0 | 3

−> Assemble loxP | 3 | 1 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : loxP | 3 | 1 | [−] , DVL0 | 3 | 1

−> Assemble dicRBS | 1 | 2 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 1 | 2 | [+] , DVL0 | 1 | 2

−> Assemble gfp | 2 | 4 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : g fp | 2 | 4 | [+] , DVL0 | 2 | 4

−> Assemble T1 | 4 | 8 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : T1 | 4 | 8 | [+] , DVL0 | 4 | 8

PCR loxP wi th o l i g o s : o l i g o 1 and o l i g o 2 t o g e t p a r t : loxP

| 3 | 1 | [−]

113

PCR IR1_IR2_TermT2 wi th o l i g o s : o l i g o 3 and o l i g o 4 t o g e t

p a r t : IR1_IR2_TermT2 | 0 | 3 | [+]

PCR gfp wi th o l i g o s : o l i g o 6 3 and o l i g o 6 4 t o g e t p a r t : g fp

| 6 | 0 | [+]

PCR loxP wi th o l i g o s : o l i g o 5 and o l i g o 6 t o g e t p a r t : loxP

| 0 | 1 | [+]

PCR FRT wi th o l i g o s : o l i g o 7 and o l i g o 8 t o g e t p a r t : FRT

| 0 | 2 | [+]

PCR IR1_IR2_TermT2 wi th o l i g o s : o l i g o 1 1 and o l i g o 1 2 t o g e t

p a r t : IR1_IR2_TermT2 | 5 | 3 ∗ | [+]

Anneal o l i g o s : o l i g o 1 3 and o l i g o 1 4 t o g e t p a r t : dicRBS

| 2 ∗ | 6 | [+]

PCR T1 wi th o l i g o s : o l i g o 1 5 and o l i g o 1 6 t o g e t p a r t : T1

| 4 | 8 | [+]

PCR gfp wi th o l i g o s : o l i g o 1 7 and o l i g o 1 8 t o g e t p a r t : g fp

| 2 | 4 | [+]

114

PCR pBAD wi th o l i g o s : o l i g o 1 9 and o l i g o 2 0 t o g e t p a r t : pBAD

| 2 | 1 | [−]

PCR pBAD wi th o l i g o s : o l i g o 2 1 and o l i g o 2 2 t o g e t p a r t : pBAD

| 1 | 2 ∗ | [−]

PCR f l p e wi th o l i g o s : o l i g o 2 3 and o l i g o 2 4 t o g e t p a r t : f l p e

| 3 | 5 | [+]

PCR FRT wi th o l i g o s : o l i g o 2 5 and o l i g o 2 6 t o g e t p a r t : FRT

| 3 ∗ | 0 | [−]

PCR pBAD wi th o l i g o s : o l i g o 2 7 and o l i g o 2 8 t o g e t p a r t : pBAD

| 7 | 0 | [+]

Anneal o l i g o s : o l i g o 2 9 and o l i g o 3 0 t o g e t p a r t : dicRBS

| 1 | 2 | [+]

Anneal o l i g o s : o l i g o 3 1 and o l i g o 3 2 t o g e t p a r t : dicRBS

| 1 | 3 | [+]

PCR lacZ wi th o l i g o s : o l i g o 4 9 and o l i g o 5 0 t o g e t v e c t o r :

DVL1 | 6 | 8

115

PCR lacZ wi th o l i g o s : o l i g o 4 1 and o l i g o 4 2 t o g e t v e c t o r :

DVL0 | 6 | 0

PCR lacZ wi th o l i g o s : o l i g o 3 3 and o l i g o 3 4 t o g e t v e c t o r :

DVL1 | 7 | 5

PCR lacZ wi th o l i g o s : o l i g o 3 5 and o l i g o 3 6 t o g e t v e c t o r :

DVL0 | 3 | 1

PCR lacZ wi th o l i g o s : o l i g o 3 7 and o l i g o 3 8 t o g e t v e c t o r :

DVL0 | 0 | 2

PCR lacZ wi th o l i g o s : o l i g o 3 9 and o l i g o 4 0 t o g e t v e c t o r :

DVL0 | 3 ∗ | 0

PCR lacZ wi th o l i g o s : o l i g o 6 1 and o l i g o 6 2 t o g e t v e c t o r :

DVL2 | 7 | 8

PCR lacZ wi th o l i g o s : o l i g o 4 3 and o l i g o 4 4 t o g e t v e c t o r :

DVL0 | 4 | 8

PCR lacZ wi th o l i g o s : o l i g o 4 5 and o l i g o 4 6 t o g e t v e c t o r :

DVL0 | 2 ∗ | 6

116

PCR lacZ wi th o l i g o s : o l i g o 4 7 and o l i g o 4 8 t o g e t v e c t o r :

DVL0 | 7 | 0

PCR lacZ wi th o l i g o s : o l i g o 5 1 and o l i g o 5 2 t o g e t v e c t o r :

DVL0 | 2 | 4

PCR lacZ wi th o l i g o s : o l i g o 5 3 and o l i g o 5 4 t o g e t v e c t o r :

DVL0 | 1 | 3

PCR lacZ wi th o l i g o s : o l i g o 5 5 and o l i g o 5 6 t o g e t v e c t o r :

DVL0 | 1 | 2 ∗

PCR lacZ wi th o l i g o s : o l i g o 5 7 and o l i g o 5 8 t o g e t v e c t o r :

DVL0 | 0 | 3

PCR lacZ wi th o l i g o s : o l i g o 5 9 and o l i g o 6 0 t o g e t v e c t o r :

DVL0 | 5 | 3 ∗

∗∗

Assembly I n s t r u c t i o n s f o r t a r g e t p a r t : Coun te r6

∗∗

117

−> Assemble Coun te r6 | 7 | 8 | [+ , + , − , + , + , + , − , + , − ,

+ , + , + , − , + , + , +] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : i n t e r m e d i a t e 5 | 7 | 5 | [+ , + , − , + ,

+] , i n t e r m e d i a t e 6 | 5 | 6 | [+ , − , + , − , +] , i n t e r m e d i a t e 3

| 6 | 8 | [+ , + , − , + , + , +] , DVL2 | 7 | 8

−> Assemble i n t e r m e d i a t e 5 | 7 | 5 | [+ , + , − , + , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : pTe t | 7 | 0 | [+] ,

FRT | 0 | 2 | [+] , pBAD | 2 | 1 | [−] , dicRBS | 1 | 3 | [+] , f l p e | 3 | 5 | [+] ,

DVL1 | 7 | 5

−> Assemble i n t e r m e d i a t e 6 | 5 | 6 | [+ , − , + , − , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2

| 5 | 3 ∗ | [+] , FRT | 3 ∗ | 0 | [−] , loxP | 0 | 1 | [+] , pA1lacO | 1 | 2 ∗ | [−] ,

dicRBS | 2 ∗ | 6 | [+] , DVL1 | 5 | 6

−> Assemble i n t e r m e d i a t e 3 | 6 | 8 | [+ , + , − , + , + , +] by

pe r f o rm ing a MoClo c l o n i n g r e a c t i o n wi th : c r e | 6 | 0 | [+] ,

IR1_IR2_TermT2 | 0 | 3 | [+] , loxP | 3 | 1 | [−] , dicRBS | 1 | 2 | [+] , g fp

| 2 | 4 | [+] , T1 | 4 | 8 | [+] , DVL1 | 6 | 8

−> Assemble pTet | 7 | 0 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pTet | 7 | 0 | [+] , DVL0 | 7 | 0

118

−> Assemble FRT | 0 | 2 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : FRT | 0 | 2 | [+] , DVL0 | 0 | 2

−> Assemble pBAD | 2 | 1 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pBAD | 2 | 1 | [−] , DVL0 | 2 | 1

−> Assemble dicRBS | 1 | 3 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 1 | 3 | [+] , DVL0 | 1 | 3

−> Assemble f l p e | 3 | 5 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : f l p e | 3 | 5 | [+] , DVL0 | 3 | 5

−> Assemble IR1_IR2_TermT2 | 5 | 3 ∗ | [+] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2 | 5 | 3 ∗ | [+] , DVL0 | 5 | 3 ∗

−> Assemble FRT | 3 ∗ | 0 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : FRT | 3 ∗ | 0 | [−] , DVL0 | 3 ∗ | 0

−> Assemble loxP | 0 | 1 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : loxP | 0 | 1 | [+] , DVL0 | 0 | 1

−> Assemble pA1lacO | 1 | 2 ∗ | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : pA1lacO | 1 | 2 ∗ | [−] , DVL0 | 1 | 2 ∗

119

−> Assemble dicRBS | 2 ∗ | 6 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 2 ∗ | 6 | [+] , DVL0 | 2 ∗ | 6

−> Assemble c r e | 6 | 0 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : c r e | 6 | 0 | [+] , DVL0 | 6 | 0

−> Assemble IR1_IR2_TermT2 | 0 | 3 | [+] by pe r f o rm ing a MoClo

c l o n i n g r e a c t i o n wi th : IR1_IR2_TermT2 | 0 | 3 | [+] , DVL0 | 0 | 3

−> Assemble loxP | 3 | 1 | [−] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : loxP | 3 | 1 | [−] , DVL0 | 3 | 1

−> Assemble dicRBS | 1 | 2 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : dicRBS | 1 | 2 | [+] , DVL0 | 1 | 2

−> Assemble gfp | 2 | 4 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : g fp | 2 | 4 | [+] , DVL0 | 2 | 4

−> Assemble T1 | 4 | 8 | [+] by pe r f o rm ing a MoClo c l o n i n g

r e a c t i o n wi th : T1 | 4 | 8 | [+] , DVL0 | 4 | 8

PCR loxP wi th o l i g o s : o l i g o 1 and o l i g o 2 t o g e t p a r t : loxP

| 3 | 1 | [−]

120

PCR IR1_IR2_TermT2 wi th o l i g o s : o l i g o 3 and o l i g o 4 t o g e t

p a r t : IR1_IR2_TermT2 | 0 | 3 | [+]

PCR loxP wi th o l i g o s : o l i g o 5 and o l i g o 6 t o g e t p a r t : loxP

| 0 | 1 | [+]

PCR FRT wi th o l i g o s : o l i g o 7 and o l i g o 8 t o g e t p a r t : FRT

| 0 | 2 | [+]

PCR c r e wi th o l i g o s : o l i g o 9 and o l i g o 1 0 t o g e t p a r t : c r e

| 6 | 0 | [+]

PCR IR1_IR2_TermT2 wi th o l i g o s : o l i g o 1 1 and o l i g o 1 2 t o g e t

p a r t : IR1_IR2_TermT2 | 5 | 3 ∗ | [+]

Anneal o l i g o s : o l i g o 1 3 and o l i g o 1 4 t o g e t p a r t : dicRBS

| 2 ∗ | 6 | [+]

PCR T1 wi th o l i g o s : o l i g o 1 5 and o l i g o 1 6 t o g e t p a r t : T1

| 4 | 8 | [+]

PCR gfp wi th o l i g o s : o l i g o 1 7 and o l i g o 1 8 t o g e t p a r t : g fp

| 2 | 4 | [+]

121

PCR pBAD wi th o l i g o s : o l i g o 1 9 and o l i g o 2 0 t o g e t p a r t : pBAD

| 2 | 1 | [−]

PCR f l p e wi th o l i g o s : o l i g o 2 3 and o l i g o 2 4 t o g e t p a r t : f l p e

| 3 | 5 | [+]

PCR FRT wi th o l i g o s : o l i g o 2 5 and o l i g o 2 6 t o g e t p a r t : FRT

| 3 ∗ | 0 | [−]

Anneal o l i g o s : o l i g o 2 9 and o l i g o 3 0 t o g e t p a r t : dicRBS

| 1 | 2 | [+]

PCR pTet wi th o l i g o s : o l i g o 6 5 and o l i g o 6 6 t o g e t p a r t : pTet

| 7 | 0 | [+]

PCR pA1lacO wi th o l i g o s : o l i g o 6 7 and o l i g o 6 8 t o g e t p a r t :

pA1lacO | 1 | 2 ∗ | [−]

Anneal o l i g o s : o l i g o 3 1 and o l i g o 3 2 t o g e t p a r t : dicRBS

| 1 | 3 | [+]

PCR lacZ wi th o l i g o s : o l i g o 6 1 and o l i g o 6 2 t o g e t v e c t o r :

DVL2 | 7 | 8

122

PCR lacZ wi th o l i g o s : o l i g o 3 5 and o l i g o 3 6 t o g e t v e c t o r :

DVL0 | 3 | 1

PCR lacZ wi th o l i g o s : o l i g o 3 7 and o l i g o 3 8 t o g e t v e c t o r :

DVL0 | 0 | 2

PCR lacZ wi th o l i g o s : o l i g o 3 9 and o l i g o 4 0 t o g e t v e c t o r :

DVL0 | 3 ∗ | 0

PCR lacZ wi th o l i g o s : o l i g o 3 3 and o l i g o 3 4 t o g e t v e c t o r :

DVL1 | 7 | 5

PCR lacZ wi th o l i g o s : o l i g o 4 1 and o l i g o 4 2 t o g e t v e c t o r :

DVL0 | 6 | 0

PCR lacZ wi th o l i g o s : o l i g o 4 3 and o l i g o 4 4 t o g e t v e c t o r :

DVL0 | 4 | 8

PCR lacZ wi th o l i g o s : o l i g o 4 5 and o l i g o 4 6 t o g e t v e c t o r :

DVL0 | 2 ∗ | 6

PCR lacZ wi th o l i g o s : o l i g o 4 9 and o l i g o 5 0 t o g e t v e c t o r :

DVL1 | 6 | 8

123

PCR lacZ wi th o l i g o s : o l i g o 5 1 and o l i g o 5 2 t o g e t v e c t o r :

DVL0 | 2 | 4

PCR lacZ wi th o l i g o s : o l i g o 5 3 and o l i g o 5 4 t o g e t v e c t o r :

DVL0 | 1 | 3

PCR lacZ wi th o l i g o s : o l i g o 5 7 and o l i g o 5 8 t o g e t v e c t o r :

DVL0 | 0 | 3

PCR lacZ wi th o l i g o s : o l i g o 5 5 and o l i g o 5 6 t o g e t v e c t o r :

DVL0 | 1 | 2 ∗

PCR lacZ wi th o l i g o s : o l i g o 4 7 and o l i g o 4 8 t o g e t v e c t o r :

DVL0 | 7 | 0

PCR lacZ wi th o l i g o s : o l i g o 5 9 and o l i g o 6 0 t o g e t v e c t o r :

DVL0 | 5 | 3 ∗

∗∗

5.12 Interactive Assembly Summary

Because it is not feasible for a human to design hundreds or thousands of assembly plans

manually and even more difficult to produce efficient and low-cost solutions for such sets,

a computational tool to automatically determine these solutions is needed. And because

124

assembly planning instructions are necessary for liquid-handling robots and microfluidics

to perform high throughput cloning and other automation techniques, the absence of an

automated method to inform a robot which steps to take to assemble genetic constructs

would severely limit the automation power of a larger tool pipeline.

Raven generates experimentally valid assembly plans, and, although it cannot guarantee

success of any one plan or complete target sequence, it can generate new plans on the basis

of some specific step failures and efficiency data. While these algorithms have the ability to

incorporate feedback of reaction failures and successes to produce better solutions, they do

not provide any methodology for predicting the success or failure of specific assembly steps

or the construct’s function. It is important to note that some standardized cloning protocols

cannot be rigidly implemented to clone all constructs owing to inherent complexity of

function of the constructs under consideration: some cloning challenges still must be solved

by amending standard protocols and thus fall outside the purview of a protocol-agnostic

assembly plan.

Finally, formal assembly files can be used to capture assembly information from pre-

viously attempted assemblies. The documentation of cloning reaction success and failure

and of the path to successful assembly can be accumulated and allow easier reproduction

of published work. This is particularly important because this information is often poorly

documented, which hinders the ability to build on previous work. Formally documented

assembly planning provides a better avenue for tracking this information, and previously

attempted assemblies could be studied to develop new heuristics and bring further insight

to popular molecular cloning methods.

Raven currently supports only six highly used, well-defined cloning methods, but ad-

ditional systematic biases and constraints outside the tool’s core heuristics can be applied

to Raven’s solutions by specifying forced, forbidden, recommended and discouraged in-

125

termediates and specific cloning vectors. Moreover, the principles of this approach could

be expanded and further generalized to nearly to any cloning method, provided common

sub-problem scoring required by dynamic programming. The generality of the algorithmic

solutions and the breadth of the permitted inputs allow assembly solutions to be adapted to

potentially any DNA assembly method because Raven broadly suggests how to reuse DNA

libraries to build a set of genetic constructs.

126

6 Automated Data Analysis and Simulation

The second type of instructions produced by Phoenix are instructions that define a

set of experimental measurements to make upon a set of strains with their corresponding

constructs. This file is a simple CSV file with columns for strain, environmental conditions,

time and indication of controls to be used in analysis. The final column in this file is for

a cytometry file name that was recorded for the strain, environmental condition and time

specified for that row.

This ‘key file’ represents all of the data acquired in one set of functional measurement

experiments. A Phoenix user receives this key file along with the Raven assembly instruc-

tions to build and test constructs. These files are protocol-agnostic (i.e. they do not include

detailed information on reagent quantity to be added to each reaction and growth conditions),

but a set of default protocols will be made available on the Phoenix website.

6.1 Data Acquisition

With these instructions and default protocols, a user has a complete plan for building

and testing all necessary constructs for that phase in the design hierarchy. While these

testing instructions are protocol agnostic to allow for some flexibility in laboratory set-up,

minor variations in cloning reaction and testing experiment set-up can have consequences

in the experimental outcomes.

While Raven can guarantee that its assembly plannings are valid in terms of assembly

steps and stages and assigned flanking sequences, it cannot guarantee that any particular

plan will be successful. Sometimes it may be necessary for a user to change some aspects of

the assembly plan to build all target constructs. One of the key assumptions of the functional

testing is that strains with identical genetic information should perform the same in each

127

laboratory setting. If this assumption is true, readings acquired on each flow cytometer must

still be normalized. To perform this normalization, we require users to run Speherotech

RCP-30-5A 8-peak rainbow calibration beads to normalize data acquired on each machine

to an absolute unit for all channels - molecules of equivalent fluorescein (MEFL). Finally,

Phoenix instructs users to grow cells to saturation in luria broth (LB) from a plated colony

and then re-innoculated from that culture into minimal media plus glucose to grow to

log-phase growth before measurement. These defined growth conditions reduce variation

in measurement.

6.2 Data Analysis

After all constructs are built and tested, the user is responsible for returning the key file

indicating which strain, environmental condition, and time each raw data file corresponds to.

This file and a folder containing the raw data are interpreted by an analysis script written in R,

using the Bioconductor packages to process the cytometry files. This script first parses the

key file to identify unique rows and replicate data rows to determine all unique time points

and environmental conditions for each strain. Duplicate rows are considered experimental

replicates - three replicates are standard, but there are no limitations on providing more

replicates.

Each set of replicates is processed in the following way: First, only channels that are

controlled for with a positive control are considered, all other channels except forward

and side scatter are discarded. Next, the spectral overlap matrix is calculated using the

fluorescent protein positive controls and a negative control. After this step, an elliptical

gate is created for forward and side scatter to remove cells that are outliers in size and

shape and then all readings with negative values are removed. Next, for the remaining

populations, spectral overlap correction is performed with the spectral overlap matrix. After

128

this correction, a clustering algorithm for identifying the largest cluster of readings in each

channel is run and the mean values of these clusters for each channel is collected. As a final

step, readings from the negative control processed in the same analytics flow are subtracted

from all samples to correct for auto-fluorescence.

This processed meta-data is used to create plots in the R console and the data points

are exported in a CSV file for input into Phoenix. Phoenix associates these values to an

experiment object associated with each plasmid.

6.3 Simulation for Parameter Estimation and Compositional Designs

This processed meta-data is used to estimate the rate constants needed for each EX-

PRESSEE and EXPRESSOR. For EXPRESSORs, the steady-state expression measurement

is used with the measured degradation rate of its added testing component, gfp or bfp to fit

to a steady-state expression constant.

For EXPRESSEEs, experimental data is used to determine two or three rate constants

(depending on the regulator). The degradation rate of each EXPRESSEE and degradation

control construct is measured by adding the transcriptional inhibitor, chloramphenicol to

the environment at time t = 0 to inhibit protein expression. With protein expression stopped,

a time-series measurement for fluorescence can be used to determine the degradation pa-

rameters. To fit the regulation constant, a titration for the inducer controlling the expression

of the EXPRESSEE is performed and the regulation constant is determined with parameter

estimation. To determine the small molecule interaction constant for EXPRESSEEs that are

sensitive to small molecule inducers, another parameter estimation is run for the fluores-

cence produced by the regulation control as a function of the small molecule present in the

environment.

These paramater estimations are performed with an open-source simulation tool called

129

COPASI. Once the parameter values for each EXPRESSEE and EXPRESSOR are estimated,

kinetic models for compositional designs can be simulated. These simulations are also

performed with COPASI 53 and the resulting simulation traces are returned to Phoenix,

where they are evaluated against functional specifications.

6.4 Structural Failure Mode Grammars

The simulated compositional traces are then model-checked against an STL specification

and evaluated for robustness. The most robust simulated compositions are selected and

subsequently returned to the user for building and testing. Sometimes, this first round

of simulation may align very well with experimental results, but other times it may not.

In cases where the simulations and experimental results do not align, it is important to

have a mechanisms for probing into why the disagreement occurred and to learn from this

information to make better selections from future simulations.

The fourth chapter of this thesis discussed how grammars can be applied to validate

a structural specification. It is also possible to use grammars in the context of types of

structural motifs that are often the source of particular design failures. In Phoenix, me and

my colleagues defined 10 types of common failure modes and wrote grammars in ANTLR77

to determine which failure modes exist in any given structure.

When a design’s experimental data does not match its simulation, Phoenix identifies

which failure modes are present and based upon the specific disagreement in traces, in-

structs the creation of additional constructs to test which failure mode. The results of this

experimental inquiry are stored in Phoenix as design rules documenting which particular

sequence combinations resulted in failures and avoids making similar design selections for

future designs.

130

7 Data Visualization, Documentation and Storage

After experimental data is processed and used for simulation, it is important to store

information in a database and effectively visualize the results to a user. In a synthetic

synthetic biology workflow, this includes information related to design, DNA assembly

and testing for each plasmid. This task involves determining the correct information to

store, determining the best tool for storing this information and then determining the most

informative data to display back to a user.

7.1 Data Storage and Management

Since biological data is typically large and multi-dimensional, it is important to de-

termine which type of information is important to store in a database and which type of

database is the most appropriate. In synthetic biology, there is no existing consensus on

which information is essential and which is optional, although some groups have put signifi-

cant effort into trying to establish these standards45. There are also a number of open-source

repositories for synthetic biological part information, but there is little agreement on which

data standard to adopt.

For my tools, I opted to use Clotho as my data storage tool. The reasons for using this

tool as opposed to other options was threefold: 1. Clotho has a well thought-out core data

model, but is intentionally flexible to amendments to the data model. 2. Most of my other

tools, including Phoenix are Java based like Clotho, so there is a smooth data transfer and

3. Since it was developed in the same research group, I can occasionally contribute as a

developer to the functionality of the tool and easily tailor functionality with others on the

Phoenix development team.

After I decided to use Clotho as the database tool, it needed to be determined exactly

131

what type of information to store. In general, I opted to store plasmid sequences, feature

annotation information, design information, metadata for assembly, testing, and simulation.

This is because only the metadata is used for key decision making and can be automatically

regenerated from raw data or other metadata. Similarly, images from generated plots are not

saved because they can be reproduced automatically. The next challenge was to determine

which metadata and sequence information to return to users of my tools.

7.2 Electronic Datasheet Generator for Data Visualization

In other engineering fields such as electrical engineering, researchers use electronic

datasheets to accomplish this task for electronic transistors. In recent years, synthetic biol-

ogists have thought about employing similar approaches to documenting and representing

information related to their plasmids41 to help biologists evaluate parts for use in composi-

tional designs. Since there currently exist few tools for automatically creating datasheets,

me and my colleagues decided to develop a tool to do this. The ‘alpha version’ of this tool,

called Owl was tailored towards information contained in the iGEM Registry of Standard

Biological parts and could query the Registry to fill out a datasheet partially. The current

‘beta version’ is more general and can be amended to query arbitrary fields from multiple

data sources and organize the information by type of information and uses LATEXstyle files

to typeset the document.

The Registry of Standard Biological Parts (http://parts.igem.org) is the largest open–

source registry for synthetic biological parts. It is also the standard registry for the annual

iGEM. As iGEM expands, many new entries and entry modifications are submitted each

year. Given this already large and rapidly growing registry and other growing registries

of synthetic genetic parts (JBEI https://registry.jbei.org/, JGI http://genome.jgi.doe.gov/,

SynBERC registry.synberc.org, and BioFAB www.biofab.org), the question of how to best

132

share and store data becomes very important to answer. It is critical that the synthetic biol-

ogy community forms a concerted effort to share data on genetic parts and other biological

components in a standard way.15

The Registry purposefully allows flexibility in the entries in both format and content,

lending itself to a broad diversity of parts. One of the Registrys strengths is its ability

to capture many types of synthetic biological parts, but it lacks consistent formatting and

presentation that is required for machine readability and manual comparisons. The lack

of a common format can also hinder new users and may impede them from adding useful

information to the Registry. Furthermore, as a variety of software tools becomes available

for biodesign automation, it is necessary to provide a unified format for a part datasheet so

that the tools can leverage data stored in these sheets.

To address these problems, me and my colleagues created an online tool called Owl

(www.owlcad.org) to generate electronic datasheets automatically, with a common format.

This version of Owl (alpha) lays the groundwork for the automated generation of datasheets.

7.2.1 An Electronic Datasheet Generator - Alpha Version

Owl (www.owlcad.org) is a web-based tool that generates electronic datasheets for

synthetic biological parts. A datasheet provides a quantitative and qualitative description of

genetic device behavior that allows an engineer to determine if a part is suitable for a desired

use29. Owl allows users to enter part information either automatically from pre-existing

entries on the Registry or manually in the user interface. Owl currently uses Synthetic

Biology Open Language visual (SBOLv) compliant images for part and device images and

can link images from Pigeon23 (www.pigeoncad.org) and Raven14 (www.ravencad.org)

onto a datasheet. Owl generates HTML pages in a standard format and can be saved as a

PDF.

133

In consideration of previous datasheets15,41 and common assays used to characterize

biological systems, Owl datasheets are separated into five sections: (1) Basic Information,

for part identification and visual representation; (2) Designer Information, for attributing

authorship, providing contact information and the date; (3) Design Details, for detailed

information about part function; (4) Assembly Information, for describing how the part was

made; and (5) Assays, for presenting characterization data. We have provided three sections

for assays: restriction mapping, flow cytometry, and a section where users can add their

own type of assay.

To demonstrate Owl’s ability to represent a diversity of parts, we created several

example datasheets for a variety of functionally different parts (datasheets are available

online at www.owlcad.org). These datasheets represent several parts created by the

CIDAR lab (www.cidarlab.org) as well as examples from literature to demonstrate Owls

applicability to a diverse assortment of parts.

Required and Optional Fields

Owl datasheets have required fields based on the Registrys data model (Figure 26).

This information is meant to represent the minimum information required to define a part

with which data can be experimentally associated. Specifically, Owl requires that a DNA

part be described sufficiently such that an assay could be performed upon it. Thus, all fields

needed to describe a parts composition are required. Owl datasheets have five required

fields, namely: Part Name, Sequence, Part Summary, Author(s), and Date. Completion of

all other relevant fields is encouraged but optional.

Automated Population of Fields from Registry Pages

When generating a new datasheet from an existing Registry page, Owl parses informa-

134

Figure 26: The Owl UI sections for Basic Information, Designer Information, Design Details, and
Assembly Information. The input fields for each section are outlined on the left with descriptions
for the input information for each field. The images on the right show the web interface UI from
www.owlcad.org.

tion from the Registrys XML pages and autopopulates fields on the datasheet, namely: Part

Name (ex: BBa B0034), Part Description, Part Type (ex: RBS), Date entered, Part Author,

and Sequence. The user can then go through each section manually and add to or change

the existing information.

While Owl’s goal is to automate the creation of datasheets, the task inherently poses

the question of what a datasheet for synthetic biological parts should display. The default

135

format of Owl’s datasheet may not be ideal for all cases; however, it is flexible and provides

fields similar to those described in previous work15,41 such as identifying information, circuit

visualization, author contact information, assembly information, and characterization by gel

electrophoresis and flow cytometry. Further considerations include the ability to present four

kinds of data proposed in previous work:(4) static behavior, dynamic behavior, compatibility

with other devices, and reliability of the device measured by the number of generations the

device can uphold desired functionality.

7.2.2 An Electronic Datasheet - Beta Version

The initial release of the Alpha version of Owl received two key points of feedback: 1.

It is too restrictive of the data types - a user with additional data fields might not fit into the

categories defined in the first release. 2. It only searches the Registry of Parts and can only

search for a small set of fields.

Although the initial tool was designed to be partially restrictive to ensure that a minimal

amount of information was entered on each datasheet, it seemed that we had not struck the

right balance between data requirements and flexibility. This was also the reason that only a

small number of fields were searchable from the Registry of Parts. It was important that the

next version of Owl be integrated with additional platforms and registries45,101 to generate

datasheets automatically as a user moves through experimental workflows.

To address these concerns, the Owl development team created editable, human-readable

‘‘configuration files" that can be modified for custom fields and wells with a limited set of

data types. Since the stylistic formatting of the datasheets may not suit all users, editable

style files are be used to automatically typeset datasheets. Owl was also extended to search

custom fields in existing repositories. Finally, a Java API was created so that Owl can be

linked more easily with other tools outside of the Phoenix environment.

136

Datasheets produced with the beta version can accomplish all of the same functionalities

of the alpha version with the exception of explicit required fields. The thinking here is that

other tools that link in with Owl can enforce internal null checks and this was not important

to include explicitly in the this tool.

7.3 Design Tree Visualization

In large design hierarchies, it is important for a user to visualize where they currently

stand in the process and which existing plasmids have data and which do not. In Phoenix,

this is represented in the user interface as a collapsible tree that represents all of the nodes

in a decomposed design. At any one of these nodes, the user can click on nodes or set of

nodes to view electronic datasheets produced by Owl.

Figure 27: Screenshot of a design tree created by decomposing an input design in Phoenix

137

7.4 Data Visualization Summary

Owl is intended to serve the community by streamlining the creation of electronic

datasheets that can be used to exchange important biological part information in a visually

intuitive and user-friendly manner. Although other platforms formalize data exchange

between machine users45, there is a need for a consistently structured way to present data to

a human user with which they can make decisions. I believe that Owl can help fill this gap.

138

8 Workflow Test Cases and Results

To validate that the overall Phoenix tool function, it was important to apply it to a set

of example specifications. To do this, we built and tested a set of all EXPRESSORs and

EXPRESSEEs for the functional terminals (‘NOT gate’, ‘toggle switch’, and ‘oscillator’)

for our sequence feature library.

8.1 Unit testing of ‘Classic’ Networks

A unit test is a unit of work done upon a system to individually and independently

scrutinize a single assumption about the behavior of that unit of work. In a genetic unit

test, we define the single assumptions to be the enzymatic model for each node and the

enzymatic parameters corresponding to each individual sequence. Thus, Phoenix adds

testing components to perform unit tests to measure these parameters. In Phoenix, there are

two general classes of unit tests - unit tests for EXPRESSORs and EXPRESSEs and unit tests

for functional elements and complex function created with multiple functional elements.

Unit tests for EXPRESSORs and EXPRESSEEs are performed for creating the base

characterization data for fitting enzymatic model parameters. Since EXPRESSORs are

measured to estimate their expression parameter, an expression unit test is performed.

Expression unit tests require steady-state fluorescence expression tests and a degradation unit

test for each fluorescent protein expressed by the EXPRESSOR. Degradation unit tests are

performed by adding chloramphenicol to liquid culture at time t = 0 to inhibit expression via

transcriptional inhibition and measuring fluorescence over time. EXPRESSEEs necessitate

unit tests for degradation, regulation, and (when appropriate) small molecule interaction.

Regulation unit tests require inducing the expression of an EXPRESSEE with an inducible

upstream promoter to measuring how the expression of a transciptional unit controlled

139

by the promoter the EXPRESSEE regulates changes as a function of the amount of the

EXPRESSEE present. We design these tests by building an additional regulation control

plasmid and co-transforming it with the EXPRESSEE plasmid. These regulation control

plasmids are built separately to save cloning cost and minimize failure mode opportunities

in measurement. Small molecule unit tests are performed for EXPRESSEEs that are known

to interact with a specific small molecule. For this test, a high quantity of the EXPRESSEE

is induced and a titration curve of the small molecule is performed and measured over time.

For our library of 8 promoter-regulator pairs, 6 RBSs, 10 fluorescent proteins, 8 ter-

minator and 2 vectors, I used Phoenix to decompose the designs and return the set of

EXPRESSORs and EXPRESSEEs for a ‘forward-strand only’ linear design architecture.

Figure 28: Preliminary data from expression tests for EXPRESSORs and degradation, regulation,
and small molecule tests for EXPRESSEEs.

For the EXPRESSORs, I observed variable sequence and function outcomes, which

agreed with our team’s findings in the multiplex assembly experiments described in Chapter

140

5.

Since the peptide linker sequences used in the EXPRESSEEs between the regulator and

fluorescent protein had not yet been validated, I had to determine if these linker peptides

interfered with the function of either the regulator or the fluorescent protein. It proved to

be the case that the linker peptide we employed in the Phoenix workflow worked for nearly

all EXPRESSEEs, so my colleagues and I advanced to measuring the EXPRESSEEs for

their degradation, regulation and small molecule constants. These measurements resulted

in a range of parameter values (data not shown in this document), so our group concluded

that we had a rich design space of EXPRESSORs and EXPRESSEEs and used the fitted

parameters to combinatorially simulate our specification targets.

Unit tests for compositional designs are based upon the functional specification as

opposed to expert knowledge of the structural elements. For these cases, a test is done for

time and performance bounds of the specification. Unit tests are performed at each node in

the design tree for which there is a compositional design.

8.2 Building Networks via ‘Brute Force’

To determine to what degree Phoenix’s computational methods improve outcomes, it

was important to compare the success of these part assignments against a set of constructs

that use the same assembly method and part arrangements, but with randomly assigned parts.

To do this, I used the same ARGNs for the linear design architecture for the ‘NOT gate’,

‘toggle switch’ and ‘oscillator’ and determined all possible partially-assigned constructs

where I only selected the promoter-regulator pairs to remain orthogonal where appropriate.

Using these valid, partially-assigned GRNs, I multiplexed the the remaining components of

the GRN to build randomly-assigned networks. The results of these tests are not presented

in this document, but will be used as a baseline to compare against Phoenix-designed

141

networks in future work.

8.3 Unit-testing Failure Modes

Since the initial set of assignments were all in the same linear arrangements, they were

all subject to the same failure mode - transcriptional read-through. To test the wider scope

of defined failure modes, we built and tested ‘NOT gates’, ‘toggle switches’ and ‘oscillators’

with non-linear arrangements.

Figure 29: Arrangements for two-transcriptional unit constructs that present different common
failure modes. (a) The linear arrangement is sensitive to transcriptional red-through from the first
transcriptional unit into the second. (b) The alternating-strand transcriptional unit architecture
introduce a supercoiling failure mode created by adjacent promoters. (c) This arrangement exposes
the failure mode of transcriptional interference where polymerases on either strand might collide
during transcription and affect expression.

For two-transcriptional-unit constructs such as these, there are a total of 12 valid ar-

rangements based upon our structural grammar. To test more of these arrangements, we

selected three more different types of architectures and used these as input to build alter-

native sets of EXPRESSORs that expose different types of failure modes. The outcomes

of these functional tests demonstrated that different structural part arrangements with the

same sequences yielded different expression rates, but the data for these experiments are

not detailed in this document.

142

9 Project Summary and Impact

9.1 Project Summary

This thesis explores questions of what types of project should be built with synthetic

biology and describes a set of software tools and workflows for accomplishing these project

goals for genetic regulatory networks in E. coli. I described a project in which we probe a

variety of projects for risk assessment and biosecurity concerns and then described another

project that examined a project that poses problems of risk and biosecurity in detail. In the

rest of the chapters, I discussed my technical work in building two software tools to solve

specific sub-problems in the software tool space, namely Raven for creating assembly plans

and Owl for creating electronic datasheets. The rest of this thesis describes the creation

of Phoenix, a tool that ties together many existing software tools for specific tasks of a

synthetic biology workflow in addition to providing algorithmic solutions to a number of

unsolved sub-problems in the workflow.

9.2 Impact of Work

Phoenix represents one of the first closed-loop workflow tools in the synthetic biology

space to automate a majority of design decisions in genetic regulatory network creation

via experimental instructions and data entry. In contrast to other existing software suites,

Phoenix is not designed as an open canvas where a user has flexibility to create nearly any

type of genetic network, but still has to make all design decisions manually. Rather, the

ultimate goal of Phoenix is to advance the goals of the bio-design automation community

and work towards powerful computer-aided design that simplifies the design process for a

user and enables higher level of design abstraction.

143

It is well known that creating synthetic genetic regulatory networks is no easy task

and some would agree that many aspects of manual synthetic biology methodologies have

already reached or will soon reach their limits - it will not be possible to solve significantly

more complex problems without computational tools and computer-aided design. The

central goal of this thesis is to make significant progress on this front and open the door to

larger design goals while instituting a philosophy of careful consideration of which projects

to pursue.

144

10 Methods

10.1 Computational

Back-end algorithms in all of the tools in this thesis were implemented in Java. The

Raven, Owl, and Phoenix UIs were implemented in Javascript using jQuery and Bootstrap

libraries. Scripts for recommended, discouraged and required parts in Raven are imple-

mented in Eugene24. Design tree graphs in Phoenix are generated using d3.js libraries

and automatically-generated construct glyphs are made from scripts to pigeoncad.org23.

Analytics scripts are implemented R and rely heavily on the Bioconductor packages.

10.2 Experimental

10.2.1 Materials

Cloning enzymes and buffers ordered from New England Biolabs, Ipswich, MA, USA

and Promega Corporation, Madison, WI, USA. Epoch kits and protocols used to extract

and prepare DNA. Oligonucleotides synthesized by IDT. DIC counter plasmid templates

acquired from Timothy Lu. All reactions performed in an Eppendorf Mastercycler ep

thermocylcer (Eppendorf North America, Westbury, NY, USA).

10.2.2 MoClo DNA Assembly

10.2.3 Cloning Destination Vectors

The lacZα fragment was PCR amplified from a lacZα-containing cloning vector

(pMJS2AF, donated by Michael Smanski) and subsequently cloned into three backbones,

depending on the MoClo level: level 0 used pSB1A2, level 1 used pSB1K3, and level 2 used

145

pSB1A2. DNA containing the lacZα fragment was used as template for PCR reactions.

PCR reactions with 5X Phusion HF Buffer, 100 uM dNTPs, Phusion DNA Polymerase,

5% DMSO, 1 mM MgCl2 (New England Biolabs, Ipswich, MA, USA), and sterile diH2O.

Reactions were performed using the following parameters: one denaturation step at 95C

for 5 min, followed by 30 extension cycles (95 ◦C 20 sec., 61 ◦C 20 sec., 72 ◦C 15 sec.), a

final 5 min extension step at 72 ◦C and then incubation at 4 ◦C. PCR products over 100bp

were purified using either the QIAquick PCR Purification Kit (Qiagen Inc., Valencia, CA,

USA) or GenCatch PCR Purification Kit (Epoch Life Sciences, Sugar Land, TX, USA)

according to the manufacturer’s protocol. PCR products and pSB1K3 and pSB1A2 vectors

were digested with SpeI enzyme (NEB) according to the manufacturer’s protocol using up

to 500 ng DNA. Restriction digestions were purified using the QIAquick PCR Purification

Kit (Qiagen) following the manufacturer’s protocol. Ligation reactions were performed

with T4 DNA ligase (NEB) following the manufacturer’s protocol with a 3:1 insert part to

vector backbone ratio.

10.2.4 PCR Amplifying Level 0 Parts

Level 0 target sequences over 32 bps were PCR amplified from the DIC 3-Counter

multiple-inducer (Donated by Timothy Lu). Level 0 sequences for parts smaller than 34

bps, annealing oligonucleotides were designed and annealed with the following parameters:

95 ◦C for 3 min, then 55 x (-1 ◦C every 30 sec.), then incubation at 4 ◦C. (see Supplementary

Raven files for part sequences). Reactions were performed using the following parameters:

one denaturation step at 95 ◦C for 5 min, followed by 30 extension cycles (95 ◦C 20 sec.,

61 ◦C 20 sec., 72 ◦C 30 sec.), a final 5 min. extension step at 72 ◦C and then held at 4 ◦C.

146

10.2.5 MoClo Cloning Protocol

Each MoClo reaction had the following contents: 40 fmol of each DNA component

(DNA PCR Product or previously made MoClo DNA Parts, and the appropriate Destination

Vector), BsaI or BbsI (BsaI for Level 1, BbsI for Level 0 and Level 2; NEB), high concentra-

tion T4 DNA ligase (C M1794, Promega, Madison, WI, USA), 1 X T4 DNA Ligase Buffer

(Promega), and sterile, diH2O. Reactions performed using the following parameters: 25-35

cycles (37 ◦C 1.5 min., 16 ◦C 3 min.), followed by 50 ◦C for 5 minutes and 80 ◦C for 10

minutes and then held at 4 ◦C until transformed. Level 0 reactions were done for 25 cycles

while Level 1 and 2 reactions were done for 25-30 cycles. Transformations into Alpha

Select Gold Efficiency E. coli cells (Bioline USA Inc., Taunton, MA, USA), DH5α-Z1, and

epi300 competent E. coli. Transformations were heat shocked at 42 ◦C for 45 sec. and

recovered in SOC media for 1 hour at 37 ◦C, 300rpm.

10.2.6 Primer Design

Primers for MoClo99 assembly designed in the following format for parts larger than 24

bp: NN - BpiI recognition site - NN - 1234 - part - 5768 - NN - BpiI recognition site - NN.

Forward primers: 5′ NN - GAAGAC - NN - [Overhang Sequence] - [first 24 bp of part] 3′.

Reverse primers: 5′ [last 24bps of gene] - [Overhang Sequence] - NN - GTCTTC - NN 3′.

For parts smaller than 24bp, annealing primers were designed that adhere to the preceding

format.

147

References
[1] (1925). Geneva Protocol. United Nations.

[2] (1972). Convention on the Prohibition of the Development, Production and Stockpiling
of Bacteriological (Biological) and Toxin Weapons and on their Destruction. United
Nations.

[3] (2002). NIH Guidelines for Research Involving Recombinant DNA Molecules. National
Institutes of Health.

[4] (2003). Cartegena Protocol on Biosafety to the Convention on Biological Diversity.
United Nations.

[5] (2004). Laboratory Biosafety Manual. World Health Organization, 3rd edition.

[6] (2009). Regulation of Genetically Engineered Animals Containing Heritable Recombi-
nant DNA Constructs: Final Guidance. Center for Veterinary Medicine (CVM), Food
and Drug Administration, US Department of Human Health and Human Services, FDA,
Rockville, MD.

[7] (2012). Guidelines for Transfers of Sensitive Chemical and Biological Materials.
Australia Group.

[8] (2012). The Regulation of Synthetic Biology: A Guide to United States and European
Union Regulations, Rules, and Guidelines, National Science Foundation, Arlington, VA.
Synthetic Biology Engineering Research Center (Synberc).

[9] (2013). United States Government Policy for Institutional Oversight of Life Sciences
Dual use Research of Concern, Draft Notice. U.S. Science and Technology Office.

[10] (2014). Creating a Research Agenda for the Ecological Implications of Synthetic
Biology, MIT Center for International Studies, Cambridge, MA and Wordrow Wilson
International Center for Scholars, Washington, DC.

[11] Anderson, J. C., Clarke, E. J., Arkin, A. P., and Voigt, C. A. (2006). Environmentally
controlled invasion of cancer cells by engineered bacteria. Journal of Molecular Biology,
355(4):619--627.

[12] Anderson, J. C., Voigt, C. A., and Arkin, A. P. (2007). Environmental signal integra-
tion by a modular and gate. Molecular Systems Biology, 3(133):133.

[13] Appleton, E. et al. (2014a). Owl: Electronic datasheet generator. ACS Synthetic
Biology, 3(12):966--968.

148

[14] Appleton, E., Tao, J., Haddock, T., and Densmore, D. (2014b). Interactive assembly
algorithms for molecular cloning. Nature methods, 11(6):657--662.

[15] Arkin, A. (2008). Setting the standard in synthetic biology. Nature biotechnology,
26:771--774.

[16] Baltimore, B., Berg, P., Botchan, M., Carroll, D., Charo, R. A., Church, G., Corn,
J. E., Daley, G. Q., Doudna, J. A., Fenner, M., et al. (2015). A prudent path forward for
genomic engineering and germline gene modification. Science, 348(6230):36--38.

[17] Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., and Weiss, R. (2005).
A synthetic multicellular system for programmed pattern formation. Nature,
434(7037):1130--1134.

[18] Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., and Schnei-
der, D. (2005). Validation of qualitative models of genetic regulatory networks by model
checking: analysis of the nutritional stress response in escherichia coli. Bioinformatics,
21.

[19] Bayer, T. S. and Smolke, C. D. (2005). Programmable ligand-controlled riboregulators
of eukaryotic gene expression. Nature biotechnology, 23(3):337--343.

[20] Beal, J., Lu, T., and Weiss, R. (2011). Automatic compilation from high-level bio-
logically-oriented programming language to genetic regulatory networks. PLoS ONE,
6(8):e22490.

[21] Beal, J., Weiss, R., Densmore, D., Adler, A., Appleton, E., Babb, J., Bhatia, S., David-
sohn, N., Haddock, T., Loyall, J., Schantz, R., Vasilev, V., and Yaman, F. (2012). An
end-to-end workflow for engineering of biological networks from high-level specifica-
tions. ACS Synthetic Biology, 1:317--331.

[22] Benedict, M., D’Abbs, P., Dobson, S., Gottlieb, M., Harrington, L., Higgs, S., James,
A., James, S., Knols, B., Lavery, J., et al. (2008). Guidance for contained field trials
of vector mosquitoes engineered to contain a gene drive system: recommendations of a
scientific working group. Vector-Borne and Zoonotic Diseases, 8(2):127--166.

[23] Bhatia, S. and Densmore, D. (2013). Pigeon: a design visualizer for synthetic biology.
ACS synthetic biology, 2(6):348--350.

[24] Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson,
J. C., and Densmore, D. (2011). Eugene: A domain specific language for specifying and
constraining synthetic biological parts, devices, and systems. PLoS ONE, 6(4):e18882.

149

[25] Blakes, J., Raz, O., Feige, U., Bacardit, J., Widera, P., Ben-Yehezkel, T., Shapiro, E.,
and Krasnogor, N. (2014). Heuristic for maximizing dna reuse in synthetic dna library
assembly. ACS Synthetic Biology, 3(8):529--542.

[26] Bonnet, J., Subsoontorn, and Endy, D. (2012). Rewritable digital storage in live cells
via engineered control or recombination directionality. Proceedings of the National
Academy of Sciences of the United States of America, 109(23):8884--8889.

[27] Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P., and Endy, D. (2013). Amplifying
genetic logic gates. Science, 340(6132):599--603.

[28] Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic
engineering of natural populations. Proceedings of the Royal Society of London B:
Biological Sciences, 270(1518):921--928.

[29] Canton, B., Labno, A., and Endy, D. (2008). Refinement and standardization of
synthetic biological parts and devices. Nature biotechnology, 26(7):787--793.

[30] Cao, Y., Lu, H.-M., and Liang, J. (2010). Probability landscape of heritable and robust
epigenetic state of lysogeny in phage lambda. Proceedings of the National Academy of
Sciences, 107(43):18445--18450.

[31] Chandran, D., Bergmann, F., and Sauro, H. (2009). Tinkercell: modular cad tool for
synthetic biology. Journal of Biological Engineering, 3(1):19.

[32] Cohen, S. N., Chang, A. C., Boyer, H. W., and Helling, R. B. (1973). Construction of
biologically functional bacterial plasmids in vitro. Proceedings of the National Academy
of Sciences, 70(11):3240--3244.

[33] Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X.,
Jiang, W., Marraffini, L. A., et al. (2013). Multiplex genome engineering using crispr/cas
systems. Science, 339(6121):819--823.

[34] Czar, M. J., Cai, Y., and Peccoud, J. (2009). Writing dna with genocad. Nucleic Acids
Research, 37(Web Server issue):W40--W47.

[35] Danino, T., Mondragon-Palomino, O., Tsimring, L., and Hasty, J. (2009). A synchro-
nized quorum of genetic clocks. Nature, 463(7279):326--330.

[36] Densmore, D. (2012). Bio-design automation: Nobody said it would be easy. ACS
synthetic biology, 1(8):296--296.

[37] Densmore, D., Hsiau, T. H. C., Kittleson, J. T., DeLoache, W., Batten, C., and
Anderson, J. C. (2010). Algorithms for automated dna assembly. Nucleic Acids Research,
38(8):2607--2616.

150

[38] Ellis, B., Haaland, P., Hahne, F., Meur, N. L., Gopalakrishnan, N., and Spidlen, J.
(2014). flowCore: Basic structures for flow cytometry data. R package version 1.32.2.

[39] Ellis, T., Wang, X., and Collins, J. (2009). Diversity-based, model-guided con-
struction of synthetic gene networks with predicted functions. Nature biotechnology,
27(5):465--471.

[40] Elowitz, M. and Leibler, S. (2000). A synthetic oscillatory network of transcriptional
regulators. Nature, 403(6767):335--338.

[41] Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067):449--453.

[42] Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision
cloning method with high throughput capability. PLoS ONE, 3(11):e3647.

[43] Esvelt, K. M., Smidler, A. L., Catteruccia, F., and Church, G. M. (2014). Concerning
rna-guided gene drives for the alteration of wild populations. Elife, 3:e03401.

[44] Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G., and Collins, J. J. (2009).
Synthetic gene networks that count. Science, 324:1199 – 1202.

[45] Galdzicki, M. et al. (2014). The synthetic biology open language (sbol) provides a com-
munity standard for communicating designs in synthetic biology. Nature biotechnology,
32(6):545--550.

[46] Galdzicki, M., Wilson, M. L., Rodriguez, C. A., Adam, L., Adler, A., Anderson,
J. C., Beal, J., Chandran, D., Densmore, D., Drory, O. A., Endy, D., Gennari, J. H.,
Grünberg, R., Ham, T. S., Kuchinsky, A., Lux, M. W., Madsen, C., Misirli, G., Myers,
C. J., Peccoud, J., Plahar, H., Pocock, M. R., Roehner, N., Smith, T. F., Stan, G.-B.,
Villalobos, A., Wipat, A., , and Sauro, H. M. (2011). Synthetic Biology Open Language
(SBOL) Version 1.0.0. RFC 85.

[47] Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000). Construction of a genetic
toggle switch in escherichia coli. Nature, 403(6767):339--342.

[48] Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., and Smith,
H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases.
Nature methods, 6(5):343--345.

[49] Guet, C. C., Elowitz, M. B., Hsing, W., and Leibler, S. (2002). Combinatorial synthesis
of genetic networks. Science, 296(5572):1466--1470.

[50] Hayden, E. C. (2015). Synthetic biologists seek standards for nascent field. Nature,
520(7546):141--142.

151

[51] Herzenberg, L. A., Tung, J., Moore, W. A., Herzenberg, L. A., and Parks, D. R.
(2006). Interpreting flow cytometry data: a guide for the perplexed. Nature immunology,
7(7):681--685.

[52] Hillson, N., Rosengarten, R. D., and Keasling, J. (2011). j5 dna assembly design
automation software. ACS Synthetic Biology, 1:14--21.

[53] Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L.,
Mendes, P., and Kummer, U. (2006). Copasia complex pathway simulator. Bioinformat-
ics, 22(24):3067--3074.

[54] Isaacs, F. J., Dwyer, D. J., Ding, C., Pervouchine, D. D., Cantor, C. R., and Collins, J. J.
(2004). Engineered riboregulators enable post-transcriptional control of gene expression.
Nature biotechnology, 22(7):841--847.

[55] Kahl, L. J. and Endy, D. (2013). A survey of enabling technologies in synthetic
biology. Journal of biological engineering, 7(1):1--19.

[56] Keating, S. and Le Novère, N. (2013). Supporting sbml as a model exchange format
in software applications. In Schneider, M. V., editor, In Silico Systems Biology, volume
1021 of Methods in Molecular Biology, pages 201--225. Humana Press.

[57] Kelly, J. R., Rubin, A. J., Davis, J. H., Ajo-Franklin, C. M., Cumbers, J., Czar, M. J.,
de Mora, K., Glieberman, A. L., Monie, D. D., and Endy, D. (2009). Measuring the
activity of biobrick promoters using an in vivo reference standard. Journal of Biological
Engineering, 3(4).

[58] Khalil, A. S. and Collins, J. J. (2010). Synthetic biology: applications come of age.
Nature Reviews Genetics, 11(5):367--379.

[59] Kuiken, T., Dana, G., Oye, K., and Rejeski, D. (2014). Shaping ecological risk research
for synthetic biology. Journal of Environmental Studies and Sciences, 4(3):191--199.

[60] Kuwahara, H., Madsen, C., Mura, I., Myers, C., Tejeda, A., and Winstead, C. (2010).
Effecient stochastic simulation to analyze targeted properties of biological systems,
stochastic control. InTech.

[61] Lanphier, E., Urnov, F., Haecker, S. E., Werner, M., and Smolenski, J. (2015). Don’t
edit the human germ line. Nature, 519(7544):410.

[62] Li, M. Z. and Elledge, S. J. (2007). Harnessing homologous recombination in vitro to
generate recombinant dna via slic. Nature methods, 4(3):251--256.

[63] Linshiz, G., Stawski, N., Goyal, G., Bi, C., Poust, S., Sharma, M., Mutalik, V.,
Keasling, J. D., and Hillson, N. J. (2014). Pr-pr: Cross-platform laboratory automation
system. ACS synthetic biology, 3(8):515--524.

152

[64] Lou, C., Stanton, B., Chen, Y.-J., Munsky, B., and Voigt, C. A. (2012). Ri-
bozyme-based insulator parts buffer synthetic circuits from genetic context. Nature
biotechnology, 30(11):1137--1141.

[65] Lucks, J. B., Qi, L., Mutalik, V. K., Wang, D., and Arkin, A. P. (2011). Versatile
rna-sensing transcriptional regulators for engineering genetic networks. Proceedings of
the National Academy of Sciences, 108(21):8617--8622.

[66] MacDonald, J. T., Barnes, C., Kitney, R. I., Freemont, P. S., and Stan, G.-B. V. (2011).
Computational design approaches and tools for synthetic biology. Integrative biology
quantitative biosciences from nano to macro, 3(2):97--108.

[67] Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E.,
and Church, G. M. (2013). Rna-guided human genome engineering via cas9. Science,
339(6121):823--826.

[68] Marchisio, M. A. and Stelling, J. (2009). Computational design tools for synthetic
biology. Current Opinion in Biotechnology, 20(4):479--485.

[69] Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C., and Voigt, C. A. (2012). Genetic
programs constructed from layered logic gates in single cells. Nature, 491:249--253.

[70] Mouchet, M. A., Villeger, S., Mason, N. W., and Mouillot, D. (2010). Functional
diversity measures: an overview of their redundancy and their ability to discriminate
community assembly rules. Functional Ecology, 24(4):867--876.

[71] Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai,
Q.-A., Tran, A. B., Paull, M., Keasling, J. D., Arkin, A. P., et al. (2013). Precise and
reliable gene expression via standard transcription and translation initiation elements.
Nature methods, 10(4):354--360.

[72] Myers, C. J. (2009). Engineering Genetic Circuits. Chapman and Hall.

[73] Oberortner, E., Bhatia, S., Lindgren, E., and Densmore, D. (2014). A rule-based design
specification language for synthetic biology. ACM Journal on Emerging Technologies
in Computing Systems (JETC), 11(3):25.

[74] Oberortner, E. and Densmore, D. (2015). Web-based software tool for constrain-
t-based design specification of synthetic biological systems. ACS Synthetic Biology,
4(6):757--760.

[75] Olson, E. J., Hartsough, L. A., Landry, B. P., Shroff, R., and Tabor, J. J. (2014). Char-
acterizing bacterial gene circuit dynamics with optically programmed gene expression
signals. Nature methods, 11(4):449--455.

153

[76] Oye, K. A., Esvelt, K., Appleton, E., Catteruccia, F., Church, G., Kuiken, T., Lightfoot,
S. B., McNamara, J., Smidler, A., and Collins, J. P. (2014). Regulating gene drives.
Science, 345(6197):626--628.

[77] Parr, T. J. and Quong, R. W. (1995). Antlr: A predicated-ll (k) parser generator.
Software: Practice and Experience, 25(7):789--810.

[78] Pedersen, M. and Phillips, A. (2009). Towards programming languages for genetic
engineering of living cells. Journal of the Royal Society Interface the Royal Society,
6(4):S437--S450.

[79] Perfetto, S. P., Chattopadhyay, P. K., and Roederer, M. (2004). Seventeen-colour flow
cytometry: unravelling the immune system. Nature reviews immunology, 4(8):648--655.

[80] Pontikos, N. (2013). flowBeads: Analysis of flow bead data. R package version 1.4.0.

[81] Quan, J. and Tian, J. (2009). Circular polymerase extension cloning of complex gene
libraries and pathways. PLoS ONE, 4(7):e6441.

[82] Reeves, R. G., Denton, J. A., Santucci, F., Bryk, J., and Reed, F. A. (2012). Scientific
standards and the regulation of genetically modified insects. PLoS Negl Trop Dis,
6(1):e1502.

[83] Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M.,
Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., Chang, M. C. Y., Withers, S. T., Shiba,
Y., Sarpong, R., and Keasling, J. D. (2006). Production of the antimalarial drug precursor
artemisinic acid in engineered yeast. Nature, 440(10.1038):940--943.

[84] Rodrigo, G. and Jaramillo, A. (2013). Autobiocad: Full biodesign automation of
genetic circuits. ACS Synthetic Biology, 2(5):230--236.

[85] Roederer, M. (2001). Spectral compensation for flow cytometry: visualization arti-
facts, limitations, and caveats. Cytometry, 45(3):194--205.

[86] Roederer, M., De Rosa, S., Gerstein, R., Anderson, M., Bigos, M., Stovel, R., Nozaki,
T., Parks, D., Herzenberg, L., and Herzenberg, L. (1997). 8 color, 10-parameter flow
cytometry to elucidate complex leukocyte heterogeneity. Cytometry, 29(4):328--339.

[87] Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis,
K. B., and Erlich, H. A. (1988). Primer-directed enzymatic amplification of dna with a
thermostable dna polymerase. Science, 239(4839):487--491.

[88] Salis, H. M., Mirsky, E. A., and Voigt, C. A. (2009). Automated design of syn-
thetic ribosome binding sites to control protein expression. Nature biotechnology,
27(10):946--950.

154

[89] Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juarez, P., Fernandez-del
Carmen, A., Granell, A., and Orzaez, D. (2011). Goldenbraid: An iterative cloning
system for standardized assembly of reusable genetic modules. PLoS ONE, 6(7):e21622.

[90] Shetty, R. P., Endy, D., and Knight, T. F. (2008). Engineering biobrick vectors from
biobrick parts. Journal of Biological Engineering, 2(5):1--12.

[91] Siuti, P., Yazbek, J., and Lu, T. K. (2013). Synthetic circuits integrating logic and
memory in living cells. Nature biotechnology, 31(5):448--452.

[92] Smanski, M. J., Bhatia, S., Zhao, D., Park, Y., Woodruff, L. B., Giannoukos, G.,
Ciulla, D., Busby, M., Calderon, J., Nicol, R., et al. (2014). Functional optimization of
gene clusters by combinatorial design and assembly. Nature biotechnology.

[93] Smith, H. O. and Welcox, K. (1970). A restriction enzyme from hemophilus influenzae:
I. purification and general properties. Journal of molecular biology, 51(2):379--391.

[94] Smolke, C. D. (2009). Building outside of the box: igem and the biobricks foundation.
Nature biotechnology, 27(12):1099--1102.

[95] Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., and Hasty, J.
(2008). A fast, robust and tunable synthetic gene oscillator. Nature, 456(7221):516--519.

[96] Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A., Levskaya, Marcotte, E. M.,
Voigt, C. A., and Ellington, A. D. (2009). A synthetic genetic edge detection program.
Cell, 137:1272--1281.

[97] Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011). Robust multicellular computing
using genetically encoded NOR gates and chemical ‘wires’. Nature, 469:212--215.

[98] Watson, J. D., Crick, F. H., et al. (1953). Molecular structure of nucleic acids. Nature,
171(4356):737--738.

[99] Weber, E., Engler, C., Gruetzner, R., Werner, S., and Marillonet, S. (2010). A
modular cloning system for standardized assembly of multigene constructs. PloS ONE,
6(2):e16765.

[100] Weiss, B. and Richardson, C. C. (1967). Enzymatic breakage and joining of de-
oxyribonucleic acid, i. repair of single-strand breaks in dna by an enzyme system from
escherichia coli infected with t4 bacteriophage. Proceedings of the National Academy
of Sciences of the United States of America, 57(4):1021.

[101] Xia, B., Bhatia, S., Bubenheim, B., Dadgar, M., Densmore, D., and Anderson, J. C.
(2011). Developer’s and user’s guide to clotho v2.0 a software platform for the creation
of synthetic biological systems. Methods in Enzymology, 498:97--135.

155

[102] Yaman, F., Bhatia, S., Adler, A., Densmore, D., and Beal, J. (2012). Automated
selection of synthetic biology parts for genetic regulatory networks. ACS synthetic
biology, 1(8):332--344.

[103] Yordanov, B., Appleton, E., Ganguly, R., Gol, E., Carr, S., Bhatia, S., Haddock,
T., Belta, C., and Densmore, D. (2012). Experimentally driven verification of synthetic
biological circuits. In Design and Test in Europe, Dresden, Germany.

[104] Yordanov, B. and Belta, C. (2011). A formal verification approch to the design of
synthetic gene networks. In Proceedings of the 50th IEEE Conference on Decision and
Control (CDC).

156

EVAN M. APPLETON

157

158

159

160

161

