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DEVELOPMENT OF CALCIUM STABLE ISOTOPES AS A TOOL TO 

UNDERSTAND CALCIUM CYCLING IN TERRESTRIAL  

ECOSYSTEMS 

KENNETH ANDREW TAKAGI 

Boston University Graduate School of Arts and Sciences, 2015 

Major Professor: Andrew C. Kurtz, Associate Professor of Earth & Environment 
 

ABSTRACT 

Calcium stable isotope ratios are a relatively new tool that biogeochemists 

can use to investigate the biogeochemical cycle of calcium in terrestrial 

ecosystems, having seen widespread application only in the past 15 years. To 

advance the application of calcium isotopes in biogeoscience research, I 

conducted three investigations focused on interpreting calcium isotope ratios in 

streamwater and in the cation exchange pool of forest soils.  

In the first study, we observe a shift toward lower 44Ca/40Ca ratios in 

streamwater draining a New Hampshire watershed after an experimental 

clearcutting event. Isotope ratio measurements of ecosystem calcium pools 

indicate that enhanced leaching of the soil exchangeable pool produced the 

observed shift in 44Ca/40Ca ratios. A trend towards decreased 44Ca/40Ca ratios in 

soils in the years following the harvesting indicates that calcium leached from the 

soil exchangeable reservoir was likely replaced by calcium released by the decay 

of belowground biomass, maintaining pre-harvest levels of exchangeable calcium 

even in the face of a significant ecosystem disturbance. 
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In a second study, we observed significant differences in the 44Ca/40Ca of 

the soil exchange pool between two neighboring tropical watersheds, although 

44Ca/40Ca of calcium inputs (bedrock and atmospheric deposition) at the two 

sites were indistinguishable. Further, both sites had higher 44Ca/40Ca ratios 

compared with external inputs, a relatively rare observation globally. We propose 

that hurricane disturbance best explains the high 44Ca/40Ca at each site, and that 

the difference in 44Ca/40Ca between the two sites can be accounted for by the 

magnitude of disturbance at each site. 

Finally, a synthesis of our new data with previously published results 

shows that globally, soil exchangeable 44Ca/40Ca ratios can be higher, lower or 

equal to external inputs. Modeling work indicates that in addition to isotopic 

fractionation, the balance in fluxes between vegetation and soil is critical in 

determining how soil exchangeable 44Ca/40Ca ratios vary relative to external 

inputs. When plant uptake and return to the soil are equal, soil and external 

inputs 44Ca/40Ca are equal, while high soil 44Ca/40Ca ratios develop when uptake 

exceeds return. Soil develops low 44Ca/40Ca when biomass obtains calcium from 

sources other than the exchangeable reservoir. 
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CHAPTER 1: ASSESSING THE IMPACT OF CLEAR-CUTTING ON THE 

FOREST CALCIUM CYCLE USING CA STABLE ISOTOPES 

 1.1 ABSTRACT 

To identify the sources of elevated Ca concentrations in stream water and 

the processes that maintained soil Ca following a 1983 whole-tree harvesting of 

Watershed 5 in Hubbard Brook Experimental Forest, we measured stable Ca 

isotopes in archived streamwater and soil samples collected before, during and 

after the harvesting event. Streamwater δ44Ca (δ44Castream) was negatively 

correlated with discharge, consistent with control by hydrologic flowpaths. Soil 

exchangeable δ44Ca (δ44Caex) was consistently more negative than Ca sources, 

with the most negative values in shallow soils. δ44Castream decreased by 

approximately 0.3‰ as streamwater Ca concentrations increased as result of the 

harvest. An isotope mass balance model indicates that the soil exchangeable Ca 

pool was the likely source of this elevated streamwater Ca. Neither increased 

apatite weathering nor dissolution of soil Ca oxalate appear able to account for 

losses of soil Ca to streamwater. δ44Ca in bulk forest floor Ca and in the 

exchange pool at all depths became progressively more negative with time 

following the harvest. This trend towards more negative soil δ44Ca is best 

explained by the release of Ca from the decay of belowground biomass, 

particularly roots. We suggest that losses of soil Ca to streamwater export and to 

biomass regrowth in the years following the harvest were largely balanced by 

replenishment of Ca from the decay of below ground biomass, leading to small 
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changes to the overall size of the exchange pool as was observed in earlier 

studies. 

 1.2 INTRODUCTION 

Increased hydrologic export of nutrient cations (ie. Ca2+, K+, Mg2+) 

following whole tree harvesting is well documented  (Johnson et al. 1988; Mann 

et al. 1988; Johnson et al. 1991b; Johnson et al. 1997), likely resulting from the 

cessation of nutrient uptake by plants as well as increased organic matter 

decomposition, changes in soil pH, and  input and production of anions  (Reuss 

and Johnson 1986; Johnson et al 1991a; Joslin et al 1992; Lawrence et al 1995; 

Likens et al 1996) . Loss of these nutrients negatively impacts forest vegetation, 

and results in decreased tolerance to cold, resistance to disease, fine root 

production, and in the ability to take up nitrogen (Joslin et al. 1992; Ellsworth and 

Liu 1994; Driscoll et al. 1996; McLaughlin and Wimmer 1999). Furthermore 

insufficient calcium can limit water use efficiency and ecosystem function in 

base-poor forests, as evidenced by elevated rates of transpiration following a 

whole-watershed Ca amendment (Green et al. 2013). Calcium availability is 

particularly critical in the northeastern United States, where some watersheds are 

experiencing a net loss of calcium as stream output flux of calcium exceeds the 

sum of calcium inputs from mineral weathering and atmospheric deposition 

(Bailey et al. 1996; Likens et al. 1996).  

Predicting how terrestrial ecosystems will recover from harvesting requires 

an understanding of the dynamics of forest base cation cycling, including 
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mechanisms for retention and replenishment of the cation exchange complex. 

Stable Ca isotopes have the potential to provide a new means of investigating 

these processes. In contrast to Sr isotopes, which have been extensively used by 

biogeochemists as a proxy for Ca taking advantage of distinct differences in the 

87Sr/86Sr ratios of mineral and atmospheric inputs (Miller et al. 1993; Bailey et al. 

1996; Nezat et al. 2010), differences in the stable Ca isotope ratios (44Ca/40Ca) of 

those inputs are minimal except in very old geologic terrains (Schmitt et al. 2003; 

Cenki-Tok et al. 2009; Holmden and Bélanger 2010; Wiegand and 

Schwendenmann 2013). Differences in δ44Ca in calcium pools in terrestrial 

ecosystems are thus primarily the result of internal fractionation mechanisms that 

occur during biogeochemical cycling of Ca. Recent work has demonstrated that 

uptake of Ca from soil by roots discriminates against the heavier isotopes of Ca, 

such that plant tissue is generally isotopically light (enriched in 40Ca) relative to 

both soil and bedrock  (Wiegand et al. 2005; Page et al. 2008; Farkaš et al. 

2011). The soil cation exchange complex in forests worldwide exhibit δ44Ca that 

can be similar to, more positive than, or more negative than δ44Ca in bedrock 

(Wiegand et al. 2005; Cenki-Tok et al. 2009; Holmden and Bélanger 2010; 

Hindshaw et al. 2011), likely reflecting relative rates of Ca uptake and return by 

vegetation, and external Ca inputs to the exchange pool. Isotopic differences 

between forest Ca pools may provide a means to identify the sources of Ca lost 

to streamwater, and importantly, to track how Ca sources change as a result of 

land use disturbance. 
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A harvesting experiment conducted in Watershed 5 during 1983-4 at 

Hubbard Brook Experimental Forest (HBEF) provides an ideal location to 

investigate the potential of stable Ca isotopes to trace changes in Ca cycling 

driven by disturbance. Watershed 5 underwent a whole tree harvest between the 

fall of 1983 and spring of 1984 that removed 93% of all aboveground biomass 

(Fuller et al. 1987; Johnson et al. 1991b; Hornbeck et al. 1997). A four-fold 

increase in cation nutrient export via streamwater was observed immediately 

following the harvest, as well decreases in soil and streamwater pH (Johnson et 

al. 1991b; Bailey et al. 2003b). Following the initial spike in Ca concentrations, 

Ca concentrations in streamwater remained elevated relative to Watershed 6, the 

biogeochemical reference watershed for at least 30 years following disturbance 

(Bailey et al. 2003b). The source of this increased cation export is uncertain as 

Johnson et al. (1991b; 1997) observed no resolvable depletion of the 

exchangeable cation pool in Watershed 5 either 3 or 8 years post-harvest. 

Johnson et al (1991b) hypothesized that the increased leaching of Ca must be 

balanced by accelerated mineral weathering or increased decomposition of roots, 

stumps and slash. More recently, Bailey et al. (2003b) applied a sodium-based 

mass balance model to Watershed 5 to investigate sources of the increased 

cation export, and found that weathering alone couldn’t explain sustained 

elevated streamwater Ca (Bailey et al. 2003b). To reconcile the lack of Ca 

depletion in the cation exchange pool with the 4-fold increase in streamwater Ca, 

dissolution of biologically-derived calcium oxalate and/or increased biologic 
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dissolution of easily weatherable minerals such as apatite have been proposed 

as the source of elevated Ca in streamwater (Bailey et al. 2003b; Hamburg et al. 

2003). We present stable Ca isotope ratios in stream, soil and leaf litter samples 

collected in Watershed 5 and Watershed 6 spanning the time period before, 

during and after the whole-tree harvest to address the uncertainty in the source 

of elevated streamwater Ca and the mechanism for replenishment of soil Ca 

following the harvest. 

1.3 MATERIAL AND METHODS 

1.3.1 Setting 

The Hubbard Brook Experimental Forest (HBEF) is located in the southern 

portion of the White Mountain National Forest (43°56’N, 71°45’W) (Figure 1.1). 

The climate is humid continental, with mean annual precipitation of approximately 

1400mm, with approximately 30% falling as snow (Federer 1973; Bailey et al. 

2003a). Mean monthly temperatures range from -9°C in January to 19°C in July 

(Federer 1973). The elevation of Watershed 5 ranges from 500 m at the outlet to 

775m at the ridgetop and encompasses an area of 21ha, with an average slope 

of 16°. The elevation range of Watershed 6, directly west of Watershed 5, spans 

550m to 815m, and encompasses an area of 15ha with an average slope of 15°. 

Sillimanite-grade schist and calc-silicate granulite of the Silurian Rangeley 

Formation underlie both Watershed 5 and Watershed 6, with plagioclase feldspar 

the dominant Ca bearing mineral phase (Lyons et al. 1997; Bailey et al. 2003b). 
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Due to Pleistocene glaciation, bedrock in these watersheds is generally overlain 

by a <3m till layer predominantly composed of porphyritic granodiorite and lesser 

amounts of schist (Likens and Davis 1975; Bailey et al. 2003b). Soils developed 

over the glacial till are predominantly Spodosols (Typic Haplorthods) (Huntington 

et al. 1988). Prior to the experimental harvest, Watershed 5 and Watershed 6 

had similar dominant vegetation species:  American beech (Fagus grandifolia 

Ehrh.), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula 

allegheniensis Britt.) at lower elevations and red spruce (Picea ruben Sarg.), 

balsam fir (Abies balsamea [L.] Mill), and white birch (Betula papyrifera var. 

cordifolia [Marsh.] Regel) at higher elevations (Whittaker et al. 1974; Johnson et 

al. 1997). Following whole tree harvesting of Watershed 5, a series of 

successional species dominated, including buried seed species such as Rubus 

spp. and pin cherry (Prunus pensylvanica L.f.), as well as American beech 

(Fagus grandifolia Ehrh.), yellow birch (Betula allegheniensis Britt.) and sugar 

maple (Acer saccharum Marsh.) (Mou et al. 1993). 

1.3.2 Whole tree harvesting of Watershed 5 

Full details of the whole tree harvesting in Watershed 5 can be found in a 

series of earlier papers describing the experiment (Ryan et al. 1992; Johnson 

1995; Martin et al. 2000). Briefly, harvesting of above ground biomass occurred 

between October 18, 1983 and May 21, 1984, and removed an estimated 93% of 

all aboveground biomass and left no riparian buffer strips intact. All stems 

>2.5cm diameter at breast height were harvested by mechanical feller-bunchers 
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and moved off the watershed using a rubber-tire skidder. After harvesting, 

between 65% and 70% of the watershed surface was disturbed to some degree, 

with 25% of the watershed area having exposed mineral soil, primarily due to 

mechanical mixing of the forest floor with deeper mineral soil horizons (Ryan et 

al. 1992; Martin et al. 2000). Sediment yield in stream was elevated in the three 

years following the harvest, reaching a peak of 208 kg*ha-1 in 1987 (Martin et al. 

2000). As observed in other harvesting experiments, cation and nitrate 

concentrations in Watershed 5 streamwater increased dramatically following the 

harvest. Results from repeated watershed-scale soil sampling campaigns 

showed that the concentrations of exchangeable nutrient cations (Ca, Mg and K) 

decreased in the organic and E horizons, but were balanced by increases in the 

B horizons (Johnson et al. 1991b; Johnson et al. 1997). The researchers 

concluded that there was no net change in the magnitude of the soil 

exchangeable Ca pool within the statistical resolution of the sample design, 

which should have been capable of resolving any change larger than ~10-25% 

(Johnson et al. 1997). 

1.3.4 Sampling 

Subsamples of archived streamwater and precipitation samples were 

obtained from the HBEF Physical Sample Archive located at the Robert S. Pierce 

Ecosystem Laboratory in North Woodstock, NH. Streamwater and precipitation 

collection protocols are detailed in Buso et al (2000). Briefly, streamwater is 

sampled on a weekly basis 5 to 10m above each of the permanent watershed 
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gauging stations, typically within 10-20 minutes of one another, using acid-

washed, low-density polyethylene (LDPE) bottles. Precipitation is also sampled 

weekly from within each of the watersheds using high-density polyethylene 

funnels connected to acid-washed, LDPE bottles. Elemental concentrations were 

measured at the Cary Institute for Ecosystem Studies, and samples were then 

stored unfiltered, unacidified, and unrefrigerated in the Physical Sample Archive 

at Hubbard Brook. Sample preservation was evaluated by re-measuring 

elemental concentrations on archived samples at Boston University (See Results 

section). 

Streamwater samples for this study were selected to capture pre-harvest 

baseline conditions, the time period during the harvest, and the post-harvest 

recovery period. In addition, we selected samples to allow evaluation of the 

variability in streamwater δ44Ca driven by seasonality and discharge. In total, we 

analyzed 40 streamwater collection dates in Watershed 5 and 32 streamwater 

collection dates in Watershed 6. Where possible, we selected dates for which 

paired samples were available for both Watershed 5 and Watershed 6 (20 pairs 

total). For dates on which streamwater samples didn’t exist in the archive for both 

Watershed 5 and Watershed 6, we were in most cases able to find samples 

collected within 1 week of each other. 

In addition to streamwater samples, we obtained subsamples of 

Watershed 5 soils originally collected during repeated sampling campaigns 

designed to assess changes to soil nutrient pools in response to the harvest 



 

 

9 

(Johnson et al. 1991a; 1991b; Johnson et al. 1997). For each sampling 

campaign, the researchers systematically collected representative soil profiles 

from locations within randomly selected 25x25m grid cells that covered the entire 

watershed. Samples were taken at discrete intervals (Oie horizon, Oa horizon, 0-

10cm mineral soil, 10-20cm mineral soil, 20+ mineral soil and C horizon mineral 

soil). We subsampled one grid cell (grid cell #262), located approximately half 

way up the catchment along the western edge, that was originally sampled 

during 3 separate sampling campaigns (1983, 1986 and 1991). With the 

exception of the Oa soil horizon from 1991, the complete profile from each year 

was present in the archive and there was enough sample to allow us to 

subsample soil for our analyses. We note that due to the destructive nature of 

soil sampling, the soil profiles collected within grid cell 262 in 1983, 1986 and 

1991 were not collected from the same soil pit each time, but rather from different 

locations within the 25x 25m grid cell. Finally, to characterize the δ44Ca of Ca 

sources we measured a sample of unweathered glacial till collected from a depth 

of 125-130cm below the surface in Watershed 5, a sample of Rangley formation 

metapelitic schist that underlies approximately 98.4% of the watershed, and one 

precipitation sample from Watershed 6, collected on April 22, 1982, 

approximately 14 months before the whole tree harvesting began. 

1.3.5 Elemental Concentration 

Elemental concentrations in streamwater and precipitation were 

historically measured within 3 months of sample collection using flame atomic 



 

 

10 

absorption spectrophotometry (FAAS) either at Cornell University or the Cary 

Institute of Ecosystem Studies analytical laboratory (Buso et al. 2000). Water 

subsamples were filtered with 0.45µm nitrocellulose filters and remeasured for 

this project using a Jobin-Yvon Ulitma-C inductively coupled emission 

spectrophotometer (ICP-ES) at Boston University. Bedrock and glacial till were 

acid digested to determine bulk chemistry and of soil parent materials. 

Approximately 50mg of powder were digested in a HF–HCl mixture by alternating 

the sample between hot plate and sonicator over approximately one week. 

Digested samples were treated with ultrapure concentrated nitric acid and 

Optima ultrapure hydrogen peroxide to oxidize any remaining organics including 

graphite. The sample were then dried down and brought back up in 2% HNO3 for 

analysis on the ICP-ES at Boston University. A separate aliquot was used for 

isolation of Ca for isotopic analysis, described below. 

A sequential extraction procedure was conducted on soil samples and 

glacial till to isolate the exchangeable cation pool and a more recalcitrant organic 

and mineral-bound soil cation pool that includes calcium oxalate (hereafter 

referred to as the acid extraction). Exchangeable cations were extracted from 

soils following a procedure modified from Johnson et al. (1991). Between 0.5 and 

5g of soil were extracted with a 10:1 ratio (10ml of 1M Puratronic grade NH4Cl 

per gram of soil) in an acid-washed test tube. Test tubes where shaken on a 

mechanical shaker for 24hrs. then centrifuged and supernatant filtered using 

0.45um nitrocellulose filter. One aliquot of the filtered supernatant was then 
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diluted in 2% nitric acid for analysis of major element concentrations, while a 

separate aliquot was saved for isotopic analysis. Soil samples were subsequently 

treated with 0.5N HCl in a 2:1 ratio of acid to soil following a procedure modified 

from Lilieholm et al.(1992) and Dauer and Perakis (2013). After shaking the 

sample for 5 hours, the sample was centrifuged and the supernatant filtered 

using 0.45µm nitrocellulose filter. Again an aliquot was diluted for analysis of 

major elements, and one preserved for isotopic analysis. A third aliquot of the 

supernatant from the acid extraction was reserved for determination of oxalate 

concentration using a Dionex ICS-1000 ion chromatograph with ion suppression 

at Wheaton College.  

Forest floor samples (Oie soil horizons), comprised of slightly to 

moderately decomposed organic soil material, were treated with a sequential 

digestion procedure. First, the exchangeable cations were extracted following 

procedure described above. The residue from this extraction was digested in a 

mixture of ultrapure concentrated nitric acid and Optima ultrapure hydrogen 

peroxide using a Milestone microwave digestion system. This digestion should 

dissolve organic-bound Ca, including Ca-oxalate. Additionally, a separate bulk 

Oie sample was digested in one step using the nitric acid-hydrogen peroxide 

procedure described above. Aliquots were diluted in 2% HNO3 for analysis of 

cation concentrations on the ICP-ES at Boston University and for isolation of Ca 

for isotopic analysis. 
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1.3.6 Calcium isotope mass spectrometry 

Calcium isotope measurements were carried out in the Boston University 

Thermal Ionization Mass Spectrometry (TIMS) Facility, using a Thermo Finnigan 

Triton® TIMS. We utilized a 42Ca-48Ca double spike to correct for fractionation 

during column chemistry and mass spectrometry (Russell and Papanastassiou 

1978; Russell et al. 1978). We used an iterative double spike subtraction routine 

that removes the double spike and corrects for mass dependent fractionation 

using an exponential mass fractionation law (Compston and Oversby 1969; 

Heuser et al. 2002; Fantle and Bullen 2009). The double spike subtraction 

routine was implemented as a spreadsheet in the MS Excel software program. 

The double spike and sample solutions were mixed to achieve a 85:15 

sample to spike ratio (by mass of Ca) to minimize error propagation during the 

iterative double spike subtraction (Rudge et al. 2009). Typically, between 1 and 

3µg of sample Ca was mixed with an appropriate amount of double spiked Ca 

prior to column chemistry. Column chemistry consisted of passing the spiked 

sample through AG50-X8 cation resin in an 8cm long and 0.6cm diameter Teflon 

column with a 30ml reservoir. Ultrapure, distilled 1N, 1.5N and 4N HNO3 were 

used as reagents, with the 1N HNO3 used as the final eluent. After the double 

spiked sample passed through the column, it was dried down, brought back up in 

100µl concentrated nitric and 50µl ultrapure hydrogen peroxide solution, dried 

down again, and twice more brought up in 100µl concentrated nitric acid and 

dried down to oxidize any remaining organics. Finally, the sample was brought 
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up in approximately 2µl 2N HNO3 for loading onto an outgassed zone refined 

rhenium filament. After loading the sample onto the filament, 0.5µl of 5% H3PO4 

was added to increase the ionization efficiency. Samples were run using the 

double filament method, with the ionization filament heated until the pyrometer 

reached 1410°C first (typically 2600-3000mA), and then the evaporation filament 

current ramped to between 1600mA and 1900mA over the course of 1 hour, with 

constant monitoring to insure that the 40Ca beam did not increase above 10V, 

which increases the likelihood of faraday cup “poisoning” (Holmden and Bélanger 

2010). Each sample was run for at least 100 cycles, to insure robust statistics. 

Two standards, National Institute of Standards and Technology (NIST) Standard 

Reference Material (SRM) 915A calcium standard and a North Atlantic Seawater 

Standard (NASS), were typically measured during each session to quantify the 

external precision of our measurements. Ca isotope ratios are expressed as the 

permil deviation of the corrected 44Ca/40Ca sample ratio relative to the seawater 

value (Hippler et al. 2003). Two standard error internal precision for a single 

analysis (consisting of 15 blocks of 10 cycles) was better than 0.10‰, and 

typically < 0.06‰ (2SE). Most unknown samples were run 2 or more times, with 

repeated runs of the same sample generally agreeing within 0.10‰ or less. Long 

term external precision was quantified based on two times the standard deviation 

of repeated measurement of our two standards: NIST SRM 915A and NASS 

seawater. For NIST SRM 915A we obtained a mean of -1.91‰ ±0.14‰ (2SD, n 

= 14), and for seawater 0.03‰ ±0.12‰ (2SD, n = 14) (SD: standard deviation). 
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Unlike Holmden and Bélanger (2010), no long-term drift was evident in our Ca 

standards database, and therefore no drift corrections were made to standards or 

samples. We therefore report analytical uncertainty on a single measurement of 

an unknown as ±0.14‰ (the larger of the 2SD for our two standards). 

1.4 RESULTS 

1.4.1 Comparison of Ca concentrations in archived streamwater measured 

at the time of collection and present day 

A comparison of historical (measured shortly after the time of collection) 

and contemporary (measured at Boston University) concentrations of Ca, Mg and 

K in streamwater indicate good agreement (e.g. R2: 0.96, slope: 0.98, y-intercept: 

0.06, p-value: <0.0001, mean absolute error: 0.13 ppm across a factor of 5 range 

in Ca concentration; Table 1.1, Figure 1.2). A rough calculation suggests that 

sample preservation artifacts (from precipitation dissolution of Ca-bearing 

phases) large enough to produce analytically resolvable changes in δ44Ca 

(>0.14‰) would likely require changes in dissolved Ca concentrations of >15%, 

which would be easily measureable and are not observed. Based on these 

observations we are confident that the Ca isotope ratios measured at present 

reflect the ratios of dissolved Ca at the time of sample collection. 

1.4.2 Soil Ca concentrations 

Exchangeable Ca data, even on this limited sample set, demonstrate most 

of the features described by Johnson et al. (1997) based on their analysis of 
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multiple profiles collected throughout the watershed. Soil exchangeable Ca 

concentrations are highest in shallow horizons, and decrease with time after the 

experimental harvesting (Figure 1.3a-c). The observed decrease in Oa horizon 

exchangeable Ca is at least in part balanced by increases in deeper 0-10 and 10-

20cm mineral soil exchangeable Ca  In 1983 (pre-harvest), grid cell 262 Oa 

horizon contained 1900µg Ca*g-1 soil, the highest measured exchangeable Ca in 

our dataset (Figure 1.3a, Table 1.2). Exchangeable Ca decreases rapidly with 

depth, with only 67µg Ca*g-1 soil in the 0-10cm mineral soil and decreasing 

further to 13µg Ca*g-1 within the C horizon. This 1983 Ca concentration profile is 

similar to the average of over 60 soil profiles collected during the 1983 soil 

sampling campaign by Johnson et al. (1991).  

Exchangeable Ca in 1986 (post-harvest) grid 262 Oa soil is 19% lower 

than 1983, while in the 0-10cm mineral soil, Ca is significantly higher (121% 

increase) in 1986 relative to 1983. The 1991 grid 262 Oa horizon sample was 

unfortunately not preserved in the archive, but at 0-10cm exchangeable Ca is 

dramatically higher yet in 1991 relative to 1986. The overall pattern therefore 

seems to be decreasing exchangeable Ca in the Oa, and increasing 

exchangeable Ca in the shallow (0-10cm) mineral soil in the years following the 

harvest. 

Although not measured in previous studies, we also examined Ca 

concentrations in forest floor (Oie) horizons collected from these profiles (Table 

1.2). In contrast to the decrease in Oa horizon Ca concentrations between 1983 
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and 1991, we observed increasing Ca concentrations with time in the Oie 

horizon. The increase was observed in bulk Oie samples and in the residual 

fraction (sequential extraction #2). Ca concentrations in Oie horizon bulk 

digestions increased from 3366µg*g-1 in 1983 to 5334µg*g-1 in 1986 to 9060µg*g-

1 in 1991. Time-dependent concentration increases are similarly observed for 

other nutrients (P, Mg, K) in grid 262 Oie samples. For the one Oie exchangeable 

fraction measured, the 1983 exchangeable Ca fraction in the Oie horizon 

comprises 57% of the total exchangeable Ca present. 

Acid extractions of Ca were not performed on these soils in the earlier 

study, but were done here as soil Ca-oxalate has repeatedly been cited as a 

potential source of increased Ca export following harvesting (Bailey et al. 2003b; 

Hamburg et al. 2003). Ca-oxalate should be readily dissolved by the acid 

extraction used here, but this extraction does not target Ca-oxalate exclusively. 

In fact a similar acid extraction has been used at Hubbard Brook and elsewhere 

to target apatite-sourced Ca (Blum et al. 2002; Nezat et al. 2007). The acid 

extraction produced a markedly different Ca concentration profile with depth 

when compared to the exchangeable Ca extraction (Figure 1.3b). Acid 

extractable Ca concentration in the pre-harvest 1983 grid cell 262 profile was 

high in the near surface Oa horizon (419µg*g-1 soil), but rapidly decreased to a 

minimum of 20µg*g-1 in the 0-10cm mineral soil depth (Table 1.2). Ca then 

increases with depth, reaching a maximum of 767µg*g-1 in the glacial till. This 

extraction produced a Ca/P molar ratio of 1.6, which is identical to the Ca/P 
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molar ratio in apatite suggesting that high concentrations of acid extractable Ca 

at depth reflect apatite dissolution rather than release of Ca bound by oxalate. 

Changes in depth profiles of acid extractable Ca pre- and post-harvest mimicked 

the pattern seem in exchangeable Ca. The 1986 profile produced lower Ca in the 

Oa horizon (419µg Ca*g-1 and 121µg Ca*g-1 in 1983 and 1986, respectively) and 

higher Ca in the 0-10 and 10-20cm mineral soil horizons.  

Depth patterns in acid extractable oxalate ion are quite distinct from acid-

extractable Ca (Figure 1.3c). Dissolution of Ca-oxalate should produce molar 

Ca:oxalate ratios of 1, but in the near-surface maximum in acid extractable Ca, 

this ratio is 4.3, suggesting substantial contributions of Ca from non-Ca oxalate 

sources perhaps including residual exchangeable Ca not collected during the 

NH4Cl extraction, or release of Ca bound to other organics. At depth, where acid 

extractable oxalate (and Fe, Al) concentrations are high, Ca concentrations are 

low (molar Ca:oxalate 0.18 to 0.23), suggesting that most of the oxalate 

extracted here was held in soil phases other than Ca oxalate, perhaps by 

sorption to secondary Fe-Al sesquioxides. These observations make the acid 

extractable Ca data somewhat difficult to interpret. We measured δ44Ca only from 

the depths where acid extractable Ca concentrations are high: near surface 

horizons, where this Ca may in part reflect Ca oxalate produced by vegetation 

and fungi (Graustein et al. 1977; Cromack Jr et al. 1979; Gadd 1999; Gadd 

2007), and from the C-horizon, where the Ca is likely from apatite dissolution. 
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1.4.3 δ44Ca of Ca sources 

δ44Ca of Ca inputs to the ecosystem fall in a narrow range close to -1‰ 

(vs. seawater; Table 1.1 and 2.2). δ44Ca in the Rangely fm. metapelitic mica 

schist bedrock was -1.25‰, while the bulk digestion of glacial till had a δ44Ca 

value of -1.09‰. The (HCl) acid extractable Ca component of till had a δ44Ca of -

0.9‰. While the acid-extractable component represents only ~10% of bulk till Ca, 

this component, which we infer to be predominantly composed of apatite, may be 

a significant source of Ca actively cycled Ca (Blum et al., 2002). Exchangeable 

Ca from till was significantly more negative (-1.52‰) than bulk or acid-extractable 

Ca, but this component represents a trivial fraction (~0.1%) of bulk till Ca. A 

single precipitation sample (collected at a rain gauge adjacent to Watershed 6 on 

4/27/1982) has a δ44Ca similar to till values, -1.01‰.  

1.4.4 δ44Ca of soil Ca 

The δ44Ca of each of the measured soil pools are consistently more 

negative than all of the Ca sources described above. In 1983 soil exchangeable 

δ44Ca was lowest in the Oie (-2.11‰), and increased with depth (Oa horizon and 

0-10cm -1.76‰ and -1.80‰, respectively), reaching a maximum value of -1.4‰ 

in the 20+cm mineral soil (Table 1.2 and Figure 1.4). The δ44Ca of the soil 

exchangeable pool in the 1986 profile exhibited a similar trend with depth, though 

all δ44Ca values were more negative than their 1983 equivalent, -2.38 in the Oie 

horizon and -1.96‰ in the Oa and 0-10cm horizons. Exchangeable δ44Ca values 

in the 1991 profile were also consistently more negative than 1986 (-2.58 in the 
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Oie and -2.18‰ in 0-10cm). δ44Ca values from Oie sequential extraction residual 

fractions were approximately 0.2‰ lower than the exchangeable fraction values 

(-2.27‰, -2.59‰ and -2.80‰ in 1983, 1986, and 1991, respectively). Bulk acid 

digestion of fine roots (<2mm in diameter) taken from the 1983 Oie sample 

yielded a δ44Ca of -2.38‰ and is the most isotopically negative component 

measured from the 1983 soil profile.  

Acid extractable Ca in Oa horizons, which as discussed above may reflect 

at least in part Ca-oxalate, are also isotopically negative, generally more so than 

exchangeable Ca from the same samples, and similar to exchangeable Ca in 

overlying Oie horizons of the collection year. As with exchangeable Ca, shallow 

(Oa and 0-10cm) acid-extractable Ca becomes more negative with time.  

1.4.5 Calcium isotopes in streamwater 

29 streamwater samples from Watershed 5 were analyzed for δ44Ca. 13 

samples were from pre-harvest, 3 samples were from during the harvest, and 13 

samples were from the post-harvest period (Figure 1.5). Prior to the whole-tree 

harvest, Watershed 5 streamwater δ44Ca averaged -1.17‰ with the lowest 

values of -1.31‰ occurring on February 3, 1983 and the highest value of -1.00‰ 

occurring on September 22, 1983. Pre-harvest streamwater δ44Ca exhibited a 

nonlinear negative relationship with stream discharge, with high stream 

discharge carrying low δ44Ca (Figure 1.6).  

Figure 1.5 indicates that a shift toward lower δ44Ca occurs during the 

harvest period. Average post-harvest δ44Ca was -1.47‰ (n = 15), and 
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streamwater δ44Ca remained below pre-harvest values until approximately spring 

of 1987, when streamwater δ44Ca values increased to values that are similar to 

pre-harvest values as streamwater Ca concentrations decreased. The two lowest 

δ44Ca values occurred on dates with the highest discharge of any samples 

analyzed (Figure 1.6). Post-harvest streamwater δ44Ca also exhibited a negative 

relationship with discharge, but δ44Ca were offset by approximately -0.3‰ 

relatively to pre- harvest δ44Ca values for similar discharge values.  

Twenty streamwater samples from Watershed 6 were analyzed for δ44Ca. 

δ44Ca values of pre-harvest streamwater samples collected in Watershed 6 and 

Watershed 5 on the same day were highly correlated (R2: 0.80, p-value = 

0.00012), but Watershed 6 δ44Ca values are more negative than corresponding  

pre-harvest Watershed 5 samples by an average of 0.12‰. The same day 

correlation between the two watersheds becomes much weaker following the 

harvest. Watershed 6 streamwater δ44Ca, like Watershed 5, exhibits a non-linear 

negative relationship with discharge (Figure 1.6), but there is no change in the 

relationship between pre- and post-harvest periods as was observed in 

Watershed 5.  

1.5 DISCUSSION 

1.5.1 Hydrologic control on Streamwater δ44Ca 

Variability of calcium isotope ratios with changes in stream discharge has 

generally been observed in the few worldwide streams and rivers where this has 
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been studied (Schmitt et al. 2003; Cenki-Tok et al. 2009; Holmden and Bélanger 

2010). Cenki-Tok et al. (2009) observed that streamwater δ44Ca shifted toward 

shallow soil δ44Ca values at high stream discharge, while  at low discharge 

streamwater had a δ44C value similar to bedrock. The researchers suggested 

that during low discharge, water entering the stream was predominantly 

transported via deeper soil and bedrock flow pathways, and the isotopic 

signature of the streamwater was controlled by dissolution of primary minerals. At 

high discharge water moved through shallower soil flow pathways before 

entering the stream. 

In Watershed 5 and Watershed 6, the observed relationship between 

discharge and streamwater may be explained similarly through hydrologic 

flowpath control. Based on our analysis of till and bedrock, we expect primary 

weathering to yield Ca with δ44Ca between -0.9‰ and -1.1‰. These values 

agree closely with our measurements of baseflow streamwater (Figure 1.6) 

suggesting that baseflow streamwater largely carries Ca liberated from the 

weathering of primary minerals in till and/or bedrock, delivered to the stream via 

relatively deep flowpaths.  

During spring snowmelt and other high discharge events, the δ44Ca of 

streamwater shifts toward more negative values, likely reflecting activation of 

shallow (or even surface) flowpaths and export of Ca from the shallow cation 

exchange (bio-available Ca) complex. Research conducted in Hubbard Brook 

Watershed 3 indicated that transient water tables and groundwater flow though 
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shallow soil pathways occurs during rainfall events, and these shallow soil 

pathways can influence downstream water chemistry (Zimmer et al. 2013; Bailey 

et al. 2014). A good example of this effect is seen in the data from spring 1987. 

The March 31, 1987 sample was collected during a rain-on-snow event that 

produced approximately 10cm of rain and almost completely melted a ~30-45cm 

deep snowpack on the south-facing slopes. This is the highest-discharge sample 

in our dataset (320 L*sec-1 at time of sample collection) and had the lowest 

streamwater δ44Ca value measured in this study (-1.76‰). Five days later, when 

discharge was substantially lower (52 L*sec-1 at time of sample collection), 

Watershed 5 streamwater δ44Ca had increased by 0.35‰ to -1.36‰. Similarly, 

Hurricane Gloria passed over HBEF on September 25, 1985. This storm 

produced the second highest instantaneous discharge in our sample set (185.1 

L*sec-1), and a very negative δ44Ca (-1.70‰). Approximately 3 weeks before, on 

September 8, 1985, when instantaneous stream discharge was very low (4.3 

L*sec-1), the Watershed 5 streamwater δ44Ca value was -1.40‰, the second 

highest measured streamwater δ44Ca post-harvest. Clearly, changes in 

hydrologic flowpaths, particularly activation of shallow flow pathways that interact 

with the isotopically light shallow soil Ca pools, affect streamwater stable Ca 

isotopes.  

Although pre-harvest streamwater Ca isotope compositions in Watershed 

5 and 6 streamwaters are highly correlated, there are important differences that 

may ultimately be related to hydrologic control. Watershed 5 δ44Ca averages 
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0.12‰ higher than Watershed 6 over 13 same-day sample pairs. Similarly, Ca 

concentrations were consistently higher in Watershed 5 than in Watershed 6 (by 

an average of 28%) in these 13 same-day sample pairs. Watershed 5 is 40% 

larger than Watershed 6, which likely drives differences in subsurface flowpaths, 

water transit times, locations of groundwater seeps, length and tortuosity of the 

stream channel or slightly greater groundwater contribution in Watershed 5 

relative to 6 (McGuire et al. 2005; Tetzlaff et al. 2009; Zimmer et al. 2013; Bailey 

et al. 2014).  

1.5.2 Effect of the Watershed 5 whole tree harvest on streamwater Ca 

The Watershed 5 experimental harvesting, which resulted in a dramatic 

increase in Ca export, also produced a pronounced shift toward lower δ44Ca in 

streamwater compared to pre-harvest values (Figure 1.5). This requires that 

additional Ca for export must have come from a source with more negative 

44Ca. Bailey et al (2003) argued that enhanced chemical weathering of primary 

silicate minerals is an unlikely Ca source, based on the absence of an increased 

Na mass balance, as would be expected as a result of weathering of silicates 

such as plagioclase. Blum et al. (2002) demonstrated the importance of apatite- 

rather than silicate-bound Ca in forest ecosystems, and Hamburg et al. (2003) 

suggested that dissolution of apatite may be an important Ca source for 

regrowing forests. However, chemical weathering (of silicates or apatite) cannot 

account for increased export of isotopically light Ca unless the Ca liberated by 

weathering was first actively cycled through vegetation, which seems improbable 
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in a freshly clearcut watershed. Instead the increase in Ca export more likely 

reflects loss from a pre-existing pool of biologically cycled, isotopically light Ca. 

Such pools include soil exchangeable Ca, the acid extractable Ca component of 

shallow soil, or Ca bound in forest floor (Oie) organics.  

To better constrain the source of increased Ca export following clear-

cutting, we utilize a two component mixing model in which we treat the observed 

post-harvest Ca export flux (Ft) from Watershed 5 as the sum of two Ca sources, 

a “baseline” Ca export flux that would have been observed in the absence of an 

experimental harvest (F1) and an excess Ca flux resulting from the harvest (F2). 

F1 for a given post-harvest sample is calculated based on the instantaneous 

discharge measured at the time of sample collection and the relationship 

between pre-harvest (January 1977-November 1983) instantaneous discharge 

and Ca export (R2:0.99, slope: 2.52, y-int:0.95). The magnitude of F2, the excess 

Ca export flux from Watershed 5, is calculated by subtracting F1 from Ft 

(measured Ca concentration times measured instantaneous discharge). The 

fractional contribution of the excess component to Ca export (F2/Ft) increased 

after the harvest, reaching a maximum of 0.76 on November 13, 1984 then 

steadily decreased to below 0.10 by the spring of 1987 (Table 1.3). 

The isotope ratio of the excess Ca source (δ44Ca2) for a post-harvest 

sample can be approximated by extending the mass balance to include Ca 

isotopes: 

𝐹𝑡δ44𝐶𝑎𝑡 = 𝐹1δ44𝐶𝑎1 + 𝐹2δ44𝐶𝑎2   (1) 
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The isotope ratio of the “baseline” Ca source, δ44Ca1, varies between -1.1 and -

1.3‰, based on the observed pre- harvest δ44Ca-discharge relationship for 

Watershed 5, fitted using a power law (Figure 1.6; a: -1.13, b: 0.034). Solving this 

equation for δ44Ca2, we can calculate the isotope ratio of the excess Ca 

component for each post-harvest measurement of Watershed 5 streamwater 

δ44Ca (Figure 1.7). Excluding samples where F2 is very small (see discussion 

below), post-harvest Watershed 5 samples yield δ44Ca2 values between -1.5‰ 

and -2.75‰ (Table 1.3), values consistent with those measured in biologically 

fractionated soil pools. The range of calculated δ44Ca2 values for the peak of 

excess Ca export (where F2 is > 50% of total Ca export) is limited to -1.5 to -

2.0‰, consistent with the range in exchangeable δ44Ca and suggesting that the 

soil exchange complex may be the dominant source of Ca lost to streamwater.  

The isotope ratio of this excess component (δ44Ca2) appears to decrease 

with time, from -1.58‰ on November 13, 1984 at peak excess Ca export, to -

2.75‰ on 9/21/86 (Figure 1.7) suggesting that the source of excess Ca was 

becoming more isotopically light in the years following the harvest. This trends is 

consistent with the trend towards lighter soil δ44Ca values seen with time in soil 

Ca pools (Figure 1.4). We used a Monte Carlo sensitivity analysis that 

incorporates measurement uncertainty Watershed 5 discharge, streamwater Ca 

concentration and streamwater δ44Ca to assess the uncertainty in modeled 

δ44Ca2 values (Figure 1.7) and to evaluate whether the calculated trend toward 

lighter values of δ44Ca2 is significant. Uncertainty in modeled δ44Ca2 increases 
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rapidly as F2 approaches zero, which is important because this component 

diminishes toward the end of our time series. Our analysis indicates a statistically 

significant decrease in δ44Ca2 between 9/17/1984 and 9/21/1986 (mean slope: -

0.00132, 95% CI: -0.00133, -0.00131), after which F2 contributes less than 10% 

of total Ca export flux, and uncertainties in δ44Ca2 become too large to evaluate 

temporal trends. 

The total mass of excess Ca that was exported from Watershed 5 as a 

result of the harvest is calculated by integrating the daily excess export value (F2) 

over the period between 1984 and 1988. This produces an estimate of 

915mol*ha-1 of excess Ca export, with roughly 80% of that occurring within the 

first two years. Using values from Likens (1998), This total excess export is 

equivalent to only 13% of the Ca stored in the pre-harvest depth integrated 

Watershed 5 exchange pool, which supports our inference based on isotopic 

evidence that the exchange complex is the dominant source of excess Ca export. 

Some calculated values of δ44Ca2, particularly toward the end of our model 

simulation, are more negative than contemporaneous values of exchangeable 

δ44Ca.  This may reflect a contribution of more recalcitrant organically bound Ca 

in roots, decaying organic material, and perhaps Ca-oxalate, as the most 

negative pools of Ca measured in W5 across all dates were fine roots and Oie 

extraction residual fractions. 



 

 

27 

1.5.3 Effect of the Watershed 5 whole tree harvest on Ca cycling 

Johnson et al. (1991b, 1997) showed that the Watershed 5 harvest 

resulted in decreased exchangeable Ca and increased exchangeable Al in in Oa 

horizons, but that increases in exchangeable Ca in deeper horizons resulted in 

very little net change in the magnitude of the soil exchangeable Ca pool. To 

reconcile the inferred increased export of exchangeable Ca in the absence of an 

appreciable decrease in the size of the Ca exchangeable pool, we draw upon our 

δ44Ca measurements of soil exchangeable, acid extractable, and forest floor 

(Oie) Ca, all of which became consistently more isotopically negative from 1983 

to 1986 to 1991 (Figure 1.4). The observation that the isotope ratios of each of 

these pools change at all in the years following the harvest with little change in 

pool size requires that these pools are actively turning over on this timescale. 

The trend towards lighter Ca in each of these pools puts constraints on 

processes affecting the forest Ca cycle in the years following the harvest.  

As a result of the biological fractionation of Ca isotopes, biomass is 

isotopically light relative to Ca sources, and roots generally have the most 

negative δ44Ca values of any portion of biomass, upwards of 1‰ more negative 

than leaf litter (Page et al. 2008; von Blanckenburg et al. 2009; Holmden and 

Bélanger 2010; Hindshaw et al. 2012). We speculate that loss of Ca from the soil 

exchange pool may have been in part balanced by elevated decomposition and 

mineralization of isotopically light Ca bound in below ground biomass, particularly 

roots, which were the most negative δ44Ca component measured from the 1983 
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soil profile. Replenishment of soil Ca from this light reservoir might account for 

the trend towards lighter δ44Ca in soil Ca pools  

Between 1984 and 1988, the aggrading Watershed 5 forest accumulated 

some 2500mol Ca/ha in aboveground biomass (Mou et al., 1993), while 

exporting an excess 915 mol*ha-1 Ca largely from the soil exchange pool to 

streamwater, all without appreciably depleting the exchange pool. Inputs of new 

Ca from external sources including atmospheric deposition and weathering over 

this interval are estimated at only 375 mol*ha-1 (Likens et al. 1998), requiring an 

additional source of Ca. Likens et al. (1998) argued that remineralization of Ca 

from decomposing logging debris and decaying roots following harvest is a major 

source of Ca to soil, sufficient to account for Ca uptake by re-growth of the forest. 

Fahey et al. (1988) calculated a pre-harvest Watershed 5 mass of ~2600 mol*ha-

1 Ca stored in lateral roots, with 45-63% of root biomass lost to decomposition in 

the first 5 years following the Watershed 5 harvest (Fahey et al., 1993). The 

decomposition of lateral roots and logging debris (released 2500mol Ca*ha-1 in 

the first three years post-harvest, Likens et al., 1998), would have been a more 

than adequate source of Ca to replace the excess Ca lost to streamwater and 

vegetation regrowth between 1984 and 1988. Continued decomposition of 

belowground biomass, releasing isotopically light organically bound Ca, could 

likely account for trend towards increasingly more negative 44Ca in the soil 

exchange pool. Importantly, the 44Ca of Oie (forest floor) residual Ca evolves in 

parallel with overall soil exchangeable Ca, becoming lighter by 0.5‰ between 
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1983 and 1991. This change in forest floor litter likely tracks aboveground 

biomass, which was itself evolving to more negative δ44Ca as the forest regrew. 

These observations suggest that isotopically light Ca from root and other 

biomass decomposition continued to play an important role both in replenishing 

the soil exchange pool and in supplying Ca for the rebuilding forest for many 

years following whole-tree harvesting. 

1.6 CONCLUSIONS 

This is the first study to apply Ca isotopes to investigate the response of 

the calcium cycle to land use disturbance. It further demonstrates the utility of Ca 

isotopes for studies of the terrestrial Ca cycle providing a complement to mass 

balance studies and other Ca cycle tracers such as Ca/Sr and 87Sr/86Sr. The 

unique long-term sample archive from Hubbard Brook Experimental Forest 

allows us to use stable Ca isotopes to provide a new perspective in addressing 

outstanding questions regarding the source of streamwater Ca and changes in 

forest Ca cycling following a decades-old experimental whole-tree harvest 

conducted at Hubbard Brook. The most important observations in this new 

dataset are 1) a shift towards more negative 44Ca of streamwater coinciding with 

increased streamwater Ca concentrations following harvesting, 2) a decrease 

with time in the 44Ca of soil exchangeable Ca, acid-extractable (“Ca-oxalate”) 

Ca, and of forest floor litter. Earlier studies have called on a variety of 

mechanisms to explain enhanced Ca export in the absence of a resolvable 

decrease in exchangeable Ca concentrations. Our isotopic mass balance 
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approach strongly suggests that enhanced Ca export was in fact sourced from 

isotopically light soil pools, dominated by the soil cation exchange complex. 

Additionally, our stable Ca isotopes indicate that increased dissolution of apatite 

was not the primary source of Ca replenishing the soil exchangeable pool, and 

mass balance considerations suggest there is not enough Ca oxalate in the soil 

to account for the increased streamwater Ca export. The shift towards more 

negative 44Ca in the exchange pool requires that Ca lost from the exchange 

pool was replenished by an isotopically light source, which we infer to have been 

decomposition of root biomass. The parallel trend in the 44Ca of forest floor litter 

indicates that that the rebuilding forest ultimately sourced its Ca from the 

decomposition root biomass, perhaps cycled through the soil exchange pool. 

Better understanding the dynamics of the terrestrial Ca cycle to forest 

disturbance is important to managing forest resources and predicting the 

response of forest ecosystems to future changes in climate, and recovery of 

forests from acid rain deposition. Ca isotopes should prove a useful addition to 

the biogeochemist’s toolbox in addressing these questions. 
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1.8 SUPPLIMENTARY INFORMATION 

1.8.1 Figures 

 

 

Figure 1.1. Site map of a) the entire HBEF watershed, including location of 9 

research sub-watersheds, b) detail of Watershed 5  where the harvesting 

experiment took place in 1983-4, and c) detail of Watershed 6  the 

biogeochemical reference watershed, located immediately west of  Watershed 5. 
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Figure 1.2. Comparison of a) Ca concentrations, b) Mg concentrations and c) K 

concentrations in archived streamwater measured at the time of collection 

(HBEF) and present day (BU).  
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Figure 1.3. a) Depth profile of soil exchangeable Ca concentrations, b) depth 

profile of 0.5M HCl extractable Ca concentrations and c) depth profile of 0.5M 

HCl extractable oxalate concentrations from soil pits excavated within grid cell 

262 located in Watershed 5. 

  

a) 

b) 

c) 
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Figure 1.4. Depth profile of δ44Ca values for forest floor (Oie) and soil 

exchangeable Ca and from soil pits excavated within grid cell 262 located in 

Watershed 5. 
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Figure 1.5. a) Time series of  Watershed 5 streamwater Ca concentrations and b)  

Watershed 5 streamwater δ44Ca values. The period when the harvest event took 

place is highlighted in grey. 

  

a) 

b) 
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Figure 1.6. Relationship between specific discharge and streamwater δ44Ca in 

Watershed 5 and 6 before and after the harvest. Dashed line represents power 

law model used in isotope mass balance model (δ44Ca = -1.13*(Discharge)0.034) 

(see Section 2.5.2 for details). 
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Figure 1.7. Model results for determination of δ44Ca2, the stable Ca isotope ratio 

of the excess Ca streamwater export attributed to the harvest. Grey boxes 

represent the 1st to 3rd quartile range of 10,000 Monte Carlo simulations, the 

whiskers represent simulation values within 1.5 times the 1st-3rd interquartile 

range. Inset is a close-up of the first 9 post-harvest samples. 
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1.8.2 Tables 

Table 1.1. Summary of instantaneous streamwater discharge, elemental concentrations (measured at Boston 

University, BU) and δ44Ca in archived streamwater. For comparison, elemental concentration measured at the time 

of collection (Hubbard Brook Experimental Forest, HBEF) are included. n indicates number of replicate Ca stable 

isotope measurements made on the sample. 

 
 

Instantaneous 
Discharge 
(L*sec-1) 

BU Contemporary Analysis (ug/mL) 
δ44Ca (‰ 
rel. SW) 

 

2 s.d. 
(‰ rel. 

SW) 

HBEF Historical Analysis (ug/mL) 

Date Watershed Ca Mg Na K Sr n Ca Mg Na K 

9/14/1977 5 30.0 1.79 0.41 0.67 0.32 0.014 -1.20 1 - 1.64 0.37 0.56 0.27 

5/2/1978 5 10.3 1.30 0.26 0.69 0.25 0.010 -1.29 1 - 1.23 0.25 0.6 0.18 

1/2/1979 5 55.6 1.74 0.47 bdl 0.48 0.010 -1.26 1 - 1.45 0.4 0.64 0.49 

9/4/1979 5 0.05 1.53 0.49 1.21 0.25 0.013 -1.03 2 0.03 1.63 0.47 1.29 0.14 

4/7/1980 5 16.0 1.44 0.35 0.80 0.36 0.010 -1.15 1 - 1.35 0.32 0.75 0.26 

2/2/1981 5 91.9 1.41 0.34 0.69 0.49 0.009 -1.26 2 - 1.41 0.37 0.81 0.55 

nd: Not determined. 
bdl: Below detection limit. 
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Table 1.1. Continued. 

 

 Instantaneous 
Discharge 
(L*sec-1) 

BU Contemporary Analysis (ug/mL) 
δ44Ca (‰ 
rel. SW) 

 

2 s.d. 
(‰ rel. 

SW) 

HBEF Historical Analysis (ug/mL) 

Date Watershed Ca Mg Na K Sr n Ca Mg Na K 

7/6/1981 5 38.5 1.20 0.25 0.72 bdl 0.010 -1.14 3 0.18 1.23 0.25 0.68 0.08 

4/4/1982 5 14.4 1.26 0.29 0.62 0.17 0.006 -1.24 2 0.07 1.19 0.29 0.77 0.18 

9/15/1982 5 6.21 1.14 0.31 0.71 0.47 0.006 -1.04 2 0.05 1.08 0.3 0.86 0.6 

2/3/1983 5 94.4 1.06 0.22 0.51 0.30 0.007 -1.31 1 - 1.06 0.25 0.59 0.25 

4/25/1983 5 33.2 1.10 0.24 0.55 0.21 0.005 -1.19 2 0.20 1.08 0.24 0.67 0.22 

5/31/1983 5 25.5 1.06 0.20 0.61 bdl 0.008 -1.25 1 - 1.06 0.23 0.73 0.17 

9/22/1983 5 0.09 1.76 0.60 0.99 0.32 0.012 -1.00 2 0.08 1.79 0.59 1.31 0.37 

11/28/1983 5 5.61 1.22 0.28 0.73 0.36 0.009 -1.18 3 0.16 1.3 0.31 0.75 0.35 

12/13/1983 5 75.1 1.18 0.22 0.48 0.46 0.008 -1.50 1 - 1.18 0.26 0.56 0.52 

4/6/1984 5 69.1 1.11 0.26 0.48 0.60 0.004 -1.48 2 0.08 1.13 0.26 0.52 0.71 

9/17/1984 5 0.82 2.30 0.69 1.21 0.84 0.015 -1.32 3 0.09 2.31 0.67 1.63 1 

10/7/1984 5 1.39 3.28 0.97 1.23 0.99 0.023 -1.40 1 - 3.24 0.91 1.62 1.18 

11/13/1984 5 14.0 5.35 1.41 1.15 2.26 0.037 -1.48 2 0.17 5.1 1.29 1.44 2.58 

12/30/1984 5 22.2 4.06 1.07 0.89 1.64 0.026 -1.53 4 0.04 3.85 0.98 1.02 1.82 

5/6/1985 5 6.89 3.14 0.85 1.00 1.14 0.021 -1.39 2 0.01 3.96 0.8 1.24 1.31 

9/8/1985 5 4.34 3.14 0.84 0.89 0.98 0.021 -1.40 2 0.04 3.16 0.82 1.15 1.13 

9/27/1985 5 185 2.84 0.62 bdl 1.53 0.018 -1.69 2 0.19 2.58 0.55 0.66 1.58 

3/30/1986 5 63.9 1.87 0.45 0.52 0.74 0.010 -1.59 1 - 1.77 0.43 0.55 0.91 

9/21/1986 5 8.42 1.40 0.38 0.70 0.35 0.007 -1.42 2 0.08 1.45 0.4 0.85 0.41 

3/31/1987 5 320 1.15 0.27 bdl 0.96 0.006 -1.76 2 0.00 1.15 0.28 0.36 1.07 

4/5/1987 5 52.0 1.18 0.30 0.48 0.57 0.005 -1.36 4 0.17 1.26 0.31 0.52 0.73 

9/13/1987 5 15.9 1.36 0.37 0.67 0.26 0.006 -1.31 3 0.13 1.31 0.35 0.84 0.31 

4/18/1988 5 21.1 1.35 0.34 0.62 0.44 0.006 -1.39 2 0.16 1.33 0.38 0.72 0.52 
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Table 1.1. Continued. 

 

 Instantaneous 
Discharge 
(L*sec-1) 

BU Contemporary Analysis (ug/mL) 
δ44Ca (‰ 
rel. SW) 

 

2 s.d. 
(‰ rel. 

SW) 

HBEF Historical Analysis (ug/mL) 

Date Watershed Ca Mg Na K Sr n Ca Mg Na K 

9/14/1977 6 17.9 1.52 0.34 0.59 0.33 0.011 -1.38 1 - 1.44 0.33 0.64 0.28 

5/8/1978 6 5.9 1.17 0.24 0.69 0.26 0.009 -1.52 1 - 0.94 0.2 0.52 0.16 

9/4/1979 6 0.03 1.50 0.45 1.51 bdl 0.012 -1.14 1 - 1.18 0.32 1.28 0.06 

4/7/1980 6 7.84 1.43 0.34 0.74 0.35 0.010 -1.30 1 - 1.25 0.31 0.71 0.29 

2/2/1981 6 57.0 1.37 0.36 0.65 0.56 0.009 -1.47 1 - 1.28 0.37 0.75 0.65 

7/6/1981 6 22.4 1.08 0.23 0.67 bdl 0.009 -1.32 1 - 1.02 0.23 0.65 0.08 

4/4/1982 6 7.89 1.14 0.28 0.72 0.25 0.009 -1.27 2 0.09 1.05 0.28 0.74 0.19 

9/15/1982 6 4.83 1.06 0.32 0.99 0.40 0.009 -1.23 1 - 1.01 0.31 1.06 0.4 

2/3/1983 6 71.7 bdl bdl bdl bdl bdl -1.47 1 - 0.85 0.22 0.54 0.28 

5/31/1983 6 16.4 0.88 0.18 0.56 0.27 0.007 -1.44 1 - 0.85 0.21 0.68 0.18 

9/22/1983 6 1.21 0.94 0.30 1.01 0.28 0.008 -1.11 1 - 0.96 0.31 1.2 0.27 

11/28/1983 6 3.30 0.97 0.23 0.66 0.24 0.008 -1.36 2  0.98 0.25 0.71 0.18 

12/13/1983 6 69.6 0.82 0.15 0.42 0.26 0.006 -1.42 1 - 0.84 0.19 0.5 0.25 

4/6/1984 6 54.9 0.72 0.17 bdl 0.30 0.006 -1.47 2 0.20 0.77 0.18 0.48 0.71 

12/30/1984 6 15.9 0.95 0.24 0.53 0.32 0.008 -1.39 2 0.02 0.92 0.24 0.62 0.3 

9/27/1985 6 85.3 1.07 0.24 bdl 0.41 0.009 -1.66 1 - 1.02 0.23 0.43 0.43 

3/30/1986 6 35.4 0.87 0.20 0.49 0.25 0.007 -1.40 2 0.02 0.81 0.2 0.54 0.18 

3/31/1987 6 224 0.94 0.22 bdl 0.61 0.007 -1.66 1 - 0.91 0.23 0.44 0.73 

4/5/1987 6 25.1 0.91 0.23 0.64 0.25 0.007 -1.59 1 - 0.87 0.21 0.51 0.27 

4/18/1988 6 9.6 0.80 0.19 bdl 0.30 0.006 -1.28 1 - 0.95 0.29 0.75 0.19 

Precipitation               

4/22/1982 6 nd nd nd nd nd nd -1.01 2 0.32 0.25 0.05 0.11 0.03 
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Table 1.2. Elemental concentrations and δ44Ca of bulked digestions and extraction of bedrock and soil samples. n 

indicates number of replicate Ca stable isotope measurements made on the sample. 

Sample 
Type or 

Depth (cm) Year Treatment 

(μg/g sample) δ44Ca 
(‰ rel. 

SW) n 

2 s.d. 
(‰ rel. 

SW) Ca Mg Na K Sr Si Al Fe P Ba Oxalate 

Rangley 
Fm. Schist  - 

HF/HNO3bulk 
digestion 4824 30568 11398 32155 85 nd 87471 51656 130 640 nd -1.25 1 - 

Till - 
HF/HNO3bulk 

digestion 7299 3263 6391 12656 117 nd 72671 17448 283 504 nd -1.09 1 - 

Till - HCl extraction 768 18 8 bdl 1 359 1338 537 363 3 10 -0.85 1 - 

Till - NH4Cl exchange 8 1 4 27 2 nd 63 nd nd 20 nd -1.52 2 0.012 

                 Oie fine 
roots 1983 

HNO3/H2O2 bulk 
digestion 7172 579 bdl bdl 41 138 bdl 512 1304 116 nd -2.38 1 - 

                 
Oie 1983 

HNO3/H2O2 digestion 
(extraction residual) 1006 138 bdl 436 6 bdl 1283 1772 494 32 nd -2.27 1 - 

Oie 1986 
HNO3/H2O2 digestion 
(extraction residual) 1401 322 bdl 594 8 bdl 2740 4161 579 38 nd -2.59 1 - 

Oie 1991 
HNO3/H2O2 digestion 
(extraction residual) 3915 518 bdl 690 15 34 2454 3497 813 66 nd -2.80 1 - 

                 
Oie 1983 

HNO3/H2O2 bulk 
digestion 3366 346 55 694 18 bdl nd 1226 691 62 nd -2.09 1 - 

Oie 1986 
HNO3/H2O2 bulk 

digestion 5334 759 83 814 26 3 nd 4026 820 83 nd -2.31 1 - 

Oie 1991 
HNO3/H2O2 bulk 

digestion 9060 1520 65 1306 35 17 nd 3073 1171 99 nd -2.59 1 - 

nd: Not determined. 
bdl: Below detection limit.  
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Table 1.2. Continued. 

Sample 
Type or 

Depth (cm) Year Treatment 

(μg/g sample) δ44Ca 
(‰ rel. 

SW) n 

2 s.d. 
(‰ rel. 

SW) Ca Mg Na K Sr Si Al Fe P Ba Oxalate 

Oie 1983 NH4Cl exchange 2774 268 nd 436 14 nd nd nd 389 44 nd -2.11 1 - 

Oa 1983 NH4Cl exchange 1900 104 43 297 13 nd 72 nd nd 42 nd -1.76 1 - 

0-10 1983 NH4Cl exchange 67 9 3 22 1 nd 102 nd nd 4 nd -1.80 2 0.012 

10-20 1983 NH4Cl exchange 31 7 5 15 1 nd 348 nd nd 4 nd -1.46 2 0.083 

20+ 1983 NH4Cl exchange 25 2 4 9 0 nd 235 nd nd 4 nd -1.40 1 - 

C 1983 NH4Cl exchange 13 1 3 9 0 nd 96 nd nd 7 nd -1.43 1 - 

                 

Oie 1986 NH4Cl exchange nd nd nd nd nd nd nd nd nd nd nd -2.38 1 - 

Oa 1986 NH4Cl exchange 1543 145 nd 171 9 nd 196 48 124 26 nd -1.96 1 - 

0-10 1986 NH4Cl exchange 149 13 nd nd 1 3 348 74 nd 3 nd -1.96 1 - 

10-20 1986 NH4Cl exchange 21 2 nd nd 0 8 222 9 nd 3 nd -1.85 1 - 

20+ 1986 NH4Cl exchange 5 nd nd nd nd 7 126 2 nd 4 nd nd - - 

C 1986 NH4Cl exchange 9 1 nd 16 0 11 127 2 nd 6 nd -1.68 1 - 

                 

Oie 1991 NH4Cl exchange nd nd nd nd nd nd nd nd nd nd nd -2.58 1 - 

Oa 1991 NH4Cl exchange Sample not present in archive. 

0-10 1991 NH4Cl exchange 478 39 nd nd 2 nd 327 123 nd 11 nd -2.18 1 - 

10-20 1991 NH4Cl exchange 111 6 15 35 1 13 312 26 nd 5 nd -2.06 1 - 

20+ 1991 NH4Cl exchange 15 1 nd 19 0 11 144 3 nd 5 nd -1.70 1 - 

C 1991 NH4Cl exchange 4 nd nd 17 0 11 77 1 nd 5 nd nd - - 
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Table 1.2. Continued. 

Sample 
Type or 

Depth (cm) Year Treatment 

(μg/g sample) δ44Ca 
(‰ rel. 

SW) n 

2 s.d. 
(‰ rel. 

SW) Ca Mg Na K Sr Si Al Fe P Ba Oxalate 

Oa 1983 HCl extraction 419 18 bdl bdl 3 62 614 219 87 16 216 -2.07 1 - 

0-10 1983 HCl extraction 20 10 bdl bdl bdl 55 728 2338 bdl 2 248 nd - - 

10-20 1983 HCl extraction 38 10 bdl bdl bdl 293 4227 2216 bdl 3 361 nd - - 

20+ 1983 HCl extraction 138 6 bdl bdl 0 1204 6950 320 63 5 173 nd - - 

C 1983 HCl extraction 396 10 bdl bdl 0 1763 6637 685 220 6 104 nd - - 

                 

Oa 1986 HCl extraction 121 8 bdl bdl 1 3 159 114 21 3 29 -2.18 1 - 

0-10 1986 HCl extraction 64 10 bdl bdl 0 180 1767 1286 12 2 273 nd - - 

10-20 1986 HCl extraction 74 bdl bdl bdl 0 662 4247 149 27 1 168 nd - - 

20+ 1986 HCl extraction 92 3 bdl bdl 0 825 3572 252 46 1 98 nd - - 

C 1986 HCl extraction 235 4 bdl bdl 0 1030 3750 361 126 2 99 nd - - 

Oa 1983 HCl extraction 419 18 bdl bdl 3 62 614 219 87 16 216 -2.07 1 - 

0-10 1983 HCl extraction 20 10 bdl bdl bdl 55 728 2338 bdl 2 248 nd - - 

                 

Oa 1991 HCl extraction Sample not present in archive. 

0-10 1991 HCl extraction 42 6 bdl bdl 0 31 489 757 14 2 62 -2.41 1 - 

10-20 1991 HCl extraction 45 2 bdl bdl 0 655 3402 302 20 1 116 nd - - 

20+ 1991 HCl extraction 113 3 bdl bdl 0 837 3640 278 69 1 75 nd - - 

C 1991 HCl extraction 153 4 bdl bdl 0 831 2991 435 109 2 51 nd - - 
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Table 1.3. Mixing model parameters and calculated δ44Ca of “excess” Ca source to streamwater (δ44Ca2). 1st and 

3rd Quartiles for the modeled δ44Ca2 values are derived from 10000 Monte Carlo simulations that incorporate 

uncertainty in model parameters. See section 1.4.2 for additional model details. 

Date 
δ44Cat (‰ 
vs SW) 

Ca  
(µg/g) 

Instantaneous 
Discharge 
(L*sec-1) 

fraction Ca 
from 

"baseline" 
component 1 

δ44Ca1 (‰ 
vs SW) 

fraction Ca 
from 

"excess" 
component 2 

δ44Ca2 (‰ vs 
SW) 

1st Quartile 
(‰ vs SW) 

3st Quartile 
(‰ vs SW) 

9/17/1984 -1.31 2.30 0.82 0.74 -1.09 0.26 -1.93 -2.197 -1.666 

10/7/1984 -1.40 3.28 1.39 0.46 -1.11 0.54 -1.65 -1.773 -1.521 

11/13/1984 -1.49 5.35 14.0 0.24 -1.19 0.76 -1.58 -1.672 -1.488 

12/30/1984 -1.54 4.06 22.2 0.31 -1.21 0.69 -1.68 -1.78 -1.58 

5/6/1985 -1.40 3.14 6.89 0.31 -1.16 0.69 -1.51 -1.608 -1.406 

9/8/1985 -1.48 3.14 4.34 0.40 -1.15 0.60 -1.70 -1.817 -1.583 

9/27/1985 -1.70 2.84 185.1 0.45 -1.29 0.55 -2.03 -2.162 -1.906 

3/30/1986 -1.59 1.87 63.9 0.67 -1.25 0.33 -2.27 -2.486 -2.064 

9/21/1986 -1.42 1.40 8.42 0.84 -1.17 0.16 -2.75 -3.206 -2.311 

3/31/1987 -1.76 1.15 320 1.02 -1.31 -0.02 22.64 -19.46 16.41 

4/5/1987 -1.36 1.18 52.0 0.94 -1.24 0.06 -3.11 -4.463 -2.038 

9/13/1987 -1.31 1.36 15.9 0.91 -1.20 0.09 -2.58 -3.469 -1.758 

4/18/1988 -1.39 1.35 21.1 0.90 -1.21 0.10 -2.93 -3.666 -2.27 
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CHAPTER 2: CONTROLS ON CA ISOTOPE RATIOS IN TROPICAL SOILS AT 

THE LUQUILLO CRITICAL ZONE OBSERVATORY 

2.1 ABSTRACT 

 Globally, soil exchangeable stable calcium isotope ratios (δ44CaEx) exhibit 

greater variability than the variability in δ44Ca of atmospheric deposition and 

silicate bedrock, the dominant external inputs of Ca into terrestrial ecosystems. 

To investigate processes contributing to the variability in δ44CaEx, we measured 

δ44Ca in soil, vegetation, bedrock, streamwater and atmospheric deposition and 

87Sr/86Sr in soil and vegetation in two tropical watersheds that are part of the 

Luquillo Critical Zone Observatory in Puerto Rico. δ44Ca measurements of 

silicate bedrock at both sites (volcaniclastic and quartz diorite) are 

indistinguishable from one another and precipitation δ44Ca agrees well with 

measurements made worldwide. Soil exchangeable δ44Ca is heavier than Ca 

sources at both sites. We observe a significant difference in δ44CaEx between 

sites, which is reflected in the streamwater δ44Ca during high discharge events. 

87Sr/86Sr data rule out differences in external inputs as a driver of the between-

site differences δ44CaEx. Isotopic separation factors (δ44Ca in soil vs. δ44Ca in 

vegetation) of the dominant vegetation type at each site is distinct, indicating 

differences in the magnitude of isotopic separation during plant uptake of Ca. 

However, modeling work indicates that differences in the isotopic separation 

factor alone can’t produce the observed between-site differences in δ44CaEx 

without an accompanying imbalance in the uptake and return flux of Ca between 



 

 

52 

52 

 

the soil exchangeable and biomass reservoir. Ecosystem disturbance and 

subsequent biomass regrowth related to hurricanes have been well documented 

at the Luquillo Critical Zone Observatory, driving imbalances in the uptake and 

return fluxes of Ca. Model results indicate that ecosystem disturbance, when 

accompanied by isotopic fractionation associated with biological uptake of Ca, 

can produce δ44CaEx significantly different than external inputs, even decades 

after the disturbance.  

 

2.2 INTRODUCTION 

Calcium is an essential plant nutrient that when limiting to plants can 

negatively impact water use efficiency, tolerance to cold, resistance to disease 

and ability to take up nitrogen (Joslin et al. 1992; Ellsworth and Liu 1994; Driscoll 

et al. 1996; McLaughlin and Wimmer 1999). As such, the impact of 

anthropogenic disturbances such as acid rain and harvesting of biomass on the 

Ca cycle in temperate forests has been the subject of significant amounts of 

research (Lawrence et al. 1987; Dahlgren and Driscoll 1994; Likens et al. 1994). 

However, the Ca cycle in tropical ecosystems can differ fundamentally from Ca 

cycling in temperate forests, particularly in locations that experience high rates of 

mineral weathering. Although tropical soils generally contain adequate Ca in 

shallow soil to sustain forest productivity (Jordan et al. 1972), unlike in temperate 

forests where unweathered Ca-bearing primary minerals can be directly 

accessed by roots, the high weathering rates typical of tropical ecosystems can 
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deplete mineral sources of Ca (White et al. 1998; Blum et al. 2002; Pett-Ridge et 

al. 2009), However, recent research has shown that high erosion rates may 

partial offset this (Porder et al. 2015). As such, vegetation grown on old tropical 

soils may depend heavily on atmospherically-derived Ca and the recycling of Ca 

in the forest floor due to the high carbon costs associated with mining for Ca via 

deep roots (Silver et al. 1994; Chadwick et al. 1999; Poszwa et al. 2002; 

Wiegand et al. 2005). For example, in a study of an Amazon basin ecosystem, 

Stark and Jordan (1978) found that roots were able to take up 45Ca directly from 

isotopically labeled leaf litter and that less than 1% 45Ca applied to the surface 

leached through the rootmat into the soil below. Clearly, the retention of Ca in the 

near surface is an important mechanism for maintaining sufficient pools of 

nutrient to meet vegetation requirements in ecosystems existing on highly 

weathered soils.  

Stable Ca isotopes are a relatively new tool to investigate the internal 

cycling of Ca in terrestrial ecosystems (Page et al. 2008; Cenki-Tok et al. 2009; 

Bélanger and Holmden 2010; Farkaš et al. 2011; Heijden et al. 2014). It is well 

documented that the primary fractionation mechanism for stable calcium isotopes 

in terrestrial ecosystems occurs as Ca is taken up from the soil pool by the plant 

roots. Vegetation discriminates against the heavier isotopes of Ca, producing 

biomass that is isotopically light (enriched in 40Ca) compared to both soil and 

bedrock  (Wiegand et al. 2005; Page et al. 2008; Farkaš et al. 2011). Similarly, 

there is a Rayleigh-like fractionation process that occurs as Ca moves along the 
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transpiration stream within vegetation, as the lighter isotopes of Ca are 

preferentially retained in roots and stems relative to leaves (Page et al. 2008; 

Bélanger and Holmden 2010; Cobert et al. 2011; Hindshaw et al. 2012; Schmitt 

et al. 2013). To date, much of the research utilizing stable Ca isotopes to 

investigate Ca cycling and improve our understanding of stable Ca isotope 

fractionation mechanisms have been carried out in temperate and boreal forests 

(Perakis et al. 2006; Tipper et al. 2008; Page et al. 2008; Cenki-Tok et al. 2009; 

Hindshaw et al. 2011; Farkaš et al. 2011; Bagard et al. 2013), with few studies 

carried out in tropical forests (Wiegand et al. 2005; Wiegand and 

Schwendenmann 2013). Interestingly, these earlier studies demonstrated stable 

calcium isotopes in the shallow soil exchangeable pool (an important source of 

Ca to vegetation) can exhibit a wide range of values across sites, even though 

inputs of Ca to terrestrial systems tend to be restricted to a fairly narrow range of 

values (Schmitt and Stille 2005). This observation suggests stable calcium 

isotope ratios in the soil exchangeable pool may reflect different processes 

operating on seasonal to  decadal timescales, and may provide useful 

information regarding the calcium cycle (Holmden and Bélanger 2010; Fantle and 

Tipper 2014).  

Given the wide range of measured soil exchangeable stable Ca isotope 

values across different sites, a mechanistic understanding of how different 

processes alter the stable Ca isotope signature of terrestrial ecosystems is 

required. Having recognized this need and the lack of stable Ca isotopes 
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measurements in tropical ecosystems to date, we quantify the stable Ca isotopes 

ratios of dominant Ca pools (vegetation, soil, bedrock) and well as inputs 

(bedrock, precipitation) in two highly weathered tropical watersheds within the 

Luquillo Experimental Forest: Bisley 1 which is a Tabonuco dominated forest 

underlain by volcaniclastic bedrock, and Rio Icacos which is a Colorado 

dominated forest underlain by quartz diorite. While these two watersheds are 

located only 6km apart and share similar climate, they exhibit contrasting 

dominant vegetation species, lithologies, soil nutrient stocks, and possibly degree 

of disturbance related to hurricanes (Lodge et al. 1991; Boose et al. 1994; 

Sullivan et al. 1999; Porder et al. 2015). The objectives of this study were to 

evaluate whether atmospheric inputs strongly influence the soil exchangeable 

44Ca of tropical ecosystems as is the case for 87Sr/86Sr (Kennedy et al. 1998; 

Pett-Ridge et al. 2009), or alternatively to determine how differences in species 

composition, lithology and disturbance history affects the isotopic signature of 

calcium cycling in tropical forests. 

 

2.3 MATERIAL AND METHODS 

2.3.1 Site Description 

Bisley 1 and Rio Icacos watersheds are located within the Luquillo 

Experimental Forest (LEF) in Puerto Rico, which has long been studied as a site 

in the U.S. Long Term Ecological Research Program (Brown et al. 1983), as a 
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USGS Water, Energy, and Biogeochemical Budgets Program site (Larsen et al. 

1993), and now as a Critical Zone Observatory (Luquillo Critical Zone 

Observatory, LCZO) (Figure 2.1). Temperatures vary both with season and with 

elevation, ranging from 23.5°C (Jan) to 27°C (Sept) at low elevations and 17°C to 

20°C at high elevations. Rainfall within the forest is orographic, so varies with 

elevation, from 3530mm/yr at low elevation to 4850mm/yr at high elevation. 

Although the seasonality is small relative to temperate sites, May through 

November define a wet season (>300mm/month) and January to March comprise 

a relatively dry season (<200mm/month; Schellekens et al., 2004). Bisley 1 is 

located within the Rio Mamayes drainage basin, underlain by andesitic 

volcaniclastic rocks and classified as a “Tabonuco forest”, named for the 

dominant Tabonuco tree (Dacryodes excelsa), which form a 20-25m upper 

canopy with a moderately dense understory of palms and woody plants and a 

ground cover of herbs and shrubs. Bisley 1 covers an area of 6.7ha, elevation 

ranges from 260m at the outlet to 410m at the highest elevation with greater than 

50% of slopes greater than 45°, and soil are classified as clayey, highly 

weathered ultisols (Scatena 1989). The Rio Icacos basin is a 322 ha basin with 

elevations spanning 640-800 m. The basin is underlain by Eocene age porphyry 

hornblende quartz-diorite and is classified as a “Colorado forest”, so named for 

the dominant canopy Palo Colorado tree (Cyrilla racimiflora), with a canopy about 

15m high. Soil samples were collected on a ridge above the Quebrada Guaba 
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tributary, a ~12 ha watershed within the Rio Icacos basin. Mean annual rainfall is 

4200mm/yr, somewhat higher than Bisley I (3500mm/yr). 

The lithologic contrast between Bisley 1 and Rio Icacos is expressed in 

major differences in geomorphology, hydrology, and rates of critical zone 

processes. In fact, a primary research objective of the LCZO has been to 

elucidate the differences in critical zone processes resulting from the contrasting 

lithology underlying the LEF. Granodiorite watersheds have higher landslide 

frequency, higher rates of chemical and physical weathering, sandy eutropeptic 

soils, sand-bedded stream channels that sometimes disappear into meter-scale 

macropores, and well-defined floodplains (McDowell et al. 1992; Larsen et al. 

1993; Ahmad et al. 1993; White and Blum 1995; Brown et al. 1995; White et al. 

1998; Larsen et al. 1999). Saprolite thicknesses of 8 meters are observed on 

granodioritic ridgetops (White and Blum 1995). Volcaniclastic watersheds have 

steep, boulder-lined channels, smaller landslides, lower suspended sediment 

fluxes, fewer macropores, and clayey tropohumultic soils (McDowell et al. 1992; 

Silver et al. 1994; Schellekens et al. 2004). Saprolite thicknesses can be greater 

than 15 meters on ridgetops in volcaniclastic areas (H. Buss, unpublished data). 

2.3.2 Soil sampling and chemical analysis 

At each site, a soil pit was excavated to a depth of approximately 1m 

along topographic ridges to minimize differences in soil chemistry related to 

landscape position. Soils were sampled by horizon and shipped to Boston 

University for chemical analysis. Samples were first oven-dried at 60˚C then 
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passed through a 2mm sieve to remove roots and rock fragments. Following 

methods adopted from Nezat et. al. (2007), a representative 0.5-5.0g subsample 

of each soil sample was first examined with a microscope to ensure no large un-

decomposed organic matter was present, then a 1 M NH4Cl solution was added 

to the subsample in a 10:1 ratio (10ml of 1 M NH4Cl : 1g soil) and shaken for 24 

hours on an end-over-end shaker. Subsamples were centrifuged and the 

supernatant was separated and passed through 0.45µm filter paper. Aliquots of 

the soil extractions were dried down and brought up in 2% HNO3 for 

concentration analysis on a Jobin Yvon Ultrace JY-138 inductively coupled 

plasma emission spectrometer (ICP-ES). An aliquot of each soil extraction was 

retained for stable Ca isotopic analysis by thermal ionization mass spectrometry. 

Sr isotopic analyses were made later on a separate set of extractions of 

subsamples of the same soils following identical procedures. 

2.3.3 Bedrock sampling and chemical analysis 

For each watershed a sample of exposed bedrock (Fajardo Formation 

quartz diorite and andesitic volcaniclastic in Rio Icacos and Bisley 1, 

respectively) was sampled and shipped to Boston University for chemical 

analysis. Bedrock samples were acid digested for determination of bulk 

chemistry and stable Ca isotope ratios of soil parent material. Approximately 

50mg of powdered bedrock were digested in a HF–HCl mixture by alternating 

sample between hot plate and sonicator over approximately one week. Digested 

samples were centrifuged and the supernatant collected and treated with 
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ultrapure concentrated nitric acid and Optima ultrapure hydrogen peroxide to 

oxidize any remaining organics including graphite. The samples were then dried 

down and brought up in 2% HNO3 for analysis on the ICP-ES at Boston 

University. A separate aliquot was retained for isolation of Ca for isotopic 

analysis. 

2.3.4 Streamwater sampling and chemical analysis 

In order to assess the range in stable Ca isotopes draining each 

watershed, we analyzed stream water samples from both watersheds 

representing baseflow and peak stormflow discharge conditions (Table 2.2). Both 

watersheds exhibit strong variability in chemistry as a function of discharge 

reflecting flowpath control (Kurtz et al. 2011; Goldsmith et al. 2013). Rio Icacos 

samples were collected at the USGS stream gauge (50075000) during an earlier 

sampling campaign (Kurtz et al. 2011). Bisley samples were collected for related 

CZO research and provided to us by Steve Goldsmith and Stephen Porder 

(Brown University). Stream water concentrations were analyzed on a Jobin Yvon 

Ultrace JY-138 inductively coupled plasma emission spectrometer (ICP-ES) at 

Boston University. The peak stormflow sample for Bisley 1 was collected (June 

6th, 2011, 9:45) on a day when daily discharge at the downstream Rio Mameyes 

USGS stream gauge (50065500) was 2.2m3*sec-1, which is in the 84th percentile 

for daily discharge values for the period between 1967 and 2015, while the 

baseflow sample was collected when daily discharge at Rio Mameyes was 

0.8m3*sec-1 (35% percentile). For Rio Icacos, the peak storm flow sample was 
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collected (November 13th, 2006, 13:30) on a day when the daily discharge was 

1.8m3*sec-1, which is in the 97th percentile for daily discharge values between 

1967 and 2015, while the baseflow sample was collected on a day daily 

discharge was 0.4m3*sec-1, representing the 5th percentile of daily discharge. 

2.3.5 Vegetation sampling and chemical analysis 

Samples of leaves, roots, bark, and stemwood from a Tabonuco tree in 

Bisley 1, a Palo Colorado tree in Rio Icacos and a Cercropia tree from both 

watersheds were collected within 10m of each soil pit and returned to Boston 

University for chemical analysis. The vegetation samples were first oven-dried at 

60˚C and then passed through a Wiley Mill to prepare samples for chemical 

analysis. A representative 0.5g subsample of each vegetation sample was 

digested in a mixture of 1 mL of H2O2  and 9 mL of concentrated HNO3  using a 

Milestone microwave. An aliquot of the digestion was dried down and brought up 

in 2% HNO3 for concentration analysis on a Jobin Yvon Ultrace JY-138 

inductively coupled plasma emission spectrometer (ICP-ES) and another aliquot 

retained for stable Ca isotopic analysis using a thermal ionization mass 

spectrometer. 

2.3.6 Mass spectrometry 

Calcium isotope measurements were carried out in the Boston University 

Thermal Ionization Mass Spectrometry (TIMS) Facility, using a Thermo Finnigan 

Triton® TIMS. We utilized a 42Ca-48Ca double spike to correct for any 
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fractionation that may occur during column chemistry or mass spectrometry 

(Russell and Papanastassiou 1978; Russell et al. 1978). We used an iterative 

double spike subtraction routine that removes the double spike and corrects for 

mass dependent fractionation using an exponential mass fractionation law 

(Compston and Oversby 1969; Heuser et al. 2002; Fantle and Bullen 2009). The 

double spike subtraction routine was implemented as a spreadsheet in the MS 

Excel software program. 

The double spike and sample solutions were mixed to achieve an 85:15 

sample to spike ratio (by mass of Ca) to minimize error propagation during the 

iterative double spike subtraction (Rudge et al. 2009). Typically, between 1 and 

3µg of sample Ca was mixed with an appropriate amount of double spiked Ca 

solution prior to column chemistry. Column chemistry consisted of passing the 

spiked sample through AG50-X8 cation resin in a 5cm long and 0.7cm diameter 

Teflon column with a 30ml reservoir. Ultrapure, distilled 1N, 1.5N and 4N HNO3 

were used as reagents, with the 1N HNO3 used as the final eluent. After the 

double spiked sample passed through the column, it was dried down, brought 

back up in 100µl concentrated nitric and 50µl ultrapure hydrogen peroxide 

solution, dried down again, and twice more brought up in 100µl concentrated 

nitric acid and dried down to oxidize any remaining organics. Finally, the sample 

was brought up in approximately 2µl 2N HNO3 for loading onto outgassed zone 

refined rhenium filament. After loading the sample onto the filament, 0.5µl of 5% 

H3PO4 was added to increase the ionization efficiency. Samples were run using 
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the double filament technique, with the ionization filament heated to 1410°C, and 

evaporation filament heated to between 1600° and 1900°C over the course of 1 

hour, with constant monitoring to insure that the 40Ca beam does not increase 

above 10V, which increases the likelihood of faraday cup “poisoning” (Bélanger 

and Holmden 2010). Each sample was run for at least 100 cycles to insure 

robust statistics. Two standards, National Institute of Standards and Technology 

(NIST) Standard Reference Material (SRM) 915A calcium carbonate standard 

and North Atlantic Seawater Standard (NASS), were typically measured during 

each session to quantify the external precision of our measurements.  Internal 

precision for a single analysis was determined by calculating the 2SE (SE: 

standard error) of all cycles. Internal precision for a single analysis was better 

than 0.10‰, and typically < 0.06‰ (2SE). Most unknown samples were run 2 or 

more times, with our average reproducibility of our unknown samples being 

0.10‰ 2SD (SD: standard deviation). External precision was determined by 

calculating the 2SD for repeated measurement of our two standards: NIST SRM 

915A and NASS seawater. For NIST SRM 915A we obtained a mean of -1.91‰ 

±0.14‰ (2SD, n = 14), and for seawater 0.03‰ ±0.12‰ (2SD, n = 14). Unlike 

Holmden and Bélanger (2010), no long-term drift was evident in our Ca 

standards database, and therefore no drift corrections were made to standards or 

samples. We report analytical uncertainty on a single measurement of an 

unknown as 0.14‰ (the larger of the 2SD for our two standards). We report 



 

 

63 

63 

 

stable Ca isotope ratios (44Ca/40Ca) in delta notation (δ44Ca) relative to our long-

term average value for seawater. 

Strontium isotopes were also measured on the BU TIMS Facility Triton. Sr 

was separated by column chemistry utilizing Eichrom Sr-Spec resin and run on 

single Re filaments with Ta2O5 as an emitter. 87Sr/86Sr ratios were corrected for 

mass fractionation using an exponential fractionation law and 86Sr/88Sr of 0.1194. 

Analyses of SRM 987 measured in this study were within the long-term BU TIMS 

facility average for 87Sr/86Sr of 0.71034 ± 0.00026. Sr blanks for NH4Cl 

extractions, acid-digestions, and water samples were negligible 

2.3.7 Stable Ca isotope mass balance model 

We developed an isotope mass balance model of the Ca cycle that 

focuses on the cycling of Ca between vegetation and the upper 60cm of the soil 

exchangeable reservoir (Figure 2.2). The model consists of 2 boxes (reservoirs) 

representing the mass of actively cycled soil Ca integrated over the root zone 

(MS) and the mass of Ca in biomass (MV) (mol Ca*ha-1) and 7 fluxes (mol Ca*ha-

1*yr-1) representing the movement of Ca into, out of, and between reservoirs. Two 

external fluxes enter the soil exchangeable reservoir, representing atmospheric 

deposition (FA) and bedrock weathering-derived (FW) sources of Ca to the 

system. One external flux (FNU) enters the vegetation pool directly, bypassing the 

soil exchange pool. This flux represents direct uptake of new Ca by roots from 

sources other than the soil exchangeable reservoir, contributing to “nutrient 

uplift”. Internal biomass cycling of Ca is represented by an uptake flux from the 
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soil exchange pool (FU), and the return of Ca from biomass to the soil 

exchangeable reservoir (FR) via decomposition. Ca is exported from the system 

by one of two fluxes, via leaching from the soil exchange pool (FZ) to 

groundwater or streamwater, and as export of Ca from the vegetation pool 

(FPOM), for example by stream export of particulate organic matter. Additional 

model details describing steady state and non-steady state equations is provided 

in Appendix A2. 

We take advantage of extensive data collected from previous research 

conducted in Bisley 1 to parameterize the model (Walker 1991; Heartsill-Scalley 

et al. 2007; Heartsill Scalley et al. 2010). The model requires initial values for the 

amount of Ca in each reservoir (MS and MV), initial δ44Ca values of the Ca pools 

(δS and δV), the separation factor (ΔU), as well as δ44Ca values of the Ca fluxes 

(F) entering or exiting each reservoir and information on how they vary (if at all) 

over the length of the simulation. For model simulations presented here, we 

assume the system is at steady state prior to any disturbance. Initially, the 

litterfall and uptake flux (FR and FU respectively) is assumed to be 10% of the 

biomass reservoir, based on previous studies of litterfall rates pre-hurricane 

Hugo (Lodge et al. 1991). Due to some of the highest bedrock weathering rates 

measured globally, Ca bearing mineral have been effectively weathered out of 

the upper 60cm of the soil profile and replaced with non-Ca bearing secondary 

clay minerals such as kaolinite and goethite (White et al. 1998; Buss et al. 2008; 

Dosseto et al. 2012). As such, we assume FW presently contributes a negligible 
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amount of Ca to the upper 60cm of the soil profile and FA is constant in time and 

equal to the long term atmospheric deposition rate (Heartsill Scalley et al. 2010). 

Leaching rates (FZ) are challenging to measure and thus generally poorly 

constrained in many ecohydrology models. However, a number of studies have 

noted a significant “quick flow” component to storm hydrographs, which can 

comprise 40-84% of the stormflow exiting Bisley and is thought to be rainfall that 

has limited interaction with the mineral soil (Schellekens 2000; Schellekens et al. 

2004; Kurtz et al. 2011). Nonetheless, to maintain initial steady-state conditions, 

we chose to have FZ initially be equal to external sources (atmospheric 

deposition and weathering), although we acknowledge significant uncertainty in 

the actual value of FZ. Finally, given our initial steady-state assumption, we 

assume that the pre-hurricane Hugo value of δ44Ca in the exchange pool (δS) will 

equal the δ44Ca of external inputs (FA and FW both set to -1‰) and δV is equal to 

δS + ΔU. We varied ΔU between -2.0 and 0 across model runs to test the effect of 

this parameter on the time evolution of δ44Ca values. Parameters used and 

literature sources for parameter estimates are summarized in Table 2.5. 

2.4 RESULTS 

2.4.1 Ca Concentrations in bedrock, soil exchangeable and streamwater in 

Bisley 1 and Rio Icacos 

Here we report elemental and isotopic data for one bedrock sample 

collected at each site. Detailed analysis on variability in bedrock elemental 
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concentrations and isotopic data for the quartz diorite and volcaniclastics bedrock 

have been presented elsewhere (Buss et al. 2013; Porder et al. 2015), but our 

samples generally agree with these earlier analyses. Ca concentrations in bulk 

digestion of bedrock indicate that the volcaniclastic bedrock underlying Bisley 1 

had higher Ca concentrations (7.4 CaO wt. %) compared with the Rio Blanco 

quartz diorite underlying the Icacos basin (3.7 CaO wt. %) (Table 2.1). This 

difference was also apparent in the soil exchangeable Ca extractions (Table 2.3, 

Figure 2.3a). The Bisley 1 soil profile has higher Ca concentrations than Rio 

Icacos throughout the soil profile which may be in part driven by the large amount 

of clay in Bisley soil relative to quartz-rich soil in Rio Icacos and geomorphology 

driven by differential erosion rates between the two forests (White et al. 1998; 

Porder et al. 2015). In the 0-10cm depth Bisley contained 180µg Ca/g soil, while 

Rio Icacos contained 80µg Ca/g soil, and in the 10cm depth, Bisley soil contains 

110µg Ca/g soil, while Rio Icacos contains 30µg Ca/g soil. For the remaining 

depths down to 1m, soil exchangeable Ca in Bisley was approximately twice that 

of Icacos. These values agree with total Ca stocks in volcaniclastic and quartz 

diorite derived soils calculated by Porder et al. (2015), who found that Tabonuco 

forests contain approximately twice the amount of exchangeable Ca compared 

with Palo Colorado forests. Based on published bulk density values for soils in 

Bisley and Rio Icacos (Silver et al. 1994; McDowell et al. 2012) and our Ca 

concentration data, we estimate that the upper 30cm comprise approximately 

77% and 80% of total soil solum Ca for Bisley 1 and Rio Icacos, respectively. 
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Two streamwater samples from each watershed were analyzed for Ca 

concentration (Table 2.2). Low flow samples had higher Ca concentrations 

compared with high flow samples. This was expected as a strong discharge-

dilution relationship has been observed in both watersheds. As with bedrock and 

the soil exchangeable extractions, the Bisley 1 streamwater Ca concentrations 

were higher than the Rio Icacos streamwater samples (Table 2.2). The Ca 

concentration for the stormflow sample from Bisley 1 was 0.71ppm, while the low 

flow sample was 5.33ppm. For Rio Icacos, the Ca concentration for the stormflow 

sample was 0.71ppm, while the low flow sample was 2.8ppm. 

2.4.2 Vegetation Ca concentrations in Bisley and Icacos 

For the two species sampled that were present in both Bisley 1 and Rio 

Icacos (Sierra Palm and Cercropia), the Ca concentration in all biomass 

compartments (ie. roots, stems and leaves) were higher in Bisley relative to Rio 

Icacos, mirroring the bedrock and soil concentrations contrast described above 

(Figure 2.3b). This observation has also been observed in previous studies 

(Weaver and Murphy 1990; Lodge et al. 1991). For the respective dominant 

vegetation species, Tabonuco trees had higher Ca concentrations in all biomass 

compartments compared with Palo Colorado trees. However, for all species 

regardless of watershed, Ca concentration increased along the transpiration 

stream, with roots having the lowest Ca concentrations and leaves having the 

highest Ca concentrations. 
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2.4.3 δ44Ca of bedrock and precipitation 

δ44Ca in bulk digestions of the two bedrock types were within external 

precision of one another (Table 2.1). Rio Blanco quartz diorite had a δ44Ca value 

of -0.95‰ (relative to seawater), while Bisley volcaniclastics has a δ44Ca value -

0.98‰. The δ44Ca values of the two Rio Icacos precipitation samples were within 

external precision of one another, with a mean δ44Ca value of -1.15‰, slightly 

more negative than the two bedrock values. Our measured δ44Ca values of 

bedrock and precipitation are similar to values measured elsewhere, supporting 

the assertion of Fantle and Tipper (2014) that these sources have δ44Ca values 

that vary minimally worldwide. 

2.4.4 δ44Ca and 87Sr/86Sr of soil exchangeable pool 

While the upper 60cm of soil exchangeable δ44Ca values for each site 

exhibited limited internal variability, the soil exchangeable δ44Ca differed 

significantly between sites (Table 2.3, Figure 2.4). The Bisley soil profile 

exhibited soil exchangeable δ44Ca values that ranging between +0.03‰ in 10-

25cm depth interval to -0.28‰ in Oa2 horizon (5-10cm) with a Ca mass weighted 

average δ44Ca of -0.09‰. δ44Ca of soil exchangeable Ca in the Rio Icacos soil 

profile was significantly lighter than comparable depths in Bisley, with values that 

varied between -0.64‰ and -0.83‰, and a Ca mass weighted average δ44Ca of -

0.72‰, 0.63‰ lighter than Bisley. Relative to external inputs, the Ca mass 

weighted average δ44Ca of exchangeable soil from both sites were significantly 

more positive that the δ44Ca of both bedrock and precipitation. 
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87Sr/86Sr ratios were similar between the watersheds, encompassing a fairly 

narrow range between 0.7093 and 0.7099. The depth trends exhibited similar 

behavior. At Rio Icacos, 87Sr/86Sr was lowest in the shallowest depths (0.70932 

and 0.70934 in the 0-5cm and 5-10cm depths), and became more radiogenic 

with depth (0.70986 and 0.71050 in the 68-78cm and 78-104cm depths). 

Similarly Bisley 1, the smaller values occurred in the shallowest depths (0.70952 

and 0.70965 in the 0-5cm and 5-10cm depths) and becoming somewhat more 

radiogenic in the B horizon (0.70993 and 0.70988 in the 38-55cm and 55-68cm 

depths). All soil exchangeable 87Sr/86Sr ratios were substantially more radiogenic 

than bedrock at Icacos and Bisley (0.7041, Jolly et al. 1998; Pett-Ridge et al. 

2009; Porder et al. 2015), closer to the average 87Sr/86Sr measured for wet 

deposition at Icacos (0.7103; Pett-Ridge et al., 2009). 

2.4.5 δ44Ca and 87Sr/86Sr of vegetation 

Dominant vegetation at each watershed (Palo Colorado in Rio Icacos and 

Tabonuco at Bisley) (Table 2.4, Figure 2.5) exhibited lower δ44Ca values in roots 

(-1.68‰ and -1.52‰ for Palo Colorado and Tabonuco, respectively) compared to 

leaves (-1.27‰ and -1.00‰ for Palo Colorado and Tabonuco, respectively). The 

Tabonuco sample exhibited a slightly larger differences in δ44Ca values between 

leaves and roots (Δleaves-roots) compared with the Palo Colorado (Δleaves-roots for 

Tabonuco = 0.91‰, while the Δleaves-roots for Palo Colorado = 0.55‰). However, 

we observed a larger difference between the δ44Ca values of Tabonuco roots 

and the Ca mass weighted average soil exchangeable δ44Ca value of Bisley 1 
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soil (Δsoil-roots = 1.43‰) compared with δ44Ca values of Palo Colorado roots and 

the mass-weighted average soil exchangeable δ44Ca value of Rio Icacos soil 

(Δsoil-roots = 0.96‰).  

Cercropia samples collected from both sites also exhibited lower δ44Ca 

values in roots relative to the leaves and Δleaves-roots values that agreed well with 

Tabonuco and Palo Colorado species (Δleaves-roots for Bisley Cercropia = 0.43‰, 

Δleaves-roots for Rio Icacos Cercropia = 0.42‰). Despite the differences in the 

δ44Ca of soil exchangeable Ca concentrations in both watersheds, the Cercropia 

samples exhibited similar Δsoil-roots (Δsoil-roots = 1.48‰ and 1.49‰ for Cercropia in 

Bisley 1 and Rio Icacos, respectively). 

Measurements of 87Sr/86Sr ratios of leaves and roots from the Tabonuco 

sample (0.70922 and 0.70933 for roots and leaves, respectively) and Cecropia 

(0.70922 and 0.70926 for roots and leaves, respectively) collected in Bisley 1 

closely reflected the 87Sr/86Sr ratios of the soil exchangeable reservoir. The 

similarity between 87Sr/86Sr ratios in vegetation compartments and the soil 

exchangeable reservoir has also been observed in Rio Icacos and Bisley 1 (Pett-

Ridge et al. 2009; Porder et al. 2015). 

2.4.6 δ44Ca of streamwater 

We measured the δ44Ca values of both the high and low discharge 

streamwater samples from Bisley 1 and Rio Icacos (Table 2.2). For both 

watersheds, the baseflow stream water δ44Ca (-1.02‰ and -0.99‰ for Bisley and 

Rio Icacos, respectively) were not significantly different from each other or from 
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their respective bedrock δ44Ca values. However, both high flow samples from 

Bisley 1 and Rio Icacos exhibited a significant shift toward more positive δ44Ca 

values (-0.72‰ and -0.90‰ for Bisley and Rio Icacos, respectively) when 

compared with their respective low discharge samples. The Ca isotopic 

difference between high and low discharge was larger for Bisley 1 compared with 

Rio Icacos (ΔhighQ-lowQ = 0.30‰ and 0.09‰ in Bisley 1 and Rio Icacos streamflow, 

respectively). 

2.5 DISCUSSION 

2.5.1  Mechanism for heavy soil δ44Ca in LEF sites 

The observation that soil exchangeable δ44Ca in both Luquillo forests are 

more positive than external inputs contrasts with the majority of stable Ca isotope 

studies carried out in terrestrial ecosystems. In the two previous studies with this 

characteristic (Wiegand et al. 2005; Holmden and Bélanger 2010), 87Sr/86Sr 

ratios indicate that soil exchangeable Sr is atmospherically dominated (Kennedy 

et al. 1998; Bélanger and Holmden 2010). As such, atmospherically derived sea 

salt Ca has been proposed as a mechanism for producing isotopically heavy soil 

exchangeable reservoir relative to external inputs (Bullen et al. 2004; Wiegand et 

al. 2005). However, additional mechanisms may produce isotopically heavy soils 

relative to inputs, particularly an imbalance in the uptake and return flux of Ca 

between the soil exchangeable and biomass reservoir (Holmden and Bélanger 

2010; Fantle and Tipper 2014). Below, we discuss these two mechanisms in the 
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context of the Bisley 1 and Rio Icacos data, then discuss what might be 

producing the significant difference in the Ca stable isotope ratios of the soil 

exchangeable reservoir between the two sites. 

2.5.2 Atmospheric inputs of Ca to LEF 

Puerto Rico lies in the path of the easterly trade winds that deliver 

Saharan dust along with significant contributions of cations derived from seasalt 

aerosols into the Luquillo Experimental Forest (Muhs et al. 1990; Moreno et al. 

2006; Murphy and Stallard 2012). Pett-Ridge et al. (2009) studied atmospheric 

inputs of Sr and Ca to the Icacos site using 87Sr/86Sr and Ca/Sr as tracers. Their 

data shows that Sr in wet deposition is dominated by seasalt (87%), with a 

secondary contribution from dissolved Sr from dust. They calculated that total 

atmospheric deposition (wet plus dry) is comprised of a greater proportion of dust 

(49%), which releases additional radiogenic (0.7197) Sr to soils as it dissolves. 

Pett-Ridge et al. (2009) argued that soil exchangeable Sr at the Icacos ridgetop 

site (87Sr/86Sr ~0.7095) was dominated by atmospheric inputs (seasalt plus dust; 

58% total) with additional contributions from bedrock Sr (42%), attributed to 

weathering of scattered bedrock corestones within otherwise deeply weathered 

saprolite. Our Icacos Sr data are consistent with this interpretation as are our Sr 

data from Bisley. Bisley soil exchangeable 87Sr/86Sr ratios (0.7093) are just 

slightly less radiogenic than Icacos, implying a perhaps a slightly larger 

contribution from bedrock-derived Sr than Icacos (44%), but overall similar 

proportions of atmosphere-derived Sr between the two sites. Our values agree 



 

 

73 

73 

 

well with a larger data set of soil excchnageable 87Sr/86Sr ratios reported in 

Porder et al. (2015), which found that Tabonuco forests on vocaniclastic soils 

generally have less radiogenic 87Sr/86Sr ratios relative to Rio Icacos. 

Inferring the provenance of Ca based on Sr isotopes requires 

consideration of Ca/Sr ratios of sources. Applying our measured bedrock Ca/Sr 

ratios for Icacos (545 molar) and Bisley (166), we calculate that Ca inputs to 

Icacos are divided roughly equally between atmospheric (seasalt plus dust; 47%) 

and bedrock (53%). For Bisley, the lower bedrock Ca/Sr ratio implies a higher 

proportion of atmospheric Ca (72%) relative to bedrock (28%). 

Because the atmospheric source of Ca is important at both LEF sites, 

atmospheric deposition of Ca has the potential to shift soil δ44Ca away from 

values typical of bedrock. Seasalt in particular should have high δ44Ca (0‰) 

relative to bedrock, so it is worth exploring whether inputs of seasalt might 

account for soil exchangeable δ44Ca that are heavier than bedrock at both 

Icacos, and to a greater degree, Bisley. Pett-Ridge et al. (2009) calculated that at 

most 17% of total atmospheric deposition of Ca at Icacos is seasalt derived, with 

Ca deposition dominated by dust. We infer that Saharan dust should have δ44Ca 

close to -1.0‰ (average δ44Ca for silicate rocks = -0.94‰, Fantle and Tipper 

2014) but we have no direct measurements of the dust component; if carbonates 

(average δ44Ca = -1.28‰; Fantle and Tipper, 2014) contribute significantly to Ca 

in Saharan dust, the δ44Ca should be more negative than -1.0‰. Further support 

for the lack of a significant seasalt input of Ca is based on the major ion 
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chemistry of precipitation reported by Heartsill-Scalley (2007), who computed 

mean weekly precipitation composition at LEF for the period 1988-2002. The 

average precipitation Ca/Cl ratio (0.097 molar) is dramatically higher than that of 

seawater (0.0188, Pilson 1998), indicating substantial non-seasalt contributions 

of Ca to precipitation. Assuming precipitation Cl is derived entirely from seasalt, 

we calculate that seasalt contributes at most 20% of Ca to precipitation. 

Our data on δ44Ca in wet precipitation at Bisley, while limited to two 

samples, supports the inference made from Sr and major ion chemistry that 

seasalt is a minor contribution to Ca in precipitation. We calculate that an 

atmospheric source of Ca that is at most 20% seawater could be as heavy as -

0.8‰, but certainly not heavy enough to account for the δ44Ca (near 0‰) seen in 

Bisley soils. In fact our measured average precipitation δ44Ca of -1.15‰ 

suggests that Ca in wet precipitation is not a simple mixture of dust and seasalt 

unless Saharan dust is much more negative than -1.0‰. This interpretation is 

supported by precipitation Ca/Sr ratios measured by Pett-Ridge et al. (2009), 

which are higher than predicted for such a mixture. The authors suggested that 

an unidentified source of Ca with high Ca/Sr must contribute to wet precipitation. 

Our data suggests that this as yet unidentified component must be isotopically 

light in Ca, consistent with contributions from carbonate dust. We conclude that 

the integrated sources of Ca to the LEF sites, although incompletely understood, 

likely have an average δ44Ca slightly less than  -1.0‰, and that relatively heavy 

values of δ44Ca measured in the soil exchangeable pool must reflect internal 
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fractionation processes rather than the influence of isotopically heavy Ca sources 

such as seasalt. 

2.5.3 Effects of internal Ca cycling on soil exchangeable δ44Ca 

Another mechanism that can produce a soil exchangeable reservoir that is 

isotopically heavier than external inputs is through imbalance in the uptake and 

return flux of Ca between the soil exchangeable and biomass reservoir (Holmden 

and Bélanger 2010; Fantle and Tipper 2014). In a steady-state situation where 

equal amounts of Ca are being taken up from the soil exchangeable reservoir 

(with an accompanying isotopic fractionation) as is being returned to the soil 

exchangeable reservoir via above and belowground biomass decay, mass 

balance considerations indicate the δ44Ca of the soil exchangeable reservoir will 

be isotopically indistinguishable from the δ44Ca of external inputs (weathering 

and atmospheric deposition). In fact, when uptake is balanced by return, the 

δ44Ca values of the soil exchangeable reservoir should remain identical to the 

δ44Ca of external inputs regardless of the magnitude of isotopic fractionation. 

However, an imbalance in the uptake and return flux can produce a situation 

where the soil exchangeable reservoir is either isotopically lighter or heavier than 

external inputs. In this case, the difference between the δ44Ca value of the soil 

exchangeable reservoir and the external inputs for a given imbalance in the 

uptake and return flux scales with the magnitude of the isotopic fractionation 

associated with plant uptake of Ca. We next explore this mechanism in the 

context of the Bisley 1 and Rio Icacos forests. 
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2.5.4 Mechanisms driving differences in soil exchangeable δ44Ca in Bisley 

and Rio Icacos 

Above we argued that the different soil exchangeable δ44Ca values 

observed at each site reflect internal cycling of Ca rather than differences in the 

δ44Ca of Ca sources. Both sites have soil exchangeable δ44Ca that is heavy 

relative to Ca sources. Although we have measured only one soil profile from 

each site, and therefore cannot determine how representative these profiles are, 

supporting evidence for a heavy soil exchangeable Ca comes from the 

observation that both watersheds shift toward heavier δ44Ca during stormflow. 

We attribute this shift to activation of shallow flowpaths, adding heavy soil-

derived Ca to a baseflow component during stormflow (Kurtz et al. 2011). The 

observation that the difference in baseflow and stormflow δ44Ca is greater at 

Bisley is consistent with a Ca pool that is heavier at Bisley than at Rio Icacos. 

Below we explore why soil exchangeable δ44Ca values may be different between 

the two sites. Although the watersheds are located in close proximity to one 

another (~6km) and they share relatively similar climate (both classified as 

subtropical wet ecosystems, Ewel and Whitmore (1973)), there are fundamental 

differences in micro-climate, lithology, biology and disturbance history that may 

account for differences in the δ44Ca values of the soil exchangeable reservoir.  
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2.5.5 Importance of Perturbations to the Ca cycle on soil exchangeable 

δ44Ca 

Landslides and hurricanes are two of the most common perturbations to 

the Ca cycle within the LEF, causing changes in tree mortality and canopy 

structure, nutrient uptake and litterfall by vegetation, organic matter 

decomposition rates, and can provide additional sources of nutrients via 

exhumation of unweathered bedrock and minerals (Scatena 1989; Basnet et al. 

1992; Scatena and Lugo 1995). On the topographic ridges where our soil 

samples were collected, landslides are relatively rare and hurricanes are likely 

the dominant disturbance mechanism (Scatena and Lugo, 1995). Hurricane 

disturbance, through reduction in aboveground biomass and subsequent 

regrowth, creates a situation where there is an imbalance in the Ca fluxes 

between the soil exchangeable and biomass reservoir and may provide an 

explanation for the observation that the soil exchangeable reservoir at each site 

is isotopically heavier than external inputs, and the difference in soil 

exchangeable δ44Ca between Bisley 1 and Rio Icacos. 

Hurricane Hugo made landfall in Puerto Rico on September 18, 1989 as a 

Category 3 with sustained winds of 166km*hr-1 (Walker 1991). While Hugo did 

not have the highest sustained wind speeds, rainfall or storm duration when 

compared with other hurricanes that passed over Puerto Rico in the 100 years 

prior to Hugo, the actual impact of each hurricane on the LEF depends heavily on 

their storm track over the island (Scatena and Larsen 1991). Although the island-
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wide damage caused by Hugo was relative small, due to its storm track, it was 

estimated to be second only to a 1932 hurricane with regard to the amount of 

hurricane related damage to the LEF since 1899 (Scatena and Larsen, 1991). 

While less is known regarding the amount of damage the 1932 hurricane caused 

to the Bisley 1 vegetation, substantial research has been devoted to 

understanding the response and recovery of vegetation in Bisley 1 to Hurricane 

Hugo (Brokaw and Grear 1991; Basnet et al. 1992; Boose et al. 1994; Scatena et 

al. 1996; Beard et al. 2005). Analysis of damage to aboveground biomass as a 

result of Hurricane Hugo indicated that Bisley 1 was within some of the most 

heavily damaged areas of LEF, with only 3% of stems ≥2.5cm having more than 

50% of leaves intact and 38% of stems having only the bole remaining upright 

(Scatena and Lugo, 1995, Boose et al, 1994). Observations and modeling of 

hurricane Hugo damage as it relates to topographic aspect found that north-

facing slopes, which include Bisley 1, incurred the most amount of damage while 

south facing slopes showed less damage (Boose et al., 1994). 

Scatena et al. (1996) observed that nutrient cycling was significantly 

impacted by Hugo, particularly in the first 5 years following the hurricane. 

Hurricane Hugo reduced Ca in aboveground biomass by approximately 50%, 

although within 5 years aboveground biomass recovered to pre-hurricane levels 

(Scatena et al. 1996), and by 2004 had surpassed pre-hurricane levels, reaching 

124% of pre-hurricane biomass (Heartsill Scalley et al. 2010). Scatena et al. 

(1996) found that in the first two years following the passage of Hurricane Hugo, 



 

 

79 

79 

 

between 60-75% of all Ca uptake by vegetation was retained by vegetation as 

opposed to returned to the soil via litterfall, indicating a net removal of Ca from 

the soil as biomass in Bisley 1 regrew following the hurricane. This net uptake of 

Ca from the soil indicates an imbalance in the uptake and return flux of Ca to the 

soil exchangeable reservoir that may produce the δ44Ca values we observe at 

the two watersheds. 

We used our stable Ca isotope mass balance model to simulation the 

impact Hurricane Hugo exerted on stable Ca isotope ratios in the soil 

exchangeable reservoir at Bisley 1. We force the model using net yearly biomass 

accumulation rates between 1989 and 2012 estimated by fitting an exponential 

equation to published measurements of the change in Ca biomass storage in the 

15 years following the hurricane (Heartsill Scalley et al. 2010) (Figure 2.6). 

Depending on the trajectory of the biomass accumulation, model simulations 

suggest that by 2012, the net removal of Ca from the soil as a result of the 

regrowth of the biomass reservoir results in the δ44Ca of the soil exchangeable 

pool becoming heavier, shifting from -1.0‰ to between -0.37 to -0.55‰ (Figure 

2.7). The exact magnitude of the increase in soil δ44Ca depends on the rate of 

biomass accumulation used in the model. No matter the exact rate of biomass 

Ca accumulation during regrowth, these results indicate that hurricane 

disturbance and subsequent biomass regrowth could drive the δ44Ca of the soil 

exchangeable pool in Bisley 1 from an initial value of -1‰ toward more positive 

values, although the δ44Ca of the soil exchangeable pool for our accumulation 
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trajectories only reached a maximum values of -0.37‰, lower than our post-

hurricane soil exchangeable δ44Ca measurement of -0.1‰. Our underestimation 

of soil exchangeable δ44Ca relative to measured values may be related to our 

model assumption that the system was at steady-state pre-hurricane Hugo, 

which likely is an unrealistic scenario. Scatena and Larsen (1991) calculated that 

hurricanes affect the Luquillo Experimental Forest approximately every 25-30 

years, and experience damage similar to that caused by Hugo every 50-60 

years. For damage on the scale of Hurricane Hugo, our model indicates that the 

time required for the soil exchangeable δ44Ca to return to a values within 

measurement precision of external inputs is on the order of 200 years. This 

suggests that it is unlikely that the system had fully recovered from past 

hurricanes and the δ44Ca of the soil exchangeable reservoir was likely more 

positive than -1‰ prior to Hurricane Hugo.  

There is evidence that the Rio Icacos watershed was spared the worst of 

the impact of Hurricane Hugo, owing to the fact that it is a south-facing 

watershed (Lodge et al. 1991; Boose et al. 1994; Sullivan et al. 1999). McDowell 

et al. (1994) used a mass balance approach to calculate a net biomass 

accumulation rate of 100 mol Ca*ha-1*yr-1. If we assume that this is 

representative of post-hurricane accumulation rate in Rio Icacos, biomass 

accumulation Rio Icacos in 1994 was approximately 14% of our fitted 1994 

accumulation rate in Bisley 1 of 740 mol Ca*ha-1*yr-1. Our analysis suggests that 

if lower amounts of defoliation (and hence a smaller magnitude of biomass Ca 
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accumulation during regrowth) occurred at Rio Icacos, the soil exchangeable 

reservoir would experience a smaller positive shift in the δ44Ca relative to the 

δ44Ca of external inputs when compared with Bisley 1 (Figure 2.7). 

2.5.6 Stable Ca isotope fractionation during uptake by vegetation in Bisley 

1 and Rio Icacos 

To this point, we have not considered how differences in the magnitude of 

the isotopic fractionation between soil and plant tissue at the two sites might 

affect the soil exchangeable δ44Ca values. Previous research has established 

that stable Ca isotopes are fractionated during biologic uptake of Ca by roots 

(Cobert et al. 2011; Schmitt et al. 2013). Using greenhouse experiments, Cobert 

et al. (2011) identified three stable Ca isotope fractionation mechanisms during 

plant uptake that enrich plant organs in the light isotopes of Ca: when Ca enters 

the lateral roots, as Ca is transported along the xylem, and in the reproductive 

organs where the cell wall structures and number of available exchange sites 

seem to be different to those of the xylem wall. In agreement with Cobert et al. 

(2011) and previous research that measured the δ44Ca of plant organs, the roots 

in all 3 species analyzed were isotopically lighter than both soil exchangeable Ca 

and leaf samples from the respective tree. Though we did not determine 

stemwood δ44Ca in our 3 species, our data supports an initial fractionation as 

roots take Ca up from the soil (Δsoil-roots) and a second internal fractionation 

process as Ca travels along the transpiration stream (Δleaves-roots). 
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While the Δleaves-roots doesn’t exhibit significant variability among the 3 

species measured in this study, Δsoil-roots values did exhibit variability at the 

species level. In particular, the Palo Colorado specimens we sampled in Rio 

Icacos had significantly smaller Δsoil-roots relative to the Tabonuco specimen we 

sampled in Bisley 1 and the Cecropia specimens sampled from both watersheds. 

The close similarity between Δsoil-roots of Cecropia found in Bisley 1 and Rio 

Icacos suggest that Δsoil-roots in this species was not affected by the difference in 

soil exchangeable Ca concentrations. While this observation contrasts finding by 

Cobert et al. (2011) who observed a relationship between Δsoil-roots and the Ca 

concentration in soil solution for potted dwarf French bean (Phaseolus vulgaris 

L.) plants, we acknowledge that our limited sampling of Cecropia trees may not 

completely represent the species as a whole, so we caution against generalizing 

our finding regarding the relationship between soil Ca availability and biologically 

induced stable Ca isotope fractionation. 

That the Δsoil-roots for Palo Colorado is significantly smaller than either 

Tabonuco or Cecropia is intriguing with regard to differences in the soil 

exchangeable δ44Ca we observed at each site. As mentioned previously 

however, differences in separation factors between the two sites cannot produce 

isotopic differences between the soil exchangeable reservoir and external inputs 

without an accompanying imbalance in the Ca fluxes between the soil 

exchangeable and biomass reservoir. However, the observation of different 

separation factors for the dominant vegetation species at each site leaves open 
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the possibility that if both sites were subjected to the same magnitude of 

disturbance and regrowth as a result of Hurricane Hugo, the δ44Ca of the soil 

exchangeable reservoirs could evolve along different trajectories. To examine the 

sensitivity of the soil exchangeable δ44Ca value to the vegetation uptake 

fractionation factor (ΔU), we varied ΔU between -2.0‰ and 0.0‰ while keeping 

the biomass Ca accumulation constant (Figure 2.8). The most negative value for 

ΔU (-2.0‰) produced a soil exchangeable pool that reached a δ44Ca value of ~-

0.10‰ by 2012, a 0.90‰ increase relative to initial conditions, but a ΔU = -0.5‰ 

only produced an increase of ~0.2‰ by 2012. If ΔU = 0.0‰, the soil 

exchangeable δ44Ca value remained unchanged relative to the initial soil 

exchangeable reservoir δ44Ca value of -1.0‰. If we assume the ΔU for Bisley 1 

and Rio Icacos forest can be approximated as the average of Δsoil-roots and Δsoil-

leaves for the dominant species in each forest, and apply the same Ca 

accumulation rate to both watersheds, we find that by 2012, our model would 

predict the soil exchangeable δ44Ca at Rio Icacos to be more negative than 

Bisley 1, but the difference between the two is much smaller, with the modeled 

δ44Ca at Rio Icacos over predicted and the δ44Ca in Bisley underpredicted. While 

we acknowledge that our ΔU values are only estimates, our results indicate that 

the sites may have in fact experienced differing degrees of disturbance in 

addition to having different ΔU. 
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2.6 CONCLUSIONS 

In this study, we present stable Ca isotope data and 87Sr/86Sr data for two 

tropical forests, Bisley 1 and Rio Icacos, within the Luquillo Critical Zone 

observatory in Puerto Rico. Although the sites are only 6km apart, they exhibit 

contrasting lithology, Ca concentration in the soil, and dominant vegetation that 

may produce distinct Ca cycles. Both watersheds exhibited soil exchangeable 

δ44Ca values that were isotopically heavier than external inputs, a relatively rare 

observation to date. Bisley 1 soil had higher Ca concentration in the upper 1m of 

the soil exchangeable reservoir and significantly more positive soil exchangeable 

δ44Ca values (average soil exchangeable δ44Ca at Bisley 1 = -0.09‰) than Rio 

Icacos. Soil exchangeable Ca concentrations at Rio Icacos were lower and soil 

exchangeable δ44Ca values (average soil exchangeable δ44Ca at Rio Icacos = -

0.72‰), were closer the δ44Ca value of Ca sources into both sites. This 

difference was reflected in the δ44Ca values of high discharge waters draining 

each watershed.  

Given the geographic location of Puerto Rico, it may be tempting to call on 

a soil exchangeable reservoir dominated by sea salt Ca (δ44Ca of sea salt Ca = 

0.00‰) as the primary mechanism behind the isotopically heavy soil Ca, 

particularly at the Bisley 1 site. However, Ca and Sr isotope data do not support 

this conclusion. First, 87Sr/86Sr data suggest that the two sites receive similar 

relative contributions of atmospheric Sr. Secondly, precipitation δ44Ca averages -

1.15‰, suggesting that sea salt is a minor contributor to atmospheric Ca, and 
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making it unlikely that atmospheric deposition would drive either site to heavier 

values of δ44Ca. 

Instead we propose that heavy δ44Ca at these sites, and in particular at 

the Bisley 1 site reflect biological Ca isotope fractionation combined with a 

disturbance-driven imbalance in the forests’ Ca cycle. Our measurements of 

δ44Ca in roots and leaves of the dominant tree species in each watershed 

indicated that the isotopic separation factor (Δsoil-roots) between the dominant tree 

species in Bisley 1 and the soil exchangeable reservoir was larger than in Rio 

Icacos, perhaps accounting for some of the soil Ca isotopic difference between 

sites. However, mass balance considerations indicate that heavy soil Ca requires 

that Ca uptake from the soil exchange complex is larger than the flux of Ca 

returned to soil via decomposition. 

One well documented process that can produce such non-steady state 

conditions in the LCZO is ecosystem disturbance from hurricanes. Box model 

simulations of the Ca cycle indicate that biomass regrowth following a hurricane 

disturbance such as the 1989 Hurricane Hugo can produce a flux imbalance that 

would drive the soil exchangeable reservoir to become isotopically heavier than 

external inputs of Ca. With regard to the differences we observe between forests, 

if both forests were disturbed the same degree (and experienced the same 

magnitude of biomass regrowth) the distinct isotopic separation factors in each 

forest could produce the differences in soil exchangeable δ44Ca that we observe. 

However, to produce such a large difference in soil exchangeable δ44Ca between 
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both sites additionally requires a different flux imbalances at Bisley and Rio 

Icacos, possibly driven by distinct disturbance histories and recovery trajectories. 

It’s important to note that our data does not permit us to directly attribute 

the imbalance in the cycling of Ca between the soil and biomass reservoir to a 

particular event. In fact, the differences in stable Ca isotope ratios is likely a 

result of the culmination of multiple disturbances that have occurred over the 

previous 10s to 100s of years. Finally, we cannot rule that the calcium cycle in 

the Tabonuco forest in Bisley 1 is inherently more susceptible to disturbances 

compared with Palo Colorado forests possibly as a result of geomorphic, 

lithologic or biologic factors. Nonetheless, while we may not be able to identify 

definitely the mechanism driving this imbalance, our data and model simulations 

suggest that stable Ca isotope ratios of the soil exchangeable reservoir may 

provide information on the disturbance history of a terrestrial ecosystem.  
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2.8 SUPPLEMENTAL INFORMATION 

2.8.1 Figures 

 

Figure 2.1. Site Map of Caribbean National Forest within the insland of Puerto 

Rico, b) location of Bisley and Rio Icacos within the Caribbean National Forest, c) 

Rio Icacos watershed and d) Bisley 1 watershed with locations of stream gage 

and soil pits. 
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Figure 2.2. Ca stable isotope box model diagram. See text for definition of flux 

and reservoir abbreviations, and Appendix A2 for additional model details. 
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Figure 2.3. a) Soil exchangeable Ca concentrations in each watershed and b) Ca 

concentrations in different vegetation compartments. 
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Figure 2.4. δ44Ca values of external inputs, streamflow, bedrock, precipitation 

and soil exchangeable samples for a) Bisley 1, and b) Rio Icacos. 
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Figure 2.5. Δ44CaVeg-Soil (‰ difference between average soil exchangeable δ44Ca 

and vegetation compartment δ44Ca) for a) dominant vegetation (Tabonuco) and 

Cercropia in Bisley 1, and b) dominant vegetation (Palo Colorado) and Cercropia 

in Rio Icacos. 
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Figure 2.6. Biomass regrowth following the passing of hurricane Hugo in 1989. 

Red diamonds indicate observed biomass Ca storage with 1S.E. error bars 

(Hearsill Scaley et al. 2010), the solid symbol represent best fit of an exponential 

equation, while open symbols represent different biomass Ca accumulation 

scenarios. 
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Figure 2.7. Model simulation of the time evolution of Δ44Casoil-Inputs (‰ difference 

between the soil exchangeable reservoir and external inputs) following the 

passage of hurricane Hugo using the different uptake scenarios presented in Fig. 

2.6. Symbols are the same as used in Fig. 2.6 for different Ca uptake scenarios. 

Model Parameters are represented in Table 2.5. 
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Figure 2.8. Model simulation of the time evolution of Δ44Casoil-Inputs (‰ difference 

between the soil exchangeable reservoir and external inputs) following the 

passage of hurricane Hugo using different values of ΔU (isotopic fractionation 

factor associated with biological uptake of Ca from the soil exchangeable 

reservoir). 
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2.8.2 Tables 

Table 2.1. Elemental concentrations and Ca stable isotope ratios for external inputs into Rio Icacos and Bisley 1 

forests. 

Sample 
Type Site 

Sample 
ID 

(Wt.% Oxide) (μg/g sample) molar ratio 
δ44Ca (‰ 
rel. SW) SiO2 MgO Al2O3 CaO Na2O K2O Ba Sr Ca/Sr Ca/Na 

Rock Bisley 1 LTR-2 nd 2.3 16.2 7.4 1.6 1.6 601.6 696.6 165.98 2.56 -0.98 

Rock Rio Icacos RBQD nd 2.7 12.0 3.7 3.6 1.5 120.8 106.8 545.42 0.57 -0.95 

 

Sample 
Type Site Date Time 

(ug/mL) molar ratio 
δ44Ca (‰ 
rel. SW) Si Mg Al Ca Sr Na K Cl- NO3- SO4

2- Ca/Na 

precipitation Rio Icacos 11/13/2006 12:28 2.2 2.9 nd 3.5 nd 24.5 4.4 8.8 5.4 3.5 0.14 -1.17 

precipitation Rio Icacos 11/13/2006 12:54 1.4 5.2 nd 3.8 nd 50.4 7.5 16.5 8.5 6.3 0.08 -1.13 

nd: Not determined. 
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Table 2.2. Elemental concentrations and Ca stable isotope ratios for streamwater draining Rio Icacos and Bisley 1 

forests. 

Sample 
ID Site Description Date Time 

(ug/mL) (m3*sec-1) 
δ44Ca (‰ 
rel. SW) Si Mn Fe Mg Ca Sr Na K Daily Q 

PR-174 Icacos Stormflow 11/13/2006 13:30 1.640 0.014 0.321 0.294 0.705 0.004 1.361 0.309 1.8 -0.90 

PR-209 Icacos Baseflow 11/14/2006 11:50 7.880 0.032 0.214 1.029 2.817 0.015 3.250 0.464 0.4 -0.99 

B-2 Bisley Stormflow 6/5/2011 9:45 2.387 bdl 0.053 0.561 0.709 0.006 2.302 0.879 2.2a -0.72 

B1-12 Bisley Baseflow 6/26/2011 16:46 16.343 bdl 0.027 2.948 5.331 0.055 8.096 0.855 0.8a -1.02 

bdl: Below detection limit. 
a: daily discharge recorded at Rio Mameyes stream gauge (USGS#50065500) which drains the basin that 
encompasses Bisley 1. 
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Table 2.3. Elemental concentrations, Ca stable isotope ratios and Sr isotope ratios of the soil exchangeable 

reservoir in Rio Icacos and Bisley 1 forests. 

Site horizon Depth 

(μg/g sample) 
δ44Ca (‰ 
rel. SW) 87Sr/86Sr Mg Al Ca Sr Ba Na K 

Bisley Oa1 0-5cm 176.08 355.31 128.44 2.90 8.36 54.80 78.97 -0.06 0.70930 

Bisley Oa2 5-10cm 145.97 339.61 70.88 1.89 8.11 66.61 69.25 -0.28 0.70931 

Bisley B 10-25cm 76.57 306.35 15.34 0.54 6.93 16.89 23.98 0.03 0.70938 

Bisley B 25-38cm 37.62 273.55 7.10 0.22 9.74 12.47 17.79 -0.01 0.70924 

Bisley B2 38-53cm 23.78 336.76 4.24 0.24 14.12 13.67 8.10 -0.18 0.70956 

Bisley B3 53-67cm 28.94 584.37 5.20 0.25 9.25 10.41 6.62 -0.06 0.70950 

Bisley C 67-87cm 20.55 566.85 3.37 0.15 10.08 9.48 8.17 nd 0.70980 

Bisley C2 87-107cm 25.40 751.12 2.36 0.11 9.50 9.59 10.85 nd 0.71044 

Rio Icacos Oa1 0-8cm 71.14 176.49 54.21 0.91 3.06 45.26 70.32 -0.71 0.70950 

Rio Icacos Oa2 8-15cm 48.36 214.34 20.27 0.28 3.18 38.53 46.70 -0.82 0.70957 

Rio Icacos A 15-28cm 25.68 163.18 11.85 0.14 2.64 17.27 22.96 -0.64 0.70941 

Rio Icacos B 28-38cm 9.74 120.53 3.23 0.03 2.81 9.60 9.07 -0.76 0.70946 

Rio Icacos B2 38cm-55cm 8.01 133.38 2.00 0.01 4.74 8.52 6.46 -0.83 0.70901 

Rio Icacos B2 55-68cm 8.25 139.40 2.89 0.02 5.09 8.63 8.25 nd 0.70942 

Rio Icacos B3 68-78cm 6.95 152.00 1.42 0.02 6.45 9.15 6.31 nd 0.70934 

Rio Icacos C1 78-104cm 7.66 213.18 0.77 0.47 14.98 22.02 5.35 nd 0.70936 

nd: Not determined. 
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Table 2.4. Elemental concentrations, Ca stable isotope ratios and Sr isotope ratios of vegetation samples collected  

in Rio Icacos and Bisley 1 forests. 

Sample 
ID Site Species Description 

(μg/g sample) 

δ44Ca (‰ 
rel. SW) 87Sr/86Sr P Mg Ca Sr Ba Na K 

LTV-1 Bisley 
tabonuco 

roots 238 555 1990 22 12 1978 2741 -1.52 0.70922 

LTV-1 Bisley 
tabonuco 

stem 276 1081 3993 42 19 3290 5599 nd nd 

LTV-1 Bisley 
tabonuco 

greenstem 479 4922 6602 70 42 8006 10945 nd nd 

LTV-1 Bisley 
tabonuco 

leaves 805 6279 10494 73 25 5961 17956 -1.00 0.70933 

LTV-3 Bisley 
sierra palm 

roots 174 995 581 6 6 2305 1932 nd nd 

LTV-3 Bisley 
sierra palm 

stalk 250 2390 1834 11 7 7097 14890 nd nd 

LTV-3 Bisley 
sierra palm 

leaves 785 4368 4419 14 5 539 4716 nd nd 

LTV-5 Bisley 
cecropia 

roots 164 4972 1558 20 17 bdl 1403 -1.57 0.70922 

LTV-5 Bisley 
cecropia 

wood/bark 207 2335 4173 38 28 bdl 7849 nd nd 

LTV-5 Bisley 
cecropia 

leaves 213 2230 9950 61 25 bdl 884 -1.14 0.70926 

LTV-7 Icacos 
colorado 

roots 154 587 1122 18 23 bdl 1156 -1.68 nd 

LTV-7 Icacos 
colorado 

stemwood 76 489 1364 25 32 387 2703 nd nd 

LTV-7 Icacos 
colorado 

leaves 286 6270 7061 75 53 7512 3039 -1.27 nd 

LTV-9 Icacos 
sierra palm 

roots 96 558 281 3 4 1338 1950 nd nd 

LTV-9 Icacos 
sierra palm 

stalk 155 363 1633 6 4 2658 13641 nd nd 

LTV-9 Icacos 
sierra palm 

leaves 437 2001 2791 8 3 234 6901 nd nd 

LTV-10 Icacos 
cecropia 

roots 138 2680 1036 17 16 bdl 2833 -2.21 nd 

LTV-10 Icacos 
cecropia 

bark/stemwood 130 1836 3133 40 39 bdl 3585 nd nd 

LTV-10 Icacos 
cecropia 

leaves 160 2255 8675 53 28 374 697 -1.79 nd 

nd: Not determined. 
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Table 2.5. Model parameters for dynamic box model. 

 

Parameter Description Units Value Source 

MS Mass of Soil Exchangeable Pool mol Ca/ha 10000 Silver et al (1994) 

MV (pre-hurricane) Mass of vegetation pool pre-hurricane Hugo (1989) mol Ca/ha 14171 Heartsill-Scaley et al. (2010) 

MV (post-hurricane) Mass of vegetation pool post-hurricane Hugo (1989) mol Ca/ha 7378 Heartsill-Scaley et al. (2010) 

FA Atmospheric Deposition mol ca/ha*yr-1 400 Heartsill-Scaley et al. (2009) 

FW weathering Flux mol ca/ha*yr-1 0 a 

FZ Leaching Flux mol ca/ha*yr-1 400 a 

FR Litterfall Flux mol ca/ha*yr-1 variable Walker et al. (1991) 

FU Uptake Flux mol ca/ha*yr-1 variable Heartsill-Scaley (2010) 

δS Initial soil exchangeable δ44Ca ‰ (rel. Seawater) -1 a 

δV Initial vegetation δ44Ca ‰ (rel. Seawater) variable a 

δA Atmospheric deposition δ44Ca ‰ (rel. Seawater) -1 this studyb 

δW Weathering δ44Ca ‰ (rel. Seawater) -1 this studyb 

ΔU ΔU ‰ (rel. Seawater) variable a 

a: see text for explanation. 
b: value rounded to -1‰ for modeling purposes. 
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CHAPTER 3: LINKING VARIABILITY IN SOIL STABLE CALCIUM ISOTOPE 

RATIOS TO ECOSYSTEM PROCESSES USING GLOBAL MEASUREMENTS 

OF STABLE CA ISOTOPES 

3.1 ABSTRACT 

Over the past 15 years, measurements of stable Ca isotope ratios (δ44Ca) 

in terrestrial ecosystems have become an increasingly common tool to 

investigate ecosystem calcium cycling. δ44Ca measurements of the bioavailable 

soil Ca reservoir (soil exchangeable and soil solutions, δ44Casoil) have been a 

particular focus of these studies. Given the increased interest in terrestrial stable 

Ca isotopes, there is a need to develop a consistent framework to interpret these 

measurements. Here for the first time we compile global measurements of 

δ44Casoil across 18 studies. We observe large variability in δ44Casoil relative to 

δ44Ca of external Ca sources (bedrock weathering and atmospheric deposition). 

We also observe that some sites are isotopically heavier that Ca sources while 

other sites are isotopically lighter. Across sites, high Ca concentrations were 

correlated with low δ44Casoil values and high δ44Casoil values were correlated with 

both low Ca concentrations and higher amounts of atmospherically derived Sr. 

Our observations suggest that sea salt Ca is not likely the primary driver of high 

δ44Casoil values. Modeling work indicates that an imbalance in the uptake and 

return flux of Ca between vegetation and the bioavailable soil reservoir is an 

important control on δ44Casoil. We suggest that nutrient uplift by vegetation can 

drive sites to more negative δ44Casoil relative to Ca sources. Sites with more 
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positive δ44Casoil relative to Ca sources may be particularly sensitive to non-

steady state conditions due to small soil Ca reservoirs and the lack of weathering 

inputs, although non-steady state conditions can produce more negative δ44Casoil 

relative to Ca sources as well. 

3.2 INTRODUCTION 

The actively cycled soil Ca reservoir, defined here as dissolved Ca in soil 

solution or Ca electrostatically bound to soil exchange sites, is one of the primary 

sources of nutrients for vegetation growth. The amount of Ca in the reservoir 

reflects a balance between input and output fluxes of Ca, including atmospheric 

deposition, weathering of Ca-bearing minerals, decay of organic matter, 

vegetation uptake and leaching of Ca into groundwater and streams, as well as 

the soil cation exchange capacity (CEC). In addition, actively cycled soil Ca is 

sensitive to anthropogenic disturbances such as acid deposition and land use 

change (Reuss and Johnson 1986; Joslin et al. 1992; Likens et al. 1996). In this 

paper we argue that the isotope ratio of calcium in the actively cycled soil Ca 

reservoir is diagnostic of the state of an ecosystems calcium biogeochemical 

cycle.  

Given the multitude of processes affecting the actively cycled Ca 

reservoir, researchers have long recognized the potential for this reservoir to 

provide information regarding nutrient cycling dynamics as well as the overall 

health of an ecosystem (Lawrence et al. 1987; Probst et al. 1990; Mitchell et al. 

1996; Likens et al. 1998). Biogeochemists have long used 87Sr /86Sr ratios of the 
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actively cycled soil reservoir to determine the source of Sr (and by proxy Ca due 

to their similar chemical behavior in soil), and to infer which depths or minerals in 

the soil profile are actively contributing to Sr uptake by vegetation (Miller et al. 

1993; Blum et al. 2002; Bullen and Bailey 2005; Blum et al. 2008). While the 

87Sr/86Sr tracer relies on distinct 87Sr/86Sr ratios of Sr sources, variability in stable 

Ca isotope ratios of sources is at most a secondary control on soil Ca isotope 

ratios. Because stable Ca isotope ratios are fractionated during biological and 

pedogenic processes, soil stable Ca isotope ratios may be a useful tool for 

understanding internal cycling of Ca in ecosystems.  

Two processes are known to fractionate Ca isotopes in terrestrial 

ecosystems: biological fractionation as Ca passes from the soil into roots during 

Ca uptake and fractionation during the precipitation of pedogenic Ca-bearing 

minerals such as calcium carbonate and calcium sulfate (Ewing et al. 2008; 

Cobert et al. 2011; Hindshaw et al. 2012; Bagard et al. 2013). Hindshaw et al 

(2012) associated preferential accumulation of isotopically light Ca in biomass 

with two processes, preferential absorption of the lighter isotopes of Ca into roots 

vacuoles via kinetic fractionation and preferential adsorption of isotopically light 

Ca onto exchange sites located in the apoplasm via equilibrium fractionation as 

Ca moves along the xylem. Both processes enrich biomass in the isotopically 

light isotopes of Ca while leaving behind isotopically heavy Ca in the soil 

exchangeable reservoir. Additional fractionation has been observed during 

biological precipitation of calcium oxalate, commonly associated with mycorrizal 
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fungi in soil and by vegetation in leaves, which is a relatively recalcitrant mineral 

that can accumulate in near surface soils  (Graustein et al. 1977; Cromack Jr et 

al. 1979; Franceschi and Horner 1980; Gadd 1999). Observations across a wide 

range of species and climates suggest that biological fractionation is robust and 

should be expected wherever vegetation is actively growing. Ca isotopic 

fractionation by formation of pedogenic carbonate influences soil stable Ca 

isotope ratios in arid environments, and may be the dominant fractionation 

mechanism in low-productivity hyper-arid environments. Ewing et al. (2008) 

observed significant down-profile variability in Ca isotope ratios for soil profiles 

collected in the hyper-arid Atacama Desert in Chile, which they attributed to 

pedogenic precipitation of calcium carbonate and calcium sulfate. Pedogenic Ca-

bearing minerals were isotopically light relative to atmospheric inputs, indicating 

a fractionation process that preferentially incorporates the light isotopes of Ca 

into the crystal lattice. 

Given that these in-situ fractionation processes discriminate again the 

heavier isotopes of Ca in the soil reservoir, mass balance considerations suggest 

that residual soil exchangeable Ca should evolve toward Ca isotope values that 

are heavier than Ca sources. However, previously published studies have 

demonstrated that the soil exchangeable Ca reservoir can be isotopically heavier 

than, lighter than, or similar to Ca sources (bedrock weathering and atmospheric 

deposition) (Figure 3.1). A number of mechanisms have been put forth to explain 

these observations, including accumulation of isotopically light organically bound 
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Ca in near-surface soil, preferential leaching of the heavier isotopes of Ca from 

the upper portion of the soil profile to lower depths, or influence of sea-salt 

derived Ca (Bullen et al. 2004; Wiegand et al. 2005; Holmden and Bélanger 

2010; Farkaš et al. 2011). 

Here we build upon the model framework developed by Holmden and 

Bélanger (2010), and generalized by Fantle and Tipper (2014). Holmden and 

Belanger (Holmden and Bélanger 2010) applied a box model to a single study 

site in Canada, and demonstrated how variations in the uptake and return fluxes 

of Ca could influence the vertical profile of soil Ca isotope ratios measured there. 

Fantle and Tipper (2014) used a similar box modeling approach to address the 

question of whether variations in terrestrial Ca cycling could influence the Ca 

isotope ratios of rivers, and by extention, the Ca isotope ratio of seawater. Our 

approach is to synthesize the existing studies of Ca isotopes in terrestrial 

ecosystems and to interpret these data in the context of a box model of the 

terrestrial Ca cycle. We aim to determine whether known processes can account 

for the range in soil Ca isotope ratios observed globally, and to ask whether new 

insights on terrestrial Ca cycling can be gained by this cross-site comparison. 

3.3 MATERIAL AND METHODS 

3.3.1 Literature synthesis methodology 

As the goal of this synthesis is to assess the variability in stable Ca 

isotopes in the soil exchangeable reservoir and identify the factors that produce 
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the variability across studies, we focus on terrestrial ecosystem studies that 

measured natural abundance stable Ca isotope ratios in the soil exchangeable 

reservoir and in soil solution. Using these criteria, we’ve identified 18 studies that 

measured soil exchangeable stable Ca isotopes and 7 studies that measured soil 

solution stable Ca isotopes. In 4 of these studies both soil exchangeable and soil 

solution stable Ca isotopes were measured. The soil exchangeable Ca pool is 

operationally defined in these studies using a range of lab methodologies but in 

all cases it is the Ca released from soil samples exposed to high ionic strength 

reagents (typically reagents include ammonium chloride, ammonium acetate or 

barium chloride). Soil solutions in these studies were collected using tension or 

zero-tension lysimeters installed at specific depths in the soil profile. Sites that 

measured both soil solution and exchangeable Ca observed a general 

agreement between the two types of samples (White et al. 2010; Hindshaw et al. 

2011; Bagard et al. 2013), although some differences were observed (Bullen et 

al. 2004). Nonetheless, we treat both sets of data as representative of the 

actively cycled Ca reservoir.  

14 of the 18 studies included measurements of local precipitation and 

bedrock. To better assess variability in the stable Ca isotope ratios of 

atmospheric deposition, we’ve included in our compilation two studies that 

primarily measured atmospheric deposition rather than soil exchangeable stable 

Ca (Schmitt and Stille 2005; Fantle et al. 2012). 
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Vegetation stable Ca isotope data was reported in 9 of the 18 studies. While we 

recognize that δ44Ca values can vary widely with tree tissues, in order to facilitate 

comparison of vegetation Ca isotope data across sites, we have grouped 

biomass into three categories: roots, boles and leaves. Roots were measured in 

each study. Samples originally referred to by the studies’ authors as stemwood, 

wood cores, branches and bark have here been grouped together as “boles”, 

while our “leaves” category include samples originally referred to as leaves, litter, 

needles and cones.  

Finally, we compiled published data on source partitioning of Sr (bedrock 

weathering derived vs. atmospherically derived) in the soil exchangeable 

reservoir at 6 of the sites to aid in interpreting the stable Ca isotope data. We 

note that Ca and Sr isotope data for some sites were not from the same study, 

nor necessarily from the same site, but were paired based on proximity and data 

availablility. The apportioning of Sr in the exchangeable reservoir is based on the 

assumption that the 87Sr/86Sr ratio of the soil exchangeable reservoir represents 

a mixture of Sr derived from bedrock weathering and from atmospheric 

deposition each, with a unique 87Sr/86Sr ratio (Miller et al. 1993; Capo et al. 1998; 

Kennedy et al. 1998; Blum et al. 2002). 

A challenge in compiling stable Ca isotope data from the literature are the 

various ways that stable Ca isotope ratios are reported and a lack of agreement 

on a standards from which to reference natural samples (Fantle and Tipper 

2014). For the studies reviewed here, stable Ca isotope data was reported as the 
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44Ca/40Ca ratio referenced to a seawater standard (δ44CaSW, eg. Page et al. 

(2008)), the 44Ca/40Ca ratio relative to NIST 915a Ca standard (δ44Ca915a, Bagard 

et al. (2013)), while others report the 44Ca/42Ca ratio relative to NIST 915a Ca 

standard (δ44/42Ca915a eg. Hindshaw et al. (2011)). To allow comparison of 

measurements across studies, we convert all δ44Ca and δ44/42Ca measurements 

to be δ44Ca values relative to seawater. For values originally reported as 

δ44Ca915a, we convert δ44Ca915a to δ44CaSW using an accepted value of seawater 

(seawater δ44Ca915a = -1.88‰, Schmitt and Stille (2005)) and the following 

relationship (Schmitt et al. 2003): 

δ44𝐶𝑎𝑠𝑤 = δ44𝐶𝑎915a − 1.88‰    (1) 

In the case where the stable Ca isotopes ratios were originally reported as 

δ44/42Ca915a, we first convert δ44/42Ca915a to δ44Ca915a follow the method outlined in 

equations 5 and 6 in Fantle and Tipper (2014), then insert the resulting δ44Ca915a 

into equation (1) to derive a δ44CaSW value. 

3.2 Steady-state box model development 

In order to examine the impact biology exerts on soil exchangeable δ44Ca 

values, we developed a two-box model of the terrestrial Ca cycle (Figure 3.2; see 

also Takagi 2015, Chapter 2). The model consists of 2 boxes (reservoirs) 

representing the mass of actively cycled soil Ca integrated over the root zone 

(MS) and the mass of Ca in biomass (MV) (mol Ca*ha-1) and 7 fluxes (mol Ca*ha-

1*yr-1) representing the movement of Ca into, out of, and between reservoirs. Two 

external fluxes enter the soil exchangeable reservoir, representing atmospheric 
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deposition (FA) and bedrock weathering-derived (FW) sources of Ca to the 

system. One external flux (FNU) enters the vegetation pool directly, bypassing the 

soil exchange pool. This flux represents direct uptake of new Ca by roots from 

sources other than the exchangeable reservoir, contributing to “nutrient uplift”. 

Internal biomass cycling of Ca is represented by an uptake flux from the soil 

exchangeable reservoir (FU), and the return of Ca from biomass back to the soil 

exchangeable reservoir (FR) via decomposition. Ca is exported from the system 

by one of two fluxes, via leaching from the soil exchange reservoir (FZ) to 

groundwater or streamwater, and as export of Ca from the vegetation reservoir 

(FPOM), for example by stream export of particulate organic matter. We use the 

box model to investigate steady-state scenarios that result in the δ44Ca of the 

exchange pool, being lighter than, heavier than, or equal to the δ44Ca of Ca 

sources to the system. We also investigate time-dependent (non-steady state) 

scenarios. Additional model details describing steady state and non-steady state 

equations is provided in Appendix A2. 

3.4 RESULTS 

A summary of our literature synthesis is reported in Tables 3.1-3.5. In this 

section we briefly present the variability of stable Ca isotope ratios of the primary 

Ca sources to ecosystems (bedrock weathering and atmospheric deposition), in 

the soil exchangeable and soil solution reservoirs, and in vegetation. Finally, we 

compare δ44Ca values of the soil exchangeable reservoir with respective soil 

exchangeable Ca concentrations and Sr source apportionment calculations. 
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3.4.1 δ44Ca of external Ca sources to terrestrial ecosystems 

A compilation of δ44Ca of external Ca sources is reported in Table 3.2. 

Bedrock weathering sources exhibited the smallest variability of Ca sources 

(Figure 3.3), with an average δ44Ca (silicate and carbonate combined) of -1.12‰, 

and ranged from -1.59‰ to -0.75‰. The mean for δ44Ca in precipitation (both 

rain and snow) was -1.11‰, not significantly different than the value for bedrock 

weathering, but more variable with a range in δ44Ca of -2.22‰ to -0.58‰. While 

precipitation δ44Ca values were similar across ecosystems for the most part, 

most of variability observed for atmospheric deposition is due to the large range 

at the sites in Costa Rica and Santa Cruz, CA USA (precipitation δ44Ca values 

were between -2.22‰ and -0.58‰ in Costa Rica and -1.78‰ and -0.61‰ in 

Santa Cruz). Dominant inputs of Ca into terrestrial ecosystems fall within a fairly 

narrow range centered on -1.1‰. 

3.4.2 δ44Ca of the soil exchangeable reservoir 

The absolute range in soil exchangeable δ44Ca across all sites included in 

the synthesis varied from -2.35‰ in the shallow exchangeable reservoir at the 

Arbutus Lake watershed in New York, USA (Page et al. 2008) to +0.89‰ in the 

shallow exchangeable reservoir at the Kolekole site, HI USA (Wiegand et al. 

2005) (Table 3.3 and 3.4). The limited variability in source δ44Ca suggests that 

very little of the variability in soil δ44Ca is accounted for by differences in the 

δ44Ca of sources, with the possible exception of sea-salt inputs, which we 

discuss below.  
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Across all sites, the largest variability in soil δ44Ca was observed in the 

near surface soil, with the range spanning -2.35‰ to 0.89‰. The majority of 

profiles have soil δ44Ca values less -1.1‰ indicating that soil Ca is lighter than 

inputs (Figure 3.4). δ44Ca in these “light profiles” generally increased with depth, 

often approaching typical bedrock values in the deepest samples. In only one soil 

profile (Santa Cruz, CA USA, White et al. 2010) is there clear evidence for deep 

soil δ44Ca heavier than bedrock. Sites with soil δ44Ca “heavier” than typical input 

values (i.e. > -1.1‰) are found more infrequently in our compilation. In these 

profiles, δ44Ca is much less variable with depth, and consistently heavy.  

We observe that the sites with high soil Ca concentrations tend to have 

light soil Ca, while sites with low concentrations of actively cycled soil Ca tend to 

have heavy soil Ca (Fig. 3.5). This is most apparent in the upper 50cm, and less 

so at depth (Figure 3.6). A related observation is that the importance of 

atmospheric inputs (vs. bedrock weathering) tends to scale with soil δ44Ca (Fig. 

3.7). Sites where more than 60% of Sr is sourced from atmospheric deposition 

tend to have heavy soil exchangeable δ44Ca. Conversely, sites where bedrock 

weathering contributes substantial Sr to soils tend to have light soil δ44Ca. 

3.4.3 δ44Ca of vegetation 

On average across all studies and species analyzed, the roots had the 

most negative δ44Ca (δ44Ca of roots = -2.26‰) and leaves the most positive 

(δ44Ca of leaves = -1.36‰), although significant overlap exists across all biomass 

compartments (Fig. 3.3). The average δ44Ca of leaves was not significantly 
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different than that of atmospheric deposition or bedrock δ44Ca values. For studies 

that measured more than one biomass compartment, all but one study found 

average root δ44Ca to be more negative than average bole δ44Ca (Bagard et al. 

2013), and all studies found average bole δ44Ca to be more negative than 

average leaves δ44Ca. There was evidence of biological fractionation at all sites. 

Average δ44Ca values for biomass compartments (roots, boles and leaves) were 

more negative compared with their corresponding average soil δ44Ca value. The 

average difference between roots and soil δ44Ca was -1.25‰, between boles and 

soil was -1.17‰ and between leaves and soil was -0.68‰. 

3.5 DISCUSSION 

3.5.1 Controls on soil δ44Ca inferred from model 

The δ44Ca value of the actively cycled soil Ca reservoir exhibits significant 

variability across study sites. As a starting point for interpreting this variability in 

the context of ecosystem processes, we utilize our 2 box model of the terrestrial 

ecosystem Ca cycle. As noted earlier, modeling work by Holmden and Belanger 

(2010) and Fantle and Tipper (2014) demonstrated that an imbalance in the 

uptake of Ca by vegetation and return flux of Ca via organic matter 

decomposition can affect the δ44Ca value of the actively cycled Ca reservoir. In 

agreement with these earlier results, our model demonstrates that when the 

uptake (FU) and return fluxes (FR) between the actively cycled and vegetation 

reservoirs are in balance (FR=FU), the δ44Ca of the actively cycled Ca reservoir 
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simply reflects the δ44Ca value of the external input flux of Ca into the soil via 

weathering and atmospheric deposition (FA and FW), regardless of the magnitude 

of the isotopic separation factor (ΔU) (Figure 3.8).  

Actively cycled soil δ44Ca values (hereafter referred to simply as soil 

δ44Ca) that differ from input values are explained in the model by one of two 

mechanisms. Either 1) there are multiple pathways for Ca uptake and loss from 

the vegetation pool that influence soil δ44Ca, which can persist even at steady 

state, or 2) a disturbance (hurricane, forest harvesting, fire, etc.) has produced an 

(non-steady-state) imbalance in the Ca cycle. Our model produces steady-state 

solutions in which soil δ44Ca is lighter than inputs when the flux of Ca to 

vegetation directly from bedrock is significant (i.e. FNU is non-zero in the model), 

and the loss of Ca from vegetation (FPOC) is zero (or at least small). At steady 

state, the Ca flux from vegetation to the exchange pool (FR) is balanced by the 

sum of the two inputs (FU and FNU), and therefore FU<FR, and soil becomes 

isotopically light by the net addition of biologically fractioned (40Ca enriched) Ca 

to the soil pool. This is a model representation of the process of “nutrient uplift” 

(Jobbágy and Jackson 2004), where deep roots access new Ca from bedrock, 

and then deliver that Ca to the exchange pool during decomposition. Conversely, 

the model produces steady state solutions with soil δ44Ca heavier than inputs 

when this “nutrient uplift” source of Ca (FNU) is zero (or at least small), and loss 

from the vegetation pool FPOM is non-zero. In this case, since a portion of the Ca 

taken from the exchange pool by vegetation is lost, uptake of Ca from the 
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exchange pool exceeds return of Ca to the exchange pool (FU>FR), resulting in 

heavy soil δ44Ca through residual enrichment of the soil Ca pool by net extraction 

of light Ca by vegetation. 

These examples illustrate simple, plausible processes that might account 

for both light and heavy values of soil δ44Ca even in the absence of disturbance. 

However, our prior work (Takagi 2015, Chapter 1 and 2) demonstrates the 

impact that disturbance (harvesting, hurricanes) may have on soil δ44Ca at some 

sites. Below we discuss cross-site patterns in soil δ44Ca considering both the 

steady-state mechanisms described above, and a range of potential disturbance 

effects. 

3.5.2 Interpretation of δ44Ca trends across sites: Sites with light soil δ44Ca 

At 7 of the 18 sites the majority of Ca in the actively cycled Ca reservoir is 

isotopically light relative to values typical of Ca sources. In the context of our 

model, these “light” sites are attributable either to active uptake of Ca from 

bedrock (“nutrient uplift”) or a disturbance scenario where FU < FR, essentially 

implying net dieback rather than forest growth. We first evaluate the evidence for 

the “nutrient uplift” scenario.  

Nutrient uplift is the process by which nutrient are transported by 

vegetation from depth to near surface soil horizons, thus limiting leaching losses 

of nutrients and maintaining sufficient stock to support plant growth (Jobbágy and 

Jackson 2001; Poszwa et al. 2002; Jobbágy and Jackson 2004; Porder et al. 

2006; Porder and Chadwick 2009)  It is regarded as an important mechanism for 
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maintain sufficient amount of limiting nutrients like P and N, though it has also 

been linked to less limiting nutrients such as Ca, Mg, and K (Jobbágy and 

Jackson 2004)  The observation that the lightest Ca resides in the near surface 

of these “light” sites supports the nutrient uplift mechanism (e.g. Bullen and 

Chadwick, in prep): the shallow soil exchange pool is receiving more light Ca 

from vegetation than is being drawn from it.  

The observation that “light” sites generally have soil exchangeable δ44Ca 

values lighter than external Ca sources throughout the soil depth profile suggest 

that biomass isn’t simply shifting actively cycled Ca from deeper to shallower 

depths, but instead are accessing a deep secondary soil Ca reservoir, likely 

mineral bound Ca. If biomass were taking up actively cycled Ca at depth and 

returning it to the near surface horizons, mass balance considerations would 

indicate that δ44Ca values of the actively cycled reservoir at depth should be 

isotopically heavier than external Ca sources, something that is only observed at 

one site (Santa Cruz, CA USA, White et al. 2010). 

The generally positive relationship between the fraction of atmospherically 

derived Sr and soil δ44Ca supports our conclusion that biomass is actively 

acquiring Ca from mineral sources. Sr apportionment at Hubbard Brook and 

Huntington Forest (which encompasses the Arbutus Lake watershed), two sites 

with an actively cycled Ca reservoir isotopically lighter than external sources, 

indicate a relatively high reliance on mineral bound Ca (Miller et al. 1993; Blum et 

al. 2002). In fact, it was speculated that the abundance of Ca rich minerals in the 
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soil profile would reduce the impact that acid rain associated leaching losses of 

Ca from the soil exchangeable complex would have on biomass growth (Mitchell 

et al. 1996). Sr isotope data indicate that vegetation at Arbutus Lake watershed 

contains ~20% Sr from new mineral weathering while 60-95% of foliar Sr at 

Hubbard Brook is from apatite derived Ca (Miller et al. 1993; Blum et al. 2002). 

Similarly, at a permafrost dominated watershed in Siberia (Bagard et al. 2013), 

the actively cycled reservoir was isotopically lighter than external sources and 

atmospherically derived Sr was calculated to account for only 6 to 33% of total 

exchangeable Sr in the upper soil profile, decreasing to 1 to 5% in deeper soil 

horizons. Farkas et al. (2011) observed the near surface soil exchangeable 

reservoir to be isotopically lighter than external Ca sources at a study site in 

central Massachusetts, USA. While the researchers classified the soil as “base-

poor”, they did find abundant accessory apatite and Ca-rich plagioclase feldspar, 

suggesting the opportunity for plants to directly access these minerals for nutrient 

uptake and bypass the soil exchangeable reservoir altogether. Overall, sites with 

isotopically light soil Ca have been observed in a wide variety of climates, 

including in Hawaii and the South Island of New Zealand (Chadwick and Bullen, 

in prep., Moore et al. 2013). Our synthesis suggests isotopically light soil Ca may 

be a consequence of landscape age, weathering extent and availability of 

bedrock Ca to vegetation.  

Our work specifically focused on the effects of disturbance on soil δ44Ca, 

using Hubbard Brook as an example, produced surprising results (Takagi, 2015, 
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Chapter 1). Following whole-tree harvest and removal of above-ground biomass, 

a time series of soil samples shows that soil exchangeable δ44Ca decreases from 

initially light pre-harvest (and perhaps steady-state) values to become lighter yet 

in the 8 years following disturbance. If the transient response of soil δ44Ca to 

forest recovery were dominated by biomass Ca uptake, we would expect soils to 

become heavier, rather than lighter with time. We attributed this trend towards 

lighter soil δ44Ca to increased decomposition of belowground biomass 

immediately following the disturbance. This example highlights the delicate 

balance between uptake and return of Ca to the soil exchangeable reservoir. 

Extending these results, we might expect a forest experiencing decline to 

similarly exhibit decreasing soil δ44Ca values as biomass decomposition would 

exceed uptake flux by biomass. 

3.5.3 Interpretation of δ44Ca trends across sites: Sites with heavy soil δ44Ca 

Several sites (Hawaii, Luquillo, Puerto Rico, La Ronge, Canada, 

Strengbach, France) exhibit an actively cycled Ca reservoir that is majority 

isotopically heavy relative to values of typical sources. Within our modeling 

framework, “heavy” sites can be explained by unusually heavy δ44Ca in the 

atmospheric source, by the absence of a significant “nutrient uplift” flux coupled 

with loss of Ca in the form of POM, or by disturbance. We first address the 

atmospheric mechanism. 

The observation that sites with heavy δ44Ca tend to have significant 

contributions of cations from atmospheric sources might suggest that we are 
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simply observing a source effect. If rainfall Ca is isotopically heavy, sites that 

receive a substantial fraction of their Ca from the atmosphere would be expected 

to be heavy as a result. Weigand et al. (2005) in their study of soils along a 

Hawaii chronosequence called upon sea salt Ca (which should have δ44Ca =0‰) 

to at least in part explain isotopically heavy soils in older, more highly weathered 

sites. This remains a plausible explanation but a few observations suggest that 

alternative explanations should be explored. Weigand et al. (2005) did not report 

rainfall data, so it is unclear whether precipitation in Hawaii actually delivers Ca 

with δ44Ca approaching 0‰. Fantle and Tipper’s (2014) compilations found 

rainfall tends to be ~-1.0‰ lighter than sea water (average rainfall δ44CaSW = -

1.16‰). This indicates that atmospherically derived Ca is likely a mixture of sea 

salt, silicate and carbonate dust sources (Schmitt and Stille 2005; Farkaš et al. 

2011) and unlikely to be purely sea salt Ca, perhaps even in Hawaii. 

Furthermore, at least one of the Hawaii sites measured by Weigand et al. (2005) 

was in fact heavier than seawater (see Table 4.3), requiring an additional 

mechanism to account for heavy soil Ca. Measurements by Takagi (2015, 

Chapter 2) similarly observed rainfall δ44Ca to be too negative to produce the 

observed δ44Ca values in the Bisley 1 and Rio Icacos forests, and Ca/Sr and 

87Sr/86Sr data indicate that precipitation is unlikely to be sea salt dominated. As 

such, rainfall measured to date doesn’t appear to have the isotopic leverage to 

produce a soil exchangeable reservoir significantly heavier than approximately -

1.0‰.  
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Alternatively, if a portion of litterfall bypasses the soil reservoir altogether, 

as described in our model above, soils could maintain heavy δ44Ca unrelated to 

source effects or disturbance. This could occur for example by the export of 

isotopically light particulate organic matter via streamwater. However, our model 

suggests that even with a large isotopic separation factor (ie. ΔU = -2‰), this 

particulate Ca export flux would have to be on the order of 50% of the return flux 

(FR) to drive the actively cycled Ca reservoir toward the most positive δ44Ca 

values observed in our synthesis (Fig. 3.8). With regard to the Bisley site in 

Puerto Rico, where actively cycle δ44Ca approached 1‰ more positive than Ca 

sources, estimates by Heartsill Scalley et al. (2012) indicate that less than 0.1% 

of litterfall in Bisley is directly exported out of the watershed as coarse particulate 

organic matter (CPOM) (>12.7mm),  an insignificant flux compared with litterfall 

and not larger enough to significantly alter the δ44Ca value. While other 

mechanisms exist that allow biomass Ca to bypass the actively cycled reservoir 

altogether, it is difficult to envision a process that would allow enough biomass 

Ca to bypass the actively cycled reservoir to significantly alter the δ44Ca value.  

In light of these observations, the relationship between the amounts of 

atmospherically derived cations in the actively cycled reservoir and δ44Ca values 

may not be a causal relationship, but merely indicative of other processes 

controlling the stable Ca isotope ratios. Sites with a high proportion of 

atmospherically derived cations lack alternative sources of Ca in the soil. Without 

a substantial weathering source to draw from, the role of nutrient uplift, and its 
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effect in producing light soil δ44Ca is minimized. This observation is supported by 

work along a Hawaiian chronosequence that found older, more weathered soils 

exhibited reduced nutrient uplift (Porder and Chadwick, 2009). Additional support 

comes from two chronosequence studies included here (Hawaii, USA  and Santa 

Cruz, CA USA, Bullen et al. 2004; Wiegand et al. 2005) which observed an 

increase in δ44Ca values with increasing age. Furthermore, our observation that 

more positive δ44Ca values are coupled with lower Ca concentrations, supports 

modeling work that indicates a smaller soil exchangeable reservoir will more fully 

express biological fractionation and be particularly sensitive to a flux imbalance 

(Fantle and Tipper 2014).  

It thus appears unlikely that a steady-state situation could shift the entire 

actively cycled reservoir δ44Ca values by the amounts observed at sites globally. 

Therefore we suggest that a non-steady state situation, possibly arising from an 

aggrading biomass Ca reservoir, is driving older, Ca-poor sites to heavy soil 

δ44Ca. At the Bisley watershed in Puerto Rico, significant regrowth occurred 

following the passage of Hurricane Hugo over Puerto Rico in 1989 (Scatena et 

al. 1996; Beard et al. 2005; Heartsill Scalley et al. 2010). Takagi (2015, Chapter 

2) demonstrated this regrowth has the leverage to drive the soil exchangeable 

δ44Ca toward values that approach measured δ44Ca values. Similarly, Holmden 

and Belanger (2010) measured isotopically heavy soil exchangeable and soil 

solution Ca in a boreal forest in Saskachewan, Canada (La Ronge) that is 

subjected to forest fires approximately every 100 years. Measurements at La 
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Ronge indicated that all but one plot had attained steady-state, indicating the 

forest may still be recovering. Similarly, the Strengbach catchment in Aubure, 

France has been subject to anthropogenic acid deposition and has soil solutions 

δ44Ca values that are more positive than external Ca sources (Probst et al. 1992; 

Cenki-Tok et al. 2009). Unlike similar acid rain affected sites like HBEF and 

Arbutus Lake watersheds which have abundant mineral bound Ca in the soil and 

where nutrient uplift is prevalent, Strengbach contains Ca poor soil with only 

trace amounts of apatite, and soil exchangeable Sr isotope ratios indicate the 

actively cycled reservoir is atmospherically dominated (Dambrine et al. 1995; 

Fichter et al. 1998; Probst et al. 2000) There is evidence that the spruce forest in 

the Strengbach watershed experienced a period of decline in the 1980s in part 

due to elevated acid deposition (Probst et al. 1990). If the watershed is now in a 

period of recovery from acid deposition, this accompanied by a lack of nutrient 

uplift may partially explain why Strengbach exhibits isotopically heavy actively 

cycled Ca while HBEF and Arbutus Lake do not.  

We note that biomass is not necessarily required to be aggrading at the 

time of sample collection for the soil exchangeable reservoir to reflect a previous 

period of aggradation. Dynamic model runs that incorporate disturbance 

(reduction in the size of the biomass reservoir) and subsequent regrowth indicate 

that a soil exchangeable reservoir remains isotopically heavier than inputs for a 

significant period of time following the disturbance, depending on the magnitude 

of biomass regrowth and the sizes of the biomass and soil exchangeable 
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reservoir. For example, modeling of hurricane disturbance in the Luquillo 

Experiment Forest, Puerto Rico by Takagi (2015, Chapter 2) indicates that it 

would take ~200 years for the soil exchangeable reservoir in the Bisley 

watershed to return to pre-hurricane δ44Ca values. If an ecosystem is subjected 

to repeated disturbance events, as would be the case with reoccurring forest fires 

or hurricanes, the soil exchangeable reservoir can evolve such that it is always 

isotopically heavier than external inputs (Fig. 3.9). 

3.6 CONCLUSIONS 

Synthesizing published Ca stable isotope data across study sites provides 

a unique perspective on ecosystem processes that control the observed δ44Ca 

values of the actively cycled soil Ca pool. Several observations from this study 

may provide a framework for interpreting future measurements of soil Ca stable 

isotope ratios, and may generate new hypotheses regarding the behavior or Ca 

stable isotope in terrestrial ecosystems and Ca cycling as a whole and motivate 

future applications of Ca stables isotopes in terrestrial ecosystems. 

First we observed exhibit significant variability in soil exchangeable δ44Ca 

values across study sites and relative to observed variability in the dominant 

external inputs of Ca (bedrock weathering and atmospheric deposition). More 

specifically, the majority of sites exhibited soil exchangeable δ44Ca values that 

were isotopically lighter than external inputs, while a few sites exhibited soil 

exchangeable δ44Ca values that were isotopically heavier than external inputs. 

While this observation may seem rather inconsequential, modeling indicates that 
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in order to produce a soil exchangeable reservoir that is isotopically different than 

external inputs, there must be an imbalance in the flux of Ca that is taken up by 

vegetation (accompanied by an isotopic fractionation) and the flux of Ca that is 

returned from the biomass reservoir to the soil exchangeable reservoir. This 

observation allows us to develop a framework for interpreting the observed soil 

exchangeable δ44Ca values in the context of ecosystem process that could 

produce this imbalance in fluxes. 

Based on our observation that sites where the soil exchangeable reservoir 

is isotopically lighter than external inputs also generally have an exchangeable 

reservoir that is dominated by bedrock weathering inputs, we hypothesize that 

the ability for biomass to obtain nutrients from a source other than the soil 

exchangeable reservoir (i.e. “nutrient uplift”) is an important factor in determining 

whether the soil exchangeable reservoir will evolve to be isotopically lighter than 

external inputs.. 

The most intriguing situation is where the soil exchangeable reservoir is 

isotopically heavier than external inputs. Global measurements have observed 

that precipitation is a likely mix of sea salt, silicate and carbonate dust, with a 

δ44Ca value too negative to produce soil δ44Ca significantly heavier than external 

sources. To achieve this situation the biomass reservoir must be taking up more 

Ca from the soil exchangeable reservoir than it returns back to the soil 

exchangeable reservoir. Interestingly, these sites also have an exchangeable 

reservoir dominated by atmospheric inputs, potentially indicative of a situation 
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where the soil exchangeable reservoir is the dominant soil reservoir of Ca, as 

compared with sites that have a significant reservoir of mineral-bound Ca in the 

soil. While there are number of mechanisms that can allow biomass Ca to 

bypass the soil exchangeable reservoir, including direct deposition of litterfall on 

to stream channels and removal of biomass Ca via biological vectors, an 

aggrading biomass reservoir is an important mechanism for producing the 

observed soil exchangeable δ44Ca values. In particular, this processes must be 

considered when interpreting soil exchangeable δ44Ca values at study sites that 

are subjected to ecosystem-scale disturbance. 
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3.8 SUPPLEMENTAL INFORMATION 

3.8.1 Figures 

 

 
 

Figure 3.1. Plot of studies that measured actively cycled soil Ca stable Ca 

isotope ratios. Studies shown in order of most negative δ44Casoil to most positive. 

Red dashed line indicates approximate average of external Ca sources 

(atmospheric deposition and weathering). Study ID is indicated by number 

preceding study location. Refer to table 4.1 for Study ID key.  
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Figure 3.2. Ca stable isotope box model diagram. See text for definition of flux 

and reservoir abbreviations. 
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Figure 3.3. Compilation of vegetation compartment and external Ca source input 

(rock and precipitation) δ44Ca values. Solid circle represents average value, top 

and bottom of box represent 1st and 3rd quartiles, respectively, and wiskers 

represent maximum and minimum values, respectively. 
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Figure 3.4. Soil depth profiles for soil exchangeable δ44Ca (δ44Casoil). See table 1 

for study ID key. 
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Figure 3.5. Relationship between δ44Casoil (soil exchangeable Ca only) and soil 

exchangeable Ca concentration (ppm) for samples in the upper 50cm of soil. 

  



 

 

141 

141 

 

 

Figure 3.6. Relationship between δ44Casoil (soil exchangeable Ca only) and soil 

exchangeable Ca concentration (ppm) for samples collected greater than 50cm 

below soil surface. 
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Figure 3.7. Relationship between δ44Casoil and the percentage of exchangeable 

Sr that was derived from atmospheric deposition. See table 4.1 for Study ID key. 
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Figure 3.8. Steady-state model results for Δ44Casoil-Inputs (permil difference 

between the soil exchangeable reservoir and external inputs) for various values 

of ΔU and the ratio FU/FR. See text for definition of FU and FR. 
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Fig. 3.9. Dynamic model run simulating the effect of a reoccurring disturbance on 

soil exchangeable δ44Ca, here represented as Δ44Casoil-Inputs (‰ difference 

between the soil exchangeable reservoir and external inputs). In this simulation, 

the disturbance occurs every 100 year and reduces biomass by 50%. To 

demonstrate the effect of soil reservoir size on the excursion in soil δ44Ca from 

initial conditions, the model was run with different initial sizes of soil 

exchangeable reservoir as shown in the bottom panel. 
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3.8.2 Tables 

Table 3.1. Study ID and reference key. 

Study ID Reference Location 

1 Page et al. (2008) Arbutus Lake Watershed, NY USA 

2 Farkas et al. (2011) Wachusett Mountain, MA USA 

3 Moore et al. (2013) South Island, NZ 

4 Takagi (2015) Hubbard Brook, NH USA 

5 Bullen (2011) Hubbard Brook, NH USA 

6 Perakis et al. (2006) Oregon, USA 

7 Bagard et al. (2013) Kulingdakan watershed, Central Siberian Plateau 

8 White et al. (2010) Santa Cruz, CA, USA 

9 Chadwick and Bullen (in prep.) Hawaii, USA 

10 Bullen et al. (2004) Santa Cruz, CA USA 

11 Hindshaw et al. (2010) Damma Glacier Forefield, Switzerland 

12 Cenki-tok et al. (2009) Strengbach, France 

13 Holmden and Belanger (2009) La Ronge, Canada 

14 Tipper et al. (2006) Marsyandi_catchment_Nepal 

15 Takagi (2015) Luquillo, Puerto Rico 

16 Schmitt et al. (2003) Aubure, France 

17 Wiegand et al. (2005) Hawaii, USA 

18 Schmitt et al. (2005) Multiple Sites 

19 Wiegand and Schwendenmann (2013) La Selva, Costa Rica 
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Table 3.2. Summary of Atmospheric deposition and bedrock Ca stable Isotopes measurements.  

StudyID 

 

δ44CaSW (‰ ref. 
seawater) Type δ44Ca reported Sample Type Method Study Site 

2 Wachusett Mountain, MA USA -0.98 Rainfall 44/40Ca (ref. 915a) - - 

2 Wachusett Mountain, MA USA -0.92 Snow 44/40Ca (ref. 915a) - - 

2 Wachusett Mountain, MA USA -1.24 Rock 44/40Ca (ref. 915a) Wachusett_Granodiorite 1N_HNO3_Leach 

2 Wachusett Mountain, MA USA -1.31 Rock 44/40Ca (ref. 915a) Wachusett_Granodiorite 15N_HNO3_Leach 

2 Wachusett Mountain, MA USA -1.30 Rock 44/40Ca (ref. 915a) Wachusett_Granodiorite Bulk 

3 South Island, NZ -1.14 Rock 44/40Ca (ref. seawater) Greywacke Residue 

3 South Island, NZ -1.17 Rock 44/40Ca (ref. seawater) Greywacke Residue 

3 South Island, NZ -1.35 Rock 44/40Ca (ref. seawater) Argillite Residue 

3 South Island, NZ -1.31 Rock 44/40Ca (ref. seawater) Schist Residue 

3 South Island, NZ -1.32 Rock 44/40Ca (ref. seawater) Schist Residue 

3 South Island, NZ -1.26 Rock 44/40Ca (ref. seawater) Schist Residue 

3 South Island, NZ -1.21 Rock 44/40Ca (ref. seawater) Schist Residue 

4 Hubbard Brook, NH USA -1.27 Rock 44/40Ca (ref. seawater) Rangely_Formation Bulk 

7 Kulingdakan, Siberia -1.15 Snow 44/40Ca (ref. 915a) - - 

7 Kulingdakan, Siberia -1.1 Snow 44/40Ca (ref. 915a) - - 

7 Kulingdakan, Siberia -1.08 Rock 44/40Ca (ref. 915a) Basalt Bulk 

8 Santa Cruz, CA USA -1.7761 Rainfall 44/40Ca (ref. seawater) - - 

8 Santa Cruz, CA USA -1.5914 Rainfall 44/40Ca (ref. seawater) - - 

8 Santa Cruz, CA USA -1.4158 Rainfall 44/40Ca (ref. seawater) - - 

8 Santa Cruz, CA USA -1.3482 Rainfall 44/40Ca (ref. seawater) - - 

8 Santa Cruz, CA USA -0.7896 Rainfall 44/40Ca (ref. seawater) - - 

8 Santa Cruz, CA USA -0.605 Rainfall 44/40Ca (ref. seawater) - - 

11 Damma Glacier Forefield, Switzerland -0.91 Rainfall 44/42Ca (ref. 915a) - - 



 

 

 
 

 
 

    1
4

7
 

Table 3.2. Continued. 

StudyID 

 

δ44CaSW (‰ 
ref. seawater) Type δ44Ca reported Sample Type Method Study Site 

11 Damma Glacier Forefield, Switzerland -1.12 Rainfall 44/42Ca (ref. 915a) - - 

11 Damma Glacier Forefield, Switzerland -1.12 Rainfall 44/42Ca (ref. 915a) - - 

11 Damma Glacier Forefield, Switzerland -0.85 Snow 44/42Ca (ref. 915a) - - 

11 Damma Glacier Forefield, Switzerland -0.66 Snow 44/42Ca (ref. 915a) - - 

11 Damma Glacier Forefield, Switzerland -0.89 Rock 44/42Ca (ref. 915a) - Bulk 

11 Damma Glacier Forefield, Switzerland -1.15 Rock 44/42Ca (ref. 915a) - Bulk 

11 Damma Glacier Forefield, Switzerland -0.96 Rock 44/42Ca (ref. 915a) - Bulk 

11 Damma Glacier Forefield, Switzerland -0.75 Rock 44/42Ca (ref. 915a) - Bulk 

11 Damma Glacier Forefield, Switzerland -1.12 Rock 44/42Ca (ref. 915a) - Bulk 

11 Damma Glacier Forefield, Switzerland -0.94 Rock 44/42Ca (ref. 915a) - Bulk 

11 Damma Glacier Forefield, Switzerland -0.89 Rock 44/42Ca (ref. 915a) - Bulk 

11 Damma Glacier Forefield, Switzerland -0.83 Mineral 44/42Ca (ref. 915a) Biotite - 

11 Damma Glacier Forefield, Switzerland -0.89 Mineral 44/42Ca (ref. 915a) Plagioclase - 

11 Damma Glacier Forefield, Switzerland -1.12 Mineral 44/42Ca (ref. 915a) K_Feldspar - 

12 Strengbach, France -1.31 Rainfall 44/40Ca (ref. 915a) - - 

12 Strengbach, France -0.95 Rainfall 44/40Ca (ref. 915a) - - 

12 Strengbach, France -0.59 Snow 44/40Ca (ref. 915a) - - 

12 Strengbach, France -1.59 Throughfall 44/40Ca (ref. 915a) - - 

12 Strengbach, France -1.08 Throughfall 44/40Ca (ref. 915a) - - 

13 La Ronge, Canada -1.31 Rainfall 44/40Ca (ref. seawater) - - 

13 La Ronge, Canada -1.31 Rainfall 44/40Ca (ref. seawater) - - 

13 La Ronge, Canada -1.21 Snow 44/40Ca (ref. seawater) - - 

13 La Ronge, Canada -1.20 Snow 44/40Ca (ref. seawater) - - 
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Table 3.2. Continued. 

StudyID 

 

δ44CaSW (‰ 
ref. seawater) Type δ44Ca reported Sample Type Method Study Site 

13 La Ronge, Canada -1.41 Snow 44/40Ca (ref. seawater) - - 

13 La Ronge, Canada -1.25 Snow 44/40Ca (ref. seawater) - - 

13 La Ronge, Canada -1.22 Snow 44/40Ca (ref. seawater) - - 

13 La Ronge, Canada -1.27 Rock 44/40Ca (ref. seawater) Granite Bulk 

13 La Ronge, Canada -1.36 Rock 44/40Ca (ref. seawater) Granite 1N_HNO3_Leach 

13 La Ronge, Canada -1.57 Rock 44/40Ca (ref. seawater) Granite 15N_HNO3_Leach 

14 Marsyandi, Nepal -1.23 Rock 44/42Ca (ref. 915a) High_Himalayan_para-gneiss Bulk 

14 Marsyandi, Nepal -1.23 Rock 44/42Ca (ref. 915a) High_Himalayan_para-gneiss residue 

14 Marsyandi, Nepal -0.79 Rock 44/42Ca (ref. 915a) High_Himalayan_para-gneiss leachate 

14 Marsyandi, Nepal -1.25 Rock 44/42Ca (ref. 915a) Limestone_leachate leachate 

14 Bhote Kosi, Nepal -1.59 Rock 44/42Ca (ref. 915a) Travertine Bulk 

14 Bhote Kosi, Nepal -1.33 Rock 44/42Ca (ref. 915a) Travertine Bulk 

14 Bhote Kosi, Nepal -1.40 Rock 44/42Ca (ref. 915a) Travertine Bulk 

15 Luquillo, Puerto Rico -1.07 Rainfall 44/40Ca (ref. seawater) - - 

15 Luquillo, Puerto Rico -0.98 Rock 44/40Ca (ref. seawater) Vocanoclastics Bulk 

15 Luquillo, Puerto Rico -0.95 Rock 44/40Ca (ref. seawater) Granodiorite Bulk 

16 Aubure, France -1.31 Rainfall 44/40Ca (ref. seawater) - - 

16 Aubure, France -0.87 Rainfall 44/40Ca (ref. seawater) - - 

16 Aubure, France -1.48 Mineral 44/40Ca (ref. seawater) Apatite - 

18 Strausburg,France -1.19 Rainfall 44/40Ca (ref. 915a) - - 

18 Luxemburg, Lux -1.61 Rainfall 44/40Ca (ref. 915a) - - 

18 Berkeley, CA USA -1.50 Rainfall 44/40Ca (ref. 915a) - - 

18 Normandie, France -1.15 Rainfall 44/40Ca (ref. 915a) - - 
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Table 3.2. Continued. 

StudyID 

 

δ44CaSW (‰ 
ref. seawater) Type δ44Ca reported Sample Type Method Study Site 

18 Zweisimmen -1.38 Rainfall 44/40Ca (ref. 915a) - - 

18 Cadarache -1.66 Snow 44/40Ca (ref. 915a) - - 

18 Japan -1.20 Snow 44/40Ca (ref. 915a) - - 

18 Aubure_France -1.13 Throughfall 44/40Ca (ref. 915a) - - 

19 La Selva, Costa Rica -0.58 Rainfall 44/40Ca (ref. seawater) - - 

19 La Selva, Costa Rica -0.83 Rainfall 44/40Ca (ref. seawater) - - 

19 La Selva, Costa Rica -2.22 Rainfall 44/40Ca (ref. seawater) - - 

19 La Selva, Costa Rica -0.90 Rainfall 44/40Ca (ref. seawater) - - 

19 La Selva, Costa Rica -0.96 Rainfall 44/40Ca (ref. seawater) - - 
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Table 3.3. Summary of soil exchangeable Ca stable Isotopes measurements. See Table 3.1 for Study ID key. 

StudyID 

 

Plot 
Horizon or 

depth interval 

δ44CaSW 
(‰ ref. 

seawater) 
[Ca] 

(ppm) 
Exchangeable 

Method δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

1 Arbutus Lake, NY USA Catchment 14 Oe_and_Oa -2.35 4490 1N NH4OAc 44/40Ca (ref. seawater) 59a 

1 Arbutus Lake, NY USA Catchment 14 15 -1.5 880 1N NH4OAc 44/40Ca (ref. seawater) 43a 

1 Arbutus Lake, NY USA Catchment 14 50 -1.2 280 1N NH4OAc 44/40Ca (ref. seawater) 30a 

1 Arbutus Lake, NY USA Catchment 14 70-100 -1.38 120 1N NH4OAc 44/40Ca (ref. seawater) 17a 

1 Arbutus Lake, NY USA Catchment 15 Oe_and_Oa -1.92 1060 1N NH4OAc 44/40Ca (ref. seawater) 59a 

1 Arbutus Lake, NY USA Catchment 15 15 -2 74 1N NH4OAc 44/40Ca (ref. seawater) 43a 

1 Arbutus Lake, NY USA Catchment 15 50 -1.61 40 1N NH4OAc 44/40Ca (ref. seawater) 30a 

1 Arbutus Lake, NY USA Catchment 15 70-100 -1.91 14 1N NH4OAc 44/40Ca (ref. seawater) 17a 

2 Wachusett Mountain, MA USA 1 0-7 -1.96 1490 0.1M BaCl-H2O 44/40Ca (ref. 915a) - 

2 Wachusett Mountain, MA USA 1 7-15 -1.9 560 0.1M BaCl-H2O 44/40Ca (ref. 915a) - 

2 Wachusett Mountain, MA USA 1 15-22 -1.75 90 0.1M BaCl-H2O 44/40Ca (ref. 915a) - 

2 Wachusett Mountain, MA USA 1 22-29 -1.65 50 0.1M BaCl-H2O 44/40Ca (ref. 915a) - 

2 Wachusett Mountain, MA USA 1 29-36 -1.34 40 0.1M BaCl-H2O 44/40Ca (ref. 915a) - 

2 Wachusett Mountain, MA USA 1 36-45 -1.17 30 0.1M BaCl-H2O 44/40Ca (ref. 915a) - 

3 South Island, NZ SL01 0-5 -1.82 15.6 1M NH4Cl 44/40Ca (ref. seawater) - 

3 South Island, NZ SL01 46-51 -1.26 0.34 1M NH4Cl 44/40Ca (ref. seawater) - 

3 South Island, NZ SL04 0-5 -2.14 12.9 1M NH4Cl 44/40Ca (ref. seawater) - 

3 South Island, NZ SL04 55-60 -1.27 4.03 1M NH4Cl 44/40Ca (ref. seawater) - 

4 Hubbard Brook, NH USA WS-5 Oie -2.11 2360 1M NH4Cl 44/40Ca (ref. seawater) - 

4 Hubbard Brook, NH USA WS-5 Oa -1.763 1899.86 1M NH4Cl 44/40Ca (ref. seawater) - 

4 Hubbard Brook, NH USA WS-5 0-10 -1.798 66.98 1M NH4Cl 44/40Ca (ref. seawater) - 

4 Hubbard Brook, NH USA WS-5 10-20 -1.463 31.19 1M NH4Cl 44/40Ca (ref. seawater) - 

4 Hubbard Brook, NH USA WS-5 20+ -1.4 25.03 1M NH4Cl 44/40Ca (ref. seawater) - 

4 Hubbard Brook, NH USA WS-5 C -1.433 12.76 1M NH4Cl 44/40Ca (ref. seawater) - 
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Table 3.3. Continued. 

StudyID 

 

Plot 
Horizon or 

depth interval 

δ44CaSW 
(‰ ref. 

seawater) 
[Ca] 

(ppm) 
Exchangeable 

Method δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

4 Hubbard Brook, NH USA WS-5 Till -1.525 7.76 1M NH4Cl 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 0 -1.78 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 5 -1.57 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 9 -1.32 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 15 -0.98 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 32 -0.73 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 66 -1.37 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 89 -1.11 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 120 -2.02 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 145 -2.21 NA - 44/40Ca (ref. seawater) - 

5 Hubbard Brook, NH USA WS-1 162 -2.17 NA - 44/40Ca (ref. seawater) - 

6 Oregon, USA 1 3 -1.8 NA 1N NH4OAc 44/40Ca (ref. seawater) - 

6 Oregon, USA 1 30 -1.2 NA 1N NH4OAc 44/40Ca (ref. seawater) - 

6 Oregon, USA 1 60 -0.8 NA 1N NH4OAc 44/40Ca (ref. seawater) - 

7 Kulingdakan, Siberia 
North Facing 

Hillslope 0-10 -1.24 NA acetic acid 44/40Ca (ref. 915a) 6-33 

7 Kulingdakan, Siberia 
North Facing 

Hillslope 40-60 -0.93 NA acetic acid 44/40Ca (ref. 915a) 1-5 

7 Kulingdakan, Siberia 
South Facing 

Hillslope 0-10 -1.5 NA acetic acid 44/40Ca (ref. 915a) 6-33 

7 Kulingdakan, Siberia 
South Facing 

Hillslope 60-100 -0.91 NA acetic acid 44/40Ca (ref. 915a) 1-5 

8 Santa Cruz, CA USA 65 kya 15 -1.7 813.624 1N NH4OAc 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA USA 65 kya 30 -1.38 561.12 1N NH4OAc 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA USA 65 kya 40 -1.52 565.128 1N NH4OAc 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA USA 65 kya 67 -0.37 645.288 1N NH4OAc 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA USA 65 kya 90 -0.36 789.576 1N NH4OAc 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA USA 65 kya 140 -0.55 657.312 1N NH4OAc 44/40Ca (ref. seawater) - 
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Table 3.3. Continued. 

StudyID 

 

Plot 
Horizon or 

depth interval 

δ44CaSW 
(‰ ref. 

seawater) [Ca] (ppm) 
Exchangeable 

Method δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

8 Santa Cruz, CA USA 65 kya 170 -0.77 416.832 1N NH4OAc 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA USA 65 kya 215 -0.77 585.168 1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site B 4 -1.28 1382.76 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site B 24 -1.23 661.32 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site B 50 -1.33 933.864 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site B 83 -1.28 1050.096 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site B 118 -0.77 545.088 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site I 12 -2.25 3116.22 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site I 32 -1.74 3284.556 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site I 57 -1.74 3182.352 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site I 81 -1.7 3184.356 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site I 111 -0.73 1989.972 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site I 158 -0.82 1911.816 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 2 -0.5 31.8836321 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 5 -0.08 12.6006877 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 10 -0.22 9.52873155 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 16 -0.59 4.72143532 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 25 -0.45 15.2812384 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 34 0.06 19.7950082 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 43 -0.03 14.3372083 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 54 -0.45 20.3512548 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 63 -0.68 20.8874758 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site L 94 -0.59 28.0588433 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site MF 5 -1.7 72.1977436 0.1N NH4OAc 44/40Ca (ref. seawater) - 
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Table 3.3. Continued. 

StudyID 

 

Plot 

Horizon or 
depth 

interval 

δ44CaSW 
(‰ ref. 

seawater) [Ca] (ppm) 
Exchangeable 

Method δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

9 Hawaii, USA Site MF 9 -0.91 8.28393515 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site MF 11 -0.73 8.6287953 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site MF 17 -0.82 7.02495202 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site MF 23 -1.05 7.3712586 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site MF 27 -0.82 6.95095283 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site MF 36 -1.14 5.65984341 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site MF 46 -0.82 8.31809161 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 6 -1.65 73.1692808 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 19 -1.42 45.252491 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 36 -1.56 35.821291 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 52 -1.46 25.0704336 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 70 -1.65 18.0376591 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 92 -1.7 30.8431778 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 106 -1.37 12.3996221 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 115 -0.59 5.30961381 0.1N NH4OAc 44/40Ca (ref. seawater) - 

9 Hawaii, USA Site M 126 -0.91 8.36242001 0.1N NH4OAc 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA USA 90 kya 15 -1.85 813.6 1N NH4OAc 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA USA 137 kya 15 -1.47 833.7 1N NH4OAc 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA USA 182 kya 15 -1.41 NA 1N NH4OAc 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA USA 227 kya 15 -1.28 1194.4 1N NH4OAc 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA USA 90 kya 200 -0.51 436.9 1N NH4OAc 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA USA 137 kya 200 -0.76 64.1 1N NH4OAc 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA USA 182 kya 200 -0.72 NA 1N NH4OAc 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA USA 227 kya 200 -0.85 116.2 1N NH4OAc 44/40Ca (ref. seawater) - 
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Table 3.3. Continued. 

StudyID 

 

Plot 

Horizon or 
depth 

interval 

δ44CaSW (‰ 
ref. 

seawater) 
[Ca] 

(ppm) 
Exchangeable 

Method δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

11 Damma Glacier Forefield, Switzerland BL4a-1 0-5 
-

1.271157305 96.192 1M_NH4Cl 44/42Ca (ref. 915a) - 

11 Damma Glacier Forefield, Switzerland BL17a-1 0-5 
-

1.292151881 125.0496 1M_NH4Cl 44/42Ca (ref. 915a) - 

11 Damma Glacier Forefield, Switzerland BL24a-1 0-5 
-

0.998227821 187.1736 1M_NH4Cl 44/42Ca (ref. 915a) - 

13 La Ronge, Canada Plot 1.1 50-65 -0.8 41.1 BaCl2 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 1.2 50-65 -0.56 117 BaCl2 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 1.3 50-65 -0.68 2393 BaCl2 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 2.1 50-65 -0.84 1445 BaCl2 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 2.2 50-65 -0.94 231 BaCl2 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 2.3 50-65 -0.91 1234 BaCl2 44/40Ca (ref. seawater) - 

15 Luquillo, Puerto Rico Bisley1 0-5 -0.06 187.16 1M NH4Cl 44/40Ca (ref. seawater) 72-94 

15 Luquillo, Puerto Rico Bisley1 5-10 -0.28 105.58 1M NH4Cl 44/40Ca (ref. seawater) 73-95 

15 Luquillo, Puerto Rico Bisley1 10-25 0.03 23.48 1M NH4Cl 44/40Ca (ref. seawater) 73-95 

15 Luquillo, Puerto Rico Bisley1 25-38 -0.01 11.79 1M NH4Cl 44/40Ca (ref. seawater) 72-94 

15 Luquillo, Puerto Rico Bisley1 38-53 -0.18 6.93 1M NH4Cl 44/40Ca (ref. seawater) 75-96 

15 Luquillo, Puerto Rico Bisley1 53-67 -0.06 7.91 1M NH4Cl 44/40Ca (ref. seawater) 74-96 

15 Luquillo, Puerto Rico Bisley1 67-87 NA 5.94 1M NH4Cl 44/40Ca (ref. seawater) 77-97 

15 Luquillo, Puerto Rico Bisley1 87-107 NA 4.27 1M NH4Cl 44/40Ca (ref. seawater) 82-100 

15 Luquillo, Puerto Rico Rio Icacos 0-8 -0.71 79.66 1M NH4Cl 44/40Ca (ref. seawater) 56-89 

15 Luquillo, Puerto Rico Rio Icacos 8-15 -0.82 30.11 1M NH4Cl 44/40Ca (ref. seawater) 61-90 

15 Luquillo, Puerto Rico Rio Icacos 15-28 -0.64 18.19 1M NH4Cl 44/40Ca (ref. seawater) 58-87 

15 Luquillo, Puerto Rico Rio Icacos 28-38 -0.76 5.97 1M NH4Cl 44/40Ca (ref. seawater) 59-88 

15 Luquillo, Puerto Rico Rio Icacos 38-55 -0.83 3.62 1M NH4Cl 44/40Ca (ref. seawater) 57-82 

15 Luquillo, Puerto Rico Rio Icacos 55-68 NA 5.13 1M NH4Cl 44/40Ca (ref. seawater) - 

15 Luquillo, Puerto Rico Rio Icacos 68-78 NA 2.77 1M NH4Cl 44/40Ca (ref. seawater) - 
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Table 3.3. Continued. 

StudyID 

 

Plot 

Horizon or 
depth 

interval 

δ44CaSW 
(‰ ref. 

seawater) 
[Ca] 

(ppm) 
Exchangeable 

Method δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

15 Luquillo, Puerto Rico Rio Icacos 78-104 NA 1.92 1M NH4Cl 44/40Ca (ref. seawater) - 

17 Hawaii, USA Thurston 0-20 -1.07 625 1N NH4OAc 44/40Ca (ref. seawater) 10b 

17 Hawaii, USA Kohala 0-20 -0.08 233 1N NH4OAc 44/40Ca (ref. seawater) 90b 

17 Hawaii, USA kolekole 0-20 0.89 132 1N NH4OAc 44/40Ca (ref. seawater) 89b 

17 Hawaii, USA kokee 0-20 0.22 167 1N NH4OAc 44/40Ca (ref. seawater) 84b 

a: exchangeable Sr isotope data from Miller et al. (1993) 
b: exchangeable Sr isotope data from Kennedy et al. (1998). 
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Table 3.4. Summary of soil solution Ca stable Isotopes measurements. See Table 3.1 for Study ID key. 

StudyID 

 

Plot 

Horizon or 
depth 

interval 

δ44CaSW 
(‰ ref. 

seawater) 
[Ca] 

(ppm) δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

7 Kulingdakan watershed, Central Siberian Plateau North Facing Hillslope O_horizon -1.07 3.65 44/40Ca (ref. 915a) 6-33 

7 Kulingdakan watershed, Central Siberian Plateau South Facing Hillslope O_horizon -1.74 4.85 44/40Ca (ref. 915a) 6-33 

8 Santa Cruz, CA, USA 65 kya 15 -1.85 NA 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA, USA 65 kya 30 -1.62 NA 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA, USA 65 kya 45 -1.52 NA 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA, USA 65 kya 61 -0.64 NA 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA, USA 65 kya 91 -0.51 NA 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA, USA 65 kya 152 -0.73 NA 44/40Ca (ref. seawater) - 

8 Santa Cruz, CA, USA 65 kya 213 -0.59 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 90 kya 15 -2.18 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 137 kya 15 -1.30 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 182 kya 15 -0.65 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 227 kya 15 -0.50 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 90 kya 200 -0.35 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 137 kya 200 -0.90 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 182 kya 200 -1.20 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 227 kya 200 -1.35 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 90 kya 700 -0.68 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 137 kya 700 -0.83 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 182 kya 700 -0.80 NA 44/40Ca (ref. seawater) - 

10 Santa Cruz, CA, USA 227 kya 700 -0.60 NA 44/40Ca (ref. seawater) - 
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Table 3.4. Continued. 

StudyID 

 

Plot 

Horizon or 
depth 

interval 

δ44CaSW 
(‰ ref. 

seawater) 
[Ca] 

(ppm) δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

11 Damma Glacier Forefield, Switzerland - 5-25 -0.94 6.09 44/42Ca (ref. 915a) - 

11 Damma Glacier Forefield, Switzerland - 5-25 -0.91 3.02 44/42Ca (ref. 915a) - 

11 Damma Glacier Forefield, Switzerland - 5-25 -1.23 18.13 44/42Ca (ref. 915a) - 

12 Strengbach, France spruce site A 5 -1.03 0.44 44/40Ca (ref. 915a) 62-69a 

12 Strengbach, France spruce site B 5 -0.88 0.84 44/40Ca (ref. 915a) 62-69a 

12 Strengbach, France spruce site B 10 -1.11 0.48 44/40Ca (ref. 915a) 35-47a 

12 Strengbach, France spruce site B 30 -1.10 0.60 44/40Ca (ref. 915a) 56-64a 

12 Strengbach, France spruce site B 60 -0.99 0.48 44/40Ca (ref. 915a) 57-66a 

12 Strengbach, France spruce site C 5 -1.19 0.68 44/40Ca (ref. 915a) 62-69a 

12 Strengbach, France spruce site C 10 -1.12 0.60 44/40Ca (ref. 915a) 35-47a 

12 Strengbach, France spruce site C 30 -1.02 0.32 44/40Ca (ref. 915a) 56-64a 

12 Strengbach, France spruce site C 60 -1.13 0.28 44/40Ca (ref. 915a) 57-66a 

12 Strengbach, France beech site A 10 -0.88 0.20 44/40Ca (ref. 915a) 35-47a 

12 Strengbach, France beech site A 60 -0.41 0.28 44/40Ca (ref. 915a) 57-66a 

12 Strengbach, France beech site B 10 -0.91 0.20 44/40Ca (ref. 915a) 35-47a 

12 Strengbach, France beech site B 60 -0.47 0.04 44/40Ca (ref. 915a) 57-66a 

13 La Ronge, Canada Plot 1.1 10 -1.02 6.40 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 1.1 35 -0.79 NA 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 1.2 10 -1.05 16.60 44/40Ca (ref. seawater) 53-77b 

13 La Ronge, Canada Plot 1.2 35 -0.69 6.23 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 1.3 10 -0.85 7.46 44/40Ca (ref. seawater) 47-74b 
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Table 3.4. Continued. 

StudyID 

 

Plot 

Horizon or 
depth 

interval 

δ44CaSW 
(‰ ref. 

seawater) 
[Ca] 

(ppm) δ44Ca reported 

Exch.Sr 
atm. 

derived Study Site 

13 La Ronge, Canada Plot 1.3 20 -0.55 7.58 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 1.3 36 -0.45 10.22 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 2.1 10 -1.03 7.71 44/40Ca (ref. seawater) 86-97b 

13 La Ronge, Canada Plot 2.1 35 -0.88 6.55 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 2.2 10 -0.83 3.59 44/40Ca (ref. seawater) 62-93b 

13 La Ronge, Canada Plot 2.2 35 -0.78 2.8 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 2.3 10 -0.91 5.63 44/40Ca (ref. seawater) 36-93b 

13 La Ronge, Canada Plot 2.3 20 -0.90 6.03 44/40Ca (ref. seawater) - 

13 La Ronge, Canada Plot 2.3 35 -0.81 5.9 44/40Ca (ref. seawater) - 

16 Aubure, France - 10 -0.11 0.36 44/40Ca (ref. seawater) - 

a: exchangeable Sr isotope data from Probst et al. (2000) 
b: exchangeable Sr isotope data from Belanger and Holmden (2010). 
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Table 3.5. Summary of Vegetation Ca stable Isotopes measurements. See Table 3.1 for Study ID key. 

StudyID 

 

Plot Species 
Vegetation 

Type 

δ44CaSW 
(‰ ref. 

seawater) δ44Ca reported Study Site 

1 Arbutus Lake, NY USA Catchment14 Sugar_Maple Litter -1.66 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment14 Sugar_Maple Stemwood -2.74 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment14 Sugar_Maple Roots -4.08 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment14 Beech Litter -1.80 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment14 Beech Stemwood -2.71 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment14 Beech Roots -3.99 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment15 Sugar_Maple Litter -1.34 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment15 Sugar_Maple Stemwood -3.57 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment15 Sugar_Maple Roots -3.95 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment15 Beech Litter -1.27 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment15 Beech Stemwood -3.07 44/40Ca (ref. seawater) 

1 Arbutus Lake, NY USA Catchment15 Beech Roots -2.99 44/40Ca (ref. seawater) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.70 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.61 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.69 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.68 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.46 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.61 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.69 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.67 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.80 44/40Ca (ref. 915a) 
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Table 3.5. Continued. 

StudyID 

 

Plot Species 
Vegetation 

Type 

δ44CaSW 
(‰ ref. 

seawater) δ44Ca reported Study Site 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.46 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.78 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.55 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.45 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.47 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.32 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.32 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.31 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.29 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.24 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.26 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.32 44/40Ca (ref. 915a) 

2 Wachusett Mountain, MA USA - Red_Oak Wood_Core -2.46 44/40Ca (ref. 915a) 

3 South Island, NZ - grass leaves -2.01 44/40Ca (ref. seawater) 

3 South Island, NZ - grass leaves -1.91 44/40Ca (ref. seawater) 

7 Kulingdakan, Siberia Kulingdakan watershed Litter Leaves -1.37 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Lichen Lichen -1.46 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Roots -1.95 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Roots -2.11 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Bark -2.84 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Stem -1.76 44/40Ca (ref. 915a) 
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Table 3.5. Continued. 

StudyID 

 

Plot Species 
Vegetation 

Type 

δ44CaSW (‰ 
ref. 

seawater) δ44Ca reported Study Site 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Branches -2.33 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Branches -2.64 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Cone -1.96 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Needles -1.48 44/40Ca (ref. 915a) 

7 Kulingdakan, Siberia Kulingdakan watershed Larch Needles -1.22 44/40Ca (ref. 915a) 

8 Santa Cruz, CA, USA 65 kya grass Leaves -2.08 44/40Ca (ref. seawater) 

8 Santa Cruz, CA, USA 65 kya grass Leaves -2.03 44/40Ca (ref. seawater) 

8 Santa Cruz, CA, USA 65 kya grass Leaves -1.93 44/40Ca (ref. seawater) 

11 Damma Glacier Forefield, Switzerland - Rhododendron Ferrugineum Leaves 
-

2.362875241 44/42Ca (ref. 915a) 

11 Damma Glacier Forefield, Switzerland - Rhododendron Ferrugineum Leaves 
-

2.278896938 44/42Ca (ref. 915a) 

11 Damma Glacier Forefield, Switzerland - Rhododendron Ferrugineum Leaves 
-

2.341880665 44/42Ca (ref. 915a) 

12 Strengbach, France beech site Beech Leaves -1.24 44/40Ca (ref. 915a) 

12 Strengbach, France beech site Beech Leaves -1.64 44/40Ca (ref. 915a) 

12 Strengbach, France beech site Beech Stemwood -1.89 44/40Ca (ref. 915a) 

12 Strengbach, France beech site Beech Roots -1.71 44/40Ca (ref. 915a) 

12 Strengbach, France beech site Beech Roots -1.8 44/40Ca (ref. 915a) 

12 Strengbach, France beech site Beech Roots -2.36 44/40Ca (ref. 915a) 

12 Strengbach, France beech site Beech Litter -1.38 44/40Ca (ref. 915a) 

12 Strengbach, France spruce site Spruce Leaves -1.6 44/40Ca (ref. 915a) 

12 Strengbach, France spruce site Spruce Leaves -1.08 44/40Ca (ref. 915a) 

12 Strengbach, France spruce site Spruce Stemwood -1.46 44/40Ca (ref. 915a) 
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Table 3.5. Continued. 

StudyID 

 

Plot Species 
Vegetation 

Type 

δ44CaSW 
(‰ ref. 

seawater) δ44Ca reported Study Site 

12 Strengbach, France spruce site Spruce Roots -1.87 44/40Ca (ref. 915a) 

12 Strengbach, France spruce site Spruce Litter -1.24 44/40Ca (ref. 915a) 

14 La Ronge, Canada Plot 1.1 Jack Pine Foliage -0.64 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.1 Jack Pine Stemwood -1.14 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.1 Jack Pine Roots -1.57 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.1 Trembling Aspen Foliage -1.3 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.1 Trembling Aspen Stemwood -1.79 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.1 Trembling Aspen Roots -2.18 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.2 Trembling Aspen Foliage -0.96 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.2 Trembling Aspen Stemwood -1.44 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.2 Trembling Aspen Roots -2.03 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.2 Black Spruce Foliage -1.24 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.2 Black Spruce Stemwood -1.68 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.2 Black Spruce Roots -2.11 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.3 Trembling Aspen Foliage -0.89 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.3 Trembling Aspen Stemwood -1.4 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.3 Black Spruce Foliage -1.31 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.3 Black Spruce Stemwood -1.6 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.3 White Spruce Foliage -1.32 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.3 White Spruce Stemwood -1.64 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.3 Balsam Poplar Foliage -0.9 44/40Ca (ref. seawater) 
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Table 3.5. Continued. 

StudyID 

 

Plot Species 
Vegetation 

Type 

δ44CaSW 
(‰ ref. 

seawater) δ44Ca reported Study Site 

14 La Ronge, Canada Plot 1.3 Balsam Poplar Stemwood -1.64 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.1 Black Spruce Foliage -1.04 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.1 Black Spruce Stemwood -1.26 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.1 Black Spruce Roots -2.11 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.2 Black Spruce Foliage -1.22 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.2 Black Spruce Stemwood -1.81 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.2 Black Spruce Roots -2.2 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.2 Jack Pine Foliage -0.38 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.2 Jack Pine Stemwood -0.89 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.2 Jack Pine Roots -1.54 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.3 Black Spruce Foliage -1.43 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.3 Black Spruce Stemwood -1.65 44/40Ca (ref. seawater) 

16 Luquillo, Puerto Rico Bisley1 Tabonuco Roots -1.52 44/40Ca (ref. seawater) 

16 Luquillo, Puerto Rico Bisley1 Tabonuco Leaves -1 44/40Ca (ref. seawater) 

16 Luquillo, Puerto Rico Bisley1 Cecropia Roots -1.57 44/40Ca (ref. seawater) 

16 Luquillo, Puerto Rico Bisley1 Cecropia Leaves -1.14 44/40Ca (ref. seawater) 

16 Luquillo, Puerto Rico Rio Icacos Palo Colorado Roots -1.68 44/40Ca (ref. seawater) 

16 Luquillo, Puerto Rico Rio Icacos Palo Colorado Leaves -1.27 44/40Ca (ref. seawater) 

16 Luquillo, Puerto Rico Rio Icacos Cecropia Roots -2.21 44/40Ca (ref. seawater) 

16 Luquillo, Puerto Rico Rio Icacos Cecropia Leaves -1.79 44/40Ca (ref. seawater) 

17 Aubure, France - Beech Leaves -1.63 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 1.3 Balsam Poplar Stemwood -1.64 44/40Ca (ref. seawater) 

14 La Ronge, Canada Plot 2.1 Black Spruce Foliage -1.04 44/40Ca (ref. seawater) 
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Table 3.5. Continued. 

StudyID 

 

Plot Species 
Vegetation 

Type 

δ44CaSW 
(‰ ref. 

seawater) δ44Ca reported Study Site 

17 Aubure, France - Beech Branches -2.46 44/40Ca (ref. seawater) 

18 Hawaii, USA Thurston Ohia Leaves -1.29 44/40Ca (ref. seawater) 

18 Hawaii, USA Kohala Ohia Leaves -1.01 44/40Ca (ref. seawater) 

18 Hawaii, USA kolekole Ohia Leaves -0.12 44/40Ca (ref. seawater) 

18 Hawaii, USA kokee Ohia Leaves -0.45 44/40Ca (ref. seawater) 
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Appendix A1: Measurement of Ca stable Isotopes at Boston University 

I have refined the methodology for measuring calcium isotope ratios at the 

BU TIMS facility that was initiated in 2007 under the direction of Prof. Andrew 

Kurtz. High-precision Ca isotopic analysis by TIMS employs the double-spike 

technique to correct for any mass fractionation that occurs during preparation of 

the sample or when running the sample in the TIMS. At BU, we utilize a 42Ca, 

48Ca double spike and have demonstrated the ability to isolate calcium in our 

sample and minimize isobaric interference during TIMS runs (for calcium these 

include 88Sr2+, 40K+, 46Ti+, and 48Ti+). To date, we have run 50 samples of spiked 

915a Ca standard and 46 samples of spiked seawater (SW) standard. 20 spiked 

915A standards and 17 SW standards were run using the original cup 

configuration which required 3 measurement “hops” to calculate the 3 isotope 

ratios required for the double spike correction method. The mean δ44Ca915a 

(relative to seawater) for these early samples was -1.86‰ with a 2-sigma 

external precision of 0.31‰ while δ44Casw = -0.01‰ (2σ ext. prec. = 0.69‰, 

n=17). In April 2012, we updated our cup configuration so that all the necessary 

isotope ratios could be measured in only 2 hops (Table A1.1). In May 2013, the 

faraday cups were replaced due to cup degradation. Between May of 2013 and 

January 2014, δ44Ca915a =of -1.85‰ (2σ ext. prec. = 0.12‰, n = 14) and δ44Casw 

= 0.09‰ (2σ ext. prec. = 0.15‰, n=8). During this period, we observed significant 

drift in normalized stable Ca isotopes ratios which commonly accepted mass 

fractionation laws were unable to correct. Beginning in December of 2013, a 
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concerted effort was conducted to determine the source of the drift in samples 

and standards. It was determined in January of 2014 that parafilm “dams”, used 

to prevent the spread of sample on the filament, were introducing calcium 

contamination into the sample load and leading to uncorrectable apparent mass 

fractionation. Beginning in January of 2014, we stopped using parafilm dams and 

we observed immediate improvement in our external precision. Between January 

of 2014 to present day, we’ve run 10 double spiked 915A (δ44Ca915a = -1.84‰, 

2σ ext. prec. = 0.09‰) and 11 SW (δ44Casw = 0.05‰, 2σ ext. prec. = 0.11‰). For 

my dissertation, I’ve only included samples that were run between April 2012 and 

present day. The long term average during this period was δ44Ca915a=-1.87‰ (2σ 

ext. prec. = 0.14‰, n=30) and δ44Casw=0.06‰ (2σ ext. prec.=0.13‰, n=29). We 

have currently reached precision levels achieved by labs with more experience in 

Ca analysis (typically ≤ 100 ppm 2σ external error for the 915a standard) 

(Holmden and Bélanger 2010). 

What follows are a series of checklists I created in order to standardize the 

procedure for stable Ca isotope column chemistry as well as analyzing a sample 

on the TIMS at Boston University. As with any laboratory procedure, there is a 

learning curve that is only overcome with experience. Therefore, simply following 

these procedures is no guarantee that similar levels of precision will be achieved. 

Good luck. 
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Appendix A1. Supplimentary Information 

Table A1.1. Current Faraday cup configuration for measuring stable Ca isotopes 

at Boston University. 

Cup: 

 

L3 L2 L1 C 

    

L4 H1 H2 H3 H4 

Hop 1   40Ca   42Ca  44Ca  

Hop 2   42Ca    48Ca   
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Figure A1.1. Checklist for stable Ca isotope column chemistry at Boston University. 

Checklist for Ca Column Chemistry (updated 2/12/2014) Date:

For Seawater or Unknown Sample Note: Frit in columns 5-8 may be loose.  Make sure frit is secure BEFORE adding sample!

Sample ID:

Take mixture (ie. Seawater/Unknown and DS) Column #: √ √ √ √

Dry down mixture to salt on hotplate

Bring back up in 250uL 1N nitric

Column Chemistry Start:

Remove Column from MQ Bath

W

W Add 3mL MilliQ DI water to push through 4N nitric.  Wait till all passes through.

W Add 3mL 1N nitric to condition column.  Wait till all passes through.

Add 0.250mL Unknown/Seawater in 1 N nitric (from above).

W

W Add 29mL 1 N nitric.  Wait till all passes through.

W

Place large beaker under column for collection.

C Add 14mL 1.5 N nitric.  Collect all these for analysis.

W Add 20mL 4 N nitric to fill reservoir and elute remaining cations.  

W Add 10mL MilliQ DI water to clean column.

Column Storage Finish:

After finishing above steps:

Sample Preparation for Loading

Dry down to "bead" on hotplate (optional: transfer bead to small 7ml teflon beaker)

Dry down to salt on hotplate

Bring back up in 100uL concentrated nitric (14-15 N). Sonicate

Dry down to salt on hotplate

Bring back up in 100uL concentrated nitric (14-15 N). Sonicate

Dry down to salt and bring back up in 2uL 2 N nitric for loading onto filament

Remove MQ from column reservoir using pipetter.  Do not suck resin up.  Use 

big pipetter to leave a few mL in top then switch to smaller pipetter to remove 

remainder of acid.  Leave small amount near column neck and let drip through.

Don't let column go dry.  Add 10mL of 4N nitric.  Drip slowly at first, and then 

can speed up as column fills.  Wait until all 4N nitric has passed through before 

proceeding.  It takes about 6 min. per 1mL to pass through column.

Add 0.750mL 1 N nitric.  VERY CAREFUL!  Very important not to kick up resin.  

Wait till all passes through.

Add 10mL MilliQ to column and loosely put top back on and place back into MilliQ 

bath.

Bring back up in 50uL Optima Hydrogen Peroxide (H2O2) + 100uL concetrated Nitric. 

Sonicate

Add 3mL 1.5 N nitric (to columns 1-4) OR 6ml 1.5N nitric (to columns 5-9).  Wait 

till all passes through.
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Figure A1.2. Checklist for running stable Ca isotope samples on the Boston 

University TIMS. 

Checklist for running Ca on TIMS

For morning warm-up (before first sample of the day):

Detection Calibration Tab -> GAIN (takes about 10-15 mins.)

Detection Calibration Tab -> Dark Noise (takes about 5 mins.)

Update "watch parameter.txt" file (Start Menu -> Recent Documents -> watch parameters)

Setup method and Cup Configuration

Under Cup Configuration -> Open file -> Ca_2scan_dkh_kt.ccf

Under Methods window -> Open Method file -> Ca_DS_13_04_12.met

Press Set Collection to move cups into proper configuration

If loading new barrel:

Sample Wheel -> INITIALIZE, then enter in sample names

Before opening analyzer gate:

Center Cup -> Faraday Box checked -> green light next to "Faraday" must be ON!!!

Running a sample:

Select wheel position: Sample Wheel -> POSITION

Check position on Filament Control match Sample Wheel position

Make one diagonal slash through position number on sample log

Make sure Current, not Temperature is selected

Filament Control -> set speed of IONI to 500.00 mA/min

Filament Control -> set current of IONI to 3000

START heating IONI filament to 1410C

hit STOP when pyrometer reaches 1410C

Filament Control -> set speed of EVAP to 500.00 mA/min

Filament Control -> set current of EVAP to 1600

START heating EVAP filament to 1600mA

Once EVAP @ 1600mA:

Open Analyzer Gate and H.V.  If largest beam (40Ca) >10V, close gate and wait a few minutes, then reopen.

Under Scan Control -> Set mass to 42Ca and Cup to H1

Hit Set and match scale of Chart Recorder to beam intensity

Ramp of EVAP filament

Run an Auto Focus first.  This usually can only be run when beam >0.001V.

Start heating EVAP filament in 50-100mA increments @ 50-100mA/min.  Don't do it too fast.

Run Auto Focus frequently while ramping up (approximately when beam has increased 50-100% or every 100mA).

Beam may start increasing on it's own.  Let it increase/decrease without changing voltage, usually it will plateau.

Ramp up until largest beam is ~5-9V and make sure beam is steady.  More important that beam is steady, but slight decreasing/increasing OK.

May take about 40-60mins. Depending on skill level :)

Check Mass Calibration and Peak Coincidence, and cup position:

Make sure 42Ca and H1 are selected: Scan Control -> set mass to 42Ca and cup to H1 -> hit SET

Run Peak Center.  Make sure vertical lines match up.

Run Peak Scan.  Use Tracer Icon to select cups L2, H1 and H3 and normalize to individual.

Scan Control -> set mass to 44Ca and cup to L2 -> hit SET

If you want, can run a Mass Scan to check peak coincidence.  Essentially the same as doing a Peak Scan:

To scan 2nd Hop: Scan Control -> MASS SCAN -> Start : 45.0,  End: 45.12, Steps: 200, integration time: 0.131

Hit START

Select cups L2 and H2.  The peaks should be coincident over the dummy mass in C cup.

If cups not aligned during peak scan  (L2 cup sometimes not aligned).  THIS IS ADVANCED, SO DON'T DO ANY CUP MOVEMENT

IF YOU ARE NOT TRAINED PROPERLY! FIND KEN, DENISE OR ANDY. These are INCOMPLETE instructions on how to move cups!!!

Make note whether mis-aligned cup is low (L) or high (H) cup, which direction it is off

Under Cup Configuration -> make sure Advanced box is checked

If L cup is mis-aligned:

Increase ADJUST TARGET POSITION on cup to move cup RIGHT

Decrease ADJUST TARGET POSITION on cup to move cup LEFT

If H cup is mis-aligned:

Decrease ADJUST TARGET POSITION on cup to move cup RIGHT

Increase ADJUST TARGET POSITION on cup to move cup LEFT

Always run a peak center after moving cups and make sure cup(s) moved in the right direction using Peak Scan or Mass Scan.

Prepare to Run:

Double check that the largest Ca beam is at ~5-9V and stable.

If needed, adjust current to get stable beam.

Run one last Auto Focus

Start Run:

Go to Method Editor hit play button at top

Make sure "After Run" box is checked and "fildown_vclose.pex" script is set.  This will automatically close valve and ramp down filaments.

Enter in file name.  Can hit dropdown menu, select last run, and modify name (ie. YR_MTH_DAY_pos#_NameOfSample.exp)

Hit save and run will start.

If beam goes above 10V, close gate, and let beam decrease.  If beam starting “running away” (ie. 

Increases fast above 10V, you may need to ramp down EVAP.)

Peak center on 44Ca in L2 optional.  If you run peak center, this may create a “hump” in the mass calibration line.  I haven't 

noticed any impact of this “hump” on the ratios, but theoretically probably not a good thing.  Run Peak Scan.  Use Tracer Icon 

to select cups L2 and H2 and normalize to individual.
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Appendix A2: Additional stable Ca isotope box model description 

A2.1 Model Equations 

In this appendix I provide a more detailed description of the two-box model 

of the terrestrial ecosystem presented earlier in Chapters 2 and 3 (Figure 2.2 and 

Figure 3.2). The model consists of 2 boxes (reservoirs) representing the mass of 

actively cycled soil Ca integrated over the root zone (MS) and the mass of Ca in 

biomass (MV) (mol Ca*ha-1) and 7 fluxes (mol Ca*ha-1*yr-1) representing the 

movement of Ca into, out of, and between reservoirs. Two external fluxes enter 

the soil exchangeable reservoir, representing atmospheric deposition (FA) and 

bedrock weathering-derived (FW) sources of Ca to the system. One external flux 

(FNU) enters the vegetation pool directly, bypassing the soil exchange pool. This 

flux represents direct uptake of new Ca by roots from sources other than the 

exchangeable reservoir, contributing to “nutrient uplift”. Internal biomass cycling 

of Ca is represented by an uptake flux from the soil exchangeable reservoir (FU), 

and the return of Ca from biomass back to the soil exchangeable reservoir (FR) 

via decomposition. Ca is exported from the system by one of two fluxes, via 

leaching from the soil exchange reservoir (FZ) to groundwater or streamwater, 

and as export of Ca from the vegetation reservoir (FPOM), for example by stream 

export of particulate organic matter.  

 We start with an isotope mass balance for the soil exchangeable Ca 

reservoir (MS) and Ca biomass reservoir (MV): 

𝑑(𝑀𝑠𝛿𝑠)

𝑑𝑡
= 𝐹𝐴𝛿𝐴 + 𝐹𝑊𝛿𝑊 + 𝐹𝑅𝛿𝑉 − 𝐹𝑈(𝛿𝑆 + 𝛥𝑈) − 𝐹𝑍𝛿𝑆   (1) 
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𝑑(𝑀𝑣𝛿𝑣)

𝑑𝑡
= 𝐹𝑈(𝛿𝑆 + 𝛥𝑈) −  𝐹𝑅𝛿𝑉 + 𝐹𝑁𝑈(𝛿𝑊 + 𝛥𝑈) − 𝐹𝑃𝑂𝑀𝛿𝑉  (2) 

Where M represents the mass of Ca in a particular reservoir (mol Ca*ha-1), F 

represents a Ca flux into or out of a Ca reservoir  (mol Ca*ha-1*yr-1), δ represents 

δ44Ca values for the respective reservoir or flux (‰, relative to seawater 

standard) and ΔU is a isotopic separation factor that represents the isotopic 

fractionation of Ca isotopes that occurs when Ca moves from the soil 

exchangeable reservoir into the biomass reservoir (‰ difference between the 

δ44Ca of the soil exchangeable reservoir and the δ44Ca value of the biomass 

reservoir).  

At steady state, MV and MS are constant in time. To achieve this, the input 

of Ca must balance the output of Ca from each reservoir. In the case of MS, we 

treat FZ as the residual of FA, FW, FR and FU with the additional constraint that FZ 

is always positive (ie. FZ is always exiting MS). In the case of MV, if FR and FU and 

equal, then FNU and FPOM must also be equal. However, we can set FR and FU 

not equal to one another, as long as the difference in FNU and FPOM accounts for 

the difference between FR and FU, and maintain steady state conditions. It should 

be noted that FA and FW are assumed to be constant in time. An example of 

results from our steady-state box model (for various ΔU values) can be seen in 

figure 3.8.  

 The box model can also be run in a non-steady state scenario, where we 

are no longer required to keep MV and MS constant. In this dynamic scenario, we 

do not need to call on additional fluxes into and out of the biomass reservoir (FNU 
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and FPOM) to maintain a constant MV, although these fluxes can be included in 

non-steady state model runs if deemed necessary. To run the model in a 

dynamic fashion, we define first order rate constants (k) based on the magnitude 

of the flux and size of the respective reservoir the flux exits at initial steady-state 

conditions: 

𝑘𝑖 =
𝐹𝑖

𝑀𝑥
  (3) 

Where 𝑘𝑖 is the rate constant associated with flux 𝐹𝑖, and 𝑀𝑥 is either the mass of 

the soil or biomass reservoir, depending on where the flux originates. We note 

that FA and FW are not defined using first order rate constants as these are 

independent of the size of the Ca reservoirs, and kNU is defined using the 

reservoir FNU enters (MV), as this uptake flux is biologically mediated. Finally, we 

have chosen to parameterize the model such that FU is not dependent on the 

size of the Ca reservoirs, but instead explicitly determine by the user. The 

advantage of this model design is that we can directly incorporate into our model 

real world observations of the growth (or decline) in the size of the biomass 

reservoir through time. For example, Figure 2.6 shows the regrowth of the 

biomass reservoir in Bisley 1 following hurricane Hugo as measured by Hearsill 

Scaley et al. (2010). We can convert the real world time series of biomass size 

measurements to net yearly Ca accumulation and incorporate them directly into 

the model through the use of (FU). I believe this provides more realistic results 

regarding how δ44Ca values respond to disturbance events.  
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 With the first order rate constants relating the evolving masses with 

individual fluxes, we can apply the chain rule to the left hand side of equation (1) 

and (2) to calculate the time evolution of the soil exchangeable δ44Ca value (δS) 

and vegetation δ44Ca value (δV): 

𝑑𝛿𝑆

𝑑𝑡
=

1

𝑀𝑆
[(

𝑑𝑀𝑆

𝑑𝑡
) − 𝛿𝑆(𝐹𝐴𝛿𝐴 + 𝐹𝑊𝛿𝑊 + 𝑘𝑅𝑀𝑉𝛿𝑉 − 𝐹𝑈(𝛿𝑆 + 𝛥𝑈) − 𝑘𝑧𝑀𝑆𝛿𝑆)] 

 (4) 

𝑑𝛿𝑉

𝑑𝑡
=

1

𝑀𝑉
[(

𝑑𝑀𝑉

𝑑𝑡
) − 𝛿𝑉(𝐹𝑈(𝛿𝑆 + 𝛥𝑈) −  𝑘𝑅𝑀𝑉𝛿𝑉 + 𝑘𝑁𝑈𝑀𝑉(𝛿𝑊 + 𝛥𝑈) − 𝑘𝑃𝑂𝑀𝑀𝑉𝛿𝑉)]  

 (5) 

Where 
𝑑𝑀𝑆

𝑑𝑡
 and 

𝑑𝑀𝑣

𝑑𝑡
 are the mass balance of the soil and vegetation pool, 

respectively: 

𝑑𝑀𝑆

𝑑𝑡
= (𝐹𝐴 + 𝐹𝑊 + 𝐹𝑅 − 𝐹𝑈 − 𝐹𝑍)  (6) 

𝑑𝑀𝑉

𝑑𝑡
= (𝐹𝑈 −  𝐹𝑅 + 𝐹𝑁𝑈 − 𝐹𝑃𝑂𝑀)  (7) 

We can then solve the ordinary differential equations presented in (4) and (5) for 

δ44Ca values at each time step using numerical techniques. In the next section 

we provide an example of how to run the model in non-steady state mode to 

examine the formation of a forest over existing soil. 

A2.2 Modeling the formation of a forest over soil 

It is worth exploring the observation that terrestrial ecosystems can exhibit 

an isotopically light vegetation reservoir without an accompanying isotopically 

heavy soil Ca reservoir. In a closed system, it would be expected that a forest 



 

 

174 

      
 

 
 

    1
7
4
 

would produce an isotopically heavy soil reservoir given that the isotopic 

fractionation during vegetation uptake of Ca from soil discriminates against the 

heavy Ca isotopes. However, as the terrestrial Ca cycle is an open system with 

respect to the movement of Ca into and out of the soil reservoir, we will 

demonstrate that soil underlying a forest at steady state (size of the biomass 

reservoir constant in time) will be isotopically indistinguishable from the isotopic 

value of external sources into the soil (weathering of bedrock and atmospheric 

deposition), assuming enough time has passed since the forest achieved steady 

state. 

We first define steady state initial conditions from which our system will 

evolve through time. Initially MV = 1 mol Ca*ha-1 and MS = 5,000 mol Ca*ha-1, 

and the FU and FR and equal and set to 1 mol Ca*ha-1*yr-1. The sum of external 

sources (FW + FA) is equal to 150 mol Ca*ha-1*yr-1 and are assigned a δ44Ca 

value of -1‰. Lastly, ΔU = -1‰, FNU and FPOM = 0 mol Ca*ha-1*yr-1 (biomass 

obtains all Ca from the soil reservoir and returns all Ca to soil reservoir), and the 

model is run for 600 years, with the forest starting to grow at year 100. These 

values are summarized in Table A.2.1. Results of this model simulation are show 

in Figure A.2.1. Our model indicates that during the forest growth phase that 

begins at model year 100, the δ44Ca values of both the soil and vegetation 

increase synchronously by approximately 0.6‰, and the mass of soil reservoir 

decreases to account for the increase in biomass Ca (remember FNU is set to 0 

mol Ca*ha-1, so biomass obtains Ca only from the soil reservoir). After the forest 
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reaches a steady state mass (uptake from the soil equal to the return to the soil) 

at approximately model year 150, the δ44Ca values of both the soil and 

vegetation decrease synchronously back to their initial steady state values. 

Concurrently, the mass of the soil reservoir returns to its initial steady state size 

and δ44Ca value, as a result of the continued inputs of Ca from external sources. 

We note that the difference between the soil and vegetation δ44Ca values 

remains constant at -1‰ (the value of ΔU). While simple, this model 

demonstrates an important consequence of the “open” nature of the terrestrial Ca 

cycle. It is only when there is an imbalance between the Ca fluxes linking the 

biomass and soil reservoir does the stable Ca isotope value of the soil reservoir 

differ from external Ca sources.  

Conceptually, as the forest grew, there was a net removal of Ca from the soil as 

Ca was being stored in biomass. This net uptake of isotopically light Ca drove the 

soil reservoir toward isotopically heavier values compared with initial conditions. 

The isotopic value of biomass responded similarly to soil due to the fact that the 

biomass reservoir obtained all its Ca from the soil reservoir. However, as the 

forest ceased growing and returned to steady state conditions (albeit at a larger 

reservoir size), the uptake of isotopically light Ca is balanced by the return of 

isotopically light Ca, effectively canceling out the isotopic fractionation. The 

continued input of Ca from external sources into the soil reservoir drove the 

isotopic value of the soil reservoir back toward the values of external sources. 

The return of the soil δ44Ca value to initial, pre-growth conditions can be viewed 
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as the result of soil Ca originally fractionated during forest growth being “flushed 

out” and replaced with new Ca from external sources. Hence, it is the “open 

system” nature of the terrestrial Ca cycle that can produce a situation where 

isotopically light biomass is not necessarily balanced by isotopically heavy soil. 

For completeness, we have included fully reproducible R scripts for the 

model simulation described above so that others interested in the model can 

extend or alter the model as they see fit. 
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A2.3 Supplimentary Information 

A2.3.1. R script for simulation a forest growth over soil  

### Forest growth simulation using2 box stable Ca Isotope Model 

### Created: 6/1/2015 

### By: Ken Takagi 

### Filename: CaIsoModel_2box_GrowingForest.R 

### Notes: This script simulates the creation of a forest over an existing  

### soil Ca pool. First the regrowth trajectory is created, then we define 

### initial steady-state fluxes, masses, and d44Ca values in the model funcion 

### call, and lastly we plot results. 

############################################################################ 

 

#Hypothetical biomass regrowth 

x <- c(1,2,3,4)  

y <- c(0.287, 0.505, 0.603, 0.702) 

a1 = 1 

b1 = -0.25 

xfit <- seq(1, 50, 0.25) 

yfit<- nls(y ~ a*(1-exp(x*b)), start = list(a = a1, b = b1)) 

yfitParm <- summary(yfit)$para[,1] 

dStorage <- ((yfitParm[1])*(1 - exp(xfit*yfitParm[2])))*500*1000/40.08 

dStorage.norm <- (dStorage - dStorage[1])/max(dStorage - dStorage[1])*5000 

accum <- c(diff(dStorage.norm), rep(0, (500-length(diff(dStorage.norm))))) 

 

# Define time dependent fluxes. Here only accumulation flux changes. Rest 0. 

accFlux.all <- c(rep(0, 100), rep(accum,1)) 

lossFlux.all <- rep(0, length(accum)+100) 

 

# Define reminder of initial steady state fluxes, masses and d44Ca value, and call 

# model file to run model. 

source(“filepath/to/dynamic_CaIsoModel_2Box.R")) 

out <- dynamic_CaIsoModel_2Box(soilCaMass = 5000,   

                                  delSoil = -1,  

                                  vegCaMass = 0.001,  

                                  delVeg = -2,  

                                  atmFlux = 75,  

                                  delAtm = -1,  

                                  wthFlux = 75, 

                                  delWth = -1,  

                                  lchSoilFlux = 150,  

                                  inVegFlux = 0, #No nutrient uplift flux 

                                  delInVeg = -1, 

                                  lchVegFlux = 0, #No POM flux 

                                  uptakeFlux = 1, #arbitrary as long as equsl litterFlux  

                                  litterFlux = 1, #arbitrary as long as equsl uptakeFlux 

                                  delta.bio = -1, 

                                  bioAccum = accFlux.all, #biomass grows! 

                                  bioLoss = lossFlux.all, #no biomass decline 

                                  event = "N", 

                                  runLength = length(accFlux.all) 

                                  ) 

 

#### plot results. 

plot(out) 

#####----------- 
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A2.3.2. R script for dynamic 2 box model of the terrestrial Ca cycle.  

### Dynamic 2 box stable Ca isotope Model 

### Created: 6/1/2015 

### By: Ken Takagi 

### Filename: CaIsoModel_2Box.R 

### Notes: This model represents the terrestrial Ca cycle as 2 Ca reservoirs, a  

### soil and biomass reservoir. Various fluxes move Ca into, out of and between 

### the reservoirs. Each reservoir is assigned a d44Ca value, and the fluxes  

### are assigned the d44Ca value of the reservoir the flux exits. 

############################################################################ 

### Inputs: 

### soilCaMass <- Initial mass of soil pool (mol/ha). 

### delSoil <- Initial d44Ca of the soil pool (permil, rel. to SW). 

### vegCaMass <- Initial mass of biomass pool (mol/ha). 

### delVeg <- Initial d44Ca of the biomass pool (permil, rel. to SW). 

### atmFlux <- Flux of Ca from atmosphere into soil.  

###     Assumed constant (mol/ha/yr). 

### delAtm <- d44a of the atmospheric flux. Assumed constant  

###     (permil, rel. to SW). 

### wthFlux <- Flux of Ca from weathering of mineral soil. Assumed constant  

###     (mol/ha/yr). 

### delWth <- d44Ca of the weathering flux. Assumed constant  

###     (permil, rel. to SW). 

### lchSoilFlux <- Flux of Ca leached from soil (mol/ha/yr). 

### decayFlux <- Flux of Ca from decay of organic matter into soil (mol/ha/yr). 

### delDecay <- d44Ca of the belowground biomass decay flux  

###     (permil, rel. to SW). 

### inVegFlux <- Flux of Ca from nutrient uplift(mol/ha/yr). 

### delInVeg <- d44Ca of the secondary weathering source to biomass  

###     (permil, rel. to SW). 

### lchVegFlux <- Flux of Ca out of vegetation that bypasses  

###     soil and exits system (mol/ha/yr). 

### uptakeFlux <- Flux of Ca removed from soil by vegetation (mol/ha/yr). 

### litterFlux <- Flux of Ca returned from Vegetation back to soil (mol/ha/yr). 

### delta.bio <- biomass fractionation factor (permil) 

### bioAccum <- Flux of Ca returned from Vegetation back to soil (mol/ha/yr). 

### bioLoss <- loss of Ca from the biomass pool (mol/ha/yr). 

### event <- if, and what type of disturbance event takes place. 

### runLength <- length of model run (years). 

 

### Outputs: 

### ModelResults <- dataframe with four variables. Change in soil pool mass  

###   with time, change in veg pool mass with time, chnge in the d44Ca of  

###   soil pool mass with time, and change in the d44Ca of the veg pool with time. 

 

### Define function 

dynamic_CaIsoModel_2Box <- function(soilCaMass,  

                                    delSoil,  

                                    vegCaMass,  

                                    delVeg,  

                                    atmFlux,  

                                    delAtm,  

                                    wthFlux,  

                                    delWth,  

                                    inVegFlux, 

                                    delInVeg, 

                                    lchSoilFlux, 

                                    lchVegFlux, 

                                    uptakeFlux,  

                                    litterFlux,  

                                    delta.bio, 

                                    bioAccum, 

                                    bioLoss, 

                                    event, 

                                    runLength){ 
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#------------------------------------------------------------------------------- 

library(deSolve) 

 

# Parameter values for model 

# Initial rate constants. Set proportional to mass of Ca pools (first-order). 

parameters <- c(klf = litterFlux/vegCaMass, 

                klV = lchVegFlux/vegCaMass, 

                kuS = uptakeFlux/vegCaMass, 

                klS = lchSoilFlux/soilCaMass, 

                kiV = inVegFlux/vegCaMass, 

                Fa = atmFlux, 

                Fw = wthFlux, 

                da = delAtm,                   

                dw = delWth, 

                div = delInVeg, 

                delta = delta.bio 

) 

 

# initial values for masses and dels. 

state <- c(MVeg = vegCaMass, 

           MSoil = soilCaMass, 

           delVeg = delVeg,  

           delSoil = delSoil      

);  

 

#Set timesteps and run length 

tf = runLength; #final simulation time in years. 

times = seq(1, tf, 1); #simulation time in years. 

 

# Forcing fluxes 

func_dyn_Fup <- function(t) bioAccum[t] 

func_dyn_Fdown <- function(t) bioLoss[t] 

func_dyn_FinVeg <- function(t) inVegFlux[t] 

func_dyn_FoutVeg <- function(t) lchVegFlux[t] 

 

#this is where the function uses the dynamic fluxes to calculate the 

#incremental change in reservior sizes and isotope ratios 

 

CaIsoSolver<-function(t, state, parameters) { 

  with(as.list(c(state, parameters)),{ 

     

    #equations for dynamic fluxes 

    FuS_dynamic = func_dyn_Fup(t) + kuS*MVeg 

    Flf_dynamic = func_dyn_Fdown(t) + klf*MVeg 

    FlV_dynamic = klV*MVeg 

    FiV_dynamic = kiV*MVeg 

    FlS_dynamic = klS*MSoil 

     

    dMVeg = FuS_dynamic + FiV_dynamic - Flf_dynamic - FlV_dynamic; 

     

    dMSoil = Fa + Fw + Flf_dynamic - FuS_dynamic - FlS_dynamic; 

     

    ddelVeg = 1/MVeg*(FuS_dynamic*(delSoil + delta) + FiV_dynamic*(div + delta) 

              - (Flf_dynamic + FlV_dynamic)*delVeg - (delVeg*(FuS_dynamic +  

              FiV_dynamic - Flf_dynamic - FlV_dynamic))); 

     

    ddelSoil = 1/MSoil*(Fa*da + Fw*dw + Flf_dynamic*delVeg -  

              FuS_dynamic*(delSoil + delta) - FlS_dynamic*delSoil -  

              (delSoil*(Fa + Fw + Flf_dynamic - FuS_dynamic -  

              FlS_dynamic))); 

     

    list(c(dMVeg, dMSoil, ddelVeg, ddelSoil)) 

  }) 

} 

 

if(event == "N"){ 

  outCaEvent <- ode(func = CaIsoSolver, y = state, times = times,   
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                    parms = parameters)   

} 

return(outCaEvent) 

} 
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A2.3.3. Tables 

Table A2.1. 2 box model parameters for growing forest simulation 

Variable 

 

Description 

 

Units Value 

MV mol*ha-1 Mass of Vegetation 1 

MS mol*ha-1 Mass of Soil 5000 

FA mol*ha-1*yr-1 Atm. deposition 75 

FW mol*ha-1*yr-1 Weathering flux 75 

FU mol*ha-1*yr-1 Uptake flux 1 

FR mol*ha-1*yr-1 Litter flux 1 

FNU mol*ha-1*yr-1 Nutrient uplift 0 

FPOM mol*ha-1*yr-1 Particulate organic matter flux 0 

FLch mol*ha-1*yr-1 Soil leaching flux 150 

δ44CaSoil ‰ δ44Ca of Soil reservoir -1 

δ44CaVeg ‰ δ44Ca of biomass reservoir -2 

δ44CaEx ‰ δ44Ca of external sources -1 

ΔU ‰ Uptake fractionation factor -1 

 

 



 

 

182 

      
 

 
 

    1
8
2
 

A2.3.4. Figures 

 

 

Figure A2.1. Results from the dynamic box model simulation of a growing forest 

presented in Section A2.2. 
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