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ABSTRACT

Multi- and many-core processors are becoming increasingly popular in embedded sys-

tems. Many of these processors now feature hardware virtualization capabilities, such

as the ARM Cortex A15, and x86 processors with Intel VT-x or AMD-V support. Hard-

ware virtualization offers opportunities to partition physical resources, including processor

cores, memory and I/O devices amongst guest virtual machines. Mixed criticality systems

and services can then co-exist on the same platform in separate virtual machines. However,

traditional virtual machine systems are too expensive because of the costs of trapping into

hypervisors to multiplex and manage machine physical resources on behalf of separate

guests. For example, hypervisors are needed to schedule separate VMs on physical pro-

cessor cores. Additionally, traditional hypervisors have memory footprints that are often

too large for many embedded computing systems. This dissertation presents the design

of the Quest-V separation kernel, which partitions services of different criticality levels

across separate virtual machines, or sandboxes. Each sandbox encapsulates a subset of

machine physical resources that it manages without requiring intervention of a hypervisor.

v



In Quest-V, a hypervisor is not needed for normal operation, except to bootstrap the sys-

tem and establish communication channels between sandboxes. This approach not only

reduces the memory footprint of the most privileged protection domain, it removes it from

the control path during normal system operation, thereby heightening security.
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Chapter 1

Introduction

1.1 Motivation

Embedded systems are increasingly featuring multi- and many-core processors, due in

part to their power, performance, weight and cost benefits. These processors offer new

opportunities for an increasingly significant class of mixed criticality systems. A mixed

criticality system is an integrated system of software and hardware that supports the exe-

cution of safety critical, mission critical, and non-critical tasks within a single computing

platform. In mixed criticality systems, there is a combination of application and system

components with different safety and timing requirements. For example, in an avionics

system, the in-flight entertainment system is considered less critical than that of the flight

control system. Similarly, in an automotive system, infotainment services (navigation,

audio and so forth) would be considered less timing and safety critical than the vehicle

management sub-systems for anti-lock brakes and traction control.

A major challenge to mixed criticality systems is the safe isolation of separate com-

ponents with different levels of criticality. Isolation has traditionally been achieved by

partitioning components across distributed modules, which communicate over a network

such as a CAN bus. For example, Integrated Modular Avionics (IMA) [Wat06] is used to

describe a distributed real-time computer network capable of supporting applications of

differing criticality levels aboard an aircraft. To implement such concepts on a multicore
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platform, a software architecture that enforces the safe isolation of system components is

required.

Hardware-assisted virtualization provides an opportunity to efficiently separate system

components with different levels of safety, security and criticality. Back in 2006, Intel and

AMD introduced their VT-x and AMD-V processors, respectively, with support for hard-

ware virtualization. More recently, the ARM Cortex A15 was introduced with hardware

virtualization capabilities, for use in portable tablet devices. Similarly, some Intel Atom

chips now have VT-x capabilities for use in automobile In-Vehicle Infotainment (IVI) sys-

tems, and other embedded systems.

While modern hypervisor solutions such as Xen [BDF+03] and Linux-KVM [Hab08]

leverage hardware virtualization to isolate their guest systems, they are still required for

CPU, memory, and I/O resource management. Traps into the hypervisor occur every time

a guest system needs to be scheduled, when a remapping of guest-to-machine physical

memory is needed, or when an I/O device interrupt is delivered to a guest. This is both

unnecessary and potentially too costly for mixed criticality systems with real-time require-

ments. Additionally, existing hypervisor solutions do not provide predictable communica-

tion and service migration facilities to guest virtual machines. This also renders them less

effective for real-time mixed criticality applications. The challenges of deploying mixed

criticality systems on multi- and many-core platforms along with the limitations of current

hypervisor based solutions motivated us to come up with the design and implementation

of a new partitioning system from the ground up.

1.2 Quest-V Separation Kernel

The goal of this research is to design and implement an operating system that uses hardware-

assisted virtualization as an extra ring of protection, to achieve efficient resource partition-
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ing and performance isolation for subsystem components. The system, called Quest-V, is

a separation kernel [Rus81] design, effectively operating as a distributed system on a chip.

Quest-V is centered around three main goals: safety, predictability and efficiency. Of par-

ticular interest is support for safety-critical applications, where equipment and/or lives are

dependant on the operation of the underlying system. With recent advances in fields such

as cyber-physical systems, more sophisticated OSes beyond those traditionally found in

real-time and embedded computing are now required. Consider, for example, an automo-

tive system with services for engine, body, chassis, transmission, safety and infotainment.

These could be consolidated on the same multicore platform, with space-time partitioning

to ensure malfunctions do not propagate across services. Virtualization technology can be

used to separate different groups of services, depending on their criticality (or importance)

to overall system functionality.

However, unlike traditional virtualization solutions, Quest-V treats hardware-assisted

virtualization features as hardware-assisted resource partitioning capabilities. Hardware

resources are partitioned amongst different systems components in Quest-V. This avoids

traps into a hypervisor (a.k.a. virtual machine monitor, or VMM) when making scheduling

and I/O management decisions. System components are capable of scheduling themselves

on available processor cores and are granted access to specific subsets of I/O devices and

memory. This design leads to the following observations:

1. Since hardware resources are partitioned, resource multiplexing between subsystem

components in Quest-V is not necessary. The Quest-V separation kernel is only re-

sponsible for granting access rights and leaves resource management responsibilities

to the components themselves. The elimination of the resource management logic

reduces the complexity and footprint of the code running in the most privileged do-

main of the system.
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2. The most privileged domain of the system does not need to be involved in the service

requests from subsystem components. It is only needed to initialize components,

handle faults, and setup communication channels. This makes the subsystem com-

ponents more predictable and efficient since no additional code from the separation

kernel is executed during their normal execution.

3. Because of its simplicity, small footprint, and elimination from subsystem com-

ponent control flow, the Quest-V separation kernel heightens system security and

safety. The separation kernel with its resource partitioning logic constitutes a min-

imal trusted code base and small attack surface. This is essentially more effective

than a micro-kernel, which needs to support the concept of an address space, threads,

inter-process communication, and naming. The micro-kernel needs to be accessed

for all the service requests involving these concepts and operations.

In addition to the above benefits, predictable communication and service migration

between high criticality components in Quest-V are guaranteed by a real-time VCPU

scheduling framework. Experiments show that worst case execution times for message

passing and migration between isolated critical subsystem components can be guaranteed.

Third party systems such as a Linux front-end can be supported with minimal modification

and near bare-metal performance. Preliminary results show that Quest-V is able to make

efficient use of CPU, memory and I/O partitioning, using hardware virtualization.

1.3 Thesis Statement

Thesis: A separation kernel that offers efficient resource partitioning, predictable commu-

nication and performance isolation for mixed criticality systems on a multi-core platform

is implementable with hardware-assisted virtualization, and software-based scheduling
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and communication.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. Chapter 2 introduces the de-

tails of mixed criticality systems and reviews some of the potential existing solutions to

the multi-core mixed criticality system challenges. Chapter 3 describes the architecture

of the Quest-V separation kernel and its resource partitioning capabilities. Chapter 4 de-

tails Quest sandbox support in Quest-V and explains how predictable communication and

service migration are implemented between Quest sandboxes. Fault recovery and device

sharing between Quest sandboxes are also discussed in this chapter. Chapter 5 introduces

third party sandbox support in Quest-V. This includes Linux and OSEK/AUTOSAR OS

sandbox support. Finally, Chapter 6 and 7 provide overall conclusions and discuss possible

future work.



Chapter 2

Background and Related Work

2.1 Mixed Criticality Systems

Mixed criticality systems are often seen in the automotive and avionics industry, where

the failure of a safety critical system component will potentially lead to catastrophic con-

sequences including human life losses. Traditionally, the separation of subsystems with

different criticality levels had been considered absolute and was always accomplished by

means of physical isolation. In traditional Unmanned Aerial Vehicle (UAV) systems, for

example, well defined divisions are created to group subsystems of different criticality

levels [BBB+09]. Each system division is then assigned its own hardware and software

and interfaces with each other via external buses and I/O. However, as the complexity of

mixed criticality systems increases, this approach becomes increasingly inefficient mostly

due to communication overhead and increased power consumption. For instance, it was

estimated that by 2014, the amount of cables on a passenger aircraft varies from 200 km to

600 km depending on the aircraft model [NEX]. And a typical luxury vehicle in the early

2000s already have more than 2km of wire in the harness, 2000 terminals, 350 connectors,

and nearly 1500 different circuits [KWMH96]. The electronics of a typical vehicle today

consumes an average of above 2000 Watts of power. The peak power load can reach more

than 12kW [NH00].

The inherent inefficiency of physical isolation soon led to the idea of consolidating sub-
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systems of different criticality levels onto a single software system with shared hardware

resources. However, this approach introduced the challenge of maintaining the isolation

between different system components. One solution is to use process isolation. To help

design and verify systems adopting this approach, industrial standards such as ARINC

653 [ARI08] and DO-178B [Aut92] had been developed for avionics systems. ARINC

653 is a software specification for space and time partitioning in safety critical avionics

real-time operating systems. DO-178B is a certification document that uses assurance

levels to guide the design of reliable software in certain airborne systems. In addition to

spatial isolation provided by process address spaces, the temporal isolation between pro-

cesses/partitions in these systems relies on the scheduling policy of the operating system.

In ARINC 653, dedicated time slots can be allocated to partitions through the APEX API.

Various real-time scheduling policies for mixed criticality systems [BD14] had also been

proposed in recent years to provide criticality aware CPU resource management. One ex-

ample system developed under these standards is the INTEGRITY-178B RTOS [INTb].

INTEGRITY-178B RTOS is a certified operating system that uses a hardware memory

management unit (MMU) for memory protection and to isolate system components. Its

secure partitions are designed for Ada, C, and Embedded C++ programs.

Even though the process based approach can provide sufficient spatial isolation be-

tween subsystem components for consolidation of a mixed criticality system, it still has

two major limitations. First, a process is a logical abstraction that does not qualify how

resources are managed in real-time; the operating system kernel is needed to multiplex

resources amongst processes. Moreover, the process environment only exposes limited

hardware capabilities to applications or tasks; it is difficult to support certain legacy ser-

vices that require direct hardware access without significant engineering effort and visible

performance overhead [HHL+97]. These limitations have since led to the increasing pop-
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ularity of the use of virtualization in mixed criticality embedded systems.

2.2 Virtualization

Control Program/67 operating system [MS70], or CP/67, was the first software prod-

uct to provide a virtual machine capability in order to offer time-sharing for multiple

users. CP/67 gave each user a virtual machine in which the single-user Conversational

Monitor System (CMS) operating system could be run to provide command processing

and information management functions. With the success of CP/67, IBM announced

VM/370 [Cre81], which is also designed to offer multiprocessing capabilities. And it soon

became one of the most popular operating systems offering good interactive computing

facilities and the capability to operate guest operating systems in virtual machines.

The use of virtualization to offer time-sharing capability was soon superseded by time-

sharing operating systems such as UNIX. However, the concept of software virtualization

emerged again in the 90s as a solution to address software scalability issues and to consoli-

date workloads on multi- and many-core hardware platforms. Disco [BDR97] is a hypervi-

sor designed to run commodity OSes on scalable multiprocessors (e.g. Stanford FLASH).

Virtual CPUs in Disco emulate MIPS R10000 instructions. Guest operating system ker-

nels need to be paravirtualized in their Hardware Abstraction Layer (HAL) and driver

framework to run on the Disco hypervisor. Xen [BDF+03] and Linux-KVM [Hab08] are

virtual machine monitors designed for commodity hardware platforms today. They both

leverage Linux kernel services to host different guest operating systems on a single phys-

ical machine. Desktop virtualization systems such as VMware [VMW] Workstation and

VirtualBox [VIR] offer similar functionality.

Most of these software virtualization systems are designed to offer transparent and

efficient hardware resource multiplexing. This conventional virtual machine monitor de-
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sign mainly focuses on scalability and maximum resource utilization rather than resource

partitioning and predictability as required by mixed criticality systems. This makes it

necessary for a hypervisor to constantly interrupt virtual machine execution for resource

management such as virtual machine scheduling and I/O device sharing. On some archi-

tectures (e.g. x86) with non-privileged sensitive instructions [PG74], inefficient software

techniques such as binary translation are required to support unmodified guest virtual ma-

chines. This further increases the level of hypervisor interference. Additionally, most of

these systems provide a virtual or emulated device interface for guest operating systems

by default. By not allowing guests to access I/O devices directly, it is easier to manage

hardware resources. However, a virtual or emulated device interface requires hypervisor

intervention in all I/O related operations in the guest. Even though PCI passthrough is sup-

ported in recent versions of Xen and Linux-KVM, guest virtual machines can only directly

access device registers. The hypervisor is still responsible for initial interrupt handling and

interrupt acknowledgment. This potentially forces two hypervisor traps for each interrupt.

ELI [GAH+12] is a software approach for handling a subset of device interrupts within

guest virtual machines directly with shadow IDTs. In order to achieve direct interrupt

delivery and handling, the virtual machine scheduling in the hypervisor has to be limited.

Because of the constant hypervisor intervention during guest virtual machine execu-

tion, it is difficult for conventional virtual machine monitors to provide the temporal iso-

lation and efficiency required by mixed criticality systems. Some other systems, such as

XtratuM [CRM10], Wind River Hypervisor [WIN], INTEGRITY multivisor [MUL], and

Mentor Graphics Embedded Hypervisor [MEN] target and are optimized for embedded

applications, but still feature the traditional hypervisor design and suffer from the same

fundamental problems.

To help alleviate the performance overhead of virtual machine monitors, hardware vir-
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tualization features had been added to many modern processor architectures. Hardware-

assisted virtualization provides special execution environment and hardware resource man-

agement capabilities to facilitate the construction of hypervisors. The concept of hardware-

assisted virtualization was first introduced in the IBM System/370 to offer physical par-

titioning of hardware in multiprocessor systems in the 60s. It essentially divides a dual

processor system into two sides. Each side is a separate machine that can be operated inde-

pendently. Logical Partitioning (LPAR) [BHR89] was later introduced in the IBM 3090E

and ES/3090S processors. Similar to physical partitions, LPARs operate independently

and are isolated from one another. The only interaction between partitions is via I/O oper-

ations. However, unlike physical partitions, the number of LPARs can exceed the number

of processors (up to 6). An LPAR dispatcher manages and multiplexes hardware resources

amongst different partitions. In 2006 Intel and AMD introduced their VT-x and AMD-V

processors, respectively, with support for hardware virtualization. These new hardware

virtualization features are designed as extensions to the widely used x86 architectures and

provide hypervisor software with efficient hardware resource management capabilities in

a virtual machine environment. Most of the popular hypervisors on the x86 platform now

takes advantage of these hardware features to reduce virtualization overheads. However,

as mentioned earlier, the traditional virtual machine design still renders them less effective

in mixed criticality, safety critical applications.

2.3 Multikernel

The multikernel design is based on the observation of two evident trends in the architec-

ture of future computers: rising core count and increasing hardware diversity, both be-

tween cores within a machine, and between systems with varying interconnect topologies

and performance trade-offs. These trends impose challenges on current general-purpose
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operating systems designed for ccNUMA and SMP machines.

General-purpose OSes today do not scale to the increasing core count of future archi-

tecture due to their shared memory kernel design with data structures protected by locks.

The increasingly diverse hardware design also makes optimization of general OSes com-

plicated and effective only to specific platforms. Moreover, current OS designs do not

consider the core heterogeneity that is becoming more common in modern hardware ar-

chitectures. To solve these problems, the multikernel [BBD+09] model was proposed.

The multikernel design takes advantage of the networked nature of the machine to rethink

OS architecture using ideas from distributed systems. It is guided by three principals:

(1) make all inter-core communication explicit, (2) make OS structure hardware-neutral,

and (3) view state as replicated instead of shared. Barrelfish [BBD+09] is a multikernel

that replicates rather than shares system state, to avoid the costs of synchronization and

management of shared data structures. Barrelfish runs a small kernel on each core in the

system, and the OS is built as a set of cooperating processes, each running on one of these

kernels, sharing no memory, and communicating via message passing.

The distributed design of multikernel can be used to logically partition system com-

ponents in mixed criticality systems. However, isolation between different kernels in a

multikernel is not enforced; all the kernels execute at the same and lowest privilege lev-

els of the underlying hardware architecture. This is insufficient for the spatial isolation

requirement imposed by mixed criticality applications.

Popcorn [POP], Twin-Linux [JPN+10], Mint Linux [NSN+11], and SHIMOS [SMI08]

are recent efforts that combine the multikernel philosophy and traditional OS designs such

as Linux. These systems boot multiple Linux kernels on a multi-core processor and parti-

tion hardware between them cooperatively in software. The Linux kernels are modified to

share hardware resources, but also without isolation provided by hardware.
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2.4 Separation Kernel

Computer security problems and solutions started drawing large interests since the late

1960s due to the increasingly wide adoption of computer systems in the government and

military facilities. Conventional operating systems at the time all suffered from the prob-

lem of completeness and are highly susceptible to hostile penetration. If even one error in

an operating system allows a user to write a program that subverts the operating system’s

access controls, hundreds of other errors may have been corrected to no avail [LWS+74].

This had led to the development of the security kernel approach, which represents an at-

tempt to find an alternative to the futile and never-ending cycle of conducting penetration

tests and correcting errors.

A security kernel is defined to be the hardware/software component that implements

the concept of a reference monitor [And72], an abstract mechanism that controls the flow

of information within a computer system by mediating every attempt by a subject (ac-

tive systems element) to access an object (information container). The basis of the se-

curity kernel idea is that a small central portion of an operating system can be designed

in such a way as to control all the rest of the system and in so doing make sure that the

system functions according to some principle of good behavior [Ame81]. To verify the

correctness of a security kernel, flow analysis [Mil76] is used to prove a formal specifi-

cation of the kernel conforms to a simple mathematical state machine model [BL74] that

the kernel design is based upon. However, after the construction of several kernelized

systems [GLSS77][MD79][PKK+79], it is noted that the simplified mathematical model

forms a sufficient but not necessary basis for preventing system compromises but it is in-

sufficient in satisfying all service needs. For instance, in a printer spooler [Rus81], if the

spooler and its spool files are at the highest security level, then the users of lower security

levels cannot inspect their own spool files to monitor the progress of their jobs. This vio-
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lates the Simple Security Property, which states that a subject at a given security level may

not read an object at a higher security level. However, if the spool files are classified at the

level of their owners while the spooler continues to run at the highest level so that it may

read all spool files, then the spooler cannot delete spool files after they have been printed.

This violates the *-Property, which states that a subject at a given security level must not

write to any object at a lower security level. To implement system services similar to the

spooler, we have to create exceptions to the basic model and ensure that they do not destroy

the security provided by the basic model. In practice, these exceptions quickly complicate

the security model and make the centralized security kernel approach ineffective.

A very simple and natural model for a computer system where security does not rely

upon a central mechanism is a functionally distributed system. In such a system, various

functions are provided by specialized individual subsystems which are physically sepa-

rated from each other and provided with only limited channels for communication with

one another. With this system structure, a lot of security problems can be avoided or

considerably simplified due to the separation of concerns. Of course, the components of a

system usually interact with each other and cannot be studied independently in some cases.

However, this challenge is no less formidable in a conventional security kernel. The same

interactions and dependencies are also present in a centralized design, only more difficult

to handle because of the lack of visibility [Rus81].

These observations had led to the development of the concept of a separation ker-

nel [Rus81]. Similar to a virtual machine monitor, a separation kernel provides isolated

regimes that resemble virtual machines for each component of a system. However, a sep-

aration kernel differs from a VMM in that there is no requirement for it to provide VMs,

which are exact copies of the base hardware. A separation kernel should support explicit

communication channels between regimes, while enforcing absolute isolation otherwise.
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There exists commercial separation kernels such as LynxSecure [LYN], PikeOS [PIK],

and INTEGRITY-178B RTOS [INTb]. Very few details of these systems are available in

the public domain. LynxSecure separation kernel targeted at safety-critical real-time sys-

tems; it resembles a typical hypervisor with support of multiple guest operating systems.

PikeOS is a separation micro-kernel [KEH+09] that supports multiple guest VMs, and tar-

gets safety-critical domains such as IMA. The micro-kernel supports a virtualization layer

that is required to manage the spatial and temporal partitioning of resources amongst all

guests. INTEGRITY-178B RTOS is a certified separation kernel that uses the MMU for

memory protection. Its secure partitions are designed for Ada, C, and Embedded C++

programs instead of exposing maximum hardware capabilities.

Muen [MUE] is an open source prototype separation kernel written in the SPARK

programming language. It is claimed to have been formally proven to contain no run-

time errors at the source code level. The Muen separation kernel also uses virtualization

to separate the system into multiple subjects (which are equivalent to virtual machines).

However, like traditional hypervisor, traps into the Muen separation kernel are necessary

to handle external interrupts and to schedule subjects. A subject in Muen is automatically

preempted by the separation kernel through the Intel VMX (Virtual Machine eXtensions)

preemption timer when its alloted time slice is over [BR13].

Jailhouse [JAI] is a partitioning hypervisor that can create asymmetric multiprocessing

setups on Linux based systems. It is able to run bare-metal real-time applications along-

side Linux in separate Cells isolated using virtualization. Hardware resources such as

processor cores and devices are statically partitioned for each Cell in Jailhouse. However,

Jailhouse is currently still in prototype stage and there is no support for device assignment

nor interrupt access control. Additionally, predictable inter-cell communication is cur-

rently also not available. In Jailhouse, a Linux kernel has to be bootstrapped first before
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Cells can be created. This could potentially limit its application for platforms with strict

resource limitations.

Even though the separation kernel design with isolated regimes is ideal for the deploy-

ment of mixed criticality applications, a straightforward implementation on the basis of

existing hypervisor or conventional hypervisor design suffers from the lack of temporal

isolation and efficiency as mentioned earlier. In order to respect the differences between

separation kernels and VMMs and to take advantage of modern multi-/many-core plat-

forms, an appropriate separation kernel design and implementation for mixed criticality

systems should aim for providing predictability and efficiency by focusing on resource

isolation instead of multiplexing.

2.5 Other Partitioning Systems

Operating system level virtualization is an operating system kernel approach to allow re-

source isolation between different user space instances. These instances, or containers,

are usually collections of processes with private filesystem namespaces and various re-

source limits. Example implementations of this approach include the Linux Containers

(LXC) [LXC], Docker [DOC], Linux-VServer [SPF+07], and Solaris Zones [SOL]. LXC,

for instance, takes advantage of the Linux cgroup feature to account and isolate resource

usage (e.g. CPU, memory, disk I/O, network) for a collection of processes in a container.

cgroup also provides namespace isolation so that containers in LXC are allowed to have

their own view of the operating environment including process trees, networking, user IDs,

and mounted filesystems. As compared to virtual machines, containers essentially traded

isolation for efficiency. The spatial isolation between containers is still based on process

address space isolation. Consequently, the hardware capabilities exposed by a container is

similar to that of a normal Linux process and all the containers still share a large amount
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of kernel states which makes the isolation much weaker than VMs. For mixed criticality

systems, the isolation provided by containers is not strong enough to host tasks of different

criticality levels; the compromise of the operating system kernel threatens the integrity of

all the containers in an operating system level virtualized system.

NoHype [SKLR11] is a secure system that uses a modified version of Xen to boot-

strap and then partition a guest, which is granted dedicated access to a subset of hardware

resources. NoHype requires guests to be paravirtualized to avoid traps into the hypervi-

sor. Hypervisor traps are treated as errors and will terminate the guest. For safety-critical

applications it is necessary to handle faults without simply terminating guests. Addition-

ally, NoHype focuses on security instead of mixed criticality and embedded applications.

Predictability is basically not a concern for NoHype. However, the idea of avoiding hy-

pervisor traps is similar to the Quest-V separation kernel philosophy.

Dune [BBM+12] uses hardware virtualization to create a sandbox for safe user-level

program execution. By allowing user-level access to privileged CPU features, certain ap-

plications (e.g. garbage collection) can be made more efficient. However, most system ser-

vices are still redirected to the Linux kernel running in hypervisor mode. VirtuOS [NB13]

uses virtualization to partition existing operating system kernels into service domains, each

providing a subset of system calls. Exceptionless system calls are used to request services

from remote domains. The system is built on top of Xen and relies on both the shared

memory facilities and event channels provided by the Xen VMM to facilitate communi-

cation between different domains. The PCI passthrough capability provided by the Xen

VMM is also used to partition devices amongst service domains. However, interrupt han-

dling and VM scheduling still requires VMM intervention.

Other systems that partition resources on many-core architectures include Factored

OS [WA09], Corey [BWCC+08], Hive [CRD+95] and Disco [BDR97]. Unlike Quest-V,
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these systems are focused on scalability rather than isolation and predictability.



Chapter 3

Quest-V Separation Kernel Architecture

Figure 3.1: Example Quest-V Architecture Overview

One of the primary goals of Quest-V is to achieve efficient resource partitioning and

performance isolation for subsystem components with different criticality levels. Quest-V

uses hardware virtualization as an extra ring of protection and operates as a distributed
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system on a chip. A high-level overview of the Quest-V architecture is shown in Fig-

ure 3.1. The current implementation works on Intel VT-x platforms, although conceptu-

ally it should work on any architecture with virtualization support, including AMD-V and

ARMv7-A.

The system is partitioned into separate sandboxes, each responsible for a subset of

machine physical memory, I/O devices and processor cores. Trusted monitor code is used

to launch guest services, which may include their own kernels and user space programs.

A monitor is responsible for managing special extended page tables (EPTs) that translate

guest physical addresses (GPAs) to host physical addresses (HPAs), as described later in

Figure 3.2.

Figure 3.1 shows an example of three sandboxes, where two are configured with Quest-

native safety-critical services for command, control and sensor data processing. These ser-

vices might be appropriate for a future automotive system that assists in vehicle control.

Other less critical services could be assigned to vehicle infotainment services, which are

partitioned in a sandbox that has access to a local display device. A non-real-time Linux

system could be used in this case, perhaps also managing a network interface to commu-

nicate with other vehicles or the surrounding environment, via a vehicle-to-vehicle (V2V)

or vehicle-to-infrastructure (V2I) communication link.

3.1 Distributed Monitors

Unlike traditional hypervisor design in which a single monitor is responsible for multiplex-

ing resources amongst multiple virtual machine instances, Quest-V features a distributed

monitor design, where a separate monitor exists for each sandbox. A monitor manages re-

sources for and handles requests from only a single guest environment. Quest-V monitors

are event driven, passive identities that do not interfere with the normal operations of the
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guests they service. The distributed monitor design leads to the following benefits:

1. Efficiency and Predictability – With distributed monitors, there is no need to have

implicit shared data structures amongst monitors in Quest-V. This reduces resource

contention and increases efficiency at the monitor level. Additionally, since each

monitor only services one sandbox, there is no need for a monitor to determine at

runtime the guest that needs its service. This feature, in turn, improves predictability

by eliminating unnecessary synchronization.

2. Functional Diversity – Monitors in Quest-V can be customized to satisfy the needs

of a specific guest. This functional diversity makes it possible to optimize the perfor-

mance or enhance the capability of a specific monitor without increasing the com-

plexity of the others.

3. Fault Tolerance – Since all the monitors operate at the same hardware privilege level,

the compromise of a single monitor threatens the integrities of all the others. How-

ever, in the presence of inadvertent misbehaviors and hardware soft errors, a dis-

tributed monitor design with both duplication and functional diversity increases the

reliability and availability of the overall system [Avi85] [Avi67] [Avi75] [PvSK90].

Because of their simplicity and functional diversity, it is also easier to formally ver-

ify the correctness and harder to exploit the potential security vulnerabilities of the

Quest-V monitors.

Despite these benefits, the duplication of functionalities in the distributed monitor de-

sign inevitably increases the total memory footprint of the Quest-V monitors. However,

the amount of added memory overhead is small, as each monitor’s code fits within 4KB.

The monitor code needed after system initialization is about 400 lines to support both

Linux and Quest sandboxes. The EPTs take additional data space, but 12KB is enough



21

for a 1GB sandbox address space, and these data structures have to be allocated for each

sandbox in any case.

3.2 Resource Partitioning

Quest-V supports configurable partitioning of CPU, memory and I/O resources amongst

guests. Resource partitioning is mostly static, taking place at boot-time, with the exception

of some memory allocation at run-time for dynamically created communication channels

between sandboxes.

3.2.1 CPU Partitioning

In Quest-V, scheduling is performed within each sandbox. Since processor cores are stati-

cally allocated to sandboxes, there is no need for monitors to perform sandbox scheduling

as is typically required with traditional hypervisors. This approach eliminates the monitor

traps otherwise necessary for sandbox context switches. It also means there is no notion

of a global scheduler to manage the allocation of processor cores amongst guests. Each

sandbox’s local scheduler is free to implement its own policy, simplifying resource man-

agement. This approach also distributes contention amongst separate scheduling queues,

without requiring synchronization on one global queue.

3.2.2 Memory Partitioning

Quest-V relies on hardware assisted virtualization support to perform memory partition-

ing. Figure 3.2 shows how address translation works for Quest-V sandboxes using Intel’s

extended page tables. Each sandbox kernel uses its own internal paging structures to trans-

late guest virtual addresses to guest physical addresses. EPT structures are then walked by

the hardware to complete the translation to host physical addresses.
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Figure 3.2: Extended Page Table Mapping

On modern Intel x86 processors with EPT support, address mappings can be manip-

ulated at 4KB page granularity. For each 4KB page we have the ability to set read, write

and even execute permissions. Consequently, attempts by one sandbox to access illegiti-

mate memory regions of another sandbox will incur an EPT violation, causing a trap to the

local monitor (VM-Exits on the x86). The EPT data structures are, themselves, restricted

to access by the monitors, thereby preventing tampering by sandbox kernels.

EPT mappings are cached by hardware TLBs, expediting the cost of address transla-

tion. Only on returning to a guest after trapping into a monitor are these TLBs flushed.

Consequently, by avoiding exits into monitor code, each sandbox operates with similar

performance to that of systems with conventional page-based virtual address spaces.
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3.2.3 Cache Partitioning

Microarchitectural resources such as caches and memory buses provide a source of con-

tention on multi-core platforms. While partitioning these resources is important to achieve

true temporal and spatial isolation, it is out of the scope of this dissertation. Our group has

been working on cache occupancy prediction and page coloring techniques to solve the

microarchitectural resource partitioning problem. Quest-V uses hardware performance

counters to establish cache occupancies for different sandboxes [WZWZ13, WZWZ10,

WZW+08]. Dynamic page coloring techniques as described in our COLORIS [YWCL14]

system are then able to partition shared caches between sandboxes [LHH97, Alb99, CS07,

DSN06, Iye04, KCS04, LSK04, RLT06, RAJ00, SKI08, SRD04]. The implementation of

COLORIS in Quest-V is currently being actively pursued.

Additional work is ongoing to account for contention on other micro-architectural re-

sources, including on-chip buses and interconnects. Without hardware support, software

techniques such as MemGuard [CPS+13] is being considered.

3.2.4 I/O Partitioning

In Quest-V, device management is performed within each sandbox directly. Device in-

terrupts are delivered to a sandbox kernel without monitor intervention. This differs from

the “split driver” model of systems such as Xen, which have a special domain to handle

interrupts before they are directed into a guest. Allowing sandboxes to have direct access

to I/O devices avoids the overhead of monitor traps to handle interrupts.

To partition I/O devices, Quest-V first has to restrict access to device specific hardware

registers. Device registers are usually either memory mapped or accessed through a special

I/O address space (e.g. I/O ports). For the x86, both approaches are used. For memory

mapped registers, EPTs are used to prevent their accesses from unauthorized sandboxes.
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For port-addressed registers, special hardware support is necessary. On Intel processors

with VT-x, all variants of in and out instructions can be configured to cause a monitor

trap if access to a certain port address is attempted. As a result, an I/O bitmap can be

used to partition the whole I/O address space amongst different sandboxes. Unauthorized

access to a certain register can thus be ignored or trigger a fault recovery event.

On platforms featuring the PCI peripheral bus, any sandbox attempting access to a

PCI device must use memory-mapped or port-based registers identified in a special PCI

configuration space [PCI]. Most operating systems will enumerate all the devices in this

configuration space using PCI Bus, Device, and Function numbers. Quest-V intercepts

access to this configuration space, which is accessed via both an address (0xCF8) and

data (0xCFC) I/O port on the x86. A trap to the local sandbox monitor occurs when there

is a PCI data port access. The monitor then determines which device’s configuration space

is to be accessed by the trapped instruction. A device blacklist for each sandbox containing

the Bus, Device and Function numbers of restricted PCI devices is used by the monitor to

control actual device access. The device blacklist can be configured statically by user

before system initialization.

A simplified control flow of the handling of PCI configuration space protection in a

Quest-V monitor is given in Figure 3.3. Notice that simply allowing access to a PCI data

port when access to a legitimate device is detected is not sufficient because we only want

to allow the single I/O instruction that caused the monitor trap, and which passed the mon-

itor check, to be correctly executed. Once this is done, the monitor should immediately

restrict access to the PCI data port again. This behavior is achieved by setting the trap flag

(TF) bit in the sandbox kernel system flags to cause a single step debug exception after it

executes the next instruction. By configuring the processor to generate a monitor trap on

debug exception, the system can immediately return to the monitor after executing the I/O
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Figure 3.3: PCI Configuration Space Protection

instruction. After this, the monitor is able to mask the PCI data port again for the sandbox

kernel, thereby mediating future device access.

In addition to direct access to device registers, interrupts from I/O devices also need to

be partitioned amongst sandboxes. In modern multicore platforms, an external interrupt

controller is almost always present to allow configuration of interrupt delivery behaviors.

On modern Intel x86 processors, this is done through an I/O Advanced Programmable

Interrupt Controller (IOAPIC). Each IOAPIC has an I/O redirection table that can be pro-

grammed to deliver device interrupts to all, or a subset of, sandboxes. Each entry in the
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I/O redirection table corresponds to a certain interrupt request from an I/O device.

Figure 3.4: APIC Configuration

Figure 3.4 shows the hardware APIC configuration. Quest-V uses EPT entries to re-

strict access to memory regions used to access IOAPIC registers. Though IOAPIC regis-

ters are memory mapped, two special registers are programmed to access other registers

similar to that of PCI configuration space access. As a result, an approach similar to the

one shown in Figure 3.3 is used in the Quest-V monitor code for access control. Attempts

by a sandbox to access the IOAPIC space cause a trap to the local monitor as a result of an

EPT violation. The monitor then checks to see if the sandbox has authorization to update

the table entry before allowing any changes to be made. Consequently, device interrupts

are safely partitioned amongst sandboxes. It is worth mentioning that this technique is

feasible for IRQ partitioning in Quest-V because processor cores are statically allocated to

guest sandboxes. In traditional hypervisors with virtual machine scheduling, I/O interrupts

are always intercepted by the hypervisor before being injected back into the guests since

the virtual machine and processor core bindings are dynamic.

This approach is efficient because device management and interrupt handling are all



27

carried out in the sandbox kernel with direct access to hardware. The monitor traps nec-

essary for the partitioning strategy are only needed for device enumeration during system

initialization.



Chapter 4

Quest Sandbox Support

Quest is a kernel our group developed for real-time and embedded systems. It currently

operates on 32-bit x86 architectures and leverages hardware MMU support to provide

page-based memory protection to processes and threads. As with UNIX-like systems,

segmentation is used to separate the kernel from user-space. Quest is an SMP system,

operating on multicore platforms. It has support for kernel threads, and a network protocol

stack based on “lightweight IP” (lwIP) [LWI]. The kernel code has been implemented

from scratch and is approximately 10,000 lines of C and assembly, discounting drivers

and network stack.

In Quest-V, Quest serves as the default kernel for each sandbox during initialization. It

is also designed for mission critical and safety critical tasks in a mixed criticality applica-

tion. Additionally, each monitor in Quest-V is given access to a Quest kernel address space

so that direct manipulation of kernel objects during monitor traps is possible. Since Quest-

V currently only supports single processor sandboxes, Quest kernel will always operate in

uni-processor mode when running in a Quest-V sandbox.

In Quest, virtual CPUs (VCPUs) form the fundamental abstraction for scheduling and

temporal isolation of the system. Here, temporal isolation means that each VCPU is guar-

anteed its share of CPU cycles without interference from other VCPUs.

The concept of a VCPU is similar to that in virtual machines [AA06, BDF+03], where



29

a hypervisor provides the illusion of multiple physical CPUs (PCPUs) 1 represented as

VCPUs to each of the guest virtual machines. VCPUs exist as kernel abstractions to

simplify the management of resource budgets for potentially many software threads. We

use a hierarchical approach in which VCPUs are scheduled on PCPUs and threads are

scheduled on VCPUs.

A VCPU acts as a resource container [BDM99] for scheduling and accounting deci-

sions on behalf of software threads. It serves no other purpose to virtualize the underlying

physical CPUs, since our sandbox kernels and their applications execute directly on the

hardware. In particular, a VCPU does not need to act as a container for cached instruction

blocks that have been generated to emulate the effects of guest code, as in some trap-and-

emulate virtualized systems.

In common with bandwidth preserving servers [AB98, DLS97, SB96], each VCPU, V ,

has a maximum compute time budget, CV , available in a time period, TV . V is constrained

to use no more than the fraction UV = CV

TV
of a physical processor (PCPU) in any window

of real-time, TV , while running at its normal (foreground) priority. To avoid situations

where PCPUs are idle when there are threads awaiting service, a VCPU that has expired

its budget may operate at a lower (background) priority. All background priorities are

set below those of foreground priorities to ensure VCPUs with expired budgets do not

adversely affect those with available budgets.

A Quest kernel defines two classes of VCPUs as shown in Figure 4.1: (1) Main VCPUs

are used to schedule and track the PCPU usage of conventional software threads, while (2)

I/O VCPUs are used to account for, and schedule the execution of, interrupt handlers for

I/O devices. This distinction allows for interrupts from I/O devices to be scheduled as

threads [ZW06], which may be deferred execution when threads associated with higher

1We define a PCPU to be either a conventional CPU, a processing core, or a hardware thread in a simul-
taneous multi-threaded (SMT) system.
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Figure 4.1: VCPU Scheduling Hierarchy

priority VCPUs having available budgets are runnable. The flexibility of Quest allows

I/O VCPUs to be specified for certain devices, or for certain tasks that issue I/O requests,

thereby allowing interrupts to be handled at different priorities and with different CPU

shares than conventional tasks associated with Main VCPUs.

Even though the Quest kernel and its VCPU scheduling framework are not part of

the contribution of this dissertation, they are the foundations for the predictable commu-

nication and service migration framework which will be described in detail later in this

chapter.

4.1 Main and I/O VCPU Scheduling

By default, VCPUs act like Sporadic Servers [SSL89]. Sporadic Servers enable a system

to be treated as a collection of equivalent periodic tasks scheduled by a rate-monotonic

scheduler (RMS) [LL73]. This is significant, given I/O events can occur at arbitrary (ape-

riodic) times, potentially triggering the wakeup of blocked tasks (again, at arbitrary times)

having higher priority than those currently running. RMS analysis can therefore be ap-

plied, to ensure each VCPU is guaranteed its share of CPU time, UV , in finite windows of
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real-time.

Figure 4.2: Example VCPU Schedule

An example schedule is provided in Figure 4.2 for three Main VCPUs, whose budgets

are depleted when a corresponding thread is executed. Priorities are inversely proportional

to periods. As can be seen, each VCPU is granted its real-time share of the underlying

PCPU.

Figure 4.3: Sporadic Server Replenishment List Management

In Quest there is no notion of a periodic timer interrupt for updating system clock

time. Instead, the system is event driven, using per-processing core local APIC timers

to replenish VCPU budgets as they are consumed during thread execution. We use the

algorithm proposed by Stanovich et al [SBWH10] to correct for early replenishment and

budget amplification in the POSIX specification.
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Figure 4.3 shows an example schedule for two Main VCPUs and one I/O VCPU for

a certain device such as a gigabit Ethernet card. In this example, Schedule (A) avoids

premature replenishments, while Schedule (B) is implemented according to the POSIX

specification. In (B), VCPU1 is scheduled at t = 0, only to be preempted by higher

priority VCPU0 at t = 1, 41, 81, etc. By t = 28, VCPU1 has amassed a total of 18 units

of execution time and then blocks until t = 40. Similarly, VCPU1 blocks in the interval

[t = 68, 80]. By t = 68, Schedule (B) combines the service time chunks for VCPU1 in the

intervals [t = 0, 28] and [t = 40, 68] to post future replenishments of 18 units at t = 50

and t = 90, respectively. This means that over the first 100 time units, VCPU1 actually

receives 46 time units, when it should be limited to 40%. Schedule (A) ensures that over

the same 100 time units, VCPU1 is limited to the correct amount. The problem is triggered

by the blocking delays of VCPU1. Schedule (A) ensures that when a VCPU blocks (e.g.,

on an I/O operation), on resumption of execution it effectively starts a new replenishment

phase. Hence, although VCPU1 actually receives 21 time units in the interval [t = 50, 100]

it never exceeds more than its 40% share of CPU time between blocking periods and over

the first 100 time units it meets its bandwidth limit.

For completeness, Schedule (A) shows the list of replenishments and how they are

updated at specific times, according to scheduling events in Quest-V. The invariant is that

the sum of replenishment amounts for all list items must not exceed the budget capacity of

the corresponding VCPU (here, 20, for VCPU1). Also, no future replenishment, R, for a

VCPU, V , executing from t to t+R can occur before t+ TV .

When VCPU1 first blocks at t = 28 it still has 2 units of budget remaining, with a

further 18 due for replenishment at t = 50. At this point, the schedule shows the execution

of the I/O VCPU for 2 time units. In Quest-V, threads running on Main VCPUs block

(causing the VCPU to block if there are no more runnable threads), while waiting for
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I/O requests to complete. All I/O operations in response to device interrupts are handled

as threads on specific I/O VCPUs. Each I/O VCPU supports threaded interrupt handling

at a priority inherited from the Main VCPU associated with the blocked thread. In this

example, the I/O VCPU runs at the priority of VCPU1. The I/O VCPU’s budget capacity

is calculated as the product of it bandwidth specification (here, UIO = 4%) and the period,

TV , of the corresponding Main VCPU for which it is performing service. Hence, the I/O

VCPU receives a budget of UIO·TV = 2 time units, and through bandwidth preservation,

will be eligible to execute again at te = t+Cactual/UIO, where t is the start time of the I/O

VCPU and Cactual | 0≤Cactual≤UIO·TV is how much of its budget capacity it really used.

In Schedule (A), VCPU1 resumes execution after unblocking at times, t = 40 and

80. In the first case, the I/O VCPU has already completed the I/O request for VCPU1 but

some other delay, such as accessing a shared resource guarded by a semaphore (not shown)

could be the cause of the added delay. Time t = 78 marks the next eligible time for the I/O

VCPU after it services the blocked VCPU1, which can then immediately resume. Further

details about VCPU scheduling in Quest-V can be found in our accompanying paper for

Quest [DLW11], a non-virtualized version of the system that does not support sandboxed

service isolation.

Since each sandbox kernel in Quest-V supports local scheduling of its allocated re-

sources, there is no notion of a global scheduling queue. Forked threads are by de-

fault managed in the local sandbox but can ultimately be migrated to remote sandboxes

along with their VCPUs, according to load constraints or affinity settings of the target

VCPU [LWCM14]. Although each sandbox is isolated in a special guest execution do-

main controlled by a corresponding monitor, the monitor is not needed for scheduling

purposes. This avoids costly virtual machine exits and re-entries (i.e., VM-Exits and VM-

resumes) as would occur with hypervisors such as Xen [BDF+03] that manage multiple
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separate guest OSes.

Temporal Isolation – Quest provides temporal isolation of VCPUs assuming the total

utilization of a set of Main and I/O VCPUs within each sandbox do not exceed specific

limits. Each sandbox can determine the schedulability of its local VCPUs independently

of all other sandboxes. For cases where a sandbox is associated with one PCPU, n Main

VCPUs and m I/O VCPUs we have the following:

n−1∑
i=0

Ci

Ti
+

m−1∑
j=0

(2− Uj)·Uj ≤ n
(

n
√

2− 1
)

Here, Ci and Ti are the budget capacity and period of Main VCPU, Vi. Uj is the utilization

factor of I/O VCPU, Vj [DLW11].

4.2 Predictable Communication

Inter-sandbox communication in Quest-V relies on message passing primitives built on

shared memory, and asynchronous event notification mechanisms using Inter-processor

Interrupts (IPIs). IPIs are currently used to communicate with remote sandboxes to assist

in fault recovery, and can also be used to notify the arrival of messages exchanged via

shared memory channels. Monitors update extended page table mappings as necessary to

establish message passing channels between specific sandboxes. Only those sandboxes

with mapped shared pages are able to communicate with one another. All other sandboxes

are isolated from these memory regions. Briefly speaking, channel establishment requires

the use of a unique key by each communicating endpoint, similar to the POSIX shared

memory utilities (i.e. shmget()).

A mailbox data structure is set up within shared memory by each end of a commu-
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nication channel. By default, Quest-V currently supports asynchronous communication

by polling a status bit in each relevant mailbox to determine message arrival. Real-time

communication is only available between sandboxes running Quest services, and featur-

ing VCPU scheduling as described above. Message passing threads are bound to VCPUs

with specific parameters to control the rate of exchange of information. Likewise, send-

ing and receiving threads are assigned to higher priority VCPUs to reduce the latency of

transfer of information across a communication channel. This way, shared memory chan-

nels can be prioritized and granted higher or lower throughput as needed, while ensuring

information is communicated in a predictable manner. Thus, Quest-V supports real-time

communication between sandboxes without compromising the CPU shares allocated to

non-communicating tasks.

The lack of both a global clock and global scheduler for all sandboxes creates chal-

lenges for a system requiring strict timing guarantees. In the rest of this chapter, we elab-

orate on two such challenges, relating to predictable communication and address space

migration.

For the purposes of predictable communication, we consider a system model as fol-

lows:

• A communication channel between a pair of endpoints in separate sandboxes is half

duplex and has a single slot. A single slot has a configurable capacity, B, but is 4KB

by default.

• One endpoint acting as a sender places up to one full slot of data in the channel

when it detects the channel is empty.

• A second endpoint acting as a receiver consumes one slot of data from the channel

when it is full.



36

• A transaction on a channel comprises the exchange of one or more slots of data.

A sender sets a start flag to initiate a transaction. When the final unit of data is

submitted to the channel, the sender sets an end of transaction flag.

• Each endpoint executes a thread mapped to a communication VCPU. The sender

VCPU, Vs has parameters Cs and Ts, for its budget and period, respectively. Simi-

larly, the receiver VCPU, Vr has parameters Cr and Tr. Both endpoints poll for the

arrival of data when not sending, unless a special out-of-band signal is used, such as

an interprocessor interrupt (IPI).

Consider a sending thread, τs, associated with a VCPU, Vs, which wishes to commu-

nicate with a receiving thread, τr, bound to Vr in a remote sandbox. Suppose τs sends a

message of N bytes at a cost of δs time units per byte. Similarly, suppose τr replies with

an M byte message at a cost of δr time units per byte. Before replying, let τr consume K

units of processing time to service the communication request. The worst-case round-trip

communication delay, ∆WC , between τs and τr can now be calculated.

Case 1: All messages fit in one channel slot. In this case N,M ≤ B. To calculate

∆WC , we need to account for the time to send a request, process it, and wait for the reply.

Let S(N) be the total time taken by τs to send a request message of size N . That is:

S(N) = bN · δs
Cs

c · Ts + (N · δs) mod Cs

This accounts for multiple periods of Vs to send N bytes. At the receiver, we calculate

the time, R(N,M), to consume a request of size N , process the request and send a reply

of size M as:
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R(N,M) =b [N +M ] · δr +K

Cr

c · Tr+

([N +M ] · δr +K) mod Cr

(4.1)

The last stage of a communication transaction is consuming a response at the sender,

which takes S(M) time units.

Finally, we need to factor the shifts in time between when Vs and Vr are scheduled

in their respective sandboxes. In the worst-case, a message is about to be sent when Vs

uses up its current budget. This causes a delay of Ts − Cs time units until its budget is

replenished. The same situation might happen when Vs tries to consume the response.

Similarly, a message arrives at the receiver when Vr has completed its current budget, so

it will not be processed for another Tr −Cr time. Consequently, the worst-case round-trip

communication delay is:

∆WC(N,M) =S(N) + (Ts − Cs) +R(N,M)+

(Tr − Cr) + S(M) + (Ts − Cs)

(4.2)

Case 2: Messages take multiple slots. In this case, N > B and M is arbitrary. For

cases where the request messages take more than one slot, we need consider Equation 4.2

each time a request-response channel slot is used. Hence, the multi-slot worst-case re-

sponse time, ∆′WC , becomes:

∆′WC = dN
B
e ·∆WC(B,min(M,B)) (4.3)

For the special case where communication is only one-way (e.g., to migrate an address
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space) of size N , ∆′WC reduces to:

∆′WC =dN
B
e · (S(B) + (Ts − Cs)+

R(B, 0) + (Tr − Cr))

(4.4)

4.3 Predictable Migration

Quest-V supports the migration of VCPUs and associated address spaces between Quest

sandboxes for several reasons: (1) to balance loads across sandboxes, (2) to guarantee the

schedulability of VCPUs and threads, and (3) for closer proximity to needed resources

such as I/O devices that would otherwise have to be accessed by remote procedure calls.

Migration is initiated using the vcpu migration interface shown in Listing 4.1. The flag

is either 0, MIG STRICT or MIG RELAX. A time in milliseconds is used to specify either

a deadline or timeout, depending on flag. The dest argument specifies the sandbox ID of a

specific destination, or DEST ANY if the caller wishes to allow the sandbox kernel to pick

an acceptable destination.

The migration function is non-blocking. It returns TRUE only if the migration request

is accepted, and the caller can resume its normal operation. The actual migration will

happen at a later time decided by the local sandbox kernel. The calling thread can use a

flag in its task structure, or retrieve its current sandbox ID, to check whether the migration

succeeded or failed.

Listing 4.1: Predictable Migration User Interface

bool vcpu_migration(uint32_t time, int dest, int flag);

When flag is set to MIG STRICT, the calling thread and its VCPU will be migrated

to the destination with the restriction that the migrating VCPU’s utilization cannot be
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affected. The local sandbox kernel must find a suitable time to perform migration to make

this guarantee. An optional timeout specified using the time argument can be used to avoid

indefinite delays before migration can occur. A time of 0 disables the timeout deadline.

When flag is set to 0, time is used to specify a migration deadline. A sandbox kernel

will try to migrate the calling thread and its VCPU to the specified destination within the

deadline. Unlike the case with MIG STRICT flag, the calling thread’s VCPU utilization

can potentially be affected during migration. The worst-case down time for the migrating

VCPU would be from the time of the request to the specified deadline.

Finally, when flag is set to MIG RELAX, the calling thread and its VCPU will be mi-

grated to the destination no matter how long it takes. As with 0 flag, calling vcpu migration

with MIG RELAX will potentially affect the migrating VCPU’s utilization. However, the

VCPU down time is not bounded as with 0 flag.

Notice that the use of different flags in vcpu migration only affects the behavior of

the migrating thread and its VCPU. All the other VCPUs running in both the source and

the destination sandbox should not be affected. Additionally, if blocking is necessary for

vcpu migration with 0 or MIG RELAX flag, a vcpu migration blocking function can easily

be implemented based on the non-blocking vcpu migration interface.

The pseudo-code for vcpu migration() and its integration into the local scheduler are

shown in the appendix, in Listings 4.2 and 4.3.

Listing 4.2: vcpu migration Pseudo Code

bool vcpu_migration (uint32_t time, int dest, int flag) {

if(!valid (dest) || !(valid (flag)))

return FALSE;

if(flag == MIG_STRICT) {

if(time)
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cur_task.mig_timeout = now + time;

else

cur_task.mig_timeout = 0;

} else if(flag == MIG_RELAX) {

cur_task.mig_dl = MAX_DEADLINE;

} else {

if(time)

cur_task.mig_dl = now + time;

else

return FALSE;

}

cur_task.mig_status = 0;

cur_task.mig_flag = flag;

cur_task.affinity = dest;

return TRUE;

}

Listing 4.3: Scheduler Pseudo Code

void schedule (void) {

...

/* Check migration request when de-scheduled */

if(next_task != cur_task) {

if(cur_task.affinity != cur_sandbox) {

if(cur_task.affinity == DEST_ANY)

cur_task.affinity =

find_destination();

/* Lock both source and destination */

if(try_lock(cur_sandbox, cur_task.affinity)) {

if(!check_utilization_bound()) {
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cur_task.mig_flag = FAIL;

cur_task.affinity = cur_sandbox;

goto release;

}

/* MIG_RELAX, migrate right now */

if(cur_task.mig_flag == MIG_RELAX) {

cur_task.mig_status = SUCCESS;

do_migration(cur_task);

goto release;

}

/* Calculate migration cost */

WCET = calculate_wcet(cur_task);

if(cur_task.mig_flag == MIG_STRICT) {

/* next_event () returns Es */

cur_task.mig_dl = next_event()+now;

}

if((now+WCET) > cur_task.mig_dl) {

cur_task.mig_status = FAIL;

cur_task.affinity = cur_sandbox;

} else {

cur_task.mig_status = SUCCESS;

do_migration(cur_task);

}

release:

unlock(cur_sandbox, cur_task.affinity);

} else {

/* Destination is busy or we are migrating another task */
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if(flag == MIG_STRICT) {

if((now+next_event()) >= cur_task.mig_timeout) {

cur_task.mig_status = FAIL;

cur_task.affinity = cur_sandbox;

}

} else {

if((now+next_event()) >= cur_task.mig_dl) {

cur_task.mig_status = FAIL;

cur_task.affinity = cur_sandbox;

}

}

}

}

}

resume_schedule:

...

}

The major challenges in the implementation of this interface are: (1) accurately ac-

counting for migration overheads, and (2) accurately estimating a the worst-case migration

cost under all circumstances.

4.3.1 Predictable Migration Strategy

Threads in Quest sandbox have corresponding address spaces and VCPUs. The current

design limits one, possibly multi-threaded, address space to be associated with a single

VCPU. This restriction avoids the problem of migrating VCPUs and multiple address

spaces between sandboxes, which could lead to arbitrary delays in copying memory. Mi-

gration from one sandbox’s private memory requires a copy of an address space and all

thread data structures to the destination. Each thread is associated with a quest tss
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structure that stores the execution context and VCPU state.

Dedicated migration threads and corresponding VCPUs are established within each

sandbox at system initialization. A migration thread is responsible for the actual VCPU

migration operation. An inter-processor interrupt (IPI) is used by the local sandbox kernel

to notify a remote migration thread of a migration request. In our current implementation,

only one migration thread and VCPU can be configured for each sandbox. If multiple

migration requests occur at the same time, they will be processed serially.

Migration using Message Passing. This approach transfers a thread’s state, including

its address space and VCPU information, using a series of messages that are passed over

a communication channel. The advantage of this approach is that it generalizes across

different communication links, including those where shared memory is not available (e.g.,

Ethernet).

To initiate migration, an IPI is first sent to the migration thread in the destination sand-

box. The destination then waits for data on a specific channel. Since the default com-

munication channel size is 4KB, a stream of messages are needed to migrate an address

space, along with its thread and VCPU state. This resembles the communication scenario

described in Case 2 of Section 4.2. The destination re-assembles the address space and

state information before adding the migrated VCPU to its scheduler queue. An IPI or ac-

knowledgement message from the destination to the source is now needed to signal the

completion of migration. If successful, the migration thread in the source sandbox will

be able to reclaim the memory of the migrated address space. Otherwise, the migrating

VCPU will be put back into the run queue in the source sandbox.

Before a VCPU is migrated, admission control is performed at the destination. This

is used to verify the schedulability of the migrating VCPU and all existing VCPUs in the
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destination. If admission control fails, a migration request is rejected.

At boot time, Quest-V establishes base costs for copying memory pages without caches

enabled 2. These costs are used to determine various parameters used for worst-case exe-

cution time estimation.

An estimate of the worst-case migration cost requires: (1) the cost of serializing the

migrated state into a sequence of messages (∆s), (2) the communication delay to send the

messages (∆t), and (3) the cost of re-assembling the transferred state at the destination

(∆a). We assume one migration thread is associated with a sender VCPU, Vs, and another

is associated with a receiver VCPU, Vr.

∆s = b δs
Cs

c · Ts + δs mod Cs + Ts − Cs (4.5)

Here, δs is the execution time of a migration thread to produce a sequence of messages,

assuming caches are disabled. Similarly, given δa, is the execution time to re-assemble a

VCPU and address space:

∆a = b δa
Cr

c · Tr + δa mod Cr + Tr − Cr (4.6)

In this case, ∆t is identical to ∆′WC in Equation 4.3. Hence, the the worst-case migra-

tion cost when message passing is used is:

∆mig = ∆s + ∆′WC + ∆a (4.7)

Migration with Direct Memory Copy. As shown in Equation 4.3, the worst-case time

2We do not consider memory bus contention issues, which could make worst-case estimations even
larger.



45

to transfer a large amount of state between two sandboxes can span numerous migration

VCPU periods. This makes it difficult to satisfy a VCPU migration request using message

passing, with the MIG STRICT flag set. Fortunately, for Quest sandboxes that commu-

nicate via shared memory, it is possible to dramatically reduce the migration overhead.

Quest-V monitors can be involved in the migration process to directly copy the target ad-

dress space from source to destination sandbox. However, while the monitor involvement

dramatically increases the efficiency of the migration process, it also potentially reduces

the safety and security of the system. Although allowing the monitor of one sandbox to

directly access the memory region of another sandbox violates the principle of the separa-

tion kernel design, it is worth noting that thread migration in a mixed criticality applica-

tion should only occur between sandboxes with the same criticality level 3. This limits the

safety and security impact of migration with direct memory copy. We decided to provide

direct memory copy migration capability in Quest-V and allow the user to decide whether

the trade-off is worth making.

Figure 4.4 shows the general migration strategy when direct memory copy is used.

An IPI is first sent to the destination sandbox, to initiate migration. The migration thread

handles the IPI in the destination, generating a trap into its monitor that has access to

machine physical memory of all sandboxes. The migrating address space in the source

sandbox is temporarily mapped into the destination. The address space and associated

quest tss thread structures are then copied to the target sandbox’s memory. At this

point, the page mappings in the source sandbox can be removed by the destination monitor.

Similar to the message passing approach, an IPI from the destination to the source

sandbox is needed to signal the completion of migration. All IPIs are handled in the

sandbox kernels, with interrupts disabled while in monitor mode. The migration thread in

3Migration could also happen between group of sandboxes with the appropriate capabilities and access
rights. In this work, it is tied in with criticality levels.



46

the destination can now exit its monitor and return to the sandbox kernel. The migrated

address space is attached to its VCPU and added to the local schedule. At this point, the

migration threads in source and destination sandboxes are able to yield execution to other

VCPUs and, hence, threads.

Figure 4.4: Migration Strategy

With direct memory copy, the worst-case migration cost can simply be defined as:

∆mig = bδm
Cr

c · Tr + δm mod Cr + Tr − Cr (4.8)

Here, Cr and Tr are the budget and period of the migration thread’s VCPU in destina-

tion sandbox, and δm is the execution time to copy an address space and its quest tss data

structures to the destination.
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Migration Thread Preemption. The migration thread in each sandbox is bound to a

VCPU. If the VCPU depletes its budget or a higher priority VCPU is ready to run, the

migration thread should be preempted. However, if direct memory copy is used, migration

thread preemption is complicated by the fact that the thread spends most of its time inside

the sandbox monitor, and each sandbox scheduler runs within the local kernel (outside the

monitor).

Migration thread preemption, in this case, requires a domain switch between a sand-

box monitor and its kernel, to access the local scheduler. This results in costly VM-Exit

and VM-Entry operations that flush the TLB of the processor core. To avoid this cost,

we limited migration thread preemption to specific preemption points. Additionally, we

associated each migration thread with a highest priority VCPU, ensuring it would run un-

til either migration was completed or the VCPU budget expired. Bookkeeping is limited

to tracking budget usage at each preemption point. Thus, within one period, a migration

thread needs only one call into its local monitor.

Preemption points are currently located: (1) immediately after copying each quest tss

structure, (2) between processing each Page Directory Entry during address space cloning,

and (3) right before binding the migrated address space to its VCPU, for re-scheduling. In

the case of a budget overrun, the next budget replenishment is adjusted according to the

corrected POSIX Sporadic Server algorithm [SBWH10]. Figure 4.5 describes the migra-

tion control flow.

Clock Synchronization. One extra challenge to be considered during migration is clock

synchronization between different sandboxes in Quest-V. Quest-V schedulers use Local

APIC Timers and Time Stamp Counters (TSCs) in each core as the source for all time-
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Figure 4.5: Migration Framework Control Flow

related activities in the system, and these are not guaranteed to be synchronized by hard-

ware. Consequently, Quest-V adjusts time for each migrating address space to compen-

sate for clock skew. This is necessary when updating budget replenishment and wakeup

time events for a migrating VCPU that is sleeping on an I/O request, or which is not yet

runnable.

The source sandbox places its current TSC value in shared memory immediately before

sending a IPI migration request. This value is compared with the destination TSC when

the IPI is received. A time-adjustment, δADJ , for the migrating VCPU is calculated as

follows:

δADJ = TSCd − TSCs − 2 ∗RDTSCcost − IPIcost (4.9)
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TSCd and TSCs are the destination and source TSCs, while RDTSCcost and IPIcost

are the average costs of reading a TSC and sending an IPI, respectively. δADJ is then added

to all future budget replenishment and wakeup time events for the migrating VCPU in the

destination sandbox. In equation 4.9, IPIcost is assumed to be predictable and relies on

IPI delivery having a bounded worst case delay. For architectures with shared IPI bus, the

worst case should be measured under load or by considering the bus arbitration protocol.

4.3.2 Migration Criteria

Quest-V restricts migrate-able address spaces to those associated with VCPUs that either:

(1) have currently expired budgets, or (2) are waiting in a sleep queue. In the former case,

the VCPU is not runnable at its foreground priority until its next budget replenishment. In

the latter case, a VCPU is blocked until a wakeup event occurs (e.g., due to an I/O request

completion or a resource becoming available). Together, these two cases prevent migrating

a VCPU when it is runnable, as the migration delay could impact the VCPU’s utilization.

For VCPU, Vm, associated with a migrating address space, we define Em to be the

relative time 4 of the next event, which is either a replenishment or wakeup.

If Vm issues a migration request with MIG STRICT flag, for the utilization of Vm to

be unaffected by migration, the following must hold:

Em ≥ ∆mig (4.10)

Where ∆mig can be calculated by either Equation 4.7 or 4.8. Quest-V makes sure that

the migrating thread will not be woken up by asynchronous events until the migration is

finished. The system imposes the restriction that threads waiting on I/O events cannot be

migrated. Similarly, the migration deadline can be compared with ∆mig to make migration

4i.e., Relative to current time.
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decisions when flag=0.

4.4 Fault Recovery

The temporal and spatial isolation between Quest-V sandboxes contains software faults

inside a single sandbox. Fault detection is needed before a sandbox can be recovered from

faults. Fault detection is a topic worthy of separate discussion and not in the scope of this

dissertation. Currently, we assume the existence of techniques to identify faults. In Quest-

V, faults are easily detected if they generate EPT violations, thereby triggering control

transfer to a corresponding monitor. More elaborate schemes for identifying faults will be

investigated in the future development.

Once the fault detection event has triggered a trap into a monitor, the fault recovery

procedure is initiated. The distributed design adopted by Quest-V allows for fault recov-

ery either in the local sandbox, where the fault occurred, or in a remote sandbox that is

presumably unaffected.

Local Fault Recovery – In the case of local recovery, the corresponding monitor is re-

quired to release the allocated memory for the faulting components. If insufficient in-

formation is available about the extent of system damage, the monitor may decide to re-

initialize the entire local sandbox, as in the case of initial system launch. Any active

communication channels with other sandboxes may be affected, but the remote sandboxes

that are otherwise isolated will be able to proceed as normal. As part of local recovery,

the monitor may decide to replace the faulting component, or components, with alternative

implementations of the same services. For example, an older version of a device driver that

is perhaps not as efficient as a recent update, but is perhaps more rigorously tested, may

be used in recovery. Such component replacements can lead to system robustness through
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functional or implementation diversity [WHD+09]. That is, a component suffering a fault

or compromised attack may be immune to the same fault or compromising behavior if im-

plemented in an alternative way. The alternative implementation could, perhaps, enforce

more stringent checks on argument types and ranges of values that a more efficient but

less safe implementation might avoid. Observe that alternative representations of software

components could be resident in host physical memory, and activated via a monitor that

adjusts EPT mappings for the sandboxed guest.

Remote Fault Recovery – The design of Quest-V also allows the recovery of a faulty

software component in an alternative sandbox. This may be more appropriate in situa-

tions where a replacement for the compromised service already exists, and which does not

require a significant degree of re-initialization. While an alternative sandbox effectively

resumes execution of a prior service request, possibly involving a user-level thread migra-

tion, the corrupted sandbox can be healed in the background. This is akin to a distributed

system in which one of the nodes is taken off-line while it is being upgraded or repaired.

In Quest-V, remote fault recovery involves the local monitor identifying a target sand-

box. The local monitor then informs the target sandbox via an IPI to pass control to the

remote monitor, which performs the fault recovery. Ideally, information needs to be ex-

changed between monitors about the actions necessary for fault recovery and what threads,

if any, need to be migrated. However, in the current implementation of Quest-V, we as-

sume that all recovered services are re-initialized and any outstanding requests are either

discarded or can be resumed without problems. When device driver is involved, we also

redirect the device interrupt to the target sandbox and update the device blacklist if nec-

essary. Currently, the target sandbox is chosen randomly. Software components to be

recovered are also configured statically for each recovery routine.
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Even though the sandbox isolation provided by the Quest-V separation kernel offers fault

isolation and serves as a platform to construct various fault recovery mechanisms, cur-

rent Quest-V implementation lacks the policies and mechanisms to support generic fault

recovery routines. Existing fault recovery implementations in Quest-V are mostly appli-

cation specific. A flexible fault detection and faulting component identification interface

for applications and drivers is not available. In the future development of Quest-V, we will

consider approaches that generalize the fault recovery process for different applications

and device drivers in order to provide convenient APIs for developers.

4.5 Configurable Device Sharing

Even though any form of implicit sharing of hardware resources violates the principle of

isolation in a separation kernel, we decided to expose the capability of sharing an I/O

device between multiple Quest sandboxes under user discretion. Two or more Quest sand-

boxes with the same criticality level might wish to access the same device managed by a

common driver. The driver need not be replicated in separate sandboxes but can instead be

mapped to shared memory. This avoids the need for a specific sandbox to operate as a spe-

cial device manager on behalf of other sandboxes. While it has the potential to improve

efficiency it means that a failed shared driver affects multiple sandboxes. If a sandbox

wishes to have exclusive access to a device it can still choose to do so using a private

driver instead.

Quest-V uses the I/O APIC found on modern x86 platforms to multicast hardware

interrupts to all sandboxes sharing a corresponding device. We expect the number of

sandboxes sharing a device to be relatively low so multicasting interrupts should not be an

issue.
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Aside from interrupt handling, device drivers need to be written to support inter-

sandbox sharing. Certain data structures have to be duplicated for each sandbox kernel,

while others are shared and protected by synchronization primitives. For example, with a

NIC driver, we duplicate indices into the receive (RX) ring buffer, while sharing both the

transmit (TX) and RX buffers between sandboxes. Synchronization is used to read and

update RX and TX descriptors in the respective ring buffers.

Figure 4.6 shows an RX ring buffer shared between 4 sandboxes, with separate indices.

Between t and t+ 1, sandboxes 2, 3, and 4 all handle interrupts and advance their indices.

The driver needs to be written so that a slot in the buffer only becomes ready for DMA data

when it is not referenced by any index. Any of the 4 sandboxes can examine indexes to

see if one is lagging above a threshold behind the others, as might be the case for a faulty

sandbox. A functioning sandbox can then correct this by advancing indexes as necessary,

or triggering fault recovery.

Figure 4.6: Example NIC RX Ring Buffer Sharing

The duplication of certain driver data structures, and synchronization on shared data

may impact the performance of hardware devices multiplexed between sandboxes. How-

ever, I/O virtualization technologies to support device sharing such as SR-IOV [SRI] are

now emerging, although not commonplace in embedded systems. Without hardware sup-
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port, Quest-V’s software-based shared driver approach is arguably more flexible than hav-

ing devices assigned to single sandboxes. While technologies such as VT-d support I/O

passthrough [GAH+12], they do not simplify device sharing.

With device sharing, some of the I/O related communication and device proximity

based thread migration between Quest sandboxes can be avoided in Quest-V. It is essen-

tially a form of communication based on implicit shared memory and I/O device states.

However, as mentioned earlier, device sharing allows fault in the device driver to affect

all the sandboxes sharing the device. Consequently, the use of device sharing is not rec-

ommended for mixed criticality applications in general. In some special cases, it might

be acceptible for low criticality Quest sandboxes with the same criticality levels to share

certain devices for efficiency and resource utilization. Moreover, with the extra synchro-

nization required in the driver, device sharing in Quest-V will cause scalability issues.

However, since Quest sandboxes sharing a same device still have direct access to hard-

ware registers and can handle physical interrupts, shared devices in Quest-V are more

efficient than virtual devices in traditional hypervisors.

4.6 Experimental Evaluation

A series of experiments have been conducted to evaluate the effectiveness of predictable

inter-sandbox communication and service migration frameworks and the performance of

the device sharing mechanism in Quest-V. Examples of fault isolation and recovery are

also presented. All the experiments in this section are conducted on a Gigabyte Mini-ITX

machine with an Intel Core i5-2500K 3.3GHz 4-core processor, 8GB RAM and a Realtek

8111e NIC.
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4.6.1 Predictable Communication

We first ran 5 different experiments to predict the worst-case round-trip communication

time using Equation 4.2. The VCPU settings of the sender and receiver, spanning two

different sandboxes, are shown in Table 4.1.

Case # Sender VCPU Receiver VCPU
Case 1 20/100 2/10
Case 2 20/100 20/100
Case 3 20/100 20/130
Case 4 20/100 20/200
Case 5 20/100 20/230

Table 4.1: VCPU Parameters

We calculated the values of δs and δr by setting the message size to 4KB for both

sender and receiver (i.e. M = N = 4KB) and disabling caching of the shared memory

communication channel on the test platform. The message processing time K has essen-

tially been ignored because the receiver immediately sends the response after receiving the

message from the sender.
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Figure 4.7: Worst-Case Round-trip Communication
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Both sender and receiver threads running on VCPUs Vs and Vr, respectively, sleep for

controlled time units, to influence phase shifts between their periods Ts and Tr. Similarly,

the sender thread adds busy-wait delays before transmission, to affect the starting point

of communication within its VCPU’s available budget, Cs. Figure 4.7 shows results after

10000 message exchanges are performed for each of the 5 experiments. As can be seen,

the observed value is always within the prediction bounds derived from Equation 4.2.

We next conducted a series of one-way communication experiments to send 4MB mes-

sages through a 4KB channel with different VCPU parameters as shown in Table 4.2. Fig-

ure 4.8 again shows that the observed communication times are within the bounds derived

from our worst-case estimations. However, the bounds are not as tight as for round-trip

communication. We believe this is due to the fact that we used a pessimistic worst-case

estimation, which includes leftover VCPU budgets in each instance of the multi-slot com-

munication. Estimation error is reduced when the difference between VCPU budgets and

periods is smaller.

Case # Sender VCPU Receiver VCPU
Case 1 20/50 20/50
Case 2 10/100 10/100
Case 3 10/100 10/50
Case 4 10/100 10/200
Case 5 5/100 5/130
Case 6 10/200 10/200

Table 4.2: VCPU Parameters

4.6.2 Predictable Migration

To verify the predictability of the Quest-V migration framework, we constructed a task

group consisting of 2 communicating threads and another CPU-intensive thread running a

Canny edge detection algorithm on a stream of video frames. The frames were gathered
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Figure 4.8: Worst-Case One-way Multi-slot Communication

from a LogiTech QuickCam Pro9000 camera mounted on our RacerX mobile robot, which

traversed one lap of Boston University’s indoor running track at Agganis Arena 5. To

avoid variable bit rate frames affecting the results of our experiments, we applied Canny

repeatedly to the frame shown in Figure 4.9 rather than a live stream of the track. This

way, we could determine the effects of migration on a Canny thread by observing changes

in processing rate while the other threads communicated with one another.

Figure 4.9: Track Image Processed by Canny

For all the experiments in this section, unless stated otherwise, we have two active

5RacerX is a real-time robot that runs Quest-V.
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sandbox kernels each with 5 VCPUs. The setup is shown in Table 4.3. The Canny thread

is the target for migration from sandbox 1 to sandbox 2 in all cases. Migration is always

requested at time 5. A logger thread is used to collect the result of the experiment in a

predictable manner. Data points are sampled and reported in a one second interval. For

migration with message passing, a low priority migration VCPU (10/200) is used. In the

case of direct memory copy, the migration thread is associated with the highest priority

VCPU (10/50).

VCPU (C/T) Sandbox 1 Sandbox 2
20/100 Shell Shell

10/200 (10/50) Migration Thread Migration Thread
20/100 Canny
20/100 Logger Logger
10/100 Comms 1 Comms 2

Table 4.3: Migration Experiment VCPU Setup

Figure 4.10 shows the behavior of Canny as it is migrated using message passing in

the presence of the two communicating threads. The y-axis shows both Canny frame

rate (in frames-per-second, fps) and message passing throughput (in multiples of a 1000

Kilobytes-per-second). Canny requested migration with the MIG RELAX flag, leading to a

drop in frame rate during transfer to the remote sandbox. However, the two communicating

threads were not affected.

Table 4.4 shows the estimated worst-case and actual migration cost. The worst-case is

derived from Equation 4.7. Even though the actual migration cost is much smaller than

the estimation, it is still larger than Em, forbidding migration with the MIG STRICT flag.

Variables Em ∆mig, worst ∆mig, actual
Time (ms) 79.8 243681.02 4021.18

Table 4.4: Message Passing Migration Condition

In Figure 4.11, the same experiment was conducted with direct memory copy and
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flag=MIG STRICT. Since the migration thread was self-preempted, the right y-axis

shows its actual CPU consumption in (millions of, x1m) cycles. We can see from this

figure that none of the threads have been affected by migration. The sudden spike in mi-

gration thread CPU consumption occurs during the migration of the Canny thread.
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Figure 4.11: Migration using Direct Memory Copy
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Table 4.5 shows the values of variables as defined in Equation 4.8 and 4.10. δm, worst

is the worst-case time to copy a Canny address space with all caches disabled, including

the overhead of walking its page directory. δm, actual is the actual migration thread budget

consumption with caches enabled. Both worst-case and actual migration costs satisfy the

constraints of Equation 4.10. This guarantees that all VCPUs remain unaffected in terms

of their CPU utilization during migration.

Variables Em δm, worst δm, actual Cr Tr

Time (ms) 79.8 5.4 1.7 10 50

Table 4.5: Direct Memory Copy Migration Condition

In the next experiment, we switched back to flag=MIG RELAX and manually in-

creased the migration cost by adding a busy-wait of 800µs to the address space clone pro-

cedure for each processed Page Directory Entry (of which there were 1024 in total). This

forced the migration cost to violate Equation 4.10. Similar to Figure 4.10, Figure 4.12

shows how the migration costs increase, with only the migrating thread being affected.

Here, the preemption points within each sandbox monitor prevent excessive budget over-

runs that would otherwise impact VCPU schedulability.

Table 4.6 shows the migration parameters for this experiment. We also measured the

budget utilization of the migration thread while it was active. Results are shown in Ta-

ble 4.7 for the interval [6s,10s] of Figure 4.12. Migration thread budget consumption

peaks at 91.5% rather than 100%, because of self-preemption and accounting overheads.

We are currently working on optimizations to reduce these overheads.

Variables Em δm, worst δm, actual Cr Tr

Time (ms) 79.8 891.4 825.1 10 50

Table 4.6: Migration Condition With Added Overhead
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Figure 4.12: Migration With Added Overhead

Time (sec) 6 7 8 9 10
Utilization 67.5% 91.5% 91.5% 91.5% 71.5%

Table 4.7: Migration Thread Self-Preemption Budget Utilization
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Figure 4.13: Migration Without a Dedicated Thread
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The same experiment was repeated without a dedicated migration thread. Here, mi-

gration was instead handled in the context of an IPI handler that runs with interrupts sub-

sequently disabled. Consequently, the handler delays all other threads and their VCPUs

during its execution, as shown in Figure 4.13.

Next, table 4.8 shows the values of the variables used in Equation 4.8 and 4.10 when

the migration overhead first starts to impact the Canny frame rate. In theory, the minimum

δm that violates Equation 4.10 is any value greater than 10ms. However, because δm, worst

is a worst-case estimation and the worst-case VCPU phase shift (Tr −Cr in Equation 4.8)

rarely happens in practice, the first visible frame rate drop happens at 26.4ms. At this

time, the actual budget consumption of the migration thread is 19.2ms, which is greater

than 10ms.

Variables Em δm, worst δm, actual Cr Tr

Time (ms) 79.8 26.4 19.2 10 50

Table 4.8: Migration Boundary Case Condition

Finally, as mentioned earlier in Section 4.3.1, if multiple migration requests to a des-

tination sandbox are issued simultaneously, they will be processed serially. Currently,

parallel migration is not supported. The source sandbox kernel has to essentially lock both

its own migration thread and the migration thread in the destination before initiating mi-

gration. To demonstrate this effect, we conducted an experiment in which two sandboxes

issued a migration request at the same time, to the same destination. The VCPU setup

is shown in Table 4.9. In addition to Canny and the 2 communicating threads, we added

another thread in sandbox 3 that repeatedly counts prime numbers from 1 to 2500 and

increments a counter after each iteration. Canny and Prime attempt to migrate to sandbox

2 at the same time.

The results of the experiment are shown in Figure 4.14. The y-axis now also shows the
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VCPU (C/T) Sandbox 1 Sandbox 2 Sandbox 3
20/100 Shell Shell Shell
10/100 Mig Thread Mig Thread Mig Thread
20/100 Canny
10/100 Logger Logger Logger
10/100 Comms 1 Comms 2
10/100 Prime

Table 4.9: Migration Thread Contention Experiment VCPU Setup
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Figure 4.14: Migration Thread Contention

Prime count in addition to Canny frame rate and message passing throughput. Both Prime

and Canny request migration to sandbox 2 at some time after 6 seconds. Prime acquires

the locks first and starts migration immediately. The migration request of Canny is delayed

since the try lock function returns FALSE in Listing 4.3. Because both requests are issued

with flag=MIG RELAX, Canny is migrated soon after Prime finishes migration.

By setting the migration start time for Prime to t0 = 0, Table 4.10 shows the relative

time of: the start of data transfer of Prime (t1), the end of data transfer of Prime (t2), the

end of Prime migration (t3), the start of Canny migration (t4), the start of data transfer of

Canny (t5), the end of data transfer of Canny (t6) and the end of Canny migration (t7).
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t0 t1 t2 t3
0 3.15 1903.81 1913.47
t4 t5 t6 t7

1999.82 2003.67 2402.72 2412.98

Table 4.10: Migration Time Sequence (milliseconds)

4.6.3 Fault Isolation and Recovery

To demonstrate fault isolation in Quest-V, we created a scenario that includes both mes-

sage passing and networking across 4 different Quest sandboxes. Specifically, sandbox 1

has a kernel thread that sends messages through private message passing channels to sand-

box 0, 2 and 3. Each private channel is shared only between the sender and specific re-

ceiver, and is guarded by EPTs. In addition, sandbox 0 also has a network service running

that handles ICMP echo requests. After all the services are up and running, we manually

break the NIC driver in sandbox 0, overwrite sandbox 0’s message passing channel shared

with sandbox 1, and try to corrupt the kernel memory of other sandboxes to simulate a

driver fault. After the driver fault, sandbox 0 will try to recover the NIC driver along with

both network and message passing services running in it. During the recovery, the whole

system activity is plotted in terms of message reception rate and ICMP echo reply rate in

all available sandboxes, and the results are shown in Figure 4.15.

In the experiment, sandbox 1 broadcasts messages to others (SB0,2,3) at 50 mil-

lisecond intervals. Sandbox 0, 2 and 3 receive at 100, 800 and 1000 millisecond intervals.

Another machine sends ICMP echo requests at 500 millisecond intervals to sandbox 0

(ICMP0). All message passing threads are bound to Main VCPUs with 100ms periods

and 20% utilization. The network driver thread is bound to an I/O VCPU with 10% uti-

lization and 10ms period.

Results show that an interruption of both message passing and packet processing oc-

curred in sandbox 0, but all the other sandboxes were unaffected. This is because of
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Figure 4.15: Sandbox Isolation

memory isolation between sandboxes, enforced by EPTs.

To demonstrate the fault recovery mechanism of Quest-V, we intentionally corrupted

the NIC driver on the mini-ITX machine while running a simple HTTP 1.0-compliant web

server in user-space. Our web server was ported to a socket API that we implemented on

top of lwIP. A remote Linux machine running httperf attempted to send 120 requests

per second during both the period of driver failure and normal web server operation. Re-

quest URLs referred to the Quest-V website, with a size of 17675 bytes.

Figure 4.16 shows the request and response rate at 0.5s sampling intervals. The driver

failure occurred in the interval [1.5s,2s], after which recovery took place. Recovery in-

volved re-initializing the NIC driver and restarting the web server in another sandbox,

taking less than 0.5s. This is significantly faster than a system reboot, which can take

close to a minute to restart the network service.

Fault recovery can occur locally or remotely. In this experiment, we saw little differ-

ence in the cost of either approach. Either way, the NIC driver needs to be re-initialized.

This either involves re-initialization of the same driver that faulted in the first place, or an
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Figure 4.16: Web Server Recovery

alternative driver that is tried and tested. As fault detection is not in the scope of this dis-

sertation, we triggered the fault recovery event manually by assuming an error occurred.

Aside from optional replacement of the faulting driver, and re-initialization, the network

interface needs to be restarted. This involves re-registering the driver with lwIP and as-

signing the interface an IP address.

The time for different phases of both remote and local sandbox recovery are shown in

Table 4.11. We can see from the table that Quest-V monitor layer introduced relatively

small overhead to the overall recovery cost in both cases.

Phases CPU Cycles
Local Recovery Remote Recovery

VM-Exit 885
Driver Replacement 10503 N/A
IPI Round Trip N/A 4542
VM-Enter 663
Driver Re-initialization 1.45E+07
Network I/F Restart 78351

Table 4.11: Overhead of Different Phases in Fault Recovery
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4.6.4 Shared Device Performance

We implemented device sharing drivers in Quest sandboxes for a single NIC device, pro-

viding a separate virtual interface for each sandbox requiring access. This allows for each

Quest sandbox to have its own IP address.

We compared the performance of our device sharing design to the performance of

I/O virtualization adopted by Xen 4.1.2. Both para-virtualized (PVM) and hardware-

virtualized (HVM) guests were evaluated. We used an x86 64 root-domain (Dom0) for

Xen, based on Linux 3.1. For guests, and non-virtualization cases, we also used Ubuntu

Linux 10.04 (32-bit kernel 2.6.32).
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Figure 4.17: UDP Throughput

Figure 4.17 shows UDP throughput measurements using netperf, which was ported

to Quest and non-virtualized Quest-SMP systems. Up to 4 netperf clients were run in

separate guest domains, or sandboxes, for the virtualized systems. For Xen, each guest had

one VCPU that was free to run on any processor. Similarly, for non-virtualized cases, the

clients ran as separate threads on arbitrary processors. For non-virtualized Quest-SMP,
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only a single netperf instance was executed. Each client produced a stream of 16KB

messages.

Quest-V shows better performance than other virtualized systems, although it is infe-

rior to a non-virtualized Linux system for network throughput. We attribute this in part

to the driver implementation but also to our system not yet being optimized. Future work

will focus on performance tuning our system to reach throughput values closer to Linux,

but initial results are positive.

By comparing non-virtualized Quest-SMP and a single netperf in a Quest sand-

box in Quest-V, we can see a small throughput overhead. This is caused by the extra

logic in the driver as described in chapter 4.5. The device sharing logic exists even if only

one Quest sandbox is using the device. With an identical standard driver, the overhead

introduced by the Quest-V separation kernel would be negligible.

4.7 Conclusions

In this chapter, we introduced the Quest sandbox support in the Quest-V separation kernel.

Quest kernel and its VCPU scheduling framework are designed for real-time and embed-

ded applications. In Quest-V, Quest is the default sandbox kernel targeting high criticality

tasks in a mixed criticality system.

This chapter focuses on predictable communication and migration in the Quest-V sepa-

ration kernel. With the temporal isolation provided by the VCPU scheduling framework in

the Quest kernel, we have shown how Quest-V is able to enforce predictable time bounds

on the exchange of information between threads mapped to different Quest sandboxes.

This lays the foundations for real-time communication in a distributed embedded system

and helps making predictable service migration possible.

Quest-V allows threads to migrate between Quest sandboxes. This might be necessary
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to ensure loads are balanced, and each sandbox can guarantee the schedulability of its vir-

tual CPUs (VCPUs). In other cases, threads might need to be migrated to sandboxes that

have direct access to I/O devices, thereby avoiding expensive inter-sandbox communica-

tion. We have shown how Quest-V’s migration mechanism between separate sandboxes is

able to ensure predictable VCPU and thread execution. Experiments show the ability of

the Canny edge detector to maintain its frame processing rate while migrating from one

sandbox to another.

The isolation between sandboxes in Quest-V offers software component fault contain-

ment and allows for the implementation of various fault recovery mechanisms such as local

and remote recovery in Quest-V. Even though current Quest-V implementation offers lim-

ited fault recovery support for applications and drivers, experiments show that faults are

contained in the faulting sandbox. Application specific fault recovery experiment demon-

strates that software faults can be recovered in either local or remote Quest sandbox with

the monitor introducing relatively small overhead.

Finally, even though not recommended, Quest-V does offer device sharing between

Quest sandboxes. Experiments show that device sharing between Quest sandboxes offers

better performance than I/O multiplexing in traditional VMMs. However, faults in the

device driver of a shared device can potentially affect all the sandboxes sharing the same

device. This makes device sharing acceptable most likely only between low criticality

sandboxes with the same criticality level.



Chapter 5

Third Party Sandbox Support

In addition to Quest real-time kernels, Quest-V is also designed to support other third party

sandbox systems such as Linux, OSEK [OSE] and AUTOSAR [AUT] OS. Support of

these systems are necessary for reusing existing legacy services and potential Intellectual

Property (IP) protection.

In order to integrate a mixed criticality application designed for a physically distributed

platform onto a single multi-core platform, minimal or even no changes to the software

components are always preferred. Sometimes the legacy services are so complicated that

porting it to a new platform is almost impossible or too costly. For instance, the infotain-

ment systems in modern automobiles are often developed on top of full blown operating

systems such as Linux and Windows. To integrate an infotainment system with the body

electronics management system onto a single multi-core platform would require the sup-

port of a Linux or Windows environment on the new platform. Additionally, some mixed

criticality systems involve software components supplied by third party developers with no

source code available for IP protection. This also makes legacy service support necessary

for mixed criticality and embedded applications.

In this chapter, we describe how Linux and OSEK/AUTOSAR OSes can be supported

in Quest-V sandboxes with a focus on the more complicated Linux kernel and its perfor-

mance. Experiments show that the Linux distribution we ported to Quest-V achieves near
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bare-metal performance and strong temporal isolation for most applications.

5.1 Linux Sandbox Support

Linux is an operating system that supports a vast variety of hardware devices, applications,

and network protocols. Its large developer community and low cost contributed to the rapid

growth of its adoption in the embedded applications. Due to its popularity, we made Linux

sandbox support our primary objective for legacy service support in Quest-V.

Currently, we have successfully ported a Puppy Linux [PUP] distribution with Linux

3.8.0 kernel to serve as the front-end to Quest-V, providing a window manager and graph-

ical user interface. In Quest-V, a Linux sandbox can only be bootstrapped by a Quest

kernel. This means a Quest sandbox needs to be initialized first and Linux is started in

the same sandbox via a bootloader kernel thread. Theoretically, the Linux kernel can be

supported in Quest-V directly without requiring any modifications to the kernel source

code given the hardware virtualization features. However, to simplify the monitor logic

and reduce its footprint, we paravirtualized the Linux kernel by patching the source code.

5.1.1 Kernel Paravirtualization

Quest-V exposes the maximum possible privileges of hardware access to sandbox kernels.

From Linux sandbox’s perspective, all processor capabilities are exposed except hardware

virtualization support. On Intel VT-x processors, this means a Linux sandbox does not

see EPT or VMX features when displaying /proc/cpuinfo. Consequently, the actual

changes made to the original Linux 3.8.0 kernel are less than 50 lines. These changes are

mainly focused on limiting Linux’s view of available physical memory and handling I/O

device DMA offsets caused by memory virtualization.

An example memory layout of Quest-V with a Linux sandbox on a 4-core processor
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is shown in Figure 5.1. While the Linux kernel’s view of (guest) physical memory is

contiguous from address 0x0, the kernel is actually loaded after all Quest kernels in ma-

chine physical memory. Since Quest-V does not require a hardware IOMMU, we have to

patch the Linux kernel to make it aware of this offset between guest physical and machine

physical memory addresses during I/O device DMA. This is necessary because I/O device

is only aware of the machine physical memory and knows nothing about guest physical

memory. Fortunately, the Linux kernel DMA layer is highly modularized and the changes

required are minimal. We added a total of 4 lines of C code and some macro switches to

support a configurable constant offset in the Linux device DMA subsystem.

Figure 5.1: Quest-V Physical Memory Layout with Linux
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In the current implementation, we limit Linux to manage the last logical processor or

core. As this is not the bootstrap processing core, the Linux code that initializes a legacy

8253 Programmable Interval Timer (PIT) has to be removed. The 8253 PIT assumes in-

terrupts are delivered to the bootstrap processor but instead we program the IOAPIC to

control which interrupts are delivered to the Linux sandbox. In general, our implementa-

tion can be extended to support Linux running on a subset of cores (potentially more than

one), with access to a controlled and specific subset of devices.

Right now, the entire Linux sandbox runs in 512MB RAM, including space for the

root filesystem. This makes it useful in situations where we want to prevent Linux from

having access to persistent disk storage. In case memory resource is limited, the root

filesystem RAM disk can be replaced by flash storage or hard drive. Additionally, the

graphical interface can also be disabled to further reduce kernel image size and memory

consumption. Since Quest-V allocates only a subset of the physical memory to the Linux

sandbox, the monitor needs to prevent the Linux kernel from detecting the actual memory

available in the system. To minimize the monitor, instead of emulating the BIOS, we

modified the Linux kernel with a statically configured memory size. This limits the Linux

memory management subsystem to only access the memory it is allocated to. In case

a malfunctioned driver tries to access memory outside of those allocated to the Linux

sandbox, a trap into the monitor will be triggered and fault recovery can be initiated.

5.1.2 Remote Sandbox Access

Whenever a Linux sandbox is present, the VGA frame buffer and GPU hardware are al-

ways assigned to it for exclusive access. All the other sandboxes will have their default

terminal I/O tunneled through shared memory channels to virtual terminals in the Linux

front-end. Each non-Linux sandbox is allocated a virtual VGA frame buffer. These sand-
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boxes output all VGA data to their virtual frame buffer as if they are writing directly to the

physical one. We developed a Linux character device driver kernel module that exposes

each virtual VGA frame buffer as a character device. These devices can be accessed from

the Linux device filesystem through basic file operations. A read from any of the device

files will return the raw data in their corresponding virtual frame buffers. A write can be

used to output VGA data to the virtual frame buffer and to send commands to the sand-

box remote shell. We developed a Linux user space application called quesh to simulate a

virtual terminal by reading and writing the virtual VGA frame buffer device file for each

remote sandbox.

A screen shot of Quest-V after booting the Linux front-end sandbox is shown in Fig-

ure 5.2. Here, we show two virtual terminals connected to two different Quest sandboxes

similar to the configuration shown in Figure 3.1. In this particular example, we allocated

512MB of memory to the Linux sandbox (including an in-memory root filesystem) and

256MB to each native Quest sandbox. The network interface card has been assigned to

Quest sandbox 1, while the serial device has been assigned to Quest sandbox 2. The Linux

sandbox is granted ownership of the USB host controller in addition to the GPU and VGA

frame buffer. Observe that although the machine has four processor cores, the Linux ker-

nel detects only one core. From the content of /proc/cpuinfo file shown in the bottom

terminal window, we can see that Linux identifies all the CPU capabilities except VMX and

EPT.

5.1.3 Inter-Sandbox Communication

The Linux CFS scheduler does not offer the level of predictability provided by the VCPU

scheduling framework in the Quest kernel. Consequently, it is difficult to extend the pre-

dictable communication framework introduced in Chapter 4.2 to communications between
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Figure 5.2: Quest-V with Linux Front-End

Linux and Quest sandboxes. However, the communication between Linux and Quest pro-

cesses executing in different sandboxes is still necessary for mixed criticality applications.

To enable this feature, we developed the kernel extension, user library, and daemon service

required for the Linux front-end.

As mentioned in Chapter 4.2, inter-sandbox communication in Quest-V relies on mes-

sage passing primitives built on shared memory. Private message passing channel needs to

be established before communication commences. The message passing channel establish-

ment protocol is handled by a kernel thread running in each Quest sandbox. These threads

are responsible for handling message passing channel establishment requests, sending ac-

knowledgments, and setting up EPT mappings for the shared memory regions. We imple-

mented the same message passing channel establishment protocol for the Linux sandbox
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as a daemon process. However, in case a Quest sandbox initiates an establishment request,

the channel will be allocated in machine physical memory regions outside of Linux sand-

box. As mentioned earlier, Linux kernel memory management subsystem is only aware of

the machine physical memory region allocated to the Linux sandbox. In order to minimize

the effort required to paravirtualize Linux kernel for Quest-V, we developed a separate

out-of-band physical memory manager for the Linux front-end as a kernel module. The

daemon process manages EPT mappings of the message passing channels by interfacing

the new physical memory manager which in turn traps into Quest-V monitor for actual

EPT configurations.

The user APIs for shared memory channel management in the Linux front-end is pro-

vided through a library called libshm. This library simply communicates with the daemon

process via POSIX shared memory utilities for message passing channel management.

Additionally, this library also provides high level communication protocols such as four-

slot [Sim90] and ring buffer on top of shared memory message passing channels.

5.2 OSEK/AUTOSAR OS Sandbox Support

In addition to the Linux sandbox, we decided to also support OSEK/AUTOSAR OSes

in Quest-V for automotive applications. OSEK is a standards body that has produced

specifications for an embedded operating system, a communications stack, and a network

management protocol for automotive embedded systems. OSEK was designed to provide a

standard software architecture for the various electronic control units (ECUs) throughout

a car. The OSEK operating system is a single processor operating system designed to

provide priority based scheduling, synchronization, alarms, and interrupt management for

application tasks. It is usually implemented as a single address space operating system

and is configured statically by the user before deployment.
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As a standards body found in the early 90s, OSEK is now gradually replaced by the

new AUTOSAR initiative. AUTOSAR (AUTomotive Open System ARchitecture) is an

open and standardized automotive software architecture, jointly developed by automobile

manufacturers, suppliers, and tool developers. The AUTOSAR architecture is very ambi-

tious and covers the standardization of both software and hardware components on various

vehicle platforms. The large scale of the domain makes the standards overly complicated

and difficult to implement comprehensively. However, the AUTOSAR OS specification

reuses the OSEK OS specification. All the AUTOSAR OSes are backward compatible

with OSEK standard with the optional enhancement of schedule tables 1, software timers,

memory protection, and multi-core support, etc.

As a prototype, we ported the ERIKA Enterprise OS [ERI] to Quest-V. ERIKA Enter-

prise is an open source OSEK OS with several AUTOSAR extensions. It runs on the x86

platform as a single address space system by default. The system operates in the x86 pro-

tected mode with paging disabled. GRUB is required to bootstrap the multiboot compliant

ERIKA OS image. As with the Linux sandbox, a Quest sandbox needs to be initialized be-

fore any OSEK/AUTOSAR OS can be loaded. We developed utilities in the Quest kernel

and user space that enable a Quest sandbox to essentially boot any multiboot compliant

OS. A user can use the kexec (kernel exec) command from within the Quest shell to boot

a new kernel image in the sandbox. The kexec command requires the kernel image path to

be specified. Theoretically, no changes are needed to the target operating system as long as

the PIT is not used as the system timer. The reason that the PIT causes problems has been

explained earlier in Chapter 5.1.1. Unfortunately, the ERIKA Enterprise OS does utilize

PIT. Consequently, we had to modify the kernel source code and switch the system timer

to a local APIC timer. In the future, we will investigate the support of emulated software

1schedule tables are recurring or single-shot task activation and event sequences configured by a user
statically before system generation.
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timers in Quest-V, especially for platforms with only one physical timer available. Since

OSEK/AUTOSAR OSes do not have terminal I/O, the debug output is directed to a serial

port by default. To grant serial port access to an OSEK/AUTOSAR sandbox, we simply

assigned the serial device to the sandbox statically before system initialization.

Since OSEK/AUTOSAR OS support is a relatively recent addition to the Quest-V

separation kernel, it is under active development. We currently do not have utilities for

communication between OSEK/AUTOSAR OS sandbox and other sandboxes. A solution

similar to that of the Linux sandbox is not sufficient since both OSEK and AUTOSAR

define their own communication subsystems. Details of potential future work including an

OSEK/AUTOSAR compliant communication framework will be discussed in Chapter 7.

5.3 Experimental Evaluations

We conducted a series of experiments to investigate the performance of the Quest-V re-

source partitioning scheme for third party sandboxes. For all the experiments, we ran

Quest-V on a mini-ITX machine with a Core i5-2500K 4-core processor, featuring 4GB

RAM and a Realtek 8111e NIC. In all the network experiments where both a server and

a client are required, we also used a Dell PowerEdge T410 with an Intel Xeon E5506

2.13GHz 4-core processor, featuring 4GB RAM and a Broadcom NetXtreme II NIC. For

all the experiments involving a Xen hypervisor, Xen 4.2.3 was used with a Fedora 18

64-bit domain 0 and Linux 3.6.0 kernel.

5.3.1 Monitor Intervention

To see the extent to which a monitor was involved in system operation, we recorded the

number of monitor traps during Quest-V Linux sandbox initialization and normal opera-

tion. During normal operation, we observed only one monitor trap every 3 to 5 minutes
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Exception CPUID VMCALL I/O Inst EPT Violation XSETBV
No I/O Partitioning 0 502 2 0 0 1
I/O Partitioning 10157 502 2 9769 388 1
I/O Partitioning 9785 497 2 11412 388 1
(Block COM, NIC)

Table 5.1: Monitor Trap Count During Linux Sandbox Initialization

caused by cpuid. In the x86 architecture, if a cpuid instruction is executed within a

guest it forces a trap (i.e., VM-exit or hypercall) to the monitor. Table 5.1 shows the moni-

tor traps recorded during Linux sandbox initialization under three different configurations:

(1) a Linux sandbox with control over all I/O devices but with no I/O partitioning logic,

(2) a Linux sandbox with control over all I/O devices and support for I/O partitioning

logic, and (3) a Linux sandbox with control over all devices except the serial port and net-

work interface card, while also supporting I/O partitioning logic. However, again, during

normal operation, no monitor traps were observed other than by the occasional cpuid

instruction.

5.3.2 Microbenchmarks

We evaluated the performance of Quest-V using a series of microbenchmarks. The first,

findprimes, finds prime numbers in the set of integers from 1 to 106. CPU cycle times

for findprimes are shown in Figure 5.3, for the configurations in Table 5.2. All Linux

configurations were limited to 512MB RAM. For Xen HVM and Xen PVM, we pinned

the Linux virtual machine (VM) to a single core that differed from the one used by Xen’s

Dom0. For all 4VM configurations of Xen, we allowed Dom0 to make scheduling decisions

without pinning VMs to specific cores.

As can be seen in the figure, Quest-V Linux shows no overhead compared to stan-

dalone Linux. Xen HVM and Xen PVM actually outperform standalone Linux, and this



80

Configuration Description
Linux Standalone Linux (no virtualization)
Quest-V Linux One Linux sandbox hosted by Quest-V
Quest-V Linux 4SB One Linux sandbox co-existing with three

native Quest sandboxes
Xen HVM One Linux guest on Xen with hardware

virtualization
Xen HVM 4VM One Linux guest co-existing with three

native Quest guests
Xen PVM One paravirtualized Linux guest on Xen
Xen PVM 4VM One paravirtualized Linux guest co-existing with

three native Quest guests

Table 5.2: System Configurations
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Figure 5.3: findprimes CPU Benchmark

seems to be attributed to the way Xen virtualizes devices and reduces the impact of events

such as interrupts on thread execution. The results show approximately 2% overhead when

running findprimes in a Linux sandbox on Quest-V, in the presence of three native Quest

sandboxes. We believe this overhead is mostly due to memory bus and shared cache con-

tention. For the 4VM Xen configurations, the performance degradation is slightly worse.

This appears to be because of the overheads of multiplexing 5 VMs (one being Dom0)
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onto 4 cores.
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Figure 5.4: Page Fault Exception Handling Overhead

We evaluated the exception handling overheads for the configurations in Table 5.2,

by measuring the average CPU cycles spent by Linux to handle a single user level page

fault. For the measurement, we developed a user program that intentionally triggered

a page fault and then skipped the faulting instruction in the SIGSEGV signal handler.

The average cycle times were derived from 108 contiguous page faults. The results in

Figure 5.4 show that exception handling in Quest-V Linux is much more efficient than

Xen. This is mainly because the monitor is not required for handling almost all exceptions

and interrupts in a Quest-V sandbox.

The last microbenchmark measures the CPU cycles spent by Linux to perform a mil-

lion fork-exec-wait system calls. A test program forks and waits for a child while the child

calls execve() and exits immediately. The results are shown in Figure 5.5. Quest-V

Linux is almost as good as native Linux and more than twice as fast as any Xen configu-

ration.
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Figure 5.5: Fork-Exec-Wait Micro Benchmark

5.3.3 mplayer HD Video Benchmark

We next evaluated the performance of application benchmarks that focused on I/O and

memory usage. First, we ran mplayer with an x264 MPEG2 HD video clip at 1920x1080

resolution. The video was about 2 minutes long and 102MB in file size. By invoking

mplayer with -benchmark and -nosound, mplayer decodes and displays each frame

as fast as possible. With the extra -vo=null argument, mplayer will further skip the

video output and try to decode as fast as possible. The real-times spent in seconds in the

video codec (VC) and video output (VO) stages are shown in Table 5.3 for three different

configurations. In Quest-V, the Linux sandbox was given exclusive control over an inte-

grated HD Graphics 3000 GPU. The results show that Quest-V incurs negligible overhead

for HD video decoding and playback in Linux. We also observed (not shown) the same

playback frame rate for all three configurations.
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VC (VO=NULL) VC VO
Linux 16.593s 29.853s 13.373s
Quest-V Linux 16.705s 29.915s 13.457s
Quest-V Linux 4SB 16.815s 29.986s 13.474s

Table 5.3: mplayer HD Video Benchmark

5.3.4 netperf UDP Bandwidth Benchmark

We next investigated the networking performance of Quest-V, using the netperf UDP

benchmark. The measured bandwidths of separate UDP send (running netperf) and receive

(running netserver) experiments, on the mini-ITX machine, are shown in Figures 5.6 and

5.7, respectively.
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Figure 5.6: netperf UDP Send with Different Packet Sizes

We have omitted the results for Xen HVM, since it did not perform as well as Xen

PVM. For Xen PVM and Xen PVM 4VM, virtio [Rus08] is enabled. It can be seen

that this helps dramatically improve the UDP bandwidth for small size UDP packets. With

512B packet size, Xen PVM outperforms standalone Linux. However, Quest-V Linux

exhibits no visible overhead as compared to standalone Linux and outperforms Xen with
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Figure 5.7: netserver UDP Receive

bigger packet sizes and multiple VMs.

We also tested the potential overhead of the I/O partitioning strategy in Quest-V. For

the group of bars labelled as Quest-V Linux 4SB (IOP), we enabled I/O partition-

ing logic in Quest-V and allowed all devices except the serial port to be accessible to the

Linux sandbox. Notice that even though no PCI device has been placed in the blacklist for

the Linux sandbox, the logic that traps PCI configuration space and IOAPIC access is still

in place. The results show that the I/O partitioning does not impose any extra performance

overhead on normal sandbox execution. I/O resource partitioning-related monitor traps

only happen during system initialization and faults.

5.3.5 Partitioning Costs

We ran a set of experiments to investigate the costs of hardware partitioning in Quest-V.

As part of our evaluation, we measured the last-level cache and TLB misses, as well as

instructions retired for an instrumented UDP benchmark (similar to netperf) that collects

hardware performance counter readings. The results are shown in Figures 5.8 - 5.13.
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Figure 5.9: Instructions Retired

Figure 5.8 compares a standalone Linux against an equivalent sandboxed version of

Linux in Quest-V. Again, from these results, we see no visible UDP bandwidth degra-

dation caused by Quest-V. In Figure 5.9, we show the number of instructions retired over

each UDP send operation. The results confirm that Quest-V does not interfere with the op-
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Figure 5.10: Last Level Cache Misses
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Figure 5.11: iTLB Load Misses

eration of a sandbox since no extra monitor instructions are executed. Figures 5.10 to 5.13

show the number of last level cache misses, instruction TLB load misses, data TLB load

misses, and data TLB store misses recorded during each UDP send operation for different

packet sizes in Linux and Quest Linux. The TLB load and store misses are miss events
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Figure 5.12: dTLB Load Misses
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Figure 5.13: dTLB Store Misses

recorded during memory load and store instructions, respectively. As can be seen from

these results, Quest-V does incur visible cache or TLB performance overheads. The over-

heads that do occur are mainly due to the extra levels of address translation caused by

EPTs. Since the EPTs and traditional page tables share the same TLBs, TLB contention
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is increased when EPTs are activated. The extra last level cache misses are potentially the

consequence of extra page table walks caused by EPT TLB misses. However, since the

UDP benchmark is I/O-bound, micro-architectural overheads do not affect the bandwidth

results.

We ran the same experiments with the UDP server and client running on the same

machine, for both standalone and Quest Linux. This was to investigate communication

performance without I/O overheads such as DMA and device interrupts. The bandwidth

results shown in Figure 5.14 confirm that Quest-V Linux does incur a performance penalty

compared to running as a standalone system. Figures 5.15 to 5.19 show similar results for

last level cache and TLB misses. In addition to the standalone and Quest Linux config-

urations used in the previous experiments, we added a new configuration labeled “Quest

Linux LP” which uses 2MB large pages in the EPTs for the mapping of Linux sandbox

memory, instead of the default 4KB pages. By increasing the page size, we removed one

extra level of indirection in the EPTs. As can be seen from the results, this helped re-

duce both last level cache and TLB misses. The UDP bandwidth also improved under this

configuration.

5.3.6 TLB Performance

We ran a series of experiments to measure the effects of address translation using EPTs.

A TLB-walking thread in a native Quest kernel was bound to a Main VCPU with a 45ms

budget and 50ms period. This thread made a series of instruction and data references to

consecutive 4KB memory pages, at 4160 bytes offsets to avoid cache aliasing effects. The

average time for the thread to complete access to a working set of pages was measured

over 10 million iterations.

Figures 5.20 and 5.21 compare the performance of a native Quest kernel running in
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Figure 5.14: Local UDP Bandwidth
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Figure 5.15: Instructions Retired

a virtual machine (i.e., sandbox) to when the same kernel code is running without vir-

tualization. Results prefixed with Quest do not use virtualization, whereas the rest use

EPTs to assist address translation. Experiments involving a VM Exit or a TLB Flush

performed a trap into the monitor, or a TLB flush, respectively, at the end of accessing the
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Figure 5.16: Last Level Cache Misses
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Figure 5.17: iTLB Load Misses

number of pages on the x-axis. All other Base cases operated without involving a monitor

or performing a TLB flush.

As can be seen, the Quest-V Base case refers to the situation when the monitor is

not involved. This yields address translation costs similar to when the TLB walker runs
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Figure 5.18: dTLB Load Misses
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Figure 5.19: dTLB Store Misses

on a base system without virtualization (Quest Base) for working sets with less than

512 pages. We believe this is acceptable for safety-critical services found in embedded

systems, as they are likely to have relatively small working sets. The cost of a VM-Exit is

equivalent to a full TLB flush, but entries will not be flushed in Quest-V sandboxes if they
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Figure 5.20: Data TLB Performance
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Figure 5.21: Instruction TLB Performance

are within the TLB reach. Note that without the use of TLBs to cache address translations,

the EPTs require 5 memory accesses to perform a single guest-physical address (GPA) to

host-physical address (HPA) translation. The kernels running the TLB walker use two-

level paging for 32-bit virtual addresses, and in the worst-case this leads to 3 memory
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accesses for a GVA to GPA translation. However, with virtualization, this causes 3×5 =

15 memory accesses for a GVA to HPA translation.

5.4 Conclusions

In this chapter, we introduced the third party sandbox kernels supported by Quest-V in ad-

dition to Quest sandboxes. Third party sandbox support is necessary in embedded mixed

criticality systems for the reuse of existing legacy services, especially those without source

code availability. Currently, Quest-V supports both Linux and OSEK/AUTOSAR OS

sandboxes. Applications and services developed for these systems can be easily deployed

in Quest-V. We paravirtualized a Puppy Linux distribution with 3.8.0 kernel to Quest-V

with less than 50 lines of code changed. The Linux sandbox serves as the system front-end

when present. All the other sandboxes can be accessed through remote virtual terminals.

Processes running in the Linux sandbox can also communicate with processes running in

the Quest sandboxes via the shared memory message passing channel APIs we developed

for the Linux sandbox. As for OSEK/AUTOSAR OSes, we ported the ERIKA Enterprise

OS to Quest-V. The only change we made to the ERIKA OS kernel is to switch the system

timer from the PIT to the local APIC timer.

Experiments show that the Quest-V separation kernel does not interfere with nor-

mal sandbox operation and incurs no visible performance overhead to various application

benchmarks running in the Linux sandbox. Microarchitecture benchmarks show that for

applications with relatively large memory footprint, the extra memory translation over-

head caused by EPT can become visible. However, we believe this is not a problem for

embedded applications with relatively small working sets.



Chapter 6

Conclusions

In this dissertation, we introduced Quest-V, which is an open-source separation kernel

built from the ground up for mixed criticality systems such as those seen in the healthcare,

automotives, and avionics industries. It uses hardware virtualization to separate system

components of different criticalities. Consequently, less important services can be isolated

from those of higher criticality on a single multi-/many-core platform, and essential ser-

vices can be replicated across different sandboxes to ensure availability in the presence of

faults.

Quest-V avoids traditional costs associated with hypervisor systems, by statically par-

titioning machine resources across guest sandboxes, which perform their own scheduling,

memory, and I/O management without monitor interference. Sandboxes can communicate

via shared memory channels that are mapped to extended page table (EPT) entries. Only

trusted monitors are capable of changing entries in these EPTs, preventing guest access

to arbitrary memory regions in remote sandboxes. Since Quest-V attempts to avoid VM-

exits as much as possible, except to update EPTs for communication channels, bootstrap

the sandboxes and handle faults, the TLBs caching EPT mappings are rarely flushed. This

benefit comes about due to the fact that multiple guests are not multiplexed onto the same

processor core, and in the embedded systems we envision for this work, sandbox working

sets will fit within the TLB reach (at least for critical services in Quest sandboxes).
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Quest is the default kernel for each Quest-V sandbox. It is a kernel developed for

real-time and embedded systems featuring a novel hierarchy of VCPUs implemented as

Sporadic Servers, to ensure temporal isolation amongst real-time, safety-critical threads.

Quest is designed for mission critical and safety critical tasks in a mixed criticality appli-

cation. Threads in different Quest sandboxes can communicate with each other through

a predictable communication mechanism that provides worst case message passing de-

lay guarantees. Threads and their VCPUs can also migrate from one Quest sandbox to

another without violating any VCPU timing guarantees. Experiments show that the pre-

dictable communication and migration framework we developed for Quest sandboxes are

practical and effective. The temporal and spatial isolation between Quest-V sandboxes

also offer software fault containment and allow various fault recovery mechanisms to be

implemented. Experiments show that software faults in one sandbox are isolated from

other sandboxes. A web server fault recovery example in a Quest sandbox also demon-

strates that software faults can be recovered efficiently either locally or remotely without

prohibitive monitor overhead. Morever, Quest-V also offers efficient device sharing be-

tween Quest sandboxes, though at the cost of lowered safety.

In addition to Quest sandboxes, Quest-V also support third party sandbox kernels such

as Linux and OSEK/AUTOSAR OSes. All third party sandboxes supported by Quest-V

can only be bootstrapped by a Quest kernel. Currently, we ported a Puppy Linux distri-

bution with Linux 3.8.0 kernel to serve as the front-end to Quest-V, providing a window

manager and graphical interface. All the other sandboxes can be accessed from the Linux

front-end through virtual terminals we developed on top of shared memory channels. Low

criticality applications running in the Linux front-end can communicate with the critical

tasks running in the Quest sandboxes via shared memory message passing APIs available

in both Linux and Quest sandboxes. More recently, we ported ERIKA Enterprise OS,
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an OSEK single processor operating system designed for automotive ECUs, to Quest-V

specifically for automotive applications. Experiments show that the Quest-V separation

kernel does not interfere with normal sandbox operations and incurs no visible perfor-

mance overhead to the sandbox kernels. Various application benchmarks in the Linux

front-end exibit bare-metal Linux performance. These results show that our Quest-V sep-

aration kernel implementation is consistent with our initial design philosophies.

Quest-V distributed monitors occupy a small memory footprint compared to traditional

hypervisors. They are used only to partition resources, assist in fault recovery and establish

inter-sandbox communication channels. By comparison, traditional hypervisors need extra

functionality to multiplex guest virtual machines on a shared set of hardware resources.

In Quest-V, each sandbox manages its own partitioned set of resources so hypervisor-

based virtualization of those resources is eliminated. Similarly, Quest-V monitors are not

required for most service requests, which heightens the security of the system.



Chapter 7

Future Work

This chapter describes future directions for Quest-V development.

7.1 VCPU Migration Policy

In chapter 4.3, we introduced the predictable service migration mechanism used by Quest

kernel to migrate threads and their VCPUs between Quest sandboxes. We mentioned

that VCPU migration is useful for several reasons amongst which are the need to balance

loads across sandboxes of the same criticality levels and to guarantee the schedulability of

VCPUs and threads. However, currently there is no policy available in the Quest kernel

that makes migration decisions according to these objectives.

A potential policy could be designed around the optimization and balance of three

aspects of the system: microarchitectural resource contention, CPU utilization, and power

consumption. To mitigate microarchitectural resource contention, the Quest kernel needs

to understand the microarchitectural resource consumption of each thread and attempt to

migrate threads and their VCPUs for optimal co-runner selection that minimize cache

and memory bus contention [WZWZ13]. If cache partitioning techniques such as page

coloring are utilized, the migration policy should attempt to assign threads and VCPUs

to different Quest sandboxes to maximize cache utilization. CPU utilization of a Quest

sandbox is primarily limited by the VCPU scheduling policy introduced in chapter 4.1.
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The predictable migration mechanism in Quest kernel already guarantees that migration

requests that violate the VCPU utilization bound will be rejected. However, the migration

policy could attempt to migrate VCPUs in under utilized sandbox to other sandboxes and

change the C-state of the processor core to conserve power.

In summary, in addition to the predictable migration mechanism introduced in this

dissertation, a migration policy in the Quest kernel that considers all the above criteria and

respects other restrictions such as I/O device sandbox affinity is needed in order to make

appropriate migration decisions that optimize system behavior under different application

requirements.

7.2 Dynamic Resource Partitioning

On future many-core platforms with large number of cores and I/O peripherals, the static

resource partitioning scheme of Quest-V separation kernel introduced in chapter 3.2 will

become increasingly inflexible. To increase system wide resource allocation flexibility

and reduce power consumption, dynamic CPU, memory, and I/O device repartitioning

schemes should be considered in future Quest-V development.

Quest-V sandboxes should be able to dynamically add and remove processor cores.

This allows the processor cores to be powered on and off individually in response to

workload changes. Multi-core sandbox also allows the sandbox kernel and its applica-

tions to exploit the physical parallelism if necessary. An approach similar to the Bar-

relfish/DC [ZGKR14] boot driver should be considered in Quest-V separation kernel

which allows monitors to decouple sandboxes from the processor cores. Similarly, dy-

namic I/O device assignment should also be supported to satisfy flexible I/O demands and

reduce power consumption. Once the device blacklists in the monitors are made dynamic,

I/O device repartitioning can be supported with proper device de-initialization and re-
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initialization in the corresponding sandboxes. Finally, sandboxes should also be allowed

to dynamically adjust their memory demands. Although preferably this should be carried

out at a larger granularity than a single memory page in order to reduce potential monitor

traps.

In addition to resource management flexibility and power efficiency, the decoupling

of sandbox states from processor core and peripheral states can also help simplify the

sandbox migration and fault recovery procedure. However, we have to guarantee that

the dynamic resource partitioning process is predictable. The real-time requirements of

the applications running in the safety critical and mission critical sandboxes can never be

violated.

7.3 Fault Recovery

As mentioned in chapter 4.4, even though the sandbox isolation provided by the Quest-V

separation kernel offers fault isolation and serves as a platform to construct various fault

recovery mechanisms, current Quest-V implementation lacks the policy and mechanism

support for general fault recovery routines. For instance, in remote recovery, the local

monitor has to choose a target remote sandbox before recovery begins. There are many

possible policies for choosing a target sandbox that will resume an affected service request.

One simple approach is to pick any available sandbox in random order, or according to a

round-robin policy. This is essentially the approach in current Quest-V implementation.

In more complex decision-making situations, a sandbox may be chosen according to its

current load and criticality level.

As another example, after a fault is detected, the faulting software components must be

identified by the monitor. In addition to examining the system context at the time the fault

happened, Quest-V should allow applications or drivers to register their dependencies if
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automatic discovery is not possible. In current implementation of Quest-V, we assume that

all recovered services are re-initialized and any outstanding requests are either discarded

or can be resumed without problems. In general, many software components may require

a specific state of operation to be restored for correct system resumption. In such cases,

we would need a scheme similar to those adopted in transactional systems, to periodically

checkpoint recoverable state. Snapshots of such state can be captured by local monitors at

periodic intervals, or other appropriate times, and stored in memory outside the scope of

each sandbox kernel.

Finally, as the first step of any fault recovery effort, fault detection is, itself, a compli-

cated topic. In addition to the obvious fault events such as EPT violation, more elaborate

schemes for identifying faults are needed. If a fault does not automatically trigger a trap

into the monitor, it can be forced by a fault handler issuing an appropriate instruction. To

guard against compromised sandboxes that lose the capability to pass control to their mon-

itor as part of fault recovery, certain procedures should be adopted. One such approach

would be to periodically force traps to the monitor using a preemption timeout [Inta]. This

way, the fault detection code could itself be within the monitor, thereby isolated from any

possible tampering from a malicious attacker or faulty software component. However, this

approach forces us to give up certain level of the efficiency and safety achieved through

avoiding monitor intervention in normal sandbox operations in Quest-V.

7.4 AUTOSAR Extensions Support

In chapter 5.2 we introduced how a single processor ERIKA Enterprise OSEK operating

system can be bootstrapped in a Quest-V sandbox via the kexec command. However,

as we mentioned, OSEK/AUTOSAR OS sandboxes in Quest-V currently can not easily

communicate with each other and other sandboxes. In the future, we will investigate the



101

support of AUTOSAR OS extensions such as AUTOSAR Communication Subsystem and

multi-core AUTOSAR OS in the Quest-V separation kernel.

In an attempt to harness the power of multi-core micro-controllers available in auto-

mobile industry and standardize current vehicle system architecture, the AUTOSAR stan-

dard introduced support for multi-core operating system since its 4.0 release. AUTOSAR

adopted a loosely coupled design philosophy in which tasks are statically partitioned to

each per core scheduler. Multi-core OS in AUTOSAR is specified as an OS that shares

the same configuration and most of the code, but operates on different data structures for

each core. This design simplifies the scheduling policy based on static priority while at

the same time exploits the concurrency provided by multi-core processors. An example

natural task partitioning might be powertrain angle versus time control tasks.

Besides providing separate schedulers for each core in a multi-core processor, AU-

TOSAR multi-core OS specification also added several extra system services for cross

core communication and synchronization. Part of the existing system services are also

extended or adapted to accommodate additional states. Communication between different

OS applications (an application is a collection of Tasks) are handled with different frame-

works. Communication between applications over core boundaries in multi-core systems

is handled by Inter OS Application Communicator (IOC). Communication between sepa-

rate ECUs is handed to AUTOSAR Communication Subsystem.

It is not hard to see that the AUTOSAR multi-core OS design adopts the distributed

system on a chip philosophy with explicit communication framework. This coincides

with the Quest-V separation kernel model. By providing the AUTOSAR multi-core spe-

cific support in each monitor (extra services and service extensions), we should be able

to convert existing single core AUTOSAR OS implementations into multi-core compliant

system with minimum overhead and engineering effort. The AUTOSAR multi-core utili-
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ties and IOC interface implementations should be provided to existing OSEK/AUTOSAR

OSes (e.g. ERIKA Enterprise OS) through libraries. By linking with these libraries, OS-

EK/AUTOSAR applications running on Quest-V in different sandboxes will be able to

take advantage of the AUTOSAR multi-core extensions and IOC communication frame-

work even if each sandbox is still running a single processor OSEK/AUTOSAR OS kernel.

The support for AUTOSAR Communication Subsystem should also be extended to Quest

and Linux sandboxes for mixed criticality applications in the automobiles industry.

7.5 Distributed Programming Model

Parallel applications developed for the Quest sandbox can be deployed across multiple

sandboxes. Different processes can communicate with each other via the predictable com-

munication framework described in chapter 4.2. However, due to the distributed design of

the Quest-V separation kernel, the programming model for cross sandbox parallel appli-

cation development is complicated. Communication channels are managed manually and

mappings of processes to sandboxes have to be resolved manually before execution. A

new programming model and runtime support are necessary to simplify the cross sandbox

parallel application development in Quest-V.

Instead of using C and the POSIX thread (pthread) model, a concurrent programming

language with explicit communication interface would be more appropriate. Features from

existing concurrent languages such as Erlang [ERL] and Elixir [ELI] should be considered.

The predictable communication framework utilities should be integrated into the language

semantics. Additionally, a system runtime deployed across all Quest sandboxes is also

necessary to distribute threads and processes of an application onto multiple Quest sand-

boxes efficiently and transparently. A policy that considers sandbox workload, resource

contention, communication overhead, and device locality should be investigated to opti-
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mize the system resource utilization and application performance.



Bibliography

[AA06] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In Proceedings of the 12th Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems,
pages 2–13, 2006.

[AB98] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in
hard real-time systems. In Proceedings of the 19th IEEE Real-time Systems
Symposium, pages 4–13, 1998.

[Alb99] David H. Albonesi. Selective cache ways: on-demand cache resource allo-
cation. In ACM/IEEE International Symposium on Microarchitecture (MI-
CRO ’99), pages 248–259, November 1999.

[Ame81] Stanley R. Ames, Jr. Security Kernels: A Solution or a Problem? In IEEE
Symposium on Security and Privacy, pages 141–141, April 1981.

[And72] J. P. Anderson. Computer Security Technology Planning Study. ESD-TR-
73-51, Volume I and II, AD 758206, AD 772806, October 1972.

[ARI08] ARINC 653 - An Avionics Standard for Safe, Partitioned Systems. Wind
River Systems / IEEE Seminar, August 2008.

[AUT] AUTOSAR: AUTomotive Open System ARchitecture. http://www.
autosar.org.

[Aut92] Federal Aviation Authority. Software Considerations in Airborne Systems
and Equipment Certification. Technical report, RTCA/DO-178B, RTCA,
Inc, 1992.
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