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ABSTRACT 

 Attention-deficit/hyperactivity disorder (ADHD) is highly comorbid with 

substance use disorders, particularly cocaine. Preclinical studies using the well-validated 

Spontaneously Hypertensive Rat (SHR) model of ADHD suggest that adolescent 

treatment with the stimulant methylphenidate increases cocaine abuse risk in adulthood, 

highlighting the need to identify alternative medications for teenagers with ADHD. 

Experiments 1-4 tested the hypothesis that atomoxetine, a non-stimulant that improves 

prefrontal cortex functioning in adolescent SHR, would not increase cocaine abuse risk.  

The speed to acquire cocaine self-administration, the efficacy and motivating influence of 

cocaine reinforcement, and reactivity to cocaine cues in adulthood following 

discontinuation of adolescent atomoxetine treatment were examined in male SHR and 

two genetic control strains: inbred Wistar-Kyoto (WKY) and outbred Wistar (WIS). 

Because atomoxetine is not always as clinically efficacious as methylphenidate, 

Experiments 5-9 tested the hypothesis that an alternative stimulant, d-amphetamine, 

would improve cognitive performance in adolescent SHR during a strategy set-shifting 
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task and not increase cocaine abuse risk in adult SHR after adolescent d-amphetamine 

was discontinued. Across experiments, adult SHR acquired cocaine self-administration 

faster than control strains and also were more sensitive to cocaine’s reinforcing and 

motivating influence and more reactive to cocaine cues. As hypothesized, adolescent 

atomoxetine did not increase any measure of cocaine abuse risk in adult SHR and 

modestly reduced SHR’s reactivity to cocaine cues. In WKY control, however, 

adolescent atomoxetine accelerated acquisition of cocaine self-administration. d-

Amphetamine improved set-shifting deficits in adolescent SHR, demonstrating pro-

cognitive effects as hypothesized. When self-administration was acquired, cocaine intake 

was lower in adult SHR that received adolescent d-amphetamine compared to vehicle-

treated SHR, consistent with the hypothesis. Adolescent d-amphetamine slowed 

acquisition and reduced the efficacy and motivating influence of cocaine reinforcement in 

WIS control, but accelerated acquisition in WKY control. Collectively, these results 

highlight the heuristic value of SHR in evaluating comorbid ADHD and cocaine abuse 

risk, and suggest that atomoxetine and d-amphetamine may be safer medications than 

methylphenidate for teenagers with ADHD. However, findings in control strains 

emphasize the need for accurate ADHD diagnosis, as the long-term consequences of 

treatment could be favorable (d-amphetamine in WIS) or unfavorable (atomoxetine and 

d-amphetamine in WKY) in misdiagnosed individuals.    
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CHAPTER ONE. 

 

 General Introduction 

 

 Attention-deficit/hyperactivity disorder (ADHD) is a widely prevalent 

neurodevelopmental disorder that affects 8-12% of children and adults worldwide, up to 

~78% of whom may experience symptoms that persist in adulthood (Biederman et al, 

2010; Visser et al, 2014). In the United States, ADHD diagnoses increased by 42% from 

2003 to 2011, with rates escalating fastest among teenage boys aged 14 to 17 (Schwarz & 

Cohen, 2013; Visser et al, 2014). Adolescents and adults with ADHD are at a high risk of 

drug abuse. Comorbidity estimates of ADHD and substance use disorder (SUD) range 

from 9.5% up to 58%, depending on the sample (Sizoo et al, 2010; Steinhausen & 

Bisgaard, 2014). Moreover, ADHD is a significant predictor of SUD (Wilens et al, 2011), 

and is associated with earlier onset and increased severity of SUD, as well as greater 

functional impairments resulting from drug use (de los Cobos et al, 2011; Kousha et al, 

2012). Although nicotine, alcohol, and cannabis represent the most frequently abused 

drugs by individuals with ADHD (Faraone et al, 2007), ADHD patients are also more 

likely than those without ADHD to escalate their use to include other illicit drugs, 

particularly cocaine (Biederman et al, 2006). The lifetime prevalence of cocaine use 

disorder in individuals with ADHD is 23%, more than double the prevalence of cocaine 

use disorder observed in the general population, which is 10.8% (Lambert, 2005). 

Consistent with these rates, meta-analysis has shown that children with ADHD are twice 
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as likely to abuse cocaine or to become cocaine dependent in adulthood, compared to 

children without ADHD (Lee et al, 2011). ADHD and cocaine abuse share several 

behavioral and neurological features, which may contribute to high comorbidity of these 

disorders.  

 

ADHD and Cocaine Abuse  

 The core characteristics of ADHD include hyperactivity, impulsivity, and 

inattention (American Psychiatric Association, 2013). Other robust features of ADHD 

include deficits in inhibitory control, working memory, and behavioral flexibility, as well 

as elevated sensitivity to novelty (Barkley, 1997; Rapport et al, 2008; Tengelbeckers et 

al, 2015). Drug dependence is defined by a loss of control over drug consumption and 

continued drug use despite negative consequences (American Psychiatric Association, 

2013). Consistent with this definition, cocaine-abusing individuals exhibit impulsivity 

and deficits in sustained attention, working memory, and inhibitory control (Burgess et 

al, 2010; Colzato et al, 2009; Hester & Garavan, 2004; Potvin et al, 2014; Vonmoos et al, 

2013). However, it remains unclear whether these deficits contribute to the development 

of cocaine dependence, or whether they are a result of chronic drug use.  

 Several overlapping neural substrates underlie the behavioral features that ADHD 

and cocaine dependent individuals have in common. For example, during inhibitory 

control tasks, individuals with ADHD show reduced activation in the right inferior frontal 

gyrus (IFG), as well as in medial prefrontal and orbitofrontal cortices (mPFC and OFC, 

respectively), compared to individuals without ADHD (Booth et al, 2005; Cubillo et al, 
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2011; Depue et al, 2010; Rubia et al, 2005). Cocaine users similarly fail to show 

activation in mPFC or dorsolateral prefrontal cortex (DLPFC) during inhibitory control 

tasks, which is typically observed in non-drug using controls (Hester & Garavan, 2004). 

Moreover, during reward-based tasks, increased activation in the OFC is observed both in 

individuals with ADHD and in cocaine using subjects, compared to controls (Bolla et al, 

2003; von Rhein et al, 2015).  

 Dysfunction in the dopamine neurotransmitter system may underlie many of the 

behavioral and neurobiological features that individuals with ADHD and cocaine 

dependent individuals have in common. For example, individuals with ADHD exhibit 

decreased dopamine D2 receptor availability (Volkow et al, 2010), and have specific 

polymorphisms in the dopamine transporter (DAT) -1 gene (Faraone et al, 2005; Fusar-

Poli et al, 2012). These polymorphisms likely contribute to the abnormal DAT function 

and increased DAT levels observed in the striatum of ADHD patients (Fusar-Poli et al, 

2012; Hesse et al, 2009). Notably, the striatum is a region in which the DAT-1 gene is 

predominantly expressed in the brain (Durston et al, 2005), and plays a critical role in 

motivation and reward-associated learning. Cocaine users similarly exhibit decreased D2 

receptor availability and polymorphisms in the DAT-1 gene, in some of the same introns 

as those observed in ADHD (Asherson et al, 2007; Franke et al, 2010; Guindalini et al, 

2006; Hoogman et al, 2012). Moreover, DAT-1 polymorphisms also likely contribute to 

abnormal DAT function in the striatum of cocaine users (Mash et al, 2002; Volkow et al, 

2010). Interestingly, individuals with ADHD who receive stimulant medications for their 

symptoms exhibit increased DAT levels compared to medication-naïve ADHD patients 
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(Fusar-Poli et al, 2012), and cocaine abuse is associated with increased DAT function in 

the striatum (Mash et al, 2002). If long-term stimulant medication exacerbates DAT 

dysfunction in ADHD, this may also contribute to increased cocaine abuse risk in these 

individuals. The neural mechanisms associated with sensitization, an important 

consequence of repeated stimulant exposure, support this possibility.   

 

Stimulant Drugs and Sensitization 

 Acutely, all drugs of abuse activate the mesocorticolimbic dopamine “reward” 

pathway, either directly or indirectly. The mesocorticolimbic pathway involves the 

ventral tegmental area (VTA), from which dopaminergic axons project to the nucleus 

accumbens and PFC. Drugs of abuse are thought to “hijack” this pathway by augmenting 

dopamine signaling (Buchta & Riegel, 2015). For example, cocaine inhibits monoamine 

transporters, serving to increase extracellular dopamine and other monoamines. Drug-

seeking and drug-taking behaviors are thus reinforced in place of the pursuit of natural 

rewards, such as food, which do not increase extracellular dopamine to the same 

magnitude (Buchta & Riegel, 2015). Cocaine use also affects other brain regions, many 

of which have reciprocal connections with the nucleus accumbens and VTA. These 

include the striatum, amygdala, hippocampus, and cingulate cortex (Steketee & Kalivas, 

2011), as well as specific subregions of the PFC, such as mPFC/DLPFC and OFC, as 

reviewed above (Bolla et al, 2003; Booth et al, 2005; Hester & Garavan, 2004). 

 Rather than causing tolerance, long-term or repeated administration of stimulant 

drugs may induce sensitization. Sensitization is broadly defined as enhanced 
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responsiveness to the drugs’ effects, both with respect to behavior and within the brain. 

For example, it is well established in rodents that repeated administration of low doses of 

cocaine increases locomotor activity (see Steketee & Kalivas, 2011, for review). The 

reinforcing value of the drug, as well as the salience of drug-related cues, can also 

increase with repeated stimulant use (Robinson & Berridge, 1993). A number of neural 

changes are thought to underlie sensitization to drugs and drug-related cues. These 

include increases in dopamine and glutamate release in the VTA, nucleus accumbens, and 

mPFC, in response to stimulant administration (Steketee & Kalivas, 2011). In particular, 

increased activation of D1 receptors in these regions appears to be critical to the 

development of sensitization (Steketee & Kalivas, 2011). For example, D1 receptor 

responsivity in the nucleus accumbens increases with repeated cocaine administration 

(Henry & White, 1991). Moreover, infusion of D1 agonists into the nucleus accumbens 

or VTA augments sensitization to cocaine (De Vries et al, 1998; Pierce et al, 1996). In 

contrast, D1 antagonists in the VTA block the development of sensitization (Vezina, 

1996). Similarly, antagonists of dopamine D1 and glutamate receptors in mPFC block the 

formation of sensitization to stimulant drugs (Li et al, 1999; Ramos et al, 2005).  

 Sensitization has also been linked to other synaptic changes in the 

mesocorticolimbic dopamine pathway. For example, one measure of excitatory synaptic 

strength is the ratio of AMPA to NMDA glutamate receptors (AMPAR/NMDAR). In the 

VTA, neurons showed elevated AMPAR/NMDAR ratios for up to 1 week following a 

single cocaine injection, and for up to 3 months following chronic cocaine self-

administration (Chen et al, 2008; Lüscher & Malenka, 2011). Importantly, changes in 
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VTA plasticity following cocaine administration are dependent on D1 receptor activation 

(Schilström et al, 2006; Steketee & Kalivas, 2011). In contrast to the VTA, excitatory 

synaptic strength in the nucleus accumbens may be reduced by repeated cocaine 

administration. Decreased AMPAR/NMDAR ratios are observed in medium spiny 

neurons for up to 14 days after the last cocaine exposure (Lüscher & Malenka, 2011; 

Kourrich et al, 2007; Thomas et al, 2001).  

 One additional neurochemical change important to sensitization occurs at 

monoamine transporters. For example, DAT inhibition is necessary for cocaine-induced 

changes in nucleus accumbens plasticity, as well as cocaine-induced locomotor 

sensitization (Martin et al, 2011). Interestingly, continuous access to cocaine reduces 

cocaine’s ability to block DAT (Calipari et al, 2013). In contrast, intermittent access to 

cocaine, which may be more representative of “real-world” cocaine use, increases 

cocaine’s potency at DAT (Calipari et al, 2013). Importantly, increases in DAT are 

associated with ADHD, and may be a consequence of stimulant medication (Fusar-Poli et 

al, 2012; Hesse et al, 2009). Based on this understanding of sensitization, concern has 

been raised regarding the treatment of ADHD with stimulant drugs.  

 

Changes in Cocaine Abuse Risk following Treatment for ADHD  

 In the United States, two-thirds of individuals diagnosed with ADHD receive a 

stimulant medication for their symptoms (Schwarz & Cohen, 2013). The most commonly 

prescribed stimulant medication is methylphenidate (Ritalin®; Castle et al, 2007; Raman 

et al, 2015; Visser et al, 2014). Methylphenidate is considered the first-line treatment for 
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ADHD (MTA Cooperative Group, 1999), and can result in up to 50% reduction in 

ADHD symptoms (Buitelaar et al, 2011; Scahill et al, 2004). Methylphenidate acts by 

inhibiting reuptake at DAT and at norepinephrine transporters (NET), resulting in 

increased extracellular concentrations of dopamine and norepinephrine (Gatley et al, 

1996; Wilens, 2006). Regionally, in boys with ADHD methylphenidate increases right 

IFG activity, and normalizes hypoactivation in the ventrolateral PFC (VLPFC), which is 

associated with improved inhibitory control compared to placebo administration (Cubillo 

et al, 2012; Rubia et al, 2014). Increased stimulation at dopamine D1 and alpha2A 

noradrenergic receptors is thought to underlie methylphenidate’s acute cognitive-

enhancing effects (Arnsten & Dudley 2005; Gamo et al 2010).  

 Although methylphenidate may be efficacious in improving ADHD symptoms in 

the short-term, controversy remains regarding chronic treatment (Sibley et al, 2014). 

After moderate- and long-term follow up, increases in methylphenidate use were 

associated with increased school grade repetition and deteriorating parental relationships 

for boys with ADHD, and with unhappiness, depression, lower math scores, reduced 

higher education attendance, as well as deteriorating parental relationships for girls with 

ADHD (Currie et al, 2014; NBER, 2015). Further, as suggested above, controversy has 

risen regarding the relationship between methylphenidate treatment and increased risk of 

SUD in adulthood, beyond the risk conveyed by having ADHD alone. An early meta-

analysis reported that stimulant treatment is protective against SUD (Wilens et al, 2003). 

However, the studies that were examined in the analysis failed to consider whether 

stimulant treatment was initiated in childhood vs. adolescence, or was ongoing vs. 
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discontinued at the time of assessment. Because substance use may be a form of self-

medication for individuals with ADHD (Gudjonsson et al, 2012), ongoing 

methylphenidate treatment may compromise detection of increased cocaine abuse risk 

(Baskin et al, 2015; Schenk & Izenwasser, 2002). Moreover, clinical studies also often 

fail to distinguish between different types of stimulant medication, which may have 

different mechanisms of action and potentially different long-term behavioral effects, a 

possibility that is explored in Chapter Three. Finally, many studies in human subjects 

typically employ a limited follow-up period in adult participants. Because cocaine use 

generally develops later in life (Degenhardt et al, 2008), participants evaluated in their 

late teens and early twenties may not have surpassed the risk period for cocaine use 

(Humphreys et al, 2013).   

 Despite these limitations, current consensus is that initiation of stimulant 

treatment in childhood neither protects against, nor promotes, the risk of SUD 

(Humphreys et al, 2013; Molina et al, 2013; Volkow et al, 2008). However, controversy 

remains regarding initiation of stimulant medication during adolescence and the long-

term consequences for SUD. When age of treatment onset is analyzed, evidence emerges 

indicating that the later in childhood that treatment is initiated, the greater the increase in 

the risk of developing SUD (Dalsgaard et al, 2014; Lambert et al, 1998; Manuzza et al, 

2008; Steinhausen & Bisgaard, 2014). Several factors have been suggested to mediate 

this link between the age at which stimulant treatment is initiated and later substance 

abuse, including the number of active ADHD symptoms, the duration of untreated 

symptoms, and the development of antisocial personality disorder. However, the 
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cumulative duration of stimulant treatment is not associated with development of SUD 

(Dalsgaard et al, 2014), and conduct problems, which are precursors to antisocial 

personality disorder, do not differ between patients who initiate ADHD medication in 

childhood vs. adolescence (Mannuzza et al, 2008; Upadhyaya et al, 2005). These findings 

suggest that the duration of untreated symptoms and antisocial personality disorder 

cannot fully account for increased SUD following adolescent stimulant treatment. 

Importantly, adolescence is a distinct developmental period characterized by elevated 

plasticity in the mesocorticolimbic system. The unique neurological changes occurring 

during adolescence may therefore render the brain more susceptible to the sensitizing 

effects of stimulant drugs. 

 

Adolescence: A Sensitive Period 

 Adolescence may be a vulnerable period when stimulants, which directly 

influence monoaminergic activity in the mesocorticolimbic system, have unique effects 

on reward responsivity (Andersen, 2005). Regionally, healthy teenagers exhibit 

hypoactivity in the some of the same brain regions that are dysfunctional in both 

individuals with ADHD and cocaine abusers, including the mPFC/DLPFC and OFC 

(Bolla et al, 2003; Booth et al, 2005; Hester & Garavan, 2004; Stanger et al, 2013). 

Interestingly, hypoactivation in mPFC/DLPFC is also associated with impulsivity in 

teenagers (Stanger et al, 2013).  

 The neural changes that occur during adolescence may interact synergistically 

with those involved in sensitization to stimulant drugs, particularly in individuals with 
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ADHD. For example, during adolescence, D1 receptors are overproduced in the mPFC, 

particularly on glutamatergic neurons that project to the nucleus accumbens (Andersen et 

al, 2001; Brenhouse et al, 2008; Stanis & Andersen, 2014). Altered D1 receptor activity 

is also associated with some of the behavioral characteristics of adolescence, such as 

impulsivity and novelty seeking, which are also notable in ADHD and drug users (Potvin 

et al, 2014; Stanis & Andersen, 2014, Tengelbeckers et al, 2015; Vonmoos et al, 2013). 

Moreover, as reviewed above, D1 receptors in the nucleus accumbens are critical for 

stimulant sensitization (De Vries et al, 1998; Henry & White, 1991; Pierce et al, 1996; 

Steketee & Kalivas, 2011).  

 Monoamine transporters are also differentially expressed throughout 

development. In the frontal cortex, serotonin transporter (SERT) levels increase steadily 

from early adolescence through old age (Moll et al, 2000). NET density in frontal cortex 

decreases from early to late adolescence, but thereafter remains stable throughout 

adulthood (Moll et al, 2000). In contrast, DAT density increases in the striatum from 

early adolescence until peaking in late adolescence. Thereafter, striatal DAT density 

declines throughout adulthood (Moll et al, 2000). As reviewed above, DAT is a critical 

mediator of sensitization to stimulants in reward-associated regions (Martin et al, 2011). 

DAT is also elevated in individuals with ADHD and those abusing cocaine (Fusar-Poli et 

al, 2012; Hesse et al, 2009; Mash et al, 2002; Moll et al, 2000). Chronic exposure to 

methylphenidate as a treatment for ADHD during the teenage years, when D1 receptor 

and DAT levels are at their highest, may therefore result in greater vulnerability to 

sensitization and later cocaine abuse risk, compared to juveniles or adults. It is worth 
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noting that clinically relevant doses of methylphenidate do not induce locomotor 

sensitization (Kuczenksi & Segal, 2002). However, this does not translate to a lack of 

neurochemical effects or consequences for cocaine abuse risk. Rather, the neurochemical 

adaptations associated with adolescent methylphenidate treatment closely resemble those 

associated with stimulant sensitization. For example, chronic methylphenidate exposure 

increases dendritic spine density in the nucleus accumbens, particularly on D1-receptor 

expressing medium spiny neurons, and also may increase DAT levels in striatum or PFC 

(Fusar-Poli et al, 2012; Kim et al, 2009; Somkuwar et al, 2013b).  

 Despite these observations, there are currently no well-controlled studies on 

methylphenidate initiation after age 13 in individuals with ADHD. Evaluation of long-

term effects of adolescent methylphenidate on SUD risk in human populations has been 

complicated by difficulty in controlling certain variables across patients, such as the 

presence of conduct disorder, the precise age at which treatment was initiated, and the 

prescription of mixed medications, which may convey varying degrees of risk 

(Steinhausen & Bisgaard, 2014). Fortunately, preclinical animal models using carefully 

controlled experimental conditions can help address these clinically relevant questions in 

ADHD. 

 

 The Spontaneously Hypertensive Rat Model of ADHD 

 Preclinical models can begin to address important gaps in the clinical literature 

regarding the long-term consequences of adolescent ADHD medication for SUD and 

particularly cocaine abuse risk. However, studies in outbred animals have revealed 
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somewhat conflicting findings. For example, methylphenidate exposure during the rat 

juvenile period had no effect on cocaine conditioned place preference, but increased 

cocaine intake during self-administration in adulthood (Crawford et al, 2011), in contrast 

to observations in the clinical literature. Conversely, exposure to methylphenidate during 

the rat adolescent period reduced cocaine conditioned place preference in adulthood 

(Adriani et al, 2006; Andersen et al, 2001; Carlezon et al, 2003), and also decreased high-

dose cocaine self-administration (1 mg/kg/infusion, Thanos et al, 2007), but increased 

low-dose cocaine self-administration (0.075 mg/kg/infusion, Brandon et al, 2001). These 

apparently conflicting findings emphasize the need to study cocaine abuse risk in an 

appropriate animal model, which exhibits a behavioral and neurobiological profile that 

mirrors observations in individuals with ADHD. Outbred animals, in contrast, are 

presumably more representative of the general population.  

 The Spontaneously Hypertensive Rat (SHR) is the most well-validated and 

frequently studied animal model of ADHD (Kantak et al, 2008; Russell et al, 2005; 

Sagvolden et al, 2005). SHR exhibit core symptoms of ADHD, including hyperactivity, 

impulsivity, and inattention (Adriani et al, 2003; Bayless et al, 2015; Hill et al, 2012; 

Sagvolden, 2000), inhibitory control and working memory deficits (Bayless et al, 2015; 

Kantak et al, 2008), as well as poor behavioral flexibility (Harvey et al, 2013), and 

increased novelty seeking (dela Peña et al, 2015). Cognitive dysfunction in SHR is most 

evident under difficult task conditions, such as when a delay is imposed between a 

correct response and delivery of reward, consistent with observations in humans with 

ADHD (Aase & Sagvolden, 2006; Harvey et al, 2013; Martinussen et al, 2005). 
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Moreover, these deficits are unrelated to hypertension, as SHR show ADHD-like 

symptoms even at pre-hypertensive ages (Russell et al, 2005; Watanabe et al, 1997), and 

anti-hypertensive treatment does not improve cognitive functioning in the SHR (Wyss et 

al, 2003). The Wistar-Kyoto rat (WKY), which is the progenitor strain of the SHR, does 

not exhibit hyperactivity, impulsivity, or hypertension, and is frequently used as an 

inbred control strain (Russell et al, 2005), while the Wistar rat (WIS), a common ancestor 

to both SHR and WKY, is used as an outbred control strain (dela Peña et al, 2012). 

Concurrent evaluation of these three strains is necessary to control for the genetic 

homogeneity of the SHR (using the WKY), while still representing the genetic 

heterogeneity of the general population (using the WIS).   

 Importantly, clinically relevant doses of ADHD medications alleviate ADHD-

related symptoms in SHR. For example, in adolescent SHR, methylphenidate treatment 

improved the speed to learn visual cue discrimination and initial set formation, and 

reduced perseverative and regressive errors in attentional and strategy set shifting tasks, 

which are analogous to the Wisconsin Card Sorting Task in humans (Cao et al, 2012; 

Floresco et al, 2008, Harvey et al, 2011; 2013). The predictive validity of the SHR likely 

relates to the genetic and neurochemical similarities that SHR share with ADHD patients. 

For example, both individuals with ADHD and the SHR exhibit altered frontostriatal 

connectivity (Cubillo et al, 2012; Rubia, 2011; Warton et al, 2009), and elevated 

glutamate and dopamine release in PFC and striatum (Courvoisie et al, 2004; MacMaster 

et al, 2003; Miller et al, 2014). Moreover, as reviewed above, ADHD is associated with 

specific polymorphisms in the DAT-1 gene, (Faraone et al, 2005; Fusar-Poli et al, 2012), 
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and variation in the DAT-1 gene has also been observed in the SHR, which is 94% 

homologous to the human DAT-1 gene (Mill et al, 2005). SHR also exhibit increased 

binding and expression of DAT in the striatum and substantia nigra/VTA (Roessner et al, 

2010; Watanabe et al, 1997), consistent with observations in human patients (Faraone et 

al, 2005; Fusar-Poli et al, 2012).   

  In addition to exhibiting cognitive and neurochemical deficits associated with 

ADHD, the SHR is also a compelling model for comorbid ADHD and cocaine abuse. In 

cocaine self-administration studies, SHR acquire lever pressing for cocaine faster, earn 

more cocaine infusions, are more sensitive to the reinforcing value of cocaine, and work 

harder to earn cocaine reinforcement than both WKY and WIS control strains (Harvey et 

al, 2011; Jordan et al, 2014; Somkuwar et al, 2013a). These findings indicate that the 

SHR may also be useful in evaluating the long-term consequences of adolescent ADHD 

medication on cocaine abuse risk in adulthood. Consistent with clinical studies 

(Mannuzza et al, 2008), adolescent treatment with a clinically relevant dose of oral 

methylphenidate further enhanced the speed to acquire cocaine self-administration, and 

further increased the efficacy and motivating influence of cocaine reinforcement in SHR, 

but did not increase self-administration behaviors in WKY or WIS control strains (Baskin 

et al, 2015; Harvey et al, 2011; Jordan et al, 2014). The same adolescent methylphenidate 

treatment regimen was found to increase DAT function in the mPFC of adult SHR, 

relative to untreated SHR and methylphenidate-treated WKY and WIS (Somkuwar et al, 

2013b). Although cortical DAT function in ADHD has not been reported, these findings 

in the SHR model are consistent with observations in humans, as individuals with ADHD 
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who are treated with stimulant medications exhibit increased DAT levels compared to 

medication-naïve patients (Fusar-Poli et al, 2012). An increase in DAT function in mPFC 

may lead to faster clearance of dopamine and lower basal dopaminergic tone in 

mesocortical neurons (Zahniser & Sorkin, 2004). When cocaine is self-administered 

under these conditions, post-synaptic responses to phasically released dopamine would 

therefore be increased (Grace, 2001), leading to a greater reinforcing effect of cocaine in 

adult SHR that were treated with methylphenidate during adolescence. Importantly, these 

observations were not necessarily a result of discontinuing methylphenidate in adulthood. 

Adult SHR continued to show elevated motivation to self-administer cocaine when 

methylphenidate treatment was continued, as long as methylphenidate was administered 

after cocaine self-administration sessions (Baskin et al, 2015). However, when 

methylphenidate treatment was administered 1 hour prior to cocaine self-administration 

sessions, SHR did not show increases in cocaine intake compared to vehicle-treated SHR 

(Baskin et al, 2015). Methylphenidate pretreatment may block cocaine’s ability to bind to 

DAT, by competing at the same binding site (Berglund et al, 2013; Volkow et al, 1995). 

Therefore, administration of methylphenidate prior to cocaine self-administration 

sessions may mask elevated cocaine abuse risk in adult SHR (Baskin et al, 2015; Schenk 

& Izenwasser, 2002). These observations suggest that if an individual with ADHD does 

not properly adhere to their methylphenidate treatment regimen, they may remain at 

increased risk of cocaine abuse, if cocaine is sampled (Baskin et al, 2015). 

 Taken together, findings in SHR support human studies suggesting that initiation 

of methylphenidate treatment in adolescence increases cocaine abuse risk in adulthood 
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(Dalsgaard et al, 2014; Lambert et al, 1998; Manuzza et al, 2008; Somkuwar et al, 2013b; 

Steinhausen & Bisgaard, 2014). The effects of adolescent methylphenidate treatment may 

be due to sensitization-related neurochemical changes induced by methylphenidate that 

persist even after treatment is discontinued. It is therefore critical to identify alternative 

treatments for newly diagnosed teenagers with ADHD, who may be at increased risk for 

substance abuse later in life if treated with methylphenidate.  

 

 

CHAPTER TWO.   

 

Aim 1: Treatment with a Non-Stimulant ADHD Medication During Adolescence 

and Cocaine Abuse Risk and Cocaine Cue Reactivity in Adulthood 

 

Introduction 

 One potential alternative to methylphenidate treatment for adolescents with 

ADHD is the non-stimulant drug, atomoxetine (Strattera®). Unlike methylphenidate, 

atomoxetine has a very low affinity for DAT (Heal et al, 2008). Atomoxetine acts by 

selectively inhibiting reuptake at NET, resulting in increased extracellular concentrations 

of norepinephrine (Byamster et al, 2002). In addition, because dopamine uptake in the 

PFC is primarily by NET (Morón et al, 2002), atomoxetine increases extracellular 

concentrations of both norepinephrine and dopamine in this region (Bymaster et al, 

2002). However, because atomoxetine does not increase dopamine transmission in the 
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striatum, it has low abuse potential, unlike methylphenidate (Wilens, 2006). Atomoxetine 

has moderately comparable efficacy to methylphenidate in relieving ADHD symptoms 

(Kratochvil et al, 2002), but may be more efficacious in certain subpopulations of 

ADHD, such as those with comorbid anxiety, in whom methylphenidate may worsen 

certain symptoms (Adler et al, 2009; Geller et al, 2007; Goez et al, 2007). Regionally, 

atomoxetine increases activation in the right IFG of healthy volunteers (Chamberlain et 

al, 2009), and normalizes DLPFC hypoactivation in boys with ADHD (Cubillo et al, 

2014). However, atomoxetine may not be as efficacious as methylphenidate in mediating 

VLPFC function or in improving performance on discrimination tasks (Cubillo et al, 

2014; Smith et al, 2013). Similar to methylphenidate, increased stimulation at dopamine 

D1 and alpha2A noradrenergic receptors is thought to underlie atomoxetine’s cognitive-

enhancing effects (Arnsten & Pliszla, 2011). It is worth noting here that guanfacine 

(Intuiv®) is another non-stimulant medication for ADHD, which acts as an agonist at 

alpha2a noradrenergic receptors (Nakagawa et al, 1982; Wilens, 2006). However, 

guanfacine is more often prescribed as an adjunct therapy to stimulant medications, and 

has limited efficacy in adolescents with ADHD (Sibley et al, 2011). Atomoxetine is 

therefore the focus of Aim 1.  

 In adolescent SHR, a pharmacologically relevant dose of atomoxetine improves 

behavioral flexibility during the set shift phase of the strategy set shifting task (Harvey et 

al, 2013). Behavioral flexibility during the set shift phase is a process that is dependent 

on mPFC function (Floresco et al, 2008). Atomoxetine also progressively and dose-

dependently reduces hyperactivity in young adult SHR over the course of 21 days of 
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treatment (Moon et al, 2014). Unlike methylphenidate, adolescent treatment with 

atomoxetine does not alter DAT function in mPFC in adulthood, but rather decreases 

DAT function and cell surface distribution in the OFC of adult SHR (Somkuwar et al, 

2013a). Thus, atomoxetine-induced improvement in set shifting, a mPFC-mediated 

process, cannot be explained by a change in DAT function in SHR. A decrease in NET 

function in mPFC of SHR could explain such an improvement, as previous research in 

outbred rats has shown improvement in set shifting performance after activation of 

alpha1 noradrenergic receptors in mPFC (Lapiz & Morilak, 2006) and impairment after 

selective noradrenergic lesions in mPFC (McGaughy et al, 2008). Interestingly, ADHD is 

associated with variations in the NET allele, which are related to externalizing symptoms 

such as impulsivity (Hohmann et al, 2015). However, additional work is needed to 

determine the effects of adolescent atomoxetine treatment on mPFC NET function in 

SHR.  

The decrease in DAT function and cell surface distribution in the OFC of adult 

SHR may play a role in potentially protective effects of adolescent atomoxetine on 

cocaine abuse risk (Somkuwar et al, 2013a). Importantly, dopamine transmission in the 

OFC is associated with cocaine seeking (Di Pietro et al, 2008), and transient inactivation 

of the OFC may reduce the motivation to self-administer cocaine and alter cocaine’s 

reinforcing value (Kantak et al, 2009). These findings suggest that decreased DAT 

function in OFC may lead to diminished reinforcing effects of cocaine in adult SHR that 

were treated with atomoxetine during adolescence. It is therefore possible that adolescent 

atomoxetine treatment may not increase cocaine abuse risk in adulthood, in contrast to 
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previous observations with methylphenidate. In adult outbred rats, acute atomoxetine 

administration reduced cocaine seeking (Economidou et al, 2011; Janak et al, 2012). 

However, the effects of chronic adolescent atomoxetine treatment on cocaine abuse risk 

in an animal model of ADHD have not yet been examined. Experiments 1 through 3 

address this clinically important question by evaluating the speed of acquisition of 

cocaine self-administration, and the efficacy and motivating influence of cocaine 

reinforcement, in adult rats following discontinuation of adolescent atomoxetine 

treatment. Importantly, treatment cessation is common in young adults with ADHD 

(McCarthy et al, 2009; Zetterqvist et al, 2012). 

 In addition to cocaine abuse risk resulting directly from the reinforcing value of 

cocaine, the environmental cues associated with cocaine use play a major role in the 

development of compulsive drug seeking and relapse behaviors. Although it is unknown 

whether ADHD influences reactivity to drug-related cues, cigarette smokers with ADHD 

report more frequent encounters with smoking-associated cues and perceive a stronger 

relationship between cues and smoking motivation than smokers without ADHD 

(Mitchell et al, 2013).  These findings suggest that drug-related cues may be more salient 

to individuals with ADHD. In cocaine-dependent subjects, videos involving the 

preparation or consumption of cocaine elicit greater activation in regions also known to 

be dysfunctional in ADHD, including the OFC and DLPFC, in comparison to healthy 

controls or videos involving the preparation or consumption of food (Wilcox et al, 2011). 

Similarly, in non-human primates, a visual stimulus associated with the reinforcing value 

of cocaine was found to increase activation in ventral OFC and VLPFC compared to a 
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control stimulus, and this activation was positively correlated with increasing preference 

for the cocaine-paired stimulus over the control stimulus (Nelissen et al, 2012). Because 

individuals with ADHD exhibit elevated OFC activation during reward-based tasks (von 

Rhein et al, 2015), exposure to cocaine and cocaine-related cues may exacerbate OFC 

dysfunction. This may lead to elevated cue reactivity and an increased risk of relapse in 

individuals with ADHD, given that cortical activation to cocaine cues is associated with 

treatment dropout and higher relapse rates in cocaine dependent patients (Kosten et al, 

2005).  

 The environmental cues associated with cocaine use are also linked to changes in 

dopamine-mediated transmission in cortical sites involved in ADHD. For example, 

systemic administration of a dopamine D1 receptor antagonist not only attenuated 

cocaine seeking behavior, but also reversed cocaine cue-induced increases in Fos 

expression in the basolateral amygdala and mPFC (Ciccocioppo et al, 2001), and infusion 

of D1 antagonists directly into the OFC reduced cocaine intake and cocaine seeking (Di 

Pietro et al, 2008). Notably, as reviewed above, DAT function in the mPFC and OFC is 

affected by adolescent ADHD medications (Somkuwar et al, 2013a, b). Previous work 

examining cue reactivity following adolescent methylphenidate treatment showed that 

prior methylphenidate exposure increased cocaine intake in adult SHR, and neither 

promoted nor protected against increased cocaine cue reactivity or relapse behaviors 

(Jordan et al, 2014). However, in outbred rats, acute atomoxetine infusions reduced cue-

induced cocaine seeking, both when cocaine was and was not available for self-

administration (Economidou et al, 2011; Janak et al, 2012). These findings suggest that 
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NET, the primary target of atomoxetine, plays an important role in regulating saliency of 

drug-associated cues. Thus, the effects of chronic adolescent atomoxetine treatment on 

cocaine cue reactivity in the SHR model of ADHD must be examined. Experiment 4 

addresses this clinically important question by measuring cocaine-seeking behavior under 

a second-order schedule of cocaine delivery and cue presentation. Cocaine seeking 

reflects cue reactivity (i.e., lever responding maintained by drug-paired cue presentation) 

and typically is measured under two experimental conditions: one condition during which 

cocaine is available for self-administration (maintenance testing) and another condition 

during which cocaine is not available for self-administration (reinstatement testing) 

(Kantak et al, 2002). 

 

 

Experiment 1: Acquisition of Cocaine Self-Administration Following Adolescent 

Atomoxetine Treatment 

 

 Experiment 1 tested the hypothesis that adult SHR acquire cocaine self-

administration faster, at which time more cocaine infusions would be earned and more 

lever responses would be made compared to adult WKY and WIS control strains. 

Elevation in these measures is suggestive of increased risk to rapidly develop compulsive 

patterns of cocaine abuse (Somkuwar et al, 2013a). Experiment 1 also tested the 

hypothesis that, in contrast to methylphenidate, treatment with a pharmacologically 

relevant dose of atomoxetine during adolescence does not further increase the speed to 
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acquire cocaine self-administration in adult SHR after adolescent treatment is 

discontinued. 

 

Materials and Methods 

 Animals and Treatments. All procedures were approved by the Institutional 

Animal Care and Use Committee at Boston University, and were performed in 

accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals (Eighth Edition). Male WKY/Cr, WIS/Cr, and SHR/Cr rats (Charles 

River Laboratories, Wilmington, MA, Kingston, NY or Raleigh, NC) arrived on postnatal 

day 25 (P25). SHR served as an animal model of ADHD, and WKY and WIS as inbred 

and outbred comparator strains, respectively. Using data from past studies in the Kantak 

laboratory, power analysis (beta = 90; p ≤ 0.05) indicated that group sizes of at least 6-7 

were needed to detect statistical differences across the various measures. Final group 

sizes for Experiment 1 included n = 8 for vehicle- and atomoxetine-treated WKY as well 

as vehicle-treated WIS and SHR, n = 10 for atomoxetine-treated SHR, and n = 11 for 

atomoxetine-treated WIS. Thus, these group sizes permitted meaningful analysis and 

interpretation of the data. 

 Rats were housed individually in plastic cages in a temperature-21–23°C and 

light- (07:30 hours on; 19:30 hours off) controlled vivarium. Rats were not given 

environmental enrichment because past research has demonstrated that environmental 

enrichment reduces ADHD-like symptoms in the SHR strain (Pamplona et al, 2009). Rats 

were allowed 3 days to acclimatize to new housing conditions in the Laboratory Animal 



 

 

23	  

Care Facility prior to experimental initiation (see Figure 1 for an experimental timeline). 

The 3-day acclimation period is standard protocol in animal studies assessing cocaine  

self-administration (Roberts et al, 2002), neurochemistry (Mateo et al, 2005) as well as in 

studies using adolescent rats (Levin et al, 2007).  

 

   

 

 From P28 through P55, constituting the rat adolescent period (Spear, 2000), 

animals received once daily intraperitoneal (i.p.) injections of either a pharmacologically 

relevant dose of atomoxetine (0.3 mg/kg) dissolved in 0.9% sterile saline, or saline alone 

(2 ml/kg). The double injection volume was used to enable complete dissolution of 

atomoxetine. Treatments were administered once daily, Monday-Friday. This regimen 

mimics the weekend medication “holiday” that is sometimes elected by individuals with 

ADHD, in part to reduce the occurrence of side effects (American Academy of Pediatrics 

Committee on Children With Disabilities and Committee on Drugs, 1996; Faraone et al, 

2004; Martins et al, 2004). The relatively low dose of atomoxetine was chosen to increase 

 

Figure 1. Timeline of experimental events in Aim 1. 



 

 

24	  

extracellular norepinephrine and dopamine concentrations primarily in PFC, through 

inhibition of NET (Bymaster et al, 2002). An i.p. route of administration was utilized due 

to poor bioavailability of atomoxetine in rats (Mattiuz et al, 2003). Food was restricted 

from P28-P55 to ~90% of a growth-adjusted free-feeding body weight to mimic 

conditions of past comparator studies (Harvey et al, 2011; 2013; Somkuwar et al 2013b). 

Animals had free access to water throughout experiments, and food was freely available 

after P55.  

 

 Surgery. Adolescent atomoxetine or vehicle treatment was discontinued on P56. 

On P67, rats were implanted with intravenous (i.v.) catheters connected to headmounts to 

enable cocaine self-administration. Animals were anesthetized with i.p. injections of 90 

mg/kg ketamine (Fort Dodge Animal Health, Fort Dodge, IA) and 8-10 mg/kg xylazine 

(Akorn, Decatur, IL). Subcutaneous (s.c.) Buprenex (0.05 mg/kg, Butler Schein, 

Columbus, OH) was given as a preemptive analgesic 5 minutes prior to anesthetization. 

Incisions were made to expose the right femoral vein and skull. A catheter constructed of 

silicon tubing (i.d. = 0.51, o.d. = 0.94 mm) was inserted s.c. between these incisions. The 

proximal end of the catheter was inserted into the right femoral vein and anchored to 

tissue underlying the vein using surgical silk and 0.5 mm square Teflon mesh (CR Bard 

Incorporated, Charlotte, NC). The distal end of the catheter was attached to a 22-gauge L-

shaped pedestal mount (Plastics One, Roanoke, VA). The pedestal was secured to the 

skull using four stainless-steel screws and acrylic cement. The stainless steel tubing 

exiting the pedestal was plugged with a sealed piece of Teflon tubing and covered with a 
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protective plastic outer screw cap. The antibiotic Baytril (5 mg/kg, i.v.; Bayer 

HealthCare, Shawnee, Mission, KS) was given for up to 5 days post-surgery to reduce the 

risk of systemic infection, and the anti-inflammatory Meloxicam (0.3 mg/kg, s.c., 

Boehringer Ingelheim Vetmedica, St. Joseph, MO) for 3 days post-surgery. Buprenex 

(0.025 mg/kg s.c.; Bulter Schein, Columbus, OH) was given for 48 hr following surgery 

or as needed, and 0.9% sterile saline was administered s.c. at least once and as needed 

subsequently (based on body weight loss) to maintain hydration.  

 Catheters were maintained by once daily flushing, Monday-Friday, with 0.2 ml of 

0.9% sterile saline containing heparin (30 IU /ml; Baxter Healthcare, Deerfield, IL) and 

Timentin (67 mg /ml; Glaxo-SmithKline, Research Triangle Park, NC). Before weekends 

and holidays, 0.08 ml of a locking solution consisting of glycerol (Sigma-Aldrich, St. 

Louis, MO) and 1000 IU/ml heparin was infused in a 3:1 ratio to fill catheter dead space 

and minimize the occurrence of blockages, thus prolonging the longevity of the catheter. 

The locking solution was removed and replaced with 0.1 ml of 0.9% sterile saline 

containing heparin (3 IU/ml) prior to resumption of behavioral procedures. Catheter 

patency was assessed weekly either by verifying the ability to withdraw blood or by 

observing rapid loss of muscle tone following a 0.1 ml infusion (10 mg/ml) of 

methohexital sodium (JHP Pharmaceuticals, Rochester, MI). In the event that patency 

was lost, catheters were repaired or replaced with a new catheter, implanted into the left 

femoral vein or the right or left jugular vein, under surgical anesthesia and post-operative 

care, as above. Animals were allowed to recover before resuming cocaine self-
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administration experiments. As a result, no animals were excluded from statistical 

analyses due to loss of catheter patency. 

 

 Testing Environment. Experimental chambers were equipped with two response 

levers, a white stimulus light mounted above the designated active lever, and a house 

light on the opposite wall (model ENV-008CT, Med Associates, St Albans, VT). 

Chambers were also fitted with a single channel fluid swivel (Instech Solomon, Plymouth 

Meeting, PA) and spring leash assembly, connected to a counterbalanced arm (Med 

Associates). During self-administration sessions, animals were leashed within the 

chamber via a hexnut connection to the pedestal mount, allowing free and comfortable 

movement throughout the chamber. Experimental chambers were enclosed in a sound-

attenuating cubicle, equipped with a fan for ventilation and an 8-ohm speaker to provide 

a background contextual cue consisting of white noise. The motor-driven syringe pumps 

(model ENV-018 M; Med Associates) used for cocaine delivery were located inside the 

cubicle. A PC-compatible computer programmed in Medstate Notation and connected to 

a Med Associates interface controlled experimental events from an adjacent room.  

 

 Cocaine Self-Administration. For intravenous self-administration, cocaine 

hydrochloride was dissolved in 0.9% sterile saline containing heparin (3 IU/ml). A 0.8 

mg/ml solution of cocaine was infused at a rate of 1.8 ml/min. The infusion duration was 

adjusted for body weight (1.2 s/100 g) to attain a training dose of 0.3 mg/kg cocaine, 

consistent with prior studies in SHR (Harvey et al, 2011).  
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 On P77, after 10 days of surgical recovery, animals were allowed to press the 

active lever (either left or right, counterbalanced across strains and treatments) for 

infusions of 0.3 mg/kg cocaine delivered under a fixed-ratio-1 (FR1) schedule of 

reinforcement. Under the FR1 schedule, each cocaine infusion required one response on 

the active lever and was paired with a 20-sec illumination of the stimulus light above the 

active lever. During this 20-sec period, the house light was extinguished and additional 

cocaine infusions could not be earned, though lever responses were still counted. The 20-

sec timeout period also served to prevent accidental overdose. After the 20 sec elapsed, 

the house light was re-illuminated. Responses on the inactive lever were recorded, but 

had no consequences. Importantly, animals received no external inducements to respond 

on either lever, such that acquisition of cocaine self-administration was entirely 

spontaneous. Sessions (2 hr) were conducted during the light phase, once daily, Monday-

Friday, at approximately the same time each day. Acquisition criterion was defined as 

earning ≥ 20 infusions for two consecutive sessions, and discriminating the active from 

inactive lever by a factor of 2 or greater (following Harvey et al, 2011). Animals were 

allowed a maximum of 25 sessions to spontaneously acquire cocaine self-administration, 

after which time lever pressing was facilitated via baiting of the active lever with a 45-mg 

chocolate-flavored food pellet (BioServ, Frenchtown, NJ). Baiting was necessary for one 

vehicle-treated WIS (32 sessions to acquire) and one atomoxetine-treated WIS (34 

sessions to acquire). All other animals reached acquisition criterion in 23 sessions or less. 
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 Data Analysis. Dependent measures in Experiment 1 included the number of 

sessions required to reach acquisition criterion (square root transformed prior to analysis 

due to non-normality), as well as cocaine infusions earned and active and inactive lever 

responses at acquisition criterion.  Measures were analyzed by two-factor (strain X 

treatment) ANOVAs, followed by post-hoc Tukey tests. 

   

Results 

 Sessions to reach the acquisition criterion for the 0.3 mg/kg training dose of 

cocaine are shown in Figure 2. Strains differed significantly (F (2, 47) = 7.0, p ≤ 0.002), 

and there was a trend for a strain X treatment interaction (F (2, 47) = 2.7, p ≤ 0.07). 

Overall, SHR acquired cocaine self-administration faster than WKY and WIS (p ≤ 0.04 

and 0.002, respectively). Strain comparisons within each treatment revealed that in 

vehicle-treated rats, SHR acquired cocaine self-administration faster than WKY (p ≤ 

0.02). In atomoxetine-treated rats, both SHR and WKY acquired cocaine self-

administration faster than WIS (p ≤ 0.01 and 0.05, respectively). Treatment comparisons 

within each strain revealed that in WKY, acquisition of cocaine self-administration was 

faster after atomoxetine than vehicle (p ≤ 0.03). Notably, atomoxetine did not alter 

acquisition speed in SHR or in the WIS control.  
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 The number of cocaine infusions earned at the acquisition criterion for the 0.3 

mg/kg training dose of cocaine is shown in Figure 3. Strains differed significantly (F (2, 

47) = 6.2, p ≤ 0.004), but the treatment factor and its interaction with strain were not 

significant. Post-hoc comparisons showed that, overall, SHR earned more cocaine 

infusions than WKY (p ≤ 0.003), and there was a trend towards more infusions compared 

to WIS (p ≤ 0.09).  

 

Figure 2. Number of sessions required to reach acquisition criterion in adult WKY, 
WIS, and SHR, following vehicle or atomoxetine treatment during adolescence 
(Mean ± SEM). * p ≤ 0.05 compared to both other strains. ^ p ≤ 0.05 compared to 
vehicle treatment in the same strain.  
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 Active lever responses at criterion are shown in Figure 4. Strains again differed 

significantly (F (2, 47) = 4.5, p ≤ 0.02), and there was a trend towards a strain X 

treatment interaction (F (2, 47) = 2.7, p ≤ 0.08). Post-hoc comparisons showed that, 

overall, SHR made more active lever responses than WKY (p ≤ 0.02), and there was a 

trend towards more active lever responses than WIS (p ≤ 0.07). Treatment comparisons 

within each strain revealed that in adult SHR, active lever responses were greater after 

adolescent atomoxetine than vehicle (p ≤ 0.006). Strain comparisons within each 

treatment condition revealed that in atomoxetine-treated rats, SHR made more active 

lever responses than WKY and WIS (p ≤ 0.003 and 0.006, respectively). There were no 

strain differences in active lever responses among vehicle-treated rats at criterion. With 

respect to inactive lever responses, there were no strain or treatment differences at 

 

Figure 3. Number of cocaine infusions earned at acquisition criterion in adult WKY, 
WIS, and SHR, following vehicle or atomoxetine treatment during adolescence 
(Mean ± SEM). & p ≤ 0.05 compared to WKY overall.  
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criterion, and each strain discriminated the active from inactive lever by a factor of 2 or 

greater (9:1 for WKY, 20:1 for WIS, and 4:1 for SHR, on average). 

 

 

 

 

Experiment 2: Fixed-Ratio Cocaine Dose-Response Functions in Adulthood 

Following Adolescent Atomoxetine Treatment 

 

 Experiment 2 tested the hypothesis that the efficacy of cocaine reinforcement is 

elevated in adult SHR compared to WKY or WIS, such that SHR earn more cocaine 

infusions and make more responses on the active lever across a range of doses under a 

FR1 schedule of reinforcement. Experiment 2 also tested the hypothesis that, in contrast 

 

Figure 4. Number of active lever responses made at acquisition criterion in adult 
WKY, WIS, and SHR, following vehicle or atomoxetine treatment during 
adolescence (Mean ± SEM). & p ≤ 0.05 compared to WKY overall. ^ p ≤ 0.05 
compared to vehicle treatment in the same strain.   
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to the effects of methylphenidate, treatment with a pharmacologically relevant dose of 

atomoxetine during adolescence does not increase the efficacy of cocaine reinforcement 

in adult SHR after adolescent treatment is discontinued. 

 

Materials and Methods 

 Animals and Treatments. Following achievement of the acquisition criterion in 

Experiment 1, the same groups of animals were allowed to continue responding under an 

FR1 schedule for the 0.3 mg/kg training dose, until active lever responses and the number 

of cocaine infusions varied ≤ 15% for 5 consecutive sessions. A range of cocaine unit 

doses (0.003, 0.01, 0.03, 0.1, and 1.0 mg/kg/infusion) was then substituted in place of the 

training dose in a pseudo-random order, every Tuesday and Friday. The 0.3 mg/kg 

training dose was available on the intervening days (Monday, Wednesday, and 

Thursday). As above, sessions were 2 hours in length and were conducted during the light 

phase once daily, Monday-Friday, at approximately the same time each day. After the full 

FR cocaine dose-response functions were completed, rats were allowed to return to 

baseline responding for the 0.3 mg/kg training dose. Two atomoxetine-treated WIS and 

two atomoxetine-treated SHR expired prior to completion of Experiment 2, and were thus 

excluded from Experiment 2 data analyses.   

 

 Data Analysis. Dependent measures in Experiment 2 included the number of 

cocaine infusions earned, and active and inactive lever responses for each cocaine dose. 
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Measures were analyzed by three-factor (strain X treatment X dose) ANOVAs, with 

repeated measures for dose, followed by post-hoc Tukey tests.  

 

Results 

 Cocaine dose-response functions based on the number of infusions earned under 

the FR1 schedule of reinforcement are shown in Figure 5. For the three-way ANOVA, 

strain (F (2, 43) = 18.4, p ≤ 0.001) and dose (F (5, 215) = 185.5, p ≤ 0.001) differed, and 

there was also a strain X dose interaction (F (10, 215) = 9.3, p ≤ 0.001). The treatment 

factor and its interactions with strain and/or dose were not significant, indicating that 

adolescent atomoxetine treatment did not further increase cocaine intake in SHR or in 

control strains. Overall, SHR earned more cocaine infusions than WKY and WIS (p ≤ 

0.001). Further testing of the strain X dose interaction indicated that SHR earned more 

infusions than WKY for cocaine doses ranging from 0.003 to 0.3 mg/kg (ps ≤ 0.04), and 

more infusions than WIS for cocaine doses ranging from 0.003 to 0.1 mg/kg (ps ≤ 0.01, 

except at 0.01mg/kg, where p ≤ 0.08). In addition, WIS earned more infusions than WKY 

at 0.1 mg/kg (p ≤ 0.001). No strain differences were observed at 1.0 mg/kg.  
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 Analyses of the cocaine dose–response functions based on the number of active 

lever responses (Figure 6) were similar to the number of infusions earned. For the three-

way ANOVA, strain (F (2, 43) = 4.9, p ≤ 0.01) and dose (F (5, 215) = 36.9, p ≤ 0.001) 

differed significantly, and there was a strain X dose interaction (F (10, 215) = 3.2, p ≤ 

0.001). The treatment factor and its interactions with strain and/or dose were not 

significant, indicating that adolescent atomoxetine treatment did not further increase 

cocaine-maintained responding in SHR or in control strains. Post-hoc comparisons 

showed that SHR overall made more active lever responses than WKY (p ≤ 0.01), but 

SHR were not different from WIS. Further testing of the strain X dose interaction 

revealed that SHR made more active lever responses at the 0.03 and 0.1 mg/kg doses than 

 

Figure 5. Cocaine dose-response functions based on infusions earned under a FR1 
schedule of reinforcement by adult WKY, WIS, and SHR, following vehicle or 
atomoxetine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains. § p ≤ 0.05 compared, overall, to the same dose in WKY.  
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WKY and WIS (ps ≤ 0.05). Furthermore, WIS made more active lever responses at 0.1 

mg/kg than WKY (p ≤ 0.003). No strain differences at the other doses were found. There 

were no strain or treatment differences in inactive lever responding. 

 

 

 

 

 Experiment 3: Progressive-Ratio Cocaine Dose-Response Functions in Adulthood 

Following Adolescent Atomoxetine Treatment 

 

 Experiment 3 tested the hypothesis that the motivating influence of cocaine 

reinforcement is elevated in adult SHR compared to WKY or WIS, such that SHR work 

 

Figure 6. Cocaine dose-response functions based on active lever responses made 
under a FR1 schedule of reinforcement by adult WKY, WIS, and SHR, following 
vehicle or atomoxetine treatment during adolescence (Mean ± SEM).  & p ≤ 0.05 
compared to WKY overall. § p ≤ 0.05 compared, overall, to the same dose in WKY.  
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harder to earn cocaine reinforcement, earn more cocaine infusions and make more active 

lever responses across a range of doses under a progressive ratio (PR) schedule. 

Experiment 3 also tested the hypothesis that, in contrast to methylphenidate, treatment 

with a pharmacologically relevant dose of atomoxetine during adolescence does not 

increase the motivating influence of cocaine reinforcement in adult SHR after adolescent 

treatment is discontinued. 

 

Materials and Methods 

 Animals and Treatments. Once rats returned to baseline levels of responding for 

0.3 mg/kg cocaine under the FR1 schedule in Experiment 2, a PR schedule of 

reinforcement was instituted in the same groups of animals. The PR schedule involved a 

geometric increment in the number of responses required to earn each cocaine infusion 

(e.g., 1, 2, 4, 6, 9, 12, 15, 20, 25, 32, 40, 50, 62, 77, 95, 118, 145, 178, 219, 268, 328, 

402, 492, 603, etc., following Loh & Roberts, 1990). Sessions were terminated when a rat 

failed to reach the next response requirement within 1 hour of the previous infusion. The 

PR breakpoint was defined as the last FR response requirement completed to earn a 

cocaine infusion. Animals were allowed to respond for 0.3 mg/kg cocaine under the PR 

schedule until breakpoints, cocaine infusions, and active lever responses varied ≤ 15% for 

5 consecutive sessions. Cocaine test doses were then substituted (0.01, 0.1, 0.3, and 1.0 

mg/kg) in descending order (following Harvey et al, 2011), with 2-3 consecutive sessions 

allocated to each test dose. Baseline responding was reestablished for the 0.3 mg/kg dose 

after the full PR dose-response function was completed to ensure that PR baseline 
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performance was stable after dose-substitution testing. As above, self-administration 

sessions were conducted during the light phase once daily, Monday-Friday, at 

approximately the same time each day. One atomoxetine-treated WIS expired prior to 

completion of Experiment 3, and was thus excluded from Experiment 3 data analyses. At 

the end of Experiment 3, all animals were humanely euthanized with an overdose of 

sodium pentobarbital (Euthasol). 

 

 Data Analysis. Dependent measures in Experiment 3 included PR breakpoints, the 

number of cocaine infusions earned, and active and inactive lever responses for each 

cocaine dose. Measures were analyzed by three-factor (strain X treatment X dose) 

ANOVAs, with repeated measures for dose, followed by post-hoc Tukey tests.  

 

Results 

 Cocaine dose-response functions based on the PR breakpoint are shown in Figure 

7. For the three-way ANOVA, strain (F (2, 42) = 10.1, p ≤ 0.001) and dose (F (3, 126) = 

53.3, p ≤ 0.001) differed. The treatment factor and its interactions with strain and/or dose 

were not significant, indicating that adolescent atomoxetine treatment did not further 

increase the motivating influence of cocaine in SHR or in control strains. Overall, SHR 

reached higher breakpoints than WKY and WIS (p ≤ 0.001 and 0.01, respectively). 

Further analysis of the dose factor revealed that animals maintained the highest 

breakpoints at 1.0 mg/kg, which differed from all other doses, and maintained the lowest 



 

 

38	  

breakpoints at 0.01 mg/kg, which also differed from all other doses (ps ≤ 0.001 - 0.03). 

Breakpoints maintained by 0.3 and 0.1mg/kg did not differ from each other.  

 

 

 The PR cocaine dose-response functions based on the number of infusions earned 

are shown in Figure 8. For the three-way ANOVA, strain (F (2, 42) = 17.1, p ≤ 0.001) 

and dose differed significantly (F (3, 126) = 158.4, p ≤ 0.001). The treatment factor and 

its interactions with strain and/or dose were not significant, indicating that adolescent 

atomoxetine treatment did not further increase cocaine intake in SHR or in control 

strains. Post-hoc tests showed that, overall, SHR earned more cocaine infusions than 

WKY and WIS (p ≤ 0.001). Further analysis of the dose factor showed that animals 

earned the greatest number of cocaine infusions at the 1.0 mg/kg dose compared to the 

 

Figure 7. Cocaine dose-response functions, based on breakpoints reached under a PR 
schedule of reinforcement, by adult WKY, WIS, and SHR following vehicle or 
atomoxetine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains.  
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three other doses (ps ≤ 0.001), and earned the fewest cocaine infusions at the 0.01 mg/kg 

dose compared to the three other doses (ps ≤ 0.001). In addition, more cocaine infusions 

were earned at the 0.3 mg/kg dose than at the 0.1 mg/kg dose (p ≤ 0.001). 

 

 

 

 The PR cocaine dose-response functions based on active lever responses are 

shown in Figure 9. For the three-way ANOVA, strain (F (2, 42) = 10.5, p ≤ 0.001) and 

dose (F (3, 126) = 51.5, p ≤ 0.001) differed significantly. The treatment factor and its 

interactions with strain and/or dose were not significant, indicating that adolescent 

atomoxetine treatment did not further increase cocaine-maintained responding in SHR or 

 

Figure 8. Cocaine dose-response functions, based on infusions earned under a PR 
schedule of reinforcement, by adult WKY, WIS, and SHR following vehicle or 
atomoxetine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains.  
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in control strains. Post-hoc testing showed that, overall, SHR made more active lever 

responses than WKY and WIS (p ≤ 0.001 and p ≤ 0.008, respectively). Further analysis 

of the dose factor revealed that animals made the most active lever responses for the 1.0 

mg/kg cocaine dose, compared to the three other doses (ps ≤ 0.001), and the fewest active 

lever responses for 0.01 mg/kg cocaine dose, compared to the three other doses (ps ≤ 

0.001, except at the 0.1 mg/kg dose where p ≤ 0.05). Active lever responding for the two 

intermediate cocaine doses, 0.3 mg/kg and 0.1 mg/kg, did not differ from each other. 

There were no strain or treatment differences in inactive lever responding. 

 

 

 

Figure 9. Cocaine dose-response functions, based on active lever responding under a 
PR schedule of reinforcement, by adult WKY, WIS, and SHR following vehicle or 
atomoxetine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains.  
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Experiment 4: Cocaine Cue Reactivity and Relapse Behavior in Adulthood 

Following Adolescent Atomoxetine Treatment 

 

 Experiment 4 tested the hypothesis that adult SHR are most reactive to cocaine-

related cues, such that SHR would emit more cocaine-seeking responses than WKY and 

WIS under a second-order schedule. Experiment 4 also tested the hypothesis that 

treatment with a pharmacologically relevant dose of atomoxetine during adolescence 

does not increase reactivity to cocaine cues in adult SHR after adolescent treatment is 

discontinued.  

 

 Materials and Methods 

 New groups of SHR, WKY and WIS were used in Experiment 4. The housing, 

treatments, surgical procedures, and testing environments were identical to those detailed 

in Experiment 1.  

 

 Experiment 4a: Maintenance Testing under a Second-Order Schedule. On post-

natal day 76, following recovery from surgical implantation of the i.v. catheter, rats were 

allowed to lever press for 45-mg chocolate-flavored food pellets (BioServ, Frenchtown, 

NJ) under a FR1 schedule to facilitate acquisition of lever responding. The next day, rats 

began self-administration training for 0.3 mg/kg cocaine under an FR1 schedule. This 

dose was selected because it produces the highest rate of responding under a second-



 

 

42	  

order schedule of cocaine delivery in rats (Kantak et al, 2009). This dose also was used 

previously to examine the effects of adolescent methylphenidate treatment on cocaine 

self-administration behavior studied under a second-order schedule (Jordan et al, 2014). 

Sessions were initiated with illumination of the house light and onset of white noise. 

Cocaine infusions under the FR1 schedule coincided with 20-sec presentation of the 

stimulus light, while the house light was extinguished. During this period, additional 

cocaine infusions could not be earned, to reduce risk of accidental overdose. The house 

light was re-illuminated and the stimulus light extinguished after the 20-sec timeout 

period. Rats were trained incrementally to a terminal fixed-interval (FI) based second-

order schedule, designated FI 5-min [FR5 : S]. Under this schedule, every fifth lever 

press (FR5) produced a 2-sec cue light, and the first FR5 response unit completed after 

the 5-min FI elapsed resulted in a cocaine infusion coinciding with 20-sec presentation of 

the stimulus light, after which the FI 5-min component was again in effect. Responses on 

the inactive lever were also recorded throughout the session, but had no consequences. 

Self-administration sessions were 2 hours in length and were conducted during the light 

phase once daily, Monday-Friday, at approximately the same time each day. Training 

under the second-order schedule continued until rats reached stable levels of responding 

(≤ 15% variation in active lever responding and ≤ 33% of total responses on the inactive 

lever) for a minimum of 5 sessions. This stable baseline period served as the maintenance 

testing phase. Final group sizes for all phases of Experiment 2 included n = 8 for vehicle- 

and atomoxetine-treated WKY and SHR as well as atomoxetine-treated WIS, and n = 9 

for vehicle-treated SHR.  
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 Experiment 4b: Extinction Training. Following completion of the maintenance 

testing phase, rats underwent response extinction training, to reduce the learned 

association between lever responding and cocaine reinforcement, while leaving the 

association between cocaine-related cues and cocaine reinforcement intact. During this 

phase, the house light was illuminated throughout the session, but the cue light and white 

noise were not presented, and cocaine infusions could not be earned. Active and inactive 

lever responses therefore had no consequences. Extinction training continued for a 

minimum of 10 sessions or until criterion was reached, defined as active lever responding 

that was ≤ 10% of the maintenance baseline for 3 consecutive sessions (constituting the 

extinction baseline). If rats did not reach criterion, a maximum of 21 extinction sessions 

was imposed. As above, sessions were 2 hours in length and were conducted during the 

light phase once daily, Monday-Friday.  

 

 Experiment 4c: Cue-Induced Reinstatement Testing. Following achievement of 

extinction criterion, rats underwent cue-induced reinstatement testing to assess the ability 

of cocaine-paired cues to induce relapse to previously extinguished cocaine-seeking 

behavior. Relapse to cocaine seeking is shown by a significantly greater number of active 

lever responses during the reinstatement test relative to the extinction baseline. During 

this phase, the discrete stimulus light and contextual white noise cues were presented 

under contingencies identical to self-administration training under the second-order 

schedule, but cocaine infusions could not be earned. Reinstatement testing sessions were 

1 hour in duration and were conducted during the light phase once daily, Monday-Friday. 
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All rats underwent 7 reinstatement sessions. At the end of Experiment 4c, all animals 

were humanely euthanized with an overdose of sodium pentobarbital (Euthasol). 

 

 Data Analysis. Dependent measures in Experiment 4 included the number of 

cocaine infusions earned, active and inactive lever responses, and the number of sessions 

required to reach extinction criterion. Measures were analyzed by three-factor (strain X 

treatment X reinstatement session, or strain X treatment X phase) ANOVAs, with 

repeated measures for session or phase (extinction vs. reinstatement), followed by post-

hoc Tukey tests.  

 

Results 

 Experiment 4a: Maintenance Testing under a Second-Order Schedule. Cocaine 

intake during maintenance testing under the second-order schedule is shown in Figure 10. 

Strains differed in number of cocaine infusions (F (2, 42) = 16, p ≤ 0.001), with adult 

SHR earning more infusions than WKY and WIS (p ≤ 0.001). Main and interaction 

effects of treatment were not significant, and further analysis confirmed that adolescent 

atomoxetine did not significantly alter cocaine intake compared to vehicle treatment in 

any strain during maintenance testing. 
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 Active lever responses during maintenance testing and during the first drug-free 

interval of the final maintenance testing session (i.e., the first 5-min FI of the session 

occurring prior to delivery of the initial cocaine infusion) are shown in Figures 11 and 12, 

respectively. During maintenance testing, strains differed (F (2, 42) = 29.6, p ≤ 0.001), 

with adult SHR making more active lever responses than WKY and WIS (p ≤ 0.001). 

During the first drug-free interval, there was a main effect of strain (F (2, 42) = 31.4, p ≤ 

0.001) and a strain X treatment interaction (F (2, 42) = 4.1, p ≤ 0.02). Overall, adult SHR 

made more active lever responses than WKY and WIS during the first drug-free interval 

(p ≤ 0.001). Post-hoc testing of the interaction revealed that adolescent atomoxetine 

reduced active lever responses compared to vehicle treatment in adult SHR during the 

first drug-free interval (p ≤ 0.005). In contrast, adolescent atomoxetine did not 

 

Figure 10. Cocaine intake during maintenance testing under a second-order schedule 
of reinforcement in adult WKY, WIS, and SHR, following vehicle or atomoxetine 
treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to both other 
strains.  
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significantly alter active lever responses compared to vehicle treatment during the first 

drug-free interval in WKY or WIS. There were no significant strain or treatment 

differences in inactive lever responding during maintenance testing. 

 

 

Figure 11. Active lever responding averaged across the maintenance testing baseline 
in adult WKY, WIS, and SHR, following vehicle or atomoxetine treatment during 
adolescence (Mean ± SEM). * p ≤ 0.05 compared to both other strains.  

 

Figure 12. Active lever responding during the first drug-free interval of the final 
maintenance testing session in adult WKY, WIS, and SHR, following vehicle or 
atomoxetine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains. ^ p ≤ 0.05 compared to vehicle treatment in the same strain. 
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 Experiment 4b: Extinction Training. The number of sessions to reach the 

extinction criterion is shown in Figure 13. There were strain differences in number of 

sessions (F (2, 42) = 6.1, p ≤ 0.005), with WKY and SHR requiring more sessions than 

WIS (p ≤ 0.04 and p ≤ 0.005 respectively). SHR and WKY did not differ. A strain X 

treatment interaction also was found (F (2, 42) = 3.9, p ≤ 0.02). Post-hoc testing revealed 

that adult SHR receiving adolescent atomoxetine required more sessions to reach 

extinction criterion than SHR receiving vehicle (p ≤ 0.006). Treatments did not differ in 

WKY and WIS. Analysis of the extinction baseline (Figure 14) revealed that the relative 

degree of extinguished responding (values expressed as percentage of the maintenance 

baseline) was not different between treatments and across strains. Inactive lever 

responses differed by strain (F (2, 42) = 3.7, p ≤ 0.03), with SHR making more inactive 

lever responses (24 ± 5) than WIS (11 ± 3, p ≤ 0.02), but not WKY (15 ± 4). 

 

 

Figure 13. Number of sessions required to reach extinction criterion in adult WKY, 
WIS, and SHR, following vehicle or atomoxetine treatment during adolescence 
(Mean ± SEM). # p ≤ 0.05 compared to WIS overall. ^ p ≤ 0.05 compared to vehicle 
treatment in the same strain. 
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 Experiment 4c: Cue-Induced Reinstatement Testing. The number of active lever 

responses during reinstatement testing, averaged across the seven sessions of testing, and, 

for comparison, the first hour of the extinction baseline is shown in Figure 15. Three-

factor ANOVA revealed main effects of phase (F (1, 42) = 213.9, p ≤ 0.001) and strain (F 

(2, 42) = 77.1, p ≤ 0.001), and a strain X treatment X phase interaction (F (2, 42) = 3.1, p 

≤ 0.05). Post-hoc testing of the interaction indicated that cue re-exposure during the 

reinstatement phase reinstated cocaine-seeking responses above extinction levels in each 

group (p ≤ 0.002) and that adult SHR reinstated more cocaine-seeking responses than 

WKY or WIS (p ≤ 0.001). In addition, SHR emitted more responses during the first hour 

of the extinction baseline than WKY or WIS (p ≤ 0.001). During reinstatement testing, 

adolescent atomoxetine treatment attenuated cocaine-seeking responses compared to 

 

Figure 14. Active lever responding during the extinction baseline, expressed as a 
percentage of the maintenance testing baseline, in adult WKY, WIS, and SHR, 
following vehicle or atomoxetine treatment during adolescence (Mean ± SEM).  
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vehicle only in adult SHR (p ≤ 0.032). There were no strain or treatment differences in 

inactive lever responding. 

 

 

 Cocaine-seeking responses during reinstatement testing were additionally 

analyzed with reinstatement test session as a factor using a three-factor (strain X 

treatment X reinstatement session) ANOVA, with repeated measures for session. Active 

lever responses during the seven individual reinstatement testing sessions are shown in 

Figure 16. There was a main effect of strain (F (2, 42) = 77.5, p ≤ 0.001). Further 

comparisons revealed that adult SHR overall made more active lever responses than 

WKY and WIS (p ≤ 0.001). There were no significant effects of treatment, nor 

interactions between strain and treatment or reinstatement session in the three-way 

 

Figure 15. Active lever responding averaged across the seven reinstatement test 
sessions in adult WKY, WIS, and SHR, following vehicle or atomoxetine treatment 
during adolescence. For comparison, active lever responses during the first hour of 
extinction training were averaged across the extinction baseline and are depicted in 
the gray bars (Mean ± SEM). * p ≤ 0.05 compared to both other strains. ^ p ≤ 0.05 
compared to vehicle treatment in the same strain. 
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ANOVA. 

 

 

 

Discussion 

 

 Strain Differences in Cocaine Abuse Risk and Cocaine Cue Reactivity 

 The current work reproduces and extends previous research indicating that SHR 

are a valuable model of comorbid ADHD and cocaine abuse (Baskin et al, 2015; Harvey 

et al, 2011). As hypothesized, SHR exhibited elevated cocaine abuse risk compared to 

both WKY and WIS control strains, characterized by faster acquisition of cocaine self-

 

Figure 16. Active lever responses during each reinstatement test session in adult 
WKY, WIS, and SHR, following vehicle or atomoxetine treatment during 
adolescence. For comparison, active lever responses during the first hour of 
extinction (Ext) training, averaged across the extinction baseline, are also shown 
(Mean ± SEM). * p ≤ 0.05 compared to both other strains.  
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administration and increased efficacy and motivating influence of cocaine reinforcement. 

More specifically, during the acquisition phase adult SHR spontaneously acquired 

cocaine self-administration faster, earned more cocaine infusions, and made more 

cocaine-maintained responses than adult WKY and WIS. Importantly, acquisition of 

cocaine self-administration is dependent on dopamine D1 receptors in the nucleus 

accumbens shell, as silencing of D1a receptors in the shell region prevents acquisition of 

cocaine self-administration in outbred rats (Pisanu et al, 2015). While the effect of 

silencing D1 receptors in the accumbens shell in SHR have not been investigated, SHR 

exhibit elevated Fos expression in the nucleus accumbens core as well as the shell areas 

(Ohno et al, 2012). Fos-expressing neurons in nucleus accumbens are known to interact 

with D1 receptors, and thus have a critical role in cocaine reinforcement (Anderson et al, 

2003; Bari & Pierce, 2005; Ikemoto et al, 1997). Together, these observations suggest 

that elevated activity at D1 receptors in the nucleus accumbens may contribute to faster 

acquisition of cocaine self-administration in SHR, relative to WKY or WIS control 

strains. Consistent with this view, D1 receptor expression in the nucleus accumbens is 

elevated in SHR compared to the WKY control strain (Ohno et al, 2012), 

 Under both FR and PR schedules, SHR continued to exhibit increased cocaine 

abuse risk, earning more cocaine infusions and making more cocaine-maintained 

responses across a range of doses, consistent with prior studies (Baskin et al, 2015; 

Harvey et al, 2011). Vulnerability to cocaine abuse is reflected by vertical (upward) shifts 

in FR and PR dose-response functions (Piazza et al, 2000). As with acquisition, 

motivation to self-administer cocaine under the PR schedule, in particular, is mediated by 
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D1 receptors, as infusion of D1 receptor antagonists in the nucleus accumbens, VTA, and 

mPFC reduces PR breakpoints for cocaine (McGregor & Roberts, 1993; 1995; Ranaldi & 

Wise, 2001). Interestingly, high-novelty seeking rats exhibit upward shifts in cocaine 

dose-response functions (Piazza et al, 2000). This behavior has been attributed to 

increased dopamine release in the nucleus accumbens following cocaine administration, 

as well as to elevated DAT function and D1 receptor expression in the nucleus 

accumbens (Hooks et al, 1991; 1994). Like individuals with ADHD, SHR exhibit high 

novelty seeking (dela Peña et al, 2015; Donfrancesco et al, 2015), as well as elevated 

striatal DAT density (Roessner et al, 2010) and increased D1 receptor expression (Ohno 

et al, 2012) in the nucleus accumbens, compared to WKY.  These differences may 

contribute to the vertical shifts in cocaine dose-response functions observed in SHR. 

 Consistent with the hypotheses and with prior studies (Jordan et al, 2014), cocaine 

intake and cocaine seeking was also greater in SHR compared to WKY or WIS under the 

second-order schedule of reinforcement. High levels of cocaine seeking by SHR both 

when cocaine was (maintenance testing) and was not (the first drug-free interval of 

maintenance testing and reinstatement testing) available for self-administration suggest 

that SHR exhibit heightened cocaine cue reactivity compared to WKY or WIS. Notably, 

SHR extinguished active lever responding within the same timeframe as WKY, but more 

slowly than WIS. The observation that SHR exhibit similar rates of extinction compared 

to WKY suggests that extinction learning is not impaired in SHR, but rather may be 

faster in WIS. High levels of cocaine seeking by SHR during reinstatement testing are 

therefore not likely due to impaired extinction learning, but rather further reflect 
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heightened cocaine cue reactivity in this strain. SHR also often made more inactive lever 

responses than WKY and WIS, which may relate to hyperactivity in SHR when 

reinforcers are infrequent (Sagvolden et al, 2005). Nonetheless, SHR remained goal-

directed, as active lever responding was substantially greater than inactive lever 

responding throughout maintenance and reinstatement testing.  

 Control strains did not differ in the various measures of cocaine abuse risk, with 

the exception that WIS earned more cocaine infusions and made more active lever 

responses than WKY for 0.1 mg/kg cocaine under the FR1 schedule. Importantly, the 0.1 

mg/kg dose produced peak rates of responding in all strains under the FR1 schedule. 

Cocaine doses commonly abused in humans and those associated with peak rates of 

responding in non-human primates produce similar levels of striatal DAT occupancy 

(Wilcox et al, 2002), suggesting that strain differences in cocaine self-administration may 

reflect strain differences in DAT function or expression. Compared with WIS, WKY 

exhibit decreased DAT density in the nucleus accumbens (Jiao et al, 2003). The 0.1 

mg/kg cocaine dose may therefore be a less efficacious reinforcer for WKY relative to 

WIS and SHR, due to lower DAT expression in reward-associated regions.  

 

Effects of Adolescent Atomoxetine on Cocaine Abuse Risk and Cue Reactivity 

 Consistent with the hypotheses, adolescent treatment with a pharmacologically 

relevant dose of atomoxetine did not further enhance the speed to acquire cocaine self-

administration, or the efficacy and motivating influence of cocaine reinforcement in adult 

SHR, in contrast to previous observations with methylphenidate. An exception was that 
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atomoxetine-treated SHR made more active lever responses at the acquisition criterion, 

without earning more cocaine infusions. These findings indicate that responding was 

greater during the 20-second timeout periods that followed each cocaine infusion and 

during which the cue light was illuminated. Acute atomoxetine treatment is known to 

have cognitive enhancing effects, via increased noradrenergic transmission (Arnsten & 

Pliszla, 2011; Gamo et al, 2010; Janak et al, 2012). Therefore, it is possible that prior 

adolescent atomoxetine treatment increased the salience of cocaine-related cues in SHR 

during acquisition when cocaine was first available for self-administration, but not later 

after chronic exposure to cocaine. Rather, adolescent atomoxetine modestly decreased 

cue reactivity in adult SHR when cocaine was not available, both during the first drug-

free interval of maintenance testing and during cue-induced reinstatement, when 

responding was averaged across all seven reinstatement test sessions. Adolescent 

atomoxetine treatment also increased the number of sessions required to extinguish lever 

responding in adult SHR. However, all strains and treatment groups extinguished active 

lever responding to the same relative degree prior to reinstatement testing (i.e., ≤ 10% of 

the self-administration baseline). The slower rate of extinction in SHR did not result in 

elevated cocaine abuse risk, as assessed during subsequent reinstatement testing.  

 Adolescent atomoxetine treatment did not alter any measure of cocaine abuse risk 

in adult WIS, the outbred control strain. Although a previous study reported attenuated 

cocaine seeking during second-order maintenance testing in an outbred rat strain 

following acute administration of atomoxetine (Economidou et al, 2011), these effects 

were only observed with doses that were 3- to 10-fold higher (1 or 3 mg/kg) than the 
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more 0.3 mg/kg dose used in the present work, which may more closely resemble doses 

used in the treatment of ADHD (Bymaster et al, 2002). Interestingly, in contrast to its 

effects in SHR and WIS, adolescent atomoxetine treatment speeded acquisition of 

cocaine self-administration in adult WKY. Atomoxetine also differentially influenced 

strain performance on a strategy set shifting task, such that learning speed during the 

initial discrimination phase was faster in adolescent SHR, but slower in adolescent WKY 

and WIS, after atomoxetine treatment (Harvey et al, 2013). Taken together, these results 

emphasize the importance of concurrent evaluation of both inbred and outbred control 

strains when assessing the effects of adolescent ADHD medication in the SHR model.  

 In conclusion, these experiments further demonstrate the value of the SHR as a 

model for comorbid ADHD and cocaine abuse risk, and suggest that cocaine cue 

reactivity may contribute to the elevated risk of cocaine use disorder in individuals with 

ADHD. However, further studies evaluating physiological measures such as skin 

conductance, heart rate, or hemodynamic neural responses to drug cues in individuals 

with ADHD are necessary to confirm this hypothesis. Contrary to previous findings with 

methylphenidate, adolescent atomoxetine treatment did not further enhance cocaine abuse 

risk in SHR. Atomoxetine may therefore be a suitable alternative to methylphenidate 

treatment in teenagers with ADHD, in whom the risk of later drug abuse may be a 

concern. Moreover, while these experiments do not raise critical concerns about the 

safety of atomoxetine, they do emphasize the importance of accurate diagnosis of ADHD. 

In the WKY control strain, atomoxetine speeded acquisition of cocaine self-

administration. Misdiagnosis of ADHD, and subsequent atomoxetine treatment in teens 



 

 

56	  

could therefore result in a more rapid development of abuse of cocaine, if the drug is 

sampled. 

 

 

 

CHAPTER THREE.   

 

Aim 2: Effects of an Alternative Stimulant Medication on Prefrontal Cortex 

Function during Adolescence and Cocaine Abuse Risk and Cue Reactivity in 

Adulthood 

 

Introduction 

 The experiments in Aim 1 tested the hypothesis that, in contrast to the stimulant 

methylphenidate, the non-stimulant ADHD medication, atomoxetine, does not increase 

cocaine abuse risk when treatment is initiated during adolescence. The findings suggest 

that adolescent treatment with atomoxetine does not increase cocaine abuse risk and may 

modestly decrease reactivity to cocaine-related cues. Despite these observations, 

atomoxetine conveys some disadvantages compared to methylphenidate. For example, 

atomoxetine often requires a week or longer to begin alleviating ADHD symptoms 

(Sibley et al, 2014). Moreover, as a non-stimulant, atomoxetine improves different 

symptoms of ADHD than methylphenidate, and may not be as clinically efficacious in 

some individuals (Cubillo et al, 2014; Faraone et al, 2006). Therefore, it is important to 
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identify an alternative stimulant drug, which satisfactorily improves ADHD symptoms 

but does not increase later cocaine abuse risk for teenagers with ADHD.  

 One potential alternative is d-amphetamine (Dexedrine®), a stimulant drug with a 

different mechanism of action than methylphenidate. Amphetamine is more efficacious 

than methylphenidate in relieving ADHD symptoms, and has a similar side effect profile 

(Arnold, 2000; Faraone & Buitelaar, 2010; Patrick & Morowitz, 1997; Sibley et al, 

2014). Formulations of amphetamine often contain both d- and l-isomers. However, the l-

isomer is not prescribed alone, and the d-isomer is more potent in mediating dopamine 

transmission and more efficacious in alleviating ADHD symptoms (Arnold et al, 1973; 

Heal et al 2012, 2013; Patrick & Markowitz 1997). Therefore, d-amphetamine is the 

focus of Aim 2.  

 Although both methylphenidate and d-amphetamine block DAT and NET, d-

amphetamine also reverses activity at these transporters (Robertson et al, 2009). d-

Amphetamine can additionally be taken up into the pre-synaptic terminal, where it 

reverses activity at vesicular monoamine transporter-2 (VMAT-2). Reversal of VMAT-2 

prevents the sequestration and retention of monoamines within vesicles (Easton et al, 

2007). Excess cytosolic monoamines subsequently accumulate, and are transported to the 

extracellular space through reversed activity at DAT and NET (Easton et al, 2007). 

Because of these additional mechanisms of action, d-amphetamine induces greater 

increases in extracellular monoamines than methylphenidate, even at therapeutically 

relevant doses (Kuczenski & Segal, 2001). Another mechanism of action exhibited by d-

amphetamine, which is not shared with methylphenidate, is the ability to bind to the 
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intracellular trace amine-associated receptor 1 (TAAR1). TAAR1 is co-expressed with 

DAT in reward-associated regions, such as the substantia nigra, VTA, and amygdala 

(Lindemann et al, 2008; Xie et al, 2007). Activation of TAAR1 by amphetamine reduces 

cell surface expression of DAT, and may lead to decreased DAT function in reward-

associated regions, such as the striatum (Miller, 2011; Xie & Miller, 2009). Thus, 

whereas adolescent methylphenidate treatment increases DAT function in mPFC of SHR 

and increases cocaine abuse risk (Somkuwar et al, 2013b), adolescent d-amphetamine 

treatment may reduce DAT expression and function. Adolescent d-amphetamine may 

therefore have long-term consequences for cocaine abuse risk that are different from 

methylphenidate. 

 In order to establish the SHR as a viable model for adolescent d-amphetamine 

treatment, it is first necessary to determine whether d-amphetamine improves ADHD-

related deficits in SHR, as it does clinically. In adult SHR, d-amphetamine reduces 

hyperactivity and impulsivity, and improves sustained attention and short- and long-term 

memory (Meneses et al, 2011; Sagvolden & Xu, 2008). However, the effects of d-

amphetamine in adolescent SHR are not well known. As discussed in Chapter One, the 

adolescent brain undergoes unique neurochemical changes, including altered expression 

of dopamine D1 receptors and DAT (Andersen, 2005; Brenhouse et al, 2008; Moll et al, 

2000; Stanis & Andersen, 2014). These observations suggest that psychostimulants may 

differentially affect adolescents, relative to juveniles or adults. Experiment 5 therefore 

determines the effects of d-amphetamine treatment in adolescent WKY, WIS, and SHR, 

on PFC functioning using the strategy set shifting task (Floresco et al, 2008; Harvey et al, 
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2013). Previous studies using this task showed that adolescent SHR exhibit deficits in 

behavioral flexibility during the set shift phase, which is dependent on mPFC functioning 

(Birrell & Brown 2000; Floresco et al, 2008; Harvey et al, 2013; Ragozzino et al, 1999). 

During the set shift phase, atomoxetine improved performance in adolescent SHR 

(Harvey et al 2013). In contrast, methylphenidate improved performance in adolescent 

SHR during initial set formation (Harvey et al, 2013), a phase of the task that is 

dependent on catecholamine projections to PFC as a whole (Crofts et al, 2001). Neither 

drug in adolescent SHR improved reversal learning performance (Harvey et al, 2013), 

which is dependent on OFC functioning (Ghods-Sharifi et al, 2008). Interestingly, these 

findings are consistent with clinical observations that not all ADHD symptoms are 

sufficiently alleviated by single drug therapies (Wilens et al, 2009). Use of the strategy 

set shifting task in Experiment 5 therefore allows differentiation of the effects of d-

amphetamine from those of methylphenidate and atomoxetine on PFC functioning in 

adolescent SHR.  

 If d-amphetamine improves ADHD-related cognitive deficits in adolescent SHR, 

it then becomes important to determine whether adolescent d-amphetamine treatment 

alters cocaine abuse risk in adulthood. Experiments 6 through 8 examined whether 

adolescent d-amphetamine treatment increases cocaine abuse risk in the SHR model. The 

speed to acquire cocaine self-administration, as well as the efficacy and motivating 

influence of cocaine reinforcement, were assessed in adult WKY, WIS, and SHR 

following discontinuation of adolescent treatment with a clinically relevant dose of d-

amphetamine. Fixed-ratio (FR) and progressive ratio (PR) dose-response curves were 
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evaluated using multiple test doses of cocaine, in order to fully characterize cocaine’s 

reinforcing effects and to be directly comparable to Aim 1. 

 Lastly, as reviewed in Chapter Two, another important aspect of cocaine abuse is 

reactivity to cocaine-related cues. The results of Experiment 4 show that SHR are more 

reactive to cocaine cues than control strains. Importantly, the environmental cues 

associated with cocaine use trigger neural activity and dopamine release in regions of the 

brain that are dysfunctional in SHR and in ADHD patients, including the mPFC and OFC 

(Ciccocioppo et al, 2001; Cubillo et al, 2011; Harvey et al, 2013; Jasinka et al, 2014; 

Nelissen et al, 2012; Wilcox et al, 2011). Repeated administration of a clinically relevant 

dose of amphetamine during early adolescence (P22 - 34) in outbred rats was shown to 

increase dendritic length, branching, and spine density in the mPFC (Heijtz et al, 2003). 

If adolescent d-amphetamine treatment induces long-term structural changes in PFC of 

SHR, it is possible that d-amphetamine may also modulate cocaine cue reactivity in this 

strain. Experiment 9 evaluated this possibility by examining cocaine cue reactivity and 

relapse behavior in adult SHR, WKY and WIS, following discontinuation of adolescent 

d-amphetamine treatment. To be directly comparable to Aim 1, a second-order schedule 

of cocaine delivery and cue presentation was used. Cocaine-seeking behavior was 

therefore measured during maintenance testing (cocaine available for self-administration) 

and reinstatement testing (cocaine not available for self-administration).   
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Experiment 5: Effects of d-Amphetamine on Strategy Set Shifting in Adolescent 

Rats  

 

 Experiment 5 tested the hypothesis that adolescent SHR exhibit deficits in 

behavioral flexibility during the strategy set shifting task (e.g., requiring more trials and 

time to reach learning criterion) compared to adolescent WKY and WIS control strains. 

Experiment 5 also tested the hypothesis that adolescent SHR treated with a clinically 

relevant dose of d-amphetamine show improved performance during one or more phases 

of the strategy set shifting task, compared to vehicle-treated SHR.   

 

Materials and Methods 

 Animals and Treatments. All procedures were approved by the Institutional 

Animal Care and Use Committee at Boston University, and were performed in 

accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals (Eighth Edition). Male WKY/Cr, WIS/Cr, and SHR/Cr rats (Charles 

River Laboratories, Wilmington, MA, Kingston, NY or Raleigh, NC) arrived on P25. 

Group sizes for Experiment 5 were n = 9 for vehicle and d-amphetamine-treated WKY 

and WIS, n = 10 for vehicle-treated SHR, and n = 12 for d-amphetamine-treated SHR. 

See Figure 17 for an experimental timeline. 
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 Animal housing conditions were identical to those described in Experiment 1. 

From P28 through P55, constituting the rat adolescent period (Spear, 2000), animals 

received once daily i.p. injections of either a clinically relevant dose of d-amphetamine 

(0.5 mg/kg, Sigma-Aldrich, St. Louis, MO) dissolved in 0.9% sterile saline, or saline 

alone (2 ml/kg). The double injection volume was used to be consistent with Experiments 

1 through 4. Treatments were administered once daily, Monday-Friday. The selected dose 

of d-amphetamine produces plasma drug concentrations within the clinical range and is 

below the threshold for causing locomotor activation (Brown et al, 1979; Heitjz et al, 

2003; Labonte et al, 2011). The chosen dose of d-amphetamine also increases dopamine 

and norepinephrine activity and induces long-term structural changes in the PFC (Heijtz 

et al, 2003; Kuczenski & Segal, 2001; Labonte et al, 2011). Treatments were 

administered 30 minutes prior to behavioral testing in the strategy set shifting task, to 

allow peak monoamine responses to occur and to ensure that plasma levels reached 

clinical significance during testing (Heijtz et al, 2003; Kuczenski & Segal, 2001).  Food 

 

Figure 17. Timeline of experimental events in Aim 2. 
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was restricted from P28-P55 to ~90% of a growth-adjusted free-feeding body weight, to 

facilitate lever responding for food reinforcement during the set shifting task, and to 

mimic conditions of past comparator studies (Harvey et al, 2011; 2013; Somkuwar et al 

2013a, b). Animals had free access to water throughout the experiment, and food was 

freely available after P55.  

 

 Testing Environment. Experimental chambers were identical to those described in 

Experiment 1, except that response levers were retractable (as in Harvey et al, 2013).  

Pellet dispensers for food delivery were also located inside the cubicle enclosing each 

operant chamber (Med Associates).  

 

 Habituation Training. An operant version of the strategy set shifting task was 

used (Floresco et al, 2008; Harvey et al, 2013). On P28, all animals received 20 

chocolate-flavored pellets in their home cages, to habituate rats to the novel food. On 

P31, all rats began training in experimental chambers. Rats were required to lever press 

under a FR1 schedule to earn a minimum of 25 chocolate pellet reinforcers within a 30-

min period. Thereafter, rats began lever retraction training, requiring a response within 

10-sec of lever insertion into the chamber to earn a chocolate pellet reinforcer. Once rats 

made fewer than 5 omissions for four consecutive 45-min daily sessions, lever position 

bias was established by allowing rats to freely press either lever for ~10-min. The lever 

on which the most responses were made was defined as preferred.   
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 Experiment 5a: Initial Set Formation. On P42, rats were required to adopt a 

visual-based strategy to earn reinforcement. All set shift test sessions were 2 hours in 

length, and were conducted during the light phase once daily, Monday - Friday, at 

approximately the same time each day. During the initial set formation, each trial began 

with a 20-sec timeout in a dark chamber. After 20 sec, one of the two stimulus lights was 

illuminated (randomly selected for each trial). The house light illuminated 3-sec later, and 

both response levers were inserted into the chamber. Rats were required to press the lever 

under the illuminated stimulus light, regardless of lever bias, to earn a chocolate pellet 

reinforcer (see Figure 18). Levers were retracted after a response was made (whether 

correct or incorrect), or if 10-sec elapsed with no response (omission). After a correct 

response, the stimulus light remained illuminated for an additional 4 sec, and a chocolate 

pellet was delivered 15 sec later. The house light remained illuminated until 4 sec after 

pellet delivery. A 15-sec delay to reinforcement was imposed to increase cognitive 

demand and to better detect strain and treatment differences, as SHR are more sensitive 

to delayed reinforcers than WKY (Harvey et al, 2013; Johansen et al, 2005). After an 

incorrect response or a trial omission, the stimulus and house lights were immediately 

extinguished and a new trial was initiated. Training on the initial set formation continued 

until criterion was reached, defined as making 8 consecutive correct responses, following 

Floresco et al, 2008, and Harvey et al, 2013. 
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 Experiment 5b: Set Shift. On the day following completion of the initial set 

formation, rats were required to shift responding to a spatial-based discrimination 

strategy. During this phase, animals were required to press the lever opposite the lever 

position bias to earn reinforcement, regardless of which stimulus light was illuminated 

(see Figure 19). Trial contingencies were otherwise identical to the initial set formation. 

Training on the set shift phase continued until rats made 10 consecutive correct responses 

(Floresco et al, 2008; Harvey et al, 2013). 

 

 

 

Figure 18. Initial set formation requires pressing the lever under the illuminated cue 
light (visual cue discrimination). Adapted from Floresco et al, 2008. 

 

Figure 19. The set shift requires pressing the lever opposite from the preferred lever 
(response discrimination). Adapted from Floresco et al, 2008. 
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 Experiment 5c: Reversal Learning. On the day following completion of the set 

shift phase, reversal learning was assessed. During this final phase of the task, rats were 

required to press the lever on the same side as the lever position bias, regardless of which 

stimulus light was illuminated (see Figure 20). Trial contingencies were otherwise 

identical to those of the initial set and set shift phases. Training on reversal learning 

continued until rats made 10 consecutive correct responses (Floresco et al, 2008; Harvey 

et al, 2013).  

 

 

 Data Analysis. Dependent measures for the strategy set shifting task included 

number of trials completed to reach criterion, latency to reach criterion (included the time 

for omitted trials), number of omitted trials, average lever press reaction time, variability 

in lever press reaction time, and ratio of correct to incorrect lever responses (choice 

accuracy), until criterion was reached. In addition, error subtypes were coded for the set 

shift and reversal learning phases of the task (Harvey et al, 2013; Floresco et al, 2008). 

During the set shift phase, perseverative and regressive errors were recorded when rats 

 

Figure 20. Reversal learning requires pressing the preferred lever (response reversal). 
Adapted from Floresco et al, 2008. 
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pressed a lever with the stimulus light illuminated above it on trials that required pressing 

of the opposite lever. Errors were perseverative when rats pressed the incorrect lever on 

six or more trials per block of eight trials. Once rats made five or fewer incorrect choices 

in a block of eight trials for the first time, the incorrect lever choices in subsequent blocks 

were scored as regressive errors. Never-reinforced errors were recorded when a rat 

pressed the incorrect lever on trials when the correct lever had the stimulus light 

illuminated above it (i.e., a choice that was not reinforced during either the initial set or 

set shift phase). During the reversal-learning phase, errors were examined in blocks of 16 

trials and consisted of perseverative and regressive errors (Ghods-Sharifi et al, 2008; 

Harvey et al, 2013). Once rats made ten or fewer incorrect choices in a block of 16 trials 

for the first time, the incorrect lever choices in subsequent blocks were then scored as 

regressive errors. Never-reinforced errors are not possible during the reversal-learning 

phase. Perseverative errors are an index of how well the previously acquired strategy is 

suppressed, regressive errors are an index of how well the new strategy is maintained, 

and never-reinforced errors are an index of how well the new strategy is acquired 

(Floresco et al, 2008). Measures of the strategy set shifting task were square root 

transformed prior to analysis due to non-normality in the majority of measures. Measures 

were analyzed by two-factor (strain X treatment) ANOVAs, followed by post-hoc Tukey 

tests.   
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Results 

 Experiment 5a: Initial Set Formation. Figure 21 depicts data obtained during the 

initial set formation phase of the strategy set shifting task. Strains differed in trials to 

criterion (F (2, 52) = 5.4, p ≤ 0.008), latency to criterion (F (2, 52) = 5.3, p ≤ 0.008), trial 

omissions (F (2, 52) = 4.5, p ≤ 0.01), average reaction time (F (2, 52) = 9.2, p ≤ 0.001), 

and reaction time variability (F (2, 52) = 9.3, p ≤ 0.001). No strain differences were 

observed for choice accuracy. Adolescent SHR and the WIS control required fewer trials 

to reach criterion (p ≤ 0.01 and 0.02, respectively) and had shorter latencies to reach 

criterion (p ≤ 0.01 and 0.03, respectively) than the WKY control. Both SHR and the 

WKY control exhibited slower reaction time and greater reaction time variability than the 

WIS control (p ≤ 0.01). The WKY control also made more trial omissions than the WIS 

control (p ≤ 0.01). d-Amphetamine treatment did not alter performance on any measure 

across strains during initial set formation.  

 

 Experiment 5b: Set Shift. Figure 22 depicts data obtained during the set shift 

phase of the strategy set shifting task. Strains differed in trials to criterion (F (2, 52) = 

4.8, p ≤ 0.01), latency to criterion (F (2, 52) = 6.4, p ≤ 0.003), trial omissions (F (2, 52) = 

3.7, p ≤ 0.03), average reaction time (F (2, 52) = 3.7, p ≤ 0.03), and reaction time 

variability (F (2, 52) = 8.7, p ≤ 0.001). No strain differences were observed for choice 

accuracy. Adolescent SHR and the WIS control required more trials to reach criterion (ps 

≤ 0.02) and had longer latencies to reach criterion (p ≤ 0.009 and 0.008, respectively) 

than the WKY control. Adolescent SHR also exhibited greater reaction time variability 
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compared to the WKY and WIS controls (p ≤ 0.001 and 0.04, respectively). Moreover, 

SHR exhibited slower reaction times (p ≤ 0.02) and made more omissions (p ≤ 0.03) than 

the WKY control.  

 For latency to criterion, there was a trend towards a strain X treatment interaction 

(F (2, 52) = 2.7, p ≤ 0.07) and further testing revealed that vehicle-treated WKY took less 

time to reach criterion than vehicle-treated WIS and SHR (p ≤ 0.01 and 0.001, 

respectively). d-Amphetamine treatment reduced latency to criterion in adolescent SHR 

only (p ≤ 0.01). There was also a trend towards a strain X treatment interaction (F (2, 52) 

= 2.7, p ≤ 0.07) for choice accuracy, which improved relative to vehicle following d-

amphetamine treatment in adolescent SHR (p ≤ 0.01).  
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Figure 21. Trials to criterion, latency to criterion, trial omissions, lever press reaction 
time, variability in reaction time, and choice accuracy during initial set formation in 
adolescent WKY, WIS, and SHR following vehicle or d-amphetamine treatment 
(Mean ± SEM).  & p ≤ 0.05 compared to WKY overall. # p ≤  0.05 compared to WIS 
overall.   
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 Moreover, although the strain X treatment interaction was not significant, further 

testing revealed that d-amphetamine treatment reduced the number of trials required to 

reach criterion in SHR compared to vehicle treatment (p ≤ 0.04).  

 With respect to regressive errors, there was a significant strain X treatment 

interaction (F (2, 52) = 3.3, p ≤ 0.04). Vehicle-treated SHR made more regressive errors 

than vehicle-treated WKY (p ≤ 0.01). Compared to vehicle treatment, d-amphetamine 

reduced regressive errors in SHR only (p ≤ 0.006). For never-reinforced errors, both 

strain (F (2, 52) = 4.6, p ≤ 0.01) and treatment (F (1, 52) = 3.9, p ≤ 0.05) effects were 

observed. Overall, the WIS control made more never-reinforced errors than the WKY 

control (p ≤ 0.01). In addition, rats treated with d-amphetamine made fewer never-

reinforced errors than vehicle-treated rats overall (p ≤ 0.05). Although the strain X 

treatment interaction was not significant, further testing revealed that SHR treated with d-

amphetamine made fewer never-reinforced errors than vehicle-treated SHR (p ≤ 0.04). 

No strain or treatment differences were observed for perseverative errors during the set 

shift phase. 

 

 Experiment 5c: Reversal Learning. Figure 23 depicts data obtained during the 

reversal learning phase of the strategy set shifting task. Strain differences were observed 

in trials to criterion (F (2, 52) = 3.8, p ≤ 0.03), latency to criterion (F (2, 52) = 5.1, p ≤ 

0.01), trial omissions (F (2, 52) = 4.7, p ≤ 0.01), average reaction time (F (2, 52) = 5.6, p 

≤ 0.006), and reaction time variability (F (2, 52) = 6.4, p ≤ 0.003). No strain differences 

were observed for choice accuracy.  
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Figure 22. Trials to criterion, latency to criterion, trial omissions, lever press reaction 
time, variability in reaction time, choice accuracy, and error subtypes during the set 
shift phase in adolescent WKY, WIS, and SHR following vehicle or d-amphetamine 
treatment (Mean ± SEM). * p ≤ 0.05 compared to both other strains. & p ≤ 0.05 
compared to WKY overall. # p ≤  0.05 compared to WIS overall. + p ≤ 0.05 compared 
to vehicle treatment in both other strains. $ p ≤ 0.05 compared to vehicle-treated 
WKY. ^ p ≤ 0.05 compared to vehicle-treated SHR.  
 

 

 Overall, adolescent SHR required fewer trials to reach the reversal learning  

criterion than the WIS control (p ≤ 0.02). Both the WKY control and SHR had shorter 

latencies to reach criterion than the WIS control (p ≤ 0.01 and 0.03, respectively). 

Adolescent WKY also made fewer trial omissions than the WIS control (p ≤ 0.01). SHR 

exhibited slower and more variable reaction times than the WKY control (p ≤ 0.005 and 

0.003, respectively).  

 For perseverative errors, there was a trend towards a main effect of strain (F (2, 

52) = 2.9, p ≤ 0.06). Further testing revealed that SHR made fewer perseverative errors 

than the WIS control (p ≤ 0.05). No strain differences were observed for regressive 

errors. d-Amphetamine treatment did not alter performance on any measure across strains 

during the reversal learning phase. 
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Figure 23. Trials to criterion, latency to criterion, trial omissions, lever press reaction 
time, variability in reaction time, choice accuracy, and error subtypes during the 
reversal learning phase in adolescent WKY, WIS, and SHR following vehicle or d-
amphetamine treatment (Mean ± SEM). & p ≤ compared to WKY overall. # p ≤  0.05 
compared to WIS overall. 

 

 

Experiment 6: Acquisition of Cocaine Self-Administration Following Adolescent d-

Amphetamine Treatment 

 

 Experiment 6 sought to reproduce findings from Experiment 1, showing that adult 

SHR acquire cocaine self-administration faster, earn more cocaine infusions and make 

more lever responses compared to WKY and WIS control strains. Experiment 6 also 

tested the hypothesis that, in contrast to methylphenidate, treatment with a clinically 

relevant dose of d-amphetamine during adolescence does not increase the speed to 

acquire cocaine self-administration in adult SHR after adolescent treatment is 

discontinued. 

 

Materials and Methods 

 New groups of SHR, WKY, and WIS were used in Experiment 6. Rats were 

treated with a clinically relevant dose of d-amphetamine, or saline alone, during 

adolescence, as described in Experiment 5. Group sizes for Experiment 6 were n = 8 per 

strain and treatment group.   

 Surgical procedures, testing environments, cocaine delivery and cocaine self-

administration procedures were identical to those detailed in Experiment 1. Briefly, after 
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recovery from surgical implantation of i.v. catheters, animals were allowed to 

spontaneously acquire cocaine self-administration under a FR1 schedule of 

reinforcement. Training continued until acquisition criterion was reached, defined as 

earning ≥ 20 infusions for two consecutive sessions, and discriminating the active from 

inactive lever by a factor of 2 or greater. All rats reached acquisition criterion in 25 

sessions or less.  

 

 Data Analysis. Dependent measures in Experiment 6 included the number of 

sessions required to reach acquisition criterion (square root transformed prior to analysis 

due to non-normality), as well as cocaine infusions earned and active and inactive lever 

responses at acquisition criterion. Measures were analyzed by two-factor (strain X 

treatment) ANOVAs followed by post-hoc Tukey tests. 

 

Results 

 The number of sessions required to reach acquisition criterion are shown in Figure 

24. Strains differed significantly (F (2, 42) = 14.7, p ≤ 0.001), and there was also a strain 

X treatment interaction (F (2, 42) = 6.6, p ≤ 0.003). Vehicle and d-amphetamine-treated 

SHR acquired cocaine self-administration faster than vehicle- and d-amphetamine-treated 

WKY and WIS (ps ≤ 0.03). Adolescent d-amphetamine slowed acquisition in adult WIS 

(p ≤ 0.004), but speeded acquisition in adult WKY (p ≤ 0.04). d-Amphetamine did not 

alter acquisition speed in SHR. 
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 The number of cocaine infusions earned at the acquisition criterion is shown in 

Figure 25. Differences in strain (F (2, 42) = 16.4, p ≤ 0.001) and treatment (F (2, 42) = 

9.1, p ≤ 0.004) were observed, as well as a trend towards a strain X treatment interaction 

(F (2, 42) = 2.7, p ≤ 0.08). Overall, SHR earned more cocaine infusions than WKY and 

WIS (p ≤ 0.001 and 0.03, respectively). WIS also earned more infusions than WKY (p ≤ 

0.008). Moreover, d-amphetamine-treated rats earned fewer infusions than vehicle-

treated rats (p ≤ 0.005). This effect was driven primarily by reduced cocaine intake in d-

amphetamine-treated WIS and SHR compared to their vehicle counterparts (p ≤ 0.008 

and 0.01, respectively). Adolescent d-amphetamine did not alter cocaine intake in adult 

WKY. 

 

Figure 24. Number of sessions required to reach acquisition criterion in adult WKY, 
WIS, and SHR, following vehicle or d-amphetamine treatment during adolescence 
(Mean ± SEM). * p ≤ 0.05 compared to both other strains. ^ p ≤ 0.05 compared to 
vehicle treatment in the same strain.  
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 Active lever responses at the acquisition criterion are shown in Figure 26. Strains 

(F (2, 42) = 10.5, p ≤ 0.001) and treatments (F (1, 42) = 6.2, p ≤ 0.01) again differed. 

There was also a trend towards a strain X treatment interaction (F (2, 42) = 2.6, p ≤ 0.08). 

Overall, SHR made more active lever responses than WKY and WIS (p ≤ 0.001 and 0.01, 

respectively). d-Amphetamine-treated rats made fewer active lever responses than VEH-

treated rats (p ≤ 0.01). This effect was driven primarily by reduced active lever 

responding in d-amphetamine-treated SHR relative to vehicle-treated SHR (p ≤ 0.004). 

Adolescent d-amphetamine did not significantly alter active lever responding at 

acquisition in adult WKY or WIS. There was also a strain difference in inactive lever 

responding at criterion (F (2, 42) = 3.8, p ≤ 0.03), with SHR making made more inactive 

lever responses (10.4 ± 3.4) than WKY (3.1 ± 0.6; p ≤ 0.05). However, all strains 

 

Figure 25. Number of cocaine infusions earned at acquisition criterion in adult WKY, 
WIS, and SHR, following vehicle or d-amphetamine treatment during adolescence 
(Mean ± SEM). * p ≤ 0.05 compared to both other strains. & p ≤ 0.05 compared to 
WKY overall. ^ p ≤ 0.05 compared to vehicle treatment in the same strain.  
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discriminated the active from the inactive lever by a factor of 2 or greater (10:1 for 

WKY, 16:1 for WIS, and 9:1 for SHR, on average). 

 

 

Experiment 7: Fixed-Ratio Cocaine Dose-Response Functions in Adulthood 

Following Adolescent d-Amphetamine Treatment 

 

 Experiment 7 sought to reproduce findings in Experiment 2, showing that the 

efficacy of cocaine reinforcement is elevated in adult SHR compared to WKY or WIS, 

such that SHR earn more cocaine infusions and make active lever responses across a 

range of doses under a FR1 schedule of reinforcement. Experiment 7 also tested the 

hypothesis that, in contrast to the effects of methylphenidate, treatment with a clinically 

 

Figure 26. Number of active lever responses made at acquisition criterion in adult 
WKY, WIS, and SHR, following vehicle or d-amphetamine treatment during 
adolescence (Mean ± SEM). * p ≤ 0.05 compared to both other strains. ^ p ≤ 0.05 
compared to vehicle treatment in the same strain.  
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relevant dose of d-amphetamine during adolescence does not increase the efficacy of 

cocaine reinforcement in adult SHR after adolescent treatment is discontinued. 

 

Materials and Methods 

 Cocaine self-administration procedures in Experiment 7 were identical to those 

detailed in Experiment 2. Briefly, following achievement of acquisition criterion in 

Experiment 6, a stable baseline level of responding for the 0.3 mg/kg training dose was 

established in all animals. A range of cocaine doses (0.003 to 1.0 mg/kg/infusion) was 

then substituted in pseudo-random order, every Tuesday and Friday. The 0.3 mg/kg 

training dose was available on intervening days, and for 2-3 days following completion of 

full FR1 cocaine dose-response functions. One vehicle- and one d-amphetamine-treated 

SHR expired prior to completing Experiment 7, and were therefore excluded from 

Experiment 7 data analyses.  

 

 Data Analysis. Dependent measures for Experiment 7 included the number of 

cocaine infusions earned, and active and inactive lever responses for each cocaine dose. 

Measures were analyzed by three-factor (strain X treatment X dose) ANOVAs, with 

repeated measures for dose followed by post-hoc Tukey tests. 

 

Results 

 Cocaine dose-response functions based on the number of infusions earned under 

the FR1 schedule are shown in Figure 27. Three-way ANOVA identified differences in 
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strain (F (2, 40) = 36.3, p ≤ 0.001) and dose (F (5, 200) = 87, p ≤ 0.001). There were also 

interactions for strain X treatment (F (2, 40) = 3.9, p ≤ 0.03), strain X dose (F (10, 200) = 

8, p ≤ 0.001), and strain X treatment X dose (F (10, 200) = 2.5, p ≤ 0.007). Overall, SHR 

earned more infusions than WKY and WIS at 0.003, 0.01, 0.03, and 0.1 mg/kg cocaine 

(ps ≤ 0.001), and more infusions than WKY at 0.3 mg/kg cocaine (p ≤ 0.006). WIS 

earned more infusions than WKY at 0.1 mg/kg cocaine (p ≤ 0.004). Adolescent d-

amphetamine reduced intake at 0.1 and 0.3 mg/kg cocaine in adult WIS (p ≤ 0.001 and 

0.01, respectively), and did not alter intake in adult WKY or SHR.  

 

 

 

Figure 27. Cocaine dose-response functions based on infusions earned under a FR1 
schedule of reinforcement by adult WKY, WIS, and SHR, following vehicle or d-
amphetamine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains.  § p ≤ 0.05 compared, overall, to the same dose in WKY. ^ p ≤ 
0.05 compared to vehicle treatment in the same strain.  
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 Analyses of the cocaine dose-response functions based on the number of active 

lever responses (Figure 28) were similar to the infusions analysis. For the three-way 

ANOVA, differences in strain (F (2, 40) = 30.1, p ≤ 0.001) and dose (F (5, 200) = 50.3, p 

≤ 0.001) were observed. There was also a strain X dose interaction (F (10, 200) = 7.1, p ≤ 

0.001), and a trend towards a strain X treatment interaction (F (2, 40) = 2.8, p ≤ 0.07). 

SHR made more active lever responses than WKY and WIS for 0.003, 0.01, 0.03, and 0.1 

mg/kg cocaine (ps ≤ 0.001). Adolescent d-amphetamine treatment reduced active lever 

responses for 0.1 and 0.3 mg/kg cocaine in adult WIS (p ≤ 0.001 and 0.05, respectively), 

and did not alter active responses in adult WKY or SHR. Analysis of inactive responding 

during FR1 dose-response testing also revealed a strain difference (F (2, 40) = 4.3, p ≤ 

0.02). SHR made more inactive responses (59.1 ± 16.7) than WKY (9.6 ± 1; p ≤ 0.02).  

 

 

Figure 28. Cocaine dose-response functions based on active lever responses made 
under a FR1 schedule of reinforcement by adult WKY, WIS, and SHR, following 
vehicle or d-amphetamine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 
compared to both other strains.  § p ≤ 0.05 compared, overall, to the same dose in 
WKY. ^ p ≤ 0.05 compared to vehicle treatment in the same strain.  
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Experiment 8: Progressive-Ratio Cocaine Dose-Response Functions in Adulthood 

Following Adolescent d-Amphetamine Treatment 

 

  Experiment 8 sought to reproduce findings of Experiment 3, showing that the 

motivating influence of cocaine reinforcement is elevated in adult SHR compared to 

WKY or WIS, such that SHR work harder to earn cocaine reinforcement, earn more 

cocaine infusions and make more active lever responses across a range of doses under a 

PR schedule. Experiment 8 also tested the hypothesis that, in contrast to the effects of 

methylphenidate, treatment with a clinically relevant dose of d-amphetamine during 

adolescence does not increase the efficacy of cocaine reinforcement in adult SHR after 

adolescent treatment is discontinued. 

 

Materials and Methods 

 Cocaine self-administration procedures in Experiment 8 were identical to those 

detailed in Experiment 3. Briefly, after rats returned to baseline levels of responding for 

0.3 mg/kg cocaine on the FR1 schedule in Experiment 7, a PR schedule of reinforcement 

was instituted. This schedule required rats to press the active lever an incrementally 

greater number of times to earn each subsequent cocaine infusion. In Experiment 8, self-

administration sessions were terminated when rats failed to reach the next response 

requirement within 1 hour or after 4.5 hours had elapsed, which ever occurred first. After 

stable levels of responding for 0.3 mg/kg were established under the PR schedule, 
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cocaine test doses (0.01 - 1.0 mg/kg) were substituted in descending order, with 2-3 

consecutive sessions allocated to each dose. Baseline responding was reestablished for 

0.3 mg/kg cocaine after the full PR dose-response function was completed. One vehicle- 

and one d-amphetamine-treated WKY and an additional d-amphetamine-treated SHR 

expired prior to completing Experiment 8, and were thus excluded from Experiment 8 

data analyses. At the end of Experiment 8, animals were humanely euthanized with an 

overdose of sodium pentobarbital (Euthasol).  

 

 Data Analysis. Dependent measures for Experiment 8 included PR breakpoints, 

the number of cocaine infusions earned, and active and inactive lever responses for each 

cocaine dose. Measures were analyzed by three-factor (strain X treatment X dose) 

ANOVAs, with repeated measures for dose, followed by post-hoc Tukey tests. 

 

Results 

 Cocaine dose-response functions based on the PR breakpoint are shown in Figure 

29. Three-way ANOVA identified differences in strain (F (2, 37) = 42.6, p ≤ 0.001) and 

dose (F (3, 111) = 71.6, p ≤ 0.001). There was also a significant strain X dose interaction 

(F (6, 111) = 6.5, p ≤ 0.001) and a trend towards a treatment difference (F (1, 37) = 3.2, p 

≤ 0.08). SHR reached higher breakpoints than WKY and WIS across all cocaine doses 

(ps ≤ 0.001, except for 0.01 mg/kg where ps ≤ 0.05). Adolescent d-amphetamine 

treatment reduced PR breakpoints in adult WIS at 0.3 and 1.0 mg/kg cocaine (p ≤ 0.05 
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and 0.001, respectively), and did not significantly alter PR breakpoints in adult WKY or 

SHR.  

 

 

 The PR cocaine dose-response functions based on the number of cocaine 

infusions earned are shown in Figure 30. Three-way ANOVA revealed differences in 

strain (F (2, 37) = 43.6, p ≤ 0.001), treatment (F (1, 37) = 5.8, p ≤ 0.02), and dose (F (3, 

111) = 120.4, p ≤ 0.001). There was also a treatment X dose (F (3, 111) = 3.4, p ≤ 0.02) 

and strain X treatment X dose (F (6, 111) = 2.2, p ≤ 0.05) interaction, and a trend towards 

a strain X treatment interaction (F (2, 37) = 2.8, p ≤ 0.07). Overall, SHR earned more 

cocaine infusions than WKY and WIS across all cocaine doses (ps ≤ 0.001). Rats treated 

with d-amphetamine during adolescence earned fewer cocaine infusions than vehicle-

 

Figure 29. Cocaine dose-response functions, based on breakpoints reached under a 
PR schedule of reinforcement, by adult WKY, WIS, and SHR following vehicle or d-
amphetamine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains. ^ p ≤ 0.05 compared to vehicle treatment in the same strain.  
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treated rats at 0.3 and 1.0 mg/kg cocaine (p ≤ 0.05 and 0.01, respectively). More 

specifically, adolescent d-amphetamine reduced cocaine intake in adult WIS at 0.3 and 

1.0 mg/kg cocaine (p ≤ 0.003 and 0.001, respectively), and did not significantly alter 

cocaine intake in adult WKY or SHR.  

 

 

 

 The PR cocaine dose-response functions based on active lever responses are 

shown in Figure 31. For the three-way ANOVA, differences in strain (F (2, 37) = 39, p ≤ 

0.001) and dose (F (3, 111) = 62.7, p ≤ 0.001) were observed, as well as a strain X dose 

interaction (F (6, 111) = 6.3, p ≤ 0.001). SHR made more active lever responses than 

WKY and WIS (all dose ps ≤ 0.001, except for 0.01 mg/kg where ps ≤ 0.06). Rats treated 

 

Figure 30. Cocaine dose-response functions, based on infusions earned under a PR 
schedule of reinforcement, by adult WKY, WIS, and SHR following vehicle or d-
amphetamine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains. ^ p ≤ 0.05 compared to vehicle treatment in the same strain.  
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with d-amphetamine during adolescence made fewer active lever responses than vehicle-

treated rats at 1.0 mg/kg cocaine (p ≤ 0.02). More specifically, adolescent d-amphetamine 

reduced active lever responding in adult WIS at 1.0 mg/kg cocaine (p ≤ 0.001). There 

was also a trend towards reduced active lever responding at 0.3 mg/kg cocaine in d-

amphetamine-treated WIS (p ≤ 0.07). Adolescent d-amphetamine did not alter active 

lever responding in adult WKY or SHR.  

 

 

 For inactive lever responding under the PR schedule, there was a main effect of 

dose (F (3, 111) = 2.6, p ≤ 0.05), although post-hoc testing did not reveal any significant 

differences between cocaine doses. There was also a trend towards a strain difference in 

 

Figure 31. Cocaine dose-response functions, based on active lever responding under 
a PR schedule of reinforcement, by adult WKY, WIS, and SHR following vehicle or 
d-amphetamine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains. ^ p ≤ 0.05 compared to vehicle treatment in the same strain.  
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inactive lever responding (F (2, 37) = 2.8, p ≤ 0.07). Further testing revealed that SHR 

overall made more inactive responses (111.8 ± 48) than WKY (7.8 ± 1.4, p ≤ 0.05).  

 

Experiment 9: Cocaine Cue Reactivity and Relapse Behavior in Adulthood 

Following Adolescent d-Amphetamine Treatment 

 

 Experiment 9 sought to reproduce findings in Experiment 4, showing that adult 

SHR are more reactive to cocaine-related cues than WKY and WIS, such that SHR emit 

more cocaine-seeking responses under a second-order schedule of cocaine delivery and 

cue presentation. Experiment 9 also tested the hypothesis that treatment with a clinically 

relevant dose of d-amphetamine during adolescence does not increase cocaine cue 

reactivity in adult SHR, after adolescent treatment is discontinued.  

 

Materials and Methods 

 Experiment 9a: Maintenance Testing under a Second-Order Schedule. 

Experiment 9 involved animals from Experiment 5, which underwent strategy set shift 

testing and were treated with d-amphetamine or saline during adolescence. Surgical and 

cocaine self-administration procedures were identical to those followed in Experiment 4, 

except that rats in Experiment 9 did not require lever training for food to facilitate 

acquisition of responding, due to prior lever-pressing experience in Experiment 5. 

Briefly, on P67, animals completing Experiment 5 underwent surgical implantation of i.v. 

catheters. On P77, following surgical recovery, rats began self-administration training for 
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0.3 mg/kg cocaine under an FR1 schedule, and were incrementally trained to a terminal 

fixed-interval (FI)-based second-order schedule, designated FI 5-min [FR5:S]. Training 

on the second-order schedule continued until rats reached stable levels of responding, 

designated the maintenance testing phase. Final group sizes for Experiment 9 were n = 8 

for vehicle- and d-amphetamine-treated WKY and WIS as well as for vehicle-treated 

SHR; the group size for d-amphetamine-treated SHR was n = 9.  

 

 Experiment 9b: Extinction Training. Following completion of the maintenance 

testing phase, rats underwent response extinction training as described in Experiment 4b. 

Extinction training continued for a minimum of 10 sessions or until criterion was 

reached, defined as active lever responding that was ≤ 10% of the maintenance baseline 

for 3 consecutive sessions (constituting the extinction baseline). If rats did not reach 

criterion, a maximum of 21 extinction sessions was imposed. 

 

 Experiment 9c: Cue-Induced Reinstatement Testing. Following achievement of 

extinction criterion, rats underwent cue-induced reinstatement testing as described in 

Experiment 4c. All rats underwent 7 reinstatement sessions. At the end of Experiment 9c, 

all animals were humanely euthanized with an overdose of sodium pentobarbital 

(Euthasol). 

 

 Data Analysis. Dependent measures in Experiment 9 included the number of 

cocaine infusions earned, active and inactive lever responses, and the number of sessions 
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required to reach extinction criterion. Measures were analyzed by three-factor (strain X 

treatment X reinstatement session, or strain X treatment X phase) ANOVAs, with 

repeated measures for session or phase (extinction vs. reinstatement), followed by post-

hoc Tukey tests.  

 

Results 

 Experiment 9a: Maintenance Testing under a Second-Order Schedule. Cocaine 

intake during maintenance testing under the second-order schedule is depicted in Figure 

32. Strains differed in cocaine intake (F (2, 43) = 12.3, p ≤ 0.001), with adult SHR 

earning more cocaine infusions than WKY and WIS control strains (p ≤ 0.001 and 0.03, 

respectively). Main and interaction effects of treatment were not significant, and further 

analysis confirmed that adolescent d-amphetamine treatment did not alter cocaine intake 

in any strain during maintenance testing.  
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 Active lever responses during maintenance testing and during the first drug-free 

interval of the final maintenance testing session are shown in Figures 33 and 34, 

respectively. Analysis of active lever responding during maintenance testing revealed 

strain differences (F (2, 43) = 13.6, p ≤ 0.001). Overall, adult SHR made more active 

lever responses than WKY and WIS control strains (p ≤ 0.001 and 0.005, respectively). 

During the first drug-free interval, there was also a main effect of strain (F (2, 43) = 20.2, 

p ≤ 0.001). Adult SHR again made more active lever responses than WKY and WIS 

control (p ≤ 0.005 and 0.001, respectively). Main and interaction effects of treatment 

were not significant. Further analysis additionally confirmed that adolescent d-

amphetamine treatment did not alter cocaine seeking in any strain during maintenance 

testing. Inactive lever responses also did not differ by strain or treatment. 

 

Figure 32. Cocaine intake during maintenance testing under a second-order schedule 
of reinforcement in adult WKY, WIS, and SHR, following vehicle or d-amphetamine 
treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to both other 
strains.  
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Figure 33. Active lever responding averaged across the maintenance testing baseline 
in adult WKY, WIS, and SHR, following vehicle or d-amphetamine treatment during 
adolescence (Mean ± SEM). * p ≤ 0.05 compared to both other strains.  

 

Figure 34. Active lever responding during the first drug-free interval of the final 
maintenance testing session in adult WKY, WIS, and SHR, following vehicle or d-
amphetamine treatment during adolescence (Mean ± SEM). * p ≤ 0.05 compared to 
both other strains.  
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 Experiment 9b: Extinction Training. The number of sessions required for rats to 

reach extinction criterion is shown in Figure 35. Strains differed in the number of 

sessions (F (2, 43) = 8.1, p ≤ 0.001), with SHR requiring more sessions to extinguish 

responding than WKY or WIS controls (p ≤ 0.01 and 0.001, respectively). Analysis of the 

extinction baseline (Figure 36) also revealed strain differences (F (2, 43) = 4, p ≤ 0.02). 

SHR and inbred WKY controls made relatively more active lever responses than the 

outbred WIS control strain during the extinction baseline (p ≤ 0.05 and 0.04, 

respectively). However, all strains extinguished to less than 10% of the maintenance 

baseline level of responding. Inactive lever responses during the extinction baseline also 

differed by strain (F (2, 43) = 3.7, p ≤ 0.03), with SHR making more inactive responses 

(31 ± 12) than WIS (6 ± 1; p ≤ 0.03), but not WKY (9 ± 2). Adolescent d-amphetamine 

treatment did not alter any measure across strains during extinction training in adult rats.  

 

 

Figure 35. Number of sessions required to reach extinction criterion in adult WKY, 
WIS, and SHR, following vehicle or d-amphetamine treatment during adolescence 
(Mean ± SEM). * p ≤ 0.05 compared to both other strains.  
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 Experiment 9c: Cue-Induced Reinstatement Testing. The number of active lever 

responses during reinstatement testing, averaged across the seven sessions of testing as 

well as during the first hour of the extinction baseline for comparison, is shown in Figure 

37. Three-way ANOVA revealed a main effect of phase (F (1, 43) = 116, p ≤ 0.001) and 

strain (F (2, 43) = 41.2, p ≤ 0.001), as well as a strain X phase interaction (F (2, 43) = 

19.5, p ≤ 0.001). Post-hoc testing of the interaction indicated that cue re-exposure 

reinstated cocaine-seeking responses above extinction levels in all groups (ps ≤ 0.001). 

Adult SHR reinstated more cocaine-seeking responses than WKY and WIS (ps ≤ 0.001). 

SHR also emitted more responses during the first hour of the extinction baseline than 

WKY and WIS (ps ≤ 0.03). There were no treatment differences in active lever responses 

averaged across the seven sessions of reinstatement testing.  

 

Figure 36. Active lever responding during the extinction baseline, expressed as a 
percentage of the maintenance testing baseline, in adult WKY, WIS, and SHR, 
following vehicle or d-amphetamine treatment during adolescence (Mean ± SEM).    
# p ≤ 0.05 compared to WIS overall. 
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 Effects of d-amphetamine emerged when cocaine-seeking responses were 

analyzed within the seven individual reinstatement test sessions, as shown in Figure 38. 

Three-way ANOVA revealed a main effect of strain (F (2, 42) = 32.8, p ≤ 0.001) and 

reinstatement session (F (6, 252) = 2.5, p ≤ 0.02). Further testing revealed that, during 

session 1 of reinstatement, SHR reinstated more active lever responses than the WKY 

and WIS controls overall (p ≤ 0.001). Moreover, adult SHR treated with adolescent d-

amphetamine reinstated fewer active lever responses than SHR treated with vehicle (p ≤ 

0.003). However, this reduction was not maintained across reinstatement sessions in 

amphetamine-treated SHR. For each subsequent session of reinstatement testing, strain 

differences were sustained (SHR > WKY = WIS; ps ≤ 0.008). In WKY or WIS, 

 

Figure 37. Active lever responding averaged across the seven reinstatement test 
sessions in adult WKY, WIS, and SHR, following vehicle or d-amphetamine 
treatment during adolescence. For comparison, active lever responses during the first 
hour of extinction training were averaged across the extinction baseline and are 
depicted in the gray bars (Mean ± SEM). * p ≤ 0.05 compared to both other strains.  
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adolescent d-amphetamine treatment did not alter active lever responses during session 1 

or on any other reinstatement test session.  

 For inactive lever responses, three-way ANOVA revealed a session X strain X 

treatment interaction (F (12, 252) = 2.2, p ≤ 0.01). Further testing indicated that, overall, 

SHR made more inactive lever responses than the WKY and WIS controls (p ≤ 0.03). 

Moreover, during session 1 of reinstatement, adult SHR treated with adolescent d-

amphetamine made fewer inactive lever responses than SHR treated with vehicle (p ≤ 

0.006). In WKY and WIS, adolescent d-amphetamine treatment did not alter inactive 

lever responses during session 1 or on any other reinstatement test session.  

 

 

 

Figure 38. Active lever responses during each reinstatement test session in adult 
WKY, WIS, and SHR, following vehicle or d-amphetamine treatment during 
adolescence. For comparison, active lever responses during the first hour of 
extinction (Ext) training, averaged across the extinction baseline, are also shown 
(Mean ± SEM). * p ≤ 0.05 compared to both other strains. ^ p ≤ 0.05 compared to 
vehicle treatment in the same strain. 
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Discussion 

 

Strain Differences in Prefrontal Cortex Functioning in Adolescence  

 Experiment 5 employed an operant version of the strategy set-shifting task to 

assess PFC functioning during adolescence in the SHR model of ADHD. During the 

initial set formation, SHR exhibited slower and more variable reaction times than WIS. 

These results are consistent with observations in individuals with ADHD who 

demonstrate high between-subject reaction time variability, and in some studies, slower 

reaction time, compared to controls without ADHD (Kofler et al, 2013). High reaction 

time variability is, moreover, a robust and highly replicable feature of ADHD and may 

contribute to other symptoms, such as poor sustained attention, behavioral inhibition, and 

working memory deficits (Kofler et al, 2013). Interestingly, these symptoms have been 

attributed to altered frontal cortex and DAT functioning (Kofler et al, 2013; MacDonald 

et al, 2006), which also are observed in SHR (Li et al, 2007; Mill et al, 2005; Miller et al, 

2014; Roessner et al, 2010; Watanabe et al, 1997).  

 During the initial set formation, adolescent SHR did not show deficits in speed of 

learning or choice accuracy, or have a greater number of trial omissions relative to WKY 

or WIS, consistent with prior work (Harvey et al, 2013). It is possible that SHR more 

readily respond than WKY or WIS for reinforcement under task conditions that do not 

require complex behavioral flexibility, such as during acquisition of the initial attentional 

set (Harvey et al, 2013; Johansen et al, 2002). However, WKY made more trial omissions 

and had slower and more variable reaction times than WIS, and took longer to reach 
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learning criterion than both WIS and SHR. The latter finding was observed both in the 

current investigation and in prior work (Harvey et al, 2013). Therefore, it is possible that 

adolescent WKY are less proficient in their ability to acquire the initial set relative to the 

other two strains. Although WKY are frequently used as an inbred control strain for SHR 

(Russell et al, 2005), the WKY, particularly from Charles River Laboratories in the USA, 

also have been used as a model of anxiety, depression, and more recently, autism 

spectrum disorder (Paré et al, 1994; Paré & Kluczynski, 1997; Zhang-James et al, 2014). 

Compared to outbred rat strains, WKY show reduced locomotor activity and social 

exploratory behavior in the open field test, elevated plus maze, and three-chamber social 

interaction test, as well as increased learned helplessness and immobility in forced swim 

and defensive burying paradigms (Pardon et al, 2002; Paré et al, 1994; Zhang-James et al, 

2014). Furthermore, in reinforcement-based tasks, WKY earn fewer sucrose pellets than 

WIS under FR1 and PR schedules (De La Garza II, 2005). Behavioral abnormalities 

exhibited by WKY have been attributed to reduced cortical and hippocampal volume and 

plasticity, decreased D1 receptor and DAT binding in striatum, and decreased dopamine 

and dopamine metabolite levels in PFC relative to outbred rat strains (Cominski et al, 

2014; De La Garza II & Mahoney III, 2004; Jiao et al, 2003; Novick et al, 2008). 

Importantly, the initial set formation of the strategy set shifting task is dependent on 

dopaminergic projections to frontal cortex as a whole, as 6-OHDA lesions in frontal 

cortex, but not caudate nucleus, impaired acquisition of an initial set (Crofts et al, 2001). 

Decreased dopamine levels in frontal cortex of WKY (De La Garza II & Mahoney III, 

2004) may therefore contribute to slower learning of the initial strategy set in this strain. 
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Although the WKY have been proposed to be the most appropriate comparator strain for 

SHR (Harvey et al, 2013; Russell et al, 2005), these findings emphasize the importance 

of concurrent evaluation of WKY and an outbred control when examining set shifting 

performance in SHR. 

 In contrast to the initial set formation, the set shift phase of the task necessitates 

behavioral flexibility, requiring rats to switch responding from a previously learned 

visual strategy to a spatial strategy. Consistent with previous studies (Harvey et al, 2013) 

and as hypothesized, adolescent SHR in the current study showed the greatest deficits 

during the set shift phase. Specifically, SHR exhibited slower and more variable reaction 

times, and made more trial omissions and regressive errors than both control strains. On 

the Wisconsin Card Sorting Task, individuals with ADHD exhibit poor behavioral 

flexibility by making more perseverative responses and completing fewer categories than 

typically developing controls (Kado et al, 2012; Reeve & Schandler, 2001; Seidman et al, 

1997). Poor behavioral flexibility and other ADHD-related symptoms, such as 

hyperactivity, inattention, low motivation, and poor motor timing and response inhibition, 

may arise from abnormal neural activation and connectivity in frontostriatal circuitry 

both in humans and in SHR (Cubillo et al, 2012; Rubia et al, 2011; Warton et al, 2009). 

For example, as reviewed in Chapter One, individuals with ADHD exhibit elevated 

frontostriatal glutamate transmission (Courvoisie et al, 2004; MacMaster et al, 2003), and 

SHR exhibit greater potassium-evoked glutamate release in PFC (Miller et al, 2014). 

Moreover, glutamate application to substantia nigra, which receives excitatory 

projections from mPFC, results in greater dopamine release in the substantia nigra of 
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SHR compared to controls (Warton et al, 2009). Elevated dopamine activity in substantia 

nigra and striatum may also contribute to other neurochemical and genetic abnormalities 

shared by SHR and individuals with ADHD. These include increased DAT expression in 

striatum (Faraone et al, 2005; Mill et al, 2005; Roessner et al, 2010; Watanabe et al, 

1997) and decreased dopamine D4 receptor gene expression and protein synthesis in 

PFC, the latter of which is involved in regulating PFC glutamate activity (Li et al, 2007; 

Miller et al, 2014). Because many studies investigating the neurobiological correlates of 

the ADHD phenotype in SHR have employed WKY as the sole comparator strain, these 

comparisons should be interpreted cautiously. Nonetheless, altered frontostriatal 

glutamate and dopamine activity, among other neurochemical abnormalities, likely 

contribute to poor SHR performance on the set shift. Previous studies have established 

that dopamine and glutamate interactions in mPFC are critical for behavioral flexibility 

and strategy switching (Floresco et al, 2008) and that dopamine and glutamate 

interactions in substantia nigra are critical for initiation of locomotor activity (Warton et 

al, 2009).  

 During the set shift phase, WKY reached learning criterion faster than both WIS 

and SHR and made fewer errors than WIS. It is possible that WKY exhibit superior 

behavioral flexibility in strategy shifting compared to WIS or SHR. However, given that 

WKY were slower in acquiring the initial set, it is also possible that WKY experienced 

less proactive interference during the set shift than WIS or SHR. Proactive interference 

from a previously relevant stimulus dimension exacerbates cognitive inflexibility when 

individuals are required to attend to a new stimulus feature (Dick, 2012). Previous work 
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identified reduced proactive interference in WKY in an eyeblink conditioning paradigm, 

whereby pre-exposure to unconditioned or conditioned stimuli did not alter acquisition 

rate of the eyeblink response in WKY, but slowed acquisition in outbred Sprague-Dawley 

rats (Ricart et al, 2015). Though it is unclear to what degree proactive interference in 

classical conditioning generalizes to operant conditioning, it is plausible that weakened 

acquisition, memory storage, or retrieval of the initially reinforced visual strategy by 

WKY in the current study could lead to reduced proactive interference during subsequent 

testing phases. This would be manifested as fewer errors and an apparently faster ability 

to acquire new response strategies (Kantak et al, 2014).  

 Reduced proactive interference may also help to explain some of the current 

observations during the reversal learning phase of the set shift task. During reversal 

learning, SHR continued to show slower and more variable reaction times, consistent 

with the ADHD phenotype. However, WKY and SHR reached the reversal learning 

criterion faster than WIS. Moreover, during this phase WKY made fewer trial omissions 

and SHR made fewer perseverative errors than WIS rats. It is possible that, relative to 

SHR and WKY, WIS exhibit deficits in reversal learning, which is dependent on OFC 

functioning (Ghods-Sharifi et al, 2008). However, given the behavioral and 

neurobiological abnormalities in WKY and SHR reviewed above, an alternative 

explanation is that WKY and SHR experienced less proactive interference than WIS 

during reversal learning. Deficient learning or memory of the previously acquired 

behavioral strategies by WKY and SHR would lead to the appearance of superior 

performance relative to WIS during the reversal learning phase. Conversely, normative 
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learning and retrieval of the previously acquired behavioral strategy by WIS would lead 

to increased proactive interference, resulting in slower speed of reversal learning and a 

greater number of perseverative errors as observed in the current study.  

 

Effects of d-Amphetamine Treatment on Prefrontal Cortex Functioning in Adolescence 

 As hypothesized, d-amphetamine improved several behavioral measures in 

adolescent SHR during the set shift phase. Specifically, SHR treated with d-amphetamine 

reached the set shift learning criterion faster, were more accurate in response choices, and 

made fewer regressive and never-reinforced errors than vehicle-treated SHR. Although d-

amphetamine did not improve reaction time or reaction time variability in SHR during 

any phase of the set shift task, it is rare that all ADHD symptoms are alleviated by single 

drug therapy (Wilens et al, 2009). It is possible that a higher d-amphetamine dose would 

improve additional ADHD-related deficits in SHR. For example, d-amphetamine doses of 

0.64, 1.27, and 1.91 mg/kg improved hyperactivity and sustained attention in adult SHR, 

but only 1.27 and 1.91 mg/kg of d-amphetamine improved impulsivity in adult SHR 

(Sagvolden & Xu, 2008). However, these higher doses are also likely to produce plasma 

levels and monoamine responses that exceed clinical relevance, in contrast to the 0.5 

mg/kg dose used in the current work (Heijtz et al, 2003). Nonetheless, the current 

findings indicate that d-amphetamine selectively improves behavioral flexibility in SHR 

without altering performance in WKY or WIS control strains.   
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Strain Differences in Cocaine Abuse Risk and Cocaine Cue Reactivity in Adulthood 

 In Experiment 6, adult SHR spontaneously acquired cocaine self-administration 

faster, earned more cocaine infusions, and made more cocaine-maintained responses than 

adult WKY and WIS controls, consistent with the findings in Aim 1. SHR also exhibited 

increased cocaine abuse risk in Experiments 7 and 8, as reflected by vertical (upward) 

shifts in FR1 and PR cocaine dose-response functions. These results indicate that the 

efficacy and motivating influence of cocaine reinforcement is augmented in SHR, in 

accord with the results of Aim 1 and with prior studies (Harvey et al, 2011; Piazza et al, 

2000; Somkuwar et al, 2013a). Moreover, Experiment 9 reproduced findings showing 

that SHR were more reactive to cocaine-related cues than WKY and WIS, both when 

cocaine was available (maintenance testing) and was not available (reinstatement testing) 

for self-administration.  

 One notable difference across experiments is that SHR took longer to extinguish 

lever responding than WKY and WIS in Experiment 9. Conversely, in Experiment 4, 

both SHR and WKY took longer to extinguish lever responding than WIS. The latter 

result was interpreted to suggest that extinction learning was augmented in the WIS 

strain, rather than SHR exhibiting an extinction deficit. However, other studies have 

suggested that, like individuals with ADHD, SHR exhibit slower extinction rates than 

controls (Brackney et al, 2012; Kollins et al, 1997). Moreover, slower extinction in SHR 

may be a result of abnormal nigrostriatal dopamine functioning that conveys low 

sensitivity to changes in reinforcement contingencies, a deficit also found in individuals 
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with ADHD (Kollins et al, 1997; Sagvolden et al, 2005). The findings of Experiment 9, 

in conjunction with prior work, suggest that SHR do exhibit deficits in extinction 

learning. Nonetheless, SHR did not differ from WKY in the relative magnitude to which 

responding was extinguished, and all strains and treatment groups extinguished active 

lever responding to ≤ 10% of the self-administration baselines, on average. High levels of 

cocaine seeking by SHR during reinstatement testing thus remain reflective of heightened 

cocaine cue reactivity in this preclinical model of ADHD.  

 Another notable behavioral difference in Experiment 9 vs. Experiment 4 was that 

both vehicle- and drug-treated rats of WKY, WIS, and SHR strains exhibited lower rates 

of lever responding overall in Experiment 9. This may relate to the fact that the adult rats 

used in Experiment 9 had prior lever training experience during adolescence, and 

exposure to chocolate pellet reinforcers, from engaging in the strategy set shifting task 

(Experiment 5). In contrast, the adult rats used in Experiment 4 were naïve to operant 

chambers and had no lever training experience until adulthood. Interestingly, a similar 

effect was observed in experiments evaluating methylphenidate and atomoxetine 

treatments, wherein adult rats that participated in strategy set shifting during adolescence 

exhibited reduced rates of lever responding in adulthood, compared to rats that were 

naïve to operant chambers until adulthood (Jordan et al, 2014). Together, these findings 

suggest that lever pressing or reinforcer experience during adolescence may influence the 

overall magnitude of responding for cocaine under the second-order schedule. However, 

despite these differences in overall rates of responding, the same relative magnitude of 

strain differences was observed in all experiments. That is, SHR consistently made more 
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cocaine-seeking responses and earned more cocaine infusions than WKY and WIS 

control strains. The fact that these strain differences have been reproduced in multiple 

experiments run at different time points and, in the case of the methylphenidate, by a 

different investigator, indicates that the findings are highly robust, and further 

emphasizes that the SHR is a valuable model of comorbid ADHD, cocaine abuse, and 

heightened cocaine cue reactivity.  

 In addition to elevated cocaine abuse risk and cue reactivity, SHR generally 

exhibited increased inactive lever responding compared to control strains, particularly 

relative to the inbred WKY. Notably, hyperactivity in the SHR has previously been 

criticized as apparent only relative to WKY, which exhibits reduced locomotor activity 

compared to outbred rats in a number of behavioral tests (Kantak et al, 2008; Pardon et 

al, 2002; Paré & Kluczynski, 1997; Zhang-James et al, 2014). However, in the current 

work, WKY and WIS did not differ on any measure of cocaine self-administration, with 

the exception of modest differences during extinction training and responding for cocaine 

under the FR1 schedule. These observations contradict the possibility that WKY 

hypoactivity influenced the current findings. Nonetheless, these findings again emphasize 

the importance of concurrent evaluation of WKY and an outbred control when examining 

set shifting performance in SHR. 
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Effects of Adolescent d-Amphetamine Treatment on Cocaine Abuse Risk and Cue 

Reactivity in Adulthood 

 As hypothesized, adolescent d-amphetamine treatment did not increase cocaine 

abuse risk in adult rats, but was instead protective in SHR and WIS across several 

measures. Specifically, in adult SHR, adolescent d-amphetamine reduced cocaine intake 

and active lever responding during acquisition of cocaine self-administration, and 

modestly reduced cocaine cue reactivity on the first day of reinstatement testing. The 

effects of adolescent atomoxetine treatment were similar, except that atomoxetine 

reduced cocaine-seeking responses across the entire seven-day reinstatement test phase in 

adult SHR. In contrast, adolescent methylphenidate treatment augmented multiple aspects 

of cocaine abuse risk in SHR, as described in the preceding chapters (Baskin et al, 2015; 

Harvey et al, 2011; Jordan et al, 2014). These findings suggest that d-amphetamine is a 

viable alternative to methylphenidate for teenagers with ADHD who are initiating 

treatment.  

 Surprisingly, d-amphetamine had the most robust effects on cocaine abuse risk in 

adult WIS. In this outbred control strain, adolescent d-amphetamine treatment delayed 

acquisition of cocaine self-administration, and reduced cocaine intake as well as active 

lever responding under FR1 and PR schedules of reinforcement in adulthood. Downward 

shifts in cocaine dose-response functions reflect reductions in the efficacy and motivating 

influence of cocaine reinforcement (Piazza et al, 2000). Notably, these effects were 

observed months after d-amphetamine treatment had been discontinued. Although 
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adolescent methylphenidate did not alter FR1 or PR dose-response functions in adult 

WIS, it decreased the speed to acquire cocaine self-administration in this strain, similar to 

d-amphetamine (Harvey et al, 2011).  

 In contrast to the moderately beneficial effects of adolescent d-amphetamine in 

SHR and WIS, d-amphetamine treatment speeded acquisition of cocaine self-

administration in adult WKY. Interestingly, adolescent atomoxetine treatment also 

speeded acquisition of cocaine self-administration in adult WKY, whereas adolescent 

methylphenidate had no effect on cocaine abuse risk in this strain (Harvey et al, 2011; 

Somkuwar et al, 2013a). Fortunately, these medications did not alter any other aspects of 

cocaine abuse risk in WKY. The observations of altered cocaine abuse risk following 

adolescent d-amphetamine treatment in WKY and WIS further emphasize the necessity 

of assessing both inbred and outbred control strains when examining cocaine abuse risk 

in the SHR, as well as the importance of accurate diagnosis of ADHD. The implication of 

these findings, as well as the neurochemical mechanisms that may contribute to the 

effects of adolescent ADHD medications in these three strains, are explored in greater 

detail in Chapter Four. 
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CHAPTER FOUR. 

 

General Discussion 

 

 This dissertation sought to identify alternative medications to methylphenidate 

that would not increase cocaine abuse risk in newly diagnosed teenagers with ADHD, 

using a preclinical model. Experiments in Aim 1 focused on the effects of the non-

stimulant medication, atomoxetine, which inhibits NET function. Experiments in Aim 2 

focused on an alternative stimulant medication, d-amphetamine, which a different 

mechanism of action than methylphenidate. The significance of the findings is discussed 

in the subsequent sections.  

 

Importance of the Spontaneously Hypertensive Rat Model of ADHD 

 The results of this dissertation confirm and extend prior studies on cognitive 

functioning and cocaine abuse risk in the SHR model. For example, adolescent SHR 

exhibited deficits in behavioral flexibility during the set shift phase of the strategy set 

shifting task, consistent with prior studies (Harvey et al, 2013). Adolescent SHR also 

exhibited deficits in reaction time and reaction time variability during the initial set 

formation and reversal learning, compared to control strains. High reaction time 

variability is a novel finding in adolescent SHR, and is a well-reproduced feature of 

ADHD (Kofler et al, 2013). This finding thus further verifies the utility of adolescent 

SHR as a preclinical model of ADHD.  
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 During adulthood, SHR earned more cocaine infusions and made more active 

lever responses for cocaine than control strains throughout all experiments. More 

specifically, SHR acquired cocaine self-administration faster and were more sensitive to 

the efficacy and motivating influence of cocaine reinforcement, reflected in upward shifts 

in FR1 and PR cocaine dose-response functions, consistent with prior studies (Harvey et 

al, 2011). The novel finding of the current work regarding cocaine abuse risk is that SHR 

were more reactive to cocaine-related cues. High cue reactivity in SHR was found when 

cocaine was available (maintenance testing) and was not available (reinstatement testing 

and the first drug-free interval of maintenance testing) for self-administration. Moreover, 

the current work also demonstrated that SHR take longer to extinguish lever responding, 

consistent with observations in ADHD (Brackney et al, 2012; Kollins et al, 1997).  

 Sign tracking, a Pavlovian conditioned approach behavior associated with drug 

abuse (Tomie et al, 2008), may contribute to heightened incentive salience of cocaine-

associated cues in animals that are vulnerable to cocaine addiction, such as the SHR 

(Yager & Robinson, 2013). Whereas goal tracking involves approach to an unconditioned 

stimulus, sign tracking involves compulsive approach to reward-related cues. Although 

Pavlovian conditioned approach behavior has not been evaluated directly in SHR, 

ADHD-related characteristics, such as impulsivity and poor sustained attention, are 

observed in SHR as well as in sign tracking rats (Sagvolden et al, 2005; Tomie et al, 

2008; Wooters & Bardo, 2011). Thus, it is possible that SHR also have a sign tracking 

phenotype, given their high degree of cocaine cue reactivity. Although further studies on 

cocaine cue reactivity in ADHD are needed, if the current findings in SHR are 
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translational, substance-dependent individuals with ADHD may uniquely benefit from 

cue-exposure therapy (Mitchell et al, 2013), which seeks to extinguish the saliency of 

drug-related cues, and is most effective in individuals with initially high cue reactivity 

(Unrod et al, 2013). Moreover, pharmacotherapies that enhance extinction of drug-related 

cues by targeting glutamate signaling (Achat-Mendes et al, 2012; Kaplan et al, 2011) 

may have relevance for individuals with ADHD, who exhibit altered frontostriatal 

glutamate activity (Courvoisie et al, 2004; MacMaster et al, 2003). 

 In summary, this dissertation further confirms that value of the SHR as a model of 

comorbid ADHD and cocaine abuse risk. Given the increase in cocaine abuse risk 

conveyed by adolescent methylphenidate treatment in SHR (Baskin et al, 2015; Harvey et 

al, 2011; Jordan et al, 2014), it is important to identify other medications for teenagers 

with ADHD.  

 

Significance of Adolescent Atomoxetine Treatment on Cocaine Abuse Risk in Adulthood 

 Experiments 1 through 4 examined the effects of administration of a 

therapeutically relevant dose of atomoxetine during adolescence on cocaine abuse risk in 

adulthood. The results of these experiments demonstrate that, in contrast to 

methylphenidate, adolescent atomoxetine treatment does not increase cocaine abuse risk 

in adult SHR, and may even modestly reduce cocaine cue reactivity in this strain. The 

effects of adolescent atomoxetine treatment on monoamine transporter function and 

expression in PFC may help to explain these findings, as summarized in Tables 1 through 

3. For example, OFC activation plays a critical role in cocaine seeking and cue reactivity 
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(Di Pietro et al, 2008; Kantak et al, 2009; Nelissen et al, 2012). One past study 

demonstrated that daily atomoxetine (1 mg/kg) during late adolescence (P40 - 54) 

increased NET mRNA in the OFC of adult outbred rats (Sun et al, 2012). However, 

mRNA levels often do not correlate with protein expression (Greenbaum et al, 2003). A 

more recent study demonstrated that daily atomoxetine (3 mg/kg) during adolescence 

(P21 - 42) decreased NET protein levels in the hippocampus of outbred rats, for up to 2 

months after treatment was discontinued (Udvardi et al, 2013). Both studies inferred an 

inhibitory effect of atomoxetine on neural signaling: the 1 mg/kg treatment regimen 

decreased synaptic plasticity markers in the OFC, including BDNF mRNA and 

phosphorylated CREB and ERK (Sun et al, 2012), and the 3 mg/kg treatment regimen 

decreased glutamate NMDA receptor subunit levels in the hippocampus and striatum 

(Udvardi et al, 2013). While it remains to be determined if adolescent treatment with 0.3 

mg/kg atomoxetine decreases NET function or has an inhibitory effect on OFC in adult 

SHR, these mechanisms may contribute to the modest decrease in cocaine cue reactivity 

observed in adult SHR when cocaine was not available for self-administration. In 

addition, chronic treatment with 0.3 mg/kg of atomoxetine during adolescence decreases 

DAT function and expression in the OFC of adult SHR (Somkuwar et al, 2013a), which 

may also contribute to the reduction in cocaine cue reactivity. Atomoxetine treatment 

during adolescence similarly decreased DAT function in OFC of adult WIS (Somkuwar 

et al, 2013a), and in the current work did not alter any aspect of cocaine abuse risk in this 

strain. 
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 Another variable that may confer protection against an increase in cocaine abuse 

risk is the failure of adolescent atomoxetine to augment DAT function in the mPFC in 

adulthood (Somkuwar et al, 2013a). In previous studies, further increases in the speed to 

acquire cocaine self-administration, the efficacy and motivating influence of cocaine 

reinforcement, and cocaine intake was observed following discontinuation of adolescent 

methylphenidate vs. vehicle treatment in adult SHR (Harvey et al, 2011; Jordan et al, 

2014). The same adolescent methylphenidate treatment regimen also selectively 

increased DAT function in mPFC of adult SHR (Somkuwar et al, 2013b). As reviewed in 

Chapter One, an increase in mPFC DAT function may contribute to an enhanced 

reinforcing value of cocaine. Notably, in contrast to its effects on cocaine intake, 

adolescent methylphenidate treatment did not alter cocaine seeking during maintenance 

or reinstatement testing and did not alter the number of sessions required to reach the 

extinction criterion in adult SHR (Jordan et al, 2014). Because adolescent 

methylphenidate further increased cocaine intake in SHR, it might be expected that cue 

reactivity also would be further increased. However, these results were consistent with 

prior findings in outbred rats showing that acute administration of methylphenidate did 

not alter cocaine seeking under a second-order schedule (Economidou et al, 2011).  

 In summary, although additional work is needed to confirm the mechanisms and 

signaling pathways involved, the protective effect of atomoxetine against increases in 

cocaine abuse risk likely relates to long-lasting effects on NET and DAT function in 

OFC, and a lack of effect on DAT function in mPFC. These findings suggest that 
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adolescent atomoxetine treatment may represent a safer medication than methylphenidate 

for newly diagnosed teenagers with ADHD. 

 It is important to note that adolescent atomoxetine speeded acquisition of cocaine 

self-administration in the inbred WKY control strain. Consistent with the proposed role 

of DAT in cocaine abuse risk, adolescent atomoxetine treatment increases DAT function 

in OFC of WKY (Somkuwar et al, 2013a). This neurochemical adaptation may contribute 

to an enhanced reinforcing value of cocaine in WKY when cocaine first became available 

for self-administration, by increasing the post-synaptic response to phasically released 

dopamine under conditions of low dopaminergic tone (Grace, 2001). WKY exhibit 

several abnormalities in monoamine transporter activity that may be uniquely altered by 

adolescent medications, leading to differential effects on cocaine abuse risk. For example, 

compared to outbred rats, WKY show decreased DAT density in the nucleus accumbens 

(Jiao et al, 2003), but increased NET binding in the hippocampus and amygdala (Tenjani-

Butt et al, 1994). Moreover, compared to WIS, WKY exhibit reduced serotonin levels in 

several brain regions involved in cocaine abuse, including the amygdala, hypothalamus, 

nucleus accumbens, substantia nigra, and dorsal raphe nucleus (Scholl et al, 2010). Scholl 

and colleagues (2010) suggest that altered serotonin levels may reflect a reduction in 

serotonin transporters (SERT) sites in WKY. Importantly, SERT knockout speeds 

acquisition of psychostimulant self-administration and increases sensitivity to cocaine 

(Homberg et al, 2008; Oakly et al, 2014). Although atomoxetine is considered a selective 

NET inhibitor, evidence exists that this drug also binds to SERT (Ding et al, 2014). 
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Atomoxetine may therefore contribute to faster acquisition of cocaine self-administration 

in WKY, by exacerbating pre-existing SERT dysfunction in this strain.  

 While the results of Aim 1 do not critically call the into question the safety of 

adolescent atomoxetine, the impact of atomoxetine on cocaine abuse risk in the WKY 

control strain nonetheless has at least two important implications. One is that it is critical 

to evaluate both inbred and outbred control strains when examining the effects of 

adolescent medication in the SHR model of ADHD. In the current work, if WIS were the 

sole comparator strain, adolescent atomoxetine would appear to have few negative effects 

on cocaine abuse risk. Conversely, if WKY were the sole comparator strain to the SHR, 

adolescent atomoxetine may appear to be unsafe for teenagers without ADHD. In either 

case, with the use of only one control strain the consequences of adolescent atomoxetine 

on cocaine abuse risk would have been misrepresented.  

 The second implication of the results of Aim 1 is the critical importance of 

accurate diagnosis and treatment of ADHD. Because atomoxetine speeded acquisition of 

cocaine self-administration in WKY, misdiagnosis and subsequent treatment of ADHD in 

teenagers could result in a more rapid development of cocaine abuse. Unfortunately, there 

are currently no reliable biomarkers of ADHD that can be utilized in a clinical diagnosis. 

The development of strict diagnostic criteria and appropriate treatments for ADHD may 

have been hindered by skepticism surrounding ADHD as a neurological disorder in the 

international community (Heal et al, 2013). For example, ADHD has been criticized as an 

“American diagnosis,” and even today remains under-diagnosed and under-treated in the 

United Kingdom and other countries (Heal et al, 2013). This criticism is negated by the 
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many genetic and neurochemical abnormalities that are associated with ADHD, which 

have been reviewed extensively above. Future research must therefore work towards 

identifying more reliable biomarkers that can be used alongside behavioral and cognitive 

measures to refine clinical diagnoses.  

 

Significance of Adolescent d-Amphetamine Treatment on Cocaine Abuse Risk in 

Adulthood 

 While the results of Aim 1 suggest that atomoxetine may be a better treatment 

than methylphenidate for teenagers with ADHD, atomoxetine is not always as clinically 

efficacious as methylphenidate (Cubillo et al, 2014; Faraone et al, 2006; Sibley et al, 

2014). Moreover, atomoxetine modestly worsened adolescent SHR performance during 

the initial phase of the strategy set-shifting task, and had non-specific effects in control 

strains (see Table 1; Harvey et al, 2013). Adolescent atomoxetine also increased active 

lever responding during acquisition of cocaine self-administration and slowed extinction 

learning in adult SHR. These effects are not as alarming as those observed after 

adolescent methylphenidate treatment. Nonetheless, it would be useful to identify an 

alternative medication for teenagers with ADHD that is both efficacious and does not 

increase cocaine abuse risk. Therefore, experiments in Aim 2 investigated a different 

stimulant medication, d-amphetamine.  

 d-Amphetamine may be more efficacious in alleviating ADHD symptoms than 

atomoxetine and methylphenidate (Arnold, 2000; Faraone & Buitelaar, 2010; Patrick & 

Morowitz, 1997; Sibley et al, 2014). Although d-amphetamine inhibits DAT and NET 
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like methylphenidate, it is also taken up into the cell through monoamine transporters, 

where it blocks VMAT-2 and binds to TAAR1 (Easton et al, 2007). Because of these 

additional mechanisms of action, adolescent d-amphetamine was hypothesized to have 

different effects on prefrontal cortex function and cocaine abuse risk than 

methylphenidate. Consistent with this hypothesis, d-amphetamine improved behavioral 

flexibility in adolescent SHR in Experiment 5, an effect that was not observed with 

methylphenidate treatment. In children with ADHD, treatment with d-amphetamine, as 

well as other ADHD medications, normalized the abnormal striatal glutamate levels that 

may contribute to ADHD-related symptoms in both humans and SHR (Carrey et al, 2003; 

Courvoisie et al, 2004; MacMaster et al, 2003; Miller et al, 2014; Spencer et al, 2013; 

Warton et al, 2009). However, future work is needed to determine whether d-

amphetamine alters glutamate signaling in the striatum or substantia nigra of the SHR 

model.  

 In contrast to d-amphetamine, adolescent treatment with methylphenidate 

improved the speed of learning and choice accuracy in adolescent SHR only during the 

initial set formation phase (Harvey et al, 2013). The non-stimulant atomoxetine improved 

speed of learning and choice accuracy, and reduced trial omissions in the SHR during the 

set shift phase (Harvey et al, 2013), similar to the current observations with d-

amphetamine. The ability of d-amphetamine to improve behavioral flexibility in 

adolescent SHR may relate in part to its effects not only on glutamate, but also on NET 

and DAT function in PFC. Like atomoxetine, d-amphetamine augments noradrenergic 

signaling through inhibition and as well as reversal of NET, which can improve set 
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shifting performance (Cain et al, 2011; Easton et al, 2007; Lapiz & Morilak, 2006; 

McGaughy et al, 2008). Moreover, unlike methylphenidate, chronic treatment with d-

amphetamine during adolescence may decrease DAT expression and function in PFC due 

to amphetamine’s activity at VMAT-2 and TAAR1 (Miller, 2011; Xie & Miller, 2009). 

Interestingly, adolescent SHR, like cocaine users, exhibit lower levels of VMAT-2 

expression in the striatum compared to controls (Narendran et al, 2012; Simchon et al, 

2010), which may contribute to d-amphetamine’s unique effects in this strain. 

Nonetheless, reduced DAT expression and function after adolescent d-amphetamine 

treatment would result in slower clearance of dopamine and elevated dopaminergic tone 

in mesocortical neurons (Easton et al, 2007; Zahniser & Sorkin, 2004). Importantly, 

activation of post-synaptic D1 and D2 receptors in mPFC facilitates behavioral flexibility 

in outbred rats (Floresco, 2013; Floresco et al, 2006; Ragozzinno, 2002). Adolescent d-

amphetamine may therefore produce optimal activation at D1 and D2 receptors in mPFC 

of SHR, improving behavioral flexibility. Although the effect of d-amphetamine on 

mPFC DAT function is not confirmed, recently, acute amphetamine administration (0.56 

mg/kg, i.v.) was found to reduce DAT function and expression in nucleus accumbens of 

adult outbred rats (Ferris et al, 2015). However, additional studies are needed to test this 

hypothesis in mPFC of the SHR model, using a chronic dosing regimen of d-

amphetamine during adolescence that is clinically relevant to ADHD. In contrast, chronic 

treatment with methylphenidate during adolescence increases DAT function in mPFC of 

SHR (Somkuwar et al, 2013b). This action potentially exacerbates pre-existing elevations 
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of DAT in SHR (Mill et al, 2005; Watanabe et al, 1997; Zahniser & Sorkin, 2004), and 

may lead to reduced dopaminergic signaling in mPFC.  

 In addition to improving behavioral flexibility in adolescent SHR, Experiments 6 

through 9 revealed that adolescent d-amphetamine treatment does not increase cocaine 

abuse risk in adult SHR. Rather, adolescent d-amphetamine reduced cocaine intake 

during acquisition of self-administration, and, like atomoxetine, modestly decreased 

cocaine cue reactivity in adult SHR. As suggested above, the differential effects of 

adolescent d-amphetamine and methylphenidate on cocaine abuse risk in adulthood likely 

relate to their different long-term effects on monoamine transporter function in PFC (see 

Tables 1 through 3). For example, whereas adolescent methylphenidate increases mPFC 

DAT function and increases the reinforcing value of cocaine in SHR (Grace, 2001; 

Somkuwar et al, 2013b; Zahniser & Sorkin, 2004), adolescent atomoxetine and d-

amphetamine may decrease DAT function in adult SHR, and consequently reduce the 

reinforcing value of cocaine (Ferris et al, 2015; Somkuwar et al, 2013a; Zahniser & 

Sorkin, 2004). It is probable that additional neurochemical adaptations contribute to the 

long-term effects of d-amphetamine, such as changes in post-synaptic receptors or NET 

and SERT, to which amphetamine also potently binds and reverses transport (Easton et 

al, 2007; Heal et al, 2013; Heijtz et al, 2003). Moreover, in outbred rats, early adolescent 

treatment with a clinically relevant dose of amphetamine has been shown to increase 

dendritic length, dendritic branching, and calcium/calmodulin kinase II signaling in 

mPFC, suggesting enhanced frontostriatal dopamine-glutamate interactions (Heijtz et al, 

2003). Although future investigations are needed to determine the long-term 
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neurochemical effects of d-amphetamine in SHR, these findings nonetheless suggest that 

d-amphetamine is a viable alternative to methylphenidate for teenagers with ADHD who 

are initiating treatment.  

 The effects of adolescent d-amphetamine were even more profound in WIS. In 

this outbred control strain, adolescent d-amphetamine treatment slowed acquisition of 

cocaine self-administration and significantly reduced the efficacy and motivating 

influence of cocaine reinforcement, without influencing cognitive performance during 

adolescence. Interestingly, adolescent methylphenidate slowed acquisition speed in adult 

WIS, and decreased the affinity of DAT for dopamine in OFC of adult WIS (Somkuwar 

et al, 2013b). If adolescent d-amphetamine treatment has similar effects on reducing 

aspects of DAT function, as proposed above, this may contribute to the drug’s protective 

effects against cocaine abuse risk in adult WIS.  

 Taken together, these results suggest that d-amphetamine may be an even more 

valuable medication than methylphenidate or atomoxetine for teenagers with ADHD. 

While concern has been raised regarding the abuse liability of d-amphetamine as a 

prescription medication in itself, there is little actual abuse of d-amphetamine by ADHD 

patients (Heal et al, 2013). The pharmacokinetics of orally administered d-amphetamine 

make it significantly less reinforcing than cocaine or methamphetamine, and clinically 

relevant doses of d-amphetamine are unlikely to produce the euphoria associated with 

compulsive drug use (Heal et al, 2013). Moreover, the pro-drug, lisdexamphetamine 

(Vyvanse®), has recently been developed to further deter abuse, by requiring enzymatic 
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hydrolysis within red blood cells in order to be converted into the psychoactive d-

amphetamine metabolite (Heal et al, 2013; Pennick, 2010).  

 Interestingly, adolescent d-amphetamine, like atomoxetine, speeded acquisition of 

cocaine self-administration in adult WKY. As reviewed above, WKY exhibit a number of 

behavioral and neurochemical abnormalities that may be reminiscent of a 

depressive/anxiety-prone phenotype (Cominski et al, 2014; De La Garza II & Mahoney 

III, 2004; Jiao et al, 2003; Pardon et al, 2002; Paré et al, 2002; Novick et al, 2008; Scholl 

et al, 2010). The effects of adolescent d-amphetamine in WKY may relate to unique 

alterations in DAT and SERT function in this strain (see Tables 2 and 3; Jiao et al, 2003; 

Tenjani-Butt et al, 1994; Scholl et al, 2010). If the neurochemical effects of d-

amphetamine resemble those of atomoxetine, d-amphetamine may produce increases in 

DAT function in PFC of adult WKY, thereby augmenting the reinforcing value of 

cocaine (Grace, 2001; Somkuwar et al, 2013a). However, the mechanism by which d-

amphetamine may exert this effect on DAT in WKY is unclear. Amphetamines are also 

known to reduce SERT function in the striatum of outbred rats (Haughey et al, 2000; 

Kokoshka et al, 1998). If d-amphetamine reduces SERT function in WKY, faster 

acquisition of cocaine self-administration following adolescent d-amphetamine treatment 

may reflect an exacerbation of pre-existing reductions in SERT in this strain (Homberg et 

al, 2008; Oakly et al, 2014; Scholl et al, 2010). However, the effects of adolescent 

treatment with clinically relevant doses of d-amphetamine on SERT function in adult 

WKY have yet to be evaluated. Nonetheless, in conjunction with the results of Aim 1, 

findings in WKY emphasize the necessity of evaluating both inbred and outbred control 
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strains alongside the SHR. Moreover, the effects of d-amphetamine in control strains 

further highlight the importance of accurate diagnosis and treatment of ADHD. The long-

term consequences of misdiagnosis and subsequent treatment could be favorable (d-

amphetamine in WIS) or unfavorable (atomoxetine and d-amphetamine in WKY) in 

misdiagnosed individuals.   

 

Treatment and Prevention of Cocaine Abuse 

 Interestingly, amphetamines have shown efficacy in the treatment of cocaine use 

disorders. In outbred rats with cocaine self-administration experience, d-amphetamine 

produces downward shifts in PR cocaine dose-response functions (Chiodo et al, 2008; 

Zimmer et al, 2014), and reverses cocaine-induced deficits in DAT expression and 

function (Ferris et al, 2015). In non-human primates, d-amphetamine also reduces 

cocaine self-administration under PR and second-order schedules of reinforcement, and 

increases choice for food over cocaine (Czoty et al, 2010; Grabowski et al, 2004; Negus, 

2003; Negus & Mello, 2003a, b). Moreover, in cocaine-abusing subjects, moderate doses 

of amphetamine reduce cocaine intake and craving, and improve treatment retention 

(Grabowski et al, 2001, 2004; Mooney et al, 2009). In individuals with ADHD and 

comorbid cocaine use disorder, amphetamine is effective both in reducing cocaine use 

and in improving ADHD symptoms (Levin et al, 2015).  In contrast, methylphenidate is 

not effective in stimulant-dependent ADHD patients, possibly because of limited efficacy 

at DAT due to cocaine’s long-term effects (Crunelle et al, 2013; Grabowski et al, 2004; 

Konstenius et al, 2010).  
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 Many other treatments for cocaine use disorders have been investigated, including 

the administration of other DAT, NET, and SERT inhibitors and monoamine agonists, as 

well as monoamine antagonists and anti-cocaine vaccines (Grabowski et al, 2004; Howell 

& Negus, 2014; Kinsey et al, 2010). However, all have been met with limited efficacy. 

There is currently no “cure” for cocaine use disorder. Recently, preventative measures, 

particularly for adolescents, have received attention as potentially more effective ways to 

reduce the prevalence of cocaine use disorder (e.g., Stanis & Andersen, 2014). The 

current work is the first to demonstrate that adolescent treatment with d-amphetamine 

may reduce later cocaine abuse risk in outbred rats. Therefore, d-amphetamine treatment 

may be a viable preventative measure in at-risk teenage populations. The understanding 

of the neural mechanisms contributing to this protective effect, set forth in this 

dissertation, may lead to other targeted leads in the treatment of ADHD and prevention of 

cocaine abuse.  
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 Future Directions  

 The results of the current work raise numerous questions for future investigation, 

particularly regarding the neural mechanisms underlying the effects of atomoxetine and 

d-amphetamine in SHR, WIS, and WKY. Another important direction for future research 

is to investigate the long-term effects of ADHD medications in females with ADHD. 

Women with ADHD may have a higher risk of substance use than men with ADHD 

(Dalsgaard et al, 2014). Moreover, women tend to progress from recreational drug use to 

drug dependence faster than men, and have higher relapse rates (Bobzean et al, 2014). 

Although ADHD is more common in males during childhood, by adulthood the ratio of 

males to females diagnosed with ADHD is nearly 1:1 (Barkley et al, 2011; Collingwood, 

2010). This may be due to higher rates of self-referral by women in adulthood, or because 

girls are more likely to exhibit the inattentive subtype of ADHD and remain undiagnosed 

until adolescence or adulthood (Collingwood, 2010). Women with ADHD tend to exhibit 

more perseverative and internalizing symptoms than men, while men exhibit more 

Monoamine 
Tranporter

Level of   
Function

Behavioral 
Flexibility in 
Adolescence

Cocaine Abuse 
Risk in 

Adulthood
High - Increases
Low Improves Decreases
High - -
Low Improves Decreases
High - -
Low - Increases

DAT

NET

SERT

Table 3: Proposed Role of Monoamine Tranporters in Behavior
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impulsive, hyperactive, and motivational symptoms (Collingwood, 2010; Nussbaum et al, 

2012). Women with ADHD are also more likely to develop comorbid anxiety and 

depressive conditions than men (Collingwood, 2010), and more variable responses to 

ADHD medication (Nussbaum et al, 2012).  

 Despite these observations, the effects of stimulant and non-stimulant ADHD 

medications on cognition and cocaine abuse risk in females are not well known. The SHR 

may be a valuable starting point in advancing understanding of ADHD comorbidities in 

females. Similar to the gender differences observed in individuals with ADHD, female 

SHR exhibit more inattentive and perseverative traits, whereas male SHR exhibit more 

hyperactivity and impulsivity (Berger & Sagvolden, 1998). Consistent with suggestions 

that woman with ADHD have higher substance use risk than men, female SHR showed 

greater sensitization to cocaine and exhibited higher ethanol intake than male SHR 

(Cailhol & Mormède, 1999; Vendruscolo et al, 2009). In addition, female SHR were 

more vulnerable to the effects of adolescent methylphenidate treatment on increasing 

ethanol intake than male SHR (Vendruscolo et al, 2008). Future studies can therefore 

begin to address the effects of ADHD medication in females with ADHD using the SHR 

model.  

 

Limitations 

  There are limitations to every animal model of human disease, and the SHR has 

not been exempt from criticism. For example, while some studies have observed 

hyperactivity in the SHR during open field tests, others have shown that SHR 
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hyperactivity is dependent upon specific task parameters and the control strains that are 

employed (Ferguson & Cada, 2003; Sagvolden et al, 1992; van den Bergh et al, 2006; 

Wickens et al, 2011). Notably, the open field test may have little relevance to ADHD, as 

locomotor activity of children in a playroom did not correlate with hyperactivity ratings 

or diagnosis (Routh & Schroeder, 1976; Schroeder et al, 1980; Wickens et al, 2011). 

Other work has questioned the predictive validity of the SHR model (van den Bergh et al, 

2006; Wickens et al, 2011). One study found that oral methylphenidate (0.1, 1.0, and 10 

mg/kg) did not reduce hyperactivity or impulsivity in the SHR (van den Bergh et al, 

2006). However, in this latter study methylphenidate was administered one hour prior to 

behavioral testing (van den Bergh et al, 2006). Previous work has shown that 

monoaminergic responses to oral methylphenidate (1.0, 2.5, and 5.0 mg/kg) peak 

approximately 30 minutes after administration (Kuczenski & Segal, 2002). Thus, 

monoamine levels may have already peaked if testing occurs 60 minutes after 

methylphenidate treatment, potentially obscuring any methylphenidate-induced 

improvements in behavior. Another study found that 3 mg/kg i.p. methylphenidate did 

not reduce impulsivity in SHR (Bizot et al, 2007). However, this i.p. dose of 

methylphenidate exceeds clinical relevance, producing elevations in nucleus accumbens 

dopamine that may be more reminiscent of a drug of abuse (Kuczenski & Segal, 2001). 

Studies utilizing clinically relevant dosing and treatment regimens (e.g., 1.5 mg/kg orally, 

30 minutes prior to behavioral testing) have shown that methylphenidate improves 

cognitive deficits in the SHR (Harvey et al, 2011; 2013; Kantak et al, 2008). Therefore, 

rather than questioning the predictive validity of the SHR, together these findings 
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highlight the importance of experimental designs that are clinically relevant to ADHD, 

particularly when evaluating ADHD medications.  

 There are limitations to the current experiments that are worthy of separate 

comment. For example, a small number of rats expired prior to completing all phases of 

the experiments within each Aim. Importantly, in all cases death was not caused by 

experimental factors, but rather to illness (n = 15), accidental overdose related to 

equipment malfunction (n = 4), or malfunction of temperature controls in the animal 

facility (n = 2). However, because experimental phases were not directly compared in the 

statistical analyses (e.g., cocaine intake in Experiment 2 was not compared to cocaine 

intake in Experiment 1), rat loss had a minimal impact on the current results and their 

interpretation.  

 Another limitation of these experiments is that some trend-level ANOVA effects 

(e.g., p ≤ 0.07) are reported, e.g., following strain X treatment interactions. However, in 

cases where trends are reported, post-hoc tests are statistically significant (p ≤ 0.05), 

suggesting that these behavioral differences are reliable. One final notable limitation of 

the current experiments is the use of single doses of atomoxetine and d-amphetamine in 

the adolescent treatment regimens. Although assessment of multiple of doses may help to 

elucidate potential dose-related effects of these ADHD medications on cocaine abuse 

risk, the doses employed in the current work were carefully selected to be clinically 

relevant using evidence from prior studies. For example, the 0.3 mg/kg atomoxetine dose 

was chosen because this dose primarily increases extracellular norepinephrine, and to a 

lesser extent dopamine, in PFC (Bymaster et al, 2002). Higher doses (e.g., 3 mg/kg 
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atomoxetine), in contrast, have greater effects on extracellular dopamine (Bymaster et al, 

2002), which may lead to non-specific behavioral effects. Moreover, the 0.3 mg/kg dose 

of atomoxetine has been shown to improve behavioral flexibility in adolescent SHR 

(Harvey et al, 2013). With respect to d-amphetamine, when administered s.c., 0.5 mg/kg 

amphetamine produces plasma drug concentrations of 84 ± 4 ng/mL in the rat (Heijtz et 

al, 2003). In patients with ADHD, d-amphetamine may be prescribed at doses ranging 

from 0.2 - 0.6 mg/kg/day, which produce peak plasma levels ranging from 64 - 84 ng/mL 

(Brown et al, 1979; Bymaster et al, 2002). Thus, doses higher than 0.5 mg/kg d-

amphetamine may produce plasma concentrations that exceed clinical relevance (Heijtz 

et al, 2003). Although the pharmacokinetcs of s.c. and i.p. routes of administration (the 

latter of which was used in the current studies) may differ, both routes produce similar 

plasma levels and time-concentration curves following low-dose psychostimulant 

administration (Baumann et al, 2009).  Moreover, in the rat 0.5 mg/kg d-amphetamine 

(s.c. or i.p.) does not induce locomotor activation, and increases dopamine and 

norepinephrine activity as well as dendritic growth in PFC (Brown et al, 1979; Heitjz et 

al, 2003; Labonte et al, 2011). Because 0.5 mg/kg d-amphetamine did not alleviate all 

ADHD-related deficits in adolescent SHR, and produced modest protective affects 

against cocaine abuse risk in adult SHR in the current work, it seems unlikely that 

investigations of lower doses of d-amphetamine would produce significant behavioral 

findings. Rather, these observations indicate that the current work employs doses that are 

representative of and relevant to those used in clinical settings. Nonetheless, future 



 

 

130	  

research may benefit from investigation of the effects of adolescent treatment with 

alternative doses of atomoxetine and d-amphetamine.  

 

 

Conclusions 

 Questions regarding the long-term effects of adolescent ADHD medication on 

later substance use disorders, and particularly cocaine abuse risk, have been historically 

difficult to examine in a systematic manner. Preclinical models have promise in 

addressing gaps in the clinical literature. In particular, the SHR exhibits behavioral and 

cognitive deficits, as well as neurochemical and genetic differences, reflecting those 

observed in ADHD. The results of this dissertation, together with previous work, indicate 

that the SHR has important heuristic value in modeling aspects of cognitive dysfunction, 

cocaine abuse risk, and cocaine cue reactivity. Moreover, the SHR is an important model 

for assessing the neurobiology underlying the ADHD phenotype, and for evaluating 

pharmacotherapeutics for teenagers with ADHD.  

 Illicit drug use costs the United States over $193 billion each year (NIDA, 2015).  

Nearly two-thirds of treatment-seeking drug users report sampling drugs before age 20 

(SAMHSA, 2002; Stanis & Andersen, 2014). Moreover, initiating drug use before age 14 

is associated with four times the likelihood of becoming drug dependent in adulthood 

(SAMHSA, 2006; Stanis & Andersen, 2014). With approximately 1,600 teens and adults 

initiating cocaine use each day (SAMHSA, 2013), it becomes critically important to 

reduce the risk of cocaine abuse, particularly in vulnerable populations. This dissertation 
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presents novel findings, using an animal model, on the potential consequences of ADHD 

medication in humans. Specifically, atomoxetine and d-amphetamine may be safer 

medications than the more commonly prescribed methylphenidate for newly diagnosed 

teenagers with ADHD. Application of the current preclinical findings to a clinical setting 

could effectively minimize the risk of SUD in an estimated ~700,000 teenagers with 

ADHD, who may be receiving medication for the first time (NSCH Database, 2011). 

Moreover, applying an understanding of the long-term neurochemical effects of drugs of 

the same class, such as stimulants, to a clinical setting could lead to more appropriate 

treatments for ADHD.  
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