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ABSTRACT

Global forests are experiencing a variety of stresses in response to climate change

and human activities. The broad objective of this dissertation is to improve under-

standing of how temperate and boreal forests are changing by using remote sensing

to develop new techniques for detecting change in forest ecosystems and to use these

techniques to investigate patterns of change in North American forests.

First, I developed and applied a temporal segmentation algorithm to an 11-year

time series of MODIS data for a region in the Pacific Northwest of the USA. Through

comparison with an existing forest disturbance map, I characterized how the severity

and spatial scale of disturbances affect the ability of MODIS to detect these events.

Results from these analyses showed that most disturbances occupying more than

one-third of a MODIS pixel can be detected but that prior disturbance history and

gridding artifacts complicate the signature of forest disturbance events in MODIS

data.
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Second, I focused on boreal forests of Canada, where recent studies have used

remote sensing to infer decreases in forest productivity. To investigate these trends,

I collected 28 years of Landsat TM and ETM+ data for 11 sites spanning Canada’s

boreal forests. Using these data, I analyzed how sensor geometry and intra- and inter-

sensor calibration influence detection of trends from Landsat time series. Results

showed systematic patterns in Landsat time series that reflect sensor geometry and

subtle issues related to inter-sensor calibration, including consistently higher red

band reflectance values from TM data relative to ETM+ data.

In the final chapter, I extended the analyses from my second chapter to explore

patterns of change in Landsat time series at an expanded set of 46 sites. Trends

in peak-summer values of vegetation indices from Landsat were summarized at the

scale of MODIS pixels. Results showed that the magnitude and slope of observed

trends reflect patterns in disturbance and land cover and that undisturbed forests

in eastern sites showed subtle, but detectable, differences from patterns observed in

western sites. Drier forests in western Canada show declining trends, while mostly

increasing trends are observed for wetter eastern forests.
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Chapter 1

Introduction

1.1 Research Statement

Forests are key components of the global radiation budget, water balance, and car-

bon cycle (Bonan, 2008). Losses to forest cover from human activities and natural

disturbances represent major threats to biodiversity and ecosystem services (Ojima

et al., 1994; Hansen et al., 2010b, 2013), and produce both positive and negative feed-

backs to the warming of the climate system (Brovkin et al., 1997). Recent reports of

widespread forest mortality events suggests that climate change is already impact-

ing the structure and function of forested ecosystems (Allen et al., 2010; Michaelian

et al., 2011; Schwalm et al., 2012). While little is known about the mechanisms by

which recent climate changes have caused these mortality events (Anderegg et al.,

2012), observations and models suggest an increasing threat to forested ecosystems

in the high latitudes of the Northern Hemisphere (Hansen et al., 2006; Wang et al.,

2006; Piao et al., 2009).

Northern temperate and boreal forests are already experiencing changes in pro-

ductivity and structure caused by climate warming (Soja et al., 2007; Piao et al.,

2008; Beck et al., 2011b). Because the photosynthetic capacity of trees is directly

tied to the seasonal co-occurrence of moisture and light, changes to these quantities

from longer growing seasons and increased frequency of drought events will affect the
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growth rate and productivity of these forests (Xu et al., 2013). In addition, warmer

and drier summers will amplify disturbance regimes in these regions including the

intensity and extent of forest fires (Kasischke and Turetsky, 2006; Westerling et al.,

2006) and increase the reproductive success of forest-damaging insects (Hicke et al.,

2006, 2011). These changes are important because temperate and boreal forests

provide a large sink of atmospheric carbon dioxide at annual time scales and store

large amounts of carbon in their biomass and soils that are released into the atmo-

sphere following disturbance (Bonan and Shugart, 1989; Hicke et al., 2011; Kasischke

et al., 2013). Further, the feedbacks between the biosphere and the atmosphere are

not well-understood, especially the future strength of the terrestrial carbon sink

(Friedlingstein et al., 2006). Because of the inaccessibility of these remote regions,

information about the spatial extent of disturbed and stressed forests is incomplete.

Remote sensing has allowed new research about the response of the biosphere

to changes to the climate system, but only a few satellite sensors provide consistent

observations of the surface for more than a decade. Of these, the Advanced Very High

Resolution Radiometer (AVHRR) provides over 30 years of information on global

change at coarse (8-km) spatial resolution. Several studies have used these time

series to relate climate warming with trends in the Normalized Difference Vegetation

Index (NDVI), which is correlated with net primary production (Myneni et al., 1997;

Nemani et al., 2003; Bunn and Goetz, 2006; Pouliot et al., 2009; Beck and Goetz,

2011; Xu et al., 2013). Many of these studies suggest a lengthening of the growing

season at high latitudes but some also show decreasing primary productivity across

much of the North American boreal forest zone. However, the coarse spatial and

radiometric resolutions and poor calibration of AVHRR limit the inferences that can

be made from these results.
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Two general classes of space-borne sensors have the potential to improve under-

standing of the spatial and temporal patterns in forest cover and link recent produc-

tivity changes to climate warming. First, the Landsat Thematic Mapper (TM) and

Enhanced Thematic Mapper (ETM) now provide over 30-years of fine (30-m) spatial

resolution data but are limited by uneven spatial and temporal acquisitions. Sec-

ond, the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible

Infrared Imaging Suite (VIIRS), provide shorter time series (15 years) of moderate

(500-m and 750-m, respectively) spatial resolutions, but provide near-daily repeat

observations of the entire globe. The radiometric similarities and temporal conti-

nuity between these two classes of sensors have enabled novel approaches for data

fusion (Gao et al., 2006; Hilker et al., 2009b). The main goal of this dissertation is

to exploit the strengths of each data source to better understand changes in North

American forest cover and productivity and to explore how these properties and pro-

cesses translate across spatial scales using co-located remote sensing data sets. In

addition, my research helps to clarify the role of climate variability in observed trends

in peak-summer vegetation ”greenness” across boreal forests in North America.

1.2 Remote sensing of forest disturbance

Accurate information regarding spatial and temporal patterns in forest disturbance

and better understanding of the human and climate drivers of these patterns are

needed to reduce uncertainties in Earth system models (Friedlingstein et al., 2006).

International policies aimed at mitigating climate change impacts are being influ-

enced by the capabilities of remote sensing datasets to capture and quantify these

changes (Turner et al., 2004; Gibbs et al., 2007; Baccini et al., 2012). As the volume

of remote sensing data continues to increase, more complex methods for detecting
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and characterizing forest disturbance are being developed (Lu et al., 2004). Despite

these advances, there are relatively few sensors with the temporal continuity and spa-

tial coverage to monitor these processes at regional to global scales (Frolking et al.,

2009).

The most effective approaches to characterize disturbance from space-borne sen-

sors use dense time series of such observations (Hilker et al., 2009a; Huang et al.,

2010; Kennedy et al., 2010; Verbesselt et al., 2010a; Gómez et al., 2011; Zhu et al.,

2012; Zhu and Woodcock, 2014). Some strengths of these approaches include: (1) the

ability to capture subtle, long-term trends as well as abrupt changes (e.g., Kennedy

et al., 2010); (2) low reliance on a priori information of the surface that may introduce

errors (e.g., Zhu and Woodcock, 2014); and (3) the possibility to generalize across

different spectral indices and sensors (e.g., Verbesselt et al., 2010a). Of particular

focus here are the radiometric similarities and overlapping time series of Landsat and

both MODIS and the newly launched VIIRS instrument. Indeed, multi-resolution

approaches to disturbance detection have received new life with the opening of the

Landsat archive (Wulder et al., 2012) and the launch of Landsat 8 (Irons et al., 2012).

1.3 Conflicting observations of forest productivity changes

in boreal North America

The effects of climate warming are already being observed at high latitudes (Serreze

et al., 2000; Sturm et al., 2001; Smith et al., 2005; Kim et al., 2012; Ma et al., 2012; Xu

et al., 2013; Jeganathan et al., 2014), where climate models predict further increases

in warming and drying in the future (Barnett et al., 2005; Sitch et al., 2007; Dai,

2012; Sillmann et al., 2013). Remote sensing observations from the AVHRR sensor

provide compelling evidence of greening in the Arctic tundra (Myneni et al., 1997;
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Pouliot et al., 2009), but suggest a different story of forest decline or ”browning” for

much of the boreal region of North America (Tateishi and Ebata, 2004; Goetz et al.,

2005; Beck and Goetz, 2011; Bi et al., 2013; Guay et al., 2014). Most of these studies

are based on the Global Inventory Modeling and Mapping Studies (GIMMS) data set

(newly released as version 3G), which provides 30 years of NDVI observations from

the Advanced Very High Resolution Radiometer (AVHRR) at 8-km spatial resolution

(Tucker et al., 2005; Pinzon et al., 2007; Pinzon and Tucker, 2014). However, AVHRR

NDVI time series include substantial uncertainty because of the sensors’ low spatial

and radiometric resolution, challenges involved in cloud screening and atmospheric

correction (Fontana et al., 2012), the use of data from different AVHRR sensors

(Tucker et al., 2005; Pinzon and Tucker, 2014), and geolocation uncertainty(Alcaraz-

Segura et al., 2010). Indeed, the geographically extensive decreasing NDVI trends

(”browning”) observed across boreal North America in the GIMMS 3G dataset were

not detected in previously available AVHRR NDVI data sets (Slayback et al., 2003;

Olthof and Latifovic, 2007; Pouliot et al., 2009; Alcaraz-Segura et al., 2010; Beck

et al., 2011a).

To clarify the debate between ”browning” and ”greening” of the boreal forest of

North America, it is necessary to look more closely using a time series from a sensor

with higher radiometric quality and spatial resolution such as MODIS or Landsat.

Beck and Goetz (2011) showed similar browning trends from 8-year MODIS time

series in many areas of dense boreal tree cover but suggested that more work was

needed to clarify whether deciduous or evergreen tree types were most affected. Guay

et al. (2014) showed substantial correspondence in NDVI trends in this region across

several sensors including AVHRR, MODIS, SeaWiFS, and SPOT-VGT but only for

the period between 2002 and 2008. Studies that have used Landsat data have either
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focused largely on greening trends (Neigh et al., 2008; Pouliot et al., 2009; Fraser

et al., 2011; McManus et al., 2012) or have analyzed time series at single locations

in the temperate forest zone (Neigh et al., 2012). These studies have found complex

interactions between climate, disturbance, and forest cover, but use small sets of

Landsat images that may not be representative of the entire boreal forest zone.

1.4 Dissertation Structure and Objectives

My dissertation research has two major goals. First, to demonstrate how information

about forest health and disturbance can be obtained from remote sensing data sets

and to characterize the sources of bias and variability that affect these observations.

Second, to improve our knowledge of the patterns of greening and browning trends in

the boreal forests of North America. To achieve these goals I address the following

three research questions, each of which corresponds to a separate chapter in my

dissertation:

1. What is the signature of forest disturbance in moderate resolution remote sens-

ing and how is this signature affected by the size, severity, and timing of these

processes?

2. What factors influence the detection of trends in vegetation indices in boreal

Canada based on Landsat data?

3. How do spatial patterns in disturbance, land cover, and climate influence VI

trends from Landsat time series in Canadian boreal forests?

To do this, I leverage new methods to process and interpret dense time series of

satellite imagery at the spatial resolutions of MODIS and Landsat. To address the

first question I explore the strengths and weaknesses of MODIS time series to detect
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forest disturbance. To address the second, I used over 30 years of Landsat imagery

for 11 sites across the Canadian boreal forest zone to investigate sources of bias and

variability in these data sets that are related to artifacts in the time series. For the

third chapter, I expanded the original set of 11 Landsat sites to 46 and examined

how disturbance events, land cover, and climate variability influence the direction

and magnitude of vegetation index trends in these regions.

Taken together, I demonstrate the myriad challenges in drawing inferences on the

response of forests to recent climate changes using coarse spatial resolution remote

sensing data sets. To overcome these challenges I describe guidelines on the use of

remote sensing data with higher radiometric quality and spatial resolution for these

purposes. Furthermore, I provide a more nuanced perspective on the magnitude of

recent changes to the biosphere at high latitudes that will help reduce uncertainties

in global climate models.



Chapter 2

Detecting Forest Disturbance in the

Pacific Northwest from MODIS Time

Series Using Temporal Segmentation

2.1 Introduction

Forest disturbance and succession processes influence land surface water, carbon,

and radiation budgets, and therefore affect feedbacks between forest ecosystems and

climate (Bonan, 2008). Recent evidence suggests that processes related to climate

change are negatively affecting forests in many parts of the world (Bunn and Goetz,

2006; Fensham et al., 2009; Allen et al., 2010), and that fire and insect disturbance

regimes are likely to change in the coming decades (Flannigan et al., 2005; Wester-

ling et al., 2006; Hicke et al., 2011). Anthropogenic disturbances, including forest

harvest, forest removal for agriculture, and urban development are also widespread

(Ojima et al., 1994; DeFries et al., 2004; Ellis and Ramankutty, 2008). Poor un-

derstanding of disturbance regimes is a key source of uncertainty in global carbon

models (Turner et al., 2004; Bond-Lamberty et al., 2007; Anderegg et al., 2012) and

improved information regarding spatial and temporal patterns in forest disturbance

is needed to reduce uncertainties in modeled feedbacks between the atmosphere and
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the biosphere (Kasischke et al., 1995; Friedlingstein et al., 2006). From a policy

perspective, national carbon stock inventories need to account for both deforestation

and degradation to meet the requirements of international agreements such as the

United Nations program on Reducing Emissions from Deforestation and Degradation

(UN-REDD; Gibbs et al. 2007; Baccini et al. 2012).

Remotely sensed data from space-borne sensors provide the most efficient and

cost-effective tool for monitoring forest health and associated carbon stocks over

large areas (Lepers et al., 2005; Masek et al., 2008; Frolking et al., 2009). Although

the availability of satellite imagery has increased over the last decade, relatively few

sensors are available to support these tasks at regional to global scales. These sensors

include the Advanced Very High Resolution Radiometer (AVHRR), the Moderate

Resolution Imaging Spectroradiomater (MODIS), the Medium Resolution Imaging

Spectroradiometer (MERIS1), and the Visible Infrared Imaging Radiometer Suite

(VIIRS). Of these, the AVHRR time series is the longest, but has the lowest spatial

resolution and radiometric quality. The MODIS instrument onboard the Aqua and

Terra satellite platforms has now acquired over 12 years of near-daily data (2000

to present; Justice et al. 2002. The launch of VIIRS onboard the Suomi National

Polar-orbiting Partnership mission in October of 2011 is designed (in part) to provide

continuity with MODIS until at least 2015, and will support the need for long-term

coarse-spatial resolution Climate Data Records (Townshend and Justice, 2002).

The spatial coverage and temporal continuity provided by instruments such as

MODIS and VIIRS make them well-suited for monitoring forest dynamics at inter-

annual to decadal time scales. Leveraging this, a number of studies have developed

algorithms to detect ecosystem changes from time series of MODIS observations

1Note that because of the failure of Envisat, MERIS data are no longer being collected.
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(Zhan et al., 2002; Roy et al., 2005; Potapov et al., 2008; Hilker et al., 2009a; Mil-

drexler et al., 2009; Verbesselt et al., 2010b; Spruce et al., 2011). Many of these

algorithms focus on specific disturbance agents such as fire (Roy et al., 2005) or in-

sects (Spruce et al., 2011) while others are designed for more general applications.

Most importantly, the utility of coarse spatial resolution data (∼500-m) for monitor-

ing forest disturbance remains an open question (Frolking et al., 2009). The objective

of this research is to characterize the major strengths and weaknesses of MODIS time

series for forest change monitoring at the regional-to-continental scales required for

large-scale carbon monitoring. Specifically, we addressed two main questions:

1. How do the size and severity of forest disturbance events affect the signature

of these events in MODIS time series?

2. How does disturbance history, including coincident sub-pixel disturbance and

regrowth, affect disturbance detection?

Stated another way, we wanted to assess the factors that determine the strength

of the forest disturbance signatures in MODIS time series, and identify sources of

background noise that complicate these signatures.

To achieve these goals we adapted an algorithm that has been developed from

Landsat imagery for use with MODIS data, and applied this algorithm over an area

that encompases a wide range of forest types, disturbance regimes, and manage-

ment practices. To address the first question we evaluated if and how the use of of

coarse-resolution MODIS data limits the accuracy achievable by our MODIS-based

algorithm, a phenomenon known as the ”low-resolution bias” (e.g., Boschetti et al.

2004). As part of this analysis we also evaluated how gridding artifacts inherent

to MODIS data affect disturbance detection (e.g., Tan et al. 2006). To address the
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second question, we explored sources of error (both omission and commission) in dis-

turbances detected from MODIS, and examined how disturbance history, including

regrowth processes that occur during the time series, introduce these errors (e.g.,

Loboda et al. 2012).

2.2 Data and Methods

2.2.1 Study Area and Reference Data

The Northwest Forest Plan (NWFP) area contains approximately 18 million hectares

of forest along the west coast of Washington, Oregon, and California and is bordered

by the Cascade Mountains in the east. This region is characterized by a moderate

climate with warm, wet winters followed by dry summers that favor highly productive

and diverse conifer forests (Waring and Franklin, 1979). The NWFP was enacted

by the U.S. federal government in 1994 to conserve habitat for two endangered bird

species – the northern spotted owl and the marbled murrelet – while at the same

time preserving timber interests in the region (Haynes et al., 2006). As a result, land

ownership strongly influences forest management and disturbance regimes (Turner

et al., 2011). To assess the effectiveness of this conservation plan and describe long-

term trends in biomass and productivity across the management zone, Kennedy

et al. (2012) produced a NWFP forest disturbance database using 22 Landsat scenes.

To do this, an algorithm called LandTrendr was applied to a 25-year time series

(1984-2008) of Landsat Thematic Mapper and Enhanced Thematic Mapper (TM

and ETM) images. The disturbance database provides detailed information related

to the type, size, timing, and severity of disturbance processes occurring in the

NWFP area between 1985 (the first year a disturbance could be detected) and 2008,

and is therefore well-suited to serve as a reference data set for this study. Hereafter,
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we refer to this database as the NWFP-DB.

The LandTrendr (Landsat-based detection of Trends in Disturbance and Recov-

ery) algorithm uses temporal segmentation of remotely sensed time series to charac-

terize long-term dynamics in forest properties, including abrupt disturbance events

(e.g., fire, harvest), gradual disturbance processes (e.g., insect outbreaks), and veg-

etation growth and recovery (Kennedy et al., 2010). To perform the segmentation,

linear regressions are applied across time series of spectral observations at each pixel.

Potential vertices are identified by the residual error at each time step. Each identi-

fied vertex defines the start and end points for new regression segments. This process

is recursively repeated until a measure of statistical fit is satisfied (pval, see Section

2.2.3). A particular strength of this strategy is that it does not require a priori

information and it does not require a specific spectral quantity or index.

To create the NWFP-DB, LandTrendr was applied to annual late-summer Land-

sat images of the Normalized Burn Ratio (NBR). The NBR is calculated using near

infrared (NIR; Landsat band 4 or MODIS band 2) and short-wave infrared (SWIR;

Landsat band 7 or MODIS band 7) channels: NBR = (NIR − SWIR) / (NIR +

SWIR) (Garćıa and Caselles, 1991). Also known as the Normalized Difference In-

frared Index (NDII; Hardisky et al. 1983), the NBR has been used to estimate canopy

water content (Roberts et al., 2006) and above-ground biomass (Baccini et al., 2012;

Ji et al., 2012), and to detect changes in forest cover caused by fire (Key and Benson,

1999; van Wagtendonk et al., 2004; Loboda et al., 2007; French et al., 2008; Beck

et al., 2011b), insect damage (DeBeurs and Townsend, 2008; Cohen et al., 2010),

hurricane disturbance (Wang et al., 2010), and logging (Cohen et al., 2010).

To identify disturbance events LandTrendr estimates a set of vertices that con-

nect distinct segments in NBR time series at each pixel (Figure 2.1). A segment
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corresponds to a disturbance event if the slope of the segment (in time) is negative.

Note that hereafter we use the term ”event” to refer to any disturbance segment,

including gradual trends that may persist for several years. The first year of a distur-

bance segment identifies the event onset, the length of the segment (in years) defines

its duration, and the magnitude of change in NBR (dNBR) is used to character-

ize the disturbance severity. By defining disturbance severity in this way, we avoid

confusion caused by assigning specific changes in forest properties (e.g., changes in

above-ground biomass, forest cover, or soil carbon) to information provided by re-

mote sensing indices (Ryan, 2002; Jain, 2004; Keeley, 2009).

Figure 2.1: Example of a segmentation result from LandTrendr. In a sequence of

some spectral index for a single Landsat pixel through time, a disturbance segment

(highlighted in red) can be summarized by its timing, severity, and duration.

To compare results from MODIS data against the NWFP-DB, we chose a study

area that encompasses the northern half of the NWFP area and intersects with

MODIS tile h09v04 (Figure 2.2). Within this study area, the 30-m NWFP-DB was

aggregated to the 463-m spatial resolution of MODIS. To do this we first reprojected

the NWFP-DB to the MODIS sinusoidal projection. Then, for each MODIS pixel
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and for each year from 1985-2008, we calculated the area of disturbed Landsat pixels

(Ap, the proportion affected within each MODIS pixel) with disturbance onset of that

year, the average severity of disturbed Landsat pixels (Sp, in units of dNBR), and the

duration (in years) of those events. To evaluate how disturbance events that occurred

before the launch of Terra affect results from MODIS, we used the NWFP-DB to

stratify the onset of disturbance events into two periods: 1985-2000 and 2001-2008.

For MODIS pixels affected by more than one disturbance event in either of these

periods, a single value for Ap, Sp, and the duration of disturbance was assigned using

the largest event in the series. To explore how disturbance type affected our results,

we created a map from the NWFP-DB that classifies each disturbance segment into

three broad classes: harvest, fire, or insect/other (Figure 2.2). Disturbance segments

with duration greater than 3 years were distinguished from abrupt disturbances and

labeled as insect/other; this class includes disturbance caused by insect pests such

as defoliators and bark beetles, and mortality from long-term drought. For abrupt

disturbances, fire events were distinguished from harvest removals using the USGS

Monitoring Trends in Burn Severity (http://www.mtbs.gov) database derived from

Landsat data. The harvest class includes abrupt deforestation from a variety of

causes that range from clearcut logging to storm damage.

http://www.mtbs.gov
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Figure 2.2: The study area is the region of the Northwest Forest Plan (NWFP) that

intersects with MODIS tile h09v04. The region of the NWFP is shown in black

hatches and the study area is highlighted in blue. For each MODIS pixel the most

likely disturbance agent (if present) has been colored according to the disturbance

type layer of the NWFP-DB.
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2.2.2 MODIS Surface Reflectance Data

LandTrendr was designed to detect disturbance events using a single high quality

observation per year (Kennedy et al., 2010). Therefore, the first step in our analysis

was to produce an 11-year time series (2000-2010) of late-summer surface reflectance

data from MODIS. To compile a set of reflectance inputs to LandTrendr in a time

frame that is consistent with the NWFP-DB, we extracted all available observations

between July and mid-August (day of year: 180-220, corresponding to five 8-day

MODIS periods) for the Normalized BRDF-Adjusted Reflectance (NBAR) product

(MCD43A4). The NBAR product has been screened for clouds and snow, is atmo-

spherically corrected, and provides modeled reflectances adjusted to a nadir-viewing

angle at local solar noon, thereby minimizing variation in surface reflectance caused

by surface anisotropy (Schaaf et al., 2002). The availability of NBAR data substan-

tially reduces the time required to pre-process MODIS data relative to an analogous

stack of Landsat imagery.

Mid-summer surface reflectances were derived by computing quality-weighted

arithmetic means of available observations using quality flags from the MODIS

NBAR Quality Assurance product (MCD43A2), where high-quality reflectance val-

ues were weighted more heavily than lower quality values. The resulting late-summer

reflectances were then converted into NBR. To constrain our analyses to forest-

dominated areas we used a forest mask included in the NWFP-DB, which was devel-

oped using a linear regression model to predict forest cover as a function of Landsat

NBR (Kennedy et al., 2010). To aggregate these data to the resolution of MODIS

data, we first counted the number of forested Landsat pixels within each MODIS

pixel. MODIS pixels with less than 60% forest based on the NWFP-DB were labeled

as non-forest and excluded from further analyses. The purpose of this threshold was
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to avoid mixtures of different land cover types that could interfere with the distur-

bance signal we are trying to characterize. Note that because forests in the study

area are quite dynamic and our mask is based on maximum forest cover between

1984 and 2008, a small number of pixels identified as forest may have been disturbed

prior to 2000 and incorrectly classified as forest during the MODIS era.

2.2.3 Adapting LandTrendr to use MODIS Data: MODTrendr

LandTrendr was originally developed for use with Landsat TM/ETM data and is

calibrated using a set of parameters designed to maximize detection of disturbances

and minimize over-fitting to noise in Landsat NBR time series. For the NWFP-DB,

the parameters were calibrated using a set of known disturbance sites (Kennedy

et al., 2010). To adapt the algorithm to MODIS NBR time series, we used the

same basic approach, using a small set of sites from the NWFP-DB to tune the

algorithm to MODIS data. This procedure involved two steps: (1) identification

of parameter values, and (2) identification of a threshold in MODIS dNBR below

which MODIS pixels are considered undisturbed. Hereafter, we refer to the version

of LandTrendr calibrated to MODIS data as ”MODTrendr.” While the MODTrendr

segmentation framework is not fundamentally different from that of LandTrendr,

the use of MODIS requires a different set of pre- and post-processing steps. We

therefore refer to this algorithm as being distinct from LandTrendr to help avoid

confusion between MODIS- and Landsat-scale LandTrendr results.

To calibrate MODTrendr we sampled from two subsets of MODIS pixels. The

first subset included pixels with stable forest between 1985 and 2000 that had been

disturbed once between 2001 and 2008 (hereafter, disturbed pixels), and the sec-

ond subset included pixels that were undisturbed across the entire 1985-2008 period
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(hereafter, undisturbed pixels). By excluding MODIS pixels affected by more than

one disturbance event, we avoided locations where disturbance and regrowth oc-

curred simultaneously. To ensure that the calibration sample captured the full range

of disturbance phenomena, we stratified the disturbed pixels into 18 strata according

to the timing, size, and severity of disturbance events. To do this we grouped the

onset of disturbance segments into three eras: 2001-2003, 2004-2005, and 2006-2008.

We then sub-divided the disturbed pixels for each era into six strata defined by the

intersection of three classes of disturbance size and two classes of disturbance sever-

ity. The disturbance size classes corresponded to disturbances that occupied 0.05-0.3,

0.3-0.7, and 0.7-1.0 MODIS pixels (those occupying less than 0.05 MODIS pixels were

excluded as undisturbed), and the disturbance severity classes were defined based on

a threshold in Landsat dNBR of Sp=0.6 (the range of dNBR for disturbed segments

is 0-1).

For the first calibration step we selected a random sample of 144 pixels, including

an equal number of undisturbed and disturbed pixels (4 from each of the 18 strata

described above). Using this sample, we tested 48 unique combinations of the five

input parameters for MODTrendr (Table 2.1). The segmentation results were then

manually interpreted, using the NWFP-DB disturbance information and the original

MODIS NBR time series as references. For each pixel, each of the 48 results was

ranked according to whether or not it correctly captured a disturbance event. The

optimal set of parameters were selected based on the pooled rankings across all 144

calibration pixels.

While these rankings helped to identify those parameter values that produced

the best temporal segmentation results, the effect of one parameter (pval) was more

difficult to objectively interpret. This parameter is used to test the significance of
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each segmentation model’s F-statistic (Kennedy et al., 2010). As such, it controls the

degree to which the model fits to noise in the time series. To select an appropriate

value for this parameter and to identify a threshold in MODIS dNBR that distin-

guishes noise from actual disturbance signals we used a larger sample that contained

a higher fraction of disturbed pixels. Specifically, we randomly sampled 630 pixels,

including 90 pixels from the undisturbed stratum and 30 pixels from each of the 18

strata for disturbed pixels, thereby capturing combinations of disturbance timing,

size, and severity. Using this sample we plotted omission and commission error rates

from MODTrendr as a function of both pval and the threshold in MODIS dNBR

used to identify disturbance segments.
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2.2.4 Assessment of Results from MODTrendr

To assess results from MODTrendr using the NWFP-DB, we computed three metrics

at each MODIS pixel using disturbance information within the NWFP-DB. The first

metric quantifies the disturbance magnitude for a given MODIS pixel (p): DMp =

Sp × Ap, where Sp and Ap are the disturbance severity (dNBR) and area from the

NWFP-DB, as defined in Section 2.2.1. The second metric provides a measure of the

disturbance magnitude in a 3 × 3 window surrounding the MODIS pixel of interest:

DMNB = Sp × (Ap + ANB), where ANB is the total area of disturbed pixels in the

NWFP-DB across neighboring MODIS pixels in the window (i.e., the range of ANB

is 0-8). The third metric is the cumulative disturbance magnitude: DMc = Sp × Ac,

where Sp is the disturbance severity from the NWFP-DB for the largest disturbance

and Ac is the total disturbed area within a MODIS pixel accumulated over the entire

time series. This latter metric accounts for the effect of multiple disturbance events

occurring within the MODIS time series. If only one disturbance event occurred, it

is equal to DMp.

Our assessment included three elements. The first element evaluated how well

MODTrendr was able to detect both the location and timing of disturbance events

using the sample of 630 MODIS pixels we previously used to estimate the minimum

dNBR noise threshold (Section 2.2.3). Omission errors were identified within the size

and severity disturbance strata identified in Section 2.2.3, commission errors were

evaluated for pixels identified as undisturbed, and the estimated timing was treated

as correct if the year of disturbance onset identified by MODIS was within ±1 year

of the disturbance onset from the reference data.

In the second element of this assessment, we evaluated how disturbance severity

and spatial gridding artifacts in MODIS data affected results from MODTrendr. To
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perform this analysis, we randomly sampled 2,000 disturbed MODIS pixels with sub-

pixel disturbed areas (Ap) greater than 0.05 MODIS pixels. MODIS dNBR values

associated with disturbance events were then compared with corresponding DMp and

DMNB from the NWFP-DB using linear models to measure the relationship between

MODIS dNBR and each of these metrics; differences between the two models were

used to assess whether dNBR disturbance signatures originated outside the MODIS

pixel of interest.

In the third and final element of this assessment, we explored how disturbance

history and other factors were related to rates of omission and commission errors in

MODTrendr results. To do this, we computed the cumulative disturbance magnitude

(DMc) for every forested pixel during two periods: 1985-2000 and 2001-2008. Rates of

omission and commission errors were calculated relative to all forested MODIS pixels

in the study area that were disturbed in the same time period (i.e., any disturbance

with Ap > 0.05 MODIS pixels). We then calculated statistics characterizing how

the timing, frequency, and duration of disturbances for both the pre-MODIS and

post-launch eras influenced these results.

2.3 Results

2.3.1 Calibration of MODTrendr

Calibration of MODTrendr included two main elements: (1) selection of parameter

values, and (2) identification of the dNBR threshold below which MODIS pixels were

considered undisturbed. Most of the parameters were selected based on interpreta-

tion of results from the sample of 144 pixels described in Section 2.2.3 and are given

in Table 2.1. However, we found that tuning the pval parameter required further

examination. Figure 2.3 shows how errors of omission and commission depend both
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on this parameter and the threshold of MODIS dNBR used to distinguish noise from

disturbance events. As the MODIS dNBR ”noise” threshold varied from 0 to 0.2,

the rates of omission and commission errors diverged. The effect of the pval pa-

rameter was strongest for MODIS dNBR values between 0 and 0.05, which reflects

a tradeoff between detecting small disturbances and over-fitting to noise; when pval

was set to 0.15 more disturbances were detected and commission errors tended to be

higher than when pval was set to 0.05. Figure 2.3 shows that results from MOD-

Trendr depend quite strongly on the values selected for the noise threshold and the

pval parameter. For all the analyses presented in following sections we used a pval

parameter of 0.10 and set a noise threshold at 0.08 dNBR, which are designed to

minimize both commission and omission error rates.
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Figure 2.3: Selection of the pval parameter and development of a noise threshold

in MODIS dNBR for a stratified random sample of 630 MODIS pixels. The chosen

values of the noise threshold (0.08 dNBR; bold vertical line) and pval parameter

(0.1) were based on the tradeoff between omission and commission errors in the

MODTrendr results relative to the NWFP-DB. The commission error rates are shown

as solid lines and the omission error rates are shown as dashed lines. The different

line colors represent the three values of the pval parameter tested (0.05, 0.1, and

0.15).

2.3.2 Effects of Low-Resolution Bias

Figure 2.4 summarizes MODTrendr results for the sample of 630 pixels used in Fig-

ure 2.3 (described in Section 2.2.3) that includes both undisturbed and disturbed

pixels, and where the latter group includes a range of disturbance timing, size, and
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severity. For undisturbed pixels in this sample, the false positive rate in MODTrendr

results (errors of commission) was less than 5%. As expected, the rate of successful

detection was higher for pixels located over larger disturbances: 88% of disturbance

events that affected more than 0.3 MODIS pixels were successfully detected within

this sample. Conversely, the ability of MODTrendr to detect disturbance was much

lower for smaller disturbance events: only 43% of events with areas less than 0.3

MODIS pixels were successfully detected. However, disturbance severity clearly in-

fluenced these results. High severity disturbance events tended to be detected more

accurately, and disturbances with medium size but high severity had successful de-

tection rates comparable with those for large area disturbances (Figure 2.4). The

results for larger and higher severity disturbances also contained fewer timing er-

rors relative to those for the smaller and less severe disturbance events. The most

common timing error was associated with disturbance segments with onsets in 2001

and durations of 10 years, suggesting that these errors were caused by smoothing of

abrupt changes to create a spurious long-term trend. Thus, the reliability of distur-

bance detection from MODTrendr depends on the area affected by the event, but

even relatively small disturbances can be detected if the severity is high; for events

with Ac ≤ 0.3 MODIS pixels, the detection rate increased from 32% to 54% for low

severity and high severity disturbances, respectively (Figure 2.4).
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Figure 2.4: The agreement between disturbance information from the NWFP-DB

and the MODTrendr results for the stratified random sample of 630 MODIS pix-

els also used in Figure 2.3. The strata shown here include undisturbed (undist)

and combinations of severity (low and high) and size (small, medium or med, and

large) classes. The ”Detect” category indicates that MODTrendr correctly detected

a disturbance event (or there was no detection in the case of undisturbed) but the

algorithm missed the timing of the event. The ”Detect & Timing” category indi-

cates that MODTrendr also captured the timing of the disturbance event and is not

applicable to the undisturbed case.

2.3.3 Effects of Gridding Artifacts

Using a sample of 2,000 MODIS pixels where MODTrendr successfully detected dis-

turbance events between 2001 and 2008, we found positive relationships between
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MODIS dNBR and two similar metrics derived from Landsat dNBR (Figure 2.5).

The first metric (DMp) uses the sum of Landsat dNBR values inside a single MODIS

pixel, while the second metric (DMNB) takes into account the disturbed area from

neighboring pixels (see Section 2.2.4). Linear models for the relationship between

MODIS dNBR and each of these metrics showed strong correlations, with a large

cluster of points corresponding to lower severity events that are associated with either

harvest or insect disturbances. MODIS dNBR under-predicted the first metric (DMp;

R2 = 0.66) for many pixels affected by harvest, while the second metric (DMNB; R2

= 0.75) did not suffer from this effect and the relationship was closer to the 1:1 line.

The shift in position of the cluster corresponding to harvested pixels is likely more

related to the fact that small logging events tend to be widely distributed across the

landscape than to a distinct spectral signature of logging. These results suggest that

MODIS dNBR data capture information that is comparable to equivalent metrics

at the Landsat scale, but that MODIS NBR values often include information from

adjacent pixels that contribute to the disturbance signal at some pixels.
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Figure 2.5: The relationship between MODIS dNBR and disturbance magnitude from

the NWFP-DB for a random sample of 2,000 MODIS pixels that were disturbed once

between 2001-2008. The points have been colored according to the disturbance type

layer from the NWFP-DB. Two versions of disturbance magnitude are compared

with MODIS dNBR: DMp and DMNB. Values of each metric have been normalized

to range from 0 to 1 for comparison purposes. The solid line shows the best linear

model fit with the R2 value and the dashed line represents the 1:1 line.
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2.3.4 Effects of Disturbance History

Of the 11.6 million hectares of forest (∼540,000 MODIS pixels) included in the study

area, 28% were disturbed once and 62% were disturbed more than once between 1985

and 2008 according to the NWFP-DB. Of the forested pixels with at least one distur-

bance, 88% were disturbed between 1985 and 2000 and 50% were disturbed between

2001 and 2008. Hence, the spectral trajectory of many MODIS pixels includes infor-

mation related not only to disturbance, but also to forest recovery and regeneration.

Disturbance history prior to 2001 affects the trajectory of MODIS NBR values, and

by extension, also affects results from MODTrendr. To explore this, we compared

MODTrendr results for MODIS pixels in the study area that were undisturbed be-

tween 1985 and 2000 with results from pixels that were disturbed during the same

period (Figure 2.6; Table 2.2). Before we review those results it is important to

reiterate that the majority of errors in the MODTrendr results were associated with

disturbance phenomena in the study area occurring at a scale that is well below

the spatial resolution of MODIS pixels (Section 2.3.2; Jin and Sader 2005). The

first panel in Figure 2.7 shows the size frequency distribution for disturbance events

that occurred in the study area between 2001 and 2008, where the size of events

is expressed as a proportion of 500-m MODIS pixels (Ap). Notably, about 75%

of disturbance events in the NWFP-DB had areas smaller than 0.3 MODIS pixels.

This size frequency distribution explains why fire events, which were generally much

larger, were easier to detect with MODIS relative to harvest and insect disturbances,

which tended to be much smaller. Further, as we demonstrated in Section 2.3.2, the

signature of disturbance in MODIS time series is also related to the severity of the

events. The second panel in Figure 2.7 shows the frequency distribution for DMc

(which combines the effects of size and severity; Section 2.2.4) across the study area
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for all disturbance events that occurred in the study area between 2001 and 2008.

Relative to the frequency distribution for Ap, the distribution of DMc reached a max-

imum at lower values and had a longer tail; about 60% of disturbed pixels had DMc

values that were ≤ 0.1 dNBR. Since the noise threshold chosen for this work was 0.08

MODIS dNBR and the disturbance magnitude metrics are correlated with MODIS

dNBR (Figure 2.5), this result demonstrates why MODTrendr does not capture a

large proportion of disturbance events in the study area regardless of the effects of

disturbance history discussed next.

Table 2.2: Sources of omission and commission errors in the MODTrendr results

relative to the NWFP-DB across the study area. Each column shows proportions

of MODIS pixels grouped as either of two agreement categories (undisturbed and

disturbed) or two error categories relative to the disturbed class (commission and

omission).

Total number

Period 1985-2000 Period 2001-2008

Category
of MODIS Affected by Affected by Disturbed Low MODIS Neighborhood

pixels Harvest Insects Frequently2 NBR3 Disturbance4

Undisturbed forest 363,346 0.31 0.14 0.18 0.18 0.05

Disturbed forest 73,622 0.30 0.19 0.21 0.18 0.89

Errors of commission 32,585 0.28 0.27 0.18 0.51 0.18

Errors of omission 69,629 0.47 0.20 0.36 0.22 0.62

In previous sections we only considered pixels that were undisturbed prior to

2001; to expand on this we also explored the relationship between MODIS dNBR and

2”Disturbed frequently” describes pixels that were affected by at least three separate disturbance
events during the period 1985-2000.

3”Low MODIS NBR” describes pixels with values of MODIS NBR < 0.6 in year 2000.
4”Neighborhood disturbance” describes pixels with ANB > 0.3 MODIS pixels during the period

2001-2008.
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DMc for the 2001-2008 period for every forested pixel in the study area (Figure 2.6;

Table 2.2). To maintain consistency with our previous results, here we used the

same threshold to identify disturbed areas in the NWFP-DB (i.e., Ap > 0.05 MODIS

pixels). Results from this analysis indicate that disturbance history substantially

influenced results from MODIS. Two thirds (67%) of omission errors corresponded

to locations that experienced either harvest or insect disturbances between 1985

and 2000 (only 2% of these errors were previously affected by fire disturbance),

and many of these errors (36%) were also affected by at least three disturbance

events (Table 2.2). This suggests that disturbance (primarily from logging) in these

locations was frequent throughout the 1980s and 1990s, and that these locations

therefore included mosaics of forest stands with different ages between 2000 and

2008 (Kennedy et al., 2012). Further, many of the disturbances affected relatively

small areas, which affected the ability of MODTrendr to detect them; the median

size of successfully detected disturbances was 0.3 MODIS pixels but the median size

of undetected events was 0.13 MODIS pixels. Thus, individual disturbance events

contributing to the DMc in each pixel were frequently small, spread out in time, and

included forest change at scales well below the resolution of MODIS. Further, post-

disturbance afforestation between 2001 and 2008 may be masking spatially coincident

disturbance events, leading to more errors of omission.
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Figure 2.6: (A) Spatial distribution of the DMc metric across the study area for

the period 2001-2008. (B) Spatial distribution of MODIS dNBR for the period

2001-2008. (C) Spatial distribution of DMc for the historical period 1985-2000. (D)

Omission (purple) and commission (green) errors in MODTrendr results relative to

the NWFP-DB for the period 2001-2008. Panels A-C are colored according to their

dNBR values: a small change (cyan) is defined to be less than 0.2 dNBR, a moderate

change (orange) as between 0.2 and 0.5 dNBR, and a large change (red) as greater

than 0.5 dNBR. Panels A and C consider a pixel stable forest if Ap ≤ 0.05 MODIS

pixels and Panel B considers a pixel stable forest if MODIS dNBR ≤ 0.08.
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The effect of disturbance history on commission errors, on the other hand, was

less clear. More than one fourth (27%) of commission errors were located in pixels

affected by long duration disturbances between 1985 and 2000, including areas that

were affected by mountain pine beetle and western spruce budworm in the 1980s and

1990s (Meigs et al., 2011). Over half of these pixels had MODIS NBR values that

were relatively low in 2000, indicating below average forest cover early in the time

series (Table 2.2). The lower NBR values caused by these disturbances may have

contributed to increased rates of commission errors by decreasing the signal-to-noise

ratio within the time series, making MODTrendr more sensitive to noisy input data.

Indeed, nearly 80% of the falsely-identified disturbance segments were estimated to

occur in 2001 and had dNBR values less than 0.2 (Figure 2.6). Together, patterns

in errors of omission and commission indicate that disturbance events prior to 2001

affect MODTrendr results from 2001-2008. At the same time, regional patterns in

errors seem to reflect ecological differences between mixed-conifer forests dominated

by Douglas-fir (Pseudotsuga menziesii) in the wetter western portions of the study

area and the sparser forests dominated by Ponderosa pine (Pinus ponderosa) east

of the Cascade Range (Lefsky et al., 2005; Kennedy et al., 2012), where commission

errors tended to be concentrated.
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Figure 2.7: Distribution of disturbance event size and DMc across the study area for

the period 2001-2008. The disturbance size describes the proportion of a MODIS

pixel affected by each event. The DMc combines size and severity information from

the NWFP-DB and is shown in units of dNBR. These two histograms are colored

according to the relative proportion of three disturbance types from the NWFP-DB:

harvest, fire, and insects/other. The solid lines show the cumulative frequency of

the distribution along the right axis. For the DMc distribution, all values of DMc

exceeding 0.6 dNBR were placed in the last bin.
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2.4 Discussion

2.4.1 Effects of Disturbance Size, Disturbance Severity, and MODIS

Gridding Artifacts

MODTrendr consistently detected disturbances larger than 0.3 MODIS pixels with

high accuracy, correctly identifying 79% of these pixels across the study area (Fig-

ure 2.6). However, most disturbance events in the NWFP-DB affected less than

one-third of a MODIS pixel (Figure 2.7). Previous results suggest that the so-called

low-resolution bias inherent to analyses based on coarse spatial resolution instru-

ments such as MODIS should preclude detection of these events by algorithms such

as MODTrendr (e.g., Boschetti et al. 2004). Our results partially support this, but

provide a more nuanced assessment. Specifically, our results indicate that across the

study area 37% of forest disturbances affecting areas between 0.05 and 0.3 MODIS

pixels were successfully detected by MODTrendr (Figure 2.6). For high severity

events (Sp > 0.6 dNBR) within the same range in disturbance area, the percentage

of successful detections increased to 52%. Thus, even though small disturbances

were very common in the NWFP-DB (Figure 2.7), MODIS dNBR successfully cap-

tured the majority of disturbance information at the landscape scale. For example,

sums of MODIS dNBR and Landsat-based DMc (also in units of dNBR) across all

forested MODIS pixels in the study area were remarkably similar (19,653 MODIS

dNBR to 25,885 Landsat dNBR) for the period of 2001-2008, with MODIS capturing

over 75% of the total disturbance magnitude from Landsat integrated over the en-

tire study area and period. Disturbance size and severity also influenced the ability

of MODTrendr to estimate the timing of events (Figure 2.4). MODTrendr assigned

56% of the spatially accumulated dNBR to disturbance segments with onsets in 2001,

but the NWFP-DB only assigns 10% of the disturbance onsets to that year. If ac-
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curate information related to disturbance timing is important, MODTrendr is likely

to provide high quality information only for the larger and more severe events. That

said, more research is required to better understand how interactions among sensor

spatial resolution and disturbance size and severity influence errors of omission and

commission from change detection algorithms.

Our results also suggest that gridding artifacts introduce modest amounts of

information from neighboring pixels to dNBR values at each pixel (Figure 2.5). While

MODIS data are geolocated with high accuracy, the MODIS daily surface reflectance

data that are used to compute individual NBAR values at each pixel are obtained

from a range of view zenith angles with fields of view that cover different projected

areas on the ground. Daily surface reflectance measurements obtained at larger

view zenith angles therefore include locations that are well outside the grid cell to

which reflectance values are assigned (Huang et al., 2002); Tan et al. (2006) showed

that 463-m MODIS pixels include information from an area that is 25% larger than

the pixel grid cell. Indeed, even observations with small viewing angles have some

geolocation uncertainty and may occasionally be assigned to the wrong grid cell. As

a result, and as we demonstrate in Figure 2.5, the signature of disturbance events

in adjacent pixels affects dNBR values in MODIS data. This conclusion is further

supported by results shown in Table 2.2, which demonstrate that commission errors

in MODTrendr results appear to be influenced by disturbance events in locations

adjacent to the pixel of interest.

2.4.2 Effects of Disturbance History and Data Quality

Disturbance events that occurred prior to the launch of MODIS significantly affected

MODTrendr results (Figure 2.6; Table 2.2). Specifically, errors of omission tended
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to occur in locations with one or more disturbance events prior to 2001. MODIS

NBR time series at these locations reflect complex interactions between disturbance

and regrowth at sub-pixels scales. For pixels that were disturbed immediately prior

to 2001, we expect changes in NBR from 2001-2008 to be slightly positive, reflecting

forest regrowth. However, NBR time series at pixels that experienced multiple sub-

pixel disturbance events between 1985 and 2008 may not show significant dynamics

in NBR because regrowth at sub-pixel scales compensates for changes in NBR related

to disturbance. Thus, errors of omission for sub-pixel disturbances occur not only

because of low-resolution bias, but also because sub-pixel regrowth can mask the

signature of disturbance in MODIS data (e.g., Healey et al. 2005). This is especially

prevalent in the study area used for this work because logging activity creates a

patchwork of forest clearing and regrowth below the spatial resolution of MODIS.

As a result, errors of omission from MODTrendr tend to be clustered in those areas

of the study area where logging is most common (Figure 2.2; Figure 2.6).

Commission errors from MODTrendr were influenced by noise in the MODIS NBR

time series that were caused by factors other than disturbance history. Table 2.2

shows that many commission errors contained MODIS NBR values that were lower

than average for forested pixels in the study area. This pattern may reflect changes

in forest cover that occurred between the time depicted by the NWFP-DB forest

mask and the MODIS era. However, a more likely explanation is that these lower

than average NBR values reflect geographic differences in forest composition and

stand structure (Lefsky et al., 2005). More generally, most commission errors from

MODTrendr were associated with pixels that were estimated to have small severity

disturbances (< 0.2 dNBR) in 2001. These two results are linked and reflect changes

in the quality of NBR time series during the study period. Prior to 2003, MODIS
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NBAR data were derived from MODIS-Terra only. After the launch of Aqua in

2003, the NBAR product algorithm was able to ingest surface reflectances from

both MODIS-Aqua and MODIS-Terra, which significantly decreased the frequency of

missing data and improved the quality of the product (Salomon et al., 2004). Because

MODTrendr is sensitive to the first and last points of the time series (Kennedy et al.,

2010), pixels that already have mixtures of forest and non-forest land cover (and lower

NBR values) are more likely to show this type of commission error based on lower

quality data from 2000-2002. Finally, a small proportion of MODTrendr commission

errors may reflect timing errors for events that occurred between 2008 and 2010, or

errors in the NWFP-DB caused by gaps in the Landsat archive, cloud-contaminated

pixels, and the SLC-off problem of Landsat 7.

2.5 Conclusions

The research described in this paper includes two main elements. First, we adapted

an existing algorithm for detecting forest disturbance using Landsat data for use

with MODIS data; we call this version of the algorithm ”MODTrendr.” Second, we

assessed the ability of MODTrendr to detect forest disturbance in the NWFP area

and explored sources of error in MODTrendr results. Specifically, we examined how

disturbance size, severity, and history affected errors of omission and commission

in disturbance detection. In addition, we also examined if and how gridding arti-

facts inherent to MODIS data products affected the ability of MODTrendr to detect

disturbance.

Our results provide several important insights regarding the strengths and weak-

ness of MODTrendr (but also of MODIS data more generally) for detecting forest

disturbance. Most importantly (and not surprisingly), successful detection of distur-
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bance depended on the size and severity of the event, the level of noise in MODIS

data, and the disturbance history at each MODIS pixel. Our results indicate that

79% of the disturbances affecting more than one-third of a MODIS pixel were de-

tected by MODTrendr, but that smaller events were also detectable (albeit with less

consistency), especially if the severity of the event was high. Disturbance history was

shown to complicate the signature of disturbance in MODIS time series and intro-

duced significant challenges for successful disturbance detection. Finally, the MODIS

gridding algorithm can introduce signatures of disturbance from adjacent cells (and

vice versa), which further complicate the signature of disturbance in MODIS NBR

time series.

Future efforts with MODTrendr will focus on exploiting denser temporal infor-

mation from MODIS time series, which is a particular strength of MODIS data.

Further, extension of MODTrendr to use more spectral features (i.e., beyond NBR)

also has the potential to improve results and might also help to discriminate dif-

ferent disturbance types (Schroeder et al., 2011). Another goal will be to test the

use of MODIS 250-m data, which would help to resolve some of the challenges as-

sociated with sub-pixel disturbance detection that we have described in this paper.

MODIS data have the advantage of being able to cover large areas in a timely fash-

ion. However, MODIS lacks the spatial resolution provided by Landsat. In the long

run, high-quality and timely detection of forest disturbances over large areas will re-

quire data from multiple sources that span a range of spatial, spectral, and temporal

resolutions.



Chapter 3

Sources of Bias and Variability in

Long-Term Landsat Time Series Over

Canadian Boreal Forests

3.1 Introduction

The Earth’s surface has warmed over the past 60 years at roughly 0.12◦C per decade

(Stocker et al., 2013). Climate warming has been most pronounced over Northern

Hemisphere land areas during the winter and spring months (Hansen et al., 2006;

Wang et al., 2006; Piao et al., 2008), and has been linked to longer growing seasons

and changes to vegetation phenology and productivity (Piao et al., 2007; Kim et al.,

2012; Xu et al., 2013; Jeganathan et al., 2014; Stow et al., 2004; Beck and Goetz,

2011), thermokarst dynamics (Smith et al., 2005), and forest dieback events (Allen

et al., 2010; Michaelian et al., 2011). Boreal forest ecosystems are especially vul-

nerable to climate change because air temperatures exert strong control on boreal

ecosystem function (Bonan, 2008), and continued warming has the potential to trig-

ger a variety of climate feedbacks, including increased rates of ecosystem respiration

(Angert et al., 2005), enhanced fire regimes (Flannigan et al., 2005; Wotton et al.,

2010; de Groot et al., 2013), and melting permafrost (Anisimov, 1996; Schaefer et al.,
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2011). Because boreal forests are geographically remote and extensive, monitoring

and characterization of changes to the structure and composition of these forests

is challenging. Remote sensing therefore provides a critical source of information

related to how this important biome is responding to climate change.

Recent decades have witnessed an enormous increase in the volume of Earth-

observation data from satellite-borne sensors that are available for climate change

research. Several studies using the Normalized Difference Vegetation Index (NDVI),

which is widely used as a proxy for primary productivity, have suggested that pro-

ductivity has decreased across large regions of the North American boreal forest over

the last 30 years (Tateishi and Ebata, 2004; Goetz et al., 2005; Beck and Goetz, 2011;

Bi et al., 2013; Guay et al., 2014). Most of these studies are based on the Global In-

ventory Modeling and Mapping Studies (GIMMS) data set (newly released as version

3G), which provides 30 years of NDVI observations from the Advanced Very High

Resolution Radiometer (AVHRR) at 8-km spatial resolution (Tucker et al., 2005;

Pinzon et al., 2007; Pinzon and Tucker, 2014). The GIMMS data sets are based on

maximum value NDVI composites for 15-day periods, and have been pre-processed to

correct for clouds and atmospheric contamination, view angle effects, and changes to

AVHRR sensor characteristics and calibration. Because observed changes in GIMMS

NDVI time series over boreal forests are subtle, differences or refinements to meth-

ods that are used to generate AVHRR NDVI data sets can affect results from time

series analyses. For example, the geographically extensive decreasing NDVI trends

(”browning”) observed across boreal North America in the GIMMS 3G data set were

not detected in previously available AVHRR NDVI data sets (Slayback et al., 2003;

Olthof and Latifovic, 2007; Pouliot et al., 2009; Alcaraz-Segura et al., 2010). More

generally, challenges involved in cloud screening and atmospheric correction (Fontana
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et al., 2012), the use of blended time series from different AVHRR sensors (Tucker

et al., 2005; Pinzon and Tucker, 2014), natural and human disturbances (Goetz et al.,

2005), and geolocation errors (Alcaraz-Segura et al., 2010) all introduce uncertainty

to AVHRR time series.

In contrast to data from the AVHRR, the Landsat archive provides well-calibrated

and precisely geolocated time series of remote sensing observations that span essen-

tially the same time period as the GIMMS 3G data set (Wulder et al., 2012). The

Landsat 4 and 5 missions (from 1982 to 2011) carried the Thematic Mapper sensor,

which included six spectral bands designed for land cover and vegetation character-

ization at much finer spatial (30-m) resolution and with much better radiometric

resolution and calibration relative to the AVHRR sensors (Markham et al., 2004).

The Landsat 7 mission (launched in 1999) included the Enhanced Thematic Mapper

Plus (ETM) sensor, which was developed as a more stable upgrade to the Thematic

Mapper (Masek et al., 2001), and most recently, Landsat 8 was launched in 2013 and

includes the Operational Land Imager (OLI), which extends and improves upon the

Landsat legacy of Earth-observation science (Irons et al., 2012).

While a number of recent studies have used Landsat data to study long term

changes in high latitude regions, these studies have generally used fewer than ten

images for a single Landsat path/row, and have largely focused on greening trends

in tundra ecosystems (Neigh et al., 2008; Pouliot et al., 2009; McManus et al., 2012).

In this paper, we investigate a more general set of issues related to compiling and an-

alyzing much denser Landsat time series (i.e., 150 to 300 images per scene) in support

of long-term change studies in Canadian boreal forests. To do this, we selected eleven

locations distributed across the Canadian boreal forest where Landsat acquisitions

overlap according to the Worldwide Reference System (WRS2), and downloaded all
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available TM5 and ETM data corresponding to peak-summer conditions (approxi-

mately July 1st to September 1st) for each of these locations. We then used these

data to address the following questions:

1. Are red and near-infared (NIR) surface reflectances and derived spectral veg-

etation indices sufficiently stable over the 30-year Landsat record to support

long-term trend analyses?

2. Do within-scene variations in sensor view geometry affect red and NIR surface

reflectances and vegetation indices derived from Landsat data?

3. Can reflectances from the TM5 and ETM sensors be combined into a single

time series, or do sensor-specific differences introduce artifacts in the data?

Results from our analyses show that while the radiometric and calibration quality

of the TM5 and ETM sensors are exceptionally high, time series of Landsat surface

reflectances and spectral vegetation indices include sources of variability that are un-

related to changes in surface properties, and which therefore need to be accounted for

in time series analyses that exploit the deep and rich record of terrestrial observations

provided by the Landsat archive.

3.2 Data and Methods

3.2.1 Study area

The boreal zone of North America extends from Alaska to Newfoundland, encom-

passes 627 million hectares, and is defined by climate regimes that support cold-

tolerant tree species (Brandt, 2009). In this work we focus on the boreal forests east

of the Canadian Rocky Mountains, using eleven sites that encompass a range in forest
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types, disturbance regimes, and climates (Figure 3.1). Specifically, we selected areas

located where two or more adjacent Landsat WRS2 paths overlap each other. This

strategy doubled (or in some cases tripled) the number of Landsat images and com-

pensated for the relatively low frequency of Landsat acquisitions at higher latitudes

(Ju and Roy, 2008).

Figure 3.1: The Canadian boreal forest study area and the eleven scenes (identified

by red boxes) selected according to (A) ecozones, (B) AVHRR NDVI trend slopes,

(C) land cover, and (D) fire disturbance.

The final set of sites included eleven overlap regions that were selected according

to two main criteria. First, nine of the sites included a substantial proportion of 8-km

AVHRR pixels with statistically significant browning trends in peak-summer NDVI

in the GIMMS 3G data set. To identify AVHRR pixels with browning trends, we
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followed the same basic procedure as Beck and Goetz (2011) and Guay et al. (2014),

where we first selected the maximum NDVI value for each AVHRR pixel from all

July and August observations for each year between 1982 and 2012. We then used

results from the Theil-Sen trend estimator (implemented in the zyp pacakage in R

(Bronaugh and Werner, 2013)) at each pixel to select regions with widespread and

statistically significant browning (α = 0.05). Two scenes that contained relatively

low proportions of pixels with statistically significant NDVI trends were also selected

(i.e., WTS Tazin and ETS Smallwood; Figure 3.1). Second, the sites were selected to

encompass the diverse range of climate zones, forest types, and disturbance histories

that are found in the Canadian boreal forest zone (Figure 3.1). To do this, we used

climate regimes (available at http://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_

data.html), land cover derived from Landsat data circa 2000 (Wulder et al., 2008a),

and fire disturbance history from the Canadian Large Fire Database (LFDB) (Stocks

et al., 2002).

3.2.2 Landsat time series data

Several pre-processing steps were required to convert raw L1T Landsat stacks to

annual composites representing the peak-summer ”greenness” for each year. These

included atmospheric correction and cloud screening, followed by manual inspection

of images to further screen undetected atmospheric contamination. Finally, all of

the images for each peak-summer period were condensed into a single cloud-free

composite for each site. We define ”peak-summer” as the eight-week window between

day of year 180 and 240, which corresponds to the period from July 1 to September

1.

For each of the eleven sites (Figure 3.1), all available peak-summer images from

http://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_data.html
http://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_data.html
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Landsat 5 (TM5) and Landsat 7 (ETM) between 1984 and 2012 were downloaded

from the Google Earth Engine archive (available at gs://earthengine-public/

landsat). Landsat L1T data were used because they have already been georefer-

enced and orthorectified by the USGS (Wulder et al., 2012). The Landsat Ecosystem

Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2006) was used

to convert the L1T data to at-sensor radiances, perform atmospheric correction, and

compute surface reflectances. The Function of Mask (Fmask) algorithm (Zhu and

Woodcock, 2012) was then used to identify pixels that contained clouds, cloud shad-

ows, snow, or water. To screen errors in the Fmask results, we manually screened

the resulting image time series, and any images with substantial amounts of un-

detected clouds, haze, and smoke were removed. To eliminate any remaining data

contaminated by clouds or smoke (especially for sites with only a few images in a

single summer season), we removed observations with red reflectance higher than

0.12 and NIR reflectance higher than 0.2. These thresholds were prescribed to be

conservative, and eliminate extreme values only.

The final peak-summer composite for each year was created using a maximum

value NDVI compositing procedure. This procedure eliminates most unscreened at-

mospheric effects over vegetated surfaces because cloud-contaminated pixels have

lower NDVI values than clear-sky pixels (Roy et al., 2010). To perform the com-

positing, at each pixel surface reflectances for each Landsat band were retained from

the image associated with the highest NDVI observation during the peak-summer

period. To support further analysis, data from different Landsat WRS2 paths were

composited separately for each sensor, thereby allowing us to create data sets that

only included imagery from eastern or western images in overlap pairs, or that in-

cluded data from only the TM5 or ETM sensor.

gs://earthengine-public/landsat
gs://earthengine-public/landsat
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3.2.3 Ancillary information related to land cover and disturbance

Two sources of ancillary information were used to select undisturbed pixels with

different land cover types in each of the eleven sites. First, to identify landscape

patches with uniform land cover, we used a simplified version of the Earth Obser-

vation for Sustainable Development of Forests (EOSD) map, which provides a land

cover classification at 30-m spatial resolution for all of Canada based on circa 2000

Landsat 7 ETM data (Wulder et al., 2008a). To reduce the impact of uncertainty in

this product, we collapsed the 22-class EOSD legend into two simpler legends with

four classes and seven classes (Table 3.1), where the four-class scheme collapsed all

forest types into one class and the seven-class scheme retained differences related to

leaf types. To identify homogeneous land cover patches in these simplified maps, we

used morphology tools available in the Python Scipy library (Jones et al., 2001) to

identify spatially contiguous land cover patches and to erode each patch inwards by

one pixel, thereby reducing errors associated with patch edges. Second, to isolate

pixels that were not disturbed by fire (which is the dominant source of disturbance

in Canadian boreal forests (Amiro et al., 2001), we used the Canadian Large Fire

Database (LFDB) to identify and remove pixels that had been burned at any time

in the record.
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Table 3.1: Aggregation of EOSD LC classes according to four (AGG4) and seven

(AGG7) class schemes similar to Remmel et al. (2005).

AGG4 AGG7 EOSD

Shadow

Cloud

Water Water

Non-Vegetated Land

Snow/Ice

Rock/Rubble

Exposed Land

Non-Forest Vegetation

Shrub-Tall

Shrub-Low

Herb

Bryoids

Wetland-Shrub

Wetland-Herb

Forest

Treed Wetlands Wetland-Treed

Conifer Forests

Conifer-Dense

Conifer-Open

Conifer-Sparse

Broadleaf Forests

Broadleaf-Dense

Broadleaf-Open

Broadleaf-Sparse

Mixed Forests

Mixed-Dense

Mixed-Open

Mixed-Sparse
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3.2.4 Analysis of Landsat data

We analyzed nearly three decades of Landsat imagery at each of the eleven study

sites to explore sources of variability that influence detection of long-term trends

in time series of annual maximum NDVI and corresponding values for EVI, red

reflectance, and NIR reflectance. To perform these analyses, we used the four-class

version of EOSD map (Table 3.1) in association with the LFDB to select random

samples of unburned pixels from each land cover type (excluding water) in each site.

Water pixels were excluded because the maximum-NDVI compositing approach is

not appropriate for water bodies, which can have lower clear-sky NDVI values than

cloud-contaminated pixels. The resulting data set provided time series of Landsat

surface reflectances for each cover type that were then used to explore if and how

vegetation indices and surface reflectances varied as a function of time, view angle

(eastern versus western portion of images), and instrument (TM5 versus ETM).

The first set of analyses we performed was designed to assess the nature and

magnitude of systematic biases introduced by intra-sensor geometry and both intra-

and inter-sensor calibration. To do this, we selected 100 samples, each of 2,000

undisturbed pixels, for each land cover type within each site. Land cover types that

made up less than 5 percent of the site’s area were excluded. Each sample of pixels

was used to calculate five-year medians in red and NIR surface reflectances (values

for the medians of the other visible and IR bands are provided in the Appendix), the

NDVI, and the Enhanced Vegetation Index (EVI). The EVI was used because it is less

affected by residual atmospheric effects not captured by LEDAPS and is less prone to

saturation at high values relative to the NDVI (Huete et al., 2002). Medians based on

100 bootstrapped sample means (Efron and Tibshirani, 1986) were compiled for each

five-year interval and used to perform three assessments. First, to characterize the
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long-term stability of the TM5 calibration, we assessed if and how TM5 data changed

through time by comparing data from 1985-1989 to values for the same undisturbed

pixels in 2005-2009. Second, to quantify the magnitude of variance introduced by

view geometry, we took advantage of the fact that all of our sites are located in

the overlap zone between adjacent Landsat scenes, and compared TM5 and ETM

data from the eastern-most portion of Landsat images with co-located data from the

western-most portion of adjacent Landsat images at each site for 2005-2009. Third,

we quantified differences between TM5 and ETM using data from each instrument

acquired with consistent geometry (i.e., within the same WRS2 scene) for 2005-2009.

In the second set of analyses, we assessed if and how subtle differences in calibra-

tion between the TM5 and ETM sensors affect the nature and magnitude of NDVI

trends over undisturbed forest pixels. To do this, we used two 28-year Landsat time

series (1984-2011): the first data set included only TM5 data, and the second data set

pooled all available TM5 and ETM data into a single time series. Using these data

we randomly selected 400 undisturbed forested pixels from each site (total n=4,400

pixels). We then used the Theil-Sen trend estimator to characterize the magnitude

and statistical significance of temporal trends in NDVI in each data set (i.e., TM5-

only versus TM5 and ETM combined). As part of this analysis, we also analyzed

differences between the annual maximum NDVI computed from TM5 versus ETM

for each sampled forest pixel for the period when both Landsat 5 and Landsat 7 were

collecting data (from 1999 to 2011).
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3.3 Results

3.3.1 Landsat compositing and cloud screening

Figure 3.2A shows the number of TM5 and ETM images acquired for each year

across all eleven study sites that were used in our analyses (2,439 images total).

These images were all acquired between day of year 180 and 240 between 1984 and

2012. The number of TM5 images acquired each year was relatively constant (roughly

60) until 1999 when Landsat 7 was launched; thereafter, the combined rate of image

acquisitions nearly doubled to 115 images per year. In 2000, and to a lesser extent in

2001, the number of TM5 images decreased substantially over boreal Canada because

the acquisition strategy focused on ETM data during this period (White and Wulder,

2014). After 2001, acquisitions of TM5 and ETM data were roughly equivalent until

Landsat 5 was decommissioned in late 2011.
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Figure 3.2: (A) Distribution of all peak-summer Landsat acquisitions by year. (B)

Summary of good quality data frequency at ten percent intervals. Discarded scenes

are represented as N/A.

Figure 3.2B summarizes the proportion of good quality data in peak-summer

TM5 and ETM images after the pre-processing steps described in Section 3.3.1 were

applied. We define a ”good quality” observation as having a valid value in both red

and NIR reflectances. Of the 2,439 total scenes, 11 percent were excluded because of
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errors during pre-processing, including problems with the Fmask-based cloud screen-

ing. Roughly 21 percent of the remaining images had more than 90 percent missing

data, and 37 percent of the images had less than 50 percent missing data. Relative

to TM5 data, ETM data had higher frequencies of missing observations because of

the scan-line corrector failure of Landsat 7 in 2003 (Arvidson et al., 2006).

Figure 3.3 shows the impact of manual cloud screening (performed after applying

Fmask and LEDAPS) on red band reflectance values at each site. In general, sites

with more cloud cover in summer months tended to be located in the eastern part of

the study area (i.e., ETS Smallwood, ETS Plateau, and BS Rupert; Figure 3.1) and

exhibited more variance in red reflectance. After we manually screened for clouds,

there were fewer outliers in most sites and both the median and the overall spread

in red reflectance decreased. The decrease in the magnitude of red band reflectances

for ETS Plateau, BS Churchill, BP Uplands, and WTS Coppermine suggests that

this procedure successfully removed previously undetected clouds.
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Figure 3.3: The average red reflectance of TM5 data for each study site is compared

before and after manual cloud screening. Each box represents the range of 28 years

of site-wide averages.

3.3.2 Sources of variation in Landsat time series

To investigate sources of variability in TM5 and ETM data related to intra- and

inter-sensor calibration differences, we compared surface reflectances and vegetation

indices for co-located undisturbed pixels across different time periods, sensor view

angles, and instruments. Specifically, we performed three distinct assessments using

time series of red reflectance, NIR reflectance, and corresponding NDVI and EVI

values. The same assessments were performed for the blue, green, and two shortwave

infrared channels (Landsat bands 1, 2, 5, and 7) and are provided in the Appendix.

First, we compared values from 1985-1989 for each of these quantities against
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values from 2005-2009 for TM5 data only. Figure 3.4 presents scatter plots show-

ing mean values for each of these quantities, stratified by site and land cover class

(Figure 3.9 shows these relationships for the other visible and infrared bands). The

solid red line presents the result from a linear major axis regression (Sokal and

Rohlf, 1995), along with 95 percent confidence intervals on the slope of the esti-

mated model plotted as dashed red lines. In all four cases, values are close to the 1:1

line, which strongly suggests that the calibration for TM5 is stable across the twenty

year time period considered here. The only exceptions to this general conclusion

are that forested pixels in some sites had higher NIR reflectance in 1985-1989 rela-

tive to 2005-2009 and, conversely, non-forested pixels in some sites had lower NIR

reflectance in 1985-1989 relative to 2005-2009. However, these differences were not

sufficiently large to affect corresponding NDVI or EVI values.
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Figure 3.4: Comparisons of median red reflectance, NIR reflectance, NDVI, and EVI

values between TM5 data sets for undisturbed landscape patches separated by 20

years. The values plotted are medians for five year periods, stratified by land cover

type and study site.

Second, we assessed if and how modest variation in TM5 and ETM view geometry

between the eastern and western portions of Landsat scenes introduces systematic

variation in surface reflectances and vegetation indices derived from these instru-

ments. To do this, we exploited the fact that each of our sites is located in the

overlap region between adjacent Landsat scenes, and compared values for surface

reflectances and vegetation indices that were acquired by the same sensor during the

same time period from different view geometries (i.e., pixels located on the western
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portion of one scene versus the eastern portion of the adjacent overlapping scene).

Figure 3.5 clearly shows that red and NIR reflectances from pixels taken from the

western side of Landsat scenes (i.e., from the eastern-most WRS2 path) were higher

on average than those from the eastern side (Figure 3.10 shows that these relation-

ships are similar for the other visible and infrared bands), and that this bias was

stronger in the NIR band than in the red band. While NDVI values did not show

this pattern, EVI values for the western side of Landsat images were also higher than

those on the eastern side.
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Figure 3.5: Comparisons of median red reflectance, NIR reflectance, NDVI, and EVI

values from Landsat data between eastern and western edges of adjacent scenes over

undisturbed landscape patches. Values plotted are medians for 2005-2009, stratified

by land cover type and study site.

Third, we used the period 2005-2009, when both Landsat 5 and Landsat 7 were

acquiring data, to assess differences between TM5 and ETM surface reflectances

and vegetation indices. Figure 3.6 presents a comparison of red reflectance, NIR

reflectance, and values of the EVI and NDVI from TM5 versus ETM for co-located

pixels extracted from peak-summer image acquisitions (Figure 3.11 shows these re-

lationships for the other visible and infrared bands), and reveals that red reflectance

values from the TM5 sensor were systematically higher than those from the ETM
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sensor, but that NIR reflectance values were very similar across the TM5 and ETM

sensors. As a result, average NDVI and EVI values derived from ETM data were

higher than those from TM5 data. Relative to changes over time or biases imposed

by changing view geometries, relationships between TM5 and ETM reflectances and

vegetation indices showed the strongest agreement with very little scatter around

the fitted regression. In the next section, we show that even though differences in

red reflectance between the TM5 and ETM data were small, these differences can

introduce spurious trends in time series if they are combined to create a single time

series.



60

Figure 3.6: Comparisons of median red reflectance, NIR reflectance, NDVI, and EVI

values between TM5 and ETM data over undisturbed landscape patches. Values

plotted are medians for 2005-2009, stratified by land cover type and study site.

3.3.3 Impact of cross-sensor bias on NDVI trends

In the final set of analyses performed for this work, we assessed if and how the

systematic differences in red band reflectance from TM5 versus ETM discussed in

Section 3.3.2 affect long-term NDVI trends over undisturbed forest pixels in our

study sites. To do this, we used the same non-parametric Theil-Sen estimator that

was used in Section 3.2.1 to compute the magnitude and statistical significance of

trends in Landsat NDVI over time using two different data sets. The first data set
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was created using surface reflectances from TM5 data only, while the second data set

combined NDVI data from both TM5 and ETM. Figure 3.7 plots the distribution of

estimated trends across 4,400 undisturbed forest pixels sampled from each data set,

and clearly shows substantial differences between trends estimated from only TM5

data versus those estimated using the pooled data set that combines data from the

TM5 and ETM. In the data set that combines TM5 data with ETM data, 36 percent

of pixels exhibit statistically significant trends (α =0.05), while in the TM5-only data

set only 18 percent of pixels do. Further, nearly all of the pixels showing statistically

significant trends in the combined data set have positive slopes (i.e., NDVI increasing

with time), while pixels showing statistically significant trends in the TM5-only data

set are more evenly split between positive and negative slopes (47 percent versus 53

percent, respectively).



62

Figure 3.7: Distribution of NDVI trend slopes for the combined TM5/ETM data set

and the TM5-only data set for a sample of 4,400 undisturbed forest pixels.

Over the period from 1999 to 2011, the combined data set has a median bias of

0.03 NDVI units greater than the TM5-only data set for the same period (Figure 3.8).

It is interesting to note, however, that the magnitude of this bias seems to modestly

vary over time; from 1999 to 2002 the median bias was 0.042 NDVI units but from

2003 to 2011 the median bias was 0.027 NDVI units. These results demonstrate

that systematic differences in NDVI values derived from ETM data relative to those

derived from TM5 data influence long-term trends estimated from NDVI time series

that combine TM5 data with ETM data. Specifically, because ETM NDVI values are
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systematically higher than those from TM5, inclusion of ETM data from 1999-2011

can cause spurious positive trends in NDVI time series.

Figure 3.8: The distribution of absolute differences in peak-summer NDVI values

between the TM5-only data set and the combined TM5/ETM data set for all years

between 1999 and 2011 for a sample of 4,400 undisturbed forest pixels.

3.4 Discussion and Conclusions

In this paper we explored sources of variability in time series of Landsat data that

are unrelated to surface properties, which can therefore influence interpretation and

statistical inferences related to long-term trends in surface properties. Specifically,

we addressed the three research questions posed at the end of Section 3.1. Results

from our investigation point to three main conclusions.

First, the results presented in Figure 3.4 demonstrate that the radiometric cal-

ibration of the TM5 instrument, at least in the red and NIR bands, is sufficiently

stable over the nearly three decade lifespan of Landsat 5 to support long-term trend
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analyses. However, several outliers are clearly evident in the NIR reflectance shown

in Figure 3.4B. In all likelihood, these outliers reflect changes in vegetation cover that

occurred during the 20 year period represented in this Figure. For example, increases

in the NDVI of non-forest vegetation in the ETS Plateau and ETS Smallwood sites

may reflect increases in the vigor of shrub vegetation in response to climate warming

(Fraser et al., 2011; McManus et al., 2012). Similarly, decreases in NIR (and by

extension, NDVI) in forested pixels could be related to responses to drought stress

or to succession from hardwood to conifer species in pixel containing undetected fires

in the LFDB. Indeed, it is important to note that even though the LFDB provides

a record of fire that extends back to the early 1900’s, it is less accurate for earlier

periods (i.e., before Landsat) (Stocks et al., 2002). Further, fires that were smaller

than 200-ha are not recorded in the LFDB, nor are other disturbances such as log-

ging and mining development. In cases where a disturbance was missed and the

affected pixels were labeled as undisturbed, ecological succession from shrubs and

broadleaf deciduous trees to evergreen needleleaf forests would first exhibit an in-

crease in NIR reflectance, followed by a gradual decline over many years (Song et al.,

2002). Overall, however, the results we found strongly support the conclusion that

the calibration coefficients of the red and NIR bands for TM5 are of high quality.

Second, modest differences in view geometry between the eastern and western

portions of Landsat scenes introduce small but statistically significant differences in

surface reflectances. Specifically, surface reflectances for pixels on the western edge

of Landsat images are higher than corresponding reflectances from the eastern edge

of the adjacent image because the western portion of images include a higher pro-

portion of illuminated tree crowns, while the eastern portion of images include a

higher proportion of shadows (Li and Strahler, 1986). Because of this effect, care
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must be taken when Landsat time series are created by combining data from over-

lapping WRS2 paths. The impact of the directional effect on NDVI values is small

because the the red and NIR values are weighted equally in the computation of the

NDVI and the bias introduced by view geometry has the same sign and roughly the

same magnitude in each band (Figure 3.5). Conversely, the EVI values from the

western edges of images show systematic positive biases because the NIR band is

weighted more heavily in the EVI relative to the NDVI. Hence, compositing proce-

dures that use data combined from adjacent paths based on maximum EVI values

will preferentially select data from the eastern path.

Third, we found modest, but potentially significant, differences in red reflectance

between the TM5 and ETM sensors, which probably arise from bandwidth differences

of the TM5 and ETM sensors that are not corrected for by cross-calibration (Teillet

et al., 2001; Vogelmann et al., 2001; Chander et al., 2009). Because most of the

ground targets used for this procedure in the past have had high reflectances in the

red and NIR wavelengths (Teillet et al., 2004), the collection of more low-radiance

targets for this purpose may correct the problem. While the differences we found are

small, they are sufficiently large to introduce spurious trends in time series of the

NDVI in a substantial proportion of undisturbed pixels across the eleven sites we

examined. Hence, depending on the application, NDVI time series that have been

generated using data combined from both of these sensors should be used with care

(Figure 3.6).

Of the three main results that we identify above, differences in red reflectance

between the TM5 and ETM sensors have the largest impact on detection of long-

term NDVI trends over boreal forests (Figure 3.7). Specifically, peak-summer NDVI

values derived from data that combine TM5 and ETM reflectances were on average
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0.03 NDVI units higher than NDVI based on TM5 data only (Figure 3.8). Results

from non-parametric trend tests show that this bias introduced spurious trends in

NDVI for a substantial number of pixels in the combined data set (Figure 3.7). A

related finding was that the magnitude in the NDVI bias was not constant through

time. Figure 3.8 shows that the magnitude seems to change in 2003. This shift

could either be related to the scan-line corrector (SLC) failure of Landsat 7 in 2003

(Arvidson et al., 2006) or the unequal acquisition of TM5 and ETM data during the

period 1999-2002 (White and Wulder, 2014) (Figure 3.2).

The Landsat archive is one of the best sources of remote sensing information for

investigating trends related to forest health and productivity at regional to global

scales. The archive is freely accessible and deep enough to address many important

questions regarding the nature and consequences of changes in the biosphere over the

last 30 years. In remote regions such as the Canadian boreal forest and arctic where

the depth of the Landsat archive can be an important limiting factor, focusing studies

in areas where Landsat acquisitions overlap can substantially increase the amount

of data available. However, because these environments are naturally dynamic and

many of the changes that are occurring are subtle and gradual, effective analysis of

Landsat times series requires high quality data that have been carefully screened for

artifacts and sources of variance that are unrelated to processes on the ground.

While this work focused on red and NIR reflectances (see the Appendix for anal-

yses of other Landsat bands) and commonly used spectral vegetation indices such

as the NDVI, future work will benefit from the use of other spectral indices such as

the Normalized Burn Ratio (Kennedy et al., 2010), or the wetness component of the

Tasseled Cap transform (Czerwinski et al., 2014). These indices may be less affected

by unscreened atmospheric effects and have been shown to provide useful informa-
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tion related to spatial and temporal variation in forest productivity and biomass

(Cohen and Spies, 1992; Roberts et al., 2006; Baccini et al., 2012; Ji et al., 2012).

As new data from TM5-like sensors become available, such as the recently launched

OLI sensor onboard Landsat 8 or the Sentinel-2 missions, it will also become in-

creasingly feasible to monitor and explore patterns of change over large swaths of

the Earth’s terrestrial ecosystems. As this paper shows, however, careful attention

to data quality will be essential to the success of these studies.
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3.5 Appendix

Figure 3.9: Comparisons of median blue reflectance, green reflectance, SWIR1 re-

flectance, and SWIR2 reflectance values between TM5 data sets for undisturbed

landscape patches separated by 20 years. The values plotted are medians for five

year periods, stratified by land cover type and study site.
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Figure 3.10: Comparisons of median blue reflectance, green reflectance, SWIR1 re-

flectance, and SWIR2 reflectance values from Landsat data between eastern and

western edges of adjacent scenes over undisturbed landscape patches. Values plotted

are medians for 2005-2009, stratified by land cover type and study site.
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Figure 3.11: Comparisons of median blue reflectance, green reflectance, SWIR1 re-

flectance, and SWIR2 reflectance values between TM5 and ETM data over undis-

turbed landscape patches. Values plotted are medians for 2005-2009, stratified by

land cover type and study site.



Chapter 4

Divergent Responses of Canadian Boreal

Forests to Climate Warming

4.1 Introduction

Over the past 40 years the Earth’s climate has warmed at a rate of 0.15-0.2◦C per

decade with much of this warming concentrated in the Northern Hemisphere (Hansen

et al., 2010a; Stocker et al., 2013). The changing climate has major implications for

the function and productivity of natural ecosystems in arctic and boreal regions, in-

cluding longer growing seasons (Keyser et al., 2002; Piao et al., 2008; Xu et al., 2013),

drier summers (Angert et al., 2005; Parida and Buermann, 2014), and enhanced fire

regimes (Kasischke and Turetsky, 2006; Turetsky et al., 2010). Ground-based studies

in these regions have described permafrost loss (Osterkamp et al., 2000), increased

shrub growth in arctic ecosystems (Sturm et al., 2001; Tape et al., 2006), and both

increasing and decreasing rates of boreal tree growth (Wilmking et al., 2004; Ma

et al., 2012). Many of these changes have important implications for global climate

models, which project an enhanced role for boreal and arctic ecosystems in the global

carbon and radiation budgets (Eugster et al., 2000; Balshi et al., 2007; Euskirchen

et al., 2009; Schaefer et al., 2011). Further, in large regions of boreal North America,

observations of declining tree growth (Lloyd and Bunn, 2007), including wide-spread
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tree mortality events (Allen et al., 2010; Peng et al., 2011), provide evidence for

potentially large errors and uncertainties in current models.

Forest health in boreal regions is intimately linked to the seasonal co-occurrence

of temperature and precipitation (Bonan and Shugart, 1989), and warming temper-

atures are affecting the depth of the snow-pack (Kim et al., 2012), the length of

summer-time droughts (Michels et al., 2007; Dai, 2012), and the prevalence of fires

(Flannigan et al., 2005). In the drier central regions of Canada, increased sum-

mertime drought stress has caused widespread aspen diebacks in Saskatchwan and

Alberta, especially following the extreme 2001 drought (Hogg et al., 2008; Michaelian

et al., 2011). However, in more humid eastern regions of Canada, growth rates of

conifer and shrub species in open woodlands and treeless tundra continue to in-

crease, possibly in response to the longer and warmer growing seasons (Ma et al.,

2012; Fraser et al., 2011; McManus et al., 2012).

While it is clear that the function and productivity of the boreal forests of Canada

are responding to climate warming, studying these processes across the entire boreal

region of Canada requires remote sensing data. Recent studies have attempted to do

this using 30-year time series of the Normalized Difference Vegetation Index (NDVI)

acquired from the Advanced Very High Resolution Radiometer (AVHRR), and have

linked negative trends in NDVI to declines in photosynthetic capacity and produc-

tivity (Beck and Goetz, 2011; Bi et al., 2013; Guay et al., 2014). However, time series

from AVHRR have large uncertainties (Pouliot et al., 2009; Alcaraz-Segura et al.,

2010) and questions remain about the ecological meaning of observed NDVI changes.

In this work we investigate long-term records of boreal forest productivity from

remote sensing data with improved spatial and radiometric properties compared to

the AVHRR sensor. Specifically, we use 28-year time series (1984-2011) of Landsat 5
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imagery from the Thematic Mapper (TM) instrument to identify subtle changes to

forest ecosystems with unprecedented precision. The main objective of this research

is to improve understanding of the major sources of variability and trends in Land-

sat vegetation index (VI) data within Canadian boreal forests over the past three

decades. To achieve this goal, we ask the following two research questions:

1. How do spatial patterns in disturbance and land cover influence VI trends from

28-year Landsat time series in Canadian boreal forests?

2. How do spatial patterns and changes in climate influence VI trends from Land-

sat time series for undisturbed forests in the boreal region of Canada?

To address these questions we upscaled Landsat-scale time series to the spatial scale

of the Moderate Resolution Imaging Spectroradiometer (MODIS) and intersected

these data with ancillary information on disturbance, land cover, and climate. By

characterizing the major sources of spatial variability in long-term VI trends, we can

identify the regions that are vulnerable to transitioning to a less productive state as

a result of climate change (Lenton et al., 2008; Scheffer et al., 2012).

4.2 Data and Methods

4.2.1 Study Area

The study area for this work included five major Canadian ecozones: Boreal Plain,

Boreal Shield, Taiga Plain, Taiga Shield, and Hudson Plain (downloaded from http:

//canadianbiodiversity.mcgill.ca/english/ecozones/index.htm; Figure 4.1A).

These ecozones include a large proportion of the AVHRR pixels that have previously

shown negative NDVI trends in the Global Inventory Modeling and Mapping Stud-

ies (GIMMS 3G) data set (Pinzon et al., 2007; Beck and Goetz, 2011). In addition,

http://canadianbiodiversity.mcgill.ca/english/ecozones/index.htm
http://canadianbiodiversity.mcgill.ca/english/ecozones/index.htm
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these ecozones include a range in climate and fire regimes. Within the study area,

46 sites were chosen that were located in the overlap area between two or more adja-

cent Landsat World Reference System (WRS2) acquisition paths (Figure 4.1). These

sites were randomly selected based on the criterion that each contained at least 10%

tree cover according to the MODIS Vegetation Continuous Fields (VCF) product

(Hansen et al., 2003).

Figure 4.1: The Canadian boreal forest study area and the 46 Landsat overlap scenes

(identified by red boxes) shown according to (A) Canadian ecozones, (B) AVHRR

NDVI trends from the GIMMS 3G data set, (C) tree cover from the MODIS VCF

product, and (D) fire disturbance from the Canadian LFDB.

4.2.2 Pre-processing Landsat Data

For each site, all available Landsat 5 Thematic Mapper (TM) L1T data between

1984 and 2011 were downloaded from the USGS archive (http://earthexplorer.

usgs.gov/). These data have been orthorectified, atmospherically corrected, and

http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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converted to surface reflectances by the USGS (Masek et al., 2006). Before fur-

ther analyses, the data were pre-processed to remove ephemeral contamination from

clouds and other atmospheric effects. The cloud screening was done in two parts.

In the first step, we used a recently developed algorithm called Function of Mask

(FMask) that uses thresholds in reflectance and brightness temperatures to identify

clouds and then matches clouds with cloud shadows using sun-sensor geometry (Zhu

and Woodcock, 2012). Fmask has an overall cloud-detection accuracy higher than

95%. However, it does miss haze and smoke contamination (Zhu and Woodcock,

2012), which commonly occur in the study region. Therefore, we used a second pro-

cedure to remove scenes that were still contaminated by unscreened clouds, haze, and

smoke after applying FMask. To do this, we calculated scene-wide averages of red

band reflectance for each image in the peak-summer period (defined as all dates be-

tween day of year 180 and 240). Since these atmospheric effects significantly increase

red band reflectances above normal conditions (Sulla-Menashe et al., in review; see

Figure 3.3), we removed images with average scene-wide red band reflectances that

were more than one standard deviation greater than the mean value across all dates.

Following these pre-processing steps, peak-summer composites for each Landsat

band were produced for each growing season using a maximum NDVI compositing

approach (Cihlar et al., 1994). To do this, the cloud-free NDVI values in the peak-

summer period were sorted and the reflectances corresponding to the image with the

highest NDVI value were selected at each pixel and for each year. Two spectral vege-

tation indices were calculated from these composites, the NDVI and the Normalized

Burn Ratio (NBR; Garćıa and Caselles, 1991), which is a widely used index for de-

tecting changes in forest cover (Key and Benson, 1999; van Wagtendonk et al., 2004;

Cohen et al., 2010), canopy water content (Roberts et al., 2006), and above-ground
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biomass (Baccini et al., 2012; Ji et al., 2012).

4.2.3 Ancillary Information on Land Cover, Climate, and Disturbance

Four sources of ancillary information were used to help characterize the influence of

land cover, climate, and disturbance on trends in Landsat vegetation indices. First,

for land cover, we used an existing Landsat-scale land cover map from the Earth

Observation for Sustainable Development of Forests (EOSD) project that covers

80% of Canada’s land area and was created using Landsat Enhanced Thematic Plus

(ETM+) data circa 2000 (Wulder et al., 2008a). The original twenty classes provided

by this map were aggregated to four classes (water, non-vegetated land, non-forest

vegetation, and forest) because, at this level of aggregation, the map has an overall

accuracy of nearly 80% (Remmel et al., 2005).

Second, for climate, we obtained monthly climate data including temperature,

precipitation, and potential evapotranspiration data at 0.5◦ spatial resolution from

the Climatic Research Unit (CRU) data set for the period of 1984-2011 (New et al.,

2002). CRU data were obtained for each site by identifying the nearest 0.5◦ grid cell

to the site centroid. To characterize the sites according to moisture regime, we cal-

culated the Climate Moisture Index (CMI) for the growing season from these data,

defined here as the six-month period from April through September. CMI was calcu-

lated as the accumulated difference (in millimeters) between monthly precipitation

and potential evapotranspiration across the growing season.

The final ancillary data sources used in the analyses were two maps of disturbance.

The first of these was developed from the Canadian Large Fire Database (LFDB),

which combines all Canadian fire agency records of fires larger than 200 hectares from

1959 to present based on analysis of aerial surveys and satellite imagery (Stocks et al.,
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2002). The polygons of burned areas obtained from this database were reprojected,

clipped, and rasterized to match the resolution and extent of each Landsat site. At

each Landsat pixel, the date of the most recent burn was recorded.

The second disturbance map used in the analyses was created directly from the

pre-processed Landsat stacks (Section 4.2.2) using an algorithm called Continuous

Change Detection and Classification (CCDC; Zhu and Woodcock, 2014). This algo-

rithm fits models to the time series of reflectances at each Landsat pixel and identifies

breakpoints in these time series based on persistent deviations of the observations

from their modeled values. At each Landsat pixel, we applied a simplified version

of the CCDC algorithm written in Python (Holden, 2015) to the entire Landsat TM

time series (1984-2011) to detect breakpoints corresponding to land cover changes.

From these results we produced a single map for each site with values corresponding

to the year of the first disturbance in the record. Since the Canadian LFDB only

records fires larger than 200 hectares, this second disturbance map was used to iden-

tify small fires and other disturbances, including logging, insect defoliation, storm

damage, and flooding.

4.2.4 Analyses of Landsat Trends

To analyze trends in Landsat vegetation indices, peak-summer Landsat 5 TM com-

posites for each year were intersected with the MODIS Sinusoidal grid and each

Landsat pixel was assigned to a MODIS pixel ID. The ∼225 Landsat pixels within

each MODIS pixel were treated as a panel, and panel linear models (PLMs) were

applied to each panel using the plm package in R (Baltagi, 2008; Croissant and Millo,

2008). Specifically, the linear models were used to investigate the slope of the re-

lationship between two spectral indices (NDVI and NBR) and time. By combining
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spatially contiguous groups of pixels into panels, we minimized problems associated

with missing or noisy data influencing the results. In assessing the PLM results, we

excluded pixels with p-values greater than 0.05. However, one of the strengths of

the PLM approach is that it pools data across pixels in the same region, thereby

substantially increasing the degrees of freedom in the estimated model. As a result,

panel models effectively identify subtle trends. Because it is difficult to interpret the

meaning of very small changes in VIs over a 28-year period, we excluded panels that

had trends with absolute values less than 0.001 VI units/year.

To summarize the land cover map for each panel, we counted the number of

Landsat pixels in each of the four classes. Panels with more than 40% water were

removed from further analyses. The remaining panels were categorized into four

classes, including non-vegetated land, non-forest vegetation, open forest, and dense

forest. Non-vegetated land was defined as having less than 30% vegetation. Non-

forest vegetation was defined as having more than 30% vegetation and less than 40%

forest vegetation. Open forest and dense forest were defined as having between 40

and 80% and greater than 80% forest vegetation, respectively.

To summarize the disturbance information for each panel, we counted the number

of Landsat pixels that were disturbed in each year from each disturbance map (LFDB

and CCDC). For each year and panel, the sums of disturbed Landsat pixels for each

disturbance map were compared and the largest sum was used as the proportion of

disturbance in that year. To determine the total proportion of disturbance occurring

in each panel, the annual sums were tallied across the entire time series. Panels

that contained at least 70% disturbed Landsat pixels were categorized as disturbed

and panels that contained less than 10% disturbed Landsat pixels were categorized

as undisturbed, thereby avoiding sub-panel mixtures of disturbed and undisturbed
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pixels. Figure 4.2 shows how the spatially aggregated land cover and disturbance

information corresponds with the VI trends from the PLM results for a site centered

on the Northern Old Black Spruce BOREAS site in Manitoba.

Figure 4.2: An example of the spatial distribution of land cover, disturbance, and

Landsat VI trends for a site centered on the Northern Old Black Spruce BOREAS flux

tower site in Manitoba. In the first panel, land cover and disturbance information

have been aggregated from Landsat-scale maps to the MODIS pixel-sized panels

used in analyses. Estimated trends and significances in the second (NDVI) and third

(NBR) panels are based on panel linear models and significant trends were required

to have p-values less than 0.05 and slopes with absolute values greater than 0.001 VI

units/year.

We performed three analyses on the Landsat time series using the ancillary in-

formation on land cover, climate, and disturbance described in Section 4.2.3. In the

first analysis, we examined how disturbance timing affects the nature and magnitude

of trends from each vegetation index. To do this, we grouped the disturbed panels

into two categories: disturbed early and disturbed late, where disturbed early refers

to panels that were disturbed between 1970 and 1989 and disturbed late refers to

panels that were disturbed between 1990 and 2011. To determine the presence and
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timing of disturbance events in each panel, we assigned the disturbed panels to the

early or late category based on the annual counts of disturbance occurrence from

the combined disturbance map. Using a random sample of 5,000 panels from each

category, we estimated probability density functions (PDFs) for the estimated NDVI

and NBR trends. As part of this analysis, we randomly sampled panels that had

been disturbed by fire according to the LFDB map and characterized the time series

of each index (NDVI and NBR) as a function of time since fire relative to samples

of undisturbed panels, including non-forest, open forest, and dense forest.

In the second analysis, we examined trends in Landsat NDVI and NBR for undis-

turbed panels. To do this, we randomly selected 5,000 panels from each of three

categories of undisturbed cover types: non-forest vegetation, open forest, and dense

forest. For each sample, we again estimated PDFs of the NDVI and NBR trends.

In the third analysis, we explored how the trends within the undisturbed dense

forest category varied according to climatically available moisture (Figure 4.6). The

sites were separated into dry, moderate, or wet categories according to 33% quantiles

in mean CMI values across the study area, where higher CMI values indicate more

moisture availability. For each category, we again estimated PDFs of the NDVI and

NBR trends for a random sample of 5,000 panels.

4.3 Results

4.3.1 Effects of Disturbance on Landsat VI Trends

For the first analysis, we sampled from a set of panels, distributed across all the study

sites, that contained more than than 70% disturbed Landsat pixels. Disturbed panels

represented about 25% of all land panels, with 9% in the disturbed early category,

13% in the disturbed late category, and 3% belonging to neither category (either
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disturbed before 1970 or disturbed in both early and late periods). Of the disturbed

panels, 86% were affected by fire (disturbed according to the LFDB) and 14% were

affected by other disturbances (disturbed according to the CCDC results but not

according to the LFDB). Figure 4.3 shows how the trends in NDVI and NBR varied

according to disturbance timing, which was a strong predictor of the sign of the VI

trend (e.g., Figure 4.2). Specifically, disturbances that occurred near the beginning of

the time series were associated with statistically significant positive VI trends (71%

for NDVI and 79% for NBR) and disturbances that occurred in the middle or the end

of the time series were associated with significant negative VI trends (53% for NDVI

and 76% for NBR). In general, NBR trends associated with disturbance had larger

ranges and higher median absolute values than those of NDVI trends (Figure 4.2;

Figure 4.3).
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Figure 4.3: Distributions of NDVI and NBR trends for two samples of 5,000 panels

for Landsat time series that were disturbed between 1970-1989 (first column) or

between 1990-2011 (second column). Estimated trends and significances are based

on panel linear models and significant trends were required to have p-values less than

0.05 and slopes with absolute values greater than 0.001 VI units/year.

Figure 4.4 shows how Landsat NDVI and NBR values change after a fire distur-

bance for a random sample of disturbed panels. In general, NDVI and NBR values

in disturbed panels increased for the first five years following a fire event, after which

the median values plateaued. NBR values had a larger range than NDVI during the

initial five years after fire. After twenty years, values for each index were closer to

those of open forest than dense forest.
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Figure 4.4: Boxplots of NDVI (top panel) and NBR (bottom panel) values for the

first twenty years after a fire event. Each box represents a random sample of 3,000

panels that had been burned once according to the Canadian LFDB. The red line

plots the time series for the median value of each box. The three boxplots on the

far right of each panel are from undisturbed panels from non-forest (NF) vegetation,

open forest (OF), and dense forest (DF) land cover types, respectively.

4.3.2 Variance in Landsat VI Trends According to Land Cover

In the second analysis, we sampled from a set of undisturbed panels across all the

study sites, defined as panels containing less than 10% disturbed Landsat pixels.

Figure 4.5 shows how the trends in NDVI and NBR varied according to land cover.

The three undisturbed land cover types used in this analysis made up 55% of all

land panels, with 9% non-forest, 15% open forest, and 31% dense forest. Non-forest

vegetation such as steppe grasslands, agriculture, herbaceous bogs, and treeless tun-

dra generally showed statistically significant positive VI trends (71% for NDVI and
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72% for NBR). The open forest category included a higher proportion of significant

positive VI trends relative to significant negative trends (42% for NDVI and 41% for

NBR were significant and positive; 10% for NDVI and 16% for NBR were significant

and negative). The dense forest category had a median slope close to zero for both

indices, with 21% of panels for NDVI and 24% for NBR showing significant and pos-

itive trends, and 12% for NDVI and 27% for NBR showing significant and negative

trends.

Figure 4.5: Distributions of NDVI and NBR trends for three samples of 5,000

undisturbed panels belonging to non-forest, open forest, and dense forest categories.

Trends and significances are based on panel linear models and significant trends were

required to have p-values less than 0.05 and slopes with absolute values greater than

0.001 VI units/year.
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4.3.3 Landsat VI Trends in Undisturbed Forests Across a Climate Gra-

dient

Figures 4.7 and 4.6 show how the trends in NDVI and NBR for undisturbed dense

forest panels varied according to climatically available water during the growing

season. The three climate categories were chosen according to quantiles in mean CMI

across the study area, where these quantiles correspond to CMI values less than -127

mm for dry, between -127 and 47 mm for moderate, and greater than 47 mm for wet.

Figure 4.6 shows how these CMI categories vary spatially across Canada relative

to the scene-wide medians of NDVI and NBR trends for undisturbed dense forest

panels. The average proportion of undisturbed dense forest panels within a site was

29% with a range of 3% to 74%. The 20 sites in the moderate region had the highest

average proportion of undisturbed dense forest panels (37%) relative to the 15 western

sites (23%) and 11 eastern sites (24%). The dry CMI regions mostly correspond to

regions in central Canada east of the Canadian Rockies but west of the Hudson Bay,

including most of the Northwest Territories, Alberta, Saskatchewan, and southern

Manitoba. The moderate regions correspond to regions on the eastern edge of the

Canadian Rockies and along the western and southern shore of the Hudson Bay,

including northern Manitoba and most of Ontario. The wet regions include small

portions of the Canadian Rockies and Ontario, and then a large portion of eastern

Canada, including Quebec, Labrador, and Newfoundland.

The statistically significant VI trends in the dry regions were generally negative

(22% for NDVI and 42% for NBR; Figure 4.7). The moderate CMI regions had a

median slope close to zero for both indices but a higher proportion of significant

positive trends relative to significant negative trends (21% for NDVI and 27% for

NBR were significant and positive; 6% for NDVI and 19% for NBR were significant
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and negative), and the significant VI trends in the wet region were mostly positive

(46% for NDVI and 44% for NBR). In general, there are a higher proportion of

significant trends for NBR than for NDVI across all categories and for all three trend

analyses described in this section (e.g., Figure 4.2).
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Figure 4.6: A map showing the scene-wide median trends in NDVI (top panel) and

NBR (bottom panel) for undisturbed dense forest panels. The size of each circle is

shown relative to the proportion of undisturbed dense forest panels in that site and

the color of each circle describes the magnitude and sign of that median slope value.

The background colors represent the three climate categories used in the analyses

corresponding to dry (green), moderate (blue), and wet (purple) climate regimes.
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Figure 4.7: Distributions of NDVI and NBR trends for three samples of 5,000 undis-

turbed dense forest panels belonging to dry, moderate, and wet climate regimes.

Trends and significances are based on panel linear models and significant trends were

required to have a p-values less than 0.05 and slopes with absolute values greater

than 0.001 VI units/year.

4.4 Discussion

Relative to the NDVI trends detected from the AVHRR time series (e.g., Beck and

Goetz, 2011), our analysis using Landsat data suggest the total area of decreasing

or browning trends in the boreal forests of Canada is much smaller than previously

reported (Figure 4.6). There are several possibilities for this discrepancy. The first

is that disturbances other than fire could be causing many of the negative trends.

The second is that data quality issues unique to the GIMMS 3G data set introduces
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negative trends because of uneven cloud screening, uncertain geolocation, and the

combination of data from multiple AVHRR sensors. Relative to these coarse AVHRR

records, Landsat data have higher spatial and radiometric resolution and we used

more advanced cloud screening and disturbance detection algorithms. Since most of

these discrepancies occur in the wetter eastern portion of the study area where forest

disturbances are less common, it seems likely that at least some of the previously

reported negative AVHRR trends were over-estimated because of issues with AVHRR

data quality. In the next few sections we summarize the major findings of this work

and describe sources of uncertainty in the Landsat-based trend analyses.

4.4.1 Disturbance Timing Affects Trends from Landsat Data

Disturbance, especially fire, is a major factor affecting carbon dynamics in the boreal

forest zone of North America, impacting millions of hectares in Canada alone each

year (Stocks et al., 2002). Our analysis showed that the timing of disturbance events

relative to the first year in the remote sensing time series had a large impact on the

direction and magnitude of the observed trends in vegetation indices. Specifically,

disturbances that occurred near the beginning of the time series were associated with

positive trends but disturbances that occurred in the middle or end of the time series

led to much higher proportions of negative trends (Figure 4.3). The source of these

patterns is that disturbance events reduce VI values in the short term, followed by

regrowth of shrubs to trees that takes over 20 years to complete (Bond-Lamberty

et al., 2002; Serbin et al., 2009; Figure 4.4).

Since forest disturbances have a large impact on VI trends (Figure 4.3), accu-

rate detection of disturbances was important to ensuring the integrity of time series

extracted over undisturbed land cover types. The Canadian LFDB identifies most
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fire disturbances and the new time series method (CCDC; Zhu and Woodcock, 2014)

used in this work was able to detect additional disturbances that were not captured

in the LFDB. More importantly, fire disturbances that occurred before the Land-

sat era are often missed by the LFDB and are altogether missed by CCDC. Hence,

regrowth from these disturbances can be misinterpreted as gradual changes in VIs

(Figure 4.4) and probably added substantial noise to the analyses of ”undisturbed”

land cover types.

4.4.2 Land Cover and Climate Explain Spatial Variability in Landsat

Trends

Analysis of vegetation index trends across land cover types (Figure 4.5) indicates that

tree, shrub, and herbaceous vegetation are responding differently to recent climate

warming. Positive trends in non-forest vegetation indicate that they are respond-

ing positively to the increasing temperatures and longer growing seasons. This is

consistent with observations of increased shrub productivity in tundra ecosystems

(Hinzman et al., 2005; McManus et al., 2012; Myers-Smith et al., 2011) and agricul-

tural expansion along the heavily managed southern edge of the boreal forests (Neigh

et al., 2008). Open forests also showed mostly positive trends, which may be caused

by increases in growth and productivity in the understory of these heterogeneous

landscapes. In contrast, dense forests were less likely to show significant trends than

non-forest or open forest classes, with more positive trends observed in the wetter

region of eastern Canada and more negative trends observed in the drier central and

western regions (Figures 4.6 and 4.7).

While generally consistent with observations of changes in the rates of tree growth

in forest inventory plots (Ma et al., 2012), this study examines changes over a much
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larger area (∼50 million hectares) of the boreal forest zone in Canada. One ma-

jor caveat to these findings is that because the EOSD land cover map used in this

study is from Landsat imagery acquired circa 2000 (Wulder et al., 2008a), classifi-

cation errors, along with regrowth processes from undetected disturbances prior to

the Landsat era, add uncertainty to results from trend analyses that is difficult to

quantify. Further, the impact of climate changes on the observed VI trends in this

work is still incompletely assessed. Although drier sites contain more forests with de-

creasing VI trends than those that are less moisture limited (Figure 4.6), the impacts

of inter-annual variability in precipitation, drought stress from higher growing season

temperatures, and decreases in winter snow-pack depth is not addressed in this paper

(Kim et al., 2012; Barichivich et al., 2014; Parida and Buermann, 2014). However,

the connection between water availability and both VI trends and increased forest

mortality in these regions has been documented by other work (Hogg et al., 2008;

Peng et al., 2011; Buermann et al., 2013), and the results presented here provide new

evidence to support those findings.

4.5 Conclusions

Our results show that the response of Canadian boreal forests to climate warming is

more nuanced than had been suggested by previous studies using long-term AVHRR

records. In dry central regions of Canada, declines in vegetation indices such as

the NDVI indicate drought stress and reduced tree growth. Evaporative demand in

these regions outpaces precipitation inputs during the growing season (Section 4.3.3)

and the fire regime has been intensified by the longer, drier summers (Turetsky

et al., 2010). In eastern regions of Canada, positive trends in vegetation indices were

detected for forests and treeless tundra. These trends are consistent with increased
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tree and shrub growth in response to longer growing seasons without the water

limitations present in the western boreal forests of Canada.

With increasing drought stress predicted into the future (Dai, 2012), results from

this work suggest that the drier central region of Canada may experience a transition

from boreal forests to treeless steppe (Scheffer et al., 2012) and that the wetter

eastern region may experience overall declines in forest health, including higher fire

frequency (Flannigan et al., 2005; Kasischke and Turetsky, 2006). These changes

have the potential to reduce the boreal forest carbon sink and could cause the region

to become a net carbon source to the atmosphere sooner than has been predicted by

climate models (Kasischke et al., 1995; Sitch et al., 2007).

More generally, results from this work demonstrate that Landsat time series rep-

resent an important record for assessing climate change impacts in boreal forest

ecosystems. Time series from other sensors have been used for this purpose, most

notably AVHRR and MODIS, but these data are limited by either poor radiometric

and spatial resolutions or by short time series, respectively. In contrast, Landsat data

are able to resolve subtle changes in boreal forests that may indicate gradual shifts

in photosynthetic activity over time. Although the NDVI has been commonly used

to assess forest productivity trends (e.g., Guay et al., 2014), here we argue that the

NBR index is more sensitive to disturbance (Figure 4.4) and may provide a better

proxy for productivity changes in undisturbed forests (Figure 4.7).

The major disadvantages to using Landsat data to study forest change processes

are (1) the large computing resources needed to process and store the data relative

to AVHRR or MODIS and (2) the uneven temporal sampling of Landsat data at

higher latitudes. Recent improvements in computing have made the former concern

less limiting and by using a strategy that combines data across adjacent WRS2 paths
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it is nearly possible to achieve wall-to-wall mapping of the North American boreal

zone with between 500 and 1400 total images available per overlap area. Future

directions for this research include an expansion of this approach to a larger region

of the Northern Hemisphere and a deeper exploration of the link between climate

change and the observed VI trends from Landsat data.



Chapter 5

Concluding Remarks

Northern high latitudes have experienced substantial warming over the past several

decades (Stocker et al., 2013). Since these regions contain large stocks of carbon in

their soils and biomass (Bonan, 2008), there is concern that recent warming will lead

to large positive feedbacks between the biosphere and the atmosphere, leading to even

more changes in climate (Eugster et al., 2000; Soja et al., 2007; Euskirchen et al.,

2009; Schaefer et al., 2011). Because forested ecosystems are major regulators of the

climate system, changes to forest cover and productivity have important implications

to future human well-being and food security.

Results from the research presented in this dissertation provide improved under-

standing regarding spatial and temporal patterns of forest cover and productivity

changes in Northern Hemisphere temperate and boreal regions using remote sens-

ing data from the Landsat and MODIS sensors. By developing new methods for

detecting disturbance and trends using dense sets of remote sensing observations, I

demonstrate that remote sensing provides valuable information for understanding cli-

mate change impacts on forested ecosystems, but also that there are many challenges

to making such inferences from remote sensing data. These challenges include trade-

offs between spatial and temporal resolutions, inconsistent atmospheric correction

and cloud screening, a relatively short available time series for performing statistical
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analyses, and difficulties in distinguishing subtle changes in inter- and intra-sensor

calibration and sun-sensor geometry from real trends in vegetation productivity. De-

spite these challenges, advances in computing and opening of the Landsat archive to

the public (Wulder et al., 2008b) have enabled the development of new techniques

for time series analyses of multi-resolution remote sensing data sets that have sub-

stantial potential to provide high quality information about forest change. Here I

summarize the major findings and future directions of my research, which I hope

will influence the way dense time series of remote sensing data are used to study

important questions about the effects of climate change on the biosphere.

In the first chapter, I showed that MODIS can be used to monitor forest change

over large areas, but that detection of disturbance processes using coarse spatial

resolution MODIS time series has several limitations relative to using Landsat data

for this purpose. These limitations include complications introduced by spatially

co-occurring disturbance and regrowth processes and gridding artifacts inherent in

MODIS data. One of the strengths of this study is the focus on a region (the Pacific

Northwest of the conterminous United States) that contains a complex mosaic of

forest management strategies, disturbance regimes, and tree species compositions.

Since the MODTrendr algorithm worked well in such a difficult landscape, detecting

nearly 80% of disturbance events occupying more than one-third of a MODIS pixel,

there is potential for using this algorithm to detect disturbance in much larger regions

or even at the global scale. The major benefits to using the MODTrendr algorithm

relative to the Landsat-based version (LandTrendr; Kennedy et al., 2010) are that

there are very few pre-processing steps, it can be adapted to many different vegetation

indices, and it is computationally easy to process very large regions.

In the second chapter, I showed that several factors unrelated to surface processes



96

can affect detection of long-term trends in vegetation indices derived from Landsat

time series of surface reflectance. Specifically, spatial and temporal variation in

vegetation indices from Landsat data can be influenced by inter- and intra-sensor

calibration and within-scene variation of sensor view geometry. In addition, Landsat

data require careful pre-processing to remove the effects of clouds and other atmo-

spheric effects as well as accurate detection of disturbance. An important finding

from this study was that the strategy used to combine Landsat data across adjacent

WRS2 paths is an effective way to increase the density of observations in many high

latitude regions where acquisitions are limited. A second important finding is that

subtle differences in red band reflectances between Landsat 5 TM and Landsat 7

ETM+ data introduce bias in VI time series when data from the two sensors are

combined into a single time series.

In the third chapter, I showed how spatial patterns in land cover and distur-

bance explain most of the variability in observed VI trends in the boreal forests of

Canada. Residual variability in the magnitude and direction of VI trends for densely

forested regions can be attributed to spatial patterns in climatically available water

during the growing season, with the drier western and central regions of interior

Canada showing declining VI trends and the wetter eastern regions of Canada show-

ing mostly increasing VI trends. These findings indicate that a shift towards warmer

and drier growing season conditions may have large negative effects on the health

and productivity of boreal forest ecosystems in North America.

5.1 Future Research

The first chapter of this dissertation has already been published (Sulla-Menashe

et al., 2014) but there are many potential applications of the MODTrendr algo-
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rithm. For example, an application of this algorithm to an entirely different prob-

lem, post-classification change detection in Inner Mongolia, has already been pub-

lished (Yin et al., 2014), and the algorithm has also been tested over a large area

of Northern Eurasian boreal forests as part of the Northern Eurasia Land Dynam-

ics Analysis project led by Olga Krankina at Oregon State University. The re-

sults of this effort have not yet been published, but are very encouraging (http:

//www.fsl.orst.edu/nelda/disturbance/index.html). In yet another applica-

tion, a Ph.D. student Yan Li at Peking University in China has applied MODTrendr

to specific regions of China with the purpose of assessing their large-scale afforestation

programs. Thus, the MODTrendr algorithm provides the means to quickly develop

global forest disturbance maps for the period from 2000 to 2015 using MODIS data.

The analysis of longer time series relative to that of the original study (2000-2011)

will support more accurate predictions of forest changes, but the accuracy of such

a product will likely be constrained because small disturbances are difficult to de-

tect from MODIS and the signature of change is affected by noise from co-occurring

regrowth and disturbance processes. Further, MODTrendr has only been tested on

a limited number of forested ecozones and its internal parameters may need to be

adjusted on a biome- or continent-level. The most useful aspect of such large-scale

mapping efforts would be to identify hot-spots of recent forest change that could

be then further investigated using finer resolution data from Landsat or the new

Sentinel program.

The results from the second chapter of this research have already been communi-

cated to the Landsat Science Team (C. Woodcock, personal communication) and are

currently in review in the journal Remote Sensing of Environment (Sulla-Menashe

et al., in review). Most notably, results from this work identify a previously unknown

http://www.fsl.orst.edu/nelda/disturbance/index.html
http://www.fsl.orst.edu/nelda/disturbance/index.html
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issue of small, but significant, inter-sensor differences in red band reflectance between

the Landsat 5 TM and Landsat 7 ETM+ data. While data from these two sensors

are extensively cross-calibrated to remove differences, the bandwidths are slightly

different and most of the calibration targets tend to be bright desert targets. If the

Landsat calibration targets are expanded to include dark targets, the ETM+ data

could be reprocessed by the USGS to correct this effect. If done properly, this would

ensure that the TM and ETM+ time series could be combined seamlessly, increas-

ing the available data in the 2000s as well as extending the time series past 2011,

which is when Landsat 5 was decommissioned. With new automated methods for

atmospheric correction, cloud screening, disturbance detection, and temporal com-

positing, the time series derived from Landsat data are the best source of information

for understanding the impacts of climate change on the biosphere. Hence, accurate

cross-calibration of Landsat 5 and Landsat 7 data is essential.

The results from the third chapter are still being prepared for publication but

have potential to clarify ongoing questions regarding observed greening and brown-

ing of boreal forests in Canada based on coarse resolution AVHRR NDVI data sets

(Alcaraz-Segura et al., 2010). The 28-year Landsat 5 TM time series that were care-

fully compiled for the 46 sites in this work provide a much more nuanced look at

the influence of recent climate warming on forest productivity. While the sites we

examined do not completely cover the boreal forest zone of Canada, newly developed

pre-processing tools should be able to support such an extension in the future. In

the meanwhile, analysis of climate factors that have influenced observed VI trends

in boreal forests will be completed over the summer months of 2015. Detection of

divergent responses of boreal forest productivity to climate warming in Canada is

an important result, one that links the impacts of recent climate change to those
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of future projections and identifies a potential feedback to the global climate sys-

tem. That said, the mechanisms behind observed boreal forest browning trends are

still poorly understood, and properly characterization of these trends requires more

research. Further, additional analyses will be performed to compare the results docu-

mented here from Landsat data with previous results based on AVHRR and MODIS

time series.

In conclusion, I intend to use the lessons learned from this dissertation to continue

research that links climate warming to changes in forest cover and productivity using

multi-resolution remote sensing. Specifically, I would like to work on addressing

several research questions that are a natural extension from this volume of work: Are

boreal forests in Northern Eurasia responding differently to recent climate warming

than those of North America? Do trends in Landsat time series correspond to changes

in above-ground biomass and tree growth rates in boreal regions? How can we use

these remote sensing data sets to reduce uncertainties in global climate models by

providing a more accurate history of forest and carbon dynamics for the last three

decades?
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