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ABSTRACT 

Understanding how communication between brain areas evolves to support 

dynamic function remains a fundamental challenge in neuroscience. One approach 

to this question is functional connectivity analysis, in which statistical coupling 

measures are employed to detect signatures of interactions between brain regions. 

Because the brain uses multiple communication mechanisms at different temporal 

and spatial scales, and because the neuronal signatures of communication are often 

weak, powerful connectivity inference methodologies require continued 

development specific to these challenges.   

Here we address the challenge of inferring task-related functional 

connectivity in brain voltage recordings. We first develop a framework for detecting 

changes in statistical coupling that occur reliably in a task relative to a baseline 

period. The framework characterizes the dynamics of connectivity changes, allows 

inference on multiple spatial scales, and assesses statistical uncertainty. This 
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general framework is modular and applicable to a wide range of tasks and research 

questions.  

We demonstrate the flexibility of the framework in the second part of this 

thesis, in which we refine the coupling statistics and hypothesis tests to improve 

statistical power and test different proposed connectivity mechanisms. In particular, 

we introduce frequency domain coupling measures and define test statistics that 

exploit theoretical properties and capture known sampling variability. The resulting 

test statistics use correlation, coherence, canonical correlation, and canonical 

coherence to infer task-related changes in coupling. Because canonical correlation 

and canonical coherence are not commonly used in functional connectivity analyses, 

we derive the theoretical values and statistical estimators for these measures.  

In the third part of this thesis, we present a sample application of these 

techniques to electrocorticography data collected during an overt reading task. We 

discuss the challenges that arise with task-related human data, which is often noisy 

and underpowered, and present functional connectivity results in the context of 

traditional and contemporary within-electrode analytics. In two of nine subjects we 

observe time-domain and frequency-domain network changes that accord with 

theoretical models of information routing during motor processing.  

Taken together, this work contributes a methodological framework for 

inferring task-related functional connectivity across spatial and temporal scales, and 

supports insight into the rapid, dynamic functional coupling of human speech. 
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CHAPTER I. INTRODUCTION 

 Some of the most powerful theories and discoveries in neuroscience have come 

from a model of brain activity in which different brain areas perform distinct, separable 

functions. This model assumes “functional segregation” between brain areas controlling 

sensory, motor, and cognitive sub-tasks, and explains complex behavior as arising from 

combinations of the sub-tasks. Assuming brain areas are functionally separate, however, 

leaves open the question of “functional integration”, or how cooperation between areas 

occurs. Functional integration considers the ways that different brain areas can connect 

and communicate to generate complex processing. Describing functional integration in 

the brain has become an active area of research, both in terms of uncovering the 

mechanisms of functional integration and in terms of describing their properties during 

brain function in health and disease (Sporns et al., 2004; Fingelkurts et al., 2005; Friston, 

2011).  

This dissertation explores a set of problems that arise in inferring the dynamics of 

functional integration in the brain. We develop statistical methods to infer a type of 

functional integration over time during a task, and we apply those methods to an example 

electrocorticography (ECoG) dataset collected during an overt reading task. In this 

chapter, we review relevant literature and then summarize the contents of the dissertation. 

1. Functional Connectivity 

1.1 Approach 

In the effort to describe functional integration between brain areas, researchers 

have taken two types of approaches. The first, effective connectivity, tries to detect 
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evidence of causal influences between brain areas. The second, functional connectivity, 

tries to quantify features of the signal that are signs of communication. The two 

approaches overlap, but in general effective connectivity makes stronger assumptions and 

involves using the data to fit generative models of the mechanisms of coupling, while 

functional connectivity makes weaker assumptions and reports descriptive statistics of the 

data that are thought to reflect coupling (Friston, 2011).  

Here we focus on functional connectivity, which is especially useful in the 

absence of strong prior knowledge about the nature of the underlying coupling. Like 

other descriptive approaches, functional connectivity does not encompass an 

interpretation of the mechanisms generating the data. Instead, it uses statistics that have a 

direct, understandable relationship to the underlying data, such as means, correlations, 

and coherences, which can later be interpreted by the researcher. It therefore can be 

useful in the early stages of analysis before a theory of the generative processes 

underlying the data is available. This approach is standard for first-order descriptive 

statistics such as event related potentials and spectrograms, which are based on signal 

averages. Functional connectivity adds a set of second-order statistics to describe 

relationships between signals. 

1.2 Resting state functional connectivity 

One common example of functional connectivity analysis is resting state 

functional connectivity, which looks at correlations between activations in functional 

magnetic resonance imaging (fMRI) data when a subject is not performing any task. 

Using techniques that are sensitive to correlations between signals like principal 
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components analysis (PCA) and clustering algorithms, resting state functional 

connectivity groups brain areas based on patterns of coactivation, leading to “resting state 

networks” (reviews: Fox and Raichle, 2007; Van Den Heuvel and Pol, 2010). These 

networks are consistent across subjects (Yeo et al., 2011) and have been shown to be 

stable within subjects over time periods on the order of months (Shehzad et al., 2009). 

For example, even in the absence of a task, there is correlated activity between brain 

areas in the sensorimotor network (Biswal et al., 1995). Other resting state networks seem 

to be related to distributed control functions such as the ventral and dorsal attention 

networks (Fox et al., 2006). One network that was identified early on, the default mode 

network, is most active in the absence of a cognitive task (Raichle et al., 2001). The 

finding that resting state networks are robust across subjects and time has led to a surge in 

functional connectivity research into the causes of the correlated activity and how the 

networks change based on disease and other factors.  

Importantly, Cordes et al. (2001) showed that resting state correlations are 

dominated by activity below 0.1 Hz, and most current studies therefore low-pass filter the 

signals below 0.08 or 0.1 Hz before performing a resting state analysis (Fox and Raichle, 

2007). Hence, while resting state networks have been shown in some cases to persist 

during the performance of a task (Greicius and Menon, 2004; Esposito et al., 2006; 

Fransson, 2006; Calhoun et al., 2008; Smith et al., 2009), there are likely to be finer 

timescale changes in coupling that are more closely tied to task dynamics. Inferring task-

related and dynamic functional connectivity can benefit from recording modalities with 

finer time resolution than fMRI, such as electroencephalography (EEG), 
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magnetoencephalography (MEG), and ECoG. The analyses developed in this study were 

designed for these finer-timescale signals, particularly ECoG (which will be described in 

more detail in Section 2).  

1.3 Communication through coherence 

Finer timescale network interactions can be inferred using correlation-based 

metrics just like resting state analysis, but there may be other signatures of 

communication between brain regions that become detectable with better time resolution. 

In particular, coherence in narrow frequency bands (that are too high frequency to be 

detected in fMRI data) has been proposed as a way that different brain regions can 

modulate their sensitivity to each other. The “communication through coherence” 

hypothesis (Fries, 2005; Fries et al., 2007; Fries, 2009) posits that information 

processing, and hence functional connectivity, between areas is gated by the coherence of 

rhythmic activity in those areas, particularly in the gamma frequency band (40-80 Hz). 

That is, when the population activity in two areas becomes synchronous (subject to a 

phase lag) in a given frequency band, it enables neurons to affect each other in one or 

both directions. Conversely, if the population activity is not coherent between the areas, 

action potentials from the sending area may reach the receiving area at a time when the 

receiving neurons are relatively insensitive to synaptic input (Fries, 2005; Börgers and 

Kopell, 2008). In this way, the sensitivity of one area to inputs from another can change 

according to mental state or task demands. A common way to look for communication 

through coherence is to place electrodes in two areas of the brain and measure the 

coherence of their dominant rhythms during a task (Buschman and Miller, 2007; 
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Womelsdorf et al., 2007). Ideally, functional connectivity using ECoG could be an 

extension of this approach, looking at coherence on all possible connections across a 

network of implanted electrodes (Canolty et al., 2010; Miller et al., 2012). 

1.4 Graph theory and network inference 

Before moving on to the details of ECoG in Section 2, it will be important to 

present some basic background in functional network inference. First, we introduce graph 

theory terminology and concepts. Then, we introduce the statistical problem of network 

inference and discuss the problem of dimensionality (for a thorough discussion of 

statistical network inference, see Kolaczyk (2009)). 

 

1.4.1 Relevant concepts in graph theory. Functional networks are typically represented 

as “graphs”, which are mathematical structures consisting of a set of elements, “nodes” or 

“vertices”, and a set of connections between the nodes, “edges” or “links”. Edges connect 

two nodes (all of the networks we consider here allow only pairwise connectivity), and 

the nodes connected by an edge are said to be “incident” to the edge. A “weighted” graph 

has a continuous value associated with each edge, while a “binary” graph stores only 

whether or not the edge exists. Here we consider only “undirected” graphs, where the 

ordering of the nodes does not matter for the edge definition. 

 A graph can be represented as a N N  matrix, where N  is the number of nodes 

in the graph, and the ( , )thi j  element contains the edge weight between node i  and node 

j . Edges that do not exist have a value of 0, and edges in a binary graph are given 

weights with a value of 1. Since we do not consider self-edges, the main diagonal will 
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contain all zeros. Also, since the edges are symmetric in undirected graphs, the matrix 

will be symmetric along the main diagonal.  

 

1.4.2 Network inference. Network inference is the statistical process of inferring a graph 

from data. The statistical inference process defines a statistical model with a set of 

parameters related to the structure of the graph, makes some assumptions about the 

distributions of the parameters, fits them using the data, and makes statements about their 

uncertainty. For example, a typical functional connectivity analysis will define the nodes 

to be electrodes or voxels and the parameters to be the correlations between the neural 

signals on the nodes (for weighted networks) or a connected versus unconnected label 

(for binary networks). In both weighted and binary networks, there is assumed to exist a 

true underlying network with population values for the edge weights or edge/non-edge 

labels, and the statistical goal is to produce an estimate of this true network. The edges 

are typically assumed to be undirected (directed networks are usually relegated to 

effective connectivity analysis). Hence a full network model will involve at least 

( 1) / 2N N   parameters, where N  is the number of nodes: this is the total number of 

possible edges in the network.  

Since the number of parameters scales with 2N , network inference can become 

extremely high-dimensional as the number of nodes increases: the number of parameters 

increases much faster than the amount of data, leading to the so-called “Curse of 

Dimensionality”. Dealing with this high dimensionality is a core problem in network 

inference, because statistical models with many parameters or degrees of freedom also 
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have high variance, which leads to high variance in the fitted result (i.e. the inferred 

network). Hence it is important to control the degrees of freedom in the statistical model 

in order to manage the performance of the inference. That is, it is important to constrain 

the model whenever possible, for example by incorporating prior knowledge, so that the 

inferred networks have a small enough variance to be meaningful. 

This is related to statistical model selection and the “bias-variance tradeoff”. The 

expected prediction error of a test statistic is the sum of (1) the variance of the 

measurement noise, (2) the squared bias of the statistic, which is the expected difference 

between the true value and the estimated value, and (3) the variance of the statistic, which 

relates to how sensitive it is to fluctuations in the data (Hastie et al., 2009). Since we 

often cannot control the variance of the noise in the data itself, when designing a 

statistical model of a system we aim to minimize the bias and the variance of the test 

statistic. In practice, for a given sample size, a statistic with a low bias will tend to have 

high variance and a similar statistic with low variance will tend to have higher bias; 

hence the “bias-variance tradeoff”. A well-designed model having both low bias and low 

variance will have low mean squared error, meaning that the inferred parameter values 

are expected to be close to the true values. Including prior knowledge about the system 

tends to reduce variance, although it could bias the results if the prior knowledge is 

imperfect. Hence, in order to best use the given data, we try to select a statistical 

framework that has relatively few degrees of freedom (reducing variance) while avoiding 

imposing structure in the model that is not present in the system (reducing bias). Some 

popular ways to reduce the degrees of freedom in functional connectivity analysis include 
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grouping sensors by region of interest, focusing only on edges incident to a pre-selected 

“seed region”, and eliminating nodes that are not expected to be involved in the network.  

Another common way to reduce the degrees of freedom in functional connectivity 

analysis is to infer binary networks rather than weighted networks. The choice to infer 

binary networks reflects the underlying assumption that only a portion of the possible 

connections in the network is actually present at any given time. More strictly, binary 

networks assume that there is a classifiable distinction between edges that exist and edges 

that do not exist. While this is consistent with the communication through coherence 

hypothesis in which coherence is enforced mechanistically between specific 

communicating areas (and not others) during a task (Fries, 2005; Fries et al., 2007; Fries, 

2009), there are other possible models of connectivity that may represent coupling on a 

continuum. For example, if the mechanism of functional connectivity acts at the neuron 

level, there may appear to be a continuum of coupling strengths at the population level 

based on the proportion of neurons that are coupled during the task. Thus, it may be that 

all brain areas are coupled to all other areas with differing strengths that transition 

smoothly between zero and larger values. Even if true functional coupling does occur 

between only a subset of possible pairs of areas, the data or the coupling statistic may be 

insufficient to distinguish these connections from noise. Imposing a binary 

characterization of networks when the underlying data do not support it can throw away 

information and obscure the patterns that do exist in the data (weighted networks can 

have problems, too; see Ginestet et al. (2011)), introducing bias. If the data support a 
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binary classification for a given coupling statistic, the test statistics for all edges will be a 

mixture of distributions that can be uncoupled empirically (Efron, 2010).  

2. Electrocorticography 

 ECoG is an invasive procedure that is used clinically primarily in patients with 

intractable epilepsy. In these patients, electrodes are implanted above the cortical surface 

subdurally, and the recordings are monitored over the course of a few days or weeks to 

identify (1) the location of the seizure focus and (2) the spread of eloquent cortex, or 

cortex that is critical for sensory, motor, and language functioning. Electrodes are 

arranged in grids or strips, with electrodes typically spaced 1 cm or 4 mm apart, or closer 

for “micro-ECoG” recordings. After the seizure focus has been identified, the electrodes 

are removed and the seizure focus is resected surgically.  

During the monitoring period, patients often agree to participate in research 

studies, providing an opportunity to study high-quality invasive recordings in human 

subjects. These studies sometimes relate to epilepsy, but they also often study more 

general topics under the assumption that epileptic brains behave like healthy brains under 

certain conditions. In particular, studies using data from epilepsy patients typically 

exclude from analysis time periods with seizure activity, as well as any electrodes over 

the epileptogenic zone or electrodes that have interictal epileptic activity. For the most 

part, results from ECoG studies on epileptic patients have been consistent with results in 

healthy subjects (often from other recording modalities). In one notable exception, Engel 

et al. (1982) performed a study of metabolism using positron computed tomography, and 

found that areas in the temporal lobe showed hypometabolism even in the absence of 
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interictal spikes in EEG. It is unclear how this hypometabolism may relate to neural 

activity, although Bettus et al. (2011) found evidence in both fMRI and ECoG that 

outside of seizures, epileptic cortex may have an influence on areas otherwise free of 

epileptic activity.  

 Because the electrodes do not penetrate the cortical surface, it is not possible to 

resolve individual action potentials from ECoG recordings. Instead, the recordings reflect 

local field potentials (LFPs) from the circle of cortex underlying the electrode (typically 

~2.3 mm diameter) consisting of about a half a million neurons (Ojemann et al., 2013) 

and a billion synapses (Ritaccio et al., 2011). LFPs represent a spatial average of all of 

the ionic processes (action potentials, synaptic potentials, intrinsic currents, glial 

fluctuations, etc.) in the vicinity of the electrode. In practice, postsynaptic currents are 

thought to be the biggest contributor to the LFP because of their slow dynamics relative 

to action potentials, which allows them to overlap in time and hence summate spatially 

(Buzsaki et al., 2012). The spatial reach of an electrical source in cortex due to volume 

conduction depends on a number of factors such as neuron morphology, the distribution 

of synapses, and the amount of correlation in the synaptic activity (Lindén et al., 2011). 

In some situations electrical activity can spread over centimeters: for example, brain stem 

auditory evoked potentials can be observed using EEG electrodes on the scalp as much as 

10 cm away (Jewett and Williston, 1971). However, invasive recording modalities such 

as ECoG are proposed to be relatively less sensitive to distant electrical sources in 

comparison to nearby sources (Zaveri et al., 2009).  
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LFPs recorded with ECoG have many of the same features observed in LFPs from 

intracortical electrode recordings, such task- and region-specific narrow-band rhythms in 

the delta (<4 Hz), theta (4-8 Hz), alpha (~10 Hz), beta (15-30 Hz), and gamma (30-80 

Hz) frequency bands (Wang, 2010). In addition, there has been a recent focus on 

broadband power in the high gamma range (>100 Hz) (Crone et al., 2006). Experimental 

and theoretical work supports the idea that this broadband high gamma power does not 

arise from rhythms but from asynchronous population spiking and synaptic activity 

(Manning et al., 2009; Ray and Maunsell, 2011; Buzsaki et al., 2012; Miller et al., 2014). 

Modulation in the high gamma power is hence commonly interpreted as an indicator of 

changes in neuronal population activity under the electrode. 

 Broadband high gamma power is also related to the blood-oxygen-level-

dependent (BOLD) response recorded by fMRI. A review of studies linking fMRI and 

LFP/ECoG recordings found broadband (30-250 Hz) power to be the electrophysiological 

feature with the strongest coupling to the BOLD signal (Ojemann et al., 2013). 

Furthermore, several studies have found that during the resting state, both the LFPs 

themselves and the envelope of high gamma instantaneous power are coherent at very 

low frequencies (<0.1 Hz) within the same networks that are observed in resting state 

fMRI analyses (He et al., 2008; Ko et al., 2011; Breshears et al., 2012; Hiltunen et al., 

2014).  

 As discussed above, ECoG also holds promise for studying the dynamics of 

functional connectivity at higher temporal scales, with the goal of detecting connectivity 

at the pace of functional processing. For example, dynamic functional networks based on 
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ECoG data in epilepsy patients have been described over time during seizures (Kramer et 

al., 2010) and outside of seizures over the course of a full day (Kramer et al., 2011). Non-

seizure networks are highly variable at fine temporal scales and start to show stability 

over time across cognitive states when computed over at least 100 seconds of data 

(Kramer et al., 2011). Dynamic networks can also be examined during tasks, using 

multiple trials to achieve the stability that was achieved above through temporal 

averaging (Greenblatt et al., 2012). While this dynamic approach is still unusual in the 

literature, there is a growing body of work assessing differences in ECoG coherence 

during a task relative to a baseline period (Marsden et al., 2000; Aoki et al., 2001; Ohara 

et al., 2001; Sehatpour et al., 2008). This dissertation will present a framework for 

inferring this style of functional connectivity, using ECoG data collected during overt 

reading as a sample application. 

3. Speech and overt reading 

The study of the neural basis of speech production poses a few challenges. First of 

all, speech production involves the use of many different brain areas spread over cortex 

and subcortical structures. Secondly, speech is highly dynamic, involving rapid 

movements of the tongue and other articulators. Finally, humans are the only animals 

capable of speech, so speech production must be studied in human subjects. This 

historically has restricted studies to noninvasive neural recordings such as fMRI, EEG, 

and MEG, although as discussed above ECoG is an invasive recording technique that is 

used in humans. Despite these challenges, there has been much progress towards 
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identifying areas involved in speech and their roles, as well as the physiological basis of 

learning, speech disorders, and feedback processing.  

 The DIVA (directions into velocities of articulators) model describes neural 

control of speech movements in a way that is consistent with current theory and fMRI 

results (Guenther et al., 2006). In the model, speech is controlled through the interaction 

of a feedforward subsystem consisting of premotor cortex, primary motor cortex, and the 

cerebellum, and a feedback subsystem controlling auditory and somatosensory feedback 

involving the use of superior temporal cortex (auditory) and inferior parietal cortex 

(somatosensory).  

 Overt reading involves the same areas as speech, with the addition of a few 

related to orthographic and semantic processing. Brain areas involved in mapping 

orthographic to phonological representations include the left ventral occipitotemporal 

cortex, the left posterior temporal cortex (middle and superior gyri), the inferior frontal 

gyrus, and the supramarginal gyrus (Price, 2012). These are thought to be organized into 

two pathways that distinguish (1) graphophonological processing in which sublexical and 

lexical features are mapped to phonology through involvement of areas related to short 

term memory and the articulatory loop, and (2) lexicosemantic processing in which the 

semantic content is accessed directly based on the visual form of the word, for example in 

reading irregularly spelled or very familiar words (Jobard et al., 2003; Share, 2008; Price, 

2012). 

Speech research groups have started to use ECoG to test dynamic predictions 

from these models. For example, DIVA predicts that primary motor cortex activation 
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should occur about 40 ms before speech onset (Guenther et al., 2006), a prediction that is 

difficult to test with low temporal resolution fMRI results. Recent work has begun to 

approach these kinds of questions with ECoG data (Edwards et al., 2010; Flinker et al., 

2010; Leuthardt et al., 2012). One potential challenge is that ECoG electrode grids cover 

a limited portion of cortex, typically only on one hemisphere, and there is rarely 

simultaneous recording from the thalamus, basal ganglia, or cerebellum. On the other 

hand, ECoG grids almost always cover eloquent cortex, which includes key speech 

network areas such as the primary motor cortex, primary somatosensory cortex, and the 

superior temporal gyrus. Combining inferences across subjects when the ECoG grid 

placements differ is a difficult problem with no consensus solution (e.g., Miller et al., 

2007; Leuthardt et al., 2012). 

4. Summary of Dissertation: Motivation and Approach 

The goal of this project was to develop a statistically principled framework for 

inferring dynamic task-related functional connectivity from human ECoG data. First, we 

present a general framework that targets dynamics, spatial scale, and uncertainty in task-

related connectivity analysis. Second, we refine the methodology to incorporate prior 

knowledge about mechanisms of neural coupling and to reduce variance in the estimation 

of the coupling metrics. Finally, we apply the methods to speech ECoG recordings as a 

case study, discuss the challenges that arise with task-related human data, and describe 

the neural dynamics of speech production. Taken together, this work contributes a 

methodological framework for inferring task-related functional connectivity and a 

description of the fine timescale functional coupling of speech. 
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4.1. Chapter II: Assessing dynamics, spatial scale, and uncertainty in task-related brain 

network analyses 

Chapter II describes work targeting three common statistical challenges in 

functional connectivity analysis (published in Stephen et al., 2014). First, temporally 

dynamic correlated activity between brain areas is best described by networks that change 

in time. Second, while electrophysiology data is collected at discrete sensor locations, 

researchers typically endeavor to describe connectivity across multiple spatial scales. 

Finally, it is important to describe the variability associated with individual edges in 

functional networks, as well as that of aggregate statistics such as network density. We 

developed a statistical approach to identify functional networks from task-related brain 

voltage data in light of these challenges. 

The basic approach of functional connectivity is (1) to define nodes, (2) to 

calculate a test statistic between all possible pairs of nodes, and (3) optionally, to define 

binary edges between those pairs of nodes that exceed some threshold. For example, a 

functional network aiming to detect communication through coherence may use 

electrodes as the nodes, calculate coherence between all node pairs at a frequency of 

interest, and define p-values based on the Fisher transform of the coherences, which are 

normally distributed (Brillinger, 1981). This would represent a weighted network, which 

could then be thresholded using a multiple comparisons test to yield a binary network.  

The methodology presented in Chapter II infers binary functional networks by 

comparing coupling statistics during a task to their empirical distributions during a 

baseline period. In order to analyze time-varying connectivity, we construct dynamic 
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networks using sliding time windows, boosting statistical power by incorporating data 

from many trials. To address multiple spatial scales, we construct networks (1) in sensor 

space using correlation values, and (2) in region-of-interest (ROI) space using canonical 

correlation. For all networks, we estimate the variability of individual edges and 

aggregate network statistics (e.g. density) using a bootstrap procedure. 

Chapter II explores the properties of these methods in simulation and describes an 

illustrative example using ECoG data from one subject during a speech task. The results 

from real data highlight features of electrode-space and region-space networks. While 

electrode-space networks can be difficult to interpret visually because of the large 

numbers of edges, the aggregate network statistics can be less variable. In this case, the 

estimated density after speech onset is higher than before speech onset, and both are 

significantly nonzero. This is consistent with a description of speech processing in which 

brain areas generally increase coupling during both speech preparation and speech 

execution. Region-space networks have more variable density because of the fewer 

number of possible edges, but they are also easier to interpret visually. For example, in 

the data set analyzed here, the region corresponding to ventral primary motor cortex has 2 

edges before speech onset and 6 edges after speech onset, showing local coupling with 

premotor and primary motor cortex during motor planning that expands during speech 

execution to somatosensory cortex and the supramarginal gyrus. These patterns are 

consistent with speech processing areas identified by fMRI (Hickok and Poeppel, 2007; 

Price, 2012). 
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The functional network inference methodology described in Chapter II is 

designed to be modular, so that each step of the process can be separately customized 

according to the requirements of the data and the assumptions of the experimenters. 

Using weighted or unweighted networks is one such customization. In Chapters III and 

IV we apply several versions of the inference methodology that are designed to target 

different aspects of the speech tasks and incorporate either strong or weak assumptions 

about the underlying mechanisms of functional connectivity. By analyzing the data in a 

few different ways, we aim to recognize where bias is adversely affecting our results and 

identify the best fitting models in order to refine our conclusions. 

4.2. Chapter III: Pairwise coupling metrics for electrode-level and region-of-interest-

level functional network analysis 

As discussed above, the more we can incorporate appropriate prior knowledge 

into the network inference, the more we will be able to infer from the data. Chapter III 

expands on the test statistics developed in Chapter II by incorporating more prior 

knowledge about (1) theorized mechanisms of communication between brain areas, (2) 

the statistical behavior of the test statistics, and (3) the sources of variability in the 

experiment. 

First, if the “communication through coherence” hypothesis (see Section 1.3) is 

correct and functional connectivity between brain areas is subserved by rhythmic activity, 

then using coherence rather than correlation to detect functional links may reduce bias 

and improve the power of the functional network analysis.  
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Furthermore, correlation, coherence, and their canonical counterparts are known 

to be normally distributed in the limit as the number of observations approaches infinity 

(Brillinger, 1981). While the convergence is slow for small samples, applying the Fisher 

transform can stabilize the variance and speed up the convergence to normality. 

Incorporating this knowledge about the behavior of the test statistics and using theoretical 

distributions rather than empirical distributions when appropriate can reduce sample 

variance and increase the power of statistical tests.  

A third improvement to the methodology in Chapter II relates to the sources of 

variability in the experiment. The test statistics in Chapter II model the sampling 

distribution of the baseline period, but they do not model the sampling distribution during 

the test period, effectively assuming that the test statistic estimated from the test period 

has no sampling variability. The unmodeled variability in the test period propagates 

through the analysis, leading to excess variance in the p-values that are used to 

distinguish edges from non-edges in the inferred networks. In practice, this exclusion 

results in more false positives than are expected from the False Discovery Rate 

procedure. Chapter III eliminates this source of false positives by reformulating the test 

statistics in terms of the difference between the test and baseline period, and explicitly 

estimating the variance of the difference. The variance of the difference between the test 

and the baseline includes the variance of both the baseline period and the test period. This 

approach of formulating the hypothesis tests as two-sample tests for differences in means 

(Casella and Berger, 1990; Efron and Tibshirani, 1993) is analogous to the well-known 



 

 

19 

two-sample t-test. By accounting for as much of the experimental variability as possible, 

the resulting inferred networks have minimal false positives. 

Chapter III presents methodology for inferring networks using four different test 

statistics that incorporate these improvements: correlation, coherence, canonical 

correlation, and canonical coherence. Since canonical correlation and canonical 

coherence are rare in the functional connectivity literature, we also include in an 

appendix a derivation of the solution to the optimization problem solved by canonical 

coherence, and a multitaper estimator of the sample canonical coherence1. Each test 

statistic is tailored to detect a different kind of coupling in the neural signals. Since the 

true forms of coupling between brain areas are still unknown, the hope is that inferring 

networks using multiple test statistics will help narrow down the options. That is, if one 

or more of the test statistics is a good match for the underlying coupling mechanism, then 

we will be more likely to reject the null hypothesis in a replicable way for that test 

statistic. This approach is demonstrated with simulations in Chapter III and applied to 

human ECoG recordings in Chapter IV. 

4.3. Chapter IV: Characterizing the dynamically evolving functional networks of speech 

Chapter IV considers ECoG recordings collected during overt reading, and 

analyzes the dynamic changes that occur in the neural activity around the time of speech 

onset. For completeness, the analysis covers both first order (within electrode) effects and 

second order (between electrode) effects. As a result, the analysis is grounded in classical 

                                                        
1 Canonical correlation is a special case of canonical coherence, and we include a section 
describing how it relates. 
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results related to speech production (e.g. event-related potentials and sensorimotor 

rhythms) and more modern approaches to speech production research (e.g. high gamma 

power as an indicator of neural population activity).  

Specifically, the event-related potentials (ERPs) over rolandic cortex are 

consistent with historical EEG observations of a readiness potential (Deecke et al., 1986; 

Wohlert, 1993), and we observe beta event-related desynchronization over rolandic 

cortex that matches the sensorimotor rhythm literature (Pfurtscheller and Lopes da Silva, 

1999). Auditory cortex has a relatively weak ERP in the average, but individual 

electrodes have ERPs with varying timecourses, consistent with previous literature 

(Flinker et al., 2010). With regard to the more recent paradigm of tracking high gamma or 

broadband power as a correlate of population spiking activity, both rolandic and auditory 

cortex show increases in broadband power time-locked to the onset of speech. A latency 

analysis places the onset of the rolandic broadband response at an average of 52 ms prior 

to speech onset, and the auditory broadband response at an average of 92 ms after speech 

onset. In general, these broadband effects occurred after the beta desynchronization. This 

timing is consistent with a view of beta rhythms as reflecting spatially broad control 

mechanisms that gate local processing. 

Within this context, the second-order functional connectivity results, while 

preliminary, are promising. We make an effort to manage the high dimensionality by (1) 

inferring networks only over electrodes in regions of interest (rolandic, auditory, and 

inferior parietal cortex), (2) controlling the false discovery rate of the networks, and (3) 

characterizing the uncertainty of region-level average coupling. Even so, the results 
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across subjects are inconsistent, likely due to a lack of statistical power. In two subjects 

with particularly large numbers of trials and particularly good spatial coverage of 

rolandic cortex, there appear to be dense intra-regional correlation networks that may be 

related to changes in coherence in the alpha and beta bands. These dense rhythmic 

networks are consistent with an interpretation of a common thalamic driver of alpha 

rhythms across rolandic cortex (Hughes, 2005), and beta traveling waves over motor 

cortex during movement preparation (Rubino et al., 2006).  

In addition to these static descriptive analyses, we present an interactive 

visualization tool, SpectraVis, which facilitates exploration of the time-domain and 

frequency-domain networks with their corresponding spectrograms and coherograms. 

SpectraVis displays the network at a particular time and frequency alongside the 

spectrograms and coherogram for a selected edge, while the user can mouse-over the 

displays to change the selections. The binary and weighted networks can be shown in 

anatomical space and a force-layout format, and they can be played dynamically as 

movies across time. In such a high-dimensional exploratory analysis, an interactive 

visualization can make it possible to find strong network effects and make connections 

between different metrics without explicit a priori assumptions about the locations and 

timing of the effects. The results of these explorations are necessarily preliminary, 

however, because of the problem of multiple testing, and so will need to be replicated in 

future studies. 
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4.4. Chapter V: Conclusion 

 We conclude by bringing together the findings of the work, discussing its 

implications for the broader scientific community, and proposing future directions for 

research.
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CHAPTER II. ASSESSING DYNAMICS, SPATIAL SCALE, AND 

UNCERTAINTY IN TASK-RELATED BRAIN NETWORK ANALYSES 

1. Introduction 

The recent neuroscience literature has seen a dramatic increase in the number of 

studies that investigate functional connectivity in brain networks. Roughly speaking, 

functional connectivity refers to coupling (i.e., systematic associations or relationships) 

between neural activities in different brain regions of interest (ROIs) or recording sites 

(Friston, 1994; Bullmore and Sporns, 2009). Functional connectivity can be estimated 

from a wide range of data types with varying degrees of temporal and spatial resolution, 

including data with high spatial resolution but poor temporal resolution collected with 

positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), 

as well as data with high temporal resolution collected using electroencephalography 

(EEG), electrocorticography (ECoG), and magnetoencephalography (MEG). Here, we 

focus on functional connectivity estimated from brain voltage recordings, i.e. EEG and 

ECoG (for a review of similar considerations in the context of network inference for 

fMRI, see Hutchison et al., 2013). One of the foremost issues associated with functional 

connectivity analysis is the choice of coupling measure. Coupling measures include linear 

and nonlinear measures of statistical association, as well as information theoretic and 

model based measures, and can be chosen to highlight specific types of associations such 

as rhythmic or causal coupling (as reviewed in Pereda et al., 2005; Greenblatt et al., 

2012). 
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In addition to the choice of coupling measure, a number of important statistical 

issues arise in the inference and analysis of functional brain networks. Here we highlight 

three such issues. First, researchers are often interested in detecting and characterizing 

dynamic transitions in functional connectivity structure. Such transitions may arise 

suddenly as a function of a specific stimulus or behavior, or may reflect gradual ongoing 

changes in connectivity through time. For example, in speech production – an example 

we will refer to throughout this paper in order to focus our thoughts – it has been shown 

that functional connectivity as measured with fMRI changes during voicing (Simonyan et 

al., 2009), and abnormal functional connectivity has been associated with disordered 

speech (e.g., Chang et al., 2011). During epileptic seizure, brain functional networks 

assessed from ECoG data exhibit characteristic dynamical patterns that include the 

aggregation and fragmentation of network structure (Schindler et al., 2007; Burns et al., 

2012; Kramer and Cash, 2012). 

  A second statistical issue in the analysis of functional connectivity in the brain 

concerns multiple spatial scales. At the microscopic scale, associations occur between the 

activities of individual neurons (e.g., Cohen and Kohn, 2011), and between the aggregate 

activity of small neural populations (e.g., Schnitzler and Gross, 2005). At the 

macroscopic scale, associations emerge between entire brain areas, or previously 

identified ROIs (e.g., Golfinopoulos et al., 2011). Often, the spatial scale at which brain 

networks are analyzed is determined by the implicit scale of the method used to record 

neural activity. However, there has been increasing interest in understanding relations 

between functional connectivity structure at multiple spatial scales. This relationship can 
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be studied using either multiple simultaneous measures of neural activity or statistical 

methods that are capable of inferring associations across scales. 

The final statistical issue we chose to highlight relates to estimating uncertainty in 

network level statistics. Typically, a selected coupling measure is estimated pairwise 

between all possible nodes, and the results are thresholded to produce a binary network 

(e.g., Stam, 2004; Micheloyannis et al., 2006; Ponten et al., 2007; Srinivas et al., 2007; 

Stam et al., 2007; Kramer et al., 2008; Supekar et al., 2008). Various network measures 

are then computed to summarize features of the resulting network topology (Kolaczyk, 

2009; Rubinov and Sporns, 2010). However, the uncertainty pertaining to these network 

level statistics is typically not computed. This uncertainty will be related to the 

uncertainty associated with each of the pairwise connections, but propagating this edge 

uncertainty to network level uncertainty is nontrivial and remains an active area of 

research. 

In this paper, we present a framework for inferring functional connectivity that 

addresses each of these issues. After introducing a statistical methodology appropriate for 

analyzing connectivity in a given time window with respect to a baseline condition 

(Sections 2.4 and 2.5), we demonstrate the use of this network methodology in the 

context of assessing dynamics, spatial scale, and uncertainty in networks. First, 

temporally dynamic changes in network structure are tracked (Section 3.1). Second, using 

a priori spatial information, functional connectivity is generalized from between-node 

connectivity to between-region connectivity. This procedure reduces the number of 

inferred connections relative to the number of measurements, and trades spatial resolution 
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for a more reliable estimate of functional connectivity. We apply both of these 

approaches to ECoG data collected during an overt speech task for one subject (Section 

3.2), demonstrating their feasibility and highlighting some desirable features. Finally, we 

present several examples to illustrate advantages of the canonical correlation metric 

(Section 3.3). Throughout these discussions we quantify the uncertainty inherent in 

estimates of functional connectivity (Sections 3.1, 3.2, and 3.3). Together these 

approaches advance the burgeoning field of functional connectivity in important ways 

and provide a general tool for the construction of meaningful functional networks in task-

related data with associated measures of confidence. The paper concludes with a 

discussion of limitations and of future research directions (Section 4). 

 

2. Methods 

Network analyses take a wide variety of forms; even for functional networks 

constructed using cross correlation (i.e., correlation-based networks) applied to brain 

voltage data, there are a number of design decisions that affect the interpretation of the 

resulting networks. Here we focus on how correlation-based networks differ during a task 

compared to a baseline period, and we note that the same framework developed here also 

applies to other choices of coupling measure, including coherence-based networks (see 

Discussion). We propose a multi-step analysis strategy that builds on previous work on 

edge-count uncertainty in binary networks (Kramer et al., 2009), utilizing the trial 

structure of the data to increase power, highlight differences between task and baseline, 

and assess uncertainty. In brief, the proposed method determines network edges (between 

individual sensors or groups of sensors collected across ROIs) using a statistical 
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hypothesis test, corrects for multiple comparisons, and computes confidence measures at 

the single edge and aggregate network measure levels. As described in detail below, 

nonparametric bootstrap estimation (Efron and Tibshirani, 1993) is used both for the 

statistical hypothesis test to detect individual edges, and for the determination of 

confidence intervals over edges and aggregate network measures. Because bootstrapping 

is nonparametric, it requires minimal assumptions about the data. 

2.1 Motivation: speech task 

Here we will consider networks constructed during speech production as 

compared to periods of silence. While this example will be used throughout the paper, 

any repeated task with a baseline period could be substituted. The production of speech 

involves a large network of brain regions that spans several lobes of the cerebral cortex 

along with numerous subcortical structures (e.g., Guenther et al., 2006). Fluent speech 

requires very rapid movements of the tongue and other articulators. For example, a 

typical speaker can easily produce 10 phonemes in 1 second; this involves the precise 

sequencing of individual articulatory gestures that each last approximately 100 ms. The 

most commonly used neuroimaging techniques for studying speech, PET and fMRI, have 

a temporal resolution on the order of 1 second, precluding them from measuring these 

rapid dynamical processes. Furthermore, speech articulation creates massive muscle-

related artifacts in EEG and MEG, limiting the utility of these technologies for studying 

speech production. To overcome these problems, a number of neuroscientists have begun 

studying speech using ECoG recordings collected prior to epilepsy surgery (e.g., 

Korzeniewska et al., 2011; Pei et al., 2011; Leuthardt et al., 2012; Bouchard et al., 2013); 
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ECoG recordings have high temporal resolution (typically on the order of 1 ms) 

combined with reasonably high spatial resolution (on the order of 1–10 mm on the 

cortical surface). Thus, ECoG offers the possibility of studying dynamic changes of 

functional connectivity within the speech network, potentially providing a powerful tool 

for deciphering the neural dynamics underlying speech and other actions or cognitive 

tasks. 

In general, quite complex topologies are derived using modern neuroimaging 

techniques. For example, a network consisting of 100 electrodes (typical in both 

noninvasive and invasive brain voltage recordings) may contain up to 4950 edges. Many 

measures exist for assessing the organization of these edges (Kolaczyk, 2009; Rubinov 

and Sporns, 2010). However, principled methods to determine confidence in these 

network measures are not well established. A notion of confidence is particularly 

important when assessing how networks change in time. For example, during a reading 

task, we may ask how the functional network changes during the different stages of the 

task, starting from visual and linguistic processing of the stimulus, proceeding to motor 

planning and execution, and finally involving the processing of auditory and 

somatosensory feedback during speech. In the simplest scenario that two functional 

networks are established – one preceding the onset of speech, and the other following – 

we might then ask how the density, a network measure defined as the ratio of the number 

of detected edges to the number of possible edges in the network, differs before and after 

speech onset. To answer this question in a meaningful way requires a measure of 

uncertainty in the density. In what follows, we propose a resampling procedure to 
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estimate the sampling variability of individual edges as well as to establish confidence 

intervals for density and other aggregate network measures.  

2.2 Simulated Data 

Simulated data were generated to mimic ECoG recordings in which a task is 

performed multiple times, and the resulting brain activity observed. For example, a 

speech task may involve showing the subject a specific word, which the subject would 

read multiple times during the experimental session. In general, we expect the pattern of 

correlations between electrodes to vary as a function of time with respect to task onset. If 

the task onset is defined as the start of the behavioral response (e.g., overt speech), there 

may be task-related activity and connectivity that precede the task onset, such as 

processing of the visual stimulus and motor preparation. Hence we consider the trials to 

start before task onset and last until some time after task onset (specifically, 500 ms 

before until 500 ms after task onset).  

In the simulations performed here, we consider dynamic activity recorded from 

nine sensors. The synthetic data at each sensor consist of four dynamic components with 

a known pattern of correlations. The first component, pink noise, captures one feature of 

brain voltage activity, the “1/f” reduction in power as a function of frequency common in 

brain voltage activity (Miller et al., 2009a; He et al., 2010). The second component is 

white noise, meant to represent sensor noise. On top of these two uncorrelated 

components, two types of correlated signal are added: 2–50 Hz correlations that exist 

throughout the recording, and 8–25 Hz correlations that only come into effect during the 

trials. The first is meant to represent any persistent correlated structure existing in the 
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signals that does not change during the trials, such as correlations related to the recording 

apparatus. The trial correlations are meant to represent task-related changes in the 

correlation structure. For example, during a speech task there may be increased 

correlations between areas involved in speech, including high-level motor areas, primary 

motor cortex, and auditory and somatosensory cortices (Guenther et al., 2006). While in a 

true task this structure may change many times during the different stages of task 

execution, in the simulated data we introduce only two known network structures: one 

that gradually increases, peaks, and fades away in the 500 ms before task onset on every 

trial, and one that gradually increases, peaks, and fades away in the 500 ms after task 

onset on every trial. Details of these networks and how the simulated data were generated 

are described in Appendix 5.1 and summarized in Figure II.1. 
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Figure II.1: Illustration of construction of the simulated data.  

Predetermined networks (A) were chosen for periods before and after task onset. Sensor-space 
networks (A, top row) correspond to region-space networks (A, bottom row). Node colors 
correspond to region assignments. Panel B shows how the correlation structure defined in A was 
introduced into the simulated data, using the after network to illustrate. The correlation structure 
in the 500 ms of each trial following task onset consisted of 4 instantiations of 8–25 Hz noise (B, 
left), added to the sensors according to the defined network (colors in B correspond to the edge 
colors in the after network in A). The trial correlations were introduced into a background of 
uncorrelated 8–25 Hz noise by windowing (B, top row) in such a way that the variance remained 
constant in the total signal (B, bottom row). In addition to the 8–25 Hz component, 3 other signals 
were added: pink noise, white noise, and a 2–50 Hz signal containing a correlated and 
uncorrelated part (C: power spectra; D: time domain). Panel D shows sample data for 2.5 s of 
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baseline and 2 trials. Vertical black lines correspond to task onset: the before network is in effect 
for 500 ms before this time and the after network is in effect for 500 ms after this time. For more 
details regarding the construction of simulated data, see Section 2.2 and Appendix 5.1. 
 

2.3 ECoG Data 

To illustrate the use of the methods on experimental data, we analyze ECoG time 

series recorded during overt speech. 

 

2.3.1 Experimental Protocol and ECoG recording. The neuronal recordings were 

collected from a single individual undergoing treatment for intractable epilepsy involving 

implantation of subdural electrocorticographic grids, used for localization of seizure foci 

for later resection of epileptic tissue. The electrodes consisted of two, 1-cm spaced grids 

positioned over the frontal and parietal lobes, and the temporal lobe, respectively, and a 

strip of electrodes over the occipital lobe. Signals were recorded using g.tec g.USBamp 

amplifiers (sampling rate 9600 Hz). Data acquisition and stimulus presentation were 

handled using BCI2000 software (Schalk et al., 2004).  

During the task the subject read the Gettysburg Address (272 words) aloud from a 

video monitor, as the text scrolled from right to left. The full session lasted 295 seconds. 

There were no seizures during the experimental session, and electrodes near the putative 

seizure focus were excluded from the analysis. The subject gave informed consent to 

participate, and this research has been approved by the local institutional review boards. 

 

2.3.2 Preprocessing of ECoG data. The analyses were based on recordings from 90 

electrodes. The slow progression of the teleprompter forced the subject to pause 

periodically, and these pauses were used to define a trial structure. Specifically, trials 
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were defined as any time during the speech recording where 500 ms of silence was 

followed by at least 500 ms of speech, determined using an audio recording of the 

session. Hence, each trial lasted one second, and contained activity related to reading the 

word(s), preparing the motor command, and voicing the word or phrase aloud. Note that 

the specific words spoken during the trials varied. There were a total of 98 trials so 

defined. Furthermore, data from silences separated by more than 500 ms from the 

beginning or end of any utterance were extracted to be used in defining the baseline 

distribution, described below (Section 2.4.3). 

 

2.3.3 ROI definitions. Regions of interest were defined anatomically for the subject 

based on manual inspection of structural MRI by an experienced anatomist. The 25 

regions corresponded to anterior/middle dorsal premotor cortex, posterior middle frontal 

gyrus, inferior frontal gyrus, pars opercularis, posterior dorsal premotor cortex, middle 

premotor cortex, ventral premotor cortex, dorsal primary motor cortex, middle primary 

motor cortex, ventral primary motor cortex, dorsal somatosensory cortex, middle 

somatosensory cortex, ventral somatosensory cortex, superior parietal lobule, anterior 

supramarginal gyrus, posterior supramarginal gyrus, fronto-orbital cortex, temporal pole, 

anterior superior temporal gyrus, posterior superior temporal gyrus, anterior middle 

temporal gyrus, posterior middle temporal gyrus, anterior inferior temporal gyrus, 

posterior inferior temporal gyrus, ventral temporal cortex, and occipital cortex 

(Golfinopoulos et al., 2011). Electrode ROI assignments are indicated by node color in 

Figure II.9. 
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2.4 Construction of functional networks 

The specific method for inferring functional network structure from brain voltage 

recordings used here contains a set of techniques for analyzing the dynamics, spatial 

scale, and uncertainty in network connectivity. While we discuss the behavior of this 

technique as a whole, the steps are modular and generally applicable: for example, the 

coupling statistic could be changed from correlation to coherence or phase locking value 

while keeping the other aspects of the analysis, like uncertainty estimation, intact. 

Alternatively, a different technique for correcting for multiple comparisons could be used 

to identify binary edge assignments. Below, we describe our choices for each module of 

the functional network analysis: preprocessing (including defining trial epochs), choice of 

test statistic, p-value calculation through comparison to a null distribution, multiple 

comparisons correction, and uncertainty assessment. This procedure is also outlined in 

Figure II.2. One additional module, the selection of network nodes, is implicit in this 

analysis. We use two different node definitions corresponding to the coupling statistics, 

defining each node as an individual sensor (for correlation) or all of the sensors in an ROI 

(for canonical correlation). 
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Figure II.2: Illustration of construction of functional networks from the time series data.  

For each trial epoch of interest (here labeled “Before” and “After”), the test statistic ˆ
ijx  for each 

potential network edge (between node i and node j) is calculated over all trials. The test statistic is 
compared to a null distribution estimated from baseline intervals, resulting in p-values for each 

potential edge, ijp . A threshold is chosen for the p-values using a multiple comparisons 

correction, resulting in binary networks. Red edges in the networks indicate false positive edges, 
identified by comparison to the true networks. For more detail, see Section 2.4. 

 

2.4.1. Preprocessing of the data. To infer functional networks from the synthetic time 

series, the data were first preprocessed by downsampling to 200 Hz (Matlab decimate 
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function, which in this case also low-pass filtered the signal below 100 Hz)1. The signals 

were then band-pass filtered between 0.1 and 30 Hz using a zero-phase 3rd order 

Butterworth filter (Matlab filtfilt function). This preprocessing step was performed to 

mimic the typical procedure of bandpass filtering observed brain voltage recordings to 

eliminate artifacts and focus on a particular frequency range. For the ECoG data, a 

common average reference was applied by subtracting the mean over all channels from 

each channel at each time step. This step was intended to reduce referencing effects from 

the experimental signals. 

In order to analyze time-varying functional connectivity, the trial data were then 

divided into epochs of interest spanning the 1s-long trials. Two kinds of epoch were 

defined. The first were 500 ms non-overlapping epochs consisting of the first and second 

halves of the trials (500 ms each, with no overlap), corresponding to “before” and “after” 

task onset, defined as time zero. The second kind of epoch used a 200 ms sliding window 

(195 ms overlap) over trials, allowing for the construction of “dynamic” networks on 

overlapping time points starting from 400 ms before time zero until 400 ms after time 

zero (the 200 ms epochs were labeled according to their time midpoints). 

The epochs of interest were collected from all trials resulting in a 4-dimensional 

matrix with dimensions ( E T N L   ), where E  is the number of epochs, T  is the 

number of time points per epoch, N  is the number of sensors, and L  is the number of 

trials. For example, using before/after epochs in the simulations here, there were 2 

epochs, each consisting of 100 time points (corresponding to 500 ms sampled at 200 Hz), 

                                                        
1 Note that the ECoG data had a sampling rate of 9600 Hz while the simulated data had a 
sampling rate of 1200 Hz. After downsampling, they both had sampling rates of 200 Hz. 
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9 sensors, and 100 trials. Using dynamic epochs, there were 162 epochs, 40 time points 

per epoch (200 ms sampled at 200 Hz), 9 sensors, and 100 trials. The data from each 

sensor, trial, and epoch were normalized by subtracting out the mean and dividing by the 

standard deviation. 

For each epoch type, a group of non-overlapping “baseline” intervals were also 

collected from the baseline period for characterization of the null distribution of the test 

statistic between each pair of sensors. We note that the baseline intervals contain no trial 

data and hence should not contain task-related correlated activity, yet may possess other 

correlated activity due to the persistent correlation signal common to all sensors. The 

intervals of baseline data were chosen to have the same duration as the trial epochs, and 

were stored in a 3-dimensional matrix with dimensions (T N K  ), where K  is the 

number of baseline intervals. For example, for before/after epochs in the simulated data, 

400 non-overlapping intervals of the (preprocessed) baseline data, 100 time points long, 

were collected from the baseline period. Note that K  does not need to be the same as L : 

having more baseline intervals than trials will improve the estimation of the null 

distribution (described in Section 2.4.3). The baseline intervals are normalized in the 

same way as the trial intervals, by subtracting the mean and dividing by the standard 

deviation. 

 

2.4.2 Computing the test statistic. Two measures of coupling (test statistics) were 

employed to establish the functional networks: correlation and canonical correlation. For 

a given epoch, the test statistics were calculated for each pair of nodes using all trials. 
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Hence calculating the test statistics resulted in a 3-dimensional matrix with dimensions 

( E N N  ) for sensor-space networks and ( E R R  ) for region-space networks, where 

R  is the number of regions.  

We focus on correlations that become more extreme (more positive or more 

negative) during the task, so the absolute value of the raw correlation values was used as 

the sensor-level test statistic. The absolute value of the correlation was calculated as: 

1 1

2 2

1 1 1 1
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where ( )lx t  and ( )ly t  are the voltage at time t  of the given epoch of trial l  for sensors x  

and y , respectively. 

Canonical correlation was chosen as a region-level coupling measure because of 

its relationship to the sensor-level correlations. A common measure of network topology 

(used to describe networks that have already been constructed) involves the identification 

of groups of nodes (e.g., communities). However, when analyzing multivariate data 

recorded from the brain, there often exists an a priori natural grouping of nodes belonging 

to a region of interest (e.g., a brain region associated with a particular function). By using 

a classical statistical multivariate technique – canonical correlation – connectivity 

between groups of channels can be studied in a principled way. Canonical correlation 

finds the linear combinations of the group members such that the linear combinations are 

maximally correlated. Canonical correlation is reported in classical texts on multivariate 

statistics (e.g., Mardia et al., 1979; Anderson, 2003). When a priori knowledge of signal 
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presence on group member channels is not known, canonical correlation possesses 

increased statistical power and is a powerful method of dimensionality reduction in the 

context of network analysis. This is discussed further in Section 3.3. 

Formally, the canonical correlation between two groups of signals 1( ,..., )T

nx x x  

and 1( ,..., )T

my y y  seeks to find linear combinations of x  and y  that are maximally 

correlated: 

 
,

( , ) max ,T T

a b
CanonCorr x y Corr a x b y  

For convenience, we will switch to matrix notation: X  and Y  are ( n LT ) and ( m LT ) 

matrices, respectively, containing a row of appended trial voltages for each sensor in the 

region. The optimization problem for canonical correlation is solved using the singular 

value decompositions (Strang, 2003) of X  and Y , †

X X xX U V   and †

Y Y YY U V  . The 

canonical correlation is the first singular value of the matrix † †

XY X X Y YQ U V V U . 

 

2.4.3 Assessing the significance of the test statistic. After computing the test statistic 

between each pair of nodes, a p-value is computed using the null hypothesis that the test 

statistic for that edge comes from the same distribution as the baseline period (which 

lacks task-related activity). The alternative hypothesis is that the test statistic is too large 

to be from the baseline distribution. For example, in our analysis of speech data we use a 

null distribution estimated from epochs of time without speech (i.e., silence). Note that 

for simplicity we have chosen a one-sided hypothesis test, focusing only on correlations 

or canonical correlations that are larger than baseline. All of the methods described here 
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could be developed for a two-sided hypothesis test, allowing for both higher and lower 

correlations and canonical correlations than baseline.  

In order to estimate the null distribution, a bootstrap procedure is employed 

involving resampling of the baseline data. In particular, for each bootstrap sample, L  

baseline intervals (described in Section 2.4.1) are sampled with replacement from the K  

total baseline intervals. The test statistic for each potential edge is calculated from these 

baseline intervals just as it was for the set of trial intervals. Here, 1000 bootstrap samples 

were processed in this way, thus building an empirical distribution for the test statistic 

from the baseline period for each potential edge.  

In order to determine a p-value associated with each edge, the test statistic is 

computed during the epoch of interest and compared to the null distribution. Specifically, 

the p-value associated with the edge between node i  and node j  is calculated as the 

number of samples in the bootstrapped empirical distribution for nodes i  and j  that fall 

above the observed test statistic between nodes i  and j , divided by the total number of 

bootstrap samples (here we use 1000 samples for simulated data, and more for the real 

data: for discussion, see Appendix 5.2). When the test statistic is larger than any of the 

samples in the empirical distribution, this method assigns a p-value of zero, which is 

unrealistic. To account for this, we set all zero p-values to the smallest possible p-value 

for the number of bootstrap samples (e.g. 1/1000 for the simulated data). 

 

2.4.4 Correcting for multiple comparisons. After a p-value has been computed for each 

potential edge, a correction for multiple comparisons is performed using the Benjamini-
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Hochberg procedure to control for False Discovery Rate (hereafter referred to as the FDR 

procedure; Benjamini and Hochberg, 1995). This procedure sets a theoretical limit, q  

(here, 0.05), on the expected number of falsely detected edges as a proportion of the total 

number of detected edges. The procedure first sorts the p-values in increasing order and 

then chooses the highest integer k  such that: 

( )k

MC

qk
p

N
  

where MCN  is the total number of comparisons being performed, and ( )kp  is the thk  

smallest p-value. The FDR procedure thus selects a set of edges to consider significant 

such that only 5% of the detected edges are expected to be false positives. In contrast, a 

typical p-value threshold of   = 0.05 implies that 5% of all possible edges will be 

expected to be false. The FDR procedure is thus expected to have many fewer false 

detections than would occur with a 5% p-value threshold. Note that when the null 

distribution is estimated from data, as it is here, more than the expected number of false 

positives may occur in the network due to sampling bias (Dudoit and Laan, 2008).  

The resampling approach used here to estimate the baseline null distributions, 

combined with the FDR procedure for multiple comparisons correction, imposes a lower 

bound on the number of edges that can be detected in the networks. This lower bound 

scales with the square of the number of nodes in the networks, so it can become large for 

a network with many nodes. This phenomenon and some approaches to dealing with it 

are discussed more in the Appendix (Section 5.2). 

After the FDR procedure has been applied, the resulting assessment of test 

statistics as significant or not significant is used to define a binary network for the epoch 
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of interest. This procedure is repeated for all epochs of interest (e.g., 500 ms before and 

after time zero), creating a dynamic series of networks. Note that the null distributions do 

not need to be estimated separately for each epoch. The null hypothesis is defined in 

terms of baseline distributions for each potential edge that are independent of trial epoch, 

so the same estimated distributions can be used for all epochs. The procedure for 

constructing a functional network is also illustrated in Figure II.2. 

2.5 Assessing uncertainty 

We focus on assessing the uncertainty of two network features: (1) edge 

existence, and (2) network density – the total number of edges in a network divided by 

the number of possible edges. To do so, we employ a classic nonparametric bootstrap 

procedure, making use of the trial-structure of the data (Efron and Tibshirani, 1993). 

Specifically, the time series data from the trials are resampled with replacement, the test 

statistic at each potential edge is calculated over the resampled trials, p-values are 

computed by comparison of the test statistic to the same baseline distribution used above, 

the p-values are thresholded using FDR to create a binary network, and an aggregate 

network measure (the density) is computed for the network. This process of resampling 

generates a population of surrogate networks (here we use 100 bootstrap samples) that 

can be used to approximate the true network population. For example, the probability of 

each edge can be estimated as the proportion of the surrogate networks that contain that 

edge. Statistically, this approach treats each potential edge as a Bernoulli random variable 

with parameter p , the probability of “success”, or the probability of observing an edge. 
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The variance is therefore equal to (1 )p p . Hence, estimating the probability of an edge 

allows us to assess the variability of the network edges themselves. 

For an aggregate network statistic such as the density, the distribution of the 

statistic calculated on the resampled networks is an estimate of the true sampling 

distribution of the statistic. Here, we estimate the standard error of the density as the 

standard deviation of the resampled densities, ŝ . Then, a 95% confidence interval around 

the observed network density obsd  is constructed using a Gaussian approximation as 

 ˆ ˆ1.96 , 1.96obs obsd s d s  . 

The estimates of the sampling distributions of networks and network statistics 

constructed this way are biased because each surrogate network is constructed using 

fewer unique trials than the original network (constructed using all trials). This results in 

decreased degrees of freedom in the surrogate networks, which has the effect of 

increasing the occurrence of false positives. This is similar to training-set-size bias that 

occurs in prediction error estimation (Hastie et al., 2009). Increasing the number of false 

positives will tend to increase the probability of individual edges and the overall density 

of the surrogate networks relative to the original network. Hence, (1) the estimated 

probabilities of edges reported below will have a small upward bias, and (2) the full 

bootstrap distribution of densities estimated as described above will be biased upward. 

Note that we chose to construct confidence intervals of the density using only the 

standard error of the bootstrap distribution, in part to mitigate this issue. Alternative 

approaches exist, including the construction of confidence intervals using quantiles of the 
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bootstrap distribution, possibly correcting for the bias using a technique such as the 

“Bias-Corrected and Accelerated” method (BCa) (Efron and Tibshirani, 1993).  

See Appendix 5.3 for the full algorithm. 

3. Results 

In this section we apply the network inference procedure described above to 

construct functional networks from synthetic data. We consider different simulation 

scenarios to illustrate the utility of the method in assessing the dynamic evolution of 

networks, in the principled spatial aggregation of network nodes using canonical 

correlation, and in the determination of uncertainty in network edges and measures. 

3.1 Dynamics  

3.1.1 Inference of functional networks before and after task onset. To begin we 

consider the scenario in which the only coupled activity between electrodes appears 

during trials. Outside of these time intervals, the simulated activity for each electrode 

consists only of uncorrelated noise; in these simulations, no correlated baseline activity 

exists between the electrodes (i.e., the constant correlations described in Sections 2.2 and 

5.1.3 were set to zero). We perform these simulations for four different levels of signal-

to-noise ratio (SNR). Functional networks were constructed using both the correlation 

and canonical correlation for these simulated data in two intervals: one interval 

immediately before the onset of the task (the first half of the trial), and another 

immediately after the onset of the task (the second half of the trial); both intervals are of 

duration 0.5 s. As expected, the network inference procedure identifies the appearance of 

the correct functional network before and after task onset when the SNR is sufficiently 
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large. This occurs for networks computed using both correlation (Figure II.3A) and 

canonical correlation (Figure II.3C). Note that for the correlation networks, edges appear 

between the (nine) individual nodes, while for the canonical correlation networks, edges 

appear between the (three) ROIs. 

 

 

Figure II.3: Detected networks reflect the true correlation structure for sufficiently high 
SNR.  

Correlation and canonical correlation networks are shown before and after task onset, for 
simulations with varying SNR. (A) Binary correlation networks for 500 ms before task onset (left) 
and the 500 ms after task onset (right). True positive edges are colored black, false positive 
edges are colored red. (B) Bootstrapped probability of each edge for the correlation before (left) 
and after (right) networks. Probabilities are indicated in grayscale from 0 (white) to 1 (black); 
scale bar at bottom right of the figure. (C) The same as (A), but for canonical correlations 
between regions. (D) The same as (B), but for canonical correlations between regions. Plots (A)-
(D) are shown in the rows for four different levels of SNR: 0.00, 0.05, 0.10, and 0.15. True 
networks are shown in the bottom row. In all networks, nodes are color-coded according to 
region. 
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In addition to the binary network inference, the proposed method permits a 

characterization of the confidence in each edge. For both the correlation and canonical 

correlation networks, we associate with each edge a probability of appearance 

(determined through resampling, see Methods, Section 2.5). As expected, edges that 

appear in the binary networks possess a high probability of appearance in the correlation 

(Figure II.3B) and canonical correlation (Figure II.3D) networks. These results illustrate 

that the network inference procedure – and associated measures of edge uncertainty – 

accurately identify the underlying network when no coupled baseline activity exists 

between the nodes, even when the SNR is relatively small (0.1). 

To summarize how the network topology changes from the interval before task 

onset to the interval after task onset, we compute a fundamental network measure: the 

density (see Methods, Section 2). For the true network, the density is 3/36=0.083 before 

task onset, and 6/36=0.167 after task onset. At each level of SNR, the density for the 

correlation networks is easily computed from the resulting binary networks in Figure 

II.3A (SNR=0.00, before=0, after=0; SNR=0.05, before=0.028, after=0.028; SNR=0.10, 

before=0.083, after=0.167; SNR=0.15, before=0.111, after=0.167). In addition to this 

single density value, we also determine the confidence interval for each density value 

(Figure II.4). To compute these confidence intervals, we use the resampling procedure 

described in Section 2.5. We find that, as the SNR increases, the density before and after 

task onset also increases. In addition, at larger SNRs (namely, SNR=0.10, and 

SNR=0.15), the confidence intervals for the densities of the inferred correlation networks 

include the known true network densities (Figure II.4). The confidence intervals at an 
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SNR of 0.05 do not enclose the true network density value after task onset, highlighting 

the fact that the estimated confidence intervals may themselves be biased, here towards 

zero, and are variable due to the limited sample of trials used to estimate them. In 

summary, this approach provides a technique to calculate not only the aggregate network 

measure (density), but also an associated level of confidence. The results for the 

canonical correlation networks are similar (in this case, the true network density is 

2/3=0.66 before task onset and 1/3 = 0.33 after task onset) and are not included here. 

 

 

Figure II.4: Density estimates improve with increasing SNR.  

Density of bootstrapped correlation networks in the before and after trial epochs are shown, for 
simulations with four different SNRs: 0.00, 0.05, 0.10, and 0.15. For details of the bootstrapping 
procedure, see Methods Section 2.5. Bar height indicates the observed density, and whiskers 
indicate 95% bootstrapped confidence intervals. The true values of the density in the before and 
after networks are indicated with diamonds. 

 

Next we consider how the network inference procedure performs when additional 

coupling not related to the task exists in the data. This “constant” coupling corresponds to 

persistent correlations between the nodes that occur throughout the recording, i.e., both in 

the baseline periods and during the trials (described in Sections 2.2 and 5.1.3). The 

simulations varied by “correlation ratio”, which we define to be the ratio of the variance 
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of the correlated trial component to the variance of the constant correlated component. 

Hence a small value of the correlation ratio represents weaker trial correlations relative to 

background (nuisance) correlations (see Appendix 5.1 for more detail). We apply the 

network inference procedure to the data, and find good performance (Figure II.5); the 

inferred binary networks agree with the true networks. Interestingly, spurious edges do 

not appear in the binary correlation networks with trial correlations equal to or lower than 

constant correlations (ratios 1.0 and 0.5, respectively), but do appear in the simulation in 

which the trial correlations were twice as strong as the constant correlations (red lines in 

Figure II.5A, for correlation ratio of 2.0). Computing the probability of each edge shows 

that the spurious edges possess lower probability of appearance, while the true network 

edges are highly probable (Figure II.5B). In this way, determination of the edge 

probability provides additional information to help identify spurious network edges. We 

note that, for the canonical correlation, these spurious edges are not present. Instead, the 

appropriate edges between the ROIs are correctly identified (Figure II.5C), with high 

probability (Figure II.5D). In this way the canonical correlation measure provides 

additional robustness to the appearance of spurious edges between individual node pairs.  

Analysis of the correlation network density in the presence of constant 

correlations (Figure II.6) reveals that the 95% confidence intervals of the density contain 

the true density in all cases, even when the observed network contains false positives. 

These results show that even for weak values of trial-specific correlation (compared to 

constant correlation), the estimate of network density is accurate. 
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Figure II.5: True networks can be detected in the presence of background correlations.  

Correlation and canonical correlation networks are shown before and after task onset, for 
simulations with varying correlation ratio. (A)–(D) as in Figure II.3, shown in the rows for three 
different levels of the ratio of trial correlation variance to constant correlation variance: 0.5, 1.0, 
and 2.0. All simulations have a fixed SNR of 0.11. False positives are indicated in (A) and (C) by 
red edges. True positives are displayed in black.  

 

 

 

Figure II.6: Confidence intervals on network density include the true density, even in the 
presence of baseline correlations.  

The density of bootstrapped correlation networks is plotted before and after task onset, for 
simulations with three different levels of the correlation ratio: 0.5, 1.0, and 2.0. Bars, confidence 
intervals, and true density as in Figure II.4. 
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We note that these simulation results correspond to a single instantiation of the 

synthetic time series data consisting of multiple trials. We focus only on a single 

instantiation to mimic the typical experimental paradigm, in which an individual subject 

performs the experiment once. Repeating the analysis for different instantiations (i.e., 

with different values of noise) we find similar qualitative results: namely, that the 

network inference procedure correctly identifies the true underlying network and changes 

in density (results not shown). What differs across these instantiations is both the number 

and location of false positive and false negative edges. 

 

3.1.2 Inference of dynamic functional networks. In Section 3.1.1, we illustrated how 

the inferred functional networks changed from an interval immediately preceding task 

onset, to an interval immediately after task onset. We now further explore the 

applicability of the network inference procedure to dynamic (i.e., time-indexed) 

networks. To do so, we consider the same task-related data, but infer functional networks 

from overlapping windows of duration 0.2 s (0.195 s overlap) that begin 0.4 s before task 

onset, and end 0.4 s after task onset (networks are labeled by their midpoint, e.g., the 

network at time -0.4 s represents data from -0.5 s until -0.3 s). Task onset is defined to be 

time 0 s. Within each window, we apply the network inference procedure described 

above, and compute a binary network and the density with an associated confidence 

interval. We show the resulting dynamic correlation and canonical correlation networks 

for increasing SNR in Figure II.7. For comparison, we show both the dynamic density 

estimate with confidence intervals (sub-panels A) and example inferred functional 

networks (sub-panels B) for each value of SNR. In both cases, as the SNR increases, the 
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inferred functional networks more accurately capture the true networks. We note that, 

even for low SNR (=0.05), a significantly non-zero increase in density appears following 

task onset for the correlation networks. However, before task onset the confidence 

intervals rarely achieve significantly nonzero density. We note that the bootstrap density 

distributions tend to exceed the true density and possess long tails due to the occurrence 

of false positive edges (not shown). This leads to a large standard error that is relatively 

insensitive to SNR, and confidence intervals that include zero in this procedure. The 

same issue arises in the canonical correlation networks after task onset for high SNR. An 

alternative approach based on quantiles of the bootstrap distributions (Efron and 

Tibshirani, 1993) would account for this asymmetry in the sampling distribution, 

although these confidence intervals would be subject to bias (discussed in Section 2.5). 
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Figure II.7: Dynamic changes in network structure are better resolved at higher SNRs.  

Correlation and canonical correlation networks are shown as a function of time with respect to 
task onset, for simulations with varying SNR. (A) Density of observed networks as a function of 
time (black), with 95% bootstrapped confidence intervals (shaded gray). The timing of four 
example binary networks (B) is indicated by black vertical lines, and the true densities are 
indicated by horizontal black lines. In (B), network edges that exist in the true network are shown 
in black and false positive edges are shown in red. In all networks, nodes are color-coded 
according to region. (A)–(B) are shown for correlation (left) and canonical correlation (right) 
networks, for three different levels of SNR: 0.05 (top), 0.10 (middle), and 0.15 (bottom). True 
networks are shown in the bottom row. 

 

When constant correlations are introduced, we find results similar to the SNR 

simulation (Figure II.8). Although spurious edges do appear in the correlation networks 

(see sub-panels B in Figure II.8), the inference procedure accurately identifies the true 
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networks both before and after task onset (examples in sub-panels B in Figure II.8). In 

addition, the confidence intervals for the density exclude zero, and include the known 

density value before and after task onset in some cases (sub-panels A in Figure II.8); for 

the reasons described above, the correlation networks before task onset and the canonical 

correlations after task onset often do not achieve significant nonzero density. In this way, 

the establishment of confidence intervals for the aggregate network measure (density) 

permits identification of dynamic changes in network structure. Surprisingly, in the 

presence of strong baseline correlations (ratio 0.5, when baseline correlations are twice as 

strong as trial correlations), the variability of the canonical correlation networks is very 

small after task onset: all of the bootstrapped networks had one edge, leading to an 

estimate of zero for the standard error. In this case, the presence of background 

correlations causes the baseline canonical correlations to be higher, making it more 

difficult for spurious correlations to appear as false positives in the network estimation. 

Hence, the presence of background correlations may in some cases make network 

inferences more robust to noise under this framework.  
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Figure II.8: Dynamic network structure can be detected in the presence of baseline 
correlations.  

Correlation and canonical correlation networks are shown as a function of time with respect to 
task onset, for simulations with varying correlation ratio. (A)–(B) as in Figure II.7, shown for 
correlation (left) and canonical correlation (right) networks, for three different levels of correlation 
ratio: 0.5 (top), 1.0 (middle), and 2.0 (bottom).  

 

3.2 ECoG Data 

To demonstrate the use of the network inference procedure on real data, we 

analyze an ECoG dataset in which a subject read aloud from a teleprompter. Trials are 

defined by the 500 ms preceding and following speech onset (see Methods, Section 2.3), 
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which includes preparatory activity before speech onset in addition to activity related to 

motor execution and feedback after speech onset. Visual inspection of the binary 

correlation networks before and after speech onset is hindered by the large number of 

edges (Figure II.9A), although the network after speech onset appears more dense. This is 

confirmed by the density plot (Figure II.9B), in which the density after speech onset is 

higher than before, and significantly nonzero. In fact, the density before speech onset is 

also significantly nonzero, by a narrow margin. The trend of higher density after speech 

onset also appears in the canonical correlation networks (Figure II.9C), although neither 

achieves significant nonzero density (Figure II.9D). With fewer nodes and edges, the 

canonical correlation binary networks (Figure II.9C) are easier to interpret anatomically: 

for example, the region corresponding to ventral primary motor cortex (indicated with an 

asterisk (*)) has 2 edges before speech onset and 6 edges after speech onset, showing 

local coupling with premotor and primary motor cortex during motor planning that 

expands during speech execution to somatosensory cortex and the supramarginal gyrus. 

These patterns are consistent with speech processing areas identified by fMRI (Hickok 

and Poeppel, 2007; Price, 2012). 
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Figure II.9: The network inference procedure facilitates interpretations of real ECoG data.  

Binary correlation (A) and canonical correlation (C) networks were inferred from speech data in 
the intervals 500 ms before (left) and 500 ms after (right) speech onset. The corresponding 
densities are significantly nonzero for both correlation networks (B), but not for the canonical 
correlation networks (C). The node colors in (A) represent for each electrode the corresponding 
ROI, shown in (C). Node locations in (C) are the average locations of the electrodes 
corresponding to the ROI. In (C), the node indicated by an asterisk (*) is the ventral primary motor 
cortex ROI, which is discussed in the text (Section 3.2). 

 

3.3 Advantages of the canonical correlation measure 

The results in the previous section illustrate the utility of the network inference 

procedure for both the correlation and canonical correlation measures. We found that the 

canonical correlation provides additional robustness to the appearance of spurious edges 

between individual node pairs. We now consider two additional examples that illustrate 

the utility of the canonical correlation measure in functional network inference. 
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3.3.1 Canonical correlation improves detectability of weak inter-regional 

connections. One advantage of region-level analyses is that weak connectivity 

undetectable at the sensor level can be aggregated in such a way as to become detectable 

at the region level. To illustrate this idea, we constructed a simple scenario with 10 

sensors comprising 2 regions of 5 sensors each (Figure II.10). During trials, every sensor 

from Region 1 (red nodes in Figure II.10) is weakly connected to every sensor from 

Region 2 (green nodes in Figure II.10): while the total SNR on each sensor is 

approximately 0.14, the correlated signals contributing to each true edge are weak, with 

SNR of about 0.03. Figure II.10 shows that, while the correlations are too weak to be 

detected in sensor-space networks, in the region-space networks the canonical correlation 

between the two regions is strong enough to reveal the true edge. There are two reasons 

for the improved performance of the region-space analysis. First, the weak connections 

between the sensors are combined in the canonical correlation calculation, increasing the 

effective SNR and statistical power. Second, the region-space network has many fewer 

edges (in this case only one), making the FDR correction for multiple comparisons much 

less severe and allowing higher p-values for the test statistics to be classified as edges. 
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Figure II.10: Canonical correlation improves detectability of weak inter-regional 
connections.  

While the total SNR on each electrode is about 0.14, the correlated signals contributing to each 
true edge (5 per node) are weak, with SNR of about 0.03. For more details about the simulation, 
see Section 3.3.1 (“Example 1” in Table 1). Shown are the true network (left), binary network 
(middle), and P(edge) (right) for correlation and canonical correlation networks. In all networks, 
nodes are color-coded according to region, and edges occur between regions. 

 

 

3.3.2 Canonical correlation outperforms signal averaging within ROIs. In the fMRI 

literature, it is common to combine the signals from many image voxels into functional 

ROIs, each containing a large number of neurons believed to be performing a common 

function. In studies of speech production, for example, commonly used ROIs include the 

ventral premotor cortex, which contains neurons that represent syllabic motor programs, 

the supplementary motor area, which contains neurons that initiate the readout of speech 

motor programs, and the ventral primary motor cortex, which contains neurons involved 

in generating commands to the articulatory musculature (Tourville et al., 2008; Peeva et 

al., 2010; Golfinopoulos et al., 2011). ROI-based analyses can increase statistical power 

for activity contrasts and connectivity analyses by (1) reducing the number of statistical 

tests and corresponding correction for multiple comparisons, and (2) averaging many 
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noisy measurements together to form a single, more stable measure for each ROI (Nieto-

Castanon et al., 2003).  

In the case of fine time-resolution voltage recordings (e.g., scalp EEG or invasive 

ECoG), the fast dynamics of the signals within a region may not be phase-aligned; 

therefore, the averaged signals may interfere and cancel in the sum, or the SNR may be 

reduced. Canonical correlation does not require averaging, and can effectively detect and 

aggregate signals between sensors even when the sensor signals are not phase aligned. To 

demonstrate this, we constructed two example scenarios, each containing 9 nodes that are 

split into 3 regions, of which only 2 regions are connected by an edge (Figure II.11). 

In the first scenario (Figure II.11A), one signal is shared by two sensors in the 

green region and two sensors in the blue region, but the sign of the signal is reversed on 

one sensor in each region such that the average signal within each region is zero. This 

creates a completely connected subnetwork, where the sensors within each region are 

perfectly negatively correlated. In this case, averaging the signals within each region 

cancels the correlated component, resulting in only the noise component. Hence, the 

correlation between the averaged region signals is zero and no edge is detected (middle 

row). The canonical correlation network, however, does detect the edge (bottom row), 

because a change of sign on the individual sensors can be compensated by the 

coefficients in the linear combination (vectors a  and b  in Section 2.4.2). 
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Figure II.11: Canonical correlation outperforms signal averaging within ROIs.  

In (A), labeled “Example 2a” in Table 1, the signals on the electrodes within each region precisely 
cancel. In (B), labeled “Example 2b” in the Table 1, the signals on each edge are independent (so 
the signals on the electrodes do not precisely cancel in the region averages), but one edge 
represents a positive correlation and the other edge represents a negative correlation. For more 
details about the simulations, see Section 3.3.2. (A) and (B) show the true network (left), binary 
network (middle), and P(edge) (right) for correlation networks (top), networks resulting from 
averaging the signals on the electrodes within the regions and calculating the correlations 
between the resulting region-level signals (middle), and canonical correlation networks (bottom).  

 

The second scenario (Figure II.11B) illustrates a related point: that averaging 

signals within regions assumes that the sign of the correlation will be the same for all 

connections between the regions. In this scenario, one sensor from the green region has a 
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positive correlation with one sensor from the blue region, while a second sensor in the 

green region has a negative correlation with a sensor from the blue region. At the sensor 

level, a negative correlation during trials represents an increase in the magnitude of the 

correlation, so the sensor-level networks detect both edges despite the fact that one 

reflects a positive correlation and the other reflects a negative correlation (top row). For 

region level networks, however, canonical correlation detects the true structure (bottom 

row) while averaging the signals within the region does not (middle row). This is because 

averaging the signals in the two regions combines the effects of the positively and 

negatively correlated edges, resulting in a combined signal that is neither positively nor 

negatively correlated. Hence the edge between the regions is not detected in the region-

averaged network (middle row). Canonical correlation, however, is not sensitive to the 

sign of the correlations between sensors because of the freedom in the linear combination 

(Section 2.4.2), so it detects the edge in the region-level network (bottom row). 

4. Discussion 

Here we described a method to infer functional networks from time series data 

recorded from multiple sensors in a task-related paradigm. In doing so, we tracked the 

changes in dynamic network topology over time, and established measures of uncertainty 

for both individual edge and aggregate network measures. We also introduced an 

additional measure of coupling – canonical correlation – which provides a principled 

approach to aggregate sensor activity, and improves robust detection of network 

structure. We illustrated the performance of the network inference procedure applied to 

synthetic data in a variety of simulation scenarios, and verified its utility when used with 
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experimental ECoG data. In this section, we summarize the primary features of this 

research, mention associated limitations, and suggest avenues for future research. 

4.1. Principled choices in functional network analysis 

In this manuscript, we described a specific procedure for functional network 

inference. This procedure can be broken down into several modules that can be 

individually substituted with other choices without significant modification of the overall 

procedure. The modules include: (1) choice of trial epochs: here we used two kinds of 

epochs, 500 ms before and after task onset or 200 ms sliding windows over the duration 

of the trials; (2) selection of network nodes, either treating each sensor as a separate node 

or choosing groups of sensors according to, e.g., anatomical region; (3) choice of 

coupling measure: here we used correlation and canonical correlation; (4) choice of 

method for estimating the null distribution: here we used bootstrapping on baseline 

intervals; (5) choice of method for correcting for multiple comparisons, here FDR; and 

(6) choice of method for estimating uncertainty in edges and network measures: here we 

used bootstrapping over trials and standard error confidence intervals (see Methods, 

Section 2).  

The methodology developed here could be extended to accommodate alternative 

choices. For example, the coupling measure used to define edges could be replaced by a 

frequency domain measure (e.g., coherence or canonical coherence) or a nonlinear 

coupling measure (e.g., synchronization likelihood: Stam and van Dijk, 2002; Pereda et 

al., 2005). In this case, the same procedures for estimating the null distribution, correcting 

for multiple comparisons, and estimating edge and network uncertainty can still be used. 
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In summary, the framework discussed here illustrates a specific implementation of a 

functional network inference procedure that researchers may adapt to suit their own 

needs. 

4.2 Tracking of dynamic network topology over time 

As brain activity changes dynamically to achieve specific functions (e.g., to respond to 

external stimulation), we expect that coupling between the activity from separate brain 

areas will also change. Because of this, the resulting functional networks – deduced for 

sensors observing these brain areas – will also change dynamically. To accurately track 

these dynamic changes requires that we choose analysis intervals of sufficiently short 

temporal duration. However, choosing a short temporal interval reduces the number of 

data points employed in the coupling analysis, and therefore reduces the statistical power 

of any coupling measure. The effect is mitigated for the task-related data considered here. 

In this case, the multiple repetitions of the task provide increased statistical power. In 

addition, the multiple trial structure permits a principled resampling procedure. Extending 

this approach to spontaneous data that lacks a task-related structure would require 

additional careful considerations, including whether resampling is appropriate. 

4.3 Spatial Scale  

One approach to dealing with issues of spatial scale is to group nodes into 

interconnected sub-groups after a full network has been constructed (Salvador et al., 

2005; Ferrarini et al., 2009; Kolaczyk, 2009; Meunier et al., 2009; Rubinov and Sporns, 

2010). These types of approaches can identify functional clusters in networks and were 
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not considered here. However, clustering on sensor-space networks could be used to 

define ROIs for subsequent ROI-based analyses, suggesting a multi-step procedure that 

utilizes fine spatial resolution networks to inform networks with coarser spatial 

resolution. 

Note that in situations in which functional regions are known beforehand, using 

knowledge of ROIs can improve network inference. For example, in Section 3.3.1, we 

illustrated a situation in which region-level connectivity was too weak to be visible in 

sensor-space networks, and the greater power of region-level analysis was necessary to 

detect the connection. 

A priori knowledge of ROIs can also be used to perform across-subject analyses 

in situations when it would otherwise be difficult. For example, in ECoG recordings, the 

electrode locations typically differ for each subject, but the spatial coverage of the 

electrodes often overlaps across subjects. Using the same ROIs to construct region-level 

networks for each subject could facilitate across-subject comparisons. In addition, the 

data for each ROI could be aggregated across subjects before network construction and 

aggregate across-subject networks could be estimated. These across-subject networks 

could be calculated as a function of time during a task, with the goal of detecting 

dynamic changes in connectivity that are not subject-specific. 

The specific coupling measure used here for region-level network inference, 

canonical correlation, is a particularly robust tool for detecting connectivity between 

predefined regions. As described above, fMRI studies often average the signals of voxels 

within functional ROIs. We showed two examples of how averaging signals within an 
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ROI can mask inter-regional correlations (Section 3.3.2) that are detected using canonical 

correlation. In the first scenario, signals within an ROI are responsive to task onset but 

with opposite sign; in this case averaging results in a net signal for the ROI that is not 

responsive to task onset, which in turn results in weak or nonexistent correlations 

between the ROI and other ROIs involved in the task. This could occur in physiological 

data in which electrode location relative to an electrical source induces a change in sign 

of the recorded activity between neighboring electrodes (e.g., Wood et al., 1988). In the 

second example, two ROIs are both positively and negatively correlated with each other, 

through different pairs of electrodes. This situation could also occur in real data in which 

the location of neighboring electrodes may lead to a reversal in sign (Wood et al., 1988; 

Buzsaki et al., 2012). In this case the averaged signal for each ROI is still responsive to 

task onset, but averaging the signals masks the positive and negative correlations with 

other regions. Our simulation results demonstrate that canonical correlation successfully 

identifies inter-regional correlations in these situations. 

One drawback of canonical correlation is that it can depend on the number of 

signals (electrodes) in the groups (ROIs) being compared: because more signals provide 

more degrees of freedom for the linear combinations involved in the calculation, 

canonical correlation values tend to be higher when calculated between ROIs with more 

component electrodes. Here, the raw canonical correlation value between two ROIs is 

compared to a baseline distribution calculated on the same two ROIs, so ROIs with more 

electrodes do not necessarily have a greater probability of edge detection. On the 

contrary, due to ceiling effects (canonical correlation values are bounded above by 1) it 
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may be difficult for ROIs with large numbers of electrodes to achieve significance in 

comparison of trials to baseline. In our simulations, we considered the case where all 

ROIs have the same number of electrodes. For the ECoG data, the size of each ROI 

depended on the number of electrodes that happened to lie over the anatomical regions of 

interest, so ROIs had varying numbers of component electrodes. While ROIs with large 

numbers of electrodes do have edges in the networks inferred here, it is possible that 

there are imbalances in the inference that are affecting the resulting networks. Further 

investigation into differing electrode counts for different ROIs is left for future study. 

4.4 Assessment of uncertainty in network edges and aggregate network measures 

An important component of the network inference procedure outlined above is the 

ability to assess uncertainty in network structure and aggregate network measures. To do 

so, we resampled the task-related data, and established both the probability of appearance 

for each individual edge, and confidence intervals for the network density. Although we 

focused on only a single aggregate measure here (the density) this procedure is easily 

extended to determine confidence intervals for other aggregate network measures (e.g., 

clustering coefficient, path length, etc). We note that the resampling procedure described 

here requires repeated occurrences of the time period of interest, such as occurs in a task-

related structure, and may not be appropriate for data lacking this structure. In addition, 

the resampling procedure is computationally expensive, and for a large number of 

resamples would require sophisticated computational approaches.  

While we focus on brain voltage data (ECoG and EEG) here, there is some 

precedence of the use of bootstrapping to estimate network variability in the fMRI resting 
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state functional connectivity literature. For example, bootstrapping has been used to test 

whether seed-based resting state connectivity is dependent on signal stationarity (Chang 

and Glover, 2010) and phase coupling (Handwerker et al., 2012). Bootstrapping has also 

been used to test for group differences in functional networks between schizophrenia 

patients and controls (Sakoglu et al., 2010) and between genders (Kilpatrick et al., 2006). 

Allen et al. (2012) used bootstrapping to assess the reliability of estimated network states, 

defined by clustering dynamic networks occurring over the course of an experimental 

session. 

Bootstrapping has also been used in EEG functional connectivity, albeit in the 

context of network inference. Murias et al. (2007) used bootstrapping to compute p-

values for pairs of electrodes under the null hypothesis that coherences did not differ 

between children with attention deficit hyperactivity disorder (ADHD) and controls. 

These p-values were then used to define edges in a functional network, similar to our 

network inference approach (Section 2.4.3).  

4.5 Robustness to persistent correlations 

By allowing the null distribution to be different for each potential edge, systematic spatial 

regularities in the correlations are mitigated. In the case of a speech task, correlations 

unrelated to speech may exist in the data for many reasons, including the influence of 

resting state networks, volume conduction, and referencing effects. As long as these 

regularities are present in the baseline data to the same extent as the task data, these 

correlations will not appear as edges in the networks since the correlations during speech 

must be stronger than the correlations during the baseline silent periods in order to 
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achieve significance. Volume conduction due to deep subcortical sources of electrical 

activity may also confound inference of functional networks. For the task-related data of 

interest here, a deep subcortical source not present during silence that emerges during the 

task could introduce correlations during speech that would be interpreted by the 

procedure as edges. These edges are spurious, in that the edge does not represent 

correlated cortical activity appearing locally at each sensor. While this is a valid concern, 

strategies exist to mitigate volume conduction effects, including re-referencing 

procedures in scalp EEG. Moreover, invasive recording modalities – such as the ECoG – 

are proposed to be relatively insensitive to distant electrical sources (Zaveri et al., 2009). 

4.6 Scalability and challenges related to experimental data 

One of the key difficulties in network construction is the issue of multiple 

comparisons: a test statistic is computed for each pair of electrodes, so a 100-electrode 

network (typical in ECoG recordings) represents 4,950 statistical tests. Here, we account 

for multiple comparisons using the FDR procedure, which controls the proportion of false 

positive edges relative to the total number of detected edges. This highlights connections 

between nodes that are extreme relative to the baseline period: the p-values for the test 

statistics need to be very small in order to be counted as edges. This approach puts more 

interpretative power on the existence of edges than their absence: if an edge exists in an 

inferred network it reflects a strong difference between trial and baseline coupling, but if 

an edge does not exist there might be a difference that was not strong enough to be 

classified as significant. This could cause problems in situations where the power of the 

statistical test is different for different pairs of electrodes, for example if the SNR varies 
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considerably across the set of electrodes. In this case, the variance of the test statistics 

may be higher in the baseline condition for pairs of electrodes with low SNR, making it 

more difficult for the trial period coupling to achieve low p-values compared to pairs of 

electrodes with high SNR. This could ultimately lead to increased false negative edges in 

the network for edges involving electrodes with relatively low SNR. Hence it is important 

to take caution in the interpretation of networks in the context of varying SNR, especially 

with respect to absent edges, since the FDR procedure does not control for false 

negatives. Note also that the FDR procedure assumes independence between the 

component tests (Benjamini and Hochberg, 1995). It is possible that a network structure 

introduces dependencies between the test statistics calculated for each potential edge. If 

this is the case, a corrected FDR procedure or another control for multiple comparisons 

may be more appropriate (Dudoit and Laan, 2008). 

Additionally, we note that the uncertainty measures we describe are to be 

interpreted in terms of comparisons between a single epoch and a baseline period, not in 

terms of comparisons between epochs. Care should be taken in claiming significance in 

changing network structure through multiple time epochs. The fact that one epoch shows 

a significant difference in network structure from baseline while another epoch shows 

none, does not necessarily indicate a significant difference in network structure between 

epochs. In order to quantify the significance of changes across epochs, similar methods 

can be developed to those discussed here. 

As high density multi-sensor data becomes increasingly common, techniques to 

characterize these data – and notions of uncertainty in these characterizations – become 
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essential. In this paper we described a general framework for the inference of functional 

networks from task-related, multi-sensor data. We proposed a principled approach for 

assessing uncertainty in network edges and aggregate network measures, as well as a 

technique to aggregate sensor activity and improve detection of network structure. Within 

this framework, we made specific choices to construct the functional networks. However, 

the framework is general and adaptable to choices optimized to specific recording 

modalities and research questions.  

5. Appendix 

5.1 Construction of simulated data 

The simulation consisted of 600 seconds of synthetic recordings from 9 sensors at 

a sampling frequency of 1200 Hz. The 9 sensors were split into 3 regions, consisting of 3 

sensors each. The first 400 s of the data were a “baseline period” containing no trials, 

followed by 100 trials lasting 1 s each, separated by one second. The total signal was a 

sum of four subcomponents: pink noise, white noise, constant correlations, and trial 

correlations (Figure II.1D). The sensor-space and region-space connectivity networks 

existing during the trials were the same for all simulations, consisting of two different 

network topologies present for the first and second halves of the trials, called the Before 

and After periods, respectively (Figure II.1A). The magnitudes of the different 

components and the strength of the correlations were manipulated in a series of scenarios 

designed to test the effects of the signal-to-noise ratio (SNR) and constant background 

correlations on the ability of our network analysis methodology (described in Section 2.4) 

to detect task-related changes in the correlation structure. 
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The simulations described below represent a subset of the possible parameter 

regimes that may be relevant for a given application. For this reason, the simulation and 

network analysis code are available online. 

 

5.1.1 Pink Noise. Pink noise, ( )P t , was generated for each sensor by convolving white 

noise with a Gaussian kernel of standard deviation 5 ms. The spectrum of the resulting 

signal (Figure II.1C, top) roughly approximated the decrease in power with frequency 

commonly observed in neuronal voltage recordings (Miller et al., 2009a; He et al., 2010). 

After filtering, the signal was normalized by the standard deviation, resulting in a signal 

with unit sample variance. 

 

5.1.2 White Noise. The white noise component, ( )W t , for each sensor had sample 

variance 0.1 μV2. 

 

5.1.3 Constant Correlations. Constant correlated structure was included by adding a 

single 2–50 Hz signal lasting the entire duration of the recording, ( )C t , to every sensor. 

Because the same signal was added to all sensors, the network topology corresponding to 

this signal is a complete graph, in which every node is connected to every other node. In 

order to vary the strength of the constant correlations while holding total variance and 

spectral characteristics constant, an additional 2–50 Hz signal, ( )B t , uncorrelated 

between sensors, was added to each sensor. Signals in the desired passband were 

generated by filtering white noise using a zero-phase 4th order Butterworth filter (Matlab 
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filtfilt function). After filtering, the signals were normalized to have unit variance and 

multiplied by a gain factor that varied by simulation (see Appendix 5.1.5). 

 

5.1.4 Trial Correlations. Task-related correlation structure was introduced into each 

sensor of the synthetic data in the 8–25 Hz frequency range in order to introduce pre-

defined network structures in the first 500 ms (“Before” task onset) and the second 500 

ms (“After” task onset) of the trials (Figure II.1A). In the true Before network, edges 

exist between sensors 1 and 9, 2 and 8, and 3 and 4. This corresponds to a region-space 

network in which Region 1 (red) is connected to both Region 2 (green) and Region 3 

(blue). In the true After network, the sensors in Region 1 (red nodes) are completely 

connected (cyan edges), and Regions 2 (green nodes) and 3 (blue nodes) have three pairs 

of connected sensors between them (magenta, yellow, and green edges). The region 

topology therefore contained only one edge, between Regions 2 and 3. 

Figure II.1B shows how the trial correlations between sensors were introduced 

into the signal, using the After network to illustrate. The 8–25 Hz component was 

constructed to have constant instantaneous variance during the entire dataset, switching 

from uncorrelated 8–25 Hz noise outside of trials and transitioning to correlated 8–25 Hz 

noise during trials. To achieve this, three signals were summed at each sensor: one 

uncorrelated signal lasting the entire duration of the data that tapers away during the 

correlated portions of the trials, (Figure II.1B, middle), one correlated signal 

corresponding to the Before network that appears only during the first half of the trials 

(not shown), and one correlated signal corresponding to the After network that appears 
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only during the second half of the trials (Figure II.1B, left). The signal added to each 

sensor was chosen to introduce a fixed network topology (the colored edges in Figure 

II.1A, corresponding to colored traces in Figure II.1B) of the correlations during the trials 

that would not exist in the baseline period.  

The window functions governing the transition between uncorrelated activity and 

correlated activity ( ( )UW t  and ( )TW t , respectively; Figure II.1B, top) were chosen so that 

the instantaneous variance of the signal (Figure 1B, bottom) would stay constant during 

trials. In particular, the correlated signal was windowed by the square root of a Gaussian 

kernel with 50   ms and 250   ms: 
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These choices resulted in correlated and uncorrelated signals, ( )T t  and ( )U t , 
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Hence the combined signals had unit variance (Figure II.1B, bottom). The combined 

signal was then multiplied by a gain factor that varied by simulation (see Section 5.1.5). 

In the resulting signal, the total variance of the correlated signal, ( )T t , over the entire 

trial (for electrodes with at least one edge in both the before and after networks) was 

about one quarter of the total variance, the other three quarters of the total variance being 

contributed by ( )U t . 

 

5.1.5 Simulation scenarios. A series of simulation scenarios were constructed in order to 

investigate the performance of the network analysis techniques under different conditions 

related to the SNR and to the ratio of trial correlations to constant correlations.  

The first set of simulations tested the effects of SNR on inferred trial networks in 

the absence of constant correlations (Table 1, SNR simulations). SNR was defined as: 

( )

( ) ( ) ( ) ( ) ( )

Var T
SNR

Var U Var C Var B Var W Var P


   
 

where the variances are calculated over time during the trials (both the Before epoch and 

the After epoch), in which the trial correlation component ( )T t  has nonzero variance. 

Note that in all simulations, the white noise component ( )W t  had a variance of 0.1 and 

the pink noise component ( )P t  had a variance of 1. In these simulations, ( )C t  and ( )B t  

were set to zero and the gain on the 8–25 Hz component ( ( ) ( )T t U t ) was varied to 

achieve different SNR values (Table 1). 

The second set of simulations tested the effects of constant background 

correlations on the inferred trial networks (Table 1, “Ratio” simulations). By using the 
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same gains for the 8–25 Hz component, ( ) ( )T t U t , and the 2–50 Hz component, 

( ) ( )C t B t , for all of these simulations, the SNR was held the same. What varied in these 

simulations was the relative variances of ( )C t  and ( )B t . This resulted in simulations in 

which the ratio of the variance of the trial correlations ( )T t  and constant correlations 

( )C t  varied: 

( )

( )

Var T
CorrelationRatio

Var C
  

where, as above, the variances are calculated over time during the trials. Note that 

( )Var T  is about one quarter of the total variance of the 8–25 Hz component. 

Finally, simulations were constructed for two example scenarios to illustrate 

different features of the analysis. These examples are described in more detail in the 

Results (Section 3.3.2). 

 

Table II.1: Parameters for simulation scenarios 

Here we list the settings utilized in the simulation scenarios considered in Results (Section 3). 
Figures illustrating the inferred functional networks for each scenario are listed in the last column. 

Simulation 
8–25 Hz 

variance 

2–50 Hz variance 
SNR 

Correlation 

ratio 

Results 

Figures Uncorrelated Correlated 

SNR 1 0.00 0 0 0.00 . Figs II.3, 4, 7 

SNR 2 0.26 0 0 0.05 . Figs II.3, 4, 7 

SNR 3 0.63 0 0 0.10 . Figs II.3, 4, 7 

SNR 4 1.20 0 0 0.15 . Figs II.3, 4, 7 

Ratio 1 1.00 0 0.5 0.11 0.5 Figs II.5, 6, 8 

Ratio 2 1.00 0.25 0.25 0.11 1.0 Figs II.5, 6, 8 

Ratio 3 1.00 0.37 0.13 0.11 2.0 Figs II.5, 6, 8 

Example 1 1.00 0 0 0.14 . Fig II.10 

Example 2A 1.00 0 0 0.14 . Fig II.11A 

Example 2B 1.00 0 0 0.14 . Fig II.11B 
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5.2 Sparsity of networks and null distribution resolution effects 

The smallest possible p-value in the described bootstrap procedure, (1)p , is 

bounded below by the number of bootstrap samples used to calculate the null distribution, 

here 1/1000 for the simulated data. In a typical network, there may be many potential 

edges whose test statistics fall above the highest sample in their respective empirical null 

distributions, leading to a set of p-values 
min(1) ( ),..., kp p  equal to 1/1000. If the total 

number of these, mink , satisfies 

min

min
( )

1

1000
k

MC

qk
p

N
   

then all of the tests 1,…, mink  will be considered significant. If 
min( ) min /k MCp qk N , all of 

the tests will be considered insignificant and the network will be reported as empty. This 

characteristic, resulting from the interaction of the FDR procedure with empirical 

estimation of the null distribution, imposes a lower bound on the sparsity of networks that 

can be detected: anything below this sparsity level will be reported as an empty network. 

Analytically, the smallest number of edges that can be detected is: 

MC

bs

N

qN
 

where bsN  is the number of bootstrap samples used for the estimation of the null 

distributions. Note that this formula also depends on MCN , the number of potential edges 

in the network, which scales with the square of the number of electrodes. Hence this issue 

becomes more serious as the size of the networks increases. 
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There are a variety of possible ways to deal with this issue. The first is to reduce 

the number of nodes in the networks (hence reducing the number of possible edges) by 

defining the networks on a larger spatial scale, for example by using the ROI-based 

analysis using canonical correlation described here. With fewer possible edges, it can 

become computationally tractable to use enough bootstrap samples to detect even a single 

edge. When reducing the number of nodes is not possible, a second option is to increase 

the number of bootstrap samples so that the minimum number of detectable edges is 

acceptably small. This is a reasonable first approach, since in many applications the 

networks are sufficiently dense to exceed the threshold. If the resulting inferred networks 

are not empty, no further analysis is needed. If the networks are empty, however, it could 

either be because there really is no coupling or because the number of true edges is 

smaller than the detectable amount. In this case, two other options are available: (1) 

estimate the null distributions parametrically, or (2) estimate the tails of the null 

distributions above the highest bootstrap sample using extreme value theory. In the case 

of correlations, the Fisher transform of the correlation is well approximated by a 

Gaussian distribution (Fisher, 1915), so the parametric approach is possible. When the 

sampling distribution of the test statistic is not well behaved, an approach to estimating 

the p-values only in the tails of the distribution based on extreme value theory may be 

used (Hill, 1975; Pickands, 1975; Smith, 1987). 

For the experimental data used here, we increased the number of bootstrap 

samples in order to detect networks with very few edges. Specifically, the correlation 
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networks had 90 nodes and we used 20025 bootstrap samples, so the smallest number of 

edges that could be detected was 

90*89 / 2
4

0.05*20025
  

For the canonical correlation networks, we had 25 regions and used 6000 bootstrap 

samples, so that we could detect a network with a single edge. Note that by reducing the 

number of nodes, canonical correlation networks require many fewer bootstrap samples. 

5.3 Network inference algorithm structure including uncertainty estimation 

 

In this section we provide a description in pseudo-code of the uncertainty 

estimation algorithm. Symbols are defined at the end of this section. 

 

Network estimation with uncertainty: 

- Estimate the null distribution from baseline data (the same null distribution is used for the observed 

network and the bootstrapped networks): 

- For 1: bsj N , 

- baselineI  a set of L  indices chosen uniformly at random (with replacement) from 1: K  

- 
bsSample   the data for baseline intervals corresponding to 

baselineI :  T N L   

-  ˆ ,:,:bsx j    1 N N   or  1 R R  : the test statistic at each edge calculated from bsSample   

- End 

- Resample trials to compute bootstrap networks and network measures 

- For 1: usi N , 

- Select a sample of trials over which to compute a surrogate network: 

- usI   a set of L  indices chosen uniformly at random (with replacement) from 1: L  

- SampleI   E T N L   : the data for trials corresponding to 
usI  

- Calculate the true x̂  for the sample: 

- ˆ
ix   E N N   or  E R R  : the test statistic at each edge calculated from SampleI  

for each epoch 

- Compare ˆ
ix ,  E N N   or  E R R  , at each edge to the empirical null distribution 

given by ˆ
bsx ,  bsN N N   or  bsN R R  : 

- For epoch 1:e E , 

- For node 1 1:n N  (or 1: R ) 

- For node 2 1 1:n n N   (or 1 1:n R ) 
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-  1 2, ,p e n n   
    1 2 1 2

ˆ ˆ# :, , , ,bs i

bs

x n n x e n n

N


, where #  denotes a count of the number of 

elements satisfying the expression in parentheses 

- If  1 2, , 0p e n n   then  1 2, ,p e n n 1/ bsN  

- End 

- End 

- End 

- Use FDR procedure to identify significant edges: 

- For epoch 1:e E , 

- 
(.)p   (1 )MCN : Sorted p  for the epoch e , for all edges 

- k   the highest k  such that  
 

k

MC

qk
p

N
   

- threshold   ( )kp  

-  , ,:,:Net i e    1 1 N N    or  1 1 R R   : ( ,:,:)p e threshold  (binary network 

consisting of all edges with a p-values less than threshold ) 

- End 

- Calculate aggregate network statistics: 

- For epoch 1:e E , 

- ( , )Density i e  
 #    , ,:,:

MC

edges in Net i e

N
  

- End 

- End 

- Return Net   usN E N N    and Density  usN E  

 

 

To calculate the probability of an edge for each epoch and edge: 

- For epoch 1:e E , 

- For node 1 1:n N  (or 1: R ) 

- For node 2 1 1:n n N   (or 
1 1:n R ) 

-  1 2, ,edge e n nP  
 1 2#    :, , ,

us

edges in Net e n n

N
  

- End 

- End 

- End 

 

To calculate alpha-level confidence intervals on the density for each epoch: 

- For epoch 1:e E , 

-  ( )ObservedDensity e   the density of the observed network (calculated using all trials) 

-  ( )StandardError e   the standard error of  :,Density e  

-  ( )LowerBound e   ( )ObservedDensity e -1.96* ( )StandardError e  

-  ( )UpperBound e  ( )ObservedDensity e +1.96* ( )StandardError e  

- End 

 

Constants: 

usN : the number of bootstrap samples for uncertainty estimation 
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E : the number of epochs 

T : the number of time points in each epoch 

N : the number of sensors 

R : the number of regions 

L : the number of trials 

K : the number of baseline intervals (K>L) 

bsN : the number of bootstrap samples for null distribution estimation 

q : The FDR threshold for the number of false positives (here, 0.05) 

MCN : the number of comparisons performed for each network, equal to the number of possible edges, 

 * 1 / 2 N N  or  * 1 / 2 R R  

 : the desired type-I error rate for confidence intervals on aggregate statistic 
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CHAPTER III. PAIRWISE COUPLING METRICS FOR ELECTRODE-LEVEL 

AND REGION-OF-INTEREST LEVEL FUNCTIONAL NETWORK ANALYSIS 

1. Introduction 

A key problem in functional connectivity analysis is the choice of spatial scale. 

Theoretical models of functional coupling in the brain exist for multiple spatial scales, 

e.g. single-neuron, cell assembly, cortical column, and functional area. Functional 

connectivity analysis, however, often uses a spatial scale dictated by the recording 

modality. In particular, we focus here on brain voltage recordings such as local field 

potentials (LFPs), electroencephalography (EEG) and electrocorticography (ECoG), 

where functional connectivity nodes are typically taken to be the electrode locations. It 

may be desirable to infer region-of-interest-level functional connectivity by grouping the 

electrodes based on functional brain areas, but methodologies to infer networks between 

groups of electrodes are lacking. Simple spatial averaging of the signals in a region, a 

common technique in the functional magnetic resonance imaging (fMRI) literature, fails 

for brain voltage signals because it weakens possibly important fine timescale dynamics 

such as rhythmic activity. 

 Here we describe two coupling measures, canonical correlation and canonical 

coherence, that can be used to infer connectivity between groups of signals. While these 

metrics have a long history in the statistics literature, they are still rare in brain functional 

connectivity analyses. We hope to make them more accessible for use by the functional 

connectivity community. To that end, (1) we present canonical correlation and canonical 

coherence alongside their single-dimensional analogues, correlation and coherence; (2) 
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we review the literature justifying their use; and (3) we describe and justify two-sample 

hypothesis tests for differences in mean coupling between two conditions. We also 

include an appendix with a derivation of the canonical correlation/coherence estimators 

used here. 

We base the discussion of canonical correlation and canonical coherence in a 

functional connectivity framework that was previously described in Stephen et al. (2014, 

Chapter II), which infers task-related connectivity with reference to a baseline period. In 

common with other functional connectivity methodologies (Sporns et al., 2004; Eguiluz 

et al., 2005; Pereda et al., 2005; Achard et al., 2006; Bassett et al., 2006; Pachou et al., 

2008; Astolfi et al., 2009; Bullmore and Sporns, 2009), this framework defines edge 

weights based on pairwise coupling between nodes and optionally thresholds the weights.  

The test statistics presented here represent three improvements relative to those 

used previously: first, we introduce frequency-domain coupling metrics; second, we 

make use of theoretical properties of the coupling statistics when appropriate; and third, 

we structure the tests as two-sample differences of means (Casella and Berger, 1990; 

Efron and Tibshirani, 1993). While we present the test statistics in the context of a 

particular network inference framework, they can be used generally to detect coupling 

differences between two conditions. 

The first improvement, inferring networks based on frequency-domain metrics, 

introduces coherence and canonical coherence as test statistics. Investigating frequency 

domain coupling in electrophysiological data is motivated by the idea that the 

mechanisms of functional coupling in the brain may be mediated by rhythmic activity. 
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For example, the “communication through coherence” hypothesis proposes that the 

activity in two brain areas may synchronize at a particular frequency during a task in 

order to open an effective channel for communication between the areas (Fries, 2005). 

Under the hypothesis, the phase difference of the rhythms between the two areas is 

constant but the individual phases of each area may vary across trials, so an average 

across trials could obscure the effect. Furthermore, the rhythms may cohere at a non-zero 

phase, so the correlation between the two signals may not be positive. Hence coherence 

and canonical coherence, which look for consistent phase relationships across trials, are 

better choices to detect his type of coupling than correlation or canonical correlation. 

Also, given that the true mechanisms of coupling between brain areas are unknown, 

network inference can be improved by using several different test statistics that target 

different hypothesized coupling mechanisms. 

The second improvement, using theoretical distributions to compute the p-values, 

takes advantage of the fact that estimates of correlation and coherence are statistically 

well-behaved (see Methods Section 2.2). When warranted, using a theoretical null 

distribution rather than a bootstrap estimate improves the power of the statistical test 

(Efron and Tibshirani, 1993). 

The third improvement, using two sample tests, formulates the tests in terms of 

differences of means between the baseline and trial periods. For example, ˆ
Corrx , the 

correlation-based coupling statistic defined between a pair of electrodes, is based on (1) 

the mean correlation over a set of trial intervals and (2) the mean correlation over a 

different set of baseline intervals, incorporating the sampling variance of both the trial 
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mean and the baseline mean. This is in contrast to the one-sample test used in Chapter II, 

in which the test statistics and hypothesis tests modeled the sampling distribution of the 

baseline, but did not incorporate the sampling variability of the trial coupling. Here we 

describe two different styles of two-sample tests: the first is parametric, using the known 

distributional properties of correlation and coherence; the second is non-parametric, using 

bootstrapping to estimate sampling distributions of canonical correlation- and canonical 

coherence-based test statistics. By incorporating this additional known source of 

variance, we reduce the number of false positives in the inferred networks. 

The bulk of this chapter is the Methods, in which we present and justify the four 

coupling metrics and their associated hypothesis tests: correlation, coherence, canonical 

correlation, and canonical coherence. The Methods section also summarizes the network 

inference methodology, and the construction of the simulated data that was used to test 

the coupling metrics. In the Results section, we first describe the data transformations 

that lead to the inferred networks, and then we show the performance of the inference 

framework on the simulated data. In general, the coupling metrics are well able to detect 

coupling that is matched to the test statistic. Finally, we discuss the contributions of this 

work to the literature, and make a case for the use of simple pairwise descriptive statistics 

in early-stage data analysis. 

2. Methods 

The network inference methodology used here has a structure common to the 

functional connectivity literature, namely pairwise estimation of a coupling statistic, 

possibly followed by thresholding to yield binary networks. In particular, we base this 
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analysis on the structure laid out in Chapter II (which is Stephen et al., 2014): (1) 

preprocessing, (2) test statistic estimation, (3) p-value calculation, and (4) multiple 

comparisons correction1. This framework was designed to be modular, so that individual 

steps could be adapted to the requirements of particular applications. With that in mind, 

after a brief description of the preprocessing we will focus on the estimation of the test 

statistic and the p-value calculation. After describing the test statistics in detail, we 

summarize the network inference methodology with reference to Figure III.1. Finally, we 

describe the simulated data that we use to test the performance of the test statistics.  

2.1 Preprocessing  

Although the results presented below are based on simulated data, the 

preprocessing steps were designed to be similar to common preprocessing steps used in 

ECoG studies. Each channel was downsampled from 1200 to 400 Hz (Matlab decimate 

function, which in this case also low-pass filtered the signal below 200 Hz), then high-

pass filtered above 2 Hz, and notch filtered at 60, 120, and 180 Hz with a 1 Hz band stop. 

The high-pass and notch filters used a zero-phase 3rd order Butterworth filter (Matlab 

filtfilt function)2.  

                                                        
1 Chapter II additionally develops methodology to characterize uncertainty in the resulting 
networks, in the form of estimates of the probability of each edge and the variance of aggregate 
network statistics such as the network density. The test statistics developed here are perfectly 
compatible with the uncertainty estimation methodology, but for brevity that layer of analysis was 
not included here. We also suppress the dynamic layer of inference described in that work. 
2 In Chapter II the filter is between 0.1 Hz and 30 Hz. We have increased the lower bound of the 
filter, since we calculate correlations on epochs of 500 ms. Any activity in the signal below 2 Hz 
could lead to spurious correlation values (Leonardi and Van De Ville, 2015). Filtering above 

1/ windowlength  is also necessary for canonical correlation estimation. While not strictly 

necessary for the coherence and canonical coherence estimates, we use the same filter for all 
analyses for the sake of consistency. 
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The simulated data contained trials lasting 500 ms, and a set of non-overlapping 

“baseline” intervals lasting 500 ms (see Section 2.4)3. Trials were stored in a 3-

dimensional matrix with dimensions (T N L  ), where T  is the number of time points, 

N  is the number of electrodes, and L  is the number of trials. Baseline intervals were 

stored in a 3-dimensional matrix with dimensions (T N K  ), where K  is the number of 

baseline intervals. In the simulations described below, there were 200 time points (500 

ms sampled at 400 Hz), 9 electrodes, 100 trials, and 400 baseline intervals.  

Both sets of intervals were normalized: first the event-related potential (ERP), or 

mean over trials, was computed separately for each channel and subtracted. Then the DC 

component, or mean over time, was computed separately for each interval and subtracted. 

Removing the ERP reduces (but may not completely remove (Truccolo et al., 2002)) the 

component of the response that is time-locked to the stimulus, which may induce 

correlations unrelated to intrinsic network effects (Friston, 1994). The ERP is also a 

source of nonstationarity, so it is important to remove it before performing spectral 

inference, such as coherence estimation (Koopmans, 1995). Of course, the ERP often 

contains relevant task information and can be studied separately. Removing the DC 

component eliminates 0 Hz artifacts in the correlation and coherence estimates (this was 

a cautionary step, since the signal was already high-pass filtered above 2 Hz). Both of 

these normalization steps are consistent with the common practice in stochastic process 

analysis to treat trend terms separately from residuals, which are then assumed to have 

zero mean (Thomson, 1982; Koopmans, 1995). 

                                                        
3 In the language of Chapter II, we had only one “epoch of interest” lasting the entire duration of 
the trials, since here we do not consider dynamic changes in functional connectivity 
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2.2 Test statistic estimation and p-value calculation 

The test statistics used in Stephen et al. (2014) were the absolute value of the 

correlation coefficient and the canonical correlation estimated during the task. The p-

values were computed by comparing the observed test statistic to a null distribution 

estimated from the baseline period using bootstrapping. Here we propose three 

improvements to this approach: (1) defining coupling in the frequency domain, (2) 

defining the hypothesis test theoretically rather than empirically where possible, and (3) 

incorporating known sources of variability from the experimental setup. 

In this section we describe the four test statistics that incorporate these 

improvements. The test statistics draw from a long history of work on the distributional 

properties of pairwise coupling measures, which we summarize for each statistic. 
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Table III.1: Test Statistics.  

Summary of the four coupling statistics used to infer networks.  

Measurement Test Statistic x̂   Estimated Variance ̂   Distribution 

Correlation    1 1tanh tanhCorr T Bx Corr Corr    2 2ˆ ˆCorr T B     Gaussian 

Canonical 

Correlation    1 1ˆ tanh tanhT BCCorrx CCorr CCorr    N/A 
Bootstrap 

over trials 

Coherence    1 11 1
( ) tanh ( ) tanh ( )

2 2 2 2
Coh T Bx f Coh f Coh f

LP KP

  
    

  
 2 2ˆ ˆ( ) ( ) ( )Coh T Bf f f     Gaussian 

Canonical 

Coherence    1 1ˆ ( ) tanh ( ) tanh ( )T BCCohx f CCoh f CCoh f    N/A 
Bootstrap 

over trials 
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2.2.1 Correlation. The sample correlation for the trial period is calculated as: 

1 0

2 2

1 0 1 0

( ) ( )

( , )

( ) ( )

L T

i l j l

l t
T i j

L T L T

i l j l

l t l t

E t E t

Corr E E

E t E t

 

 

 

   

 


  

   
  



 

 

where ( )iE t  and ( )jE t are the signals on electrodes i  and j , T  is the duration of the 

intervals, L  is the number of trial intervals, and l  are the interval onset times. Note that 

all correlations were computed at zero lag. The sample correlation for the baseline period 

( , )B i jCorr E E  is defined the same way, replacing L  with K , the number of baseline 

intervals. Below, we will fix the choice of electrodes iE  and jE  for simplicity. 

The Fisher transform (inverse hyperbolic tangent) of the sample correlation is 

approximately normally distributed (Fisher, 1915): 

   1 1 1
tanh tanh ,

3approx
Corr N

n
  

 
 

, 

where   is the true correlation and n  is the degrees of freedom in the estimate. Under 

the null hypothesis that the true correlation is the same during trial and baseline, the 

statistic 

   1 1tanh tanhCorr T Bx Corr Corr    

will have mean zero and standard deviation: 

2 2

Corr T B     
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where 2

T  and 2

B  are the variances of the trial and baseline periods, respectively. 

Estimating 
Corr  with ˆ

Corr , this leads naturally to a z-statistic: 

ˆ

Corr
Corr

Corr

x
z


  

which will be distributed as a standard normal under the null hypothesis.  

The estimate of ˆ
Corr  is nontrivial: theoretically, the component variances are 

2 1

3
T

Td
 


 and 2 1

3
B

Bd
 


, where Td  and Bd  are the degrees of freedom for TCorr  

and BCorr , respectively. However, the correct choice of degrees of freedom Td  and Bd  

is unclear. We can assume that the intervals are independent, but each interval consists of 

multiple timepoints that contribute to the estimate of the correlation. Because the 

recordings at close timepoints in an interval have some dependence, it is unclear how 

many degrees of freedom each interval contributes to the correlation estimate. For a white 

noise Gaussian process the degrees of freedom would be equal to the number of time 

points, but an autoregressive process with no noise would only contribute one degree of 

freedom per interval. Our case falls somewhere between these two extremes. Hence the 

variance of corrz  is unknown. To solve this, we use a jackknife procedure (Quenouille, 

1956; Tukey, 1958) in the spirit of (Bokil et al., 2007) to estimate the variances 2ˆ
T  and 

2ˆ
B . They use a two-sample extension of the jackknife procedure (Arvesen, 1969) to 

estimate the variance of the observed test statistic.  
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The jackknife estimate of variance computes estimates of the test statistic after 

leaving out one interval of trial or baseline; i.e. 0ix  is the estimate of corrx with the thi  

trial interval left out, and 0 jx  is the estimate of corrx with the thj  baseline interval left out. 

Then the variance estimate is given by: 

2 2

2 2 2
0 0 0 0

1 1

1 1
ˆ ˆ ˆ

( 1) ( 1)

L K

i i j jCorr T B

i j

x x x x
L L K K

  
 

          
       

   

where  

0 0

0 0

0 0

1

0 0

1

( 1)

( 1)

1

1

i corr i

j corr j

L

i i

i

K

j j

j

x Lx L x

x K x K x

x x
L

x x
K





   

   

  

  





. 

Hinkley (1978) demonstrates that the jackknife estimate is asymptotically valid as an 

estimate of the sample error of the (non-jackknife) test statistic, using the sample 

correlation as a justifying example. 

Since ˆ
Corrz has a standard normal distribution under the null hypothesis, the p-

values are calculated by comparison to the standard normal cumulative distribution 

function (CDF)  : 

ˆ1 ( )p z   

Note that the calculation is set up so that high values of ˆ
Corrz have small p-values, 

meaning that the correlation during trials is greater than the correlation during silence. 
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We use one-sided tests throughout for simplicity, however it is a straightforward 

extension to construct p-values for two-sided tests. 

 

2.2.2 Coherence. In this section, we refer to the sample coherency as: 

( )
( , , )

( ) ( )

ij
T i j

ii jj

S f
Coh E E f

S f S f
  

Where ˆ
iiS , ˆ

jjS , and ˆ
ijS  are the sample spectra and cross-spectrum for the signals on 

electrodes iE  and jE , averaged over trial intervals (Brillinger, 2001). Here, the sample 

spectra and cross-spectra are estimated using the multitaper method. For example, the 

cross-spectrum is given by: 

*

, .

1 1

1
( ) ( ) ( )

L P

ij n k n k

n k

S f X f Y f
LP  

  , 

where L  is the number of trial intervals to be averaged (replace by K  for the baseline 

coherency), P  is the number of tapers (here 3P  ), *  denotes the complex conjugate, 

and , ( )n kX f  and , ( )n kY f  are the Fourier transform at frequency f of the thn time-domain 

interval of signals iE  and jE , respectively, tapered by taper k . The spectra are computed 

similarly. Note that coherency is a complex number with both an amplitude and a phase. 

The sample coherence is the magnitude squared coherency, 
2

( )TCoh f . 

While the analytical distribution of sample coherence is known, it depends 

heavily on the value of the true coherence. Also, coherence has a positive bias, since it is 

constrained to be strictly positive. This bias depends on the sample size and the value of 
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the true coherence (values close to 0 or 1 require more data to resolve). So, while sample 

coherence is asymptotically Gaussian (Enochson and Goodman, 1965; Brillinger, 2001), 

the convergence to Gaussian is slow and the approximation is not good for sample sizes 

less than about 150 (Enochson and Goodman, 1965).  

A natural approach is to try to stabilize the variance of the estimates along the 

same lines as correlation by applying the Fisher Transform to the magnitude of the 

coherency (Enochson and Goodman, 1965; Thomson and Chave, 1991; Brillinger, 2001; 

Bokil et al., 2007). This works well for sample sizes greater than 20 and 

0.4<=
2

( )Coh f <=0.95 (Koopmans, 1995). Enochson and Goodman (1965) also point out 

that for non-extreme values of the true coherence the bias in the estimates can be 

approximated by 1/ (# degrees of freedom 2) . 

Assuming that the signals are weak-sense stationary, the degrees of freedom are 

equal to the number of trials times the number of tapers. Hence: 

   1 1 1 1
tanh ( ) tanh ( ) ,

2 2 2 2
T T

approx
Coh f N Coh f

LP LP

  
 

  
 

where ( )TCoh f  is the true trial coherency. For sample sizes ( LP ) between 20 and 150, 

this approximation holds for values of the true coherence between about 0.4 and 0.95 

(Enochson and Goodman, 1965). Bokil et al. (2007) use this result to construct a test 

statistic relating to the difference between two coherences that we will use to compare 

coherence during speech to coherence during silence: 

( )
( )

ˆ ( )

Coh
Coh

Coh

x f
z f

f
  
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where  

   1 11 1
( ) tanh ( ) tanh ( )

2 2 2 2
coh T Bx f Coh f Coh f

LP KP

  
    

  
 

2 2ˆ ˆ( ) ( ) ( )coh T Bf f f     

Setting 2 1
ˆ

2 2
T

LP
 


 and 2 1

ˆ
2 2

B
KP

 


, cohz  will be approximately standard normally 

distributed under the null hypothesis that the coherence is the same during speech and 

silence. While this distribution holds exactly in the limit as ,LP KP , we follow 

Bokil et al (2007) in accounting for some small-sample variability by estimating the 

variances 2

T̂  and 2ˆ
B  using a jackknife procedure as described above (see Maris and 

Oostenveld (2007) for some criticism of this approach). Under the null hypothesis, 

ˆ ( )Cohz f  has a standard normal distribution, so p-values are computed in the same way as 

for ˆ
Corrz . 

 

2.2.3 Canonical Correlation. Canonical correlation is a measure of coupling between 

two groups of signals 1( ,..., )T

px x x  and 1( ,..., )T

qy y y , where there are p  signals in 

group x  and q  signals in group y . It is defined using the linear combinations of x  and 

y  that are maximally correlated: 

 
,

( , ) max ,T T

a b
CCorr x y Corr a x b y  

Here, ( )x t  and ( )y t  are the time series on the electrodes in two regions of interest during 

the time intervals of interest (baseline or task). There are p electrodes in the first region 
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and q electrodes in the second: in the simulated data, all regions have 6p q   signals. 

Canonical correlation determines the linear combination of the signals in the first region 

and the linear combination of signals in the second region that maximize the correlation 

at zero lag. The estimate of the canonical correlation ( , )CCorr x y  is based on the 

singular value decomposition of the (standardized) covariance matrix between the two 

groups of signals (see Appendix 5.2). From a theoretical perspective, it is closely related 

to Principal Component Analysis (PCA), which is based on the covariance matrix of a set 

of signals with itself. PCA seeks the linear combination of the variables in one group that 

maximizes variance, and canonical correlation analysis seeks linear combinations of two 

groups that maximize the correlation. A derivation of the estimate used here and an 

algorithm for computing it can be found in the Appendix (Section 5.2). 

Estimates of canonical correlation have a positive bias that depends on the 

number of signals in each group ( p and q ), the number of observations ( L  task intervals 

and K  baseline intervals), and the population canonical correlation (Lawley, 1959; 

Thompson, 1990). The bias has been described using functional approximations (Lawley, 

1959) and Monte-Carlo simulations (Thompson, 1990), but since it has a complicated 

dependence on the population value of the canonical correlation it cannot be computed 

analytically in practice. Several approaches to correcting for the bias have been proposed 

such as using the Wherry correction (Thompson, 1990) or a modified Jackknife 

procedure (Dempster, 1966). Here, we instead construct a test statistic in such a way that 

the bias in the baseline and test intervals will cancel out under the null hypothesis. 
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In parallel with the test statistics defined above for correlation and coherence, we 

would like to construct a two-sample test statistic of the form: 

   1 1ˆ tanh tanhT BCCorrx CCorr CCorr    

As with correlation and coherence, the Fisher Transform stabilizes the variance of 

canonical correlation, so we use it to improve our estimates (Brillinger, 1981). This 

statistic can be biased: 

 ˆ[ ] ( , , , ) ( , , , )CCorr T T B BE x CCorr bias CCorr L p q CCorr bias CCorr K p q     

where TCCorr  and BCCorr are the population values of the canonical correlation in the 

two conditions. While the functional form of ( )bias   is complicated, we can control its 

inputs. In our application, p  and q  are the same in the baseline and task conditions, 

since the region definitions are assumed to be constant over time. Under the null 

hypothesis that the population canonical correlation is the same in the two conditions 

( T BCCorr CCorr CCorr  ), the expected value of the test statistic will be 

ˆ[ ] ( , , , ) ( , , , )CCorrE x bias CCorr L p q bias CCorr K p q   

Hence, if the number of observations is the same in the baseline and task intervals 

( K L ), the test statistic will have a zero mean. Since we would like to be able to 

interpret a value of zero as being no difference between TCCorr  and BCCorr , we need to 

calculate the test statistic using the same number of intervals in the baseline and task 

conditions. 

In order to keep the number of intervals the same in the two conditions, we could 

throw away excess intervals from whichever condition has a greater number. We will 
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show below that, using bootstrapping, it is possible without throwing away any data to 

both (1) estimate the difference in canonical correlation between the two conditions and 

(2) compute a p-value against the null hypothesis that the difference is zero. 

 The null hypothesis of interest is that the canonical correlation is the same in the 

baseline and task intervals. Under the null hypothesis, the test statistic will be zero, and 

the p-value for a one-sided test against the alternative hypothesis that the canonical 

correlation is greater during the task than baseline will estimate the probability that the 

test statistic is less than or equal to zero. To estimate this probability, we construct a two-

sample bootstrap procedure (Efron and Tibshirani, 1993) with 1000BSN   iterations. To 

get the bias to cancel out under the null as described above, we subsample the same 

number of baseline and task intervals to estimate the test statistic. The algorithm is as 

follows: 

1. Let min( , )M L K   

2. For 1: BSi N   

a. If L M , randomly subsample M task intervals (without replacement) 
b. If K M , randomly subsample M baseline intervals (without replacement) 

c. baselineS   a set of M  intervals chosen uniformly at random with replacement 

from the (possibly subsampled) baseline intervals: ( )T N M    

d. taskS   a set of M  intervals chosen uniformly at random with replacement from 

the (possibly subsampled) task intervals: ( )T N M    

e. For 1 1:r R   

i. For 2 1:r R   

1. 
baseline

X ,
task

X   the data for region 1r  from baselineS  and taskS , 

respectively: ( )T p M    

2. 
baseline

Y ,
task

Y   the data for region 2r  from baselineS  and taskS , 

respectively: ( )T p M    

3.  1 2
ˆ , ,bsx i r r  

   1 1tanh ( , ) tanh ( , )
task task baseline baseline

CCorr X Y CCorr X Y   

ii. End 
f. End 
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3. End  

Even though the individual samples of the bootstrap distribution use only a subset of the 

baseline intervals, all of the baseline intervals are represented in the complete 

distribution. 

The resulting bootstrap distribution is an estimate of the sampling distribution of 

the test statistic (Efron and Tibshirani, 1993). The estimate of the sampling distribution is 

often used to construct confidence intervals on the test statistic. Here, we use it in two 

ways: first, to get a robust estimate of the value of the test statistic, and second, to 

compute a p-value. The mean of the bootstrap distribution is a robust estimate of the 

value of the test statistic: 

1
ˆ

CCorr BS

BS

x x
N

   

Note that this estimate will be conservative, because the positive bias in the canonical 

correlation is stronger for smaller values of the true canonical correlation (Lawley, 1959; 

Thompson, 1990). We use this estimate for the weighted canonical correlation networks. 

To compute a p-value for the hypothesis test with the null hypothesis that the test 

statistic is less than or equal to zero (the canonical correlation is not greater in the task 

intervals than the baseline), we use the proportion of the bootstrap samples that fall below 

zero: 

ˆ#( 0)BS

BS

x
p

N


  

Formally, this procedure relies on the duality between confidence intervals and 

hypothesis tests: the above formula is equivalent to an inversion of the approximate 
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confidence intervals represented by the percentiles of the bootstrap distribution. Note that 

these p-values are approximate: they are based on percentile confidence intervals, which 

are accurate to first order in the number of samples. Basing the p-values on more precise 

approximate confidence intervals such as BCa intervals (Bias Corrected and Accelerated 

intervals), which are accurate to second order, would further improve their accuracy 

(Efron and Tibshirani, 1993, p. 216). 

 

2.2.4 Canonical Coherence. The above argument regarding bias in the estimation of 

canonical correlation applies equally to the estimation of canonical coherence (James, 

1964; Brillinger, 1981), so we use the same method to match the sample sizes in the 

bootstrap estimation. The test statistic is defined as: 

   1 1ˆ ( ) tanh ( ) tanh ( )T BCCohx f CCoh f CCoh f    

The canonical coherences ( )TCCoh f  and ( )BCCoh f  are estimated as described in the 

Appendix, and the same bootstrap procedure is used to estimate CCohx  and p-values for 

each region pair. 

2.3 Network Inference 

The network inference methodology is summarized in Figure III.1. For electrode-

level networks, x̂  is calculated as described above based on the correlation or coherence 

between the two electrodes of interest iE  and jE in the baseline and trial intervals. A 

jackknife procedure is used to estimate the variance of x̂ , which is then used to calculate 

ẑ . Weighted networks are constructed by defining edge weights to be the value of ẑ  on 
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each pair of electrodes. To construct binary networks, a p-value is calculated by 

comparing ẑ  to the standard normal CDF  , and the False Discovery Rate procedure 

(FDR, Benjamini and Hochberg, 1995) is used across edges to find a threshold. We use a 

FDR level of 5% for all tests. 

For region-level networks, x̂  is calculated based on the canonical correlation or 

canonical coherence between the two regions of interest iR  and jR in the baseline and 

trial intervals. A bootstrap procedure is used to construct an estimate of the sampling 

distribution of x̂ . The mean of the distribution, x , is used for the weighed networks. The 

proportion of the distribution below zero gives the p-values. The FDR procedure across 

edges is used to threshold the p-values, resulting in binary networks. 
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Figure III.1: Network inference methodology.  

(Top) Simulated voltage traces for the 18 electrodes (
1 18E E ) in the time domain coupling 

simulation. The 18 electrodes are grouped into three regions (
1 3R R ), indicated by the blue, 

green, and red lines. The simulated data contained trial and baseline intervals lasting 0.5s. 
(Bottom Left) The construction of electrode-level networks, based on the correlation or coherence 
(at a frequency of interest) during the baseline and trial intervals. First, the correlations or 

coherences are used to estimate x̂  for each pair of electrodes 
iE  and 

jE . A jackknife procedure 

is used to estimate the standard deviation of x̂ , ̂ . These two components are used to construct 

the normalized test statistic, ẑ , which forms the basis of the weighted networks. P-values p  are 

calculated through comparison with the standard normal CDF  , and are then thresholded using 
the FDR procedure to create binary networks. (Bottom Right) The construction of region-level 
networks, based on the canonical correlation or canonical coherence (at a frequency of interest) 
during the baseline and trial intervals. The canonical correlations or canonical coherences are 

used to estimate a bootstrap distribution of x̂  for each pair of regions 
iR  and 

2R . The mean of 

the bootstrap distribution, x , is used as the basis of the weighted networks. P-values p  are 

calculated as the proportion of the bootstrap samples that fall below zero. Finally, the p-values 
are thresholded using the FDR procedure to create binary networks. See Methods for more 
detail. 

 

The FDR procedure sorts the p-values in ascending order and chooses the largest 

p-value that satisfies: 

( 1) / 2
e

e
p

N N



 

where e  indexes the sorted edges (the smallest p-value having an e  of 1),   is the level 

of the FDR, and N  is the number of electrodes (replace with the number of regions for 

canonical correlation and canonical coherence networks). The denominator, ( 1) / 2N N  , 

is the number of edges before thresholding, which is the number of hypothesis tests being 

performed. The procedure then rejects the null hypothesis for all tests having a p-value 

less than or equal to the chosen p-value. 

Note that while all of the above hypothesis tests are formulated as one-sided tests 

for a positive difference between task and baseline (an increase in the coupling measure 
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during the task relative to baseline), it is a straightforward extension to use two-sided 

tests to look for either positive or negative effects. 

For coherence and canonical coherence networks, all of the steps are repeated for 

each frequency of interest. 

2.4 Simulations 

Simulated data were generated to test the performance of the network inference 

methodology in the presence of time domain and frequency domain coupling. The basic 

structure of the simulated data was the same as described in Chapter II, with the signal on 

each electrode consisting of the sum of four components: pink noise, white noise, a 

background coupled signal, and trial coupled signal. The pink noise, white noise, and 

background coupling were the same for the time domain and frequency domain 

scenarios, but the trial coupling differed. 

 

2.4.1 Pink Noise. The pink noise was generated for each electrode by convolving white 

noise with a Gaussian kernel of standard deviation 5 ms. After filtering, the signals were 

normalized to have unit variance. 

 

2.4.2 White Noise. The white noise component had sample variance 0.1. 

 

2.4.3 Background coupling. Constant correlated structure was included by adding a 

single 2–50 Hz signal lasting the entire duration of the recording, ( )C t , to every 

electrode. Because the same signal was added to all electrodes, the network topology 
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corresponding to this signal is a complete graph, in which every node is connected to 

every other node. Signals in the desired passband were generated by filtering white noise 

using a zero-phase 4th order Butterworth filter (Matlab filtfilt function). After filtering, 

the signals were normalized to have a variance of 0.5. Note that unlike in Chapter II, 

there was no uncorrelated component at 2–50 Hz. 

 

2.4.4 Time domain trial coupling. The simulations with time-domain coupling consisted 

of 18 electrodes, split in to 3 regions. In addition to the pink noise, white noise, and 

background coupling, correlated structure in the 8–25 Hz frequency range was introduced 

based on a pre-defined network structure (Figures III.4 and III.5, Panel A, True 

Networks). The 8–25 Hz component was constructed to have constant instantaneous 

variance during the entire dataset, switching from uncorrelated 8–25 Hz noise outside of 

trials and transitioning to correlated 8–25 Hz noise during trials. That is, the total 

variance of the stochastic process on each electrode was constant as a function of time, 

while the covariance structure between electrodes changed during trials to reflect the 

desired network structure. To achieve this, two signals were summed at each electrode: 

one uncorrelated signal lasting the entire duration of the data that tapers away during the 

correlated portions of the trials, and one correlated signal that appears only during the 

trials.  

The window functions governing the transition between uncorrelated activity and 

correlated activity ( ( )UW t  and ( )TW t , respectively) were chosen so that the instantaneous 
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variance of the signal would stay constant during trials. In particular, the correlated signal 

was windowed by the square root of a Gaussian kernel with 50   ms and 250   ms: 

2

2

( )

2
1

( )
2

t

TW t e





 

 

  

The uncorrelated signal was windowed by: 

2

2

( )

2
1

( ) 1
2

t

UW t e





 

 

   

These choices resulted in correlated and uncorrelated signals, ( )T t  and ( )U t , 

respectively, having instantaneous variances that evolve in time according to a Gaussian 

profile and one minus that Gaussian profile: 

2

2

( )

2
1

( ( ))
2

t

Var T t e





 

 

  

2

2

( )

2
1

( ( )) 1
2

t

Var U t e





 

 

  . 

Hence the combined signals had unit variance. In the resulting signal, the total variance 

of the correlated signal, ( )T t , over the entire trial (for electrodes with at least one edge in 

both the before and after networks) was about one quarter of the total variance, the other 

three quarters being contributed by ( )U t . 

In the true time-domain coupling networks, each electrode of Region 1 is 

connected to two electrodes in Region 2 and vice versa. Each electrode in Region 3 is 

connected to one other electrode in the same region. The correlated signals were 

introduced in such a way that the inter-region coupling (between Regions 1 and 2) was 
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half as strong as the intra-region coupling (within Region 3). Since each electrode in 

Regions 1 and 2 had two inter-region edges and each electrode in Region 3 had one intra-

region edge, the combined signal-to-noise ratio was the same for all electrodes (Table 1). 

 

2.4.5 Frequency domain trial coupling. The simulations with frequency domain 

coupling were constructed the same way as the time domain coupling, switching from 

incoherent noise to a coherent signal during trials, except that two frequency bands were 

used: 20–30 Hz (beta) and 35–45 Hz (gamma). The signal in each frequency band 

consisted of incoherent filtered white noise that transitioned into coherent signals during 

the trials, according to the same windowing functions described above. The coherent 

signals, however, were not filtered white noise but sinusoids at 25 and 40 Hz, 

respectively, with a uniform random starting phase   on each trial: 

( ) 2 sin(2 )T t ft    

where f  is the frequency of the signal and t  is the time since the start of the trial, in 

seconds. The factor of 2  ensures that ( )T t  has unit variance, so that after windowing it 

and adding it to ( )U t  the signal will have a total variance of 1. Adding the same T(t) to 

multiple electrodes made the electrodes coherent at frequency f . 

The structure of the networks for the frequency domain coupling is shown in 

Figure III.5, Panel A. Here there were 12 electrodes split into 2 regions. In the beta band, 

each electrode in Region 1 is connected to two electrodes in Region 2 and vice versa. 

Superimposed on this coupling is within-region coupling in the gamma band, where all 
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electrodes in Region 1 share the same coherent signal (resulting in all-to-all coupling) 

and each electrode in Region 2 is coupled with one other electrode in the same region. As 

with the time-domain coupling, the inter-region coupling (in the beta band) was half as 

strong as the intra-region coupling (in the gamma band). Since each electrode had two 

inter-region signals (in the beta band) and one intra-region signal (in the gamma band), 

the signal-to-noise ratio between the total coupling in each frequency band and the total 

noise was the same for all electrodes (Table 1). 

 
Table III.2: Parameters for simulation scenarios 

Here we list the settings for the simulated data. The figures showing the results for each 
simulation scenario are listed in the last column. Abbreviations: uncorr. = uncorrelated 
component; corr. = correlated component; SNR = signal to noise ratio; correlation ratio = 
(variance of trial correlated component)/(variance of baseline correlated component).  

Simulation 
Trial Frequency Trial Variance 2–50 Hz 

variance 
SNR 

Correlation 

ratio 

Results 

Figures Uncorr. Corr. Uncorr. Corr. 

Time Domain 8–25 Hz 8–25 Hz 0.75 0.25 0.5 0.11 0.5 Figs III.4, 6 

Frequency 

Domain 

20–30 Hz 25 Hz 0.75 0.25 0.5 0.11 0.5 
Figs III.5, 7 

35–45 Hz 40 Hz 0.75 0.25 0.5 0.11 0.5 

 
 

3. Results 

We tested the performance of the test statistics using two simulation scenarios: the 

correlation and canonical correlation networks were inferred for a simulation with time-

domain coupling (filtered white noise), and the coherence and canonical coherence 

networks were inferred for a simulation with frequency-domain coupling. Figures III.4 

and III.5 show the results of these tests. 
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3.1 Visualization of data transformations 

Before describing these results, we will first describe the data transformations that 

take place in the network inference, so that the connection between the inferred networks 

and the source data is clear. We do so here in detail for the time domain networks; similar 

transformations occur for frequency domain networks.  

 

3.1.1 Correlation Networks. Figure III.2 shows how the data changes with each step of 

the correlation network inference procedure. The figures show the edges (pairs of nodes) 

on the x axis, sorted by their final p-values, with index e . The sorting of the edges is the 

same for all of the panels, therefore the correlation for an edge in Panel 1 is located 

vertically above the x̂  for the same edge in Panel 2, for example. The edges that will 

ultimately pass the thresholding for the binary network are colored red, and the rest are 

colored black.  

The first panel shows the average correlation for each edge over baseline intervals 

( ) and trial intervals ( ). The baseline correlations are nonzero because the simulated 

data included some all-to-all coupling between electrodes, and the intent of the networks 

is to detect increases in coupling related to the trial period. The trial correlations are 

higher on some edges due to the introduced coupling, and there is some random jitter in 

both the trial and baseline correlations due to sampling variability.  
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Figure III.2: Data transformations for the correlation networks.  

Panels show the steps that the data undergo in the estimation of the correlation networks. In all 
panels, the x-axis represents the edges, sorted by their ultimate p-value. Edges that pass the 
FDR threshold for inclusion in the final binary networks are indicated in red in all panels. (Panel 1) 

The baseline and trial correlations for all edges. (Panel 2) The test statistic x̂  calculated from the 

baseline and trial correlations. (Panel 3) The normalized test statistic ẑ , shown superimposed on 

the standard normal probability density function ˆ( )z  in greyscale. The inset shows ˆ( )z  versus 

ẑ , for comparison with ẑ  for edge number 5. (Panel 4) The p-values for each edge, calculated 

by comparing ẑ to the standard normal distribution. The red line is ( )
( 1) / 2

e
FDR e

N N



, where 

e  is the edge index, 0.05   is the FDR level, and 18N   is the number of electrodes. Inset: 

close-up of the few edges with the smallest p-values to show the last edge having 

( 1) / 2
e

e
p

N N



, which is labeled *e . For more detail, see Results. 
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The difference in the Fisher transform of these two correlations yields x̂  for each 

edge, shown in the second panel. Notice that the edges with high x̂  are not strictly the 

same as the edges with high trial correlations: there exist (black) edges with high trial 

correlations but also high baseline correlations, so their (transformed) difference is 

smaller than (red) edges with lower trial correlations.  

The third panel shows ẑ , which is x̂  divided by its estimated variance. Again, 

some edges with increased x̂  have reduced ẑ . This is because the estimated variance 

was higher for those edges, making their z-score smaller. The ẑ for each edge is 

compared to a standard normal distribution: this is represented in the third panel by 

superimposing the ẑ values on a heatmap representation of the standard normal 

probability density function ˆ( )z , where the grayscale intensity represents the probability 

density for the value of ẑ on the y-axis. The inset shows this comparison for edge number 

5. Integrating the probability density from positive infinity to ẑ yields the p-value (this is 

equivalent to one minus the cumulative distribution function evaluated at ẑ ). 

The resulting p-values are shown in the fourth panel. The FDR procedure 

compares the sorted p-values to the line ( )
( 1) / 2

e
FDR e

N N



, which is shown in red. 

As can be seen in the inset, the edge with the largest p-value falling below this line, *e , 

passes the thresholding (rejecting the null hypothesis of no coupling), and all edges with 

smaller p-values also pass1.  

                                                        
1 It is not necessary that all of these edges also have p-values below the FDR line, they just need 

to be below the p-value of *e . It is possible (though it does not happen here), with increasing e , 

for the p-values to go above the FDR line and then back below it. It is the last, biggest p-value 
that is below the FDR line that matters. 
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Figure III.3: Data transformations for the canonical correlation networks.  

Panels show the steps that the data undergo in the estimation of the canonical correlation 
networks. In all panels, the x-axis represents the edges, sorted by their ultimate p-value. Edges 
that pass the FDR threshold for inclusion in the final binary networks are indicated in red in all 

panels. (Panel 1) The estimated sampling distribution of the test statistic x̂  (estimated using a 

two-sample bootstrap procedure, see Methods 2.2), which is compared to zero (black line). The 

inset shows the estimated probability density of x̂  for the edge with the smallest p-value. (Panel 

2) The p-values for each edge, calculated by comparing the estimated distribution of x̂  to zero. 

The red line is ( )
( 1) / 2

e
FDR e

R R



, where e  is the edge index, 0.05   is the FDR level, and 

3R   is the number of regions. For more detail, see Results. 

 

3.1.2 Canonical Correlation networks. The canonical correlation based networks do not 

involve estimating a single value for the test statistic x̂ . Rather, a distribution of x̂  

values is estimated for each edge using a two-sample bootstrap as described in Methods 

2.2. Figure III.3 shows these distributions in Panel 1. Note that region-level networks 

have many fewer nodes (here, only 3), so there are fewer possible edges in the networks 

( ( 1) / 2 3R R  ). The p-values (shown in Panel 2) are the proportion of bootstrap 

observations that are less than zero; or, equivalently, the integral of the estimated 

sampling distribution from negative infinity to zero. The FDR threshold line is shown in 
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red, ( )
( 1) / 2

e
FDR e

R R



. Only one edge passes the threshold: the p-value for the first 

edge is 0.001, which is less than the threshold of 
0.05

0.0167
3

 .  

3.2 Time Domain Coupling 

Figure III.4 shows the results of inferring correlation (left column) and canonical 

correlation (right column) networks on the time-domain coupling simulation. The 

coupling in this simulation consisted of white noise filtered into the 8–25 Hz frequency 

band, windowed to occur during trials, and added to the signals on the electrodes in such 

a way as to create the network architectures shown in Panel A. The inter-regional 

connections between region 1 (blue) and region 2 (green) were half as strong as the intra-

regional connections within region 3 (red), which led to very weak trial correlations 

(Panel B), almost indistinguishable from the background baseline correlations. This weak 

signal of inter-regional connections was poorly detected at the electrode level in both the 

weighted and binary networks (Panel C). The intra-regional connections, being stronger, 

were all detected. Canonical correlation, on the other hand, was able to detect the 

connection between region 1 and region 2, because of the large number of (weak) 

connections. Canonical correlation is able to combine evidence across the electrodes in 

the regions, making it well-suited to detect larger-scale coupling, even in the presence of 

non-task-related coupling. 
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Figure III.4: Time-domain networks.  

Correlation and canonical correlation networks inferred from the simulation with time-domain 
coupling. In all panels, the electrode-level correlation networks are in the left column and the 
region-level canonical correlation networks are in the right column. In the network diagrams, the 
nodes are colored by region identity. (Panel A) The binary true networks, shown as both a 
connectivity matrix (left) and a network diagram (right). (Panel B) The observed coupling matrices 
for the baseline and trial. (Panel C, top) The weighted networks, shown in matrix format and 

network diagram format. For correlation networks the weights are given by ẑ , and for canonical 
correlation networks the weights are given by x  (see Figure III.1 and Methods). (Panel C, 

bottom) The inferred binary networks. 
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3.3. Frequency Domain Coupling 

Figure III.5 shows the results of inferring coherence (left column) and canonical 

coherence (right column) networks on the frequency-domain coupling simulation. The 

frequency domain coupling simulation had twelve electrodes, split into two regions. 

Frequency domain coupling was introduced as windowed sinusoids at two different 

frequencies: 25 Hz (beta) and 40 Hz (gamma), each in a background of band-limited 

incoherent noise at 20–30 Hz and 35–45 Hz, respectively. The beta network consisted of 

inter-regional connections between region 1 and region 2, while the gamma network 

consisted of intra-regional connections within the two regions. As before, the inter-

regional connections were half as strong as the intra-regional connections.  

We show inferred networks at three frequencies of interest: 24, 32, and 40 Hz. 

Since the bandwidth of the coherence analysis was 8 Hz, both coherence and canonical 

coherence do not detect any coupling at 32 Hz. Interestingly, the coherence networks 

were better able to detect inter-regional connections than the correlation networks, even 

though the SNR was the same in the two simulations. The coherence networks detected 

all but one connection at 24 Hz and all of the connections at 40 Hz, with one false 

positive at 32 Hz. The canonical coherence networks detect the connection between 

region 1 and 2, with no false positives. 
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Figure III.5: Frequency-domain networks.  

Coherence and canonical coherence networks inferred from the simulation with frequency-
domain coupling. In all panels, the electrode-level coherence networks are in the left column and 
the region-level canonical coherence networks are in the right column. (Panel A) The binary true 
networks for the two frequencies of coupling, 25 Hz (left) and 40 Hz (right). (Panel B) The 
observed coupling matrices for the baseline and trial, at three frequencies: 24 Hz, 32 Hz, and 40 
Hz. The frequency resolution of the coherence analysis was 8 Hz (±4 Hz). (Panel C, top) The 

weighted networks. For coherence networks the weights are given ẑ , and for canonical 
coherence networks the weights are given by x  (see Figure III.1 and Methods). (Panel C, 

bottom) The inferred binary networks. 



 

 

116 

 
Figure III.6: Ability of time-domain networks to detect frequency-domain coupling.  

Correlation and canonical correlation networks inferred from the simulation with frequency-
domain coupling, where the connections between edges are introduced through the addition of a 
sinusoid windowed by a Gaussian function (see Methods 2.4). The coupling is introduced at two 
frequencies, 25 Hz and 40 Hz, with the patterns given in Figure III.5. Here, the two frequencies of 
coupling are superimposed since they both introduce time-domain correlations. The inter-regional 
connections are half as strong as the intra-regional connections. Layout as in Figure III.4.  
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Figure III.7: Ability of frequency-domain networks to detect time-domain coupling.  

Coherence and canonical coherence networks inferred from the simulation with time-domain 
coupling, where the connections between edges are introduced through the addition of white 
noise filtered in the 8-25 Hz band (see Methods 2.4). Layout as in Figure III.5. The frequency 
resolution of the coherence analysis was 8 Hz (±4 Hz). 
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3.4. Mismatches between coupling and test statistic 

Figures III.6 and III.7 show the ability of the procedures to detect coupling that is 

not matched to the test statistic: Figure III.6 shows the results of correlation-based 

networks on the simulation with frequency-domain (sinusoidal) coupling, and Figure III.7 

shows the results of coherence-based networks on the simulation with time-domain 

coupling. 

Figure III.6 shows inferred correlation networks for the simulated data in Figure 

III.5, in which the coupling is introduced using Gaussian-windowed sinusoids at two 

frequencies: 25 and 40 Hz. The first thing to notice about Figure III.6 is that the 

frequency-domain coupling is superimposed in the time-domain. In other words, whereas 

there are two separable networks in the frequency domain, it is impossible to uncouple 

them in the time domain. In the simulated data used here, the networks are divided so that 

the 25 Hz edges occur between regions and the 40 Hz networks occur within regions, so 

that no edge occurs in both networks, but this is not a requirement of the frequency-

domain coupling. This highlights a feature of frequency domain coupling: multiple 

networks can be represented on the same set of edges, potentially allowing for 

multiplexing of different network functions.  

The correlation networks correctly detect all of the within-region edges but fail to 

detect some of the between-region edges, which are weaker. They perform more poorly 

than the coherence networks for these inter-region edges, since correlation is unable to 

separate the coupling signals at different frequencies: the intra-region edges obscure the 

inter-region edges. Unlike in Figure III.5, the region-level (canonical correlation) 
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networks are not capable of detecting the inter-region connections. Even the weighted 

network for canonical correlation has a value very close to zero for the inter-region edge. 

Like with the electrode-level network, this is because the signals on the nodes contain 

activity related to both inter-region and intra-region connections, and canonical 

correlation is not able to decouple these effects with limited data. 

Figure III.7 shows the inference of coherence networks from the simulated data in 

Figure III.4. Again, when the coupling statistic does not match the underlying coupling, 

the network inference performs more poorly. In this case, coherence networks are 

inferred from simulated data in which the coupling is introduced as white noise, filtered 

between 8 and 25 Hz. The electrode-level networks detect all of the (stronger) intra-

region connections, but they do not detect all of the (weaker) inter-region connections. 

For the inter-region connections, the electrode-level networks have both more false 

positives and more false negatives than those in Figure III.4 using correlation-based 

networks. Again, the region-level networks are not able to detect the inter-regional 

coupling, although the weighted networks do show a positive effect of about 0.1 between 

Region 1 and Region 2. The p-value on the edge is 0.030 for 12 Hz networks and 0.048 

for the 20 Hz networks: these are not significant given the FDR correction for multiple 

comparisons across edges, which is 0.05 / 3 0.0167 , so in this situation there would 

need to be more data in order for the network inference to have sufficient power to detect 

the edge. 

In general, mismatches between the test statistic and coupling lead to reduced 

performance of the network inference. While correlation-based networks are capable of 
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detecting sinusoidal coupling and coherence-based networks are capable of detecting 

filtered noise coupling, performance is reduced when the test statistic mismatches the 

coupling. As a result, some true edges are missed and some false edges are detected. In 

this case, the inference procedure is capable of detecting the true network given sufficient 

statistical power, which in practice would mean that in the case of a mismatch collecting 

more data could improve network inference. 

4. Discussion 

We presented here four coupling statistics for use in task-related brain network 

analyses. The coupling statistics were motivated by improvements to the coupling 

statistics presented in Chapter II, intending to improve the statistical power of the 

network inference methodology and to match the coupling statistics to potential forms of 

functional coupling. Specifically, the improvements took three forms: introducing 

frequency domain coupling statistics, using theoretical distributional properties where 

possible, and formulating tests as two-sample differences of means. 

Introducing frequency domain test statistics, coherence and canonical coherence, 

allows the functional network inference to be sensitive to oscillatory coupling. Rhythmic 

dynamics have been implicated in wide range of neural functions and are thought to 

coordinate activity within and between brain areas, using potentially overlapping 

frequency bands for different purposes (Fries, 2005; Kopell et al., 2010; Wang, 2010; 

Miller et al., 2012). We try to mimic this kind of coupling in the frequency-domain 

coupling simulation here: the signals creating the networks at the beta and gamma 

frequencies were superimposed on the same electrodes. This highlights an advantage of 
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frequency-domain coupling in general: introducing coupling at different frequencies 

enables multiplexing of multiple networks on the same set of nodes. The additional 

flexibility in implementing functional coupling can cause problems for inference, 

however, since it introduces another dimension into the statistical analysis. Inferring 

networks along the frequency dimension can require more data to achieve sufficient 

statistical power. One approach to mitigating this problem is to focus on specific 

frequency bands of interest, as we do here. In many tasks, we have prior knowledge about 

the frequency bands that are likely to be involved, and this prior knowledge can be used 

to constrain the dimensionality of the statistical inference. 

Using theoretical distributions is another way to incorporate prior knowledge 

about the statistical properties of the estimators. We advocate using theoretical 

distributions when possible, i.e. when the parameters are known and they are adequate 

models of the underlying process. For example, even though the exact distributional 

properties of the sample correlation and coherence are known, their dependence on the 

population correlation and coherence made them impractical to use for estimation. 

Instead, it was more practical to use the approximate distribution that removes the 

dependence on the population values by making use of the Fisher transform (Fisher, 

1915). In addition, even though we could assume that the test statistic x̂  was normally 

distributed with zero mean under the null hypothesis, we did not know the variance of the 

null distribution since the sample consisted of timeseries data. The variance would 

depend on the degrees of freedom in the timeseries, which was unknown. Hence even 

though we knew some aspects of the distribution of the test statistic under the null 
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hypothesis, we needed to estimate the variance using the jackknife procedure. This 

approach was proposed for comparisons of coherences by Bokil et al. (2007), combined 

with the bias correction for coherence that we use here. We follow the same methodology 

for comparisons of correlations, with the exception that the correlation estimates do not 

need to be bias corrected. 

We formulate the test statistics as two-sample differences between trial and 

baseline coupling in order to capture the sampling variability of both coupling statistics. 

This approach also lends itself well to contrast-style experimental designs which compare 

neural activity between two different tasks. For example, a network could be inferred 

using the difference in coupling between an auditory and a visual task. In this case, we 

would expect edges with a strong positive weight to be more important for the auditory 

task and edges with a strong negative weight to be more important for the visual task. 

Another advantage to structuring the test statistics as differences between the task 

and baseline is that it provides a convenient and interpretable edge weight. Using the 

absolute correlation (or coherence, etc) during the trials as the edge weight is often 

insufficient because it does not capture whether the coupling changes during the task. 

When trying to infer task-related networks, we are often less interested in the absolute 

coupling levels than in the increase or decrease in coupling during a task. This is because 

there may be sources of coupling that are not related to the task. These sources of 

coupling may be neural, such as background activity, or artifactual, such as muscle 

activity that is picked up on multiple electrodes. Since these types of coupling occur 

during both the baseline and the task period, they may tend to cancel out in the 



 

 

123 

difference. Hence the difference between the coupling statistic during tasks and during 

baseline may reflect task-related changes in coupling.  

Of course, there are many possible sources for task-related changes in coupling. 

For example, electrodes may become coupled because they have a common driver (e.g. 

thalamus) that causes similar activity on the electrodes in the absence of a direct 

connection. Electrodes can also have increased correlations because they respond to the 

task in similar ways, even if they have no need to “connect” in the sense of functional 

connectivity. This is a common problem in functional connectivity inference (Friston, 

2011; Greenblatt et al., 2012), and the only step we take here to mitigate it is to remove 

the event-related potentials in preprocessing (which may not remove all stimulus-evoked 

activity (Truccolo et al., 2002)).  

We believe that despite these drawbacks, simple linear pairwise metrics have 

value precisely because of their simplicity. For example, researchers commonly use 

partial correlations rather than pairwise correlations to try to account for the common 

driver problem described above. In a situation in which the common driver is observed, 

e.g. on another electrode, partial correlation can sometimes more accurately detect the 

underlying connectivity2. If the common driver is not observed however, e.g. if it is 

subcortical, the partial correlation will fail. When it fails, it can spread out the “blame” 

                                                        
2 Partial correlation may seem like a simple extension of correlation, but as a network inference 
technique it suffers much more from problems of high dimensionality. Gaussian graphical models 
(GGMs) are a popular simplification of the full partial correlation model (Kolaczyk, 2009). Even for 
GGMs, though, there is a lot of work being done on regularization to control the dimensionality of 
the inference. (Bolstad et al., 2011), for example, use group lasso regularization on a timeseries-
based network model. They show that, even assuming all possible sources are observed, the 
ability of the inference to uncover the true network depends strongly on the architecture of the 
true network itself. In particular, cycles and redundancy in the true network can cause state-of-
the-art network inference techniques to fail, even if the generative model is perfect. 
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for the coupling over the parameters of the model in a way that is difficult to trace back to 

the original data. More complicated models can be constructed with hidden states to 

account for these kinds of dependencies, but they require strong intuitions about the 

structure of the system in order to avoid dimensionality explosions and under-constrained 

models (and they can fail if the models are wrong).  

This is not to say that such models should not be used – on the contrary, we 

believe they are critical for understanding the mechanisms of neural dynamics. We argue, 

however, that simple descriptive statistics like correlations are helpful because they can 

detect the signatures of strong interesting features of the data, which can be pursued more 

fully in later analyses such as detailed statistical modeling. Even many nonlinear effects 

can be detected first using lower-dimensional linear test statistics. This is especially 

valuable for researchers approaching a new dataset, when the nature of the data is still 

unclear and there may be artifacts or noise to be understood. In that situation, test 

statistics are more valuable if (1) their behavior can be easily linked to the source data, 

and (2) the effects of model misspecification are local, in the sense that inferences about a 

part of the system (e.g. one edge) have limited functional dependence on inferences about 

other parts of the system. Pairwise correlations and coherences have these features. 

Hence simple robust pairwise statistics as we describe here can be helpful at the early 

stages of data screening and processing, to discover problems with the data, failures of 

our assumptions, and features that deserve more in-depth analysis.  

With that in mind, in the presentation of the simulation results we made an effort 

to convey intuition about the behavior of the test statistics, the nature of the source data, 
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and the effect sizes of the coupling. While the binary networks may be a simple data 

summary, they have little value without a sense for the strength of the coupling and the 

features in the data that create the significant effects. In the binary networks presented 

here the edges represent statistically significant differences in coupling between the task 

period and the baseline period. The actual difference in coupling between the two periods 

is thrown away. For this reason, it can be valuable to display weighted networks in 

addition to binary networks. 

 Furthermore, since the networks inferred using this framework are based on the 

differences in correlation between the task and baseline periods, the value of the test 

statistic (the effect size) on an edge does not necessarily reflect the correlation during the 

baseline period or the correlation during the tasks. For example, an edge could have a 

high correlation in both the baseline and test intervals, resulting in a low value of the test 

statistic. Conversely, an edge with a small negative correlation during the baseline period 

and a small positive correlation during the trial period could have a relatively large test 

statistic. It is therefore important to visualize the steps taken over the course of the 

network inference in order to understand the nature of the data at the different levels of 

analysis. In the Results and Figure III.2 we demonstrated how the steps of analysis 

transformed the data in the correlation-based network inference. In the context of brain 

network analysis, this provides context regarding the effect size of the observed coupling, 

which can have implications for its biological relevance. 

The goal of this chapter was to present a set of test statistics that are tailored to a 

few of the second-order (between-electrode) effects that may be present in neural 
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voltages. Two of the test statistics, canonical correlation and canonical coherence, are 

rare in functional connectivity analysis. We presented these measures alongside the more 

commonly used single-dimensional analogues to further accessibility to the neuroscience 

community. 
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5. Appendix: Derivation of Canonical Coherence 

This appendix presents the derivation of canonical coherence. In the first section, 

we present the optimization problem that is solved by canonical coherence. In the second 

section we derive the solution and present an algorithm for estimating the solution from 

data. In the third section, we modify the estimation algorithm for computational 

efficiency and stability. Finally, in the fourth section, we explain how canonical 

correlation can be estimated using the same method. We include at the end summaries of 

a few concepts that are used in the derivation: the method of Lagrange multipliers, 

complex gradients, properties of singular value decompositions, and properties of 

positive definite matrices.  

5.1 Statement of problem 

Suppose we have two multidimensional data vectors (random variables) 

represented in the frequency domain, ( )X f  and ( )Y f , where X  is 1p  and Y  is 1q . 

For each frequency, we would like to find the “optimum linear combination of the 

measurements within each set such that the two resulting series are maximally coherent” 

(Thomson et al., 2007). Restricting ourselves to a single frequency f , the goal is to find 

two vectors   ( 1p ) and   ( 1q ) that will be used to define linear combinations of 

X and Y : 

 

†

†

a X

b Y








  (5.1.1) 

so that the (scalar) correlation between a  and b  is maximized: 
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  (5.1.2) 

  

where XYS , XXS , and YYS  are the cross-spectral matrices of the elements of X  and Y  

( XYS , XXS , and YYS  are all functions of frequency f ). The symbol †  represents the 

Hermitian transpose. We have assumed for simplicity in equation (5.1.2) that { } 0E X   

and { } 0E Y  , so that linear combinations of their elements will also be centered at 

zero: { } 0E a   and { } 0E b  . Since ( , )C    can be complex, we will try to maximize its 

square. Hence the problem can be written: 

 2 *

, ,, | |argmax C argmax CC            (5.1.3) 

Note that the solution is not unique. We constrain it further by requiring that3: 

 

†

†

1

1

XX

YY

S

S

 

 




  (5.1.4)  

Under this constraint,  

 
†( , ) XYC S      (5.1.5) 

5.2 Solution 

Let: 

 

1/2

1/2

XX

YY

u S

v S








  (5.2.1) 

                                                        
3 (Thomson et al., 2007) uses the same constraint, but (Brillinger, 1981) uses † 1    and 

† 1   . 
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The square roots of XXS  and YYS exist and are positive definite because the spectral 

matrices are positive definite. This assumes that none of the elements of X  is a linear 

combination of the other elements of X  (and the same is true for the elements of Y ). 

The square roots of a positive definite matrix are also positive definite, so they are 

invertible and Hermitian (See Section 5.8 for properties of positive definite matrices). 

Note that † 1u u   and † 1v v   ( u  is 1p  and v  is 1q ). Using substitution (5.2.1) in 

equation(5.1.5),  

 † 1/2 1/2 †( , ) XX XY YY XYC u v u S S S v u Q v     (5.2.2) 

where we have let 1/2 1/2

XY XX XY YYQ S S S  . In order to find the maximum of C  under the 

constraints in equation (5.1.4), we will use the method of Lagrange Multipliers (see 

Section 5.5).  

The Lagrange function is: 

 * † †

1 2( , , ) ·( 1) ·( 1)u v CC u u v v          (5.2.3) 

where we have used the constraints from (5.1.4), using substitution (5.2.1). To find the 

stationary points, we need to take the complex gradient (see Section 5.6)  

 

* †

1

* †

2

( ) 0

( ) 0

u u

v v

CC u u

CC v v





   

   
  (5.2.4) 

We are only looking for extrema, so equation (5.6.4) tells us we can simplify this to: 

 

* †

1* *

* †

2* *

( ) 0

( ) 0

CC u u
u u

CC v v
v v





 
 

 

 
 

 

  (5.2.5) 
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We use the product rule (5.6.8) combined with equations (5.6.9) to get4: 

 

*
* * *

* * *

*
* * †

* * *

XY

XY

C C
CC C C C Q v

u u u

C C
CC C C CQ u

v v v

  
  

  

  
  

  

  (5.2.6) 

Using these and equation (5.6.5), we can simplify equations (5.2.5) to: 

 

*

1

†

2

XY

XY

C Q v u

CQ u v








  (5.2.7) 

We need to find a u  and v  that satisfy these equations.  

What we will do is turn equations (5.2.7) into an eigenvalue problem that will 

justify using the left and right first singular vectors of XYQ  as u  and v . Start by 

multiplying both sides of the first part of (5.2.7) by †

XYQ : 

 † †1

*
 XY XY XYQ Q v Q u

C


   (5.2.8) 

Now substituting the second part of (5.2.7) in the right hand side of (5.2.8): 

 † 1 2

*XY XYQ Q v v
C C

 
   (5.2.9)  

Similar reasoning from leads to: 

 † 1 2

*XY XYQ Q u u
C C

 
   (5.2.10)  

This setup (equations (5.2.8) and (5.2.9)) has the form of a singular value 

decomposition (Section 5.7) of XYQ , where u  and v  are a pair of left and right singular 

vectors with the corresponding singular value 1 2

*C C

 
: 

                                                        
4 Recall that 

*C  is a scalar, so 
* *

XY XYQ C C vv Q  . 
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 †

XYQ U V    (5.2.11)   

Picking any
ku , 

kv , and k  set from the singular vectors and values of XYQ , we can 

calculate a value of ( , )C u v  that corresponds to a stationary point of the Lagrange 

function (5.2.3). Since there are k  such values, one for each set of 
ku , 

kv , and k , we 

will call them kC : 

 

†

† †

†

k k XY k

k k

k k

k

C u Q v

u U V v

e e





 

 



  (5.2.12)   

where ke  is the thk  standard basis vector (all zeros with a 1 at index k ). Note that k  

(and by extension kC ) is real. Since we want the value that maximizes the magnitude 

squared coherence * 2

k k kC C  , we pick 1u , 1v , and 1 , the first left and right singular 

vectors and singular value5, where 2

1  is the Magnitude Squared Coherence. Finally,   

and   can be calculated: 

 

1/2

1/2

XX

YY

S u

S v












  (5.2.13)   

where the inverse square roots exist because the spectral matrices are positive definite 

(see Section 5.8).   and   can be used to calculate the Canonical Series ( )a t , ( )b t  by 

plugging them into equations (5.1.1) and taking the inverse Fourier transform. 

                                                        
5 (Brillinger, 1981) refers to the k  as the “ thk  canonical coherence” and the corresponding ( )ka t , 

( )kb t  as the “ thk  pair of canonical series”. 
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 So the steps for estimating the canonical coherence between two signals X  and 

Y  are: 

1. Estimate the cross-spectral matrices ( )XXS f , ( )XYS f , ( )YXS f , and ( )YYS f  using 

the multitaper method for all frequencies. For each frequency, do the following 

steps. 

2. Calculate 1/2 1/2

XY XX XY YYQ S S S    

3. Calculate the SVD †

XYQ U V    

4. Pick the first singular value 1  and the first left and right singular vectors 1u  and 

1v   

5. The estimate of the magnitude squared coherence is 2

1 . The canonical series ( )a t  

and ( )b t  can be calculated from 1u  and 1v  using equations (5.2.13) and (5.1.1). 

 

5.3 Simplification 

 Assuming we are using the multitaper method to estimate the spectral matrices in 

the previous section, there is a shortcut we can take to calculate XYQ  without explicitly 

calculating the spectral matrices. This section will derive the shortcut. 

In the previous section we started with the true frequency-domain data vectors 

( )X f  ( 1p ) and ( )Y f  ( 1q ). In a practical context we will estimate these using the 

multitaper method, tapering the time-domain data and taking the Fourier transform, 

resulting in matrices ( )X f  ( p k ) and ( )Y f  ( q k ) of tapered Fourier coefficients 
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where k  is the number of trials times the number of tapers. The spectra would then be 

estimated as follows: 

 

†

†

†

†

1ˆ ( )

1ˆ ( )

1ˆ ( )

1ˆ ( )

XX

XY

YX

YY

S f X X
k

S f X Y
k

S f Y X
k

S f Y Y
k









  (5.3.1) 

It is important for the analysis that the spectra be invertible, which can only be true 

if ,k p q . That is, the number of tapers times trials must be larger than the dimension of 

both X  andY . Ideally k  should be much larger than p  and q , since the number of 

parameters estimated in the spectral matrices is ( 1) / 2p p  and ( 1) / 2q q , and k  

represents the number of observations. Variance in the estimates of the spectral matrices 

will propagate to the canonical coherence estimate. 

To simplify, we start by plugging these estimates into the definition of XYQ : 

 

1/2 1/2

1/2 1/2

† † †

ˆ ˆ ˆ

1 1 1

XY XX XY YYQ S S S

X X X Y Y Y
k k k

 

 



    
     
    

  (5.3.2) 

If we perform a SVD on †

X X XX U V   and †

Y Y YY U V  , we get: 
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 (5.3.3) 
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Note that in order to get the dimensions of the matrices to line up in the simplification, it 

is necessary to use the “thin” singular value decomposition (“economy size” in Matlab), 

in which for example XU  is ( p p ), X  is ( p k ), and XV  is ( k p ) (see Section 5.7). 

 This suggests another method for estimating the canonical coherence: 

1. Calculate the matrices of tapered Fourier coefficients ( )X f  and ( )Y f  from the 

data. 

2. Compute the SVDs †

X X XX U V   and †

Y Y YY U V    

3. Calculate † †

XY X X Y YQ U V V U   

4. Calculate the SVD †

XYQ U V    

5. Pick the first singular value 1  and the first left and right singular values 1u  and 

1v   

6. The estimate of the magnitude squared coherence is 2

1 . The canonical series ( )a t  

and ( )b t  can be calculated from 1u  and 1v  using equations (5.2.13) and (5.1.1). 

 The advantage to using this method over estimating the spectra explicitly is that it 

does not involve matrix inversion, which can be inaccurate for matrices with both very 

large and very small eigenvalues (matrices that are close to singular). 

5.4 Canonical Correlation 

 Canonical correlation is the same as canonical coherence, applied to real-valued 

time domain data. This corresponds to the replacements listed in Table 3. 
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Table III.3: Replacements for canonical correlation. 

Variables: p  is the number of signals in region X , q  is the number of signals in Y , k  is the 

number of trials times the number of tapers used in the multitaper analysis, and l  is the number 

of trials times the number of time points in each trial. 

Frequency 

Domain 
Interpretation Time Domain Interpretation 

( ) :( 1)

( ) :( 1)

X f p

Y f q




 

Data vectors as a function of 

frequency 

( ) :( 1)

( ) :( 1)

X t p

Y t q




 

Data vectors as a function of 

time 

( )

( )

( )

XX

XY

YY

S f

S f

S f

 Cross-spectral matrices as a 

function of frequency 

cov( , )

cov( , )

cov( , )

X X

X Y

Y Y

 Covariance matrices  

( ) : ( )

( ) : ( )

X f p k

Y f q k




 

Data matrices as a function of 

frequency: rows are electrodes, 

columns are Fourier coefficients 

for each trial and taper 

: ( )

: ( )

X p l

Y q l




 

Data matrices: rows are 

electrodes, columns are stacked 

time-domain recordings for 

each trial 

 

5.5 Lagrange Multipliers 

The method of Lagrange Multipliers can be used to find a local maximum or 

minimum of a function ( , )f x y  subject to constraints of the form ( , )g x y c , where x  

and y  are vector-valued. It introduces a variable   (the Lagrange Multiplier) and 

evaluates the function: 

 ( , , ) ( , ) ·( ( , ) )x y f x y g x y c       (5.5.1) 

If there exists a solution 0 0( , )f x y  to the original problem, then a stationary point of   

will exist at 0 0 0( , , )x y   for some 0 . However, not all stationary points of   correspond 

to solutions of the original problem. We find the stationary points of   by taking the 

gradient with respect to the free parameters x , y , and  , and setting it to zero. The 

reason this method works has to do with finding a point where the contours of f  are 

tangent to the contours of the constraints. This occurs when the gradients of the functions 

are parallel. 
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5.6 Complex Gradients 

Complex gradients (see Schreier and Scharf (2010) Appendix 2 on Wirtinger 

calculus) extend the concept of gradients to complex variables. The idea is to treat the 

complex variable of interest x u jv   as two independent variables x  and *x , and take 

the partial derivatives with respect to each independently. The partial derivatives 

(Wirtinger derivatives) are defined as: 

 

*

1

2

1

2

j
x u v

j
x u v

   
  

   

   
  

   

  (5.6.1) 

These derivatives exist whenever { ( )}Re f x  and { ( )}Im f x  are both real-differentiable. x  

can be vector-valued6 ( 1n ), leading to a complex gradient ( 2 1n ): 
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f f
f

x x

  
   
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  (5.6.2) 

where 

 
1 2

* * * *
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T
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T

n

f f f f

x x x x
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x x x x
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  (5.6.3) 

When looking for extrema of real-valued functions (note that our   from equation 

(5.2.3) is real-valued) it is sufficient to look for solutions just to one of 
f

x




 or 

*

f

x




, since: 

 
*

0 0 0x

f f
f

x x

 
     

 
  (5.6.4) 

                                                        
6 In Schreier and Scharf (2010) they use rows for vector-valued x  (1 n ) because they make use 

of a 2-element column vector description of x , *[ ]Tx x , in the math leading up to the definitions in 

(5.6.1). Here I have transposed everything for simplicity in applying the theory to our case. 
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For our purposes it is also useful to know (Example A2.1 in (Schreier and Scharf, 

2010)): 

 * * *

*
,xx x xx x

x x

 
 

 
  (5.6.5) 

which leads trivially to7: 

 

† * * *

1 1

† * *

1 1* *

...

...

k k
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  (5.6.6) 

Similar reasoning leads us to8: 

 

† †
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† † †
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, 0
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a x a a x
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 
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  (5.6.7) 

Also, the product rule applies to complex gradients, so: 

 

* * *

( · ) · ·

( · ) · ·

f g
f g g f

x x x

f g
f g g f

x x x

  
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  (5.6.8) 

 

Equations (5.6.7) lead us to some useful facts that are used in the derivations of 

Section 5.2: 

                                                        
7 This shows up in (Schreier and Scharf, 2010) Equation A2.31, correcting for the fact that we 
used column vectors instead of row vectors. 
8 In (Schreier and Scharf, 2010) Equations A2.29 and A2.30. 
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 (5.6.9) 

 

5.7 Singular Value Decompositions 

The singular value decomposition of a matrix M  ( m n ) is: 

 †M U V    (5.7.1) 

where U  is a ( m m ) real or complex unitary matrix ( 1 †U U  ),   is a ( m n ) real 

rectangular diagonal matrix, and V  is a ( n n ) real or complex unitary matrix. The 

columns of U  and V  are called the left and right singular vectors of M , respectively, 

and the values on the diagonal of   are called the singular values of M . The left singular 

vectors are the eigenvectors of †MM , and the right singular vectors are the eigenvectors 

of †M M . The square of the singular values are the corresponding eigenvalues for both 

†MM  and †M M . 

Note that   is diagonal, so if m n , the columns beyond index m  will contain 

zeros (this is the case for our X  and Y  matrices in section 5.3). In this case, the product 

†V  will ignore the bottom n m  rows of
†V . Thus it is sometimes computationally 

efficient not to calculate those rows, which correspond to the rightmost n m  columns 
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ofV . In this “thin” singular value decomposition, U  is ( m m ),   is ( m m ), and V  is 

( n m ). 

5.8 Positive Definite Matrices 

A symmetric square matrix M  is called positive definite if †z Mz  is real and 

positive for all non-zero vectors z . If the result is real and non-negative the matrix is said 

to be positive semi-definite. 

Useful facts: 

1. Covariance matrices are always positive semi-definite, and they are positive 

definite if the variables are linearly independent. 

2. Positive definite matrices are invertible and the inverse is positive definite. 

3. If a matrix has all positive eigenvalues, then it is positive definite (and vice versa). 

The eigenvalue decomposition is 1P DP  ( P  unitary, D  diagonal), where D  has 

all real positive values on the diagonal. 

4. Positive definite matrices have exactly one positive definite square root, called the 

principal square root. If 
1P DP

 is the eigenvalue decomposition of M , then 

1 1/2P D P  is the principal square root of M , where only the positive square roots 

have been chosen for the diagonal of 1/2D . 

5. All positive definite matrices (and their inverses) are also Hermitian, so
†M M . 

Hence the principal square root of a positive definite matrix (and its inverse) is 

also Hermitian.
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CHAPTER IV. CHARACTERIZING THE DYNAMICALLY EVOLVING 

FUNCTIONAL NETWORKS OF SPEECH 

1. Introduction 

 The production of speech involves a large network of brain regions that spans 

several lobes of the cerebral cortex along with numerous subcortical structures (e.g., 

Guenther et al., 2006). Fluent speech requires very rapid movements of the tongue and 

other articulators. For example, a typical speaker can easily produce 10 phonemes in 1 

second; this involves the precise sequencing of individual articulatory gestures that each 

last approximately 100 ms. The fine temporal scale of the behavior of speech makes it 

important to analyze the corresponding neural activity with at least as fine a timescale. 

Investigating the neural mechanisms of these fast movements requires a recording 

modality with high temporal resolution and coverage of speech related areas, hence the 

use of electrocorticography (ECoG), with its fine temporal resolution and wide spatial 

coverage, has become popular in the study of speech. 

ECoG electrodes record local field potentials (LFPs) across several millimeters of 

cortex. The range of receptivity in ECoG signals has been estimated to encompass on the 

order of half a million neurons underlying each ECoG electrode (Ojemann et al., 2013). 

As with other LFP recordings, ECoG signals represent the superposition of two 

interrelated types of dynamics: oscillatory activity and population activations.  

Narrow-band oscillatory dynamics are thought to coordinate activity within and 

between brain areas (Fries, 2005; Kopell et al., 2010; Wang, 2010; Miller et al., 2012). 

With regard to event-related changes in dynamics, activity has been historically 
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conceptualized as either “evoked” or “induced” (Pfurtscheller and Lopes da Silva, 1999): 

evoked activity is phase-locked to the event, whereas induced activity consists of 

oscillations that change in amplitude around the time of the event but with varying phase. 

Classic event-related potentials (ERPs) are often associated with evoked oscillations that 

exhibit a phase reset related to the event (Pfurtscheller and Lopes da Silva, 1999; Polich, 

2007), although they typically also consist of activity that is not explicitly oscillatory 

(Shah et al., 2004).  

Speech production exhibits many of the rhythmic phenomena that have been 

classically associated with motor activity in general. For example, beta frequency 

oscillations (15–30 Hz) are common over motor cortex, and exhibit a characteristic 

depression in power during movement, followed by a rebound after movement offset 

(Pfurtscheller and Lopes da Silva, 1999). The beta rhythm is coherent between 

electromyography (EMG) activity in muscles and primary somatosensory cortex, leading 

to a theory that it acts as a calibration signal (Baker, 2007). Other groups have proposed 

that the beta rhythm is an idling rhythm or that it coordinates preparatory activity, 

inhibitory control, or maintenance of the status quo (Engel and Fries, 2010). It has also 

been implicated in sensorimotor integration, top-down attentional control (Wang, 2010), 

or long-range communication between cortical areas (Jones et al., 2009). In reality there 

may be many different roles for beta in different contexts and brain areas, and there is 

evidence that it may be subdivided in to several smaller frequency bands (Kopell et al., 

2010; Weiss and Mueller, 2012).  
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In the context of speech production, beta rhythms show classic depression and 

rebound over motor cortex during the task. They are also involved in a wide range of 

language-related processing across different areas of the frontal, parietal, and temporal 

lobes, even in the absence of a motor task (review: Weiss and Mueller, 2012). Weiss and 

Mueller (2012) interpret the diversity of power and coherence results as pointing to a role 

for different beta rhythms in (1) semantic processing of action verbs, (2) attention and 

violation of expectations, (3) the binding of processing in cortical language areas and (4) 

the maintenance of working memory. 

Since the advent of ECoG there has been a focus on the observation of 

modulation in spectral power in the “high gamma” (>100 Hz) range during tasks (Crone 

et al., 2006). Recently there has been a growing consensus that broadband modulation in 

the high gamma range arises from changes in population spiking activity (Manning et al., 

2009; Ray and Maunsell, 2011; Buzsaki et al., 2012; Miller et al., 2014)1. The 

asynchronous population spiking theoretically contributes power at all frequencies, but at 

low frequencies the broadband modulation is obscured by so-called “true rhythms”, or 

narrowband phase-coherent rhythmic activity (Manning et al., 2009; Miller et al., 2014).  

Hence there has been a trend toward interpreting ECoG signals as a superposition 

of narrowband effects, representing large-scale coordination within and between brain 

areas, and broadband effects, representing local population spiking activity2. This 

                                                        
1 The connection between population firing and high gamma power is not perfect: some narrow 
band modulation in the high gamma range has been observed in the hippocampus, and it is 
interpreted as a true rhythm (Scheffer-Teixeira et al., 2013). However, no true rhythms in the 
high-gamma range have been observed in areas covered in this study. 
2 Note that in situations in which the population activity is rhythmic it will contribute to narrowband 
power, so it is important not to assume that broadband and narrowband signals are 
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interpretation can be very powerful, because it allows us to describe population firing at a 

moderate temporal resolution (10s of milliseconds) using ECoG data, which has a much 

broader spatial extent than typical electrophysiology. ECoG studies differ in whether they 

choose to quantify this effect using the full spectrum (“broadband”) or power across a 

broad, high frequency range (“high gamma”): while we chose the former, the latter is also 

common, and the results and interpretations are very similar. 

ECoG studies have started to use high gamma activity to map out the dynamics of 

cortical processing during speech. A number of studies have investigated the dynamics of 

high-gamma activity during spoken speech of auditorily or visually presented words 

(Towle et al., 2008; Edwards et al., 2010; Flinker et al., 2010; Pei et al., 2011; Leuthardt 

et al., 2012). Some particularly informative work uses high-density ECoG recordings. 

Bouchard et al. (2013) for example used a high-density grid over ventral rolandic cortex 

and found a somatotopic map of the speech articulators where the subareas activate in 

concert to precisely control the muscles necessary to form the diverse range of phonemes. 

Similarly, the superior temporal gyrus (STG) exhibits functional organization that 

exhibits a high degree of variability across subjects: Flinker et al. (2011) found spatial 

selectivity below 4mm for distinctions of words versus non-words and self-generated 

speech versus heard speech. These studies confirm the local nature of the high gamma 

signal, and their close relationship to intracortical electrophysiological results provides 

                                                                                                                                                                     
mechanistically unrelated. Both are thought to result from synaptic potentials and, to a lesser 
extent, action potentials. Synaptic potentials can arise both from local connections and from 
incoming projections from other brain areas, and so contain both local and incoming activity. 
Mechanistic modeling of broadband/narrowband relationships will be necessary to characterize 
the process more fully (e.g. Miller et al., 2012), and such modeling will have to take into account 
the different sources of cortical rhythms. 
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more evidence of the connection between high gamma power and population activity, 

specifically in cortical areas involved in speech processing. The ECoG studies with lower 

electrode density but greater spatial coverage are being used to bridge these local effects 

with systems-level speech processing theory (Edwards et al., 2010; Flinker et al., 2010). 

In addition to the studies of first-order effects, a recent focus in the study of 

speech processing has been functional and effective connectivity, or how the different 

regions involved in speech processing dynamically change their coupling patterns. Two 

recent fMRI investigations, for example, used effective connectivity analysis to study 

speech networks: the first used structural equation modeling to identify feedback 

influences of auditory cortex on frontal areas during perturbed speech (Tourville et al., 

2008), and the second used dynamic causal modeling to identify a parsimonious model of 

feed-forward speech production under normal conditions (Eickhoff et al., 2009). ECoG 

studies have the potential to extend these results to a much finer timescale, at least over 

regions that are typically covered by ECoG grids. 

In one early approach, Matsumoto et al. (2004) used electrical stimulation in 

ECoG patients to identify functional language areas (a common clinical procedure used 

for mapping eloquent cortex, cortical areas important for basic sensation, motor control, 

and communication), and then assessed connectivity by recording the effects of the 

stimulation on the other ECoG electrodes. They found that stimulation-identified 

language, face motor, and auditory areas were interconnected, and further that 

neighboring areas were also recruited. These connections were inferred from early and 

late negative potentials with unclear mechanisms: they may reflect combinations of 
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cortico-cortical association pathways and subcortical pathways. While this procedure 

does not identify task-related connectivity, it does quantify connectivity based on the 

strength of pathways between areas.  

Korzeniewska et al. (2011) targeted speech-dependent changes in effective 

connectivity by assessing event-related causality time-locked to stimulus onset in the 

voltage signals band-passed in the high gamma range (70–115 Hz). Interestingly, the 

patient they studied was fluent in sign language, so they were able to compare spoken and 

signed responses in picture naming and auditory word repetition tasks. They found that 

the event-related causal networks for spoken and signed responses were very different 

across tasks, response modality, and time in the trials. Electrodes with task-related 

increases in high gamma activity tended to be source hubs of event-related causal 

increases, with a linear relationship between high gamma power increases and event-

related causal outflows. 

Another approach to identifying task-related changes in connectivity is based on 

the “communication through coherence” hypothesis, that cortical rhythms facilitate 

communication between brain areas (Fries, 2005), with different rhythms potentially 

subserving different types of computations (Siegel et al., 2012). If this is the case, 

coherence between ECoG electrodes can be used to detect communication between brain 

areas (Miller et al., 2012). Rather than look for direct cause and effect relationships 

between regions, this approach targets oscillations as a putative mechanism for cortical 

communication, so that by detecting coherent oscillations, communication may be 
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inferred. To our knowledge, this study is the first to assess large-scale coherence-based 

functional connectivity during speech. 

The purpose of this study was to expand on the speech dynamics literature, 

comprehensively characterizing the temporal dynamics of ECoG signals during an overt 

reading task, specifically around the time of speech onset. In particular, we aim to 

describe both the narrow-band rhythmic changes as well as the broadband putative 

population signal. First, we characterize the signals on the level of individual electrodes 

(first-order) using event-related potentials, analyses of band-limited spectral power, and 

time courses of broadband power, and characterize the relative latencies of effects that 

time-locked to speech onset. Then we focus on pairs of electrodes (second-order), 

presenting dynamic time domain and frequency domain functional connectivity networks 

related to speech.  

2. Results 

The following analysis represents results from 9 patients undergoing treatment for 

intractable epilepsy. Details about the subjects, experimental protocol, and data analysis 

can be found in the Methods. The placement of the ECoG electrodes for each subject is 

shown in Figure IV.1. In the figure, electrodes are colored based on three anatomical 

regions of interest: perirolandic cortex (“rolandic”), STG (“auditory”), and anterior 

supramarginal gyrus (“aSMG”). We highlight these areas because they are associated 

with speech motor control, auditory feedback processing, and somatosensory feedback 

processing (Golfinopoulos et al., 2010), and therefore would be likely to have activity 

that is time-locked to the onset of speech. 
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Figure IV.1: Electrode Grids for each subject.  

For each subject, the electrodes used for analysis are shown coregistered with the individual 
subject MRI scan with the exception of Subject C which uses a standard MRI template brain (see 
Methods). Electrodes that were excluded due to noise or epileptic activity are not shown. Colors 
indicate regions of interest: Rolandic (blue), aSMG (peach), Auditory (purple), unlabeled (black). 
Ambiguous electrodes and electrodes lying outside of the three regions of interest were left 
unlabeled (see Methods). 
 

During the experiment, subjects read aloud from famous speeches or nursery 

rhymes as the text scrolled across a computer screen. The slow passage of the text meant 

that subjects frequently paused while waiting for new text to show up, a feature which we 

used to define trials: trials were defined as one second intervals in which 500 ms of 

silence was followed by 500 ms of speech, with time 0 indicating speech onset (see 
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Methods for details). In addition, we chose baseline silent periods using segments of 

silence that were at least 500 ms away from any speech. Note that even though the first 

500 ms of the trials technically contains silence, it is likely to contain preparatory activity 

related to the upcoming speech. Hence when we refer to “silence”, we specifically mean 

the periods of silence that are separated from speech by at least 500 ms. We will refer to 

the first half of the trials as “before speech onset”. 

The analyses described below fall into two categories: first order (within-

electrode) analyses and second order (between-electrode) analyses. Both types of 

analyses have frequency domain and time domain components. The first-order analyses 

echo both historical studies of speech processing based on EEG and more recent metrics 

developed for ECoG in particular. The second-order analyses extend the classical 

descriptions to the domain of dynamic relationships between cortical subregions. By 

presenting both types of analyses for the same subjects, we connect our work to previous 

results and provide the full context for our new observations. 

2.1 First Order, Time Domain: Event-related potentials are most consistent over rolandic 

cortex 

One classic result in motor EEG studies is the readiness potential (Kornhuber and 

Deecke, 1964), a negative event-related potential (ERP) over central electrodes preceding 

motor tasks including speech (Deecke et al., 1986; Wohlert, 1993). During voluntary 

movement, the negative deflection in the ERP can begin as much as two seconds before 

the motor movement, and can be decomposed into and early and late phase. The early 

phase starts about 2 s before movement onset over the pre-supplementary motor area, 
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extends to the supplementary motor area, and then engages premotor cortex. The late 

phase starts about 400 ms before movement onset in primary motor cortex (Shibasaki and 

Hallett, 2006). Here we confirm the existence of the late-phase readiness potential on the 

cortical surface over rolandic cortex, accompanied by a positive deflection in the ERP 

after speech onset that has been observed previously in EEG recordings (Wohlert, 1993). 

Figure IV.2 summarizes the results of the ERP analysis. The detailed ERPs on 

each electrode for each subject are in Appendix 1. For each subject and region, the 

average ERP was calculated across all electrodes in the region and displayed as a z-score 

with respect to silence (see Methods). Hence the y-axes represent the number of standard 

errors away from the mean the ERPs are, under the silence distribution.  

The rolandic ERPs have the same basic shape for all subjects, namely a negative 

deflection in the ERP starting about 100–250 ms before speech onset, followed by a zero-

crossing at about 0-50 ms, and a positive deflection lasting until about 250–350 ms after 

speech onset. The relatively late onset of the negative deflection relative to the late-phase 

readiness potential can be explained by the continuous nature of the task: the readiness 

potential literature typically uses self-initiated movements (Kornhuber and Deecke, 1964; 

Deecke et al., 1986; Wohlert, 1993). Interestingly, the two subjects with right hemisphere 

electrodes (E and I) also had significant negative ERPs preceding speech, consistent with 

Wohlert (1993), who found that the readiness potential for speech is not lateralized. 
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Figure IV.2: ERPs by region.  

ERPs averaged over all rolandic, auditory, and aSMG electrodes for each subject, in z-score 
units. In order to bring the ERPs for all subjects into the same scale, the ERP values are 
displayed as a z-score with respect to the voltages during silence. Hence the y-axis should be 
interpreted as the number of standard deviations away from the mean, under the distribution 
during silence (see Methods). The confidence intervals in this figure are 95% confidence intervals 
based on the standard error during trials, rescaled to match the z-score.  
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Figure IV.3 Auditory ERPs for Subjects A, E, G, and I.  

ERPs for electrodes over auditory cortex. Confidence intervals are 95% confidence intervals 
based on the standard error during trials. 
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The ERPs averaged over auditory and aSMG electrodes are not as consistent 

across subjects. Note that averaging across electrodes in a large region can be 

problematic when the ERPs have different shapes. In particular, electrodes in auditory 

cortex had varying ERPs, which often canceled out in the average. Figure IV.3 shows the 

auditory ERPs for electrodes in four subjects: A, E, G, and I (ERPs for the rest of the 

subjects and areas are in Appendix 1). For example, Subject E showed an early negative 

deflection on electrode 30 over the middle STG, and a much later negative deflection on 

electrode 35 over the posterior STG. Conversely, Subject G has a large negative 

deflection and later positive deflection on electrode 66 over middle STG, with earlier 

positive deflections over more posterior electrodes. This variability in ERPs over auditory 

cortex has been observed before: Flinker et al. (2010) observed substantial spatial 

variability in ERPs across auditory cortex with some electrodes exhibiting consistent 

ERPs across trials. This variability is likely due to modular processing in subareas of 

auditory cortex, where nearby areas perform different functions and have 

correspondingly different response profiles. 

Interestingly, while most subjects do not have apparent rhythmic activity in the 

ERP, Subject D shows fluctuations in the rolandic and aSMG ERPs that may reflect 

phase alignment during trials. Specifically, the rolandic region-level ERP (Figure IV.2, 

red trace, left) has beta band fluctuations (about 22 peaks over the course of 1 s) that are 

not apparent in the individual electrode ERPs (Appendix 1, Subject D, electrodes labeled 

“Rolandic”). This suggests that there may be beta coherence across rolandic electrodes 

that is not consistent in phase across trials. Additionally, Subject D has fluctuations in the 
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ERP for aSMG in the alpha range (Figure IV.2, red trace, right), especially after speech 

onset (about 5 peaks from time 0 to 500 ms). This rhythm, in contrast to the rolandic 

rhythm, does show up in three of the four individual electrode ERPs (Appendix 1, 

Subject D, electrodes 51, 80, and 83), suggesting that these electrodes have consistent 

alpha phase across trials. It is unclear why only one subject would have these strong 

rhythmic effects in the ERP.  

2.2 First Order, Frequency Domain: Spectral effects are large and consistent over 

rolandic and auditory cortex 

The first order frequency analyses consist of three parts. First, we show the 

spectrograms for all electrodes, which show clear beta depression and broadband 

enhancement over rolandic and auditory electrodes. Second, we quantify narrow-band 

power changes between the pre-onset and post-onset portions of the trials in traditional 

frequency bands (delta, theta, alpha, beta, gamma, and high gamma) in bubble plots. 

Third, we describe the time course of beta and broadband power changes across the trials 

and quantify the latency of the changes for electrodes with significant effects. 

 

2.2.1 Spectrograms. Figure IV.4 shows the set of spectrograms for Subject D, displaying 

the log ratio of the power at a give time during the trial relative to the power during 

silence: red colors indicate greater power than silence, and blue colors indicate lower 

power. This subject shows two types of effects that were observed for many of the 

subjects, which we analyze more thoroughly in subsequent analyses. Specifically, a 

subset of electrodes over areas that are expected to be involved in the task show a 
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depression in beta power and/or a very broad increase in higher frequency (>50 Hz) 

power relative to silence and time-locked to speech onset. For example, electrodes 89, 63, 

and 90, which are over primary motor cortex (rolandic), have a beta depression and an 

apparently simultaneous high gamma enhancement starting about 300 ms before speech 

onset. Electrodes 58 and 27 do not show as strong beta modulation, but they do have a 

very broad increase in high gamma that starts about 150 ms before speech onset and 

about 100 ms after speech onset, respectively. The precise location of electrode 58 is 

ambiguous: it is on the border of ventral primary somatosensory cortex (rolandic) and 

anterior supramarginal gyrus (aSMG), two areas known to be active during speech 

(Golfinopoulos et al., 2010). Electrode 27 is solidly in the posterior STG, which is 

auditory. Note that the time resolution on these plots is 200 ms and the frequency 

resolution is 10 Hz (±5 Hz).  

Because the increases in high frequency power are very broad (for Subject D the 

bandwidth is at least 120 Hz), we do not interpret them as coherent rhythms. Rather, as 

discussed above, there is a growing consensus among ECoG researchers that broad 

modulation at high frequencies reflects population synaptic and spiking activity that 

contributes power at all frequencies, but that is obscured at low frequencies due to 

narrow-band true rhythms. For example, on electrode 89 of Subject D, the strong narrow-

band modulation in the beta frequency range would obscure any superimposed broadband 

effect. 
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Figure IV.4: Spectrogram grid for Subject D.  

For each electrode, the spectrogram is shown relative to speech onset (time 0). Spectrograms are shown in log units relative to the 
spectrum during silence (see Methods). Electrodes in regions of interest are bounded by colored boxes: Rolandic (blue), aSMG (peach), 
or Auditory (purple). Time resolution: 200 ms; Frequency resolution: 10 Hz (±5 Hz). 
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There are other interesting effects in Figure IV.4. For example, the broad high 

gamma range is negative throughout the trial for many electrodes around the edges of the 

grid. The fact that the blue region extends throughout the trial means that these areas have 

lower high gamma power during the entire trial relative to silence. This effect is curious, 

but it does not show up in the recordings for the other subjects, so we are tempted to view 

it as an artifact related to the edges of the electrode grid. 

Appendix 2 contains the spectrograms for the other subjects. While the detailed 

timing and magnitude of the effects vary by subject, all subjects have electrodes showing 

spectral modulation that is time-locked to the onset of speech. Many of these electrodes 

show modulation that can be categorized using the two general effects described above: 

beta depression and broadband enhancement. We investigate the timing of this 

modulation in more detail below. 

 

2.2.2 Bubble Plots. Task-related spectrograms often show modulation in a set of 

common frequency bands (Pfurtscheller and Lopes da Silva, 1999; Buzsaki and Draguhn, 

2004). For example, here many electrodes have a depression in beta power (15–30 Hz) 

relative to silence that begins before speech onset and extends to the end of the trial 

(Figure IV.4 and Appendix 3). To identify electrodes with significant changes in common 

frequency bands specifically around the time of speech onset, we compared the power in 

the 500 ms after speech onset to the power in the 500 ms before speech onset in the delta 

(1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), gamma (30–80 Hz), and 

high gamma (100–200 Hz) bands. While the frequency bands of relevant modulation may 
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vary by subject, brain region, and task (Pfurtscheller and Lopes da Silva, 1999; Magri et 

al., 2012), we find these plots informative as a summary of the more detailed spectrogram 

analysis. 

Figure IV.5 shows bubble plots of the log ratio of the band power in predefined 

frequency bands between the second and first half of the trials for Subject D. The color 

and size of the bubbles represents the log ratio, with blue representing decreases in power 

for the second half compared to the firts and red representing increases. This visualization 

of the spectral modulation is intended to provide an anatomical perspective on the 

electrodes that have frequency modulation during the task. For example, large increases 

in high gamma power occur over the precentral gyrus, the supramarginal gyrus, and the 

STG. These are all speech related areas that would be expected to modulate their activity 

in a consistent way relative to the timing of speech onset (Golfinopoulos et al., 2010). 

The precentral gyrus and parts of the temporal lobe also show significant beta depression. 

Because this metric compares the 500 ms before speech onset to the 500 ms after 

speech onset, it does not reflect effects that occur in both periods. For example, on some 

electrodes there is beta depression throughout the trial (see Electrode 90 in Figure IV.4), 

meaning the total power in the beta band is very similar before speech relative to after 

speech. These electrodes may not have significant beta depression according to the 

before/after analysis.  
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Figure IV.5: Bubble plots for Subject D.  

For each frequency band of interest (delta, theta, alpha, beta, gamma, high gamma), the bubble 
plot represents the comparison between power in the 500 ms after speech onset and the 500 ms 
before speech onset. The size and color of the bubbles represents the log power ratio 
(after/before), and significant differences are indicated with a white asterisk (see Methods). For 
the beta band, electrodes 24 and 58 have been circled in magenta and green, respectively. 
Bubble plots for the other subjects are included in Appendix 3. 
 

There are also electrodes that do not have striking differences relative to silence, 

but that do have strong modulation when comparing before speech onset to after. For 

example, Electrode 24 in Figure IV.4 does not have high power relative to silence in the 

beta band, but the difference in beta between the first half of the trial and the second half 

is quite strong and significant according to Figure IV.5.  

It is important to take caution in interpreting the frequency bands on electrodes 

that have large high gamma modulation: since the high gamma modulation is unlikely to 

reflect true rhythms in this context, we expect it to be a marker of broadband modulation 
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that affects all frequencies, as discussed above1. This can lead to confusion at lower 

frequencies: for example, an increase in gamma power could reflect a true rhythm or it 

could simply be an extension of a broadband power increase. This effect can extend even 

lower: electrode 58 has a significant increase in beta power in Figure IV.5, but it is 

unclear if this increase is a result of a true beta rhythm or if it is an extension of the 

increases in the gamma and high gamma band. In fact, looking back at the spectrogram 

for this electrode in Figure IV.5 there is little reason to believe that the beta band is 

behaving differently than higher frequencies. On the other hand, electrodes over the 

precentral gyrus have significant decreases in beta power that cannot be attributed to 

broadband effects since the broadband power increases. Hence the robust beta depression 

that occurs over many electrodes cannot be a result of broadband contamination. 

Appendix 3 contains the bubble plots for the other subjects. There are many 

different significant effects in different subjects, but it is notable that most subjects have 

beta decreases around rolandic cortex and high gamma increases around rolandic and 

auditory cortices. 

 

2.2.3 Broadband and beta time courses and latency. Because there were consistent 

broadband and beta effects across subjects, we characterized these effects in more depth, 

specifically by (1) looking at finer timescale changes in the average broadband and beta 

and (2) estimating the latency of the changes.  

                                                        
1 We chose not to try to correct the spectrograms and bubble plots for the broadband effect, as 
described in (Miller et al., 2009b). See Methods for a discussion of this choice. 
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In order to quantify the changes in broadband as a function of time, we used the 

method of principal spectral components proposed by Miller et al (2009b), which uses 

principal component analysis (PCA) to decompose a normalized spectrogram into linear 

combinations of frequencies that covary. A main result of that study was that the 

component of the spectrum that explains the most variance of the signal during a motor 

task is almost completely flat across frequencies. This effect was robust across electrodes 

and subjects in that study and generalized to other tasks (Miller et al., 2014), and we had 

the same result when applying the technique to our data. The authors interpreted this 

“broadband” component as resulting from arrhythmic neuronal population activity 

changes during the task, which are commonly observed in the high gamma range. 

For a summary of the technique, see the Methods. 

The broadband traces, averaged across trials, are shown for each subject in 

Appendix 4. Noticing that many electrodes showed an increase in the broadband signal 

during trials, we wanted to quantify the latency of this increase. First, we selected 

electrodes with significantly greater broadband power in the second half of the trials 

compared to the first half (0 to 500 ms and -500 to 0 ms, respectively). In this way we 

hoped to capture electrodes with a wide range of latencies. 

In order to quantify the latency of the broadband change, we fit a sigmoid 

function to the average trace using nonlinear regression (see the Methods for details). 

These fits are shown superimposed on the broadband traces for electrodes with 

significant increases in broadband (Appendix 4). The latency was defined as the 

inflection point of the sigmoid function (the red vertical line in the figures). 
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Figure IV.6 summarizes the broadband latency analysis results. Within subjects, 

the latency of the broadband increase was always shorter for rolandic electrodes than for 

auditory electrodes. Across subjects there is quite a bit of variability in the timing of these 

changes relative to speech onset, but rolandic electrodes had latencies either before 

speech onset or in the first 100 ms after speech onset, and auditory electrodes had 

latencies exclusively after speech onset. There were no aSMG electrodes with a 

significant broadband change, so it is impossible to draw conclusions about the latency of 

aSMG using this metric. The mean latency for rolandic electrodes was 52 ms before 

speech onset and the mean latency for auditory electrodes was 92 ms after speech onset. 

The difference between the rolandic and auditory latencies was significant (two-sided, 

two-sample t-test with unequal variances; p<0.0001).  
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Figure IV.6: The latency of the broadband increase.  

A latency analysis was performed for electrodes with significant increases in broadband power 
between the 500 ms before speech onset and the 500 ms after speech onset (see Methods and 
Appendix 4). The upper panel shows these electrodes, colored by the broadband onset latency. 
The lower panel aggregates results across subjects: showing electrodes from all subjects on the 
Freesurfer average surfaces (above), and a scatterplot of the latencies by region (below), with 
mean latency and 95% confidence intervals shown in black. 
 

Aside from the broadband effect, many electrodes also showed beta depression 

during the trials. Hence we performed a similar analysis to compute the average beta 

power as a function of time in the trials and to quantify the latency of the beta depression. 

Appendix 5 contains the average log beta power as a function of time in the trials for all 

subjects (see Methods for details). Many electrodes showed a beta depression before 

speech onset, which in some cases recovered by the end of the trials. Note that this 

recovery in the beta power is different from the well-studied post-movement beta 

rebound (Pfurtscheller and Lopes da Silva, 1999), because speech offset did not occur 

until after the end of the trials. In order to capture the beta depression, we defined 

electrodes with significant beta depression by comparing the first 200 ms of the trials (-

500 to -300 ms) with the second-to-last 200 ms (100 to 300 ms). Then, we performed the 

same sigmoid fitting as the broadband latency analysis but leaving out the last 200 ms of 

the trials. As can be seen in the fits (Appendix 4), this setup plausibly identifies 

electrodes with beta depression and quantifies the latency of the depression. Another 

approach could have been to fit a more complicated model with both a depression and a 

recovery, but we found the current method to be adequate for our purpose (i.e. 

quantifying the latency of the beta depression). 
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Figure IV.7: The latency of the beta depression.  

Electrodes with significant beta depression between the first 200 ms of trials (-500 to 300 ms) and 
the second-to-last 200 ms (200 to 400 ms) were included in the beta latency analysis. Layout as 
in Figure IV.6. 
 

Figure IV.7 summarizes the beta latency analysis. The latencies for the beta 

depression had greater variability than the latencies of the broadband increase. In 

particular, while rolandic electrodes tended to have earlier beta depression than auditory 

electrodes, even within subjects there were some exceptions. For example, Subject H 

(pink) had one auditory electrode with a very early beta depression (almost 200 ms before 

speech onset) and one rolandic electrode with beta depression starting after speech onset. 

These extreme values may be a result of poor fit, as the beta depression is very small for 

both of these electrodes (Appendix 5, Subject H, electrodes 70 and 67). The average beta 

latency on rolandic electrodes was 113 ms before speech onset, and the average latency 

for auditory electrodes was 41 ms after speech onset. There is more overlap between the 

two groups than there was for the broadband latency analysis, but the difference between 

the groups still achieved significance (two-sided, two-sample t-test with unequal 

variances; p<0.05). No aSMG electrodes showed significant beta depression. 

2.3 Second order: Two subjects show significant changes in correlations between 

electrodes during speech that may be associated with changes in narrowband coherence 

Having characterized the dynamic behavior of individual electrodes and found 

consistent time- and frequency-domain effects, we turn to relationships between 

electrodes. If there are robust changes in the coupling of LFPs at the scale of population 

activity, it may be possible to detect them through network analysis. With that in mind, 
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we inferred functional connectivity networks based on the correlations and coherences 

between electrodes, specifically trying to detect pairs of electrodes whose correlations or 

coherences during speech were significantly greater or less than silence. Unfortunately, 

the resulting networks were not consistent across subjects. However, we present here the 

detailed results for two subjects that have interesting coupling dynamics during speech, in 

the hope that these results may inspire further attempts to pin down large-scale patterns of 

speech-related coupling (Figures IV.8, 9, and 10). This is by nature a very high-

dimensional exploratory analysis, so while we have made an effort to distinguish 

significant effects from spurious ones, any results will need to be replicated before they 

should be taken too seriously. For completeness, we also present summaries of the 

region-level correlation and coherence dynamics (Appendix 7) and electrode-level 

summaries of the correlation networks (Appendix 6). In addition, to make the high-

dimensional second-order effects more digestible, we developed an interactive 

visualization of all of the subjects’ networks online, SpectraVis. We encourage the reader 

to use the interactive visualization while reading the text to aid comprehension (see 

Section 2.4 for a description, http://ericdeno.com/research/SpectraVis). 

Networks were constructed using a 200 ms rectangular sliding window over the 

course of the trials. Test statistics were variance-stabilized measures of the difference in 

the correlation (or coherence) between the trial window and silence. Under the null 

hypothesis that there is no difference between speech and silence, the test statistic should 

be normally distributed with mean 0 and standard deviation 1. Positive and negative 

edges were inferred based on a two-sided test with a FDR of 5% over electrode pairs 

http://www.ericdeno.com/research/SpectraVis
http://ericdeno.com/research/SpectraVis
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(note that we did not correct for multiple comparisons over time or frequency). The 

complete network inference methodology is described in the Methods. 

 

Figure IV.8: Summary of second-order effects for Subject D.  
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The correlation networks, shown on the top row. In the right column (labeled “Snapshots”), the 
networks are shown at three time points in an anatomical view with significant edges indicated as 
red (greater correlation during speech) or blue (greater correlation during silence). In order to 
convey the effect sizes involved, below each network is a scatter plot of the correlation during 
silence versus during speech, for all electrode pairs, with color indicating significance. The left 
columns (labeled “Dynamics”) show the time courses of the test statistic for every pair of 
electrodes, grouped by their incident regions. For example, the top left figure shows all pairs of 
electrodes where both electrodes are over rolandic cortex. The y-axis is a z-score for a test of the 
difference in correlation between speech and silence: positive values mean the correlation was 
greater during a 200 ms window centered at that time point in speech compared to silence. Time 
points of significance are shown in red and blue. The symbols in the upper left of the plots are a 
legend for the correlation scatter plots: for example, a circle represents a rolandic-rolandic 
electrode pair. The other rows show the same set of figures for coherence networks at selected 
frequency bands (note that the frequency resolution of the analysis was 10 Hz). 

 

The two subjects that we discuss in detail are D and E (Figures IV.8 and IV.9). 

Subject E has both positive and negative rolandic-rolandic correlation changes. These 

changes are dramatically split, with positive correlation changes over dorsal rolandic 

cortex and negative changes over ventral rolandic cortex. This dorsal-ventral split may be 

related to the positioning of the electrodes with respect to the central sulcus: all of the 

positive edges are between electrodes on or very near the precentral gyrus, primary motor 

cortex (M1); the negative edges, in contrast, either cross the central sulcus or connect 

electrodes in the postcentral gyrus, primary somatosensory cortex (S1). Evoked potentials 

show a voltage reversal across the central sulcus (Wood et al., 1988), which could lead to 

negative correlations between electrodes on either side of the sulcus. A first hint that 

there may be two different mechanisms at play, however, is that the positive deflections 

precede the negative deflections: this can be seen both in the time courses and in the 

snapshots, where at 70 ms before speech onset there are already positive edges over 

dorsal rolandic cortex, but the negative edges do not become significant until the 35 ms 

snapshot. Further evidence that these are distinct effects comes from the coherence 
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networks: the 5–15 Hz coherence networks have positive edges over dorsal rolandic 

cortex that largely overlap with the positive correlation edges, while the 20–30 Hz 

coherence networks have negative edges over ventral rolandic cortex that largely overlap 

with the negative correlation edges. Note that these effects are graded: while we show the 

positive/negative edge classifications for convenience, the trajectories of the correlation 

and coherence values occur at intermediate values as well.  

The results for Subject E suggest (1) an increase in theta or alpha coherence 

starting about 150 ms before speech onset primarily over M1 and (2) a loss of coherence 

at beta frequencies in S1 and between S1 and M1, occurring right at speech onset, 

roughly coincident with the beta power decrease. It is worth noting that the electrodes for 

this subject are over the right hemisphere and the subject’s left hemisphere was dominant 

for language, so the effects may be related to the non-dominant hemisphere. 
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Figure IV.9: Summary of second-order effects for Subject E.  

Layout as in Figure IV.8. 
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Moving on to Subject D (Figure IV.8), there are similar positive correlation 

changes to Subject E, but there are fewer negative changes. The positive edges form a 

connected component that at first (-300 to -45 ms) includes primarily M1-M1 

connections, then starting at -45 ms some M1-S1 connections are included. At 135 ms 

after speech onset the positive correlations form a dense cluster between 15 electrodes in 

M1 and S1. Interestingly, the S1 electrodes in the cluster correlate with many M1 

electrodes but they do not correlate significantly with each other. Consistent with Subject 

E, the positive correlations co-occur and overlap with positive coherence changes in the 

5–15 Hz band. The cluster of positive 5–15 Hz coherence edges includes M1-S1 

connections earlier than for correlation, with S1 nodes being pulled in as early as 100 ms 

before speech onset, around the same time that the cluster initially forms. These patterns 

(viewable interactively in SpectraVis) lend further support to the interpretation that theta 

or alpha coherence increases in M1 prior to speech onset, with additional coherence with 

parts of S1. 

There are no significant rolandic-to-rolandic decreases in beta coherence for 

Subject D. However, there is a short interval from 150 ms until 100 ms before speech 

onset in which some rolandic electrodes (both M1 and S1) decohere with electrodes 30 

and 33 in auditory cortex (specifically pSTG) in the beta band (15–25 Hz). These 

connections reflect a decrease in coherence from about 0.4 during silence to less than 

about 0.2 during speech. While the loss of coherence during speech is expected given the 

motor-related depression in beta power, the high coherences during the baseline silence 
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are interesting and may be related to attention or working memory processes (Weiss and 

Mueller, 2012) between sensorimotor and auditory cortices. 

The region-level networks for Subjects D and E (Figure IV.10) generally reflect 

the inter-region effects from the electrode-level networks (Figures IV.8 and IV.9). There 

are few inter-region connections, with the exception of a time period about 150 ms until 

50 ms before speech onset in Subject D when the test statistic for canonical correlation 

between rolandic and auditory cortex is significantly negative, meaning that the canonical 

correlation between trials was significantly lower than silence. This effect occurs at the 

same time as a negative trend in the test statistic for the beta band (15-25 Hz) canonical 

coherence, so it may be related to a loss in beta coherence between rolandic and auditory 

cortex prior to speech onset. This is consistent with the electrode-level observations, 

where there were a few edges between rolandic and auditory cortex that had significantly 

lower beta coherence in the same time period relative to silence. The fact that the result 

extends to the canonical test statistics suggests that it may reflect a change in the structure 

of coupling between rolandic and auditory cortex on a large scale, rather than spatially 

specific coupling between sub-regions in the two areas. 

For completeness, we include in the appendix summaries of the correlation 

networks of all subjects (Appendix 6). While they tend to follow the same general trends 

as subjects D and E, the results are not as dramatic. Furthermore, the few electrodes that 

have significant correlation changes for these subjects do not also have significant 

coherence changes (results not shown), making it difficult to trace the origin of the time 

domain network results.  
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Figure IV.10: Region-level second-order effects for Subjects D and E.  

Region-level coupling time courses for Subject D (left column) and Subject E (right column), 
computed using canonical correlation (first row) and canonical coherence (second and third 
rows). Time courses are shown between all pairs of regions (Rolandic-Auditory, Rolandic-aSMG, 
and Auditory-aSMG) over the course of trials (time 0 is speech onset). The estimated distribution 

of the test statistic ( ˆ
CCorrx  for canonical correlation and ˆ

CCohx  for canonical coherence) is shown 

in greyscale as a function of time, and significant deviations from baseline (silence) occur where 
this distribution deviates significantly from zero, marked with a green line (see Methods 4.5). In 
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Subject D, the canonical correlation between rolandic and auditory cortex during trials is 
significantly less than silence for a part of the interval: the timing of this effect is indicated in blue. 
 

2.4 SpectraVis 

In addition to the static display of the networks, we developed an interactive tool 

to represent the high-dimensional network data in a more digestible way. The tool, 

SpectraVis, shows the time-domain and frequency domain network results for all 

subjects, dynamically linked to the spectrograms and coherograms across all edges. A 

user can display networks in a binary format or weighted by test statistic or raw 

correlations, using either an anatomical display or a force-directed graph diagram. In 

addition, the tool can be used to play movies of the networks over time. This tool is open-

source and available online at http://ericdeno.com/research/SpectraVis. Figure IV.11 

shows a screenshot of the tool. 

3. Discussion 

This study presents a comprehensive analysis of the dynamics of neural activity 

surrounding speech onset. The first order effects largely confirm and expand findings 

from previous studies, firstly by linking time-domain findings with classic EEG 

phenomena and secondly by replicating spectral results from more recent ECoG work in 

speech. The second order effects represent new results regarding the dynamic coupling 

between populations during speech production.  

 

http://ericdeno.com/research/SpectraVis
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Figure IV.11: SpectraVis Screenshot. 

 

3.1 First Order Effects 

Across subjects, ERPs in rolandic areas have a negative deflection before speech 

onset followed by a positive deflection after speech onset. Auditory cortex did not show 

strong ERPs in the average, but individual electrodes had ERPs that varied significantly 
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over auditory cortex. The difference in consistency between rolandic and auditory ERPs 

may be related to functional differences: sub-areas of primary motor cortex are likely to 

activate with similar latencies relative to speech onset because of the need to coordinate 

effector muscle engagement. Electrodes labeled as auditory in this study, on the other 

hand, cover sub-areas that are heterogeneous in function and therefore are likely to have 

different activation profiles. 

One of the main results of this study is the estimation of the latency of spectral 

effects with respect to speech onset time. In particular, broadband activity over rolandic 

electrodes increased on average 52 ms before speech onset, and over auditory electrodes 

on average 92 ms after speech onset. With the interpretation that broadband activity 

reflects population firing activity, the motor latency is consistent with theory: Guenther et 

al. (2006) predict that a motor command from primary motor cortex will take about 40 

ms to induce a response in the speech articulator muscles. On the other hand, Edwards et 

al. (2010) observed high gamma ECoG activity over rolandic cortex in a verb generation 

task as early as 300 ms before speech onset, and as early as 550 ms before speech onset 

for a picture naming task. These earlier response latencies may reflect greater task 

difficulty due the semantic nature of the tasks. 

The auditory broadband latency also matches previous results: the verb generation 

study of Edwards et al. (2010) observed latencies to the peak high gamma response over 

the STG of about 150–500 ms after speech onset. The lack of auditory population activity 

immediately after speech onset is likely due to the auditory areas covered by this study: 

the ECoG grids did not enter the Sylvian Fissure, so the electrodes are unlikely to pick up 
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much primary auditory activity. Rather, all subjects had electrodes over STG, which 

would be expected to have longer response latencies due to its role in higher-level 

auditory processing. According to the DIVA model, the pSTG is the location of the 

Auditory Error Map, which compares an auditory target signal to the incoming auditory 

signal (Guenther et al., 2006).  

A beta depression during speech is expected, given that our baseline was active: 

beta rhythms are most prominent in motor cortex during motor preparation, and 

desynchronize during movement (Pfurtscheller and Lopes da Silva, 1999; McFarland et 

al., 2000). The fact that the beta depression preceded the broadband is notable: on 

electrodes with a significant beta depression, the average rolandic latency was 113 ms 

before speech onset and the average auditory latency was 41 ms after speech onset. This 

is consistent with a conception of the beta dynamics as signaling spatially broad control 

mechanisms which set conditions for local processing (Baker, 2007; Jones et al., 2009; 

Engel and Fries, 2010; Wang, 2010; Weiss and Mueller, 2012).  

3.2 Second Order Effects 

By necessity we have been cautious in drawing conclusions from the second-

order effects: looking for dynamic effects across electrode pairs and frequencies is a very 

high-dimensional task. One way to manage the high dimensionality is to facilitate 

exploration: to this end, we developed an interactive network visualization tool, 

SpectraVis, which links the binary and weighted time- and frequency-domain networks to 

the corresponding spectrograms and coherograms. SpectraVis is available online at 
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http://ericdeno.com/research/SpectraVis, and the source code is hosted at 

https://github.com/edeno/SpectraVis for general use.  

Beyond visualizing the high dimensional results in a more intuitive way, we have 

made an effort to manage the dimensionality (1) by inferring networks only over 

electrodes in regions of interest, (2) by controlling the false discovery rate of the 

networks, and (3) by characterizing the uncertainty of the region-level averages. It is 

reassuring that the effects we report in the main text occur (1) in subjects who have a 

large number of trials and silent periods, which should lead to higher statistical power, 

and (2) over regions where the subjects have good spatial coverage. Possibly the subjects 

who do not display such striking second-order effects are simply lacking in statistical 

power or spatial coverage.  

The network analyses are also limited by resolution: in order to have a time 

resolution as small as 200 ms, the frequency resolution of the analysis was limited to 10 

Hz (±5 Hz). As a result, we cannot distinguish between the theta and alpha bands, and 

present networks for the combined 5–15 Hz frequency band. For effects that last longer 

than 200 ms, such as the 5–15 Hz rolandic-rolandic coherence in Subject D, it should be 

possible to improve the frequency resolution by decreasing the time resolution to 500 ms, 

which would give a 4 Hz frequency resolution (±2 Hz), enough to distinguish the two 

bands. This would not be possible for Subject E, however, where the 5–15 Hz coherence 

changes are more transient. We leave this multi-scale analysis to future work, in which 

we hope to have more trials for each subject and hence greater statistical power.  

http://ericdeno.com/research/SpectraVis
https://github.com/edeno/SpectraVis
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For now, we can combine our observation with previous classic results, which 

point to robust alpha rhythms over rolandic cortex, commonly referred to as “mu” 

rhythms (Pfurtscheller and Lopes da Silva, 1999). Mu rhythms were originally observed 

in EEG recordings, but have since been reported in ECoG (Arroyo et al., 1993; Toro et 

al., 1994; Szurhaj et al., 2003). There is evidence that the EEG mu rhythm has a lower 

peak frequency in epileptic subjects than healthy subjects, possibly due to anticonvulsant 

medications (Kuhlman, 1978; Derambure et al., 1997), and this low mu (5–12 Hz) is 

confirmed in some of the ECoG studies with epileptic patients (Arroyo et al., 1993; 

Szurhaj et al., 2003). 

Jones et al. (2009) propose a feed-forward thalamic source for rolandic alpha 

rhythms based on previous findings that cortical alpha is coherent with alpha oscillations 

in the thalamus (review: Hughes, 2005). This could explain the dense connectivity 

observed in the 5–15 Hz coherence networks over rolandic cortex, since a common 

thalamic driver of rolandic alpha frequency oscillations would show up as dense pairwise 

connectivity. On the other hand, it is notable that the increase in alpha coherence in both 

Subject D and Subject E is not accompanied by an increase in power: the power in the 5–

15 Hz band is remarkably constant throughout the trials (if anything it decreases, as 

would be expected based on classic studies of the mu rhythm), and is very close to the 

alpha power during silence. Hence the coherence at 5–15 Hz must correspond to the 

rhythms on the electrodes coming into phase. This is not true of the beta coherence effect: 

beta loses coherence at the same time that the beta power drops. 
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Interestingly, the strongest second-order effects occurred within regions rather 

than between them. It is possible that this is due to proximity and volume conduction, 

although ECoG electrodes have relatively small regions of receptivity that are thought to 

be dominated by local sources (Zaveri et al., 2009). Also, there were many long-distance 

within-ROI connections and few short between-ROI connections, despite the existence of 

nearby electrodes across region boundaries. For example, the correlation network for 

Subject D has dense connectivity that extends all the way from ventral to dorsal rolandic 

cortex, with only sparse connections to the nearby aSMG electrodes. Another possibility 

is that the low frequency oscillations involved in the task span the region such that they 

are coherent across space. This would result in all-to-all pairwise coherence, but there 

may be more direct ways to detect such a process. For example, global coherence 

analysis quantifies spatially coherent oscillations across many sensors as the proportion 

of variance explained by the first principal component of the cross-spectral matrix (Mitra 

and Bokil, 2008; Cimenser et al., 2011). For example, using global coherence we could 

quantify the tendency of all rolandic electrodes to cohere spatially at beta frequencies. 

The beta rhythm could be spatially coherent across rolandic cortex without having 

precisely the same phase at each location: for example, (Rubino et al., 2006) found 

evidence of beta-frequency traveling waves in motor cortex during movement planning. 

The observed traveling waves had consistent but non-zero phase relationships across 

motor cortex, with a consistent directionality of propagation. Because the latency and 

amplitudes of the traveling waves reflected task parameters, the authors proposed that the 

wave structure of the beta could reflect information transfer within rolandic cortex. 
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It is notable that Subject D had a decrease in beta frequency coherence on several 

electrode pairs between rolandic and auditory cortex prior to speech onset. This may 

point to coherence between the two regions during silence, which is lost during the 

motor-related beta desynchronization over rolandic cortex at speech onset. Supporting 

this interpretation, the canonical correlation was significantly lower during the same time 

period relative to silence, and this effect corresponded to a trend in the same direction for 

canonical coherence. Hence the effect may represent a spatially broad restructuring of the 

beta coherence between rolandic and auditory cortex prior to the onset of speech. 

In addition to replicating the current results in a more controlled paradigm, future 

work will aim to elucidate the fine-timescale dynamics of effects that have so far been 

limited to fMRI analyses. For example, previous work in our group has developed a 

computational model of speech production called DIVA that exhibits realistic 

compensatory responses to auditory or somatosensory perturbations (Guenther et al., 

2006; Tourville et al., 2008). Analyzing ECoG recordings during speech in the presence 

of such perturbations could test the dynamics of our theoretical model and direct us 

toward improvements. The broadband signal is a good place to start, since it is the 

component of the ECoG signal that is most closely coupled with fMRI BOLD signals 

(Ojemann et al., 2013). In addition, the model could be made more dynamically realistic 

by incorporating the rhythmic changes that occur during speech. 
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4. Methods 

4.1 Subject information and experimental protocol 

Twelve patients undergoing treatment for intractable epilepsy participated in this 

study. As a part of their treatment, electrocorticographic grids were implanted subdurally 

to monitor neural activity over the course of several days. During this period, subjects 

gave informed consent to participate in this study, which was approved by the local 

institutional review boards. Three subjects were eliminated from analysis due to 

experimental noise or excessive interictal activity over most electrodes, and the data from 

the remaining nine subjects, five female and four male, was subsequently analyzed. Table 

1 summarizes the clinical profiles of these subjects.  

Figure IV.1 shows the electrode grid placement for all subjects, obtained via 

preoperative MRI and postoperative CT scan (Kubanek et al., 2013). For one subject, C, 

the individual MRI scan was unusable so the electrodes were coregistered with the “Colin 

Brain”. An anatomy expert (J Tourville) used the coregistered 3D images for each subject 

to define the anatomical regions underlying each electrode, with special emphasis on 

rolandic cortex (primary motor and primary somatosensory), auditory cortex (STG), and 

the anterior supramarginal gyrus (SMG). Note that the coregistration of the electrodes 

with the individual subject MRI scans has some uncertainty, related to differences in the 

brain morphology between the preoperative MRI scan and the postoperative CT scan 

(Hermes et al., 2010), which could lead to ambiguous or incorrect region labeling in 

some cases. In cases where an electrode appeared close to a border between regions, it 

was left unlabeled. In addition, J Tourville created a manual representation of the 
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electrodes for all subjects on the Freesurfer average surface template (e.g. the bottom 

images in Figure IV.6), placing the electrodes for all subjects in their approximate 

anatomical locations on the template brain. Note that due to poor surface reconstruction 

from the MRI scans, it was impossible to do this step automatically. These approximate 

locations on the template brains were used only for display purposes. 

Table IV.1: Summary of Subject Clinical Profiles 

Subject 

ID 
Age Sex 

Hand

. 

Lang. 

Dom. 

Grid 

Hem. 

Seizure 

focus 
# trials 

# silences 

(200 ms) 

# silences 

(500 ms) 

A 29 F R L L 
Left 

Temporal 
63 43 15 

B 30 M R Bi L 
Left 

Temporal 
38 88 27 

C 29 F R L L 
Left 

Temporal 
85 154 46 

D 56 M R L L 
Left 

Temporal 
98 202 59 

E 26 M R L R 
Right 

Temporal 
75 194 62 

F 45 M R L L 
Left 

Temporal 
86 45 13 

G 29 F R Bi L 
Left 

Temporal 
77 273 87 

H 25 F R Bi L 
Left 

Temporal 
83 72 23 

I 25 F R Bi R 
Right 

Frontal 
50 114 41 

 

Neural signals were recorded using g.tec g.USBamp amplifiers (sampling rate 

9600 Hz). Data acquisition and stimulus presentation were handled using BCI2000 

software (Schalk et al., 2004).  

Further details about the experimental paradigm and data collection can be found 

in (Lotte et al., 2015): four of the subjects described here are also described in that study. 

The experimental paradigm and data collection were the same for all data described here 
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and in (Lotte et al., 2015), but the trial definitions and data analysis differ. The data from 

another subject described here, D, was also described in (Stephen et al., 2014). 

4.2 Task and Trial definitions 

Subjects performed an overt reading task in which they read aloud from a 

historical speech or nursery rhyme as it scrolled across a computer screen. Subjects 

performed 2–3 of these sessions (consisting of one entire speech or nursery rhyme, about 

5 minutes), and one session was selected for analysis for each subject based on absence 

of artifacts or epileptic activity. The session was then manually checked for artifacts, and 

electrodes or time periods with substantial artifacts or interictal activity were eliminated 

from subsequent analysis. 

Because the words scrolled slowly across the computer screen, subjects paused 

during the performance of the task while they waited for the next word or phrase to 

appear. We used these pauses to impose a post-hoc trial structure on the data: trials were 

defined as any time during the session when at least 500 ms of silence was followed by at 

least 500 ms of speech. Note that the particular word spoken varied by trial. Time during 

the trial is described relative to speech onset, so trials extend from -500 ms to +500 ms. 

To identify such trials, the audio recording was first used to automatically identify time 

periods of silence as well as voicing onset times. Specifically, the smoothed root mean 

square audio intensity was obtained using a 20 ms Hamming window, and this smoothed 

intensity was thresholded based on the intensity of the background noise.  

These automatically generated voicing onset times were then manually verified 

and refined to reflect the times of speech onset. For example, in a word starting with an 
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unvoiced fricative or stop consonant, voicing onset can occur over 100 ms after speech 

onset (Lisker and Abramson, 1967). Speech onset times on such trials were adjusted 

manually using the Praat software package (www.praat.org) by observing the audio 

signal in the time and frequency domains while listening to the signal around the speech 

onset time. Trials were also manually screened to ensure that they included 500 ms of 

silence followed by at least 500 ms of continuous speech.  

In addition to trials, time periods of silence were also identified in the signal 

based on the audio recording. In order for silences to be included in downstream 

analyses, they needed to be separated from speech by at least 500 ms before and after. 

Because the baseline silent periods were during the performance of the task, they should 

not be interpreted as an inactive baseline: rather, these silences represent an active 

baseline in which the subject had finished reading the words on the screen was waiting 

for more words to come up. Hence, for example, the baseline likely contains activity 

related to vision and attention.  

4.3 Preprocessing of the ECoG data 

The neural recordings were preprocessed by downsampling from 9600 to 400 Hz 

(Matlab decimate function, which in this case also low-pass filtered the signal below 200 

Hz), high-pass filtering above 1 Hz, and notch filtering at 60, 120, and 180 Hz with a 1 

Hz band stop. The high-pass and notch filters used a zero-phase 3rd order Butterworth 

filter (Matlab filtfilt function). The signals were then referenced to the common average 

by subtracting the mean over all electrodes. For five subjects (A, B, F, G, and H) the 
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common average reference was applied to the two ECoG grids separately to account for 

differences in the shared noise between the grids. 

4.4 First-order Analyses 

4.4.1. Time Domain. Event-related potentials (ERPs) were calculated by averaging the 

preprocessed voltages for each electrode across trials (Appendix 1). Also displayed are 

95% confidence intervals based on the standard error of the mean. 

In addition to the ERPs on the individual electrodes, Figure IV.2 shows the ERPs 

averaged over all rolandic, auditory, and SMG electrodes for each subject. In order to 

bring the ERPs for all subjects into the same scale, the ERP values are displayed as a z-

score with respect to the voltages during silence. That is, the mean voltage during silence 

was subtracted from the ERP and then this differenced signal was divided by the 

estimated standard error during silence: 

,
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where M  is the number of trials, RN  is the number of electrodes in region R , and ˆ
s  

and ˆ
s  are the mean and standard deviation of the voltage during silence across all 

electrodes in region R . In this way, the y-axes of Figure IV.2 can be interpreted as the 

number of standard errors away from the mean, under the silence distribution. The 

confidence intervals in this figure are 95% confidence intervals based on the standard 

error during trials, rescaled to match the z-score. 



 

 

187 

For all of the analyses described below, the (unnormalized) ERPs were first 

subtracted from each trial on each electrode (See Chapter III for a justification of this 

step).  

 

4.4.2. Frequency Domain 

4.4.2.1 Spectrograms. The first-order (single electrode) frequency-domain analyses were 

based on spectrograms of the signal, averaged over trials (Figure IV.4 and Appendix 2). 

Before computing the spectrograms, the ERP was subtracted from the trials and the DC 

component was removed from each time window. The multitaper method (Thomson, 

1982) was used to estimate spectrograms with a sliding window of 200 ms, a time-half-

bandwidth product of 1 Hz*sec, and 1 taper. The resulting spectrograms have a time 

resolution of 200 ms and a frequency resolution of 10 Hz (±5 Hz). The spectrograms are 

displayed relative to the average spectrum on the electrodes during silence: 

   ( , ) log ( , ) log ( )trials silenceP t f S t f S f   

where ( , )trialsS t f  is the estimated power spectrum for the 200 ms window centered at 

time t  relative to speech onset ( t  ranges from -400 to 400 ms), and ( )silenceS f  is the 

average power spectrum during silence, where the silences are broken up into non-

overlapping segments of length 200 ms. 

In an effort to distinguish true rhythms from broadband power changes due to 

population activity, Miller et al (2009b) proposed a method of estimating spectrograms 

with broadband effects removed. While we used their method for quantifying the 

broadband timecourses (see Section 4.4.2.3), in our dataset we found it difficult to 
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completely remove the broadband effect from the spectrograms without disrupting the 

narrowband modulation2. This is likely related to the fact that electrodes with narrowband 

modulation (e.g. beta depression) often have broadband enhancement at about the same 

time. As a result, it was difficult to remove the broadband effects from the spectrograms, 

so we chose to show here spectrograms without broadband effects removed. 

 

4.4.2.2 Bubble plots. As with the spectrograms, we used the multitaper method to 

perform the bubble plot analysis. Using 500 ms windows (the first and second half of the 

trials), we manipulated the choice of time-half-bandwidth product to produce estimates of 

the power in the frequency bands of interest during the two time windows. For example, 

to estimate the beta power we used a time-half-bandwidth product of 3.75 Hz*sec (with 6 

tapers), resulting in a frequency resolution of 15 Hz (±7.5 Hz). The spectrum estimate at 

22.5 Hz therefore reflected power between 15 and 30 Hz3. We then computed the ratio of 

the power after speech onset to the power before speech onset, for each electrode and 

each frequency band. 

Figure IV.5 and Appendix 3 show the results of this analysis. The size and color 

of the bubbles in the figure represent the log of the power ratio. To test the significance of 

the effect size at each electrode, an f-test was used based on the fact that multitaper 

spectral estimates are constructed from the sum of Chi-squared distributed spectral 

                                                        
2 Specifically, while the first spectral component typically did not contain substantial narrowband 
activity and was therefore suitable as an estimate of the broadband modulation, subsequent 
spectral components often contained a mix of narrowband and residual broadband effects. See 
Section 4.4.2.3 for a definition of principal spectral components. 
3 The timeseries were zero-padded before spectral estimation in order to obtain estimates in the 
centers of the frequency bands of interest. 
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estimates, each with 2 degrees of freedom (Thomson, 1982). Using this fact, it can be 

shown that the ratio of two multitaper estimates is f-distributed with parameters 
12KM  

and 22KM , where K  is the number of tapers, 1M  is the number of trials used for the 

numerator, and 2M  is the number of trials used for the denominator. White stars indicate 

electrodes with significant differences under a two-sided test, corrected for a False 

Discovery Rate (FDR) of 5% across electrodes within each band (split evenly between 

positive and negative effects). One characteristic of this test is that it has greater 

statistical power for broad frequency bands since they were estimated using more tapers. 

Hence the high gamma band test required a very small effect size for significance. 

Gamma and beta required larger effect sizes, and delta, theta, and alpha required the 

largest effect sizes for significance. The precise threshold varied by subject, since each 

subject had a different number of trials. 

 

4.4.2.3 Broadband timecourses and latency analysis. We quantify the broadband signal 

using the method of principal spectral components developed by Miller et al (2009b). 

Here we briefly summarize the method of principal spectral components, as it was used 

in this study to quantify the broadband signal as a function of time. Using the 

preprocessed session data, trials were split into five 200 ms non-overlapping windows (-

500 to -300 ms, -300 to -100 ms, -100 to 100 ms, 100 to 300 ms, and 300 to 500 ms). 

Additionally, the silences were split into 200 ms-long windows. All of the windows were 

pooled while keeping track of their identity (i.e. silence or time in trial). The DC 

component was subtracted from each window, and the spectrum ( , )qP f   was calculated 
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using the multitaper method with 1 taper and a time-half-bandwidth product of 1 Hz*sec. 

Here q  indexes the time of the 200 ms windows being analyzed, of which there are qN  

(which is five times the number of trials plus the number of silence windows). The mean 

spectrum over all windows was then divided from each individual spectrum and the log 

was taken (notation is from (Miller et al., 2009b)): 

 
1

1
( , ) ln ( , ) ln ( , )

qN

q q p

pq

P f P f P f
N

  


 
    

 
  

PCA was then used on these normalized spectra. In particular, the covariance matrix 

between frequencies was estimated: 

( , ') ( , ) ( ', )
q

q qC f f P f P f


   

and the eigenvectors and eigenvalues of this matrix were computed. An interesting 

feature of our data, which is consistent with (Miller et al., 2009b) and true for all 

electrodes and subjects, is that the eigenvector with the largest eigenvalue (the 

eigenvector which explains the most variance), 1e , is positive and generally flat across 

frequencies. We interpret this eigenvector as representing spectral changes due to 

broadband effects. 

To estimate the amount of broadband activity in the signal as a function of time, 

we estimate a spectrogram of the entire session ( , )P f t  using wavelet analysis (using a 

complex Morlet wavelet), divide out the mean spectrum over the entire session and take 

the log yielding ( , )P f t , then project the normalized spectrum onto the first eigenvector: 

1( ) ( ) ( , )
f

B t e f P f t  
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The resulting scalar timeseries, the first spectral component, represents the broadband 

component of the signal as a function of time in the session (projections onto the other 

eigenvectors are also spectral components, numbered by their corresponding 

eigenvectors). We used this signal to calculate the average broadband as a function of 

time in the trials. These average traces are shown for all subjects in Appendix 4, with 

95% confidence intervals based on the standard error of the mean. 

The broadband latency analysis was performed on electrodes with significantly 

greater broadband power in the second half of the trials compared to the first half (0 to 

500 ms and -500 to 0 ms, respectively). We assessed significance using a two-sided 

permutation test using 5000 permutations, corrected for a FDR of 5%. 

For the electrodes with significantly greater broadband in the second half of the 

trials, we fit a sigmoid function to the broadband trace using nonlinear regression (Matlab 

function nlinfit). In particular, we modeled the broadband timecourses on each electrode 

using the following function: 

0

2 1
1 ( )

( )
1

k t t

C C
B t C

e
 


 


 

This model has four parameters: 1C , the broadband at the start of the trial, 2C , the 

broadband at the end of the trial, k , the rate of increase of the transition, and 0t , the mid-

point of the transition, which we interpret as the latency of the transition. The resulting 

fits and their corresponding latency estimates are shown superimposed on the broadband 

timecourses in Appendix 4. 
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4.4.2.4 Beta timecourses and latency analysis. Beta power time courses were computed 

using a sliding window of length 200 ms. For this analysis we used the multitaper method 

with a time-half-bandwidth product of 1.5 hz*sec and 2 tapers to get beta estimates 

within the 15–30 Hz frequency band. To be consistent with the broadband power analysis 

we then took the log of the signal. We used this signal to calculate the average beta power 

as a function of time in the trials. 

The beta latency analysis had the same structure as the broadband latency 

analysis, except that many electrodes had a recovery in the beta power towards the end of 

the trials, which obscured the timing of the initial beta depression under our simple 

sigmoid model. Since we were primarily interested in the latency of the beta depression 

we modified the analysis to use a time window that mostly avoided the beta recovery. In 

particular, we defined electrodes with significant beta depression by comparing the first 

200 ms of the trials (-500 to -300 ms) with the second-to-last 200 ms (100 to 300 ms), 

using an FDR-corrected f-test as described above for the bubble plots. Then, when fitting 

a sigmoid function to the mean beta timecourses, we limited the fits to the window -500 

to 300 ms.  

4.5 Second-order Analyses 

The second-order (between-electrode) analyses consisted of correlation and 

coherence networks inferred between electrodes in the three regions of interest: rolandic, 

auditory, and aSMG. As described above, electrodes that were clearly over one of these 

three regions were identified manually based on their anatomical location in the co-
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registered MRI images. The network inference methodology was described previously in 

(Stephen et al., 2014 and Chapter 3).  

 

4.5.1. Time Domain: Correlation networks. First, we inferred time-domain correlation 

networks on a 200 ms sliding window over the course of the trials (Chapters II and III). 

Because correlations can be contaminated by power in frequencies below the inverse of 

the window length (Leonardi and Van De Ville, 2015), we modified the preprocessing of 

the neural signals for this analysis, high-pass filtering above 5 Hz (1/200 ms) rather than 

1 Hz. All other preprocessing was the same as for the first-order analyses, including the 

notch filters at 60, 120, and 180 Hz. 

The correlations between all pairs of electrodes for each 200 ms window during 

trials, averaged over trials, were compared to the average correlation on that pair of 

electrodes during 200 ms epochs of silence. The coupling statistic was the variance-

stabilized difference between trials and silence used in Chapter III. In particular, corrz  

between two electrodes x  and y  when the sliding window is centered at time   relative 

to speech onset is: 

   1 1

2 2

tanh ( , , ) tanh ( , )
( , , )

ˆ ˆ( , , ) ( , )

speech silence
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x y x y
z x y

x y x y

  
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  
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The correlation ˆ ( , , )speech x y   is calculated as: 
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where T  is the duration of the sliding window (200 ms),   takes on values ranging from 

-400 ms to 400 ms, and 
l  are the speech onset times (the trial midpoints). The 

calculation of ˆ ( , )silence x y  is analogous, except that there is no need for the sliding 

window: 
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Here m  are the midpoints of the non-overlapping 200-ms long epochs of silence. The 

variances 
2ˆ
speech  and 2ˆ

silence  were estimated using a two-sample jackknife procedure as 

described in Chapter III (Arvesen, 1969).  

Under the null hypothesis of no difference in correlation between the trial epoch 

and silence, this test statistic is distributed approximately as a standard normal (see 

Chapter III), with mean 0 and standard deviation 1. P-values for the two-sided alternative 

hypothesis that the test statistic was non-zero were computed by comparison to the 

standard normal, and binary edges were defined using a FDR of 5% over edges (note that 

we did not correct for false discoveries across time).  

 



 

 

195 

4.5.2. Frequency Domain: Coherence Networks. The structure of the frequency 

domain networks was the same as the time domain networks, except that the test statistic 

was based on the coherence between electrodes. In particular, the test statistic was a bias-

corrected, variance-stabilized difference between the trial and silence coherence (Bokil et 

al., 2007): 

   1 1

2 2

1 1
tanh ( , , , ) tanh ( , , )

2 2 2 2
( , , , )

ˆ ˆ( , , , ) ( , , )

speech silence

coh

speech silence

C x y f C x y f
LK MK

z x y f
x y f x y f




  

  
   

  


 

where f  indexes frequency, K  is the number of tapers used to estimate the coherence, 

and L  and M  are the number of trials and silence intervals, as above. Here we use the 

term coherence to refer to the magnitude of the coherency (in some contexts coherence 

refers to the magnitude squared coherency), which is statistically better behaved (see 

Chapter III): 

( )
( )

( ) ( )

XY

XX YY

S f
C f

S f S f
  

where XXS , YYS , and XYS  are the sample spectra and cross-spectrum for the signals of 

interest ( X  and Y  refer to the signals recorded from two electrodes), averaged over 

epochs on a sliding window as described above (Brillinger, 2001). The spectra and cross-

spectra were estimated using the multitaper method with time-half-bandwidth product of 

1 hz*sec and 1 taper. This resulted in a time resolution of 200 ms and a frequency 

resolution of 10 Hz (±5 Hz). The variances 
2ˆ
speech  and 2ˆ

silence  were estimated using the 

jackknife procedure as described in Chapter III and (Bokil et al., 2007). The resulting 
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test-statistic is approximately distributed as a standard normal, so p-values were 

computed and corrected for false discoveries in the same way as for the correlation 

networks.  

4.5.3. Region-level: Canonical correlation and canonical coherence. Region-level 

networks were inferred using canonical correlation and canonical coherence (described in 

detail in Chapter III), under the rolandic, auditory, and aSMG region definitions. As with 

the networks described above, canonical networks were inferred on a 200 ms sliding 

window during trials. The test statistic for canonical correlation was: 

   1 1ˆ tanh tanhT BCCorrx CCorr CCorr    

where TCCorr  and BCCorr  are the canonical correlations estimated for the trial window 

and the baseline (silence) window, respectively (see Chapter III Appendix for a 

description of how canonical correlation and canonical coherence were calculated). The 

test statistic for canonical coherence was: 

   1 1ˆ ( ) tanh ( ) tanh ( )T BCCohx f CCoh f CCoh f    

where TCCoh  and BCCoh  are the canonical coherences estimated for the trial window 

and the baseline (silence) window, respectively. 

 As described in Chapter III, bootstrapping was used to estimate a p-value for a 

hypothesis test with the null hypothesis that the canonical correlation (or coherence) was 

the same during the trial window and silence. The p-values were then corrected for 

multiple comparisons using the FDR procedure across region pairs. 

 



 

 

197 

4.5.4. Interactive visualization of network results. SpectraVis was implemented by E 

Denovellis using the D3 JavaScript library (Bostock et al., 2011). The code is open 

source and available at https://github.com/edeno/SpectraVis, with complete 

specifications. 

 

 

https://github.com/edeno/SpectraVis
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5. Appendices 

5.1: ERP grids for all subjects 
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5.2: Spectrogram grids for all subjects 

For Subject D, see Figure IV.4 

 
 



 

 

2
0
8
 



 

 

2
0
9
 



 

 

2
1
0
 



 

 

2
1
1
 



 

 

2
1
2
 



 

 

2
1
3
 



 

 

2
1
4
 

 
 
 



 

 

2
1
5
 

5.3: Bubble plots by frequency band for all subjects  

For Subject D, see Figure IV.5 
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5.4: Broadband time course grids with latency for all subjects  
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5.5: Beta time course grids with latency for all subjects  
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5.6: Correlation time courses for all subjects 

For Subjects D and E, see Figures IV.8 and IV.9 
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CHAPTER V. CONCLUSION 

 This dissertation concerns the problem of inferring dynamic changes in functional 

integration related to a task. While functional and effective connectivity analyses have 

had success in the resting state paradigm, theoretical models of neural communication 

hypothesize that brain areas dynamically route information based on behavioral needs. 

With the availability of high temporal resolution data such as ECoG, it should be possible 

to probe functional networks on the timescale of behavior. We described a statistical 

framework for inferring changes in coupling that are tied to task dynamics and an 

application of the framework to an overt reading task. Here we summarize the 

contributions that this work makes to the field and discuss future directions of research. 

1. Innovation and Impact 

1.1 Dealing with the Curse of Dimensionality 

One of the key issues in modern statistics is the “Curse of Dimensionality”, that 

with increasing data, the degrees of freedom in statistical models tend to grow faster than 

the data itself. This classical problem is at the core of functional network inference, 

where the number of possible connections between nodes grows with the square of the 

number of nodes. With hardware technology allowing for ever more simultaneous neural 

recordings, functional connectivity inference technology is challenged to keep up. In this 

dissertation, we developed approaches to deal with the curse of dimensionality in the 

context of task-related functional connectivity inference. 

It is a problem that the degrees of freedom grow faster than the data because 

degrees of freedom relate directly to the uncertainty in statistical estimates. In the context 
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of network inference, this means that the more nodes there are in a network, the less 

reliable the estimate of the network will be. It is common in the functional network 

literature to report inferred networks without a measure of statistical variability, making it 

difficult to distinguish true effects from noise. Hence the technique that we described in 

Chapter II to estimate the variability of networks represents a significant improvement 

over current practice in the field.  

The problem of dimensionality can be mitigated by incorporating prior knowledge 

into the inference and restricting its scope. For example, choosing frequencies of interest 

in a coherence analysis based on prior knowledge about frequency bands that are likely to 

be involved in the task reduces the frequency dimension to a limited number of values. In 

addition, using theoretical distributions when appropriate, as we described in Chapter III, 

can eliminate unnecessary variance in the statistical estimators. 

Another approach to dealing with dimensionality involves using aggregate 

network statistics to describe relevant features of the networks even if the details of the 

networks are imperfectly estimated, for example by using density to describe overall 

levels of connectivity. Network statistics typically have fewer degrees of freedom than 

raw networks and their degrees of freedom typically grow more slowly than the 

dimensions in the data, so in some cases they may be more statistically well-behaved in 

high-dimensional contexts (this may not be generally true, as discussed in Kolaczyk, 

2009). Our technique to estimate uncertainty in aggregate network statistics, described in 

Chapter II, contributes a valuable tool to this approach. 
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Since the anatomical locations of the electrodes are typically known, the 

knowledge can be used to reduce the degrees of freedom by eliminating electrodes that 

are unlikely to be involved in the task and by grouping electrodes into regions. A barrier 

to progress in the field of functional network inference, especially for recording 

modalities with high temporal resolution where spatial averaging is inappropriate, has 

been the inability to match the spatial scale of inferred networks with the spatial scale of 

theoretical models of neural communication. By introducing canonical correlation and 

canonical coherence as coupling measures for functional connectivity analysis in 

Chapters II and III, we allow for the spatial scale of inferred networks to be larger than 

the spatial scale of the recordings. This can be used to infer networks at the level of 

functional areas, which are thought to modulate their connectivity dynamically based on 

the task (Fries, 2005; Kopell et al., 2010; Wang, 2010; Miller et al., 2012). 

 Our tools to deal with high-dimensional network inference, being modular and 

flexible, can be applied to a wide range of experimental paradigms and scientific 

questions. 

1.2 The value of functional connectivity inference 

Functional connectivity inference techniques, such as the framework described 

here, are especially useful for exploratory, descriptive analyses in the absence of strong 

prior knowledge about the nature of underlying coupling. They are therefore very flexible 

and applicable to a wide range of paradigms. However, because they do not incorporate 

generative models of the data or the mechanisms of communication between areas, they 

do not make inferences about the causes of the inferred connections. Rather, the 
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descriptive coupling statistics used in functional connectivity analysis are intended to 

detect possible signatures of communication, which require subsequent interpretation on 

the part of researchers.  

The fact that functional connectivity does not use generative models of coupling 

mechanisms does not imply that functional connectivity cannot be tailored to different 

potential coupling mechanisms. For example, in Chapter III we describe how coherence 

and canonical coherence can outperform correlation and canonical correlation in the 

situation where the underlying connectivity is inherently rhythmic, as the communication 

through coherence hypothesis proposes (Fries, 2005; Fries et al., 2007; Fries, 2009). 

Coupling statistics that are well-matched to the underlying coupling will in general be 

able to detect coupling better than poorly matched statistics of the same complexity. 

1.3 Contributions to speech production research 

Chapter IV applies the techniques developed in Chapters II and III to an overt 

reading paradigm. Since speech research has historically been limited to data with low 

temporal resolution, using ECoG data has the potential to offer new insights into the 

dynamics of speech processing. In order to ground the analysis in familiar metrics, we 

describe the functional connectivity results in the context of first-order features of the 

data: ERPs, spectrograms, and broadband power averages. 

The ERPs averaged over electrodes in rolandic cortex were consistent with prior 

work on the readiness potential, specifically the late-phase readiness potential over 

primary motor cortex (Shibasaki and Hallett, 2006). Over auditory cortex, the ERPs 

varied significantly across electrodes. This result has been observed before (Flinker et al., 
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2010), and may be related to the fine-grained functional organization of higher order 

auditory cortex. 

The first-order spectral features of the data were also consistent with previous 

research, showing a beta depression (Pfurtscheller and Lopes da Silva, 1999) and a 

broadband power increase (Edwards et al., 2010). The beta depression occurred 113 ms 

before speech onset over rolandic cortex and 41 ms after speech onset over auditory 

cortex, averaged over all subjects. The broadband increase occurred later, with an 

average onset of 52 ms before speech onset for rolandic cortex and 92 ms after speech 

onset for auditory cortex. The rolandic broadband latency accords well with predictions 

from the DIVA model, which proposed a 40 ms latency from primary motor cortex 

activation to EMG activity (Guenther et al., 2006). The DIVA model has an auditory 

latency of 20 ms: the mismatch here is likely due to the coverage of auditory electrodes in 

this study, which did not include primary auditory cortex. 

In terms of networks, two subjects (D and E) showed interesting network 

dynamics. Subject E had dense correlation-based connectivity between rolandic 

electrodes that was positive within electrodes over the precentral gyrus and negative 

between the precentral and postcentral gyri. The precentral connections appeared at about 

the same time as alpha coherence-based connections, about 150 ms before speech onset, 

and the pre- to postcentral connections appeared at about the same time as negative beta 

connections, right at speech onset. The negative beta connections were likely related to a 

loss of beta power and suggest that the baseline interval, during silences, contained 

coherent beta activity across the central sulcus. This is consistent with a role of beta in 
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motor preparation and attention (Engel and Fries, 2010; Wang, 2010). The increase in 

alpha coherence was not accompanied by an increase in alpha power, and may point to a 

common thalamic driver (Hughes, 2005; Jones et al., 2009). Subject D had similar alpha-

frequency effects, and a different beta-frequency loss of coherence, between rolandic and 

auditory cortex, potentially pointing to rolandic-auditory coherence during baseline. 

While these results only occurred in 2 of 9 subjects, it is notable that these two subjects 

had a relatively large number of trials and good spatial coverage of rolandic cortex. 

Hence a more structured experimental paradigm with more trials may uncover more 

robust effects. 

2. Future Directions 

2.1 Statistics 

In many situations, the number of statistical inferences grows as the 

dimensionality increases. This is the case with the functional network analyses described 

here, which estimate the edge weight for each edge and apply a statistical hypothesis test 

to each. This raises the problem of multiple testing, which we correct using the False 

Discovery Rate procedure, FDR (Benjamini and Hochberg, 1995; Kramer et al., 2009). 

FDR, however, is sensitive to model misspecification, a problem that becomes 

increasingly noticeable with large numbers of hypothesis tests. We dealt with this 

potential problem in Chapter III by improving the statistical model introduced in Chapter 

II, including more sources of known variance. Another approach, the empirical FDR 

(Efron, 2010), uses the data itself to define a null hypothesis, under the assumption that 

most of the hypothesis tests should fall under the null. This approach is a part of a family 
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of techniques developed largely for large-scale genetics work, and could be very useful 

for functional connectivity analysis1. 

2.2 Speech 

Speech is difficult to study. It involves a large number of brain areas both cortical 

and subcortical, all interacting dynamically to produce coordinated behavior at a fine 

temporal scale. This requires recording modalities that have fine temporal and spatial 

resolutions in addition to wide spatial coverage. No current recording modalities have all 

of these features, so speech researchers must find ways to compromise and target parts of 

the system. The fact that speech can only be studied in humans further limits the 

recording modalities that are available for scientific use. While ECoG has good temporal 

resolution, adequate spatial resolution and spatial scale, and good signal-to-noise ratios, 

the fact that it is limited to patients undergoing a stressful clinical procedure limits the 

amount of time that researchers can spend with the patients and the quality and amount of 

the data collected. In this context, it is essential to be able to optimize the statistical 

techniques being applied to the data to maximize statistical power. 

The methodologies developed in this dissertation are designed for specifically this 

situation. While the network results were noisy, there is reason to believe that with a 

more structured experimental paradigm and more trials, the interesting network results 

from Subjects D and E may replicate to more subjects.  

                                                        
1 I tried this, but ran into problems because the connections in my data set do not easily separate 
into empirical null distribution vs everything else. That is, I get empty networks. I interpret this to 
mean that binary networks are not supported by the data. It would be interesting to try in a 
context with more statistical power. 
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In addition, other statistical techniques could narrow down the sources of the 

effects observed in Chapter IV. For example, the alpha coherence over rolandic cortex 

during speech was suggestive of all-to-all connectivity, which could be better detected 

using a region-level coherence statistic such as global coherence (Cimenser et al., 2011). 

This type of strong region-level coherence may be indicative of a common thalamic 

driver, and an approach such as dynamic causal modeling (Stephan et al., 2010) could be 

used to test a generative model based on this hypothesis against other potential models. 

Developing generative models is the logical next step after the descriptive analytics have 

been used to develop hypotheses. 

DIVA is one such generative model, and it could be tested and improved using 

ECoG experiments. The specific features of ECoG data open up possibilities to study 

aspects of speech that have previously been difficult to study. For example, almost all 

ECoG patients have coverage of primary motor cortex, primary somatosensory cortex, 

and the superior temporal gyrus. These areas are all important components of the 

feedback subsystems in the DIVA model, meaning that ECoG data could be particularly 

suited to testing the model’s predictions of speech network responses during auditory or 

somatosensory perturbation paradigms (Guenther et al., 2006). 
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