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ABSTRACT

This project concerns the computational solution of inverse problems formulated

as partial differential equation (PDE)-constrained optimization problems with interior

data. The areas addressed are twofold.

First, we present a novel software architecture designed to solve inverse problems

constrained by an elliptic system of PDEs. These generally require the solution of

forward and adjoint problems, evaluation of the objective function, and computation

of its gradient, all of which are approximated numerically using finite elements. The

creation of specialized “layered” elements to perform these tasks leads to a modu-

lar software structure that improves code maintainability and promotes functional

interoperability between different software components.

Second, we address issues related to forward model definition in the presence of

boundary condition (BC) uncertainty. We propose two variational formulations to

accommodate that uncertainty: (a) a Bayesian formulation that assumes Gaussian

measurement noise and a minimum strain energy prior, and (b) a Lagrangian formu-

lation that is completely free of displacement and traction BCs.
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This work is motivated by applications in the field of biomechanical imaging,

where the mechanical properties within soft tissues are inferred from observations of

tissue motion. In this context, the constraint PDE is well accepted, but considerable

uncertainty exists in the BCs. The approaches developed here are demonstrated on

a variety of applications, including simulated and experimental data. We present

modulus reconstructions of individual cells, tissue-mimicking phantoms, and breast

tumors.
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1

Chapter 1

Introduction and Background

1.1 Motivation

Biomechanical imaging (BMI) is used to visualize the mechanical properties of living

structures. Physicians routinely use palpation to diagnose and characterize the health

state of various tissues. BMI is an extension and quantitative refinement of this idea

capable of reaching regions of the body and length scales that are impossible to touch,

as well as determining mechanical properties other than linear elastic modulus.

The ingredients necessary for producing a biomechanical image are a measurement

of tissue motion (displacement), a mechanical model of the tissue, and a means of

inferring the parameters in the model from the observed tissue deformation. The

parameter distribution may then be displayed as a two or three dimensional image.

A key component of BMI is the solution of an inverse boundary value problem.

In such a problem, the effect (displacement) is used to determine the cause (the me-

chanical model parameters). Not surprisingly, a forward problem is one where the

cause determines the effect. Forward problems are “well-posed”, meaning that they

satisfy Hadamard’s conditions: a solution exists, the solution is unique, and small

discrepancies in the input problem data have proportionate effects on error in the

solution (Hadamard, 1902). Inverse problems are often deemed to be “ill-posed” as

they violate some or all of these conditions. The introduction of additional assump-

tions not present in the forward problem is required to render a well-posed problem.

Frequently, inverse problems can be thought of as partial differential equations where
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the coefficients in the equation are the unknowns.

BMI has its roots in strain imaging, a technology invented over twenty years ago

(Ophir et al., 1991). In its original form, a strain image or “elastogram” is acquired by

quantifying tissue motion resulting from a quasi-static compression imposed through

an ultrasound (US) transducer. Displacement is estimated by comparing an US image

taken before deformation to another acquired afterwards.

B-mode US images are essentially the envelopes of a series of A-lines. Each A-

line is a RF voltage signal of the echoes recorded from locations along the path

of ultrasound pulse propagation. Figure (1·1) depicts an A-line before and after an

applied compression. The peak of the cross-correlation of a segment of an undeformed

A-line with its homologous deformed partner gives an estimate of how much that

segment moved. Performing this cross-correlation for many segments in each A-line

yields a two-dimensional image of tissue motion.

Figure 1·1: Deformation causes sections of the A-line to move non-
uniformly
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In current clinical practice (Barr, 2015), the tissue elastic modulus distribution

is inferred from a strain image. This inference is based on the assuming a uniform,

uniaxial stress field

σij = 0, ij 6= yy (1.1)

σyy = σ0 = constant (1.2)

σyy = Eεyy =⇒ (1.3)

E =
σ0

εyy
(1.4)

Further,

εyy =
∂uy
∂y
≈ ∆uy

∆Ly
(1.5)

Thus, measuring uy everywhere and assuming σyy is constant allows one to obtain

an approximation of E. Here y is the coordinate in the “axial” direction, which is

defined to be the direction of ultrasound pulse propagation.

A primary application to date of strain imaging has been detection and diagnosis

of breast tumors in concert with B-mode US imaging, as they often can be clearly seen

in the elastogram, the size and shape of which can sometimes relay useful information

to the physician (Burnside et al., 2007)(Barr et al., 2012).

The assumptions of uniform stress and a one dimensional relationship between

stress and strain are violated in complex three dimensional tissues. As a result strain

images often contain artifacts that can obscure their interpretation, as shown in Figure

(1·2). Their reproducibility (operator dependence) is also an issue (Barr et al., 2012),

as different amounts of applied stress produce different images. These problems have
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slowed clinical adoption of strain imaging and limit its ultimate clinical potential.

(a) (b)

Figure 1·2: (a) Axial strain, (b) Reconstructed modulus (Richards,
2007)

Two and three dimensional constitutive models are used in BMI, and as a result

the inverse problem is more difficult to solve than the one posed in strain imaging. The

extra work involved in using more advanced mechanical models yields several benefits,

however, as BMI is capable of 1) producing images of elastic modulus that are superior

to those obtained by strain imaging and 2) quantifying mechanical properties other

than elastic modulus, such as viscosity, nonlinearity (Oberai et al., 2009)(Goenezen

et al., 2011), anisotropy (Shore et al., 2011), and porosity (Berry et al., 2006) (which

may contain more interesting information about the tissue than the elastic modulus.)

Direct (Albocher et al., 2009) and iterative (Oberai et al., 2004) computational

methods for solving the BMI inverse problem exist. While direct methods take less

time to produce a solution, they are less capable of dealing with noisy and incomplete

data than iterative methods. In the context of US BMI, only the axial component

of the measured displacement field is considered reliable, so the iterative approach is

usually taken.
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1.2 Iterative Inversion

In the iterative approach the inverse problem is formulated as an optimization problem

constrained to satisfy the elasticity equations. The objective function consists of a

displacement data matching piece D and a regularization term R.

π[µ(x))] = D[u(µ(x))− um] + αR[µ(x)] (1.6)

Here µ(x) represents the mechanical property of interest, usually the shear mod-

ulus. The data match term is a function of the mismatch between the measured

displacement field, um, and predicted displacement field, u. The regularization term

imposes an additional assumption(s) about the smoothness of the material param-

eters, and helps overcome the ill-posedness of the inverse problem. The constant α

controls the regularization’s contribution to the solution. Specific forms for D and

R vary from application to application, and examples will be given later in the doc-

ument. The implicit relationship between u and µ is captured in a mathematical

model of the physical experiment, which can be formally expressed as the weak form

of the governing elliptic boundary value problem:

A(w,u;µ) = l(w) ∀ w ∈ V (1.7)

u ∈ S ≡ {u | ui ∈ H1(Ω), ui = gi on Γu} (1.8)

w ∈ V ≡ {w | wi ∈ H1(Ω), wi = 0 on Γu} (1.9)

µ ∈M ≡ L∞(Ω) (1.10)

Iterative inversion begins with an initial guess of the material parameter distribu-

tion µ0(x). In order to evaluate the value of the objective function for this choice of

parameter, the displacement field u(x) resulting from these parameters is computed
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by discretizing (1.7) with finite elements and solving the resultant system of equations

using Newton’s method. An optimization algorithm is used to find an update to µ(x)

that will reduce the value of the objective function (1.6). Figure (1·3) provides a

flowchart representation of this process.

Math
Model

Computer
  Model u(x)

Additional
   Info

Modulus
   µ(x)

u(x)=u  (x)?m

Measured
   u  (x)m

Update
   µ(x)

µ(x)

No

Yes

Done!

Figure 1·3: Iterative inversion flowchart

1.2.1 Optimization

One way in which optimization algorithms can be classified is by the amount of

knowledge of the objective function and its derivatives they require. For example,

brute force search, evolutionary algorithms, and simulated annealing require only

evaluations of the objective function. Gradient methods, such as steepest descent

and quasi-Newton methods, need both the value of the function and its gradient

at each iteration. Finally, Newton’s method requires evaluation of the function, its

gradient, and its Hessian.

A straightforward approach to obtaining the gradient and Hessian is to use a

finite difference approximation. If there are N discrete unknowns representing the

discretized parameter µ, then finite difference computation of the gradient requires
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N forward problem executions (beyond the first), while determination of the Hes-

sian takes O(N2) forward solves (Nocedal and Wright, 2006). In the applications

considered here, N is often between 102 − 106, making the use of the finite differ-

ence approximation computationally intensive w.r.t. gradient methods and rendering

the use of Newton’s method intractable. Generally, Newton’s method will converge

in fewer iterations than a gradient method on a given problem, which in turn will

converge in fewer iterations than a method that requires function evaluations only.

There is, however, a technique known as the adjoint method (Oberai et al., 2003) that

can be used to obtain the gradient with one additional linear solve. Adoption of this

technique enables the use of gradient optimization methods on practical problems.

The derivation of the adjoint method often begins with the Lagrangian functional

L[u,w, µ] = π[u, µ] +A(w,u;µ)− l(w) . (1.11)

The function w here plays the role of a Lagrange multiplier. We take variations w.r.t.

each of the Lagrangian’s arguments. Here V is the space of variations containing δu

and δw, and the space M contains variations δµ of µ. Equations (1.12) and (1.13)

are required to vanish for all variations in V . The continuous equations (1.12) - (1.14)

are discretized using the finite element method, but for simplicity of presentation we

leave them as is in the following.

DwL · δw = A(δw,u;µ)− l(δw)
set
= 0 ∀ δw ∈ V (1.12)

DuL · δu = DuD[(u− um)] · δu+DuA(w,u;µ) · δu (1.13)

set
= 0 ∀ δu ∈ V

DµL · δµ = DµA(w,u;µ) · δµ+ αDµR[µ] · δµ (1.14)
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The adjoint approach to solving this coupled system of PDEs procedes as follows.

Assume we know the value of the material parameter µ at the current iteration. In

the first step, the state equation (1.12) is solved for u. Note that on the constraint

surface defined by (1.12), the objective function (1.6) and the Lagrangian (1.11) are

equal.

Next the adjoint equation (1.13) is solved for w. Application of equations (1.12)

and (1.13) yields a simplified expression for the differential of the Lagrangian, which

can be shown to be equal to the gradient of the objective function w.r.t. to the

material parameter. (Strang, 2007).

δL = ���
���DuL · δu+((((

((DwL · δw +DµL · δµ (1.15)

Dµπ · δµ = DµL · δµ (1.16)

Thus, the control equation (1.14) provides a formula for the gradient of the ob-

jective function in the direction of an arbitrary test function δµ.

A popular and efficient gradient-based optimization algorithm is the quasi-Newton

method L-BFGS-B (Byrd et al., 1995). It stores (a limited number of) past values

of updates to the objective function and gradient and uses them to construct an ap-

proximation to the inverse Hessian (which is never explicitly stored). This algorithm

is also capable of enforcing box constraints L and U on µ. The use of such constraints

is often necessary because some material parameters (e.g. shear modulus, thermal

conductivity) are strictly positive quantities. The value of the objective function π

and its gradient Dµπ are computed from the current u, w, and µ iterates and sent

to the optimization routine, which returns an update to the material parameter. The

process then begins again and continues until a convergence criterion is met, a speci-

fied number of iterations has passed, or the optimization algorithm is unable to find a

suitable direction of descent. An example convergence plot is shown in Figure (1·4).
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Figure 1·4: Objective function convergence example

1.3 Thesis Organization

In Chapter 2 we describe a modular software framework for the inversion algorithm

discussed in this chapter. Chapters 3 and 4 focus on formulations of the constraint

equation that do not require explicitly assumed BCs. Chapter 3 discusses a Bayesian

formulation that assumes Gaussian measurement noise. In Chapter 4 we introduce

a Lagrangian approach free of any displacement and traction BCs. Chapter 5 fea-

tures applications of the products of Chapters 2-4 to simulated and experimental

data. Chapter 6 contains some reflections on the findings in this thesis and a conclu-

sion. Appendix A presents derivations of the linear incompressible elasticity models

used throughout the document, and Appendix B contains simulated inverse problem

examples that serve as test data for the formulations of Chapters 3 and 4.
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Chapter 2

Software Framework

2.1 Introduction

This chapter describes the finite element method (FEM) implementation of the it-

erative inversion algorithm discussed in Chapter 1. It begins with an overview of

the “layered” finite elements concept that defines the computational framework pre-

sented herein. Then a detailed description of the discrete subproblems that arise at

each iteration is given and the definition and role of each element layer is specified.

2.2 Overview

The inverse problems under consideration in this thesis may all be characterized by

the desire to find a stationary point of the following abstract Lagrangian:

L[u,w, µ] = D[u− um] + αR[µ] +A(w,u;µ)− l(w) (2.1)

In equation (2.1), the expressions D[u−um] and R[µ] denote the data match and

regularization pieces of the objective function, respectively. The A(w,u, µ) − l(w)

terms represents the weak form of a boundary value problem constraint. In this

example we assume that l(w) = 0.

To illustrate the layered FEM concept, we suppose that we wish to evaluate the

Lagrangian for a specific choice of (u,w, µ).
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2.2.1 Spatial Partitioning into Finite Elements

Figure 2·1: A 2D rectangular finite element

In the finite element method the domain Ω is divided into pieces (e.g. triangles,

quadrangles, tetrahedra, hexahedra) Ωe called finite elements. The superscript e is

used to denote an elemental quantity. Each element has nodes located along its edges

or vertices that are shared between neighboring elements. We define Nel to be the

total number of elements, Nno the total number of nodes, and Nsd the number of

spatial dimensions.

The continuous field variables (e.g. u, w, and µ) are approximated by linear

combinations of a finite basis of interpolatory shape functions. A shape function NA

has the property of being equal to one at node A and zero at all other nodes. Given a

field’s values at the nodes, the shape functions can be used to interpolate the function

over Ω, as shown in Figure (2·2).

w ≈ wh =
Nno∑
A=1

Nsd∑
i=1

wAi NAêi (2.2)

u ≈ uh =
Nno∑
B=1

Nsd∑
j=1

uBj NBêj (2.3)

µ ≈ µh =
Nno∑
C=1

µCNC (2.4)

The FEM approach to evaluating a the integral of a function f over the domain

is to compute f e (the specialization of f to Ωe) over each element and sum, viz:
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1 2 3 4

u
u

2

3u1 u4

Figure 2·2: 1D example of uh (dashed line) and its components in a
piecewise linear basis

∫
Ω

f dΩ =

Nel∑
e=1

∫
Ωe

f e dΩ (2.5)

Therefore, the Lagrangian can be evaluated according to equation (2.6).

L =

Nel∑
e=1

Le[uh,wh, µh] (2.6)

A straightforward way to implement (2.6) is to write a subroutine/class (an “el-

ement routine”) that will compute Le given the geometrical information that defines

Ωe and uh, wh, and µh inside the element. This process is depicted in Figure (2·3).

Figure 2·3: Straightforward approach to computing Le
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2.2.2 Functional Partitioning into Layered Elements

An alternative approach to computing (2.6) is to create a separate software imple-

mentation for each operator that appears in (2.1). These elements share geometrical

information that corresponds to the same region of space, but perform different func-

tions as illustrated in Figure (2·4).

Figure 2·4: Layered approach to computing Le

The material model defined by Ae determines the type of inverse problem being

solved (e.g. elasticity or heat conduction) and material parameter to be estimated

(e.g. shear modulus or thermal conductivity). The data match De and regularization

terms Re are application dependent and their specific forms can vary even within

a given class of inverse problems. Although zero in the example in this section,

the remaining element layer le is associated with external forcing terms that may

be present in the constraint equation. This partitioning scheme allows all material

models to interface with all available data match, regularization, and forcing terms.
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Thus, this modular software structure is more flexible than the straightforward “single

element routine” approach in addition to being a more sustainable software design.

2.3 Discrete Subproblems

We now describe in detail the subproblems that arise at each iteration of the inverse

algorithm. Each section begins with a problem statement and contains a derivation

of the element-level quantities that pertain to each problem. We restate the function

spaces for the field variables and their weights here for reference.

u ∈ S ≡ {u | ui ∈ H1(Ω), ui = gi on Γu} (2.7)

w, δw, δu ∈ V ≡ {w | wi ∈ H1(Ω), wi = 0 on Γu} (2.8)

µ, δµ ∈M ≡ L∞(Ω) (2.9)

2.3.1 Step 1: Solve the State Equation

• Problem Statement: Given the current parameter distribution (e.g. shear mod-

ulus), compute the current state variable (e.g. predicted displacement).

A(δw,u;µ) = l(δw) ∀ δw ∈ V (2.10)

The first (and most involved) step of the inversion algorithm is the solution of the

discrete state equation (also called the constraint equation or forward problem) for

uh.

Equation (2.10) states the continuous form of the problem. It is the weak form

of the PDE constraint. The operator A(·, ·) can in general be nonlinear its second

argument, while the l(·) operator is linear.
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Importantly, equation (2.10) holds when restricted to a finite dimensional subspace

Vh ⊂ V .

A(δwh,u;µ) = l(δwh) ∀ δwh ∈ Vh (2.11)

Galerkin’s method is to replace u and µ in (2.11) by finite dimensional approximations

uh ∈ Sh and µh ∈Mh to obtain a discrete system of equations

A(δwh,uh;µh) = l(δwh) ∀ δwh ∈ Vh. (2.12)

Generally, equation (2.12) represents a nonlinear system of equations. Newton’s

method can be used to solve a sequence of linear problems that converges to the

solution of the nonlinear problem.

Application of Newton’s method produces a new bilinear operator a(·, ·) defined by

(2.14). Obviously, if A(·, ·) is bilinear then it is equal to a(·, ·). Even in the linear case,

however, a Newton approach is useful in the computational implementation because

it handles the essential boundary conditions gh in a convenient manner. While the

increment ∆uh is zero for fixed dofs, gh can be accounted for through the A term on

the rhs of (2.14).

DuA(δwh,uh;µh) ·∆uh = lim
α→0

(
d

dα
A(δwh,uh + α∆uh;µh)

)
(2.13)

= a(δwh,∆uh, ;µh,uh)

a(δwh,∆uh;µh,uh) = l(δwh)−A(δwh,uh;µh) ∀ δwh ∈ Vh (2.14)

The linear system (2.15) is the matrix representation of the global Newton equa-

tion (2.14). The symbol [·] denotes a matrix and {·} a vector. The operators in

equation (2.14) are defined over Ω and possibly Γ as well. Recall that in FEM, inte-

grals over Ω and Γ are broken into a sum of integrals over finite elements Ωe and Γe.

These elemental integrals (lowercase letters) are numerically integrated using Gauss
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quadrature, and the resulting terms are assembled into their correct locations in the

global linear system (uppercase letters). This computation is performed entirely using

only the material and forcing elements.

[S]ABij {∆U}Bj = {Fext}Ai − {Fmat}Ai (2.15)

[S]ABij = ANel
e=1

(
[se]abij

)
(2.16)

{Fext}Ai = ANel
e=1 ({f eext}ai ) (2.17)

{Fmat}Ai = ANel
e=1 ({f emat}ai ) (2.18)

The matrix [S] is called the tangent stiffness matrix. It represents a linearization

of the stiffness matrix [K](u) about the current displacement iterate. It is extremely

sparse due to the compact support of the shape functions. Several efficient storage

schemes (e.g. CSR, CSC) exist for such matrices. The rhs of (2.15) is known as the

residual. The convergence of the nonlinear problem can be assessed by computing its

norm.

When assembling (via the assembly operator A) the global linear system, if a

given entry is to be placed in a column/row of the global tangent stiffness matrix or a

row of the global residual vector that corresponds to a fixed degree of freedom (dof)

then it is ignored. Consequently, only dofs which are unknown are represented in the

global system.

The Newton iterations must begin with an initial guess. Zero is usually used

except for those dofs which are fixed in the definition of the function space. Thus

computing the residual at the element level accounts for the essential BCs through

the f emat term.
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2.3.2 Step 2: Evaluate the Objective Function

• Problem Statement: Given the current parameter distribution and state vari-

able, compute the data match and regularization pieces of the objective func-

tion.

π = D[(u− um)] + αR[µ] (2.19)

The finite element approximation of the objective function is computed by placing

the solution of the state equation uh, the measured displacement field (um)h, and

current modulus iterate µh into (2.19). The objective function is computed at the

element level by the data match and regularization elements and accumulated.

π = D[uh − (um)h] + αR[µh] (2.20)

=
Nel∑
e=1

πedata + πereg

If a point-evaluation optimization method is being used rather than a gradient

approach then one skips to step 5. Otherwise, one procedes to the next step.

2.3.3 Step 3: Solve the Adjoint Equation

• Problem Statement: Given the current parameter distribution and state vari-

able, solve for the Lagrange multiplier.

DuA(w, δu;µ) · δu = −DuD[(u− um)] · δu ∀ δu ∈ V (2.21)

This problem is always linear as the operator A is linear in its first argument and

is linearized about the solution of the discrete state equation.

As in the previous section, we focus our attention on a restriction of (2.21) to the

subspace Vh ⊂ V ,
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DuA(w,u;µ) · δuh = −DuD[(u− (um))] · δuh ∀ δuh ∈ Vh. (2.22)

We obtain the Galerkin approximation of adjoint equation by substituting wh ∈ Vh,

uh ∈ Sh, and µh ∈ Mh into (2.22) and recalling the directional derivative of a

functional.

DuA(wh,uh;µh) · δuh = lim
α→0

(
d

dα
A(wh,uh + αδuh;µh)

)
(2.23)

= a(wh, δuh, µh,uh)

The matrix form of equation (2.24) is stated in (2.25). We take the transpose of

both sides of (2.25) and observe that the transpose of the tangent stiffness matrix

from the final Newton iteration of the state equation appears in (2.26).

a(wh, δuh;µh,uh) = −DuD[(uh − (um)h)] · δuh ∀ δuh ∈ Vh (2.24)

{W}Ai [S]ABij = {Fdata}Bj (2.25)(
[S]ABij

)T
{W}Bj = {Fdata}Ai (2.26)

{Fdata}Ai = ANel
e=1 ({f edata}ai ) (2.27)

Since the lhs of (2.26) has been computed previously, the only additional work

required to build the linear system (besides transposing [S] if it is not symmetric)

is to form the rhs Fdata. We note that the data match elements are responsible for

computing this quantity.
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2.3.4 Step 4: Evaluate the Gradient

• Problem Statement: Given the current parameter distribution, state variable,

and Lagrange multiplier, compute the material and regularization contributions

to the gradient.

Dµπ = DµA(w,u;µ) + αDµR[µ] (2.28)

The discrete formula for the gradient is obtained by substituting the finite element

functions uh, wh, and µh (all known at this point) into (2.28).

Dµπ · δµh = DµA(wh,uh;µh) · δµh + αDµR[µh] · δµh (2.29)

Equation (2.29) can be written in vector form as

{G}CδµC = {Gmat}CδµC + {Greg}CδµC . (2.30)

The gradient is computed at the element level and assembled into a global vector.

{G}C = ANel
e=1

(
{gemat}c + {gereg}c

)
(2.31)

This step requires contributions from the material and regularization elements.

2.3.5 Step 5: Material Parameter Update

An optimization algorithm is used to update the desired material property distri-

bution, based on the objective function value, and possibly its gradient, and their

histories. This calculation is independent of the method by which the objective func-

tion’s value and its gradient are computed.
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2.4 Finite Element Layers

There are four operators present in the inverse problem, and consequently there are

four finite element layers:

• A(·, ·)→ Material elements

• l(·)→ Forcing elements

• D[·]→ Data match elements

• R[·]→ Regularization elements

2.4.1 Material Elements

The material element contributes three terms to the discrete inverse problem.

• The tangent stiffness matrix [se]

• The Newton iteration rhs contribution {f emat} present in the state equation

• The material component of the gradient {gemat}

The material element is part of the specification of the constraint equation. In the

context of BMI it represents a mechanical model of the measured system, but more

generally the material element provides information about the physical response of

a material. Important considerations include the spatial dimension of the problem,

kinds of field variables (displacements, pressures, stresses) that interact with the ma-

terial, simplifying modeling assumptions (e.g. plane stress or strain), and constitutive

model. A library of material elements allows for the solution of forward and inverse

problems for a diverse array of modeling scenarios. Multiphysics problems could be

approached using an appropriate combination of material elements.
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2.4.1.1 Log Optimization

In BMI, the material property most commonly sought is the shear modulus µ(x).

Alternatively, the problem can formulated in terms of the shear compliance s(x),

which is defined to be the reciprocal of µ. Tarantola argues convincingly that such

problems should be constructed in terms of the log of either quantity (Tarantola,

2002). We introduce a new optimization variable ψ defined to be

ψ = log(
µ

µref

) (2.32)

There are several benefits to formulating the problem in terms of ψ. First, the

solution is not biased towards a stiffness or compliance interpretation. Second, in

principle the inverse problem no longer requires box constraints as ψ can be positive

or negative. In practice, although box constraints on ψ are not required they can

nevertheless be useful to have. Finally, results obtained using this formulation tend

to show more accurate inclusion to background contrast than those obtained using a

conventional stiffness formulation.

Computational implementation of the ψ formulation is relatively straightforward.

It can be accomplished by modifying existing material elements and replacing µ with

ψ in the regularization terms. The parts of the material element that pertain to the

state equation must be altered so that µ is computed according to equation (2.33).

The material component of the gradient can be related to its µ derivative (already

implemented in the material elements) using the chain rule as shown in (2.34).

µ = µref exp(ψ) (2.33)

D

Dψ
=

Dµ

Dψ

D

Dµ
= µ

D

Dµ
(2.34)
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2.4.2 Forcing Elements

Forcing elements drive the state equation in the absence of or in addition to Dirichlet

BCs through the rhs vector {f eext}.

The two types of continuous forcing elements are flux (per unit area) and body

(per unit volume) forces. The physical interpretation of these is problem dependent.

For example in elasticity, the flux force is a traction and a typical example of a body

force would be that due to a gravitational field. In a heat conduction problem the

analogous quantities are heat flux and heat source.

The discrete form of these forces can be obtained through a lumped or distributed

representation. The decision to use one or the other is often related to how a mea-

surement of the force was obtained or approximated.

In the case of distributed forces, the shape functions are used to determine ele-

mental forms of the traction t and body force b vectors.

{f eext}ai =

∫
Γe

tdiNaNd dΓ +

∫
Ωe

bdiNaNd dΩ (2.35)

Lumped forces are essentially distributed forces that have by some means been

“integrated-out” such that the forcing vector is a sum of nodal contributions.

2.4.3 Data Match Elements

The data match element is responsible for computing two quantities:

• The data match piece of the objective function πedata

• The rhs of the adjoint problem {f edata}

The justification for the use of a given form of data match term can be explained by

viewing the inverse problem as a statistical estimation problem. For example, the use

of a weighted (T in equation (2.36) is a positive semi-definite weighting tensor) least
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squares term data match term corresponds to the assumption that the measurement

noise is distributed as a Gaussian random field with inverse covariance matrix T TT .

D[u− um] =
1

2

∫
Ω

T (u− um) · T (u− um) dΩ (2.36)

DuD[u− um] · δu =

∫
Ω

T TT (u− um) · δu dΩ (2.37)

πedata =

∫
Ωe

T cijNc(u
a
j − (um)aj )NaT

d
ikNd(u

b
k − (um)bk)Nb dΩ (2.38)

{f edata}ai =

∫
Ωe

(TkiTkj)
dNd(u

b
j − (um)bj)NaNb dΩ (2.39)

A data match term based on the L1 norm is useful when the measurements contain

a multitude of outliers, the presence of which is not consistent with an assumption of

normally distributed noise. Such a term with equal weights can be associated with

a Laplace distribution, but it is not clear what the distribution associated with a

weighted L1 term (as would be used in ultrasound BMI) is.

The continuous form of a weighted L1 data match term is given below. It is more

difficult to implement computationally because of its nonlinearity and the unbound-

edness of its derivative at points where u = um.

πdata =

∫
Ω

|T (u− um)| dΩ (2.40)

=

∫
Ω

√
T (u− um) · T (u− um) dΩ (2.41)

DuD[u− um] · δu =

∫
Ω

T TT (u− um) · δu
T (u− um) · T (u− um)

dΩ (2.42)
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In some inverse problems measurements are available at only isolated points in

the domain. A discrete objective function is useful in such cases. Equation (2.43) is

an example of a least squares version of such a term.

D[u− um] =
N∑
i=1

(ui − (um)i)
2 (2.43)

2.4.4 Regularization Elements

The regularization element calculates the following two quantities:

• The regularization piece of the objective function πereg

• The regularization component of the gradient {gereg}

Regularization is added to ill-posed problems to enable the solution of a “nearby”

well-posed problem. The regularization term represents the prior distribution in a

Bayesian formulation. It smooths the solution of the inverse problem, prevents over-

fitting of the data, and “fills in gaps” where there is insufficient data to determine

µ.

TV regularization biases the solution of the inverse problem towards piecewise-

constant material property distributions. This type of solution is expected when

looking for stiff tumors within a soft background, or for soft lipid-filled plaques in a

stiffer background in cardiovascular imaging.

R[µ] = αTV

∫
Ω

√
(∇µ)2 + β2 dΩ (2.44)

πereg = αTV

∫
Ωe

√
µcNc,iµdNd,i + β2 dΩ (2.45)

{gereg}c = αTV

∫
Ωe

Nc,jµ
dNd,j√

µaNa,iµbNb,i + β2
dΩ (2.46)
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The utilization of a regularization term based on the H1 semi-norm is appropriate

when the material parameter is expected to vary smoothly (e.g. is of a Gaussian

or exponential functional form). This kind of regularization penalizes both local

oscillations due to noise and jumps due to material property discontinuities.

R[µ] =
αH1

2

∫
Ω

∇µ · ∇µ dΩ (2.47)

πereg =
αH1

2

∫
Ω

µcNc,iµ
dNd,i dΩ (2.48)

{gereg}c = αH1

∫
Ω

Nc,iµ
dNd,i dΩ (2.49)

Regularization based on a penalty of the L2 norm of the solution is simple to

implement and can produce reasonable results when used on relatively noise-free

data. Material property fields with “small” L2 norms can still be highly oscillatory,

so solutions obtained using this type of regularization tend to be considerably less

smooth than those obtained with H1 semi-norm or TV terms.

R[µ] =
αL2

2

∫
Ω

µ2 dΩ (2.50)

πereg =
αL2

2

∫
Ω

µcNcµ
dNd dΩ (2.51)

{gereg}c = αL2

∫
Ω

Ncµ
dNd dΩ (2.52)

The regularization element implemented in our inversion code uses a linear com-

bination of TV, H1 semi-norm, and L2 regularizations. One can in principle use

all of these forms of regularization simultaneously on an inverse problem, but deter-

mining the “right” regularization constant α can be difficult even when one form of
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regularization is used.

We briefly discuss two strategies for determining α. In the “L-curve” method, the

inverse problem is solved for several values of α and a log-log scatter plot of the size

of the data match vs regularization pieces of the objective function is created. One

then attempts to use the value of regularization that lies in the bend of the “L-curve”,

as this represents a point where the regularization and data match terms are appro-

priately balanced. Another method used to determine α is Morozov’s discrepancy

principle, where one uses a knowledge of the noise present in the measurements to

choose α (Vogel, 2002).

In practice, the choice of which form(s) of regularization to use and how to de-

termine their weights depends on expected features of the inverse problem solution

and information/assumptions related to the measurement process. The strategies

discussed above provide useful guidelines for finding α, but in many situations its

determination often comes down to informed trial and error.

2.5 Discussion

In this chapter we introduced a software architecture for solving inverse problems

based on operators that appear in the algorithm subproblems. We explained the

concept of finite element layers and then described the purpose of each layer. This

approach to solving the inverse problem was used to obtain all of the results in the

rest of the document. Although this thesis is focused on the solution of elliptic inverse

problems, a similar structure exists in other classes of PDE-constrained optimization

problems. For example, variations of this framework could be applied to inverse

problems where robin BCs or forcing terms are the parameters of interest.
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Chapter 3

Spring Penalty Elements

3.1 Introduction

In this chapter we consider a reformulation of the elasticity constraint equation that

contains a weighted least squares penalty on the mismatch between measured and

predicted displacement fields. This approach is applied to simulated data, and the

results are compared to those obtained with explicitly enforced assumed boundary

conditions. We observe that the success of this formulation depends on appropriately

choosing the weighting operator in the penalty term.

3.2 Motivation

3.2.1 Uncertain BCs

In elasticity BVPs one must prescribe some data (displacement (Dirichlet BC) or

traction (Neumann BC)) at each point for each component on the boundary for the

problem to be well-posed. One is free, for example, to fix a x component of displace-

ment at a point and a y component of traction at that same point. The measured

displacement field provides a potential source of Dirichlet boundary conditions for

the forward problem. The uncertainty in the measured data field is sometimes high.

Unfortunately, there is rarely a measurement of traction available.

As a result, there are essentially two options traditionally assumed for a BC: im-

pose Dirichlet conditions using from the measured data, or assume some Neumann
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BC based on a priori knowledge of the experimental conditions. The most common

approach taken in US BMI is to apply the axial (the most accurate) component of dis-

placement as a Dirichlet BC, and assume all other BCs to be homogeneous Neumann.

The effectiveness of this approach varies depending on how well the mechanical model

and measured data satisfy the experimental conditions implied by the BCs.

The alternative explored in this chapter offers a more flexible approach. Rather

than rigidly assuming the BCs to be Dirchlet or homogeneous Neumann, the weights

in the penalty term determine the degree to which a given boundary measurement is

enforced. Ideally, these weights are determined by the statistics of the noise present in

the measurements, so that well-characterized measurements are given more emphasis

than poorly characterized ones.

We also describe a formulation where the penalty term acts over the domain

rather than the boundary. Interestingly, the results from this formulation are of con-

siderably poorer quality than those obtained using only information from boundary

measurements, the reasons for which will be explained herein.

3.2.2 Constraining Rigid Body Motion

An additional application of this penalty approach arises in problems where the de-

formation is driven purely by tractions or body forces. In such problems the forward

problem is unsolvable without the presence of information regarding the displacement

field sufficient to constrain its rigid body component.

To motivate the importance of properly constraining rigid body motion, consider

the following 1D example: a bar of length L with constant E and A and applied force

P . The general solution of this problem (where b is a constant determined by the

position at which the bar is fixed), along with the solutions for the scenarios depicted

in Figure 3·1, are:
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u(x) =
PL

EA
x+ b = mx+ b (3.1)

ua(x) = mx (3.2)

ub(x) = m(x− p) (3.3)

a) Fixed at x = 0 b) Fixed at x = p

Figure 3·1: Same loading, different computed displacement

Now assume that a displacement field um(x) was measured in an experiment

where the bar was constrained as depicted in Figure 3·1 b). Suppose P ,L,E, and

A are known exactly and the incorrect rigid body motion shown in Figure 3·1 a) is

imposed when solving the forward problem. The data match norm ‖u − um‖2 will

not be at a minimum. The optimization algorithm will subsequently change E(x)

even though it is correct! Thus, care must be taken to ensure that the rigid body

component of displacement is the same for both the measured and predicted field.

3.3 Bayesian Formulation

We consider the forward problem as a Bayesian (point) estimation of a state given a

noisy measurement, namely

Given um(x) = uexact(x) + n(x) (3.4)

with n ∼ N(0,C) (3.5)

Find u(x) where ∇ · σ(x) + b(x) = 0 (3.6)

and µ(x) = known (3.7)
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3.3.1 Boundary Springs Formulation

According to (3.5), the likelihood of the boundary values of the displacement field u

is given by

πdata ∝ exp

−1

2

∫
Γ

(u− um) ·C−1(u− um) dΓ

 (3.8)

∝ exp

(
−1

2
||C−

1
2 (u− um)||2Γ

)
(3.9)

Our prior assumption on u is that it is the displacement field in a heterogeneous,

isotropic, linear elastic solid. As such, it tends to minimize the strain energy. That

is, fields with lower strain energy are assumed to be much more likely than fields with

higher strain energy. Therefore, we take a prior probability density function (PDF)

on u of the form

πprior ∝ exp
(
−||u||2SE

)
(3.10)

where

||u||2SE =
1

2

∫
Ω

σ(u) : ε(u) dΩ−
∫
Ω

b · u dΩ (3.11)

The posterior PDF is, therefore,

πpost ∝ πdata ∗ πprior ∝ exp

(
−1

2
||u||2SE −

1

2
||C−

1
2 (u− um)||2Γ

)
(3.12)

We define πf [u] to be − log (πpost), and denote C−1 by K. The data-match term

now looks like the energy of springs located along Γ:
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πf [u] =
1

2

∫
Ω

σ(u) : ε(u) dΩ−
∫
Ω

b · u dΩ

︸ ︷︷ ︸
strain-energy

+
1

2

∫
Γ

(u− um) ·K(u− um) dΓ

︸ ︷︷ ︸
boundary spring penalty

(3.13)

The minimizer of (3.13) is the maximizer of (3.12), the M.A.P. (maximum a

posteriori) estimate of the displacement field u given the boundary values of um

and the symmetric spring tensor K.

The entries of K control how much the functional increases if the predicted dis-

placement u deviates from um. As shown above, K may be interpreted as an inverse

covariance operator acting on u−um evaluated on the boundary. An appropriate K

for use with US displacement data would have its eigenvector with the largest eigen-

value oriented along the direction of sound propagation, and considerably smaller

eigenvalues for the other directions.

The Euler-Lagrange equations that arise from (3.13) are

∇ · σ + b = 0, x ∈ Ω (3.14)

t = −K(u− um), x ∈ Γ (3.15)

We note that K ≈ 0 in the directions in which we have little confidence in the

measured displacements. In those cases, the BCs in (3.15) predict zero traction, which

may or may not be appropriate.

3.3.2 Domain Springs Formulation

Alternatively, the data-match term could act over all of Ω instead of only the boundary

Γ, yielding a functional with springs in the domain instead of only on the boundary.

This leads to
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πf [u] =
1

2

∫
Ω

σ(u) : ε(u) dΩ−
∫
Ω

b · u dΩ

︸ ︷︷ ︸
strain-energy

+
1

2

∫
Ω

(u− um) ·K(u− um) dΩ

︸ ︷︷ ︸
domain spring penalty

(3.16)

The Euler-Lagrange equations for this approach are

∇ · σ + b = K(u− um), x ∈ Ω (3.17)

t = 0, x ∈ Γ (3.18)

We note that the boundary springs approach enforces the equilibrium equation

(3.6) exactly in the domain, while the domain springs approach enforces the equilib-

rium equation augmented with forcing terms from the springs.

3.3.2.1 Weak Springs

The addition of a scaled spring-like energy term to the forward problem functional

weighted by a “small” spring tensor can be used to constrain the rigid body mo-

tion using the measured displacements. The purpose of the scaling is to reduce the

strength of the springs such that they do not overly influence the deformation but

are still strong enough to adequately constrain rigid body motion. The weak springs

functional can be viewed as a special case of the domain springs approach where the

springs are “concentrated” at points as shown in (3.19). They provide a means of

addressing this subtle but important computational issue.

πws[u] =
1

2

N∑
i=1

(ui − (um)i) ·K(ui − (um)i) (3.19)
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3.4 Results

3.4.1 Forward Problem Results

Ω

Figure 3·2: Springy bar simulation

The simulated experiment in Figure (3·2) illustrates how the presence of springs

affects the forward problem’s solution. A 10 by 1 units bar is attached to rollers at

the bottom and pulled at the top by springs whose strengths increase logarithmically

from left to right. The end of the springs not attached to the bar are fixed to a

displacement of 0.01 units. On the left, the springs are too weak to produce any

noticeable displacement, while on the right side of the bar the springs are practically

imposing the value they are tied to as a Dirichlet BC. Thus, the size of the spring

constant (which can vary spatially) determines the degree to which u can be different

from um.

We now discuss the use of springs elements on the simulated data presented in

Appendix B. The entries of the spring tensor are as shown in equation (3.20). This

choice reflects the knowledge that the umx is less precise than umy . The scaling constant

κ can be varied to control the strength of the springs.

Kij = κ

(
.25 0
0 1

)
(3.20)

The y components of the noiseless displacement field and noise-corrupted mea-

surement that serves as the input to the forward problem are shown in Figure (3·3).

The results in Figure (3·4) show that as κ increases in the boundary springs for-
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mulation, the boundary values of the predicted displacement field become closer to

those of the measured displacement field. The displacement field in the interior of the

domain remains smooth. Increasing κ in the domain springs formulation causes the

entire displacement field to approach the measurement, as depicted in Figure (3·5).

Noiseless Noisy

Figure 3·3: Plane stress target uy and input umy

Small κ Medium κ Large κ

Figure 3·4: Plane stress boundary springs forward problem uy with
exact µ

Small κ Medium κ Large κ

Figure 3·5: Plane stress domain springs forward problem uy with
exact µ
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3.4.2 Inverse Problem Results

Next we used the springs formulation as the constraint equation in a plane stress

inverse problem. We see in Figure (3·6) that the larger κ is in the boundary springs

approach, the more accurate the inverse problem solution.

Small κ Medium κ Large κ

Figure 3·6: Plane stress boundary springs inverse problem results

The domain springs approach, however, failed to provide reasonable modulus re-

constructions for any κ. Results from the application of domain springs to the plane

stress simulated data are shown in Figure (3·7). The use of domain springs with

large spring constants produced a reconstruction that failed to move off the initial

guess. A spring constant size somewhere between too large and too small to cause

any displacement produced results with incorrect inclusion shapes and contrasts.

Small κ Medium κ Large κ

Figure 3·7: Plane stress domain springs forward problem with exact
µ

Figure (3·8) shows modulus inversions obtained using the boundary and domain

springs approaches in plane strain. The boundary springs reconstruction is consider-
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ably more accurate than the assumed BCs results. Considering the sensitivity of the

plane strain inverse problem to BCs, it is surprising that spring boundary conditions

were able to perform so well. The domain springs approach performed poorly in plane

strain as well.

Boundary Springs Reconstruction Domain Springs Reconstruction

Figure 3·8: Plane strain springs results

3.5 Discussion

The 2D simulated results show that boundary springs can be used to add information

about the deformation that leads to better modulus reconstructions. The assumed

BCs prescribe zero lateral traction at the bottom of the domain, inconsistent with

the zero lateral displacement BC used to generate the problem data. As a result, an

artificially stiff layer is present in both assumed BCs reconstructions, although it is

much more prominent in plane strain (see Appendix B).

Boundary springs can impose the assumed BCs case using a specific choice of

spring tensor Kij. In 2D this can be achieved by setting K11 and K12 to zero while

making K22 infinite (in practice, a large number). If we interpret K as C−1, this case

corresponds the use of a diagonal covariance matrix where the lateral component of

the measurement noise is significantly greater than the axial component.

Techniques for improving estimates of the lateral and elevational components of

displacement in BMI have been and are still being researched. We expect spring
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boundary elements to be useful on such data. First, they allow for “weighted” en-

forcement of displacement boundary conditions, where the weights are based on the

relative noise in each component of measured displacement. Second, if one uses all

the components of the measurement displacement field as a Dirichlet BC (a conceiv-

able choice if the noise in each component is comparable), they will run into issues

associated with the use of an incompressible material model (specifically in plane

strain and 3D). The prescribed Dirichlet BCs must satisfy incompressibility, which

will almost certainly be impossible to achieve due to measurement noise. The use

of spring elements circumvents this issue as the displacements of the springs have no

such requirement.

Recently, the modified error in the constitutive relation inverse problem formula-

tion has been adapted to address uncertainty in displacement boundary conditions

(Bonnet and Aquino, 2015), (Diaz et al., 2015). They include a data-match term

that weights the displacement mismatch over the “unreliable” portion of the bound-

ary, where the displacement BC is not known exactly, in addition to the normal

data-match term in the domain. In their approach, the forward and adjoint problems

are coupled, and the uncertain boundary terms reside in the equation containing the

adjoint operator. This contrasts with our spring boundary element approach, where

the forward and adjoint problems are decoupled and the springs term shows up in the

forward PDE. A final difference is our use of tensors to weight data mismatch terms

(because measurement noise often varies component-wise) while they use constants.

Finally, we discuss possible reasons for the dramatic failure of the domain springs

approach. First, equation (3.17) shows that the equilibrium is not being enforced in

the domain. Second, a large spring constant will force u to be equal to um inside

the domain, which will cause the right hand side of the adjoint problem to be small.

Additionally, the domain springs contribute a term to each entry of the stiffness
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matrix of the forward and adjoint problem. These combined effects diminish the size

of the adjoint variables, which in turn causes the gradient to be small, making the

objective function less sensitive to changes in modulus.
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Chapter 4

CASE Formulation

4.1 Introduction

The adjoint method requires a well-posed forward problem, hence there is a need for

sufficient boundary data to render it so. Measured displacements prescribed on the

boundary are given special status over those measured in the domain, while Neumann

BCs must be assumed as no measurements of traction are typically available. Treating

the BCs in this manner introduces a bias in the solution of the inverse problem.

The formulation discussed in this chapter is designed with the goal of solving the

forward problem without using any displacement and/or traction BCs.

4.2 Incompressible Plane Stress Formulation

We start with a Lagrangian that contains a plane stress elasticity equilibrium con-

straint and a weighted least squares data match term. The measured displacement

field um and shear modulus µ are assumed to be known.

L[u,w] =
1

2

∫
Ω

T (u− um) · T (u− um) dΩ−
∫
Ω

w · (∇ · (µA(u))) dΩ (4.1)

4.2.1 Weak Form

Integration by parts is performed on the constraint term. The function spaces for the

forward and adjoint variables and their variations are identical in this approach, as
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there are no essential boundary conditions.

−
∫
Ω

w · (∇ · (µA(u))) dΩ =

∫
Ω

∇w : µA(u) dΩ−
∫
Γ

w · µA(u) · n dΓ (4.2)

u, δu ∈ S ≡ {u | ui ∈ H1(Ω)} (4.3)

w, δw ∈ V ≡ {w |wi ∈ H1(Ω)} (4.4)

The weak form is obtained by taking variations w.r.t u and w . For convenience,

we define D = T TT .

DuL · δu =

∫
Ω

δu ·D(u− um) dΩ +

∫
Ω

∇w : µA(δu) dΩ (4.5)

−
∫
Γ

w · µA(δu) · n dΓ
set
= 0 ∀ δu ∈ V

DwL · δw =

∫
Ω

∇δw : µA(u) dΩ−
∫
Γ

δw · µA(u) · n dΓ
set
= 0 ∀ δw ∈ V (4.6)

Equations (4.5) and (4.6) are the weak forms that serve as the basis for the

computational solution.

4.2.2 Euler-Lagrange Equations

We integrate equations (4.5) and (4.6) by parts to determine their Euler-Lagrange

equations and natural BCs.
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∫
Ω

δu · (D(u− um)−∇ · (µA(w))) dΩ +

∫
Γ

δu · (µA(w) · n) dΓ (4.7)

−
∫
Γ

w · (µA(δu) · n) dΓ = 0 ∀ δu ∈ V

−
∫
Ω

δw · (∇ · (µA(u))) dΩ = 0 ∀ δw ∈ V (4.8)

The last term in (4.7) is not of standard form, and it is not immediately obvious

what BC is implied therefrom. To obtain the natural BC implied by the last term in

(4.7) we introduce an arbitrary smooth vector field ai(x) and a scalar field φ(x) that

is greater than zero for all x ∈ Ω and equal to zero for all x ∈ Γ. We then define δui

in terms of them:

δui = φ(x)ai(x) (4.9)

δui,j|x∈Γ = φ,j(x)ai(x)|x∈Γ +((((
((((

(
φ(x)ai,j(x)|x∈Γ = φ,j(x)ai(x)|x∈Γ (4.10)

Substitution into the term of interest yields the expression

−
∫
Γ

wi(µAij(φa)nj) dΓ = 0 ∀ φa ∈ V (4.11)

Note that the definition of φ implies

∇φ(x)|x ∈ Γ = −‖∇φ‖n (4.12)
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Therefore Aij(φa)nj for x ∈ Γ is

Aij(φa)nj =
[
2φ,kakδij + φ,iaj + φ,jai

]
nj

=
[
− 2‖∇φ(x)‖nkakδij − ‖∇φ(x)‖niaj − ‖∇φ(x)‖njai

]
nj

= −3‖∇φ(x)‖nian − ‖∇φ(x)‖ai

= −4‖∇φ(x)‖nian − ‖∇φ(x)‖ajτij (4.13)

In (4.13), we introduced τij = δij − ninj, which gives the tangential component of

any vector and an = aini. Therefore, if we choose ai = wi on Γ in (4.13) we find:

−
∫
Γ

µwi (−4‖∇φ(x)‖niwn − ‖∇φ(x)‖wjτij) dΓ

= 4

∫
Γ

µwn‖∇φ(x)‖wn dΓ +

∫
Γ

µwτ‖∇φ(x)‖wτ dΓ = 0 (4.14)

The integrand in (4.14) is clearly non-negative for any w, so we conclude that

w must vanish on the boundary. Using this result and equations (4.7) and (4.8) we

state the Euler-Lagrange equations and natural BCs

∇ · (µA(u)) = 0 , x ∈ Ω (4.15)

∇ · (µA(w)) = D(u− um) , x ∈ Ω (4.16)

w = 0 , x ∈ Γ (4.17)

µA(w) · n = 0 , x ∈ Γ (4.18)

This system of coupled equations has no BCs specified on the displacement field,

however, the Lagrange multiplier has two BCs.
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4.2.3 Discretization

We now assign symbols to pieces of the discretized version of the weak forms (4.5)

and (4.6). We avoid writing closed form expressions for the components for which

such is not straightforward.

{δu}T [MD]{u} ←→
∫
Ω

δuaiNaD
c
ijNcNbu

b
j dΩ (4.19)

{δw}T [K]{u} ←→
∫
Ω

δwaiNa,jµ
cNcA(ubNb)ij dΩ (4.20)

{δw}T [B]{u} ←→
∫
Γ

δwaiNaµ
cNcA(ubNb)ijnj dΓ (4.21)

{w}T [K]{δu} ←→
∫
Ω

waiNa,jµ
cNcA(δubNb)ij dΩ (4.22)

= {δu}T [K]T{w}

{w}T [B]{δu} ←→
∫
Γ

waiNaµ
cNcA(δubNb)ijnj dΓ (4.23)

= {δu}T [B]T{w}

Putting it all together, we arrive at the symmetric block linear system (4.24). Note

that the symmetry of this system is solely due to [MD] being a symmetric matrix. We

call this a Coupled Adjoint-State Equation (CASE) system because the the adjoint

and state problems are coupled due to the formulation’s lack of displacement and

traction BCs.

[
[MD] ([K]T − [B]T )

([K]− [B]) 0

]{
u
w

}
=

{
[MD]um

0

}
(4.24)

This indefinite system is singular when linear shape functions are employed for

uh and wh. We present two approaches to stabilize the system.



44

4.2.4 Stabilization

4.2.4.1 Weak Stabilization

First we use residual-based stabilization. A GLS term based on equation (4.17) is

appended to the Lagrangian functional. A constant h is present to scale the stabi-

lization by the mesh size. For triangle elements, h can be defined to be the length of

the longest edge.

L1[u,w] = L[u,w]− 1

2h2

∫
Γ

w ·w dΓ (4.25)

The weak form (4.6) becomes

DwL1 · δw = DwL · δw −
1

h2

∫
Γ

w · δw dΓ
set
= 0 ∀ δw ∈ V (4.26)

In this formulation, a negative semi-definite mass matrix appears in the lower

right part of the saddle point system.

[
[MD] ([K]T − [B]T )

([K]− [B]) [D]

]{
u
w

}
=

{
[M∗

D]um

0

}
(4.27)

{δw}T [D]{w} ←→ − 1

h2

∫
Γ

δwai δijNaNbw
b
j dΓ (4.28)

4.2.4.2 Weak Stabilization Results

In this section we used the plane stress simulated measured displacement fields (see

Appendix B) as inputs to the CASE formulation. The noiseless displacement field is

given in Figure (4·1) for reference. The results shown in Figure (4·2) were computed

using the exact µ and a noiseless displacement field as input. Figure (4·3) shows

results obtained using the exact µ and the noisy displacement field from Appendix B
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as input. Finally, Figure (4·4) contains results computed with a µ = 1 and the noisy

displacement field as input.

Figure 4·1: Plane stress noiseless um

The displacements fields shown in Figures (4·2) and (4·3) look like the exact

displacement fields. Interestingly, the magnitude of the errors between the exact and

predicted displacement fields in these results are of comparable size. We note that

this inverse problem was solved on a different mesh than was used to generate the

noiseless data, and is a possible source of the error observed in Figure (4·2). These

results demonstrate that the CASE formulation can successfully estimate the correct

displacement field given the correct µ without prescribing any BCs on u.

Figure (4·4) demonstrates what happens when the formulation is not given the

exact µ. A displacement field that satisfies equilibrium is produced, but it is clearly

not a smoothed version of the measurements. This demonstrates that the method is

not merely reproducing the input displacement fields, but rather is sensitive to the

modulus distribution as well.

4.2.4.3 Strong Stabilization

Our second approach to stabilizing the discrete saddle point system involves enforcing

the natural boundary condition (4.17) strongly. This is achieved by changing the
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Figure 4·2: Forward plane stress CASE with weak stabilization, exact
µ, and noiseless um results

function space for the Lagrange multiplier w and its weight to be

w, δw ∈ V ≡ {w | wi ∈ H1(Ω), wi = 0 on Γ}. (4.29)

DuL · δu =

∫
Ω

δu ·D(u− um) dΩ +

∫
Ω

∇w : µA(δu) dΩ
set
= 0 ∀ δu ∈ V (4.30)

DwL · δw =

∫
Ω

∇δw : µA(u) dΩ
set
= 0 ∀ δw ∈ V (4.31)

Note that the weak form (4.30) and (4.31) is significantly simpler in this case.

Upon discretization, this leads to a system similar to (4.24), except that the [B]

matrices disappear, and the overall size of the linear system is reduced by the number

of boundary nodes times two, viz:
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Figure 4·3: Forward plane stress CASE with weak stabilization, exact
µ, and noisy um results

[
[MD] [K]T

[K] 0

]{
u
w

}
=

{
[MD]um

0

}
(4.32)

4.2.4.4 Strong Stabilization Results

The results obtained using the second stabilization approach are shown in Figures

(4·5), (4·6), and (4·7). They are similar to the results obtained using the first for-

mulation except along the boundary in Figures (4·6) and (4·7) where there are fluc-

tuations in the displacement fields, most noticeably in the (more uncertain) lateral

component. We hypothesize that the origin of these variations is the roughness of the

measured displacement field due to their absence from Figure (4·5).
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Figure 4·4: Forward plane stress CASE with weak stabilization, µ =
1, and noisy um results

4.2.5 Inverse Problem Formulation

Now we consider using the CASE formulation to solve a plane stress inverse problem.

Note that the Lagrangian for the inverse problem is (4.1) with the addition of a

regularization term.

L[u,w, µ] =
1

2

∫
Ω

T (u−um)·T (u−um) dΩ−
∫
Ω

w·(∇ · (µA(u))) dΩ+αR[µ] (4.33)

The formula for the gradient is obtained by taking variations w.r.t each of the

Lagrangian’s arguments as described in the Chapter 1. The solution of the CASE

system causes the first two terms in (4.34) to vanish.
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Figure 4·5: Forward plane stress CASE with strong stabilization,
exact µ, and noiseless um results

δL = ���
���DuL · δu+((((

((DwL · δw +DµL · δµ (4.34)

=

∫
Ω

∇w : δµA(u) dΩ−
∫
Γ

w · δµA(u) · n dΓ +DµR · δµ (4.35)

The elemental form of the material component of the gradient is

{gcmat}c =

∫
Ω

waiNa,jNcA(ubNb)ij dΩ−
∫
Γ

waiNaNcA(ubNb)ijnj dΓ (4.36)

Figure (4·8) contains inverse problem solutions obtained using the two CASE

formulations described in this section. The reconstructions are remarkably similar,

and are much closer to the exact modulus distribution than results obtained using
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Figure 4·6: Forward plane stress CASE with strong stabilization,
exact µ, and noisy um results

assumed BCs. Interestingly, the fluctuations in the boundary displacements present

in the strong stabilization approach do not appear to have a deleterious effect on the

inverse problem solution.

4.3 Incompressible Plane Strain and 3D Formulation

As shown in appendix A, in incompressible plane stress one can use the incompress-

iblilty constraint to eliminate the pressure field variable. Unfortunately, one must

treat the pressure as an unknown in incompressible plane strain and 3D. We present

the CASE formulation in these contexts. The presentation is identical for both mod-

eling cases; all that changes is the range of indices.

The Lagrangian for this CASE system is
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Figure 4·7: Forward plane stress CASE with strong stabilization,
µ = 1, and noisy um results

Weak stabilization Strong stabilization

Figure 4·8: Reconstructed µ for each plane stress CASE formulation

L[u,w, p, q] =
1

2

∫
Ω

T (u− um) · T (u− um) dΩ−
∫
Ω

q∇ · u dΩ (4.37)

−
∫
Ω

w · (∇ · σ(u, p)) dΩ
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4.3.1 Weak Form

The constitutive relation is substituted into the equilibrium constraint and is inte-

grated by parts

∫
Ω

w · (∇ · σ(u, p)) dΩ =

∫
Ω

∇w : (−pI + 2µ∇su) dΩ (4.38)

−
∫
Γ

w · (−pI + 2µ∇su) dΓ (4.39)

The function spaces are

u, δu ∈ S ≡ {u | ui ∈ H1(Ω)} (4.40)

w, δw ∈ V ≡ {w |wi ∈ H1(Ω)} (4.41)

p, δp, q, δq ∈ P ≡ {p |p ∈ L2(Ω),

∫
Ω

p dΩ = 0} (4.42)

We take derivatives w.r.t each of the Lagrangian’s arguments to derive the coupled

weak form.

DuL · δu+DpL · δp =

∫
Ω

δu ·D(u− um) dΩ−
∫
Ω

q · ∇δu dΩ (4.43)

+

∫
Ω

∇w : (−δpI + 2µ∇sδu) dΩ−
∫
Γ

w · (−δpI + 2µ∇sδu) · n dΓ

set
= 0 ∀ (δu, δp) ∈ V × P
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DwL · δw +DqL · δq = −
∫
Ω

δq∇ · u dΩ (4.44)

+

∫
Ω

∇δw : (−pI + 2µ∇su) dΩ−
∫
Γ

δw · (−pI + 2µ∇su) · n dΓ

set
= 0 ∀ (δw, δq) ∈ V × P

4.3.2 Euler-Lagrange Equations

The derivation of the E-L equations and natural BCs from the weak form is similar

to the one seen in the previous section. They end up being:

∇ · σ(u, p) = 0 , x ∈ Ω (4.45)

∇ · σ(w, q) = D(u− um) , x ∈ Ω (4.46)

∇ · u = 0 (4.47)

∇ ·w = 0 (4.48)

w = 0 , x ∈ Γ (4.49)

σ(w, q) · n = 0 , x ∈ Γ (4.50)

4.3.3 Discretization

We now discretize the weak form
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{δu, δp}T [MD]{u, p} ←→
∫
Ω

δuaiNaD
c
ijNcNbu

b
j dΩ (4.51)

{δw, δq}T [K]{u, p} ←→
∫
Ω

−δwaiNa,jp
bNbδij dΩ (4.52)

+

∫
Ω

2waiNa,jµ
cNc∇s(ubNb)ij dΩ−

∫
Ω

δqaNau
b
jNb,j dΩ

{δw, δq}T [B]{u, p} ←→
∫
Γ

δwaiNa(−pbNbδij + 2µcNc∇s(ubNb)ij) · nj dΓ (4.53)

{w, q}T [K]{δu, δp} ←→
∫
Ω

−waiNa,jδp
bNbδij dΩ (4.54)

+

∫
Ω

2waiNa,jµ
cNc∇s(δubNb)ij dΩ−

∫
Ω

qaNaδu
b
jNb,j dΩ

= {δu, δp}T [K]T{w, q}

{w, q}T [B]{δu, δp} ←→
∫
Γ

waiNa(−δpbNbδij + 2µcNc∇s(δubNb)ij) · nj dΓ(4.55)

= {δu, δp}T [B]T{w, q}

The result is the following linear system:

[
[MD] ([K]T − [B]T )

([K]− [B]) 0

]{
u, p
w, q

}
=

{
[MD]um

0

}
(4.56)

4.3.4 Stabilization

The matrix [MD] (due to the lack of pressure measurements) is singular. The [K]

matrix is also singular (due to the incompressibility constraint and the use of linear

shape functions). Therefore we add residual-based stabilization similar to that in

(Hughes et al., 1986) in the form of H1 semi-norm penalties. These terms are scaled

by a mesh dependent constant τ to maintain consistency. The notation Ω′ denotes

the union of element interiors.
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SUPG stabilization ⇒ (−∇ · σ(u, p), τ(∇p− 2∇q))Ω′ (4.57)

= (∇p−∇ · (2µ∇su)︸ ︷︷ ︸
neglect

, τ(∇p− 2∇q))Ω′

≈ (∇p, τ(∇p− 2∇q))Ω′

Lstab =
1

2
(∇p, τ(∇p− 2∇q))Ω′ (4.58)

τ =
h2

2µ
(4.59)

[Kstab] ←→ −
∫
Ω′

τNa,iNb,i dΩ (4.60)

[Mstab] ←→
∫
Ω′

τNa,iNb,i dΩ (4.61)

Even though the block matrices in (4.56) are now stabilized, the entire saddle point

system remains singular. To address this we use both weak and strong stabilization

methods applied in the last section.

4.3.4.1 Forward Problem Results

Weak stabilization Figures (4·10), (4·11), and (4·12) shows results from the weak-

stabilized CASE plane strain formulation. Interestingly, these results show consid-

erable error when the exact/noisy displacement fields and the correct modulus are

given as input. We suspect that this effect is related to the [B] matrix term. We note

that while incorrect, the displacement fields are smooth along the boundary.

Strong stabilization Figures (4·13), (4·14), and (4·15) show the results obtained

with the use of strong stabilization. As in plane stress, this approach produced
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Figure 4·9: Plane strain noiseless um

Figure 4·10: Forward plane strain CASE with weak stabilization,
exact µ, and noiseless um results

displacement estimates that fluctuate on the boundary when the input displacement

fields contained noise. Importantly, it can be seen in Figures (4·13) and (4·14) that

this approach produced a more accurate estimate of the target displacement field

when given the exact modulus than did weak stabilization.
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Figure 4·11: Forward plane strain CASE with weak stabilization,
exact µ, and noisy um results

4.3.5 Inverse Problem Formulation

The material component of the objective function’s gradient is given by

{gemat}c =

∫
Ω

2waiNa,jNc∇s(ubNb)ij dΩ−
∫
Γ

2waiNaNc∇s(ubNb)ijnj dΓ. (4.62)

One of the terms in the stabilization (4.58) is not multiplied by a Lagrange mul-

tiplier (w or q), which implies that it is not associated with the constraint equation.

Rather, this term must instead be viewed as a modification of the objective func-

tion. Surprisingly, the CASE formulation will produce the same result (u,w, µ, etc.)

whether it is included in the evaluation of the objective function or not.

π[µ, p] = π[µ] +
1

2
(∇p, τ∇p)Ω′ (4.63)
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Figure 4·12: Forward plane strain CASE with weak stabilization,
µ = 1, and noisy um results

The reconstructed modulus fields are shown in Figure (4·16). The solution ob-

tained using the weak stabilization approach contains artifacts not present in the

other. Therefore, the strong stabilization method is preferred over the weak approach

for plane strain inverse problems (as well as forward problems).

4.4 Incompatible Objective Functions

In this section we introduce an extension of the CASE formulation where the CASE

approach is used to define the constraint equation, rather than provide the simulta-

neous solution of the inverse problem’s state and adjoint variables. This formulation

has the advantage of being able to use a data match term that differs from the CASE

one in the inverse problem. We consider only the strong stabilization approach here.



59

Figure 4·13: Forward plane strain CASE with strong stabilization,
exact µ, and noiseless um results

LF [w,u] =
1

2
(u− um,F (u− um))Ω + a(w,u;µ) (4.64)

The CASE Lagrangian (4.64) is used to derive the weak form associated with

the constraint equation. This weak form defines a well-posed problem provided the

weighting tensor F is positive definite, and in certain cases, for F positive semi-

definite. The bilinear form a(w,u;µ) is the weak form of the equilibrium equation.

We use Greek letters γ and λ for the adjoint variables. The function spaces for the

state and adjoint variables and their weighting functions are

u, δu,γ, δγ ∈ S ≡ {u | ui ∈ H1(Ω)} (4.65)

w, δw,λ, δλ ∈ V ≡ {w |wi ∈ H1(Ω), wi = 0 on Γ } (4.66)
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Figure 4·14: Forward plane strain CASE with strong stabilization,
exact µ, and noisy um results

We take variations of (4.64) to arrive at the following weak forms:

DuLF · γ = (γ,F (u− um))Ω + a(w,γ;µ)
set
= 0 ∀ γ ∈ S (4.67)

DwLF · λ = a(λ,u;µ)
set
= 0 ∀ λ ∈ V (4.68)

Equations (4.67) and (4.68) motivate the introduction of the following tetralinear

form:

b(γ,λ,u,w;µ) ≡ (γ,F (u− um))Ω + a(w,γ;µ) + a(λ,u;µ) (4.69)

The inverse problem can use an entirely different data match term from the one

present in (4.64). For demonstration purposes we choose a least squares term with

an arbitrary D weighting tensor.
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Figure 4·15: Forward plane strain CASE with strong stabilization,
µ = 1, and noisy um results

Weak stabilization Strong stabilization

Figure 4·16: Reconstructed µ for each plane strain CASE formulation

LD(γ,λ,u,w, µ) =
1

2
(u− um,D(u− um)) + αR[µ] + b(γ,λ,u,w;µ) (4.70)

The forward problem is determined by taking variations of (4.70) w.r.t the adjoint

variables
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DγLD · δγ +DλL
D · δλ = b(δγ, δλ,u,w, µ)

set
= 0 ∀ (δγ, δλ) ∈ S × V (4.71)

The discrete form of the forward problem (borrowing notation from the previous

sections) is as follows. The vectors of nodal coefficients for {w} ∈ Rn is strictly

smaller in length than that for {u} ∈ Rm due to the essential boundary conditions of

Vh ⊂ V . Correspondingly, the K matrices are not square.

[
[MF ] [K]T

[K] 0

]{
u
w

}
=

{
[MF ]um

0

}
(4.72)

The adjoint problem is obtained by taking variations of (4.70) w.r.t. the state

equation variables

DuLD · δu = (δu,D(u− um))Ω + (γ,F δu)Ω + a(λ, δu;µ) (4.73)

set
= 0 ∀ δu ∈ S

DwLD · δw = a(δw,γ;µ)
set
= 0 ∀ δw ∈ V (4.74)

The block matrix present in the discrete adjoint system is the transpose of the one

in (4.72). The matrices are, however, identical because MF is a symmetric matrix.

Thus, the forward and adjoint systems differ only in their rhs.

[
[MF ]T [K]T

[K] 0

]{
γ
λ

}
=

{
−[MD](u− um)

0

}
(4.75)

To determine the gradient, we examine the total differential of LD and note that

only the µ variation term is non-zero.
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δLD = ���
���DγLD · δγ +���

���DλL
D · δλ (4.76)

+ ���
���DuLD · δu+((((

(((DwLD · δw +DµLD · δµ

DµLD · δµ = a(w,γ, δµ) + a(λ,u, δµ) + αDµR · δµ (4.77)

Summary - to perform an iteration of the inversion algorithm using this method,

one first solves (4.72), evaluates the objective function, then solves (4.75), and lastly

evaluates the gradient according to (4.77). Note that the size of the linear systems

is nearly twice the size of those present in the assumed BCs or springs approaches to

solving the inverse problem.

4.4.1 CASE as a Special Case

We now show that when D = F , this formulation will produce the same results

as CASE. Recall the CASE gradient, and the forward and adjoint problems for this

formulation (see equations (4.71), (4.73), and (4.74)).

DµLCASE · δµ = a(w,u; δµ) + αDµR · δµ (4.78)

Expanding (4.71) using (4.69) yields

(δγ,F (u− um))Ω + a(w, δγ, µ) + a(δλ,u, µ) = 0 ∀ (δγ, δλ) ∈ S × V (4.79)

We combine equations (4.73) and (4.74) to produce

(γ,F δu)Ω + a(λ, δu, µ) + (δu,D(u− um))Ω (4.80)

+a(δw, γ, µ) = 0 ∀ (δu, δw) ∈ S × V
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We make the substitutions 0 ← (δλ, δw) in (4.79) and (4.80), and δu ← δγ in

(4.79) to arrive at

(δu,F (u− um)Ω + a(w, δu;µ) = 0 ∀ δu ∈ S (4.81)

(γ,F δu) + a(λ, δu;µ) + (δu,D(u− um))Ω = 0 ∀ δu ∈ S (4.82)

Now we choose D = F and subtract (4.81) from (4.82)

(γ,F δu)Ω + a(λ−w, δu;µ) = 0 ∀ δu ∈ S (4.83)

We find that (4.83) is satisfied identically by the fields

γ = 0 (4.84)

λ = w (4.85)

We use equations (4.84) and (4.85) in (4.77) to obtain

DµLD · δµ = ���
���a(w,γ, δµ) + a(w,u, δµ) + αDµR · δµ (4.86)

= DµLCASE · δµ
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Chapter 5

Applications

5.1 Introduction

In this chapter, we present several applications of BMI that were enabled by the

formulations presented in earlier chapters. In the first section, we present results

showing reconstructed material property distributions within a single cell. This work

represents the first application of BMI at this length scale. This application utilized

the Bayesian springs approach to fix rigid body displacements in the forward problem.

The second application is a validation study based on deformation of a tissue-

mimicking phantom. The phantom was gently compressed, and the 2D displacement

fields within the phantom were measured via US and image registration. This ap-

plication uses the CASE approach and validates its use with plane models in similar

contexts.

The third application described concerns deformation of a tissue mimicking phan-

tom measured in 3D. The geometry of the measurements requires special treatment,

and we demonstrate that both the Bayesian springs and CASE approaches provide

substantial improvements over an approach based on assumed boundary conditions.

Finally, we demonstrate the application of the CASE method to a set of data

collected clinically. The clinical data includes US-measured deformation fields in

ten breast masses, five of which are benign fibroadenomas, and five of which are

malignant invasive ductal carcinomas (the most common breast cancer). These results

demonstrate the feasibility of using the methods and software framework presented
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herein to problems of current clinical interest.

5.2 Cell BMI

The mechanical properties of cells are of interest in a number of biological processes,

such as cell migration, wound healing, and growth. Several techniques have been

invented to probe mechanical properties at the cellular scale. Some include mi-

cropipette aspiration, PDMS-based beams, optical tweezers, magneto-rheology, and

AFM (Suresh, 2007). These techniques often make a trade between spatial and tem-

poral resolution. For example, micropipette aspiration estimates a single value for

the modulus of the entire cell and can be done quickly, while AFM is capable of

producing spatial modulus maps but experiments require minutes to perform and the

experiment is performed in an unnatural environment.

BMI can be applied to single cells and cell clusters provided measurements of

deformation and forcing are available. This technique is capable of creating shear

modulus maps with subcellular resolution, and the experiment can be performed

in less than a minute. The cell data was collected by Michael Smith’s group at

Boston University. The approach and methods discussed in this section lead to the

publications (Canović et al., 2014a) and (Canović et al., 2014b).

5.2.1 Experiment

In a cell BMI experiment (see Figure 5·1), a cell is placed on a polyacrylamide gel layer

imprinted with a regular grid of flourescently-labeled fibronectin dots(B,G; green).

The cell adheres to the dots and pulls them inwards while not attaching to the gel’s

surface. The Young’s modulus and Poisson’s ratio of the gel are known. The cell

body is seeded with 500 nm florescent microbeads (B,G; blue). Brightfield (C,H)

and florescent channel (D,I and E,J) images are acquired using a confocal microscope
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(A). A uni-axial deformation of approximately 8-12 % strain is applied by pushing a

parallel plate indenter into the gel (F). Post-deformation images are then acquired.

Figure 5·1: Cell BMI experiment (Canović et al., 2014b)

Point measurements of cell displacement are obtained by tracking beads in the

pre and post deformation images. The motion of the fibronectin dots between images

is also quantified and used in combination with the known mechanical properties of

the gel substrate to estimate the force exerted by the cell on the substrate due to the

applied deformation. The position of the dots prior to the cell pulling them inwards is

also known, and thus the cellular traction force prior to deformation can be estimated.

Due to measurement noise, the cell’s measured net force and moment are non-

zero. A least squares balancing procedure is used to solve for the forces closest to the

measurements that satisfy equilibrium. These balanced forces are used to drive the

forward problem. The cell’s boundary condition is traction-free. Lack of Dirichlet

BCs motivates the use of lumped weak spring elements to constrain rigid body motion

in the forward problem.

The cell is modeled using the linear incompressible plane stress formulation dis-

cussed in appendix A. The cellular traction forces are treated as a lumped body force

term. A mesh of the cell (Figure 5·2) that contains the locations of the displacement
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Figure 5·2: Distmesh generated FEM mesh

measurements and body forces is generated using the program Distmesh (Persson and

Strang, 2004).

Cell height can be estimated using the height of the beads. The inversion process

yields the shear modulus integrated through the cell thickness. The local shear mod-

ulus can be obtained by accounting for local cell thickness. The stress present in the

cell prior to deformation (prestress) can be computed with a post-processing element

that loads the cell with the forces measured prior to deformation.

5.2.2 Results

Heterogeneous shear modulus maps and prestress results for a single cell are shown in

Figure (5·3). Both height-averaged (C,D) and height-corrected (F,G) reconstructions
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Figure 5·3: Cell BMI inputs and outputs (Canović et al., 2014b)

are given. Cell height is lowest at the boundary (E) due to lack of beads there. As a

result, the height-corrected modulus is artificially stiff near the cell boundary.

5.2.3 Discussion

The cell BMI data is challenging to analyze for several reasons. First, the measured

displacement field is known only at the location of the beads, and the beads themselves

are not always firmly anchored to the cell. Second, the least squares force balancing

procedure introduces error into the force measurements. Finally, there is no currently

accepted gold standard of cellular modulus field estimation to compare our results to,

and cell-sized imaging phantoms that are suitable for use in a cell BMI experiment

do not exist. The publications (Canović et al., 2014a) and (Canović et al., 2014b)

resulted from this study.

5.3 2D US Phantom

This section contains results from an ultrasound phantom study. 2D displacement

fields were estimated from RF ultrasound images and analyzed using plane stress and
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plane strain CASE approaches. This data was acquired by Timothy Hall’s group at

the University of Wisconsin, Madison.

5.3.1 Experiment

The experimental sample is a tissue-mimicking agar-gelatin 100 mm cube US phan-

tom containing four coplanar 10mm diameter spherical inclusions (targets). The

procedures used to create, characterize the mechanical properties, and measure the

displacement due to compression of the phantom are documented in (Pavan et al.,

2012) and (Dord et al., 2015).

The shear modulus of each inclusion and the background phantom material were

controlled by varying the composition of agar and gelatin in each component. Forma-

lin was added to to the gelatin to promote cross-linking and increase melting point

and stiffness. Glass beads were also incorporated into the phantom material to act

as acoustic scatters to enable the acquisition of US images.

Test cylinders were made of the material that constituted each inclusion and the

background. These cylinders were subject to quasi-static mechanical compression

tests where force vs load curves were measured. The data from these experiments

was fit to a Veronda-Westmann model in order to characterize the linear elastic and

nonlinear material properties of each component. The shear modulus relative to the

background (set to 1) for each target is given in Table (5.1).

Table 5.1: 2D phantom measured contrast

Target 1 2 3 4

Reference Contrast 2.83 2.27 3.54 5.26

The phantom was compressed in increments of 1.5% strain up to ≈ 20% strain

using a compression plate with dimensions much greater than those of the phantom
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with the goal of imposing uniaxial compression loads. After each load step, RF data

was acquired using a linear array US transducer.

A modified block-matching algorithm (Jiang and Hall, 2011) was used to deter-

mine the incremental displacement between each RF image. The data presented in

this section is from the lowest strain level (1.5%), as the CASE approaches assume

small deformation and reconstructs the shear modulus (a linear elastic material prop-

erty). Margins were applied to the data to remove noisy regions near the boundaries

of the measured displacement field. Finally, the data was downsampled by a factor

of 4 in each direction to reduce the inversion algorithm’s runtime. The measured

displacement field for Target 1 is shown in Figure (5·4) to serve as a representative

example of the input inverse problem data for this dataset.

Figure 5·4: Target 1 measured displacement field um(x)

5.3.2 Results

Here we present results obtained using plane stress and plane strain CASE approaches.

The reconstructed shear moduli images are shown in Figures (5·5) and (5·7), respec-

tively. The components of the T weighting tensor were chosen as follows: Txx = 0.1,

Txy = 0, and Tyy = 1.

We found a different regularization constant α was required for each target, prob-
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ably because the SNR for each phantom differed due to the unique stiffness of each

inclusion. The regularization constants used are reported in Table (5.2).

Table 5.2: Regularization parameter used in 2D phantom study re-
sults

Target 1 2 3 4

α 5.0e-5 6.0e-5 4.0e-5 9.0e-6

Images of the predicted minus the measured lateral component of displacement

(ux) for each approach are displayed in Figures (5·6) and (5·8). These images have

been scaled to +/− 0.1 mm.

5.3.3 Discussion

Both the plane stress and plane strain results show a stiff circular inclusion embedded

in a less stiff background. There are differences, however, in the reconstructed stiffness

and shape of each Target. The background in each reconstruction is not totally

homogeneous, but the degree of variation present is less than the level observed when

a plane stress assumed BCs approach was used to analyze this data (Dord et al.,

2015). The observed mechanical contrast is higher as well, likely due to the absence

of BC influence and the use of a log µ approach.

The displacement mismatch figures suggest that plane stress is a more appropriate

material model for this dataset. We note that the variation in Figure (5·8) is much

more systematic than that present in Figure (5·6).

5.4 3D US Phantom

In this section we present results from a 3D ultrasound phantom compression experi-

ment. Both the spring BCs and CASE approaches were applied to this dataset. This
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Target 1 Target 2

Target 3 Target 4

Figure 5·5: CASE plane stress phantom results

data was provided to us by Jeff Bamber’s group at the Institute for Cancer Research,

London, UK.

5.4.1 Slip Imaging

Characterization of the interface between a tumor and its surroundings is of interest

to clinicians. Certain kinds of brain tumors have a slippery interface, and knowledge

of such an interface could be useful in planning margins for surgical resection of the
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Target 1 Target 2

Target 3 Target 4

Figure 5·6: CASE plane stress ux (scaled) mismatch

tumor. In the context of breast elasticity imaging, FAs tend to more mobile than

malignant tumors such as IDCs, and thus the presence of slip layers could be used to

diagnose tumor type.

Past studies of slip layers (Chakraborty et al., 2012), (Garcia et al., 2009), and

(Konofagou et al., 2000) have focused on measuring shear strain or “axial shear strain”

between inclusions and their background. It is hypothesized that a slip layer could

manifest as a region of very low shear modulus. We present a result in this section

that supports this hypothesis.
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Target 1 Target 2

Target 3 Target 4

Figure 5·7: CASE plane strain phantom results

5.4.2 Experiment

The 3D phantom data was collected using a mechanically swept linear US trans-

ducer (sometimes referred to as a “wobbler”). As a result, the direction of sound

propagation varies throughout the imaging volume and the computational domain is

non-rectangular (see Figure (5·9)), unlike the rest of the data examined in this thesis.

The gelatin ultrasound phantom used in the experiment contained a spherical
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Target 1 Target 2

Target 3 Target 4

Figure 5·8: CASE plane strain ux (scaled) mismatch

inclusion composed of 14% gelatin (by weight) embedded in a 6% gelatin background.

Mechanical tests on the phantom estimated the Young’s modulus of the inclusion

and the background to be 4 and 1 kPa, respectively. Water was injected between the

inclusion and the background to lubricate the interface between the two materials as

to promote slip behavior.

In the experiment, the phantom was compressed in 5 1% strain increments. At

each loading step, a RF image was acquired at a sampling rate of 66.6 MHz using a

Gage Compuscope 14200 inside a PC running Stradwin 4.6 software (Housden et al.,
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Image volume Directions of sound propagation

Figure 5·9: Axial direction depends on location in the computational
domain

2010) interfaced to a Diasus ultrasound scanner (Dynamic Imaging, UK) and a GE

RSP 6-12 MHz 4D probe. The results presented in Figures (5·10)-(5·13) used the

displacement field from the first to second increment.

5.4.3 Methods

As mentioned previously, displacements measured using US imaging are most precise

in the direction of sound propagation êaxial(x). For displacement data collected using

a linear array, this direction coincides with the y direction of the Cartesian coordinate

system the inverse problem is solved in. When displacements are measured using a

mechanically swept linear array, the direction of sound propagation varies throughout

the volume, as illustrated in Figure (5·9).

There are two places in the formulation of the inverse problem where direction of

sound propagation can be taken into account: The T tensor of the objective function

and the spring tensor K.

T (x) = êaxial(x)⊗ êaxial(x) (5.1)

K(x) = κT (x) (5.2)
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Two reconstructions were performed using the same displacement field and a T ten-

sor computed according to (5.1). The first used the 3D analog of the assumed BCs

approach used in the simulated data reconstructions (uy Dirichlet, homogeneous Neu-

mann in x and z) while the second used spring boundary conditions with a K given

by equation (5.2) with κ equal to 100. The regularization constant used in all recon-

structions for this section was equal to 4E-5.

Figure 5·10: 3D phantom reconstruction obtained using assumed BCs

5.4.4 Results

The reconstruction shown in Figure (5·10) is dominated by stiff boundary artifacts.

Although it was obtained using a T tensor correctly aligned with the direction of

sound propagation, the assumed BCs approach is inappropriate for this data. The

reason for this is uy contains a mixture of precise and poorly characterized measure-

ments, and thus prescribing it on the boundary yields poor results.

Spring elements were used in the reconstruction depicted in Figure (5·11). Bound-

ary artifacts are still visible in the top of the domain, but they are significantly reduced

in magnitude compared to the assumed BCs reconstruction. A spherical inclusion in

a softer background is clearly visible, and its contrast is an under-estimate of the

value obtained using mechanical testing, 4. The use of regularization generally leads
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Figure 5·11: 3D phantom reconstruction obtained using spring BCs

to a bias towards lowers contrast.

Figure (5·12) shows a reconstruction obtained using the CASE approach. The T

tensor was chosen to coincide with the spatially-varying axial, lateral, and elevational

directions. The non-axial directions were weighted 100 times less than the axial

component. This approach is also able to produce a reconstruction that is superior

to the assumed BCs result. Figure (5·13) highlights the striking difference between

the top layer of the springs and CASE reconstructions.

Figure 5·12: 3D phantom reconstruction obtained with the CASE
approach

The panel of results in Figure (5·14) was used to determine which displacement

frame was most likely to show a slip layer. These results were obtained using a
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Figure 5·13: Surface view of phantom for springs and CASE recon-
structions

coarse mesh (downsampled by 4 in each direction), boundary spring elements, and

the optimization bounds were set far away from the initial guess of 1 (e.g L = 0.001,

U = 70) to promote observation of slip layers. The Frame 4 inversion has a region of

low modulus around the inclusion, so we preceded to perform an inversion at a higher

resolution (no downsampling).

Slip layers were observed in the fine mesh reconstruction shown in Figure (5·15).

The layers occur at specific locations along the interface, and were about two element

widths across.

5.4.5 Discussion

The CASE and springs formulations were both able to produce reasonable results

from this dataset, while the assumed BCs approach did not. The springs formulation

reconstruction has inclusion contrast that is higher than in the CASE result, but also

contains an artificially stiff layer at the top of the phantom.

The observation that a slip layer was not seen until the latest displacement frame

suggests that inclusion and its background move together until the applied strain is

sufficient for slipping to occur.
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Frame 1 Frame 2

Frame 3 Frame 4

Figure 5·14: Coarse mesh slip results

Figure 5·15: Frame 4 slip reconstruction

5.5 2D Clinical

In this section we present results from a clinical dataset that were analyzed using plane

stress and plane strain CASE approaches. This dataset contains 5 fibroadenoma (FA)



82

and 5 invasive ductal carcinoma (IDC) breast tumors (as determined by biopsy). FAs

are benign while IDCs are malignant. This data was collected and processed by

Timothy Hall’s group at the University of Wisconsin.

5.5.1 Experiment

The experimental protocol, acquisition of RF images, and processing of displacement

data for this dataset are documented in (Goenezen et al., 2012), and are briefly

summarized here.

In each experiment, several quasistatic compression load steps (each correspond-

ing to about 1% overall strain) were imposed using an US transducer (“free-hand

elastography”) and RF images were acquired before/after the application of each

load.

Incremental displacement fields were estimated using the block-matching algo-

rithm described in (Jiang and Hall, 2009). We limit our attention here to the lowest

level of applied strain (1%), as the CASE formulations assume small deformation.

5.5.2 Results

Results obtained from application of the plane stress CASE are shown in Figures

(5·16) and (5·17). There are small regions of high stiffness present in some of the

reconstructions. We present all the results on a logarithmic scale in order to compress

the dynamic range and display more meaningful images that utilize the full range of

the data. The regularization constant α used for each tumor is given in Table (5.3).

Table 5.3: Regularization parameter used in clinical study results

Tumor Type 1 2 3 4 5

FA 4.0e-5 3.0e-5 1.0e-5 2.0e-5 3.0e-5

IDC 4.0e-5 2.0e-5 4.0e-4 5.0e-5 3.0e-5
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FA 1 FA 2

FA 3 FA 4

FA 5

Figure 5·16: Clinical FA plane stress CASE results

The plane stress reconstructions are shown in Figures (5·16) and (5·17), and the

plane strain reconstructions are displayed in Figures (5·18) and (5·19).

The entries of the T tensor used for all modulus inversions were Txx = 0.1, Txy = 0

Tyy = 1.
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IDC 1 IDC 2

IDC 3 IDC 4

IDC 5

Figure 5·17: Clinical IDC plane stress CASE results

5.5.3 Discussion

First we note that although inclusions are visible in the clinical reconstructions, these

images are considerably more heterogeneous than the phantom datasets presented in

this chapter. Defining the border of the tumor is challenging in some cases (e.g. IDC

3).

The CASE approach assumes Gaussian measurement noise, and this assumption
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FA 1 FA 2

FA 3 FA 4

FA 5

Figure 5·18: Clinical FA plane strain CASE results

is almost certainly violated (especially by the lateral displacement component) in this

dataset. Localized regions of high stiffness are observed in some plane stress recon-

structions (i.e. FA 2 and FA 4) and many of the IDC plane strain reconstructions,

and are probably due to an incompatibility between the material model and measured

data.

Fibroadenomas are known to be less bound to their surroundings than malignant

breast tumors (Konofagou et al., 2000). Some, in fact, are highly mobile. The thin
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IDC 1 IDC 2

IDC 3 IDC 4

IDC 5

Figure 5·19: Clinical IDC plane strain CASE results

regions of low stiffness observed around the edge of the inclusions in the plane stress

results for FA 1 and FA 4 could indicate slip layers around the tumor. These findings

suggest that different results would be obtained by selecting optimization bounds that

allow the modulus to drop to arbitrarily low values.

The plane stress and plane strain FA results look similar although tumor contrast

is higher in the plane stress results. The plane strain IDC reconstructions all contain

stiff boundary artifacts that are not present in the plane stress results.
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Chapter 6

Discussion and Conclusion

6.1 Summary

In this thesis we used the finite element method to obtain approximate solutions of

PDE-constrained optimization problems. Although our motivating application was

the BMI problem, the methods discussed in this thesis are generally applicable to

inverse problems constrained to satisfy an elliptic system of PDEs. We introduced a

novel structure for the software implementation of the iterative inversion algorithm.

We created two formulations capable of solving forward and inverse problems with

uncertain BCs.

The key idea that defines the software framework is the separation of finite element

implementations according to the operators that appear in the inverse problem. The

application of this design philosophy can be interpreted as taking the traditional single

element approach to FEM and breaking it into layers of specialized finite elements.

We introduced material, forcing, data match, and regularization element layers and

explained their functional roles.

The spring penalty formulation of the constraint equation was derived using a

Bayesian approach to explicitly account for the presence of uncertainty in the BCs

defining the forward problem. We found that the boundary springs approach pro-

duced better modulus reconstructions than the domain springs approach when applied

to problems with full-field interior data. We showed how “weak” springs, a variant of

the domain springs approach, can be used to constrain unknown rigid body motion
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and used this approach to solve BMI problems at the cellular scale.

Finally, we introduced the CASE formulation for linear incompressible plane

stress, plane strain, and 3D forward and inverse problems. The main advantage

of this formulation is that it does not treat the boundary values of the displacement

field differently than the interior values, and consequently avoids biasing the inverse

problem solution. We introduced two approaches to stabilizing the discrete saddle

point problem that we called “weak stabilization” and “strong stabilization.” We

found that only the strong stabilization approach was successful for all modeling situ-

ations. We applied the formulation to simulated, phantom, and clinical US BMI data

and were able to produce accurate modulus reconstructions in the instances where

the exact distribution was known.

6.2 Discussion

The layered finite elements concept could be used to solve inverse problems not consid-

ered in this thesis. Indeed, a similar approach has recently been described by (Walsh,

2015). In the BMI inverse problem the unknown quantity of interest is a material

parameter. In other inverse problems one wishes to estimate unknown boundary

conditions, body forces acting as source or sink terms, or natural frequencies. We

focused on gradient-based optimization in this thesis, but this viewpoint is applicable

to Newton-type optimization methods as well. Additional derivatives of the operators

appear, but they could still be organized in the same manner.

An advantage of the spring penalty approach is that it is independent of the

material model used in the inverse problem. Thus it can be used in inverse problems

where the constraint equation is nonlinear. A disadvantage is the need to determine

spring constants. They can, in principle, be found by examining the statistics of

the noise. That process is easier said than done, however, and the degree to which
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measurement noise can be approximated by a Gaussian distribution varies.

A BC-free approach much like the strong stabilization version of CASE has re-

cently been developed in (Diaz et al., 2015) to solve a frequency-domain, viscoelastic

inverse problem. While their formulation uses a different objective function, their

motivation for developing a method of solving the inverse problem without assuming

displacement or traction BCs is identical to ours as their data is collected using US

image registration techniques as well.

We applied the CASE approach only to linear constraint equations in this thesis.

As a result, the forward and adjoint variables could be obtained with a single linear

solve. The extension of CASE to nonlinear material models will require an iterative

approach.

The strong stabilization used in CASE produces fluctuations on the boundary of

the predicted displacement fields that were not seen when weak stabilization was used.

Although the strong approach clearly produced better inverse problem solutions and

was computationally easier to implement, there is room for improvement (most likely

through the use of novel stabilization terms).

Non-ultrasound based elastography (e.g. MRI) could stand to benefit from the

use of a CASE-like approach. The choice of BCs to impose in the forward model,

a crucial part of its definition, can be a challenging and time-consuming endeavor.

Furthermore, as shown in this thesis, the accuracy of the inverse problem solution of-

ten depends strongly on this choice. The CASE formulation “automatically extracts”

this component of the forward model from the measured data. This makes inverse

approaches based on CASE less susceptible to operator/analyst error.
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6.3 Conclusion

The software framework proposed in this thesis is suitable for application to the

solution of several classes of inverse problems, and with modification could be applied

to many more. We invented two formulations that account for uncertainty in the BCs

of the constraint equation and applied them to a plethora of experimental data. The

methods presented herein can be used to obtain inverse problem solutions superior to

those obtained using the assumed BCs approach in situations where the assumptions

are in conflict with the experimental conditions.



Appendix A

Incompressible Linear Elasticity

The field variables in a linear, isotropic, incompressible elasticity problem include

a material parameter (the shear modulus µ), pressure (p), displacement (u), strain

(ε), and stress (σ).The notation ∂j = ∂
∂xj

is used in the following equations. The

shear modulus and pressure are scalar fields, the displacement is a vector field, and

the stress and strain fields are rank two symmetric tensor fields. Small deformation

of soft tissue is often well approximated by a linear elastic, isotropic, incompressible

material model. The incompressiblity constraint is

∇ · u =
∑
k

∂kuk = ∂kuk = 0 , k = 1, 2, 3 (A.1)

The summation convention (a repeated index in a term implies a sum over that

index) has been used above, and will be used henceforth.

A.1 Plane Stress

The plane stress approximation is a simplification of the full 3D elasticity equations

that can be applied to 2D displacement data. It is assumed that out of plane stresses

are negligibly small, and all applied loads are within the plane. A thin material with

no out of plane loadings satisfies these assumptions.

Mathematically, these assumptions lead to five of the components of the symmetric

stress tensor σ being equal to zero. Let êi , i = 1, 2, 3 denote the standard Cartesian

91
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basis for R3 and ê1 and ê2 be the in-plane basis vectors. By assumption, all of

the ê3 components of the stress tensor (σ33, σ13, σ31, σ23, σ32) are zero, and therefore

drop out of the equilibrium equations. Those zero stress components also lead to the

conclusion that ε13 = ε31 = ε23 = ε32 = 0 is satisfied. In generalized plane stress, the

field variables are averaged through the thickness to produce a truly planar problem.

It is important to note that ε33 is non-zero. However, all of the strains are independent

of x3 so it is acceptable to consider the field variables as functions of their position

in the plane. The constitutive equation for a linear elastic, isotropic, incompressible

material (i, j = 1, 2, 3) is

σ = −pI + 2µε (A.2)

σij = −pδij + 2µεij

The strain-displacement relation is

ε = ∇su ≡ 1

2
(∇u+∇uT ) (A.3)

εij =
1

2
(∂iuj + ∂jui)

From (A.1), (A.3), and σ33 = 0 (α, β, γ = 1, 2)

εkk = 0 : εγγ = −ε33 (A.4)

(A.3) : σ33 = −p+ 2µε33 = 0 (A.5)

(A.4, A.5) : p = 2µε33 = −2µεγγ (A.6)

(A.3, A.6) : σαβ = 2µεγγδαβ + 2µεαβ (A.7)

Greek indices α, β, and γ are written to emphasize that the problem is now planar.
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A convenient strain measure in applications of incompressible isA(u), defined so that

σαβ ≡ 2µ(δαβεγγ + εαβ) (A.8)

= µ(2δαβ∂γuγ + ∂αuβ + ∂βuα)

≡ µAαβ

i.e. Aαβ = (2δαβ∂γuγ + ∂αuβ + ∂βuα)

In symbolic form

σ = 2µTr(ε)I + 2µε (A.9)

σ = 2µ(∇ · u) + µ(∇u+∇uT )

σ = µA(u)

Finally, the traction vector t is defined to be (n is a unit vector that points in an

outward direction normal to a given surface)

t = σ · n (A.10)

tα = σαβnβ

The forward elasticity problem yields a displacement field given a modulus field

and a combination of traction and displacement BCs. The principle of minimum

potential energy states that of all displacement fields that satisfy the essential (dis-

placement) BCs, the solution is that which minimizes the system’s potential energy

functional:

πf [u] =
1

2

∫
Ω

σ[u] : ε[u] dΩ −
∫
Γt

u · t dΓ −
∫
Ω

u · b dΩ (A.11)

=
1

2
(σ[u], ε[u])Ω − (u, t)Γt − (u, b)Ω
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The last line above highlights the fact that these integrals are inner products over

the domain Ω and the portion of the boundary with traction BCs Γt. Γu denotes the

portion of the boundary with Dirichlet BCs gi. (For simplicity of presentation, we

assume Γg1 = Γg2 ≡ Γu and Γ = ∂Ω = Γu ∪ Γt ; Γu ∩ Γt = ∅ ) In plane stress, Ω is a

two-dimensional region and Γ is one-dimensional.

The first term in the functional represents the strain energy of the material, while

the other terms represent the work done by tractions and body forces, respectively.

The double dot product used above is defined as

σ : ε = Tr(σεT ) = σαβεαβ (A.12)

The appropriate function spaces in which to formulate this problem are those

for which (A.11) is finite. They are subspaces of H1(Ω), chosen such that the field

u+ αw, α ∈ R satisfies the essential BCs.

u ∈ S ≡ {u | ui ∈ H1(Ω), ui = gi on Γu} (A.13)

w ∈ V ≡ {w | wi ∈ H1(Ω), wi = 0 on Γu} (A.14)

The weak form of the elasticity equations is obtained by setting the Gâteaux

derivative of (A.11) to zero.

Duπ
f ·w =

d

dα
πf [u+ αw]

∣∣∣
α=0

set
= 0 ∀ w ∈ V (A.15)

Duπ
f ·w =

∫
Ω

∇w : µA(u) dΩ−
∫
Γt

w · t dΓ−
∫
Ω

w · b dΩ (A.16)

Equation (A.16) can be used to define the specific linear and bilinear operators in

an abstract weak BVP (A.17).
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a(w,u;µ) = l(w) ∀ w ∈ V (A.17)

a(w,u;µ) =

∫
Ω

∇w : µA(u) dΩ (A.18)

l(w) =

∫
Γt

w · t dΓ +

∫
Ω

w · b dΩ (A.19)

Integrating (A.17) by parts and accounting for the essential boundary conditions

produces the strong form (A.20) - (A.22) of the BVP. The strong form is called so

because it contains second order derivatives of the displacement and must be satisfied

pointwise in the domain, while the highest order derivatives present in the weak form

(A.17) are first order and the equations are satisfied only in an integral sense.

∇ · (µA(u)) + b = 0, x ∈ Ω (A.20)

σ · n = t, x ∈ Γt (A.21)

u = g, x ∈ Γu (A.22)

We have shown that the displacement field may be obtained in three distinct but

equivalent ways: As the solution of the strong form (A.20)-(A.22), the weak form

(A.17)-(A.19), or as the minimizer of the functional (A.11).

A.2 Plane Strain and 3D

In incompressible plane strain and 3D the pressure term cannot be eliminated as was

done in plane stress, and must be solved for along with the displacement field. The

plane strain assumption approximates materials that are confined in the out of plane

direction and have loadings that do not vary along that direction. The governing
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equations for both plane strain and 3D are identical except for the range of indices:

1-2 for plane strain and 1-3 for 3D.

The constitutive and strain-displacement relations are

σ = −pI + 2µε (A.23)

ε = ∇su ≡ 1

2
(∇u+∇uT ) (A.24)

The strong form of this BVP includes the equilibrium equation along with its BCs

and the incompressibility condition:

∇ · σ + b = 0, x ∈ Ω (A.25)

∇ · u = 0, x ∈ Ω (A.26)

σ · n = t, x ∈ Γt (A.27)

u = g, x ∈ Γu (A.28)

The function spaces for the solution variables are defined below. If Γu = Γ (a pure

Dirichlet problem), the pressure field and its variation are unique up to a constant.

u ∈ S ≡ {u | ui ∈ H1(Ω), ui = gi on Γu} (A.29)

w ∈ V ≡ {w | wi ∈ H1(Ω), wi = 0 on Γu} (A.30)

p, q ∈ P ⊆ L2(Ω) (A.31)

The weak form is obtained in two steps. First, equation (A.25) is multiplied by

a test function −w ∈ V and integrated by parts. Application of the BC (A.27) and

the vanishing of w on Γu yields the first piece. Second, equation (A.26) is multiplied

by a test function −q ∈ P . The abstract variational problem is
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a(w,u;µ) + b(p,w) = l(w) ∀ w ∈ V (A.32)

b(q,u) = 0 ∀ q ∈ P (A.33)

where

a(w,u;µ) =

∫
Ω

∇w : 2µ∇su dΩ (A.34)

l(w) =

∫
Γt

w · t dΓ +

∫
Ω

w · b dΩ (A.35)

b(q,u) = −
∫
Ω

q∇ · u dΩ (A.36)

The system represented by (A.32) and (A.33) is an example of a saddle point

problem (Strang, 2007). The q variable acts as a Lagrange multiplier for the incom-

pressibility constraint. The inf-sup condition (Johnson, 2012) provides a means of

determining whether this variational problem is well-posed.



Appendix B

Simulated Examples

The results presented in this appendix serve two purposes. First, they highlight the

sensitivity of the inverse problem to assumed BCs in two modeling contexts. Second,

they serve as references to be compared to results obtained using the formulations

proposed in Chapters 3 and 4.

B.1 Simulated Data Generation

µ(x)

Ω

Prescribed loading

Figure B·1: 2D simulated experiment

The examples in this section are motivated by BMI quasi-static compression ex-

periments. The normalized 2D shear modulus distribution and applied loading are

shown in Figure (B·1). The normalized shear moduli of the diamond, ellipse, and

circle-shaped inclusions are 4, 3, and 2, respectively, and the value of the background

is normalized to 1. The size of the domain is 50× 50 units.

98
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The loading was designed to loosely emulate conditions encountered in ultrasound

elasticity imaging. A constant downward displacement of 0.5 units (corresponding to

about 1% axial compressive strain) is applied at the top of the domain and the bottom

is “stuck”, i.e. both components of the displacement field are fixed to zero. The sides

of the domain are free to expand. In breast elasticity imaging, the ultrasound trans-

ducer compresses the tissue, and the chest wall prevents displacement at a greater

depth.

Noiseless displacement fields were obtained by solving a forward problem using

the described loading and reference shear modulus distribution as the input to in-

compressible linear plane stress and plane strain finite element models. These dis-

placement fields can then be used as input data to the inverse problem. Inversion

algorithms tend to perform unrealistically well (i.e. commit an “inverse crime”), how-

ever, when the same discrete model that was used to generate the data is used to

solve the inverse problem. We avoid committing an inverse crime by corrupting the

displacements with noise.

Additive, independent Gaussian noise ni(x) was added to each displacement com-

ponent to create simulated “measured” displacement fields um(x) for the inverse

problem. To simulate what is encountered in ultrasound elasticity imaging, 2% noise

was added to the y component while 10% noise was added to the x component, as

the lateral displacements are often considerably more uncertain than the axial. The

formula for % noise is given by equation (B.2).

umi (x) = ui(x) + ni(x) , i = 1, 2 (B.1)

% noise =

√∫
Ω
n2
i dΩ∫

Ω
u2
i dΩ

× 100 , i = 1, 2 (B.2)

The simulated measured displacement fields for the plane stress and plane strain
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example problems are shown in Figures (B·2) and (B·3) The stiffest, diamond-shaped

inclusion is visible in the uy displacement field.

Figure B·2: Plane stress simulation measured displacement fields

Figure B·3: Plane strain simulation measured displacement fields

B.2 Inverse Problem Formulation

• General Inverse Problem Statement: Given um(x), x ∈ Ω, find µ(x) that

minimizes

π[µ] = D[u(µ(x))− um] + αR[µ(x)] (B.3)

s.t. A(w,u;µ) = l(w) ∀ w ∈ V

L ≤ µ ≤ U
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u ∈ S ≡ {u | ui ∈ H1(Ω), ui = gi on Γu} (B.4)

w ∈ V ≡ {w | wi ∈ H1(Ω), wi = 0 on Γu} (B.5)

µ ∈M ≡ L∞(Ω) (B.6)

We now introduce the specific forms of the terms in (B.3) for the simulated ex-

ample problems. We choose to use a least squares type D weighted by a symmet-

ric, positive semi-definite tensor T to account for the difference in precision of the

measured displacement components. The use of TV regularization for R biases the

reconstructed modulus toward piecewise constant. The loading enters this inverse

problem solely through the function space definitions for u (and w) via g, as b and

t are zero. The optimization bounds are L = 1 (the value of the background) and

U = 20.

D[u− um] =
1

2

∫
Ω

T (u− um) · T (u− um) dΩ (B.7)

R[µ] = α

∫
Ω

√
(∇µ)2 + β2 dΩ (B.8)

l(w) =

∫
Γt

w · t dΓ +

∫
Ω

w · b dΩ ( = 0 ) (B.9)

The only term in (B.3) that is model dependent is the A(·, ·) operator. Its defini-

tion for plane stress and plane strain can be found in Appendix A. The plane strain

inverse problem contains additional unknowns p and q that we have omitted from the

problem statement for simplicity of presentation.

Only the uy component of displacement was included in the inverse problem objec-

tive function, in correspondence to what is commonly done in practice with ultrasound
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elasticity imaging data, resulting in the T tensor given by (B.10). For all simulations,

the regularization constant α was 8.5E-5 and TV offset constant β was set to 1.0E-3

(µ and h are O(1)).

Tij =

[
0 0
0 1

]
(B.10)

We present two modulus reconstructions for each modeling scenario, the differ-

ence between them being the BCs used in the forward problem. First, as a reference

solution, the BCs used to generate the noiseless displacement field were applied (per-

fect BCs). This reconstruction represents the “best” solution one could hope to find.

Second, a choice of boundary conditions commonly assumed in practice was used

(assumed BCs); namely we imposed the y component of the measured displacement

field umy (x) as a Dirichlet boundary condition, while the remaining x direction BC

was assumed to be homogeneous Neumann (i.e. traction-free).

B.3 Plane Stress Results

Perfect BCs Assumed BCs

Figure B·4: Plane stress simulation reconstructions

The plane stress assumed BCs result resembles the perfect BCs reconstruction.

The background, however, is heterogeneous and too high near the bottom of the

domain. The contrast between the inclusions and the background is further from
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that of the exact solution’s as well.

B.4 Plane Strain Results

Perfect BCs Assumed BCs

Figure B·5: Plane strain simulation reconstructions

The plane strain (and 3D) inverse problem exhibits a greater sensitivity to as-

sumed boundary conditions than plane stress. An artificially stiff (almost three times

stiffer than the diamond inclusion) is present at the bottom of the domain due to

an incompatibility between the assumed BCs, measured displacement, and pressure

term in the plane strain model.
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(2014a). Stiffness versus prestress relationship at subcellular length scale. Journal
of Biomechanics, 47(12):3222–3225.
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