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ABSTRACT 

 Metabolic cross-feeding is an important process that can broadly shape 

microbial communities. Comparative genomic analysis of >6000 sequenced 

bacteria from diverse environments provides evidence to suggesting that amino 

acid biosynthesis has been broadly optimized to reduce individual metabolic 

burden in favor of enhanced cross-feeding to support synergistic growth across 

the biosphere. Still, little is known about specific cross-feeding principles that 

drive the formation and maintenance of individuals within a mixed population. 

Here, we devised a series of synthetic syntrophic communities to probe the 

complex interactions underlying metabolic exchange of amino acids. We 

experimentally analyzed multi-member, multi-dimensional communities of 

Escherichia coli of increasing sophistication to assess the outcomes of 

synergistic cross-feeding. We find that biosynthetically costly amino acids 

including methionine, lysine, isoleucine, arginine and aromatics, tend to promote 

stronger cooperative interactions than amino acids that are cheaper to produce. 

Furthermore, cells that share common intermediates along branching pathways 

yielded more synergistic growth, but exhibited many instances of both positive 



 

 vi 

and negative epistasis when these interactions scaled to higher-dimensions. This 

system enabled the identification of synergistic pairings and optimal expression 

levels of amino acid exporters of arginine, threonine and aromatics towards 

drastic improvements of ecosystem productivity. Tradeoffs identified in these 

mutualistic systems between secretion, relative abundance and absolute 

community productivity have implication in the evolution of cooperative 

behaviors. Long-term evolution of these synthetic communities highlight 

transporter over-expression, amino acid pool redistribution, and perturbations to 

nitrogen regulation as strategies to circumvent imposed metabolic dependencies. 

To address this potentially problematic genomic plasticity, a genetically 

reassigned organism is leveraged to investigate synthetic metabolic 

dependencies showing improved biocontainment and potential for microbial 

consortia control. These results improve our basic understanding of microbial 

syntrophy while also highlighting the utility and limitations of current approaches 

to modeling and controlling the dynamic complexities of microbial ecosystems. 

This work sets a foundation for future endeavors in microbial ecology and 

evolution, and presents a platform to develop better and more robust engineered 

synthetic communities for industrial biotechnology. 
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1 Introduction 

1.1 Motivation For Microbial Ecosystem Engineering 

Microbes constitute the most abundant and diverse set of organisms on 

Earth(Achtman & Wagner, 2008; Schloss & Handelsman, 2004). By generating 

and turning over organic material, they play a dominant role in performing key 

biochemical reactions essential to sustaining the biosphere(Falkowski, Fenchel, 

& Delong, 2008). As such, these micron-sized cells have evolved an impressive 

array of strategies that have allowed them to grow in almost any environment on 

the planet(Fraser, Alm, Polz, Spratt, & Hanage, 2009). Microbes, however, do 

not live alone. Rather, they live in crowded environments in association with 

other microbes, competing for resources, sharing metabolism, and forming a 

complex, dynamic and evolving microbial ecosystem(Hibbing, Fuqua, Parsek, & 

Peterson, 2010; Klitgord & Segre, 2011). 

In nature, stable microbial consortia are generally composed of members 

that have specialized physiologies and are tasked with different roles. These 

intertwined roles transform individuals that would otherwise compete, into a 

group that lives in concert(Pocock, Evans, & Memmott, 2012). Many such 

microbial ecosystems have evolved to be highly refractory to perturbations in the 

environment and are able to repopulate themselves when depleted in numbers. 

We are now beginning to appreciate the myriad of sophisticated processes and 

behaviors that manifest in microbial consortia, some of which mirror many 

essential features found in higher-level metazoans and multicellular 
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organisms(Foster, 2011). Understanding how individual microbes form 

communities will bring new and important insight to the evolution of 

multicellularity(Ispolatov, Ackermann, & Doebeli, 2012). A grand challenge in 

applied biology is to develop the knowledge and technology necessary to build 

these self-adaptive systems that can perform complex tasks at the micron-scale. 

Therefore, engineering microbial communities is an important endeavor, ripe for 

pursuit by synthetic biologists. 

 Over the past decade, the field of synthetic biology has aimed to make 

biology easier to engineer(Endy, 2005; Khalil & Collins, 2010). Under the 

paradigm of traditional engineering, new conceptual frameworks were devised to 

describe the organization of genetic regulation and cellular machinery to build 

new metabolisms(Canton, Labno, & Endy, 2008; Medema, van Raaphorst, 

Takano, & Breitling, 2012). New tools for the synthesis, assembly, and 

engineering of genes have been scaled to whole genomes to enable faster 

prototyping of biological designs(Carr & Church, 2009). Standardized inventories 

of useful genes and other biological components are growing rapidly(Muller & 

Arndt, 2012). All of these efforts help us develop a better understanding of the 

cell and the underlying design principles for engineering it. Scaling these efforts 

to communities of cells will require the development of new frameworks, methods 

and technologies (Figure 1). 
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Figure 1: Development of synthetic ecology requires insights gained through manipulating 
simple biological systems and analyzing complex ecological systems. Evolution must be 
factored into these pursuits, not only as a destabilizing force but also as a means to 
optimize our engineered designs. 

 

1.2 Engineering Parameters 

 

What goes on in microbial communities can be quite complicated to 

understand, appearing almost irreducibly complex. Therefore, engineering such a 

system is a daunting task. Even when grossly approximating a cell as a linear 

input-output unit, we are confronted with the observation that interactions 

between cells generate behaviors that are non-linear, asynchronous, and 

heterogeneous. Toward building a framework for engineering synthetic microbial 

ecosystems, we outline a set of essential parameters that we believe are core 

features of a microbial community. These parameters should be the subject of 

analysis, perturbation, and optimization when building synthetic ecosystems de 

novo. Based on recent literature about natural and engineered ecologies, we 
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highlight these parameters with regard to their significance, relationship with one 

another, and tunability from a synthetic perspective. These parameters help to 

build a framework for microbial communities where the individual members 

interact with one another through exchange of material, energy, and information 

(Figure 2). 

 

Figure 2: A summary of the crucial parameters that impact a microbial ecosystem. These 
parameters determine the ecosystem’s ability to convert an energy source into biomass 
and waste, and are prime targets for engineering and optimization. Metabolic capabilities 
are distributed across different members as defined by metabolotypes (shaded and 
colored ovals). Metabolic exchange can occur via metabolite transport across cellular 
membranes or through intercellular bridges. Community structure can be tuned by 
adjusting the degree of aggregation and formation of extracellular structures such as 
biofilms. Horizontal gene transfer enables genomic innovation and the rise of new 
capabilities within the population. 

 

1.2.1 Metabolic Capabilities and Metabolotypes 

Metabolism is the core essence of life at all scales, from individual 

enzymatic reactions in each cell all the way to the ecosystem as a whole. In 
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nature, the goal of metabolism is to extract energy from substrates, use them to 

synthesize biomass, and leave behind waste byproducts. For any given 

environment, we can argue that the residing consortium of cells performs a set of 

input-output operations to generate biomass and waste from an initial source of 

energy (e.g. sunlight, sugar, other biomass, etc.). The black-box operation that 

the consortium performs may in fact be very complicated depending on the 

metabolic capability and efficiency of the members, as well as their abundance 

and diversity. In fact, many different arrangements can be functionally equivalent 

because microbes house a staggering array of metabolic capabilities in a near 

infinite number of combinations. Over the past decades, we have cataloged a 

significant portion of all possible chemical and enzymatic reactions that biology 

can perform in databases such as KEGG(Kanehisa, Goto, Sato, Furumichi, & 

Tanabe, 2012) or MetaCyc(Caspi et al., 2012). With computers and in silico 

models, we can now recreate cellular metabolism for well-studied 

organisms(Duarte et al., 2007; Duarte, Herrgard, & Palsson, 2004; Oh, Palsson, 

Park, Schilling, & Mahadevan, 2007; Reed, Vo, Schilling, & Palsson, 2003; 

Schilling et al., 2002). Therefore, a deeper understanding of how metabolism 

scales to communities of cells can now be achieved.  

 The total metabolic capability of a microbial community arises from the 

summation of capabilities of each individual member. Identification of a cell’s 

metabolism is not a trivial task, however. Traditional taxonomic classification of 

microbial species by 16S rRNA(Woese & Fox, 1977) profiling is a poor reflector 
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of metabolic functionality. For example, communities that are only 15% similar as 

profiled by 16S may be 70% similar in terms of metabolic capability as 

determined by metagenomic sequencing(Burke, Steinberg, Rusch, Kjelleberg, & 

Thomas, 2011). Furthermore, we have a poor understanding of how metabolic 

capabilities that are distributed across different individuals can impact the 

community as a whole. We do know that with sufficient functional redundancy in 

the population, system-level behavior can be stably maintained even though 

individuals may vary in abundance(Fernandez et al., 1999; Turnbaugh et al., 

2009). Therefore, to have a clear picture of community-level metabolism, it is 

essential to identify the total list of metabolic genes, how they are allocated 

among individual members, and the level of redundancy in the system. We 

believe that the metabolotype, or the range of metabolic capabilities of any 

individual cell, may be a more relevant identifier of consortium members than the 

standard 16S phylogenetic signature. Metabolotype can be derived from the 

genotype via comparative genomic analyses(Goh et al., 2006) or from the 

phenotype via experimental characterizations(Bochner, Gadzinski, & Panomitros, 

2001). Engineering metabolotypes may provide important avenues to tune the 

metabolic capacity, dynamics, and diversity of the ecosystem. 

 

1.2.2 Intercellular Exchange of Metabolites and Signals 

In order to understand intercellular metabolic interactions (i.e. those 

occurring between cells), we need to understand the trafficking of metabolites 
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across the cell membrane. The cell membrane provides an essential function: 

trapping enzymes and metabolites within the cytosol to increase their effective 

local concentration, thereby increasing their rate of catalysis. Any metabolic 

interaction between cells must require metabolites and intermediates to cross the 

membrane barrier. For most valuable metabolites, passive diffusion across the 

membrane barrier is very limited and active transport systems are needed. These 

molecular transport pumps vary in terms of specificity (general vs. specific 

pumps), directionality (symport, antiport), and energy requirement (ATP-

dependency)(Borths, Poolman, Hvorup, Locher, & Rees, 2005; Patzlaff, van der 

Heide, & Poolman, 2003; Saier, 2000). Controlling these transport processes is 

an important thrust in microbial ecosystem engineering.  

While most cells have a myriad of transporters that import metabolites, far 

fewer transporters that export metabolites out of the cell have been identified. It 

is thought that most exporters (or efflux pumps) mainly serve to remove toxic or 

antagonistic compounds such as antibiotics from the cell(X. Z. Li & Nikaido, 

2009). More recent studies have suggested that these exporters are important in 

the maintenance of cellular homeostasis by regulating intracellular metabolite 

concentrations(Burkovski & Kramer, 2002). For example, a number of exporters 

exist to prevent excessive accumulation of different amino acids such as R, Y, W, 

F, L, M, K, I(Cruz-Ramos, Cook, Wu, Cleeter, & Poole, 2004; Doroshenko et al., 

2007; Eggeling & Sahm, 2003; Franke, Resch, Dassler, Maier, & Bock, 2003; 

Kutukova et al., 2005; Peeters, Nguyen Le Minh, Foulquie-Moreno, & Charlier, 
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2009). From the microbial community perspective, these transport systems are 

critical in enabling selective, and potentially programmable, metabolite sharing 

between cells with different metabolotypes. In addition to extracellular exchange, 

other strategies for metabolite sharing exist. Nano-tubules or pilus-based 

structures enable direct cell-to-cell exchange by establishment of cytosolic 

bridges(Dubey & Ben-Yehuda, 2011; C. S. Hayes, Aoki, & Low, 2010). These 

systems allow larger macromolecules such as polypeptides, proteins and 

DNA/RNA to be exchanged, thus providing additional means to metabolically 

connect individual cells within a community.  

Microbes interact not only through interdependent metabolisms, but also 

by coordinated behaviors. Group behavior differentiates microbial communities 

that are merely collections of individuals from those that truly work in a concerted 

fashion. Coordinating behavior at the population level requires chemical signals 

and intercellular communication systems such as quorum sensing(Bassler & 

Losick, 2006). Quorum sensing is the ability of cells to detect population density 

by measuring the concentration of a membrane-permeable chemical signal. 

These communication molecules serve to trigger genetic programs across the 

cell population to elicit synchronized behavior, such as cell division, 

differentiation, and aggregation(Rath & Dorrestein, 2011; Shank & Kolter, 2011; 

Straight & Kolter, 2009). From an engineering perspective, we can co-opt these 

chemical communication systems for synthetic ecosystems. Using synthetic 

quorum sensing circuits, Weiss et al. generated cell communities that exhibited 



 

 

9 

different spatially-defined phenotypes in response to chemical gradients(Basu, 

Gerchman, Collins, Arnold, & Weiss, 2005). These circuits have been further 

developed for edge detection systems that allow cells to sense the state of 

adjacent neighbors and respond accordingly(Tabor et al., 2009), as well as for 

macro-scale synchronization of behavior across physical distances 1000 times 

greater than the length of a cell(Prindle et al., 2012). These examples of 

engineered synthetic communities illustrate that controllable cell-cell signaling 

can enable the design of even more complex systems. 

 

1.2.3 Aggregation and Physical Structure 

Metabolic exchange and intercellular interactions require cells to be in 

close proximity. Cellular aggregation, by cell-cell contact or generation of 

extracellular matrices (known as biofilms), is a common strategy that natural 

microbial communities use to increase their local cell density(Hall-Stoodley, 

Costerton, & Stoodley, 2004). Often, cell aggregates directly lead to the 

formation of biofilms(Hall-Stoodley & Stoodley, 2002). Biofilm structures are 

particularly common as they anchor communities to a surface, allowing them to 

thrive more stably than in an otherwise mixed environment. By strengthening the 

local interactions in a community, these extracellular structures further enrich for 

ecosystems that behave cooperatively and in concert. Biofilms also decrease 

permeability of toxins and antimicrobial compounds thereby protecting the entire 

community(Fux, Costerton, Stewart, & Stoodley, 2005). These structures provide 
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tantalizing opportunities for synthetic engineering. For example, Brenner and 

Arnold et al. developed an engineered biofilm community with increased 

cooperative growth and resilience to fluctuating environments(Brenner & Arnold, 

2011). These systems should be further engineered for directed reciprocity – the 

ability for individuals to recognize and foster cooperative partners. Directed 

reciprocity is often found in naturally structured communities such as plant-

mycorrhizal ecosystems(Kiers et al., 2011) and other symbiotic systems(Ruby, 

2008). 

An extreme case of cell-cell association is endosymbiosis(McCutcheon & 

Moran, 2012). The engulfment of one cell by another and the sustainment of 

such association can lead to the development of complementary physiologies. It 

is thought that eukaryotic organelles such as the chloroplast and the 

mitochondria were the result of endosymbiosis(Margulis, 1971). Metabolic 

interdependency of endosymbionts often rely on exchange of essential 

metabolites (e.g. amino acids) as is the case for insect endosymbionts such as 

Tremblaya & Moranella in mealybugs(McCutcheon & von Dohlen, 2011), 

Buchnera in aphids(Hansen & Moran, 2011) and Sulcia in cicadas(McCutcheon, 

McDonald, & Moran, 2009). While these systems clearly present fascinating 

examples of extreme interdependency, we have yet to fully understand the 

evolutionary processes that lead to endosymbiosis(Dyall, Brown, & Johnson, 

2004). Therefore, forward engineering of such systems remains a significant 

challenge. 



 

 

11 

1.2.4 Mutation and Gene Flow 

The genetic makeup of the cell is not static but subject to constant 

change. In a microbial consortium, an individual’s metabolic capabilities can 

change over time due to evolution and horizontal gene transfer (HGT)(Burrus & 

Waldor, 2004; Frost, Leplae, Summers, & Toussaint, 2005). Small changes to 

the genome arise from mutations generated during replication or from DNA-

damaging agents. Larger changes may arise from mobile genetic elements that 

move around the same genome and between different genomes(Frost et al., 

2005). Small-scale mutations (e.g. point mutations, indels) generally affect the 

activity, specificity, or expression of proteins, so they are more likely to impact 

the cell’s physiology incrementally(Gogarten & Townsend, 2005). Truly novel 

traits rarely evolve independently and are more likely to be acquired horizontally 

from another cell(Frost et al., 2005; van Passel, Marri, & Ochman, 2008). HGT 

enables the cell to adopt new traits that require large leaps in sequence space, 

such as new biosynthesis capabilities. These processes can occur via 

conjugation, natural transformation, recombination, or transduction(Gogarten & 

Townsend, 2005). So what influences the rate of genetic exchange in 

communities? Using comparative genomics, Smillie et al. argued that shared 

ecology is the most important factor that facilitates genetic exchange(Smillie et 

al., 2011). The rate of HGT can also be accelerated in structured environments 

when neighboring cells are in close proximity and are more related 

phylogenetically(Smillie et al., 2011). The level at which Darwinian selection 
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occurs will affect the distribution and abundance of metabolotypes in the 

population. In order to effectively engineer ecosystems that behave predictably 

and stably over time, we must be able to either insulate the system from genetic 

mutations or harness natural selection to help maintain the engineered and 

desired state. 

 

1.3 Theoretical and Quantitative Models 

Theoretical and quantitative models are valuable analysis tools for 

studying natural and synthetic microbial ecosystems(Koide, Pang, & Baliga, 

2009; Raes & Bork, 2008). While numerous important contributions have been 

made in this area, they have been for the most part limited by analytical, 

computational or algorithmic complexity. Since natural ecosystems are highly 

heterogeneous and nonlinear, molecular-resolution simulations of population-

level interactions remain infeasible with current computational resources. 

Nonetheless, significant progress has been made for in silico reconstruction of 

cell physiology(Feist, Herrgard, Thiele, Reed, & Palsson, 2009). Scaling these 

models from single cells to ecosystem, however, often demands a compromise in 

generality. Certain models may highlight individual population-level behavior 

better than others, but are doing so by sacrificing consideration of another 

important parameter.  Here, we describe four classes of quantitative models that 

have been developed for understanding microbial ecosystems (Figure 3) and 

highlight the importance of each. 
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Figure 3: The four main classes of quantitative models that are used to study microbial 
ecosystems. (a.) Kinetic models describe changes in system variables (e.g. abundance) 
with simple differential equations that can exhibit interesting dynamics such as 
oscillations and limit cycles. (b.) Stoichiometric models can be applied to study optimal 
metabolic flux using objective functions to guide the design of intercellular metabolite 
exchange. (c.) Evolutionary games can be used to analyze phenotypic strategies within a 
microbial community using payoff calculations. These models aid in elucidating key 
variables that influence the domination or coexistence of microbial strategies. (d.) Digital 
evolution systems help to simulate microbial evolution, traversal of fitness landscapes, 
development of complex traits, and contributions of epistatic and pleiotropic effects to 
fitness. 

 

1.3.1 Dynamic Models 

Dynamic models are used to predict changes in a system as a function of 

time. They can be used at various scales from individual metabolites, to proteins, 

all the way to groups of cells(Chen, Niepel, & Sorger, 2010). In general, 

concentration or abundance of each component in the system is tracked over 

time as they interact with one another. In dynamic models, every process in the 
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system is described by a differential equation. Variables in the equations 

represent the time-varying parameters being modeled. Coefficients in the 

equations define the type (e.g. positive or negative) and strength of each 

interaction. The classical example of such a model is the Lotka-Volterra predator-

prey system(van den Ende, 1973). In this system, two subpopulations exist, the 

predator and the prey. The predator consumes the prey, which leads to depletion 

of the prey population. A significant depletion of the prey population leads to 

starvation and decline of the predator population. When the predator population 

is low, the prey population is then able to thrive, thereby bringing the ecosystem 

through cycles of boom and bust. The dynamic model is able to capture the 

expected phasic oscillation in abundance of predator and prey subpopulations 

and determine parameters in which such associations may exist (Figure 

3a)(Balagadde et al., 2008). This model can be scaled to whole populations as 

long as proper assumptions are made (e.g. linear vs. nonlinear parameter 

relationships). For example, dynamic models have been successfully applied to 

study macro-scale systems such as freshwater lake ecosystems(Sahasrabudhe 

& Motter, 2011). These models also enable perturbation studies where starting 

conditions (such as population size) can be varied, and solutions are obtained. 

The largest limitation to these models is that analytical solutions for most 

nonlinear differential equations with more than two variables are not readily 

available. Numerical solutions require additional mathematical and computational 

tools that need to be further developed. Nonetheless, these models are helpful 
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for us to develop first order intuition about the dynamics of the system. 

 

1.3.2 Stoichiometric Metabolic Models 

Stoichiometric models have been developed to study metabolism at the 

cellular level(Lewis, Nagarajan, & Palsson, 2012). These models describe 

metabolism of individual cells using matrices containing stoichiometric 

coefficients of all metabolic reactions and sets of optimization constraints. 

Stoichiometric representation of metabolism can be analyzed by various 

approaches(Papin et al., 2004; Price, Reed, Papin, Wiback, & Palsson, 2003) 

such as Flux Balance Analysis (FBA)(Schilling & Palsson, 1998). In contrast to 

dynamic models, FBA assumes that the system is at steady state such that all 

metabolite concentrations are time-invariant. This assumption is likely valid for 

cells grown in exponential phase(Varma & Palsson, 1994). The solution to the 

system is described by a series of steady state fluxes for each reaction. By 

combining all possible fluxes, we can generate a multidimensional flux space that 

describes the entire metabolic capacity of the cell (Figure 3b). An objective 

statement is used to define a given flux or criterion, such as flux to biomass 

(approximating growth rate), for which the multidimensional flux space can be 

optimized. Through linear optimization, the model predicts metabolic fluxes that 

maximize the objective function (e.g. biomass). This model has been extensively 

applied to in silico metabolic reconstruction of a variety of organisms(Duarte et 

al., 2007; Duarte et al., 2004; Oh et al., 2007; Reed et al., 2003; Schilling et al., 
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2002). Stolyar et al. used a FBA model to describe a methanogenic community of 

M. maripaludis and D. vulgaris that exchanged metabolites hydrogen and 

formate(Stolyar et al., 2007). The metabolisms of the two strains are divided into 

two separate compartments which exchange metabolites via a third common 

compartment. This model successfully predicted the ratio of M. maripaludis to D. 

vulgaris during growth and suggested that hydrogen was essential for syntrophy 

while formate could be removed from the co-culture interaction(Stolyar et al., 

2007).  

Two developments have greatly improved stoichiometric models of 

microbial communities: the application of multi-level objective statements(Lewis 

et al., 2012; Zomorrodi & Maranas, 2012), and inclusion of 

dynamics(Mahadevan, Edwards, & Doyle, 2002). Multi-level objective statements 

can be formulated to describe different and potentially competing flux conditions. 

This approach has been used to model synthetic ecosystems of three or more 

members, where objective statements are defined separately for both the strain 

and the community(Zomorrodi & Maranas, 2012). By simultaneously optimizing 

these objective functions, the model captures the selective forces that act on 

individuals and the community.  For example, growth of individual species can be 

sacrificed to promote maximal community growth(Zomorrodi & Maranas, 2012). 

Thus, models with multi-level objectives more accurately describe metabolite 

exchange. To account for dynamics in the system, population abundance and 

metabolite concentrations can be separated into different FBA models and 
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solved independently at every time step in an approach called dynamic multi-

species metabolic modeling (DMMM)(Zhuang et al., 2011). As substrate 

concentrations change over time, DMMM is able to adjust the substrate utilization 

mode of each strain to the present conditions by switching to the appropriate 

stoichiometric matrix. This method is able to capture scenarios of resource 

competition and identify metabolites whose limited exchange affect population 

dynamics(Zhuang et al., 2011). These and other stoichiometric models, such as 

elementary mode analysis (EMA)(Taffs et al., 2009), enable full-scale 

quantitative models of ecosystems that are predictive and important for forward 

engineering. 

 

1.3.3 Evolutionary Game Models 

In contrast to dynamic and metabolic models, evolutionary game models 

focus on describing strategic decision-making of interacting agents and 

successfulness of their strategies (Figure 3c)(West, Griffin, Gardner, & Diggle, 

2006). Rules of the evolutionary game define the payout that each player 

receives for every possible combination of strategies (e.g. cooperate, 

cheat). Each player’s payout represents the individual’s fitness, and the highest 

value “wins” the game. For example, microbial phenotypes can often be 

described as altruistic (A) or selfish (S); evolutionary games can model how such 

behaviors arise(West et al., 2006). While we would assume that selfish 

exploitation of the environment may be a winning strategy, the natural world is 
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paradoxically filled with organisms that exhibit cooperative behavior(Sachs, 

Mueller, Wilcox, & Bull, 2004).  For microbial communities, the fitness of every 

individual in a population is determined by the net payout from all pairwise games 

with all other individuals. The initial proportion of individuals adopting a given 

strategy is an input for this model. These games are then iterated over time with 

a given strategy changing in abundance based on the fitness of individuals who 

hold the strategy compared to the average population fitness. As the marginal 

cost of cooperating and benefit of cheating lead to changing payouts, the two 

strategies will dynamically vary and affect the outcome of the game(Hauert, 

Michor, Nowak, & Doebeli, 2006). From these models, we find that populations 

that are dominated by altruists will often have a higher fitness than those 

dominated by selfish exploiters(Nowak, 2006). 

For microbial ecosystems, evolutionary game theory models allow us to 

investigate how system parameters impact microbial interactions and dynamics 

of competing strategies. These models have been used to predict the 

evolutionary steady state of engineered yeast populations that exhibit altruistic or 

selfish strategies through the snowdrift game(Gore, Youk, & van Oudenaarden, 

2009). In such a game, the altruists secrete an invertase enzyme that hydrolyses 

a polysaccharide to generate diffusible glucose products that are available to the 

entire population. The selfish individuals forgo the cost of secreting the enzyme, 

but rely on the glucose generated by the altruistic strains. Modulating the cost of 

cooperation resulted in shifts in the final population structure. Altruists dominated 
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when cost of cooperation was very low. Altruists and cheaters coexisted at 

median costs of cooperation, while cheaters dominated at high costs(Gore et al., 

2009).  To further take into account spatial structures, agent-based game models 

are used to restrict interactions to individuals in close physical proximity(Nadell, 

Foster, & Xavier, 2010). Clusters of cells that exhibit cooperative strategies will 

derive more benefit due to spatial confinement, and thus will be further enriched 

in the population. These and other evolutionary game models(Nowak, 2006) will 

be important quantitative tools to guide ecosystem engineering. 

 

1.3.4 Digital Evolution 

 Long-term bacterial evolution experiments have been used to track how 

phenotypes and genotypes change in a constantly selective 

environment(Conrad, Lewis, & Palsson, 2011). Similarly, in silico simulations of 

evolution have been developed (Figure 3d)(Wilke, Wang, Ofria, Lenski, & Adami, 

2001). Earlier forms of these simulations derive from cellular automata 

approaches, such as the Game of Life(M. Gardner, 1970). Cells in the cellular 

automata live in a two-dimensional environment. Reproductive success or cell 

death is governed by the density and configuration of the local population. 

Discrete time steps are iterated over the population to simulate the process of 

life. A more sophisticated implementation of digital evolution, called Avida, has 

been described(Lenski, Ofria, Pennock, & Adami, 2003). Avida is inspired by an 

earlier system Tierra, in which digital organisms contain computer programs that 
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compete for Central Processing Units (CPUs) and access to memory in order to 

reproduce(Ray, 1992). In Avida, digital organisms have their own memory space 

and virtual CPUs to perform tasks(Ofria, 1998). Each digital organism has a 

circular “genome” composed of a collection of 26 possible discrete basic 

programs (Nand, IO, swap etc.) that are executed in series. When certain 

combinations of these basic programs are executed in the correct order, one of 

several logic operations is performed. Strains able to execute higher complexity 

operations are rewarded with more energy and therefore replicate faster. As cells 

replicate, mutations are introduced, which result in programs being added, 

removed, or moved. This leads to new operational capabilities. Because the 

history of each organism’s genotype and phenotype are chronicled, digital 

evolution models enable better understanding of how individuals traverse a 

fitness landscape as complex traits evolve. These artificial life models also 

enable the reversion of individual and combinations of mutations to study 

epistasis. Key conclusions(Lenski et al., 2003) reinforced by these models 

include: 1) deleterious mutations may be needed to develop complex traits; 2) 

even though complex traits are fragile to mutations, they fix in the population 

because they provide significant fitness benefit, and 3) development of 

complexity requires selection of traits with intermediate complexity to allow 

gradual transition through the fitness landscape. Since complex phenotypes are 

a hallmark feature of microbes, this framework will likely provide useful insights to 

improve engineering of ecosystems through digital simulations. These 



 

 

21 

approaches are now being extended to simulation population-level 

behavior(Chow, Wilke, Ofria, Lenski, & Adami, 2004; Yedid, Ofria, & Lenski, 

2008). 

 

1.4 Experimental Tools 

Over the last decade, the field of microbial ecology has been swept by a 

wave of new technologies, significantly reshaping the traditional investigative 

approach. These advances have centered on key developments in 

microfabrication, high-throughput sequencing, genome engineering, and 

synthetic circuit design. These new methods allow for better in vitro and in vivo 

models, culture-independent identification and quantification of individual species 

across populations, and generation of targeted genotypes for functional studies 

(Figure 4). Forward engineering of synthetic microbial ecosystems will rely 

heavily on these techniques. 
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Figure 4: Experimental tools enable engineering of microbial ecosystems from the 
population level down to the DNA level. In vitro tools such microfluidics and 
microchambers or in vivo mice models enable precise control of the environment. High-
throughput sequencing and transcriptomics enable parallel interrogation of phylogeny, 
composition, and gene expression of cell populations. Techniques such as multiplexed 
genome engineering and transposon mutagenesis enable forward engineering and 
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accelerated evolution of cell populations at the genetic level. New genetic circuitry and 
synthetic biology frameworks enable the development of multi-component genetic 
programs that are executed across populations of cells. 

 

1.4.1 In vitro Models 

Going beyond traditional cultivation techniques using petri dishes and 

culture flasks, advances in microfabrication and microfluidics have produced a 

variety of cheap lab-chip devices that can be used to cultivate and analyze 

microbes grown in massively parallel micron-sized chambers and 

channels(Balagadde, You, Hansen, Arnold, & Quake, 2005; Link, Jeong, & 

Georgiou, 2007). These devices are particularly useful for generating 

physicochemical conditions found in heterogeneous ecological niches to study 

behaviors such as quorum sensing or antibiotic susceptibility. For example, 

Zhang et al. developed a microfluidic chip that contained 1200 interconnected 

wells to probe the development of ciprofloxacin antibiotic resistance(Zhang, 

Lambert, et al., 2011). Local antibiotic gradients generated “Goldilocks points” in 

the microchamber where motile strains gathered and developed notable 

ciprofloxacin resistance (10 mg/ml) – 200 times the minimum inhibitory 

concentration. This phenomenon was not observed in the absence of such 

antibiotic gradients when grown in standard flasks as no resistance strains 

developed. This work highlights the importance of local heterogeneity in the 

evolution of microbial populations and development of antibiotic resistance.   

Microfluidic chambers can also be used to study chemical signaling and 

nutritional cross-feeding between different microbes. Hyun et al. developed a 



 

 

24 

fluidic chip that contained arrays of spatially separated micro-wells with 

selectively permeable bottoms placed over a common liquid reservoir(Kim, 

Boedicker, Choi, & Ismagilov, 2008). Through size exclusion, metabolites could 

diffuse to neighboring wells while the bacteria producing them remained in each 

well. Using this system, the authors built a synthetic consortium of three bacteria, 

Azotobacter vinelandii, Bacillus licheniformis, and Paenibacillus curdlanolyticus, 

which normally do not grow together in nature. In a defined environment that is 

nitrogen and carbon depleted, and in the presence of antibiotics, the consortium 

exhibited reciprocal syntrophy because each species performed a specialized 

function that benefited the entire group. A. vinelandii fixed gaseous nitrogen into 

amino acids. B. licheniformis degraded the antibiotic penicillin.  P. curdlanolyticus 

generated carbon sources needed by the consortium by degrading 

carboxymethyl-cellulose. In this co-culture, spatial structures and local 

interactions amongst the members defined the viability of the ecosystem. These 

interactions can be further elucidated at the single-cell level by using agarose 

tracks in channels that are the width of one cell(Balaban, Merrin, Chait, Kowalik, 

& Leibler, 2004; Moffitt, Lee, & Cluzel, 2012). Through optical microscopy, growth 

of individual cells by linear extension along the channel can be tracked over 40 

generations. Syntrophic exchange between strains of E. coli auxotrophic for 

different amino acids enabled growth in separate parallel channels(Moffitt et al., 

2012). Highlighting the importance of locality in syntrophic exchange, the co-

culture growth rate was shown to decrease sharply when the distance between 
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complementary strains in neighboring channels increased by more than a few 

cell lengths. 

In addition to microchambers and microchannels, microdroplet technology 

is also useful in probing interspecies interactions(Park, Kerner, Burns, & Lin, 

2011). Groups of cells can be encapsulated in monodispersed aqueous-phase 

droplets using a T-junction microfluidic channel with an oil-phase. Through 

syntrophic cross-feeding, auxotrophic E. coli strains can grow in these 

microdroplets and be analyzed by microscopy(Park et al., 2011). These 

approaches will improve cultivation of new microbes by recapitulating 

microenvironments in which otherwise unculturable microbes can grow in the 

presence of metabolically compatible partners. 

 

1.4.2 In vivo Models 

Experimental models that recapitulate natural environments lend crucial 

insights into structure and function of microbial communities in their native 

habitats. Tractable live animal models, such as gnotobiotic germ-free (GF) mice, 

have been used extensively to investigate the relationship between the 

mammalian gut and the resident microbial community(Faith et al., 2010). 

Gnotobiotic mice can be inoculated with defined and sequenced microbes that 

are trackable to investigate processes of gut colonization, food metabolism, and 

community stability. In one such recent study, Faith et al. introduced 10 

representative strains of the human microbiota into GF mice that are fed with 
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defined diets of macronutrients(Faith, McNulty, Rey, & Gordon, 2011). Four 

classes of foods were given to mice: proteins, fats, polysaccharides, and sugars. 

The 10-member microbial consortium was tracked by analysis of fecal samples 

after transition to different diets. The researchers found that a simple linear 

model could predict over 60% of the variation in species abundance due to diet 

perturbations. The use of synthetic microbial communities in live animal models 

provides a feasible way to untangle the web of complex interactions that may go 

on in the population. Furthermore, in vivo mice models are amenable to genetic 

modifications to produce important disease phenotypes such as ob/ob(Ley et al., 

2005) or Tlr2(-/-)(Kellermayer et al., 2011), which can be used to tease out host-

microbe interactions. 

Simple evolutionary models of antibiotic antagonism, such as the classic 

non-transitive rock–paper–scissors (RPS) game, have also been demonstrated 

by studying engineered E. coli strains in GF-mice. Kirkup and Riley(Kirkup & 

Riley, 2004) used three types of strains: one that produces bactericidal colcins 

(P) that preferentially kill off sensitive strains (S) versus resistant strains (R). 

Sensitive strains can outcompete resistant strains, which in turn can outcompete 

colcin-producing strains. GF-mice associated with the microbial consortium 

showed cycling between the three phenotypes, which illustrated the RPS model 

and the in vivo role of colcin as an antibiotic. More interestingly this synthetic 

consortium model suggests that antibiotic-mediated antagonism can serve to 

promote microbial diversity in the mammalian gut.  
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1.4.3 Population Quantification Techniques 

Precipitous reduction in cost and exponential growth in throughput of next-

generation DNA sequencing technologies have revolutionized molecular 

biology(Medini et al., 2008). Sequencing has been used extensively for 

cataloging the composition, abundance, and metabolic potential of microbes from 

a variety of natural environments such as soil(Mackelprang et al., 2011), 

ocean(Biers, Sun, & Howard, 2009), acid mines(Simmons et al., 2008), and the 

human body(Peterson et al., 2009). Molecular barcoding allows large numbers of 

samples to be multiplexed and can be combined with time-series measurements 

to capture temporal changes across the entire population(Hamady & Knight, 

2009; MacLean, Jones, & Studholme, 2009). Furthermore, transcriptome 

sequencing methods such as RNA-seq allow us to measure detailed 

transcriptional profiles of consortium members under different environmental 

conditions(Turnbaugh et al., 2010). Resequencing genomes from long-term 

evolution studies have also increased in popularity(Conrad et al., 2011). These 

investigations help to identify genetic mutations that arise due to adaptation to 

new environments(Chou, Chiu, Delaney, Segre, & Marx, 2011; Khan, Dinh, 

Schneider, Lenski, & Cooper, 2011) and help to reveal genetic heterogeneity 

within the population(Tenaillon et al., 2012). Goodarzi et al. developed the 

genetic footprinting technique, array-based discovery of adaptive mutations 

(ADAM), which enabled selective identification of mutations that provide a 

competitive advantage within a cell population(Goodarzi, Hottes, & Tavazoie, 
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2009). Combining sequencing and functional measurements, this method 

reconstructs beneficial phenotypes to increase the scope of adaptive lab 

evolution studies and enhance understanding of genetic interactions in complex 

populations. 

 

1.4.4 Genome engineering 

Construction and engineering of sophisticated synthetic ecosystems 

require facile modification of microbial genomes. Transposable elements have 

long been used as an efficient way to produce mutants of various phenotypes by 

random insertion into the genome(F. Hayes, 2003). Libraries of such transposon-

mutated strains diverge in genotype and phenotype, but when pooled together 

can begin to resemble a microbial consortium. Using high-throughput DNA 

sequencing, large libraries of transposon mutants can be interrogated efficient. 

Goodman et al. combined the use of transposon mutagenesis, high-throughput 

sequencing and gnotobiotic mice in a technique called Insertion Sequencing (IN-

Seq) to probe the function of Bacteroides thetaiotaomicron in the mouse 

gut(Goodman et al., 2009). Populations of B. thetaiotaomicron cells that were 

mutated by Himar1 mariner transposons were assessed by Illumina sequencing. 

The modified Himar1 inverted repeat sites contained MmeI-compatible 

sequences. Upon MmeI digestion of genomic DNA from the mutant population, 

high-throughput sequencing can be used to determine two 18-bp pairwise 

genomic fragments that correspond to the transposon insertion. Abundance 
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levels of each mutant can be tracked and distinguished from one another, as well 

as from defined microbes in other phylum such as Firmicutes or Actinobacteria. 

Other similar techniques for high-throughput transposon sequencing include Tn-

seq(van Opijnen, Bodi, & Camilli, 2009), high-throughput insertion tracking by 

deep sequencing (HITS)(Gawronski, Wong, Giannoukos, Ward, & Akerley, 2009) 

and transposon-directed insertion-site sequencing (TraDIS)(Langridge et al., 

2009) have also been developed. 

Often, engineering members of a synthetic consortium requires precise 

genetic manipulation of the genome instead of random mutagenesis. Recent 

advances in oligo-mediated genomic engineering such as Multiplex Automated 

Genome Engineering (MAGE) has enabled efficient, parallel, and site-specific 

modification of genomes across many target sites(H. Wang, Kim, HB, Cong, L, 

Bang, D, Church GM., 2012; H. H. Wang & Church, 2011; H. H. Wang et al., 

2009). By using pools of oligos, MAGE can generate genetic diversity in the 

population at a rate of 4.3x109 modified bases per day, which enables 

combinatorial generation of divergent and complementary phenotypes within 

population clades(H. H. Wang et al., 2009). MAGE relies on the transformation of 

small chemically synthesized oligonucleotides (~50–90 bp) into the genome that 

then proceed to integrate into the chromosome during replication in an Okazaki-

like fashion. Single-stranded DNA binding proteins and recombinases greatly 

facilitate this process and are often found as a part of viral integration 

machinery(Datta, Costantino, Zhou, & Court, 2008). Rapid generation of cells 
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that exhibit a variety of physiologies is not only feasible but can be automated. 

Therefore, these approaches are crucial to the construction of viable and stable 

synthetic communities. Oligo-mediated genomic engineering has shown promise 

in a variety of organisms including Escherichia coli(Ellis, Yu, DiTizio, & Court, 

2001), Pseudomonas syringae(Swingle, Bao, Markel, Chambers, & Cartinhour, 

2010), Pantoea ananatis(Katashkina et al., 2009), and other gram-negative 

bacteria(Swingle, Markel, et al., 2010), as well as Mycobacterium 

tuberculosis(van Kessel & Hatfull, 2007), lactic acid bacteria(van Pijkeren & 

Britton, 2012), and yeast(Kow, Bao, Reeves, Jinks-Robertson, & Crouse, 2007). 

 

1.4.5 Synthetic Computing Circuits 

Construction of genetic circuits that perform computational operations has 

been a long-standing goal in synthetic biology(Lu, Khalil, & Collins, 2009). 

Recent advances in genetic circuit design have now been extended to libraries of 

cells, which can be modularly combined to perform basic logic functions. Earlier 

work demonstrated that population-level behavior can be programmed using 

feedback genetic circuits and quorum sensing molecules(Brenner, Karig, Weiss, 

& Arnold, 2007; You, Cox, Weiss, & Arnold, 2004) but needed precise 

population-synchronization for robust behavior(Danino, Mondragon-Palomino, 

Tsimring, & Hasty, 2010). More recently, two groups developed multicellular 

computing systems(Regot et al., 2011; Tamsir, Tabor, & Voigt, 2011). Regot et 

al. constructed a library of engineered yeast cell-types that could sense different 
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extracellular input signals such as NaCl, doxycycline, galactose, oestradiol and 

produce chemical ‘wiring molecules’ such as pheromones to communicate with 

one another(Regot et al., 2011). These cell-types were made into AND and 

inverted IMPLIES logic functions to implement Boolean operations. For example, 

Cell 1 when presented with an input such as NaCl, will produce the wire 

molecule, pheromone, which is received by Cell 2. Cell 2 will produce a 

detectable fluorescence output only when it senses the pheromone and a second 

input such as oestradiol. The NaCl AND oestradiol operation is achieved with this 

two-cell implementation. By combining different cell-types, the authors generated 

a variety of logic gates (AND, NOR, OR, NAND, XNOR, XOR). More 

impressively, complex circuits including a multiplexer and a 1-bit adder with carry 

were built using additional chemical wires and cell-types. Based on a similar 

design scheme, Tasmir et al. constructed libraries of E. coli cells with simple 

NOR logic gates and connected them using quorum sensing molecules(Tamsir et 

al., 2011). The NOR gate was built using two tandem promoters that served as 

orthogonal inputs to drive the transcription of a repressor element. This simple 

implementation was used to build more complex circuits, which the authors 

demonstrated by performing logic operations on solid plates with different 

spatially defined colony types(Tamsir et al., 2011). These results support the 

notion that cellular consortia may be used to perform complex tasks more 

efficiently than single-cell implementations, further advocating the development 

of synthetic consortia as a platform technology. 
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1.5 Applications of Synthetic Consortia 

Microbial consortia can potentially be programmed to perform useful tasks 

in both natural and artificial environments at spatial and temporal scales well 

beyond the capabilities of any individual member. Numerous applications may 

warrant such systems, ranging both in sophistication and in scale. Engineered 

microbes have long been used for industrial production of chemicals and 

pharmaceuticals(Alper & Stephanopoulos, 2009). These reactions tend to occur 

in fermentation chambers using genetically identical strains. All multi-step 

reactions need to be carried out intracellularly or would require separate 

fermentation pipelines. For complex feedstocks such as cellulosic biomass, 

single-strain fermentation reactions are unlikely to suffice. On the other hand 

multi-species communities can degrade these complex substrates 

efficiently(Kato, Haruta, Cui, Ishii, & Igarashi, 2005). Thus, future microbial 

fermentation systems are likely to shift to more heterogeneous population of 

engineered strains with diversified metabolic capabilities(Shong, Jimenez Diaz, & 

Collins, 2012).   

Engineered consortia can be designed to degrade complex feedstock 

while simultaneously producing valued products. Using a symbiotic co-culture of 

engineered yeasts and Actinotalea fermentans, a cellulolytic bacterium, Bayer et 

al. were able to convert unprocessed switchgrass, corn stover, sugar cane 

bagasse, and poplar into methyl halide, a biofuel precursor(Bayer et al., 2009). A. 

fermentans fermented cellulose to acetate and ethanol, but its growth was 
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inhibited by these toxic waste products. However, engineered yeast was used to 

reduce acetate level by utilizing it for energy to produce methyl halide through 

heterologous expression of a methyl halide transferase. Thus, interdependence 

was established between the two strains to alleviate growth inhibition toward 

production of a biofuel. This type of division of labor is a powerful approach for 

processing complex substrates – a strategy commonly adopted in natural 

microbial consortia(Warnecke et al., 2007). 

Applications in coordinated toxin detection and bioremediation may also 

benefit from synthetic consortia. By engineering auto-synchronization in 

populations of oscillating cells, Prindle et al. developed a liquid crystal display 

(LCD)-like macroscopic clock that could sense arsenic concentrations and 

respond by changing the oscillatory period(Prindle et al., 2012). The researchers 

nested two modes of cell signaling to expand the scale at which coordinated 

events manifest across the population. Slower local synchronization proceeded 

via a well-established quorum sensing genetic circuit to form colonies called 

“biopixels.” Arrays of these small colonies were synchronized across a large 

scale with a weaker but faster redox signaling system using hydrogen peroxide. 

Using an extra positive-feedback element that was linked to an arsenic-

responsive promoter, the oscillatory system became a macroscopic arsenic 

biosensor that fluoresced at different periods depending on the arsenic 

concentration. By combining the two modes of cellular communication across 

thousands of microwell channels, the authors developed a proof-of-principle 
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biochip that may potentially be used as a handheld arsenic detector. 

For applications in medical therapeutics, engineered microbial gut 

consortia will likely be an important area of development. Recent studies have 

highlighted the important role of human-associated microbial communities in 

maintaining health and causing diseases(Dethlefsen, McFall-Ngai, & Relman, 

2007; Nicholson, Holmes, & Wilson, 2005; Turnbaugh et al., 2007), especially in 

the gastrointestinal (GI) tract where food and drugs are metabolized. The gut 

environment is home to the highest density of microbes in the body (up to 1011 

cells/gram) and irregularities in the microbial composition are linked to diseases 

including Crohn’s(Manichanh et al., 2006; Sokol et al., 2009), inflammatory bowel 

disease(Nell, Suerbaum, & Josenhans, 2010), obesity(Turnbaugh et al., 2009), 

diabetes(Giongo et al., 2011), infections(Walk & Young, 2008), and 

maldigestion(He et al., 2008). Traditional therapeutic strategies using probiotics 

have failed to generate consistent results largely due to a lack of understanding 

for the design principles needed to maintain engineered microbes in vivo. New 

approaches in synthetic consortia engineering will likely succeed where previous 

attempts have failed. Few successes in this area are already encouraging. 

Steidler et al. engineered an orally administered Lactococcus lactis strain that 

excreted human interleukin-10 in the GI tract(Steidler et al., 2000). This 

engineered probiotic strain reduced the degree of induced colitis in mice models, 

paving the way for human clinical trials for IBD(Steidler, Rottiers, & Coulie, 2009). 

Saeid et al. showed that engineered E. coli could detect the human pathogen 
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Pseudomonas aeruginosa via a quorum sensing pathway(Saeidi et al., 2011). P. 

aeruginosa often colonize the respiratory and GI tracts, leading to chronic and 

fatal diseases. Upon pathogen detection, the programmed E. coli self-lyse and 

release pyocin, a narrow-spectrum bacteriocin that kills P. aeruginosa. Future 

applications of human-microbiome engineering may include enhancing 

catabolism of troublesome but common metabolites (e.g. lactose and gluten), 

precise microbial modulation of the immune system, and removal of multi-drug 

resistant pathogens by selective toxin release. 

We outline different applications of synthetic microbial communities to 

highlight their potential in improving areas of biosensing, biosynthesis, and 

biodegradation where the capabilities of homogeneous populations of genetically 

identical cells are insufficient (Figure 5).  



 

 

36 

 

Figure 5: Engineering improvements for synthetic consortia. (a) A synthetic consortium 
can be designed to reduce by-product inhibition that accompanies over-accumulation of a 
toxic intermediate. (b) A co-culture bioprocessing strategy can be used where multiple 
steps are separately optimized in different cells to maximize overall productivity. (c) 
Modular assembly of synthetic consortia using common intermediate metabolites enables 
reprogrammable bioprospecting. (d) Production and secretion of multiple metabolites may 
saturate general cellular machinery. Specific metabolite export across different cell-types 
may increase productivity. 
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1.5.1 Biosensing 

 Abilities to sense diverse environmental signals and actuate appropriate 

responses are necessary and key features of engineered microbial communities. 

For example, autodetection of changes among networks of gut microbes in the 

intestine would allow for real-time monitoring and pinpointed responses to 

alarming events such as infections or toxins. Such capabilities would present a 

marked improvement over current monitoring strategies where symptoms are 

only recognized once an infection has fully developed and treatment requires 

indiscriminant depletion of the native community using antibiotics. These 

population-level behaviors are only now been demonstrated using synthetic 

communication circuits with quorum sensing modules. Non-pathogenic 

Escherichia coli have been engineered to recognize specific QS molecules 

diffusing from virulent strains of Vibrio (Duan & March, 2010) or Pseudomonas 

(Saeidi et al., 2011). Upon detection, pathogen-specific antimicrobial proteins or 

compounds are released, resulting in 99% reduction in the pathogen load (Saeidi 

et al., 2011).   

Synthetic consortia can also be designed to detect and respond to other 

compounds to regulate programmed behaviors. Consortia growth rate and 

relative abundances of different members can be tuned in response to the 

environment (Hu, Du, Zou, & Yuan, 2010; Kerner, Park, Williams, & Lin, 2012). 

These approaches can be used to engineer biofilms to alter its physical 

architecture and membership composition to optimize bioprocesses that rely on 



 

 

38 

spatially associated communities (Shong et al., 2012). Engineered communities 

can also be used not only to microscopically sense low-level metabolites but also 

to amplify the signal for macroscopic detection. Building on an oscillatory 

fluorescence-generating circuit, Prindle et al synchronized local and global 

sensing mechanisms to generate periodically synchronized signals that changed 

in response to arsenic concentration, thereby generating a macroscopic 

biosensor using populations of cells (Prindle et al., 2012). Further demonstrations 

of synthetic consortia for biosensing applications are needed. 

 

1.5.2 Biodegradation  

Microbial communities naturally degrade various compounds into nutrients 

to sustain metabolism. Synthetic communities are increasingly being used to 

degrade xenobiotic and recalcitrant compounds. Similarly to the process of 

synthesis, degradation can be improved through careful engineering of 

organisms with desired functionalities that may be modular and complementary 

in physiology, resulting in overall improvement in performance of the community. 

The sequestration of undesirable compounds or pollutants can be augmented by 

reducing inhibition of cell growth that result from accumulation of inhibitory 

intermediates. For example, Li et al demonstrated that an engineered E. coli and 

Ochrobactrum consortia can enhance the degradation of methyl parathion (MP), 

an insecticide and toxin, through removal of the growth inhibitory intermediate p-

nitorphenol (PNP), resulting in 98% MP removal (L. Li et al., 2008). Degradation 



 

 

39 

profiles can further be improved using engineered microbes that supplement a 

consortium with limiting metabolites, such as biotin, thiamine, cobalamine and 

siderophores that help facilitate growth and bioconversion. Examples of these 

communities of cyanobacteria or microalgae with bacteria have been 

documented to greatly improved degradation of hydrocarbons in oil spills (Tang 

et al., 2010). 

Microbial communities play a significant role in digestion and metabolism 

of foods in the mammalian gut and its dysfunction may lead to diseases of 

maldigestion (Ley et al., 2005). Perturbation of synthetic communities of gut 

microbes in gnotobiotic mice using altered diets demonstrated that digestive 

capabilities may be a viable avenue of forward engineering through synthetic 

biology (Faith et al., 2011). For example, gut communities that additionally carry 

methanotrophic Archaea can lead to overall increase in microbial metabolism 

though removal of inhibitory levels of hydrogen that are otherwise generated. 

This has the direct effect of increased degradation of nutrient into absorbable 

nutrition, leading to elevated nutritional uptake by the host and when in excess 

can cause obesity (Ley, Turnbaugh, Klein, & Gordon, 2006). Engineering and 

altering the degradation capacity of gut-associated microbial communities will 

likely be an important avenue to develop for synthetic microbial ecosystems.  
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1.5.3 Biosynthesis 

Synthesis of new compounds or existing ones using safer and better 

approaches is critically needed – a task well suited for engineered consortia. 

More efficient use of otherwise waste feedstocks as input materials into 

fermentation bioreactors is a highly desirable objective. Many of these materials, 

such as cellulosic biomass, are complex feedstocks that are not well-suited for 

current bioproduction pipelines. Use of  engineered communities (Zhang, He, et 

al., 2011) presents a better solution than current monoculture production 

approaches  as excretion of different cellulases from different strains can improve 

degradation of complex cellulose polymers into smaller monomers . Additionally, 

cells that optimally excrete these cellulases may not be well-suited for 

bioproduction due to inherent metabolic costs. Shin et al demonstrated the 

advantage of using a synthetic consortium with a divided labor structure for 

ethanol production from hemicellulosic feedstock (Shin, McClendon, Vo, & Chen, 

2010). Two E. coli strains were co-cultured; one genetically optimized for 

cellulase production and excretion, and the other for utilization of the digested 

substrate for conversion to ethanol. Ethanol production reached 70% of 

theoretical yield in the co-culture compared to 26-28% with single strains. The 

use of orthologous secretion systems can further improve specificity of secretion 

and improve efficiency of secretion by limiting saturation through dividing 

different processes across multiple strains (Eiteman, Lee, & Altman, 2008).  

Medical applications of engineered microbes include in situ biosynthesis 
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and excretion of therapeutic compounds such as cytokines and 

immunomodulating proteins at the site of injury (Wells & Mercenier, 2008). 

Introduction of non-pathogenic engineered Lactococcus lactis that can produce 

interleukin 10 in the mouse gut ameliorated autoinflammatory diseases such as 

colitis, Crohn’s and inflammatory bowel disease (Steidler et al., 2009).  Improving 

the engineering of complex microbial ecosystems to stably maintain desired 

strains in challenging environments such as the human gastrointestinal tract will 

increase the longevity and effectiveness of these therapies. 

Microbial consortia with modular architecture may enable more 

programmable reconfiguration of biosynthesis objectives and optimization 

conditions. Degradation strains and production strains can be combined 

modularly using shared common intermediate metabolites to generate useful 

products such as biofuels or biomaterials. Metabolic interactions, inhibit or 

beneficial, across the microbial networks must be carefully engineered (Kato et 

al., 2005; Kato, Haruta, Cui, Ishii, & Igarashi, 2008). For example, by-product 

inhibition occurs when growth or productivity of a strain is impaired by the 

compound it produces (Bizukojc, Dietz, Sun, & Zeng, 2010). For example, 

Actinotalea fermentan can efficiently process cellobiose feedstocks (switchgrass, 

corn stover, bagasse, etc.) into acetate, but its growth rate is significantly 

impaired by even moderate levels of acetate. Bayer et al. demonstrate that 

acetate by-product inhibition of A. fermentan can be removed by addition of an 

engineered Saccharomyces cerevisiae strain which utilizes acetate for growth 
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(Bayer et al., 2009). The yeast is then engineered to produce methyl halides, 

which is a useful biofuel precursor.  A 12,000-fold improvement was achieved 

using this approach compared to levels from single culture bioreactors.  

Synthetic consortia additionally enable membrane-bound enzyme 

complexes such as those for engineering H2 production in E. coli to be maximally 

utilized (Waks & Silver, 2009). Integration of strain into an engineered consortium 

through metabolic cross-feeding is a more modular approach that allows 

optimization of partitioned functions such as protein engineering of membrane-

bound complexes. Similarly, membrane-associated extracellular mini-

cellulosomes that spatially co-localize can improve reaction rate and efficiency to 

improve performance of synthetic consortia (Tsai, Goyal, & Chen, 2010).  A four-

member cellulosome-generating yeast consortia was recently demonstrated for 

ethanol production, reaching 87% of theoretical yield – a 3-fold increase over 

monoculture strain that expressed all four enzymes(Goyal, Tsai, Madan, DaSilva, 

& Chen, 2011). Thus, utilizing synthetic consortia for modular and programmable 

biosynthesis of useful compounds remain very promising.  

 

1.6 Project Overview 

 This project aims to build upon many of these great advances to our 

understanding of the mechanism driving the complex behaviors and capabilities 

of microbial communities. The main feature of this work will be investigating how 

metabolic dependencies implemented at the individual level can drive behaviors 
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of the community. By mining the vast resources of publicly available sequencing 

data we will investigate the prevalence of biosynthetic capabilities, and lack there 

of, in hopes of identifying signals of naturally defined evolutionary rules on 

metabolic streamlining. We will then generate engineered dependencies to study 

increasingly complex defined cross-feeding interactions. The scalability of 

computational models parameterized from simple pairwise system information 

will be tested against higher order interactions. We have no illusions that these 

models will be perfect predictors of more complex behaviors. The assumptions 

they are built on will break down as epistatic and evolutionary effects 

accumulate. However, we will also strive to study the rich information that can be 

derived from evolutionary modifications of these cross-feeding systems to 

improve our models and enable more robust engineering of microbial 

ecosystems. Leveraging the power of DNA synthesis, a large diversity of amino 

acid secretion phenotypes will be explored. In this case, rather than waiting for 

novel mutations to appear de novo, the dynamics of the community will studies to 

improve our mechanistic understanding of the paradoxical maintenance of 

cooperativity in these ecosystems. Finally, metabolic dependencies beyond the 

20 amino acids and even beyond naturally produced metabolites will be explored 

as alternate means of controlling these communities. 
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2 Auxotrophies and Cross-feeding in natural ecosystems 

2.1 Overview of Bioinformatic Analysis 

On the population level, just as for individual cells, biosynthesis is 

optimized relative to cost and utility(Smith & Chapman, 2010). Redundant or 

unnecessary biosynthetic pathways may reduce the metabolic efficiency of the 

population and are likely removed through Darwinian evolution(McCutcheon & 

Moran, 2012). Using comparative genomics, we can computationally predict the 

biosynthetic capabilities of organisms that have fully sequenced genomes. 

Presence or absence of genes needed for biosynthesis of essential metabolites 

can be tabulated. Using the Integrated Microbial Genomes (IMG) database of 

sequenced organisms(Markowitz et al., 2012) (3062 Bacteria, 121 Archaea, 124 

Eukarya as of 2011) and an algorithm for biosynthesis prediction, we discovered 

huge variation in biosynthetic capabilities for essential metabolites such as amino 

acids. The algorithm annotates an organism’s biosynthetic capabilities based on 

sequence homology of its genome to genes in established databases(Hunter et 

al., 2011; Petersen, Brunak, von Heijne, & Nielsen, 2011; Punta et al., 2012; 

Tatusov, Koonin, & Lipman, 1997).  

2.2 Results 

2.2.1 Distribution of Biosynthetic Capabilities Across Kingdoms 

When plotting a histogram of organisms that are capable of 

biosynthesizing zero to all 20 standard amino acids, we find a wide distribution 

(Figure 6). The Bacteria domain tends to have organisms that on average can 
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completely biosynthesize 7.9 out of 20 amino acids de novo. The average is 8.3 

amino acids for Archaea and 4.1 for Eukarya. The histogram for Bacteria seems 

to be bimodal (Figure 6a), suggesting that further classification is needed. 

Organisms in the Archaea domain on average have a slightly higher biosynthetic 

range for amino acids. This perhaps is due to their more ancient origin as a 

domain. Unsurprisingly, organisms in the Eukarya domain appear to make fewer 

amino acids since they derive most essential amino acids from nutrient-rich diets. 

As a reference, humans can only make 10 out of the 20 amino acids.  

For each amino acid, we can further analyze whether the full biosynthetic 

pathway is intact across different organisms (Figure 6b). We find that glutamic 

acid (E), glycine (G), and asparagine (N) tend be synthesized in most organisms 

while tyrosine (Y), phenylalanine (F), lysine (K), and histidine (H) tend to be 

made in few organisms. These trends appear to hold across Bacteria, Archaea, 

and Eukarya suggesting more universal processes at play. It is interesting to note 

that the more infrequently synthesized amino acids are also more costly to 

produce than those that are synthesized by most organisms, suggesting a level 

of cost-to-utility optimization(Akashi & Gojobori, 2002). 
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Figure 6: Diversity of amino acid biosynthetic capabilities across all sequenced organisms 
from the Integrated Microbial Genomes (IMG) database160, separated based on the three 
domains (Bacteria, red, top panel; Archaea, blue, middle panel; Eukarya, orange, bottom 
panel). (a.) Predicted frequencies at which species have the ability to synthesize zero to all 
20 standard amino acids. (b.) For each amino acid, frequencies at which complete 
biosynthetic pathways are found across each domain are shown in solid colored bars 
(Bacteria, red, top panel; Archaea, blue, middle panel; Eukarya, orange, bottom panel). 
White bars indicate fractions in each domain where one or more biosynthetic gene is 
missing. Gray bars indicate unknown annotations. 
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2.2.2 Bacteria Specific Biosynthetic Capability Distribution  

The general patterns arising from published studies of amino acid cross-

feeding in E. coli led us to hypothesize that amino acid exchange may be an 

important property across many microbial communities in the natural biosphere. 

To evaluate this hypothesis, we compiled the frequencies at which bacterial 

genomes were predicted to contain complete and intact biosynthetic pathways 

for each of the 20 essential amino acids (see Methods). We analyzed 6120 

sequenced genomes through the Integrated Microbial Genomes (IMG) database 

and pipeline (Markowitz et al., 2012) (Figure 7b). When we plotted the amino 

acid biosynthetic potential, we find that most bacteria are able to produce amino 

acids E, G, N and Q, while only a surprisingly small fraction of bacteria are able 

to produce amino acids K, H, F and Y. When the biosynthetic potential is plotted 

against the estimated metabolite cost to produce each amino acid, we find that 

the more expensive amino acids (e.g. F, W, Y) tend to be made less prevalently 

than inexpensive ones (e.g. E, G, N, Q) (Figure 7c). Other studies have found the 

costs associated with metabolically expensive processes (siderophore 

production, N fixation etc.(Church, Jenkins, Karl, & Zehr, 2005; Morris, Lenski, & 

Zinser, 2012)) are often shared among populations of bacteria. Additionally, the 

presence of exporters for these products and the fact that the lipid bilayer is up to 

100 times more permeable to the expensive highly hydrophobic aromatic amino 

acids suggests high potential for exchange of these molecules(Chakrabarti & 

Deamer, 1992). Exchange of these goods provides ripe opportunity for loss of 
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function of these expensive biosynthesis capabilities(Church et al., 2005). While 

the genomic sequence distribution doesn’t necessarily imply the same functional 

distribution in the biosphere, this sampling of bacterial genomes is most likely 

dominated by the most abundant organisms in the biosphere and we are only 

now beginning accumulate sequences for rare bacteria. Together these results 

suggest that the microbial biosphere has been optimized such that costly but 

essential resources (i.e. amino acids) are made by only a small fraction of the 

members and that while exchange may not be driving the evolutionary loss of 

these biosynthesis function, it is necessary for the phenomena to occur.  

As many sequenced bacterial genomes come from closely-related 

organisms it may be important to normalize this data for phylogeny to avoid over-

counting biosynthetic capabilities of related strains many times over. In fact, we 

found that the amino acid prototrophy distribution trend presented is quite robust 

to normalization at various phylogenetic levels. In figure 8a, we present the 

distribution normalized at the genus level derived by averaging the amino acid 

biosynthesis profiles across all individuals in each group. This results in reducing 

the 6120 species to 565 genera encompassing from 1 to a maximum of 94 

(Streptococcus) individual species. The trend for prototrophy distribution 

normalized at this resolution is quite similar to that presented in figure 7b. 

Additionally we also found that that species of the same phylogenetic 

classification could have quite varied biosynthetic capabilities. Figure 8b presents 

the distribution of pairwise hamming distances for all biosynthetic profiles of the 
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most represented genus, Streptococcus. While many strains’ amino acid 

biosynthesis profiles differ by less than 20%, there is a sizable fraction that have 

quite varied profiles within this closely related group. 

 

Figure 7: Amino acid biosynthesis in the microbiome. (a) Heat map of amino acid 
biosynthetic capabilities of the indicated phyla and classes. Prototrophy predictions for 
each amino acid are averaged within groups. Phyla and classes with fewer than 20 out of 
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the 2099 sequenced bacterial are excluded from the analysis. Value of 1/0 indicates 
all/none of the species in the group are prototrophic. Dendograms represent clustering of 
both phylogenetic distribution (based on median 16S sequence from each clade) and 
amino acid production profiles. Phylum/class leaf branches are not to scale to enhance 
higher order relationships. (b) Distribution of amino acid (AA) biosynthetic capability of 
6120 sequenced bacteria. Red bars indicate complete pathway present. Incomplete or 
unknown pathways are denoted in black and grey bars respectively. (c) AA biosynthesis 
distribution plotted against metabolic cost of synthesizing each AA in terms of number of 
phosphates required. (d) Prototrophy distribution in Bacteroidetes  Black rings indicate 
biosynthesis of each amino acid in increasing order of prevalence from inner to outer 
rings.(E,G,N,D,Q,C,A,S,V,I,P, K,L,W,H,M,R; T,F,Y not present) 

 

Figure 8: Genus level analysis of microbial biosynthesis. Left panel: Proportion of genera 
with predicted prototrophic capabilities for the indicated amino acids. Right panel: 
Pairwise Hamming distances for predicted amino acid biosynthetic capabilities of the 
most represented genus in sequenced bacteria, Streptococcus. 

To understand the structure of amino acid biosynthesis at the biosphere 

scale, we mapped the prototrophy prediction distribution across a phylogenetic 

tree of ~2000 bacteria from diverse environments (Methods). Interestingly, we 

find that biosynthesis capabilities are highly structured when clustered at the 

phylum and class level (Figure 7a).  For example, production of the most costly 

amino acids (e.g. F,Y) is concentrated in the closely related Beta- and Gamma- 

proteobacteria whereas production of lysine is highly enriched in 

Deltaproteobacteria and Cyanobacteria.   Similarly, the closely related 
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intracellular parasitic phyla Tenericutes and Chlamidiae have similar biosynthesis 

profiles, making almost uniquely the amino acids N, G and Q. Similar structure is 

apparent when looking at biosynthesis distribution on the species level. Within 

the observed Bacteroidetes (Figure 7d), amino acid production profiles closely 

follow species relationships with certain clades predicted to have broad 

production abilities (several clades within the Bacteroidia class) while others 

have similar limited capabilities (Flavobacteria).  Taken together, these results 

provide evidence suggesting that microbial genomes optimize their metabolic 

potential to reduce biosynthetic burden, and that microbes may be tactically 

leveraging the specialized biosynthetic capabilities of their neighbors while 

reciprocating through mutualistic trade of essential metabolites.   

 

2.2.3 Serine Prototrophy Predictions 

The low abundance of serine prototrophy among bacterial genomes predicted 

by the IMG pipeline raised some flags for a couple reasons.  First, serine is 

readily synthesized by short pathways from 3-phosphoglycerate and from glycine 

via serine hydroxymethyl transferase. Second, serine is the most common amino 

acid in proteins and therefor it is somewhat in contradiction to biochemical 

intuition that most bacteria are serine auxotrophs. The IMG predictions only take 

into account serine biosynthesis from 3-phosphoglycerate. The limiting reaction, 

in terms of presence in the fewest bacterial genomes, seems to be the terminal 

reaction catalyzed by phosphoserine phosphatase (Table 1). As the standard 
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IMG prediction pipeline for serine biosynthesis ability doesn’t include the pathway 

from glycine via serine hydroxymethyl transferase, this metabolic capability was 

assessed independently. To assess the frequency of prototrophy resulting from 

this biosynthesis pathway we first determine which sequenced bacteria are 

prototrophic for glycine. To do this the following logical test for enzyme presence 

predictions is implemented. The bacterial strain must be predicted to have: 

1. acetaldehyde-lyase (via L-Threonine) 

OR 

2. NAD+ oxidoreductase AND glycine C-acetyltransferase (via Acetyl-CoA 

and L-Threonine) 

OR 

3. Glyoxylate aminotransferase (via L-alanine) 

Finally, to be called as a serine prototroph (via glycine), a bacterial strain has 

to satisfy the above logical conditions AND be predicted to have glycine/serine 

hydroxymethyltransferase. Including these criteria along with those for serine 

biosynthesis via 3-phosphoglycerate results in an unchanged overall predicted 

serine prototrophy frequency of 15%. This most likely indicates limitations with 

the current characterization of serine biosynthesis predictions. The predictive 

model used will most likely improve over time.  
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Enzyme Name EC # Reaction 
Percent of 
Sequenced 
Bacterial 
Genomes 

D-3-
phosphoglycerate 
dehydrogenase 

EC 
1.1.1.95 

3-Phospho-D-glycerate + NAD+ 
<=> 3-Phosphonooxypyruvate 

+ NADH + H+ 
16% 

phosphoserine 
aminotransferase 

holoenzyme 
EC 2.6.1.5 

O-Phospho-L-serine + 2-
Oxoglutarate <=> 3-

Phosphonooxypyruvate + L-
Glutamate 

73% 

phosphoserine 
phosphatase EC 3.1.3.3 O-Phospho-L-serine + H2O 

<=> L-Serine + Orthophosphate 15% 
 
Table 1: Three reactions evaluated by the IMG system for serine prototrophy predictions.  

 

2.3 Conclusions 

Here we provide evidence for widespread trends of metabolic cross-

feeding based on comparative genomic analysis of amino acid biosynthesis 

across thousands of sequenced genomes. It is important to note that these 

computational estimates of prototrophy are likely to be at the low end. More 

accurate comparative genomic analysis using better-populated and more 

annotated databases will likely identify more biosynthetic genes. Nonetheless, 

the observation that most organisms cannot make all of their essential 

metabolites importantly highlights the interrelatedness of ecosystems. These 

results also highlight amino acids as a versatile set of metabolites whose 

exchange can enrich for consortium-level associations. Interdependencies can 

be engineered by exploiting biosynthetic configurations of these essential 

metabolites, which can further be tuned with transporters systems. These 

engineered communities present a framework for programming structures and 
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dynamics into microbial ecosystems and serve to improve our ability to engineer 

metabolism at the population-level. 

2.4 Methods 

2.4.1 Phylogenetic analysis 

Predicted amino acid biosynthesis phenotype was extracted from the IMD 

database(Markowitz et al., 2012) for all available sequenced bacterial genomes. 

Phylogenetic linkage between these strains is determined using the 

corresponding aligned 16S sequences from the SILVA database(Yilmaz et al., 

2014).  Distances between sequences are determined with the standard Jukes-

Cantor metric and hierarchal clustering performed with unweighted average 

distances.  Phylogenetics trees were constructed using the iTol web 

application(Letunic & Bork, 2011). Amino biosynthesis profiles were clustered at 

the species level using Hamming distance and complete linkage. Biosynthesis 

profiles at the phylum and class level were determined by averaging prototrophy 

predictions for each amino acid across all represented species. Only the 12 

clades with more than 20 species were clustered with Euclidian distance and 

complete linkage. 

 

2.4.2 Biosynthesis predictions from the JGI IMG database 

Amino acids biosynthetic predictions are pulled from the IMG database 

“phenotype function” system(Markowitz et al., 2012). This bioinformatic analysis 
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pipeline first predicts the enzymatic capabilities of a given organism. Next, logical 

testing is used for prototrophy calls to ensure that for each reaction step in amino 

acid biosynthesis from a common precursor (e.g. pyruvate for Leucine 

biosynthesis), there is a predicted enzyme that can catalyze the reaction. 

Similarly for auxotroph calls, an organism must be lacking enzymes catalyzing at 

least one of the steps in the biosynthesis pathway.  Attempts have been made to 

take into account alternate biosynthesis pathways (e.g. Methionine synthesis via 

homocysteine or methanethiol intermediates), although undoubtedly not every 

exception will be captured and these computational approaches will not have 

100% accuracy. Nonetheless, this is a powerful tool to make general trend 

observations. For details on prediction rule, please see the IMG website. 
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3 Syntrophic Exchange in Synthetic Microbial Communities 

3.1 Background 

3.1.1 Previous Findings in Metabolic Exchange  

Microbes are abundantly found in almost every part of the world, living in 

communities that are diverse in many facets. While it is clear that cooperation 

and competition within microbial communities is central to their stability, 

maintenance, and longevity, there is limited knowledge about the general 

principles guiding the formation of these intricate systems. Understanding the 

underlying governing principles that shape a microbial community is key for 

microbial ecology, but is also crucial for engineering synthetic microbiomes for 

various biotechnological applications (Brenner, You, & Arnold, 2008; Mee & 

Wang, 2012; Shong et al., 2012). Numerous such examples have been recently 

described including the bioconversion of unprocessed cellulolytic feedstocks into 

biofuel isobutanol using fungal-bacterial communities (Minty et al., 2013) and 

biofuel precursor methyl halides using yeast-bacterial co-cultures (Bayer et al., 

2009). Other emerging applications in biosensing and bioremediation against 

environmental toxins such as arsenic (Prindle et al., 2012) and pathogens such 

as P. aeruginosa and V. cholera have been demonstrated using engineered 

quorum sensing E. coli (Duan & March, 2010; Saeidi et al., 2011). These 

advances paint an exciting future for the development of sophisticated multi-

species microbial communities to address pressing challenges and the crucial 

need to understand the basic principles that enables their design and 
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engineering.  

An important process that governs the growth and composition of 

microbial ecosystems is the exchange of essential metabolites, known as 

metabolic cross-feeding. Entomological studies have elucidated on a case-by-

case basis the importance of amino acids in natural inter-kingdom and inter-

species exchange networks (McCutcheon & von Dohlen, 2011; Russell, 

Bouvaine, Newell, & Douglas, 2013; Wu et al., 2006). Recent comparative 

analyses of microbial genomes suggest that a significant proportion of all 

bacteria lack essential pathways for amino acid biosynthesis (Mee & Wang, 

2012). These auxotrophic microbes thus require extracellular sources of amino 

acids for survival. Understanding amino acid (AA) exchange therefore presents 

an opportunity to gain new insights into basic principles in metabolic cross-

feeding. Recently, several studies have used model systems of S. cerevisiae 

(Shou, Ram, & Vilar, 2007), S. enterica (Harcombe, 2010) and E. coli (Kerner et 

al., 2012; Pande et al., 2013; Wintermute & Silver, 2010b) to study syntrophic 

growth of amino acid auxotrophs in co-culture environments. Numerous 

quantitative models have also been developed to describe the behavior of these 

multispecies systems, including those that integrate dynamics (Bull & Harcombe, 

2009; Estrela & Gudelj, 2010), metabolism (Klitgord & Segre, 2010; Mazumdar, 

Amar, & Segre, 2013; Stolyar et al., 2007), and spatial coordination (Nadell et al., 

2010). While these efforts have led to an improved understanding of the 

dynamics of syntrophic pairs and the energetic and benefits of cooperativity in 
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these simple systems (Wintermute & Silver, 2010a), larger more complex 

syntrophic systems have yet to be explored. 

3.1.2 This Work 

Here, we use engineered E. coli mutants to study syntrophic cross-

feeding, scaling to higher dimensional synthetic ecosystems of increasing 

sophistication. We first devised pairwise syntrophic communities that show 

essential and interesting dynamics that can be predicted by simple kinetic 

models. We then increased the complexity of the interaction in 3-member 

synthetic consortia involving cross-feeding of multiple metabolites. To further 

increase the complexity of our system, we devised a 14-member community to 

understand key drivers of population dynamics over short and evolutionary 

timescales. This large-scale and systematic effort represent an important foray 

into forward and reverse engineering synthetic microbial communities to gain key 

governing principles of microbial ecology and systems microbiology.  

 Our overall goal is to develop and understand a simple microbial model of 

metabolic cross-feeding that can be scaled in a tractable stepwise manner, 

towards reconstituting the complexity and dynamics exhibited by natural 

ecosystems (Figure 9a). To this end, we devised a series of syntrophic microbial 

communities of increasing diversity and complexity using the simple model 

bacterium E. coli. Our system is based on the syntrophic behavior of amino acid 

exchange between auxotrophic mutants to facilitate co-culture growth. 
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Figure 9: Metabolic cross-feeding in syntrophic communities. (a) An illustration of 
engineered syntrophic interactions between microbial communities of increasing 
complexity towards network hierarchies matching those of natural systems. (b) 
Relationship between number of supplemented AA needed to make one E. coli cell in 
log10 units versus biosynthetic cost to produce each AA. (c) Syntrophic growth yield after 
84 hours between 14 single-KO auxotrophs (strain 1) and all pairwise combinations (strain 
2). Color intensity indicated in the color bar denotes fold growth after 84 hours over initial 
population. (d) Simple two-equation dynamic model that captures the essential features of 
the pairwise consortium. Cooperativity coefficients C1,2 and C2,1 can be determined 
through the total co-culture growth curve (solid red line), the end point cell density of each 
strain (solid dots) and the simulated growth profile of each strain (black dotted lines). 
Control populations of only strain 1 or strain 2 (respectively ∆M and ∆F in this example) 
separately show no growth (solid black line). 
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3.2 Results 

3.2.1 Amino Acid Utilization and Biosynthetic Cost 

We first investigated the energetics involved in amino acid (AA) utilization and 

exchange. Starting from a prototrophic E. coli derivative MG1655, we generated 

14 strains, each containing a gene knockout that lead to an auxotrophic 

phenotype of one of 14 essential amino acids (Methods). The remaining 6 

essential amino acids were left out of our study because they either did not have 

single-gene targets that would render them auxotrophic or the resulting mutants 

carried significant growth defects even in richly supplemented media. By 

convention, we designate each auxotrophic strain by the amino acid they need – 

for example, the methionine ΔmetA auxotroph is strain M. The 14 auxotrophs (C, 

F, G, H, I, K, L, M, P, R, S, T, W, Y) were confirmed to show no growth in M9-

glucose minimal media after 4 days and growth only when supplemented with 

each AA needed. Using a microplate spectrophotometer, we performed kinetic 

growth curve analysis for each of the 14 auxotrophs grown in M9-glucose 

supplemented with varying initial AA levels. Under these AA-limiting conditions, 

an auxotrophic strain will grow exponentially until the AA supplementation is 

exhausted (Figure 10b). Saturating cell densities (i.e. carrying capacities) plotted 

against initial seeding AA levels show a strong linear relationship (Figure 10b) 

indicating that external AA levels can determine cell growth in a linear and 

predictable manner. We estimated the number of extracellular amino acids 

needed to generate a cell for each of the 14 AAs (Figure 10a, Table 2). The 
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estimated biosynthetic cost to produce each amino acid (Akashi & Gojobori, 

2002) shows a strong inverse relationship with the amount of AA needed to 

produce a cell (Figure 9b), suggesting that the E. coli proteome has been 

optimized for amino acid usage to maximize energetic efficiency. Inexpensively 

produced amino acids (e.g. S, G, P) are used more frequently than expensive 

ones (e.g. M, H, aromatics). While previous computational approaches have 

suggested such relationships (Akashi & Gojobori, 2002), this is the first 

experimental measurement we are aware of regarding this important property. 

Since auxotrophic genotypes are prevalently observed in nature, our results 

suggest that many microbes may be subjected to this energetic optimization and 

that AA exchange may be an essential link guiding the evolution of these 

microbial ecosystems.  

 

Figure 10: Calculation of amino acid utilization during growth. (a) Example growth curves 
of E. coli isoleucine auxotroph (Δ ilvA) in M9-glucose supplemented with varying initial 
concentrations of free L-isoleucine. Open circles denote the end of exponential phase 
resulting from supplemented amino acid exhaustion and marks final growth yield. (b) 
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Linear relationship between amounts of supplemented amino acid and the observed 
growth yield for auxotrophs M, I, R and T. Beyond the highest indicated amino acid 
concentrations the yield response saturated due to other metabolites becoming growth 
limiting. The slope of the linear relationship between amino acid concentration and cell 
density is used to calculate the amino acids required per auxotrophic cell in M9 media 
presented in table 2. 
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amino 
acid 

KO 
target 

extracellular aa 
needed per cell  

[# aa/cell] 
biosynthetic 

cost [~p] 

C cysE 2.2E+08 23 

F pheA 3.7E+07 46 

G glyA 5.8E+08 10 

H hisB 3.1E+07 33 

I ilvA 7.5E+07 29 

K lysA 1.1E+08 27 

L leuB 1.3E+08 22 

M metA 4.1E+07 31 

P proA 4.4E+08 16 

R argA 1.0E+08 23 

S serA 1.6E+09 10 

T thrC 3.0E+08 17 

W trpC 1.5E+07 63 

Y tyrA 3.7E+07 44 
Table 2: List of amino acid auxotrophs, the amount of supplemented amino acids needed 
to reproduce one cell, and the metabolic cost to biosynthesize each molecule of amino 
acid in units of phosphate bonds used. Amino acid requirement per cell is calculated 
using the slope from figure 10 as follows: 𝟏 𝒔𝒍𝒐𝒑𝒆  ×  𝑨𝑨  𝑭.𝑾. 𝒊𝒏  𝒈/𝒎𝒐𝒍    ×  𝟏𝟎𝟔   ×  𝟔.𝟎𝟐𝟐  ×
  𝟏𝟎𝟐𝟑.  

 

3.2.2 Quantifying Pairwise Interactions 

To more deeply investigate the properties associated with metabolite 

exchange of amino acids in microbial communities, we developed synthetic 

ecosystems using the characterized auxotrophic E. coli. Studying synthetic 
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communities using E. coli offers the benefits of robust and fast growing cells, 

tractable genetics, and well-developed in silico models while maintaining a 

standardized and reproducible genetic background. We first developed a 2-

member syntrophic community composed of two different species from our 14 

characterized auxotrophs. Each auxotroph is unable to grow in M9-glucose, but 

could potentially grow as a co-culture when paired with a different auxotroph. We 

probed all 91 possible pairwise syntrophic interactions in M9-glucose minimal 

media. In agreement with results from previous efforts (Wintermute & Silver, 

2010b), we observed significant synergistic and cooperative growth in a subset of 

these pairwise co-cultures after 84 hours (Figure 9c). Pairings that involved 

cross-feeding of M, F or K were highly cooperative with most of the 14 partners, 

while I, R, Y, W had moderate cooperativity. M’s high cross-feeding productivity 

highlights the intuitive rule that partnering with direct biosynthesis precursors (C 

and S in this case) is unproductive. Cross-feeding between T, G, C, P, L, H or S 

was generally non-productive. Using quantitative PCR against the unique knock-

out chromosomal junction in each auxotrophic strain, we determined the relative 

abundance of each member of the pair. In general, we did not find a significant 

relationship between co-culture fold-growth and the ratio between the pairwise 

consortium members, in contrast to previous results (Wintermute & Silver, 

2010b) (Figure 11). Furthermore, our results suggest that expensive and rarer 

amino acids tended to crossfeed better than cheaper and more common amino 

acids.  
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Figure 11: Growth yield of 91 pairwise co-cultures shows lack of relationship between 
relative population abundance and syntrophic growth. (a) Co-culture growth of each of 91 
pairwise 2-member consortia. Left ordinate axis (in blue) shows whole co-culture fold 
growth after 84 hours for each of 91 consortia (data in blue dots). Right ordinate axis (in 
orange) shows fraction of Strain 1 in population for each consortia (data in orange dots). 
Consortia are ranked from lowest to highest based fraction of population dominated by 
Strain 1. The pairwise co-culture index number indicated on the x-axis refers to the co-
culture rank ID. (b) Calculated average co-culture growth for each auxotroph paired with 
all 13 other possible auxotrophs.  Left ordinate axis (in black) shows whole co-culture fold 
growth after 84 hours for each auxotroph, which is designated Strain 1. Color stacked bars 
indicates average fold growth contributed by Strain 1(in black) and Strain 2 (in gray). Right 
ordinate axis (in orange) shows average fraction of Strain 1 in population for each 
auxotroph group (data in orange range). 

 

3.2.3 Quantifying 3-member Cross-feeding systems 

To further explore the scalability of our synthetic ecosystems, we turned to 

higher-order syntrophic interactions. We devised 3-member synthetic consortia 

where each member is auxotrophic for two amino acids. Growth of each member 

can only occur when both amino acids are provided by partner strains. Member 1 

(e.g. double auxotroph MF) does not grow with Member 2 (e.g. double auxotroph 

MK) because both are auxotrophic for M, methionine, but they can potentially co-

culture together with a third member (e.g. double-auxotroph FK) that can provide 

M. At the same time, Member 3 can only grow in the presence of Member 1 and 

2, thereby forming a syntrophic community. We experimentally probed these 3-
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member syntrophies by first generating all 91 double-AA auxotrophic derivatives 

based on the 14 single-AA auxotrophs (Methods). All 91 strains showed no 

growth in the absence of extracellular supplementation of both needed AAs. 

Using these 91 double-auxotrophs, we systematically measured the growth 

profiles of all 364 possible 3-member consortia. After co-culture for 84 hours, we 

find a significant number of 3-member consortia to grow synergistically (Figure 

12). As a control, growth was not observed when only 2 of the 3 members are 

co-cultured. Given that many microbes in nature are unable to synthesize 

multiple amino acids, our results demonstrated that higher-dimensional cross-

feeding can yield productive syntrophic groups and are likely relevant also in 

natural microbial ecosystems.  
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Figure 12: Three-member syntrophic consortia with each strain being auxotrophic for 2 
amino acids. All combinations of 14x14x14 three-way interactions are measured after 84-
hour of growth. Fourteen 14x14 panels are presented showing the growth yield of each 3-
member group. Each 14x14 panel corresponds to a fixed strain 1 (blue color) against all 
combination of strains 2 and 3. The ordinate axis denotes different strain 2 (orange color) 
and the abscissa axis denote different strain 3 (green color). The key for strain 1 
designation is shown in the second panel. The first panel illustrates an example 
consortium of KS-IS-IK with the cross-feeding amino acids shown by the correspondingly 
colored arrows. Color intensity indicated in the color bar denotes fold growth after 84 
hours over initial population. 
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The overall growth profiles of the doubly-auxotrophic 3-member consortia 

match those of the mono-auxotrophic 2-member consortium (Figure 13a). Co-

cultures involving amino acids M, F, and K tend to exhibit strong cooperative 

growth in contrast to poorly syntrophic amino acids H, C and S. In order to 

assess the predictability of syntrophic interactions when scaled to higher 

dimensional communities, we compared the observed fold-growth of all 364 3-

member consortia with the fold-growth of each of their 2-member subset--for 

example, comparing doubly-auxotrophic triplets MF-MK-FK versus each of the 

mono-auxotrophic pairs M-F, M-K or F-K. We found four general classes of 

observations (Figure 13b, Zones 1-4). First, as expected, a majority of 

nonproductive 2-member cross-feeding interactions when scaled to 3-members 

also yield nonproductive growth (Figure 13b, Zone 1).  Conversely, 3-member 

interactions where all 2-member subsets are productively cross-feeding also 

generate highly productive co-cultures (Figure 13b, Zone 2). Third, 3-member 

interactions where one of the 2-member subsets is nonproductive generally 

resulted in nonproductive 3-way co-cultures (Figure 13b, Zone 3). For example, 

the RMT triplet (RM-RT-MT) has a very limited growth of 3-fold even though the 

individual 2-member R-M pair yields 43-fold growth and the M-T pair yields 98-

fold growth. The limiting group is the 2-member pair R-T, which yields less than 

1-fold growth in co-culture. Thus the RMT triplet does not grow due to limited R-T 

cross-feeding despite robust cross-feeding by R-M and M-T. Finally, we find that 

a small group of nonproductive 2-member co-culture when placed together 
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showed positive epistatic synergy, resulting in more productive 3-way co-cultures 

(Figure 13b, Zone 4). Figure 3c summarizes the top consortia that exhibited this 

higher-dimensional synergy. For example, the PYT triplet culture (PY-PT-TY) 

results in 58-fold growth, in comparison to pairwise cultures P-Y, P-T, and T-Y 

that only grew by 8-fold, 2-fold, and 2-fold, respectively. These interactions 

highlight the surprising potential for both positive and negative epistatic 

interactions that exist for higher-dimensional syntrophic communities.  
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Figure 13: Comparison of 3-member syntrophies composed of double-auxotrophs against 
2-member composed of single auxotrophs. (a) The sums of the final OD values for all 2- or 
3-member communities containing a given auxotroph are normalized to the highest value 
(∆M for both 2- and 3-member systems) to represent the syntrophic exchange growth 
potential of a given amino acid. This is termed the growth index for the 3-member or 2-
member scenarios and shows consistent relationship when cross-feeding is scaled to 
higher dimensions. (b) Observed 3-member growth (ordinate axis) for all 364 triplets 
versus the mean growth of their three corresponding 2-member subsets (abscissa axis). 
Each point corresponds to a specific 3-member group. Color intensity of each point 
designates the lowest growth yield of the three 2-member subset and is mapped based on 
color bar using numerical values of fold growth (0 to 15+). Zones 1-4 are designated in the 
dotted regions, see text for detail. (c) Growth yield of top 3-member consortia that grow 
better than their corresponding 2-member subsets. Black bar indicates growth of 3-
member. Red bar is the highest growth yield of the three 2-member subsets. The 
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corresponding 3 amino acids are shown in the bottom panel (read vertically) for each 
triplet. Two red boxes for each triplet designate the best 2-member subset. 

 

3.2.4 ODE Modeling of 2- and 3-member Cross-feeding 

A set of simple dynamic equations was used to model these syntrophic 

interactions (Figure 9d). In our model, growth of Strain 1 is linearly proportional to 

the amount of Strain 2 through the cooperativity coefficient term (c) for each 

pairing. The co-culture reaches saturation at carrying capacity (k) and a buffer 

term (β) is used for low density growth. We determined the cooperativity 

coefficients that best fit our experimental dataset, which provided the foundation 

for modeling higher-dimensional interactions.  

To assess whether a naïve model can predict the observed growth profile 

of our 3-member consortia, we used the cooperativity coefficients (c) derived 

from the pair-wise 2-member interaction to build a simple 3-member dynamic 

model, which is described by the following system of equations: 
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where X1, X2, and X3 are the population sizes of the three members, β is the 

buffer term, and k is the carrying capacity of the population. Growth of strain 1 

(dX1/dt) is dictated either by the amount of strain 2 (X2) times its cooperative 
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coefficient (c1,2) or the amount of strain 3 (X3) times its cooperative coefficient 

(c1,3), whichever is the limiting value. The Xi/(Xi+β) term is used such that at very 

low Xi levels, growth is proportional to Xi/β as with standard exponential growth, 

but Xi/(Xi+β) becomes 1 at moderate X1 values. The last term (1-(X1+X2+X3))/k is 

used to limit the density of the saturating culture. Using this simple dynamic 

model, we find that the predicted fold-growth profile showed statistically 

significant correlation with the observed 3-member fold-growth (Pearson 

coefficient r = 0.51, p-value = 5.2x10-25). When the zones representative of 

positive and negative epistatic interactions are removed (3&4), the fit of the 

model is greatly improved (Pearson coefficient r = 0.655, p-value = 1. 2x10-35). 

This suggests that our 3-member model can capture a significant fraction of 

syntrophic interactions based on the 2-member interactions. Discordance 

between the model and observed results highlight the potentially nonlinearly 

synergistic or antagonistic interactions of certain syntrophic consortia worthy of 

follow-up studies.   
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Figure 14: Evaluation of dynamic growth model of 3-member consortia. (a) Scatter plot 
comparing predicted fold growth of 3-member consortia (in log10 units) versus observed 
fold growth of 3-member consortia (in log10 units). Each black dot corresponds to each of 
the 364 possible unique consortia. (b) Scatter plot showing the difference between 
predicted and expected fold growth for all 364 consortia. Histogram on the right shows the 
distribution across all consortia indicating general agreement between predictions and 
observations. Positive values indicate potential presence of positive epistasis while 
negative values indicate potential negative epistasis. 

 

3.2.5 Partially Syntrophic Higher Order Systems 

The microbial communities explored thus far are strictly syntrophic (ss) because 

all strains rely on each other to grow and no subset grouping can grow alone. On 

the other hand, most natural ecosystems are likely composed of partially 

syntrophic (ps) interactions where one or more of the subset grouping can grow 

by themselves. For example, in contrast to the strictly syntrophic 3-member 

group MF-MK-FK that requires all members present, the partially syntrophic 

group MF-MK-HF contains a 2-member subset (MK-HF) that can potentially grow 

without the third member (MF). At longer timescales, one might predict that all 

partially syntrophic (n)-member interactions are reduced to a more minimal 
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strictly syntrophic consortium of fewer members. Thus, the evolution of partial 

syntrophy to strict syntrophy is of great importance to formation of sustainable 

cross-feeding consortia. 
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Figure 15: Dynamics of a 14-member syntrophic consortium. (a) Fourteen different single 
amino acid auxotrophs where combined in equal ratios to form a pooled mixture and 
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passaged daily in minimal media over 50 days. Samples of the population were 
periodically measured to determine the absolute and relative abundance of each of the 14 
auxotrophs. (b) Syntrophic interaction map generated from all measured 91 pairwise 
cross-feeding experiments. Each auxotroph is designated by a circle and a different color. 
Arrowed lines correspond to the directional interaction from each strain to all 13 
corresponding partners. Lines are color-coded according to the directional benefit the 
receiving strain is gaining from the donor strain (e.g. all incoming lines to the K auxotroph 
are red, designating the benefit gained by K from each donor). Increased thickness and 
opacity of the lines quantitatively denote increased cooperative benefits. (c) Population 
distribution of two biological replicate 14-member populations over 50 daily passages. 
Each colored bar section denotes the fractional composition of each auxotroph in the 
population. Color coding is the same as that of (a) and (b). (d) Subsequent short-term 7-
day experiments of the 14-member population as well as 13-member populations that 
excluded one of four dominant amino acids (K, R, T or M) from the initial population. The 
syntrophic interaction network is shown below each panel. We denoted cooperative 
interactions with bidirectional black arrows and competitive (seemingly inhibitory) effects 
by directional blunted red arrows. Each auxotroph dropout and their associated 
interactions are shown in faded colors. Transient cooperative interactions are shown as 
dotted gray arrowed lines. Black circles around each amino acid designate final fixation to 
a stable community of 2-5 members.  Values are derived from the average of three to four 
biological replicates. 

We tested the predicted reduction from partial to strict syntrophy by 

devising a synthetic consortium using the 14 mono-auxotrophs that had been 

characterized. Combining all 14 auxotrophs into one pool produces a partially 

syntrophic 14-member consortium (Figure 15a). In principle, each auxotroph 

requires only one other partner to survive and thus may reduce over time to a 

strictly syntrophic 2-member population. Pairs that are able to grow the fastest 

are likely enriched. This system highlights the scenario where balancing between 

competitive growth and maintenance of cooperativity is key.  Based on our prior 

2-member cross-feeding results, we first constructed a 14-member interaction 

map (Figure 15b) and devised the following dynamic model to predict the 

possible outcomes of this 14-member consortium:  

𝑋! =
𝑋!

𝑋! + 𝛽
𝑐!"𝑋!

!"

!!!,!!!

1− 𝑋!!"
!!!

𝑘   
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 Here, 𝑋!  is the population size for strain 𝑖  and 𝑐!"  is the cooperative 

coefficient between each 2-member pair 𝑖 and 𝑗 that we determined previously 

and terms β and k are as described previously. Several general predictions are 

noted. First, the resulting population is likely to be dominated by strains M, F, K, 

I, R, T and W strains based on their cooperativity profiles (Figure 16). Strain M is 

likely to sustain I, T and K due to the directionality of the cooperativity and thus 

may be a hub for any syntrophic interaction. Strain F is likely to derive benefit 

from multiple sources including Y, C, I and K, while only contributing to the 

growth of R. Strain K is likely to benefit from many strains including M, T, R, C 

and Y. Strains L, W, P is expect to have modest contributions. Finally, we expect 

strains H, G, C, Y and S to not be major components of the consortium because 

they do not generally yield productive pairwise cross-feeding. 
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Figure 16: Predictions of dynamic growth model of 14-member consortia.  (a) Bar graph 
showing predicted steady state population abundance of 14-member mono-auxotrophs. 
Values are percentage of whole population. (b) Bar graph showing predicted change in 
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steady state population abundance of four 13-member dropout consortia (no K, no M, no 
R, or no T) versus the 14-member consortium. Values are percentage of whole population. 

 

Starting from a 107 cells/ml population composed of equal number of each of the 

14 mono-auxotrophic strain, we experimentally passaged two identical replicate 

populations in M9-glucose for 50 days (~400 generations) and tracked the 

population abundance using quantitative PCR (Figure 4a). At the end of each 24-

hour period, the population reached saturation and was diluted 100-fold for the 

next passage. At short time scales, we find that the 14-member systems undergo 

a drastic population shift towards a consortium dominated by 4 members (R, K, 

M, T) after only 2-3 daily passages (Figure 15c). Eventually, R is replaced by I 

and the population ratio varied from time to time but the member composition 

remained stable over the course of 50 days. The experiment was terminated at 

400 generations when mutants were discovered in both replicates that 

confounded basic interpretations. We thus focused on the short-term dynamics of 

the system that are not subject to mutational events at evolutionary time-scales. 

Satisfactorily, the K, M, R, I and T strains dominant in the passaged population 

are also predicted to be predominant by our dynamic model. However, aromatic 

auxotrophs (F, W) were not seen despite their capabilities to crossfeed with 

others during individual pairwise matchups (Figure 9b). These pairwise 

interactions almost always benefited the F or W strain more than the partner 

strain, which may be in part responsible for their absence in the total mixture. 

Nonetheless, the model was able to capture a majority of the basic and important 
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features of this otherwise complex community. 

 To further probe the structure of the syntrophic network, we systematically 

tested 13-member consortia where one of the four initial dominant strains (R, K, 

M, T) was left out of the population. The composition of the mixture was tracked 

over 7 daily passages (Figure 15c). A number of interesting observations were 

seen. In contrast to the 14-member population, a 13-member consortium absent 

of the K auxotroph resulted in stable dominance of the M-T co-culture only 

(Figure 15c, panel 2). We note that the biosynthesis pathways of methionine and 

threonine converge upstream at a single common precursor, L-homoserine, and 

speculate the M auxotroph (ΔmetA) could result in shunting biosynthetic flux in 

this branched synthesis pathway towards increasing T production. Conversely, 

the T auxotroph (ΔthrC) could result in the opposite shunt leading to increased M 

biosynthesis and has been shown to lead to increased M excretion (Usuda & 

Kurahashi, 2005). Indeed, we find that the M-T pair yielded the highest fold-

growth amongst all 91 pairwise co-cultures (Figure 9c), suggesting that M and T 

could provide additional cooperative benefit to one another specifically for this 

pairing. Furthermore, the presence of characterized exporters for L-methionine 

and L-threonine could further facilitate syntrophy in this subgroup (Zakataeva, 

Aleshin, Tokmakova, Troshin, & Livshits, 1999).The synergistic effect of 

branched pathway shunt is also seen for the M-I, K-I, K-T and G-C pairs although 

to a lesser extent. Lower synergism in these pairs may be due to increasing 

numbers of intermediates and potential for branch down-regulation as previously 
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suggested(Wintermute & Silver, 2010b). Additionally, non-exclusive shunting 

could diminish the effect size for cases such as G-C where ∆glyA and ∆cysE can 

redirect metabolic flux to a third parallel pathway, towards W in this case. 

Similarly, we found that the R-absent population also led to the dominant M-T co-

culture, although the dynamics of the population was very different (Figure 15c, 

panel 3). In the R-absent population, the I auxotroph bloomed, making up 20% of 

the population at Day 4, but was eventually outcompeted in subsequent days. In 

contrast, the I auxotroph was not detected in the K-absent population. 

Interestingly, a T-absent population (Figure 15c, panel 4) resulted in expansion of 

the I subpopulation as well as the maintenance of the K subpopulation, thus 

producing a stable M-K-I consortium. Together, these results suggest that the T 

and I auxotrophs are competing for similar cooperating partners such that the 

presence of T limits the growth capability of I, but absence of T allows growth of 

I. T’s competitive advantage over the I strain in this mixed environment could be 

explained by the fact that biosynthesis of I requires T as an essential precursor 

and therefor I is likely sharing an additional costly metabolite (T) with the other 

strains. Finally in M-absent population, L is present in addition to K, I and R. In 

contrast to the other mixtures, the R subpopulation was stably sustained over the 

course of 7 days. We integrated all these subtractive experiments to form a 

reconstructed topology of the syntrophic network (Figure 15c). This interaction 

network recapitulates the important properties of the partially syntrophic 
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community and highlights the role of transient dynamics in the development of 

syntrophic community.  

3.3 Discussion 

Pairwise amino acid cross-feeding experiments showed that these 

simplified interactions can be quantitatively modeled. When these interactions 

are scaled to 3-membered communities requiring cooperative behavior by all 

individuals involved, we also found many examples of syntrophic growth. The 

general trends in cooperative exchange were conserved in these higher 

dimensional communities. Furthermore, we observed positive epistasis within a 

small subset of 3-member consortia that performed better than their 2-member 

constituents. It is feasible to further increase the complexity of the system by 

developing triply-auxotrophic strains that interact as 4-member strictly syntrophic 

communities. These co-cultures demonstrate that microbes with multi-

auxotrophic phenotypes can rely on direct cross-feeding for survival.  

Our 14-member consortium showed that cross-feeding interactions can 

often be quite complex and the system may not necessarily converge to an 

expected simpler 2-member community through hundreds of generations. 

Various resulting 3- or 4-member populations were often stable over evolutionary 

timescales, but removal of certain keystone members (e.g. K or R) from the initial 

population resulted in convergence to the best pair M-T. While our dynamic 

models were able to capture general features of this system, specific quantitative 

predictions were less accurate, thus highlighting the current limitations to model 
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ecosystems of even moderate complexity (Klitgord & Segre, 2011). 

It is important to note that microbial cross-feeding studied here relies on 

export of amino acids into the shared extracellular environment. Such membrane 

transport systems have been recently characterized and many more are being 

found with the help of metagenomic sequencing. Our E. coli genome encodes 

several amino acid exporters for excretion of different amino acids including L-

threonine (RhtA and RhtC) (Zakataeva et al., 1999), L-leucine (YeaS) (Kutukova 

et al., 2005), L-aromatic amino acids (YddG) (Doroshenko et al., 2007), L-

arginine (YggA) (Nandineni & Gowrishankar, 2004), L-alanine (alaE) (Hori et al., 

2011), and L-homoserine (RhtB) (Zakataeva et al., 1999). Other exporters have 

been documented in related organisms including lysE for L-lysine export and 

brnFE for L-isoleucine and L-methionine export in C. glutamicum (Kennerknecht 

et al., 2002; Vrljic, Sahm, & Eggeling, 1996). In addition to active transport, some 

level of passive transport may also be involved since hydrophobic amino acids 

such as I, F, Y, W have membrane permeability that is 100 times greater than 

hydrophilic amino acids (Chakrabarti, 1994). Recently, the YddG aromatic amino 

acid exporter has been exploited to tune microbial cross-feeding in an E. coli Y-

W syntrophic system (Kerner et al., 2012). These systems present an opportunity 

to study long-term evolution of microbial ecosystems and the enhancement of 

cooperative phenotypes. While metabolic cross-feeding could be exploited by 

selfishly cheating phenotypes, the formation of spatial architectures such as 

biofilms and aggregates may help to prevent such scenarios. Furthermore, 
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quorum sensing and response to the presence of cooperators may further help to 

drive the development of multi-species syntrophic growth.  

We believe that the multi-dimensional syntrophic system presented here 

provide a useful foundation for studying and engineering microbial communities 

of increasing sophistication. These synthetic approaches can be used to study 

natural microbial communities such as the human microbiome in specific ways 

towards unraveling the complex interactions at play (Faith et al., 2011). 

Advances in synthetic and systems ecology will offer new avenues to explore 

and exploit natural and defined microbiota to develop sustainable solutions to 

global health, energy, and environmental issues.  

3.4 Materials and Methods 

3.4.1 Strain construction and verification 

All strains used were based on the EcNR1 E. coli derivative of MG1655, 

which carried an integrated, temperature inducible, λ-Red prophage for 

recombineering (H. H. Wang et al., 2009). Each of the 14 amino acid (AA) 

auxotroph was generated by Red-recombineering as previous described  (Yu et 

al., 2000) of a chloramphenicol resistance cassette into each of the following 

targets separately:  argA (R), cysE (C), glyA (G), hisB (H), ilvA (I), leuB (L), lysA 

(K), metA (M), pheA (F), proA (P), serA (S), thrC (T), trpC (W) and tyrA (Y). 

Double AA auxotrophs were generated by introducing a kanamycin resistance 

cassette into the same set of targets in the 14 single AA auxotrophs to generate 

the 91 double auxotroph strains. All single AA knockout strains were confirmed to 
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be auxotrophic as evidenced by the lack of growth in minimal M9-glucose media 

after 4 days. All double AA knockout strains were confirmed to not grow in M9-

glucose supplemented with only one of the two amino acids. Presence of the 

inserted antibiotic cassettes was additionally verified in each strain via allele 

specific PCR.  

3.4.2 Co-culture growth conditions 

Strains were first picked from an overnight colony into LB-Lennox medium 

(LBL, 10 g/L bacto tryptone, 5 g/L NaCl, 5 g/L yeast extract) with selective 

antibiotics as appropriate (chloramphenicol 20 ug/ml; kanamycin 50 ug/ml). Late 

exponential phase cells were harvested and washed twice in M9 salts (6 g/L 

Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl) by centrifugation at 17,900x 

g. Cell concentrations were determined based on OD600 readings from a 

spectrophotometer. Prior to co-culture experiments, all cell concentrations were 

adjusted to 107 cells/mL using M9 media. Co-culture growth was performed by 

equal volume inoculation of each strain at a seeding density of 107 cells/mL. All 

2-member and 3-member co-cultures were grown in 200ul of M9-glucose media 

(M9 salts supplemented with 1 mM MgSO4·7H2O, 0.083 nM thiamine, 0.25 ug/L 

D-biotin, and 0.2% w/v glucose) in 96-well microtiter plate format in an incubator 

or a platereader at 30 °C to maintain λ-Red prophage repression. Microtiter 

plates were shaken at >500 rpm to maintain aerobic growth. Growth of 13- and 

14-member co-cultures was done in 3 mL cultures in a 30 °C rotating drum and 

passaged without washing by 100-fold dilution every 24 hours as the cultures 
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reach saturation. The growth and fold-growth metrics mentioned throughout the 

text refer to the yield of the community calculated by final cell density/initial 

density. Biological replicates were performed by splitting a single well-mixed 

initial seeding population. 

3.4.3 Kinetic growth assays and strain identification 

For precise determination of the cell density at amino acid limited 

conditions, OD600 readings were taken every 5 minutes during exponential 

growth at 30 °C in a spectrophotometer (M5 Molecular Devices) with >500 rpm 

orbital mixing. Calibration between OD600 measurement and actual cell density 

was determined by resolving the colony forming units (cfu) of each auxotrophic 

strain plated on solid media at different concentrations. All growth experiments 

were performed in M9-glucose media in the absence of antibiotics. Proportional 

strain abundance was determined via quantitative PCR. All population samples 

were frozen at -20 °C and assayed simultaneously to reduce run-to-run 

variations. Quantitative PCR were performed in 20ul reactions with 10 uL KAPA 

SYBR Fast Universal 2x MasterMix (KAPA KK4600), 4 uL of a 10X dilution of 

frozen cells, and 6 uL of primer pairs resulting in the following final primer 

concentrations: R,K,M,P,T,W,Y (200nM); G,I (150nM); H,S (100nM); C,L,F 

(50nM). PCR conditions were based on manufacture’s recommendations (40 

cycles of combined annealing extension at 60 °C for 20 s) and performed using a 

thermal cycler (Bio-Rad CTX96). The corresponding number of cycles was 

determined at a relative fluorescence unit of 150. The half-max values of each 
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qPCR curve was calibrated to actual cell density by serial dilution plating of each 

auxotrophic strains and determination of cfu on solid agar plates. The 13- and 

14-member qPCR control populations were performed using equimolar mixtures 

of all auxotrophic strains. Relative proportion of each strain the population as 

determined by qPCR was further verified by plating using colorimetric assays. 

For 2-member and 3-member communities, each strain carried deletions ∆malK, 

∆lacZ, or ∆malK/∆lacZ, which could be visually distinguished on MacConkey-

maltose plates (BD Difco) supplemented with XGAL-IPTG (Growcells).  

 

3.4.4 Dynamic model of 3-member consortia 

The 3-member kinetic model was simulated using the Matlab ® 

environment. The model was initially seeded with 107 cells of each strain. 

Cooperativity coefficients were taken from pairwise cooperativity coefficients (c12, 

c21). Predicted fold growth was calculated by dividing time step t=5500 population 

values by the initial seeding value. The carrying capacity was set to 109 cells in 

all simulations.  The β  value was set to 1. Comparison between the predicted 

fold growth and observed fold growth is shown in Figure 14a. In general, we find 

high predictive power in a significant fraction of the consortia (Pearson coefficient 

r = 0.51, p-value = 5.2x10-25). Differences between the predicted and observed 

fold growth highlights possible positive and negative epistatic interactions (Figure 

14b).  
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3.4.5 Dynamic model of 14-member consortia 

The 14-member kinetic model was simulated using the pairwise 

cooperativity coefficients (c12, c21). The population is seeded with equal amount 

of all 14 auxotrophs totaling 107 cells. The carrying capacity was set to 109 cells 

in all simulations.  The β  value was set to 1. The resulting steady state 

population abundance was determined as the percent of the total population 

dominated by each auxotroph type (Figure 16a). For each 13-member dropout 

simulations, each dropout auxotroph was set to an initial seeding value of 0 and 

all other aspects of the simulation were unchanged. The difference in population 

abundance for each auxotroph in the 13-member groups compared to the 14-

member group is shown in Figure 16b. 
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4 Microbial Evolution in Amino Acid Cross-feeding Communities 

4.1 Overview 

 As bacterial species grow, their genomes accumulate mutations that allow 

them to sample adjacent genotypes and phenotypes(Kibota & Lynch, 1996). In 

part, the context of the surrounding environment determines the impact of a 

mutation the host strain’s fitness and whether it is enriched in the population. 

Previous studies have identified the mutations that accumulate as an initially 

isogenic bacterial population undergoes divergent evolution to occupy various 

niches(Barrick et al., 2009; Chubiz, Lee, Delaney, & Marx, 2012; Fong, Joyce, & 

Palsson, 2005; Papadopoulos et al., 1999). In nature, bacteria often grow in the 

context of complex microbial ecosystems where individual species confront a 

dynamic metabolic milieu, chemical warfare in addition to competition for 

resources complicating the deconvolution and analysis of accumulated 

mutations(Cooper & Lenski, 2000; Czaran, Hoekstra, & Pagie, 2002).  Here we 

propose synthetic bacterial ecosystems as a means to isolate amino acid 

auxotrophy and exchange from other selective pressures common to bacterial 

communities. A defined yet heterogeneous mixture of 14 amino acid auxotrophic 

strains was combined and passaged for ~650 generations in minimal media. 

Each strain derives its requisite nutrients from the rest of the population. We 

hypothesized that this partially syntrophic community would converge a strictly 

syntrophic community comprised of the two strains best able to complement 

each others’ auxotrophy(Mee, Collins, Church, & Wang, 2014). Instead, we 
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observed maintenance of 4 auxotrophic lineages that accumulated mutations in 

reaction their distinct metabolic deficiencies. Fifty-eight isolates from two time 

points and separate replicates were sequenced and demonstrated common 

evolutionary strategies such as perturbation of biosynthesis, mobile element and 

frame shift disruptions of stress response pathways and tandem duplications of 

genomic regions enriched for amino acid importers. Interestingly, this 

environment enabled many of the initial auxotrophic lineages to sample 

mutations allowing them to overcome their engineered metabolic deficiencies. 

These results reflect the incredible robustness of bacterial genomes where loss 

of function can be regained through varied strategies.  

 

4.2 Results 

 A synthetic bacterial consortium was constructed by pooling at equal 

densities 14 variants of Escherichia coli (E. Coli) each engineered to be 

auxotrophic for a single amino acid (designated by their respective initial 

engineered auxotrophies as ∆-C, F, G, H, I, K, L, M, P, R, S, T, W, and Y). As 

previously described, six replicates of this community were passaged daily in M9 

minimal media where each member of this partially syntrophic community is 

dependent on the other members to exogenously provide the amino acid 

essential for it’s growth(Mee et al., 2014). Expanding on previously discussed 

results, here we include additional replicates to further demonstrate the 

divergence of the community structure as mutations are accumulated. Figure 17 
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illustrates that by the 85th passage, the relative abundances of the remaining 

strains in each mixture bear little resemblance to each other or to the core group 

of 4 strains (R, K, M, and T) settled upon in the first 6 passages. We observe a 

drop in average doubling time of the mixtures from a high of 225±12 min on day 

2 to a low of 123±21 min by day 5. We speculate that the mixture is settling on a 

structure optimal for efficient metabolic exchange. From day 5 to day 10 the 

doubling time increases on average by 5% per day reaching 157±25 min. This 

suggests that adaptations accumulated in an individual strain over this period 

while beneficial for it’s own fitness may not directly improve the productivity of the 

community. Also of note is the emergence to varying degrees of the isoleucine 

strain from relative obscurity. 
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Figure 17: Long term dynamics of the synthetic microbial ecosystem for 3 of the 6 
populations replicates 
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 In an attempt to elucidate the underlying causes of community structure 

divergence, 32 strains from each mixture (192 total) at both day 50 and 85 

(roughly 400 and 650 generations) were isolated by plating on LB-Lennox media 

and genotyped by allele specific PCR to confirm the engineered autotrophy. The 

growth rate in LB-Lennox for all isolates was determined using microtiter plate 

reader kinetic growth assays as previously described(Mee et al., 2014)(Figure 

18a). The disparity between evolved and ancestral growth rates is indicative of 

fitness altering mutations we predicted were present. More specifically, the 

general increase in doubling times in rich media suggests that the mutations 

accumulated while grown in a cross feeding community render the strains less fit 

for growth in LB.  To further investigate alterations to the phenotypes of these 

strains, maintenance of auxotrophy was assed by growing all isolated strains on 

M9 minimal media devoid of any supplemented amino acids.  Surprisingly, many 

of these isolates demonstrated varying degrees of growth indicating that the 

selective environment of a partially syntrophic cross-feeding community allowed 

for reversion to prototrophy. In fact the over 50% of the assayed strains had 

reverted to prototrophy (here conservatively defined as having surpassed an 

OD600 value of 0.25) by time point 50 (Figure 18b – left panel) and over 75% of 

the strains were prototrophic by timepoint 85 (Figure 18b – right panel). 

Interestingly, the isoleucine strains had a disproportionate number of prototrophy 

reversions relative to the ∆K, ∆T, and ∆R strains assayed. Although many strains 

became prototrophic they did not overtake the population suggesting that the 
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causative mutations did not return the strain to wild type fitness. Thirty strains 

from day 50 and twenty-eight strains from day 85 were selected for whole 

genome sequencing in a distribution representative of the observed initial 

autotrophies and evolved growth phenotypes in hopes of identifying causative 

mutations. The phenotypes of these selected strains were further investigated by 

subjecting them to fitness competitions against their ancestral strains in M9 

minimal media supplemented with the appropriate amino (methods) 
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Figure 18: Evolving phenotypes of strains under cross-feeding growth. A) Doubling time in 
LB-L for all isolates from day 50 (P50) and day 85 (P85). Single letters designate the 
auxotrophic lineage of the assayed strain. B) Max OD reached in minimal media after 96 
hours of growth. By day 85 many strains, especially those of the isoleucine lineage have 
regained a prototrophic phenotype. 
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4.2.1 Sequencing Results 

 The average coverage of the HiSeq run following alignment was 64.5x +/-

41.4x. Only a single strain, MM13∆K, had average coverage below 20X. The 

number of mutations identified per isolate ranged from 6 to a high of 115. While 

no one specific mutation was the clear root of reversion to prototrophy for any 

given strain, there are a myriad of interesting candidates ripe for further 

investigation. Here, we highlight the most abundant and more interesting 

mutations found. 

  

4.2.2 Mutations common across auxotrophies: 

 There are three mutations predominant throughout the sequenced strains 

with no enrichment bias in any one of the four observed auxotrophic lineages: 

∆R, ∆K, ∆T, ∆I. The first consists of sequence junctions differing from the 

reference at the fimA/fimE locus found in 22 isolates. This structural variant has 

previously been reported and is responsible for phase variation whereby bacteria 

stochastically switch between fimbriated and non-fimbriated form resulting in a 

mixed population(Gally, Bogan, Eisenstein, & Blomfield, 1993). Stochastic 

switching of a population between these two expression states helps pathogenic 

bacterial strains evade a host’s immune system(Goldberg, Fridman, Ronin, & 

Balaban, 2014).  However, the fimbriated form has a significant fitness cost and 

is generally repressed outside of the host in conditions of high-nutrient 

exponential growth(Gally et al., 1993). Observation of phase variation in our 



 

 

97 

strains suggests that one of the several global regulators of phase variation is 

being affected by cross-feeding growth. Amino acid nutrient limitation is a likely 

culprit as it is know to trigger stress responses that modulate the global 

regulators in question(Blomfield, Calie, Eberhardt, McClain, & Eisenstein, 1993).  

The second broadly disrupted region, mutated in roughly half of the 

isolates, is the rph-pyrE locus. The ancestral E. coli MG1655 strain has a 1-bp 

deletion in this locus resulting in low orotate phosphoribosyltransferase levels 

and suboptimal pyrimidine biosynthesis as a result of a disruption to the 

attenuation region upstream of pyre. This mutation reduces MG1655’s growth 

rate in minimal media by 13%, making it an attractive target for evolutionary 

fitness gains(Conrad et al., 2009). An 82bp deletion was the most frequently 

identified mutation in this region. This seems to be a common evolutionary 

adaptation for alleviating the biosynthesis impairment as it has been identified in 

other laboratory evolution studies(Conrad et al., 2009). The critical nature of 

overcoming this metabolic flux limitation is reinforced by our observation of 

several additional mutational variants of this locus that may also be responsible 

for improving the organism’s fitness including 1-bp deletions 53 & 55 bps 

downstream of rph, a premature stop codon at residue 213 of rph, and non-

coding mutations 62/39 bases upstream/downstream of rph potentially further 

affecting the critical regulation of these pyrE. While additional work is needed to 

determine if any of these modification are hitchhiker mutations, taken together 

these observations reinforce the functional enrichment for perturbations to this 
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region.  

The third common disruption is oddly depleted from strains in the 

isoleucine lineage. One third of all non-∆I strains have mutations in or around 

glnK, a gene responsible for signal transduction under nitrogen 

starvation(Blauwkamp & Ninfa, 2002). The majority of these (6/7) are disruptive 

frameshifts resulting from 1-bp deletions but a mutation in the regulatory region 

of the gene, 4bp upstream of the start codon, is also observed. While a single 

isoleucine isolate also contained a mutation in the regulatory region (7 bp 

upstream of the start codon), there is a clear bias towards non-∆I strains. We 

hypothesize that the increased rate of fixation of this disruption in non-∆I lineages 

is due to an auxotrophy-dependent functional enhancement of this mutation. 

Modification to signal transduction for nitrogen starvation may have greater 

fitness benefits for the ∆R, ∆T and ∆K strains. 

 

4.2.3 Auxotrophic Lineage Specific Mutations: 

Enrichment for specific mutations within auxotrophic lineages is 

suggestive of a functional basis for their fixation. The mutations arising in these 

populations are likely adaptations to growth in the amino acid limiting conditions 

encountered under engineered cross-feeding. However, subsets of mutations are 

also likely to be mechanistically involved in the frequently observed reversion to 

prototrophy. To identify specific mutations associated with this striking 

prototrophy reversion phenotype, hierarchal clustering was performed (methods). 
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Sequenced strains whose mutation profiles cluster closely together but display 

distinct growth phenotypes are identified. Mutations specific to these prototrophic 

phenotypes are also identified and presented in the analysis below. 

 

4.2.3.1 Mutations Enriched in Isoleucine Lineage: 

 As previously discussed, strains from the isoleucine linage revert to 

prototrophy more frequently than strains from the other lineages. The observed 

mutational strategies enabling these strains to mitigate the limitations imposed by 

isoleucine auxotrophy are grouped into functional classes and discussed below. 

 

Regulator targets: 

 There were several mutations to regulator genes observed in isolates of 

this lineage. Arising independently in every population replicate, the most 

frequently observed mutation (present in all but 1) was an E45D substitution in 

abgR, the lysR type regulator of the abg operon. The frequency of this mutation 

suggests functional enrichment despite conserving the acidic nature of the 

affected residue. The regulated operon is responsible for the last step in the 

catabolism of diaminopimelic acid to lysine indicating that modulating metabolic 

flux through these affected reactions is likely critical to increasing the fitness of 

the isoleucine auxotroph(Hussein, Green, & Nichols, 1998). As this mutation 

resulted in acidic residue substitution and not a total loss of function, it may be 

possible that this residue substitution changed the DNA specificity of the 
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regulator, more broadly impacting the transcriptional state of the cell.  

 Another regulator, dgsA, is mutated in 48% of the sequenced ∆I isolates 

with the majority of the changes resulting in loss of function due to frameshifts or 

introduction of premature stop codons. This gene encodes a transcriptional 

repressor that controls expression of a number of genes in the 

phosphotranspherase system, phosephenyl pyruvate system, and genes 

involved in glucose uptake(Plumbridge, 2002). However, it is likely that the 

functional target of this mutation is the phosphotranspherase system as it is 

highly enriched for mutations in this lineage. Specifically, ptsG encoding one of 

the transporters responsible for beta-D-glucose import and also regulated by 

dgsA, has observed mutations in every ∆I isolate. Further supporting the 

hypothesis that disruption of phosphotranspherase system is highly beneficial to 

isoleucine auxotrophs is the fact that three separate classes of mutations arise 

independently in the ptsG locus: L425Q hydrophobic to polar residue substitution 

disrupting a hydrophobic region required for proper functionality(Nuoffer, 

Zanolari, & Erni, 1988); 1bp deletion mediated frameshifts; IS5 mobile element 

insertion 85bp upstream of the start codon. While it has been shown that 

inactivation of this gene results in a 20% reduction to growth rate(Tchieu, Norris, 

Edwards, & Saier, 2001), we find that disruptions to this gene are in fact correlate 

to reversion to isoleucine prototrophy (figure 20 prototrophic strains MM10, 

MM40 and MM48). The three prototrophic strains highlighted in figure 20 also 

have additional regulator system modifications in a potentially epistatic A272S 
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mutation to the allatonin transcriptional regulator allS. Further work is needed to 

quantify the relative contributions of these two regulatory modifications to the 

prototrophic phenotype. It is intriguing that modulation of sugar transport is 

uniquely advantageous to the strains auxotrophic for isoleucine biosynthesis as 

the carbon sources are equally available to all members of the community. The 

functionally disruptive nature of transporter mutations suggest affected cells may 

be shifting away from glucose as their primary carbon source. Modifications to 

the regulatory architecture of the cell likely enable such a shift and seem to be a 

common strategy to overcoming isoleucine auxotrophy.  

 

Amino acid and TCA metabolism targets: 

Genes catalyzing amino acid metabolism and tricarboxylic acid (TCA) 

cycle reactions of central metabolism were disproportionately affected by 

mutations in the sequenced isolates of the isoleucine lineage. This suggests an 

interesting functional archetype for adapting to isoleucine deficiencies through 

metabolic rerouting. Due to the linear nature of the isoleucine/threonine 

biosynthesis pathway, isoleucine auxotrophy-causing disruptions (such as the 

ilvA knockout used in this study) will likely increase in the intracellular threonine 

pool. Such shifts to intracellular amino acid pools can result in in greatly reducing 

the fitness of the strain (ref BCAA regulation). One observed strategy to mitigate 

fitness reductions from non-optimal metabolic equilibria seems to rely on mobile 

element mediated large-scale tandem genomic duplications. Two distinct regions 
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in separate strains had ~2-fold increases in sequencing coverage resulting in up-

regulated expression levels for 2 groups of genes. The first duplication spans a 

103,685bp region from insJ preceding sokA to spoT (Figure 19a). Critically, this 

region contains the alanine/valine transaminase encoded by avtA. It has been 

previously been reported that episomal over-expression of this gene rescues the 

growth of isoleucine auxotrophs in minimal medial(M. D. Wang, Liu, Wang, & 

Berg, 1987). The mechanism of this rescue is likely through shifting intracellular 

amino acid pools to a more desirable state. It is possible the increased 

abundance of the gene resulting from the genomic duplication increases activity 

enough to similarly rescue growth of this isolate. Both tdh and yiaY are also 

located in this duplicated region and encode threonine dehydrogenases, 

enzymes responsible for catabolizing the first step in the threonine catabolic 

utilization pathway(Boylan & Dekker, 1981). It is likely that these genes 

contribute to improving the fitness of affected strains through reducing the 

intracellular threonine pool. The increase to the combined action of these three 

genes is likely instrumental to the strong prototrophic growth phenotype we 

observed in the isolate with this duplication. A second tandem duplication 

spanning an 113,150bp region (from nmpC to the gltI adjacent instance of insH) 

is observed in seven isolates (figure 19b). The region is somewhat enriched for 

genes encoding catalytic activity(Mi, Muruganujan, & Thomas, 2013). The cit 

operon may be a specific target of enrichment due to its effect on the TCA cycle 

and potential to broadly modulate intracellular metabolic levels as previously 
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discussed. While further experimental validation is needed to determine the exact 

mechanistic effect of this duplication there is clearly a functional enrichment for 

this structural variant as it arises independently in 3 distinct population replicates. 

 

Figure 19: Normalized Coverage Enrichment of the Sequencing reads. Y-axis indicates 
coverage fold increase in coverage over average. X-axis indicates position in the reference 
MG1655 genome. Solid line indicates average coverage over a sliding 75bp window and 
the surrounding shaded area represents the standard deviation within the same window.  
A & B) Genomic duplications observed in the isoleucine lineage. C) 3 distinct genomic 
duplications observed within the Threonine lineage. D) 2 distinct duplications observed in 
the lysine lineage. 

It has previously been reported that perturbations to branched chain 

amino acid biosynthesis result in increases to homocysteine toxicity(Tuite, 

Fraser, & O'Byrne C, 2005). A selective advantage may be endowed to strains 

that mutate to mitigate this toxicity. Three genes implicated in biosynthesis 
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reactions upstream of homocysteine synthesis (cysE, metB and metQ) have 

accumulated mutations in the isoleucine lineage. The mutations observed in 

csyE and metB (mutated in 78% and 32% of isoleucine strains respectively) are 

different across strains suggesting several unique changes are able to modulate 

the function of these proteins sufficiently to impact fitness. In metQ a 3bp in-

frame deletion is observed midway through the ORF of the ABC methionine 

importer. Laws of classical biochemical reaction kinetics state increasing reactant 

metabolite concentrations result in increased flux through a reaction. Similarly, 

within a certain range, increasing the concentration of the catalyzing enzyme also 

increases reaction flux. It is likely that the well described rescue of isoleucine 

auxotrophy by avtA over-expression result from increasing the rate of a limiting 

reaction.  If this is the case, the same result can be affected by modulating 

metabolite concentrations. We hypothesize that the disruption of this cysteine 

biosynthesis gene and of the genes responsible for methionine biosynthesis and 

transport enable the rebalancing the intracellular the amino acid levels towards 

improving the flux through reactions reducing homocysteine toxicity.  As metB 

and metQ are disrupted in prototrophic strains, it is feasible that they enable 

growth without exogenous supply of isoleucine through changing intracellular 

metabolite pools. 
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RNA polymerase subunit targets: 

Mutations to rpoA have been shown to enable broad reprograming of 

cellular regulation. It is theorized that rpo genes are plastic to a wide range of 

modifications enabling the escape from many different selective 

pressures(Conrad et al., 2010; Klein-Marcuschamer, Santos, Yu, & 

Stephanopoulos, 2009). We observed a duplication of the 6bp sequence 

‘AACATT’ in the RNA polymerase alpha subunit in two strains. This mutation was 

one that differentiated these two strains with strong prototrophic growth, MM43 

and MM51, from strains with similar mutational profiles that retained an 

auxotrophic phenotype (Figure 20 – left panel). These two prototrophic isolates 

also had disruptive residue change mutations (T322M) to metB.  It is possible 

that the combined action of both mutations is necessary for the strong 

prototrophic growth. However, further experimentation is required to fully 

elucidate their relative impact of the isolates’ phenotype.  

 

Mutation Rate Increases: 

An increase in abundance of mutations is observed in 10 of the ∆I 

isolates. This high mutation rate phenotype is mediated by the inactivation of 

mutY through a 31,084bp genomic deletion. All affected strains demonstrate a 

bias towards C to A or G to T mutations. This is to be expected as mutS encodes 

a protein responsible for a mismatch repair protein that specifically corrects G-A 

mispairs(Au, Clark, Miller, & Modrich, 1989). Among these high-mutator strains 



 

 

106 

there is a subset among which mutational profiles cluster closely together and yet 

demonstrate both extreme auxotrophic and prototrophic phenotypes (figure 20 – 

right panel). While there are 22 mutations that are unique to the prototrophic 

strain, given the sample size it is impossible to differentiate the genes as 

causative reversion candidates or hitchhiker mutations. Instead we simply 

highlight that these mutations are enriched functional groups of amino acid 

transport, regulation and biosynthesis functions. Additionally, the large genomic 

deletion causing the mutator phenotype is must have some function enrichment 

as it occurs independently in separate population replicates. To elucidate 

whether this deletion genotype is being fixed in the population due to the 

increased mutation rate or because of a fitness effect associated with the 

deletion of another gene in region (yggM, ansB, yggN, yggL, trmI, mutY, yggX, 

mltC, nupG, speC, yqgA, pheV, yghD, yghE, yghF, yghG, pppA, yghJ, glcA, glcB, 

glcG, glcF, glcE, glcD, glcC and yghO) requires further investigation.   
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Figure 20: Compiled phenotype and gene mutation data for the Isoleucine strains with 
most similar mutation profile and distinct phenotypes. Right hand side has the high 
mutator phenotypes. Top Panel: Heat map of the mutated genes in each strain. Mutated 
genes present in 3 or more strains. Strains are clustered hierarchically using Euclidian 
distance and complete linkage. Bottom panel bar graphs: top graphs use left-hand black 
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axis: Fitness/Malthusian parameter for evolved strain from competition against the 
ancestral strain at 12hrs in blue and 21hrs in red; growth rate of evolved strain relative to 
ancestral auxotroph (evolved/WT) in green. Bottom bar graphs use right-hand red axis: 
OD600 value reached by isolates after 48/96hrs (purple/blue) of growth in M9 minimal 
media. Values above 0.25 are indicated in the upwards direction, values below 0.25 are 
indicated in the downward direction. s (perhaps make gene table). 

4.3.2.2 Mutations Enriched in Threonine Lineage: 

Theonine utilization and transport 

The threonine operon (thrLABC) is in strongly regulated by its downstream 

metabolite (threonine) through attenuation in the thrL leader sequence. Low 

levels of threonine and isoleucine in the media result in transcription and 

translation of the entire operon whereas high levels of these metabolites reduce 

the translation rate(J. F. Gardner, 1979).  To generate the threonine auxotrophic 

lineage, the thrC gene was removed rendering reactions catalyzed by these gene 

products futile. Under the limiting threonine conditions of the auxotroph there is 

likely to be high transcription and translation of this operon as the cell tries to no 

avail to increase the intracellular threonine concentration. This continued effort 

likely leads to a waste of precious cellular resources that if it could be avoided 

would be richly rewarded. In four of the sequenced threonine lineage isolates we 

observed an IS5-mediated insertion 71bp upstream from the transcription start 

site of thrL directly in the promoter region of this leader peptide. This structural 

variant is likely destroying the activity of this promoter region and therefor 

stopping any translation of the operon. This modification is likely to both be 

readily accessed via mutations and result in a sizeable fitness increase as 

discussed. This is supported by the fact that this modification is seen to arise 



 

 

109 

independently in multiple different population replicates making it a likely 

adaptation to growth as a threonine auxotroph.  

 Another commonly observed endpoint of threonine auxotrophs evolution 

under cross-feeding is tandem genome duplication mediated up regulation of 

threonine importers. Three distinct but over lapping genomic regions had higher 

coverage of mapped reads in 6 of the isolates from this lineage (figure 19c).  The 

regions in increasing length are: ~5-fold coverage increase between aer and 

yhaL (37,800bp); ~3- coverage increase between yqiH and agaB (95,980bp); and 

~2-fold coverage increase between yqiG and yrhA (101,097bp). All three of the 

regions contain the genes ygjI and sstT respectively encoding a putative amino 

acid uptake system(Riley et al., 2006) and a sodium ion coupled serine/threonine 

importer(Ogawa, Kim, Mizushima, & Tsuchiya, 1998). This indicates that 

increasing threonine uptake is understandably a critical function that is enriched 

in these threonine-limited strains. 

 The two largest regions also contain the tdc locus (comprised of 

tdcABCDEFG, tdcR, and yhaO) responsible for the transport and utilization of 

threonine and serine. The isolates containing these large duplications like reap 

even more benefits from further increasing their rate of threonine import. Both 

tdcC a known threonine transporter(Sumantran, Schweizer, & Datta, 1990) and 

yhaO predicted to be involved with threonine transport by sequence similarity to 

amino acid transporters and positioning with the operon(Riley et al., 2006) are 

likely contributing to these increased gains. While being a common strategy to 
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mitigate threonine limitations, these amplifications do have a clear relationship 

the isolates’ grow phenotypes. This suggests that other mutations outside these 

regions are mostly likely important contributing factors to the strong prototrophic 

growth phenotypes observed. However within the mutational profile cluster 

containing to the most robust prototroph (MM36 reaches OD600 of >0.7 by 

48hrs) the distinguishing mutations that are comprised of the previously 

discussed mutation upstream of pyrE and IS5 mediated insertion upstream of 

thrL, do not have mechanistic explanations for enabling prototrophic growth 

(figure 21b). It is possible that in this strain the robust prototrophic growth is 

enabled by epistatic interactions among the contained mutations.  

 

Exporters and regulator targets: 

Four of the 8 ∆T isolates have a mutation loss of function mutation in fre, a gene 

encoding a riboflavin reductase(Coves, Niviere, Eschenbrenner, & Fontecave, 

1993). There seems to be a strong functional enrichment for the disruption of this 

gene as two separate types of disruptions are fixed in this lineage: a frame shift 

and an IS2-mediated insertion. Through it’s flavin reductase activity in the 

electron transport chain oxidative phosphorylation, this gene is thought to be 

involved in stress-induced mutagenesis(Al Mamun et al., 2012). The enrichment 

of mutations in this gene suggests that this stress response pathway is active 

under threonine-limited conditions but the response may be detrimental to fitness 

in this contrived engineered genotype.  Disrupting of this gene may be a means 
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to arrest signal propagation in this regulatory pathway and restrict transcriptional 

modulation to a number of genes, 

  In the mutation profile cluster comprising the threonine lineage isolates 

MM17, MM32 and MM54 there are 4 mutations that differentiate the prototroph 

(M17) the other two.  Surprisingly, three of the mutations are associated with 

membrane proteins: 1bp deletion 182bp upstream of the porin ompF; a T6P 

mutation in the cholate/bile salt exporter mdtM; a predicted 67bp intergenic 

deletion in the gsp protein secretion operon. This strain also has an IS2 mediated 

insertion within the coding region of the predicted transcriptional regulator yhcF. 

There is no literature on these four genes that would suggest a mechanism for 

reversion to prototrophy therefor further experimentation is required to determine 

which of these if any is causative. 
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Figure 21: Compiled phenotype and gene mutation data for the arginine (A) and threonine 
(B) strains with most similar mutation profile and distinct phenotypes. Top Panel: Heat 
map of the mutated genes in each strain. Mutated genes present in 3 or more strains. 
Strains are clustered hierarchically using Euclidian distance and complete linkage. Bottom 
panel bar graphs: top graphs use left-hand black axis: Fitness/Malthusian parameter for 
evolved strain from competition against the ancestral strain at 12hrs in blue and 21hrs in 
red; growth rate of evolved strain relative to ancestral auxotroph (evolved/WT) in green. 
Bottom bar graphs use right-hand red axis: OD600 value reached by isolates after 48/96hrs 
(purple/blue) of growth in M9 minimal media. Values above 0.25 are indicated in the 
upwards direction, values below 0.25 are indicated in the downward direction. 
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4.2.3.3 Mutations Enriched in Arginine Lineage: 

Regulator targets: 

Six of eight ∆R isolates had IS-element insertions in or near yobF, an acid stress 

related small peptide(Hemm et al., 2010). The enrichment of these structural 

variants in the arginine auxotrophs leads us to speculate that this may be an 

adaptation to alleviate stress resulting from the deletion of argA. As IS elements 

are known to modulate expression of genes adjacent to the landing site it’s 

important to consider the potential effects of changes to the expression of 

adjacent genes. In this case neither cspC (stress related antiterminator) nor rlmA 

(methyltransferase acting on 23S rRNA) are directly implicated in alleviating 

arginine limitation stress(Gustafsson & Persson, 1998; Phadtare & Inouye, 

1999). In this case it is much more likely that the acid stress regulation 

modulation through disruption of yobF is what is being functionally enriched in 

this case.  

There is a group of ∆R isolates with closely clustering mutational profiles 

and divergent phenotypes (figure 21a). The prototrophic strain in this grouping 

differs from the auxotrophic strain by only a handful of uniquely mutated genes 

(rsp/pyrE, ypoB, fimE, nac). Therefor it is likely that one of these genes enables 

strain MM45 to reach a high cell density in minimal media within 48 hours and 

drastically outcompetes the ancestral strain when grown together under arginine 

supplementation. Both the structural variants at the rsp/pyre and the fimE locus 

have been previously discussed and are unlikely to be causative of the reversion 
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to arginine prototrophy. Both the IS1-mediated disruption of the N-terminus of 

ypoB and the R115C residue substitution in nac however are potentially 

causative of this phenotype. As ypoB is not functionally annotated, it is difficult to 

predict the cause of this mutation. On the other hand, nac (Nitrogen Assimilation 

Control) is responsible in a sigma-70 dependent manner for the regulation of ~25 

nitrogen assimilation genes through and is intimately linked to growth on 

nitrogen(Zimmer et al., 2000). E. coli  is natively able to efficiently use arginine as 

a sole nitrogen source and has complex regulatory machinery to optimize this 

process. However, we hypothesize that this mutation to the nac gene is able to 

further modify nitrogen assimilation pathways such that it is able to more 

efficiently import and utilize arginine enabling it to outcompete the wild type strain 

as reported by other mutations to this gene(Muse & Bender, 1998). This broad 

modulation to nitrogen related pathways are also likely implicated in the reversion 

to prototrophy through metabolic rerouting and/or activation of cryptic arginine 

synthesis genes(Atkinson, Blauwkamp, Bondarenko, Studitsky, & Ninfa, 2002). 

 

4.2.3.4 Mutations Enriched in Lysine Lineage: 

Amino Acid Import Targets: 

Distinct genomic amplifications are observed in two lysine isolates (Figure 19d). 

The larger of the two has ~2-fold higher coverage and spans 143,035bp between 

the atoB and gtrB genes. The smaller region, completely contained within the 

first, also has ~2-fold higher coverage and spans 85,545bp between the yfbK and 
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gtr genes. Both regions contain the lysine/arginine/ ornithine ABC transport 

system encoded by hisP, hisMQ and argT (respectively the ATP binding 

component, integral membrane domains and periplasmic binding protein) (ref). 

When these isolates are competed against their parental strain in minimal media 

under excess lysine supplementation, no fitness differential is observed. 

However, the limited lysine environment experienced in the cross-feeding 

community may pose a sufficient selection for improving lysine import through 

the duplication of this region. 

 

4.3 Conclusions: 

This study has identified several functional modifications that clearly reinforce the 

greedy nature of evolution despite the cooperative context. While growth in this 

cross feeding community is initially uniquely dependent on exchange within the 

community, the partially syntrophic nature of the exchange may allow greater 

exploration of selfish mutations. Genomic duplication seems to be one such 

greedy adaptive mutation that enables improved scavenging of the limited amino 

acid from the environment. These duplications may be an easily access 

mechanism for amino acid transport regulation and could potentially explain the 

early observation of divergence from reproducible dynamics of the community. 

Interestingly import augmentation mutations in the isoleucine lineage are 

noticeably absent. Instead these strain have a preponderance towards 

prototrophy reversion suggesting it may be an easier to access 
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genotype/phenotype. The multitude of mutations affecting amino acid synthesis 

and catabolism pathways suggest that some amount of rewiring of central 

metabolism is occurring in response to long terms growth in the cross-feeding 

environment. However, a lack of a clear signal for a causal mutation for 

prototrophy reversion suggests that it is likely to be a highly epistatic effect. In 

general these observation reinforce the fantastic genomic plasticity of bacterial 

species to functional disruptions. 

 

4.4 Methods 

4.4.1 General Methods: 

Strain Construction, kinetic assays, fitness competitions, qPCR 

quantification, MASC-PCR and strain washing for minimal media inoculation are 

all described in methods sections in the previous chapter of this document.  

4.4.2 Sequencing Library Prep and Analysis: 

DNA of each isolate was purified using a genomic purification kit (GE Prokaryotic 

Genome kits). DNA shearing and addition of Illumina sequencing adapters and 

barcodes was performed enzymatically (Nextera). Samples were pooled in two 

groups of 30 and 29 strains (the parental strain, EcNR1 was also included) and 

each sequenced as single-end 100bp reads on a lane of an Illumina HiSeq. 

Genomic sequences were aligned to the reference genome of the parental strain 

EcNR1, a variant of Escherichia coli MG1655, and mutation calls were made 

using the breseq computational pipeline(Deatherage & Barrick, 2014). This 
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package is capable of performing split-read mapping enabling the identification of 

structural variants without using paired-end reads(Barrick et al., 2014). Hierarchal 

clustering using Euclidian distance and complete linkage was performed on the 

mutation matrix of the strains using Cluster3.0 and visualized with TreeView.  
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5 Engineered metabolite exchange in synthetic microbial ecosystems 

5.1 Overview 

Our ability to engineer bacterial genomes has matured to the point that we 

are able to engineer complex regulatory and bioproduction phenotypes. Scaling 

synthetic biology to the level of bacterial communities is a natural next step. 

Population level behaviors emerge from the combination of all involved individual 

strains. Maintaining robust community behaviors when transplanting to the milieu 

of complex microbial ecosystems remains a challenging task. Understanding how 

to best tune metabolitic transfer between community members will be critical to 

engineering community level behaviors.  

Bacteria have evolved multiple strategies to control and direct 

mass/energy exchange across the membrane. High-throughput sequencing is 

continually discovering more trans-membrane transporters although in many 

cases the critical parameters of specificity and kinetics remain poorly annotated. 

Some bacteria are also able to develop direct cytosolic linkages, a costly 

appendage most likely paid for by mitigating diffusive losses of the exchanged 

metabolite. Cytochromes, enzyme secretion & nano-wires provide additional 

capabilities for bacteria to make use of the resources surrounding them(Benomar 

et al., 2015; Pande et al., 2015). Here we demonstrate that endowing synthetic 

microbial communities with amino acid secretion enables increased productivity. 

However, this strategy doesn’t come without risks. Increasing environmental 

availability of metabolites can result in the proliferation of cheaters. Therefor it is 
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critical that the to reap benefits of exchange that bacteria are able to direct 

exchange to strains that are able to return the favor.  

5.2 Results: 

5.2.1 Improving co-culture productivity through export: 

It has been shown that auxotrophic bacteria unable to grow independently 

can grow when paired with a strain auxotrophic for a different metabolite(Mee & 

Wang, 2012; Wintermute & Silver, 2010a). For robust growth to occur, these 

mutualistic systems require exchange of the requisite metabolites. If rate of 

diffusion across the membrane is the main limitation for exchange of these 

metabolites, the degree of mutualistic growth would likely correlate to the 

hydrophobicity or membrane permeability of the involved metabolites. For the 

most part this holds and we see that highly hydrophobic metabolites demonstrate 

robust mutualistic growth. However, some highly hydrophilic amino acids (K & R) 

are efficiently exchanged despite physiochemical limitations to diffusion across 

the lipid membrane(Chakrabarti & Deamer, 1992; Monera, Sereda, Zhou, Kay, & 

Hodges, 1995). This suggests host expression of transmembrane transporters 

may play a significant role in increasing amino acid exchange. Engineering 

bacterial amino acid transport will likely have a profound effect on the productivity 

and dynamics of cross-feeding systems. 
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Figure 22: Observed syntrophic growth rate modulation with exports. Error bars represent 
standard deviation of 3 replicates.   
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Very few amino acid exporters are fully characterized relative to the 

abundance of importers. Through a literature search we identified 6 exporters 

that had putative amino acid export function for 9 amino acids (Table 

3)(Kutukova et al., 2005; Nandineni & Gowrishankar, 2004; Trotschel, 

Deutenberg, Bathe, Burkovski, & Kramer, 2005; Yamada et al., 2006; Zakataeva 

et al., 1999). The genes were inserted into medium copy episomal vectors (p15A 

origin) under arabinose induction and cloned into each of the three auxotrophic 

strains with the highest syntrophic index (M,K and F)(Lutz & Bujard, 1997; Mee et 

al., 2014).  The selection of the host strain’s auxotrophies ensures an increased 

likelihood that any partnered strain will be able to provide the required amino 

acid. Each exporter-strain combination was inoculated together with a 

complimentary E. coli strain auxotrophic for the predicted amino acid exported. 

Pairings were grown in replicate in microtiter plates alongside a control pairing 

without any exporter. In order to equilibrate the fitness costs associated with 

induced protein overexpression, all non-exporting strains contained an identical 

episomal vector with the exporter swapped for a fluorescent marker (mCherry or 

GFP). Three of the exporters (argO, rhtC and yddG) significantly increased the 

productivity of the synthetic cross-feeding community in at least one of the tested 

pairings (figure 22). This initial screen identified export modulation as a viable 

mechanism for tuning the dynamics of these microbial communities. Analytical 

HPLC was performed to further confirm that engineered secretion resulted in 

increased extracellular amino acid concentrations (table 3 and figure 23). The 
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three exporters identified via the cross-feeding community growth screen were 

also the three exporters that demonstrated the greatest increases to extracellular 

concentration of their respective amino acids. Both argO and rhtC proved to be 

quite specific in that their induction didn’t increase the presence of other amino 

acids in the media. Interestingly, yddG has a broad effect on changing 

extracellular amino acid concentrations relative to wild type. While it greatly 

increases the presence of tyrosine in the media (>9e6 fold over wild type), it also 

resulted in increases to the extracellular serine concentrations (>2e6 fold over 

wild type). Increases to the observed extracellular concentrations of 

phenylalanine and tryptophan were roughly 5-fold. Interestingly, despite the 

export bias of aromatic amino acid export towards tyrosine, yddG has the 

greatest impact on improving coculture growth when combined with 

phenylalanine auxotrophic strains (figure 22). This disparity suggests that import 

limitations may be equally impactful in the cross-feeding pairings of aromatic 

amino acid auxotrophs. The broad spectrum of increased export associated with 

yddG will also impact the metabolic cost of its induction. 
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Gene 
Predicted 

Exported Amino 
Acid 

Position in parental 
genome 

Fold increase in 
export (HPLC) 

argO R 3,074,627...3,075,262 3.57E+06 

brnFE I M 
*From 

Corynebacterium 
glutamicum 

1.45E+00            
1.7E+00 

eamB C 2,721,877…2,722,464 1.00E+00 

leuE L 1,887,353…1,887,991 1.00E+00 

rhtC T 4,014,212…4,014,832 5.69E+05 

yddG F W Y 1,553,520…1,554,401 
4.88E+00         
4.94E+00              
9.16E+6 

 
Table 3: Amino Acid Exporters Identified From Literature Search 
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Figure 23: HPLC analysis of the top 3 exporters: argO, rhtC and yddG. A) Observed export 
rate calculated from the HPLC determined concentration, the total number of cells present 
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over the growth period and duration of exponential growth prior to analyzing the growth 
filtrate.  B) Hydrophobicity index of all amino acids highlights high secretion from all cells 
for highly hydrophobic cell types and the critical nature of export induction for R and T.  

 

Figure 24: Increased Export Induction Leads to Increased Community Productivity. This 
assay is performed for the ∆M-∆R pairing with argO induction. Error Bars Represent 
Standard Deviation of 3 replicates.  
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Figure 25: Synergistic Effect Of Combining Exporters In Syntrophic Pairs. Left Column – in 
black: Community density attained after 36 hours of growth plotted against the black, left 
hand vertical axis. – in red: Community growth rate plotted against the red, right hand 
vertical axis; Right Column: Representative growth curves for a single replicate of every 
synergistic pairing. Black line – Growth with 2 exporters; Red/Blue line – growth with 1 
exporter; Grey line – growth with no exporters.   

The top three amino acid exporters were further analyzed to understand 

the parameter space for expression and synergism where these exporters were 
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able to modulate the growth of these communities. Increased export induction 

resulted in increased growth rate of the synergistic pairing (figure 24).  When 

comparing all three pairings of these exporters to non-exporting and single-

exporting pairs a couple general trends emerged (figure 25). First, at a set 

expression level the argO and yddG exporters had a greater individual effect on 

the community productivity than rhtC. Second, combining complimentary 

exporting strains resulted in increases to growth rates and attained cell densities 

above that of the non-exporting and single exporting pairs. The magnitude of 

these increases however differed between strain combinations. In the ∆R-∆T 

pairing, export of T alone had no effect on the productivity of the community 

however when combined with R export the synergistic effect was greater than 

two fold higher than the productivity improvement of R export alone. Combination 

of R and aromatic amino acid export in the R-F pairing resulted in an increase of 

productivity that was additive of the improvements resulting for each single 

exporter pairings. Combination of the rhtC and yddG exporters resulted in an 

effect size that was greater than a multiplicative combination of each individual 

exporter’s effect on the ∆F-∆T pairing. These results highlight the interesting 

result that on it’s own rhtC has a relatively minimal effect on improving 

community productivity but when paired with a strain that also contains an 

exporter, that improvement is greatly magnified.  

There are intriguing differences between community productivity levels 

under rhtC induction in a host dependent manner: in ∆M and ∆F rhtC causes 
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robust growth whereas in ∆R and ∆K there is very little improvement. This 

indicates that there is some sort of strain dependent multiplicative effect that is 

happening. In ∆M the improvement is likely due to the branched M/T biosynthesis 

pathway where the ∆M strain has an increased intracellular T pool that the 

exporter can act on. However, the same reasoning doesn’t apply to the other 

discrepancies. Some hypotheses on the reasons behind this include: higher 

absolute levels of T requirements relative to marginal increases from rhtC 

induction; auxotrophy specify regulation changes resulting shifting intracellular 

metabolite concentrations – but further testing would be required to conclusively 

determine the root cause of this behavior.  

 

5.2.2 Exchange costs and the potential for cheaters: 

Within the three selected exporters, the effect size of the improvement in 

syntrophic pairings with a single exporter single exporter correlates with the 

biosynthetic cost of the amino acid involved. As previously shown this translates 

to an inverse relationship to the quantity of amino acid required for growth of 

these auxotrophic strains. So increasing the extracellular pool for an amino acid 

that is required in relatively lower abundance results in a much greater increase 

in productivity of the community. This increase in co-culture productivity occurs 

despite the tradeoff that exists in exporting strains where pumping out 

increasingly biosynthetically expensive metabolites results in lower fitness. To 

quantify this fitness cost for auxotrophic strains expressing the argO, rhtC and 
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yddG exporters competition assays were performed. The metric used to quantify 

the relative fitness of strains is the ratio of the number of doublings of the 

analyzed strains. Auxotrophic exporting strains were competed against non-

exporting strains of identical auxotrophy in saturated amino acid supplemented 

minimal media (figure 26). As predicted, export of more expensive amino acids 

resulted in a greater fitness reduction with a fitness decrease rank of: rhtC < 

argO < yddG. If exporters existed for every amino acid this exchange/fitness 

tradeoff in proportion to the biosynthetic cost would likely hold. Flux balance 

analysis (FBA) modeling is used to extend the investigation of this relationship to 

amino acids without known exporters. Monitoring the effect on predicted flux to 

biomass while changing the constraints on the secretion of each amino acid 

reveals that the relationship of growth rate reduction to increasing secretion rate 

holds in silico. Biosynthetically expensive amino acids have a greater modeled 

reduction of flux to biomass than less costly ones (figure 27). The in vitro 

engineered syntrophic communities ensure the recapture the cost of cooperative 

exchange by design through cross-feeding with a mutualistic partner. However, 

the high fitness cost associated with the exchange of these metabolites 

introduces the potential for strains to evolve into or be outcompeted by 

competing “cheater” strains(Gore et al., 2009). In this context, cheaters are 

individuals that reduce their contribution of expensive amino acids to the 

environment or media while continuing to reap the benefits of the provided amino 

acids by the exporting the amino acid for which they are auxotrophic. 
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Figure 26: Fitness Impact of Amino Acid Import. Relative fitness is calculated as the ratio 
of the number of doublings of the exporter vs. the non-exporter. 

 
Figure 27: In silico determination of cost of export. FBA is used to determine the tradeoff 
that must occur between secreting amino acid at a set rate (x-axis) and flux of metabolites 
towards biomass production, here represented as doubling time (y-axis).   The greater the 
more quickly the derivative of the line increases, the more biosynthetically costly the 
metabolite. Tryptophan is predicted to be the most expensive and glycine the lease. 
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Many transport processes result in the expense of energy beyond that 

associated with the loss of the secreted metabolite through dependence on ATP 

or changing chemical gradients. We sought to quantify whether induction of 

exporters resulted in changes in the efficiency of conversion of glucose to 

biomass. As previously discussed, comparing growth saturation levels over a 

titration of a metabolite concentration allows the cellular requirement for that 

metabolite to be quantified. Here, glucose concentrations were titrated and 

growth saturation levels for exporting and non-exporting strains were examined 

(figure 28). While there was no observable difference between induced and 

uninduced expression of the argO and rhtC exporters, there was a significant 

shift in the glucose requirements under yddG expression. Cells growing with 

induction of yddG require roughly 3 times more glucose molecules to produce a 

given cell. This decrease in conversion efficiency increases both the benefit an 

individual would derive from adapting to become a cheater (reduce the amino 

acid secretion caused by yddG expression) and likelihood such strategies would 

arise in the population. 
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Figure 28: Impact of yddG induction on the efficiency of glucose utilization.  Left panel: 
Shift in saturating OD levels as glucose concentration is titrated.  The slope is used as 
previously discussed to calculate the number of glucose molecules required to produce a 
given cell. Right panel:  yddG induction increases the glucose requirements by ~3 fold. 
GFP induction, and rhtC and argO (data not shown but similar to GFP on) do not increase 
the glucose requirements.  

5.2.3 Competing cooperative vs. cheating strategies in mutualistic 

communities: 

To investigate the ability of cooperative exchange phenotypes to persist 

when confronted with cheating phenotypes, a triplet community was assembled 

consisting of two exporting cross-feeding strains (A and B) and a third cheater 

strain (A* or B*) with one of the two comprised auxotrophies but without any 

export. In this complex three-way interaction, strain A (exporter) and A’ (cheater) 

both derive resources pumped into the environment by strain B (exporter). Strain 

B acts as a dynamic buffer to the community, providing a distinct environment to 

that encountered under the previously discussed competition in saturating levels 

of amino acid. In this context, competition is likely to be occurring in very low 

amino acids concentrations as the strains consume the amino acid as soon as it 
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is secreted into the environment. The rate of amino acid consumption by A and 

A’ is proportional to their relative abundance in the population. We hypothesize 

that feedback exists in this system in that as A is out-competed by the more fit 

cheater strain A’, B will receive less and less of it’s required metabolite. This will 

result in reduced growth of B and a subsequent reduction in the secretion of the 

metabolite required by A and A’. Whether this feedback is sufficient to maintain A 

in the population is dependent on relative benefits/requirements of the 

exchanged metabolites and the ability of A’-B to grow robustly without A. 

Measuring the relative abundance of the strains in these triplet communities over 

time allowed us to quantify the strength of this feedback and it’s ability to 

maintain cooperative phenotypes in the community (methods). (figure 29 & figure 

30) 

When cross-feeding with a dynamic buffer strain, cooperator strains are 

outcompeted to a lesser degree than when competing under saturated amino 

acid conditions in the cases of the yddG and argO exporters. Induction of rhtC 

seems to have a greater fitness impact in the context of cross-feeding than under 

saturating levels of F or R. In most cases competing under cross-feeding 

conditions only changes the degree or amount by which the cooperator is 

outcompeted by the cheater strain and not which strain becomes dominant. 

Except for the case of expression of argO in the ∆F strain cross-feeding with the 

∆R yddG strain. In this case the exporting strain is of more or less equally fit with 

the non-exporting strain. The order of the fitness costs associated with exporting 
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T, R and F in the cross feeding context is the same as in saturated amino acid 

conditions. However, under cross-feeding the fitness cost associated with 

expressing rhtC and argO is much more similar than under saturated conditions. 

This indicates that there is likely complex strains and exporter dependent amino 

acid limitation effect on the fitness cost of export induction. 
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Figure 29: The effect of spatial structure on the relative fitness of exporters vs. non-
exporters. Top Panel: Mixtures of strain where all members had oxyR disabled were 
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analyzed in both static cultures and well mixed cultures. In these conditions all strains are 
equally likely to form aggregates. Bottom Panel: Adhesion is biased towards the 
cooperative phenotypes by disabling the flu gene in the cheater strain thereby making it 
less likely to flocculate. 

 

Figure 30: Relative abundance of the dynamic buffer strain in biased and unbiased 
adhesion fitness competitions.  
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5.2.4 Engineered community spatial structure encourages cooperativity 

 While microbial species often exist in a planktonic form, even in the vast 

oceans spatial structure of is observed in microbial communities as they colonize 

nutrient substrates. These structures impact competition between cooperative 

and cheating phenotypes(Cordero, Ventouras, DeLong, & Polz, 2012). The 

evolution and emergence of cooperative behaviors in nature is a highly studied 

area with multiple theories on which parameters are most critical(Nowak, 2006). 

Spatial structure is also commonly observed within microbial ecosystems in 

digestive tracks of animals and other biofilms. The maintenance of this spatial 

structure is commonly cited as a critical as strategy to direct the benefits of 

cooperativity towards you own kin and allow for the evolution of the many 

cooperative behavior evident in our biosphere(Chuang, Rivoire, & Leibler, 2009; 

Nadell et al., 2010).  

 

Figure 31: Impact of inhibiting the repression AG43 through deletion of oxyR. Here cells 
were grown to late log phase in 3ml of supplemented minimal media and then left 
undisturbed to monitor the rate of flocculation. 200ul samples were take from the top ~0.5 
cm of growth tube every 30 minutes.  
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Inspired by these natural strategies, we sought to investigate the ability of 

spatial structure to bias the benefits of exporter-improved exchange towards the 

strains incurring the exporting cost. The repressor of the surface adhesin ag43: 

oxyR was knocked out in all involved strains resulting in constitutive expression 

of the adhesion causing surface protein(Hasman, Chakraborty, & Klemm, 1999; 

Johnson, Clabots, & Rosen, 2006). This genetic perturbation has previously been 

show to increase the rate of flocculation and settling of bacterial strains.  This 

effect of the oxyR knockout was experimentally confirmed (figure 31). We 

additionally generated cheater strains lacking the ability to produce the adhesin 

ag43 by disabling the gene responsible for it’s production, flu. With these 

engineered strains in hand we were able to further probe the effect of spatial 

structure on the fitness costs of exporting amino acids in cross-feeding systems. 

Specifically, the relative abundance of strains in two combinations is compared: 

when all were equally able to flocculate and when only the cooperative strains 

were endowed with increased aggregation. This growth was then performed 

under two conditions, mixed and still, to respectively disrupt or allow the 

formation of spatially structured bacterial aggregates.  As expected, exporter and 

cost of secreted metabolite stratified the effect of spatial structure on the 

competition between cooperative and cheating phenotypes. 

yddG 

Interestingly, in the triplet aggregation combinations involving yddG the 

increased aggregation resulted in enrichment of the cheater strain relative to the 
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well-mixed environment. Specifically in the ∆T-∆F pairing, increased aggregation 

also resulted in a significant increase the proportion of the population comprised 

of dynamic buffer ∆F-rhtC strain relative to that present in the well-mixed 

environments (figure 29). Excluding the cheating strains from the aggregates in 

communities involving yddG mediated exchange resulted in a substantial 

improvement to the performance of the ∆T/∆R-yddG strains. However it wasn’t 

enough of an improvement to enable the cooperative strain to be more abundant 

in the population than the cheater. 

argO 

Whether spatial structure provided fitness benefits to the cooperating argO 

strain depended on the strain it was in. In ∆F it decreased the fitness of the 

cooperator whereas in ∆T there was a marginal improvement of the cooperative 

strain’s fitness.  In the arginine (argO) cooperative/cheating systems, precluding 

the cheater from the aggregate improved the performance of the cooperator 

relative to when the cheater was able to participate in spatially structured growth. 

The benefit for the cooperator is greatest in the context of the ∆T strain when 

paired with the ∆R rhtC dynamic buffer.  

rhtC 

The expression of rhtC generally has the lowest fitness impact on the 

expressing strain. When provided spatial structure to capture the benefits of 

cooperative behavior, the rhtC expressing strains were the only ones that 

displayed enrichment over the complimentary cheating strain. It is likely the low 
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fitness cost starting point was critical for the success of these strains in 

competition with the cheater meaning the marginal fitness cost is easiest to 

overcome. This however isn’t always the case as the ∆F argO strain also 

displays a low fitness cost of sharing arginine yet when provided spatial structure 

isn’t able to overcome competition from a cheater. The ∆R-∆T pairing also 

displays a great shift in the relative abundance of the dynamic buffer strain 

between the disrupted and spatially stabilized growth suggesting that perhaps 

spatial structure is more impactful on the buffer ∆T-argO. 

Combined conclusions: 

The intermediate fitness cost of argO results in highly contextually 

dependent effects on the enrichment of cooperativity. The low fitness cost 

associated with rhtC results in improvements for the cooperator with spatial 

structure in a very non-specific manner in that it occurs regardless of the 

presence or lack of the cheater strain in the aggregate. The high costs 

associated with yddG expression can be to a great degree recaptured within a 

mutualistic community if any cheaters can be excluded. This doesn’t bode well 

for the exclusion of spontaneous mutation of cheaters in these systems. Further 

work should be performed on the R- and F-systems to understand the intricacies 

of what is occurring and why directed exchange can’t allow for the cooperative 

phenotype to fully overtake the cheaters.  
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5.2.5 A question of degree? – Mutualism along cooperativity gradients: 

The previous experiments investigated competition between the two 

extremes of cooperativity: high exporter and non-exporter. In nature while mobile 

element insertions, frameshifts, and other debilitating SNPs can totally ablate 

metabolite secretion ability, it is also possible to have members of the community 

that exhibit varying degrees of cooperativity. Such intermediate levels can be 

achieved by genomic changes affecting the kinetics of export such as mutations 

resulting in altered regulation of copy number of a gene or the less likely case of 

changes to the protein that modulate kinetics while maintaining proper function. 

As previously discussed, modulation of export as well as introduction of 

auxotrophies can change the efficiency for biosynthesis for certain metabolites 

from glucose. Such differences are likely to hold for various growth substrates. 

This metabolic exchange is essential to allow species to specialize their 

biosynthetic capabilities. Therefor, it is possible that within natural microbial 

communities the production efficiencies and trade of resources is delicately 

balanced to ensure that as the economic theory of comparative advantage 

predicts, trade between cells with varying production efficiency of metabolites 

can lead to improved productivity of the community as a whole(Enyeart, 

Simpson, & Ellington, 2015). Therefor, it is likely that neither of the extremes 

were in fact optimal for the productivity of the system. 

There is a critical tradeoff between an individual strains growth and 

metabolic secretion and the resulting productivity of these mutualistic systems. At 
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very low export levels, increasing export will result in increased environmental 

metabolites with relatively low impact on the strains growth rate. This increase in 

environmental availability will result in improving the growth rate of the partnered 

strain dependent on that metabolite resulting in increased overall productivity of 

the community. However, at high export levels a similar increase in secretion 

could decrease the growth rate of the host strain enough that it will become less 

abundant in the population, provide fewer amino acids to the environment and 

subsequently by feeding it’s partner strain less and less of the metabolite, result 

in a decrease to the community growth rate. This tradeoff between a species 

growth/export and the relative abundance in the population is critical to robust 

growth of the community and highlight the fact that some intermediate 

“Goldilocks” level of secretion is likely to be optimal in these systems. This 

reinforces the notion that fine-grained control of secretion levels is critical and an 

evolutionarily tuned parameter of these systems. Natural questions following 

these realizations include: Which levels of cooperativity are optimal for exchange 

and productivity of the system? Is there a single attractor or point of intersection 

along the secretion gradients that is optimal? Does the fitness landscape of such 

a community have multiple wells or stable points? What is the peakedness of the 

fitness landscape? These questions are addressed through in vitro experiments 

using the presented mutualistic systems. The degree of cooperativity is 

genetically encoding by modulating exporter expression levels through tweaking 

the ribosome binding site (RBS and promoter of the respective regulator(Kosuri 
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et al., 2013).  

To study the fine-grained effects of modulating degree of cooperativity, the 

∆R-yddG ∆F-argO pairing was selected. We propose that the higher fitness costs 

identified to be associated with argO yddG expression would provide a strong 

selective pressure to the optimization of their expression. Episomal expression of 

exporters was modulated through genetic engineering of the RBS-promoter 

combination controlling the expression of these genes. The pTet promoter was 

selected as it is know to be a relatively strong promoter with stringent on/off 

induction behavior(Lutz & Bujard, 1997). The vector was based on the same 

backbone with a p15A medium copy origin of replication.  Thirteen RBS-promoter 

pairs were selected from Goodman et al to represent a diversity of expression 

levels.  It is critical to have these expression levels genetically encoded and not 

modulated through chemical induction systems to independently tune the 

expression of both exporters in the same environment and to maintain the 

selected diversity of expression levels throughout the experiment. To confirm the 

amplitude and distribution of expression levels resulting from the selected 

promoter/RBS combinations, GFP was inserted downstream of the engineered 

regulator region. Each population was grown to mid-log phase and the 

expression levels were assayed on a cell-by-cell basis using Flow Cytometry 

(methods; figure 32). While expression of the exporters themselves may differ 

slightly from the level determined with GFP, the levels are likely to be 

related(Kosuri et al., 2013).  The library demonstrates an evenly distributed 
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degree of expression levels spanning two logs of normalized fluorescent units. 

Interestingly, many fluorescent distributions for individual RBS/promoter pairings 

had a long low-expression tail. While unlikely that this tail will significant skew the 

behavior of the system, it is important to keep in mind. 

 

Figure 32: Distributions and means for GFP expression levels of the constructed RBS-
promoter pairs.  

Interactions along the generated cooperativity gradients are first examined 

in a pair-wise manner to map out the dynamics of the interaction space. ∆R 

auxotrophs with 10 yddG expression levels and ∆R auxotrophs with 6 argO 

expression levels representative of the constructed library’s expression 

distribution are selected. Each ∆R-∆F combination is inoculated at equal density 

and monitored continuously for growth rate and total productivity (OD attained) 
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and discretely for relative abundance (Figure 33).   

Along the yddG expression gradient, we are seeing the predicted tradeoff 

behavior between yddG expression levels and community growth. High levels of 

expression of the exporter result in very low levels of community growth likely 

due to the observed reduction of relative abundance of the yddG expressing 

strains in those cases (small light blue circles in figure 33). Similarly, as yddG 

expression reaches the lowest levels assayed, we begin to observe a reduction 

in growth rate and final OD reached by the co-cultures. Generally the relative 

abundance of the yddG expressing strain increases as its expression levels 

decreases. However, there are exceptions to this, medium yddG expression 

levels result in a dip in the abundance of the ∆R-yddG strain. Similarly, the two 

lowest yddG expression levels have a decrease in that strain’s abundance.  

The predicted secretion/community growth tradeoff is less apparent along 

the argO gradient. At high yddG levels, all argO expression levels result in similar 

community productivities and the relative abundance of the strains is biased 

towards the arginine exporting strain. This indicates that changes to the 

expression of argO in a large population of argO containing strains results in an 

insubstantial marginal change to the extracellular R concentrations which isn’t 

reflected by growth of the community. At medium yddG levels the productivity 

(specifically at yddG level 0.1) of the community more or less comparable across 

all argO expression levels with the relative abundance becoming increasingly 

biased towards the ∆R-yddG strain with increasing argO expression. This 
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expression regime suggests that multiple abundance/expression combinations 

may have equivalent fitness relative to our ability to quantify fitness differences 

and may pose multiple selective points or solutions for this community. This 

broad solution space represents a flat fitness landscape for the community. In 

such a regime, community feed back for cooperativity is likely to be limiting and 

selection on the individual is likely to dominate. There for natural selection in this 

regime would likely favor the lower argO expressing ∆F strains. At the lower 

yddG expression levels the community productivity/secretion tradeoff becomes 

more apparent especially at the extremes where community growth quickly drops 

off at very high and very low levels of argO expression. 
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Figure 33: Pairwise growth and relative abundance of cross-feeding strains across a 
diverse matrix of cooperativity pairings.  

 These results also emphasize that it we may be missing the tradeoffs 

occurring at even lower argO expression levels. This may be due to the fact that 

the argO exporter had higher export levels of R than yddG did for F at equivalent 

expression levels (HPLC). To further investigate the regime with limiting R 

availability, yddG expression in the ∆R strain was decoupled from induction by 

deleting the tetR repressor and concentration of the inducer, anhydrous-

tetracycline (ATC), was titrated to investigate lower argO expression levels. To 

further investigate the lowest possible argO expression levels the null RBS 

construct was also included in this experiment (figure 34).  Over these lower 
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argO expression levels, the exchange/community productivity tradeoff comes into 

focus. Intermediate levels of argO secretion result in the highest community 

growth rates. When argO is increased or decreased beyond these levels, the 

growth rate of the community decreases. Similar to the case for yddG presented 

above, increasing argO expression levels results in a shift towards relative 

abundance dominated by the ∆R-yddG strain. This results in increases to 

community growth with increasing R secretion at low argO expression levels. At 

higher expression levels, the marginal cost of further increasing secretion of R is 

costly to the ∆F strains and results in a reduction in relative abundance. With this 

resulting lower relative abundance the ∆F strain’s ability to provide R to the high 

abundance of the partnered ∆R strain is reduced and the overall community 

productivity takes a hit. Therefor the community growth/ secretion and relative 

abundance tradeoff s exist for the argO exporter as well but the effect is only 

visible over a much large range than the yddG exporter.  
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Figure 34: Cross-feeding community productivity and strain bias at low levels of argO 
expression  

 This lower range of argO expression also highlights in interesting tradeoff 

between relative abundance and absolute abundance of the ∆F-argO strain. The 

increase in expression of the exporter from ~0 to 0.1 results in a decrease in 

relative abundance from 73% to 59%. However, the increase in export results in 

great community productivity and an increase in absolute abundance of the ∆F-

argO strain at 24 hours from 1.4e8 cells to 3.8e8 cells. This behavior reinforces 

the complex tradeoffs and feedback that exists in these syntrophic communities 

where even if the partnered strain captures most of the benefit of an increase in 

export, it may still be more beneficial to exchange than not exchange at all (figure 

35). 
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Figure 35: Experimental measurement of growth-abundance tradeoffs. (a) Growth rate (b) 
24-hr cell density, and (c) population ratio of co-cultures of ∆R-xF (yddG) and ∆F-xR (argO) 
where argO expression is increased on a relative scale of 0 to 1. 

 

5.2.6 Cooperativity dynamics in complex communities: 

 To better control the dynamics and structure of these cooperative 

behaviors in the context of natural communities it is critical to understand how the 

tradeoffs elucidated in the pairwise exchange interactions scale to more complex 

communities comprised of varying degrees of cooperativity.  Similarly, to control 

genomic modulation of export traits better selections for cooperative behaviors 

are critical. An effective genomic engineering strategy involves increasing 
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genotypic diversity followed by selection of the optimal phenotype of choice(H. H. 

Wang et al., 2009). To utilize such a strategies for parameters affecting 

cooperative behaviors it is critical to determine whether mixtures of cells 

containing diverse phenotypes can be stratified by a selection or enrichment. Ten 

secretion levels of both the ∆F-argO and ∆R-yddG strains were combined in 

equal levels based on OD6000 measurements and grown with and without 

spatial structure. This mixture inoculated in well-mixed liquid media represents a 

lack of spatial structure. Such an environment is hypothesized to bias selection 

towards secretion levels optimal for an individual cell, i.e. lower degrees of 

secretion will be enriched. To provide spatial structure, the mixture is spread on 

minimal media agar plates supplemented with appropriate carbon sources and 

inducers for the amino acid exporters. Cells were seeded on the plates at various 

densities to examine the effect of starting intercellular distance on modulating 

which strain/export strength combination propagates the most. To quantify the 

structural dynamics of the community, cells were harvested at 0, 12 and 24 hours 

for the liquid growth and 0, 36 and 72 hours for growth on plates. Episomal DNA 

is isolated from the cells and the regulator region was amplified with barcoded 

primers for pooled amplicon next generation sequencing (methods). 
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Figure 36: Monitoring competition between gradients of cooperative phenotypes. Here the 
fold enrichment after 48hrs of growth is presented for strains seeded at low density on 
agar plates. 

At the low seeding levels we found that as in the majority of the pair-wise 

experiments, the ∆R-yddG strain was more enriched in roughly a ratio of 5:1 

relative to the ∆F-argO strain. Both the R secreting strain and the F secreting 

strain seemed to enrich two distinct levels of export suggesting more than one 

combination of cooperativity is optimal and being selected in this context (figure 

36). The most enriched level of cooperativity in these communities was at about 

20% and 10% of the maximum level tested for yddG and argO respectively 

excluding many less cooperative phenotypes. The exclusion of lower level of 

cooperativity from the population suggest that solid surface growth may be a 

viable method for enriching populations of cell with genetically encoded diversity 

of cooperative phenotypes for an optimal level. However, the exclusion of the 

most cooperative phenotype tested indicates that it is unlikely that such a 
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strategy would be able to pull out of the population exporters with greatly 

increased kinetics.  

 

5.3 Conclusion: 

  In these studies we’ve demonstrated the potential for syntrophic exchange 

to screen for functional export. Critically, the observed productivity of this cross-

feeding growth is sensitive to the expression level of the exporter and therefor 

any implementations of high-throughput bioprospecting for exporters should use 

multiple expression levels.  Cooperative phenotypes associated with export can 

be maintained in mutualistic communities despite competition with cheaters. 

However, the degree of feedback from the dynamic buffer strain is dependent on 

it’s auxotrophy and exporter and combinations must be carefully selected 

depending on the application. The caveats associated with the partnered strain 

are less critical if it is possible to use spatial structure to direct exchange between 

cooperative strains and exclude cheaters from the population. 

Tradeoffs between an individual’s relative abundance and community 

growth are consistently observed along gradients of the cooperative export 

phenotype. At the lowest levels of export, benefits of increases in export can be 

disproportionately captured by partnered cross-feeding strains yet exporting is 

still more beneficial than not exporting in terms of absolute abundance of the 

species in question. This observation is critical to the evolution of cooperativity 

and division of labor in natural communities. This finding is also critical to 
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designing system to evade encroachment from cheaters. It suggests that there is 

a low expression regime where maintenance of some amount of export is 

favored. These tradeoffs also have implications for automated genome 

engineering: null solutions or sequences resulting in broken exporters are likely 

to be excluded from the population but so are cases where the kinetics of 

secretion is greatly increased. However optimal levels optimal for community 

growth are enriched and such a selection system could be useful for tuning and 

ensuring robust growth of more complex engineered communities. 
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6 Beyond 20 Amino Acids: Metabolic Auxotrophies for Biocontainment 

6.1 Overview 

We’ve demonstrated that amino acids auxotrophies have great potential to 

modulate the dynamics and structure of bacterial communities. However, the 

bacterial strains we use also show great genomic plasticity, allowing them to 

circumvent engineered metabolic dependencies. As we move towards 

engineering microbial communities in open environments, it is essential to have 

tools that enable orthogonal control of our synthetic system. Such tools should 

ensure robust and evolution resistant modulation of the community not only to 

ensure optimal functionality but also to address the risks of unintended 

proliferation of GMOs in natural ecosystems through biocontainment. As we’ve 

discussed in previous sections, current state of the art metabolic dependencies 

impose evolutionary pressure on the organism that can easily be circumvented 

by environmentally available compounds, or overcome by horizontal gene 

transfer (HGT) or mutation. Here we investigate the ability of redesigned 

essential enzymes in the first organism possessing an altered genetic code to 

confer metabolic dependence on nonstandard amino acids for survival. The 

resulting GMOs cannot metabolically circumvent their biocontainment 

mechanisms using environmentally available compounds, and they exhibit 

unprecedented resistance to evolutionary escape via mutagenesis and HGT. 

This work provides a foundation for safer GMOs that are isolated from natural 

ecosystems by reliance on synthetic metabolites. 
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Current strategies for containment of GMO’s rely on integrating 

toxin/antitoxin “kill switches”(Q. Li & Wu, 2009; Molin et al., 1987), establishing 

auxotrophies for essential compounds(Curtiss, 1978),  or both(Ronchel & 

Ramos, 2001; Wright, Delmans, Stan, & Ellis, 2015). Toxin/antitoxin systems 

suffer from selective pressure to improve fitness through deactivation of the toxic 

product(Knudsen et al., 1995; Pasotti, Zucca, Lupotto, Cusella De Angelis, & 

Magni, 2011), while metabolic auxotrophies can be circumvented by scavenging 

essential metabolites from nearby decayed cells or cross-feeding from 

established ecological niches. Effective biocontainment strategies must protect 

against three possible escape mechanisms: mutagenic drift, environmental 

supplementation and horizontal gene transfer (HGT). Here we introduce 

“synthetic auxotrophy” for non-natural compounds as a means to biological 

containment that is robust against all three mechanisms. Using the first 

genomically recoded organism (GRO)(Lajoie et al., 2013) we assigned the UAG 

stop codon to incorporate a nonstandard amino acid (NSAA) and computationally 

redesigned the cores of essential enzymes to require the NSAA for proper 

translation, folding and function. Combining multiple redesigned enzymes 

resulted in GROs that exhibit dramatically reduced escape frequencies and 

readily succumb to competition by unmodified organisms in nonpermissive 

conditions. 
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Figure 37: Escape frequencies and doubling times of auxotrophic strains. Escape 
frequencies for engineered auxotrophic strains calculated as colonies observed per 
colony forming unit (c.f.u.) plated over 3 technical replicates on solid media lacking 
arabinose and bipA. Assay limit is calculated as 1/(total c.f.u. plated) for the most 
conservative detection limit of a cohort, with a single-enzyme auxotroph limit of 3.5 x 10-9 
escapees/c.f.u., a double-enzyme auxotroph limit of 8.3 x 10-11 escapees/c.f.u. and a triple-
enzyme auxotroph limit of 6.41 x 10-11 escapees/c.f.u. Positive error bars are standard error 
of the mean (s.e.m.) of the escape frequency over three technical replicates (Methods). The 
top panel presents the doubling times for each strain in the presence of 10 µM or 100 µM 
bipA, with the parental strain doubling times represented by the dashed horizontal lines. 
MetG.d3 growth was undetectable in 100 µM bipA. Positive and negative error bars are 
s.e.m. 
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6.2 Results 

6.2.1 Susceptibility of Natural Auxotrophies to Escape and 

Supplementation 

To compare synthetic auxotroph strains to current biocontainment 

practices we generated natural metaboblic auxotrophs by knocking out asd and 

thyA genes from an MG1655-derived E. coli strain (EcNR1). The asd knockout 

renders the strain dependent on diaminopimelic acid (DAP) for cell wall 

biosynthesis(Curtiss, 1978), while the thyA knockout deprives the cell of thymine, 

an essential nucleobase(Steidler et al., 2003). These well-studied auxotrophies 

are commonly incorporated into biocontainment strategies(Curtiss, 1978; Wright 

et al., 2015). In agreement with previous studies, the asd knockout shows strong 

dependence on its requisite metabolite, with a 7 day escape frequency of 8.97 x 

10-9 escapees/c.f.u.. Knocking out thyA from this strain to produce a double-

enzyme auxotroph did not reduce the 7 day escape frequency (8.79 x 10-9 

escapees/c.f.u.) (table 4). Nevertheless, metabolic strategies could complement 

synthetic auxotrophies to improve escape frequencies in defined ecological 

niches. To test this principle we knocked out asd from the double-enzyme 

synthetic auxotrophs of adk and tyrS resulting in three triple-enzyme auxotrophs 

(adk.d6_tyrS.d6_asd, adk.d6_tyrS.d7_asd and adk.d6_tyrS.d8_asd) that grow 

robustly in permissive conditions but show undetectable escape after 7 days on 

media lacking bipA and DAP (figure 37, detection limit 6.4 x 10-11 

escapees/c.f.u.). 
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Strain Escape assay 
plate media 

Day 1 esc. 
frequency 

Day 2 esc. 
frequency 

Day 7 esc. 
frequency 

Doubling 
time in LBL 

+  
DAP + 

thymidine 

EcNR1∆thyA LBL < 3.51E-11 2.70E-09 ± 
1.20E-10 

7.40E-08 ± 
5.14E-09 43.6 ± 0.2 

EcNR1∆asd LBL < 5.98E-10 5.98E-10 ± 
5.38E-10 

8.97E-09 ± 
5.46E-09 47.7 ± 0.3 

EcNR1∆asd∆thyA LBL < 1.83E-10 < 1.83E-10 8.79E-09 ± 
4.81E-09 57.5 ± 0.2 

EcNR1∆asd∆thyA LBL + thymidine < 5.49E-10 1.10E-09 ± 
5.65E-10 

2.86E-08 ± 
4.40E-09 n.a. 

Table 4: Escape and growth rates of natural metabolic auxotrophs. Doubling times in 
minutes. Errors reported are s.e.m. of the rate (Methods) < Indicates below given detection 
limit. n.a. = not applicable 

While bacterial growth assays are often carried out in variations of media 

enriched with yeast extract, GMOs are increasingly deployed among a diversity 

of ecosystems that may provide opportunities for scavenging or cross-feeding 

essential metabolites. To compare metabolic and synthetic auxotroph strategies 

in an environment mimicking endogenous bacterial communities we grew 

engineered variants of both natural and synthetic auxotrophs in LBL containing E. 

coli lysate (Methods). We hypothesized that since DAP is an essential 

component of the bacterial cell wall, the Δasd strains may scavenge sufficient 

DAP from E. coli lysate to complement the auxotrophy. As anticipated, metabolic 

auxotrophs obtained sufficient nutrients from the yeast/tryptone (LBL) and the 

bacterial remnants (lysate) to support exponential growth (figure 38a-d), while the 

synthetic auxotrophs failed to circumvent their dependencies. These results 

highlight the importance of establishing auxotrophies for compounds that are not 
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environmentally available, and of ensuring the metabolic essentiality of enzymes 

intended to confer dependence.  

 

Figure 38: Natural metabolites can circumvent auxotrophies. a, The synthetic auxotroph 
parental strain (C321.∆A), a second prototrophic MG1655-derived strain (EcNR1), and three 
natural auxotroph derivatives of EcNR1 were grown in LBL supplemented with 166.66 ml/L 
bacterial lysate (Teknova). Growth curves are shown with doubling times ± one standard 
deviation of three technical replicates next to the labels. The conditions fully complement 
the metabolic auxotrophy of EcNR1.∆thyA, which doubles as robustly as prototrophic 
EcNR1. Strains lacking the asd gene (EcNR1.∆asd and the EcNR1.∆asd∆thyA double 
knockout) show more impairment but enter exponential growth with doubling times of 91 
to 137 minutes, respectively. b, (single-) and c, (double-)enzyme synthetic auxotrophies 
are not complemented by natural products in rich media or bacterial lysate. d, When the 
∆asd auxotrophy is combined with double-enzyme synthetic auxotrophies the natural 
products are no longer sufficient to support growth. No growth is indicated by * in b-d.   
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6.2.2 Resistance to horizontal gene transfer 

Horizontal gene transfer is an important mechanism of evolution in any 

genetically rich environment(Smillie et al., 2011). We developed a conjugation 

escape assay to assess how DNA transfer within an ecosystem enables a GMO 

to escape biocontainment. Whereas any recombination event that replaces an 

inactivated gene could overcome metabolic auxotrophies(Wollman, Jacob, & 

Hayes, 1956), we hypothesized that conjugal escape would be disfavored in 

GROs because donor DNA replacing bipA-dependent genes would also 

overwrite crucial genetic elements involved in genetic code reassignment (figure 

39). For example, reintroducing UAG stop codons into essential genes without 

restoring RF1-mediated translational termination could be deleterious(Lajoie et 

al., 2013) or lethal(Mukai et al., 2010). Furthermore, reintroducing RF1 would 

result in competition between bipA incorporation and translational termination, 

undermining the recoded functions of the GRO. 
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Figure 39: Synthetic auxotrophy and genomic recoding reduce HGT-mediated escape. a, 
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The positions of key alleles are plotted to scale on the genome schematic. Red lines 
indicate auxotrophies used in the multi-enzyme auxotrophs and gray lines indicate other 
auxotrophies that were not included in this assay. Asterisks indicate important alleles 
associated with the reassignment of UAG translation function (blue are essential genes 
and green are potentially important genes(Lajoie et al., 2013)). Conjugation-mediated 
reversion of the UAA codons back to the wild-type UAG is expected to be deleterious 
unless the natural UAG translational termination function is reverted. R1 and R2 denote 
replicores 1 and 2, respectively. b, Combining multiple synthetic auxotrophies in a single 
genome requires a large portion of the genome to be overwritten by wild-type donor DNA, 
reducing the frequency of conjugal escape (top panel) and increasing the likelihood of 
overwriting the portions of the genome (bottom panel) that provide expanded biological 
function (e.g., prfA encodes RF1, which mediates translational termination at UAG 
codons). Positive error bars indicate standard deviation. 

In order to simulate a worst-case scenario in ecosystems containing a rich 

source of conjugal donors, we used Tn5 transposition to integrate an origin of 

transfer (oriT) into a population of E. coli MG1655 conjugal donor strains. We 

isolated a population of ~450 independent clones (one oriT for every ~10kb 

portion of the 4.6 megabase pair genome) and sequenced the flanking genomic 

regions of 96 donor colonies to confirm that oriT integration was well-distributed 

throughout the population. We then conjugated this donor population into our 

auxotrophic strains at a ratio of 1 donor to 100 recipients to increase the 

probability that conjugal transfer will initiate from one oriT position per recipient. 

Conjugation was performed for durations of 50 minutes and 12 hours (average 

conjugation times predicted to transfer 0.5 and 7.2 genomes) to simulate a single 

conjugal interaction and an ecological worst-case scenario, respectively. 

Conjugal escapees were selected on nonpermissive media, and 23 alleles 

distributed throughout the genome (figure 39a) were screened using multiplex 

allele-specific colony PCR (mascPCR) to assess how much of the recoded 

genome is replaced by wild-type donor DNA.   



 

 

164 

Conjugal escape frequency decreases as the number of auxotrophic gene 

variants increases (figure 39b, top panel; figure 40), consistent with larger 

portions of the genome that must be overwritten for conjugal escape of the multi-

enzyme auxotrophs (figure 39b, bottom panel). The 12 hour conjugations effect 

higher escape frequencies than do the 50 minute conjugations, and the 12 hour 

conjugations produce a larger diversity of conjugal escape genotypes, consistent 

with an increased opportunity to initiate new conjugal transfers during the mating 

period. Encouragingly, all 50-minute conjugal escapees from multi-enzyme 

auxotrophs exhibit the wild-type donor sequence at all 23 assayed alleles (figure 

39b, bottom panel), resulting in the reintroduction of release factor 1 and its 

UAG-mediated translational termination function. This collateral replacement of 

recombinant genomic DNA could be extended to other recombinant payloads 

such as antibiotic resistance genes, recombinases, catabolic enzymes, toxins, 

and orthogonal aaRS/tRNA pairs used for NSAA incorporation. 
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Figure 40: Conjugal escape frequencies of synthetic auxotrophs. Single, double, and 
triple-enzyme auxotrophs were assayed to determine the frequency of escape by 
horizontal genetic transfer and recombination from a prototrophic donor as described in 
the methods. These results highlight the benefit of having multiple auxotrophies 
distributed throughout the genome. Notably, scaling from a single synthetic auxotroph to 
three distributed auxotrophies results in a reduction of conjugal escape by at least two 
orders of magnitude. 
 

6.2.3 Competition between synthetic auxotroph escapees and prototrophs.  

Any biocontainment mechanism – however robust – is vulnerable to 

evolutionary pathways through the fitness landscape that lead to survival in 

nonpermissive conditions. Although escape pathways may be exceedingly rare, it 

is critical that genotypes along these pathways sufficiently decrease fitness so 

that escapees are outcompeted in natural ecosystems. In this respect 

toxin/antitoxin systems are disadvantaged because the primary escape 

mechanism – ejecting the toxic gene – typically improves fitness. In contrast, 
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escapees of our synthetic auxotrophs are highly impaired under nonpermissive 

growth conditions. We quantified the ability of escaped synthetic auxotrophs to 

compete in an ecosystem using a flow cytometry-based competition assay (figure 

41). 

 

Figure 41: Competition between synthetic auxotroph escapees and prototrophic E. coli. 
C321.ΔA was competed in the absence of bipA against escapees from a single-enzyme 
bipA auxotroph (pgk.d4, moderate NSAA dependence), or from a double-enzyme bipA 
auxotroph (adk.d6_tyrS.d8, strong bipA-dependence). Populations were seeded with 100-
fold excess escapees and grown for 8 hours in nonpermissive conditions. The populations 
were evaluated using flow cytometry for episomally expressed fluorescent proteins at t = 0 
and t = 8 hours. Results from separate competition experiments against 3 different 
escapees are shown for each synthetic auxotroph. a, Pgk.d4 escapees continue to expand 
in a mixed population with C321.ΔA after 8 hours. b, Adk.d6_tyrS.d8 escapees are rapidly 
outcompeted by C321.ΔA, which overtakes the population after 8 hours. 

We clonally isolated escapee strains that emerged both from single-enzyme 

(pgk.d4) and double-enzyme (adk.d6_tyrS.d8) synthetic auxotrophs and 

competed them against C321.∆A, used here as a proxy for prototrophic 

environmental competitors. From an initial seeding density 100-fold higher than 

the prototrophs, the single-enzyme pgk.d4 escapees maintain a significant 

presence (>50% of the total population) as resources become limiting after 8 
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hours of growth (figure 41a). The continued presence of pgk.d4 in the 8 hour 

population arises from escapees growing in nonpermissive conditions, even 

though fitness is impaired in comparison to the prototroph. In contrast, under 

identical seeding conditions, the prototrophic strain completely overtakes the 

adk.d6_tyrS.d8 escapees, inverting their relative abundance within 8 hours 

(figure 41b). This extreme effect is largely due to the severe fitness impairment of 

the adk.d6_tyrS.d8 escapees in nonpermissive conditions. Further, these results 

emphasize that cross-feeding from prototrophic co-cultures cannot circumvent 

synthetic auxotrophies. Thus, while GMOs biocontained by multiple synthetic 

auxotrophies may explore mutations conferring nominal viability under 

nonpermissive conditions, the associated fitness impairment renders them 

readily outcompeted by prototrophic microbial competitors. 

6.3 Conclusions 

The work presented here highlights the importance of considering 

environmental context when defining a metabolism-catalyzing gene as essential 

or not. We’ve previously shown that amino acid dependencies are commonly 

circumvented by cross-feeding with partners in the community. Here we 

demonstrate that nutrients such as DAP can be scavenged from microbial 

communities and their use as biocontainment strategies is unjustified. 

Alternatively, non-standard amino acids that are only produced through non-

synthetic chemical synthesis present an excellent opportunity for engineering 

dependencies that cannot be circumvented by individual strains, nor by the 
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efforts of microbial communities. Engineering a dependency on a synthetic amino 

acid has show to decrease the rate of mutagenic escape orders of magnitude 

below the current suggested level. This strong dependence also makes these 

types of metabolites a fantastic orthogonal control mechanism for modulating 

microbial communities in nature.  

 

6.4 Methods 

6.4.1 Culture and selection conditions.  

Growth media consisted of LB-Lennox (LBL, 10 g/L bacto tryptone, 5 g/L 

sodium chloride, 5 g/L yeast extract). Permissive growth media for bipA-

dependent auxotrophs was LBL supplemented with sodium dodecyl sulfate 

(SDS), chloramphenicol, bipA, and arabinose. Nonpermissive media lacked bipA 

and arabinose. The following selective agents, nutrients, and inducers were used 

when indicated: chloramphenicol (20 mg/ml), kanamycin (30 mg/ml), 

spectinomycin (95 mg/ml), SDS (0.005% w/v), bipA (10 µM), glucose (0.2% w/v), 

arabinose (0.2% w/v). Permissive media for metabolic auxotrophs is LBL 

supplemented with 75 mg/ml DAP and 100 mg/ml thymidine. 

6.4.2 Strain engineering.  

The tyrS.d6, tyrS.d7, and tyrS.d8 gene variants were constructed by PCR 

amplification of the E. coli MG1655 tyrS gene with mutagenic primers, followed 

by full-length Gibson assembly(Gibson et al., 2009) and recombination onto the 

genome using λ Red recombineering(Datsenko & Wanner, 2000; Yu et al., 
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2000). Strains tyrS.d6, tyrS.d7, tyrS.d8, adk.d6_tyrS.d6, adk.d6_tyrS.d7, and 

adk.d6_tyrS.d8 were produced by (1) deleting the endogenous tdk gene from 

C321.ΔA, (2) replacing the endogenous adk and tyrS genes with their codon-

shuffled variants (adk(recode)-tdk and tyrS(recode)-tdk, Supplementary Table 3) 

transcriptionally fused to tdk, and (3) replacing the fusion cassettes with the 

adk.d6, tyrS.d6, tyrS.d7, or tyrS.d8 variants. Variants of adk.d6, tyrS.d7 and 

tyrS.d8 containing leucine and tryptophan at the bipA position were constructed 

by MAGE with oligos containing the appropriate mutations and clonal populations 

were isolated on LBL plates lacking bipA and arabinose. Triple-enzyme 

auxotrophs were created by replacing asd with a Δasd::specR cassette. All 

genotypes (Supplementary Table 3) were confirmed using mascPCR(Isaacs et 

al., 2011) and Sanger sequencing using primers from Supplementary Table 1.  

 

6.4.3 Strain doubling time analysis.  

Strain doubling times were calculated as previously described(Lajoie et 

al., 2013). 

 

6.4.4 Solid media escape assays for natural metabolic and synthetic 

auxotrophs.  

All strains were grown in permissive conditions and harvested in late 

exponential phase. Cells were washed twice in LBL and resuspended in LBL. 

Viable c.f.u. were calculated from the mean and standard error of the mean 
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(s.e.m.) of 3 technical replicates of 10-fold serial dilutions on permissive media. 

Three technical replicates were plated on nonpermissive media and monitored 

for seven days. The order of magnitude of cells plated ranged from 102 to 109 

depending on the escape frequency of the strain. Synthetic auxotrophs were 

plated on two different nonpermissive media conditions: “SC”, LBL with SDS and 

chloramphenicol, and “SCA”, LBL with SDS, chloramphenicol, and 0.2% 

arabinose. Metabolic auxotrophs were plated on LBL for nonpermissive 

conditions (Supplementary Table 11). If synthetic auxotrophs exhibited escape 

frequencies above detection limit (lawns) on SC at day 1, 2 or 7 (alaS.d5, 

metG.d3, tyrS.d7), escape frequencies for those days were calculated from 

additional platings at lower density. Additional platings at higher density were 

also used to obtain day 1 and day 2 escape frequencies for pgk.d4 on SC. The 

s.e.m. 𝑆!  across technical replicates of the cumulative escape frequency 𝜈 

scored for a given day was calculated as: 𝑆! = 𝜈 !!!
!

!
+ !!!

!

!
 , where 𝜏 is the 

mean number of c.f.u. plated, 𝑆!𝜏 is the s.e.m. of c.f.u. plated, 𝑛 is the mean 

cumulative colony count up to the given day, and 𝑆!𝑛  is the s.e.m. of the 

cumulative colony count up to the given day. If synthetic auxotroph escapees 

emerged on SC, three clones were isolated, their growth rates were calculated 

as described above, and the doubling time of the fastest escapee was recorded. 

6.4.5 Growth competition assays.  

The assayed single- and double-enzyme synthetic auxotroph escape 

strains (pgk.d4 esc. 1, 2, and 3; adk.d6_tyrS.d8 esc. 1, 2, and 3) were 
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transformed with a pZE21 vector(Lutz & Bujard, 1997) bearing mCFP under 

anhydrotetracycline (aTc) inducible control in the multiple cloning site. The 

parental prototrophic C321.∆A strain was similarly transformed with an identical 

vector except that the fluorophore is YFP. Strains were grown up to late 

exponential phase in LBL supplemented with antibiotics (SDS, chloramphenicol, 

kanamycin), inducers (0.1% L-arabinose, 100 ng/ml aTc), and bipA. Cells were 

washed twice in M9 salts and adjusted to a cell concentration of roughly 1 x 109 

cells/ml. Biological replicates of synthetic auxotroph escapees were mixed with 

the C321.∆A strain at a ratio of 100:1 and diluted to a seeding concentration of 

roughly 2.5 x 107 cells/ml in nonpermissive media (LBL supplemented with SDS, 

chloramphenicol, kanamycin and aTc). Growth kinetics of the competition mixture 

were assayed in 200 µl sample volumes on microtiter plates incubated in a 

Biotek Synergy microplate reader at 34 ºC. Cell mixtures were fixed in PBS with 

1% paraformaldehyde at time 0 and at 8 hours. Fixed cells were run on a BD 

LSRFortessa and populations were binned based on YFP expression level. CFP 

was not used for species discrimination but rather to maintain consistent fitness 

costs associated with episomal DNA maintenance and fluorophore expression. 

6.4.6 Bacterial lysate growth assays.   

All strains were grown up in permissive conditions and harvested in late 

exponential phase. Cells were washed twice in M9 salts (6 g/L Na2HPO4, 3 g/L 

KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl) by centrifugation at 17,900 x g and then 

diluted 100-fold into LBL supplemented with 166.66 ml/L trypsin digested E. coli 
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extract (Teknova Cat. No. 3T3900). Growth kinetics were assayed in 200 ul 

sample volumes on microtiter plates as described above. Three biological 

replicates were performed by splitting a single well-mixed initial seeding 

population. 

 

6.4.7 Conjugal escape assays. 

The conjugal donor population was produced using the Epicentre EZ-Tn5 

Custom Transposome kit to insert a mosaic-end-flanked kanR-oriT cassette into 

random positions of the E. coli MG1655 genome. The population of integrants 

was plated on LBL agar plates supplemented with kanamycin. Approximately 450 

clones were lifted from the plate and pooled, which corresponds to one kanR-oriT 

per ~10 kb region of the genome, assuming an equal distribution of transposition 

across the 4.6 megabase E. coli MG1655 genome. The pRK24 conjugal plasmid 

was conjugated(Isaacs et al., 2011) from E. coli strain 1100-2(Tolonen, Chilaka, 

& Church, 2009) into the kanR-oriT donor population. The kanR-oriT insertion 

sites were confirmed to be well-distributed. Briefly, the donor population was 

sheared on a Covaris E210, end repaired, and ligated to Illumina adapters as 

described by Rohland and Reich(Rohland & Reich, 2012). Genomic sequences 

flanking the insertion site were amplified using the Sol-P5-PCR primer and a 

series of nested primers (Supplementary Table 1) that hybridize within the kanR 

gene. PCR products corresponding to ~1 kb were gel purified from the smear 

and TOPO cloned (Invitrogen pCR™-Blunt II-TOPO®). Flanking genomic 
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sequences were then identified by Sanger sequencing 96 TOPO clones. 

Conjugal escape assays were performed as described previously(Isaacs et al., 

2011) with 50 minute and 12 hour conjugal duration and a donor:auxotroph ratio 

of 1:100. Three technical replicates of two biological replicates were performed 

for all conjugation assays with the exception of the double-enzyme synthetic 

auxotroph experiments, which were performed with three biological replicates (3 

technical replicates each) to produce enough escapees for mascPCR screening. 

To determine the proportion of the genome overwritten by donor DNA the 

following numbers of colonies were scored for the 50 minute/12 hour time points: 

adk.d6 n=51/6; tyrS.d8 n=44/7; adk.d6_tyrS.d8 n=8/59; 

adk.d6_tyrS.d8_asd:specR n=5/38. This set omits a small collection of clones 

that could not be scored due to polyclonality. 
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7 Conclusions 

7.1 Summary of Results 

In natural ecological settings, metabolite exchange between cooperative 

organisms is often difficult to identify, the interactions are hard to quantitatively 

measure, and the resulting significance are challenging to interpret.  However, 

using comparative genomic analysis across thousands of sequenced genomes 

we can make can make the interesting observation that there are widespread 

trends of metabolic cross-feeding based on phylogenetic distributions of 

metabolic capabilities. The metabolic interrelatedness of organisms and 

ecosystems is a likely driver of the disproportionate loss of expensive 

biosynthesis capabilities across the studied metabolome of bacteria. This is 

further supported by our observations that robust growth can be driven by amino 

acid exchange and highlights the possibility that these metabolic transfers can 

enrich consortium-level associations and contribute significantly to the 

development and persistence of auxotrophic phenotypes in the biosphere. 

Further, we developed an ODE model based on simplistic pairwise 

interactions that is able to scale to higher order complex 3-member syntrophic 

exchange systems. Both this model and the experimental results highlight 

methionine, lysine and phenylalanine as strong candidates for modulating robust 

coculture growth. Work with exporter overexpression also showed that the 

transmembrane flux of threonine can be greatly improved especially in the 

context of the methione auxotroph which disrupts and shunts the involved 
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branched biosynthesis pathway towards threonine production. Exporters 

overexpression represents a strong cooperative phenotype that can be readily 

outcompeted by cheaters in head-to-head completion. However, our work 

highlights that there is feedback within cross-feeding communities that provides 

some benefit to this behavior. This work has further elucidated a critical tradeoff 

between export levels, abundance in the population and absolute abundance in 

the environment. These tradeoffs likely play a critical role in the evolution of 

cooperatively as these experiments have shown that very low levels secretion 

can result in greater community productivity and absolute abundance of a 

cooperative phenotype despite loosing out in relative abundance to surrounding 

strains. 

Long-term evolution of cross-feeding communities has illustrated that 

complex partially syntrophic exchange networks can be more beneficial to 

ecosystem productivity than reducing to a minimal binary exchange system. The 

more complex networks also proved to be fruitful grounds for evolution that 

unlock varied mitigation mechanism for dealing with stresses of amino acid 

starvation. The observed genomic plasticity is at once both an inspiration for new 

community control strategies (e.g. importer over-expression, amino acid pool 

redistribution, and perturbation of nitrogen starvation regulation) and a reminder 

of the difficulty to robustly engineer functional behaviors in the face of 

evolutionary pressures. To this end this story is capped by efforts leveraging an 

organism with a reassigned genetic code towards mitigating the risks associated 
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with events that can disrupt an engineered phenotype (genetic drift & mutation, 

horizontal gene transfer and environmental metabolic cross talk).  We 

demonstrate that an organism with an engineered dependency on a non-

standard amino acid is metabolically orthogonal to a multitude of commonly 

occurring natural environments and demonstrates great robustness to genetic 

disruptions via mutation and conjugative horizontal gene transfer. Given these 

characteristics, strains with engineered non-standard amino acid dependences 

will likely play a leading role in future efforts to perturb and control natural 

microbial communities.   

 

7.2 Concluding Remarks 

The prospect is bright for synthetic biologists to build ecosystem that 

reproducibly exhibit complex behavior. Yet there remain many challenges ahead 

that reflect our incomplete understanding of the many governing principles that 

underlie microbial physiology, ecology, and evolution. A better working 

knowledge of the different parameters that drive social interaction in cell 

populations will be needed. As most intercellular interactions exhibit non-linear 

relationships based on spatial, temporal, thermodynamic, and energetic 

constraints, we expect that new theoretical frameworks need to be developed to 

describe these complex, dynamic, and heterogeneous ecosystems. New 

techniques that facilitate massively parallel synthesis, engineering, and analysis 

of microbial consortia at single-cell resolution will be critical for predictive 
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programming of synthetic communities. As we progress toward engineering 

biological systems of ever-increasing sophistication, social and ethical concerns 

surrounding the creation of non-natural life forms and ecosystems will require 

open dialogue between researchers and the public on the risks and rewards of 

these activities in the post-Darwinian era of biology. 
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