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Abstract 

 

This paper studies the links between rational herding and cross correlations in security 

returns. It demonstrates analytically and numerically that herding, as a temporary, 

fragile convergence, can indeed lead to asset dependency. Besides, the effect is most 

pronounced in abnormal market conditions. Overall, these imply a self-reinforcing 

process, where a bear market amplifies the herd effect that further exacerbates asset 

dependency. The simulation models with herding are found to generate results closer 

to the real patterns of asset dependency than the static benchmark model with non-

interacting agents. The findings suggest an alternative view on the regulations towards 

greater transparency.  
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1. Introduction  
 

Economists have attempted to study the intriguing nature and sources of the cross 

correlations in security returns, but the issues have remained controversial in the 

research community (e.g. Badrinath, Kale and Noe 1995; Boudoukh, Richardson and 

Whitelaw 1994; Conrad, Kaul and Nimalendran 1991; Mech 1993).  

 

In conventional economic theory, fluctuations off the fundamental equilibrium path 

are attributable to exogenous shocks; abnormal returns are associated with exogenous 

characteristics specific to the event observation. This has an implication on the cross 

correlations in security returns that the correlations are an inevitable consequence of 

some external common factors.  

 

The implication, attributing the empirically observed asset dependency to external 

common factors, is however built on the notion of market efficiency with 

homogeneous and perfectly rational agents. The conventional notion of economic 

agency neglects the interactive structure to which heterogeneous agents give rise. To 

gain a better understanding on the cross correlations in security returns, we need to 

take into account how constituent agents in the market behave.   

 

Imitation is perhaps one most common observation among human behaviour. 

Imitation can lead to systematic erroneous decision-making, and convergence of 

behaviour across individuals, often referred to as herding. This paper, using both 

theoretical analysis and simulation experiments, studies the relations between herding 

(or imitation) and asset dependency. Instead of viewing the market as a static 

aggregation of isolated individuals, it employs the “individual-oriented” approach that 

develops from the basic market microstructure to explore the issue of interest. Does 

herding endogenously induce the cross correlations in security returns? To what 

extent does herding account for asset comovement? Is the pace of learning (or 

herding) relevant? What role does the market condition play in this possible link 

between herding and asset dependency? Can we identify empirically the herd effect 

on asset comovements, if any? These are the questions that we wish to answer.  
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We aware that there is a fallacy that deserves attention: is it all too obvious that 

herding/imitation in investment strategies leads to asset correlations? The validity of 

the issue of interest is not undermined by this fallacy. The logic is described as 

follows. The issue here concerns whether herding, as a temporary, fragile 

convergence of investment behaviour, can indeed lead to a significant level of asset 

dependency over a relatively long horizon. It is a danger to presume that a current 

winning investment strategy will remain successful in the future trading periods and 

continue to attract investors. The market is not static but dynamically changing, and 

so is the winner. Indeed, as unfolded later in this study, the market dynamics is a 

result of complex interaction between changing forecasts and investor ratios. Current 

success by no means guarantees future success. In fact, more people practicing the 

same strategy will give a higher incentive for a deviant to exploit the situation. This is 

where the winner looses its lead. Therefore, it should be noted that herding/imitation 

among market participants in no way automatically implies asset dependency.  

 

The effect of herding on financial markets is traditionally investigated in the single-

asset model, with a focus on whether the price time series exhibits the “stylised facts” 

of financial data, such as excess volatility, fat tails, etc. (e.g. Cont and Bouchaud 

2000; Corcos et al. 2002; Lux 1995; Topol 1991). The current study extends to the 

multiple-asset model to investigate the herd effect on the cross-sectional correlations 

in security returns. A related work is by MacKenzie (2003), a sociologist who studies 

the 1998’s crisis of the Long Term Capital Management and suggests that imitation 

among investors was the major cause to the crisis1.  

 

Several studies have documented the evidence of herding among mutual fund 

managers and financial analysts (e.g. Grinblatt, Titman and Wermers 1995; 

Scharfstein and Stein 1990; Welch 2000). Indeed, one of the standard features of 

institutional investment, at least in the UK, is to use the median fund manager as a 

benchmark. It is widely thought that this is systematically flawed; the Myner’s Report 

(2001) specifically recommends that this practise be discontinued.  

 

                                                
1 Imitation had developed an overlapping and unstable “superportfolio” in the markets within which the 
LTCM operated; triggered by an event in 1998 that LTCM itself in fact had only little exposure, the 
rapid unravel of the “superportfolio” lead to the crisis.  
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Finally, the study focuses on “rational herding2”, as opposed to “irrational herding”. 

Irrational herding is driven by factors unrelated to individuals’ well-being defined in 

conventional economics. Rational herding is motivated by the incentives of profits, 

lower search costs, or the belief that someone possesses superior knowledge. 

Essentially, rational herding can be considered as “imitative learning”. In the current 

setting, heterogeneous investors are endowed with the ability to update their 

investment strategies: they follow an imitative learning process and imitate the winner 

according to their relative realised trading profits. Herding results in a change in the 

market composition and the heterogeneous investor ratio, which in turn affects the 

next period’s price formation and hence the trading profits. The process repeats, and 

herding paves the market dynamics.  

 

2. Asset Pricing Model with Multiple Risky Assets   
 

We extend the classic mean-variance problem to include multiple risky assets. 

Consider a capital market with S risky assets (securities) and one riskfree asset (bond). 

The bond pays a fixed rate of return fr  for each time period; the gross rate of riskfree 

return is ff rR += 1 . Denote by tP  the 1×S  vector of the prices per share of the 

securities at time t. Letters in bold denote vectors. We assume that each security pays 

periodic dividends and denote by td  the 1×S  vector of the dividends paid by the 

securities at time t. We further assume that the 1×S  dividend vector and also the time 

series dividend process of each security follow an IID process; for convenience, we 

write ( )dt IID Ódd ,~ , where d  is an 1×S  vector and dÓ  is an SS ×  diagonal 

matrix. The vector of the gross risky payoffs from time t to time 1+t  is given by 

11 ++ + tt dP .  

 

Let ][⋅tE  and ][⋅tV  denote the conditional mean and conditional (co)variance; they are 

the mean and (co)variance of some variable (vector), conditional on the information at 

time t. Denote by tY  the 1×S  vector of the number of security shares purchased by 

an investor at time t. The investor’s wealth level at time 1+t  is given by  
                                                
2 See Devenow and Welch (1996) for a review on the studies of rational herding in financial 
economics.  
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 )(')'( 111 +++ ++−= ttttttft WRW dPYPY .  (1) 

 

Investors are assumed to be myopic3 mean-variance maximisers. That is, investors 

trade off mean and variance in a linear fashion:  

 ][
2

][ 11 ++ − tttt WVaWEMax
tY

,   (2) 

where a is the risk aversion parameter. This classic mean-variance problem with 

multiple risky assets yields the vector of the optimal risky portfolio given by    

 ( ) ( )tfttttttt REV
a

PdPdPY −++= ++
−

++ ][][1
11

1
11 .  (3) 

 

The result states that the vector of the optimal demand for the number of risky shares 

can be obtained by the vector of the expected excess risky payoffs times the inverse of 

the conditional covariance matrix, divided by the risk aversion coefficient.  

  

We assume heterogeneous investors and add superscript i for investor type i. 

Investors differ in their forecasting strategies (or beliefs) on the payoffs of the 

securities. However, the conditional covariance matrix of the risky payoffs is 

assumed to be a constant4 diagonal matrix and equal5 for all investor types, i.e. 

ÙdP =+ ++ ][ 11 tt
i

tV , where Ù  is an SS ×  diagonal matrix. The assumption of the 

diagonal covariance matrix implies no cross-asset correlation. It is crucial to isolate 

the ex-ante correlation factors, since our focus here is to investigate the correlation 

structure in security returns arising from the dynamic interaction among agents.  

 

Let i
tθ  denote the fraction of investor type i at time t, representing the popularity of 

strategy i at time t and satisfying ∑ =
=

N

i

i
t1

1θ , where N is the number of different 

                                                
3 The setting of myopic investors assumes single-period utility maximisation, and it has the benefit of 
making the computation tractable. Another approach is by the overlapping generation model (e.g. 
Brock and Hommes 2002). Alternatively, for the analysis of the rational expectations equilibrium in an 
non-myopic investor setting, see Brown and Jennings (1989) and the generalisation by He and Wang 
(1995).  
4 A detailed derivation that solves the conditional variance to a constant value under some 
distributional assumptions can be found in Hoel (1962). 
5 This is an approximation in a world where volatility forecasts are well established and agreed but 
mean forecasts are not; such a situation arises when there is a dominant risk management system or a 
implied volatility methodology that is universally accepted, see Merton (1980) who agrees that means 
are much harder to forecast than variances.  
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investor (or strategy) types. Denote by SY  the 1×S  vector of the supply of the 

security shares per investor, assumed to be constant. Market equilibrium requires  

 S
N

i

i
t

i
t YY =∑

=1

θ .   (4) 

 

Substituting in the optimal risky portfolio (3) with superscript i, the market 

equilibrium equation can be rewritten as  

 s
tt

i
t

N

i

i
ttf aER YÙdPP −+= ++

=
∑ ][ 11

1

θ .  (5) 

 

The term sa YÙ  can be viewed as measuring the vector of the expected excess 

amount of the risky payoffs and therefore may be interpreted as the risk premium 

vector. In the asset pricing model with heterogeneous investors, the equilibrium price 

is the discounted weighted average of heterogeneous payoff expectations minus the 

risk premium, with the weights being the fractions of different investor types.  

 

Therefore, market equilibrium yields the equilibrium price dependent on not only 

economic fundamentals, but also those factors influenced by investor psychology and 

emotion: the fraction (or the popularity) of investor types and their conditional 

forecasts. In the following sections, we will discuss how investors form their forecasts 

and also how the dynamic change of the investor fraction takes place.  

 

In a conventional economic world of homogeneous, perfectly rational investors, 

equation (5) and the transversality condition will lead to the expression6 known as the 

fundamental value: the equilibrium price equals the discounted sum of future 

dividends minus the risk premium. Further, for an IID dividend process, the 1×S  

fundamental price vector can be written as  

 ( )s

f

F a
r

YÙdP −= 1 .  (6) 

 

In the world of homogeneous, perfectly rational investors, the equilibrium price is the 

fundamental value of the security, independent of investment behaviour. Market 

fluctuations are due to exogenous shocks rather than endogenous causes.  

                                                
6 For a detailed derivation, see e.g. Brock, Hommes and Wagener (2001). 
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3. Heterogeneous Expectations 

 

In the asset pricing model with heterogeneous investors, the equilibrium price (5) is 

the discounted weighted average of heterogeneous payoff expectations minus the risk 

premium. In this section, we will discuss how investors form their conditional 

expectations.  

 

We will mainly focus on three types7 of investment strategies within two major 

classes of investors, namely, fundamentalists and technical traders. Fundamentalists 

believe that the price of the security should reveal its fundamental value, independent 

of the price and trading histories. In contrast, technical analysis involves analysing 

statistics generated by market activity. Technical analysis uses the price and trading 

histories to seek to identify patterns in price movement and to forecast future market 

activity. Although technical trading strategies can take many different forms, 

generally they are classified as trend following or contrarian. The trend following 

strategy buys into a rising market and sells into a falling one, while the contrarian 

strategy buys low, sells high, and trades against the trend signal.   

 

We make the following assumptions about heterogeneous investors’ conditional 

forecasts on future dividends and prices:  

 dd =+ ][ 1t
i
tE .  (7) 

 t
iTA

t
iFi

t
i
tE åPPP ++−=+

,
1 )1(][ ββ .  (8) 

 

tå  is an 1×S  vector of random noise at time t. iTA
t

,P  is the 1×S  vector of investor i’s 

technical forecasts made at time t on the next-period prices of the securities.  

 

Equation (7) assumes, for simplicity, a common dividend expectation equal to the 

unconditional mean of the stochastic IID dividend process. In the price forecasts, the 
                                                
7 The attributes to investors heterogeneity can go beyond the conventional paradigm of asymmetric 
information to include diversity in prior beliefs. Kurz (1997) argues that the centre of individuals’ 
disagreement lies in their diverse prior beliefs instead of information asymmetry; diverse beliefs 
explain why different interpretations arise given the same information. On the other hand, prior beliefs 
also influence information selection. Investors with different beliefs are likely to pick up dissimilar 
sources for their forecasts.  
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fundamental price vector FP  is assumed as common knowledge. Equation (8) 

expresses the price forecast as a weighted sum of the fundamental price and technical 

forecast, plus some common random noise. The noise tå  is to capture the effect of all 

other sources that may influence the price forecasts.  

 

The weight iβ  reveals the investor type. iβ−1  and iβ  are investor i’s forecasting 

weights on the fundamental price and technical forecast respectively. Fundamentalists 

are considered to be using only fundamental analysis ( 0=iβ ) and technical traders to 

be using only technical analysis ( 1=iβ ), although the mixture of both analyses is 

possible.  

 

Assumptions (7) and (8) are consistent with the asset pricing model discussed in the 

previous section; if all investors are fundamentalists, assumptions (7) and (8) will 

lead8 to the equilibrium price being the fundamental price (6).  

 

We propose that the formation of the technical forecast function iTA
t

,P  satisfies the 

following properties:   

(i) It is a function of past prices. More precisely, it is a function of a trend 

indicator, which is a function of past prices.  

(ii) In order to be self-consistent, the technical forecast is considered to be 

either monotonically increasing or decreasing in its trend indicator.  

(iii) It is bounded between two real numbers.    

(iv) When the trend indicator is neutral, the technical forecast becomes the 

fundamental price. That is, when past prices provide no information on 

future price movements, the average predicted asset value by technical 

traders coincides with the asset’s fundamental value.  

 

Properties (ii) and (iii) make any cumulative distribution function9 (CDF) a good 

choice without loss of generality. The technical forecast is defined by  

 [ ]1, )()( −= S
P
t

iFiTA
t CDFCDF 0ôPP 88 η ,  (9) 

                                                
8 For a detailed derivation in scalars, see Yang and Satchell (2003).  
9 Alternatively, for a linear technical forecast function, see Sentana and Wadhwani (1992).  
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where 8  denotes the element-by-element multiplication of vectors, and S0  is an 

1×S  vector of zeros. P
tô  denotes the 1×S  trend indicator vector at time t, and is 

given by ),...,,( 21 Mttt
P
t f −−−= PPPô , a function of past prices of M lags. iη  is the 

sensitivity parameter to the trend indicator, and its sign varies with the investor type: 

for the trend following strategy, the forecast is monotonically increasing in the trend 

signal, i.e. 0>iη ; for the contrarian strategy, the forecast is monotonically decreasing 

in the trend signal, i.e. 0<iη .  

 

Definition (9) approximates technical forecasts using CDFs. It satisfies all the above 

properties. However, it makes an over-simplifying assumption of a common, 

dominant trend indicator function, and differentiates technical traders by asking one 

key question: whether they trade following or against the trend. Although far from 

being realistic, this design of technical forecasts makes the model tractable, free from 

the complication of some variables differing in a way that can grow out of control.  

 

Note that the choices of the CDF and the trend indicator function are arbitrary. In the 

later simulation experiments, we will proceed with the logistic CDF and also the 

commonly practiced moving-average trading rule as the trend indicator:  

 ∑
=

−− −=
M

j
jtt

P
t M 1

1
1 PPô . (10) 

 

4. Imitative Learning Processes 
 

As market equilibrium (5) suggests, the dynamics of the fractional change of investor 

types i
tθ  influences price formation in the asset pricing model with heterogeneous 

investors. This section models investors’ imitative learning that shapes the ratio of 

investor types.  

 

An investor decides whether to update his investment strategy according to his trading 

performance. We use the performance criterion based on the net realised risky payoff. 

Investor i ’s net realised risky payoff from time t to time 1+t  is given by  
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 )()'( 111 ttt
i
t

i
tð PdPY −+= +++ . (11) 

 

It is common that investors update their strategies based on the performance of risky 

investment. Riskfree investment pays a fixed anticipated return, and the gain is simply 

proportional to the amount invested. The criterion is not based on riskfree investment, 

but, given a fixed amount of capital, the riskfree share does affect the available risky 

share. A larger risky share, however, does not guarantee more risky payoffs. A good 

performance in (11) implies a good balance between risky and riskfree investments.  

 

We consider two types of imitation: cautious learning (CL) and winner takes all 

(WTA). In the CL type of imitation, investors revise their strategies with caution and 

do not change abruptly. The WTA type of imitation corresponds to a more drastic 

imitation process. These two types of imitation are given in the following 

definitions10. 

 

CL:      If 0≥i
tπ , remain as type i .  

            If 0<i
tπ , switch to type j with a probability te πα ∆−−1 ,  (12) 

                             where i
t

j
tt πππ −=∆  and k

tk

j
t ππ

∀
= Max . 

 

WTA:  Always imitate type j, where k
tk

j
t ππ

∀
= Max .  (13) 

 

The definition of CL (12), using a threshold in positive profitability, states that 

imitation may only occur in response to a net loss in the realised risky payoff. 

Besides, the loss-making investor will imitate the strategy that reaps the maximum 

trading gain, with a probability depending on their relative performance tπ∆ . The 

probability function ( te πα ∆−−1 ) is bounded between 0 and 1 since 0≥∆ tπ , and is 

monotonically increasing in tπ∆  but with a diminishing increase. Figure 1 depicts the 

probability function with different values of α; a greater α means a higher probability 

to imitate when a loss occurs.  

                                                
10 Although we consider strategy updating each period based on the performance of one-period payoff, 
a natural extension would be strategy updating in a longer horizon based on multiple-period payoff.  



  

 11

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

1 - e^(-0.1 X) 1 - e^(-0.2 X) 1 - e^(-0.5 X)  

Figure 1.    πα∆−− e1  with different values of α. 

 

Following the WTA rule (13), regardless of the profitability of his original strategy, 

the investor always makes a move as long as there exists an outperforming strategy. 

The design of the WTA rule is for comparison purposes and is not in line with reality. 

“Human behaviour, even rational human behaviour, is not to be accounted for by a 

handful of invariants. It is certainly not to be accounted for by assuming perfect 

adaptation to the environment” Simon (1979). The CL rule, with first a threshold and 

second a probability function, appears to be more plausible11.  

 

The imitative learning processes determine the dynamics of investor ratios i
tθ  in the 

equilibrium price equation (5). The winning strategy will surely attract more market 

participants to put it into practice. However, more investors practising the same 

strategy would probably mean that a deviant may well exploit this situation. Here is 

when a winning strategy loses its lead. The best strategy in the current period by no 

means guarantees its future success. The winning investor type changes through time 

with market conditions and capital reallocation, and so does the investor ratio.  

 

5. Analytical Solutions in A Simplified Model 
 

This section solves analytically whether agents’ interaction, including herding, leads 

to asset dependency. It considers a simplified model for tractability. The results are 

summarised in the following propositions.  

                                                
11 The pace of learning is influenced, though not fully determined, by institutional conditions; we 
consider that this influence is better reflected by the CL rule rather than the WTA rule.  
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Proposition 1: Assume R f =1, S
S 0Y = , and zero dividends. Consider a simple case 

of two investor types: fundamentalists with a fraction of 1−θ t , and technical traders 

with a fraction of θt ; the 1×S  vector of price forecasts made at time t by investor i is 

given by t
FTA

t APE
~
8=  and E t

F = PF , consistent with (7), (8) and (9). Then, the 

market equilibrium equation (5) can be rewritten as  

 qt =θ t A t ,   

 

where q t = D F
−1(Pt − P F )  is the 1×S  vector of transformed prices, and A t = ( ˜ A t − 1S ) 

is the 1×S  vector of transformed forecast functions. )diag( F
F PD =  is an SS ×  

diagonal matrix with the diagonal entries from FP .  

Proof: See Appendix 1.  

 

Proposition 1 states that, under certain assumptions, the market equilibrium price 

equation (5) can be expressed in terms of the transformed prices, which are a simple 

product of the investor ratio and transformed forecast functions. This transformation 

will largely facilitate the analysis of the herd effect on asset dependency. The focus 

now is on the investigation of the relation between the dynamic change in the investor 

ratio θt  and the dependency of the transformed prices tq .  

 

Proposition 2:  

Following Proposition 1, let θt = fθ (qt−1), θ : RS → R1 ; A t = fA(qt −1) , A : RS → RS . 

Assuming that the S transformed prices in 1−tq  are independent and the Jacobian 

matrix of At is diagonal, we can obtain the following results:  

(i) The covariance matrix of At, ]cov[ tA , is diagonal. Therefore, when θt  is 

fixed at θ , the covariance matrix of tq , ]cov[ tq , is also diagonal.  

(ii) Let µ =
∂θ t

∂ ′ q t−1 q*

, where ][ 1−
∗ = tE qq . When S0=µ , then ]cov[ tq  is 

diagonal (note that this part of result is consistent with (i)). When S0≠µ , 

then ]cov[ tq  is non-diagonal.  

Proof: See Appendix 2.  
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Here, the definitions of the investor ratio θt  and transformed forecast functions tA  

are consistent with the discussions in the previous sections. θt  changes due to 

herding. Investors decide whether to imitate according to their realised trading profits, 

which is a result of past prices. Also, the technical forecast is a function of past 

prices. The only restriction here is that Proposition 2 assumes an influence of only 

one-period lag.  

 

To isolate the ex-ante correlation effects, the S transformed prices in 1−tq  are assumed 

to be uncorrelated. For a similar reason, the Jacobian matrix of tA  is assumed to be 

diagonal. The diagonal Jacobian matrix of tA  implies no prior belief in asset 

dependency in the forecast function tA . That is, when forecasting the future 

movement of one particular security, the investor uses only the information of that 

security, not the information of other securities.  

 

Essentially, µ  measures the change in the investor ratio due to a change in the 

realised profits, evaluated at the average profit level. It in fact reflects herding. 

Imitation motivated by the comparison of realised trading profits leads to non-zero µ , 

while a static model of no interaction among investors has a fixed investor ratio and 

hence S0=µ . Proposition 2 states that, given the assumptions discussed above, a 

fixed investor ratio (in the absence of herding) will guarantee no asset dependency. 

On the other hand, a changing investor ratio, driven by profit motives, will lead to 

asset dependency. Overall, this section provides the analytically results that, under 

some general assumptions, herding that shapes the dynamics of the investor ratio is 

the major driving force to cross-asset comovements.  

 

6. Asset Correlations  
 
The focus of this chapter is to identify the association between imitative learning and 

asset comovement. The approach for numerical simulations is to compare the cross-
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sectional correlation of security returns arising from three models12: the model with 

non-adaptive (NA) investors, CL and WTA. The vector of security returns is defined 

by  

 ( )11
1

1 +++ += tt
-
tt dPPR 8 . (14) 

 

Security returns are calculated from the IID dividend process and the equilibrium 

price. It must be clarified that the equilibrium price is obtained from equation (5), 

using investors’ forecasts ][ 11 ++ + tt
i
tE dP  given in Section 3 and investor fractions i

tθ  

determined by the imitation processes given in Section 4. Imitation determines i
tθ , 

and hence influences the price formation and consequently the return correlation.  

 

Let NAρ , CLρ , and WTAρ  denote the respective correlation of security returns under the 

models of NA, CL and WTA. We extend to take into account market conditions. Let 

Lρ , Mρ , and Uρ  denote the conditional correlations of security returns; they are the 

correlations conditional on the downside, normal, and upside markets respectively. 

The market is said to be in a downside (upside) condition when the market index price 

is below (above) the δ  quantile ((1-δ ) quantile) of its distribution; the market 

condition is normal otherwise. The conditional correlations can be written as  

 δρρ  )(| <= index
L PF , 

 δδρρ -1 )(| ≤≤= index
M PF , (15) 

 δρρ −>= 1)(| index
U PF ,  

where )( indexPF  is the CDF of the market index price, and 10 << δ .  

 

 

To investigate the association between imitative learning and asset comovement, we 

test the following inequalities on both unconditional and conditional correlations:  

 

 NACLWTA ρρρ >> . (16) 

  

                                                
12 For tractability, we only consider the results of these three models. Of course, an advanced approach 
could be a combination, or even a regime switching, of various learning processes. 
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 U
NA

U
CL

U
WTA ρρρ >> . 

 M
NA

M
CL

M
WTA ρρρ >> .  (17) 

 L
NA

L
CL

L
WTA ρρρ >> . 

 

(16) implies that asset dependency can be endogenously induced by herding, and 

besides, hasty imitation is likely to have a significant effect. This implication can be 

of great relevance in understanding the making of extreme market events.  

 

Essentially, (17) further tests the inequality (16) under each market condition. 

Conditional correlation bridges the possible effect of herding on asset comovement 

with changing market conditions. Will the herd effect on asset dependency, if any, 

remain unchanged across different market states? Are market conditions irrelevant 

when hasty imitation is present? We hope to unravel these issues using the conditional 

correlation results.  

 

The cross comparison of (17) is further conducted: 
 

 M
NA

U
NA ρρ > , M

NA
L
NA ρρ >  (18-1) 

 M
CL

U
CL ρρ > , M

CL
L
CL ρρ >  (18-2) 

 M
WTA

U
WTA ρρ > , M

WTA
L
WTA ρρ >  (18-3) 

 

The issue of whether cross-asset correlations tend to increase in volatile market 

conditions has provoked great research interest, and this pattern of non-constant 

correlations has been reported in many empirical studies (e.g. Silvapulle and Granger 

2001). The test (18-1) is to confirm this pattern in the simple benchmark NA model. 

Inequalities (18-2) and (18-3) are to test how investors’ learning processes interact 

with the market condition. The implication of (18-2) and (18-3) is that, given the same 

learning model, its effect on asset comovements will depend on the market condition, 

in a way consistent with the empirical pattern of non-constant correlations13. The 

                                                
13 It must be clarified that, even if (18-2) and (18-3) hold, it by no means implies that the pattern of 
non-constant correlations is caused by imitation; one can only conclude that the effect of imitation on 
asset dependency is consistent with the pattern of non-constant correlations. 
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implication may shed the light on how investment behaviour is associated with market 

conditions.  

 

7. Simulation Results  
 

Based on the development in the previous sections, this section carries out the 

numerical simulations of the unconditional and conditional cross-sectional correlation 

of security returns under the models of NA, CL, and WTA, and discusses the results.  

 

There are 1250 time periods (approximately 5 years of trading days); 50 securities and 

hence 1225 pairs of cross correlations of security returns. The parameter values used 

for numerical simulations are given in Appendix 3. The summary statistics of the 

unconditional and conditional cross correlation results14 are given in Table 1. Figure 2 

presents the distributions of the correlation results.  

 

From the results of the unconditional correlation coefficients, it is clear that the NA 

model has the lowest correlation level, with an average of 0.028 and more than 99% 

of NAρ  lower than 0.1. The correlation level increases dramatically in the presence of 

herding, but the difference between CLρ  and WTAρ  is not as striking; the respective 

average values of CLρ  and WTAρ  are 0.251 and 0.319. The results also suggest that a 

higher level of correlation comes with a higher level of standard deviation. The 

unconditional correlation outcomes lead us to confirm (16). 

 

The conditional correlations show consistent outcomes with the unconditional 

correlations and confirm the inequalities given by (17). The results show, across 

market states, persistent evidence of higher correlation levels in the presence of 

herding. Furthermore, the difference is more pronounced in the upside and downside 

markets than in the normal. Taken together, these observations have a crucial 

implication. They imply a situation where abnormal market conditions, such as a bear 

                                                
14 Only the results of positive correlations that correspond to asset comovement in the same direction 
will be reported. The study of negative correlation has a different focus. Positive and negative 
correlations contain separate information; taking average of them may omit useful information.  
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market, can amplify the herd effect, which in turn exacerbates asset dependency. The 

herd effect on asset dependency thus engages in a self-reinforcing process that can 

eventually lead to some disastrous phenomena such as crashes.  

 

Finally, the conditional correlation results15 show that all the inequalities given by 

(18) hold, suggesting that given the same learning model, its effect on asset 

comovement will depend on market conditions, in a way consistent with the empirical 

pattern of non-constant correlations.  

 

 

 

Table 1. The summary statistics of the unconditional and conditional cross 
correlations of security returns under the models of NA, CL, and WTA.  
 

Full Sample Upper Tail Middle Lower Tail 
Maximum Minimum Maximum Minimum Maximum Minimum Maximum Minimum 

Average 
(Standard Deviation) 

Average 
(Standard Deviation) 

Average 
(Standard Deviation) 

Average 
(Standard Deviation) 

 ρNA    ρNA
U    ρNA

M    ρNA
L   

0.1188459 2.70392e-05 0.285115 9.74418e-05 0.112482 9.18909e-05 0.292311 8.99925e-05 
0.0282156 0.0733302 0.0273755 0.0727321 

(0.0216731) (0.0578932) (0.0209469) (0.0529507) 
 ρCL    ρCL

U    ρCL
M    ρCL

L   
0.998841 0.00102167 0.998021 0.00189254 0.99885 5.72659e-05 0.997393 0.000291617 

0.250795 0.300233 0.244823 0.323284 
(0.178549) (0.213958) (0.176036) (0.2297) 

 ρWTA

 
  ρWTA

U

 
  ρWTA

M

 
  ρWTA

L

 
 

0.995347 0.000428903 0.998748 0.00161222 0.99495 0.00107986 0.999256 0.000335208 
0.31851 0.437796 0.279749 0.529907 

(0.203102) (0.225886) (0.205693) (0.273672) 
 

 

 

 

                                                
15 There is also a minor observation that the level of the correlations conditional on a normal market 
condition is, among all the conditional ones, most close to the level of the unconditional correlations. 
This is not surprising, as the condition of Mρ , on the market index price being between 10% to 90% 

quantiles, captures the majority of the sample distribution. 
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Figure 2. Distributions16 of unconditional and conditional cross correlations of 
security returns under the models of NA, CL, and WTA.  
 
 

8. Empirical Study  
 
The empirical investigation on the connection between herding and asset dependency 

is impeded by the difficulty in measuring the size of herding in the market, and the 

complexity of many interacting factors that may or may not include herding. This is a 

typical problem that faces many researchers in identifying the true causes of a certain 

phenomenon; the real world is of such complexity that mostly we are not able to study 

the effect that we wish to study in isolation of others.  

 

The empirical study in this section by no means intends to identify the herd effect as a 

cause of asset dependency in the real world. Instead, using data from two diverse 

markets, namely, the UK and Taiwan equity markets, it intends to show the real 

patterns of cross-sectional correlation in security returns and to compare them with 

the simulation results given in the previous section.  

 

                                                
16 Note that the x axis starts from 0.1 because the labels on the x axis indicate the ending numbers of 
the category; for example, 0.1 indicate the category (0, 0.1).  
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Data are collected from the daily closing price series17 of the top 50 FTSE 100 stocks 

and the top 50 Taiwan Weighted Stock Index (TWSI) from 1 November 1997 to 31 

October 2002, with 1258 trading days for the FTSE and 1308 trading days for the 

TWSI. Note that the number of the sample trading periods is close to that in 

simulation. Security returns are simply computed as the one-period lag price ratio18. 

Again, there are 1225 pairs of cross correlations in security returns in each data set. 

Table 2 reports the unconditional and conditional correlation results, set out in the 

same style as Table 1. Figure 3 presents the correlation distributions.  

 

For the period concerned, the top 50 TWSI is found to have persistently higher levels 

of correlation than the top 50 FTSE 100; their average unconditional correlations, for 

instance, are 0.338 and 0.181 respectively. The correlation standard deviation of the 

top Taiwan equity market is nevertheless not much higher than that of the UK. 

Furthermore, when comparing across market conditions, both these two markets (one 

developed and one emerging) exhibit a common pattern of a markedly higher 

correlation level in the downside market condition19.  

 

Although it is difficult to draw any direct implication on the link between the herd 

effect and asset dependency using these empirical results, there are observations of 

some interesting patterns when comparing the simulation results with the empirical 

ones. First, both exhibit the patterns of non-constant correlations that are also found in 

the many empirical studies. Second, models with herding generate results that are 

closer to the real patterns of asset dependency than the static model of isolated agents.  

 

 

 

 

                                                
17 The market indices of the FTSE 100 and TWSI over a slightly longer period are given in Appendix 4 
for reference. 
18 Note that, here, the computation of security returns is consistent with (14) by assuming zero 
dividends.  
19 However, unlike the simulation results, here, we do not observe a significantly higher correlation 
level in the upside market.  
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Table 2. The summary statistics of the unconditional and conditional20 cross 
correlations of security returns of the top 50 stocks of the FTSE 100 and TWSI, from 
1 November 1997 to 31 October 2002.  
 

Full Sample Upper Tail Middle Lower Tail 
Maximum Minimum Maximum Minimum Maximum Minimum Maximum Minimum 

Average 
(Standard Deviation) 

Average 
(Standard Deviation) 

Average 
(Standard Deviation) 

Average 
(Standard Deviation) 

 ρFTSE 50    ρFTSE 50
U    ρFTSE 50

M    ρFTSE 50
L   

0.736083 5.87055e-3 0.722024 4.38147e-4 0.730307 0.000404838 0.792695 0.0438082 
0.180575 0.154868 0.168706 0.382183 

(0.0891813) (0.1279) (0.0889582) (0.119405) 
 ρTaiwanTop 50    U

TaiwanTop50ρ    ρTaiwanTop 50
M    ρTaiwanTop 50

L   

1 0.0944918 1 0.0470461 1 0.0777478 1 0.063036 
0.337906 0.365962 0.33583 0.43357 

(0.113236) (0.133239) (0.115286) (0.136704) 
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Figure 3. Distributions of unconditional and conditional cross correlations of security 
returns of the top 50 stocks of the FTSE 100 and TWSI, from 1 November 1997 to 31 
October 2002.  
 

 

                                                
20 The market index price for the computation of market conditions is computed as the average price of 
the 50 equities. Alternatively, one can use directly the published market indices that take into account 
the relative equity weights.  
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9. Concluding Remarks 
 

This chapter explores the herd effect on asset dependency. The degrees of the cross 

correlations in security returns are investigated via the dynamic impact of rational 

imitative learning among agents with heterogeneous price forecasts. The static model 

with isolated non-interacting agents is set as the benchmark model for comparison. In 

a simple general setting, this chapter proves analytically that imitation, driven by 

profit motives, leads to asset dependency.  

 

Supporting the analytical solutions, the simulation experiments show that, unlike the 

benchmark model that generates virtually zero cross correlations in security returns, 

herding endogenously induces a significant level of asset comovements. Furthermore, 

herding is most pronounced in abnormal market conditions. Overall, these imply a 

self-reinforcing process where abnormal market conditions amplify herding, which 

further exacerbates asset dependency. The implication can be of relevance in 

understanding the making of extreme market events.  

 

The finding that the herd effect on asset dependency is most pronounced in abnormal 

market conditions is consistent with the finding of Sancetta and Satchell (2003). In the 

Sharpe’s factor model, they explain that the pattern of non-constant correlations is due 

to one factor becoming increasing important in abnormal market conditions.  

 

This chapter also studies the respective levels of asset comovements of the top UK 

and Taiwan equity markets. When comparing the empirical results with the simulation 

outcomes, two observations emerge. First, both exhibit the pattern of non-constant 

correlations found in many previous empirical studies. Second, models with herding 

generate results that are closer to the real patterns of asset dependency than the static 

benchmark model with isolated agents. Nevertheless, whether the observations have 

implications on the size of herding in these two markets, or the effects of other 

characteristics such as developed vs. emerging markets, or globalisation vs. 
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localness21, requires a more detailed investigation into the markets, and could be an 

interesting future topic.  

 

The financial markets are not an imperfectly insulated sphere of economic rationality, 

but a sphere in which the “economic” and the “social” interweave seamlessly… the 

key “social risks” seem to come from inside the financial markets rather than from 

outside, MacKenzie (2003).  

 

Following the terminology, herding, even if rational, can be viewed as a key internal 

“social risk”. It enters the “sphere” by reshaping the investor ecology, most of the 

time uneconomically. In the present model, imitative learning results in a temporary, 

fragile convergence on the outperforming investment strategy. The stability depends 

on the learning pace, which is in reality influenced by institutional conditions. The 

nature of instability and fragility is partly what brings about the internal risk. 

  

On the other hand, convergence, even a temporary one, implies a certain degree of 

homogeneity, which has a counterintuitive implication on stability. The idea can be 

grasped by that a small error can snowball due to the lack of offsetting effects that 

could otherwise arise with heterogeneity. When information is incomplete and agents 

are boundedly rational, homogeneity can not be superior to heterogeneity in 

stabilising the market.  

 

The study of this chapter is of some relevance for financial regulations. The literature 

tends to support the view that transparency is socially desirable in light of fairness, 

efficiency and the adverse selection problem (e.g. Hasbrouck 1988, 1991; Gemmill 

1996; Madhavan 1996; Pagano and Roell 1996). However, regulatory changes that 

make investment behaviour more transparent and make individual investors more 

aware of other investors’ actions can enhance uniformity of action and bring about the 

opposite of the intended purpose. A good balance needs to be obtained by taking into 

account both the desirable features of transparency and the potential risk in 

information exposure and the public’s spurious response.  

                                                
21 Compared with many international corporations in the US or the UK markets, most Taiwanese 
companies are “local” in the sense that they are small-and-medium enterprises (SMEs). 
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Appendix 1 
 

Following the market equilibrium equation (5), we assume R f =1, S
S 0Y = , and zero 

dividends, and consider a simple case of two investor types: fundamentalists with a 

fraction of 1−θ t , and technical traders with a fraction of θt . (5) can be rewritten as 

F
tt

TA
ttt EEP )1( θθ −+= ,   (A1) 

where i
tE  denotes the 1×S  vector of price forecasts made at time t by investor i, and 

it is defined in a way consistent with (7), (8), and (9):  

t
FTA

t APE
~
8= ,   (A2) 

E t
F = PF .  

 

The equilibrium price (A1) now becomes 

  Pt = θ t P
F8 ˜ A t + (1−θ t )PF .   (A3) 

 

Define )diag( F
F PD = . It is an SS ×  diagonal matrix whose diagonal entries are the 

entries of FP  so that DF 1S = PF . (A3) can be rewritten as  

Pt = θ t DF
˜ A t + (1−θt )DF 1S .   (A4) 

 

Multiplying both sides by 1−
FD  (by definition, we know that 1−

FD  exists), (A4) can be 

rearranged as DF
−1(Pt − PF ) = θt ( ˜ A t − 1S ).  (A5) 

 

Let qt = DF
−1(Pt − PF )  and A t = ( ˜ A t − 1S ). (A5) is then given by qt =θ t A t .  
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Appendix 2  
 

Let θt = fθ (qt−1), θ : RS → R1 , and A t = fA(qt −1) , A : RS → RS .  

 

To isolate the ex-ante correlation effects, we assume that the S transformed prices in 

1−tq  are independent, so that ]cov[ 1−tq  is a diagonal matrix. For convenience, write 

E[qt−1] = q∗ , qt Ω=− ]cov[ 1q .  

 

Define ][ ijS s=D , where )( 1
i
tij qskewnesss −=  for ji = , and 0=ijs  for ji ≠ . SD  is 

an SS ×  diagonal matrix. Similarly, KD  is an SS ×  diagonal matrix defined by 

][ ijK k=D , where )( 1
i
tij qkurtosisk −=  for ji = , and 0=ijk  for ji ≠ .  

 

We approximate tθ  and tA  using the first-order Taylor’s expansion.  

θt ≅ θt q∗ +
∂θ t

∂ ′ q t−1 q*

⋅ (qt−1 −q∗)   (A6) 

A t ≅ A t q∗ +
∂A t

∂qt −1 q*

⋅ (qt −1 − q
∗ )  (A7)

   
Thus, ∗== ∗ θθθ

qttE ][ , and E[A t] = A t q∗ = A∗ .  

 

Let  µ =
∂θ t

∂ ′ q t−1 q*

 and Dµ = diag(µ); J =
∂A t

∂qt −1 q*

. 

The Jacobian matrix J is assumed to be diagonal, i.e. no prior belief in asset 

dependency in the forecast function tA .  

 

The covariance of tA  is calculated by 

cov[A t ] = E[(A t − A∗ )(A t − A∗ )'] = E[J (qt−1 − q∗)(qt −1 − q∗ )' ′ J ] = JΩq J' .  (A8) 

 



  

 25

Since J and qΩ  are diagonal matrices, it is easy to show that ]cov[ tA  is also a 

diagonal matrix. Therefore, when θt  is fixed at θ , the covariance matrix of tq , 

]cov[ tq , is also a diagonal matrix.  

 

Now we proceed to prove the result (ii) in Proposition 2.  

 

The expectation of tq  is given by E[qt ] = θ∗A∗ + J  Ωqµ .  (A9) 
 
The covariance of tq  is given by  

cov[qt ] = E qt − E[qt ]( ) qt − E[qt ]( )'[ ]= E[θ t
2A t

′ A t ] − E[qt ]E[qt ]'.  (A10) 

 
We now calculate the first term on the right hand side (RHS) of  (A10).  
 
E θ t

2A t ′ A t[ ]= E θ t
2[ ]A ∗(A∗ )'

+A ∗E θ t
2 (qt−1 − q∗)'[ ] ′ J + JE θt

2(qt −1 − q∗ )[ ](A∗ )'

+J E θ t
2(qt −1 − q∗ )(qt−1 −q∗)'[ ] ′ J 

 (A11) 

 

The constituent terms in (A11) are calculated below.  

E[θ t
2] = E (θ∗ )2 + 2θ∗µ ⋅ (qt−1 − q∗ ) + µ ⋅ (qt−1 −q∗)( )2[ ] 

= (θ∗ )2 + E µ ⋅ (qt−1 −q
∗)( )2[ ] (A12) 

= (θ∗ )2 + µ'Ωqµ  
 
E θ t

2 (qt−1 −q∗)'[ ]= (θ∗ )2 E (qt−1 −q∗)'[ ]
+2θ∗ E µ ⋅ (qt−1 −q∗)( )(qt −1 − q∗ )'[ ]
+E µ ⋅ (qt −1 − q∗ )( )2

(qt−1 − q∗)'[ ]
     

[ ] sqttE DDqq µµµθθ ''2)'( 1
2 +Ω′=− ∗∗

−   (A13) 

 

E θ t
2 (qt−1 − q∗)(qt −1 − q∗ )'[ ]= (θ∗)2 E (qt −1 − q∗ )(qt−1 −q∗)'[ ]

+2θ∗E µ ⋅ (qt −1 − q∗ )( )(qt−1 −q∗)(qt −1 − q∗ )'[ ]
+E µ ⋅ (qt−1 −q∗)( )2

(qt −1 − q∗ )(qt −1 − q∗ )'[ ]
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E θ t
2 (qt−1 − q∗)(qt −1 − q∗ )'[ ]= (θ∗)2Ωq + 2θ∗Dµ Ds + Dµ

2 Dk  (A14) 

 

Thus, (A11) is given by the following.  
E θ t

2A t
′ A t[ ]= (θ∗)2 + ′ µ Ωqµ( )A ∗(A∗ )'

+A ∗ 2θ∗ µ' ′ Ω q + µ'Dµ Ds( ) ′ J + J 2θ∗ Ωqµ+ DsDµ µ( )(A∗ )'

+J (θ∗)2Ωq + 2θ∗Dµ Ds + Dµ
2 Dk( ) ′ J 

 (A15) 

 

Substituting (A15) into (A10) and from ][ tE q  given by (A9), we finally obtain 

]cov[ tq .  

( )
JDDJJDDJJJ

JDDAADDJAJJA

JJJJAAq

′+′+′Ω+

′++Ω+′Ω′+

′Ω′′Ω−Ω−′Ω′′−Ω=

∗∗

∗∗∗∗∗∗

∗∗∗∗∗∗

ksq

ssqq

qqqqqt AA

22 2)(

'')(')(2'2

')(')(']cov[

µµ

µµ

θθ

µµµθµθ

µµµθµθµµ         

 (A16) 

  

First, it is straightforward to show that the sum of the terms on the 3rd line on the RHS 

of (A16) is diagonal. Second, when S0=µ , all the terms on both the 1st and 2nd lines 

on the RHS of (A16) vanish. Therefore, when S0=µ , ]cov[ tq  is a diagonal matrix 

given by JDDJJDDJJJq ′+′+′Ω= ∗∗
ksqt

22 2)(]cov[ µµθθ .  

 

When S0≠µ , the fourth term on the RHS of (A16) is crucial. Although symmetric, it 

is a non-diagonal matrix. This guarantees that when S0≠µ , ]cov[ tq  becomes a non-

diagonal matrix.  
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Appendix 3 
 

Table A1. Parameter values used for numerical simulations. 

Parameter values 

1.0=δ  05.0=α  

01.0=fr  31=i
NAθ  

1=a  
S

S 0Y =  

20=M  ),(~ SSt N É0å  

1±=η  ),(U~ SSt 10d  

 

SÉ  is the SS ×  identity matrix and S1  is the 1×S  vector of 1s. 31=i
NAθ  denotes the 

equal fractions of investor types in the NA model. Also, ),(U~ SSt 10d  means that the 

dividend process of each security is uniformly distributed between 0 and 1. 
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Appendix 4 
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Figure A1.  The market indices of the FTSE 100 and TWSI from 1 January 1997  

to 31 October 2002.  
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