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Abstract
Introduction: The reasons for elevated breast cancer rates in the upper Cape Cod area of
Massachusetts remain unknown despite several epidemiological studies that investigated possible
environmental risk factors. Data from two of these population-based case-control studies provide
geocoded residential histories and information on confounders, creating an invaluable dataset for
spatial-temporal analysis of participants' residency over five decades.

Methods: The combination of statistical modeling and mapping is a powerful tool for visualizing
disease risk in a spatial-temporal analysis. Advances in geographic information systems (GIS) enable
spatial analytic techniques in public health studies previously not feasible. Generalized additive
models (GAMs) are an effective approach for modeling spatial and temporal distributions of data,
combining a number of desirable features including smoothing of geographical location, residency
duration, or calendar years; the ability to estimate odds ratios (ORs) while adjusting for
confounders; selection of optimum degree of smoothing (span size); hypothesis testing; and use of
standard software.

We conducted a spatial-temporal analysis of breast cancer case-control data using GAMs and GIS
to determine the association between participants' residential history during 1947–1993 and the
risk of breast cancer diagnosis during 1983–1993. We considered geographic location alone in a
two-dimensional space-only analysis. Calendar year, represented by the earliest year a participant
lived in the study area, and residency duration in the study area were modeled individually in one-
dimensional time-only analyses, and together in a two-dimensional time-only analysis. We also
analyzed space and time together by applying a two-dimensional GAM for location to datasets of
overlapping calendar years. The resulting series of maps created a movie which allowed us to
visualize changes in magnitude, geographic size, and location of elevated breast cancer risk for the
40 years of residential history that was smoothed over space and time.

Results: The space-only analysis showed statistically significant increased areas of breast cancer
risk in the northern part of upper Cape Cod and decreased areas of breast cancer risk in the
southern part (p-value = 0.04; ORs: 0.90–1.40). There was also a significant association between
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breast cancer risk and calendar year (p-value = 0.05; ORs: 0.53–1.38), with earlier calendar years
resulting in higher risk. The results of the one-dimensional analysis of residency duration and the
two-dimensional analysis of calendar year and duration showed that the risk of breast cancer
increased with increasing residency duration, but results were not statistically significant. When we
considered space and time together, the maps showed a large area of statistically significant
elevated risk for breast cancer near the Massachusetts Military Reservation (p-value range:0.02–
0.05; ORs range: 0.25–2.5). This increased risk began with residences in the late 1940s and
remained consistent in size and location through the late 1950s.

Conclusion: Spatial-temporal analysis of the breast cancer data may help identify new exposure
hypotheses that warrant future epidemiologic investigations with detailed exposure models. Our
methods allow us to visualize breast cancer risk, adjust for known confounders including age at
diagnosis or index year, family history of breast cancer, parity and age at first live- or stillbirth, and
test for the statistical significance of location and time. Despite the advantages of GAMs, analyses
are for exploratory purposes and there are still methodological issues that warrant further
research. This paper illustrates that GAM methods are a suitable alternative to widely-used cluster
detection methods and may be preferable when residential histories from existing epidemiological
studies are available.

Background
Surveillance of routinely collected data for unusual clus-
ters of disease in space and time is a topic of general
importance. Many epidemiologists resist community
pressures to conduct cluster investigations believing they
rarely provide conclusive information regarding the etiol-
ogy of the disease. This is because cluster investigations
often combine unrelated diseases; contain too few cases to
be meaningful; have "gerrymandered" boundaries; and
examine only cases without taking into account differ-

ences in population density [1]. Even studies of registry
data ignore many known risk factors and latency. Maps
that ignore latency may be flatter if population movement
is random with respect to disease status [2]. Nevertheless,
cluster investigations are an important part of responding
to public concerns, even if no new etiologic knowledge is
gained [3,4].

Community concern over elevated cancer rates in upper
Cape Cod, Massachusetts, USA (Figure 1) prompted sev-
eral epidemiological studies that investigated possible
environmental risk factors, including air and water pollu-
tion associated with the Massachusetts Military Reserva-
tion (MMR), pesticide applications to cranberry bogs,
particulate air pollution from a large electric power plant,
and tetrachloroethylene-contaminated drinking water
from vinyl-lined asbestos cement distribution pipes [5-
16]. Some positive associations were observed, but
researchers concluded that environmental exposures they
investigated could only explain a portion of the excess
cancer incidence.

We combined data from two of these existing population-
based case-control studies of breast cancer in upper Cape
Cod [6,10] to investigate the associations between space,
time, and breast cancer risk. The detailed information on
individual-level covariates and residential histories begin-
ning in 1947 makes these existing studies a useful data set
for spatial-temporal analysis. Cases were identified using
cancer registries while controls provided an estimate of
the underlying population density. Participants or next-
of-kin were interviewed to obtain relevant data on covari-
ates and residential history. Information collected in the
interview included age at diagnosis or index year, family

Geographic location of the upper Cape Cod study areaFigure 1
Geographic location of the upper Cape Cod study 
area. Upper Cape Cod consists of the five towns: Barnsta-
ble, Bourne, Falmouth, Mashpee, and Sandwich. Map was 
reproduced with permission from Environmental Health Per-
spectives (Paulu et al. 2002).
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history of breast cancer, personal history of breast cancer
(before current diagnosis or index year), age at first live
birth or stillbirth, occupational exposure to solvents, his-
tory of benign breast cancer, race, body mass index, his-
tory of radiation exposure, alcohol use, history of cigarette
smoking, past use of diethylstilbestrol (DES), oral contra-
ceptives and menopausal hormones, marital status, reli-
gion, education level, exposure to tetrachloroethylene
from drinking water distribution pipes, and physical activ-
ity level. The residential history was geocoded using geo-
graphical information systems (GIS) to produce a point-
based data set. Generalized additive models (GAMs), a
type of statistical model that combines smoothing with
the ability to analyze binary outcome data and adjust for
covariates, provide a useful framework for spatial analysis
of population-based case-control data [17-22]. GAMs
allow for smoothing of data while simultaneously adjust-
ing for known risk factors.

An import consideration in spatial-temporal analyses is
how to define time. Many space-time cluster analyses
examine location at time of disease diagnosis [23]. For a
disease with a long latency like breast cancer, the time of
etiologic interest is not when the disease was diagnosed
but rather when the exposure occurred. Our prior spatial
analyses [19-22] considered time in terms of latency by
restricting inclusion in the analysis to the residences occu-
pied by participants at least twenty years prior to the diag-
nosis (for cases) or index year (for controls).

Although latency is a more relevant time measure for
breast cancer than diagnosis year, it does not address tim-
ing in relation to exposure occurrence. For example, in a
20-year latency analysis, two participants who moved into
the same neighborhood in 1970 would not both be in the
analysis if one was diagnosed in 1983 (13-year latency)
and the other was diagnosed in 1993 (23-year latency). If
an environmental exposure occurred in 1970, then a fixed
latency analysis may not predict the correct breast cancer

risk. Calendar years of residency are important because
the magnitude of exposure can vary over time, and past
rather than current exposures may be more relevant for
breast cancer etiology. Residency duration is also relevant
to etiologic exposures assuming duration of exposure is
related to duration of residency. A participant who lived at
a residence near the source of an environmental contami-
nant for five years but moved before the contamination
occurred would be unexposed, while someone who lived
in the same residence for five years after the contamina-
tion occurred would be exposed. Likewise, a person who
lived at an exposed residence for 5 years may have a differ-
ent disease outcome than someone who lived there for 35
years. Our present work measures time both in calendar
years of residency and residency duration.

In this paper, we examine breast cancer risk with a space-
only analysis where time is not considered, a time-only
analysis where space is not considered, and a spatial-tem-
poral analysis that allows both time and space to vary. We
used continuous residential histories so participants who
moved away from the study area and later returned were
excluded. We report global statistics for disease clustering
and visualize breast cancer risk using GIS.

Results
Spatial analyses
We investigated the association between residential his-
tory since 1947 and risk of breast cancer during 1983–
1993 using data from two population-based case-control
studies [6,10]. There were a total of 1,631 participants
with continuous residential histories in the study area.
Because participants moved within the study area, they
contributed a total of 2,477 residences to the spatial anal-
ysis (Table 1). Over 35% of the participants moved at least
once within the study area during the residential history
period (Table 2). Figure 2 shows the spatial distribution of
participants' residences over their entire residential his-
tory in the study area. To preserve confidentiality, the fig-

Table 1: Years of diagnosis and residential history characteristics of study participants. The analyses used data from two existing 
population-based case-control studies.

Characteristic Study 1 Study 2 Final Dataset

Diagnosis/Index Years 1983–86 1987–93 1983–93
No. of Cases 207 453 660
No. of Case Residences 327 684 1,011
Mean No. of Residences per Case 1.58 1.51 1.53
No. of Controls 526 445 971
No. of Control Residences 762 704 1,466
Mean No. of Residences per Control 1.45 1.58 1.51
Case/Control Ratio 0.39 1.02 0.68
Total No. of Participants 733 898 1,631
Total No. of Residences 1,089 1,388 2,477
Mean No. of Residences per Participants 1.49 1.55 1.52
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ure was created by randomly placing residences within a
1.2 km grid that includes the actual location. Actual loca-
tions were used in the analysis.

The space-only analysis included all eligible addresses (n
= 2,477) in the residential history. The optimal span for
the adjusted space-only GAM was 95%. The model was
adjusted for the time period of case ascertainment (i.e.,
study 1 or study 2), age at diagnosis or index year, year of
diagnosis or index year, vital status at interview, family
history of breast cancer, personal history of breast cancer
(before diagnosis or index year), parity and age at first

live- or stillbirth, history of radiation exposure, and race.
The large span size indicates the data are close to planar,
but the plane was tilted with increased odds ratios (ORs)
in the north of the study area and decreased ORs in the
south (Figure 3). Predicted ORs ranged from 0.90 to 1.40.
The global permutation test for the null hypothesis that
case status does not depend on location (i.e., a flat surface
with no slope) resulted in a p-value of 0.04, indicating
that there was a significant association between location
and breast cancer risk during 1983–1993. Figure 3 also

Table 2: Number of upper Cape Cod residences by participant status

Number of Residences Cases Controls Total Participants

1 551 810 1,361
2 70 101 171
3 27 39 66
4 5 18 23
5 5 2 7
6 1 0 1
7 1 1 2

Total 660 971 1,631

Spatial distribution of breast cancer participants over the complete residential history period (1947–1993)Figure 2
Spatial distribution of breast cancer participants over 
the complete residential history period (1947–1993). 
Points represent the residences of the participants. Locations 
have been geographically altered to preserve confidentiality. 
Actual locations were used in the analyses.

Spatial analysis of breast cancer risk during 1983–1993Figure 3
Spatial analysis of breast cancer risk during 1983–
1993. The map shows statistically significant increased ORs 
in the north and decreased ORs in the south (global p-value 
= 0.04). ORs are relative to the whole study area based on 
participants' residences in upper Cape Cod over the residen-
tial history period from 1947 to 1993.
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shows the resulting 2.5% and 97.5% contours of the poin-
twise permutation tests.

Temporal analyses
Combining data from two population-based case-control
studies resulted in a residential history that spanned 47
years (1947–1993, Table 1). Over 15% (n = 254) of the
participants were already living in the study area at the
start of the residential history (1947). The remaining
1,377 participants moved into the study area after 1947.
Of those 254 residents living in the study area at the start
of the residential history, 99 were cases and 155 were con-
trols, for a case/control ratio of 0.64. The case/control
ratio for the entire analytic population is 0.68 (Table 1).

We included all eligible participants in the time-only anal-
yses (n = 1,631) and adjusted for the time period of case
ascertainment (i.e., study 1 or study 2), age at diagnosis or
index year, year of diagnosis or index year, vital status at
interview, family history of breast cancer, personal history
of breast cancer (before diagnosis or index year), parity
and age at first live- or stillbirth, history of radiation expo-
sure, and race.

We first analyzed time using a one-dimensional smooth
of the participants' residency durations in the study area.
Residency durations, calculated as the difference between
diagnosis/index year and earliest year in the study area,
ranged from 1 to 47 years. The earliest year was either the
year a participant moved to upper Cape Cod or 1947 for
participants already living there. Half of the participants
had residency durations of less than 15 years. Another
18% of the participants (n = 297) had durations over 35
years. The majority of these participants (n = 254) were
already living in the study area in 1947, the beginning of
the residential history.

The optimal span for the univariate smooth term in the
residency duration model was 95% of the data. Figure 4
shows that the risk of being diagnosed with breast cancer
during 1983–1993 begins to increase with 25 years of res-
idency duration (blue line). Predicted ORs ranged from
0.91 to 1.12. The global permutation test for the null
hypothesis that case status does not depend on duration
had a p-value of 0.49, indicating that there was no signif-
icant association between duration and breast cancer risk
during 1983–1993. Figure 4 also shows the resulting 2.5%
(purple line) and 97.5% (orange line) variability bands.

We next examined time using a one-dimensional smooth
of calendar year. We examined the earliest calendar year a
participant lived in the study area rather than diagnosis
year because it is potentially more relevant for breast can-
cer etiology. Because the case ascertainment periods for
the first and second studies were 1983–1986 and 1987–

1993, respectively, only participants of the second study
had the opportunity to move to the study area during the
early 1990s. This accounts for the sharp drop in the
number of participants moving to the study area between
the mid 1980s and the early 1990s. The median move year
was 1976.

The optimal span for the univariate smooth term in the
calendar year model was 25% of the data. Figure 5 shows
that the risk of being diagnosed with breast cancer during
1983–1993 was elevated for the years 1947–1952, but

One-dimensional temporal analysis of residency duration in study areaFigure 4
One-dimensional temporal analysis of residency 
duration in study area. The risk of breast cancer during 
1983–1993 increases steadily after 25 years, but the associa-
tion is not statistically significant (global p-value = 0.49).

One-dimensional temporal analysis of earliest calendar year in study areaFigure 5
One-dimensional temporal analysis of earliest calen-
dar year in study area. Results suggest earlier years 
(1947–1952) are associated with higher breast cancer risk 
during 1983–1993 (global p-value = 0.05).
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then decreased and remained low until 1964 when it
became more level (blue line). Predicted ORs for the
entire time period ranged from 0.53 to 1.38. The global
permutation test for the null hypothesis that case status
does not depend on the earliest year a participant lived in
the study area produced a p-value of 0.05. Figure 5 also
shows the resulting 2.5% (purple line) and 97.5% (orange
line) variability bands. In general, the results of the one-
dimensional time-only analyses suggest that longer dura-
tions and earlier residency years may increase breast can-
cer risk during 1983–1993, although residency duration
was not significantly associated with breast cancer risk.

Figure 6 shows the frequency and distribution of study
participants by earliest calendar year they lived in upper
Cape Cod and residency duration. Colored squares indi-
cate the number of participants with various combina-
tions of earliest year and residency duration. Again,
because 15% of participants (n = 254) were already living
in upper Cape Cod at the start of the residential history,
there is a high concentration of participants with earliest
year of 1947.

We predicted the adjusted breast cancer odds ratios for
every valid combination of earliest calendar year and res-
idency duration. The optimal span for the bivariate
smooth term was 95% of the data. Figure 7 shows that the
risk of being diagnosed with breast cancer during 1983–

1993 is increased for longer residency durations and
decreased for shorter durations over all calendar years.
Predicted ORs ranged from 0.90 to 1.20. The map was flat
based on the global statistic (p = 0.40), indicating that
duration and calendar year, independent of location
within the study area, did not affect a participant's risk of
being diagnosed with breast cancer during 1983–1993.

Spatial-temporal analyses
We used GAMs and GIS to create a movie of continuous
space-time animation for breast cancer risk during 1983–
1993 based on the location and calendar years partici-
pants lived in upper Cape Cod. The model included a
bivariate smooth of longitude and latitude similar to that
of the space-only analysis, but the data were divided into
overlapping datasets of 11-year time spans to smooth over
time. The 11-year span size was chosen because the opti-
mal span for the temporal analysis of calendar year was

Frequency and distribution of the study participants by earli-est calendar year lived in study area and residency durationFigure 6
Frequency and distribution of the study participants 
by earliest calendar year lived in study area and resi-
dency duration. Colored squares indicate the number of 
participants with various combinations of earliest calendar 
year and residency duration. The earliest year is either 1947 
for participants living in the study area at the start of the res-
idential history, or the year participants moved to the study 
area. Residency duration is calculated as the difference 
between earliest year and diagnosis year for cases or index 
year for controls.

Two-dimensional temporal analysis of breast cancer risk dur-ing 1983–1993Figure 7
Two-dimensional temporal analysis of breast cancer 
risk during 1983–1993. The figure shows increased breast 
cancer risk with higher residency duration where time is rep-
resented in the model as a bivariate measure of earliest cal-
endar year lived in the study area and residency duration. 
This association was not statistically significant (global p-value 
= 0.40).
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25% of the data. The analysis started with years 1947–
1957 representing the first frame of the movie (which cor-
responds to year 1947 on the movie timeline) and moved
a year at a time until 1983–1993 (year 1983 on the movie
timeline), for a total of 37 map frames. The span size for
the smooth of longitude and latitude was 20%. This was
the optimal span for the first 11-year dataset and was used
for all the datasets. This ensures that the differences in
maps are not due to differences in the span size.

Although residency duration was not explicitly included
as a model term in this analysis, the longer a participant's
duration, the more datasets to which the participant con-
tributed. For example, a participant that moved to the
study area in 1948 was included in all datasets. Conse-
quently, participants with longer residency durations con-
tributed more to the overall spatial-temporal analysis.

The spatial-temporal analyses found a large area of ele-
vated breast cancer risk during 1983–1993 corresponding
to historical residences in the center of the study area near
the Massachusetts Military Reservation from 1947 to
1956. Odds ratios for these ten maps (1947–1956) ranged
from 0.25 to 2.5, and global p-values ranged from 0.01 to
0.05, indicating a statistically significant association
between residential histories during 1947–1956 and
breast cancer risk during 1983–1993. A smaller area of
elevated breast cancer risk during 1983–1993 was also
seen corresponding to residences in the northeast region
of upper Cape Cod during the 1960s, but the global p-val-
ues for maps of these years were not statistically signifi-

cant. Figure 8 shows selected map frames from the movie.
To view the entire movie video, see Additional file 1 or
visit http://www.cireeh.org/pmwiki.php/Main/SpatialEp
idemiology. It is important to emphasize that the movie
visualizes the risk of being diagnosed with breast cancer
during 1983–1993 that is associated with the location of
participant residences in upper Cape Cod during histori-
cal time periods. It does not show the incidence of breast
cancer during the historical periods.

Discussion
Space-time maps allow for disease-pattern analysis of
cases and controls using historical residences [24]. The
GAM method visualizes breast cancer risk while adjusting
for known confounders and testing for the statistical sig-
nificance of location and time. Our analyses illustrate its
application as an alternative to other widely-used cluster
methods when residential histories from epidemiological
studies are available. No one method is ideal for every
cluster investigation and each contributes different and
important features to space-time analyses. The Knox
method [25,26] defines pairs of events as being either
close or not close in time or space. This method does not
require the large amounts of data and residential histories
used by the GAM method. An advantage of the GAM
method is that theoretical considerations of bias and var-
iance are used to choose an optimal smoothing span [17],
whereas the Knox method uses arbitrary cutoff points to
determine clustering [27,28]. The K-function method pro-
posed by Diggle et al. [29] improves upon this limitation
by using a range of cutoffs. The smooth term in the GAM

Spatial-temporal analysis of breast cancer risk during 1983–1993Figure 8
Spatial-temporal analysis of breast cancer risk during 1983–1993. Selected map frames show changing patterns of 
breast cancer risk during 1983–1993 based on participants' historical residences.
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models also adapts to changes in population density [30],
which is an important issue in our study area, where the
population is concentrated along the coast. The Knox test,
while appropriate in many cases, is not ideally suited for
our study area because of potential bias stemming from
uneven population shift across the geographic study area
[31].

Kulldorff's space-time SaTScan method detects cancer
clusters of specified shape and provides center coordinates
and relative risk measure for the mostly likely cluster [32].
SaTScan is a widely-used and effective tool for cancer clus-
ter analyses using registry-based data. The space-time SaT-
Scan typically uses addresses at diagnosis to determine if
cases are clustered, and so does not provide insight into
timing of exposure and residential histories [33] that the
GAM method provides in our current analyses. GAM
methods predict cancer risk based on the entire residential
history, not just one time point, as well as duration of res-
idence. The latter is particularly important for diseases
with long latency periods where exposure likely occurred
many years prior to diagnosis.

Kwan et al. use an interesting three dimensional geovis-
ualization method to display movement across time and
space [33]. This method is an appropriate option for small
datasets, but the network of lines used for visualization
makes this method impractical for large epidemiological
studies. Jacquez et al. have developed a useful test for clus-
ter detection that accounts for large residential histories,
can accommodate various interpretations of time, and
identifies which events are clustered [34]. The GAM
method does not identify clusters of events but instead
identifies areas of increased risk on a continuous risk map.
While visualization of residential history is useful for
exploratory purposes, statistical analyses are needed to
identify significant associations [35]. Our spatial-tempo-
ral analysis combines the visualization of odds ratios
while allowing for hypothesis-testing to determine clus-
ters of significantly increased or decreased risk.

Although GAMs have many advantages, a number of
issues remain. The GAM analysis uses one constant opti-
mal smoothing span for space and another for time.
While this ensures that mapped results are unaffected by
the degree of smoothing, we ideally would use smoothing
spans determined to be optimal in a combined time-space
framework. Further work is needed to resolve this meth-
odological issue. GAMs may also exhibit edge effects,
which are biased behavior at the edges of the data [31]. As
much of our spatial data is found along the edges (i.e.,
population is denser by the coastline), this issue remains
a concern despite our work with synthetic data showing
little, if any, edge effect [20].

We identified areas with significantly increased or
decreased risk using pointwise hypothesis tests. By mak-
ing these multiple comparisons, we increase the likeli-
hood of finding significant hot or cold spots by chance
alone. Although we make no adjustment for multiplicity,
we only conducted pointwise tests if the global deviance
test indicated that the map was unlikely to be flat. The
location of significant hot and cold spots should be con-
sidered exploratory.

There are also limitations implicit in using epidemiologi-
cal data for secondary analysis. There are sparse data for
the earlier calendar years of the temporal datasets, which
affect the power of our clustering tests. To date, our spa-
tial-temporal analysis methods also do not directly con-
sider duration of time living at a residence, an important
component to exposure. We are currently exploring addi-
tional GAM methods for simultaneously smoothing cal-
endar year, duration, and location [35].

Conclusion
Spatial-temporal analysis of the breast cancer data may
help identify new exposure hypotheses that warrant future
epidemiologic investigations with detailed exposure mod-
els. We performed a spatial-temporal analysis of breast
cancer risk during 1983–1993 that combined statistical
and visualization tools to examine time and place of par-
ticipants' residences as proxies for unknown environmen-
tal exposures. Our results indicated only slight increases in
breast cancer risk when we considered location or time
alone while controlling for known risk factors. However,
when we considered the combined effects of both space
and calendar year of residency, we observed a strong sta-
tistically significant association between breast cancer risk
and living near the Massachusetts Military Reservation
from 1947 to 1956 (p-value range: 0.01 to 0.05; OR range:
0.25–2.50). These results suggest that further analyses be
conducted to explore the reason for this geographic asso-
ciation. If the association is not a result of residual con-
founding or bias, then activities on the Military
Reservation during that time window should be investi-
gated to provide insight into possible exposure routes
(i.e., ingestion of drinking water contaminated by
improperly disposed chemicals; inhalation of air follow-
ing recent mortar detonation). The current analyses illus-
trate the usefulness of GAMs and GIS to visualize cancer
risk, adjust for known confounders, and test for the statis-
tical significance of location and time. Our method is par-
ticularly useful residential histories are available.

Methods
Study population
We investigated the association between residential his-
tory and breast cancer in upper Cape Cod, Massachusetts
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(USA) using data from two population-based case-control
studies [2,6]. Participants or their next-of-kin completed
an extensive interview, providing information on demo-
graphic characteristics (age, sex, marital status, educa-
tion), a forty-year residential history, and potential
confounders such as smoking, family history of cancer,
and occupational exposure to carcinogens. The residential
histories ranged from 1943–1987 for the first study and
1947–1993 for the second study.

The Massachusetts Cancer Registry was used to identify
incident cases of breast cancer. Cases were diagnosed from
1983–1986 for the first study and 1987–1993 for the sec-
ond study. Participants were restricted to permanent resi-
dents of the upper Cape Cod region with complete
residential histories. Table 1 shows the number of cases
and controls by study period. In the first study, there were
207 cases with diagnosis year between 1983 and 1986
who contributed 327 upper Cape Cod residences between
1947 and 1986. In the second study, there were 453 cases
with diagnosis year between 1987 and 1993 who contrib-
uted 684 upper Cape Cod residences between 1947 and
1993.

Controls were chosen to represent the underlying popula-
tion that gave rise to the cases in a manner that was not
spatially biased, that is, permanent residents of the study
area during the case ascertainment period. Because many
cases were elderly or deceased at diagnosis, three different
sources of controls were used: (1) random digit dialing to
identify living controls less than 65 years of age; (2) Cent-
ers for Medicare and Medicaid Services (formerly the
Health Care Financing Administration) to identify living
controls 65 years of age or older; and (3) death certificates
to identify controls who had died from 1983 onward. See
Aschengrau et al. [6,10] for a detailed description of the
methods used to define the study population.

Controls were frequency matched to cases on age and vital
status. "Index years" were randomly assigned to controls
in a distribution similar to that of diagnosis years for
cases. We used index years to estimate length and time of
environmental exposure for controls in a fashion compa-
rable to that of cases. Controls that moved to the study
area after the assigned index year were excluded from the
analyses. In the first study, there were 526 controls with
index year between 1983 and 1986 who contributed 762
upper Cape Cod residences between 1943 and 1986. In
the second study, there were 445 controls with index year
between 1987 and 1993 who contributed 704 upper Cape
Cod residences between 1947 and 1993 (see Table 1).

Geographical information system (GIS)
Residential addresses reported by participants in the
upper Cape Cod area from 1947 to the diagnosis or index

year were eligible for analysis. We chose 1947 because it
was the first year shared by both studies' residential histo-
ries. We excluded all addresses where residency ended
before 1947 or began after diagnosis/index year, and par-
ticipants who moved away and later returned to the study
area. The combined breast cancer data set included 660
cases with 1,011 residential locations and 971 controls
with 1,466 locations (see Table 1).

Locations of the participant residences were geocoded
using the Massachusetts State Plane Coordinate System
with North American Datum 1983 (NAD1983) and
linked to the participant's interview data. Geocoding was
done without knowledge of case/control status, and the
final data were checked for accuracy.

Generalized additive modeling (GAMs)
We used generalized additive models (GAMs) to examine
breast cancer risk for 1983–1993 in (1) a spatial analysis
of residence location that did not consider time, (2) a
temporal analysis of calendar year and residency duration
that did not consider space, and (3) an analysis that com-
bined both space and time. Given the dependency of eti-
ologically meaningful exposure on both duration and
calendar year, we analyzed these two measures of time
both individually and in a combined analysis. All analyses
were adjusted for the time period of case ascertainment
(i.e., study 1 or study 2), age at diagnosis or index year,
year of diagnosis or index year, vital status at interview,
family history of breast cancer, personal history of breast
cancer (before diagnosis or index year), parity and age at
first live- or stillbirth, history of radiation exposure, and
race. Other covariates including education and usual
adult body mass index (BMI) were examined but did not
change the appearance of the maps. Women with missing
covariate data or non-continuous residency in the study
area were excluded from the analysis.

We estimated local disease odds using GAMs, a form of
non-parametric/semi-parametric regression with the abil-
ity to analyze binary outcome data while adjusting for
covariates [17]. We use either a univariate S(x1) or bivari-
ate smooth S(x1, x2)

logit [p()] = S() + γ'z (1)

where the left-hand side is the log of the disease odds, S is
the univariate or bivariate smooth term, z is a vector of
covariates, and γ is a vector of parameters. Univariate
smooths were used in the individual models for earliest
year lived in the study area and residency duration; bivar-
iate smooths were used in the analyses for space (longi-
tude (x1) and latitude (x2)) and calendar year/duration
(earliest year (x1) and duration (x2)). We used a loess
smooth which adapts to changes in data density [17]. The
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amount of smoothing performed by loess depends on the
size of the neighborhood of points. In general, small
neighborhoods reduce bias but increase variance. Con-
versely, larger neighborhoods produce smoother surfaces
resulting in increased bias and reduced variability. As the
neighborhood increases in size, more data points receive
non-zero weights and the loess smoother approaches a
linear regression. Theoretical considerations use the bias
and variance to provide several methods for choosing an
optimal neighborhood size, also called bandwidth or
span [17]. We determined the optimal amount of
smoothing for the space-only and time-only analyses by
minimizing the Akaike's Information Criterion (AIC). The
AIC approximates the deviance-based cross validation
using the average deviance of a model penalized by the
number of degrees of freedom. Both local and global
minima of the AIC can exist. To find a global minimum,
we plot the AIC curve for a large range of span sizes. For
the space-time analysis, we used the optimal span of the
time-only analysis. We converted from log odds to odds
ratios (ORs) using the whole study population as the ref-
erence, dividing the predicted odds by the odds calculated
by the reduced model while omitting the smooth term.

GAMs also provide a framework for hypothesis testing.
We first tested the null hypothesis that case status does not
depend on the smooth term using the difference of the
deviances of model (1) with and without the smooth
term. We estimated the distribution of the global statistic
under the null hypothesis using a permutation test. We
condition on the number of cases and controls, preserving
the relationship between case/control status and covari-
ates, and randomly assign individuals to locations. We
carry out 999 permutations of location in addition to the
original. For each permutation, we run the GAM using the
optimal span of the original data and compute the devi-
ance statistic. We divide the rank of the observed value by
1000 to obtain a p-value. We used a p-value cut off of 0.05
as a screening tool for possibly meaningful associations.
We discuss results as "significant" if the associated p-val-
ues are less than 0.05, but acknowledge that some results
may be due to chance.

If the global deviance test indicates that the map is
unlikely to be flat, we next want to locate areas of the map
that exhibit unusually high or low disease odds. We exam-
ine pointwise departures from the null hypothesis of a flat
surface using permutation tests. We obtained a distribu-
tion of the log odds at every point using the same set of
permutations we used for calculating the global statistics.
We defined areas of significantly decreased odds ("cold
spots") to include all points that ranked in the lower 2.5%
of the pointwise permutation distributions and areas of
elevated odds ("hot spots") to include all points that
ranked in the upper 2.5% of the pointwise permutation

distributions. See Webster et al. [20] for a detailed descrip-
tion of the statistical methods.

In addition to hypothesis testing, we computed variability
bands – a nonparametric relative of confidence intervals –
to examine the precision of the point estimates for the
models with a univariate smooth. We bootstrapped by
resampling our data 1000 times, recomputing the log
odds at each point on the grid [36]. We constructed the
distribution of log odds at each grid point and recorded
the log odds corresponding to the 2.5% and 97.5% per-
centiles. Since smoothing involves a tradeoff between bias
and variance, variability bands do not have quite the same
interpretation as confidence intervals [37], but they do
indicate the precision of the point estimate.

In the one-dimensional time-only analyses, we con-
structed two separate univariate smooth models to exam-
ine the association between breast cancer risk during
1983–1993 and (1) earliest year lived in the study area or
(2) residency duration. In the two-dimensional time-only
analysis examining earliest calendar year and duration, we
created a grid using all possible pairs of earliest year lived
in the study area (1947–1993) and duration (1–47).
Duration was calculated by subtracting the earliest year
from the diagnosis or index year. We used a bivariate
smooth to estimate the adjusted log odds at each cell on
the grid.

In the space-only analysis, we created a rectangular grid
covering the study area using the minimum and maxi-
mum longitude and latitude coordinates from the original
data set as its dimensions. We clipped grid points lying
outside the outline map of the study area or in areas where
people cannot live (e.g., conservation areas). We used the
spatial model to estimate the adjusted log odds at each
grid point on the study area map.

Results from the generalized additive models were
exported from S-plus [38] into ArcGIS [39] for mapping.
In order to make visually comparable, we mapped all
results using the same dark blue to dark red continuous
color scale and same range of odds ratios, 0.25–2.50. The
latter range covers most ORs observed in our analyses and
prevents the color maps from being washed out by areas
of extremely high ORs.

We analyzed the data in fixed-year time spans to study
combined space-time effects of location and calendar
years on breast cancer risk during 1983–1993. By dividing
the data into datasets of overlapping time spans, we essen-
tially smoothed over time. We used the optimal band-
width from the smooth term in the one-dimensional
calendar year analysis (earliest year a participant lived in
the study area) to determine the time span for the data
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subsets. For each data subset, a spatially-smoothed map
was created using methods similar to those in our space-
only analysis, i.e., where the smooth term in the GAM is
the coordinates for location and the span size is the same.
We used the optimal span for the smooth term of location
in the GAM for the first dataset in the models for the other
data subsets to ensure that any differences observed in the
maps were not due to differences in the span size. The
combination of time spans and GAMs resulted in the
simultaneous smoothing of space and calendar year.

These maps depict the risk of being diagnosed with breast
cancer during 1983–1993 according to the location of
participant residences in upper Cape Cod during histori-
cal time periods. They do not show the incidence of breast
cancer during the historical periods. The maps were used
to create a movie showing how breast cancer risk during
1983–1993 varied as historical residences changed over
space and time. Maps were saved as image files and used
to create a storyboard in Windows Movie Maker [40].
Each map plays for 0.5 seconds before transitioning to the
next map.
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