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The men of experiment are like the ant, they only collect and use; the reasoners
resemble spiders, who make cobwebs out of their own substance. But the bee
takes the middle course: it gathers its material from the flowers of the gar-
den and field, but transforms and digests it by a power of its own. Not unlike
this is the true business of philosophy (science); for it neither relies solely or
chiefly on the powers of the mind, nor does it take the matter which it gathers
from natural history and mechanical experiments and lay up in the memory
whole, as it finds it, but lays it up in the understanding altered and disgested.
Therefore, from a closer and purer league between these two faculties, the ex-
perimental and the rational (such as has never been made), much may be hoped.

Sir Francis Bacon (Novum Organum)

iv



Acknowledgments

Upon entering graduate school there have been many people who have helped me to

grow, both academically and professionally. First and foremost is my research adviser, Paul

Barbone. I would like to thank him for all his help, his patience and his encouragement. I

am truly lucky to have been a part of the intellectually stimulating environment fostered

by Paul over the last few years. I cannot imagine my graduate career being the positive

experience it was without him. Now, I am fortunate enough to have him as a colleague

and friend.

I would also like to thank Assad Oberai. Assad was another research adviser of mine.

He too helped me through my graduate career with great patience and a zest for teaching.

I am forever in his debt for all the discussions we have had and, hopefully, will have in the

years to come.

To all the Biomechanical Imaging Group, whose members have come and gone over the

years, thank you for the many thought provoking discussions which have helped me more

times than I can remember. In particular I would like to thank Nachiket Gokhale and John

Wanderer for sharing an office with me and with all their help with my many computer

questions.

I would also like to thank the members of my Committee: Prof. Ken Lutchen for his

help and guidance over the years, Prof. Irving Bigio for his thoughtful insights into my

work, and Prof. Dimitrije Stamenovic was not only a member of my committee but also

my academic adviser. I would like to thank him in particular for all his help throughout

my time at BU.

A few labs at BU were also kind enough to allow me access to their facilities and

equipment. First, thanks to the Klapperich Lab for their use of the DMA machine. Also

thanks to the PAC Lab for allowing me a space with which to make and test my phantoms.

Also, thank you for the use of and help with the laboratory equipment.

I need to also thank the collaborators of this project. Thanks to the Richard Moore and

v



Dan Kopans at MGH who were an integral part in the tomosynthesis experiments. Thanks

for all your help and patience. A special thanks to Jeff Bamber who allowed me to visit

his laboratory in Sutton. I learned a tremendous amount from the thoughtful discussions

over teleconference and in person.

I would also like to thank all my friends and colleagues who I have met at BU, at the

University of Rochester and those friends I have had since high school. You have all been

an important support system for me and I have been very lucky to have you all in my life.

Lastly, I would like to thank my family. My sisters who have been my greatest strength.

I could not have become the person I am today without you both and I love you very much.

And of course my parents, who have been my role models and mentors for all my years.

Thank you for showing me the importance of learning and teaching me to always strive for

greatness. It is by your example that I have shaped my life and was able to accomplish

what I have. Thank you and I love you both.

vi



QUANTITATIVE THREE DIMENSIONAL ELASTICITY IMAGING

(Order No. )

MICHAEL SCOTT RICHARDS

Boston University, College of Engineering, 2007

Major Professor: Paul E. Barbone, Ph.D., Professor of Aerospace and Me-
chanical Engineering

ABSTRACT

Neoplastic tissue is typically highly vascularized, contains abnormal concentrations

of extracellular proteins (e.g. collagen, proteoglycans) and has a high interstitial fluid pres-

sure compared to most normal tissues. These changes result in an overall stiffening typical

of most solid tumors. Elasticity Imaging (EI) is a technique which uses imaging systems to

measure relative tissue deformation and thus noninvasively infer its mechanical stiffness.

Stiffness is recovered from measured deformation by using an appropriate mathematical

model and solving an inverse problem. The integration of EI with existing imaging modal-

ities can improve their diagnostic and research capabilities.

The aim of this work is to develop and evaluate techniques to image and quantify the

mechanical properties of soft tissues in three dimensions (3D). To that end, this thesis

presents and validates a method by which three dimensional ultrasound images can be used

to image and quantify the shear modulus distribution of tissue mimicking phantoms. This

work is presented to motivate and justify the use of this elasticity imaging technique in a

clinical breast cancer screening study. The imaging methodologies discussed are intended

to improve the specificity of mammography practices in general. During the development

of these techniques, several issues concerning the accuracy and uniqueness of the result

were elucidated.

Two new algorithms for 3D EI are designed and characterized in this thesis. The first

vii



provides three dimensional motion estimates from ultrasound images of the deforming ma-

terial. The novel features include finite element interpolation of the displacement field,

inclusion of prior information and the ability to enforce physical constraints. The roles of

regularization, mesh resolution and an incompressibility constraint on the accuracy of the

measured deformation is quantified. The estimated signal to noise ratio of the measured

displacement fields are approximately 1800, 21 and 41 for the axial, lateral and eleva-

tional components, respectively. The second algorithm recovers the shear elastic modulus

distribution of the deforming material by efficiently solving the three dimensional inverse

problem as an optimization problem. This method utilizes finite element interpolations, the

adjoint method to evaluate the gradient and a quasi-Newton BFGS method for optimiza-

tion. Its novel features include the use of the adjoint method and TVD regularization with

piece-wise constant interpolation. A source of non-uniqueness in this inverse problem is

identified theoretically, demonstrated computationally, explained physically and overcome

practically. Both algorithms were test on ultrasound data of independently characterized

tissue mimicking phantoms. The recovered elastic modulus was in all cases within 35% of

the reference elastic contrast. Finally, the preliminary application of these techniques to

tomosynthesis images showed the feasiblity of imaging an elastic inclusion.
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1

Chapter 1

Introduction

1.1 Specific Aims

Currently, screen film mammography is the most common imaging method used for

screening and diagnostic mammography. Although this imaging technology has a high

success rate for diagnosing cancer (up to 85%), it also suffers from a high number of false

positives. To improve the specificity of mammography practices in general, adjunct imag-

ing technologies are being developed to reveal new information for clinicians to base a

diagnosis. One such imaging technology is elasticity imaging, which can image a tissue’s

stiffness. This technology would produce images of information which is already used in

mammography screening during breast palpation examinations.

Biomechanical imaging is technique which measures tissue deformations, using existing

imaging modalities, and then infers the underlying mechanical properties of the tissue from

the measured deformations. Biomechanical imaging techniques, in general, vary depending

on their method of imposing and measuring tissue motion, the model used to describe the

tissue motion and the method with which the model parameters are inferred or quantified.

Elasticity imaging can be considered a subset of biomechanical imaging in which the im-

aged tissue is modeled as an elastic solid.

The broad goal of this research project is to create a methodology which can image and

quantify the shear elastic modulus of breast tissue while the breast is held in compression

in a clinical mammography device.

The first specific aim of this work is to develop, implement and evaluate a method to

accurately and noninvasively measure tissue deformations. This measurement technique
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is developed in contrast to other displacement measurement techniques which sacrifice ac-

curacy for computational speed. The method outlined in this thesis uses a finite element

interpolation of the displacement field, has the ability to enforce physical constraints in

the measurements and uses a Gauss-Newton optimization method to measure the displace-

ments.

The second aim of this work is to develop, implement and evaluate an algorithm which

can estimate the tissue’s stiffness from those measured displacements. This algorithm

will utilize a linear elastic model of breast tissue. Additionally, this method utilizes finite

element interpolations, a quasi-Newton BFGS method for optimization and the adjoint

method to evaluate the gradient. The uniqueness of the solution, given the available a

priori data, is also investigated.

The final goal of this thesis work is to evaluate the ability of the developed measure-

ment and inversion techniques to image and quantify shear modulus distribution using

tissue mimicking phantoms for three dimensional ultrasound and tomosynthesis imaging.

1.2 Elasticity Imaging

Elasticity imaging is a technique which is rapidly gaining attention in the field of med-

ical imaging (see e.g. reviews by Gao et al., 1996; Insana and Bamber, 2000; Ophir et al.,

2001). Its development initiated within the context of cancer diagnosis and treatment and

it is continuing to find broader biomedical applications. The idea underlying this technique

is that traditional imaging systems are used to image a tissue’s response to a mechanical

stress. When a material is subject to stress, stiffer regions will tend to deform less than

softer regions. Monitoring this deformation with an imaging system allows regions with

contrasting mechanical properties to be identified and possibly quantified.

A key motivation behind this technique, as it applies to cancer diagnosis, is observed

in the correlation between the pathology of tumors and their mechanical properties (Ophir

et al., 1999). Many carcinomas tend to be stiffer than healthy tissue. This observation
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underlies the reason that stiffness of tissue is routinely assessed qualitatively by palpation

during physical exams. Elasticity imaging has the potential to add some unique clinical ad-

vantages, such as: provide quantitative assessment of stiffness in difficult to palpate regions,

detect lesions that are unresolved in other approaches, and provide improved information

related to the size and shape of tumors to improve the accuracy of tumor staging. Any of

these would result in improvement in diagnosis and treatment of cancer.

There are three necessary components for elasticity imaging of soft tissue in vivo. The

first of which is an imposed tissue deformation. There are several different types of defor-

mations which have been commonly used in elasticity imaging. A quasi-static compressive

deformation can be imposed externally on the tissue, which is suitable for breast and

prostate imaging (Gao et al., 1996). The work discussed in this thesis will utilize the

quasi-static compressive deformation, such as that which is imposed on breast tissue in

typical mammographic procedures. Low frequency time-harmonic shear waves have been

used for breast and liver imaging, in particular in conjunction with magnetic resonance

imaging (MRI) (Sarvazyan et al., 1998; Sinkus et al., 2000; Chen et al., 1996). The ra-

diation force produced by a focused ultrasound transducer also results in a controllable

and measurable localized deformation (Nightingale et al., 2002; Fatemi et al., 2002; Bercoff

et al., 2004). Such a capability may prove particularly useful in otherwise inaccessible

organs. In some organs, the natural internal body motions such as cardiac rhythms can

provide useful deformations for elasticity imaging (de Korte, 1999; Kolen et al., 2004).

The second required component for elasticity imaging is a method to image the defor-

mation of the tissue. Some imaging systems already have the ability to measure relative

velocities of tissues in real time (e.g. Doppler ultrasound, phase contrast MRI). These

imaging systems have been used to image shear wave propagation in tissue (Taylor et al.,

2000; Manduca et al., 2001; Fatemi and Greenleaf, 1998). Those imaging systems that do

not directly measure velocities or displacements may still be used. In these cases the un-

derlying tissue motion can be measured by registering image sequences of deforming tissue.

Specifically, this means that by acquiring images of the same tissue in two distinct deforma-
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tion states, one can measure image feature displacement as a direct method of measuring

tissue displacement. Ultrasound is the most common imaging modality used to measure

displacements in elasticity imaging. Many ultrasound elasticity imaging researchers apply

a compressive force or strain to tissue in the direction of sound propagation and use the

measured strain contrast to identify regions of low strain (Gao et al., 1996). The high

frequency content of ultrasound in the direction of sound propagation lends itself to very

accurate measurements of displacement and strain in that direction. Ultrasound is the

primary imaging modality used for deformation measurements in this work.

The last required component for elasticity imaging is a method to infer the tissue me-

chanical properties from a measured displacement field. To do this, a mechanical model

of soft tissue deformation is needed to mathematically relate measured displacements or

strains to the tissue’s material properties. The simplest and most commonly used model in

elasticity imaging is the uniform uniaxial stress model (Ophir et al., 1991). In this model,

tissue is treated as a one dimensional material in the direction of applied compression. This

model neglects mechanical coupling between adjacent lines of material. Two dimensional

linear elastic models, such as plane strain or plane stress, account for mechanical coupling

within a plane of the tissue, such as an image slice, but of course neglects coupling out of

that plane. Such models are often used because of the ubiquity of imaging systems that

collect only planar data (Oberai et al., 2004; Kallel and Bertrand, 1996; Skovoroda et al.,

1995; Doyley et al., 2000). Full three dimensional elastic models are rarer in the literature

(Taylor et al., 2000; Sinkus et al., 2000; Houten et al., 2001). Of these, only Van Houten et

al treats the full vector three dimensional elasticity equations. A three dimensional model

used in conjunction with a measured three dimensional displacement vector field or fields

accounts for coupling of tissue throughout its volume and thus more accurately represents

three dimensional tissue structures. More complex models for tissue behavior may be cho-

sen to account for dynamic behavior, tissue nonlinearity, viscosity, porosity, plasticity, etc.

The complexity of the model will determine the extent of displacement information needed

to correctly characterize the tissue’s mechanical properties.
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1.3 Breast Cancer Screening and Diagnosis

Elasticity imaging has a potentially large role to play in breast cancer management.

Breast cancer is one of the most commonly occurring cancers among women and is the sec-

ond leading cause of cancer related deaths for women (American Cancer Society, 2006d).

Prevailing wisdom suggests that the sooner a cancer is detected, diagnosed and treated, the

greater the chance of survival. Although breast cancer incidence has continued to increase

by 2% per year, the death rates have been declining due at least in part to continually

improved detection and screening regimens (American Cancer Society, 2006a).

In general, cancer develops when cells in the body begin to grow in an uncontrolled

manner. Cancer usually forms as a tumor, or lump, in tissue, but not all tumors are can-

cerous. Fibrocystic adenomas or fibroadenomas are benign breast tumors of the glandular

tissue, composed mostly of fibrous tissue. Cancerous lesions are typically described clini-

cally as hard, non-elastic, turgid, poorly movable nodules (Anderson, 1977). It is in part

because breast tumors are known to be hard that elasticity imaging is an attractive means

to image them.

Regular breast self-examinations and clinical breast examinations facilitate the early

detection of cancer. During a clinical breast screening examination, a physician will pal-

pate or feel the breasts to locate any lumps or suspicious areas. If a lump is found, the

physician then feels for its texture, size, firmness, mobility and relationship to the skin

and chest muscles. A painless, hard mass that has irregular edges is more likely to be

cancerous than not. There are some cancers, however, that are tender, soft and rounded

(American Cancer Society, 2006d). Beginning at age forty, women are recommended to

have a screening x-ray mammogram once per year in addition to physical exams (see Fig-

ure 1.1). These imaging examinations produce gray scale pictures which are related to the

x-ray attenuation of the tissue. The size, shape and margins of a suspicious breast mass

identified in an x-ray image are indicators of the likelihood of cancer (American Cancer
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Society, 2006d).

If suspicious areas were found during a clinical breast exam or screening mammogram,

Figure 1.1: X-Ray mammography (Adapted from American Cancer Soci-
ety, 2006c).

the patient is usually given a diagnostic x-ray mammogram. During this exam, more x-ray

images of the breast are taken to carefully study the specific breast condition. These im-

ages are often difficult to interpret due to variability among patients, the physical nature

of the imaging system or the difficulty in detecting certain types of breast cancers. Often

physicians and radiologists use more than one imaging modality or technique to diagnose

breast cancers (e.g. ultrasound). The only conclusive test for the presence of cancer is a

biopsy: a removal of a portion of the suspicious tissue for investigation under a microscope.

This procedure is considered invasive and is avoided whenever possible. Normally a biopsy

is performed whenever a physical exam or image analysis cannot fully rule out the presence

of cancer (American Cancer Society, 2006b).
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It is common for younger (pre menopausal) women to have denser breast tissue. This

dense tissue tends to obscure mammography images as well as increase the difficulty of lo-

cating breast masses by palpation. It is for this reason that mammography exams are not

as strongly recommended for pre menopausal women, unless their medical history suggests

they may be at high risk. Although, breast cancer is less common in younger women, the

breast cancers which are diagnosed tend to be more aggressive.

Much of the focus in breast imaging research is centered around earlier detection and

more accurate diagnostic tools. The current gold standard for breast cancer detection is

screen-film mammography (SFM). While SFM is highly sensitive to breast tumors in post

menopausal women, it is known to suffer from a large percentage of false positive diagnoses

(Elmore et al., 1998; Fletcher and Elmore, 2003). In addition SFM is known to have poor

sensitivity in pre menopausal women. Thus, some improvement to standard SFM is highly

desirable. This is sought primarily in two directions: improving x-ray mammography itself,

and developing new imaging systems to be used as an adjunct to x-ray mammography.

One important development in mammography is the advent of digital images, which

can be created by digitizing a film mammogram or acquired directly using a digital x-

ray detector. Digital images allow for shorter examination times, less storage space and

computer aided detection or other computerized analysis (Simonetti et al., 1998). Fur-

thermore, the availability of high resolution x-ray detectors has enabled the development

of a novel imaging modality based on x-ray tomography. Digital x-ray tomosynthesis is

an imaging methodology which can calculate three dimensional images of tissue volumes

from a series of x-ray projections taken at different positions relative to a digital detector

and the tissue being imaged. Tomosynthesis imaging systems are expected to increase the

specificity of mammography, especially in radiographically dense tissue, due to its ability

to resolve three dimensional image volumes (Niklason et al., 1997; Chen and Ning, 2003).

The tomosynthesis system, like most standard mammography systems, holds the breast in

compression with a transparent plate during image acquisition. This creates a method to

impose a tissue deformation, thus lending itself to elasticity imaging.
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MRI has also become a useful adjunct to mammography in high risk patients (Kriege

et al., 2004) but concerns over costs, lack of standardized exam techniques and evaluations

and poor specificity in preliminary data may limit MRI’s overall usefulness (Smith et al.,

2003).

Breast sonography is considered an indispensable adjunct to mammography. Although

its usefulness in screening mammography is limited, it has been shown to differentiate

cysts from solid masses with an accuracy approaching 100% (Jackson, 1990; Bassett and

Kimme-Smith, 1991). It is also used to image radiographically dense breasts typical of

younger women (Jackson, 1990; Jackson et al., 1993). Elasticity images, created from ul-

trasound, have been shown to result in relatively accurate and high resolution displacement

measurements in the direction of sound propagation (Ophir et al., 1999). It has also been

shown that ultrasound elasticity images, when used in conjunction with ultrasound images,

improve the diagnostic sensitivity and specificity of ultrasound images alone (Garra et al.,

1997; Bamber et al., 2002).

Smith et al., 2003 provides extensive list of other novel imaging technologies that are

currently being developed and evaluated as potential adjuncts to conventional mammog-

raphy. The more promising technologies include electrical impedance tomography (EIT)

(e.g. Ross et al., 2003) and diffuse optical tomography (e.g. Boverman et al., 2005), besides

of course elastography or elasticity imaging (e.g. Garra et al., 1997).

The work outlined in this thesis develops measurement techniques and inversion al-

gorithms to create three dimensional (3D) elasticity images by processing images from

another modality. The modalities under consideration in this work are three dimensional

ultrasound and x-ray tomosynthesis imaging. The specific motivation of this work is to

develop an elasticity imaging technique as an adjunct imaging technology to improve the

specificity of mammography screening and diagnosis. These techniques will produce elastic

modulus images which are perfectly aligned with the original ultrasound or tomosynthesis

images. If the ultrasound images are taken with a spatial reference to the tomosynthesis

or other mammography system, the shear modulus images, created from the ultrasound,
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can easily be register with the x-ray images as well. It is expected that the viability of this

technology will ultimately improve a physicians ability to diagnose and treat breast cancer

as well as increase understanding of the relationship between the pathological changes of

breast tissue and the changes observed in tissue’s mechanical properties.

1.4 Thesis Overview

In this thesis, methods are developed, implemented, and validated to measure 3D deforma-

tions from pre and post deformation images. Similarly, an elastic modulus reconstruction

algorithm is developed, implemented, and validated to recover the 3D elastic modulus dis-

tribution from the measured displacement. The inversion algorithms are based on three

dimensional linear incompressible elasticity. The methods are extensively validated on 3D

ultrasound data of tissue mimicking phantoms, and are also applied to 3D tomosynthesis

image data.

The next chapter of this thesis will discuss the biomechanics of breast tissue. It gives an

overview of the current available information on measured mechanical properties of breast

tissue, what models best describe the tissue and the consequences of the model assump-

tions made in this thesis. The third chapter will discuss an image registration technique

to accurately measure tissue deformations. It identifies the sources and relative magni-

tudes of noise in the displacement measurements. The fourth chapter will introduce the

formulation of the inverse problem used to reconstruct the elastic modulus from the mea-

sured displacements. It will also discuss the relevant computational parameters used for

these reconstructions. The fifth chapter will discuss the uniqueness of the reconstructed

solutions. The sixth chapter presents an ultrasound imaging protocol and phantom study

to characterize the accuracy of the reconstructed modulus distributions from ultrasound

images. The seventh chapter introduces a tomosynthesis imaging protocol and discusses

the feasibility of using these images to create elasticity images. The final chapter provides

a discussions of results and draws conclusions from the work presented in this thesis.
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Chapter 2

Biomechanics

2.1 Breast Tissue and Tissue Pathology

Typical breast tumors present as hard lesions or lumps in otherwise soft breast tissue.

Tumor stiffness may be attributed to an elevated interstitial fluid pressure, an increased

solid stress due to tissue proliferation or an extracellular matrix stiffening linked to fibrosis

(Paszek et al., 1999). The observed differences in tissue stiffness, due to the altered physi-

ology of malignancies, is the property which EI exploits to distinguish healthy tissue from

diseased tumors.

Much of the research in the field of biomechanics of soft tissue has dealt with tissues

whose primary function is mechanical (i.e. muscles, ligaments, tendons, cartilage, skin,

and pulmonary or cardiovascular tissue). Breast tissue is outside of this category. Certain

pathologies of breast tissue, however, result in significant changes to the tissue’s mechanical

properties (e.g. fibrosis, cysts, and localized malignancies). The practice of breast palpa-

tion, either in a self or clinical screening examination, is a qualitative assessment of the

stress response of breast tissue at very low frequencies. Although the mechanical nature

of the particular pathology does not directly affect any large scale mechanical function,

the microscopic changes in the tissue’s phenotype consequently lead to changes in macro-

scopic mechanical properties. This allows for the possibility of studying macroscopic tissue

parameters, via elasticity imaging, as a means to monitor location and severity of these

pathological tissues.

The breast organ contains several different types of soft tissues. Primarily it is com-

posed of fibrous tissue, containing large amounts of collagen, elastin and the cells which
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maintain these proteins. It also contains glandular or ductal tissue, which contains the

lymphatic system and functional part of the breast. Lastly it contains adipose tissue,

which is high in fat. The macroscopic mechanical properties of breast tissue are related

primarily to the relative concentration of these tissue types (Krouskop et al., 1998). These

relative proportions and distributions of different tissues comprising the breast vary from

person to person, with age and, of course, with certain pathologies.

There are several possible mechanisms by which pathological conditions of breast tis-

sue, in general, may lead to altered mechanical properties. One pathological condition,

commonly associated with many breast and other soft tissue diseases, is that of fibrosis.

Fibrosis is a condition which results in an increase in the relative density of the fibrous

connective tissue, leading to a bulk stiffening in those areas. This can occur locally, form-

ing stiff lesions, or over the organ as a whole. Another possible mechanism for changes in

mechanical conditions is a local increase in the overall tissue density due to unregulated cell

proliferation within a tumor and the resulting confinement from the surrounding tissue, like

that seen in ductal carcinomas (Sarntinoranont et al., 2003). The increase in cell density

creates residual “proliferation” stress within the tumor and surrounding tissue (Sarntino-

ranont et al., 2003). Another characteristic of tumor tissue is an abnormal interstitial fluid

exchange. This results from the recruitment of blood vessels by a tumor, which it requires

to support its increasing growth rate and metabolism. The fact that these blood vessels

tend to be characteristically leaky and that the tumor lacks functional lymphatic vessels

to drain the fluid may explain the increase in interstitial fluid pressure which has been

measured in vivo for many tumors (Jain, 1999; Sarntinoranont et al., 2003; Nathanson and

Nelson, 1994). The formation of calcifications in and around the tumor volume may also

result in changes to the tissue’s bulk mechanical properties.

One of the most commonly diagnosed benign tumors of the breast are fibroadenomas

(Powell and Stelling, 1994). Fibroadenomas are often found to be palpable, firm, smooth

nodules. They are often classified as rubbery, well-circumscribed and distinct from the sur-

rounding tissue (Powell and Stelling, 1994). Fibroadenomas also often have calcifications
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of varying degrees along their periphery. These tumors are marked by a local increase in

fibrous tissue and very rarely contain adipose tissue (Powell and Stelling, 1994). The most

common breast carcinoma is a ductal carcinoma, where ductal is a classification describ-

ing its histology rather than its location (Powell and Stelling, 1994). Ductal carcinoma

in situ is a malignant tumor which has not yet invaded the surrounding tissues. It may

be diagnosed as a palpable mass as well. Ductal carcinoma in situ is known to have an

increased proliferation of malignant cells with atypical morphology. It is marked by regions

of necrotic tissue which often form small, scattered calcifications within the tumor volume

(Harris et al., 1996).

A recent study by Paszek et al., 1999 suggests that the stiffness of the stroma in a tumor

region may have a mechanically regulated feedback on the cells in that stiff region which

promotes a malignant phenotype. Integrins, which are responsible for the binding of cells

to its extracellular matrix, function as a mechanotransductors which relay the forces in this

matrix to the intracellular signaling pathways. It was found that cells whose extracellular

matrix was stiffer would show more pronounced characteristics typical of metastatic cancer

cells (Paszek et al., 1999).

The fact that disease alters a tissue’s mechanical properties motivates the development

of a tool to quantify mechanical properties in vivo. Quantification requires a mathematical

model, which is described next.

2.2 Tissue Modeling

The constitutive relation defines the response of a material to applied loads. This

relation depends directly on the internal composition of the specific material of interest.

Breast tissue has a very complex structure with varying tissue types, concentrations and

thermomechanical states. It has both solid and liquid components and it has the ability to

remodel and change over time. A constitutive relation that accounts for all the phases of

the material at all length scales, time dependent responses over many time scales, the ad-
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dition and subtraction of material and any preexisting stress states would be impractically

complicated. A more practical approach is to consider what observations or measurements

are relevant to the anticipated loading conditions and then to use a simple constitutive

relation which can capture the phenomena of interest. The following section describes and

justifies the assumptions, conditions and constitutive model used for the elasticity imaging

technique developed in this thesis. In particular breast tissue in model as a linear elastic,

incompressible, single phase continuum.

The primary assumption of modeling tissue mechanics is that the material of interest

may be treated as a continuum. Fung, 1993 defines a continuum based on some limiting

value of a length scale used to represent a volume or area. Thus, the density at any point

within the tissue, given a volume (∆V ) of tissue which has a certain mass (∆M), can be

defined as ∆M
∆V

as the volume approaches this limiting length scale. One can similarly de-

fine the other material parameters, the stress and strain, and assume that these quantities

will be continuous for all points within the tissue. For the purposes of elasticity imaging,

these lengths scales are limited by the resolution of the displacement or strain observations,

which is directly determined by the imaging system used. For the purposes of this work it

is assumed breast tissue can be considered a continuum material for length scales on the

order of hundreds of microns and larger, more than an order of magnitude greater than

that of most microscopic histological features, including those of breast tissue.

In this work the breast tissue is modeled as a single phased, elastic solid material.

Although it is true that breast tissue contains both liquid and solid phases, if there is a

sufficient amount of time between the pre and post image acquisition, it can be expected

that the resulting stress field is due only to the solid phase of the material imaged. That

is, if the fluid in the breast is allowed to flow and equilibrate its contribution to the stress

field, the resulting deformation is assumed to be due to the solid phase of the material

alone.

Once it is established that breast tissue may be treated as a single phase continuum

material, it must also be stipulated that it will obey the basic postulates of mechanics
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(e.g. conservation of mass, momentum and energy). Therefore, prior to any assumptions

concerning its constitutive behavior, breast tissue is expected to obey the law of the con-

servation of linear momentum. For slow motion of a single phase continuum, this may be

expressed in Eulerian, or spatial, coordinates as:

∇ · σ = ρ
∂2u

∂t2
. (2.1)

In writing equation (2.1) σ is the Cauchy stress tensor, ρ is the density, u is the displace-

ment vector field and all the body forces have been neglected.

To model the constitutive behavior of the breast tissue the equations for an isotropic,

incompressible linear elastic solid will be used. The constitutive equations for an isotropic,

compressible linear elastic solid are:

σ = −p1 + 2µε (2.2)

ε =
1

2
(∇u + (∇u)T) (2.3)

−
p

λ
= ∇ · u. (2.4)

Here, λ and µ are the Lamé parameters. The shear modulus of the tissue, µ, represents a

material’s resistance to a change in shape. The bulk modulus (k) of a material, represents

a material’s resistance to a change in volume. It can be expressed in terms of the Lamé

parameters by the equation k = 2
3µ+λ. An incompressible material is one with an infinite

resistance to volume change, a special case of a compressible material in which k → ∞,

thus λ → ∞, but µ remains finite. In this case, equation (2.4) implies ∇ · u → 0, but p

remains finite. In this limit, p may be interpreted as the hydrostatic pressure distribution

within the tissue.

Isotropy of the tissue follows from the assumption that the tissue structure within a

continuum averaging volume is randomly oriented. This assumption is typically violated

for tissues known to be associated with mechanical functions of the body (e.g. muscle,
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Figure 2.1: Tissue moduli distribution (Adapted from Sarvazyan et al.,
1998)

bone, skin), particularly where tissue microstructure is strongly oriented. Isotropy is ex-

pected to be a more appropriate assumption for the microscopically unoriented glandular

tissues of the breast, liver or prostate.

The assumption of tissue incompressibility of the tissue is justified, in part, on in vitro

measurements which show the bulk modulus of soft tissue, including breast tissue, to be

orders of magnitude higher than the shear modulus (k � µ and thus λ � µ) (Sarvazyan

et al., 1998). The cause of the incompressibility is the large fluid content within the these

tissues (i.e. water). Figure 2.1 shows the relative distribution of breast tissue moduli as

reported from the literature and collected by Sarvazyan et al., 1998. Also shown in figure

2.1 is the relative contrast in shear modulus between palpable nodules and healthy glan-

dular tissue of the breast.

Breast tissue, like most soft tissues, cannot be fully characterized as linear elastic. As

shown in Figure 2.2(a), the modulus of many breast tissues is expected to increase with

increasing strain levels. Using a linear elastic model for tissue known to be non-linear may

still yield relevant and repeatable results if the observed strains are small enough to assume

that the stress-strain behavior is linear. Thus, given an initial stress or strain within the
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(a) (b)

Figure 2.2: (a) Stress-strain curves for various breast tissue types mea-
sured in vitro (Adapted from Wellman et al., 1999) (b) Example plot show-
ing secant and tangent moduli.

tissue, a linear model would yield the tangent modulus, or slope of the stress strain curve

at that initial state (Figure 2.2(b)). The initial stress or strain of the tissue may affect

the modulus measurements. Therefore it is important to be consistent in this regard when

designing the experimental setup or imaging protocol. It may also be necessary, in certain

instances, to measure larger strains and thus violate the linear stress-strain relationship.

In this case one would effectively be measuring the secant modulus of the breast tissue

(Figure 2.2(b)). If an imaging protocol is established to maintain a consistent initial state

and magnitude of applied strain then the elastic modulus images are expected to recover

repeatable contrast ratios between normal and healthy tissue types for clinically feasible
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strain levels (< 15%).

The assumption of linear elasticity also neglects any time dependent behavior of the tis-

sue. In the breast images scenario considered here the tissue will be undergoing quasi-static

deformations. Although the breast is expected to exhibit both viscoelastic or poroelastic

behavior, the tissue will be imaged such that any relaxation can be assumed to have sub-

sided. Thus only the elastic component of the tissue is being measured.

It shall also be assumed, due to the quasi-static imposed deformation, that the inertia

of equation (2.1) can be neglected, and thus equations (2.1), (2.2) and the momentum

equation become:

−∇p + 2∇ · (µε) = 0. (2.5)

Given a shear modulus distribution, equation (2.5) and the incompressibility constraint

∇ · u = 0 are sufficient to determine the pressure and displacement fields everywhere

within a domain of interest, when the necessary boundary conditions are specified. It is

these equations which will be used to calculate the shear modulus, given a distribution of

displacements, within a region of interest of the tissue. Formulation of this inverse problem

will be discussed in Chapter 4.

Table 2.1 shows the shear moduli or elastic moduli of both healthy and diseased

breast tissues under a variety of loading conditions. These values were measured under the

assumption that breast tissue is an isotropic and incompressible material. The effect of

tissue nonlinearity can be seen by the dependence of the elastic modulus on the amount of

applied precompression. A larger precompression leads to larger values for the measured

tangent modulus. The appropriate amount of the precompression for EI will depend on

the imaging modality used to measure tissue deformation. The effect of varying compres-

sion rates can also be seen in Table 2.1. For most of the breast tissue types measured by

Krouskop et al., 1998, the values of the shear modulus increased with increasing frequency

or loading rate, though only slightly. The sample to sample variability on the other hand

is rather large. In most tissue types, this variability is about 30 − 50% of the mean value.

At this stage, it is not clear whether such heterogeneity can be expected within a single
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Breast Tissue Tissue Tangent Elastic Modulus (kPa)
Type

5% precompression 20% precompression
Loading frequency (Hz) Loading frequency (Hz)

0.1 1.0 4.0 0.1 1.0 4.0

Normal Fat 18 ± 7 19 ± 7 22 ± 12 20 ± 8 20 ± 6 24 ± 6

(samples=8)

Normal glandular 28 ± 14 33 ± 11 35 ± 14 48 ± 15 57 ± 19 66 ± 17

tissue (samples=31)

Fibrous tissue 96 ± 34 107 ± 31 116 ± 28 218 ± 87 232 ± 60 244 ± 85

(samples=18)

Ductal carcinoma 22 ± 8 25 ± 4 26 ± 5 291 ± 67 301 ± 58 307 ± 78

in situ (samples=23)

Invasive and infiltrating 106 ± 32 93 ± 33 112 ± 43 558 ± 180 490 ± 112 460 ± 178

ductal carcinoma
(samples=32)

Table 2.1: Elastic moduli of breast tissues measured in vitro. Adapted
from Krouskop et al., 1998.



19

breast, or if the variation is primarily patient to patient variability.

For the quasi-static deformations proposed in this thesis, the deformation frequency is

assumed to be much lower than 0.1Hz. This table suggests that for a specific precompres-

sion and loading frequency, it is reasonable to expect repeatable measurements of shear

modulus across patients and patient visits.

Table 2.1 shows the high contrast one could expect to see between tissues within the

breast. For example, at low frequencies, there is more than a four to one contrast in shear

modulus between a ductal carcinoma in situ and an infiltrating ductal carcinoma. This

suggests it may also be possible, using elasticity imaging, to diagnose specific tumor types

as well as possibly determine whether a tumor has infiltrated its surroundings.
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Chapter 3

Displacement Estimation

3.1 Introduction

Fundamental to the process of elasticity imaging is the ability to measure physically

accurate displacements from image sets of deforming tissues or phantoms. Measuring dis-

placements from images is a subset of the problem of image registration. Image registration

is the process of aligning two images (often of the same tissue). Medical image registration

involves comparison of images from different modalities, different points in time or from

different patients in order to compare image information, track disease progression or eval-

uate patient variability (Zitova and Flusser, 2003). In the case of elasticity imaging, the

images compared are of tissue taken before and after some mechanical perturbation. The

information desired is not the final registration but the intervening tissue motion.

This chapter presents a method for the characterization of imaging system noise and

discusses how that noise can affect displacement estimations. It will then introduce a novel

algorithm for measuring displacements from sets of images. It also evaluates the accuracy

of the algorithm to measure displacements and identifies the possible sources of errors in

the measurements.

The primary assumption, the validity of which dictates one’s ability to accurately mea-

sure displacements from any imaging system, is that the deformation required to map one

image to another results directly from the underlying tissue motion alone. That is, given

an initial image of some tissue, I1(x), and an image after the tissue has undergone some

mechanical perturbation, I2(x), the images can be related by:

I1(x) = I2(x + u(x)). (3.1)
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Here, the displacement field u(x) is the underlying tissue motion. In effect, this displace-

ment field acts as a nonlinear scaling of the position vector defining the intensities of the

original image. A graphical example of possible image pairs is shown in Figure 3.1. In

this simple example a two dimensional image is acquired, the underlying tissue is then

compressed and a second, post deformation image is acquired. It is clear from the one

and two dimensional plots that the tissue displacement can be recovered from these image

pairs by warping one image such that the features align. It is this image warping which is

assumed to be equivalent to the tissue motion.

In equation (3.1), the functions I1(x) and I2(x) are spatial distributions of the scalar

2D

u(x)

Compressed Image

Uncompressed Image

1Du(x)
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Figure 3.1: Example one and two dimensional pre and post deformation
image pairs.

image intensities. These images are typically discrete and organized in multi-dimensional

pixel matrices. However, if the voxel size can be identified, these matrices may be mapped

to their actual positions in space, defined by the location x. Then the value of the inten-

sity at any location within the image can be determined by an interpolation of neighboring

pixels.

In practice, equation (3.1) is never exactly satisfied. Typically, the point spread func-

tions of imaging systems tend to blur tissue features to varying degrees. The resolution
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of the displacement estimations will, therefore, be limited by the size of the point spread

function as well as the spatial feature density. The presence of imaging system noise also

violates this assumption. Assuming the noise is white and normally distributed, it can be

shown that the magnitude of the signal to noise ratio will directly affect the variance of

the displacement estimates. An explicit relation between the signal to noise ratio, as a

function of frequency, and the accuracy and resolution of displacement measurements will

be discussed in more detail in Section 3.2. Other types of image noise or image artifacts

will also corrupt displacement calculations and should be avoided or filtered out prior to

measuring displacements whenever possible.

One of the most common techniques for measuring displacements in ultrasound elastog-

raphy is the cross correlation, block matching method (Ophir et al., 1991). The necessary

assumption of this method is that the displacement is slowly varying and therefore can be

approximated as constant in a relatively small subsection of the imaged domain. Under

this assumption, equation (3.1) would reduce to:

I1(x) = I2(x + u), (3.2)

where u is no longer a function of x within that pair of image subsections. Time delay

estimation techniques, such as normalized cross correlation (CC), are then used to calcu-

late approximate displacements within these image windows. The distance from the origin

to the maximum of the CC function (i.e. the spatial shift where the image signals are the

most correlated) is the measured displacement for that image subsection. The dimension-

ality of the cross correlation will determine the dimensionality of the displacement vectors

measured. Once a displacement estimate is found for this pair of image subsections, the

process can be repeated for many similar subsections over the entire imaged domain. It

is in this manner that a one or two dimensional displacement field is typically measured

using two dimensional ultrasound images. This idea is similar in nature to that of the

time dependent Fourier transform (TDFT) (Oppenheim and Schafer, 1999). Where the

TDFT is an analysis of the time dependent changes in the frequency content of a single
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signal, however, the CC block matching method compares the spatially dependent phase

difference of two signals. The phase difference of the two signals corresponds to a spatial

delay, or in this case, the spatial displacement. The resulting measured displacement field

can be thought of as a discrete representation of a continuous displacement vector function.

One of the most important advantages of cross correlation based techniques is that they

are computationally inexpensive calculations and are easily parallelized and implemented

in hardware. These algorithms have been implemented in real time imaging modalities for

one dimensional strain applications (Hall et al., 2003). In addition to being efficient, each

individual cross correlation measurement is an optimization with a quasi-global search and

as such does not require an initial guess. These techniques do have several drawbacks,

however. Displacement estimations using these techniques tend to be very noisy when the

signals in corresponding data windows become decorrelated. This can happen either be-

cause the local displacement gradients are large, or because the displacements themselves

are too large. In the first case, when the local displacement gradients are too large, the

assumption of constant displacement is violated and thus equation (3.2) is no longer valid.

In the second case, the displacement is so large that the corresponding image windows

no longer contain enough similar image information to calculate an accurate displacement.

This image noise is further amplified when differentiating the displacement images to create

strain images. These problems can be mitigated by “companding”, a process of compress-

ing and expanding the images locally to compensate for the decorrelation (Chaturvedi

et al., 1998). Cross correlation techniques can also suffer from finding false peak correla-

tions which can lead to unphysical displacement fields.

3.2 Imaging System Accuracy (The Cramér-Rao Bound)

The relative resolution of the CC algorithms depends on the size and spacing of the

image matching blocks. The accuracy, or variance, of a delay estimator has a clear de-

pendence on the window size of the CC as well as the frequency content of the image
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intensity. The evaluation of the accuracy and resolution of a displacement calculation re-

quires a method to relate the measurements to the original image characteristics. This

relation can be made explicit through the Cramér-Rao bound (Walker and Trahey, 1995).

The Cramér-Rao bound is the ultimate limit on the accuracy of a statistical estimator. For

one dimensional delay estimation it is a statistical formulation for determining the lower

limit of the delay variance based on the window size and the power spectra of the original

signals. The calculation of the Cramér-Rao lower bound, as it applies to one dimensional

displacement estimation, assumes the signals to be one dimensional and have a constant

displacement in a given window (Walker and Trahey, 1995). The Cramér-Rao bound on

the variance of the delay estimator is given by

σ2
u(u − û) =

1

W

∞
∫

−∞

(2πf)2
CI1I2(f)

1 − CI1I2(f)
df

. (3.3)

Here u is the true displacement, û is the estimated displacement, σ2
u is the variance of the

displacement estimate, W is the window length used for the calculation and CI1I2 is the

magnitude squared coherence function given as

CI1I2(f) =

∣

∣

∣

∣

∣

GI1I2(f)
√

GI1I1(f)GI2I2(f)

∣

∣

∣

∣

∣

2

. (3.4)

(Walker and Trahey, 1995) The GII ’s are the auto or cross power spectrum functions,

depending on the subscripted signals, given by the equation:

GIpIq(f) =

∞
∫

−∞





∞
∫

−∞

Ip(y)Iq(y + x) dy



 ei2πfx dx. (3.5)

Equation (3.4) may be simplified in the case that the image signals take the form of

I1(x) = s(x + u) + n1(x) (3.6)

and I2(x) = s(x) + n2(x). (3.7)
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Here s(x) is the underlying signal amplitude and n1(x) and n2(x) are uncorrelated white

noise with equivalent power spectra. Under these conditions the coherence function reduces

to

CI1I2(f) =
1

∣

∣

∣
1 + 1

SNR2

Ḡnn(f)
Ḡss(f)

∣

∣

∣

2 . (3.8)

SNR is the signal to noise ratio of the imaging system and the Ḡss and Ḡnn are the

normalized power spectra of the signal and noise, respectively. Their values are scaled such

that their integrals are unity.

A bound on the variance in the strain estimates can be derived from the Cramér-Rao

lower bound. If it is assumed that no new information is gained by overlapping windows

of displacement information, a strain calculation would be the difference of displacement

estimates spaced W pixels from each other (ε = u1−u2

W
). The measurement of u1 and u2 are

independent random variables with equal variances. Thus the estimated strain variance is

σ2
ε = V ar(

u1 − u2

W
) =

V ar(u1) + V ar(u2)

W 2
=

2σ2
u

W 2
. (3.9)

This analysis does not account for strain decorrelation (non-constant delays) or three

dimensional CCs. However, an independent analysis of images in each direction may aid

in experimental design and help determine algorithm parameters as well the limitations of

the resulting calculations (resolution and signal to noise ratio).

3.3 The Cramér-Rao Bound For Two Imaging Systems

The calculation of the Cramér-Rao bound requires the power density spectra of the

signal and noise in each direction of the image. To find these spectra, several images of

the same material, with no deformation, were obtained for each modality (20 ultrasound

images and 4 tomosynthesis images were compared)1. The mean of these images was used

as the underlying signal (s(x)) and the individual images with the mean subtracted were

1See Chapter 6 for ultrasound image and Chapter 7 for tomosynthesis image acquisition techniques.
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(a) (b)

Figure 3.2: (a) Ultrasound power density. (b) Tomosynthesis power den-
sity.

used as the noise (n(x)). Directional Fourier transforms were used to find the power spec-

tra. A comparison of the normalized signal and noise spectra for the axial direction of the

ultrasound images and the high resolution directions of the tomosynthesis images is shown

in Figure 3.2(a) and (b), respectively. The similarity of the noise and signal spectra in the

ultrasound images may indicate a systematic error or movement in these images during

the sequence acquisition. The results of the analysis, shown in Figure 3.3(a), compare the

variance in the displacement estimates of the axial and lateral directions of the ultrasound

image and either the (x) or (y) directions of the tomosynthesis image, which are assumed

to have equal variances. Figure 3.3(b) shows the variance in the strain estimates of these

same images and directions. The analysis was not performed for the elevation direction of

the ultrasound images or the low resolution direction of the tomosynthesis images.

The variance computed for the lateral direction of the ultrasound image is larger than

the axial variance for all window lengths. For the axial displacement estimates, if a resolu-

tion and thus a window size of about 5mm is desired for a strain image, the Cramér-Rao

lower bound states that an applied strain of approximately 0.6% is needed to obtain a

strain image signal to noise ratio of 100. This signal to noise ratio is well within the range
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(a) (b)

Figure 3.3: (a) Displacement Cramér-Rao lower bound. (b) Strain
Cramér-Rao lower bound.

for strain signal to noise ratios seen in ultrasound elasticity images which yield noticable

strain contrast (Ophir et al., 1999). The results for the tomosynthesis are not as promising

as the ultrasound data. The variances are several orders of magnitude larger than either of

the ultrasound variances. This is due in part to the lower SNR ratio of the tomosynthesis

system and also the low spatial frequency range of the signal power of the tomosynthe-

sis images. However, the equations defining the Cramér-Rao Lower Bound show that the

variance in the displacement and strain estimates are independent of the applied strain.

Thus, by applying higher strain values during compression experiments it may be possible

to create images with a SNR within a reasonable range.

3.4 Image Registration Algorithm

Many of the researchers who study elastography or elasticity imaging use strain images

for diagnostic purposes. These are created by taking the gradients of displacement fields

measured with CC techniques. Despite these images being noisy, systems are now being

sold which can create strain images in real time. In situations where further processing
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of the measured displacement fields is required, as in model based parameter inversions

for example, it is likely that a pseudo-real-time imaging system is no longer feasible. In

such cases, it would be favorable to develop a more accurate displacement estimation tech-

nique and sacrifice the speed of cross correlation based algorithms. The image registration

algorithm developed in this chapter is a gradient based, iterative optimization technique

which minimizes the image intensity difference of the pre and post deformation images

with respect to the measured displacement. Using an optimization technique such as this

allows for the implementation of regularization and other constraints to decrease noise and

avoid erroneous results. It also allows for a higher order interpolation of the underlying

displacement functions. Using a linear interpolation of u(x), for instance, reduces the effect

of image decorrelation in the displacement estimates.

The image registration algorithm used here is formulated as an optimization problem.

Excluding any regularization or constraint terms, the functional minimized in each mea-

surement is:

π[u(x)] =
1

2

∫

Ω

(I1(x) − I2(x + u(x)))2 dΩ. (3.10)

In this functional, I1 and I2 are the pre and post deformation images, respectively, and

Ω is the spatial domain of interest. For Gaussian distributed image noise, minimizing

this functional gives the maximum likelihood estimate for u (Press et al., 2002). For

the following equations in this section the x dependence is implied for all images, image

gradients, displacements and variants of displacements (i.e. u = u(x) and I1(u) = I1(x +

u)). The minimization of this functional by Gauss-Newton’s method requires both the

first derivative and an approximation to the second derivative of the functional π[u] with

respect to the function u.

The first derivative of π(u) is found using the functional derivative, defined by the

equations:

Duπ ·w =
d

dε

∣

∣

∣

∣

∣

ε→0

π[u + εw], (3.11)
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where Duπ is the gradient of π with respect to u. In these equations the function w(x) is

an arbitrary admissible variation of u such that for all values of ε, u + εw satisfies all the

boundary conditions that u must satisfy. Using equations (3.10) in the right hand side of

equation (3.11) gives:

Duπ ·w = −

∫

Ω

(I1 − I2(u))∇I2(u) ·w dΩ. (3.12)

If a minimum of the functional π exists, then equation (3.12) is equal to zero at that

minimum. Thus equation (3.12) becomes:

∫

Ω

w · ∇I2(u) (I1 − I2(u)) dΩ = 0. (3.13)

Equation (3.13) is solved iteratively. To that end, let uv be the current guess of u and let

δu be the update to uv such that:

uv+1 = uv + δu. (3.14)

Then substituting equation (3.14) into equation (3.13) and expanding with a first order

Taylor series gives:

∫

Ω

w · (∇I2(uv) + ∇∇I2(uv) · δu) (I1 − I2(uv) −∇I2(uv) · δu) dΩ = O(δu2). (3.15)

To simplify this equation, terms of O(‖δu‖2) will be neglected. It is assumed that when

uv is sufficiently close to u, (I2(x)− I1(x+uv)) ≈ O(‖δu‖). Then equation (3.15) reduces

to
∫

Ω

w · (∇I2(uv) ⊗∇I2(uv)) δu dΩ =

∫

Ω

w · ∇I2(uv) (I1 − I2(uv)) dΩ. (3.16)

This equation is used to solve for δu at each iteration to create a new guess of uv via (3.14).

To solve equation (3.16) it is necessary to discretize the functions u and its variants.

These functions are approximated using the following finite element, linear interpolation
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function expansions:

uh
v =

N
∑

A=1

nsd
∑

i=1

NA(x) fAi ei (3.17)

wh =
N

∑

A=1

nsd
∑

i=1

NA(x) cAi ei (3.18)

δuh =

N
∑

A=1

nsd
∑

i=1

NA(x) dAi ei. (3.19)

Here N is the total number of nodes in the discretization and nsd is the number of spatial

dimensions. The NA’s are the linear shape functions defined at each nodal value A and the

fAi’s, cAi’s and dAi’s are the nodal values for the discretized vector functions uv, w and

δu, respectively. In these equations h is used to denote the approximation of the functions

uv, w and δu with functions in finite dimensional space. This algorithm calculates the

coefficients dBj at each iteration by solving the discrete counterpart to equation (3.16):

[

∫

Ω

NA(I2,i(u
h
v ))(I2,j(u

h
v ))NB dΩ

]

dBj =

∫

Ω

NA I2,i(u
h
v ) (I1 − I2(u

h
v ) dΩ . (3.20)

The above equation can be represented by a matrix equation with the form:

Mkq dq = rk (3.21)

where,

k =
N

∑

A=1

nsd
∑

i=1

nsd × (A − 1) + i (3.22)

and

q =

N
∑

B=1

nsd
∑

j=1

nsd × (B − 1) + j. (3.23)

In equation (3.21) the square matrix M and vector r are known quantities, and the vector

d is the sought unknown vector.

Each iteration of the above algorithm requires the building of the left hand side matrix

M(size = (nsd × N)2) and the right hand side vector r(size = (nsd × N)) . To build this
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matrix and vector, integration of equation (3.20) over the measurement domain is required.

This function is integrated using a three dimensional midpoint rule where the number of

integration points is approximately equivalent to that of the number of image pixels. The

images are interpolated at each integration point using cubic Lagrange polynomials. The

integration of equation (3.20) is divided into element sub domains, and integrated over

each individual element separately. The process of calculating each element contribution

and the subsequent matrix and vector builds was parallelized to improve the speed of the

iterations (OpenMP). After the matrix and vectors are created, a parallelized linear solver

is used to find the vector of nodal values of δuh (PARDISO). The iterations are terminated

when the displacements have converged (i.e. when the normalized L2 norm of the images

has fallen below some threshold value).

3.4.1 Regularization

When defining the image registration problem in the above form, the displacement es-

timates may still result in erroneous measurements in areas of high noise. This formulation,

however, allows for the implementation of regularization. To limit the effect of noise it is

often assumed that the solution, in this case u(x), is smooth (i.e. has a bounded H 1 norm)

and thus another term is added to the functional which penalizes noise in the measure-

ment. There are different types of regularization typically used in inverse problems. The

implementation of the above algorithm uses an H 1 semi-norm regularization to penalize

large gradients in u(x). The regularization is added as a term in the functional π:

π[u(x)] =
1

2

∫

Ω

(I1(x) − I2(x + u(x)))2 dΩ +
1

2

∫

Ω

α1(∇u(x) : ∇u(x)) dΩ. (3.24)

The assumption of small gradients of u(x) is expected to be an accurate assumption in

this case because the set of all possible displacement fields resulting from the deformation

of a continuous medium with any material parameter distribution is inherently smoother

than the underlying parameter distribution.
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The amount or strength of the regularization will depend on the value of the scalar α1.

To determine the appropriate choice for α1, consider the assumptions made in Section 3.1

and the three dimensional extensions of equations (3.6) and (3.7),

I1(x) = s(x + u(x)) + n1(x) (3.25)

and I2(x) = s(x) + n2(x). (3.26)

Substituting these equations into equation (3.10) gives

π[u(x)] =
1

2

∫

Ω

(n1(x) − n2(x + u(x)))2 dΩ. (3.27)

If it is further assumed that the non-linear stretching of the white noise function n2 does

not significantly change its power spectrum, then the magnitude of π in equation (3.24) at

the exact u(x) is equivalent to the integrated noise power of the images. This value is a

measurable quantity for any imaging system and is inversely proportional to the system’s

SNR. According to the theory of residues due to Morozov, α1 should be chosen such that

the value of the regularization functional in equation (3.10), at the exact value u(x), is

approximately equal to the integrated noise power of the images (Oberai et al., 2004). That

is:

1

2

∫

Ω

α1(∇u(x) : ∇u(x)) dΩ ≈
1

2

∫

Ω

(I1(x) − I2(x + u(x)))2 dΩ

=
1

2

∫

Ω

(n1(x) − n2(x + u(x)))2 dΩ. (3.28)

One of the drawbacks of regularization as a method for smoothing images is that the added

term can introduce certain artifacts in the resulting uh(x), particularly when α1 is large.

The introduction of these artifacts into the measured displacement limits the algorithm’s

ability to reach a minimum such that the residual is equal to the noise power. Thus it is

necessary to run simulated examples, with known displacements, to determine the α1 for

which the most accurate u(x) result is measured (See Section 3.4.3).
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3.4.2 Incompressibility

One advantage of capturing a full three dimensional data set is that the a priori

knowledge that breast tissue is an incompressible material may be used to further constrain

the displacements measured from these image pairs. To implement this, another term is

added to the functional of equation (3.24) which penalizes non zero values of the divergence

of the displacement. The three term functional thus becomes:

π[u(x)] =

∫

Ω

1

2
(I1(x) − I2(x + u(x)))2 +

α1

2
(∇u(x) : ∇u(x)) +

α2

2
(∇ · u(x))2 dΩ. (3.29)

Again, the relative strength of the incompressibility term will be determined by the mag-

nitude of the α2 parameter. This term, however, is not appropriately considered a regu-

larization term. Rather, it is a constraint that is being enforced via a penalty. Ideally and

naively, therefore, α2 could be taken to infinity. In practice however, α2 is determined as

the highest value after which no improvement in the measured u(x) is present. An example

of the effect of increasing α2 will be illustrated in Section 3.4.3.

One of the important considerations when dealing with incompressible materials within

the context of finite element methods is that of mesh locking (Hughes, 1999). This phe-

nomenon affects finite element approximations of incompressible and nearly incompressible

materials by overly confining the possible outcomes of the resulting displacements fields.

To alleviate the tendency of mesh locking in this algorithm, selective reduced integration

is used in the computation of this functional term (Hughes, 1999). Selective reduced inte-

gration is a method which reduces the integration of the ∇ · u term to first order.

3.4.3 Parameter Values

To characterize the effect of varying the algorithm’s parameters on the resulting mea-

surements, a series of tests was performed to register images with a known applied dis-
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placement field. Five different images were extracted from measured radio frequency (RF)

ultrasound images taken with the same ultrasound scanner and of the same phantom. The

images were taken in different regions of the phantom such that the image information

is uncorrelated, but the resolution is the same and the frequency power spectrum is ap-

proximately equal. Then the images were artificially deformed to create a second, pre

deformation image for each. The assumed deformation field corresponds to an unconfined

compression test, with slip boundaries, of a homogeneous block of incompressible linear

elastic material at a strain level of 4%. Thus the displacement field is linear in each direc-

tion and volume conserving. Then, on each of these five image pairs, a displacement was

measured using the image registration algorithm with five different values of α1, four differ-

ent values of α2 and five different finite element mesh sizes. The values of these parameters

span above and below the values typically used in practice for the phantom displacement

measurements discussed in this thesis. The mesh sizes represent the number of elements

spanning an equivalent volume in each test, thus an increasing number of elements implies

a higher displacement resolution. No artificial noise is added to the images, however, the

images are rounded to a 16 bit integer to simulate digitization.

Tables 3.1-3.15 show the L2 norms of the measured displacement field. Each displace-

ment direction is considered a scalar function with its own distinct norm value. The values

of the norms are defined as follows:

Total Error: ni =

√

1
5

∑5
j=1

∫

Ω(uex
i − uj

i )
2 dΩ

√

∫

Ω(uex
i )2 dΩ

for i = x, y or z (3.30)

Precision Error: n̄i =

√

1
5

∑5
j=1

∫

Ω(uj
i − ūi)2 dΩ

√

∫

Ω(uex
i )2 dΩ

for i = x, y or z (3.31)

Bias Error: n̂i =

√

∫

Ω(uex
i − ūi)2 dΩ

√

∫

Ω(uex
i )2 dΩ

for i = x, y or z. (3.32)

Here ū is the average displacement of the measurements made from the five image pairs and

uex is the exact displacement with which the images were deformed prior to measurement.
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H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

nx = 0.1095 nx = 0.05345 nx = 0.07022 nx = 0.07022
0 ny = 0.0003965 ny = 0.0003702 ny = 0.0004048 ny = 0.0004048

nz = 0.06984 nz = 0.03784 nz = 0.04466 nz = 0.04466

nx = 0.1092 nx = 0.0532 nx = 0.06995 nx = 0.06995
1 × 106 ny = 0.000396 ny = 0.0003696 ny = 0.0004041 ny = 0.0004041

nz = 0.06964 nz = 0.03773 nz = 0.04454 nz = 0.04454

nx = 0.09854 nx = 0.04697 nx = 0.0608 nx = 0.0608
1 × 108 ny = 0.0003705 ny = 0.0003315 ny = 0.000359 ny = 0.000359

nz = 0.06541 nz = 0.03266 nz = 0.03798 nz = 0.03798

nx = 0.2448 nx = 0.07876 nx = 0.05427 nx = 0.05427
1 × 109 ny = 0.0009459 ny = 0.0008669 ny = 0.0008474 ny = 0.0008474

nz = 0.1641 nz = 0.0439 nz = 0.02984 nz = 0.02984

nx = 0.8413 nx = 0.3857 nx = 0.07187 nx = 0.07187
1 × 1010 ny = 0.006943 ny = 0.007786 ny = 0.007312 ny = 0.007312

nz = 0.681 nz = 0.2756 nz = 0.05591 nz = 0.05591

Table 3.1: Total Error, ni for a finite element mesh with dimensions 5 ×
5 × 5.

H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̄x = 0.04406 n̄x = 0.03002 n̄x = 0.03301 n̄x = 0.03301
0 n̄y = 0.0002606 n̄y = 0.0001841 n̄y = 0.0002104 n̄y = 0.0002104

n̄z = 0.03736 n̄z = 0.02103 n̄z = 0.02394 n̄z = 0.02394

n̄x = 0.04371 n̄x = 0.02973 n̄x = 0.03264 n̄x = 0.03265
1 × 106 n̄y = 0.0002602 n̄y = 0.0001838 n̄y = 0.0002101 n̄y = 0.0002101

n̄z = 0.03721 n̄z = 0.02092 n̄z = 0.02381 n̄z = 0.02381

n̄x = 0.03532 n̄x = 0.02154 n̄x = 0.02172 n̄x = 0.02172
1 × 108 n̄y = 0.0002432 n̄y = 0.0001759 n̄y = 0.0001975 n̄y = 0.0001975

n̄z = 0.03164 n̄z = 0.016 n̄z = 0.01776 n̄z = 0.01776

n̄x = 0.05853 n̄x = 0.01863 n̄x = 0.01342 n̄x = 0.01342
1 × 109 n̄y = 0.0006546 n̄y = 0.0005216 n̄y = 0.0005107 n̄y = 0.0005107

n̄z = 0.04775 n̄z = 0.01409 n̄z = 0.011 n̄z = 0.011

n̄x = 0.07599 n̄x = 0.1116 n̄x = 0.01844 n̄x = 0.01844
1 × 1010 n̄y = 0.003983 n̄y = 0.004135 n̄y = 0.003735 n̄y = 0.003735

n̄z = 0.1341 n̄z = 0.04022 n̄z = 0.01574 n̄z = 0.01574

Table 3.2: Precision Error, n̄i for a finite element mesh with dimensions
5 × 5 × 5.
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H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̂x = 0.1003 n̂x = 0.04422 n̂x = 0.06198 n̂x = 0.06198
0 n̂y = 0.0002988 n̂y = 0.0003212 n̂y = 0.0003458 n̂y = 0.0003458

n̂z = 0.059 n̂z = 0.03146 n̂z = 0.03771 n̂z = 0.03771

n̂x = 0.1001 n̂x = 0.04412 n̂x = 0.06186 n̂x = 0.06186
1 × 106 n̂y = 0.0002985 n̂y = 0.0003206 n̂y = 0.0003452 n̂y = 0.0003452

n̂z = 0.05887 n̂z = 0.0314 n̂z = 0.03764 n̂z = 0.03764

n̂x = 0.092 n̂x = 0.04174 n̂x = 0.05678 n̂x = 0.05678
1 × 108 n̂y = 0.0002796 n̂y = 0.000281 n̂y = 0.0002997 n̂y = 0.0002997

n̂z = 0.05725 n̂z = 0.02848 n̂z = 0.03357 n̂z = 0.03357

n̂x = 0.2377 n̂x = 0.07652 n̂x = 0.05259 n̂x = 0.05259
1 × 109 n̂y = 0.0006828 n̂y = 0.0006925 n̂y = 0.0006762 n̂y = 0.0006762

n̂z = 0.157 n̂z = 0.04158 n̂z = 0.02774 n̂z = 0.02774

n̂x = 0.8379 n̂x = 0.3692 n̂x = 0.06947 n̂x = 0.06947
1 × 1010 n̂y = 0.005687 n̂y = 0.006597 n̂y = 0.006286 n̂y = 0.006286

n̂z = 0.6677 n̂z = 0.2726 n̂z = 0.05365 n̂z = 0.05365

Table 3.3: Bias Error, n̂i for a finite element mesh with dimensions 5×5×5.

H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

nx = 0.1212 nx = 0.06718 nx = 0.08193 nx = 0.08193
0 ny = 0.00052 ny = 0.0004838 ny = 0.0005273 ny = 0.0005273

nz = 0.07861 nz = 0.04492 nz = 0.05186 nz = 0.05186

nx = 0.1193 nx = 0.06494 nx = 0.07958 nx = 0.07959
1 × 106 ny = 0.0005179 ny = 0.0004815 ny = 0.0005248 ny = 0.0005248

nz = 0.07776 nz = 0.04406 nz = 0.05092 nz = 0.05092

nx = 0.09248 nx = 0.04583 nx = 0.05865 nx = 0.05865
1 × 108 ny = 0.00047 ny = 0.0004182 ny = 0.0004526 ny = 0.0004526

nz = 0.06412 nz = 0.03235 nz = 0.03765 nz = 0.03765

nx = 0.2317 nx = 0.07712 nx = 0.0541 nx = 0.0541
1 × 109 ny = 0.001458 ny = 0.001334 ny = 0.001238 ny = 0.001238

nz = 0.1506 nz = 0.04313 nz = 0.03044 nz = 0.03044

nx = 0.8407 nx = 0.3966 nx = 0.0811 nx = 0.0811
1 × 1010 ny = 0.009189 ny = 0.009568 ny = 0.008064 ny = 0.008064

nz = 0.6786 nz = 0.2804 nz = 0.06472 nz = 0.06472

Table 3.4: Total Error, ni for a finite element mesh with dimensions 10 ×
10 × 10.
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H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̄x = 0.06089 n̄x = 0.04557 n̄x = 0.05064 n̄x = 0.05065
0 n̄y = 0.0004075 n̄y = 0.0003207 n̄y = 0.0003549 n̄y = 0.000355

n̄z = 0.04696 n̄z = 0.02902 n̄z = 0.03258 n̄z = 0.03258

n̄x = 0.05827 n̄x = 0.04306 n̄x = 0.04763 n̄x = 0.04763
1 × 106 n̄y = 0.0004057 n̄y = 0.0003189 n̄y = 0.0003531 n̄y = 0.0003531

n̄z = 0.04601 n̄z = 0.02804 n̄z = 0.03147 n̄z = 0.03148

n̄x = 0.03507 n̄x = 0.02158 n̄x = 0.02155 n̄x = 0.02155
1 × 108 n̄y = 0.0003694 n̄y = 0.0002947 n̄y = 0.0003237 n̄y = 0.0003237

n̄z = 0.03022 n̄z = 0.01551 n̄z = 0.01714 n̄z = 0.01714

n̄x = 0.05736 n̄x = 0.01909 n̄x = 0.01424 n̄x = 0.01424
1 × 109 n̄y = 0.001034 n̄y = 0.0008445 n̄y = 0.0007797 n̄y = 0.0007797

n̄z = 0.04587 n̄z = 0.01364 n̄z = 0.01098 n̄z = 0.01098

n̄x = 0.07755 n̄x = 0.1207 n̄x = 0.02088 n̄x = 0.02088
1 × 1010 n̄y = 0.005268 n̄y = 0.005083 n̄y = 0.004188 n̄y = 0.004188

n̄z = 0.1362 n̄z = 0.04215 n̄z = 0.01813 n̄z = 0.01813

Table 3.5: Precision Error, n̄i for a finite element mesh with dimensions
10 × 10 × 10.

H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̂x = 0.1048 n̂x = 0.04935 n̂x = 0.0644 n̂x = 0.0644
0 n̂y = 0.000323 n̂y = 0.0003622 n̂y = 0.00039 n̂y = 0.00039

n̂z = 0.06304 n̂z = 0.03429 n̂z = 0.04034 n̂z = 0.04034

n̂x = 0.1041 n̂x = 0.0486 n̂x = 0.06376 n̂x = 0.06376
1 × 106 n̂y = 0.0003219 n̂y = 0.0003608 n̂y = 0.0003883 n̂y = 0.0003883

n̂z = 0.06269 n̂z = 0.03399 n̂z = 0.04002 n̂z = 0.04002

n̂x = 0.08557 n̂x = 0.04043 n̂x = 0.05455 n̂x = 0.05455
1 × 108 n̂y = 0.0002905 n̂y = 0.0002968 n̂y = 0.0003164 n̂y = 0.0003164

n̂z = 0.05655 n̂z = 0.02839 n̂z = 0.03353 n̂z = 0.03353

n̂x = 0.2245 n̂x = 0.07472 n̂x = 0.05219 n̂x = 0.05219
1 × 109 n̂y = 0.001027 n̂y = 0.001033 n̂y = 0.0009614 n̂y = 0.0009614

n̂z = 0.1434 n̂z = 0.04092 n̂z = 0.02839 n̂z = 0.02839

n̂x = 0.8372 n̂x = 0.3778 n̂x = 0.07837 n̂x = 0.07837
1 × 1010 n̂y = 0.007529 n̂y = 0.008106 n̂y = 0.006891 n̂y = 0.006891

n̂z = 0.6648 n̂z = 0.2772 n̂z = 0.06213 n̂z = 0.06213

Table 3.6: Bias Error, n̂i for a finite element mesh with dimensions 10 ×
10 × 10.



38

H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

nx = 0.1805 nx = 0.0913 nx = 0.09821 nx = 0.09822
0 ny = 0.000793 ny = 0.0006456 ny = 0.0006728 ny = 0.0006729

nz = 0.116 nz = 0.05113 nz = 0.05441 nz = 0.05442

nx = 0.1484 nx = 0.07462 nx = 0.0819 nx = 0.0819
1 × 106 ny = 0.0007384 ny = 0.0006296 ny = 0.0006567 ny = 0.0006567

nz = 0.1011 nz = 0.04424 nz = 0.04742 nz = 0.04742

nx = 0.05181 nx = 0.04881 nx = 0.05381 nx = 0.05382
1 × 108 ny = 0.0005831 ny = 0.0005557 ny = 0.0005678 ny = 0.0005678

nz = 0.04048 nz = 0.02455 nz = 0.02614 nz = 0.02614

nx = 0.3078 nx = 0.09465 nx = 0.0578 nx = 0.0578
1 × 109 ny = 0.002272 ny = 0.001681 ny = 0.001514 ny = 0.001514

nz = 0.1948 nz = 0.05223 nz = 0.03037 nz = 0.03037

nx = 0.8192 nx = 0.374 nx = 0.08593 nx = 0.08593
1 × 1010 ny = 0.009006 ny = 0.009088 ny = 0.007926 ny = 0.007926

nz = 0.6591 nz = 0.299 nz = 0.07012 nz = 0.07012

Table 3.7: Total Error, ni for a finite element mesh with dimensions 20 ×
20 × 20.

H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̄x = 0.1007 n̄x = 0.06878 n̄x = 0.07148 n̄x = 0.0715
0 n̄y = 0.0006578 n̄y = 0.0005092 n̄y = 0.0005339 n̄y = 0.000534

n̄z = 0.07113 n̄z = 0.03942 n̄z = 0.0413 n̄z = 0.0413

n̄x = 0.07848 n̄x = 0.05101 n̄x = 0.05333 n̄x = 0.05332
1 × 106 n̄y = 0.0006098 n̄y = 0.0004946 n̄y = 0.0005192 n̄y = 0.0005192

n̄z = 0.05903 n̄z = 0.03253 n̄z = 0.03417 n̄z = 0.03417

n̄x = 0.02016 n̄x = 0.01158 n̄x = 0.01208 n̄x = 0.01208
1 × 108 n̄y = 0.0004771 n̄y = 0.00045 n̄y = 0.0004612 n̄y = 0.0004612

n̄z = 0.01549 n̄z = 0.0106 n̄z = 0.01067 n̄z = 0.01067

n̄x = 0.06178 n̄x = 0.01308 n̄x = 0.009975 n̄x = 0.009975
1 × 109 n̄y = 0.001639 n̄y = 0.00105 n̄y = 0.0009472 n̄y = 0.0009472

n̄z = 0.06978 n̄z = 0.01457 n̄z = 0.009417 n̄z = 0.009417

n̄x = 0.07769 n̄x = 0.03159 n̄x = 0.01998 n̄x = 0.01998
1 × 1010 n̄y = 0.004779 n̄y = 0.004557 n̄y = 0.003971 n̄y = 0.003971

n̄z = 0.1233 n̄z = 0.04204 n̄z = 0.01898 n̄z = 0.01898

Table 3.8: Precision Error, n̄i for a finite element mesh with dimensions
20 × 20 × 20.
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H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̂x = 0.1498 n̂x = 0.06004 n̂x = 0.06734 n̂x = 0.06733
0 n̂y = 0.0004428 n̂y = 0.0003968 n̂y = 0.0004094 n̂y = 0.0004094

n̂z = 0.0916 n̂z = 0.03256 n̂z = 0.03543 n̂z = 0.03544

n̂x = 0.126 n̂x = 0.05447 n̂x = 0.06216 n̂x = 0.06216
1 × 106 n̂y = 0.0004165 n̂y = 0.0003896 n̂y = 0.0004021 n̂y = 0.0004021

n̂z = 0.08206 n̂z = 0.02998 n̂z = 0.03289 n̂z = 0.03289

n̂x = 0.04773 n̂x = 0.04742 n̂x = 0.05244 n̂x = 0.05244
1 × 108 n̂y = 0.0003352 n̂y = 0.000326 n̂y = 0.0003312 n̂y = 0.0003312

n̂z = 0.0374 n̂z = 0.02214 n̂z = 0.02387 n̂z = 0.02387

n̂x = 0.3015 n̂x = 0.09374 n̂x = 0.05693 n̂x = 0.05693
1 × 109 n̂y = 0.001573 n̂y = 0.001312 n̂y = 0.001181 n̂y = 0.001181

n̂z = 0.1819 n̂z = 0.05016 n̂z = 0.02887 n̂z = 0.02887

n̂x = 0.8155 n̂x = 0.3726 n̂x = 0.08357 n̂x = 0.08357
1 × 1010 n̂y = 0.007634 n̂y = 0.007862 n̂y = 0.006859 n̂y = 0.006859

n̂z = 0.6475 n̂z = 0.296 n̂z = 0.0675 n̂z = 0.0675

Table 3.9: Bias Error, n̂i for a finite element mesh with dimensions 20 ×
20 × 20.

H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

nx = 0.1907 nx = 0.1213 nx = 0.135 nx = 0.135
0 ny = 0.001139 ny = 0.001 ny = 0.001079 ny = 0.001079

nz = 0.1236 nz = 0.08058 nz = 0.0942 nz = 0.09411

nx = 0.1554 nx = 0.08644 nx = 0.09799 nx = 0.09799
1 × 106 ny = 0.001075 ny = 0.0009404 ny = 0.001013 ny = 0.001013

nz = 0.106 nz = 0.05916 nz = 0.06872 nz = 0.06872

nx = 0.09279 nx = 0.04655 nx = 0.05797 nx = 0.05797
1 × 108 ny = 0.000887 ny = 0.0007109 ny = 0.0007525 ny = 0.0007525

nz = 0.06263 nz = 0.03296 nz = 0.03783 nz = 0.03783

nx = 0.2374 nx = 0.07974 nx = 0.05559 nx = 0.05559
1 × 109 ny = 0.002286 ny = 0.001614 ny = 0.001482 ny = 0.001482

nz = 0.1497 nz = 0.0448 nz = 0.03178 nz = 0.03178

nx = 0.8466 nx = 0.4092 nx = 0.08606 nx = 0.08606
1 × 1010 ny = 0.008526 ny = 0.008624 ny = 0.007744 ny = 0.007744

nz = 0.6856 nz = 0.2878 nz = 0.06918 nz = 0.06918

Table 3.10: Total Error, ni for a finite element mesh with dimensions
30 × 30 × 30.
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H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̄x = 0.1312 n̄x = 0.09825 n̄x = 0.1067 n̄x = 0.1068
0 n̄y = 0.0009793 n̄y = 0.0008185 n̄y = 0.0008875 n̄y = 0.0008874

n̄z = 0.09029 n̄z = 0.06455 n̄z = 0.07569 n̄z = 0.0756

n̄x = 0.08942 n̄x = 0.06318 n̄x = 0.06789 n̄x = 0.06789
1 × 106 n̄y = 0.0009218 n̄y = 0.0007638 n̄y = 0.0008267 n̄y = 0.0008267

n̄z = 0.07176 n̄z = 0.04277 n̄z = 0.04982 n̄z = 0.04982

n̄x = 0.03699 n̄x = 0.022 n̄x = 0.02146 n̄x = 0.02146
1 × 108 n̄y = 0.0007503 n̄y = 0.0005814 n̄y = 0.0006179 n̄y = 0.0006179

n̄z = 0.03099 n̄z = 0.01517 n̄z = 0.01647 n̄z = 0.01647

n̄x = 0.05871 n̄x = 0.01971 n̄x = 0.01469 n̄x = 0.01469
1 × 109 n̄y = 0.001519 n̄y = 0.0009798 n̄y = 0.0009049 n̄y = 0.0009049

n̄z = 0.04563 n̄z = 0.01338 n̄z = 0.01085 n̄z = 0.01085

n̄x = 0.07348 n̄x = 0.1226 n̄x = 0.02092 n̄x = 0.02092
1 × 1010 n̄y = 0.004485 n̄y = 0.004303 n̄y = 0.003821 n̄y = 0.003821

n̄z = 0.1342 n̄z = 0.04221 n̄z = 0.01819 n̄z = 0.01819

Table 3.11: Precision Error, n̄i for a finite element mesh with dimensions
30 × 30 × 30.

H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̂x = 0.1384 n̂x = 0.07118 n̂x = 0.08258 n̂x = 0.08259
0 n̂y = 0.0005816 n̂y = 0.0005749 n̂y = 0.0006145 n̂y = 0.0006145

n̂z = 0.08436 n̂z = 0.04823 n̂z = 0.05608 n̂z = 0.05604

n̂x = 0.1271 n̂x = 0.059 n̂x = 0.07066 n̂x = 0.07066
1 × 106 n̂y = 0.0005533 n̂y = 0.0005487 n̂y = 0.0005858 n̂y = 0.0005858

n̂z = 0.07797 n̂z = 0.04087 n̂z = 0.04733 n̂z = 0.04733

n̂x = 0.0851 n̂x = 0.04102 n̂x = 0.05386 n̂x = 0.05386
1 × 108 n̂y = 0.0004731 n̂y = 0.000409 n̂y = 0.0004295 n̂y = 0.0004295

n̂z = 0.05443 n̂z = 0.02927 n̂z = 0.03406 n̂z = 0.03406

n̂x = 0.23 n̂x = 0.07727 n̂x = 0.05361 n̂x = 0.05361
1 × 109 n̂y = 0.001708 n̂y = 0.001282 n̂y = 0.001173 n̂y = 0.001173

n̂z = 0.1426 n̂z = 0.04275 n̂z = 0.02987 n̂z = 0.02987

n̂x = 0.8434 n̂x = 0.3904 n̂x = 0.08348 n̂x = 0.08348
1 × 1010 n̂y = 0.007252 n̂y = 0.007473 n̂y = 0.006736 n̂y = 0.006736

n̂z = 0.6723 n̂z = 0.2847 n̂z = 0.06674 n̂z = 0.06674

Table 3.12: Bias Error, n̂i for a finite element mesh with dimensions
30 × 30 × 30.
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H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

nx = 0.2195 nx = 0.1383 nx = 0.1425 nx = 0.1425
0 ny = 0.001309 ny = 0.0011 ny = 0.001129 ny = 0.001129

nz = 0.1421 nz = 0.0874 nz = 0.08941 nz = 0.08939

nx = 0.1208 nx = 0.07535 nx = 0.08095 nx = 0.08094
1 × 106 ny = 0.001086 ny = 0.0009774 ny = 0.001008 ny = 0.001008

nz = 0.08915 nz = 0.05112 nz = 0.05356 nz = 0.05356

nx = 0.05759 nx = 0.04915 nx = 0.05314 nx = 0.05314
1 × 108 ny = 0.0009039 ny = 0.00071 ny = 0.000718 ny = 0.000718

nz = 0.0422 nz = 0.02556 nz = 0.027 nz = 0.027

nx = 0.3334 nx = 0.09556 nx = 0.0581 nx = 0.0581
1 × 109 ny = 0.002427 ny = 0.001599 ny = 0.001471 ny = 0.001471

nz = 0.2052 nz = 0.05422 nz = 0.03196 nz = 0.03196

nx = 0.8218 nx = 0.3779 nx = 0.08686 nx = 0.08686
1 × 1010 ny = 0.008158 ny = 0.008392 ny = 0.007652 ny = 0.007652

nz = 0.6622 nz = 0.303 nz = 0.07126 nz = 0.07126

Table 3.13: Total Error, ni for a finite element mesh with dimensions
40 × 40 × 40.

H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̄x = 0.1785 n̄x = 0.1152 n̄x = 0.1171 n̄x = 0.1171
0 n̄y = 0.001132 n̄y = 0.0009689 n̄y = 0.0009948 n̄y = 0.0009948

n̄z = 0.1162 n̄z = 0.07362 n̄z = 0.07484 n̄z = 0.07483

n̄x = 0.07871 n̄x = 0.05088 n̄x = 0.05243 n̄x = 0.05243
1 × 106 n̄y = 0.0009303 n̄y = 0.0008597 n̄y = 0.0008865 n̄y = 0.0008865

n̄z = 0.06398 n̄z = 0.03841 n̄z = 0.03955 n̄z = 0.03955

n̄x = 0.02161 n̄x = 0.01051 n̄x = 0.01106 n̄x = 0.01106
1 × 108 n̄y = 0.0007546 n̄y = 0.0006215 n̄y = 0.0006295 n̄y = 0.0006295

n̄z = 0.01827 n̄z = 0.0103 n̄z = 0.01033 n̄z = 0.01033

n̄x = 0.06936 n̄x = 0.01224 n̄x = 0.009239 n̄x = 0.009239
1 × 109 n̄y = 0.001651 n̄y = 0.000949 n̄y = 0.0008717 n̄y = 0.0008717

n̄z = 0.07577 n̄z = 0.0143 n̄z = 0.009114 n̄z = 0.009113

n̄x = 0.07588 n̄x = 0.02808 n̄x = 0.01945 n̄x = 0.01945
1 × 1010 n̄y = 0.004286 n̄y = 0.004191 n̄y = 0.00376 n̄y = 0.00376

n̄z = 0.1205 n̄z = 0.04281 n̄z = 0.01861 n̄z = 0.01861

Table 3.14: Precision Error, n̄i for a finite element mesh with dimensions
40 × 40 × 40.
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H
H

H
H

HH
α1

α2
0 1 × 1010 1 × 1020 1 × 1030

n̂x = 0.1277 n̂x = 0.07646 n̂x = 0.08116 n̂x = 0.08117
0 n̂y = 0.0006581 n̂y = 0.000521 n̂y = 0.0005345 n̂y = 0.0005346

n̂z = 0.0817 n̂z = 0.0471 n̂z = 0.04892 n̂z = 0.0489

n̂x = 0.09158 n̂x = 0.05559 n̂x = 0.06167 n̂x = 0.06167
1 × 106 n̂y = 0.0005598 n̂y = 0.000465 n̂y = 0.0004792 n̂y = 0.0004792

n̂z = 0.06209 n̂z = 0.03373 n̂z = 0.03612 n̂z = 0.03611

n̂x = 0.05338 n̂x = 0.04801 n̂x = 0.05198 n̂x = 0.05198
1 × 108 n̂y = 0.0004975 n̂y = 0.0003434 n̂y = 0.0003454 n̂y = 0.0003454

n̂z = 0.03804 n̂z = 0.02339 n̂z = 0.02494 n̂z = 0.02494

n̂x = 0.3261 n̂x = 0.09477 n̂x = 0.05736 n̂x = 0.05736
1 × 109 n̂y = 0.001779 n̂y = 0.001287 n̂y = 0.001185 n̂y = 0.001185

n̂z = 0.1907 n̂z = 0.0523 n̂z = 0.03063 n̂z = 0.03063

n̂x = 0.8183 n̂x = 0.3768 n̂x = 0.08466 n̂x = 0.08466
1 × 1010 n̂y = 0.006941 n̂y = 0.007271 n̂y = 0.006664 n̂y = 0.006664

n̂z = 0.6511 n̂z = 0.2999 n̂z = 0.06879 n̂z = 0.06879

Table 3.15: Bias Error, n̂i for a finite element mesh with dimensions
40 × 40 × 40.

The results of these tests apply only to the RF ultrasound system, setup and tissue

phantoms described in Chapter 6. A similar set of experiments may be performed for

different types of imaging systems. Also note that α1 and α2 have units of (intensity)2.

The α parameters may be repeatable for different imaging systems if a reasonable value of
∫

Ω(I1−I2(u
ex))2 dΩ, can be calculated prior to the measurement and the α parameters are

normalized by this value. Tables 3.1-3.15 suggest that the optimal parameter values for this

algorithm are approximately α1 = 1 × 108 and α2 = 1 × 1010 for all mesh sizes. It is these

parameter values which will be used in the displacement estimation for the images of the

phantoms designed in this thesis. No predictable optimum can be seen for a particular mesh

size, in these examples. Thus, for reasons of computation size, a mesh size for displacement

measurements will be chosen such that the element size is approximately equivalent to the

20 × 20 × 20 mesh in these examples. The element size or measurement resolution for this

mesh is approximately 1mm in all directions. An example of displacements measured from

a set of phantom images is shown in Figure 3.4.
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Figure 3.4: Example displacement estimates from ultrasound phantom
images.

3.5 Discussion

The algorithm outlined in this chapter shows a method of extracting a measured u(x)

from a pair of images, pre and post deformation images. The accuracy of this measurement

is determined by the accuracy in which equation (3.1) is satisfied. Within the context of this

algorithm there are three possible causes for which equation (3.1) would not be satisfied.

The first is the imaging system accuracy as outlined in Section 3.2. The second is the error

from the digitization of the images to 16 bit integers, which is internal to the ultrasound

imaging system. The third is interpolation error from the inaccuracy of the Lagrange
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polynomial interpolation. To a first approximation, it is expected that the image matching

error can be represented in the following form:

εtot =

√

∫

Ω(I1 − I2(uex))2 dΩ
√

∫

Ω(I1)2 dΩ
= εimgsys + εdgt + εinterp. (3.33)

Here, εimgsys is the imaging system error, εdgt is the digitization error, and εinterp is the

interpolation error. To demonstrate the relative magnitudes of each type of error in this

equation, a one dimensional, analytical example was created to calculate the total error

given two image lines created such that equation (3.1) is exactly satisfied with an appro-

priate value of u. The resulting image lines are then fed to a one dimensional version of

the above algorithm, such that the interpolation scheme and the number of interpolation

points is comparable to that of the three dimensional code, the value of u is exact and

the resulting image error (εtot) is calculated at that value. This value is calculated for

image lines with no noise and no digitization. The calculation is repeated such that the

image lines have added white Gaussian noise at a SNR of ≈ 152 (see Section 3.2), but no

digitization. Then again, the calculation is repeated with noise and digitization, and finally

with digitization but no noise. This process is repeated over 10 representative image lines

to show the variance in the calculation. The values of εtot are shown in Figure 3.5. This

figure shows that the dominant source of error is the interpolation error.

Although the interpolation error is a consequence of this algorithm, any algorithm

which seeks to find a displacement value which is not a multiple of a pixel value will suffer

from interpolation error. Further, it can be shown that the interpolation error in this algo-

rithm can be reduced by up sampling the image prior to measuring the displacement. To

demonstrate this, consider again the one dimensional example created to quantify the total

error. Using the image lines which satisfy exactly equation (3.1) (i.e. the Lagrange error

is the only factor causing error in the image matching) the relative magnitude of the total

error can be calculated as the image lines are up sampled. Figure 3.6 shows the plot of

the total error (εtot) as a function of the distance between pixels, h, for one representative

image line pair. This figure shows that the total error decreases roughly proportional to
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Figure 3.5: Image matching error contributions.

h4, which corresponds to the rate of convergence for cubic Lagrange polynomials (Keys,

1981). It is also important to note, however, that the Lagrange interpolation is not an

unbiased estimator and will depend on the location of an integration point relative to a

pixel location (the error increases with distance from a pixel and is exact at a pixel). The

consequence of this phenomenon is that the total error will not only depend on the locations

of the integration points defined by x but will also depend largely on the local value of u.

However, if the interpolation error is considered as the only source of error, for any given

local measurement, the value of umeas should not deviate by more than a pixel magnitude

from its correct value, uex.

One other important concern when discussing global optimization problems in general,

as well as the one described in this chapter, is that of local minimum. The highly oscil-

latory nature of these images results in the likelihood that, even from a reasonable initial

guess of u, it is possible that the algorithm will find a local minimum from which it cannot

escape with iteration. Typically these minima are apparent when looking at some image
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Figure 3.6: Image interpolation error as a function of the distance between
pixels, h.

matching norm as a function of x over the matching domain, Ω. To avoid such minima,

an initial guess of the displacement field is found by running the algorithm on enveloped

data which is much less likely to suffer such problems.

The algorithm described in this chapter is a method to extract a measured displace-

ment field from a set of images for any particular imaging modality, given that the images

have certain characteristics. In the absence of noise, it is important that the images satisfy

equation (3.1). In the case of ultrasound systems, this equation is approximately satisfied

assuming minimal acoustic artifacts are present in the imaged field (e.g. reverberations).

Given that equation (3.1) is approximately satisfied, this algorithm will measure a displace-

ment field to within the accuracy it can match the images. The image matching accuracy

is determined by the system noise and the noise introduced by the algorithm itself. It

should be noted that if computational speed and size need not be considered, the limit

of the error would be that of the imaging system alone. The amount of noise in the dis-

placement images is going to depend on the image matching noise as well as the frequency
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Figure 3.7: (a) A one dimensional example of displacement estimates as a
function of the regularization estimates α1. (b) A one dimensional example
of displacement estimates as a function of the regularization estimates α1,
zoomed to the boundary of the estimate.

characteristics of the images themselves. To minimize the amount of noise realized in the

displacement measurements, a priori knowledge of the displacement field is used in the

form of regularization and incompressible terms to further constrain the measurements.

As alluded to earlier, one of the drawbacks of using regularization is the possible intro-

duction of artifacts into the displacement estimates. To illustrate the effect these artifacts

have on the displacements, a one dimensional, artificially generated example of pre and post

deformation axial image lines were created. These images lines were then input to the one

dimensional code, described above, to measure the displacement for varying values of the

regularization parameter α1. There is no noise in the images and the artificial displacement

is linear (constant strain). There is no incompressibility term used in these measurements.

Figures 3.7(a) and (b) show the resulting displacement measurements as the α1 parameter

is increased from 0 to 1 × 1010. Figure 3.7(b) is a zoomed in plot of Figures 3.7(a) at the

y ≈ 0mm boundary of the image line. The artifacts in the displacement estimates refer

to the tendency of the boundary displacements toward a zero gradient or strain condition.

These artifacts are due to the Euler-Lagrange equations of the H 1 semi-norm regularization
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term. We get the Euler-Lagrange equations by taking the derivative of the regularization

term, which gives:

Duπ · w =

∫

Ω

α∇w : ∇u dΩ. (3.34)

Integrating equation (3.34) by parts, and setting Duπ ·w = 0 for all w gives:

−∇ · (α∇u) = 0 in Ω (3.35)

and α
∂u

∂n
= 0 on Γ. (3.36)

Here, n is the unit normal to the surface Γ. Equations (3.35) and (3.36) are the Euler-

Lagrange equations that determine u(x). It is clear, from Figure 3.7, that equation (3.36)

dominates the boundary displacement estimates for large α1. It is recognized that these

artifacts are a drawback to this algorithm and are left for future consideration.
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Chapter 4

Elastic Modulus Inversions

4.1 Introduction

The last step in the process of elasticity imaging is to use the measured displacement

fields as input to an inverse problem to determine the mechanical properties of the under-

lying material. A necessary assumption about the input to this inverse problem is that

the tissue behavior can be accurately predicted by a mathematical model. In this case a

linear elastic, incompressible model will be used to predict the tissue behavior. The un-

derlying idea pursued here is that a modulus distribution is sought that is most consistent

with the observed displacement field. To be precise, let up(x;µ) denote the displacement

field predicted by the mathematical model (equations (2.2)-(2.4)) corresponding to a shear

modulus distribution µ(x). Then µ(x) is desired such that:

um(x) = up(x;µ(x)). (4.1)

In order to define up(x;µ), the boundary conditions in addition to the modulus distribution

need to be specified. The boundary conditions are specified in the following form:

u(x) = q(x) on Γq (4.2)

and (−p1 + µ(∇u + (∇u)T)) · n(x) = h(x) on Γh. (4.3)

At each point on the boundaries either the traction (h(x)) or the displacement (q(x)) must

be prescribed (i.e. Γ = Γh ∪ Γq and Γh ∩ Γq = ∅). In general, equation (4.1) cannot be

satisfied exactly. Therefore equation (4.1) is approximated as closely as possible within an

optimization context as described in the following sections.
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4.2 Optimization Formulation of the Inversion Problem

The optimization method discussed in this thesis is a gradient based, iterative optimiza-

tion technique which minimizes the difference between the measured displacements um and

the displacements predicted by the elasticity equations up. The optimization functional is

given by:

π[µ] =
1

2

∫

Ω

(

T (up(x;µ(x))) − T (um(x))
)2

dΩ. (4.4)

Here T is a second order tensor whose diagonal entries represent a weighted contribution of

each of the displacement components to the functional and whose off diagonal entries are

zero. This allows for the inversion solution to account for the difference in the accuracy of

the displacement estimates in each direction. This functional is the maximum likelihood

estimator of µ if the noise in the problem (i.e. the difference in the measured displacements

and the displacements predicted with the correct function for µ) has a Gaussian distribu-

tion (Press et al., 2002).

The optimization method chosen here utilizes the BFGS (Broyden Fletcher Goldfarb

Shanno (Nocedal, 1980)) quasi-Newton method to minimize this difference in displacement

fields. A quasi-Newton algorithm requires only the first derivative (i.e. the gradient) of the

functional and its value be calculated explicitly at each iteration. Then the second deriva-

tive, or the Hessian, is approximated iteratively by calculations of the gradient at different

values of the function µ(x). The adjoint method is used to efficiently calculate the gradient

as proposed by Oberai and colleagues (Oberai et al., 2003; Oberai et al., 2004). As in the

case of the image registration algorithm, using an optimization technique also allows for

the implementation of regularization techniques to ensure that the inverse problem is well

posed. Regularization of this problem will be discussed in Section 4.2.3. To begin the

calculation of the gradient of equation (4.4) it is necessary to first consider the forward

elasticity problem.
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4.2.1 The Forward Elasticity Problem

The strong form of the forward elasticity problem is defined as: given the Lamé

coefficients λ(x) and µ(x) over the entire domain Ω and the boundary conditions defined

by equations (4.2) and (4.3), find the displacement and pressure fields which satisfy the

equations:

∇ · (−p1 + µ(∇u + (∇u)T)) = 0 in Ω (4.5)

and p = −λ(∇ · u) in Ω (4.6)

In this work, λ(x) is taken to be constant and large (i.e. λ � µ). It is determined by

specifying the Poisson’s ratio ν, and evaluating λ = ((2ν)/(1 − 2ν))µref . The reference

value of µref is unity which is also the lower limit of µ(x) for a given reconstruction. The

Poisson ratio is considered an input parameter and the accuracy of reconstructions will be

considered for various values of ν close to that of incompressible materials. The pressure

term will not be determined explicitly, but rather implicitly via equation (4.6). Note that

for the following problem derivations, up(x) will be written as simply u.

The weak form of the forward problem is defined as: find u ∈ S, such that

A(w,u ;µ) = (w,h)Γh
∀w ∈ V. (4.7)

The bilinear forms A(·, ·;µ) and (·, ·)Γh
are defined as

A(w,u ;µ) ≡

∫

Ω

(µ∇w : (∇u + ∇uT) + λ(∇ ·w)(∇ · u)) dΩ ∀u,w ∈ V (4.8)

(w,h)Γh
≡

∫

Γh

w · h dΓ. (4.9)
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The function spaces V and S denote the set of weighting and trial solutions, respectively,

defined as:

V = {w|wi ∈ H1(Ω),w = 0 on Γq} (4.10)

S = {u|ui ∈ H1(Ω),u = q on Γq}. (4.11)

To solve equation (4.7) it is necessary to discretize the functions w, u and µ. These

functions are approximated using the following finite element interpolation function expan-

sions:

uh
v =

N
∑

A=1

nsd
∑

i=1

NA(x) dAi ei (4.12)

wh =
N

∑

A=1

nsd
∑

i=1

NA(x) cAi ei (4.13)

µh =

Nµ
∑

B=1

N̂B(x) gB . (4.14)

Here N is the total number of displacement nodes in the discretization, Nµ is the total

number of modulus nodes in the discretization and nsd is the number of spatial dimensions.

The NA’s are finite element shape functions corresponding to node A and the dAi’s and cAi’s

are the nodal values of the discretized vector functions uh and wh, respectively. The N̂B ’s

are the finite element shape functions interpolating the modulus and the gB ’s are the nodal

coefficients. In these equations the h is used to denote the approximation of the functions

u, w and µ with functions in finite dimensional space (the Galerkin approximation). It is

also important to note that the discretized function uh can be separated into those nodal

values and corresponding shape functions which represent the boundary conditions on Γq

and those which fall in Ω (i.e. uh = vh +qh, where qh lies on Γq). Thus equation (4.7) can

be expressed as:

A(wh,vh ;µh) = (wh,h)Γh
− A(wh,qh ;µh) ∀wh ∈ Vh. (4.15)
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Equation (4.15) can then be solved for vh. The desired displacement field is then uh =

vh+qh. For a thorough review of the discrete forward elastostatics formulation see Hughes,

1999.

For the discretization here, the NA(x) is chosen to be a piecewise linear function, and

the N̂B(x) as piecewise constant over each element. Thus gB represents the constant value

of the modulus inside element B.

4.2.2 The Inverse Adjoint Elasticity Formulation

The quasi-Newton algorithm used for these inversions requires the value of the func-

tional (4.4) and its gradient at each iteration. To calculate the gradient in a computation-

ally efficient manner, the adjoint method is utilized. To do this, a discretized Lagrangian

functional is introduced as follows:

L[uh,wh, µh] =
1

2

∫

Ω

(

T (uh) − T (uh
m)

)2
dΩ + A(wh,uh ;µh) − (wh,h)Γh

. (4.16)

Here, w is acting as the Lagrange multiplier. The gradient of equation (4.16) is found by

using the functional derivative defined in equations (3.11). Note that the functions uh, wh

and µh reside in the same discretized function space as their variations δuh, δwh and δµh.

Thus the gradient of the Lagrangian can be expressed as:

δL = DuhL · δuh + DwhL · δwh + DµhL · δµh. (4.17)

The variations of the Lagrangian due to w are:

DwhL · δwh = A(δwh,uh ;µh) − (δwh,h)Γh
. (4.18)

Requiring this variation to be equal to zero (i.e. DwhL · δwh = 0∀δw) implies that uh will

satisfy the weak form of the equations of elasticity:

A(δwh,uh ;µh)− (δwh,h)Γh
= A(δwh,vh ;µh)+A(δwh,qh ;µh)− (δwh,h)Γh

= 0. (4.19)
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On the constraint surface of equation (4.19), the Lagrangian equation (4.16) reduces to the

original objective function of equation (4.4). Thus along the surface L[uh,wh, µh] = π[µh]

and δπ = δL. Equation (4.17) can be further simplified if the Lagrange multiplier, wh, is

chosen such that DuhL · δuh = 0 ∀δuh. This yields:

A(wh, δuh ;µh) = −(T (uh − uh
m), T (δu)). (4.20)

Since the elasticity operator is self-adjoint, A is symmetric (i.e. A(v1,v2;µ) = A(v2,v1;µ)

∀v1,v2 ∈ V). Therefore equation (4.20) can be rewritten as:

A(δuh,wh ;µh) = −(T (uh − uh
m), T (δuh)) ∀δu ∈ V. (4.21)

This can then be solved for wh, given uh. Using uh from the elasticity solve of equation

(4.18) and the solution of wh from the solution of equation (4.21), it is then possible to

evaluate the remaining portions of the gradient. The final form of equation (4.17) becomes:

δL = δπ = DµhL · δµh = DµA(wh,uh;µh) · δµh. (4.22)

Alternatively, the discretized problem can written as:

π[µh] ≡ πh[g1, g2, ..., gN ]. (4.23)

Then equation (4.22) and equation (4.19) may be used to show that the gradient vector is:

GB ≡
∂πh

∂gB
= A(wh,uh; N̂B). (4.24)

Thus calculating the gradient of equation (4.4) using the adjoint method requires only two

solves of the forward elasticity matrix.

As in the image registration code, the element integration required to calculate the

stiffness matrix and the right hand side vectors of the elasticity equations, as well as the

gradient and function evaluations were parallelized to further improve the speed of each it-

eration. A parallelized linear solver (PARDISO) is also used to solve each forward problem.
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4.2.3 Regularization

As is the case with displacement measurement, it is desirable to regularize the problem

for the shear modulus distribution. To do this, two different types of regularization are

considered and the effect on the resulting modulus reconstructions are discussed. The first

regularization is the L2 norm of the modulus distribution. The new functional π with this

regularization becomes:

π[µ] =
1

2

∫

Ω

(

T (up(x;µ(x))) − T (um(x))
)2

dΩ +
αa

2

∫

Ω

µ2 dΩ. (4.25)

The analysis outlined in Section 4.2.2 does not change with this new functional until the

evaluation of the differential of π. Equation (4.22) is replaced by:

δπ = DµA(wh,uh, µh) · δµh + αa

∫

Ω

µh δµh dΩ. (4.26)

This type of regularization is a standard Tikhonov penalty which penalizes large values of

the shear modulus within the domain Ω. It is tantamount to using a maximum a posteriori

likelihood estimator with a zero-mean Gaussian prior on µ(x).

The second type of regularization is based on a total variation diminishing (TVD) type

of penalty term. The standard TVD regularization functional term of a scalar function

µ(x) is:

πR[µ] = αb

∫

Ω

|∇µ(x)| dΩ. (4.27)

In practice, the singularity in the absolute value function must be smoothed. The compu-

tational implementation of equation (4.27) chosen here is:

πR[µ] = αb

∫

Ω

√

∇µ(x) · ∇µ(x) + β2 dΩ. (4.28)
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The constant β is user selected and “small” in an appropriate sense. The differential of

this functional is:

δπR = αb

∫

Ω

∇µ · ∇δµ
√

∇µ · ∇µ + β2
dΩ. (4.29)

A further modification of this formulation is needed when applied to the discretization of

µ used in this thesis. The piecewise constant, element based interpolation functions for µ

have a zero gradient inside each element domain and an infinite gradient across element

boundaries. Thus equation (4.27) must be treated with care.

The appropriate form of the TVD regularization to be used with piecewise continuous

interpolations may be derived by considering the discontinuous limit of a continuous inter-

polation. To that end, a set of “temporary” nodes is introduced. Thus the finite element

interpolation of µ(x) on this mesh is:

µh =

Nt
∑

A=1

NA(x) gA. (4.30)

Here, Nt is the number of nodes on the temporary discretization of µ. If this mesh is then

defined such that every two nodes in a given direction have equal values of µ, then every

other element in this discretization has a constant value of µ. A simple 3 × 3 × 3 element

mesh with this discretization is shown in Figure 4.1. The shaded elements are those with

constant values of µ. µ(x) changes continuously as x moves from one shaded element to

the next, through an unshaded element. The limit in which the unshaded elements become

vanishingly thin is considered next. This discretization leads to four different types of

elements: those which have a constant value of µ, those which fall between two constant

elements in a given direction (κ1), those which share its corners with only four different

constant µ elements in any two given directions (κ2) and those which share all eight of its

corners with eight different constant µ elements (κ3). An 8 degree of freedom piecewise

constant representation of µ can be recovered from equation (4.30) by considering the limit

as ∆x, ∆y and ∆z approach zero.

When the integral in equation (4.27), is considered for this discretization it is sufficient
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Figure 4.1: A 3 × 3 × 3 element mesh used to derive the modified TVD
regularization (the mesh is broken in the z direction for visual clarity).

to consider the integrals of each type of element individually. It is clear that the integral

contribution from elements with a constant µ value will be contribute zero and therefore

can be neglected. The integral contributions of the other element types will be considered

as ∆x, ∆y and ∆z (from Figure 4.1) go to zero (i.e. the volume of the κ elements vanish

but the volume of the constant element types remain the same). In the limit as the κ

elements vanish, this discretization recovers the original piecewise constant discretization.

Consider now a κ1 type of element. Let µ1 denote the constant value of µ on one face

of the element and µ2 denote the constant value of µ on the opposite face. Without loss

of generality suppose that the x-axis is perpendicular to these faces. Then

|∇µ| =
∆µ

∆x
=

|µ1 − µ2|

∆x
. (4.31)

Therefore:
∫

κ1

|∇µ|dΩ =
|µ1 − µ2|

∆x
× ∆x × SA = |µ1 − µ2|SA. (4.32)

Here SA represents the area of the two faces perpendicular to the x-axis. Similar calcu-

lations for the κ2 and κ3 element types show that their contributions to equation (4.27)
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vanish as ∆x, ∆y and ∆z go to zero.

Thus the formulation of the TVD regularization for the original piecewise constant

discretization of µ can be represented by equation:

πR = αb

NS
∑

i=1

√

[µ]2i + β2 × SAi (4.33)

Here NS is the number of element surfaces within a mesh which are shared by two elements,

[µ]i is the corresponding jump in µ across element surface i, and SAi is the area of that

element surface. A small positive β has been added to “regularize” the absolute value

function. The equation for the corresponding gradient is:

GR
B =

αb

2

NSB
∑

i=1

SAi × (µB − µi)
√

(µB − µi)2 + β2
(4.34)

where NSB is a number between 3 and 6, defining the number of surfaces which element

B shares with neighboring elements. It is equations (4.33) and (4.34) which will define the

modified TVD formulation to be added to displacement matching terms of equations (4.4)

and (4.22) and used in the analysis and discussions of this thesis.

4.3 Reconstruction Parameters

The parameters involved in reconstructing the modulus images are more complicated

and more numerous than in the case of the image registration algorithm. The modulus

reconstructions require an optimal choice of the Poisson’s ratio, appropriate boundary con-

ditions for the forward problem, an optimal weighting of the displacements as well as a

choice regularization term and a value for the regularization parameter, α. The expected

resolution and accuracy of the modulus reconstruction is not expected to be any better

than that of the displacement measurements, thus the mesh size for the reconstructions

will be equivalent to that of the displacement mesh.

To investigate each of these reconstruction parameters an artificial displacement field
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is created, from a prescribed modulus distribution, using a forward finite element analysis

program. The modulus distribution is selected to model a typical ultrasound tissue mim-

icking phantom (see Section 6.2) in size, geometry and modulus contrast. The boundary

conditions applied to this modulus distribution are made to approximate those of a typ-

ical experimental protocol, described in Sections 6.1.1 and 6.3. Only that portion of the

displacement field which falls directly below the surface at the acoustic window, shown in

Figure 6.3, is considered for the inverse problem. This displacement field corresponds to

the imaging domain from which the displacement field would be measured in an actual

phantom experiment. This displacement field is shown in Figure 4.2. The shear modulus

of the inclusion and stand-off layer is three times that of the background material. The

artificial phantom has dimensions of 60mm × 60mm × 60mm; however, the reconstructed

volume has dimensions of 30mm×60mm×30mm in length, height and width, respectively.

The inclusion is cylindrical in shape with a diameter of 12mm and a height of 9mm. A

stand-off or calibration layer, of height 10.5mm, is located at the bottom of the phan-

tom. The motivation behind this stand-off layer is provide an area within a reconstructed

modulus distribution in which the modulus is known. Without a calibration layer, the

reconstructions could only be exact up to a multiplicative constant. The resulting artifi-

cial displacement field is then used as umeas to reconstruct the shear modulus for several

examples in the following sections.

The original displacement field was generated on a 40× 40× 40 element mesh. The re-

sulting displacement field was qualitatively compared to a field generated on a 32×32×32

element mesh to ensure that the problem was well resolved.

4.3.1 Poisson’s Ratio

The Poisson’s ratio used in the reconstruction should ideally be the same Poisson’s

ratio of the material under investigation. According to Figure 2.1, the ratio of the bulk

modulus to the shear modulus ( κ
µ
) ranges from approximately 103-106 and thus the ratio
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Figure 4.2: Artificial displacements from a finite element forward problem.

of the Lamé parameters ( λ
µ
) ranges from approximately 103-106. This corresponds to a

Poisson’s ratio in the range 0.4995 to 0.4999995.

To illustrate the effect of changing both the Poisson’s ratio of the material being tested

and the Poisson’s ratio used in the reconstructions, a series of artificial displacement fields

was created using the mesh described in the previous section. The artificial displacement

fields were constructed with varying values of the Poisson’s ratio (νfwd) in the range of

0.4995 to 0.4999995. Then each of these displacement fields were used as the measured

displacements in a series of reconstructions utilizing varying Poisson’s ratios (νinv) in the

same range. The initial guess for the modulus distribution is again a homogeneous field
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νinv
\νfwd 0.4995 0.49995 0.499995 0.4999995

0.4995 εµ = 0.4872 εµ = 0.4888 εµ = 0.4895 εµ = 0.4891

0.49995 εµ = 0.4889 εµ = 0.4823 εµ = 0.4844 εµ = 0.4839

0.499995 εµ = 0.4889 εµ = 0.4872 εµ = 0.4863 εµ = 0.4852

0.4999995 εµ = 0.4896 εµ = 0.4863 εµ = 0.4848 εµ = 0.4838

Table 4.1: Reconstructed modulus error estimates as a function of the
material’s Poisson’s ratio and the Poisson’s ratio used for the reconstruction.

of value 1, which is the lower bound of the possible values of µ. For the reconstructions

considered in this section, the optimization is terminated at first iteration n for which the

value (π(µn−5) − π(µn))/π(µn−5) < 0.01. That is, within the 5 iterations preceding the

nth iteration, the functional does not change more than 1%. All the boundary conditions

for these reconstructions were prescribed displacements. A measure of the accuracy of a

reconstructions can be calculated in the form of the L2 norm of the shear modulus shown

by equation:

εµ =

√

∫

Ω(µex − µrec)2 dΩ
√

∫

Ω(µex)2 dΩ
. (4.35)

Here µex is the shear modulus distribution used to create the measured displacements

(shown in Figure 4.3(a)), µrec is the reconstructed modulus distribution, and Ω is just that

domain used to create the reconstruction. Table 4.1 shows the values of the error in the

reconstructed µ distribution, calculated using equation (4.35).

The data in Table 4.1 suggests that the accuracy of the modulus reconstruction has

little dependence on the choice of Poisson’s ratio used in the reconstruction or the under-

lying material Poisson’s ratio for the range of bulk and shear moduli suggested in Figure

2.1. It also shows that there is not an optimal choice of reconstructing Poisson’s ratio for

a given actual Poisson’s ratio. Therefore, a Poisson’s ratio of 0.4872 will be chosen for the

reconstructions of this work. It should also be noted that the data in Table 4.1 suggests

that using a constant λ in these reconstructions, rather than allowing it to vary with µ

(i.e. λ(x) = µ(x) 2ν
1−2ν

), has little consequence on the resulting modulus reconstructions.
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4.3.2 Boundary Conditions

The choice of boundary conditions can have a large impact on the reconstruction. This

issue will be discussed in more detail in Chapter 5. For the purposes of this section, recon-

structions with two types of boundary conditions will be investigated. Again, the forward

problem will be created to generate the artificial displacements and the reconstructions

will be done on a subsection of those displacements. The forward problem was created

such that λ was fixed at 999. This corresponds to a Poisson’s Ratio of 0.4995 for a homo-

geneous shear modulus distribution of 1. No regularization is used and the optimization is

terminated at first iteration n for which the value (π(µn−5) − π(µn))/π(µn−5) < 0.01.

The first type of reconstruction investigated is that utilizing all Dirichlet, or displace-

ment, boundary conditions. Figure 4.3(b) shows a slice through the center of the re-

constructed shear modulus and Figure 4.3(a) shows the same slice of the target modulus

distribution used to produce the artificial displacement measurements. The slices are taken

in the x-y plane. The value of εµ for this reconstruction is 0.4998. Figure 4.3 shows that

reconstructions of this type accurately recover the inclusion, but fail to recover the stand-

off layer.

It is also important to note that the recovered inclusion in Figure 4.3(b) does not

exactly match the correct inclusion of Figure 4.3(a), even in this noiseless situation. The

recovered modulus seems to be smoother, with a slightly higher peak modulus than the cor-

rect inclusion. This can be seen from the plot in Figure 4.5(b). This is a consequence of the

relatively small difference in the two displacement fields resulting from the two inclusion

modulus distributions, the discontinuous distribution of µex and the continuous smooth

distribution of the reconstruction. Thus the gradients of the functional, with respect to

the local modulus values around the inclusion, are small. The modulus distribution is

eventually expected to resolve the inclusion, in this case, if it is allowed to iterate well

beyond the termination point. This can be seen in Figures 4.4(a) and (b). These figures
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(a) (b)

Figure 4.3: (a)The center x-y slice of µex. (b) The center x-y slice of the
reconstruction modulus, µrec.

show the functional drop and the drop in the value of εµ as the iterations progress beyond

the termination point. The dotted line represents the iteration at which the functional

has reached the termination point (i.e. (π(µn−5) − π(µn))/π(µn−5) < 0.01). It is clear

from these two plots that while the modulus error (εµ) continues to fall steadily after the

termination point, the drop in the functional value is small relative to the decline seen

prior to the termination point. This algorithm is expected to recover the inclusion exactly

if allowed to iterate indefinitely. However, this is the expectation only in the absence of

noise and regularization.

The second type of boundary condition investigated had a portion of its boundary

assumed to be normal traction free. The sides of the reconstructed volume (i.e. the x-y

and y-z boundary surfaces) are assumed to have zero normal traction (hn = 0 on Γxy
n and

Γyz
n ). The remaining boundary conditions are Dirichlet conditions. Figure 4.5(a) shows

the slice through the center of the reconstructed shear modulus in the x-y plane with these

prescribed boundary conditions. The value of εµ for this reconstruction is 0.4588. It is clear

that the inclusion and stand-off layer are clearly recovered with these boundary conditions,
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Figure 4.4: (a) Modulus error (εµ) as a function of iteration number for the
reconstruction with all displacement boundary conditions. (b) Functional
value (π(µ)) as a function of iteration number for the reconstruction with
all displacement boundary conditions.

leading to an overall improvement in the accuracy of the recovered modulus. Figure 4.5(b)

shows the exact shear modulus as well as the reconstructions with both types of applied

boundary conditions along the center line in the y direction.

Although prescribing these normal traction free boundaries yields a higher accuracy of

the resulting modulus, it does introduce modulus artifacts to these reconstructions which

can be seen in Figure 4.5. The value of the εµ for this reconstruction does not show as

drastic an improvement in the reconstruction as the image slice of Figure 4.5(b) implies due

primarily to the presence of these artifacts. The artifacts are typically areas of increased

or decreased stiffness and exist mainly near the boundaries of the reconstruction. They

result from the zero traction assumption. The presence of a regularization term in the

reconstruction is expected to aid in minimizing the artifacts and with regularization the εµ

is expected to be significantly lower than those values resulting from reconstructions with

all displacement boundary conditions (see Section 4.3.3). Figures 4.6(a) and 4.6(b) show

the functional drop and the drop in the value of εµ as a function of iteration number for

these reconstructions. The initial drop in the value of εµ results from the algorithms initial
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Figure 4.5: (a)The center x-y slice of µrec with mixed displacement and
traction boundary conditions on the sides. (b) The exact modulus, the re-
construction with all displacement boundary conditions (Mu Rec.1) and the
reconstruction with the mixed displacement and traction boundary condi-
tions (Mu Rec.2) along a line in the y direction at the center of the artificial
phantom.
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Figure 4.6: (a) Modulus error (εµ) as a function of iteration number for
the reconstruction with mixed displacement and traction boundary condi-
tions. (b) Functional value (π(µ)) as a function of iteration number for the
reconstruction with mixed displacement and traction boundary conditions.

recovery of the inclusion and the stand-off layer and the subsequent increase in this value

is due primarily to the steady increase in the magnitude of these modulus artifacts.

It should also be noted that the boundary conditions used for the second reconstruc-

tion were found to produce the best result from trials of many different combinations of

u = umeas on Γq and h = 0 on Γh. The zero normal traction force boundary condition

resulted in the highest accuracy modulus distribution. It is these boundary conditions

which will be used to run the reconstructions in Chapter 6.

4.3.3 Regularization

To determine the appropriate choice of the regularization and the regularization pa-

rameter (α) reconstructions will be performed on the artificial displacement fields with

added white Gaussian noise. The noise was added such that the L2 norm of the total

error (see equation (3.30)) was approximately equal to those values shown in Table 3.7

for α1 = 1e8 and α2 = 1e10. Assuming that the dominant source of the noise in the
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displacement estimates results from the interpolation error, it is reasonable to expect the

values shown in Table 3.7 can closely approximate noise levels in the measurements from

ultrasound images. Admittedly, the choice of adding white Gaussian noise is an approx-

imation to the noise which would be realized in practice. The standard deviation of the

noise added to these displacement fields, to create the appropriate L2 norm, is such that

σux

σuy
≈σuz

σuy
≈10. Therefore, the weighting tensor T is chosen such that the weights assigned

to the uy components of the displacements are 10 times that of ux and uz.

The initial guess for the modulus distribution is again a homogeneous field of value

1. For the reconstructions considered in this section, the optimization is terminated at

first iteration n for which the value (π(µn−5) − π(µn))/π(µn−5) < 0.01. The functional

value used to determine the stopping criteria was the displacement matching term alone,

without the regularization. Figure 4.7(a) shows the error in the reconstructed modulus

distribution (εµ) for both the L2 and TVD regularization types. In each case the value

of α spans above and below the value found to minimize the εµ. Figure 4.7(b) shows

a slice through the modulus distribution of the reconstruction with TVD regularization

and an α = 0.001, which was found to be the optimal value of α. To show how varying

the magnitude of α affects the resulting reconstruction, center lines through reconstructed

modulus distributions with several α values are plotted for the L2 and TVD regularizations

in Figures 4.8(a) and 4.8(b). Figures 4.9(a) and 4.9(b) show the reconstructed modulus

error and the functional drop, respectively, for the TVD regularization with α = 0.001 for

iterations beyond the termination point, shown in the dotted line. Note that the error, εµ,

remains at its minimum value showing the effectiveness of the regularization in minimizing

the artifacts. The TVD regularization with a value of α in the range of 10−3-10−4 will

be used to reconstruct the modulus distribution from the measured displacements of the

ultrasound phantoms described in Chapter 6 because it was found to yield the best result.
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Figure 4.7: (a) Modulus error of the reconstructions with varying regular-
ization (b) Reconstruction with TVD regularization and with α = 0.001.
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Figure 4.8: (a) The exact modulus value and several reconstructed modu-
lus value with varying levels of L2 regularization along the center line of the
artificial phantom in the y direction. (b) The exact modulus value and sev-
eral reconstructed modulus value with varying levels of TVD regularization
along the center line of the artificial phantom in the y direction.
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Figure 4.9: (a) Modulus error (εµ) as a function of iteration number for
the second reconstruction type with TVD regularization. (b) Functional
value (π(µ)) as a function of iteration number for the second reconstruction
type with TVD regularization.

4.4 Discussion

The algorithm described in this chapter presents a method to reconstruct the shear

elastic modulus from a measured displacement field, or fields, for a three dimensional lin-

ear elastic, incompressible material. It also discusses the justification of the choice of the

Poisson’s ratio used in the reconstructions. The boundary conditions which resulted in

the most accurate solution utilized an approximation which is known to be inaccurate. In

these inverse problems, the use of traction boundaries is necessary, due to the constraints

which Dirichlet boundaries impose on the predicted displacements of the model. Introduc-

ing these approximations on the boundaries into the inverse problem does add inaccuracy

to our reconstructions, resulting in localized modulus artifacts in areas of our reconstruc-

tion. Thus the regularization of our modulus distribution plays two important roles. It

reduces the size and magnitude of these artifacts and acts to reduce the noise in the re-

constructions resulting from noise in the measured displacements. With the displacement

estimation technique described in Chapter 3 and the inversion method outlined here, it is

now possible to implement these algorithms to measure the modulus distribution of tissue
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mimicking phantoms. This experimental process will be outlined in Chapter 6.
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Chapter 5

Solution Uniqueness and Sensitivity

5.1 Introduction

An important consideration in any inverse problem is the determination of how much

data is required to confidently reconstruct the quantity of interest. In the case of the

inverse elasticity problem studied here, this question is related to that of the uniqueness

of the modulus distribution. That is, for every measured displacement field, is it the case

that one and only one shear modulus distribution exists which will minimize the value of

the functional? If many such solutions exist, further information (i.e. data) is required

in the inverse problem in order to constrain the solution. In the case of elastic imaging,

this information may be knowledge of some tractions on the boundary, known values of

the elastic modulus in the imaged domain (e.g. a stand-off layer) or multiple measured

displacement fields for a given imaged tissue volume.

A similar consideration, which is related to the solution’s uniqueness, is the sensitivity

of the displacement matching functional, or more specifically the predicted displacements,

to the shear modulus distribution. This issue is of particular importance in areas of the

domain which are close to boundaries with Dirichlet boundary conditions. By definition,

up = um on the Dirichlet boundaries and the value of the functional equation (4.4) is

exactly zero on these boundaries. Although values of uh
p on nodes close to a Dirichlet

boundary are allowed to vary from um, they do so to a diminishing degree as x approaches

those boundaries. This is due, in part, to the fact that the displacement field must satisfy

the equations of linear incompressible elasticity. This leads to an increasingly weak depen-

dence of the functional on the values of µ as you approach the boundary.
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This chapter will discuss some issues of uniqueness and sensitivity by studying model

problems where these issues are important. It will also show the implications each issue

has on the accuracy of the modulus reconstructions as well as some possible methods for

addressing them. The discussion of the uniqueness of the three dimensional inverse elastic-

ity problem presented below will somewhat parallel a similar discussion on the uniqueness

of the two dimensional plane strain inverse elasticity problem presented in Barbone and

Bamber, 2002 and Barbone and Gokhale, 2004.

5.2 Uniqueness: Model Problems

5.2.1 Uniaxial Stress

For some inverse problems, the dependence of the solution on the measured data can

be found by rewriting the momentum equation as functions of µ or p, where the strain

(ε) becomes the independent variable. However, the momentum equation for the three

dimensional, incompressible linear elastic material (equation (2.5)) has no clear solution

for µ or p. This equation can be further reduced, to eliminate the pressure variable, by

taking the curl of equation (2.5) which gives:

∇×∇(µε) = 0. (5.1)

While full general treatment of uniqueness in 3D remains unknown, significant insight into

the question may be developed by studying model problems. It is appropriate to consider

loading conditions which resemble the loading conditions a phantom would undergo in the

experimental setup described in this thesis. To that end, consider the loading conditions

of breast tissue in a mammogram.

The displacement field resulting from the uniform compression of the homogeneous
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block of material is shown in Figure 5.1. The boundary conditions are:

ux =
1

4
uo on Γa+, (5.2)

ux = −
1

4
uo on Γa−, (5.3)

uy = −uo on Γb+, (5.4)

uy = 0 on Γb−, (5.5)

uz =
1

4
uo on Γc+, (5.6)

uz = −
1

4
uo on Γc−, (5.7)

and zero shear stress on all the boundaries. For now, assume the block to be a cube with

width L. The resulting strain field for this material with these boundary conditions is:

εyy = −uo/L, (5.8)

εxx = εzz =
uo

2L
(5.9)

and εij = 0 for i 6= j. (5.10)

It may be easily verified that this strain distribution also satisfies traction free boundary

conditions on all sides of the box, rather than prescribed displacements (i.e. h = 0 on Γa

and Γc). Now consider the question of uniqueness for this strain field. That is, can a

modulus distribution, other than homogeneous, yield the same strain distribution with the

same prescribed boundary conditions? Substituting this strain field into the curl of the

momentum equations (2.5) leads to the following equations:

∂xyµ = 0 (5.11)

and ∂yzµ = 0. (5.12)

The general solution of these equations is

µ(x) = µ1(x, z) + µ2(y). (5.13)
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Here µ1 and µ2 are any arbitrary function of their arguments. It is clear that any modulus

distribution which satisfies (5.13) will also yield an equivalent strain field. Thus the inverse

problem for this strain field and boundary conditions has multiple solutions. The result

does imply, however, that prior knowledge of the modulus distribution on an x-z surface

and along a line in the y direction would ensure a unique solution for this strain field.

Figure 5.1: Block of incompressible elastic material with x boundaries:
Γa− and Γa+, y boundaries: Γb− and Γb+ and z boundaries: Γc− and Γc+.
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5.2.2 Biaxial Stress

Now consider deforming the same cube of homogeneous material with boundary con-

ditions:

ux =
1

8
uo on Γa+, (5.14)

ux = −
1

8
uo on Γa−, (5.15)

uy = −uo on Γb+, (5.16)

uy = 0 on Γb−, (5.17)

uz =
3

8
uo on Γc+, (5.18)

and uz = −
3

8
uo on Γc−. (5.19)

Again we apply zero shear stress on all the boundaries. The resulting strain field would

be:

εxx =
uo

4L
(5.20)

εyy = −uo/L, (5.21)

εzz =
3uo

4L
(5.22)

and εij = 0 for i 6= j. (5.23)

In the previous case, the stress was isotropic in the x-z plane. Here it is not. Again it can

be verified that this strain distribution is consistent with traction free boundary conditions

on two parallel sides of the box rather than prescribed displacements (i.e. h = 0 on Γa or

Γc). This strain field and the momentum equation imply:

∂xzµ = 0 (5.24)

∂xyµ = 0 (5.25)

and ∂yzµ = 0. (5.26)
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These have the general solution:

µ(x) = µ1(x) + µ2(y) + µ3(z). (5.27)

This shows that in addition to the homogeneous distribution which was used to create this

strain field, any function µ which satisfies equation (5.27) would also yield the same strain

field. This inverse problem, although still non-unique, demonstrates that application of

applied deformations that avoid directional symmetries in ε may help ensure the unique-

ness of the solution.

5.2.3 Known Traction Boundary Conditions

A priori knowledge of applied traction boundary conditions can also help ensure the

uniqueness of the solution. Suppose on some plane surface (e.g. Γc) it is known that

h = σ · n = 0. The zero tractions on this surface implies:

σxz = σyz = σzz = 0 on Γc. (5.28)

Using equation (5.28) in equation (2.2), just on the surface Γc+, yields:

p = 2µεzz, (5.29)

εxz =
σxz

2µ
= 0 (5.30)

and εyz =
σyz

2µ
= 0. (5.31)

Substituting equations (5.29)-(5.31) into equation (2.5) to yield the equations:

−∂x(µεzz) + ∂x(µεxx) + ∂y(µεxy) + µ∂zεxz = 0 (5.32)

and − ∂y(µεzz) + ∂x(µεxy) + ∂y(µεyy) + µ∂zεyz = 0. (5.33)
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These equations can be rewritten as the following partial differential equation for µ:

∇̂ · (µε̂) + µε̄ = 0 on Γc+ (5.34)

where ∇̂ = ∂xex + ∂yey, (5.35)

ε̂ =





2εxx + εyy εxy

εxy εxx + 2εyy



 (5.36)

and ε̄ =





∂zεxz

∂zεyz



 . (5.37)

Here the incompressibility constraint (εij = 0) was used to simplify the forms of ε̂. Equation

(5.34) may be solved by introducing the scaler function q = log µ (∇̂q = ∇̂µ/µ). The

resulting equation for q can be integrated directly to give:

q =

x̂
∫

x̂0

f dΓc+ + q(x̂0) (5.38)

where f = ∇̂q = ε̂
−1

[

∇̂ · ε̂ + ε̄

]

(5.39)

and x̂ = x ex + y ey. (5.40)

Here x̂ denotes the x and y location on the surface Γc+. Thus the equation for µ on this

surface takes the form:

µ(x̂) = µo exp

x̂
∫

x̂0

f dΓc+ on Γc+. (5.41)

Equation (5.41) implies that the modulus distribution on a traction free plane of this cube

can be determined, uniquely, up to a multiplicative constant. Of course, to do so one must

know in advance that the surface is traction free. Thus advance knowledge of the traction

applied to any boundary of the object adds substantially to the information available to

reconstruct the modulus distribution.
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5.3 Sensitivity

Typically, uniqueness is examined using the original constitutive equations or the mo-

mentum equations, as in the previous section, and the concern is whether there are multiple

problem solutions which could exist to yield the measured data in its entirety. However, the

formulation of the inverse problem in this work leads to another, slightly different concern.

The issue of sensitivity is examined separately from the issue of uniqueness in this work

because it is an issue which arises from the discretized, variational iterative formulation

of the problem. This issue of sensitivity can best be illustrated in the calculation of the

gradient (GB). The relative magnitude of the gradient in a specific location within the

domain, given a current guess of the modulus distribution, defines how strongly a change

in the modulus in that area would affect the value of the functional. Ideally, the gradient

calculations should be low for areas of the domain where the modulus closely matches that

of the actual modulus values and high in magnitude in areas where there is a mismatch.

In practice there are other reasons which can result in low magnitude gradients.

One such reason is the use of Dirichlet boundary conditions. On the surfaces of a

reconstructed volume which necessitate prescribed displacements, or Dirichlet conditions,

the value of the functional is exactly zero, regardless of the modulus distribution near

those surfaces. Thus the resulting gradient calculations for the modulus values near those

surfaces are relatively low. The discretization used in this thesis results in a gradient cal-

culation for every element and no elements in these meshes contain nodes which all lie on

a boundary surface. Therefore, even in the case where all boundaries of a reconstructed

mesh require prescribed displacements, each gradient calculation will affect the functional

through at least one nodal value of the predicted displacement. However, the sensitivity

issue plays an increasing role as x approaches surfaces, edges and corners of the domain,

respectively.

Additionally, the application of prescribed displacements to certain modulus distribu-

tions can result in a decreased sensitivity which propagates to the interior of a reconstructed
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domain. This issue is of particular concern when the modulus distributions and the pre-

scribed displacements result in spatial symmetries similar to those discussed in Section

5.2. This sensitivity issue can best be seen in the use of the stand-off layer, described in

the examples of Chapter 4. Consider the modulus distribution of a stand-off layer and

background material, neglecting the inclusion, with a contrast of 3 to 1 shown in Figure

5.2(a). The modulus distribution can be written in the form:

µ(x) = µ(y). (5.42)

This modulus distribution was used to create an artificial displacement field, as described

in Chapter 4, and the “imaged” portion of this displacement field was used as input to an

inverse problem with all Dirichlet Boundary conditions. The initial guess to these inverse

problems is typically a homogeneous modulus distribution (i.e. µ(x) = 1). At this initial

guess the displacement field generated by the forward problem (uhom) was compared to

the displacement field generated when the stand-off layer is present (uso). Figure 5.2(b)

shows the value of (uso −uhom)2 for a slice of the “imaged” volume. This figure illustrates

that, although a difference in the resulting displacement field is seen on a portion of the

volume, the difference quickly disappears in areas closest to the boundaries. The fact that

this value is small leads to a relatively low sensitivity in most of the areas around the

stand-off layer. The gradient of the functional at this initial guess was also calculated and

its magnitude is shown in Figure 5.3.

To put Figures 5.2 and 5.3 in perspective, consider these same calculations, at the

initial guess, for the reconstructions from a displacement field generated with a modulus dis-

tribution which has an inclusion. Figures 5.5(a) and 5.5(b) show the value of (uex−uhom)2

and the magnitude of the gradient, respectively, for this inverse problem. The function uex

is the displacement field generated from the modulus distribution shown in Figure 4.3(a).

In Figure 5.5(a) it is clear that the difference in the displacements is much larger in the

areas around the inclusion than it is in and around the stand-off layer. As a result, the

magnitude of the gradient is also larger near the inclusion. Note that the values of the



80

(a) (b)

Figure 5.2: (a) The center x-y slice of the modulus distribution with a
stand-off but no inclusion (µfwd). The area shown is the subset of the
forward domain which lies in the reconstructed domain (Ω). (b) The center
x-y slice of (uso − uhom)2 (in mm2) at the initial guess.

Figure 5.3: The center x-y slice of the magnitude of the gradient for the
stand-off layer example at the initial guess.
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(a) (b)

Figure 5.4: (a) The center x-y slice of (uex − uhom)2 (in mm2) at the
initial guess. (b) The center x-y slice of the magnitude of the gradient for
the inclusion and stand-off layer example at the initial guess.

displacement difference and the gradients differ by orders of magnitude in the case with

the inclusion as compared to the case without.

It is also important to show how the zero traction assumption described for the sec-

ond reconstruction of Section 4.3.2 improves the sensitivity in the stand-off layer. To that

end, the value of (uex − uhom)2 and the magnitude of the gradient are also calculated at

a homogeneous initial guess for a reconstruction with the boundary conditions described

in Section 4.3.2. Figures 5.5(a) and 5.5(b) show these values. Note that the overall mag-

nitude of the functional value increases from the previous example and the magnitude of

the gradient improves around the inclusion and in the stand-off layer.

The issue of sensitivity can also be seen in the plots of Figures 4.4(a), 4.4(b), 4.6(a) and

4.6(b). It is clear in both reconstructions types that, after the value of the reconstructed

modulus distribution reaches a certain iteration, relatively large changes in the modulus

have little effect in the resulting functional value. In all of these examples there was no noise

in the reconstructions. In Section 4.3.3 noise was added to the displacements. At these
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(a) (b)

Figure 5.5: (a) The center x-y slice of (uex − uhom)2 (in mm2) at the
initial guess for the second reconstruction type. (b) The center x-y slice of
the magnitude of the gradient for the inclusion and stand-off layer example
at the initial guess for the second reconstruction type.

noise levels the magnitude of (displacement noise)2 would be approximately 10−5mm2 for

a given location in the reconstructed domain. Thus the gradient calculation would also

include a noise component as well as a regularization contribution.

Finally, it is also worth investigating how the issues of sensitivity, for all displacement

boundary conditions could affect the reconstructions of geometries other than that of the

stand-off layer. To that end, another artificial phantom and simulated displacements were

created. The inclusion geometry of this phantom was such that the boundary of the re-

constructed domain passed through the inclusion. That is some of the inclusion falls in

the domain Ω and some does not. Figure 5.6 shows a central slice through the modulus

distribution of used to create the artificial displacements. The contrast of the inclusion and

stand-off layer relative to the background is 3 to 1 everywhere in this distribution. The

darker region of this figure indicates the domain of the reconstruction. The displacements

within this domain were then input to the reconstruction algorithm to recover the modulus

distribution. There was no noise or regularization in this study. The boundary conditions
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Figure 5.6: An x-y slice of the forward modulus distribution, µex, created
to investigate the impact of sensitivity on inclusion geometries. The con-
trast of the inclusion and stand-off layer relative to the background is 3 to 1
everywhere in this distribution (The darker region signifies the reconstruc-
tion domain Ω).

in this example were all Dirichlet. All other relevant parameters were consistent with the

example reconstructions in Chapter 4. Figure 5.7(a) shows a slice of the reconstructed

modulus distribution. Notice the decreased modulus value at the edge of the reconstructed

domain. This can also be seen in Figure 5.7(b), which shows a line of the reconstruction

through the center of the inclusion in the x direction. It should be noted that, although the

reconstructed modulus does decrease near the boundary of the reconstruction, the overall

effect is far less prominent than in the case of the stand-off layer geometry.
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Figure 5.7: (a) An x-y slice of the reconstructed modulus image through
the center of the inclusion. (b) Lines of the reconstructed (µrec) and exact
(µex) modulus distributions from the inclusion sensitivity study through the
inclusion in the x direction (the dotted lines represent the boundaries of the
reconstructed domain.
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Chapter 6

Ultrasound Elasticity Imaging: Accuracy Study

6.1 Introduction

In the previous two sections, methods to measure displacements from image pairs and

subsequently use the measured displacements to reconstruct a shear elastic modulus were

presented. Additionally the sources of noise for the ultrasound imaging system were identi-

fied and, where possible, quantified. The accuracy of the resulting modulus reconstruction

cannot be quantified unless a study with actual images, similar to those seen in a clinical

setting, is performed. To that end, ultrasound phantoms were created which mimic the

acoustic properties of real tissue. The phantom elastic modulus can be locally and inde-

pendently controlled. This chapter will give a brief introduction of US imaging, discuss

the creation of these phantoms and the protocol used to image them. Section 6.4 presents

the results of a study designed to quantify the accuracy and limitations of these algorithms

using ultrasound images of the tissue mimicking phantoms. The last section of this chapter

is the discussion.

6.1.1 Ultrasound Imaging: Background

Ultrasound is an inexpensive, non ionizing imaging modality commonly used in di-

agnostic investigations. Ultrasound radiation is high frequency sound pulses which are

transmitted through the body. The image information is contained in the scattered and

reflected sound field measured at the tissue boundaries. Typically, for clinical ultrasound

scanners, the transmitted and received sound field are created and measured in the same

location on the tissue’s surface. Knowing that the sound speed in soft tissue is approxi-
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mately constant (≈ 1540.0m/s) (Goss et al., 1978), the time at which the pulse echo is

recorded relative to the time at which it was sent can be used to find the distance the

reflected wave traveled. The intensity of the recorded sound echo wave at any point in

time is directly related to the tissue’s reflectivity. Sound is reflected by impedance discon-

tinuities in the imaged media (e.g. tissue boundaries, tissue micro structure, bubbles, etc.).

Thus, the echos received from a single pulse can be used to create a spatial mapping of the

reflectivity of the tissue in the area permeated by that wave.

Some important advantages of ultrasound are its high signal to noise ratio and its high

resolution in the direction of sound propagation. All biological media attenuates ultra-

sound. The attenuation depends largely on the frequency of the ultrasound, increasing as

the frequency increases (the frequencies used for diagnostic ultrasound are typically in the

1-15 MHz range). As a result of this, the wave signal intensity decreases exponentially

from the source and can lead to heating of the tissue. The resolution of the system is also

related to the ultrasound frequency. A system with a relatively high frequency transducer

would have a high resolution. The magnitude of the resolution is approximately the same

as the speed of sound in water divided by the center frequency used to create the image.

Thus, there is a tradeoff between image penetration depth and resolution.

Figure 6.1(a) shows the ultrasound system and transducer used in this work for imag-

ing tissue and tissue phantoms. Most clinical ultrasound machines will perform filtering

and signal enveloping prior to displaying the image (B-mode). The system used in this

thesis allows access to the unaltered radio frequency (RF) data. Figure 6.1 shows a B-mode

image taken from an automated sonographic examination of a breast with a benign cyst

(Bassett and Kimme-Smith, 1991). In this image the cystic tissue appears darker than the

rest of the breast tissue, but often tumors will show no contrast to the surrounding tissue

(Bassett and Kimme-Smith, 1991). The spotted nature of the ultrasound image is known

as speckle. Speckle results from the collective interference and coherence of the waves re-

flecting from small, densely populated sound scatterers characteristic of soft tissue. It is

the speckle in the ultrasound images that will be the defining influence on the ability to
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(a) (b)

Figure 6.1: (a) Ultrasound system and transducer. (b) Ultrasound image
of breast cyst (Adapted from Bassett and Kimme-Smith, 1991).

measure the displacements.

6.2 Phantom Construction

One of the important tools that researchers use in medical imaging is a tissue mimicking

phantom. A phantom is usually an object or substance whose relevant physical parameters

closely match those of the tissue of interest. Most of the experimental validations of the

algorithms discussed in this thesis will be done using tissue phantoms. Currently, there

is an abundance of research investigating optimal methods for creating ultrasound imag-

ing phantoms (Homolka et al., 2002; Polletti et al., 2002; Rownd et al., 1997). There is

little work published, however, regarding tissue phantoms made specifically for elasticity

imaging (Hall et al., 1996). The first consideration when developing a tissue mimicking

phantom recipe is to allow the tailoring of both the elastic properties and the modality

specific properties. This was achieved by using a gelatin base because its elastic properties

closely resemble those of soft tissues. The gelatin stiffness can also be modified by varying
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Figure 6.2: Ultrasound tissue mimicking phantom.

the concentration of the solution. Much like soft tissue, gelatin phantoms contain a high

percentage of water. Thus the sound speed and acoustic attenuation closely match that of

breast tissue.

The ultrasound phantoms were a mixture of gelatin and silica. The silica particles were

suspended in the gelatin as scatterers to reproduce the full speckle image normally seen

when imaging soft tissue. The phantoms were cuboid in shape with a base of 60mm×60mm

and a height of 40mm. In the center of the phantom, cylindrical inclusions were made to

mimic the relative stiffness of tumors compared to healthy tissue. Prior to letting any

phantom material set, all ingredients were degassed as a mixture so that no air bubbles

were present. This was done to avoid any mechanical or acoustic inconsistencies. A stiff

stand-off layer was created on top or bottom of the phantom with a gelatin concentration

matching that of the inclusion. It may be necessary, when establishing an imaging proto-

col, to include a stand-off layer with known mechanical properties in the images to provide

a calibration for the underlying tissue properties. A picture of the phantom is shown in

figure 6.2.
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Figure 6.3: Three dimensional ultrasound imaging setup.

6.3 Imaging Protocol

The experimental setup for the three dimensional ultrasound experiments was devel-

oped using a two dimensional ultrasound scanner (Analogic AN2300). The transducer is

a 12MHz linear array with 192 piezoelectric elements in the lateral (x) direction. The

phantom and stand-off layer were held in place by two plates on the bottom and top. The

top plate has a square window where the transducer is scanned and the phantom is im-

aged. A schematic of the ultrasound setup is shown in Figure 6.3(a). The transducer was

scanned in the elevation (z) direction such that the resolution was approximately the same

as in the lateral direction. The transducer was scanned using a Newport stepper motor

with micrometer accuracy. Water was used as an acoustic coupling medium between the

transducer and the phantom. The resulting ultrasound images have a voxel size of about

19.2µm × 158µm × 140µm and image dimensions of about 3000 × 192 × 192 pixels in the

axial (y), lateral and elevation directions, respectively.

In a typical imaging experiment, the phantom is first placed between the plates and

a slight compression is applied to hold it in place. The coupling medium is placed in

the acoustic window and then a pre deformation image is taken. Image acquisition typ-
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ically takes several minutes, however, the process has not yet been optimized for time.

After the first image is taken, a small compressive strain is applied (typically ∼ 1-2%),

and then a second post deformation image is taken. The setup described in figure 6.3(a)

also allows for shear deformations, if additional images or displacement fields are necessary.

6.4 Accuracy Study

In order to evaluate the accuracy and limitations of the algorithms outlined in this

thesis, phantoms were created with various sizes and contrasts. The phantoms were created

and imaged using the protocol described in the previous sections of this chapter. The sizes

of the inclusions were varied by changing the size of the mold used to pour the gelatin. The

contrast was varied by varying the gelatin concentration used to create the inclusions (lower

gelatin concentration yields lower shear modulus). A stand-off layer was included in each

case and is typically made to approximately match the modulus value of the inclusion.

For each batch of gelatin used in each phantom, separate calibration samples were

made to test the modulus value independently from the imaging measurements. The

calibration samples created were cylindrical with a height of 10mm and a diameter of

15mm. Typically 5 calibration samples were made of each gelatin batch for each phantom

made. The stiffness of the calibration samples was measured using a TA Instruments Q800

Dynamic Mechanical Analysis machine. To determine the elastic modulus, a compression

test was used to measure the force/displacement relationship of each sample in the range

of 1-10% strain. The compression test necessitated the use of no slip boundary conditions

on the top and bottom of each sample tested. These boundary conditions resulted in a

nonuniform stress field in the gelatin samples. Therefore, the Young’s modulus taken to be

the slope of the linear stress/strain relation times some compensatory factor which relates

the slope of the stress/strain relation for a compression test with no slip boundaries and

the actual Young’s modulus of the material. This factor was found using a finite element

analysis program (FlexPDE), for the sample geometry described above, by comparing the
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resulting slopes of the stress/strain curve of a material with a given modulus undergoing a

compression test. The ratio of the true Young’s modulus to the slope of the stress/strain

curve gives this compensatory factor. Its value was found to be:

Eapparent

Etrue
= 1.34 ± 0.01 (6.1)

Here, Eapparent = F/(area∗ strain) is the apparent Young’s modulus (as if the sample had

slip boundary conditions). Etrue is the actual Young’s modulus for the material. For an

incompressible material the shear modulus is µ = 1
3E. For each set of samples tested the

mean and standard deviation of the compensated Young’s modulus is reported (Etrue).

To review, for each reconstructed modulus image, the pre and post images of a compres-

sion experiment with approximately 1-2% applied strain were used to measure the tissue

displacements in the imaged volume. For each phantom image the displacement was mea-

sured with a finite element size of approximately 1mm in the y direction and 0.6mm in the x

and z directions, resulting in 40x60x40 elements in the x, y and z directions, respectively.

The regularization and incompressibility parameters used were α1 = 1 × 108 and α2 =

1×1010, respectively. To determine the termination point of the displacement matching it-

erations, the normalized L2 norm of the images (
∫

(I1 − I2)
2 dΩe/

√

∫

(I1)2 dΩe

∫

(I2)2 dΩe )

was calculated for each element at each iteration. When this value was found to be relatively

homogeneous in x and less than 0.2, the algorithm was allowed to iterate 26 additional

times to ensure that it had converged. The L2 norm value of 0.2 would correspond to a

peak cross correlation value of approximately 0.9. Experience has shown that values higher

than 0.2 typically indicate regions which are stuck in local minima. The measured displace-

ments were then input to the inverse algorithm with approximated traction free boundary

conditions discussed in Chapter 4 and a Poisson’s ratio of 0.4995. A TVD regularization

for all inversion reconstructions was used with a parameter α = 10−4. The initial guess

of µ was homogeneous with value 1 and the iterations were terminated at first iteration

n for which the value (π(µn−5) − π(µn))/π(µn−5) < 0.01. The functional value used to

determine the stopping criterion was the displacement matching term alone, without the
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regularization.

In each of the following reconstructions, three dimensional slices of the modulus distri-

bution are shown in the x-y plane and the x-z plane through the center of the inclusion.

In addition, the x-y slice of the recovered modulus image is shown next to an image of the

axial strain (εyy). The axial strain image is created from a finite difference differentiation

of the axial displacement. The axial displacement is smoothed prior to differentiation with

a box convolution kernel of size 33 finite element voxels to smooth the resulting strain image.

6.4.1 Inclusion One

The first inclusion imaged was created to approximate the size of a typical tumor

diagnosed by palpation or screening mammography. The inclusion size was 12.77mm in

diameter and 10mm in height. The background was made with an 8% by mass concen-

tration of gelatin and the inclusion and stand-off layer were made with a 16% by mass

concentration of gelatin. The stand-off was positioned at the top of the phantom when im-

aged for this reconstruction. The independently measured values of the Young’s modulus

were 0.020 ± 0.0013MPa for the background and 0.0648 ± 0.0037MPa for the inclusion

and stand-off layer. To evaluate the recovered contrast and size in the reconstructions,

the half maximum of the inclusion modulus was determined by inspection. The average

modulus in those elements above the half maximum is then considered to be the recovered

inclusion modulus value. It is noted that this averaging systematically lowers the estimate

of the inclusion stiffness. Similarly, the modulus contrast in the stand-off is calculated as

the average above the half maximum of the stand-off region. The background modulus

value was determined by averaging a relatively homogeneous portion of the background

adjacent to the inclusion. For this reconstruction the recovered inclusion modulus value is

2.2441 ± 0.2262 to a background modulus value of 1.0046 ± 0.0145. The average stand-off

modulus value is 1.7457 ± 0.2190. The volume of the inclusion is found by counting the

number of voxel elements which have modulus values greater than the half maximum and
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Figure 6.4: (a) x-y slice of 3D modulus reconstruction for a large inclu-
sion with a 16% by mass gelatin concentration through the center of the
inclusion. (b) x-z slice of 3D modulus reconstruction for this same inclusion
through the center of the inclusion.

multiplying by the volume of the voxel. The size of the reconstructed stand-off layer is not

reported due to the artifacts obstructing its proper reconstruction. For this reconstruction,

the inclusion volume was 1.6879cm3 compared to the reference volume of 1.2808cm3.

Using the axial strain field, created from the measured displacements, a value of the

average strain in the inclusion and in a homogeneous portion of the background were also

calculated. For this reconstruction the strain in the inclusion and in the background were

−0.0129 ± 0.0010 and −0.0202 ± 0.0003, respectively. Figures 6.4(a) and (b) show the 3D

reconstructed modulus images in the x-y plane and the x-z plane sliced through the center

of the inclusion. Figures 6.5(a) and (b) show the x-y slice of the reconstructed modulus

image next to the same slice of the axial strain image (εyy). Figure 6.6 shows an axial line

of the modulus distribution through the center of the inclusion.
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(a) (b)

Figure 6.5: (a) x-y slice of modulus reconstruction for a large inclusion
with a 16% by mass gelatin concentration. (b) x-y slice of the axial strain
(εyy) for this same inclusion.

0 20 40 60
1

1.5

2

2.5

3
Inclusion One

µ

y (mm)

(a)

Figure 6.6: Axial line of the modulus distribution for a large inclusion
with a 16% by mass gelatin concentration.
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6.4.2 Inclusion Two

The second inclusion imaged was created to investigate the algorithm’s accuracy as

the inclusion size decreases. The inclusion size was 7.94mm in diameter and 7.94mm in

height. The background was made with an 8% by mass concentration of gelatin and the

inclusion and stand-off layer were made with a 16% by mass concentration of gelatin. The

stand-off was positioned at the top of the phantom when imaged for this reconstruction.

The independently measured values of the Young’s modulus were 0.0200±0.0013MPa for

the background and 0.0648±0.0037MPa for the inclusion and stand-off layer. For this re-

construction the recovered inclusion modulus value is 2.0892±0.2029 to a background mod-

ulus value of 1.0001± 0.0003. The average stand-off modulus value is 1.6967± 0.1388. For

this reconstruction the inclusion volume was 0.4573cm3 compared to a reference volume of

0.3931cm3. The average strain in the inclusion and in the background was −0.0134±0.0013

and −0.0172±0.0017, respectively. Figures 6.7(a) and (b) show the 3D reconstructed mod-

ulus images in the x-y plane and the x-z plane sliced through the center of this inclusion.

Figures 6.8(a) and (b) show the x-y slice of the reconstructed modulus image next to the

same slice of the axial strain image (εyy). Figure 6.9 shows an axial line of the modulus

distribution through the center of the inclusion.

6.4.3 Inclusion Three

The third inclusion imaged was created to further investigate the algorithm’s accuracy

as the inclusion size decreases. The inclusion size was made to be 4.80mm in diameter

and 4.80mm in height. The background was made with an 8% by mass concentration of

gelatin and the inclusion and stand-off layer were made with a 16% by mass concentration

of gelatin. The stand-off was positioned at the bottom of the phantom when imaged for this

reconstruction. The independently measured values of the Young’s modulus were 0.0228±

0.0011MPa for the background and 0.0584 ± 0.0027MPa for the inclusion and stand-off

layer. For this reconstruction the recovered inclusion modulus value is 2.1005 ± 0.2096 to
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Figure 6.7: (a) x-y slice of 3D modulus reconstruction for a medium sized
inclusion with a 16% by mass gelatin concentration through the center of
the inclusion. (b) x-z slice of 3D modulus reconstruction for this same
inclusion through the center of the inclusion.

(a) (b)

Figure 6.8: (a) x-y slice of modulus reconstruction for a medium sized
inclusion with a 16% by mass gelatin concentration. (b) x-y slice of the
axial strain (εyy) for this same inclusion.
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Figure 6.9: Axial line of the modulus distribution for a medium sized
inclusion with a 16% by mass gelatin concentration.

a background modulus value of 1.0045 ± 0.0148. The average stand-off modulus value is

2.7908±0.3761. For this reconstruction the inclusion volume was 0.0960cm3 compared to a

reference volume of 0.0869cm3. The average strain in the inclusion and in the background

was −0.0153 ± 0.0017 and −0.0193 ± 0.0020, respectively. Figures 6.10(a) and (b) show

the 3D reconstructed modulus images in the x-y plane and the x-z plane sliced through

the center of the inclusion. Figures 6.11(a) and (b) show the x-y slice of the reconstructed

modulus image next to the same slice of the axial strain image (εyy). Figure 6.12 shows an

axial line of the modulus distribution through the center of the inclusion.

6.4.4 Inclusion Four

The fourth inclusion imaged was created to investigate the algorithm’s accuracy as the

inclusion contrast relative to the background decreases. The inclusion size was 7.94mm

in diameter and 7.94mm in height. The background was made with an 8% by mass

concentration of gelatin and the inclusion and stand-off layer were made with a 12% by

mass concentration of gelatin. The stand-off was positioned at the bottom of the phantom
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Figure 6.10: (a) x-y slice of 3D modulus reconstruction for a small inclu-
sion with a 16% by mass gelatin concentration through the center of the
inclusion. (b) x-z slice of 3D modulus reconstruction for this same inclusion
through the center of the inclusion.

(a) (b)

Figure 6.11: (a) x-y slice of modulus reconstruction for a small inclusion
with a 16% by mass gelatin concentration. (b) x-y slice of the axial strain
(εyy) for this same inclusion.
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Figure 6.12: Axial line of the modulus distribution for a small inclusion
with a 16% by mass gelatin concentration.

when imaged for this reconstruction. The independently measured values of the Young’s

modulus were 0.0193 ± 0.0018MPa for the background and 0.0387 ± 0.0020MPa for the

inclusion and stand-off layer. For this reconstruction the recovered inclusion modulus

value is 1.6145 ± 0.1214 to a background modulus value of 1.0022 ± 0.0083. The average

stand-off modulus value is 1.9597 ± 0.2660. For this reconstruction the inclusion volume

was 0.3271cm3 compared to a reference volume of 0.3931cm3. The average strain in the

inclusion and in the background was −0.0104± 0.0008 and −0.0136± 0.0015, respectively.

Figures 6.13(a) and (b) show the 3D reconstructed modulus images in the x-y plane and

the x-z plane sliced through the center of the inclusion. Figures 6.14(a) and (b) show the

x-y slice of the reconstructed modulus image next to the same slice of the axial strain

image (εyy). Figure 6.15 shows an axial line of the modulus distribution through the center

of the inclusion.
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Figure 6.13: (a) x-y slice of 3D modulus reconstruction for a large inclu-
sion with a 12% by mass gelatin concentration through the center of the
inclusion. (b) x-z slice of 3D modulus reconstruction for this same inclusion
through the center of the inclusion.

(a) (b)

Figure 6.14: (a) x-y slice of modulus reconstruction for a medium sized
inclusion with a 12% by mass gelatin concentration. (b) x-y slice of the
axial strain (εyy) for this same inclusion.
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Figure 6.15: Axial line of the modulus distribution for a medium sized
inclusion with a 12% by mass gelatin concentration.

6.4.5 Inclusion Five

The fifth inclusion imaged was a smaller inclusion than in the previous section, but at

the same contrast. The inclusion size was made to be 4.80mm in diameter and 4.80mm

in height. The background was made with an 8% by mass concentration of gelatin and

the inclusion was made with a 12% by mass concentration of gelatin. The stand-off in

this phantom was made with a 16% by mass concentration of gelatin and was positioned

at the bottom of the phantom when imaged for this reconstruction. The independently

measured values of the Young’s modulus were 0.0228 ± 0.0011MPa for the background,

0.0431±0.0012MPa for the inclusion and 0.0584±0.0027MPa for the stand-off layer. For

this reconstruction the recovered inclusion modulus value is 1.5461±0.0959 to a background

modulus value of 1.000±0.0002. The average stand-off modulus value is 2.6169±0.3353. For

this reconstruction the inclusion volume was 0.1047cm3 compared to a reference volume of

0.0869cm3. The average strain in the inclusion and in the background was −0.0122±0.0004

and −0.0177 ± 0.0012, respectively. Figures 6.16(a) and (b) show the 3D reconstructed

modulus images in the x-y plane and the x-z plane sliced through the center of the inclusion.

Figures 6.17(a) and (b) show the x-y slice of the reconstructed modulus image next to the
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Figure 6.16: (a) x-y slice of 3D modulus reconstruction for a small inclu-
sion with a 12% by mass gelatin concentration through the center of the
inclusion. (b) x-z slice of 3D modulus reconstruction for this same inclusion
through the center of the inclusion.

same slice of the axial strain image (εyy). Figure 6.18 shows an axial line of the modulus

distribution through the center of the inclusion.

6.4.6 Inclusion Six

The sixth inclusion imaged was made such that the contrast with the background

was even lower than that of the previous two phantoms. The inclusion size was made to

be 7.94mm in diameter and 7.94mm in height. The background was made with an 8%

by mass concentration of gelatin and the inclusion and stand-off layer were made with

a 10% by mass concentration of gelatin. The stand-off in this phantom was positioned

at the bottom of the phantom when imaged for this reconstruction. The independent

mechanical test showed no significant difference in the measured Young’s moduli between

the inclusion and background. The values were 0.0184 ± 0.00062MPa for the background

and 0.0187 ± 0.0041MPa for the inclusion and stand-off layer. For this reconstruction

the recovered inclusion modulus value is 1.2771 ± 0.0557 to a background modulus value



103

(a) (b)

Figure 6.17: (a) x-y slice of modulus reconstruction for a small inclusion
with a 12% by mass gelatin concentration. (b) x-y slice of the axial strain
(εyy) for this same inclusion.
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Figure 6.18: Axial line of the modulus distribution for a small inclusion
with a 12% by mass gelatin concentration.
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Figure 6.19: (a) x-y slice of 3D modulus reconstruction for a medium sized
inclusion with a 10% by mass gelatin concentration through the center of
the inclusion. (b) x-z slice of 3D modulus reconstruction for this same
inclusion through the center of the inclusion.

of 1.0021 ± 0.0053. The average stand-off modulus value is 1.5695 ± 0.1049. For this

reconstruction the inclusion volume was 0.3810cm3 compared to a reference volume of

0.3931cm3. The average strain in the inclusion and in the background was −0.0155±0.0009

and −0.0184 ± 0.0015, respectively. Figures 6.19(a) and (b) show the 3D reconstructed

modulus images in the x-y plane and the x-z plane sliced through the center of the inclusion.

Figures 6.20(a) and (b) show the x-y slice of the reconstructed modulus image next to the

same slice of the axial strain image (εyy). Figure 6.21 shows an axial line of the modulus

distribution through the center of the inclusion.

6.4.7 Inclusion Seven

The seventh and last inclusion imaged was made such that the contrast with the

background as low as the previous phantom but a smaller smaller size. The inclusion size

was made to be 4.80mm in diameter and 4.80mm in height. The background was made with

an 8% by mass concentration of gelatin and the inclusion and stand-off layer were made with
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Figure 6.20: (a) x-y slice of modulus reconstruction for a medium sized
inclusion with a 10% by mass gelatin concentration. (b) x-y slice of the
axial strain (εyy) for this same inclusion.
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Figure 6.21: Axial line of the modulus distribution for a medium sized
inclusion with a 10% by mass gelatin concentration.
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Figure 6.22: (a) x-y slice of 3D modulus reconstruction for a small inclu-
sion with a 10% by mass gelatin concentration through the center of the
inclusion. (b) x-z slice of 3D modulus reconstruction for this same inclusion
through the center of the inclusion.

a 10% by mass concentration of gelatin. The stand-off in this phantom was positioned at

the bottom of the phantom when imaged for this reconstruction. Again, the independent

mechanical test showed no significant difference in the measured Young’s moduli. The

values were 0.0184 ± 0.00062MPa for the background and 0.0187 ± 0.0041MPa for the

inclusion and stand-off layer. For this reconstruction the recovered inclusion modulus

value is 1.3624 ± 0.0714 to a background modulus value of 1.0010 ± 0.0047. The average

stand-off modulus value is 2.0528 ± 0.2291. For this reconstruction the inclusion volume

was 0.0499cm3 compared to a reference volume of 0.0869cm3. The average strain in the

inclusion and in the background was −0.0145± 0.0002 and −0.0186± 0.0019, respectively.

Figures 6.22(a) and (b) show the 3D reconstructed modulus images in the x-y plane and

the x-z plane sliced through the center of the inclusion. Figures 6.23(a) and (b) show the

x-y slice of the reconstructed modulus image next to the same slice of the axial strain

image (εyy). Figure 6.24 shows an axial line of the modulus distribution through the center

of the inclusion.
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Figure 6.23: (a) x-y slice of modulus reconstruction for a small inclusion
with a 10% by mass gelatin concentration. (b) x-y slice of the axial strain
(εyy) for this same inclusion.

0 20 40 60
1

1.5

2

2.5
Inclusion Seven

µ

y (mm)

(a)

Figure 6.24: Axial line of the modulus distribution for a small inclusion
with a 10% by mass gelatin concentration.
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Inclusion Size

Inclusion Gel
Concentration Large (1.28cm3) Medium (0.393cm3) Small (0.0869cm3)

Cref = 3.241 ± 0.280 Cref = 3.241 ± 0.280 Cref = 2.561 ± 0.171
16% Crec = 2.234 ± 0.228 Crec = 2.087 ± 0.203 Crec = 2.041 ± 0.211
by mass Cstr = 1.566 ± 0.124 Cstr = 1.284 ± 0.138 Cstr = 1.261 ± 0.192

γsz = 1.18 γsz = 1.163 γsz = 1.10

Cref = 2.005 ± 0.215 Cref = 1.890 ± 0.105
12% NA Crec = 1.611 ± 0.122 Crec = 1.546 ± 0.096
by mass Cstr = 1.308 ± 0.176 Cstr = 1.451 ± 0.109

γsz = 0.832 γsz = 1.205

Cref = 1.016 ± 0.225 Cref = 1.016 ± 0.225
10% NA Crec = 1.251 ± 0.055 Crec = 1.361 ± 0.072
by mass Cstr = 1.187 ± 0.119 Cstr = 1.283 ± 0.132

γsz = 0.969 γsz = 0.574

Table 6.1: Reconstructed modulus contrast accuracy reported for the in-
clusion sizes and gelatin concentrations.

6.5 Discussion

In this study, three different inclusion sizes and modulus contrasts were investigated

and reconstructed. They were selected to identify the spacial and contrast resolution of

these techniques. The modulus contrasts used lie at the low extreme of clinical interest.

The smallest inclusion used is at the limit of the manufacturing capabilities and at the

lower limit of current clinical interest. The values of the recovered contrasts in the inclu-

sion and the expected values for each inclusion type are shown in Table 6.1. Also shown

is the ratio of the reconstructed inclusion volume to the actual inclusion volume. In Table

6.1, Cref is the reference modulus contrast of the independently measured gelatin samples

for the inclusion relative to the background, Crec is the recovered or reconstructed contrast

reported for the inclusion relative to the background, Cstr is the strain contrast measured

in the background relative to the inclusion and γsz is the ratio of the reconstructed inclu-

sion volume relative to the reference volume of the inclusion when it was made.

The reconstructed inclusion contrasts tend to be lower than the contrasts reported
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by independent mechanical testing, except for those at the lowest contrast. The apparent

systematic contrast reduction is due, at least in part, to the averaging of the modulus value

in the volume calculated from the half maximum. Furthermore, the role of the regulariza-

tion in the displacement estimation and the inversion would cause the reconstructions to

under-predict the actual modulus value of the underlying material. For the lowest contrast

inclusions the discrepancy between the reference contrast and the reconstructed contrast

is likely due to error in the reference contrast. The independent mechanical tests suggest

that no contrast should be seen in these inclusions. This is counter to the design of the

experiment, in which the concentrations are approximately 8% and 10%. Gelatin stiffness

is known to have a high variabililty depending on the length of time between setting and

testing as well as the temperature at which it was tested (Hall et al., 1996). This fact, in

conjunction with the variability in the mechanical testing itself, is likely to have caused

the lack of measurable contrast in the independent tests. The fact that the inclusions were

resolved in the reconstructed modulus images is highly suggestive that some contrast does

exist between these gelatin concentrations.

The volume of the reconstructed inclusion relative to its actual volume seems to vary

unpredictably, but in nearly all cases is within ± 1
2voxel size in the linear dimensions of the

sample. It seems to be most accurate for the medium sized inclusions and highest contrast.

Certainly the volume of the reconstructed inclusion will depend on the somewhat arbitrary

selection of the inclusion boundary. Here the inclusion perimeter was chosen at the half

maximum of the inclusion modulus value. Additionally, regularization plays a role in both

the resolved contrast of an inclusion and the shape of the boundaries of the inclusion.

The “strength” of the regularization term in the functional is determined not only by the

magnitude of the α parameter but also the size and contrast of the underlying modulus

distribution. Thus, regularization will tend to play a larger role in modulus distributions

with higher contrasts and larger sizes. Since the underlying modulus distribution is un-

known in practice, this remains a challenge for this type of reconstruction. It should also be

noted that the presence of the surrounding artifacts is more obvious for smaller inclusion
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Inclusion Size

Inclusion Gel
Concentration Large (1.28cm3) Medium (0.393cm3) Small (0.0869cm3)

16% Cref = 3.241 ± 0.280 Cref = 3.241 ± 0.280 Cref = 2.412 ± 0.237
by mass Crec = 2.087 ± 0.156 Crec = 1.825 ± 0.055 Crec = 2.852 ± 0.349

12% NA Cref = 2.005 ± 0.215 Cref = 2.412 ± 0.237
by mass Crec = 2.484 ± 0.224 Crec = 2.950 ± 0.186

10% NA Cref = 1.016 ± 0.225 Cref = 1.016 ± 0.225
by mass Crec = 1.626 ± 0.076 Crec = 1.282 ± 0.088

Table 6.2: Reconstructed modulus contrast accuracy, using mixed bound-
ary conditions, and reference contrast for the stand-off layer reported for
the inclusion sizes and gelatin concentrations.

contrasts. It is possible that increasing the regularization in these cases, to try and further

minimize the artifacts, may cause the low contrast inclusion to be lost.

Table 6.2 shows the reference contrast values Cref and recovered modulus contrast

Crec in the stand-off defined by those values above its half maximum. The accuracy of the

stand-off layer seems to depend on the location when imaged (most likely a consequence

of the acoustic window) as well as the size and contrast of the modulus distribution as a

whole. The assumed zero normal traction boundary conditions are more accurate near the

bottom of the phantom then near the top. Thus when the stand-off layer is on the bottom,

its contrast is systematically increased.

From a purely imaging standpoint, it is promising that each reconstruction clearly re-

solves the inclusion. In each case, the location and size of the inclusion are clear. It should

be noted that the contrasts and sizes of the inclusions created in this study are in the

lower limit of what can be expected in a clinical setting. In comparison to strain images

shown, which are the images typically used in common elastography practice, the modulus

images show a much clearer boundary and contrast of the inclusion and have a much lower

presence of artifacts in the images.
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Chapter 7

Tomosynthesis Elasticity Imaging

7.1 Introduction

Although the elasticity imaging methodology is well suited for use in conjunction with

US image, it is not limited to US systems. The ultrasound imaging protocol proposed in

this thesis provides a method of obtaining elasticity images, using an ultrasound scanner,

within the confinement setup of a tomosynthesis, x-ray mammography system. In this

way one is able to create ultrasound images, elasticity images and tomosynthesis which

are aligned and coregistered. It may also be possible, however, to create elasticity images

directly from sets of the three dimensional tomosynthesis images. In the following section,

the feasibility of such a technique is discussed as well as the advantages and disadvantages

of using the tomosynthesis images for elastic inversions over the ultrasound system.

7.1.1 Tomosynthesis Imaging: Background

Conventional x-ray mammography techniques involve passing x-ray beams through

breast tissue and detecting the intensity of the beams exiting the tissue with either screen-

film detectors or digital detectors (See Figures 1.1 and 7.1). Mathematically, the resulting

transmission intensity of the image is known to be a fraction of the initial x-ray intensity

which is related to the integral of the attenuation of the material through which the x-ray

beam passed. For a given pixel, the governing equation for the image intensity is:

I(x, y) = I0 exp

Receiver
∫

Source

−µ(x, y, z) ds, (7.1)
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where I0 is the initial beam intensity, µ(x, y, z) is the three dimensional function of x-ray

attenuation and s is the propagation distance of the x-ray beam through the attenuating

material and normal to the imaging detector (Chen and Ning, 2003). The attenuation

of the tissue is a quantity describing its intrinsic ability to scatter and absorb x-rays as

they pass through it. It is highly dependent on its molecular composition and density

(Macowski, 1983). The breast is typically compressed to reduce the x-ray exposure level

necessary to obtain detectable intensities and to limit the variability of materials in a given

beam path length. The resulting image created by the detector is a two dimensional pro-

jection of a three dimensional breast. This can lead to feature overlap and areas of blurred

resolution.

Tomographic techniques result in a three dimensional image of x-ray attenuation and

partially alleviate feature overlap problems. They also add the distinct advantage of depth

localization and single slice evaluation (Dobbins and Godfrey, 2003). The idea of tomog-

raphy is to take several low dose projection images of the subject, each at a different angle

and orientation relative to the subject. The images are acquired using a digital detector

and a computer algorithm reconstructs a three-dimensional image based on the projections.

Computerized tomography (CT) is a popular example of this technology. CT images are

constructed from sequential projections of a beam through a subject that is rotated or

scanned over a plane of interest. The resulting projection intensities are inverted to create

an image slice of the x-ray attenuation.

Tomosynthesis imaging is a similar technique, which acquires a limited number of

two-dimensional projections taken at orientations confined in proximity. As a result, the

reconstructed images have a lower spatial resolution in the average direction of the x-ray

beam but are still able to eliminate overlap and blurred structure. A graphical represen-

tation of conventional mammography and tomosynthesis can be found in Figures 1.1 and

7.1(b). The collaborators of this work at Massachusetts General Hospital (MGH) use a

tomosynthesis mammography system and investigate its potential for incorporating it into

standard mammography protocols. Although many different computer algorithms exist for
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(a) (b)

Figure 7.1: (a) Tomosynthesis imaging system. (b) Tomosynthesis
schematic (Adapted from Dobbins and Godfrey, 2003).

reconstructing three dimensional image volumes from projections, the group at MGH has

developed a maximum likelihood expectation maximum algorithm for their reconstructions

(Wu et al., 2003). This is an iterative algorithm based on the probability of producing the

acquired projections from a particular image volume. There are 15 distinct projections

taken over a 50o range relative to the subject and detector. The center of the image angles

is exactly perpendicular to the plane of the detector as shown in Figure 7.1(b).

The reconstructed image resolution will depend not only on the detector resolution

but will be limited by the 15 images and the 50o angle span. The direction perpendicular

to the detector (z) will have the lowest resolution of the three dimensional reconstruction.

The resolution of the other directions (x and y) is dependent mainly on the detector reso-

lution.

For tomosynthesis imaging, the breast is still held in compression. This not only reduces

the beam path length but also acts to stabilize the patient, minimizing movement during
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Figure 7.2: Typical tomosynthesis image slice.

image acquisition. The dose of each of the 15 projections is lowered such that the total

x-ray dose is equivalent to that of two typical mammography images, which is the current

minimum number of images taken for clinical breast screening examinations (Wu et al.,

2003). Figure 7.2 shows a typical image slice taken from a reconstruction produced by the

group at MGH. The density of glands, blood vessels and small scale tissue structure which

make up the features of the image will determine the ability to measure the displacements

from these reconstructions.

7.2 Phantom Construction

As in ultrasound imaging, it is important to develop x-ray phantoms which can be

used to test the techniques used for elasticity imaging. For these tomosynthesis phantoms,

x-ray absorption is spatially modulated by adding chalk particles. Chalk (CaCO3) was
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chosen because it is a strong absorber of x-rays, due to calcium’s high molecular weight.

The particles are suspended in the gelatin to introduce features to the phantom, mimicking

attenuation differences found between blood vessels, glandular tissue, calcium deposits and

the background tissues of the breast. The size and density of the chalk particles were

made to qualitatively mimic feature size and density found in typical breast images. Chalk

concentration was adjusted to approximate overall x-ray attenuation in breast tissue, 2%

by mass (Homolka et al., 2002; Polletti et al., 2002). These phantoms were cuboid or brick

shaped, but larger than the ultrasound phantom, typically 6-12cm in length to 8cm in

height. Inclusions were also added to these phantoms by altering gelatin concentration in

discrete areas of the phantom. The inclusions were typically cylindrical. Figure 7.3 shows

the top view of a sliced tomosynthesis phantom with an inclusion. A step by step protocol

for making elastic tomosynthesis phantoms can be found in Appendix A.

Figure 7.3: Tomosynthesis phantom sliced through the cylindrical inclu-
sion.
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Figure 7.4: Tomosynthesis imaging setup.

7.3 Imaging Protocol

The phantom used in the tomosynthesis experiments is held at the top by a compression

plate, which is transparent to x-rays, and at the bottom by the x-ray detector. A schematic

of the experimental setup is shown in Figure 7.4. The phantom is held in compression

while the first set of 15 images is acquired. Then a compressive strain is applied by the

top plate (∼ 10-15%) and a second set of images is acquired. A larger strain is required

for the tomosynthesis imaging, compared with the ultrasound, due to characteristics of

the tomosynthesis images (see Section 3.2). The reconstructed images have a voxel size of

1000µm× 100µm× 100µm. The high resolution directions are in the plane of the detector

(x and y). The resulting image dimensions are about 40 × 1000 × 1000 pixels in the z, x

and y directions, respectively. In some experiments the top or bottom of the phantom was

lubricated with a water based gel (e.g. ultrasound coupling gel) to facilitate slipping at the

boundaries. Figure 7.5 shows a slice of a reconstructed x-ray image through the middle of

the phantom and parallel to the detector plate.
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Figure 7.5: Tomosynthesis phantom image slice through the cylindrical
inclusion.

7.4 Simultaneous Registration And Reconstruction

As one would expect, the characteristics of the tomosynthesis images are very different

from those of the ultrasound images. It is clear from Figure 3.2 that the frequency dis-

tribution of signal in the reconstructed tomosynthesis images is much lower than that of

ultrasound images. The signal to noise ratio of these images is much lower as well. Addi-

tionally, the tomosynthesis images tend to have artifacts in them which are characteristic

of the imaging system itself and relatively independent of the tissue being imaged. How-

ever, the tomosynthesis system can image tissue, or phantoms, all the way to the tissue’s

boundaries. In the case of the cuboidal phantoms, the tomosynthesis system images all six

borders of the phantom, including the four sides which are known to be traction free. In

actual breast tissue, the images capture the breast surfaces adjacent to the compression

plate and detector, the traction free borders on the exterior of the breast, and interior

breast at the chest wall.

Due to the high noise considerations of processing the tomosynthesis data, a third algo-

rithm was developed. This algorithm is called simultaneous image registration and elastic
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modulus reconstruction (SRR). It is an image registration code which constrains the set

of possible displacements by the equations of linear, incompressible elasticity with an un-

known shear modulus distribution. The optimization seeks a shear modulus distribution

for the underlying tissue. This algorithm is closely related to the two algorithms used for

the ultrasound image reconstructions except the step of measuring a displacement field

becomes implicit to the code. The three dimensional version of this algorithm written for

this work is based on a two dimensional algorithm developed by Gokhale et al., 2004.

The optimization functional is of the following form:

π(µ) =
1

2

∫

Ω

(I1 − I2(u)))2 dΩ + A(w,u ;µ) − (w,h)Γh
+ R[µ]. (7.2)

Here, R[µ] denotes a regularization term, which can be either the L2 norm or the TVD norm

described in Section 4.2.3. A(·, ·; ·) denotes the bilinear form of the linear, incompressible

elasticity equations defined in equations (4.8) and (4.9). This functional is minimized using

the same quasi-Newton algorithm described in Section 4.2. To calculate the gradient, the

functions of u, µ and their variants are discretized with the finite element interpolation

functions defined in equations (4.12)-(4.14). The adjoint method is again utilized to effi-

ciently calculate the gradient. In this formulation the discretized gradient vector is still

equivalent to equation (4.24)(prior to the addition of the regularization), however, the wh

is now found by solving the following equation:

A(δuh,wh ;µh) =

∫

Ω

(I1 − I2(u
h))∇I2(u

h) · δuh dΩ ∀δu ∈ V. (7.3)

All other relevant computational methods (e.g. image interpolation, pressure integration,

parallelization, solver, etc.) are equivalent to those methods outlined in Chapters 3 and 4.

Given the choice of model and reconstruction parameters, the only other information

needed prior to running this algorithm is the knowledge of the boundary conditions. In

the case of the tomosynthesis system, it is fortuitous that much of the image boundary

conditions are traction free because traction free boundaries require no prior measurement.
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Additionally, the boundary conditions of those surfaces parallel to the detector plate and

the compression plate may be known, without image measurement, in certain instances.

For example, if those surfaces were designed to be non slip, the displacement at the com-

pression plate surface would be zero in the shear directions and a constant number equal

to the applied compressive displacement. The displacement at the detector plate surface

would be zero everywhere. Otherwise, if the tissue or phantom displaces at the boundaries

and it cannot be assumed traction free, the displacements must be measured via some

other image registration method, prior to running this algorithm.

7.5 Initial Results

To determine whether reconstructed shear modulus reconstructions were feasible using

the tomosynthesis images, a phantom was constructed (see Section 7.2). This phantom was

approximately 12cm in length (y), 6cm in depth (x) and 8cm in height (z). The phantom

was created with an inclusion, in the center of this phantom, which was 1.9cm in diameter

and 1.9cm height with a gelatin concentration such that the contrast to the background

was approximately equal to 3.5

The boundary conditions on the phantom surfaces parallel to the detector and the

compression plate were not fixed. The in-plane displacements on these boundaries were

measured using the image registration algorithm discussed in Section 3.4. The parameters

used for the registration were chosen as those which resulted in a, qualitatively perceived,

smooth result. The choice of α2 for this measurement was zero. The remaining boundaries

were prescribed Neumann conditions with h = 0.

These boundary conditions were then used as input to the SRR algorithm to recon-

struct the elastic modulus. It should be noted that the images themselves were high pass

filtered prior to being registered to eliminate some of the image artifacts inherent in the

tomosynthesis images. The images were then squared to amplify the magnitude of the

chalk induced features. The resolution of the resulting reconstruction was chosen to be
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approximately 1.7mm × 3mm × 8mm in the y, x and z directions, respectively. The reg-

ularization of µ was chosen to be the L2 norm and the magnitude of αa was chosen as

the value which resulted in a, qualitatively perceived, smooth reconstruction. Figure 7.6

shows the reconstructed modulus distribution sliced through the inclusion in the x-y and

z-y planes (the reconstructions were up sampled for presentation).

(a) (b)

Figure 7.6: (a) Tomosynthesis modulus reconstruction sliced through the
inclusion in the x-y plane. (b) Reconstruction sliced through the inclusion
in the z-y plane.

7.6 Discussion

The results presented in Figure 7.6 represent the only reasonable reconstruction re-

sulting from several tomosynthesis phantoms. While investigating the feasibility of this

technique, it was found that creating phantoms which resulted in a homogeneous and high

“enough” feature density proved extremely difficult. Therefore, only a limited number

of phantoms created resulted in reasonable tomosynthesis images. Additionally, the vari-

ability in the tomosynthesis images for a given phantom under varying compression levels

combined with the limited knowledge of the noise contributions to the tomosynthesis im-

ages in general led to the poor success rate in these reconstructions. However, prior to

investigating reconstructions, it was found that the tomosynthesis images do have a high

enough signal to noise ratio to expect reasonable displacement measurements for the phan-



121

tom as a whole, at least for a relative large resolution and applied strain level (see Section

3.2). This evidence, combined with the initial result shown here, suggests that further

investigation into the noise sources in the tomosynthesis images and an improved phantom

making protocol could result in consistent tomosynthesis elastic modulus images.
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Chapter 8

Discussions

8.1 Summary

This thesis has motivated the use of three dimensional elasticity imaging as a possible

method to improve the current practices in breast cancer management. Elasticity imaging

is a novel technique which takes advantage of a tissue’s altered mechanical properties, in-

dicative of certain pathologies, as a method to identify and diagnose breast tumors. The

elastic imaging methodology proposed in this work is an inexpensive adjunct to imaging

technologies already commonly used in mammography. In particular, elasticity imaging

can be added as an adjunct to ultrasound imaging to produce images of a tissue’s mechan-

ical properties. The images created with this technique can reveal information about the

underlying tissue which is distinct from the information extracted from ultrasound alone.

In order to infer or quantify a tissue’s mechanical properties, an appropriate mathemat-

ical model must be chosen. In this work, a three dimensional, single phase, linear elastic,

incompressible model was proposed to quantify the shear elastic modulus of breast tissue.

The assumptions of this model were presented and justified in Chapter 2. Once an ap-

propriate model is chosen, there are two necessary components to the process of elasticity

imaging. The first is a method to measure tissue deformation from a set of images. The

second is a method to use the measured displacement and the mathematical model to infer

the relevant mechanical properties of the underlying tissue.

Chapter 3 presents and validates a novel method to measure the displacement from sets

of ultrasound images of breast tissue or breast tissue mimicking materials at two different

deformation states. The novel features of this method include the use of finite element
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interpolation, the use of global information for each nodal estimation and the systematic

incorporation of prior knowledge to stabilize the estimated displacements.

Chapter 4 presents a method to measure the underlying shear modulus of that tissue

from the measured displacements up to a multiplicative constant. The novel features of

this method include the use of an iterative quasi-Newton method to quantify mechanical

properties from a measured displacement field, the use of the adjoint method to efficiently

calculate the gradient, and the use of a stand-off layer for calibration purposes.

Chapter 5 discusses issues concerning the uniqueness of the measured tissue properties,

and the sensitivity/insensitivity of the displacements to the modulus distribution.

The algorithms and methodologies presented here were then evaluated in a study to

create shear modulus images from tissue mimicking phantoms created to specifically mimic

acoustic and mechanical behavior of tissue. The phantom properties were calibrated by in-

dependent mechanical tests. Inclusions mimicking breast tumors from 4mm-12mm in size

were evaluated. These had stiffness contrasts close to one to about three. The resulting

modulus images of these phantoms were presented alongside strain images for comparison

of the current techniques used in elastography.

Finally, in Chapter 7, a proposed methodology is presented, utilizing the same model

and similar techniques, to quantify mechanical properties for tissue imaged with x-ray to-

mosynthesis. The advantages and disadvantages of this technique compared to the use of

ultrasound images are discussed.

8.2 Discussion

The displacement estimation technique presented here is a three dimensional, iterative

Gauss-Newton intensity matching algorithm which tracks feature motion between image

pairs. The method uses a finite element interpolation, which allows for distorted elements

and nonuniform meshes. This is in contrast to typical feature tracking algorithms common

in elastography, utilizing rigid block matching methods which tend to result in noisy dis-
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placement measurements. The finite element interpolation allows for the implementation

of regularization, to minimize noise in the measurements, as well as an incompressibility

constraint to penalize non-volume conserving deformations. The results of Chapter 3 in-

dicate that incompressibility constraint helps to decrease the noise in the solution in all

directions. As the incompressibility parameter is increased, the noise decreases up to a

point, after which there appears to be no benefit from further increasing the α2 value. In-

creasing the regularization parameter (α1), on the other hand, improves the displacement

estimates to a point after which the accuracy of the estimate begins to decline.

One complication arising from regularization is the introduction of systematic artifacts

in the displacements, which become increasingly prevalent with increasing α1. These ar-

tifacts are restricted to boundaries, however, and the interior of the measurement domain

remains relatively accurate. Suggested future improvements to this algorithm are a regu-

larization scheme which will minimize or eliminate the presence of these artifacts. Some

possible directions, in that vain, are to allow the regularization parameter α to vary spa-

tially. Alternatively one could determine an alternate norm to use for the regularization,

however, this may necessitate higher order interpolation functions for the displacement

estimates.

Chapter 3 also shows that image interpolation accuracy is the primary limitation of the

displacement accuracy. As technological progress diminishes concerns of computational

cost, however, the displacement estimation can improve with higher order interpolation

schemes and more finely sampled images. The image integration is the limiting factor in

terms of computational speed of this algorithm.

The shear modulus inversion algorithm, presented in Chapter 4, is a three dimensional

quasi-Newton algorithm which minimizes the difference between a measured displacement

field and a displacement field predicted by a linear elastic, incompressible solid model. The

algorithm seeks to find the shear modulus distribution which minimizes this difference.

The choice of Poisson’s ratio used in this model was found to have little effect on the re-

sulting modulus reconstruction, for materials with bulk and shear moduli in the range of
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soft tissue.

Chapters 4 and 5 also discuss the complications which arise from the choice of boundary

conditions in the optimization problem. For now, this remains as one of the most important

issues affecting the accuracy of the result. Imposing all displacement boundary conditions

leads to insensitivity at the boundaries, and an inability to resolve particular modulus dis-

tributions like the stand-off layer. The mixed boundary conditions, in which the normal

tractions on the vertical surfaces of the phantom are assumed to be zero, can resolve the

modulus geometries such as a stand-off. Any inaccuracy in the assumed mixed boundary

conditions, however, introduces modulus artifacts into the resulting images. These arti-

facts can be controlled by regularization, to a certain extent, but clearly this solution is

unsatisfactory.

The idea of using a stand-off layer for calibration purposes is untenable at this stage

until the issue of the boundary conditions is resolved. Future directions for this algorithm

will be to further understand the relationship between the boundary conditions and the ac-

curacy of the reconstruction. In particular, the use of traction boundary conditions shows

promise, but as yet there exists no method to measure the tractions on the boundaries.

The addition of a second measured displacement field should be considered.

The US phantom study shows the ability of these algorithms to recover modulus im-

ages, using the ultrasound images and experimental protocol outlined in Chapter 6. The

accuracy of the size and contrast of the reconstructed inclusion seems to vary depending on

the size and contrast of the actual inclusion. The reconstructed modulus value tends to un-

derestimate the reference. The types of artifacts seen in the reconstructed modulus images

closely resemble those seen in the simulated perfect data from Chapter 4. These include

an artificial stiffening at the top or bottom of the reconstruction opposite the stand-off

layer, and a drop in the expected modulus value between the stand-off and the boundaries

surrounding it. These artifacts are due to the zero normal traction assumption, and the

drop in the modulus value is expected to be caused by insensitivity near those surfaces.

These observations again point to the critical role of the assumed boundary conditions in
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the reconstruction.

The choice of regularization used in the phantom study was lower than the optimal

value found in the artificial study. The reason for this was that the magnitude of noise

in the simulated study was chosen according to the noise estimations made in Chapter 3.

A large portion of the error in the measurements of Chapter 3 are due to the boundary

artifacts, which only effect the periphery of domain. Therefore interior noise in the sim-

ulated data is expected to be significantly larger than in the real data. Additionally, the

strength of the reconstruction is affected by the size and contrast of the actual modulus

distribution. For the phantom experiments, the actual modulus distributions had large

variations in size and shape relative to each other. As is clear in Figure 4.7, the decay in

modulus accuracy is less for a lower choice of α. Thus a lower α was chosen at 1× 10−4 in

an effort to accurately reconstruct all phantom inclusions.

The modulus images of Chapter 6 show a clear advantage over strain images in the

ability to recover the inclusion contrast and size. In addition, the modulus images do not

suffer from the strain artifacts seen in these experiments. Of course, there are modulus

artifacts present in the reconstructions, however their magnitude and size do not occlude

the inclusion in any reconstruction.

The ability of this technique to resolve inclusions in these phantom studies is strong

evidence supporting the continued evaluation of the use of shear modulus images in a clin-

ical setting. To that end, a future direction of this project will be the implementation of

three dimensional ultrasound elasticity imaging in the context of an x-ray tomosynthesis

mammography regime. Figure 8.1 suggests a possible clinical setup which can facilitate

this study. Here the ultrasound is scanned through the paddle used to compress the breast

during a clinical x-ray exam. This paddle provides a method to apply a deformation to

the tissue. The resulting ultrasound and hence elasticity images could be easily registered

with the x-ray images if the position of the ultrasound transducer is known relative to the

x-ray detector (i.e. scanned from a fixed position on the imaging system).

The feasibility of using x-ray tomosynthesis images to measure mechanical proper-
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Figure 8.1: Three dimensional ultrasound imaging setup for clinical elas-
ticity imaging.

ties of breast tissue has also been presented. Using tomosynthesis has the advantages of

imaging the entire breast, including the boundaries which are known to be traction free.

Additionally, using elasticity imaging as an adjunct to tomosynthesis would result in mod-

ulus images which are inherently registered with the tomosynthesis images themselves.

While the result presented in Chapter 7 appears promising, further understanding of the

noise and image artifacts of the tomosynthesis system is recommended before proceeding

with a clinical investigation. Finally, processing tomosynthesis images of a breast would

likely benefit from an irregular finite element mesh, with element sizes that vary with local

image feature density. The finite element based algorithms developed here can, by design,

accommodate such meshes.

8.3 Conclusions

The elasticity imaging methodology proposed in this thesis is a viable method to

measure the mechanical properties of inclusions in tissue phantoms and potentially the

mechanical properties of breast lesions in vivo. It warrants clinical evaluation and further

research into the relationship between tissue properties and diseased states.
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Appendix A

Phantom Making Protocol

A.1 Ultrasound

The following steps are for each part of the phantom. That is if there are multiple

layers to the phantom, depending on the mold and location of the inclusions, each layer can

be creating as follows. Layers will adhere to each other well, however, to avoid mechanical

discontinuities slightly melt hardened layers with warm water before pouring an adjacent

layer.

1. Material Concentrations by Mass:

8-16% Gelatin (Porcine, ∼ 300 or ∼ 175 bloom)

0.2% Methyl Paraben (Methyl 4-Hydroxybenzoate, Preservative)

2.0% Silica

89.8-82.8% Distilled, Deionized Water

+10% Extra Distilled, Deionized Water (To account for losses)

—————————————————————–

110% Total

As a rule, make approximately 50-100 grams more phantom mixture than required

at each step.

2. Measure out desired amounts of materials. Place silica in a glass petri dish and add

about 10ml of measured water. Place dish in a degassing chamber and degas until

the addition to the gelatin.
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3. Put remaining water in a degassing flask with a magnetic stirrer and simultaneously

degas and heat the beaker. Degas for ∼ 5 minutes and bring to a temperature of

approximately 70 degrees Celsius. Once the water is at the maximum temperature,

begin stirring the water rapidly and add the methyl paraben. After the methyl

paraben has dissolved, continue stirring rapidly and add the gelatin. Begin to degas

the mixture as the gelatin is dissolving, being careful not to aspirate the foam which

is created.

4. Once the gelatin has dissolved, turn off the heat and slow the stirring but continue to

degas the mixture. As the mixture is cooling add the degassed silica/water mixture

and continue to degas the entire mixture. The degassing may need to be done in

several steps. After the mixture is degassed and cooled such that water is no longer

evaporating from the mixture, transfer mixture from degassing flask to a beaker and

continue to stir.

5. Place the beaker in a cool water bath and continue to stir. Gradually bring down the

temperature of the water bath while stirring the mixture. The minimum temperature

required before the mixture is ready to pour depends on the gelatin concentration

and the silica concentration. Typically, a few degrees above room temperature is

enough to ensure minimal settling of the silica particles to the bottom of the mold.

When the mixture has sufficiently cooled, pour it into the desired mold.

6. After the phantom has been poured, place the mold into the fridge and refrigerate

for several hours.
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A.2 Tomosynthesis

The following steps are for each part of the phantom. That is if there are multiple

layers to the phantom, depending on the mold and location of the inclusions, each layer can

be creating as follows. Layers will adhere to each other well, however, to avoid mechanical

discontinuities slightly melt hardened layers with warm water before pouring an adjacent

layer.

1. Material Concentrations by Mass:

8-16% Gelatin (Porcine, ∼ 300 or ∼ 175 bloom)

0.2% Methyl Paraben (Methyl 4-Hydroxybenzoate, Preservative)

2.0% Chalk Particles (∼ 0.6-1.2mm in diameter)

89.8-82.8% Distilled, Deionized Water

+10% Extra Distilled, Deionized Water (To account for losses)

—————————————————————–

110% Total

As a rule, make approximately 50-100 grams more phantom mixture than required

at each step.

2. Crush chalk with a mortar and pestle such that largest chalk pieces are just bigger

than upper limit of the diameter. Use appropriate sieve sizes to sort out chalk pieces.

Continue process until desired amount of particles are collected. Measure desired

amount of other materials.

3. Put water in a degassing flask with a magnetic stirrer and simultaneously degas and

heat the beaker. Degas for ∼ 5 minutes and bring to a temperature of approximately

70 degrees Celsius. Once the water is at the maximum temperature, begin stirring the

water rapidly and add the methyl paraben. After the methyl paraben has dissolved,
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continue stirring rapidly and add the gelatin. Begin to degas the mixture as the

gelatin is dissolving, being careful not to aspirate the foam which is created. Although

air bubbles will largely not effect the out come of the x-ray images, the degassing

process helps to speed the dissolving of the gelatin.

4. Once the gelatin has dissolved, turn off the heat and slow the stirring. After the

mixture is cooled such that water is no longer evaporating from the mixture, transfer

mixture from degassing flask to a beaker. Place the beaker in a cool water bath

and continue to stir. When the solution has cooled to about ten degrees above

room temperature, add the chalk particles and stir them into the mixture by hand.

Continue to stir the mixture by hand while cooling it in in the water bath.

5. At the point when the chalk particles no longer settle to the bottom of the beaker,

quickly pour the mixture into the mold. Careful attention must be paid in this step

because the point at which the chalk stops settling and the point at which the gelatin

is too viscous to pour are very close.

6. After the phantom has been poured, place the mold into the fridge and refrigerate

for several hours.
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