
Boston University
OpenBU http://open.bu.edu
Mechanical Engineering ENG: Mechanical Engineering: Theses & Dissertations

2004

AN IMPEDANCE TUBE FOR THE
IN-SITU CLASSIFICATION OF
BUBBLY LIQUIDS

https://hdl.handle.net/2144/1383
Boston University



BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

AN IMPEDANCE TUBE FOR THE

IN-SITU CLASSIFICATION OF

BUBBLY LIQUIDS

by

JED CHESTER WILBUR

B.S., Lafayette College, 2002

B.A., Lafayette College, 2003

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2004



Approved by

Advisor:
Ronald A. Roy, Ph.D
Professor, Aerospace and Mechanical Engineering

Second Reader:
William M. Carey, Ph.D.
Professor, Aerospace and Mechanical Engineering

Third Reader:
Raymond Nagem, Ph.D.
Professor, Aerospace and Mechanical Engineering



ACKNOWLEDGEMENTS

Attempting to acknowledge everyone who helped me along the long road leading to this

thesis would result in an unmanageably long list of names. What follows is certainly an

abbreviated list, and my apologies to those forgotten: rest assured your help was greatly

appreciated.

To begin with, I must thank the members of my thesis committee, professors William

Carey, Raymond Nagem, and my advisor, Ronald Roy. Not only did they read and correct

this thesis, but all three contributed at different stages of the process. Professor Carey was

the driving force teaching me not only the theoretical physics behind this project, but the

importance of a sound theory as well. He also proved remarkably able to provide funding

sources for a number of the field excursions that made this work possible. Professor Nagem

was a remarkably thorough proofreader and played a mean game of basketball when the

need to relieve stress arose. And professor Roy not only guided me or let me work alone

when needed, but constantly forced me to work harder and investigate deeper, helping shape

me not only into a better scientist and engineer, but person as well.

Perhaps the one person who helped me most at Boston University was Dr. Preston

Wilson. Preston not only painstakingly laid the groundwork for much of the work discussed

here, but spent countless hours working with me in the lab, discussing experiments, the-

ory, and Texas music. After leaving BU, Preston was always more than willing to help

out through phone conversations and many detailed emails. Without Preston’s help and

dedication to the project, this work would be much less complete than it is now.

The many field experiments would not have been possible had it not been for the gracious

iii



help of a number of individuals at a number of institutions: Jim Lynch, Arthur Newhall, and

Keith Foote at Wood’s Hole Oceanographic Institute, Wood’st Hole, MA; Stephen Savitsky

and Alan Pease at the Dodge Pond Acoustic Test Facility, Niantic, CT; and Michael Nicholas

and Gregory Orris at the Naval Research Lab, Washington, DC.

Thanks are also due to Joe Estano and Dave Campbell at BU for always being willing

help machine a part or loan a tool.

I now come to the Physical Acoustics Lab group at BU: Charlie Thomas, Constantin

Coussios, Emmanuel Bosy, Caleb Farny, Parag Chitnis, Lei Sui, Paolo Zanetti, Yuan Jing,

Javier van Cauwelaert, Tianming Wu and any others I may have forgotten. Where would

I be without you guys? Never once did any of you bat an eye when I suggested that it is

possible for three of us to move a ton of sediment with our bare hands. And how many

times did we lift and carry the impedance tube from one end of the lab to another? The

spirit of comradery that filled our office will be greatly missed.

Special thanks go to Mike Canney and Jason Holmes who provided many man hours

directly working on this project, allowing work to proceed much faster than what would

otherwise have been possible. Zach Waters, another BU student, also volunteered his time

on numerous occasions to help out both in the lab and in the field.

I would never have made it into, let alone through, graduate school had it not been for

the unfaltering support of my family. Nor would I have survived the past months had it

not been for the patience and support of my girlfriend, Alexys. Thank you.

Funding for this work was graciously provided by the Office of Naval Research.

iv



AN IMPEDANCE TUBE FOR THE IN-SITU

CLASSIFICATION OF BUBBLY LIQUIDS

JED CHESTER WILBUR

ABSTRACT

It is well documented that the presence of even a few air bubbles in water can signifi-

cantly alter the propagation and scattering of sound. Air bubbles are both naturally and

artificially generated in all marine environments, especially near the sea surface. The abil-

ity to measure the acoustic propagation parameters of bubbly liquids in situ has long been

a goal of the underwater acoustics community. One promising solution is a submersible,

thick-walled, liquid-filled impedance tube. Recent water-filled impedance tube work was

successful at characterizing low void fraction bubbly liquids in the laboratory [1].

This work details the modifications made to the existing impedance tube design to allow

for submersed deployment in a controlled environment, such as a large tank or a test pond.

As well as being submersible, the useable frequency range of the device is increased from 5 -

9 kHz to 1 - 16 kHz and it does not require any form of calibration. The opening of the new

impedance tube is fitted with a large stainless steel flange to better define the boundary

condition on the plane of the tube opening.

The new device was validated against the classic theoretical result for the complex

reflection coefficient of a tube opening fitted with an infinite flange. The complex reflection

coefficient was then measured with a bubbly liquid (order 250 micron radius and 0.1 - 0.5 %

void fraction) outside the tube opening. Results from the bubbly liquid experiments were
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inconsistent with flanged tube theory using current bubbly liquid models. The results were

more closely matched to unflanged tube theory, suggesting that the high attenuation and

phase speeds in the bubbly liquid made the tube opening appear as if it were radiating into

free space. (Work supported by the US Navy Office of Naval Research.)
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Chapter 1

Introduction

This thesis details the design, construction, and validation of an instrument, a submersible,

baffled, thick-walled, water-filled acoustic impedance tube, to measure acoustic propagation

parameters of bubbly liquids. This section provides a historical introduction to bubbly liquid

theory and outlines previous work with water-filled impedance tubes. But first, a discussion

of the motivation behind this work is in order.

1.1 Motivation and Background

Why in the world would do people study bubbly liquids? That is fair and just question, for

certain, with a simple answer: As any member of the underwater or biomedical acoustics

communities will be quick to tell you, because bubbles are everywhere. They are formed

in lakes and oceans by breaking waves [2, 3], falling rain [2, 4], and even snowflakes [2, 5].

Bubbles are often purposely injected into the human body as ultrasound image enhancers
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[6] while the unwanted formation of bubbles in the body is responsible for decompression

sickness (“the bends”) [7]. Bubbles formed by high-intensity sound waves can be used to stop

otherwise uncontrollable bleeding, clean teeth, and destroy kidney stones [8, 9] but are also

speculated to be responsible for a number of recent marine mammal strandings [10]. One

research team has even reported evidence of nuclear fusion occurring during a particularly

violent bubble collapse[11, 12]! A second reason to study bubbles is that they can exhibit

extraordinarily non-linear behavior in the presence of sound waves and remarkably, most of

this behavior can be explained by straightforward theoretical considerations.

Bubbly liquid theory, the behavior of a distribution of gas bubbles in a liquid acting as an

effective medium, was first investigated around the turn of the century [13, 14] but received

little attention at the time. It was not until the advent of sound navigation and ranging

(sonar, then referred to as asdics for anti-submarine division - ics ) as a tool for detecting

German U-boats in World War II that research in bubbly liquid theory began in earnest,

both in the United States [15, 16] and in Germany [17]. Bubbly liquid work saw somewhat

of a renaissance with the fall of the Soviet Union as the focus of sonar systems shifted from

deep-water hunting of Soviet submarines to shallow-water mine detection. Bubbles are far

more important in shallow water sound propagation as interactions of sound with the sea

surface, where the highest concentrations of bubbles are found [18], must be considered. A

short history of bubbly liquid theory is given in the next section.

Much work has been done to observe and measure the bubble propagation parameters

predicted by competing bubbly liquid theories. This is a difficult task as bubbly liquids
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attenuate sound very effectively over a relatively broad rang of frequencies. Methods that

require measurement of forward propagation through a bubbly liquid often fail because the

sound waves are attenuated before ever reaching the receiving hydrophone. Nevertheless,

a number of researchers have presented measurements of both bubbly liquid phase speeds

(the speed at which the acoustic wave propagates) and attenuation (how much acoustic

energy is lost over distance) [19, 20, 21, 22, 23]. There is still a paucity of data around the

resonant frequencies of the individual bubbles, especially for bubbly liquids with high void

fractions (the percentage by volume of the free gas in the mixture).

One approach around the attenuation problem is to use measurement techniques that

do not require sound to propagate through the bubbly liquid itself. The classic and most

well known instrument of this sort (and perhaps of all acoustic measurement devices) is the

impedance tube. A brief introduction to water-filled impedance tubes follows this Chapter’s

discussion of bubbly liquids.

1.2 A short history of bubbly liquid theory

Minnaert [24], in 1933, investigated what he believed to the cause of “the murmur of the

brook, the roar of the cataract, or the humming of the sea” – resonating air bubbles trapped

in the water. He devolved a formula for the resonant frequency of a gas bubble in a fluid

by equating the potential energy of the compressed gas inside the bubble at minimum

volume to the kinetic energy of the fluid at maximum bubble “wall” velocity. His result

for the natural frequency, ω0 (in radians per second), still valid today for many practical
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applications, is

ω0 =
1
a0

√
3ηP∞

ρ`
. (1.1)

Here, a0 is equilibrium bubble radius, η is the polytropic index for the gas expansion and

compression (PV η = constant), and P∞ and ρ` are the hydrostatic pressure and density,

respectively, of the host liquid.

Minnaert neglected the Laplace pressure due to surface tension and assumed that the

bubble behaved adiabatically, taking the polytropic index to be γ, the ratio of the gas’

specific heats. Modern analysis has shown that both of these assumptions are acceptable

for the “large” bubbles Minnaert was studying ( > 1 millimeter in radius). Corrections

making Eq. (1.1) applicable to a broader range of bubbles will be addressed in Section 2.2.

Twenty-three years before Minnaert published his bubble resonance work, Mallock [13]

studied propagation of sound in bubbly liquids, calling them “frothy liquids.” While the

focus of his work was on the attenuation of sound, he derived an equation for the velocity of

sound propagation in bubbly liquids. In his 1930 book, A Textbook of Sound, A. B. Wood

[14] cast Mallock’s result in a more useful form. A general derivation of their result follows

and a more rigorous one is given in Appendix A.

The velocity of sound, c, is generally defined as

c2 =
1
ρκ

(1.2)

where ρ and κ are the density of compressibility of the medium, respectively. Both Mallock

and Wood argued that for a mixture of gas bubbles in liquid the effective sound speed of

the mixture, cm, is the same as it would be for a fluid of the same mean density, ρm, and
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mean compressibility, κm (here the subscript m refers to mixture). That is to say

ρm = (1− β) ρ` + βρg

κm = (1− β)κ` + βκg

(1.3)

where the subscripts ` and g refer to the liquid and gas components and β is the void

fraction – the ratio of volume of gas to the total volume of the mixture,

β =
Vg

Vm
. (1.4)

Plugging Eq. 1.3 into 1.2, the speed of sound propagation in the effective medium, cm, is

1
c2
m

=
(1− β)2

c2
`

+
β2

c2
g

+ β (1− β)
ρ2

gc
2
g + ρ2

`c
2
`

ρ`ρgc2
`c

2
g

. (1.5)

This is known as Wood’s Equation1. The limiting assumption in this derivation is that a

bubble’s compressibility is essentially the same as the gas inside it. The compressibility of

bubbles being driven well below their resonant frequencies is equivalent to the isothermal

compressibility of the gas. Thus Eq. (1.5) holds for low driving frequencies (those frequen-

cies well bellow the individual bubble resonance, ω << ω0) if cg is taken as the isothermal

sound speed.

Equation (1.5) is plotted as a function of void fraction in Figure 1.1 for air bubbles in

water. This plot shows how the addition of air bubbles into water representing as little as

10−5% of the total volume reduces the sound speed significantly. A minimum occurs at 50%

void fraction, where the phase speed is around 20 m/s, about 1.3% of the sound speed in
1One may protest that Mallock derived the same result some 20 years earlier and should deserve credit

for the equation. The only difference this author can find is that Wood used the definition of void fraction
still prevalent today, while Mallock defined proportionality constants between the liquid and gas phases.
Perhaps the underwater sound community should adopt the notation Wood-Mallock Equation.
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Figure 1.1: The speed of sound in a bubbly liquid predicted by Wood’s equation at different
void fractions; c`=1500 m/s, ρ`=1000 kg/m3, cg=290 m/s, ρg=1.2kg/m3.

water and 6.9% of the sound speed in air. The steep reduction in sound speed experienced

at very low void fractions results from the combination of a relatively high mixture density

(approximately that of water) and high mixture compressibility caused by the addition of

just a few air bubbles (similar to how just a little pocket of air in the brake lines of an

automobile significantly reduces braking ability).

Significant work has been done to modify Eq. (1.5) to include the effects of bubble

dynamics. The first successful attempts were made by Spitzer [15] and Foldy [16] working

at the Division of War Research at Columbia University at the height of WWII. They

modelled bubbles as damped harmonic oscillators with a resonant frequency given by Eq.

(1.1) and a damping constant that was to be empirically measured. In fact, the only major

differences between their results and those most commonly accepted today are the damping
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constant and the polytropic exponent used to calculate the resonant frequency.

In 1959 Devin [25] derived an expression for the damping coefficient of a resonating

bubble. He also corrected Minneart’s resonant frequency expression to include a polytropic

exponent that is a function of bubble size. Prosperetti [26, 27] extended Devin’s work,

developing the first complete model of the thermodynamic and heat transfer processes

inside an oscillating gas bubble, providing an accurate expression for the damping constant

and polytropic exponent for an arbitrary driving frequency. These were the missing pieces

in bubbly liquid theory, at least for low void fractions, and Prosperetti [28] in 1987 and

Commander and Prosperetti [29] in 1989 showed using the accurate single bubble model,

the complete bubbly liquid model agreed reasonably well with experimental measurements.

Recent attempts to correct for higher void fractions will be discussed in Section 2.2.3.

Needless to say, the history of bubbly liquid theory presented above is a bit cursory,

but it does capture most of the advances relevant to this work. The amount of literature

on single bubbles alone fills volumes. Leighton’s monologue on the acoustic bubble [30] has

well over 1,000 references to literature concerning bubbles and is a good starting point for

those readers seeking more information about the wonderful world of bubbles and bubbly

liquids. We will revisit bubbly liquid theory in more depth in Section 2.2, developing an

expression for the complex sound speed that includes the effects of bubble dynamics.
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1.3 The water-filled impedance tube

As mentioned earlier, impedance tubes are well-suited for the measurement of sound prop-

agation parameters in a bubbly liquid. Measurement of bubbly liquids, however, requires

that the impedance tube be filled with water (or some other liquid). Water-filled impedance

tubes have received little attention since first developed by German scientists in WWII [17].

Only in the past five years have water-filled impedance tubes approached the accuracy of

their air-filled predecessors [1, 31].

Wilson [1] was the first to apply the impedance tube technique to measure the acoustic

properties of bubbly liquids, and obtained good results for low void fractions. An illustration

of his apparatus is shown in Figure 1.2. This setup looks and behaves very much like a

standard air-filled impedance tube setup. Sound waves generated by a sound source interact

with a bubbly liquid confined in the upper portion of the tube. The complex transfer

function between the two hydrophones is measured and used to determine the acoustic

properties of the bubbly liquid interface, which we term the “measurement plane”. This

system is described in detail in Chapter 3.

While Wilson’s approach was overall very successful, there were a number of limitations

to his apparatus and method. In his work, a bubbly liquid was produced inside the tube

using needles. These needles were located in the measurement plane of the impedance

tube, possibly interfering with the measurement. As the bubbly liquid was inside a tube,

the effects of the tube wall on bubble propagation must be considered and placed an upper

bound on the measurable phase speed. Measurements were made with two wall-mounted
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Figure 1.2: The impedance tube designed by Wilson to measure the acoustic properties of
bubbly liquids in 5 to 9 kHz range.

hydrophones whose spacing fixed the usable frequency range of Wilson’s instrument to 5-

9kHz. The use of two independent hydrophones also made a calibration necessary before

each use.

Water-filled impedance tubes have seen more use measuring the acoustic characteristics

of water-saturated marine sediments. Dunlop [32] developed a water-filled tube to measure

the acoustic properties of sediments in situ and was able to accurately measure attenuation

but not sound speed. Park [33] used Wilson’s impedance tube to measure the impedance

of a length of sediment. Her results compared poorly with accepted sediment models due

to difficulties accounting for interactions between the sediment sample and the tube wall.

Wilson and Roy [34] used a single-hydrophone impedance tube, very similar to the one used

in the present work, to measure the acoustic propagation parameters of a sediment sample.

While their measurements of the phase speed were in line with accepted sediment models,

those of attenuation were not, despite attempts to model interaction with the tube wall.
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Wilson, et al. [35], in a first step towards the development of an in situ device, placed the

impedance tube on a large sample of sediment entirely outside the tube. While this setup

eliminated the problems with wall interactions, the system proved too difficult to model

and no meaningful results were obtained.

The impedance tube design presented in this work overcomes some of the previous de-

vices’ limitations. Here the bubbly liquid sample is placed outside the tube completely,

eliminating artifacts caused by the elastic tube walls and allowing the bubble production

mechanism to be located far away from the measurement plane. The wall-mounted hy-

drophones are replaced with a single hydrophone which is remotely scanned along the tube

axis, increasing the instrument’s usable frequency range to 1 to 16 kHz and eliminating the

need for calibration. Finally, all components of the new impedance tube are designed to

operate remotely below up to 25 meters of water, allowing measurements to be made in

situ.

The new device is illustrated in Figure 1.3. The opening of the tube is fitted with a

large baffle and an acoustically transparent window. This baffle serves to better define the

boundary condition along the measurement plane of the tube’s opening, simplifying the

theoretical model. The theoretical model is important as the standing wave field inside

this baffled tube with a bubbly liquid is considerably different than that for the previous

impedance tube (where the bubbly liquid was inside a section of the tube). In both cases,

the high attenuation in bubbly liquids is used to our advantage. For the previous tube, the

length of the bubbly liquid sample could be considered infinite as the incident wave was
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completely attenuated in the sample section and no reflection from the far surface occurred.

For the current tube, the attenuation makes the finite-sized baffle appear infinite in extent,

as the radiated waves are attenuated before ever being in communication with the end of

the baffle. Significant attention to baffled tube theory is paid in Section 2.1.

Bubbly Liquid

Water

Scanned Hydrophone

Baffle

Window

Sound Source

Figure 1.3: The submersible, baffled water-filled impedance tube.

1.4 Thesis roadmap

The remainder of this thesis is broken into five Chapters. Chapter 2 covers the theory of

sound propagation in a rigid baffled tube and develops the full model for sound propagation

in a bubbly liquid. Predictions are also made concerning the behavior of a water-filled baffled

tube with a bubbly liquid outside it. Chapter 3 describes the experimental apparatus and

measurement procedures. Attention is paid to the impedance tube measurement theory,

the effects of elastic tube walls on the measurements, the design of the principal system

components, and the preparation required by the system before measurements can be made.
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Chapter 3 also includes measurements that serve to verify theoretical assumptions and

design goals concerning sound propagation in our impedance tube, as well as an analysis of

errors, uncertainty, and sensitivity that affect all measurements made with our impedance

tube. Experimental data are presented in Chapter 4 for both water and bubbly liquids

outside the tube. A detailed comparison to the theoretical work of Chapter 2 is also made.

Suggestions and preliminary steps towards improving the system are covered in Chapter 5.

Chapter 6 provides a concise review of this work, drawing a number of conclusions. This

work concludes with a number of Appendices, providing mathematical derivations, technical

drawings, computer codes and other supporting information.
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Chapter 2

Theoretical Modeling

Even the most exciting experiments must lay their foundations in theory. While we may

prefer to be in the laboratory, in the machine shop, or at sea, we experimentalists must

be intimately familiar with the theory behind our apparati and that concerning what we

intend to measure. With this in mind, this Chapter is divided into two sections. In the first

we explore the theoretical modelling of our instrument, a baffled, sound-hard impedance

tube. As we seek to measure the properties of bubbly liquids, the second half of this section

is therefore devoted to acoustic propagation in bubbly liquids, a fascinating subject with a

rich history.

2.1 The baffled, sound hard impedance tube

Impedance tube theory is generally considered very simple and straightforward. Most acous-

tics textbooks treat it early and in detail as a logical and practical topic when covering
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acoustic wave propagation in tubes. We will follow a similar pattern, first discussing the

theory of waves in cylindrical tubes and then applying it specifically to the impedance tube.

We will then move on to the more complicated mathematics that arise at a tube opening

fitted with a sound-hard baffle, as shown in Figure 2.1.

P
i P

r

P
radiated

Fluid 1: r1, c
1

Fluid 2: r
2

, c
2

u
n
= 0

Figure 2.1: The baffled sound hard tube. A pressure wave traveling from the sound source
at left hits the baffled opening. Some of the energy is reflected and some is radiated into
the fluid outside the tube.

The general problem to be solved in this section is illustrated in this figure. A sound

wave with pressure amplitude Pi is excited by the vibrating sound source at the left of the

figure, travels to the right in a tube filled with a fluid with sound speed c1 and density ρ2.

When this wave reaches the tube opening, some of its energy is reflected back to the left

as a pressure wave with amplitude Pr while the rest is radiated into the fluid outside the

tube (which has a sound speed and density c2 and ρ2). We aim to develop an expression for

the ratio of the reflected and incident pressure amplitudes, called the plane wave reflection
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coefficient.

2.1.1 Acoustic wave propagation in a sound hard tube

We will consider sound propagation in a circular tube whose walls are rigid (also known as

“sound hard”). The propagation of a linear acoustic wave is governed by the wave equation.

It is convenient to express the wave equation for the velocity potential, Φ:

∇2Φ− 1
c2

∂2

∂t2
Φ = 0 (2.1)

where c is the speed of sound of the fluid. The velocity potential is related to the acoustic

pressure, p, and velocity, u by

p = −ρ
∂

∂t
Φ (2.2)

u = ∇Φ (2.3)

where ρ is the fluid density. For time harmonic excitation, Φ = φ exp (−iωt), the wave

equation becomes

∇2φ + k2φ = 0. (2.4)

where k = ω/c is the wave number. This is known as the Helmholtz equation.

For the study of circular tubes, it is convenient to use cylindrical coordinates, (w, θ, z).

The radial coordinate is designated w, instead of r, to avoid confusion with the vector −→r

used later in this work. The Helmholtz equation in cylindrical coordinates is:

1
w

∂

∂w
(wφ) +

1
w2

∂2

∂θ2
φ +

∂2

∂z2
φ + k2φ = 0 (2.5)

15



If the system is assumed symmetric about the tube axis, then the θ dependence can be

neglected. The general axisymmetric solution to Eq. (2.5) is

φ (w, z) = e±ikzzJ0 (kww) (2.6)

where k2
w +k2

z = k2 and J0 is an ordinary Bessel function of the first kind of order zero. An

important property of this Bessel function is

∂

∂w
J0 (kww) = −kwJ1 (kww) (2.7)

where J1 is an ordinary Bessel function of the first kind of order one.

U
n
=0

w

z
2b

Figure 2.2: The sound-hard tube.

Boundary conditions must be imposed on Eq. (2.6) to determine the relative values of

kz and kw. We will assume that the tube’s walls are rigid (“sound-hard”). This boundary

condition is illustrated in Figure 2.2. Mathematically speaking, the radial component of

the velocity, uw is zero at the wall (w = b) of a sound-hard tube:

uw (w = b) =
∂

∂w
φ

∣∣∣∣
w=b

= 0. (2.8)

Applying this condition to Eq. (2.6) gives

∂

∂w
J0 (kwb) = − (kwb) J1 (kwb) = 0. (2.9)
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where use has been made of Eq. (2.7). To satisfy this condition, the product kwb must be

a root of the Bessel function J1. The velocity potential inside the tube now takes the form

of the series solution

φ (w, z) =
∞∑

n=0

Ane±ikznzJ0 (kwnw) (2.10)

where:

kwn = α1n
b

kzn =
√

k2 − k2
wn

J1 (α1n) = 0

. (2.11)

The roots of first Bessel function, α1n, have been tabulated by many authors (see, for

instance [36]).

Noting that α10 = 0, the velocity potential in a sound-hard can be written:

φ (w, z) = A0e
ikz + B0e

−ikz +
∞∑

n=1

AneikznzJ0 (kwnw) + Bne−ikznzJ0 (kwnw) (2.12)

Here, the first two terms are plane waves, the first (A0) travels in the +z direction, the

second (B0) travels in the −z direction. For small values of k (low frequencies), kzn is

imaginary. This has an important consequence: the majority of the exponents in the sum

are now real. In order to have a bounded solution as z gets large, we must discard the An

terms for z < 0 and the Bn terms for z > 0 when kzn is imaginary. The remaining terms

will have purely real, negative exponents and will not propagate over a significant distance.

The values of ω for which kb = α1n are known as the cut-off frequencies. Below the first

cut-off frequency (kb = α11) only plane waves will propagate in a sound-hard tube as all

higher order modes have real negative exponents. All modes that do propagate will travel
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along the z axis with a phase speed, cp, given by

cp =
ω

kz
. (2.13)

For the plane wave mode, kz = k and the speed of propagation equals the intrinsic speed of

sound of the medium, c. For the higher order modes, the speed of propagation is a function

of frequency. Figure 2.3 is a plot of the phase speed of the first three modes in a sound

hard tube normalized by c. The cutoff frequency effect is easily seen around kb ≈ 3.8 (α11)

and 7.0 (α12).
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Figure 2.3: Speed of propagation of the first three modes in a sound-hard tube.

2.1.2 General impedance tube theory

As promised, we will now discuss the principles behind the impedance tube. Chapter 3

builds on of the theory developed here providing a bridge to the experimental setup. Most
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standard acoustics textbooks cover impedance tube theory. The following closely follows

Blackstock [37], whose presentation is straightforward and intuitive. First, the general

definition of impedance is in order. The impedance, Z, of an acoustic wave is defined as

the ratio of the acoustic pressure and velocity at a given point,

Z =
p

u
. (2.14)

Now consider a sound-hard tube of length L, with some sort of source at z = 0 (Figure

2.4). This source vibrates at frequency ω in such a way that it only excites a plane wave.

This plane wave will travel to the right with pressure amplitude A until it hits a uniform

impedance termination, Zn, at z = L. At this point, some of the waves’ energy is trans-

mitted through the termination (+z direction) while the remaining is reflected as a plane

wave with pressure amplitude B. The pressure and velocity anywhere in the tube can be

written as (neglecting the exp (−iωt) time dependence):

p(z) = Aeikz + Be−ikz

uz(z) = −i
ρω

∂
∂z p(z) = 1

ρc

(
Aeikz −Be−ikz

) (2.15)

It is important to note that both A and B can be, and often are, complex quantities.

Z
0
=r

1
c

1
Z

n
Source

L

z d

Figure 2.4: Tube terminated with unknown impedance, Zn.
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At z = L we define an incident pressure, Pi, and a reflected pressure, Pr:

Pi = AeikL

Pr = Be−ikL = <Pi

(2.16)

Here < is defined as the plane wave reflection coefficient. It is the ratio of the reflected and

incident acoustic pressures. Changing the coordinate z to d = L − z and combining Eqs.

(2.15) and (2.16), the pressure and particle velocity anywhere in the tube can be written as

p (d) = Pi

(
e−ikd + <eikd

)

uz (d) = Pi
Z0

(
e−ikd −<eikd

)
.

(2.17)

Here Z0 is the specific acoustic impedance of the medium inside the tube, Z0 = ρc. By Eq.

(2.14), the acoustic impedance anywhere in the tube is

Z (d) = Z0
e−ikd + <eikd

e−ikd −<eikd
. (2.18)

In particular, the impedance at the end of the tube, d = 0, must equal the termination

impedance, Zn:

Zn = Z0
1 + <
1−< . (2.19)

This is an important result because many techniques exist for measuring the plane wave

reflection coefficient experimentally – and if < is known, so is the termination impedance.

The termination impedance is very often a strong function of the speed of sound and atten-

uation of the material at z > L. Indeed, if the tube were terminated with an infinitely long

sample, the termination impedance would equal the specific impedance (ρncn) of that fluid.

Section 3.1 explains the experimental method used to measure <, the single-hydrophone

transfer function method.
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2.1.3 Radiation from an open, baffled tube

Now consider the setup shown in Figure 2.1 where sound propagating down a sound-hard

tube reaches the tube opening, fitted with a sound-hard baffle that extends infinitely in all

directions (or is so large compared to the wavelength of sound that it may be considered

infinite). For the time being, it shall be assumed that the fluid outside the tube is the same

as that inside. It is convenient to define z = 0 at the tube opening so the baffle lies in

the (x, y) plane and only negative values of z exist in the tube as shown in Figure 2.5. To

ensure a bounded solution as z → −∞ in the tube, the An terms in Eq. (2.12) must be

set to zero. The incident wave, traveling from left to right, is assumed to be plane and of

such magnitude that A0 = 1. The velocity potential, pressure, and particle velocity (in the

direction of propagation) anywhere in the tube are given by1:

φ (w, z) = eikz + <e−ikz +
∞∑

n=1
Bne−ikznzJ0 (kwnw)

p (w, z) = iρω

(
eikz + <e−ikz +

∞∑
n=1

Bne−ikznzJ0 (kwnw)
)

uz (w, z) = ik
(
eikz −<e−ikz

)
− i

∞∑
n=1

Bnkzne−ikznzJ0 (kwnw)

(2.20)

Here < = B0 is the plane wave reflection coefficient, defined in Section 2.1.2.

The quantity of most interest turns is the particle velocity at the tube opening:

uz (w, 0) = ik (1−<)− i
∞∑

n=1

BnkznJ0 (kwnw) (2.21)

Aside from the tube opening, the rest of the (x, y) plane comprises the rigid baffle. As such,
1One may notice that the units for these expressions are not accurate. This is because we have neglected

the units associated with the coefficients An and Bn when we set A0 = 1. This simplification makes the
derivation easier to follow so long as the reader remembers to attach “phantom” units of [length2/time] to
the equations.
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w

z
2b

Figure 2.5: The cylindrical coordinate system with its origin on the plane of the tube
opening.

the particle velocity normal (outward) to this plane is defined everywhere:

un (x, y) =





−uz (w, 0) x2 + y2 = w2 ≤ b2

0 x2 + y2 > b2

. (2.22)

This formulation makes it relatively straightforward to solve for the acoustic field outside

the tube using a Green’s function approach. This method is described in detail in Appendix

B. The solution for the velocity potential outside the tube is given by:

φ (−→r ) =
−1
4π

∫∫

S0

φ (−→r0)
∂

∂n0
G (−→r |−→r0)−G (−→r |−→r0)

∂

∂n0
φ (−→r0) dS0 (2.23)

where −→r = (x, y, z), −→r0 = (x0, y0, z0), G (−→r |−→r0) is a Green’s function, and S0 is a surface

bounding the region of interest. In this case the region is the area outside the tube, defined

by the tube opening and rigid baffle on the (x0, y0) plane and closed by a hemisphere of

infinite radius in the positive z direction (Figure 2.6). This is a very convenient surface, as

the normal derivative of the velocity potential, ∂φ (−→r0)/∂n0, is defined everywhere on the

(x0, y0) plane by Eq. (2.22). The Sommerfeld radiation condition states that all acoustic
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quantities are zero at infinity, allowing us to neglect the hemisphere portion of the bounding

surface.

un= 0

un= -uz(w,0)

S
∞

un= 0

2b

Figure 2.6: The integration surface used to evaluate Eq. (2.23)

Equation (2.23) can be greatly simplified if a Green’s function is chosen such that its

normal derivative, ∂G (−→r |−→r0)/∂n0, is zero everywhere on the (x0, y0) plane. One such

Green’s function is (see Appendix B, Eq. (B.9))

G (−→r |−→r0) =
2eik|−→r −−→r0 |
|−→r −−→r0 | (2.24)

where −→r0 = (x0, y0, 0) is the plane defined by z0 = 0. Combining Eqs. (2.22), (2.23), and

(2.24), the velocity potential outside the tube can be expressed as:

φ (−→r ) =
−1
4π

∫ ∫

x2
0+y2

0<b2

2eik|−→r −−→r0 |
|−→r −−→r0 |

[
ik (1−<)− i

∞∑

n=1

BnkznJ0 (kwnw0)

]
dx0dy0. (2.25)
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As tempting as it may be to solve this equation now, the Bn terms remain undefined.

However, the velocity potential given by Eq. (2.25) above for the field outside the tube

must equal that given by Eq. (2.20) for the field inside the tube at the tube opening, z = 0:

1+<+
∞∑

n=1

BnJ0 (kwnw) =
−1
4π

∫ 2π

0

∫ b

0

2eikR

R

[
ik (1−<)− i

∞∑

n=1

BnkznJ0 (kwnw0)

]
w0dw0dθ0.

(2.26)

Here R = |−→r −−→r0 | =
√

(x− x0)
2 + (y − y0)

2 =
√

w2 + w2
0 − 2ww0 cos (θ − θ0) and the

(x0, y0) coordinates have been transformed to polar coordinates, (w0, θ0). For a given fre-

quency and set of material properties the only unknowns in Eq. (2.26) are the coefficients

of the Bessel functions, Bn, and the reflection coefficient, <. Using the orthogonality rela-

tionships of Bessel functions, it may be possible to solve for these coefficients, although no

closed-form solutions exist in the open literature. Normura et al. [38] published a solution

in 1960 as a coupled system of two infinite sets of linear equations, which must be solved

numerically. Norris and Sheng [39] present a solution for < as a single system of infinite

linear equations. Their solution also requires numerical computation of the remaining co-

efficients, Bn. Both of these solutions deviate very little from that developed here over the

frequency range of interest. The work of Norris and Sheng is discussed in more detail in

Appendix C.

Although Eq. (2.25) cannot be solved directly, it can be simplified tremendously with a

single assumption. As the incident wave is plane, it is reasonable to assume that the wave-

front at the tube opening remains sufficiently plane to neglect any radial curvature. With

this assumption we can discard the Bessel functions. This assumption is most valid below
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the first cutoff mode of the tube, where only plane waves (i.e., without radial curvature)

can propagate. The velocity potential outside the tube is now

φ (−→r ) =
−Uz

2π

∫ 2π

0

∫ b

0

eik|−→r −−→r0 |
|−→r −−→r0 | w0dw0dθ0 (2.27)

where Uz = ik (<− 1) is the normal velocity2 at the tube opening. Although this expression

is significantly simpler, it is still difficult to evaluate for all −→r . A number of authors have

evaluated this integral for specific conditions: on the tube opening itself (z = 0), along the

propagation axis (w = 0), in the far field
(√

x2 + y2 + z2 >> w0

)
, and in the Rayleigh limit

(kb << 1). The first two are the most relevant to the present work.

2.1.4 Radiation along the tube axis

Consider the propagation of sound along the axis of the tube, (w = 0). The pressure at a

distance z from the tube opening is given by:

p (z) =
iρωUz

2π

∫ 2π

0

∫ b

0

eik(w2
0+z2)1/2

(
w2

0 + z2
)1/2

w0dw0dθ0 (2.28)

The integration over θ0 is straightforward and contributes a factor of 2π. With the change

of variables ν =
(
w2

0 + z2
)1/2, the pressure field along the axis can be expressed as:

p (z) = iρωUz
(−i)

k

∫ (z2+b2)1/2

z
eikνdν. (2.29)

Evaluating the remaining integral the pressure is

p (z) = ρcUz

[
eik(b2+z2)1/2

− eikz
]

(2.30)

2See Footnote 1 for an explanation of the units of this term.
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which is often written [40]:

p (z) = (2i) (ρcUz) exp
(

ik

2

((
z2 + b2

)1/2
+ z

))
sin

(
k

2

((
z2 + b2

)1/2 − z

))
. (2.31)

Equation (2.31) is plotted in Figure 2.7 for three different values of the non-dimensional

wavenumber kb. There is a very apparent transition from the near to far field.
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Figure 2.7: Magnitude of the radiated pressure along the tube axis.

2.1.5 Radiation impedance of the baffled tube

Calculating the pressure at the tube opening (z = 0) is more difficult. It is easier to consider

the average pressure,

pave|z=0 =
(

1
πb2

) 2π∫

0

b∫

0

−iρωUz

2π

∫∫

x2
0+y2

0<b2

eikR

R
dx0dy0wdwdθ. (2.32)
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Notice that we have returned to the (x0, y0) coordinate system for the time being. By Eq.

2.14, the average acoustic impedance, Z, at the opening is:

Z =
(

1
πb2

) −iρω

2π

∫ 2π

0

∫ b

0

∫∫

x2
0+y2

0<b2

eikR

R
dx0dy0wdwdθ. (2.33)

This quadruple integral is often called the Helmholtz integral. This integral was first applied

to acoustics by Rayleigh [41] in 1878, studying the impedance of a vibrating rigid disc in an

infinite rigid baffle. He reckoned, as we do, that to a first approximation a tube opening can

be modelled as having a uniform velocity profile and therefore has the same impedance as

the rigid vibrating disc. His work was revisited by Warren [42] in 1928, applying the solution

to loudspeakers. McLachlan [43], also working with loudspeakers, was the first to present

the solution in the modern form and considered other, non-uniform, velocity distributions

in 1932.

There are two classical mathematical tricks used to solve Eq. (2.33). The first is to

restrict the range of integration such that only points where x2
0 + y2

0 < w2 are considered.

In doing this the problem is effectively divided in half and the result must be multiplied by

two3:

Z =
(

1
πb2

) −iρω

π

∫ 2π

0

∫ b

0

∫ ∫

x2
0+y2

0<w2

eikR

R
dx0dy0wdwdθ (2.34)

The second trick is a brilliant coordinate transform which Rayleigh [41], attributed to James
3Eq. (2.33) can be written:

Z =
(

1

πb2

) −iρω

2π





2π∫

0

b∫

0

∫ ∫

x2
0+y2

0<w2

eikR

R
dx0dy0wdwdθ +

2π∫

0

b∫

0

∫ ∫

x2+y2<w2
0

eikR

R
dxdyw0dw0dθ0





but as R is invariant under (x, y) ↔ (x0, y0) the quadruple integrals are equal to each other.
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Clerk Maxwell in an 1871 paper [44] 4. The transformed coordinate system, (x′0, y′0), has its

origin at the point (x, y) and is aligned such that the origin of the (x, y) and (x0, y0) axes lies

at x′0 = w . We then consider a vector pointing from the origin of the new coordinate system

to some point (x0, y0) inside the circle defined by x2
0 + y2

0 < w2. As shown in Figure 2.8, we

transform the new coordinate system into a cylindrical system defined by:

x′0 = R cosϕ0

y′0 = R sinϕ0

. (2.35)

Here R is the distance from (x, y), the origin of (x′0, y′0), to (x0, y0):

R =
√

(x− x0)
2 + (y − y0)

2.

This is the same R in Eq. (2.34)! Switching the variables in (2.34) from (x0, y0) to (x′0, y′0)

and change to cylindrical coordinates via (2.35) to obtain:

Z =
(

1
πb2

) −iρω

π

∫ 2π

0

∫ b

0

∫ ∫

x2
0+y2

0<w2

eikRdRdϕ0wdwdθ (2.36)

Without the R in the denominator, it is a much easier integral to evaluate.

All that remains before Eq. (2.36) can be evaluated is to determine the limits of integra-

tion on R and φ0. The largest allowable value of (x0, y0) is (x, y). As shown in Figure 2.9,

the limit on R is Rmax = 2w cosϕ0 and ϕ0 is limited to values for which x′0 > 0, that is,

−π/2 < ϕ0 < π/2. The impedance integral is now in a relatively easy to solve form:

Z =
(

1
πb2

) −iρω

π

∫ 2π

0

∫ b

0

∫ π
2

−π
2

∫ 2w cos ϕ0

0
eikRdRdϕ0wdwdθ (2.37)

4Rayleigh incorrectly cites the date of his paper as 1870, which was the date it was submitted to the Royal
Society. The full and accurate reference is given the bibliography. It should also be noted that Rayleigh,
then John William Strutt (his father, the Baron Rayleigh, had yet to die), and not Maxwell, was the author
of the paper cited by Rayleigh in The Theory of Sound. Rayleigh merely mentions Maxwell’s assistance in
solving a similar integral in the paper.
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Figure 2.8: The (x′0, y′0) coordinate transform.
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Figure 2.9: The limits of integration on R and ϕ0.
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The straightforward R and θ integrations give us:

Z =
(

1
πb2

)
(−2ρcπ)

∫ b

0

(
1
π

∫ π
2

−π
2

ei2kw cos ϕ0dϕ0 − 1

)
wdw (2.38)

As the cosine is an even function we need only consider half the interval in the ϕ0 integration

and multiply the result by 2. Breaking the complex exponential function via Euler’s formula

the integral becomes:

Z =
(−1

πb2

)
(2ρcπ)

b∫

0

(
2
π

∫ π
2

0
cos (2kw cosϕ0) dϕ0 − 1 + i

2
π

∫ π
2

0
sin (2kw cosϕ0) dϕ0

)
wdw

(2.39)

Rayleigh recognized the first ϕ0 integral as a definition of the Bessel function J0. He

expanded the second integral in a power series and called the function K0. McLachlan [43],

citing the extensive work of Watson [36], recognized the second integral as a definition of the

Struve function, H0 (the boldface notation is commonplace for Struve functions). These

definitions are repeated here for reference:

J0 (2kw) = 2
π

∫ π
2

0 cos (2kw cosϕ0) dϕ0

H0 (2kw) = 2
π

∫ π
2

0 sin (2kw cosϕ0) dϕ0

.

The average impedance at the tube opening is now given by:

Z =
(−1

πb2

)
(2ρcπ)

∫ b

0
(J0 (2kw)− 1 + iH0 (2kw))wdw. (2.40)

The following properties of the Bessel and Struve functions are useful in evaluating the

remaining integral (for more information see [41, 36, 40]):

xJ0 (x) = d
dx (xJ1 (x))

xH0 (x) = d
dx (xH1 (x))
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Using these properties and the transform x = 2kw we can write (2.40) as:

Z =
(

1
πb2

)
(2ρcπ)

(
b2

2
− 1

(2k)2

∫ 2kb

0

d

dx
(xJ1 (x)) dx− i

∫ 2kb

0

d

dx
(xH1 (x)) dx

)
. (2.41)

Evaluating the remaining integrals and rearranging, the impedance is given by:

Z = ρc

(
1− 1

kb
J1 (2kb)− i

1
kb

H1 (2kb)
)

. (2.42)

Equation (2.42) is commonly written [40, 45, 46, 47]:

Z = ρc (R (2kb)− iX (2kb))

R (2kb) = 1− 2
2kbJ1 (2kb)

X (2kb) = 2
2kbH1 (2kb)

. (2.43)

Here R (2kb) is the real part of the impedance, or the resistance, and X (2kb) is the imagi-

nary part, or reactance.

While the Bessel function in the resistance is commonplace in most numerical solvers, the

Struve function in the reactance is not. Computation of the reactance has historically been

achieved through a truncated series expansion. A recent paper [48] proposes a numerical

approximation for H1 (x) which the authors claim to have an absolute error on [0,∞) of

less than 0.005. The approximation is repeated here for reference:

H1 (x) ≈ 2
π
− J0 (x) +

(
16
π
− 5

)
sin (x)

x
+

(
12− 36

π

)
1− cos (x)

x2
. (2.44)

Using this formula, values of the reactance and resistance are plotted in Figure 2.10.

2.1.6 Reflection from a baffled tube opening

We now have all the pieces needed to determine the plane wave reflection coefficient from

a baffled tube opening. To determine how the reflection coefficient is governed by the
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Figure 2.10: Resistance and reactance at the opening of a baffled tube as a function of kb.

impedance at the tube opening, we rewrite Eq. (2.19) as:

< =
Zn − Z0

Zn + Z0
. (2.45)

We then let the termination impedance, Zn, equal the average impedance at the tube

opening, Z, given by Eq. (2.43). If the fluid at the tube opening is the same as the fluid

inside the tube, the reflection coefficient for the baffled, sound-hard tube is given by:

< =
R (2kb)− 1− iX (2kb)
R (2kb) + 1− iX (2kb)

(2.46)

which is a complex quantity. If the two fluids are different, the reflection coefficient becomes

(denoting the fluids inside and outside the tube with subscripts 1 and 2, respectively):

< =
R (2k2b)− γ − iX (2k2b)
R (2k2b) + γ − iX (2k2b)

(2.47)

where γ = ρ1c1/ρ2c2. The validity of these equations is explored in Appendix C, comparing

them to other published results and numerical models. Figure 2.11 shows the predicted
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reflection coefficient for three different values of γ.
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Figure 2.11: Magnitude and phase of the reflection coefficient predicted by Eq. (2.47) for
three different values of γ, the ratio of specific impedances.

2.1.7 Other tube terminations

We have derived an expression for the plane-wave reflection coefficient for a tube opening

fitted with an infinite, rigid baffle. Much work has been done developing solutions for tubes

terminated with other openings and, although these solutions will not be discussed in detail,

they merit mentioning. The most well-known is the solution for an unflanged opening of a

tube with vanishingly small wall thickness, published in 1948 by Levine and Schwinger [49].

They present a solution for the plane wave reflection coefficient in closed form,

< = −|<|e2ik` (2.48)

33



where

|<| = exp


−2kb

π

∫ kb

0

tan−1 (−J1 (x) /N1 (x))

x
√

(kb)2 − x2
dx


 (2.49)

and

` =
b

π

∫ kb

0

ln
(

πJ1 (x)
√

(J1 (x))2 + (N1 (x))2
)

x
√

(kb)2 − x2
dx +

b

π

∫ ∞

0

ln (1/ (2I1 (x) K1 (x)))

x
√

(kb)2 + x2
dx.

(2.50)

Here N1 (x) is an ordinary Bessel function of the second kind and I1 (x) and K1 (x) are

modified Bessel functions of the first and second kind, respectively.

Jones [50] adapted Levine and Schwinger’s work to study the scattering of waves off

solid tubes of finite thickness. Ando [51] investigated the reflection from the opening of a

tube of finite thickness, deriving a solution in the form of an infinite number of simultane-

ous equations (which may be truncated for certain thickness to diameter ratios) in 1969.

In 1996, Bernard and Denardo [52] cast Ando’s results in a more useful form. More re-

cently, numerical methods, such as the finite element method, finite difference method, and

boundary element method, have been used to solve for a variety of different tube termination

geometries [53, 54].

The theoretical solutions for the plane wave reflection coefficient of unflanged and finite-

thickness tubes require that the fluid inside the tube be the same as the fluid outside. This

makes them of little use to us in their present form, as we are interested in the case where

the two fluids are different. We can, however, apply a first-order correction to approximate

the reflection coefficient for the two-fluid case. As we saw in the previous sections, the

reflection coefficient for a specific tube termination is a function of both the specific acoustic
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impedance inside the tube, Z0, and the impedance at the tube opening, Zn. However, so

long as only plane waves exist at the tube opening, the impedance at the opening is the

same as that of a uniformly vibrating disc and only depends on the fluid outside the tube.

We have seen that this is indeed the case for the impedance of a baffled tube opening as

developed here (see Eq. 2.43).

The correction procedure is as follows. First, let both the fluid inside and outside the

tube be the same, with density and sound speed ρ2 and c2. The impedance at the tube

opening is given by Eq. (2.19),

Zn = ρ2c2
1 + <′
1−<′ ,

where <′ is the plane wave reflection coefficient predicted by the single-fluid model. We will

assume, as stated above, that this impedance is independent of the fluid inside the tube.

Letting the fluid inside the tube have a different density and sound speed, ρ1 and c1, the

reflection coefficient becomes

< =
Zn − ρ1c1

Zn + ρ1c1
≈ (1− γ) + <′ (1 + γ)

(1 + γ) + <′ (1− γ)
(2.51)

where, as before, γ = ρ1c1/ρ2c2. Again, this relationship is only a first-order correction and

may not hold if higher-order modes play a significant role at the tube opening.

2.2 Bubbly Liquids

Now that we have detailed the theory behind the measurement device we will delve deeper

into the theory of what we intend to measure – bubbly liquids. We will start our analysis

as we did in Chapter 1 – with the behavior of a single, oscillating bubble.
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2.2.1 Bubble dynamics - The bubble as a simple harmonic oscillator

A number of models exist (see [30], pages 302-308) that attempt to explain the linearized

dynamics of an oscillating gas bubble in a liquid. For small amplitude radial oscillations

about the bubble’s equilibrium radius, a0,

a (t) = a0 + s (t) (2.52)

where |s| << a0, all the models linearize to the same differential equation that governs a

damped harmonic oscillator (see, for instance, [25, 26]),

d2

dt2
s + 2b

d

dt
s + ω2

0s = 0. (2.53)

Here b is a damping coefficient and ω0 is the resonant frequency given (for now) by Eq. (1.1)

and we have neglected any acoustic or hydrodynamic forcing. For resonating air bubbles in

water, the damping coefficient is given in Devin’s 1959 paper [25] and has three components,

radiation damping, viscous damping, and thermal damping which sum together linearly:

b = brad + bvis + bth. (2.54)

Expressions for these terms (for all driving frequencies) will be given in the next section. As

Devin’s work focused on resonating bubbles, in his work each of these terms are a function

of bubble size only (and not driving frequency).

The assumption that an oscillating bubble can be modelled as a damped harmonic

oscillator is a very important step in the derivation of the speed of sound in bubbly liquids.

The simplest way to convince the reader skeptical of applying a linear oscillator model to
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a bubble is to present some experimental data (my apologies to those who would object to

the presence of measured data in the theory chapter). Figure 2.12 is a plot of the acoustic

pressure radiated to the far-field as a 1.45 mm air bubble breaks off a needle in water. The

act of breaking off the needle excites the bubble’s natural mode which radiates an acoustic

pressure that, in the far field, is proportional to the oscillating bubble’s radius with time.

Also plotted is the impulse response of Eq. (2.53) using the damping coefficient predicted by

Devin for a bubble of this size (the bubble was sized using the measured natural frequency

and the amplitude of the response was fitted to the data). The model predicts the response

of the bubble, especially the decay, after it breaks off the needle completely, very well.
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Figure 2.12: The damped harmonic oscillator model for a 1.45-mm air bubble in water is
compared with measured data. The only fitting parameter is the pressure amplitude.

37



2.2.2 Sound propagation in bubbly liquids

There are many different approaches to deriving the equations that govern sound propa-

gation in a bubbly liquid. Spitzer [15] and Foldy [16] used a point-scatter approach while

Commander and Prosperetti [29] used the continuity and conservation of mass approach of

van Wijngaarden [55]. The approach taken here, which may be the most intuitive, begins

with Wood’s Equation and uses the damped harmonic oscillator bubble model to account

for bubble dynamics. This method was first reported by Kuhl, et al. [17] working in Ger-

many during WWII and has also been adopted by Carey [56] and Carey and Roy [57].

Recall from Chapter 1 that the sound speed for a bubbly liquid at low frequencies is given

by Wood’s Equation is

1
c2
m

= [(1− β) ρ` + βρg] [(1− β) κ` + βκg] . (2.55)

It was stated in Section 1.2 that for low frequencies, the compressibility of the bubbles was

the same as the isothermal compressibility of the gas inside them. At higher frequencies,

bubble dynamics become important and the compressibility of the bubble differs from that

of the gas, κg → κb (ω). We will explore these effects now.

In general, the compressibility of the gas phase (bubbles) of the mixture is defined as

the change in gas volume with acoustic pressure normalized by the instantaneous volume:

κb =
1
ρg

(
∂p

∂ρg

)−1

=
−1
Vg

∂Vg

∂p
. (2.56)

where p is acoustic pressure, and ρg and Vg are the density and volume of the gas phase,
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respectively. The volume of gas in a given control volume, Vm is

Vg =
4
3
πVm

∫ ∞

0
℘ (a) a3da (2.57)

where ℘ (a) is the bubble radius probability density function (the number of bubbles per

unit volume with equilibrium radius between a and a + da). The void fraction can be

expressed in this notation as

β =
Vg

Vm
=

4
3
π

∫ ∞

0
℘ (a) a3da. (2.58)

Plugging (2.57) into (2.56), the bubble compressibility is

κb = −4π
1
β

∫ ∞

0
℘ (a) a2

(
∂a

∂p

)
da. (2.59)

The problem is now to determine an expression for ∂a/∂p.

As shown in the previous section, a bubble driven at low acoustic pressures behaves as

a linear, damped harmonic oscillator. Adding an acoustic forcing pressure, Pae
−iωt, to Eq.

(2.53) the bubble radius is governed by the differential equation (see [26] or [30], page 372)

d2

dtt
s + 2b

d

dt
s + ω2

0s =
−Pa

ρ`a0
e−iωt. (2.60)

The negative sign on the right hand side arises as an increase in acoustic pressure results

in a decrease in bubble size in the limit of zero frequency. The steady-state solution for the

bubble radius is

a (t) = a0 + Re

(
−Pae

−iωt

ρ`a0
(
ω2

0 − ω2 + i2bω
)
)

. (2.61)

The partial derivative in (2.59) can now be evaluated as

∂a

∂p
=

−1
ρ`a0

(
ω2

0 − ω2 + i2bω
) . (2.62)
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The bubble compressibility is now completely given by

κb = 4π
1
β

1
ρ`

∫ ∞

0

℘ (a) a

ω2
0 − ω2 + i2bω

da. (2.63)

Plugging (2.63) into (2.55), the speed of sound in a bubbly liquid is given by:

1
c2
m

= [(1− β) ρ` + βρg]
[
(1− β) κ` +

4π

ρ`

∫ ∞

0

℘ (a) a

ω2
0 − ω2 + i2bω

da

]
. (2.64)

For naturally occurring air bubbles in water two simplifications can be made, ρg << ρ` and

β << 1. In these limits, the complex mixture sound speed is given by:

1
c2
m

=
1
c2
`

+ 4π

∫ ∞

0

℘ (a) a

ω2
0 − ω2 + i2bω

da. (2.65)

This is the essentially the same result derived by Foldy [16] in 1944 and reported by Com-

mander and Prosperetti [29] in 1989. The only remaining unknown is the damping coeffi-

cient, b, which we have neglected detailed discussion of thus far.

As mentioned in Chapter 1, one of the most important advances in the study of bubbly

liquids in the second half of the 20th century was Prosperetti’s [26, 27] solution for the heat

transfer and thermodynamics inside an oscillating gas bubble. This solution manifests itself

in two related ways, the first being the frequency dependent polytropic exponent and the

second being the frequency dependent thermal damping coefficient. Both are encapsulated

in the following expression:

Φ =
3γ

1− 3 (γ − 1) iχ
[√

i
χ coth

(√
i
χ

)
− 1

] (2.66)

where γ is the ratio of specific heats of the gas inside the bubble and χ = Dg/ωa2 is the

thermal diffusion length. Here Dg is the thermal diffusivity of the gas, given by

Dg =
(γ − 1)KT T

γp0
, (2.67)
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where KT is the gas’ thermal conductivity, T is the absolute temperature and p0 is the

bubble equilibrium pressure, defined below. The derivation of the expression for Φ, which

can be used to relate the instantaneous radius and internal pressure of oscillating gas bubble

in a liquid, is far beyond the scope of the present work although it is important to note that

it is both dimensionless and complex.

The polytropic exponent and thermal damping coefficient are, respectively,

η =
1
3
Re (Φ) (2.68)

and

bth =
p0

2ρ`a2ω
Im (Φ) . (2.69)

Using the proper polytropic exponent, an accurate expression for the bubble resonance

frequency, correcting for the Laplace pressure, is

ω2
0 =

1
ρ`a2

(
3ηp0 − 2σ

a

)
(2.70)

where σ is the surface tension and p0 = P∞+2σ/a is the bubble equilibrium pressure. The

remaining damping terms, viscous and radiation damping are

bvis =
2µ

ρ`a2
(2.71)

and

brad =
ω2a

2c`
(2.72)

where µ is the viscosity of the host liquid. The total bubble damping constant is

b =
p0

2ρ`a2ω
Im (Φ) +

2µ

ρ`a2
+

ω2a

2c`
. (2.73)

41



The wave number, km, of a plane progressive wave in a bubbly liquid is given by

k2
m =

ω2

c2
m

=
ω2

c2
`

+ 4πω2
∫ ∞

0

℘ (a) a

ω2
0 − ω2 + i2bω

da. (2.74)

It is straightforward to determine expressions for the phase velocity, cp and attenuation, α,

of the sound wave using the plane wave formulism

exp (ikmx− iωt) = exp (−αx) exp

(
iω

(
1
cp

x− t

))
,

giving us

α = Im (km) (2.75)

and

1
cp

=
Re (km)

ω
= Re

(
1
cm

)
. (2.76)

Figures 2.13 and 2.14 are plots of the phase speed and attenuation for bubbly liquids of

various void fractions and size distributions. A Gaussian bubble size distribution,

℘ (a) = C exp

(
−(a− a0)

2

s2
a

)
, (2.77)

is used in these calculations where sa is the standard deviation and C is a constant given

by Eq. (2.58) as a function of void fraction. For a thorough investigation of the effects of

different parameters, the investigative reader is directed to [1].

It is important to note that four distinct regimes are visible in all plots. The first

is the low frequency or Wood’s equation regime. Here the effects of bubble dynamics are

minimized and the sound speed is only weakly dispersive and accurately predicted by Wood’s

equation, Eq. (1.5). As the driving frequency approaches the bubble resonance frequency
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Figure 2.13: Phase speed and attenuation in a bubbly liquid at different void fractions. The
mean bubble radius is 500 µm with a 20 µm standard deviation.
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Figure 2.14: Phase speed and attenuation in a bubbly liquid at different mean bubble radii.
The void fraction is 0.1% and the standard deviation in bubble radius is 20 µm.
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the phase speed becomes strongly dispersive, dropping considerably as the attenuation rises

sharply. This is the resonant regime. Just above resonance the phase speed rises quickly

and plateaus at a value that is super-sonic relative to the host medium while the attenuation

declines steadily. Here the bubble oscillations are out of phase with the driving pressure,

making the effective fluid appear very stiff. This is the super-resonant regime. At higher

frequencies, the response of the bubbles, like any harmonic oscillator, goes to zero as the

system becomes dominated by the inertia of the fluid mass loading the bubbles. At these

frequencies, known as the “sonic velocimeter” limit, the bubbles behave essentially as a

suspension of rigid spheres in the host liquid and the phase velocity is independent of

bubble size or void fraction and equal to that of the host fluid.

2.2.3 Multiple scattering considerations

An important assumption used to derive the expression for the bubble compressibility, Eq.

(2.63), in the previous section was that the presence of any individual bubble does not effect

the response of any of the other bubbles. That is to say that the sound field scattered from

a given bubble is never incident on neighboring bubbles or is at least of much, much lower

magnitude than the driving sound field. While this assumption holds for bubbly liquids

of low void fraction, it is certainly not applicable at higher void fractions. Just where

the transition from low to high void fraction lies is an open question. Commander and

Prosperetti [29], in presenting the theory derived here alongside a half century’s worth of

published data, estimated the transition to lie above 1-2% void fraction.

In 2001, Kargl [58] attempted to account for higher order scattering effects. He reasoned
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that each individual bubble interacts not with the host fluid, but with the effective fluid.

As such, the terms ρ`, µ, and c` in equations (2.70) and (2.73) should be replaced with

ρm, µm, and cm, respectively. Because the density and viscosity of the host liquid and the

effective fluid are the very close to each other for small void fractions, the only term that

Kargl suggested changing is brad, the acoustic radiation damping which is dependent on the

sound speed,

brad → ω2a

2cm
. (2.78)

This model predicts that the transition from low to high void fractions (defined as the sig-

nificant departure between the two models) occurs around 0.1%. Figure 2.15 compares the

phase speed and attenuation predicted using Kargl’s model to Commander and Prosperetti’s

for a 1% void fraction population of 500 µm radius bubbles. While the two theories predict

similar low frequency responses, they quickly deviate around bubble resonance. Kargl’s

correction does not predict the sharp dip in sound speed and rise in attenuation of the

original theory. The rise is phase velocity is pushed to a higher frequency, where it quickly

skyrockets to close to 107 m/s, about 3% the speed of light!

While the attenuation predicted by Kargl’s correction is in line with published data

(indeed, his attenuation predictions very only slightly from those of Commander and Pros-

peretti), his blistering phase speed predictions are not. Figure 2.16 compares phase speed

measurements made using hydrophones and a laser interferometer in a 1% void fraction

1.11 mm radius bubble population made by Cheyne, Stebbings, and Roy [59] with those

predicted by Commander and Prosperetti and Kargl. Clearly, the former’s “uncorrected”
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Figure 2.15: Comparison of Kargl’s theory to that of Commander and Prosperetti for a 1%
void fraction mono-dispersed 500 µm bubble popluation.

formulation fits the measurements best. The proverbial jury is still out on multiple scatter-

ing, which remains one of the last remaining hurdles in bubbly liquid theory.
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Chapter 3

Experimental Setup and Procedure

The development of the apparatus described here is a continuation of the work of Wilson [1,

31]. Wilson’s apparatus, shown in Figure 1.2, was the first impedance tube used to measure

bubbly liquids. This Chapter details the theory, design, construction, and verification of a

successor impedance tube system. The new impedance tube, shown in Figure 1.3, overcomes

a number of limitations with its predecessor, but these improvements come with their own

limitations on performance, as will also be shown this Chapter. We will begin with an

overview of the theory behind the measurement method.

3.1 The single hydrophone transfer function method

The transfer function method (TFM) was developed in its present form by Chung and

Blaser [60] in 1979. The TFM exploits the power of modern spectral analyzers, whose

fast Fourier transform routines can calculate the complex transfer function between two
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signals in near-real time. This method allows for the calculation of the complex plane

wave reflection coefficient in a tube over a fairly broad range of frequency in a matter of

seconds. The theory behind the TFM is derived below for the simple case of time-harmonic

excitation. Prior to the advent of the TFM, measurements of reflection coefficients were

made predominantly by the standing wave ratio (SWR) method (see [37], for instance).

The SWR is a bulky and time consuming method which requires the measurement of the

pressure field at every point in the tube from its termination back at least half a wavelength

at a single frequency.

3.1.1 TFM theory

Recall that Eq. (2.17) gives the pressure anywhere in a tube subject to time-harmonic plane

wave excitation as

p (d, t) = Pi

(
e−ikd + <eikd

)
e−iωt. (3.1)

where < is the plane wave reflection coefficient and d is the distance from the tube opening.

Now consider the arrangement shown in Figure 3.1 where two hydrophones are located in

a tube at distances d = ` and d = `− s from an impedance termination, Zn. The pressure

at each hydrophone is given by

p1 (t) = Pi

(
e−ik` + <eik`

)
e−iωt (3.2)

p2 (t) = Pi

(
e−ik(`−s) + <eik(`−s)

)
e−iωt. (3.3)

Now divide Eq. (3.3) by (3.2)

p2

p1
=

e−ik(`−s) + <eik(`−s)

e−ik` + <eik`
(3.4)
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Figure 3.1: Test arraignment and hydrophone locations for the transfer function method.

and note that there is no longer any time dependence. This expression is defined as the

transfer function, H12 = p2/p1, between the two hydrophone pressure measurements. With

a little algebraic rearrangement, an expression for the plane wave reflection coefficient is

obtained:

< =
H12 − eiks

e−iks −H12
e−ik2(`) (3.5)

It is important to note that H12 is a complex quantity containing both the amplitude ratio

and phase difference between the pressures at the two points. The pioneering study by

Chung and Blaser derived Eq. (3.5), in a much more rigorous fashion, showing that it holds

not only for harmonic but broadband random or swept sine excitation as well, provided

only plane waves exist. As such, the transfer function and reflection coefficient in Eq. 3.5

can be functions of frequency, H12 (ω) and < (ω). The beautiful point is that a modern

two-channel spectral analyzer can measure H12 (ω) over a broad range of frequency in a
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couple of seconds1,2.

3.1.2 Hydrophone location and spacing considerations

Chung and Blaser also showed that the singularity in the denominator of (3.5), exp (iks)−

H12 = 0, is avoided so long as the hydrophone spacing is such that

s ≤ λmin

2
=

c

2fmax
(3.6)

where λmin is the acoustic wavelength of the highest measurement frequency, fmax. This

condition limits the usable frequency range of the TFM for a given sensor spacing. The

ASTM standard [63] concerning acoustic impedance measurements using the TFM recom-

mends using a sensor spacing of no more than 80% of c/2fmax, while Chu [61] suggests the

optimal spacing is 70% of this upper limit. In their rigorous analysis of errors inherent in the

TFM, Seybert and Soenarko [62] determined that certain bias errors are minimized when

the sensor spacing is small, but recognized that at low frequencies the magnitude of the

transfer function approaches unity for small s, reducing the accuracy of the measurements.

Gibiat and Laloe [64] state that the optimum spacing is a quarter of a wavelength and

recommending a frequency range of a tenth to one-third of a wavelength for a given sensor
1Spectrum analyzers, like the HP 89410A and HP 39562A used for this work, measure the transfer

function as a function of frequency. By definition (see, for instance, [61, 62]),

H12 (f) = P2 (f)/P1 (f) = Gp1p2 (f)/Gp1p1 (f)

where P (f) is the Fourier transform of a hydrophone signal. Gp1p2(f) is the cross spectral density of the
two hydrophone signals, equal to 1

2
(P1 (f) ∗ P2 (f)) and Gp1p1(f) is the auto-spectral density of the signal

from hydrophone 1.
2It is important to note that most spectrum analyzers use a different imaginary variable notation, replac-

ing i with j. As j is commonly defined as j = −i, it is often necessary to change the sign of the imaginary
part of the data collected from the analyzer.
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spacing. Clearly the determination of sensor spacing is as much of an art as a science. In

this work a sensor spacing such that

λ

10
≤ s ≤ λ

4
(3.7)

was found to work sufficiently well. To increase the frequency range beyond these limits

more than one sensor spacing must be used.

Figure 3.2 is a plot of the limits given by Eq. (3.7) as a function of frequency for a

sound speed of 1460 m/s, representative of the plane wave phase speed of water in our

tube. Based on the nature of this curve, our tube’s 1-16 kHz operational frequency range

is divided into four separate measurement bands. These bands are 1-2, 2-4, 4-8, and 8-16

kHz with respective hydrophone spacings of 16, 8, 4, and 2 cm, and are also shown on the

plot as solid lines.
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Figure 3.2: Limits on hydrophone spacing as a function of frequency (broken lines) and
hydrophone spacing used in this work (solid lines).
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The absolute location of the hydrophones must also be chosen. Seybert and Soenarko

[62] recommend placing the sensor as close as possible to the measurement plane to minimize

bias errors. The ASTM standard [63] suggests placing the closest sensor anywhere from

at least one half to two tube diameters away, depending on the nature of the termination,

to allow reflections of higher order modes (which do not propagate) to decay. Although

we neglected them in the derivation of the plane wave reflection coefficient, higher order

modes must exist at a baffled tube opening to completely define the boundary conditions

(see Section 2.1.3). It was found that the tube performed best when the closest hydrophone

was roughly three tube diameters from the opening.

3.1.3 Transfer function measurement with a single hydrophone

In order to measure the pressure simultaneously at points 1 and 2, two hydrophones must

be used. In a perfect world, the signal from the hydrophone at point 1 divided by the

signal from its counterpart at point 2 would equal H12, as the two hydrophones would

have identical magnitude and phase response. Unfortunately, no two real hydrophones

behave this ideally, and a calibration must be performed if two hydrophones are used.

For the previous impedance system, Wilson used a two microphone (hydrophone), three

calibration (TMTC) method developed in the early 1990’s [64]. While extremely accurate,

the hydrophones used were very susceptible to shock and vibration and the calibration

measurement was susceptible to small changes in temperature (as the speed of sound of

the water in the tube is strongly temperature dependent). The hydrophones were also

wall-mounted, placing a permanent restriction on the usable frequency range via Eq. (3.6).
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Both the need for calibration and the fixed frequency range imposed by using wall-

mounted hydrophones can be overcome simply by using a single hydrophone that is scanned

along the tube axis. This method, developed for air-filled tubes, was first presented by Chu

[61] in 1986. The pressure spectrum measured by the hydrophone at one location is stored

and compared, without calibration or correction, with the signal from the same hydrophone

moved to the second location. In order to preserve phase information, the hydrophone

signals must be referenced to a third signal at each point. The transfer function between

the two hydrophones is given by

H12 (f) =
Gp1s

Gp1p1

Gsp2

Gss
= H1s (f) Hs2 (f) (3.8)

where the subscript s refers to the reference signal. It is convenient and practical to use

the signal driving the sound source (before it is amplified, of course) as the reference, as it

is generated at the spectrum analyzer and has a very flat frequency spectrum.

As mentioned before, this method works over a much broader frequency range than

most two sensor methods. In practice the low end of the usable frequency range is usually

determined either by tube length (at least half a wavelength in length is recommended) or

by the efficiency of the driving source (most piezoelectric crystals have very high electrical

impedance below their resonance frequency). In this work, the source was the limiting

factor as we found it difficult to sufficiently excite the tube below 1 kHz. The upper bound

on frequency is usually determined by the cutoff frequency for the first higher-order mode.

Although more than one mode can exist in a fluid-filled tube at all frequencies (see next

section), the first cutoff frequency for a sound-hard tube of the same dimensions is generally
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a good indicator of the upper usable limit. For our water-filled tube, the upper frequency

limit was around 14 kHz.

3.2 Corrections for elastic waveguide effects

In Section 2.1 it was assumed that the walls of the impedance tube were sufficiently rigid

that the radial acoustic velocity is zero at the tube wall. This assumption works remarkably

well for air-filled tubes, as relative to air most all solids appear rigid. When the fill fluid

is water, or another liquid, the walls can no longer be assumed rigid as the bulk modulus

and density of the liquid and the wall enclosing it are often of similar magnitude. The tube

walls must be treated as elastic solids, resulting in a number of effects that must be taken

into consideration.

While a number of approximate solutions to wave propagation in fluid-filled elastic tubes

exist (see, for instance, [17, 65, 66, 67]), they are generally only valid under certain limits,

such as tubes with very thin walls or for very low acoustic frequencies. Del Grosso [68, 69],

in the late 1960’s, used the complete longitudinal and shear wave equations to obtain an

exact solution for acoustic wave propagation in an inviscid fluid contained in an elastic tube

of arbitrary thickness and material. His results were rediscovered and simplified by Lafleur

and Shields [70] in 1994. More recently, in 2000, Elvira-Segura [71], using Del Grosso’s

formulation, added the dissipative effects of fluid viscosity to the solution.

Accounting for the elasticity reveals three significant departures from rigid tube theory.

First, more than one mode can propagate at all frequencies. Recall that in a rigid tube, only
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one mode can propagate at frequencies below the first cutoff frequency. In an elastic tube,

two modes exist below this cutoff frequency: the lowest order, where most energy travels

in the liquid, and the next highest order, where most energy travels in the tube walls. The

second effect is that all modes, including the lowest order, have a radial velocity component

and a radially dependent pressure profile. In the rigid waveguide, the lowest order mode

was a plane wave, with a uniform pressure profile and no radial velocity component. And

finally, all modes, including the lowest order, have dispersive (frequency-dependent) phase

speeds. The plane wave mode in a rigid tube has a constant speed of propagation, equal to

the intrinsic speed of sound of the fluid.

As impedance tube theory and the TFM both require pure plane wave propagation,

the effects caused by an elastic waveguide could render the technique useless. However, if

careful consideration is given to the elastic solution, these effects can be minimized to a

negligible level. Wilson [1], designing the predecessor of the tube described here, optimized

the tube parameters in Lafleur and Shield’s solution to minimize the departure of the lowest

order mode’s radial profile and speed of propagation from the ideal, plane-wave case. He

showed the optimum design is to have the tube’s moduli of elasticity and density be as large

as possible (stainless steel, he found, is preferable to a hardened aluminum) and to have

the inner radius of the tube equal to the wall thickness.

The inner diameter is determined by the required upper bound on frequency. As is the

case with rigid tubes, it is difficult to selectively propagate energy in one tube mode and

not another above the first cutoff frequency. This is the frequency where half an acoustic
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wavelength is equal to the inner diameter of the tube. Wilson selected an inner diameter

of about 5 cm. With water in the tube, this corresponds to a cutoff frequency around

14 kHz. In practice, the tube worked sufficiently well up to at least 16 kHz. In a water

filled stainless steel tube with a 5 cm inner diameter and 15 cm outer diameter, the lowest

order mode has less than 0.5% dispersion in phase speed and a radial pressure profile that

changes at most 5% from the tube’s central axis to its wall over the 0 to 16 kHz frequency

range. Wilson showed that, for use in the TFM, the lowest order mode can be modelled as

a plane wave, travelling at a constant phase speed representative of that predicted by the

elastic waveguide solution over the frequency range. The selective coupling of energy into

the lowest order mode only is discussed in Section 3.3.1.

The elastic waveguide solutions discussed above all assumed that the outer diameter

of the tube was in contact with air, or another gas, and could be modelled having zero

tangential and normal stress there. As the impedance tube in this work is to be submerged,

it is necessary to consider any effects that liquid loading outside the tube may have. Holmes

[72] has shown, in a rigorous mathematical analysis, that any such effect is negligible for

water loading on a stainless steel tube of the dimensions used in this work. Dunlop [32]

reached the same conclusion using a simplified elastic tube model for a tube of somewhat

different dimensions.

To confirm that external fluid loading is negligible, the phase speed of the lowest order

mode was measured at a number of different frequencies with the tube submerged in water.

The measurements, showing excellent agreement with La Fleur and Shield’s prediction, are
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shown in Figure 3.3. Measurements were made in both the time and frequency domains.

Time domain measurements were made using three cycle pulses at different frequencies.

For each frequency, the pulse recorded by a hydrophone at one position is compared to that

with the hydrophone moved a prescribed distance. The phase speed is given by this distance

divided by the time lag between the two signals, determined using the cross correlation

∆t = max
(∫ τ2

τ1
p1 (τ + t) p2 (τ) dτ, t

)
. (3.9)

The frequency domain measurements were made by measuring the distance between con-

secutive nulls in the pressure spectrum at a given frequency. This distance corresponds to

one half an acoustic wavelength which is a direct function of the sound speed. A number

of frequency points can be measured at once by looking at a single frequency spectrum

a known distance from a pressure release surface, such as a water-air interface. As will

be shown in a Section 3.5.1, the pressure anywhere inside a tube terminated with such a

surface is:

p (d) ∝ sin (kd) (3.10)

where d is the distance from the surface. The pressure tends to zero whenever kd is an

interger multiple of π. As k = 2πf/c, the sound speed, cn, at fn, the nth frequency null, is

given by

cn = fn
2d

n
. (3.11)

The error bars on the plot represent uncertainty in the measured time, frequency and length

parameters.
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The measurements and theoretical solution shown in Figure 3.3 also give a good indi-

cation as to just how little dispersion there is in tube. The magnitude of the phase speed

is only slightly more than 2% lower than the intrinsic speed of sound of water and the
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Figure 3.3: Measured waveguide phase speed, cphase, in our submersed, water-filled
impedance tube is compared to the theoretical prediction for the non-submersed waveg-
uide. The values are normalized by c0, the intrinsic sound speed of water. Error bars
represent uncertainty in the measured length, time, and frequency parameters.

3.3 Design and construction of the impedance tube system

A general overview of the mechanical impedance tube system is shown in Figure 3.4. The

impedance tube is solid 304 stainless steel with an overall length, excluding the baffle, of

68.6 cm. The inner radius is precision machined to 2.601 cm while the outer surface, about

5.08 cm in radius, has a rough finish. A 1.27 cm thick stainless steel baffle about 61 cm

in diameter, is bolted to a flange at one end of the impedance tube. The mounting bolts
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are counter-sunk into the baffle to maintain a flat profile at the tube opening. A sound

source, described in detail in the next section, is mounted to the other end of the tube.

As mentioned in Section 3.1.3, a single hydrophone is scanned along the tube axis. This

hydrophone is mounted in a sheath that is aligned with an acoustically transparent centering

start and positioned along the tube axis using a stepper motor and timing belt assembly

described in Section 3.3.2. The system electronics and instrumentation are discussed in

Section 3.3.4.

{ Hydrophone

Positioning System

Sound

Source

Hydrophone 

Assembly

Impedance Tube

Baffle

Figure 3.4: General overview of the mechanical components of the baffled, submersible
impedance tube system.

3.3.1 The sound source

The sound source is used to generate the acoustic waves in the tube. The sound source

must meet two objectives. One is that it must couple sufficient energy into the lowest order,

“plane-wave like,” tube mode while minimizing coupling into the next highest mode. The

other is that, in order for a hydrophone to be scanned along the tube axis, our design
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must also allow for the hydrophone sheath to pass through it. We chose a modified Tonpilz

(German for “singing mushroom”) style transducer, shown in Figure 3.5 and Figure 3.6.

Dimensioned technical drawings are shown in Appendix D.

Figure 3.5: Cutaway drawing of the source transducer with pass-through hole. Electrical
wires are not shown.

The standard Tonpilz design consists of a piezoelectric element, in our case lead zirconate-

lead titanate (PZT), sandwiched between two masses, a head mass (the face of which radi-

ates sound into the tube) and a tail mass. The “sandwich” is held together with a connecting

bolt that threads into the head mass and is tightened against the tail mass with an end nut.

The connecting bolt compresses the ceramic to ensure that it does not encounter a tensile
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Figure 3.6: Outside view of the source transducer

strain in operation (ceramics have very low tensile strengths).

Design choices were made so that the source will couple very efficiently into the lowest

order tube mode (which has a relatively flat radial profile and very little energy travelling

in the tube walls) and not into the next highest mode (which has a significant radial profile

and most of its energy travelling in the tube walls). Our modified design encloses the active

elements inside a stainless steel housing and has a 3/8 inch diameter hole along the axis of

the masses and connecting rod. The head and tail masses are suspended in the housing with

rubber o-rings. These serve to decouple the linear motion (as well as any radial motion)

of the masses from the housing and therefore the tube walls. The face of the head mass,

which is in contact with the fluid in the tube, is machined very flat so as not to impart any

radial motion to the fluid.

Ideally, no acoustic energy should radiate out from the back of the source and no fluid

should enter into its inner workings. The tail mass is isolated from the housing’s end cap
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with a flexible neoprene-rubber bellows. The bellows are supported by a thick closed-cell

foam-rubber sheath. The foam rubber keeps the bellows from over-expanding from fluid

pressure on the inside (if the apparatus is operated at depth). The foam also serves to

decouple the end cap from the motion of the tail mass should the compartment flood with

water.

The signal cable is attached to the transducer via a waterproof connector. This connec-

tor, a SEACON Model CRA 2154, has a custom coaxial connection on the outer, or “wet”

side and two wire leads on the inside (“dry”) of the transducer housing. These leads are

soldered onto the inside and outside of the PZT crystal. The connector screws into the

fitting jutting out from the housing, labelled in Figure 3.5.

Ideally, the source transducer would have a flat frequency response across the range of

use. A Tonpilz, however, is a strongly resonant device. So long as the acoustic wavelength

is smaller than the length of the piezoelectric element, the Tonpilz can be modelled as two

masses coupled by a single spring (the PZT element) [73]. Such a system has a steep rise in

response with frequency below resonance, a very strong response at resonance, and a flat,

slightly less strong, response at frequencies above resonance. The resonant frequency of a

Tonpilz is given by

f0 =
1
2π

√
K

M
(3.12)

where K is the effective stiffness of the PZT element,

K =
AE11

L
, (3.13)
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and M is the effective mass,

M =
mHmT

mH + mT
. (3.14)

Here A, E11, and L are the cross-sectional area, principle modulus of elasticity, and length

of the PZT element and the mass of the head and tail masses are given by mH and mT ,

respectively. Typical values of E11 for PZT are between 60 and 120 GPa.

In order to keep the frequency as flat as possible over the broadest range of frequency,

the source was designed to resonate at as low a frequency as reasonably possible. A hollow

cylindrical PZT element, 1.5 inches long with a 1.5 inch outer diameter and 0.188 inch

thickness was used. The element has a resonance frequency around 28 kHz when driven in

the longitudinal mode. This element was selected because it was largest cylindrical element

available in our laboratory. A large element is desirable because the maximum electric field

(and therefore drive level) that can be applied to a piezoelectric crystal is proportional to

its volume. A longer element would have allowed for a lower effective stiffness and reduced

the overall resonant frequency, but would have made the overall length of the source too

long to be practical.

The volume occupied by the masses was dictated by the allowable size of the source.

Stainless steel was selected for the masses to minimize the formation of a galvanic cell when

in contact with sea water (the tube is also stainless steel). The only design parameter open

to choice was the relative size of the two masses. For a fixed total mass, (mH + mT ), the

largest effective mass, M , and therefore the lowest resonant frequency, is achieved when the

two masses are equal, mH = mT . The masses were designed such that each had roughly
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the same mass.

The source, as originally built, resonated around 4 kHz, somewhat lower than predicted

by Eq. (3.12), even with the lowest value E11 in the range. This was not viewed as a

problem, as the design objective was a low resonant frequency. However, it was necessary

to coat the entire PZT element with an epoxy resin to waterproof, and thereby electrically

isolate, it as problems with electrical shorting were encountered with even a little bit of

sea water flooding into the source housing (we speculate one of the original o-rings was

poorly fitted and responsible for the breach). The epoxy coating significantly raised the

cross-sectional area and effective stiffness of the system, raising the resonant frequency to

around 7 kHz, slightly higher than desirable. Figure 3.7 shows the measured acceleration

profile of the head mass, measured with a shear accelerometer mounted on the head mass

with the entire source assembly submerged in water. The sub-resonance, resonant, and

super-resonant regimes are clearly visible.

3.3.2 Hydrophone positioning system

In order to scan the hydrophone along the tube axis, as required by the single sensor TFM,

it had to be mounted in a relatively rigid sheath. A Brüel and Kjær model 8103 miniature

hydrophone was used. These hydrophones have an exceptionally flat response across the

1 to 16 kHz frequency range, are relatively small in size (9.5 mm in diameter by 50 mm

in length) and have a well defined (within ± 0.3 mm) acoustic center. The hydrophone

is mounted in a sheath as shown in Figure 3.8. The sheath has two sections. The first

is a short, ∼10 cm long, hollow Teflon rod whose outer and inner diameters are about
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Figure 3.7: Typical acceleration profile of the source transducer head mass, submerged in
water. There is a clear mechanical resonance at 7 kHz.

9mm and 6mm. Teflon was chosen because it is easier to machine, more closely impedance

matched to water than steel, and, when machined thin, is transparent enough to spot any

air bubbles trapped inside it. The inner diameter is bored out to 7mm on one end to accept

the hydrophone. A long, hollow stainless steel shaft is press fit into the other end of the

Teflon piece. This shaft runs the length of the impedance tube, through the sound source,

and is fixed to a positioning track, to be described below, behind the source. The outer

diameter of the shaft is 1/4 inch, which allows for ample clearance between the shaft and the

3/8 inch bore through the source. The stainless steel sheath has a 0.035 inch wall thickness.

The far end of the sheath is open to allow for easy flooding before use.

The hydrophone sheath is centered in the impedance tube with a simple centering star

device, also shown in Figure 3.8. The centering star consists of a small broken ring made of
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Figure 3.8: Illustration of the hydrophone sheath and centering star.

Delrin that can be snapped on and off the stainless steel portion of the sheath. The ring fits

tightly on the shaft, avoiding any unwanted slipping. Three 1/16 inch diameter titanium rods

are press fit into the base, making 120˚ angles with each other. Titanium was used simply

because our supplier did not have any stainless stock on hand. The lengths of the rods

are such that the entire star-sheath assembly forms a clearance fit with the inner diameter

of the impedance tube. This keeps the hydrophone centered in the tube while allowing it

to move unopposed. The entire centering star device is kept as small as possible to avoid

interfering with the acoustic field.

As mentioned above, the hydrophone is moved by a positioning system mounted behind

the source3. The entire positioning system is illustrated in Figure 3.9. The hydrophone

sheath is mounted on a Kevlar-reinforced nylon timing belt. The timing belt is held taught
3Although I wish I could claim to have designed the entire apparatus myself, I owe the design and

construction of the positioning system and stepper motor housing to Jason Holmes, who helped work on
this project from the fall of 2003 through the summer of 2004.
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between two toothed pulleys on 1/4 inch diameter stainless steel shafts. One shaft is free to

rotate, supported on both ends by bearings set in thick acrylic blocks which act as a shaft

supports. The other shaft is driven on one end by a stepper motor, enclosed in a waterproof

housing (described below) and on the other end is supported in the same manner as the

freely rotating shaft. The pulley on the drive shaft was cross-drilled and fixed against free

rotation with an expansion pin. The shaft supports, as well as the motor housing support,

are attached to two lengths of extruded aluminum which are mounted to the tube using a

standard plastic and stainless steel 4 inch pipe support. The aluminum supports are also

attached to a frame which surrounds the entire impedance tube apparatus, keeping the

system in place once aligned.

SIDE VIEW

TOP VIEW

Stepper Motor

Housing

Pulleys

Timing 

Belt
Shaft Bearing (x3)

Sheath 

Mounting Block

Drive

Shaft

Tube Mounting

Block

Hydrophone

Sheath

Shaft Supports Shaft Alignment Block

Figure 3.9: Illustration of the hydrophone sheath positioning system.

The stepper motor housing, shown in Figure 3.10, has a relatively simple design. The

stepper motor, an Intelligent Motion Systems M-2222-3.0ES-XXX 200 step motor, is bolted
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to a large Delrin mounting block. The mounting block has a bore through it slightly

oversized to the shaft diameter, helping to keep the motor’s drive shaft aligned. On the wet

side of the mounting block, a waterproof rotary shaft seal (APM Hex Seal N9030x1/4) seals

against the drive shaft and keeps water from entering the housing. The mounting block

is held in place by a PVC pipe cap threaded into a section of 4 inch PVC pipe. Another

PVC pipe cap is threaded into the other end of the pipe section, holding in place another

Delrin block. Compressed o-rings seal both blocks against the pipe. A waterproof connector

(SEACON AWM8XSBC) is mounted through the second block. This connector has 8 leads,

although only 4 are required for proper motor operation. The other leads were reserved for

the possibility of adding a rotation encoder to the stepper motor (to record position) or a

temperature sensor. The stepper motor housing was pressure tested, in water, to roughly

300 kPa without failure.

Stepper

Motor

PVC Pipe

Section
Threaded PVC 

Pipe Cap

Drive Shaft

Waterproof

Shaft Seal

Waterproof

ConnectorMotor Mounting

Block

Threaded PVC 

Pipe Cap

Housing Support

Figure 3.10: Illustration of the stepper motor housing assembly.
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Figure 3.11: Photograph of the positioning system. Principle components are labelled.

3.3.3 Acoustically transparent window

An acoustically transparent 0.8 mm thick high-density polyethylene (HDPE) window can

be attached to the tube opening. This window provides a physical barrier between the

water inside the tube and the measurement plane. This is very important when measuring

bubbly liquids, as it imperative that no bubbles enter the tube. A number of other windows

were tested before deciding on the HDPE sheet: a 1 mm thick aluminum sheet, a 1.5 mm

thick silicone rubber sheet, and a custom-cast BF Goodrich rho-c rubber4 insert. The

windows were evaluated by comparing the measured complex transfer function, Hsh between

the signal from a hydrophone inside the tube and the source both with and without the

windows in place. Performance was based on how much the windowed transfer function

deviated from the windowless measurement. Ranked from best, with the least deviation,

to worst the windows performed as follows: silicon rubber, HDPE, aluminum, and rho-c
4Rho-c rubber is specially formulated two-part compound that, once cured, is impedance matched to sea

water. The shelf-life rho-c material used in the casting had expired in 1997 which, although it was kept
frozen, could account for its poor performance against the other window materials.
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rubber. Although the silicone rubber sheet performed best, it was too flimsy to adequately

seal the tube opening against bubbles without permanently bonding it to the baffle. The

results from the HDPE test are shown in Figure 3.12. There is almost no deviation between

the measurements made with and without the window in place, save for a slight departure

near 10 kHz. The window is held in place with three small 6-32 machine screws.
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Figure 3.12: Magnitude and phase of the transfer function between the hydrophone and the
source measured both with and without the HDPE window in place.

3.3.4 System instrumentation and control

Figure 3.13 is an illustration of the principal components of the complete experimental ap-

paratus. The electronic instrumentation can be divided into three main areas: hydrophone

signal conditioning and processing, sound generation, and positioning system control. The

primary component is the vector signal analyzer (VSA), which performs the transfer func-
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tion measurements and creates the source excitation signal.
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Impedance Tube

Charge Conv.
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Figure 3.13: Schematic of the experimental apparatus and accompanying instrumentation.
30-meter SEACON cables are shown as dotted lines.

We will begin by discussing the hydrophone signal conditioning. The hydrophone, de-

scribed in Section 3.3.2, is connected to an Endevco 2771B-1 remote charge converter,

providing 1 mV per pC of electric charge produced by the hydrophone. For the B & K 8103

hydrophone used, this corresponds to 96 mV/kPa. The charge converter is enclosed in a

waterproof housing, shown in Figure 3.14, constructed out of a thick Delrin block (which

can be bolted to the extruded aluminum frame). The double-shielded coaxial hydrophone

cable enters the housing through a waterproof cord-grid fitting (Hummel CD09NR-BR,

rated to 90 m of water) and connects to the charge converter. The signal is carried from
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the charge converter to a waterproof coaxial connector (SEACON CRA2154) via a short

length of BNC cable. A custom 30 m length of neoprene coated BNC cable carries the

signal from the charge converter housing to a power supply box, located on dry land. The

power supply box provides the 18-36 V DC bias required by the charge converter. The

hydrophone signal, which is purely AC, is extracted in the power supply box and then band

pass filtered with a Krohn-Hite 3940 digital filter to remove both high and low frequency

noise. For our measurements, made between 1 and 16 kHz, the low and high filter cutoff

frequencies were set at 500 Hz and 20 kHz, respectively. The filter has an optional 20 dB

input and/or output gain setting. The 20 dB output gain was sometimes used in transfer

function measurements to improve the signal strength. After filtering and amplification,

the signal is processed by a two channel VSA. Both an HP 89410A or an HP 3562A VSA

were used at different stages of this work.

Delrin Block

Waterproof

Compression

Fitting

Coaxial

Waterproof

Connector

BNC Cable

w/ Connector

Charge 

Converter

Hydrophone Cable

Figure 3.14: Illustration of the charge converter housing.

The VSA is also used to generate the signal used to drive the sound source. In this work,

pseudo-random noise was most often used as the driving signal. The signal is amplified by

a wideband power amplifier, either a Crown CE-1000 or a Krohn-Hite 7500. A second 30 m

neoprene-coated coaxial cable, identical to the one used for the hydrophone signal, carries

73



the driving signal to the sound source5.

As mentioned previously, the hydrophone is translated along the tube axis with a stepper

motor enclosed in a waterproof housing. The stepper motor is controlled by a Phytron

micro-stepping controller (Model GCD 93-70-W-RS232) which is in turn controlled by a

computer via a RS-232 connection. The controller is capable of moving our 200 step motor

in 1/8 step increments, a resolution of less than 7/100 of a degree. However there is too much

play in pulleys and timing belt driven by the motor for the system to be sensitive to such

a small displacement. For the pulley and belt sizes used in this work, the hydrophone was

moved 1 cm linearly about every 315 motor 1/8 steps. The exact calibration was recalculated

before each experiment. We found the positioning system accurate to ±0.12 mm over 35

cm of travel, repeatable to ±0.05mm. The ±0.12 mm accuracy corresponds to less than

±0.15% of the shortest wavelength in the tube, sufficient accuracy for the TFM (see Section

3.6).

3.4 Measurement preparation and procedure

Thomas Hobbes would have certainly remarked that the preparation required by our system

before making measurements is nasty, brutish, and long. Indeed, the preparation procedure

described in this section is very time-consuming and detailed, but thus is science. The
5It should be noted that an expensive coaxial cable is not necessary for this application. A pair of heavy

gauge water-blocked wires (similar to those run to the stepper motor, see below) would have been sufficient
(and much cheaper). We had, however, contemplated using a measurement of the electrical impedance of
the source to estimate the acoustic impedance at the source head (which is in turn a function of the acoustic
impedance at the tube opening). This method would have required the signal integrity provided by a coaxial
cable. Although the idea was eventually dismissed as being too difficult to model and not sufficiently sensitive
to acoustic impedance, the source was (over) designed to accommodate the coaxial cable.
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upside is that, as will be shown here, actually making measurements (once the system is

properly prepared) is relatively quick and painless. Suggestions for improvement, and there

is considerable room for improvement, will be given in a later Chapter.

3.4.1 Preparing the impedance tube for measurements

While the TFM and our computer-controlled positioning system allow for very fast and easy

reflection coefficient measurements, as will be discussed later in this Section, preparing the

apparatus for measurements is not. Our chief nemesis is, almost ironically, the very beast

we set out to study – air bubbles. As explained in Section 2.2, bubbles are very responsive to

acoustic waves, and even the most minuscule air bubble trapped anywhere inside the tube,

source, or hydrophone sheath completely squashes any chance of an accurate measurement

made in its presence. Extreme care must be taken to remove any and all air bubbles trapped

in the apparatus when preparing it for measurements. The tube alignment, preparation and

submersion procedure is as follows.

In order to align the positioning system, the source must be perfectly centered on the

tube. An alignment tool was designed for this purpose. The alignment tool is a stepped

cylinder, with the largest diameter a clearance fit to the inside of the tube and the other

a clearance fit to the hole through the source head mass. The alignment procedure is

illustrated in Figure 3.15. First, (1), the alignment tool is inserted into the source until the

diameter step is flush with the face of the head mass. Next, (2), the source is bolted to the

tube. The alignment tool keeps the source centered on the tube. Last, (3), the alignment

tool is pushed out through the tube opening with a rod inserted through the back of the
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source.
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Figure 3.15: Source alignment procedure.

Once the source is centered on the tube, it is used to help align the positioning system.

Alignment of the positioning system is crucial to ensure that the hydrophone travels strictly

along the tube axis and that the hydrophone sheath does not come in contact with the

vibrating source. This procedure is illustrated in Figure 3.16. The hydrophone sheath, or

a rod of the same outer diameter, is run through the source / tube assembly (1). The

centering star is snapped on the sheath at the tube opening and set back into the tube a

couple centimeters (2). The sheath is then mounted on the timing belt, as close to the drive

shaft pulley as possible (3). The entire positioning system assembly, which pivots where it

is attached to the impedance tube, is then adjusted up and down (and side to side) at the

far end until the hydrophone sheath is centered on the opening of the sound source (4). The

system is then fixed in place by fastening a mounting bracket, located on the underside of

the assembly, to a cross member on the extruded aluminum frame that encases the entire
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apparatus (5).
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Figure 3.16: Positioning system alignment procedure.

Once the positioning system is aligned and fixed in place, the centering star, hydrophone

sheath, and source must be removed to be reattached underwater. Before the tube can be

submersed in water, all SEACON connectors are fastened. The coaxial connectors on the

source and charge converter housing must be dry-mated, while the steeper motor cable

can be connected underwater. Care must be taken not to lose the o-rings that sit in the

coaxial connecters. The inside of the tube, baffle face, source face, and hydrophone sheath

may also be coated with a hydrophilic wetting agent. Simple Green r© detergent and Rain-

X r© Anti-Fog glass treatment were both found to work well. Wetting makes the surfaces

more attractive to water and less attractive to bubbles, making the removal of air bubbles

somewhat easier.
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The entire assembly, with the source separate from the rest, is then lowered under water,

suspended just below the surface. Ideally, the tube assembly should be allowed to reach

thermal equilibrium with the water it is submersed in. This reduces problems with air

bubbles forming by thermally-driven gas diffusion out of the water. Once submerged, the

system is ready for the painstaking underwater de-bubbling and assembly.

First, any bubbles visible on the tube walls are removed with a squeegee. Next, keeping

it completely submersed, the source is shaken violently to remove any air trapped inside,

especially in the bellows section. A small blunt rod can also be run up and down the length

of the source to remove any trapped air. Any air caught in the o-ring groove or on the o-

ring must also be removed. Once all the air is removed, the source is aligned and mounted

to the tube in the same manner described earlier. The alignment tool has a number of

holes drilled through it to allow for water flow. We found that pushing the alignment tube

as slowly as possible with the push rod reduces the number of bubbles formed inside the

tube during this process. The tube should be re-checked for bubbles at this point, and any

bubbles must be removed with the squeegee. We found that a hand-held vanity mirror and

a waterproof flashlight worked well for looking inside the tube.

Once the source is attached, the hydrophone sheath must be flooded. The hydrophone

sheath is easily flooded by removing the hydrophone and running its cable back and forth

through the sheath. Air bubbles trapped inside tend to stick to the hydrophobic hydrophone

cable and are dragged out with it as it is passed through the sheath. Bubbles do tend to get

caught where the sheath diameter increases at the stainless steel / Teflon junction. These
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bubbles are clearly visible through the thin-walled Teflon sheath and can be removed with

a pick. Once all the bubbles are removed, the hydrophone is reseated in its sheath and is

ready for attachment to the tube.

The hydrophone is then run through the source and into the tube, taking care to keep

it completely underwater. As before, the sheath is run out the baffled opening of the tube

to attach the centering star. The centering star should be inspected to make sure no air

is trapped on it before snapping it in place, about 10 cm behind the hydrophone. The

hydrophone is then pushed back into the tube, such that the sheath-hydrophone junction

is approximately in line with the plane of the tube opening. The proper setup is shown in

Figure 3.17. The hydrophone sheath is then attached to the timing belt, close (within 5

mm) to the lower, non-drive shaft, pulley. After the sheath is attached to the timing belt,

the stepper motor is used to accurately align the hydrophone with the tube opening. This

is easily done by holding a machinist’s scale or another straight, flat, thin object flush with

the tube opening, and moving the hydrophone sheath until the tail of the hydrophone is

in plane with the scale. The positioning system is zeroed at the computer at this point,

allowing us to determine the position of the hydrophone inside the tube relative to the tube

opening as required by the TFM. We found this method to be accurate in absolute position

to ±0.5 mm.

Once the positioning system is zeroed, the hydrophone is retracted into the tube ap-

proximately 2 centimeters. The tube is again rechecked for bubbles using the mirror and

flashlight. If care was taken while de-bubbling the source and the tube (and the water is
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Figure 3.17: Proper hydrophone / tube alignment.

not super-saturated with air), there should not be any bubbles in the tube at this point.

If bubbles are present, they can sometimes be removed with a miniature squeegee, or by

inserting a tube with a bubble-free flow of water through it into the tube. Neither of these

methods proved overly reliable, and the more than once the hydrophone sheath and source

had to both be removed and realigned. If the rigging at the test facility permits it, we found

that swinging the tube such that it is oriented vertically, with the tube opening facing up,

de-bubbling around the hydrophone sheath was much easier as bubbles quickly rose out of

the tube once swept away from the tube walls. If necessary, the HDPE window is attached

at this point. The system is then lowered to testing depth and ready for measurements.
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3.4.2 Reflection coefficient measurement procedure

Before reflection coefficient measurements are made, the sound speed inside the tube is

measured. The sound speed is not only necessary for the TFM, its measurement also serves

to verify that the tube is behaving properly. A number of electrical and mechanical problems

with the tube were discovered making these measurements early in this work. The sound

speed is measured using the two-point time of flight cross-correlation method described in

Section 3.1.3.

The measurement of the transfer function, H12, is straightforward. The hydrophone is

positioned approximately 3 tube diameters from the tube opening, point 2 in Figure 3.1.

As mentioned before, the tube’s 1-16 kHz frequency range is broken into four bands. The

transfer function between the hydrophone and the source excitation signal, Hs2, is measured

by the VSA for each frequency band. The real and imaginary parts of the transfer function,

as well as the measured coherence between the two signals, are transferred to a computer

via GPIB and stored. The hydrophone is then positioned a distance s further back in the

tube for the highest frequency band (8-16 kHz, s = 2cm). The signal cables (hydrophone

and source) are switched at the VSA so that the transfer function between the source and

the hydrophone, H1s, is measured. This transfer function is measured and stored for all

frequency bands, moving the hydrophone to the proper location for each band (see Section

3.1.2).

The transfer function between the hydrophone signals at each point is given by Eq.

(3.8). The reflection coefficient is obtained using this transfer function and the measured
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sound speed by Eq. (3.5). The measurement can be made over the entire frequency range

in about 3 minutes. The underlying assumption behind this approach to measuring the

reflection coefficient is that the sample being measured has acoustic properties that do not

change within this time frame. This issue will be revisited later.

3.5 Verification of the impedance tube system

Before measurements of the baffled tube opening were made, a series of experiments were

performed to verify tube performance6. The principal goal of these experiments was to

show that the plane wave model, with a few corrections, can indeed be applied to our

water-filled tube. Measurements were made with the tube oriented vertically, with the tube

open to air, as illustrated in Figure 3.18. The tube was suspended in a large, cylindrical

HDPE tank filled with filtered tap water. The water was partially degassed by heating

it to 35◦ C and then allowing it to cool to room temperature. The water-air interface is

the only termination to a water-filled tube whose theoretical result is truly “known.” This

termination is known as a sound-soft or pressure-release. The mathematics behind this

termination are discussed in the next section, followed by a series of measurements made

with the tube in this configuration.
6It should be noted that some of the data presented in this section were measured using earlier versions of

certain components, such as the hydrophone sheath, centering star, and even the sound source (which had to
be rebuilt twice over the course of the project). These components were replaced generally because they failed
when deployed in the ocean, not in the laboratory. As these measurements were all made under relatively
controlled conditions in the laboratory, any issues arising from use of these components are minimized. In
all cases, although not every experiment presented in this section was repeated after each modification, the
newer components can be expected to behave better than their predecessors.
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Figure 3.18: Laboratory setup for the verification of the impedance tube system.
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3.5.1 The pressure release termination

As stated above, the only tube termination that is well-grounded in theory for a water-filled

tube is the water-air interface. The specific acoustic impedance, Z0 = ρc, of air is around

400 kg/s m2 while that of water is about 3700 times greater at 1.5·106 kg/s m2. Equation

(2.45) predicts a reflection coefficient of < = −0.9994 for a plane wave in water incident on

air. For all practical engineering purposes we can take the value to be < = −1.

This is a very strong reflection and it creates a very strong standing wave pattern in

the tube. When the sound field is excited by a rigid piston, as our source head may be

modelled, the plane-wave pressure spectrum in the tube is

p (ω, d) = ρcu0
sin (kd)
cos (kL)

(3.15)

where u0 is the velocity of the sound source, L is the length of the tube, and d is the

distance from the water-air interface. There are very strong resonances (coskL = 0) and

anti-resonances (sin kd = 0) in the spectrum, as will be plotted in the next section. As the

sound speed in a water-filled tube is dispersive, all measurements and calculations used the

frequency-dependent speed of sound predicted by the elastic tube theory (Section 3.2) for

the experimental temperature.

3.5.2 Standing wave field

The only term in Eq. (3.15) that is dependent on position is sinkd. To measure this

dependence, the hydrophone was scanned from the tube opening in 6 mm steps until it was

30 cm into the tube. Measurements of the pressure spectrum were taken at each point.
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Figure 3.19 shows the measured pressure as a function of distance from the tube opening

at 7 representative frequencies. The data are normalized such that the largest pressure is

1. There is excellent agreement between the measurements and the theory for the lower

frequencies, less than 10 kHz, and good to fair agreement at the higher frequencies7.
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Figure 3.19: Measurement (open circles) of the standing wave pattern inside the tube at
certain frequencies compared with theory (solid line).

The pressure spectrum as a function of axial position is shown in Figure 3.20. The tube

resonances, clearly visible as white bands that run horizontally, occur a fixed frequencies

independent of location. The anti-resonances, which are visible as curved black stripes, are

functions of both frequency and location. For a given frequency, the distance between the
7It was eventually discovered that there was some mechanical coupling between the hydrophone sheath

used in this experiment (which had an outer diameter 1/16 of an inch greater than the one described in
Section 3.3.2) and the source, even when care was taken to properly align the two. This resulted in waves
propagating along the sheath. This coupling was shown to be most pronounced (by looking at time-domain
waveforms) at frequencies above 9 kHz, and could be responsible for the less-than-perfect measurements at
these frequencies.
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black lines corresponds to half a wavelength.

Figure 3.20: Measured pressure spectrum field inside the impedance tube at typical drive
levels. Pressure resonances (white bands) and nulls (black bands) are clearly seen.

A measurement was made to confirm the validity of Eq. (3.15) in its full glory. A shear

accelerometer was glued to the head mass of the source transducer such that it sat in the

through hole flush with the face of the mass. The accelerometer cable is run out the back

of the source through the hole. The accelerometer is used to determine the velocity of the

source head, u0 = a/ (−iω), where a is the measured acceleration. The hydrophone, which

can no longer be run through the source, enters the tube from above and is positioned just

below the air-water interface.

As absolute values are important in this measurement, it is necessary to account for

the attenuation of sound in the tube. Although we neglected attenuation of sound in

tubes before this point, there is always some, however little, due to viscous and thermal
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losses. Attenuation manifests itself as the addition of a small imaginary component to the

wavenumber which can be modelled as [64]:

k2 =
ω2

c2

(
1 +

ε (1− i)
b

√
2c

ω

)
(3.16)

where b is the inner radius of the tube and ε is a parameter accounting for the heat con-

ductivity and viscosity of the fluid in the tube. Typical values of ε for clean water at 20◦ C

are on the order of 10−4√m.

Figure 3.21 compares the measured pressure spectrum, in dB, to that predicted by

Eq. (3.15) using the measured accelerometer data. The attenuation parameter, ε, was

fit to these data, ε = 7 · 10−4√m. The measured and theoretical data agree rather well,

although the peaks of the pressure resonances measured by the hydrophone are not as high

as predicted by the theory for the lower frequencies. This suggests that attenuation in the

tube has a frequency dependance not captured by Eq. (3.16) or, more probably, that the

sound source does not act as a perfectly rigid reflector at all frequencies. In any case, the

overall magnitude of the measurements and the theory are very much in line, especially at

the high frequencies. If significant energy was being coupled into a higher mode, we would

not see the high frequency agreement seen here.

The measurements shown here provide a good indication that our impedance tube /

source combination met the design object of only propagating acoustic energy in a plane-

wave like fashion. In the next section we will investigate how well the impedance tube serves

its purpose as a measurement device.
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Figure 3.21: Pressure spectrum at a point just past the tube opening. Pressure level
measurements (open circles) are plotted against Eq (3.15) using measured accelerometer
data. The only fitting parameter used is the attenuation in the tube.

3.5.3 Impedance of a water-filled transmission line

In Section 2.1.2 it was shown that the impedance at any point in a tube is given by Eq.

(2.18), repeated here for reference:

Z (d) = Z0
e−ikd + <eikd

e−ikd −<eikd
.

When < = −1 this reduces to

Z (d) = iZ0 tan (kd) . (3.17)

Note that when d = 0, Z = 0. It is not practical to try and measure the impedance at

the tube opening directly as it is very difficult to measure zero. Instead, we measured the

impedance at a plane some distance d from the tube opening. The impedance at this point
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is given by Eq. (3.17) above. The section of tube between this plane and the tube opening

is known as a water-filled transmission line.

The impedance of a 25 cm long water-filled transmission line was measured using the

procedure described in Section 3.4.2, only the distances ` and ` − s were taken from the

imaginary plane at d, not from the tube opening. Figure 3.22 is a plot of the measured

magnitude and phase of the transmission line. Also plotted is the impedance predicted by

Eq. (3.17). Again, the attenuation parameter ε was fitted to the data, here ε = 6 ·10−4√m.

The data agree very well in both magnitude and phase with the theoretical prediction.
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Figure 3.22: Impedance of an air-terminated 25.0 cm long water-filled transmission line,
measurements (open circles) and theory (solid line).

Wilson [31] showed that the previous water-filled tube could measure, extremely ac-

curately, the magnitude (1) and phase (180◦) of the reflection coefficient, < = −1 at the

water-air interface. In an attempt to duplicate his result, the data shown above were repro-
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cessed. The TFM parameter ` was adjusted so that it fell at the water-air interface. The

reflection coefficient was then recalculated. The results are shown in Figure 3.23 against

the expected values. Even though this set of data gave very good results for the impedance

of a water-filled transmission line (which are in line with those reported by Wilson and

Roy [34] for a single-hydrophone system), the corresponding measurement of the reflection

coefficient is in poor agreement with our expectations.
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Figure 3.23: Magnitude and phase of measured reflection coefficient (dots) at the tube
opening. Solid lines represent the theoretical sound-soft solution.

As the measurement of the water-air interface made by this tube was significantly worse

than those made its predecessor, an explanation is in order. The previous tube was more

precise in this measurement for at least three reasons. The first is that it was calibrated

against a pressure-release termination (see [1]), thereby forcing the system to behave nicely

in a situation where the TFM would otherwise not perform as well (see next section). A
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second reason is that the previous tube was used solely in the laboratory and did not require

submersion for normal use, allowing all variables to be near-perfectly controlled. With the

new impedance tube, which must be submersed during both assembly and use, control over

such things as alignment, water quality, and bubbles is much more difficult. Finally, the

previous impedance tube used two, high mechanical impedance, wall-mounted hydrophones

instead of a single scanned sheathed hydrophone. Both the wall-mounted and the scanned

hydrophones perturb the sound field in the tube ever so slightly. As the wall-mounted

hydrophones are fixed in place and the signals from the two hydrophones are measured at

the same time, any perturbations have little effect. Unlike the previous system, the scanned

hydrophone used here is moved between measurements, which are made at two distinct

times. Any perturbation caused by the presence of the hydrophone and its sheath will be

slightly different when each measurement is made. As we will see in Section 4.3, the single-

hydrophone TFM is very sensitive to slight changes of system parameters between the two

measurements.

3.6 Error, uncertainty, and sensitivity analysis

Errors in our measurement procedure come from two possible categories: those errors inher-

ent in the transfer function measurement itself and those due to uncertainty in the measured

TFM input parameters. Errors inherent in the transfer function method are addressed by

reviewing works in the open literature and applying those results to our system. The uncer-

tainty and sensitivity analysis are performed with a numerical model of the impedance tube
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system. In all cases, discussion is limited to two tube terminations: the water-air interface

and the theoretical baffled tube opening (with water both inside and outside the tube). The

reflection coefficient predicted for bubbly liquids generally behaves as if somewhere between

these limits.

3.6.1 Errors in the transfer function measurement

Errors inherent in the measurement of the transfer function come in two flavors: bias errors

and random errors. Bias errors arise because of noise, nonlinearities and poor spectral

resolution. Bias errors tend to be largest for highly reflective surfaces (such as a water-air

interface), and are typically worst when one of the hydrophones is located at a pressure

null. The maximum normalized bias error, εb in the measured transfer function, H12 is [74]

|εb (|H12|) | ≤ 8π2∆f2`2|<|2
3c2 (1− |<|)2 (3.18)

where ∆f is the measurement frequency resolution. The most startling feature of this

equation is that there is a singularity when |<| = 1, confirming our statement that strongly

reflecting surfaces are most prone to these errors. It is important to note that although this

is an upper bound on the error at all frequencies, it provides a good estimate of the error

at those frequencies corresponding to pressure nulls at either hydrophone [74]. Away from

the pressure nulls, the bias error is usually much smaller than predicted above.

Equation (3.18) also provides insight into what parameters can be changed to minimize

bias error, such as placing the hydrophones close to the measurement plane and using small

frequency resolution. In the case of the water-air interface, where |<| = 0.9994, Eq. (3.18)

92



dictates a value of

`2∆f2 ≤ 0.00029

is required if the bias error in the transfer function measurement is to be less than 1%. This

is a very small number, requiring a frequency resolution that is not practically achieved with

even the most modern signal analyzers. For the values of ` and ∆f used in the reflection

coefficient measurement in Section 3.5.3, the maximum bias errors predicted by Eq. (3.18)

are well above 50%. This could explain the poor reflection coefficient measurement, as the

the closest hydrophone was 30 cm from the tube opening (5 cm from the imaginary plane

marking the start of the water transmission line) and there were many nulls in the pressure

spectrum at the measurement points.

When the reflection coefficient is not as strong, such as that for the water-filled baffled

tube radiating into water (Figure 2.11), the maximum bias error is much lower for reasonable

values of `2∆f2. Figure 3.24 shows the predicted bias errors in the measurement of the

transfer function in a baffled tube whose reflection coefficient is given by Eq. (2.46). Here

the values of ` and ∆f are the same as those used in actual experiments (see Section 3.1.2).

Unlike bias errors, random errors do not depend on any tube parameters (such as sound

speed, measurement location, or reflection coefficient) directly. The normalized random

error, εr, in the measurement of the transfer function is [62]

εr (|H12|) ≈
√

1− γ2

2Nγ2
(3.19)

where γ2 is the measured coherence function between the two hydrophone signals and N

is the number of averages. While Eq. (3.19) is not directly dependent on the reflection
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Figure 3.24: Predicted bias error for in the measurement of the transfer function for a
baffled tube opening using the measurement parameters (hydrophone locations, frequency
resolution) used for actual measurements. The discontinuities in the curve are the result of
the discrete hydrophone positions.

coefficient, the coherence function is usually lowest when one hydrophone is located at a

null in the pressure spectrum. Measurements of strongly reflecting terminations, which

have sharp pressure nulls, will therefore be more suspectable to random errors. In general,

coherence is improved if the spacing between hydrophones is minimized [74, 62]. Estimates

of random errors will be given for measurements presented in Chapter 4.

Estimates of bias and random errors in the measured phase of the transfer function can

be predicted in the limits of |εb| << 1 and εr << 1 [74]. The maximum bias error, βb of

the phase, ϕ, in radians, of the measured transfer function, H12 is

|βb (ϕ) | ≤ |εb (|H12|) |. (3.20)

The standard deviation, σr, of the variation in phase, ϕ of the measured transfer function
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due to random errors can be approximated as

σr (ϕ) ≤ εr (|H12|) . (3.21)

3.6.2 Uncertainty and sensitivity analysis

A numerical simulation of the pressure field inside was used to investigate how sensitive

the transfer function method is to the uncertainty in system inputs (wave number and

hydrophone location), and to noise other perturbations from the ideal setup. This simulation

was carried out in the frequency domain, where the pressure at any point in a tube excited

by a rigid piston source is given by

p (ω, d) = P0
e−ikd + <eikd

e−ikL −<eikL
(3.22)

where L is the length of the tube, d is the distance from the tube opening, and P0 = −ρcu0

and u0 is the velocity of the source face. For these simulations P0 = 1 was used for simplicity.

A significant cause of error in the measured reflection coefficient stems from uncertainty

in the measured input parameters to Eq. (3.5), repeated here for reference

< =
H12 − eiks

e−iks −H12
e−ik2(`).

These parameters include the measured phase speed, cp, absolute hydrophone location, `,

and relative hydrophone spacing s. The phase speed was generally known to within ±4.5

m/s. Uncertainty in the absolute location of the hydrophones stems from three factors:

hydrophone / tube alignment, positioning system accuracy, and the location of the hy-

drophone’s acoustic center. In Section 3.4.1 it was stated that this alignment was generally
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better than ±0.5mm. The positioning system was much more accurate, within ±0.12mm

over its full range. The acoustic center of the Brüel and Kjær is known within ±0.3mm.

Together, these three sources result in a total uncertainty of ±0.92mm. Uncertainty in the

relative location of the two hydrophones (the hydrophone spacing, s) is only dependent on

the positioning system, ±0.12mm.

Uncertainties in hydrophone position influence the reflection coefficient calculations as

exp (ikx), (see Eq. (3.5)) where x is the distance parameter ` or s. As k = ω/cp, the

maximum uncertainty in the measured reflection coefficient occurs when the smallest value

of cp is used with the largest value of x within their respective uncertainties (and vice-versa).

These uncertainties are simulated in the numerical model as follows. First, Eq. (3.22) is

used to provide the ideal complex pressures at the exact points in the tube required by

the TFM (p1 (d = `) and p2 (d = `− s)). The ideal “measured” transfer function, H12 is

obtained by dividing p2 by p1. The reflection coefficient is calculated as usual, except the

values of kx reflecting the uncertainties are used.

Figures 3.25 and 3.26 show the uncertainty envelopes in magnitude and phase for sim-

ulated pressure-release and baffled tube openings, respectively. As shown in the figures,

measurement uncertainties in the TFM input parameters lead to error in the phase alone.

The uncertainty in the relative hydrophone locations, s was found to be negligible, con-

tributing at most 0.5◦ change in phase at the highest frequency.

This numerical model was also used to simulate the effect of noise on the system. The

noise was added in the frequency domain as follows. Equation (3.22) was used to create the
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Figure 3.25: Effect of uncertainty in measured TFM input parameters for a simulated
pressure-release tube termination.
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Figure 3.26: Effect of uncertainty in measured TFM input parameters for a simulated baffled
tube opening.
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ideal pressures at the two points. Before the calculating the transfer function, “noise” was

added to the pressure spectra as

pn1,n2 = Re (p1,2) + ξ (f) P0 + i (Im (p1,2) + ξ (f) P0) (3.23)

where pn1,n2 is the noisy pressure measurement, P0 is the pressure spectrum coefficient in Eq.

(3.22), and ξ (f) is a random noise function, re-calculated each time it is called, bounded

by −2.0% < ξ < 2.0%. The pressures were kept as complex quantities (hydrophones

only measure real pressures) to simulate noise in the measured complex transfer functions

between the hydrophones and the source, H2s,Hs1 used in the single-hydrophone TFM.

The transfer function between the two “measured” pressures was then calculated as H12 =

pn2/pn1 and the “measured” reflection coefficient was calculated as usual.

Again, both the pressure-release and baffled tube openings were investigated. The results

of the simulation are shown in Figure 3.27 for the pressure-release termination and in Figure

3.28 for the baffle tube opening. Three plots are shown in each figure. The upper plot is

the magnitude of both the ideal, p2, and the noisy, pn2 pressures at the hydrophone closest

to the measurement plane. The two plots are almost indistinguishable on the decibel scale,

giving an indication of just how little noise was added. The middle and lower plots are the

magnitude and phase of the reflection coefficient, respectively. Here, the effect of the noisy

“data” on the measurement is clearly visible.

Equation (3.18) predicts that the transfer function method is most susceptible to bias

errors when measuring strongly reflective surfaces, and this effect is shown in the noise

simulations. The strongly reflecting pressure-release simulation (Figure 3.27) shows a rela-
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Figure 3.27: Numerical simulation of an impedance tube terminated with a sound soft
surface. Both ideal (line) and noisy (dots) data are shown.
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Figure 3.28: Numerical simulation of an impedance tube terminated with an infinite, rigid
baffle. Both ideal (line) and noisy (dots) data are shown.
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tively constant amount of error at all frequencies. The amount of error in the magnitude of

the measured reflection coefficient for noisy baffled opening simulation (Figure 3.28), which

is strongly reflective at low frequencies but significantly weaker at high frequencies, gets

noticeably smaller as the frequency increases. In both simulations, the noise affects the

measurement less at tube resonances, where the magnitude of the pressure is much greater

than the noise level.
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Chapter 4

Experimental Results and Analysis

This Chapter is divided into three sections. The first deals with experiments carried out

to visit how well our baffled tube system is modelled by the theory developed in Section

2.1 for a rigid tube with an infinite, rigid baffle. These experiments were made with water

both inside and outside the tube. The second section covers a preliminary experiment made

with an uncharacterized bubbly liquid outside the tube in our laboratory. The final section

details a set of experiments conducted with a well-characterized bubbly liquid outside the

tube at a state-of-the-art Naval facility.

4.1 Radiation of a baffled water-filled tube into water

Experiments were carried out at the Naval Undersea Warfare Center’s acoustic test facility

at Dodge Pond in Niantic, CT. Dodge Pond is a freshwater reservoir with remarkably low

ambient noise. The 133,500 m2 pond is about 16m deep in the center with a very soft,
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muddy bottom. The primary test facility is a climate-controlled building located at the

center of the pond and kept afloat by a number of large pontoons. The center of the

facility is open to the water, with a number of large overhead winches for the deployment

of underwater acoustic experiments. The facility is also instrumented to allow for a quick

measurement of the temperature and sound speed profile as a function of water depth.

The impedance tube system was aligned and prepared in the standard manner outlined

in Section 3.4.1. The test facility allowed for access to the tube at the waterline, allowing it

to be completely flooded and assembled underwater. Once assembled and the positioning

system zeroed, the device was lowered to a depth of about 8 m, as illustrated in Figure

4.1. A series of measurements were made of the impedance at the tube opening and of the

pressure field radiated out from the tube along its axis. A discussion of these measurements

follows.

4.1.1 Radiation impedance of a baffled tube opening

The first measurements made at Dodge Pond were of the radiation impedance and reflection

coefficient at the opening of our baffled tube. Measurements of the reflection coefficient, <,

were made exactly as described in Section 3.4.2. The impedance of the opening, Zn, was

then calculated from the reflection coefficient by Eq. (2.19). Typical measurements of the

magnitude and phase of the reflection coefficient and impedance are shown in Figures 4.2

and 4.3, respectively. The measurements are compared with the theoretical result predicted

by Eq. (2.47). Equation (2.47) was used for the theoretical result even though there was

water both inside and outside the tube (as opposed to Eq. (2.46) which assumes the two
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Figure 4.1: Relative impedance tube deployment location at the Dodge Pond acoustic test
facility (not to scale).

fluids are the same), allowing us to correct for the slightly lower phase speed inside the

tube. The ratio of specific impedances, γ, was taken as

γ =
ρcp

ρc
(4.1)

where cp is the measured phase speed in the tube and c is the intrinsic speed of sound in

the water at the experimental temperature.

These measurements show fair agreement with the theoretical prediction. The low

frequency data (< 3 kHz) are particularly poor and messy, most likely due to the relatively

low source level (and therefore low signal to noise ratio) at these frequencies. The data

also show poor agreement with the theory in the 10-12 kHz range. The exact cause of this

disagreement remains unknown, but this feature disappeared in later measurements leading

us to believe one or more bubbles were caught either in the tube or on the baffle during
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Figure 4.2: Magnitude and phase of the measured (dots) and theoretical reflection coefficient
at the tube opening.
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Figure 4.3: Magnitude and phase of the measured (dots) and theoretical impedance at the
tube opening.
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the first experimental measurements. Another noticeable deviation from the theory occurs

around 14 kHz, where there is a small dip in the magnitude and a large blip in the phase

of the measured reflection coefficient. As mentioned before the first cutoff frequency in a

water-filled tube of our dimensions is around 14 kHz (the exact value is a function of the

temperature dependent sound speed of water). This feature almost certainly results from

an unmodelled higher-order mode (or modes) either propagating in the tube or present at

the tube opening.

Experiments were then carried out to visit how sensitive the apparatus was to the depth

of deployment. The reflection coefficient was measured at ∼ 1.9 m intervals from 8 to 0.3

m below the surface. One would expect that the closer the instrument is to the surface,

reflections from the water’s surface would interfere with the sound field at the tube opening

and corrupt the measurements. This effect, if present, would be most pronounced at lower

frequencies, where the acoustic wavelengths are longest. The measured reflection coefficients

are shown in Figure 4.4.

There is some disagreement between the measured data for all depths below about 2.5

kHz, where the data were noisy to begin with. The data from the two depths closest to

the pond surface (2.2 and 0.3 m) do show significant departures from the other data and

the theoretical result up to 4 kHz. For the 0.3 m depth, the top of the baffle was right at

the waterline. This suggest that, for our impedance tube system, surface reflections may

not play that significant of a role at frequencies above 4 kHz, regardless of depth. This

is encouraging because we model our finite sized baffle as being infinitely large. Another
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Figure 4.4: Variation of the magnitude and phase of the reflection coefficient with the depth
of the tube below the water surface. Only every 20th data point is shown for clarity.

interesting observation is that the measurement made at 0.3m (“X’s” in Figure 4.4) are

closer to the theoretical result in the 10-12 kHz range than the other measurements. This

suggests, as mentioned before, that one or more bubbles may have been responsible for the

poor agreement in the 10-12 kHz range but were dislodged as the apparatus was raised

during this experiment.

Measurements of the reflection coefficient were also made with our HDPE window in

place to test our assertion that it can be modelled as acoustically transparent. The window

was attached after the depth-dependency experiments while the tube was only 0.3 m below

the surface. The instrument was then returned to a depth of 8 m. The measured magnitude

and phase of the reflection coefficient with the window in place are shown in Figure 4.5.

Although the low frequency results are still somewhat messy and the 14 kHz feature is still
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present, the data fit the theory reasonably well at all other frequencies.
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Figure 4.5: Magnitude and phase of the measured (dots) and theoretical reflection coefficient
at the tube opening with the HDPE window in place.

A typical measurement of the coherence function, γ2, between the two hydrophone

signals is shown in upper plot of Figure 4.6 and the corresponding magnitude of random

error, εr, in the measured transfer function given by Eq. (3.19) is shown in the lower plot.

As discussed in Section 3.6.1, in a perfect system the coherence function would equal 1

(and the error magnitude would equal 0). Here, the coherence is significantly less than

one at all frequencies, an indication of possible noise, bubble, or electrical problems. The

extraordinarily low coherence between 4-6 kHz suggests the presence of a bubble, as bubbles

tend to wreak more havoc around select frequencies (namely their resonant frequencies) than

others. We most note that the data measured in this frequency range, although somewhat

noisy, agree rather well with the theoretical result. The signal coherence issue is revisited
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in Section 4.1.3.
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Figure 4.6: Measured coherence between the two hydrophone signals (upper plot) and
corresponding estimated random errors in the measured transfer function (lower plot).

4.1.2 Radiated pressure along the tube axis

After the reflection coefficient measurements were completed, the hydrophone sheath was

repositioned on the positioning belt to allow it to be scanned, along the tube axis, out from

the tube opening. The hydrophone was positioned such that its acoustic center was in plane

with the tube opening and the entire system was lowered to a depth of 5 meters. The tube

was excited with 1-16 kHz random noise and the time-averaged pressure spectrum1 was
1A random noise source was used because time constraints (measurements at all 47 spatial points were

made in about 15 minutes) dictated that all frequencies be interrogated at once. It would have been much
better to use a select number of pure frequency tones and measure the amplitude of the hydrophone signal
at each point on an oscilloscope. In that setup, all signals could have been amplified to the same pressure
level and band-pass filtered to reduce the effects of noise, which would have been especially beneficial at the
lower frequencies.
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measured at approximately 1.9 mm intervals from the tube opening until the hydrophone

had travelled about 11 cm out of the tube.

Measurements at five select frequencies, normalized to the pressure at the tube opening,

are plotted in Figure 4.7 as open circles. The lines represent the normalized theoretical

pressure profile predicted by Eq. (2.31). The data agree fairly well with the predictions,

especially for the middle and upper frequencies. The low frequency measurements are

subject to significantly lower source level (see footnote), possibly accounting for the less-

than-perfect results.
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Figure 4.7: Radiated pressure profile as a function of distance from the tube opening.
Measurements (open circles) are compared with the theoretical result (solid line).
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4.1.3 Modifications to design after Dodge Pond

Although the Dodge Pond experiments were overall modestly successful, they revealed a

number of shortcomings of the impedance tube system. The two biggest problems were

poor source level at low frequencies and higher-order effects at the first cutoff frequency.

Little could be done about the first cutoff frequency, save rebuilding the entire apparatus

around a smaller tube or filling the tube with a fluid that has a higher sound speed. The

source level problem, however, was manageable.

As we saw in Section 3.6, the TFM is very suspectable to errors if the signal to noise

ratio is small. The low source level at low frequencies, due to the response of our sound

source, was most probably responsible for the noisy low-frequency data from the Dodge Pond

experiments. The sound source has a very high electrical impedance at low frequencies (see

Appendix E), requiring higher a driving voltage to achieve the same radiation intensity.

One possible solution is to drive the source with a higher voltage at the lower frequency

ranges, but we generally operate near the saturation level of our power amplifiers. Another

solution, which was adopted, is to lower the electrical load impedance of the source using

an impedance matching transformer (matchbox).

An impedance matcbox, such as the Krohn-Hite MT-56 used here, is nothing more than

a simple electrical transformer. Electrical transformers are devices that transfer energy from

one electric circuit to another via a magnetic field without change in frequency [75, 76]. The

magnetic field is created by a primary winding of wire and picked up by a secondary winding.
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The equivalent electrical impedance, Zeq, of the load with a transformer inline is

Zeq =
(

N1

N2

)2

Zload (4.2)

where N1 and N2 are the number of primary and secondary windings and Zload is the

electrical impedance of the load (i.e., our sound source). The MT-56 is designed to step up

electrical impedances ((N1/N2) > 1) but can be run in reverse to step down the impedance.

In this case, the turn ratio in Eq. (4.2) is flipped, (N1/N2) → (N2/N1). For the MT-56,

(N2/N1) can be selected to be 0.1, 0.2, 0.4, or 0.8.

To provide the highest possible low-frequency source level, the lowest turn ratio, 0.1,

was selected for the 1-2 and 2-4 kHz bands. A turn ratio of 0.8 was used for the remaining

frequency bands (4-8 and 8-16 kHz) to provide some gain (but not enough to damage

the source or other electronics). The matchbox proved remarkably efficient at improving

the response of the source. The acceleration profile of the source head mass with the

transformer inline is compared to that without it in Figure 4.8. The measured low frequency

accelerations are close to an order of magnitude higher when using the matchbox.

To verify that the higher source level improves the quality of our measurements, the

impedance tube system was suspended in the middle of a large, water-filled wooden tank

approximately 3.3 m in diameter and 2.4 m deep. The impedance tube system was allowed

to reach thermal equilibrium with the water in the tank and meticulously de-bubbled. The

magnitude and phase of the reflection coefficient at the tube opening measured in the tank

are shown in Figure 4.9. The low frequency measurements are significantly cleaner than

those measured at Dodge Pond. The measurements also agree fairly well with the theoretical
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Figure 4.8: Acceleration of the source head mass with and without the impedance matching
transformer inline.

result also plotted on the figure. This is interesting as the theoretical result was derived

assuming that the tube opened into an infinite volume of fluid, but the dimensions of our

tank are on the order of 2 wavelengths at 1 kHz. Tank modes and bottom, surface and wall

reflections may, however, be responsible for some of the low-frequency deviations from the

theory.

There was also significant improvement in the overall signal quality, as measured by the

coherence between the two hydrophone signals (Figure 4.10, upper plot). The coherence

function is nearly unity at all frequencies and the corresponding estimated random errors

in the magnitude of the transfer function (lower plot) are well below 2%. This supports our

statement that the Dodge Pond experiments were corrupted by either noise or bubbles as

both of these issues were thoroughly addressed in this experiment.
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Figure 4.9: Magnitude and phase of the measured and theoretical reflection coefficient of a
baffled tube opening using the impedance matching transformer.
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Figure 4.10: Measured coherence function between the two hydrophone signals (upper plot)
and corresponding error in the magnitude of the measured transfer function (see Section
3.6.1).
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4.1.4 Recapitulation

A low signal to noise ratio undoubtedly contributed to the less-than-perfect low frequency

measurements at Dodge Pond as there was significant improvement in the quality of the

measurements once the source level was raised. The impedance matchbox will be a standard

piece of equipment from now on. There was also significant improvement in the coherence

at the high frequencies without much gain in source level in the wooden tank experiments,

a strong indication that there was some system non-linearity corrupting the Dodge Pond

measurements. Bubbles remain the most likely culprit, possibly present either in the tube

or just outside the tube during the Dodge Pond experiments. The water at Dodge Pond is

host to a significant amount of organic matter which may both capture bubbles or create

them in the process of decaying. It is possible that although care was taken to remove

bubbles during preparation at Dodge Pond that some may have entered during the raising

and lowering, or become attached to the face of the baffle. Although the wooden tank

cannot be taken as an infinite body of fluid (as Dodge Pond could reasonably be assumed

to be), it is a much more hospitable environment for de-bubbling.

The structure of the measured reflection coefficient (for instance where the measured

data are greater or less than the prediction) in the wooden tank is remarkably similar to

that measured at Dodge Pond (see Figure 4.5). This is a good indication of our system’s

robustness (we get similar results in different environments) but also affirms our worries that

our baffle does not behave exactly as modelled. It is not, after all, either perfectly rigid

compared to water or infinite in extent. In any event, the measured reflection coefficients
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both at Dodge Pond and more so in the wooden tank are in relatively good agreement with

the theory developed in Chapter 2.

4.2 Bubbly Liquids - Preliminary Experiment

Two sets of experiments were made measuring the reflection coefficient at the tube opening

with a bubbly liquid outside the tube. The first, detailed in this Section, was a preliminary

measurement made in our laboratory of a small bubble sample whose size distribution was

not directly measured. The second set of experiments were made in a larger tank at the

Naval Research Laboratory (NRL) in Washington, DC and are described in Section 4.3. In

these experiments the tank was completely filled with bubbles and an attempt was made to

simultaneously measure the bubble size distribution. While the results of the preliminary

experiment were promising, the NRL experiments encountered problems with the impedance

tube system and super-saturated water.

4.2.1 Experimental setup

The preliminary bubbly liquid experiments were carried out in the same wooden tank

discussed in Section 4.1.3. Bubbles are produced by an array of five fish tank bubblers.

The bubblers are porous tubes about 20 cm in length mounted with suction cup clips on

a plastic platform as illustrated in Figure 4.11. Large brass feet, not shown in the Figure,

are bolted to the bottom of the platform, providing support and adding enough weight so

that the entire assembly sinks in water. The bubblers are feed compressed air from a small
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plenum also attached to the platform. The plastic air lines leading from the plenum to the

bubblers are valved such that the air flow to each bubbler can be adjusted individually. The

plenum is feed by a regulated compressed air tank. Before the bubbler platform is lowered

to the bottom of the tank, the air flow is turned on with the bubblers just below the surface.

The valves are adjusted until all five bubblers have visually similar bubble production rates.

A broad distribution of bubbles was created by the bubblers. Visual inspection next to a

machinists scale showed that most bubbles were below 1 mm in radius but a few existed up

to 2 mm. The void fraction was estimated, visually, to lie between 0.05 and 2%.

to compressed

air tank

Air Plenum

Bubblers

 Needle Valves

Plastic Platform

~20 cm

~20 cm

Tygon Air Lines

Figure 4.11: Illustration of the bubbler used for the preliminary bubbly liquid experiments.

Once the bubbler valves are adjusted the platform is lowered to the bottom of the tank

and positioned so the bubbles rise just in front of the tube opening. This setup is shown

in Figure 4.12. The opening of the tube is fitted with the HDPE window to keep bubbles

from entering the tube. The reflection is measured using the standard procedure. Results

from a typical measurement are shown in Figure 4.13.
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Figure 4.12: Illustration (left) and photograph (right) of impedance tube setup used for the
preliminary bubbly liquid experiments.
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Figure 4.13: Real and imaginary components of the measured reflection coefficient (dots)
compared to the theoretical prediction for a bubbly liquid with the bubble size distribution
shown in Figure 4.14 using Eq. (2.74).
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4.2.2 Preliminary results

Also plotted on Figure 4.13 is a theoretical reflection coefficient for a bubble population

that was fitted to the data (but still matched the observations made by eye). The fitting

process will be briefly summarized here. The real part of the measured reflection coefficient

shows a shift away from Re (<) ≈ −1 around 10.6 kHz. This shift can be explained by the

sudden rise in phase speed of a bubble liquid at the resonance frequency of the individual

bubbles that comprise it. The bubble distribution was therefore centered around bubbles

that resonate at 10.6 kHz. The larger bubbles that were observed also had to be accounted

for, requiring a large “tail” on the distribution. A standard Gaussian distribution is not

suited for such a population. A sum of log-normal bubble size distributions was chosen

instead. The log-normal distribution used here has the form of

℘ (a) = C exp

(
−b

(
ln

(
a

a0

))2
)

(4.3)

where a0 is the center bubble radius, b is the log-normal equivalent of the Gaussian standard

deviation, and C is a constant that scales to the void fraction. In this case, the void fraction

was set to 0.1% to reduce the number of fitting parameters. The final distribution, fit by

adjusting the absolute values of b and the relative values of C in a sum of log-normal

distributions, is shown in Figure 4.14.

The preliminary results were encouraging. Although the bubble size distribution was

not measured directly, the data show features that are consistent with a reasonable fitted

bubble population, such as the departure from Re (<) ≈ −1 and the peak in the imaginary

component at the resonant frequency of the center bubble size. Without a simultaneous
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Figure 4.14: Estimated bubble size distribution. The peak in the distribution corresponds
to bubbles that resonate around 10.6 kHz.

measurement of the bubble size distribution, however, the effectiveness of the tube cannot

be judged with any certainty. We also note that there are small, period, “blips” in the data

at approximately 1.4 kHz intervals. The cause of this structure is examined in Section 4.3.3.

4.3 NRL Salt Water Tank Facility experiments

The bubble tank facility at the Naval Research Laboratory, officially designated as the Salt

Water Tank Facility (this is somewhat of a misnomer as the tank was filled with fresh water

at the time), is unique. The tank itself is very large, some 6 m wide by 6 m long by 3 m

deep with porous tube bubblers (originally designed to aerate catfish hatcheries) lining its

floor. The tank geometry is illustrated in Figures 4.15 and 4.16. Each of the 40 bubblers is

feed with an individually regulated air line that includes a volume flow-meter. The bubbler
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air lines are supplied by a series of three large, individually regulated, plenums which are

in turn supplied by a large industrial air compressor. The facility is also equipped to with

an underwater digital video camera system to measure the bubble size distribution.

~1.4m

~1.6m

to winch

Bubblers

Digital 

Camera

~1.0m

Figure 4.15: Side view of the experimental setup at the NRL bubble tank facility (not to
scale).

4.3.1 Experimental procedure

Before submersion, the tube was aligned in the standard manner. After submersion many

attempts were made to de-bubble the tube in the usual way. The tank water, however,

was super-saturated with gas2 and bubbles would form on all tube surfaces on about a two

minute timescale. Coating the tube surfaces with wetting agents did nothing to stop the
2Water was added to the tank about an hour before the tube was submerged. This was done to raise the

water level in the tank, making the tube easier to access from the platforms above the tank. Easy access
to the tube is essential for easy de-bubbling. However, in another ironic twist of fate, adding the water to
the tank made de-bubbling much more difficult as we suspect that this water, coming from a high-pressure
source, was super-saturated with air.
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Figure 4.16: Top view of the experimental setup at the NRL bubble tank facility (not to
scale).

diffusion-driven bubble formation, but did make the bubbles somewhat easier to remove.

A number of novel approaches to de-bubbling were attempted, including flushing the tube

with gravity-feed flow of degassed water. After eight hours hunched over the tube on a very

uncomfortable platform, we resigned ourselves to let the tube sit in the tank overnight with

the hopes that the system would reach an equilibrium state.

Bubbles were still forming in the tube on the second day, but at a much slower rate.

The tube was reassembled underwater and then oriented vertically, with the tube opening

pointing up. The tube was again flushed with degassed water from a gravity feed. When

no new bubble formation was observed after ten minutes, we crossed our fingers, attached

the HDPE window and positioned the tube, oriented horizontally, as shown in Figures 4.15

and 4.16.
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The system was instrumented as described in Section 3.3.4 (including the impedance

matchbox), with the exception of the charge converter. The relatively shallow deployment

depth allowed the hydrophone cable to reach a platform above the water level and be

plugged directly into a Brüel and Kjær Nexus conditioning charge amplifier. The Nexus, a

very low-noise instrument with selectable gain and filtering, was set to provide 316 mV/kPa

with 100 Hz to 100 kHz band-pass filtering. This about three times the gain provided by

the previous charge convertor, hopefully reducing the relative amount of electromagnetic

noise as the signal is carried along the 30 m coaxial cable from the Nexus directly to the

VSA.

Measurements were made of the sound speed in the tube and of the reflection coeffi-

cient at the tube opening with the bubble production mechanism turned off. The sound

speed measurements showed excellent agreement with elastic tube theory. The reflection

coefficients measurements were similar to those measured at Dodge Pond and in the large

wooden tank. These measurements suggest that our de-bubbling efforts were successful.

After the preliminary measurements, the bubblers were turned on. Bubble production

was controlled by adjusting a pressure regulator on the final plenum before the manifold.

The flow control valves were adjusted until relatively similar flow rates feed each bubbler.

Both the pressure and air flow rate were recorded. Measurements were made at line pres-

sures of 9.0, 8.0, 7.0, 6.0, 5.8, 5.6, 5.4, 5.2 and 5.0 psi. The lowest value is just above the

hydrostatic pressure in the tank at bubbler depth. At each pressure, the complex reflection

coefficient was measured in the usual manner.
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4.3.2 Bubble distributions

An accurate measurement of the bubble population is imperative when making comparisons

to theory. Thirty second clips of digital video recordings of the bubble population were

recorded at each pressure level. The digital camera was set at about one meter from the

tube opening (so as not to interfere with the measurements). Between 2 and 5 frames from

the 30 seconds were selected for post processing.

The camera records images of bubbles that pass in between the camera lens and a white

screen. The screen is illuminated by two underwater lights and has a machinist’s scale fixed

to it. A sample frame is shown in Figure 4.17. The machinist’s scale provides the needed

reference for determining bubble size. Each image is calibrated using this scale, providing

a calibration constant, `ref , the number of image pixels per unit length. The bubbles, as

visible in the sample frame, are not perfect spheres. As rising bubbles are distorted along

in the direction of gravity, the bubbles are assumed to be spheroids, symmetric around the

axis of gravity. Measurements of both the horizontal (∆x) and vertical (∆y) axis lengths

(in pixels), as shown in Figure 4.18, are required to determine the bubble volume,

V =
4
3
π

(
`ref∆x

2

)2 (
`ref∆y

2

)
. (4.4)

The measured diameters can be related to an effective radius, a, for a spherical bubble of

the same volume,

a = `ref
3

√(
∆x

2

)2 (
∆y

2

)
. (4.5)
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Figure 4.17: Sample frame of video captured by the underwater digital camera for a supply
pressure of 9.0 psi. The machinist’s scale is visible at the top, perhaps appearing as a dark
band in poor reproductions of the figure.

Dy

Dx

Figure 4.18: Blow-up of the sample video frame. The the horizontal (∆x) and vertical (∆y)
axis lengths are labelled.
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Corrections for camera artifact

The bubble size distributions must also be corrected for the view of the underwater camera.

Bubbles just in front of the camera will appear larger than those just in front of background

screen. The correction procedure is simple but not necessarily straightforward. As shown in

Figure 4.19, the volume captured by the camera is roughly the frustum of a square pyramid.

This volume is divided into a finite number, N , of volume bins of equal thickness, h. The

bin closest to the screen is defined to be bin 1 and that closest to the camera lens is bin N .

The volume, Vn, of each bin, also modelled as the frustum of a pyramid, is given by

Vn =
1
3
h

(
At + Ab +

√
AtAb

)
(4.6)

where At is the area of the “top” of the pyramid (facing the lens) and Ab is the area “base”

(facing the screen).

All measured bubble radii in bin n, abin,n, must be corrected by a factor specific to that

bin, Cn:

abin,n =
ameas

Cn
. (4.7)

The correction factor varies linearly with bin number:

Cn = 1 + m

(
n− 1

2

N

)
(4.8)

where n is the volume bin number, N is the total number of bins and

m =
1
2

(
X

x
+

Y

y

)
− 1 (4.9)

is the slope of the correction factor. Here X, Y , x and y are the widths and heights of the

white screen and camera lens, respectively (see Figure 4.19).
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Figure 4.19: Dimensioned illustration of the camera setup (not to scale). The volume of
bubble water photographed by the camera is divided into a finite number of bins to correct
for camera artifacts.

If the bubbles captured by the camera are assumed to be randomly scattered throughout

the entire volume, then the proportion of the total number of bubbles in each volume bin

is equal to the volume of that bin relative to the total volume. That is to say if the volume

of bin n is Vn, then the proportion of bubbles in that bin (relative to the total number of

bubbles in the video frame) is Vn/VT , where VT is the total volume. Those bubbles in the

volume bin closest to the camera lens (bin N) require the most correction. But this bin

also has the smallest volume, so the fewest amount of bubbles require the most correction.

Likewise, those bubbles in the largest bin (bin 1, closest to the screen) require the least

correction.

This process results in a bubble size distribution that is somewhat sensitive to bin size.

Ideally, the bins should be of vanishingly small thickness, but this would require an infinite
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number of bubble measurements. In practice, the bin size was adjusted until there was

little observable change if the number of bins was increased or decreased by one. Typically

between 10 and 15 bins were used. Figure 4.20 shows the result of this correction procedure

on one of the measured distributions. The corrected bubble size distribution (bottom frame)

shows a clear shift towards smaller sizes from the raw bubble distribution (top frame).
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Figure 4.20: Histogram of the raw measured bubble size distribution (top) compared against
the same distribution corrected for camera artifact (bottom) for the 6.0 psi case. There is
a clear shift towards smaller bubble sizes.

Bubble distribution fitting

Once the bubble size distribution has been corrected for the camera view, the measured

bubble radii are fit to a standard distribution to ease post-processing. This work follows the

fitting procedure described in [1], except a modified log-normal distribution is used here.

Fitting is achieved by comparing the cumulative density function (CDF), D (a), of the
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measured distribution to that of the model distribution. The cumulative density function

is the probability that any given radius in the distribution is smaller than the input size

(0 ≤ D (a) ≤ 1). The CDF of the measured distribution is

Dmeas (a) =
n̄ (a)
N

, (4.10)

where n̄ (a) is the number of measured bubble radii ≤ a and N is the total number of

bubbles in the distribution matrix. The measured CDF is compared against the model

CDF, given by

Dmodel (a) =
∫ a

amin

℘ (ξ) dξ, (4.11)

where ℘ (a) is the probability density function (see Section 2.2.2). As mentioned above, a

modified log-normal distribution of the form

℘ (a) ∝ exp

(
−b

(
ln

(
a

a0

))2
)

was used. This modified distribution is not normalized in a standard manner3 and the CDF

had to be modified to force it to span the range 0 ≤ Dmodel ≤ 1 by taking

Dmodel (a) → Dmodel (a)
Dmodel (amax)

. (4.12)

3The standard log-normal distribution takes the form

℘ (ξ) =

√
b

ξ
√

π
exp

(
−b (ln (ξ))2

)

which is normalized such that ∫ ∞

0

℘ (ξ) dξ = 1.

We found that distributions with the radius term in the denominator preceding the exponent did not fit the
data as well as those without.
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The model CDF was fit to the measured CDF using a least-squares fit, minimizing the R2

parameter,

R2 =
amax∑

ai=amin

(Dmeas (ai)−Dmodel (ai))
2 , (4.13)

in two dimensions varying the values of a0 and b. This fitting procedure usually resulted in

very good fits to the data. A typical result is shown in Figure 4.21.
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Figure 4.21: The measured cumulative density function is compared with that of the model
distribution fit to the data (top frame) for the 6 psi case. The fitting parameters for the
truncated, modified log-normal distribution are listed. The bottom frame shows a histogram
of the measured bubble distribution compared with the best-fit probability density function.

Void fraction estimates

If every bubble in an integer number of frames is counted, the void fraction can be estimated.

As mentioned above, the sample captured by the digital camera can be modelled as the

frustum of a square pyramid, with a total volume, VT given by Eq. (4.6) (see Figure 4.19
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for dimensions). The void fraction, β, is simply the sum of the measured bubble volumes

divided by the total volume of the video frame,

β =
1

nVT

∑

j

4
3
πa3

j , (4.14)

where n is the number of video frames analyzed. Void fraction estimations by this method

have been shown, in past experiments performed at the facility, to be in good agreement

with samples taken directly from the bubbly liquid in tank. The samples were collected by

simultaneously sealing the top and bottom of a vertically-oriented cylinder as bubbles rose

through it. The void fraction is the volume of air trapped in the cylinder divided by the

total volume.

Uncertainties in bubble distribution measurements

The bubble sizing process is subject to a number of uncertainties, the most prominent

being the actual measurement of the bubble size. As seen in Figure 4.18, it is difficult to

distinguish the exact pixel that defines the bubble wall. The measurements of ∆x and ∆y

generally had an uncertainty estimated to be about 3 pixels, corresponding to an average

uncertainty in effective spherical radius of ±16.6%. The uncertainty in bubble size also

manifests itself as an uncertainty of +56/−40% in void fraction. The uncertainty in bubble

size could be reduced if the camera had a higher optical zoom; fewer bubbles would be

imaged per frame, but each would occupy more pixels. This would, however, make the

void fraction estimates, which require a large bubble sample in a known volume, even more

unreliable.
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4.3.3 Experimental results and analysis

Due to time constraints in analyzing the bubble distributions, comparisons were only made

at three pressures: 6.0, 7.0 and 9.0 psi. Comparisons are also limited to the measured

and theoretical complex reflection coefficients (no attempt was made to back out the phase

speed and attenuation of the bubbly liquid). For the measured bubble distributions and

void fractions there was little difference in the theoretical predictions using the two different

bubble models discussed in Sections 2.2.2 and 2.2.3, most likely because the distributions

were generally very broad. Comparison was therefore limited to the model championed by

Commander and Prosperetti, Eq. (2.74).

Measurements of the complex reflection coefficient for the 6.0, 7.0 and 9.0 psi cases are

shown in Figures 4.22, 4.23 and 4.24, respectively. At these pressures the void fractions

were estimated by Eq. (4.14) to be 0.133, 0.196 and 0.532%. As evident in the plots, the

measurements leave much to be desired. Not only does the data have considerable structure

(it is not smooth), which will be discussed later, but the measurements are very far off from

the theoretical predictions, plotted as solid lines on the figures. Possible explanations for the

disagreement between the measurements and the model come in two varieties - measurement

problems (i.e., bubbles) and/or model inaccuracies, specifically our model of the the tube

opening. Figure 4.25 is a plot of theoretical phase speed and attenuation for the measured

bubble distributions.

Measurement problems, such as bubbles forming in and/or entering the tube are a very

real possibility, especially given the problems encountered while de-bubbling. Experience
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Figure 4.22: The real and imaginary parts of the measured reflection coefficient are com-
pared with the theoretical value using the bubble distribution of Figure 4.21 for the 6.0 psi
case. The void fraction was estimated to be 0.133%

has shown that a single bubble rarely influences the data over the entire frequency range.

It would take a number of bubbles inside the tube to account for the degree of awfulness

seen here. The tube was checked for bubbles at the end of the experiments, and a few

bubbles were visible just behind the HDPE window. These bubbles could have entered the

tube in two ways. The bubbles may have slipped behind the window during experiments, in

which case they would have always been located right at the water/bubbly liquid interface,

limiting any adverse effects on the measurements. However, the bubbles may have formed

inside the tube during the experiment and moved up to the tube opening as the tube was

raised for inspection. If this were the case, the bubbles would have seriously corrupted the

measurements and could explain the poor agreement.

There is also a strong possibility that the baffled tube model developed in Chapter
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Figure 4.23: The measured and modelled CDF (top frame) and PDF (second from top) for
the 7.0 psi case. The void fraction was estimated to be 0.196%. The real and imaginary
parts of the measured and theoretical reflection coefficients are shown in the bottom two
plots.
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Figure 4.24: The measured and modelled CDF (top frame) and PDF (second from top) for
the 9.0 psi case. The void fraction was estimated to be 0.532%. The real and imaginary
parts of the measured and theoretical reflection coefficients are shown in the bottom two
plots.
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Figure 4.25: The predicted phase speed and attenuation for the measured bubble distribu-
tions at experimental pressures.

2 may have been compromised in these experiments. To investigate this possibility, the

measurements were also compared against the other theoretical limit - the unbaffled tube

opening discussed in Section 2.1.7. Figures 4.26 and 4.27 compare the measured complex

reflection coefficient against both the baffled and unflanged theoretical predictions for water

inside the tube and the measured bubbly distribution outside for the 7.0 and 9.0 psi cases.

Eq. (2.51) was used to correct the unflanged theory for the two-fluid case. The unflanged

prediction matches the data much better than the baffled case, especially at the higher

frequencies. Of course the real system lies between these two theoretical extremes, but

these calculations suggest that it behaves more like an unflanged tube than a tube fitted

with an infinite rigid baffle.

Assuming the data are not corrupt, there are two possible mechanisms that could explain
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the better fit with the unflanged case. The first is that the high phase speed in the bubbly

liquid is on the order of that of steel for the highest frequencies (see Figure 4.25). This would

make the baffle appear acoustically transparent and would easily explain the observations.

However, for frequencies below 10 kHz, the phase speeds on are on the order of water or

lower where we have already verified that the baffle behaves close to rigid. The other, more

probable, explanation is that the attenuation is so high, predicted to be on the order of 10

dB/cm for all frequencies above about 3 kHz, that the sound field is not in communication

with the baffle but rather the tube appears as if it is radiating into an infinite space. As the

bubbly liquid interface is strongly reflecting (|<| ≈ 1), very little sound makes it past the

HDPE window to begin with. With attenuation on the order of 10 dB/cm, the sound travels

no more than one or two centimeters before it is attenuated to the noise level. Between 2

and 4 kHz, where the data do not show much agreement with either theory. It is at these

frequencies where the sound speed and attenuation both begin to rise and the experiment

is not accurately described by either theory. Perhaps this could be avoided if measurements

were made without any baffle at all.

All the bubbly liquid measurements show periodic structure at approximately 1.0 kHz

intervals, starting around 1.6 kHz. These frequencies happen to correspond to tube resonant

frequencies, cos kL = 0. The features can be explained by looking at another measurement

made in the bubble tank. A limiting assumption behind the single-hydrophone TFM is

that the sample being interrogated has acoustic properties which are fixed in time. The

impedance at the tube opening must be exactly the same when the measurement is made
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Figure 4.26: The measured complex reflection coefficient is compared with both the baffled
and un-baffled theoretical predictions for the measured bubble distribution for the 7.0 psi
case.
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Figure 4.27: The measured complex reflection coefficient is compared with both the baffled
and un-baffled theoretical predictions for the measured bubble distribution for the 9.0 psi
case.
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at point 1 as it was when the measurement was made at point 2. To investigate how stable

the bubble population was with time, the pressure spectrum inside the tube was measured,

without moving the hydrophone, at 30 second intervals for 5 minutes. This corresponds

roughly to the measurement timing during an actual TFM run. The pressure spectrum

inside the tube is a very strong function of the bubble population outside it. The measured

pressure spectra are shown in the upper plot of Figure 4.28. There is no difference in the

measurements except at the tube resonances, where there is always a slight variation in the

peak value. The variance, a measurement of how different data sets are, of the seven spectra

are shown in the bottom plot. There are clear peaks in the variance around the resonant

frequencies. This measurement indicates that the bubble population is slightly unsteady in

time and that this instability effects the pressure spectrum inside the tube most at tube

resonance.

To investigate if an unstable bubble population could be the cause of periodic structure, a

new sensitivity analysis was performed. The analysis was performed similar to the noise and

uncertainty analysis in Section 3.6.2. To simplify the model, the simulated tube termination

was assumed to be pressure-release, that is, < = −1. The simulation was used to create

the “measured” complex transfer function at point 2. Before the “measurement” was made

at point 1, the value of the reflection coefficient was changed to < = −0.995, simulating a

slight change in impedance at the tube opening with time. The reflection coefficient was

then calculated in the usual manner.

The simulation results are shown in Figure 4.29. The upper plot shows the “measured”
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Figure 4.28: Magnitude of the measured pressure spectrum inside the tube at 30 sec intervals
(upper plot) and the corresponding variance in the measurements (lower plot).

pressure spectrum at point 1 for both the < = −1 and < = −0.995 terminations. There

is no discernable difference between the two at the scale shown, an indication of just how

little change was added to the system. The effect on the magnitude and phase of the

reflection coefficient, shown in the middle and lower plots, is very pronounced. We see a

periodic artifact very similar to that observed in the bubble tank measurements, a clear

indication that a time varying bubble is responsible. It is worth noting that away from

tube resonance frequencies the simulated measurements are quite accurate. This is to be

expected as the peak value of resonance is governed very strongly by the reflection coefficient

(see Eq. (3.22)).
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Figure 4.29: Numerical simulation of an impedance tube showing the effect of a slight
change in < between measurement points.

4.3.4 Recapitulation - Bubbly Liquids

While unsuccessful in accurately characterizing the bubbly liquids, these experiments brought

to light a number of shortcomings that, once fixed, may significantly improve tube perfor-

mance and ease of deployment. These shortcomings take many forms, including problems

with the tube design, experimental conditions, and model inaccuracies.

Foremost, the difficulties de-bubbling the tube not only wasted a precious day of ex-

periments, but revealed the most troublesome problem with the tube design: it must be

flooded with its host fluid and de-bubbled on site. This not only limits the facilities where

deployment is possible to those with access to the waterline, but leaves the system at the

mercy of gassy water. A better design, discussed in more detail in the next chapter, is to

seal the tube completely and fill it with a fluid that is not friendly to bubble formation.
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Sealing the tube will also keep bubbles from entering the tube during experiments.

The bubble population was not perfectly stable in time. This was to be expected for

a real bubble generation system, but its effect on the measurements was much more pro-

nounced than anticipated. The single-hydrophone TFM, as we have shown, can only be

applied to terminations that are absolutely stationary in time, rendering it completely im-

practical for the investigation of bubbly liquids. A two-sensor method must be employed in

that case, presenting considerable calibration challenges. One possible solution is addressed

in Chapter 6.

he measurements, assuming they are not otherwise corrupt, show much better agreement

with an unflanged tube model than our flanged model. This suggests that the sound field

is attenuated before ever interacting with the baffle. The purpose of the baffle was to

better define the boundary conditioning in the tube opening plane. However, it appears

that the baffle complicates the problem instead of simplifying it and may be responsible for

the disagreement between the unflanged tube theory and the measurements in the 2-4 kHz

range. The baffle should not be used in future bubbly liquid experiments.

These criticisms are not to say the tube developed here is without worth. We have very

high expectations for measuring the acoustic propagation parameters of marine sediments

and other media with lower attenuation and that do not change in time with the present

tube system.
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Chapter 5

A sealed, oil-filled impedance tube

The Dodge Pond experiments suggested, and the NRL experiments confirmed, that serious

changes to the impedance tube design are necessary should it ever be suited for deploy-

ment in anything but a relatively controlled environment. Far too much time and effort

are required for tube alignment, submerged assembly, and de-bubbling. The current proce-

dure is also overly susceptible to problems caused by flooding it with less-than-ideal water,

such as the super-saturated water encountered in the NRL experiments. The requirement

that significant assembly be undertaken underwater also places a restriction on deployment

locations and conditions.

All these issues are avoided if the tube is completely sealed with a well-characterized

bubble-free liquid. This would eliminate the need for flooding and de-bubbling which would

in turn greatly simplify the alignment process, tremendously simplifying and speeding up

the deployment process. The process of sealing the tube completely free of air, as we will
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see here, is relatively straightforward but time consuming but only needs to be performed

once, or possibly a couple times a year.

This chapter will be divided into five short sections. The first covers the fill fluid

selection process. Characterization of the physical properties of the fill fluid are discussed

in the second section. The third explains modifications made to the original tube design to

seal the fluid inside it. Experiments carried out to verify tube performance are detailed in

the final two sections.

5.1 Fill fluid considerations

A number of different fill fluids were considered. The ideal fluid would be nonconducting,

noncorrosive, and otherwise as inert as possible as well as environmentally friendly (should

it ever leak out) but it should also repel water to keep it from entering the tube. The ideal

fluid would also have a low viscosity, similar to water, and would effectively wet the walls

of the tube to help keep from trapping bubbles. To maintain the full useable frequency

range, the sound speed of the fluid should be close to that of water, ideally slightly higher

(to push the first cutoff frequency up). The fluid must also have known (or measurable)

temperature dependence on sound speed and viscosity.

Water itself was dismissed outright as being conducting, too prone to outgassing, and

corrosive. Vegetable based oils, such as castor or soybean oil were contenders, as they

have similar sound speeds and densities to water. They are also both very inexpensive,

readily obtainable, nonconducting, chemically inert, and environmentally friendly. They
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are, however, rather viscous and can absorb some water.

Petroleum based oils come in many different types, most of which tend to break down

certain adhesives, plastics and rubbers, making them unacceptable for use. Some, however,

are relatively stable and inert, such as mineral oil. Mineral oil is relatively inexpensive,

has a similar sound speed to water, and comes in low viscosity varieties. Some mineral oils

are also rated for contact with human food products, suggesting that they pose minimal

environmental impact. Mineral oil is also a strong contender.

Silicone oils can have extremely low viscosities, displace water and easily wet most

surfaces. Besides being nonconducting and noncorrosive, they do not attack most rubbers,

plastics, or other silicones. The major drawback is that silicone fluids, such as Dow Corning

200 series fluids or DOT 5 brake fluids, are highly compressible and have sound speeds on

the order of 900 m/s. Use of a silicone fluid, although otherwise desirable, would cut the

useable frequency range of our tube almost in half. Other possibilities included a number

of synthetic oils and glycol based fluids, such as DOT 3 or 4 brake fluids (which have

remarkably high sound speeds). Most of these failed either or both of the chemically inert

and environmentally friendly requirements.

After much debate, a low viscosity food-grade mineral oil, STE Oil Company’s Crystal

Plus 70 FG, was chosen as the fill fluid. Like most mineral oils, 70 FG is colorless, odorless,

and tasteless. The material safety data sheet (MSDS) for the oil states that although not

recommended for direct human consumption, no adverse effects have ever been documented

as a result of ingestion. The only danger posed by the oil is that it is slightly flammable in
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vapor form.

5.2 Fill fluid characterization

It was necessary to characterize certain physical properties of the oil before use. The most

critical properties are the density and sound speed which play important roles in waveguide

propagation and in the TFM. The viscosity was also measured, as it is the dominant dissi-

pative mechanism inside the tube. As with water, the density, sound speed, and viscosity

of mineral oil are functions of temperature. This section details the measurements made to

characterize these quantities.

The density of the mineral oil was measured by pipetting a known volume of oil onto a

milligram balance. The density was measured to be 814 ± 3 kg/m3 and was independent,

within the measurement uncertainty, of temperature between -5 and 25 degrees Celsius.

The sound speed was measured using two 2.0 MHz transducers and a pulser-receiver.

The pulser triggers a 200 MHz digital storage oscilloscope at the same time it sends a

pulse to the transmit transducer. The arrival time of the pulse at the second transducer is

measured on the oscilloscope and recorded. With the measured separation distance between

the transducer it is straightforward to calculate the sound speed. This method assumes,

of course, that the sound speed is not dispersive (frequency dependent). The sound speed

measurements, taken between 8 and 26 degrees Celsius, are plotted on Figure 5.1. The

sound speed decreases with increasing temperature, which is common for oils [77]. The
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data were fit to a a second-degree polynomial in temperature,

c (T ) = c2T
2 + c1T + c0, (5.1)

which can be used to extrapolate the data to slightly higher or lower temperatures. For

our measurements, the best fit constants were (c0, c1, c2) = (1479.6,−3.0699,−0.02737) for

c in meters per second and T in degrees Celsius. The absolute uncertainty in the measured

sound speed is estimated to be about ±5 m/s based on the uncertainty in the measured

separation distance and arrival time.
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Figure 5.1: Measured sound speed of mineral oil (open circles) as a function of temperature
compared with a second degree polynomial empirical fit (solid line).

The viscosity was measured with a Cannon LV2000 digital viscometer between 0 and 30

degrees Celsius. The viscosity measurements, in centipoise, are plotted in Figure 5.2. The

viscosity of liquids can be fit to the form [78]

µ = A10
B

T−C (5.2)
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where T is the absolute temperature. For our measurements, the best fit constants were

(A,B, C) = (0.333, 202, 183) for µ in centipoise and T in Kelvin.
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Figure 5.2: Measured viscosity of mineral oil (open circles) as a function of temperature
compared with an empirical fit (solid line).

5.3 Design modifications

The necessary design modifications were straightforward and are shown in Figure 5.3. The

tube needed to be sealed at both ends - the baffled opening and the rear of the sound

source. The tube opening was sealed by semi-permanently fixing the silicone rubber window

(see Section 3.3.3) to the baffle with a silicone rubber sealant. The silicone sealant bonds

extremely well to the silicone window and fairly well to stainless steel baffle. Immediately

after the window was glued to the baffle, all air bubbles trapped in the sealant were rolled

out with a heavy steel rolling pin. All excess silicone sealant was removed from the inner
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diameter of the baffle with a small putty knife.
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Figure 5.3: Overview of the oil-filled impedance tube system (not to scale).

The source end of the tube was sealed with a solid nylon cap, illustrated in Figure

5.4. This cap serves two main purposes. The first is that allows for linear motion of the

hydrophone sheath while maintaining a seal to prevent oil leakage. This is accomplished with

a standard rubber 1/4 inch hydraulic rod seal. The second is that it aligns the hydrophone

sheath with the axis of the source, helping to keep the hydrophone in the center of the

tube. A section of Tygon tubing attached to a barbed fitting on the side of the cap allows

the oil in the tube to communicate with an expansion chamber. The expansion chamber,

nothing more than a sealed neoprene-latex bellows, is necessary to account for the fluid

volume displaced by the hydrophone sheath as it moves from one position to another inside

the tube.

The hydrophone sheath was also redesigned and rebuilt. The Teflon insert shown in
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Figure 5.4: The rod seal cap mounts on the end of the sound source and seals against the
hydrophone sheath to prevent oil leaking out of the system (not to scale).

Figure 3.8 was replaced with a stainless steel piece that the narrower sheath section threads

into. This was done to alleviate problems encountered with the Teflon outgassing and

bending during the previous experiments. The far end of the sheath must also be sealed

to keep oil from leaking out. A liquid tight cord-grip fitting (Hummel CF07AR-BR) seals

against the hydrophone cable, as shown in Figure 5.5. This fitting mates with a female

NPT to barbed tube fitting. A length of 1/4 inch inner diameter Tygon tubing connects

the hydrophone sheath to the barbed fitting. The tubing allows for some strain relief and

keeps the fitting assembly from interfering with the timing belt. The fitting assembly travels

with the tubing inside a section of aluminum pipe which serves to support the weight of

the fittings and helps keep the system aligned. The pipe is secured to the aluminum frame

that surrounds the entire tube assembly with two stainless steel pipe clamps.
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Figure 5.5: The far end of the hydrophone sheath is fitted with a length of tygon tubing. A
liquid-tight cord grip fitting mounted on a barbed NPT fitting attaches to the tubing and
seals the oil inside. The entire assembly rides inside a length of aluminum pipe to support
the weight of the fittings (not to scale).

Filling the tube with oil was a time consuming and messy process. The major steps

will be briefly outlined here. Before use, the mineral was degassed under a vacuum to

remove any dissolved air (and keep bubbles from forming). The tube was filled with oil

with the baffled opening facing down, supported by high-density styrofoam. All system

components, such as the hydrophone sheath, centering star, sound source, and the source

end cap described above were assembled while submerged in oil. Special attention was paid

to make sure all o-ring grooves and o-rings were properly wetted with oil before assembly.

5.4 Verification of the oil-filled tube

As with the water filled tube, a number of experiments were made to confirm that the oil-

filled tube behaves as modelled. All measurements were made with the tube oriented upside
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down. The tube opening was supported by two layers of 5 cm thick styrofoam. Because

styrofoam is soft and porous it behaves almost as pressure-release compared to water (or

oil). For these experiments the pressure inside the tube was assumed to be given by Eq.

(3.15).

The first measurement was of the phase speed inside the tube. Measurements were made

using the standard two-point cross correlation procedure. The measured phase speeds are

plotted in Figure 5.6. The measurements are compared with the theoretical prediction of

the elastic tube theory discussed in Section 3.2 using the measured density and intrinsic

sound speed of the oil. There is excellent agreement between the measurements and the

theory.
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Figure 5.6: Measured phase speed in the mineral oil-filled tube as a function of frequency
compared with elastic tube theory.

The standing wave pattern in the tube was measured at five different frequencies. Mea-
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surements were made at around 5 mm intervals over a 20 cm section of the tube. For

this experiment the tube was excited with a continuous wave of constant frequency and

the amplitude of the hydrophone signal was measured on a digital oscilloscope. The mea-

surements are compared with the theoretical prediction in Figure 5.7. As with the phase

speed measurement, there is very good to excellent agreement at all frequencies between

the measurements and the theory.

0

0.5

1

0

0.5

1

0

0.5

1

N
o
rm

a
liz

e
d
 P

re
ss

u
re

0

0.5

1

15 20 25 30 35
0

0.5

1

Distance from opening, cm

3 kHz 

6 kHz 

9 kHz 

12 kHz 

15 kHz 

Figure 5.7: Normalized pressure as a function of position inside the oil-filled tube for 5 dif-
ferent driving frequencies (open circles) compared with the theoretical prediction prediction
for a sound-soft termination (solid lines).

The impedance of an oil-filled transmission line, terminated by the styrofoam, was also

measured. As we assumed that the styrofoam acts as if sound soft, the theoretical impedance

of the oil transmission line is given by (3.17). The measured impedance is compared with

the theoretical result in Figure 5.8. There is good agreement between the two except for

slight “blips” around 5.4, 9.4 and 14 kHz. These may be artifacts caused by the styrofoam
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termination, which we know to be imperfect.
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Figure 5.8: Measured magnitude and phase of a styrofoam-terminated 17.8 cm oil-filled
transmission line (open circles) compared with the theoretical prediction for a sound-soft
terminated transmission line (solid line).

5.5 Reflection from the baffled opening

The oil filled tube was lowered into our laboratory’s large wooden water-filled tank, dis-

cussed in Section 4.1.3. The reflection coefficient and impedance at the tube opening were

measured. The measurements, compared with the theoretical prediction of Eq. (2.47), are

shown in Figures 5.9 and 5.10. With mineral oil inside the tube and water outside the ratio

of specific impedances is about γ ≈ 0.774. The agreement between the measurements and

the theory at all frequencies is as good, and often better, than observed with the water-filled

tube in the same tank. These measurements serve to demonstrate the feasibility of what
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may be the next generation liquid-filled impedance tube.
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Figure 5.9: Measured magnitude and phase of the reflection coefficient of the oil-filled tube
radiating into a large water-filled tank (dots) compared with the theoretical prediction of
Eq. (2.47).
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Figure 5.10: Measured magnitude and phase of the impedance at the opening of the oil-filled
tube radiating into a large water-filled tank (dots) compared with the theoretical prediction.
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Chapter 6

Recapitulation and Future Work

This Chapter summarizes the major results obtained developing and testing an impedance

tube for in situ deployment in an marine environment. Possible solutions for most of

the difficulties and problems encountered in this work are provided, as are a number of

suggestions for future system improvements, adaptations, and measurements.

6.1 The water-filled baffled impedance tube

A submersible, baffled, thick-walled, water-filled impedance tube capable of remote de-

ployment in up to 20 m of water has been developed. The impedance tube uses a single

hydrophone transfer function method to measure the complex reflection coefficient at the

tube opening. Development of the tube required significant engineering design to accom-

modate submersion and to adapt the scanned hydrophone approach for use in a water-filled

tube. It has a usable frequency range of 1 - 16 kHz and requires no calibration, both
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significant improvements over previous water-filled impedance tube systems.

The reflection coefficient measured with the tube submerged in a large body of water

agrees favorably with classical theory for a baffled tube opening. This may be the first

measurement of its type made in water and serves as a validation of the impedance tube’s

performance.

6.2 Bubbly liquid experiments

The bubbly liquid experiments at the NRL Salt Water Tank Facility were of limited success.

The most useful outcome of the experiments, as is often the case with experiments run for

the first time, was that they brought to light a number of design faults that needed to

be addressed. These issues include de-bubbling difficulties, sensitivity to unstable bubble

populations, and an inaccurate model of the tube opening. The first two issues are addressed

in the next section, the latter is discussed here.

The bubbly liquid experiments showed that the baffled tube opening is poorly suited

for bubbly liquid measurements. An unflanged tube of decreasing wall thickness at the

opening may be able to be more accurately modelled as even with the baffle in place, the

measurements agreed well with the unflanged model, except in the 2-4 kHz range where

the individual bubbles were beginning to resonate. The unflanged model, however, requires

significantly more computing time than the baffled model, and a supercomputer may be

necessary should an attempt be made to determine phase speed and attenuation from a

numerical inversion.
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6.3 Future impedance tube work

The bubbly liquid experiments also revealed that the single hydrophone transfer function

method fails when measuring fluids whose properties are not perfectly stable in time. If

a submersible impedance tube is ever to be used for in situ bubble characterization a two

hydrophone method must be employed. Two sensor methods present considerable calibra-

tion and frequency range limitations. One promising solution addressing both is to use

a hybrid system with a single wall-mounted hydrophone in combination with a scanned

hydrophone similar to the one used in this work. To calibrate the two hydrophones, the

scanned hydrophone is positioned at exactly the same location as the acoustic center of

the wall-mounted hydrophone and the transfer function between the two measured. This

transfer function can be used a calibration factor between the two hydrophones. An at-

tempt to employ this method was undertaken in the laboratory, but current belt and pulley

positioning system was incapable of the fine adjustments required to properly align the two

hydrophones for calibration. A different positioning system, perhaps one using a lead screw,

would be required.

In Chapter 5 we demonstrated the feasibility of a sealed, oil-filled impedance tube. Seal-

ing the tube eliminates the need for on-site alignment and assembly, dramatically reducing

the time required for preparation and field deployment. It also assures a bubble-free tube.

Future liquid-filled impedance tubes should unquestionably be sealed. Although very few

problems were encountered with the mineral used here, more research into fill fluids may

yield one better-suited for use in an impedance tube (i.e. one with a higher sound speed).
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The silicone rubber window did deform somewhat during the experiments, suggesting that a

stiffer window or better expansion chamber may be in order. Ideally, the entire positioning

system would be enclosed and filled with oil, eliminating the need for an expansion chamber

to accommodate displacement of the hydrophone sheath .

Although modifications need to be made before the impedance tube can be used for

measurements of bubbly liquids, it is almost certainly suited, in its present (oil-filled) form,

for in situ measurements of ocean-bottom sediments. In this case, the baffle would be

required to support the tube on top of the sediment. The theoretical phase speeds of water-

saturated sediments are much closer to water and exhibit much less dispersion than bubbly

liquids. This is important as impedance tubes generally work best when measuring fluids

of similar specific impedance. The theoretical attenuation in saturated sediments is also

significantly less than that in bubbly liquids, suggesting that their may be fewer difficulties

modelling the tube opening as baffled.

Eventually, a numerical routine to determine the phase speed and attenuation from the

measured reflection coefficient would be desirable. This would require a very well defined

model of the tube opening, but would bring the impedance tube full circle as a measurement

device.
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Appendix A

Derivation of the Wood-Mallock

Equation

Wood derived his 1930 result, Eq. (1.5), for the sound speed in a two-fluid mixture by

assuming the mixture may treated as homogenous with an effective density and compress-

ibility governed by the relative volumes of the two fluids. Although this is an acceptable

and accurate approximation, it was given without proof. The following is a more rigorous

derivation using a control mass approach∗.

Consider the control mass shown in Figure A.1a. The mass initially occupies a volume,

V0, that is comprised of two fluids with different densities and sound speeds. We define a

void fraction, β, as

β =
V2

V0
(A.1)

∗Although I wish I could claim to be smart enough to have derived this myself, I owe this particular
derivation to a lecture given by Professor Allan D. Pierce at Boston University on January 22, 2004.
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where V2 is the volume of the second fluid and V0 is the total volume. It is noted that:

1− β =
V1

V0
(A.2)

as V1 + V2 = V0. The density of the mixture, ρm, is given by the total mass divided by the

total volume:

ρm =
ρ1 (1− β) V0 + ρ2βV0

V0
= ρ1 (1− β) + ρ2β. (A.3)

V0

r1,c1

r2,c2

V

P

a) b)

Figure A.1: a) Control mass; b) Deformation under pressure

The pressure, P , acting on the control mass, initially P0, is then perturbed such that

P → P0 + ∆P . The pressure perturbation causes changes in the individual densities and

volumes of the two components:

ρ1 → ρ1,0 + (∆ρ)1 ; ρ2 → ρ2,0 + (∆ρ)2

V1 → (1− β) V0 + (∆V )1 ; V2 → βV0 + (∆V )2

, (A.4)

as well as on the effective mixture:

V → V0 + ∆V

ρm → ρm,o + (∆ρ)m

(A.5)
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where ∆V = (∆V )1 + (∆V )2. In these equations a subscript 0 refers to the density in the

initial, unperturbed state. For the control mass, the mass must remain unchanged between

initial and perturbed states:

(V0 + ∆V ) (ρm,0 + (∆ρ)m) = V0ρm,0.. (A.6)

Imposing that all perturbations be small, we can neglect the ∆V (∆ρ)m term, leaving us

with

(∆ρ)m =
−ρm,0

V0
∆V =

−ρm,0

V0
((∆V )1 + (∆V )1) . (A.7)

As the mass of each constituent fluid must remain constant, we can write

(∆V )1 = (1− β) V0

(−(∆ρ)1
ρ1,0

)

(∆V )2 = βV0

(−(∆ρ)2
ρ2,0

) . (A.8)

Substituting Eqs. (A.8) and (A.3) into Eq. (A.7) and dividing by ∆P we have

(∆ρ)m

∆P
= ((1− β) ρ1,0 + βρ2,0)

(
(1− β)

1
ρ1,0

(∆ρ)1
∆P

+ β
1

ρ2,0

(∆ρ)2
∆P

)
. (A.9)

Dropping the 0 subscripts and noting that the speed of sound, c, is given by c−2 = ∆ρ/∆P ,

the equation for the sound speed in the mixture is:

1
c2
m

=
(1− β)2

c2
1

+
β2

c2
2

+ β (1− β)
ρ2
1c

2
1 + ρ2

2c
2
2

ρ1ρ2c2
1c

2
2

(A.10)

which is equivalent to the result given in Section 1.2.
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Appendix B

Green’s Function Solution to the

Helmholtz Equation

A Green’s function for the Helmholtz equation is a solution for G to:

∇2G (x, y, z|x0, y0, z0) + k2G (x, y, z|x0, y0, z0) = −4πδ (x− x0) δ (y − y0) δ (z − z0)

where δ is the Dirac delta function. In vector notation, the equation is:

∇2G (−→r |−→r0) + k2G (−→r |−→r0) = −4πδ (−→r −−→r0) (B.1)

The velocity potential in the region of interest, assuming no sound sources lie in the region,

is a solution to the homogeneous Helmholtz Equation:

∇2φ (−→r ) + k2φ (−→r ) = 0. (B.2)
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The first step in the Green’s function approach is to multiply Eq. (B.1) by φ (−→r ) and Eq.

(B.2) by −G (−→r |−→r0):

φ (−→r )∇2G (−→r |−→r0) + k2φ (−→r ) G (−→r |−→r0) = −4πφ (−→r ) δ (−→r −−→r0)

−G (−→r |−→r0)∇2φ (−→r )−G (−→r |−→r0) k2φ (−→r ) = 0

and then add the two equations:

φ (−→r )∇2G (−→r |−→r0)−G (−→r |−→r0)∇2φ (−→r ) = −4πφ (−→r ) δ (−→r −−→r0) . (B.3)

The trick to the approach is to switch the −→r and −→r0 vectors (this does not violate either

Eqs. (B.1) or (B.2)) and integrate both sides over the region of interest, V0, (such that the

volume includes the vector −→r ):

∫∫∫

V0

φ (−→r0)∇2
0G (−→r |−→r0)−G (−→r |−→r0)∇2

0φ (−→r0) dV0 =
∫∫∫

V0

−4πφ (−→r0) δ (−→r −−→r0) dV0. (B.4)

Green’s theorem is used to change the left-hand side of Eq. (B.4) from a volume integral

to a surface integral:

∫∫∫

V0

φ∇2
0G−G∇2

0φdV0 =
∫∫

S0

φ
∂

∂n0
G−G

∂

∂n0
φdS0

where S0 is the surface that bounds V0 and ∂/∂n0 is the outward normal derivative to this

surface. The right-hand side of Eq. (B.4) can be simplified using the following property of

the Dirac delta function:

∫∫∫

V0

φ (−→r0) δ (−→r −−→r0) dV0 =





φ (−→r ) −→r ∈ V0

0 −→r /∈ V0

Eq. (B.4) can now be written:

φ (−→r ) =
−1
4π

∫∫

S0

φ (−→r0)
∂

∂n0
G (−→r |−→r0)−G (−→r |−→r0)

∂

∂n0
φ (−→r0) dS0. (B.5)
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This is an interesting result – if the properties of the acoustic field on any closed surface

are known, the acoustic field anywhere inside the bounded volume can be determined! The

general solution of (B.1) for the Green’s function is [46]:

G (−→r |−→r0) =
eik|−→r −−→r0 |
|−→r −−→r0 | . (B.6)

This is the same solution one obtains for the pressure field at −→r from a point monopole

source located at −→r0 .

To solve Eq. (B.5) for the region shown in Figure 2.6, the following condition on G must

be satisfied:

∂

∂n0
G (−→r |−→r0)

∣∣∣∣
z0=0

= 0. (B.7)

Using the method of images, the normal slope on the loci of points (say, −→r0 and
−→
r′0)

equidistant from two monopoles oscillating in phase will be zero. More specifically, if

−→r0 = (x0, y0, z0) and −→r0
′ = (x0, y0,−z0) then the normal slope at the plane defined by

z0 = 0 will be zero, as required above. Using the principle of superposition, the Green’s

function satisfying Eq. (B.7) is:

G (−→r |−→r0) =
eik|−→r −−→r0 |
|−→r −−→r0 | +

eik
∣∣−→r −−→r0

′∣∣
∣∣−→r −−→r0

′∣∣ . (B.8)

Setting z0 = 0 as required by Eq. (2.23), the Green’s function of choice is:

G (−→r |−→r0) =
2eik|−→r −−→r0 |
|−→r −−→r0 | (B.9)

where −→r0 = (x0, y0, 0).
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Appendix C

Reflection from a Baffled Tube

Opening

Equation (2.46) predicts the plane wave reflection coefficient for a sound-hard tube fitted

with an infinite, sound-hard flange at its opening. It is similar to, if not exactly the same

as, solutions given in [41, 40, 45, 46, 47] which were all obtained using similar assumptions

(namely neglecting higher-order terms in Eq. (2.26)). The validity of this result will be

evaluated by further comparison against another, more rigorously derived, published result

and a numerical (finite element) model.

Norris and Sheng [39] published a solution for the primary reflection coefficient from a

baffled tube opening in terms of the coefficients of the higher order terms. Their solution

(using our notation) is given by:

< (kb) = −1 +
2

M00

(
η00 −

∞∑

n=1

ηn0
kzn

2k
Bn

)
(C.1)
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where:

ηnn (kb) = β
(1)
n (kb) + α2

1nβ
(2)
n (kb)

ηnm (kb) = α2
1nβ

(1)
n (kb)−α2

1mβ
(1)
m (kb)

α2
1n−α2

1m

β
(q)
n (x) = i

∫ x
0

2J2
1 (s)sds

(x2−s2)1/2(s2−α2
1n)q +

∫∞
x

2J2
1 (s)sds

(s2−x2)1/2(s2−α2
1n)q

M00 (kb) = η00 (kb) + i
kb

(C.2)

Needless to say, this system of equations is not pleasant to solve, and the Bn terms must

be determined numerically. They do, however, provide a rational function approximation

for the reflection coefficient, valid for 0 < kb < 3.8, in the form of:

< (kb) = − |<| ei2kL (C.3)

where:

|<| = 1+αkb+β(kb)2

1+αkb+(1+β)(kb)2

(α, β) = (0.323,−0.077)

L(kb)
b = 0.82159−0.49(kb)2

1−0.46(kb)3

(C.4)

Figure C.1 compares the magnitude and phase of the complex reflection coefficient predicted

by the equation developed in Section 2.1.6, Eq.(2.46), and that published by Norris and

Sheng (C.3). The functions are plotted over the range 0 < kb < 1.6, which corresponds

roughly to 0 to 16 kHz in our water-filled impedance tube. The two curves are nearly

indistinguishable in magnitude and very similar in phase, an indication that the higher

order terms play little role at these values of kb. No corrections are given by Norris and

Sheng should the fluids inside and outside the tube be different.

A second comparison made was against a numerical model constructed using the finite

element method (FEM). The exact details of this method will not be discussed here. A
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Figure C.1: Comparison of the magnitude and phase of the complex reflection coefficient
as predicted by Eq. (2.46) and Eq.(C.3)

commercial FEM package, FEMLab (COMSOL Inc., Burlington, MA), was used to solve

the Helmholtz pressure equation for a geometry and set of boundary conditions matching

our problem. Figure C.2 shows a sample pressure field result and labels the boundary

conditions used in the model. These boundary conditions will be discussed first.

Because it is impossible to create a numerical model that extends to infinity as required

to model a tube fitted with an infinite baffle, radiation boundary conditions (∂p/∂n + ikP = 0)

(also called non-reflecting or absorbing boundary conditions) were placed on the appropri-

ate boundaries as an approximation. These boundary conditions are imperfect and the

resulting solution is sensitive to the model size. Therefore, two different sizes were used for

the region outside the tube. Neumann boundary conditions (∂p/∂n = 0) were used on all

rigid surfaces, as well as on the axis of symmetry. A simple Dirichlet boundary condition
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Figure C.2: Boundary conditions overlayed on a sample pressure amplitude field calculated
using the FEM model

(p = 1) was used to provide a sound “source” at z = 0 in the model.

The impedance was determined by dividing the pressure by its gradient at the tube

opening:

Zn = iωρ
1
b

∫ b

0

P
∂P
∂z

dw (C.5)

The line integration, performed numerically by FEMLab, was used to average the values

across the entire tube opening. The reflection coefficient was then evaluated using Eq.

(2.45).

Figure C.3 compares the reflection coefficient obtained using the FEM simulation and

that predicted by Eq. (2.46). Two different sets of FEM results are shown, corresponding

to the two different sizes of the region outside the tube. Again we see very good agreement

in the magnitude and quite acceptable agreement in phase (though not perfect). As noted

above, there are slight differences between the two FEM models, causing the numerical

“wiggles” in the results.

The results shown in this Appendix affirm that the theory developed in Section 2.1
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Figure C.3: Comparison of the magnitude and phase of the reflection coefficient predicted
by Eq. (2.46) and two FEM models

accurately predicts the reflection coefficient for an open tube, at least in the range 0 <

kb < 1.6. This statement is made after comparison against the most complicated published

theoretical result (to the author’s knowledge) and a finite element model (which the author

has verified against other theoretical results).
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Appendix D

Technical Drawings

Figure D.1: Dimensioned drawing of source transducer housing
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Figure D.2: Dimensioned drawing of source housing endcap

Figure D.3: Dimensioned drawing of source head mass
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Figure D.4: Dimensioned drawing of source tail mass
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Appendix E

Electrical Impedance of the Source

Transducer

The electrical impedance is defined as the ratio between the voltage, V , and current, I:

ZΩ =
V

I
(E.1)

and is a complex quantity, including both magnitude and phase information. The measured

magnitude and phase of the impedance of the source transducer is shown in Figure E.1.

The magnitude of the impedance is on the order of 100,000 Ω at low frequencies, while the

voltage and current are 90◦ out of phase, expect at resonance. The primary resonance at 7

kHz is clearly visible in both plots.
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Figure E.1: Electrical Impedance of the source transducer while submerged in water. Res-
onances at 7 and 28 kHz are clearly visible.
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Appendix F

MATLAB Scripts

This section contains some of the more useful MATLAB codes written by the author for

this work. They are edited, condensed, and annotated for easy reading.

F.1 Impedance of baffled tube opening

This file, rigid baffle.m, is a function that returns the theoretical impedance and reflection

coefficient at the opening of a tube fitted with an infinite, rigid baffle. The input parameters

are listed in the code.

function[Zout, Rout]=rigid_baffle(k1,k2,rho1,rho2,w,b)

%Returns complex reflection coefficient and impedance of a tube opening
%fitted with a rigid baffle.
%
%Use:
%
%[Z R]=rigid_baffle(k1,k2,rho1,rho2,w,b)
%
%Inputs:
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%k1 = wavenumber INSIDE tube
%k2 = wavenumber OUTSIDE tube
%rho1 = density inside tube
%rho2 = density outside tube
%w = angular frequency
%b = tube radius

%Complex specific impedances:
Z1=rho1.*w./k1; %Inside Tube
Z2=rho2.*w./k2; %Outside Tube
gamma=Z1./Z2; %Specific Impedance Ratio

%Impedance at opening:
kb=k2.*b;
Rz=1-2.*besselj(1,2.*kb)./(2.*kb); %Resistance
Xz=2.*struve1(2.*kb)./(2.*kb); %Reactance

%Outputs:
Zout=Z2.*(Rz-i.*Xz); %Impedance
Rout=(Rz-gamma-i.*Xz)./(Rz+gamma-i.*Xz); %Reflection coefficient

F.2 Complex sound speed of a bubbly liquid

This file, C and P.m, returns the complex wavenumber, sound speed, phase speed, and

attenuation of a bubbly liquid as predicted by Commander and Prosperetti [29], Eqs. 2.74,

etc. The file bubble XXX.m (see Section F.3) is called to provide the bubble distribution

as a function of void fraction and statistical bubble size parameters.

function[kout, cmout, cout, alphaout, Aout]=C_and_P(ap,pdf,w)

% Returns the complex wavenumber and sound speed for a bubbly liquid
% Uses Commander and Prossperetti, JASA 85, p732-746;
%
% Use:
%[k cm c alpha A]=C_and_P(ap,pdf,w)
%
%inputs:
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%ap = radii vector (m) (use bubble_pdf.m or bubble_log.m)
%pdf = radius distribution corresponding to ap
%w = driving frequency (rad/s) (can be a vector)
%
%outputs:
%k = complex wavenumber (1/m)
%cm = complex sound speed (m/s)
%c = phase speed (m/s)
%alpha = attenuation (1/m)
%A = attenuation (dB/m)
%
%Calls fluid parameters in liquid_air_properties.m

liquid_air_properties; %loads fluid properties

for aa=1:1:length(w)

%Bubble Calculations
b=bubble_b(ap,w(aa)); %Dampening Coefficient
w0=bubble_w0_driven(ap,w(aa)); %Resonant Frequency

%Calculate complex k;

int_p_k=ap.*pdf./(w0.^2-w(aa)^2+2*i*w(aa).*b); %Integrand

for bb=1:1:length(ap)-1 %Performs integration numerically
s2(bb)=mean([int_p_k(bb) int_p_k(bb+1)]).*(ap(bb+1)-ap(bb));

end

k2=w(aa)^2/cl^2+4*pi*w(aa)^2.*sum(s2); %Wavenumber Squared

%outputs:
kout(aa)=sqrt(k2); %Complex Wavenumber
cmout(aa)=w(aa)./kout; %Complex Sound Speed

cout(aa)=w(aa)./real(kmout(aa)); %Phase Speed
alphaout(aa)=imag(kmout(aa)); %Attenuation
Aout(aa)=20.*log10(exp(1)).*(alphaout(aa));

end
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The following file, Kargl.m, applies Kargl’s [58] effective medium correction to the previous

file, returning a modified complex wavenumber, etc.

function[kout, cmout, cout, alphaout, Aout]=Kargl(ap,pdf,w)

%Returns the complex wavenumber and sound speed for a bubbly liquid
%using Kargl’s effective medium approach (JASA 111(1) p 168-173)
%
% Use:
%[k cm c alpha A]=Kargl(ap,pdf,w)
%
%inputs:
%ap = radii vector (m) (use bubble_pdf.m)
%pdf = radius distribution corresponding to ap
%w = driving frequency (rad/s) (can be vector)
%
%outputs:
%k = complex wavenumber (1/m)
%cm = complex sound speed (m/s)
%c = phase speed (m/s)
%alpha = attenuation (1/m)
%A = attenuation (dB/m)
%
%Calls fluid parameters in liquid_air_properties.m
%

liquid_air_properties; %loads fluid properties

for aa=1:1:length(w) %cycles through frequency vector

%Bubble Calculations
w0=bubble_w0_driven(ap,w(aa));

%Calculate complex k;
err=0.1; %Error limit in absolute wavenumber for while loop (1/m)
ka=0; %Bad initial guess
kb=w(aa)./cl; %Good starting point

while abs(ka-kb)>err %Cycles until c_m in b_vis is close to prediction
ka=kb;
b=bvis(ap)+bth(ap,w(aa))+w(aa)*ka.*ap./2; %Uses c_m in b_vis
int_p_k=ap.*pdf./(w0.^2-w(aa)^2+2*i*w(aa).*b); %Integrand
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for bb=1:1:length(ap)-1 %Performs numerical integration
s2(bb)=mean([int_p_k(bb) int_p_k(bb+1)]).*(ap(bb+1)-ap(bb));

end
kb=sqrt(w(aa)^2/cl^2+4*pi*w(aa)^2.*sum(s2)); %New guess

end

%outputs:
kout(aa)=kb; %Complex Wavenumber
cmout(aa)=w(aa)./kout; %Complex Sound Speed

cout(aa)=w(aa)./real(kmout(aa)); %Phase Speed
alphaout(aa)=imag(kmout(aa)); %Attenuation
Aout(aa)=20.*log10(exp(1)).*(alphaout(aa));

end

F.3 Bubble size distribution

Two files, bubble pdf.m and bubble log.m provide a bubble size distribution to be used

directly in either bubbly liquid file as a function of void fraction and statistical size param-

eters. The first, bubble pdf.m, returns a Gaussian distribution (Eq. 2.77) for a given void

fraction, bubble center radius, and standard deviation. The second file, bubble pdf log.m

returns a log normal distribution (Eq. 4.3). The input parameters are void fraction, bubble

center radius, and the log normal equivalent of a standard deviation, bn. bubble log.m is

given below, bubble pdf.m is of similar form, only the shape of the distribution changes.

function [alogout, logout] = bubble_log(a0,amin,amax,bn,beta,W)

%returns scaled distribution for given bubble sizes and void fraction
%
%use
%
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% [alog plog]=bubble_log(a0,amin,amax,bn,beta,W)
%
%inputs:
% a0 = mean bubble radius (m) can be vector
% bn = deviation parameter can be vector
% amin = minimum bubble size present (m)
% amax = maximum bubble size present (m)
% beta = void fraction
% W = weighting factor (required if a0,bn are vectors)
%
%use of W:
% If a0=[2 5] and half the bubbles are centered around 2 and half around
% 5, then W=[0.5 0.5]. If 90% are centered around 2 and 10% around 5, then
% W=[0.9 0.1]. sum(W) need not be 1.
%
%outputs:
%alog = bubble size vector (m)
%plog = bubble size distribution (#/unit volume)

%Error if vector lengths disagree:
if abs(length(a0)-length(bn))>0

error(’lengths of a0 and bn do not agree’)
end

%Radius Vector:
eps=0.01; %Cuts off integration if distribution is less than 1% of max

Amin=min(a0.*exp(-sqrt(-log(eps)./bn))); %Lower 1% bubble radius
Amax=max(a0.*exp(sqrt(-log(eps)./bn))); %Upper 1% bubble radius

if amin<Amin
amin=Amin; %Lower overall limit

end if amax>Amax
amax=Amax; %Upper overall limit

end

ap=linspace(amin,amax,500); %Bubble radius vector

%Distribution Shape:
if nargin==5|length(a0)==1 %If only one center radius (a0 not a vector)

if length(a0)>1 %Error if W required and not given
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error(’Please Specify a Weighting Factor, W’)
end

p_vf=exp(-bn.*(log(ap./a0)).^2); %Distribution (yet to be scaled)

else %If a0 and bn are vectors
p_vf=0; %start value
for bb=1:1:length(a0)

p_vf=p_vf+W(bb).*exp(-bn(bb).*(log(ap./a0(bb))).^2); %Adds next value
end

end

%Distribution constant for given Void Fraction:
int_p_vf=ap.^3.*p_vf; %Function to integrate

for aa=1:1:length(ap)-1 %Performs numerical integration
sss(aa)=mean([int_p_vf(aa) int_p_vf(aa+1)]).*(ap(aa+1)-ap(aa));

end

C=beta*3./(4*pi)./sum(sss); %Constant for Void Fraction

%Output:
logout=C.*p_vf; %Weighted distribution
alogout=ap; %Bubble radius vector

F.4 Single hydrophone TFM

These files returns the complex reflection coefficient and impedance measured by the single

hydrophone transfer function method. The first file, load data.m, loads two files, one each

for the two measured hydrophone-source transfer functions, H1s and Hs2 for each frequency

band. The second file single hydrophone TFM.m uses this data to compute the effective

transfer function between the two hydrophones, H12, and the reflection coefficient.

%load_data.m

%This file loads the data files and creates the required variables.
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%The file names are in XYYMMDD## format, where YY is the year, MM is the
%month, and DD is the day. The numbering corresponds to the order in which
%the measurements are made during a standard run. The space delimitated
%ascii files are in the following format (f, Re(H), Im(H), C) where f is
%the frequency, H is the transfer function between channels 1 and 2, and C
%is the measured coherence between the two channels.

% Load the data files.
load X04060301.ASC % nearest to surface 1-2kHz
load X04060302.ASC % nearest to surface 2-4kHz
load X04060303.ASC % nearest to surface 4-8kHz
load X04060304.ASC % nearest to surface 8-16kHz
load X04060305.ASC % furthest from surface 8-16kHz
load X04060306.ASC % furthest from surface 4-8kHz
load X04060307.ASC % furthest from surface 2-4kHz
load X04060308.ASC % furthest from surface 1-2kHz

%Frequency Vectors
fA=X04060301(:,1); % 1-2 kHz
fB=X04060302(:,1); % 2-4 kHz
fC=X04060303(:,1); % 4-8 kHz
fD=X04060304(:,1); % 8-16 kHz

%Complex Transfer Functions
H2A=X04060301(:,2)-i.*X04060301(:,3); %H_s2, 1-2 kHz
H2B=X04060302(:,2)-i.*X04060302(:,3); %H_s2, 2-4 kHz
H2C=X04060303(:,2)-i.*X04060303(:,3); %H_s2, 4-8 kHz
H2D=X04060304(:,2)-i.*X04060304(:,3); %H_s2, 8-16 kHz

H1A=X04060308(:,2)-i.*X04060308(:,3); %H_1s, 1-2 kHz
H1B=X04060307(:,2)-i.*X04060307(:,3); %H_1s, 2-4 kHz
H1C=X04060306(:,2)-i.*X04060306(:,3); %H_1s, 4-8 kHz
H1D=X04060305(:,2)-i.*X04060305(:,3); %H_1s, 8-16 kHz

%Coherence
CA=X04060301(:,4).*X04060308(:,4); % 1-2 kHz
CB=X04060302(:,4).*X04060307(:,4); % 2-4 kHz
CC=X04060303(:,4).*X04060306(:,4); % 4-8 kHz
CD=X04060304(:,4).*X04060305(:,4); % 8-16 kHz

%end load_data.m

%Impedance_Calculator.m
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%inputs
loadit=1; %Load Data?
T=18.9; %Temperature

%Hydrophone locations (don’t correct for acoustic center):
d0=7; %nearest distance (inches)
dA=6.0+d0; %far 1-2k
dB=3.0+d0; %far 2-4k
dC=1.5+d0; %far 4-8k
dD=0.75+d0; %far 8-16k

%LOAD DATA ?
if loadit==1
load_data
end

%CONSTANTS
eps=6e-5; %standard loss parameter, water in tube
b=2.601/100; %inner radius of tube, m
ac=15.8e-3; %distance to hydrophone acoustic center, m

%CALCULATIONS
%Water outside tube:
rho=rhotemp_NIST(T); %Density at temperature
c0=ctemp(0,T); %Sound speed at temperature

%Angular Frequencies:
wA = 2*pi.*fA; % rad/s
wB = 2*pi.*fB;
wC = 2*pi.*fC;
wD = 2*pi.*fD;

%Convert distances to (m):
d0=d0.*0.0254;
dA=dA.*0.0254;
dB=dB.*0.0254;
dC=dC.*0.0254;
dD=dD.*0.0254;

%Phase speed in tube, from LaFleur and Shields elastic waveguide theory:
cA=ctemp_LandS(T,fA); %m/s
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cB=ctemp_LandS(T,fB);
cC=ctemp_LandS(T,fC);
cD=ctemp_LandS(T,fD);

%Wave number in tube accounting for losses
kA=wA./cA.*sqrt(1+eps.*(1-i).*sqrt(2.*cA./wA)./b); %1/m
kB=wB./cB.*sqrt(1+eps.*(1-i).*sqrt(2.*cB./wB)./b);
kC=wC./cC.*sqrt(1+eps.*(1-i).*sqrt(2.*cC./wC)./b);
kD=wD./cD.*sqrt(1+eps.*(1-i).*sqrt(2.*cD./wD)./b);

%Complex specific acoustic impedance in tube
Z0A=rho.*cA; %kg/m2/s
Z0B=rho.*cB; Z0C=rho.*cC; Z0D=rho.*cD;

%Hydrophone Spacing, s:
sA = dA-d0; % m
sB = dB-d0; sC = dC-d0; sD = dD-d0;

%Distance to furthest hydrophone:
LA =dA-ac ; % m
LB =dB-ac ; LC =dC-ac ; LD =dD-ac ;

%Transfer function bethween hydrophones, H12:
HA = H2A.*H1A; HB = H2B.*H1B; HC = H2C.*H1C; HD = H2D.*H1D;

%Reflection Coefficient from Chung and Blaser
RA=exp(-kA.*(i*2*LA)).*(HA-exp(kA.*(i*sA)))./(exp(-kA.*(i*sA))-HA);
RB=exp(-kB.*(i*2*LB)).*(HB-exp(kB.*(i*sB)))./(exp(-kB.*(i*sB))-HB);
RC=exp(-kC.*(i*2*LC)).*(HC-exp(kC.*(i*sC)))./(exp(-kC.*(i*sC))-HC);
RD=exp(-kD.*(i*2*LD)).*(HD-exp(kD.*(i*sD)))./(exp(-kD.*(i*sD))-HD);

%end Impedance_Calculator.m
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